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Preface

Writing a book is tempting, many ideas and topics, idea after idea, and topic upon
topic, what to elaborate, which to mention, the reader must find a satisfying answer,
enough knowledge; overlooking or going-by are painful choices for the author,
space is limited, a hard decision is to be made, without compromising what should
be transferred to the audience. Writing a scientific book is navigating, across the
Nile, the Mediterranean, the Atlantic, and the Indian oceans, in boat and in glass
submarine, looking and searching for known and unknown species, appreciating
diversified colors and a variety of sizes, collecting for a near benefit and for the
future. I navigated, explored, day and night, when cold and hot, whether windy or
breezing, without tolerating a least chance to know and learn.

Networking is a field of integration, hardware and software, protocols and
standards, simulation and testbeds, wired and wireless, VLSI and communication;
an orchestrated harmony that collaborates dependably, all for the good of a con-
nected well-performing network. That is the charm of networking, of life in a
civilization that recognizes differences and goes on.

In introductory computer networking books, chapters sequencing follows the
bottom-up or top-down architecture of the seven layers protocol. This book is some
more steps after, both horizontally and vertically, the view and understanding are
getting clearer, chapters ordering is based on topics’ significance to the elaboration
of wireless sensor networks (WSNs), concepts, and issues.

This book focuses on the notions of WSNs, their applications, and their analysis
tools; meticulous care has been accorded to the definitions and terminology.
To make WSNs felt and seen, the adopted technologies as well as their manufac-
turers are presented in detail. With such a depth, this book is intended for a wide
audience, it is meant to be helper and motivator, for senior undergraduates, post-
graduates, researchers, and practitioners; concepts and WSN-related applications
are laid out, research and practical issues are backed by the appropriate literature,
and new trends are put in focus. For senior undergraduate students, it familiarizes
with conceptual foundations and practical project implementations. For graduate
students and researchers, testbeds and simulators provide a must follow emphasis
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on the analysis methods and tools for WSNs. For practitioners, besides applications
and deployment, the manufacturers and components of WSNs at several platforms
and testbeds are fully explored.

Chapter 1 introduces the basics of sensors and WSNs, the types of WSNs, and
the standards specifically innovated to bring WSNs to useful life. Chapter 2 pre-
sents the distinctive protocol stack in WSNs. Chapter 3 lays out the plentiful
applications of WSNs in military, industry, environment, agriculture, health, daily
life, and multimedia. Chapter 4 is devoted to exhibiting characterizing transport
layer protocols in WSNs. Analysis tools of WSNs are prime methods and tools to
study, analyze, and implement WSNs, this is the goal of Chaps. 5 and 6. Chapter 5
presents the testbeds as existing in research institutes and projects to investigate
protocols and practical deployment. Chapter 6 takes care of exhaustively surveying
and comparing the simulation tools existing in the WSN realm. Chapters 7 and 8
must be checked whenever a product or a manufacturer is mentioned in the text,
they are meant to provide the full spectrum of the WSN industry, from a full variety
of products and their specs, to a wide diversity of manufacturers. Chapter 9
motivates the takeoff in WSNs study, research, and implementation. Exercises at
the end of each chapter are not just questions and answers; they are not limited to
recapitulate ideas. Their design objective is not bound to be a methodical review
of the provided concepts, but rather as a motivator for a lot more of searching,
finding, and comparing beyond what has been presented in the book.

Talking numbers, this book extends over nine chapters, and embodies 232
acronyms, 127 figures, 29 tables, and above 750 references.

With the advance of technology writing a book is becoming easier, information
is attainable; but it is certainly harder, details and depth are not to be missed.
A book, any book, is a step in a long path sought to be correct, precise as possible,
nonetheless errors are non-escapable, they are avoided iteratively, with follow up
and care.

The preface is the first get-together between the author and the audience, it is the
last written words, it is lying in the ground after the end line, to restore taken breath,
to enjoy relaxing after long painful efforts, mentally and physically, to relax in
preparation for a new game.

An author has his ups and downs, as everybody, but he is visible like nobody.
Could he manage to hide some of his letdowns? He has to, unlike anybody, for the
sake of his book, his readership.

If you find somebody talking to himself, tumbling, wearing a differently colored
pair of shoes, don't laugh at him, he is probably writing a book…

Hossam Mahmoud Ahmad Fahmy
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WSNs Concepts and Applications



Chapter 1
Introduction

Good beginnings lead to happy endings, most of the time.

Beginnings are usually uneasy, sometimes stiff, the acquaintance with newness
does not go without tensity, the first year in school, in college, at work, the first year
of marriage, the early months of retirement, even when first time using a new
gadget. Some fear change, a new TV, watch, mobile phone, software, color, and
brand. Befriending own habits, as human nature, grows with years; juniors are
usually more receptive and adaptive. The first fifteen minutes of a movie are
decisive, to stay or leave right away. The first book chapter is the hardest, it
introduces the author, the book and the topic. Writing is not dumping words and
machinely composing sentences, it is a live dialog between the author and the
audience, they see each other in their minds, while writing and while reading,
issues, debates, controversies, questions and answers, noise, smiles, brain storming,
head scratching. This chapter bears his task with willingness, enthusiasm, and
good will.

Significant developments in scalable standards are now pacing adoption and
presenting wireless sensor networks (WSNs) in applications welcomed at IT,
industry, home, work, …, everywhere. Wireless sensors can be deployed quickly in
an ad hoc fashion and used to report environmental changes, ensure the efficiency
of industrial processes in an oil refinery, determine how much power the blade
servers in a data center are using, or tell if the refrigerator is still as energy efficient
as when it was purchased.

In the 15 years that WSNs have been around, improvements in their architecture
and protocols have continued to push applications to the mainstream.
Semiconductor technology continues to follow Moore’s law, providing smaller,
more powerful and cheaper wireless devices. There are now established and reliable
low-power standards supporting the multiplicity of WSNs applications. The
Internet, the largest known network, has extended into the world of low-power
embedded WSNs devices.

Stepwise, WSNs are to be introduced with depth and focus.

© Springer Science+Business Media Singapore 2016
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1.1 Sensing, Senses, Sensors

Sensing is what distinguishes the living from stones and rocks. Alive creatures have
several levels and ways of sensing, without sensing there is no communication with
the outside word, there is no life. Lecturing on zoology or botany is not an objective,
but a quick reminder on senses of the living is recalled (Birds and Blooms 2013).

Many animals see the world completely differently to humans. Being able to see
helps animals locate food, move around, find mates and avoid predators, whether
they live at the bottom of the ocean or soar high in the sky. Eyesight is important for
most animals and nearly all animals can see, 95 % of all species have eyes. Some
animals live in complete darkness in caves or underground, where they cannot see
anything, their eyes often no longer work, but they have developed an
extra-sensitive sense of touch to feel their way around. However, only two animal
groups have evolved the ability to hear, vertebrates like mammals, birds and rep-
tiles, and arthropods, such as insects, spiders and crabs. No other animals can hear.
Some animals have a remarkable sense of hearing, finely tuned to where and how
they live, many animals hear sounds that humans cannot. Human senses of smell
and taste are feeble compared to those of many other animals, a keen sense of smell
allows animals to find food and mates, as well as to stay out of danger, it can stop
an animal wandering into a rival’s territory or help it find its way.

Animals communicate using visual signals, sounds, touch, smells and taste.
Vision, touch and taste work well over short distances, but sounds travel much further
and scent marks can last long after the animal has moved on. Sometimes the aim is to
deceive, blending into the background, pretending to be a twig or playing dead;
animals give out all sorts of false information to avoid danger or help catch their next
meal. Their tricks and deceptions vary from camouflage and mimicry to distracting,
startling, scaring and confusing others (National Museum Scotland 2013).

An insect’s acute sense of smell enables it to find mates, locate food, avoid
predators, and even gather in groups. Insects have sense organs for taste, touch,
smell, hearing, and sight. Some insects have sense organs for temperature and
humidity as well as stresses and movements of their body parts. Some insects rely
on chemical cues to find their way to and from a nest, or to space themselves
appropriately in a habitat with limited resources. Insects, you may have noticed, do
not have noses. So how are they able to sense the faintest of scents in the wind?
Antennae sometimes are called “feelers”. However, antennae as primarily “smel-
lers” are the insect’s noses because they are covered with many organs of smell.
These organs help the insect to find food, a mate, and places to lay eggs. Insects
even can decide which direction to fly by using their sense of smell (O. Orkin Insect
Zoo 2013).

How do fish sense movement? Fish have the five senses that people have, but
have a sixth sense that is more than a sense of touch. Fish have a row of special
cells inside a special canal along the surface of the fish’s skin. This is called the
“lateral line” which allows them to detect water vibrations. This sixth sense allows
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fish to detect movement around them and changes in water flow. Detecting
movement helps fish find prey or escape from predators. Detecting changes in water
flow help fish chose where to swim (Texas Parks and Wildlife 2013).

What about birds? They depend less on the senses of smell and taste than people
do. The odors of food, prey, enemies or mates quickly disperse in the wind. Birds
possess olfactory glands, but they are not well developed in most species, including
the songbirds in our backyards. The same is true for taste, which is related to smell.
While humans have 9,000 taste buds, songbirds have fewer than 50. That means the
birds we feed around must locate their food by sight or touch, two senses that are
highly developed in birds (Birds and Blooms 2013).

Plants, unlike animals, do not have ears, eyes, or tongues to help them feel and
acquire information from their environment. But without being helpless, they do
sense their environment in other ways and respond accordingly. Plants can detect
various wavelengths and use colors to tell them what the environment is like. When
a plant grows in the shadow of another, it will send a shoot straight up towards the
light source, it has also been shown that plants know when it is day and when it is
night. Leaf pores on plants open up to allow photosynthesis during the daytime and
close at night to reduce water loss. Plants also respond to ultraviolet light by
producing a substance that is essentially a sunscreen so that they do not get sun-
burned. They can sense weather changes and temperatures as well. Plants have
specific regulators, plant hormones, minerals and ions that are involved in cell
signaling and are important in environmental sensing. In fact, without these, the
plants will not grow properly (UCSB ScienceLine 2013).

Reminding of human senses is easy, the use of eye contacts, the eye attraction to
what is beautiful, the love of perfumes, the appreciation of beautiful music, the
relieving touch of softness, the tantalizing taste of sweeties. It is all senses. Human
interaction with the environment is an eternal task that grows and expands with
expansion of ambitions, with technology. This book is interested in presenting
wireless sensor networks (WSNs) in comprehensive details that are far beyond what
birds, insects, mammals can.

As an opening start, the goal of this chapter is to present a thorough survey of
WSNs.

1.2 Preliminaries of Wireless Sensor Networks

With the recent technological advances in wireless communications, processor,
memory, radio, low power, highly integrated digital electronics, and micro electro
mechanical systems (MEMS), it has become possible to significantly develop tiny
and small size, low power, and low cost multi-functional sensor nodes (Warneke
and Pister 2002). A wireless sensor network (WSN) is a network that is made of
tens to thousands of these sensor nodes which are densely deployed in an unat-
tended environment with the capabilities of sensing, wireless communications and
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computations (i.e., collecting and disseminating environmental data) (Akyildiz et al.
2002a). These nodes are capable of wireless communications, sensing and com-
putation (software, hardware, algorithms). So, it is obvious that a WSN is the result
of the combination of sensor techniques, embedded techniques, distributed infor-
mation processing, and communication mechanisms.

Functionally, smart sensor nodes are low power devices equipped with one or
more sensors, a processor, memory, power supply, a radio interface, and some
additional components that will be detailed later. A variety of mechanical, thermal,
biological, chemical, optical, and magnetic sensors may be attached to the sensor
node to measure properties of the environment. Since the sensor nodes have limited
memory and are typically deployed in difficult-to-access locations, a radio interface
is implemented for wireless communication to transfer the data to a basestation
(e.g., a laptop, a personal handheld device, or an access point to a fixed infra-
structure). Battery is the main power source in a sensor node, Also a secondary
power supply that harvests power from the environment such as solar panels may
be added to the node depending on the appropriateness for the environment where
the sensor will be deployed (Yick et al. 2008).

Regarding their practicality and low cost, WSNs have great potential for many
applications in scenarios such as military target tracking and surveillance (Yick
et al. 2005), natural disaster relief (Castillo-Effen et al. 2004), biomedical health
monitoring (Gao et al. 2005), and hazardous environment exploration and seismic
sensing (Wener-Allen et al. 2006). In military target tracking and surveillance, a
WSN can assist in intrusion detection and identification. Specific examples include
spatially correlated and coordinated troop and tank movements. With natural dis-
asters, sensor nodes can sense and detect the environment to forecast disasters
before they occur. In biomedical applications, surgical implants of sensors can help
monitor a patient’s health. For seismic sensing, ad hoc deployment of sensors along
the volcanic area can detect the development of earthquakes and eruptions. In
details, Chap. 2 of this book elaborates on WSNs applications.

Energy is the driver and concern of living beings that have the need to eat and
drink, and of modern technologies that need gas, winds and sun. Noteworthy, one
of the most important WSN limitations is energy conservation; therefore, the main
WSNs focus is on power conservation through appropriate optimization of com-
munication and operation management. Several analyses of energy efficient use for
sensor networks have been realized, and several algorithms that lead to efficient
transport layer protocols have been proposed, as will be presented later in Chap. 4
of this book.

What is the size of a WSN and where to place nodes? The environment plays a
key role in determining the size of the WSN network, the deployment scheme, and
the network topology. The network size varies with the monitored environment. For
indoor environments, fewer nodes are required to form a network in a limited space
whereas outdoor environments may require more nodes to cover a larger area. An
ad hoc deployment is preferred over pre-planned deployment when the environment
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is inaccessible by humans or when the network is composed of hundreds to
thousands of nodes. Obstructions can also limit communication between nodes,
which in turn affects the network connectivity, or topology. The position of sensor
nodes is not usually pre-determined, although the application can provide some
guidelines and insights that can lead to the construction of an optimal design that
satisfies application requirements and meets wireless network limitations.

To go from here and there a better route is to be selected, several routing, power
management and data dissemination protocols have been designed for WSNs,
depending on both their architecture and the applications they are intended to
support. WSN protocols support the proliferation of WSNs and efficiently make
them an integral constituent of daily life. To make wireless sensor networks
practically useful and functioning, these protocols are designed to overcome the
unique constraints of small memory, tiny size, limited energy, and to fulfill stan-
dards of scalability, adaptivity, fault-tolerance, low latency, and robustness.

In the coming section an overview of MANETs is provided as a step that leads to
WSNs.

1.3 Mobile Ad Hoc Networks (MANETs)

At first it is needed to strengthen up basics, a Mobile Ad hoc NETwork (MANET)
is one that comes together as needed, not necessarily with the support of an existing
Internet infrastructure or any fixed station, it is an autonomous system of mobile
hosts serving as routers and connected by wireless links (Cordeiro and Agrawal
2002). This contrasts the single hop cellular network that supports the need for
wireless communication by installing basestations as access points, such that the
communication between wireless nodes rely on the wired backbone and the fixed
basestations. In a MANET there is no infrastructure and the network topology
changes unpredictably since nodes are free to move. As for the mode of operation,
ad hoc networks are peer-to-peer multi-hop mobile wireless networks where
information packets are transmitted in a store and forward manner from source to
destination via intermediate nodes as shown in Fig. 1.1. Topology changes as the

Fig. 1.1 Mobile ad hoc network (Cordeiro and Agrawal 2002)
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nodes move, for instance as node MH2 changes its point of attachment from MH3
to MH4 other nodes must follow the new route to forward packets to MH2. It is to
be clear that not all nodes are within radio reach of each other; otherwise there
would not be any routing problem. Bidirectional links between nodes indicate that
they are within radio range of each other, for instance MH1 and MH3.
Unidirectional links indicates that a node may transmit while the other cannot, for
instance MH4 can send to MH7, while MH7 cannot.

The following sections go further in the WSNs journey.

1.4 Wireless Mesh Networks (WMNs)

Mesh network architectures have been conceived by both industry and academia.
A wireless mesh network is a fully wireless network that employs multi-hop
communications to forward traffic to and from wired Internet entry points. Different
from flat ad hoc networks, a wireless mesh network (WMN) introduces a hierarchy
in the network architecture by the implementation of dedicated nodes (wireless
routers) communicating among each other and providing wireless transport services
to data traveling from users to other users or to access points (access points are
special wireless routers with a high-bandwidth wired connection to the Internet
backbone). As shown in Fig. 1.2 the network of wireless routers forms a wireless

Nomadic users

Access points

Wireless routers

Wireless connections

Wired/Wireless connections

Internet

Fig. 1.2 A three-tier architecture for wireless mesh networks
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backbone tightly integrated into the mesh network, which provides multi-hop
connectivity between nomadic users and wired gateways. The meshing among
wireless routers and access points creates a wireless backhaul communication
system, which provides each mobile user with a low-cost, high-bandwidth, and easy
multi-hop interconnection service with a limited number of Internet entry points,
and with other wireless mobile users. Backhaul is used to indicate the service of
forwarding traffic from the user originator node to an access point from which it can
be distributed over the external network, the Internet in this case.

The mesh network architecture addresses the emerging market requirements for
building wireless networks that are highly scalable and cost effective, offering a
solution for the easy deployment of high-speed ubiquitous wireless Internet.

Mesh networking has more than a benefit (Raffaele et al. 2005):

• Reduction of installation costs. Currently, one of the major efforts to provide
wireless Internet, beyond the boundaries of indoor WLANs, is through the
deployment of Wi-Fi hot spots. Basically, a hot spot is an area that is served by a
single WLAN or a network of WLANs, where wireless clients access the
Internet through an 802.11 based access point. The downside of this solution is a
tolerable increase in the infrastructure costs, because a cabled connection to the
wired backbone is needed for every access point in the hot spot. As a conse-
quence, the hot spot architecture is costly, unscalable, and slow to deploy. On
the other hand, building a mesh wireless backbone enormously reduces the
infrastructural costs because the mesh network needs only a few access points
connected to the wired backbone.

• Large-scale deployment. In recently standardized WLAN technologies (i.e.,
802.11a and 802.11g), increased data rates have been achieved by using more
spectrally efficient modulation schemes. However, for a specific transmit power,
shifting toward more efficient modulation techniques reduces coverage, i.e., the
further from the access point the lower the data rate available. Moreover, for a
fixed total coverage area, more access points should be installed to cover
small-size cells. Obviously, this miniaturization of WLANs cells further hinders
the scalability of this technology, especially in outdoor environments. On the
other hand, multi-hop communications offers long distance communications via
hopping through intermediate nodes. Since intermediate links are short, these
transmissions could be at high data rates, resulting in increased throughput
compared to direct communications. The wireless backbone can realize a high
degree of spatial reuse through wireless links covering longer distance at higher
speed than conventional WLAN technologies.

• Reliability. The wireless backbone provides redundant paths between each pair
of endpoints, significantly increasing communications reliabilityeliminating
single points of failure and potential bottleneck links within the mesh. Network
fault-tolerance is increased against potential problems such as node crash, path
failure due to temporary obstacles or external radio interference, by the exis-
tence of multiple possible destinations (i.e., any of the exit points toward the
wired Internet), and alternative routes to these destinations.

1.4 Wireless Mesh Networks (WMNs) 9



• Self-management. The adoption of peer-to-peer networking to build a wireless
distribution system provides all the advantages of ad hoc networking, such as
self-configuration and self healingness. Consequently, network setup is auto-
matic and transparent to users. For instance, when adding additional nodes in the
mesh, these nodes use their meshing functionalities to automatically discover all
possible wireless routers and determine the optimal paths to the wired network.
In addition, the existing wireless routers reorganize, taking into account the new
available routes. Thus, the network can easily be expanded, because the network
self-reconfigures to assimilate the new elements.

With the differences between WSN and WMN many similarities coexist:

• The goal of any WSN and WMN, is to create and maintain network connectivity
as easy as possible, in order to get as many data, as fast, easy, secure as needed
from source to destination node(s), while consuming the least possible number
of resources, such as the wireless spectrum, node energy, node memory, node
processing power, and financial budget.

• Multi-hop networks are created, which requires some form of node addressing
and a routing protocol.

Table 1.1 Sensor and mesh nodes characteristics

Sensor nodes Mesh nodes

General Target form
factor

Small or tiny O(mm3) Larger O(cm3)

Antenna Integrated External

Power
consumption

O(mW) O(W)

Power Small battery or energy
harvesting

Unlimited due to external
power source

Price Relatively cheap (a few dollars
or less)

Relatively expensive
($50–$500 and up)

RAM/ROM Kbytes Mbytes

Processing
power

Very limited Relatively high

Network Bandwidth Low (a few Mbps and
frequently less)

Relatively high (several
Mbps)

Interface(s) Single, often proprietary Single or multiple, often
standardized

Max packet
size

Small O (bytes) Larger O (kbytes)

IP capabilities Limited or none IP capable

Sleeping
schemes

Often used Rarely used

Delay per hop O (ms) to several seconds O (ms)

Mobility None to highly mobile Most often limited or none
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Many popular WSN and WMN technologies share the limited 2400–2500 MHz
ISM band of the wireless spectrum.

Table 1.1 compares sensor and mesh nodes (Bouckaert et al. 2010).

1.5 Closer Perspective to WSNs

1.5.1 Wireless Sensor Nodes

To get closer to how a wireless sensor network is built, an insight into a sensor node
is to come first. Specifically, a sensor node is made up of basic components as
shown in Fig. 1.3:

• Sensing units. Sensing units are usually composed of two subunits, sensors and
analog to digital converters (ADCs). The analog signals produced by the sensors
based on the observed phenomenon are converted to digital signals by the ADC,
and then fed into the processing unit.

• Processing unit. The processing unit is generally associated with a small storage
unit, manages the procedures that make the sensor node collaborates with the
other nodes to carry out the assigned sensing tasks.

• Transceiver unit. A transceiver unit connects the node to the network.
• Power unit. Power units may be supported by a power scavenging unit such as

solar cells.
• Application dependent additional components such as a location finding system,

a power generator and a mobilizer. Most of the sensor network routing tech-
niques and sensing tasks require the knowledge of location with high accuracy,
thus it is common that a sensor node has a location finding system. A mobilizer
may sometimes be needed to move sensor nodes when it is required to carry out
the assigned tasks.

Fig. 1.3 Components of a sensor node (Akyildiz et al. 2002b)
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All of these subunits may need to fit into a matchbox-sized module whose size
may be smaller than even a cubic centimeter, which is light enough to remain
suspended in the air. Added to size, there are also some other stringent specifica-
tions of sensor nodes (Khan et al. 1999):

• Consume extremely low power.
• Operate in high volumetric densities.
• Have low production cost, can be easily replaced, and the malfunction of any

does not halt other sensors.
• Are autonomous and operate unattended.
• Are adaptive to the environment.

1.5.2 Architecture of WSNs

The term architecture has been adopted to describe the activity of designing any
kind of system, it is the complex or carefully designed structure of something; one
of its common uses is in describing information technology, such as computer
architecture and network architecture. The architecture of WSNs is built up of main
entities as shown in Fig. 1.4:

• The Sensor nodes that form the sensor network. Their main objectives are
making discrete, local measurement about phenomenon surrounding these
sensors, forming a wireless network by communicating over a wireless medium,
and collecting data and routing data back to the user via a sink (basestation).

User

Sensor node

Target

Monitored area

Sink (basestation)

WSN

Fig. 1.4 Architecture of WSNs (based on Tilak et al. 2002)
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• The sink (basestation) communicates with the user via Internet or satellite
communication. It is located near the sensor field or well-equipped nodes of the
sensor network. Collected data from the sensor field is routed back to the sink by
a multi-hop infra-structureless architecture through the sink.

• The phenomenon which is an entity of interest to the user, it is sensed and
analyzed by the sensor nodes.

• The user who is interested in obtaining information about a specific phe-
nomenon to measure/monitor its behavior.

Although many protocols and algorithms have been proposed for traditional
wireless ad hoc networks, they are not well suited for the unique features and
application requirements of sensor networks, as detailed in this section. For further
illustration, the differences between WSNs and MANETs are outlined below
(Akyildiz et al. 2002a):

• The number of sensor nodes in WSNs can be several orders of magnitude higher
than the nodes in MANETs.

• Sensor nodes are densely deployed.
• Sensor nodes are prone to failures.
• The topology of a sensor network changes very frequently.
• Unlike a node in MANETs, a sensor node may not have a unique global IP

address due to the numerous numbers of sensors and the resulting high
overhead.

• Sensor nodes as deployed in high numbers, are extremely cheap and consid-
erably tiny, unlike MANET nodes (e.g., PDAs, Laptops, etc.).

• The communication paradigm used in WSNs is broadcasting, whereas MANETs
are based on point-to-point communications.

• The topology of a WSN changes very frequently.
• Limited energy and bandwidth conservation is the main concern in WSN pro-

tocols design, which is not really worrisome in MANETs.

1.6 Types of WSNs

WSNs can be deployed on ground, underground, and underwater. Five functional
types can be distinguished, specifically, terrestrial, underground, underwater,
multi-media, and mobile WSNs (Yick et al. 2005). What follows provides the
details of each type.
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1.6.1 Terrestrial WSNs

Terrestrial WSNs deployed in a given area (Yick et al. 2008). There are two ways to
deploy sensor nodes on WSNs:

• In Unstructured WSN, which contains a dense collection of sensor nodes.
Sensor nodes may be deployed in an ad hoc manner into the field, once
deployed the network is left unattended to perform monitoring and reporting
functions. In an unstructured WSN, network maintenance such as managing
connectivity and detecting failures is difficult since there are so many nodes.

• In Structured WSN, all or some of the sensor nodes are deployed in a
pre-planned manner. The advantage of a structured network is that fewer nodes
can be deployed with lower network maintenance and management cost. Fewer
nodes are beneficially deployed since they are placed at specific locations to
provide coverage while ad hoc deployment can have uncovered regions.

Sensor nodes are deployed on the sensor field within reach of the transmission
range of each other and at densities that may be as high as 20 nodes/m3. Densely
deploying hundreds or thousands of sensor nodes over a field requires maintenance
of topology along three phases:

• Pre-deployment and deployment phase. Sensor nodes may either be thrown in
the deployment field as a mass from an airplane or an artillery shell, or placed
one by one by a human or a robot.

• Post deployment phase. After deployment, topology changes due to change in
sensor nodes position, reachability (that may be effected by jamming, noise,
moving obstacles, etc.), remaining energy, malfunctioning, and task details.

• Redeployment of additional nodes. Additional sensor nodes can be redeployed
to replace malfunctioning nodes or to account for changes in task dynamics.

In a terrestrial WSN, reliable communication in a dense environment is a must.
Sensor nodes must be able to effectively communicate data back to the basestation.
While battery power is limited and may not be rechargeable, terrestrial sensor nodes
however can be equipped with a secondary power source such as solar cells, it is
important for sensor nodes to conserve energy. For a terrestrial WSN, energy can be
conserved with multi-hop optimal routing, short transmission range, in-network
data aggregation, eliminating data redundancy, minimizing delays, and using low
duty-cycle operations.

1.6.2 Underground WSNs

Underground WSNs consist of a number of sensor nodes buried underground or in
a cave or mine used to monitor underground conditions (Li and Liu 2007, 2009; Li
et al. 2007). Additional sink nodes are located above ground to relay information
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from the sensor nodes to the basestation. An underground WSN is more expensive
than a terrestrial WSN in terms of equipment, deployment, and maintenance.
Underground sensor nodes are expensive because appropriate equipment parts must
be selected to ensure reliable communication through soil, rocks, water, and other
mineral contents. The underground environment makes wireless communication a
challenge due to signal losses and high levels of attenuation. Unlike terrestrial
WSNs, the deployment of an underground WSN requires careful planning and
energy and cost considerations. Energy is an important concern in underground
WSNs. Like terrestrial WSN, underground sensor nodes are equipped with a limited
battery power and once deployed into the ground, it is difficult to recharge or
replace a sensor node’s battery. As usual, a key objective is to conserve energy in
order to increase the network lifetime, which can be achieved by implementing
efficient communication protocol.

1.6.3 Underwater Acoustic Sensor Networks (UASNs)

Underwater acoustic sensor networks (UASNs) technology provides new oppor-
tunities to explore the oceans, and consequently it improves understanding of the
environmental issues, such as the climate change, the life of ocean animals and the
variations in the population of coral reefs. Additionally, UASNs can enhance the
underwater warfare capabilities of the naval forces since they can be used for
surveillance, submarine detection, mine countermeasure missions and unmanned
operations in the enemy fields. Furthermore, monitoring the oil rigs with UASNs
can help taking preventive actions for the disasters such as the rig explosion that
took place in the Gulf of Mexico in 2010. Last but not least, earthquake and
Tsunami forewarning systems can also benefit from the UASN technology
(Erol-Kantarci et al. 2011).

Ocean monitoring systems have been used for the past several decades, where
traditional oceanographic data collection systems utilize individual and discon-
nected underwater equipment. Generally, this equipment collects data from their
surroundings and sends these data to an on-shore station or a vessel by means of
satellite communications or underwater cables. In UASNs, this equipment is
replaced by relatively small and less expensive underwater sensor nodes that house
various sensors on board, e.g., salinity, temperature, pressure, current speed sen-
sors. The underwater sensor nodes are networked, unlike the traditional equipment,
and they communicate underwater via acoustics.

In underwater, radio signals attenuate rapidly, hence they can only travel to short
distances while optical signals scatter and cannot travel far in adverse conditions, as
well. On the other hand, acoustic signals attenuate less, and they are able to travel
further distances than radio signals and optical signals. Consequently, acoustic
communication emerges as a convenient choice for underwater communications.
However, it has several challenges (Heidemann et al. 2006):
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• The bandwidth of the acoustic channel is low, hence the data rates are lower
than they are in terrestrial WSNs. Data rates can be increased by using short
range communications, which means more sensor nodes will be required to
attain a certain level of connectivity and coverage. In this respect, large-scale
UASN poses additional challenges for communication and networking
protocols.

• The acoustic channel has low link quality, which is mostly due to the multi-path
propagation and the time-variability of the medium.

• Furthermore, the speed of sound is slow (approximately 1500 m/s) yielding
large propagation delay.

• In mobile UASNs, the relative motion of the transmitter or the receiver may
create the Doppler effect.

• UASNs are also energy limited similar to other WSNs.

Due to the above challenges, UASNs rooms research studies in novel medium
access, network, transport, localization, synchronization protocols and architectures
(Jornet et al. 2008; Vuran and Akyildiz 2008; Lee et al. 2010; Ahna et al. 2011).
The design of network and management protocols is closely related with the net-
work architecture, and various UASN architectures have been proposed in the
literature. Moreover, localization has been widely addressed since it is a funda-
mental task used in tagging the collected data, tracking underwater nodes, detecting
the location of an underwater target and coordinating the motion of a group of
nodes, Furthermore, location information can be used to optimize the medium
access and routing protocols (Chandrasekhar et al. 2006; Erol-Kantarci et al. 2011;
Zhou et al. 2011).

Underwater sensor nodes must be able to self-configure and adapt to harsh ocean
environment, they are equipped with a limited battery, which cannot be replaced or
recharged. The issue of energy conservation for underwater WSNs involves
developing efficient underwater communication and networking techniques.

1.6.4 Multimedia WSNs

Multimedia WSNs have been proposed to enable monitoring and tracking of events
in the form of multimedia such as video, audio, and imaging (Akyildiz et al. 2007).
Multimedia WSNs consist of a number of low cost sensor nodes equipped with
cameras and microphones. These sensor nodes interconnect with each other over a
wireless connection for data retrieval, processing, correlation, and compression.
They are deployed in a preplanned manner into the environment to guarantee
coverage. Challenges in multimedia WSN include:

• High bandwidth demand.
• High energy consumption.
• Quality of service (QoS) provisioning.
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• Data processing and compressing techniques.
• Cross-layer design.

Multimedia content such as a video stream requires high bandwidth in order for
the content to be delivered quickly, consequently, high data rate leads to high
energy consumption. Thus, transmission techniques that support high bandwidth
and low energy consumption have to be developed. QoS provisioning is a chal-
lenging task in a multimedia WSN due to the variable delay and variable channel
capacity. It is important that a certain level of QoS must be achieved for reliable
content delivery. In-network processing, filtering, and compression can signifi-
cantly improve network performance in terms of filtering and extracting redundant
information and merging contents. Similarly, cross-layer interaction among proto-
col layers can improve the processing and delivering of data.

1.6.5 Mobile WSNs

Mobile WSNs consist of a collection of sensor nodes that can move on their own
and interact with the physical environment (Francesco et al. 2011). There are
several comparative issues between mobile and static sensor nodes:

• Like static nodes, mobile nodes have the ability to sense, compute, and
communicate.

• Contrarily, mobile nodes have the ability to reposition and organize themselves
in the network. A mobile WSN can start off with some initial deployment and
nodes can then spread out to gather information. Information gathered by a
mobile node can be communicated to another mobile node when they are within
range of each other.

• Another key difference is data distribution. In a static WSN, data can be dis-
tributed using fixed routing or flooding while dynamic routing is used in a
mobile WSN.

Mobility in WSNs is useful for several reasons, as presented in what follows
(Anastasi et al. 2009):

• Connectivity. As nodes are mobile, a dense WSN architecture is not a pressing
requirement. Mobile elements can cope with isolated regions, such that the
constraints on network connectivity, and on nodes (re)deployment can be
relaxed. Hence, a sparse WSN architecture becomes a feasible option.

• Cost. Since fewer nodes can be deployed, the network cost is reduced in a
mobile WSN. Although adding mobility features to the nodes might be
expensive, it may be possible to exploit mobile elements, which are already
present in the sensing area (e.g., trains, buses, shuttles or cars), and attach
sensors to them.
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• Reliability. Since traditional (static) WSNs are dense and the communication
paradigm is often multi-hop ad hoc, reliability is compromised by interference
and collisions; moreover, message loss increases with the increase in number of
hops. Mobile elements, instead, can visit nodes in the network and collect data
directly through single-hop transmissions; this reduces not only contention and
collisions, but also the message loss.

• Energy efficiency. The traffic pattern inherent to WSNs is converge cast, i.e.,
messages are generated from sensor nodes and are collected by the sink. As a
consequence, nodes closer to the sink are more overloaded than others, and
subject to premature energy depletion. This issue is known as the funneling
effect, since the neighbors of the sink represent the bottleneck of traffic. Mobile
elements can help reduce the funneling effect, as they can visit different regions
in the network and spread the energy consumption more uniformly, even in the
case of a dense WSN architecture.

However, mobility in WSNs also introduces significant challenges, which do not
arise in static WSNs, as illustrated below:

• Contact detection. Since communication is possible only when the nodes are in
the transmission range of each other, it is necessary to detect the presence of a
mobile node correctly and efficiently. This is especially true when the duration
of contacts is short.

• Mobility-aware power management. In some cases, it is possible to exploit the
knowledge on the mobility pattern to further optimize the detection of mobile
elements. In fact, if visiting times are known or can be predicted with certain
accuracy, sensor nodes can be awake only when they expect the mobile element
to be in their transmission range.

• Reliable data transfer. As available contacts might be scarce and short, there is a
need to maximize the number of messages correctly transferred to the sink. In
addition, since nodes move during data transfer, message exchange must be
mobility-aware.

• Mobility control. When the motion of mobile elements can be controlled, a
policy for visiting nodes in the network has to be defined. That is, the path and
the speed or sojourn time of mobile nodes have to be defined in order to improve
(maximize) the network performance.

• Challenges also include deployment, localization, navigation and control, cov-
erage, maintenance, and data processing.

Mobile WSN applications include environment monitoring, target tracking,
search and rescue, and real-time monitoring of hazardous material. Mobile sensor
nodes can move to areas of events after deployment to provide the required cov-
erage. In military surveillance and tracking, they can collaborate and make deci-
sions based on the target. Mobile sensor nodes can achieve a higher degree of
coverage and connectivity compared to static sensor nodes. In the presence of
obstacles in the field, mobile sensor nodes can plan ahead and move appropriately
to unobstructed regions to increase target exposure.
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1.7 Performance Metrics of WSNs

Metric is the standard of measurement, it varies with the measured environment.
Time delay is a widely used metric, it is the time needed to obtain a response after
applying certain input, its units are coarsely seconds, but specifically at which
scale? In an electronic environment, time delay units are microseconds and less, in
electro-mechanical environment they are milliseconds or more, in pure mechanical
systems they are seconds and above. In athletic run sports, speed is the metric, its
unit scale varies with distances, from the 100 m race till the marathon. Generally,
speed varies with who is running and where, a professional human runner spends
2:15 h in a 42.195 km marathon, while a cheetah that is three times faster just needs
25 min to reach the end point; the metric is time, the same, but for humans it
measured in hours, while it is in minutes for the cheetah (Fig. 1.5). One of the
metrics for goods is weight, its unit is kilograms or pounds, but for coal it is a
multiplicity of kilograms for home use and tons for industry. On the other hand,
gold weight is calculated in grams or ounces for personal use and in kilograms for
gold traders. Lifetime a metric related to living being existence, it is left for the
reader to have some thoughts about it, at least for mind relief.

Back to WSNs, for a WSN to perform satisfactorily, some metrics are also
defined, measured, and interpreted far from confusion. Several metrics, close to
WSNs characteristics as introduced in previous sections of this chapter, evaluate
sensor network performance. Specifically:

• Network lifetime. It is measure of energy efficiency, as sensor nodes are battery
operated, WSNs protocols must be energy efficient to maximize system lifetime.
System lifetime can be measured by generic parameters such as the time until
half of the nodes die, or by application directed metrics, such as when the
network stops providing the application with the desired information about the
environment, it is also calculated as the time until message loss rate exceeds a
given threshold.

• Energy consumption. It is the sum of used energy by all WSN nodes. The
consumed energy of a node is the sum of the energy used for communication,

Fig. 1.5 Fastest runners with different metrics a Usain Bolt hits 9:58 s for 100 m b Cheetah fastest
runner on earth
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including transmitting, receiving, and idling. Assuming each transmission
consumes an energy unit, the total energy consumption is equivalent to the total
number of packets sent in the network.

• Latency. It is the end-to-end delay that implies the average time between
sending a packet from the source, and the time for successfully receiving the
message at the destination. Measurement takes into account the queuing and the
propagation delay of the packets. The observer is interested in getting infor-
mation about the environment within a given delay. The precise units of latency
are application dependent.

• Accuracy. It is the freedom from mistake or error, correctness, conformity to
truth, exactness. Obtaining accurate information is the primary objective of the
observer. There is a trade-off between accuracy, latency and energy efficiency.
A WSN should be adaptive such that its performance achieves the desired
accuracy and delay with minimal energy expenditure. For example, the WSN
task, the application, can either request more frequent data dissemination from
the same sensor nodes, or it can direct data dissemination from more sensor
nodes with the same frequency.

• Fault-tolerance. Sensors may fail due to surrounding physical conditions or
when their energy runs out. It may be impractical to replace existing sensors; in
response, the WSN must be fault-tolerant such that non-serious failures are
hidden from the application in a way that does not hinder it. Fault-tolerance may
be achieved through data replication, as in the SPIN protocol (Xiao et al. 2006).
However data replication itself requires energy; there is a trade-off between data
replication and energy efficiency, generally, data replication should be
application-specific, higher priority data according to the application might be
replicated for fault-tolerance.

• Scalability. As a prime factor, it is WSN adaptability to increased workload, that
is to include more sensor nodes than what was anticipated during network
design. A scalable network is one that can be expanded in terms of the number
of sensors, complexity of the network topology, data quality, e.g., sampling rate,
sensor sensitivity, and amount of data while the cost of the expansion instal-
lation and operational cost, communication time, processing time, power, and
reliability is no worse than a linear, or nearly linear, function of the number of
sensors (Pakzad et al. 2008). WSN scalability needs to consider an integrated
view of the hardware and software. For hardware, scalability involves sensitivity
and range of MEMS sensors, communication bandwidth of the radio, and power
usage. The software issues include reliability of command dissemination and
data transfer, management of large volume of data, and scalable algorithms for
analyzing the data. The combined hardware-software issues include
high-frequency sampling, and the tradeoffs between on-board computations
compared with wireless communication between nodes.

• Network throughput. It is a common metric for all networks. The end-to-end
throughput measures the number of packets per second received at the
destination.

20 1 Introduction



• Success rate. It is also a common metric. It is the total number of packets
received at the destinations verses the total number of packets sent from the
source.

1.8 WSNs Standards

A standard is a required or agreed level of quality or attainment. There are standards
for health, industry, and education. The International Organization for
Standardization known as ISO, is an international standard-setting body composed
of representatives from various national standards organizations. Founded on
February 23, 1947, long time before WSNs were born, ISO promotes worldwide
proprietary, industrial and commercial standards. The WSNs standards are tightly
coupled to the ISM frequency bands that are recalled in the next paragraph and
widely evoked in the coming subsections.

The Industrial, Scientific and Medical (ISM) radio bands were first established in
1947 by the International Telecommunications Union (ITU) in Atlantic City.
The ISM bands are defined by the ITU-R in 5.138, 5.150, and 5.280 of the Radio
Regulations (ITU 1947). Individual countries’ use of the bands designated in these
sections may differ due to variations in national radio regulations. ISM are radio
bands (portions of the radio spectrum) reserved internationally for the use of radio
frequency (RF) energy for industrial, scientific and medical purposes other than
telecommunications (Table 1.2). Examples of applications in these bands include
radio-frequency process heating, microwave ovens, and medical diathermy
machines. The powerful emissions of these devices can create electromagnetic
interference and disrupt radio communication using the same frequency, so these
devices were limited to certain bands of frequencies.

Wireless sensor standards have been developed with a key design requirement
for low power consumption. The standards define the functions and protocols
necessary for sensor nodes to interface with a variety of networks. A detailed
description of such standards is enlightened in the Sections to follow. The IEEE
802.15 is a working group focusing on wireless personal area networks (WPANs),
it has seven different approved standards and several ongoing standards discussions
that are in different phases of the standardization process (IEEE 2013). All 802.15.x
approved standards propose PHY and MAC layers, they do not provide network,
transport or application layers, implying that this task is left for other parties.
ZigBee as will be illustrated in Sect. 1.8.2 is a company alliance that constructs
network and application layers to 802.15.4 devices. Figure 1.6 lists the IEEE 802
standards with a focus on IEEE 802.15.

As instances, the 802.15.1 is a standard of the lower transport layers of the
Bluetooth stack that contains a MAC and a PHY layer specifications. Task group 2
has delivered 802.15.2 as a recommended practice for coexistence of WPAN
devices with other radio equipment in unlicensed frequency bands. Also, task group
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Table 1.2 ISM bands defines by ITU-R

Frequency range Bandwidth Center
frequency

Availability

00.000 kHz 150 kHz 150 kHz 75 kHz Region 1 low power, narrow
band

6.765 MHz 6.795 MHz 30 kHz 6.780 MHz Subject to local acceptance

13.553 MHz 13.567 MHz 14 kHz 13.560 MHz Radio-frequency identification

26.957 MHz 27.283 MHz 326 kHz 27.120 MHz Citizen Band (CB) radio
models

40.660 MHz 40.700 MHz 40 kHz 40.680 MHz Radio models

433.050 MHz 434.790 MHz 1.74 MHz 433.920 MHz Region 1 and subject to local
acceptance

866.00? MHz 868.000 MHz 2 MHz 867.000 MHz Region 1. Very narrow band,
few channels.

902.000 MHz 928.000 MHz 26 MHz 915.000 MHz Region 2 only (with some
exceptions)

2.400 GHz 2.4835 GHz 83.5 MHz 2.441 GHz Region 1, Region 2, Region 3

5.725 GHz 5.875 GHz 150 MHz 5.800 GHz Region 3 has extended the
upper range,
additional * 150 MHz.

24.000 GHz 24.250 GHz 250 MHz 24.125 GHz

61.000 GHz 61.500 GHz 500 MHz 61.250 GHz Subject to local acceptance

122.000 GHz 123.000 GHz 1 GHz 122.500 GHz Subject to local acceptance

244.000 GHz 246.000 GHz 2 GHz 245.000 GHz Subject to local acceptance

• Region 1 comprises Europe, Africa, the Middle East west of the Arabian Gulf including Iraq, the
former Soviet Union and Mongolia

• Region 2 covers the Americas, Greenland and some of the Eastern Pacific Islands
• Region 3 contains most of non-former-Soviet-Union Asia, east of and including Iran, and most of
Oceania
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Fig. 1.6 IEEE 802 standards with focus on IEEE 802.15
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3 of 802.15 presented a standard in 2003 that was intended for high-rate WPAN
with application areas such as multimedia and digital imaging. High-rate in this
context is transfer rates of 11, 22, 33, 44 and 55 Mbps. Task group 3 had two
sub-working groups called 802.15.3a and 802.15.3b, where the former was sup-
posed to present a new PHY based on ultra-wide band (UWB) radio technique, and
the latter came up in 2005 with an amendment to the MAC sublayer. In subgroup 3a
two different proposals of UWB techniques were discussed as a new PHY layer, but
two industry alliances could not come to a consensus on which one to adopt.
Consequently, IEEE decided to postpone further meetings in this subgroup and
there is no UWB PHY standard yet to high rate WPAN. Task group 4 of 802.15, as
will be further elaborated in Sect. 1.8.1 has developed a standard intended for low
data transfer rates of WPANs as opposite to the high transfer rates of 802.15.3. In
Fig. 1.7 the different 802.15 standards are classified based on data rate and wireless
equipment range.

1.8.1 IEEE 802.15.4 Low Rate WPANs

IEEE 802.15.4 is the proposed standard for low rate wireless personal area net-
works (LR-WPAN’s) with focus on enabling WSNs (Gutierrez et al. 2001;
Callaway et al. 2002; Howitt and Gutierrez 2003). IEEE 802.15.4 focuses on low
cost of deployment, low complexity, and low power consumption; it is designed for
wireless sensor applications that require short range communication to maximize
battery life. WSNs applications using IEEE 802.15.4 include residential, industrial,
and environment monitoring, control and automation.

IEEE 802.15.4 devices are designed to follow the physical and data-link layer
protocols. As illustrated in Table 1.3 the physical layer supports 868/915 MHz low
bands and 2.4 GHz high bands. The MAC layer controls access to the radio channel

Fig. 1.7 Wireless standards space
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using the CSMA/CA mechanism. The MAC layer is also responsible for validating
frames, frame delivery, network interface, network synchronization, device asso-
ciation, and secure services.

The intent of IEEE 802.15.4 is to address applications where existing WPAN
solutions are too expensive and the performance of a technology such as Bluetooth
is not required. IEEE 802.15.4 LR-WPANs complement other WPAN technologies
by providing very low power consumption capabilities at very low cost, thus
enabling applications that were previously impractical. Table 1.4 illustrates a basic
comparison between IEEE 802.15.4 and other IEEE 802 wireless networking
standards.

As previously stated, like all IEEE 802 standards, the IEEE 802.15.4 standard
encompasses only PHY layer and portions of the data link layer (DLL). Higher
layer protocols are at the discretion of the individual applications utilized in an
in-home network environment. In traditional wired networks, the network layer is
responsible for topology construction and maintenance, as well as naming and
binding services, which incorporate the necessary tasks of addressing, routing, and
security. The same services exist for wireless in-home networks, but are far more
challenging to implement because of the premium placed on energy conservation.
In fact, it is important for any network layer implementation built on the already
energy conscious IEEE 802.15.4 standard to be equally conservative. Network
layers built on the standard must be self-organizing and self-maintaining, to min-
imize total cost to the consumer user.

Table 1.3 IEEE 802.15.4 High level characteristics

Frequency
Band

Two
PHYs

Low-Band (BPSK) 868 MHz 1 channel−20 Kbps

915 MHz 10 channels−40 Kbps

High-Band
(O-QPSK)

2.4 GHz 16 channels−250
Kbps

Channel
Access

CSMA/CA and slotted CSMA/CA

Range 10 to 20 m

Latency 15 ms

Addressing Short 8 bit or 64-bit IEEE

Acronyms
BPSK (Binary phase shift keying), CSMA/CA (Carrier sense multiple access with collision
avoidance), O-QPSK (Offset quadrature phase shift keying)

Table 1.4 IEEE 802.15.4 compared with 802 wireless standards

802.11b WLAN 802.15.1 WPAN 802.15.4 LR-WPAN

Range *100 m *10−100 m 10 m

Raw data rate 11 Mbps 1 Mbps <= 0.25 Mbps

Power consumption Medium Low Ultra low
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The IEEE 802 standard splits the DLL into two sublayers, the MAC and logical
link control (LLC) sublayers. The LLC is standardized in 802.2 and is common
among the 802 standards such as 802.3, 802.11, and 802.15.1, while the MAC
sublayer is closer to the hardware and may vary with the physical layer imple-
mentation. The features of the IEEE 802.15.4 MAC are association and disasso-
ciation, acknowledged frame delivery, channel access mechanism, frame validation,
guaranteed time slot management, and beacon management.

Figure 1.8 shows how IEEE 802.15.4 fits into the International Organization for
Standardization (ISO) open systems interconnection (OSI) reference model.
The IEEE 802.15.4 MAC provides services to an IEEE 802.2 type I LLC through
the service-specific convergence sublayer (SSCS), or a proprietary LLC can access
the MAC services directly without going through the SSCS. The SSCS ensures
compatibility between different LLC sublayers and allows the MAC to be accessed
through a single set of access points. Using this model, the 802.15.4 MAC provides
features not utilized by 802.2, and therefore allows the more complex network
topologies.

The IEEE 802.15.4 standard allows the formation of the star and peer-to-peer
topology for communication between network devices (Fig. 1.9):

• In the star topology, the communication is performed between network devices
and a single central controller, called the PAN coordinator. A network device is
either the initiation point or the termination point for network communications.
The PAN coordinator is in charge of managing all the star PAN functionality.

Higher layers
Network layer

Data link layer
IEEE 802.2 LLC, type I

Other LLC
SSCS

IEEE 802.15.4 MAC

Physical layer
IEEE 802.15.4
868/915 MHz

IEEE 802.15.4
2.4 GHZ

Acronyms:
SSCS (service-specific convergence sublayer)

Fig. 1.8 IEEE 802.15.4 follow up of the ISO OSI model

Fig. 1.9 Star, and peer-to-peer topology organized as cluster network
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• In the peer-to-peer topology, every network device can communicate with any
other within its range. This topology also contains a PAN coordinator, which
acts as the root of the network. Peer-to-peer topology allows more complex
network formations to be implemented; e.g., ad hoc and self-configuring net-
works. The routing mechanisms required for multi-hopping are part of the
network layer and are therefore, not in the scope of IEEE 802.15.4.

1.8.2 ZigBee

The ZigBee standard was publicly available as of June 2005 (ZigBee Alliance
2013), it defines the higher layer communication protocols built on the IEEE
802.15.4 standards for LR-PANs. ZigBee got its name from the way bees zig and
zag while tracking between flowers and relaying information to other bees about
where to find resources. ZigBee is a simple, low cost, and low power wireless
communication technology used in embedded applications. ZigBee devices use
very little power and can operate on a cell battery for many years. ZigBee has been
introduced by IEEE with IEEE 802.15.4 standard and the ZigBee Alliance to
provide the first general standard for such applications.

ZigBee is built on the robust radio (PHY) and medium access control
(MAC) communication layers defined by the IEEE 802.15.4 standard for
LR-WPANs. On the higher layer, ZigBee defines mesh, star and cluster tree net-
work topologies with data security features and interoperable application profiles
(Figs. 1.9 and 1.10).

Table 1.5 compares ZigBee with wireless standards that address mid to high data
rates for voice, PC LANs, video, etc. However, ZigBee meets the unique needs of
sensors and control devices, typically, low bandwidth, low latency and very low
energy consumption for long battery lives and for large device arrays. ZigBee is
simpler than Bluetooth, it has a lower data rate and spends most of its time sleepy. It

Application layer

Network layer

MAC

Physical layer

ZigBee

IEEE 
802.15.4

Fig. 1.10 ZigBee over IEEE
802.15.4 buildup
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Table 1.5 ZigBee compared with wireless standards

Bluetooth UWB ZigBee Wi-Fi

IEEE
specification

802.15.1 802.15.3a*
(Kim et al.
2008)

802.15.4 802.11a/b/g

ISM
frequency
band

2.4 GHz 3.1–10.6 GHz 868/915 MHz,
2.4 GHz

2.4 GHz, 5 GHz

Application Wireless
connectivity
between devices
such as phones,
PDA, laptops,
headsets

Real-time
video and
music,
multimedia
wireless
network,
WPAN

Industrial control
and monitoring,
sensor networks,
building
automation, home
control and
automation, toys,
games

Wireless LAN
connectivity,
broadband Internet
access

Max signal
rate

1 Mbps 110 Mbps 250 Kbps 54 Mbps

Nominal
range

10 m 10 m 10–100 m 100 m

Transmission
power

0–10 dBm −41.3
dBm/MHz

(−25)–0 dBm 15−20 dBm

Channel
bandwidth

1 Mbps 500–7.5 GHz 0.3/0.6; 2 MHz 22 MHz

Modulation
type

GFSK BPSK, QPSK BPSK (+ASK),
O-QPSK

BPSK,
QPSK COFDM,
CCK, M-QAM

Basic cell Piconet Piconet Star BSS

Extension of
the basic cell

Scatternet Peer-to-peer Cluster tree, Mesh ESS

Max number
of cell nodes

8 active devices,
255 in park
mode

8 >65,000 Unlimited in ad
hoc networks
(IBSS), up to 2007
devices in
infrastructure
networks

Encryption E0 stream cipher AES block
cipher (CTR,
counter
mode)

AES block cipher
(CTR, counter
mode)

RC4 stream cipher
(WEP), AES
block cipher

Authentication Shared secret CBC-MAC
(CCM)

CBC-MAC (ext. of
CCM)

WPA2 (802.11i)

Data
protection

16-bit CRC 32-bit CRC 16-bit CRC 32-bit CRC

(continued)
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is accepted that standards such as Bluetooth and WLAN are not suited for low
power applications, due to their high node costs as well as complex and power
demanding RF-ICs and protocols (Lee et al. 2007).

As Fig. 1.11 illustrates, there are three types of devices that form mesh networks
connecting hundreds to thousands of (Lee et al. 2007) devices together (Safaric and
Malaric 2006):

Table 1.5 (continued)

Bluetooth UWB ZigBee Wi-Fi

Properties Cost, easy setup,
low interference,
device
connection
requires up to
10 s

Low power,
high
throughput,
low
interference,
wall
penetration

Reliability, very
low power, low
cost, security,
devices can join an
existing network in
under 30 ms

Speed, flexibility,
device connection
requires 3–5 s

Acronyms
AES (advanced encryption standard), ASK (amplitude shift keying), BPSK/QPSK
(binary/quadrature phase SK), BSS/IBSS/ESS (basic/independent basic/extended service set),
CBC-MAC (cipher block chaining message authentication code), CCK (complementary code
keying), CCM (CTR with CBC-MAC), COFDM (coded OFDM), CRC (cyclic redundancy check),
FHSS/DSSS (frequency hopping/direct sequence spread spectrum), GFSK (Gaussian frequency
SK), M-QAM (M-ary quadrature amplitude modulation), MB-OFDM (multiband OFDM),
O-QPSK (offset-QPSK), OFDM (orthogonal frequency division multiplexing), WEP (wired
equivalent privacy), WPA (Wi-Fi protected access)

Fig. 1.11 ZigBee network model
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• ZigBee coordinator, it initiates network formation, stores information, and can
bridge networks together.

• ZigBee routers, they link groups of devices together and provide multi-hop
communication across devices.

• ZigBee end device, it consists of the sensors, actuators, and controllers that
collects data and communicates only with the router or the coordinator.

1.8.3 WirelessHART

WirelessHART was released in September 2007 (Kim et al. 2008; Song et al.
2008). The WirelessHART standard provides a wireless network communication
protocol for process measurement and control applications, it is based on IEEE
802.15.4 for low power 2.4 GHz operation. WirelessHART is compatible with all
existing devices, tools, and systems, it is reliable, secure, and energy efficient, and
supports mesh networking, channel hopping, and time-synchronized messaging.
Network communication is secure with encryption, verification, authentication, and
key management. Power management options enable the wireless devices to be
more energy efficient. WirelessHART is designed to support mesh, star, and
combined network topologies. As shown in Fig. 1.12, WirelessHART network
consists of wireless field devices, gateways, process automation controller, host
applications, and network manager:

• Wireless field devices are connected to process or plant equipment.
• Gateways enable the communication between the wireless field devices and the

host applications.
• Handheld which is a portable WirelessHART enabled computer used to con-

figure devices, run diagnostics, and perform calibrations.
• The network manager configures the network and schedule communication

between devices, it also manages the routing and network traffic. The network
manager can be integrated into the gateway, host application, or process
automation controller.

Figure 1.13 illustrates the architecture of the WirelessHART protocol stack in
accordance with the OSI 7-layer communication model.

1.8.4 ISA100.11a

ISA100.11a, was officially approved in September 2009 by ISA Standards and
Practices Board. It is the first standard of ISA100 family with foundations for process
automation, and provisions for secure, reliable, low data rate wireless monitoring.
Specifications for the OSI layer, security, and system management are comprised
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(Costa and Amaral 2012). ISA100.11a focuses on low energy consumption, scala-
bility, infrastructure, robustness, and interoperability with other wireless devices.
ISA100.11a networks use only 2.4 GHz radio and channel hopping to increase
reliability and minimize interference. It offers both meshing and star network
topologies, and delivers simple, flexible, and scalable security functionality.

Plant automation application host

Gateway

Field device

Handheld device

Router

Fig. 1.12 WirelessHART mesh networking
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Application
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segment sizes

Network
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mesh to the edge network

Data link
A binary, byte oriented, token passing, 
master/slave protocol

Secure, time synched TDMA/ CSMA, 
frequency agile with ARQ

Physical
Simultaneous analog & digital 
signaling 4-20mA copper wiring

2.4 GHz wireless, 802.15.4 based 
radios, 10dBm Tx Power

Wired FSK/PSK & RS 485 Wireless 2.4 GHz
Acronyms: 
ARQ (Automatic Repeat -reQuest), CSMA (carrier sense multiple access), FSK (frequency shift 
keying), PSK (phase shift keying), TDMA (time division multiple access). 

Fig. 1.13 WirelessHART protocol stack
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ISA100.11a defines for devices different role profiles that represent various
functions and capabilities, such as I/O devices, routers, provisioning devices,
backbone routers, gateway, system manager, security manager. Each device may
resume more than a role, while its capabilities are reported to the system manager
upon joining the network (Fig. 1.14):

• I/O device (sensor and actuator), provides or/and consumes data, which is the
basic goal of the network.

• Handheld which is a portable computer used to configure devices, run diag-
nostics, and perform calibrations.

• Router is a job accorded to devices responsible for routing data packet from
source to destination and propagating clock information. A router role also
enables a device to act as a proxy that permits new devices to join the network.

• Device with provisioning role, for pre-configuring devices with necessary
information to join a specific network.

• Backbone router, routes data packets from one subnet connected to the back-
bone network to a destination (e.g., another subnet connected to the backbone).

Routing / I/O device

I/O device

Router

Backbone router

Handheld 

Gateway/System/Security 
manager

Industrial plant controlAlternate line

Primary line

Subnet 1

Subnet 2

Fig. 1.14 ISA 100.11a mesh networking

1.8 WSNs Standards 31



The backbone router is implemented with both ISA100.11a wireless network
interface and backbone interface.

• Gateway, acts as an interface between ISA100.11a field network and the host
applications in the control system.

• System manager, is the administrator of the ISA100.11a wireless network. It
monitors the network and is in charge of system management, device man-
agement, network run-time control, and communication configuration (resource
scheduling), as well as time related services.

• Security manager, provides security services based on policies specified by this
standard.

Both WirelessHART and ISA100.11a use a simplified version of the
seven-layered open systems interconnection (OSI) basic reference model, as
depicted in Fig. 1.15 (Petersen and Carlsen 2011). ISA100.11a divides the DLL
into a MAC sublayer, a MAC extension, and an upper DLL. The MAC sublayer is a
subset of IEEE Standard 802.15.4 MAC, with the main responsibility of sending
and receiving individual data frames. The MAC extension includes additional
features not supported by IEEE Standard 802.15.4 MAC, mainly concerning
changes to the carrier sense multiple access with collision avoidance (CSMA/CA)
mechanisms by including additional spatial, frequency, and time diversity. The
upper DLL handles link and mesh aspects above the MAC level, and it is
responsible for routing within a DL subnet.

1.8.5 6LoWPAN

IPv6-based low power wireless personal area networks (6LoWPAN) enables IPv6
packets communication over an IEEE 802.15.4 based network (Mulligan 2007;
Montenegro et al. 2007; Shelby and Bormann 2011). Low power devices can

OSI layers

Application 
Application layer Upper application layer

Application sublayer
Presentation Not defined Not defined
Session Not defined Not defined
Transport Transport layer Transport layer

Network 
Network layer Services

Network layer
Network layer

Data link 
Logical Link Control Upper data link layer

MAC sublayer
MAC extension
MAC sublayer

Physical  Physical layer Physical layer
WirelessHART ISA100.11a

Fig. 1.15 The WirelessHART and ISA100.11a protocol stack

32 1 Introduction



communicate directly with IP devices using IP-based protocols. Utilizing
6LoWPAN, low power devices have all the benefits of IP communication and
management. 6LoWPAN standard provides an adaptation layer, new packet format,
and address management. Because IPv6 packet sizes are much larger than the frame
size of IEEE 802.15.4, the adaptation layer is used. The adaptation layer accom-
plishes header compression, which creates smaller packets fitting into the IEEE
802.15.4 frame size. Address management mechanism handles the forming of
device addresses for communication. 6LoWPAN is designed for applications with
low data rate devices that require Internet communication (Fig. 1.16).

The Wireless Embedded Internet is created by connecting networks of wireless
embedded devices, each network is a stub on the Internet. A stub network is a
network where IP packets are sent from or destined to, but which does not act as a
transit to other networks. The 6LoWPAN architecture is made up of low-power
wireless area networks (LoWPANs), which are IPv6 stub networks. The overall
6LoWPAN architecture is presented in Fig. 1.7. A LoWPAN is the collection of
6LoWPAN nodes which share a common IPv6 address prefix (the first 64 bits of an
IPv6 address), meaning that regardless of where a node is in a LoWPAN its IPv6
address remains the same. Three different kinds of LoWPANs have been defined
(Fig. 1.17):

• Simple LoWPAN, connected through one LoWPAN Edge Router to another IP
network. A backhaul link (point-to-point, e.g., GPRS) is shown in the figure, but
it could also be a backbone link (shared).

• Extended LoWPAN, that encompasses the LoWPANs of multiple edge routers
via a backbone link (e.g. Ethernet) interconnecting them. Edge routers share the
same IPv6 prefix and the common backbone link.

• Ad hoc LoWPAN, that is not connected to the Internet, but instead operates
without an infrastructure.

A LoWPAN consists of one or more edge routers along with nodes, which may
function as host or router. The network interfaces of the nodes share the same IPv6

IP protocol stack 6LoWPAN Protocol stack
HTTP RTP Application Application protocols

TCP UDP ICMP Transport UDP ICMP

IP Network
IPv6

LoWPAN
Ethernet MAC Data Link IEEE 802.15.4 MAC
Ethernet PHY Physical IEEE 802.15.4 PHY

Acronyms:
HTTP (HyperText Transfer Protocol),  ICMP (Internet Control), RTP (Real-time 
Transport Protocol), TCP (Transport Control Protocol), UDP (User Datagram 
Protocol).

Fig. 1.16 IP and 6LoWPAN protocol stacks
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prefix distributed by the edge router and routers throughout the LoWPAN. Each
node is identified by a unique IPv6 address, and is capable of sending and receiving
IPv6 packets. In order to facilitate efficient network operation, nodes register with
an edge router. LoWPAN nodes may participate in more than one LoWPAN at the
same time (called multi-homing), and fault-tolerance can be achieved between edge
routers. Nodes are free to move throughout the LoWPAN, between edge routers,
and even between LoWPANs. Topology change may also be caused by wireless
channel conditions, without physical movement.

LoWPANs are connected to other IP networks through edge routers, as seen in
Fig. 1.17. The edge router plays an important role as it routes traffic in and out of
the LoWPAN, while handling 6LoWPAN compression and Neighbor Discovery for
the LoWPAN. If the LoWPAN is to be connected to an IPv4 network, the edge
router will also handle IPv4 interconnectivity. Edge routers have management
features tied into overall IT management solutions. Multiple edge routers can be
supported in the same LoWPAN if they share a common backbone link.

Hosts

Router

Edge router

Local server

Remote server

Backbone link

Backhaul link

Ad hoc LoWPAN

Extended LoWPAN

Gateway

Hosts

Routers
Hosts

Host

Router

Simple LoWPAN

Fig. 1.17 The 6LoWPAN architecture (based on Shelby and Bormann 2011)
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1.8.6 IEEE 802.15.3

IEEE 802.15.3 as proposed in 2003 is a MAC and PHY standard for high-rate
WPANs (11−55 Mbps) (Tseng et al. 2003; IEEE 2013). IEEE 802.15.3a was an
attempt to provide a higher speed UWB PHY enhancement amendment to IEEE
802.15.3 for applications that involve imaging and multimedia. But, the proposed
PHY standard was withdrawn in 2006 as the members of the task group were not
able to come to an agreement choosing between two technology proposals,
multi-band orthogonal frequency division multiplexing (MB-OFDM) and direct
sequence UWB (DS-UWB), backed by two different industry alliances.

The IEEE 802.15.3b-2005 amendment was released on May 5, 2006. It
enhanced 802.15.3 to improve implementation and interoperability of the MAC.
This includes minor optimizations while preserving backward compatibility. In
addition, this amendment corrected errors, clarified ambiguities, and added editorial
clarifications.

IEEE 802.15.3c-2009 was published on September 11, 2009. The IEEE
802.15.3 Task Group 3c (TG3c) was formed in March 2005. TG3c developed a
millimeter-wave-based alternative physical layer (PHY) for the existing 802.15.3
WPAN Standard 802.15.3-2003. This millimeter-wave WPAN operates in clear
band including 57–64 GHz unlicensed band defined by FCC 47 CFR 15.255. The
mmWPAN permits high coexistence (close physical spacing) with all other
microwave systems in the 802.15 family of WPANs. In addition, the mmWPAN
allows very high data rate over 2 Gbps applications such as high speed internet
access, streaming content download (video on demand, HDTV, home theater, etc.),
real-time streaming and wireless data bus for cable replacement. Also, there are
optional data rates in excess of 3 Gbps.

At the MAC layer, WPAN high rate technology (802.15.3) is based on cen-
tralized signaling and peer-to-peer traffic structure; the nodes are classified as
PicoNet Coordinators (PNC) and Devices (DEV). A PNC assigns guaranteed time
slots to all nodes for communication. More precisely, there is a period for con-
tention, followed by a contention free period, which contains guaranteed time slots
being allocated by the PNC as shown in Fig. 1.18.

Fig. 1.18 IEEE 802.15.3
MAC network structure
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1.8.7 Wibree, BLE

Released in 2006 by Nokia, it is a wireless communication technology designed for
low power consumption, short-range communication, and low cost devices, it is
called Baby-Bluetooth, and renamed Bluetooth Low Energy (BLE) technology (Pei
et al. 2008). Wibree allows the communication between small battery-powered
devices and Bluetooth devices. Small battery powered devices include watches,
wireless keyboard, and sports sensors which connect to host devices such as per-
sonal computer or cellular phones. This standard operates on 2.4 GHz and has a
data rate of 1 Mbps, with 5–10 m as a linking distance between the devices.

Wibree may be deployed on a stand-alone chip or on a dual-mode chip along
with conventional Bluetooth, it works with Bluetooth to make devices smaller and
more energy-efficient. Bluetooth–Wibree utilizes the existing Bluetooth RF and
enables ultra-low power consumption.

A key point must be taken into consideration, BLE is incompatible with standard
Bluetooth, BLE devices do not interoperate with classical Bluetooth products.
However, implementing a dual-mode device could achieve such interoperability.
A dual-mode device is an integrated circuit that includes both a standard Bluetooth
radio and a BLE radio, each mode operates separately, not at the same time, though
they can share an antenna. Several vendors offer dual mode chips, such as
Broadcom, CSR, EM Microelectronics, Nordic Semiconductor, and Texas
Instruments. Complete modules also are available from connectBlue (Frenzel
2012). Table 1.6 compares Bluetooth, Wibree, and ZigBee.

Table 1.6 Bluetooth, Wibree compared

Bluetooth Wibree

Band (GHz) 2.4 2.4

Antenna/HW Shared

Power (mW) 100 10

Target battery life Days—months 1−2 years

Peak current consumption (mA) <30 <15

Range (m) 10−30 10

Data rate (Mbps) 1−3 1

Application throughput (Mbps) 0.7–2.1 0.27

Active slaves 7 Unlimited

Component cost $3 Bluetooth + 20¢

Network topologies Point to point, scatternet Point to point, star

Security 56−128 bit encryption 128-bit AES

Time to wake and transmit (ms) 100+ <6

Acronyms
AES (advanced encryption standard)
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1.8.8 Z-Wave

Z-Wave, a proprietary technology developed by Zensys A/S of Denmark, is
focusing exclusively on the residential market (Reinisch et al. 2007; Z-Wave
Alliance 2012). The two wireless networking standards, Z-Wave and ZigBee, are
competing to become the standard for automated home control. ZigBee, an
IEEE802.15.4 based standard proposed by a large group of worldwide manufac-
turers represented by the ZigBee Alliance, has a broader focus that includes both
home and commercial control systems (Fig. 1.19).

Z-Wave uses a two-way RF system that operates in the 908 MHz ISM bands
(868 MHz in Europe and 908 MHz in the United States). Z-Wave allows trans-
mission at 9.6 and 40 Kbps data rates using binary frequency shift keying (BFSK)
modulation.

The recent Z-Wave 400 series single chip supports the 2.4 GHz band and offers
bit rates up to 200 Kbps. In contrast to other wireless networking technologies such
as Bluetooth and wireless LAN, Z-Wave features lower power consumption and
lower data rates. With very short transmit times and efficient design, Z-Wave nodes
can easily be powered from a battery with long lifetime. Applications like resi-
dential lighting control take no more than 250 ms. Z-Wave relies on the fact that its
targeted residential applications require the transmission of small amounts of data,
and therefore it uses a data rate of just 9.6 Kbps.

The second-generation Z-Wave chipset, the ZW0201, is used as a mixed signal
chip, integrating an RF transceiver, Z-Wave protocol storage and handling, and
capacity for application storage and handling. The ZW0201 as the core of Z-Wave
features a low standby current of 0.1 uA. This current rises to 25 mA on trans-
mission, but as the protocol has been designed to keep transmit and receive time to

Fig. 1.19 Z-Wave WSNs home control
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an absolute minimum it is possible to run a node from a battery. The device
includes an 8-bit CPU core running at 8 MHz with up to 32 Kbits of flash memory;
it has enough capacity to handle both an application as well as the wireless com-
munication protocol.

On top of the link layer, a source-routing protocol gives designers the ability to
setup a Z-Wave mesh network. Based on the network topology data in the initia-
tor’s memory, Z-Wave’s source-routing protocol allows the initiator to generate a
complete route from the initiator to the destination.

Z-Wave defines two types of devices, controllers and slaves. Controllers poll or
send commands to the slaves, which reply to the controllers or execute the com-
mands. The Z-Wave routing layer performs routing based on a source routing
approach. When a controller transmits a packet, it includes the path to be followed
in the packet. A packet can be transmitted over up to four hops, which is sufficient
in a residential scenario and hard-limits the source routing packet overhead.
A controller maintains a table that represents the full topology of the network.
A portable controller (e.g., a remote control) tries first to reach the destination via
direct transmission; if that option fails, the controller estimates its location and
calculates the best route to the destination. Slaves may act as routers, routing slaves
store static routes (typically toward controllers) and are allowed to send messages to
other nodes without being requested to do so. Slaves are suitable to be monitoring
sensors where the delay contributed by polling is acceptable, as well as for actuators
that perform actions in response to activation commands. Routing slaves are used
for time critical and non solicited transmission applications such as alarm
activation.

1.8.9 Impulse Radio Ultra-Wide Bandwidth Technology,
802.15.4a

UWB is one of the enabling technologies for sensor network applications; in par-
ticular, impulse radio based UWB (IR UWB) technology has a number of inherent
properties that are well suited to sensor network applications. UWB systems have
potentially low complexity and low cost; with noise like signal properties that
create little interference to other systems, they are resistant to severe multipath and
jamming, and have very good time domain resolution allowing for precise locating
and tracking. Various ultra wide band wireless sensor network applications include
locating and imaging of objects and environments, perimeter intrusion detection,
video surveillance, in vehicle sensing, outdoor sports monitoring, monitoring of
highways, bridges, and other civil infrastructure (Zhang et al. 2009).

Recognizing these interesting applications, a number of UWB based sensor
network concepts have been developed both in the industrial and the
government/military domain. Of particular importance are systems based on the
UWB impulse radio IEEE 802.15.4a standard, which via well defined flexible PHY
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and MAC layer, is suitable for a wide variety of applications. Furthermore, it works
together with the ZigBee networking standard, the dominant technology in WSN
systems.

Design-wise, among two options within the 802.15.4a standard, the UWB LR
WPAN option is built to provide communications and high precision ranging
(Ranging is a process or method to determine the distance from one location or
position to another location or position)/locating capability (1 m accuracy and
better), high aggregate throughput, and ultra low power; as well as adding scala-
bility to data rates, longer range, and lower power consumption and cost.

Several features are provided to satisfy the requirements for data
communications:

• Extremely wide bandwidth characteristics that can ensure very robust perfor-
mance under harsh multipath and interference conditions.

• Concatenated forward error correction coding to provide flexible and robust
performance.

• Optional UWB pulse control features to provide improved performance under
some channel conditions, while supporting reliable communications and pre-
cision ranging capabilities.

The 802.15.4a UWB PHY has its own attributes:

• In addition to the 850 Kbps mandatory data rate, variable data rates such as 110
Kbps, 1.70, 6.81, and 27.24 Mbps are also provided.

• Data can be communicated either between any UWB device and a coordinator,
or between peer-to-peer coordinators.

• The UWB PHY design also enables heterogeneous networking, i.e., networks
that consist of nodes with different capabilities and requirements. A network has
at least one full-function device (FFD) and several reduced-function devices
(RFDs). FFDs are typically more expensive (they are a minority of the network
devices), they are often configured to handle higher processing complexity. For
FFDs, higher energy consumption is not a real concern since they are usually
connected to a permanent power supply. On the other hand, sensor nodes are
usually RFDs with extremely stringent limits on complexity and energy
consumption.

• The UWB PHY layer, which includes modulation, coding, and multiple-access
schemes (MCM), has been designed in such a way that it allows both FFDs and
RFDs to achieve optimum performance, such as allowing the FFD devices to
employ coherent reception (enhanced performance at the cost of energy con-
sumption and complexity), while RFDs use simple energy detectors (non
coherent receivers) for reduced current drain and design simplicity.
Furthermore, such a flexible MCM scheme does not worsen the possible per-
formance of the FFDs, i.e., the performance of FFDs with flexible MCM is
almost as good as with an MCM that is designed for homogeneous
coherent-receiver networks. Table 1.7 compares UWB with ZigBee and WiFi.
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1.8.10 INSTEON

INSTEON is a solution developed for home automation by SmartLabs and pro-
moted by the INSTEON Alliance (INSTEON 2013). One of the distinctive features
of INSTEON is the fact that it defines a mesh topology composed of RF and power
line links. Devices can be RF-only or power-line-only, or can support both types of
communication. INSTEON RF signals use frequency shift keying
(FSK) modulation at the 904 MHz center frequency, with a raw data rate of 38.4
Kbps.

INSTEON networking has several features (Fig. 1.20):

• INSTEON devices are peers, which means that any of them can play the role of
sender, receiver, or relayer.

• Communication between devices that are not within the same range is achieved
by means of a multi-hop approach that differs in many aspects from traditional
techniques. All devices retransmit the messages they receive, unless they are the
destination of the messages. The maximum number of hops for each message is
limited to four (as in Z-Wave). The multi-hop transmission is performed using a
time slot synchronization scheme, by which transmissions are permitted in
certain time slots, and devices within the same range do not transmit different
messages at the same time. These time slots are defined by a number of power
line zero crossings.

Table 1.7 UWB compared with ZigBee and WiFi

2.4 GHz ZigBee 2.4 GHz WiFi UWB*

Data rate Low, 250 Kbps High, 11 Mbps for
802.11b and 100 + Mbps
for 802.11n

Medium, 1 Mbps mandatory,
and up to 27 Mbps for
802.15.4a

Transmission
distance (m)

Short, <30 Long, up to 100 Short, <30

Location
accuracy

Low, several
meters

Low, several meters High, <50 cm

Power
consumption

Low, 20–
40 mW

High, 500 mW–1 W Low, 30 mW

Multipath
performance

Poor Poor Good

Interference
resilience

Low Medium High with high complexity
receivers, low with simplest
receivers

Interference
with other
systems

High High Low

Complexity
and cost

Low High Low, medium, high are
possible

*Frequency band: 3.1–10.6 GHz in US, 6–8.5 GHz in Europe, 3.4–4.8 GHz in Japan
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• RF devices that are not attached to the power line can transmit asynchronously,
but RF devices attached to the power line will retransmit the related messages
synchronously.

• In contrast to classical collision avoidance mechanisms, devices within the same
range are allowed to transmit the same message simultaneously. This approach,
which is called simulcast, relies on the very low probability of multiple
simultaneous signals being cancelled at the receiver.

1.8.11 Wavenis

Wavenis is a wireless protocol stack developed by Coronis Systems for control and
monitoring applications in several environments, including home and building
automation (Gomez and Paradells 2010). Wavenis is currently being promoted and
managed by the Wavenis Open Standard Alliance (Wavenis-OSA). It defines the
functionality of physical, link, and network layers. Wavenis services can be
accessed from upper layers through an application programming interface (API).

Wavenis operates mainly in the 433 MHz, 868 MHz, and 915 MHz bands,
which are ISM bands in Asia, Europe, and the United States. Some products also
operate in the 2.4 GHz band. The minimum and maximum data rates offered by
Wavenis are 4.8 Kbps and 100 Kbps, respectively, with 19.2 Kbps being the typical
value. Data are modulated using Gaussian FSK (GFSK). Fast frequency-hopping

Fig. 1.20 INSTEON networking
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spread spectrum (FHSS) is used over 50 kHz bandwidth channels. The
Wavenis MAC sublayer offers synchronized and non-synchronized schemes:

• In a synchronized network, nodes are provided with a mixed CSMA/TDMA
mechanism for transmitting in response to a broadcast or multicast message. In
such a case, a node allocates a time slot that is pseudo-randomly calculated,
based on its address. Before transmission in that slot, the node performs carrier
sense (CS). If the channel is busy, the node computes a new time slot for the
transmission.

• For non-synchronized networks, in applications where reliability is a critical
requirement (alarms, security, etc.), CSMA/CA is used. The Wavenis logical
link control (LLC) sublayer manages flow and error control by offering
per-frame or per-window ACKs.

Wavenis defines only one type of device. The Wavenis network layer specifies a
four-level virtual hierarchical tree. The root of the tree may play the role of a data
collection sink or a gateway. A device that joins a Wavenis network intends to find
an adequate parent, for this purpose, the new device broadcasts a request for a
device of a certain level and a sufficient quality of service (QoS) value. The QoS
value is obtained by taking into consideration parameters such as received signal
strength indicator (RSSI) measurements, battery energy, and the number of devices
that are already attached to this device. Table 1.8 assembles and compares domestic
WSNs as presented in the previous subsections.

1.8.12 ANT

ANT is a proprietary technology featuring a wireless communication protocol stack
thought for ultra-low power networking applications (ANT 2013). It is designed to
run using low cost, low power micro-controllers and transceivers operating in the
2.4 GHz ISM band. The ANT WSN protocol has been engineered for simplicity
and efficiency, resulting in ultra low power consumption, maximized battery life, a
minimal burden on system resources, simpler network designs and lower imple-
mentation costs. ANT also features low latency, ability to trade-off data rate against
power consumption, support for broadcast, burst and acknowledged transactions up
to a net data rate of 20 Kbps (ANT’s over the air data rate is 1 Mbps).

Different topologies could be established, peer-to-peer, star, tree and other types
of mesh network. ANT nodes are capable of acting as slaves or masters within a
network and swapping roles at any time. This means that the nodes can act as
transmitters, receivers or transceivers to route traffic to other nodes. ANT is a good
protocol for practical networks because of this inherent ability to support ad hoc
interconnection of tens or hundreds of nodes. ANT allows a system to spend most
of its time in an ultra low power sleep mode, wake up quickly, transmit for the
shortest possible time and quickly return back to an ultra-low power sleep mode.
This implies that ANT is one of the energy-efficient available technologies. While
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Bluetooth is designed for rapid file transfer between devices in a PAN, its average
power consumption is 10 times greater with respect to ANT and the hardware costs
are 90 % higher. With respect to IEEE 802.15.4, ANT presents a larger data rate of
1 Mbpsec and is relatively less complex. However, being a proprietary technology,
ANT lacks interoperability.

ANT+ is a relatively recent addition to ANT. This software function provides
interoperability in a managed network; it facilitates the collection, automatic
transfer, and tracking of sensor data for monitoring all involved nodes and devices.
But, what is a managed network? It is a type of communication network that is
built, operated, secured and managed by a third party service provider, it is an
outsourced network that provides some or all the network solutions required by an
organization. SensRcore, an extra ANT feature, is a development system that helps
developers create low-power sensor networks. ANT transceiver chips are available
from Nordic Semiconductor and Texas Instruments.

A number of similarities exist between ANT and BLE (Sect. 8.7), but their
differences are stark. Both are good choices for very low-power applications
(Table 1.9), but:

• ANT has the simplest protocol with minimum overhead, and it supports more
different types of network topologies.

• BLE is a star-only format, while ANT supports all types including mesh.

More vendors offer Bluetooth chips and modules versus ANT, though.

1.8.13 MyriaNed

MyriaNed is a wireless sensor network (WSN) platform developed by DevLab
(Wateren 2008). It uses an epidemic communication style based on standard radio
broadcasting. This approach reflects the way humans interact, gossiping. Messages
are sent periodically and received by adjoining neighbors. Each message is repeated

Table 1.9 ANT and BLE compared

ANT Wibree BLE

Frequency 2.4−2.483 GHz 2.4-2.483 GHz

Network topology Peer to peer, tree, mesh Peer to peer, star

Modulation GFSK GFSK

Channel width (MHz) 1 1

Protocol Simplest More complex

Data rate (Mbps) 1 1

Range (m) 50 50

Security 64-bit encryption 128-bit AES

Acronyms
AES (advanced encryption standard), GFSK (Gaussian frequency shift keying)
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and duplicated towards all nodes that span the network, it spreads like a virus,
hence the term epidemic communication. This is a very efficient and robust protocol
for two reasons:

• The nodes do not need to know who is in their neighborhood at the time of
sending a message, there is no notion of an a priori planned routing, data is just
shared instantaneously.

• The network is implicitly reliable since messages may follow different com-
munication routes in parallel. The loss of a message between two nodes does not
mean that the data is lost.

Nodes can be added, removed or may be physically moving without the need to
reconfigure the network. The GOSSIP protocol is a self-configuring network
solution. The network may even be heterogeneous, where several types of nodes
communicate different pieces of information with each other at the same time. This
is possible due to the fact that no interpretation of the message content is required in
order to be able to forward it to other nodes. Message communication is fully
transparent, providing a seamless communication platform, where new function-
ality can be added later, without the need to change the installed base. Furthermore,
MyriaNed is enabled to update the wireless sensor nodes software by means of
“over the air” programming of a deployed network.

Radios used by MyriaNed nodes are operating at an ISM frequency of 2.4 GHz.
Since the nodes of the network are mostly battery powered, low energy con-
sumption is necessary. By orchestrating the exchange of information between the
nodes periodically, the nodes can go into standby modes to save energy, during the
radio silence. The drawback of the low energy consumption is that the nodes have a
low send rate, this makes it important for nodes to minimize data exchange. To
accomplish this, the network has a built-in feature, which ensures that messages that
were already seen/send by a particular node, will be discarded to save energy. The
same mechanism also avoids flooding of the network. In Table 1.10 the charac-
teristics of MyriaNed are summarized.

Table 1.10 MyriaNed characteristics

Large scale
networks

No limitation on the number of concurrent nodes in the network

Ad hoc networks The network is suitable for unreliable and dynamic environments,
because of gossiping

No hierarchy The MyriaNed WSN has no hierarchy; this removes the single point of
failure

Low energy
consumption

The network is designed for low energy consumption. Most of the time
the nodes are in standby mode

Reliability Redundancy and the multi-path communication ensure that the network
is reliable even in dynamic environments
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1.8.14 EnOcean

EnOcean has commercially pioneered the concept of energy scavenging in the field
of building automation (Reinisch et al. 2007; EnOcean 2013). Entirely solar
powered modules are available as well as pushbutton sensors driven by piezo-
electric elements. EnOcean operates at 868.3 MHz, using amplitude shift keying
(ASK) modulation. A high data rate of 120 Kbps together with a maximum payload
of 6 bytes ensures a short frame transmission time (below 1 ms), this minimizes
power consumption, but also results in a low statistical probability for collisions.
Also, EnOcean transceivers use a novel RF oscillator that can be switched on and
off in less than 1 μs, thus, it can be switched off at every “zero” Bit transmission,
further reducing energy consumption. The low collision probability is also pre-
sented as a key argument that the protocol will scale towards networks with a large
number of nodes. The available radio modules do not appear to support security
mechanisms. Table 1.11 summarizes EnOcean harvesting wireless standard.

Table 1.11 EnOcean energy harvesting wireless standard

High reliability • Use of regulated frequency ranges with highest air time
availability (approved for pulsed signals only)—868 MHZ
according to R&TTE regulation en 300220 (GOV.UK 2012),
and 315 MHz according to FCC regulation CFR-47 Part 15
(U.S. Government Printing Office 2013)

• Multiple telegram transmission with checksum
• Short telegrams (approx. 1 ms) for little probability of collision
• Long range: up to 30 m (indoor), and 300 m (outdoor)
• Repeater available for range extension
• One-way and bidirectional communication

Low energy need • High data transmission rate for sensor information of 120 Kbps
• Small data overhead
• ASK modulation

Interoperability • Wireless protocol defined and integrated in the modules
• Sensor profiles specified and implemented by users
• Unique transmission ID (32 bits)

Coexistence with other
wireless systems

• No interference with DECT, WLAN, PMR systems, etc.
• System design verified in industrial environment

Acronyms
ASK (Amplitude shift keying), DECT (Digital enhanced cordless telecommunications), FCC
(Federal communications commission), PMR (Private/Professional mobile radio), R&TTE (Radio
and telecommunications terminal equipment), WLAN (Wireless LAN)
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1.9 Conclusion for a Beginning

Sensing is life, WSNs are acquiring snowballing interests in research and industry,
they are infiltrated in day-to-day use. Owing to their requirement of low device
complexity as well as slight energy consumption, proper standards are devised to
ensure impeccable communication and meaningful sensing. This chapter takes care
of enlightening the special features of WSNs and differentiates WSNs from
MANETs and mesh networks. Care is also accorded to the different WSNs stan-
dards that adapt to home and industry applications.

Concerns that WSNs have been unreliable and difficult to use are lessening. But to
put a WSN together, a potential user or developer has to be adept in multiple disci-
plines, hardware, embedded software programming, RF and enterprise integration,
which creates a gap between application concept and deployed network. What is
constantly needed is a way to abstract the complexity of setting up and commis-
sioning a WSN from the ongoing management and data mining of the sensor data
itself. As much as WSNs are made easily accessible over conventional IP-based
networks, their potential user base will become far vaster and more diverse.

A key attribute of WSNs, and the reason they represent the future of intelligent
embedded devices, is their ability to be deployed in diverse and varied physical
world environments. With no computer-based map of sensor locations, users may
be left alone to remember (or guess) where their sensors had been deployed. Sensor
network applications, that bind the physical to the logical positioning, allow users to
upload an existing floor plan, map or image into the WSN user interface and then
survey an individual sensor node positioned on that map. Once the nodes begin to
monitor and collect data on a particular space, thing or interaction, the map provides
context, meaning and the ability to easily manage the WSN deployment.

The critical requirement of any WSN deployment strategy is to gather and export
the collected into an enterprise application, or a spreadsheet. Embedded
WSN-to-Internet integration is implemented via some kind of gateway device
seated between the IEEE 802.15.4 network and the IP network. The gateway ser-
ver’s role is to translate the sensor network traffic and provide it in a consumable
form for another network, either IP or an industrial network. Also, the 6LoWPAN
working group of the Internet Engineering Task Force (IETF) submitted the
implementation of IP for low-power, low-bandwidth networks. 6LoWPAN defines
IP communication over low-power wireless IEEE 802.15.4 personal-area networks.
The proposed standard, approved by the IETF in March 2007, incorporates IPv6
version of the IP protocol. Because of IP pervasiveness as a global communication
standard across industries, vendors can create sensor nodes that can communicate
directly with other IP devices, whether those devices are wired or wireless, local or
across the Internet, on Ethernet, WiFi, 6LoWPAN or other networks. Network
managers are thus able to gain direct real-time access to sensor nodes and are able
to apply a broad range of Internet management and security tools. More important,
the WSN can be viewed and managed as just another IP device, making it acces-
sible and familiar to many more people and applications.
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Once the network is formed and the sensor nodes start collecting data. Collected
data need to be accessible, either in a database or directly to an application for
display or analysis. This is where the WSNs have taken experience from the
enterprise IT world. Modern enterprise applications communicate and share
information using the Web services model, which provides a convenient and
scalable way for WSNs to pass collected data to an end-user application or remote
database. Sensor data can be accessed from a corporate IT network using Web
services that build Web pages and API calls to collect data from the WSNs and
return them in a well-formed XML to the requestor.

The ability to access the data in a number of different ways through Web
services APIs or by running SQL queries against a database allows data to be used
for trending analysis or fed directly into an existing Enterprise Resource Planning
(ERP). Information from the physical world can accordingly be used to drive
decisions and actions by the now offered increased visibility. However, because
WSNs are distributed and largely unattended, the network that supports them must
be robust and the data integration schema well thought out and sufficiently gen-
eralized to accommodate the diverse sources of information being generated, such
as temperature, humidity, light, motion, pressure, etc.

There is no shortage of current and potential applications for sensor networks,
and as a result a wide array of sensor and actuator devices have come on the market.
Accommodating that variety of devices, however, is not a trivial challenge. Users
should look for an embedded operating system that supports a wide range of
leading hardware platforms, while preserving the full capabilities of each. The
leading open-source embedded operating system designed for wireless sensor
networks, TinyOS, is such an operating system. The OS should include a simple
driver framework to support the incorporation of new sensors across multiple
platforms. External expansion ports and drivers should also be available to add new
kinds of sensors after installation. Accommodation for analog sensors of different
types (resistive or inductive) as well as digital sensors (contact switches) is crucial.
This makes sensor nodes and WSNs ideal for proof-of-concept and pilot networks
where functionality and Return on Investment (ROI) must be proved before
finalizing industrial design and appropriate enclosure in the deployment
environment.

WSNs entail numerous basics and details, one chapter would be bulky for them
all, the dose of this chapter is enough, following chapters will carry on, one after
one, but not as fast as the 37.36 s record of Jamaica 4 × 100 m relay team in
Moscow 2013 World Athletics.

1.10 Exercises

1. What are the components of a wireless sensor node?
2. Detail the specs of a sensor node.
3. How are sensor nodes deployed in a terrain? What are the deployment phases?
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4. Define MANETs and explain symmetric and asymmetric links.
5. Describe the architecture of WSNs.
6. Determine the differences between MANETs and WSNs.
7. Detail the characteristics of WMNs.
8. Compare between WSNs and WMNs.
9. What are the types of WSNs.

10. Illustrate the characteristics of UASNs.
11. How is WSNs mobility useful?
12. Identify and compare WSNs standards used for PANs.
13. Identify and compare WSNs standards used for home applications.
14. Look for WSNs models used for personal applications, determine their func-

tions, specs, and manufacturers.
15. Look for WSNs models used for home applications, determine their functions,

specs, and manufacturers.
16. Identify and compare the most energy efficient WSN standards.
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Chapter 2
Protocol Stack of WSNs

Etiquette is protocol, rules of behavior ..
How a gentleman opens the door for a lady, how he smiles and
handshakes.

2.1 Introduction

A protocol, etiquette, code of conduct, is a set of rules that govern a certain
behavior, in social or diplomatic activities, at work, when driving, etc. Socially,
there is a dress for night parties, there is a way to put off a coat, to sit, eat, and
speak. Diplomatic activities are framed in strict protocol rules that determine who
comes first, who is next, who will be to the right, who speaks; deviating from such
rules is a serious breach of job duties. A protocol is also the draft of a treaty or
agreement. At work, there are limitations to what can be said in public, to what can
be worn, to where to eat or smoke. When driving, there are rules to follow a lane or
to change lanes, to surpass, to honk, to speed limits. Protocol rules may be imposed
by administrative regulations, or by social habits, either way they are followed, and
monitored, a person is appreciated with regard to how far he clings to protocol
guidelines. In communication networks, protocols govern, determine the func-
tioning specifications and guidelines, and guarantee how networks fulfill their
intended use.

A wireless sensor network is an ad hoc arrangement of multifunctional sensor
nodes in a sensor field, disseminated to gather information regarding some phe-
nomenon. Sensor nodes can be densely distributed over a large and may be remote
area and collaborate their efforts to the benefit of the network to the extent that even
if a number of nodes malfunction, the network will continue to function. There are
two main layouts for wireless sensor networks. The first is a star layout where the
nodes communicate, in a single hop, directly to the sink whenever possible and
peer-to-peer communication is minimal. In the second, information is routed back
to the sink via data passing between nodes. This multi-hop communication is
expected to consume less power than single-hop communication because nodes in
the sensor field are densely distributed and are relatively close to each other.
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As previously stated, wireless sensor networks differ from traditional ad hoc
networks in a few very significant ways:

• Power awareness. Because nodes are placed in remote, hard to reach places, it is
not feasible to replace dead batteries. All protocols must be designed to mini-
mize energy consumption and preserve the life of the network.

• Sensor nodes lack global identifications (IDs), so that the networks lack the
usual infrastructure. Attribute-based naming and clustering are used instead.
Querying WSNs is done by asking for information regarding a specific attribute
of the phenomenon, or asking for statistics about a specific area of the sensor
field. This requires protocols that can handle requests for a specific type of
information, as well as data-centric routing and data aggregation.

• Position of the nodes may not be engineered or pre-determined, and therefore,
must provide data routes that are self-organizing.

A protocol stack for WSNs must support their typical features and singularities.
According to (Akyildiz et al. 2002), the sensor network protocol stack is much like
the traditional protocol stack, with the following layers: application, transport,
network, data link, and physical. The physical layer is responsible for frequency
selection, carrier frequency generation, signal detection, modulation and data
encryption. The data link layer is responsible for the multiplexing of data streams,
data frame detection, medium access and error control. It ensures reliable
point-to-point and point-to-multipoint connections in a communication network.
The network layer takes care of routing the data supplied by the transport layer. The
network layer design in WSNs must consider the power efficiency, data-centric
communication, data aggregation, etc. The transport layer helps to maintain the data
flow and may be important if WSNs are planned to be accessed through the Internet
or other external networks. Depending on the sensing tasks, different types of
application software can be set up and used on the application layer.

WSNs must also be aware of several management planes in order to function
efficiently, specifically, mobility, service (QoS) and security management planes.
Among them, the functions of task, mobility and power management planes have
been elaborated in (Akyildiz et al. 2002; Wang and Balasingham 2010). The
protocol stack and the associated planes used by the sink, cluster head and sensor
nodes are shown in Fig. 2.1. The power management plane is responsible for
minimizing power consumption and may turn off functionality in order to preserve
energy. The mobility management plane detects and registers movement of nodes
so that a data route to the sink is always maintained. The task management plane
balances and schedules the sensing tasks assigned to the sensing field and thus only
the necessary nodes are assigned with sensing tasks and the remainder are able to
focus on routing and data aggregation. QoS management in WSNs (Howitt et al.
2006) can be very important if there is a real-time requirement with regard to the
data services. QoS management also deals with fault tolerance, error control and
performance optimization in terms of certain QoS metrics. Security management is
the process of managing, monitoring, and controlling the security related behavior
of a network. The primary function of security management is in controlling access
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points to critical or sensitive data. Security management also includes the seamless
integration of different security function modules, including encryption, authenti-
cation and intrusion detection.

2.2 Physical Layer

In many wireless sensor networks, the number and location of nodes make
recharging or replacing the batteries infeasible. For this reason, energy consumption
is a universal design issue for wireless sensor networks. Much work has been done
to minimize energy dissipation at all levels of system design, from the hardware to
the protocols to the algorithms. Hence to the network, it is important to appropri-
ately set parameters of the protocols in the network stack. At the physical layer, the
parameters open to the network designer include, modulation scheme, transmit
power and hop distance. The optimal values of these parameters will depend on the
channel model. When a wireless transmission is received, it can be decoded with a
certain probability of error, based on the ratio of the signal power to the noise power
of the channel (i.e., the SNR). As the energy used in transmission increases, the
probability of error goes down, and thus the number of retransmissions goes down.
Thus there exists an optimal tradeoff between the expected number of retransmis-
sions and the transmit power to minimize the total energy dissipated to receive the
data (Holland et al. 2011).

At the physical layer, there are two main components that contribute to energy
loss in a wireless transmission, the loss due to the channel and the fixed energy cost
to run the transmission and reception circuitry (Heinzelman et al. 2002). The loss in
the channel increases as a power of the hop distance, while the fixed circuitry
energy cost increases linearly with the number of hops. This implies that there is an
optimal hop distance where the minimum amount of energy is expended to send a

Fig. 2.1 Protocol stack of
WSNs (Wang and
Balasingham 2010)
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packet across a multi-hop network. Similarly, there is a tradeoff between the
transmit power and the probability of error. In this tradeoff, there are two param-
eters that a network designer can change to optimize the energy consumed, transmit
power and hop distance. The third option for physical layer parameter selection is
much broader than the other two. The coding/modulation of the system determines
the probability of transmission success, changes in the probability of a successful
transmission lead to changes in the optimal values for the other physical layer
parameters (Wang et al. 2001).

To illustrate these physical layer tradeoffs, consider the linear network shown in
Fig. 2.2 (Holland et al. 2011). In this network, a node must send data back to the
basestation. The first physical layer consideration is hop distance. In the first case
(Network 1), the hop distance is very small, which translates to low per-hop energy
dissipation. Because the transmit energy must be proportional to dn where n ≥ 2 and
d is the distance between the transmitter and receiver, the total transmit energy to
get the data to the basestation will be much less using the multi-hop approach than a
direct transmission (Heinzelman et al. 2002). However, in this network, the main
factor in the energy dissipation of the transmission is the large number of hops. The
fixed energy cost to route through each intermediate hop will cause the total energy
dissipation to be high.

In the second case (Network 2), the hop distance is very large. With so few hops
there is little drain of energy on the network due to the fixed energy cost. However,
there is a large energy drain on the nodes due to the high energy cost to transmit
data over the long individual hop distances. With a large path loss factor, the total
energy in this case will far exceed the total energy in the case of short hops. Thus it
is clear that a balance must be struck, as shown in Network 3, so that the total
energy consumed in the network is at a minimum.

Several standards that enhance low power communication, as required for
WSNs, are laid out in Chap. 1.

Network 1

Network 2

Network 3

(a)

(b)

(c)

Fig. 2.2 Instances of a linear wireless network (Holland et al. 2011). a Network 1 has a short hop
distance. b Network 2 has a long hop distance. c Network 3 has the optimal hop distance
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2.3 Data Link Layer

The responsibilities of the data link layer are the multiplexing of data streams, data
frame detection, medium access (MAC) and error control. A wireless sensor
network must have a specialized MAC protocol to address the issues of power
conservation and data-centric routing. The MAC protocol must meet two goals. The
first is to create a network infrastructure, which includes establishing communi-
cation links between may be thousands of nodes, and providing the network
self-organizing capabilities. The second goal is to fairly and efficiently share
communication resources between all the nodes. Existing MAC protocols fail to
meet these two goals because power conservation is only a secondary concern in
their development. Also, wireless sensor networks have no central controlling agent
and a much larger number of nodes than traditional ad hoc networks. Any MAC
protocol for wireless sensor networks must also take into account the ever-changing
topology of the sensor network due to node failure and redistribution.

Since sensor nodes are usually operated by batteries and left unattended after
deployment, power saving is a critical issue in WSNs. Many research efforts in the
recent years have focused on developing power saving schemes for wireless sensor
networks. These schemes include power saving hardware design, power saving
topology design (Salhieh et al. 2001; Chakrabarti et al. 2003), power-efficient MAC
layer protocols (Ye et al. 2002; Zheng et al. 2005; Rajendran et al. 2006; Pang et al.
2012) and network layer routing protocols (Sohrabi et al. 2000; Akkaya and Younis
2005). Designing power efficient MAC protocols is one of the techniques that
prolong the lifetime of the network. In addition to energy efficiency, latency and
throughput are also important features for consideration in MAC protocol design
for WSNs. Commercial standards like IEEE 802.11 have a power management
scheme for ad hoc networks, wherein the nodes remain in idle listening state at low
traffic to conserve power, significant power is wasted even in the idle listening
mode. Hence, IEEE 802.11 is not suitable for sensor networks. A properly designed
MAC protocol allows the nodes to access the channel in a way that saves energy
and support QoS.

2.4 Network Layer

The network layer in a WSN must be designed with typical considerations in mind,
ever existing power efficiency, WSNs are data-centric networks, and WSNs have
attribute-based addressing and location awareness. The link layer handles how two
nodes talk to each other, while the network layer is responsible for deciding which
node to talk to.

The simplest design is flooding. When using flooding, each node receiving data
repeats it by broadcasting the data to every neighbor unless the max hop lifetime of
the data has been reached or the receiving node is the destination. The major
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support for flooding is the simplicity. It requires no costly topology maintenance or
complex route discovery. The shortcomings, however, are substantial:

• Implosion, it occurs when two nodes (A and B) share multiple (n) neighbors.
Node A will broadcast data to all n of these neighbors. Node B will then receive
a copy of the data from each of them.

• Overlap, when two nodes share the same sensing region. If a stimulus occurs
within this overlap, both nodes will report it.

• The last and most crucial problem is resource blindness. Flooding does not take
into account available energy resources.

Gossiping is an enhancement to flooding. In gossiping, when a node receives
data, it randomly chooses a neighbor and sends the data to it. Gossiping avoids the
problem of implosion, but does not address the other two concerns and contributes
to the latency of the network.

A step up from flooding and gossiping is ideal dissemination. In this algorithm,
data is sent along a shortest-path route from the originating node. Such approach
guarantees that every node will receive every piece of information exactly once. No
energy is wasted in sending or receiving redundant data. However, the overhead
involved in keeping track of the shortest paths is substantial. Also, ideal dissemi-
nation does not take into account that some node may not need a particular piece of
information; nor does it allow for resource awareness.

A little more sophisticated family of protocols is sensor protocols for informa-
tion via negotiation (SPIN). The SPIN family addresses the deficiencies of classic
flooding by negotiation and resource adaptation. With more sophisticated and
energy aware techniques for data dissemination, it reduces the amount of energy
expended, solves the problems of implosion, overlap, and resource blindness, and
ensures that only interested nodes will expend energy to receive data (Kulik et al.
2002; Rehena et al. 2011). Negotiation helps to overcome the problems of
implosion and overlap and ensures only useful and desired information is dis-
seminated. In order for negotiation to work, nodes must describe the data to be sent
using meta-data. In order for SPIN to be efficient the meta-data must be signifi-
cantly shorter than the data being described. Also, meta-data describing two dis-
tinguishable pieces of data must be different. Likewise, if two pieces of data are
indistinguishable, they will share the same meta-data. The format of the meta-data
is not specified by SPIN, but rather application specific.

SPIN-2 is an implementation of SPIN that employs a low-energy threshold.
When energy is abundant, the node functions as normal. However, when the
resource manager detects that a node power supply is reaching the low-energy
threshold, the node will not participate in later stages of the protocol. This prolongs
the life of the node and allows it to perform only high priority functions.

SPIN is a more sophisticated and energy aware schema for data dissemination. It
reduces the amount of energy expended, solves the problems implosion of, overlap,
and resource blindness, and ensures that only interested nodes will expend energy
to receive data.
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2.5 Transport Layer

Transport control protocol for WSNs should account for several concerns (Wang
et al. 2005):

• Congestion control and reliability. The more data streams flow from sensor
nodes to sinks in WSNs, the more congestion might occur around sinks. Also
there are some high-bandwidth data streams produced by multi-media sensors.
Therefore it is necessary to design effective congestion detection, congestion
avoidance, and congestion control mechanisms for WSNs. Although MAC
protocol can recover packets loss from bit-error, it has no way to handle packets
loss from buffer overflow. Then the transport protocol for WSNs should have
mechanism for packets loss recovery such as ACK and Selective ACK as used
in TCP protocol so as to guarantee reliability.
Reliability under WSNs may have different meaning from traditional networks
that generally guarantee correct transmission of every packet. For some appli-
cation, WSNs only need to correctly receive packets from a certain area, not
from every sensor nodes in this area, or may be contempt with some ratio of
successful transmission from a sensor node. These modified reliability concept
motivates the design of different transport control protocols. It would be better to
use hop-by-hop mechanism for congestion control and loss recovery since it
can reduce packet dropping and conserve energy. The hop-by-hop mechanism
can simultaneously lower buffer requirement at intermediate nodes, which suits
the limited memory sensor nodes.

• Simplifying initial connecting process or use connectionless protocol so as to
speedup start and guarantee throughput and lower transmission delay. Most of
applications in WSNs are reactive, that is passively monitor and wait for event
occurring before reporting to sink. These applications may have only few
packets for each reporting, and the simple and short initial setup process is more
effective and efficient.

• Avoiding packets dropping as possible to lessen energy wastage. In order to
avoid packet dropping, the transport protocol can use active congestion control
at the cost of a lower link utility. The active congestion control (ACC) can
trigger congestion avoidance before congestion occurs. An example of ACC is
to make sender (or intermediate nodes) reduce sending (or forwarding) rate
when the buffer size of their downstream neighbors overruns a threshold.

• Guaranteeing fairness for different sensor nodes so that each sensor node can
achieve a fair throughput. Otherwise the loaded sensor nodes cannot properly report
events in their area, which leads to erroneous monitoring, tracking, and control.

• Enabling cross-layer interaction. If a routing algorithm can notify route failure to
the transport protocol, the transport protocol will know that packet loss is not
from congestion but from route failure, and consequently the sender will reg-
ulate its current sending rate to guarantee high throughput and low delay.

Chapter 4 of this book exhaustively considers transport control protocols for
WSNs.
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2.6 Application Layer

To address application layer protocols it is primordial to address some functions
that are to be implemented, specifically, data fusion and management, clock syn-
chronization, and positioning. A WSN is intended to be deployed in environments
where sensors can be exposed to circumstances that might interfere with provided
measurements. Such circumstances include strong variations of pressure, temper-
ature, radiation, and electromagnetic noise. Thus, measurements may be imprecise
in such scenarios. Data fusion is used to overcome sensor failures, technological
limitations, and spatial and temporal coverage problems. Data fusion is generally
defined as the use of techniques that combine data from multiple sources and gather
this information in order to achieve inferences, which will be more efficient and
potentially more accurate than if they were achieved by means of a single source.
The term efficient, in this case, can mean more reliable delivery of accurate
information, more complete, and more dependable. The data fusion can be
implemented in both centralized and distributed systems. In a centralized system, all
raw sensor data would be sent to one node, and the data fusion would all occur at
the same location. In a distributed system, the different fusion modules would be
implemented on distributed components (Abdelgawad and Bayoumi 2012).

Communications in wireless sensor networks are data-centric, with the objective
of delivering collected data in a timely fashion. Also, such networks are
resource-constrained, in terms of sensor nodes’processing power, communication
bandwidth, storage space and energy. This gives rise to new face-offs in informa-
tion processing and data management in wireless sensor networks. In-network data
processing techniques, from simple reporting to more complicated collective
communications, such as data aggregation, broadcast, multicast and gossip, are
challenging. On the other hand, data collected by sensors can intrinsically be
viewed as signals. By exploiting signal processing techniques, collective commu-
nications can be done in more energy-efficient ways. Several work deal with data
management, (Xu et al. 2009) investigate in-network query processing strategies for
K nearest neighbor (KNN) queries in location aware wireless sensor networks.
Also, (Brayne et al. 2008) propose an adaptive query processing mechanism to
dynamically adjust query processing in wireless sensor networks. Moreover,
(Akcan and Brönnimann 2007) develop a distributed, weighted sampling algorithm
to sample sensing data to reduce energy consumption. By exploring the adaptive
model selection algorithms, (Le Borgne et al. 2007) derive an adaptive, lightweight
and on-line algorithm for prediction sensing data.

Sensed data is of limited usage if it is not accompanied by the coordinates of the
sensor position and a time stamp, this is a primary motive for clock synchronization
in WSNs. Data fusion is a prime function that depends also on clock synchro-
nization. For instance, a vehicle going through acoustic sensors can be detected,
throughout its path, by different sensor nodes at different moments. A fusion node
receiving the raw information from the sensor nodes can refine it by estimating the
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speed and the direction of the sensed vehicle. For this application, among others,
synchronized timestamps together with position information are essential. Also,
WSNs are expected to have very small form factors and be cheap such that they can
be deployed in very large numbers. Once deployed, WSNs are usually unattended,
so battery replacement is impractical, but since they are typically expected to work
for extended periods of time, there is no better way to conserve energy but to put
the nodes to sleep and to wake up at the same time to be able to exchange infor-
mation. Clock synchronization in WSNs is the subject of extensive work (Elson and
Römer 2003; Sundararaman et al. 2005; Sun et al. 2006; Sommer and Wattenhofer
2009; Wu et al. 2011).

Positioning, knowledge of the position of the sensing nodes in a WSN is an
essential part of many sensor network operations and applications. Sensors
reporting monitored data need to also report the location where the information is
sensed, and hence, sensors need to be aware of their position. In addition, many
network protocols such as routing require location information in order to provide
the specific protocol service. WSNs may be deployed in hostile environments
where malicious adversaries attempt to spoof the locations of the sensors by
attacking the localization process. For example, an attacker may alter the distance
estimations of a sensor to several reference points, or replay beacons from one part
of the network to some distant part of the network, thus providing false localization
information. Hence, there is a need to ensure that the location estimation is per-
formed in a robust way, even in the presence of attacks. Furthermore, adversaries
can compromise the untethered sensor devices and force them to report a false
location to the data collection points. Therefore, a secure positioning system must
have a mechanism to verify the location claim of any sensor. Positioning in WSN is
a topic of extensive research, leading to numerous positioning systems that provide
an estimation of the sensor location (Lazos et al. 2005; Akkaya et al. 2007; Kim
et al. 2007; Tennina et al. 2008; Younis and Akkaya 2008; Tennina et al. 2009).

System administrators interact with WSNs sensor management protocol (SMP).
Unlike many other networks, WSNs consist of nodes that do not have global IDs,
and they are usually infra-structureless. Therefore, SMP needs to access the nodes
by using attribute-based naming and location-based addressing. SMP is a man-
agement protocol that provides the software operation needed to perform several
administrative tasks (Akyildiz et al. 2002):

• Introducing to the sensor nodes the rules related to data aggregation,
attribute-based naming, and clustering.

• Exchanging data related to the location finding algorithms.
• Time synchronization of the sensor nodes.
• Moving sensor nodes.
• Turning sensor nodes on and off.
• Querying the sensor network configuration and the status of nodes, and

re-configuring the sensor network.
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• Authentication, key distribution and security in data communications.

2.7 Cross-Layer Protocols for WSNs

The severe energy constraints of battery-powered sensor nodes necessitate
energy-efficient communication protocols in order to fulfill the application objec-
tives of WSNs. It is much more resource-efficient, according to some research, to
have a unified scheme which melts common protocol layer functionalities into a
cross-layer module for resource-constrained sensor nodes. A unified cross-layer
communication protocol, for efficient and reliable event communication, considers
the effects on WSNs of replacing transport, routing, medium access functionalities,
and physical layers (wireless channel).

A unified cross-layering is such that both the information and the functionalities of
traditional communication layers are melted in a single protocol. The objective of the
proposed cross-layer protocol is highly reliable communication with minimal energy
consumption, adaptive communication decisions and local congestion avoidance.
Protocol operation is governed by the concept of initiative determination. Based on
this concept, the cross-layer protocol performs received based contention, local
congestion control, and distributed duty cycle operation in order to realize efficient
and reliable communication in WSN. Performance evaluation reveals that the pro-
posed cross-layer protocol significantly improves the communication efficiency and
outperforms the traditional layered protocol architectures (Akyildiz et al. 2006).

2.8 Conclusion for Continuation

Several considerations must be taken when developing protocols for wireless sensor
networks. Traditional thinking where the focus is on quality of service is somehow
revised. In WSNs, QoS is compromised to conserve energy and preserve the life of
the network. WSNs are a kind of “totalitarian” system, every one is for the good of
all, no individualism, the whole network must survive even at the expense of falling
sensors. Concern must be accorded at every level of the protocol stack to conserve
energy, and to allow individual nodes to reconfigure the network and modify their
set of tasks according to the resources available.

The protocol stack for WSNs consists of five standard protocol layers trimmed to
satisfy typical sensors features, namely, application layer, transport layer, network
layer, data-link layer, and physical layer. These layers address network dynamics
and energy efficiency. Functions such as localization, coverage, storage, synchro-
nization, security, and data aggregation and compression are network services that

64 2 Protocol Stack of WSNs



enable proper sensors functioning. Implementation of WSNs protocols at different
layers in the protocol stack aims at minimizing energy consumption, and
end-to-end delay, and maintaining system efficiency. Traditional networking
protocols are not designed to meet these WSNs requirements, hence, new
energy-efficient protocols have been proposed for all layers of the protocol stack.
These protocols employ cross-layer optimization by supporting interactions across
the protocol layers. Specifically, protocol state information at a particular layer is
shared across all the layers to meet the specific requirements of the WSN.

As sensor nodes operate on limited battery power, energy usage is a very important
concern in a WSN; and there has been significant research focus that revolves around
harvesting and energy conservation by minimizing energy consumption. When a
sensor node is depleted of energy, it will fade out and disengage from the network,
which may significantly impact the performance of the application. Sensor network
lifetime depends on the number of active nodes and network connectivity, so energy
must be used efficiently in order to maximize the network lifetime.

Energy harvesting involves nodes replenishing their energy from an energy
source (Gilbert and Balouchi 2008; Galperti and Alippi 2008; Seah et al. 2009;
Vullers et al. 2010). Potential energy sources include solar cells (Hande et al. 2007),
vibration (Lei and Yuan 2008), fuel cells, acoustic noise, and a mobile supplier such
as a robot to replenish energy. The robots charge themselves with energy and then
deliver energy to the nodes.

Energy conservation in a WSN maximizes network lifetime and is addressed
through efficient reliable wireless communication, smart sensor placement to
achieve adequate coverage, security and efficient storage management, and data
aggregation and data compression. Such approaches satisfy both the energy con-
straint and provide QoS. For reliable communication, services such as congestion
control, active buffer monitoring, acknowledgements, and packet-loss recovery are
necessary to guarantee packet delivery. Communication strength depends on the
placement of sensor nodes. Sparse sensor placement may result in long-range
transmission and higher energy usage, while dense sensor placement may result in
short-range transmission and less energy consumption. Coverage is interrelated to
sensor placement. The total number of sensors in the network and their placement
determine the degree of network coverage. Depending on the application, a higher
degree of coverage may be required to increase the accuracy of the sensed data.

One for all, and all for all, that is the main objective of all layers in the WSNs
protocol stack.

2.9 Exercises

1. Define protocol.
2. What are the considerations and concerns of the WSNs protocol stack?
3. Elaborate on the physical layer for WSNs typical features.
4. How is the data link layer for WSNs different?
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5. Explain how is the network layer in WSNs different.
6. What is positioning and clock synchronization?
7. How is data fusion crucial in WSNs?
8. What is the importance of data aggregation for WSNs?
9. Determine the functions of the transport layer in WSNs.

10. How does the typical usage of WSNs affect the application layer?
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Chapter 3
WSNs Applications

Many can do … Few innovate.

3.1 Applications Categories, Challenges,
and Design Objectives

Research in many scientific areas, like physics, microelectronics, control, material
science, etc. and the focused collaboration of scientists which used, traditionally, to
work towards totally different directions, has lead to the creation of the
micro-electro-mechanical systems, commonly referred to as MEMS (Gardner and
Varadan 2001). MEMS have succeeded in augmenting the limits of what was
considered to be a system-on-a-chip (SoC). Indeed, MEMS have enabled chips,
which were formerly assumed to carry only logic functions, to sense the real word
and even to react. Measuring of physical parameters and actuating is now possible
via integration of sensors and actuators to silicon. MEMS are not the only part of
the silicon industry that has made astonishing strides. RF technology and digital
circuits have also progressed spectacularly. Lower power and higher frequency
transceivers are implemented on chips, while digital circuits tend to shrink and be
fabricated more and more densely.

The collaboration and synergy of sensing, processing, communication and
actuation is the must follow step to exploit the inheritance of this technology. The
possibilities and challenges offered by this field both in theory and in practice are
widely recognized and many research teams and companies are active in the design
and implementation of units that encompass these four attributes. Devices of this
kind, which are created either as prototypes or as commercial products, are gen-
erally referred to as “motes”. A mote is an autonomous, compact device, a sensor
unit that also has the capability of processing and communicating wirelessly
(Arampatzis et al. 2005). Despite the autonomy they present, the big strength of
motes is that they can form networks and co-operate according to various models
and architectures. These networks, known as wireless sensor networks (WSNs),
have been the focus of considerable research efforts in the areas of communications
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(protocols, routing, coding, error correction, etc.), electronics (energy efficiency,
miniaturization) and control (networked control system, theory and applications).

The unique characteristics and applications of WSNs pose several challenges
that are to be tackled by researchers at both academia and industry. Technologies,
schemes, and protocols must be developed to make WSNs as efficient as possible.
Military, industrial, and environmental applications impose disseminating sensor
motes in harsh surroundings, which necessitate adequate challenges face off. The
coming subsections layout such challenges and the design objectives that may
technically get over them.

3.1.1 Functional Challenges of Forming WSNs

The major technical challenges for the build up of industrial WSNs will be laid out
in what follows (Gungor and Hancke 2009). These challenges can be extended to
the military and environmental WSNs applications due to the similarities in the
surroundings and functional requirements:

• Resource constraints. The design and implementation of WSNs are constrained
by three limited resources, energy, memory, and processing.

• Dynamic topologies and harsh environmental conditions. In military, industrial
and environmental applications, the topology and connectivity of the network
may vary due to link and sensor-node failures. Furthermore, sensors may be
subject to RF interference, highly caustic or corrosive environments, high
humidity levels, vibrations, dirt and dust, or other conditions that challenge
performance. These harsh environmental conditions and dynamic network
topologies may cause a portion of industrial sensor nodes to malfunction
(Gungora et al. 2007).

• Quality-of-service (QoS) requirements. The wide variety of applications
envisaged on WSNs will have different QoS requirements and specifications.
The QoS provided by WSNs refers to the discrepancy between the data reported
to the sink node (the control center) and what is actually occurring in the
industrial environment. In addition, since sensor data are typically
time-sensitive, e.g., alarm notifications for the industrial facilities, it is important
to receive the data at the sink in a timely manner. Data with long latency due to
processing or communication may be outdated and lead to wrong decisions in
the monitoring system.

• Data redundancy. Due to the high density in the network topology, sensor
observations are highly associated. In addition, the nature of the physical phe-
nomenon constitutes a temporal association between each consecutive obser-
vation of the sensor node.

• Packet errors and variable-link capacity. Compared to wired networks, in WSNs,
the attainable capacity of each wireless link depends on the interference level
perceived at the receiver, as well, high bit error rates (BER = 10−2 − 10−6) are
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observed in communication. In addition, wireless links exhibit widely varying
characteristics over time and space due to obstructions and noisy environment.
Thus, capacity and delay attainable at each link are location-dependent and vary
continuously, making QoS provisioning a challenging task.

• Security. Security should be an essential feature in the design of WSNs to make
the communication safe against external denial-of-service (DoS) attacks and
intrusion. WSNs have special characteristics that enable new ways of security
attacks. Passive attacks are carried out by eavesdropping on transmissions,
including traffic analysis or disclosure of message contents. Active attacks
consist of modification, fabrication, and interruption, which in WSNs cases may
include node capturing, routing attacks, or flooding.

• Large-scale deployment and ad hoc architecture. Most WSNs contain a large
number of sensor nodes (hundreds to thousands or even more), which might be
spread randomly over the deployment field. Moreover, the lack of predeter-
mined network infrastructure necessitates the WSNs to establish connections
and maintain network connectivity autonomously.

• Integration with Internet and other networks. It is of prime importance for the
commercial development of WSNs to provide services that allow the querying
of the network to retrieve useful information from anywhere and at any time.
For this reason, WSNs should be remotely accessible from the Internet and,
hence, need to be integrated with the Internet Protocol (IP) architecture, either
through gateways or thorough IP connectivity (Montenegro et al. 2007;
Akyildiz et al. 2007).

3.1.2 Design Objectives of WSNs

The existing and potential applications of WSNs span a very wide range of
applications. To deal with the technical challenges and meet the diverse WSNs
application requirements, specially industrial, and by resemblances military and
environmental applications, several design goals need to be adopted (Gungor and
Hancke 2009):

• Low-cost and small sensor nodes. Compact and low-cost sensor devices are
essential to accomplish large-scale deployments of WSNs. The system owner
should consider the cost of ownership (packaging requirements, modifications,
maintainability, etc.), implementation costs, replacement and logistics costs, and
training and servicing costs as well as the per unit costs (Howitt et al. 2006).

• Scalable architectures and efficient protocols. WSNs support heterogeneous
applications with different requirements, especially in industry and environment.
It is necessary to develop flexible and scalable architectures that can accom-
modate the requirements of all these applications in the same infrastructure.
Modular and hierarchical systems can enhance the system flexibility, robustness,
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and reliability. In addition, interoperability with existing legacy solutions, such
as Fieldbus (Thomesse 2005) and Ethernet based systems, is required.

• Data fusion and localized processing. Instead of sending the raw data to the sink
node directly, sensor nodes can locally filter the sensed database and transmit
only the processed data, which is in-network processing. Thus, only necessary
information is transported to the end-user and communication overhead can be
significantly reduced.

• Resource-efficient design. In WSNs, energy efficiency is important to maximize
the network lifetime while providing the QoS required by the application.
Energy saving can be accomplished in every component of the network by
integrating network functionalities with energy- efficient protocols, e.g.,
energy-aware routing on network layer, energy-saving mode on MAC layer, etc.

• Self-configuration and self-organization. In WSNs, the dynamic topologies
caused by node failure/mobility/temporary power-down and large-scale node
deployments necessitate self-organizing architectures and protocols. Note that,
with the use of self-configurable WSNs, new sensor nodes can be added to
replace failed sensor nodes in the deployment field, and existing nodes can also
be removed from the system without affecting the general objective of the
application.

• Adaptive network operation. The adaptability of WSNs is extremely crucial,
since it enables end-users to cope with dynamic/varying wireless-channel con-
ditions in military, industrial, environmental applications, and with new con-
nectivity requirements driven by new processes. To balance the tradeoffs among
resources, accuracy, latency, and time-synchronization requirements, adaptive
signal-processing algorithms and communication protocols are needed.

• Time synchronization. In WSNs, large numbers of sensor nodes need to col-
laborate to perform the sensing task, and the collected data are usually
delay-sensitive (Howitt et al. 2006; Akyildiz et al. 2007). Thus, time synchro-
nization is one of the key design goals for communication protocol design to
meet the deadlines of the application. However, due to resource and size limi-
tations and lack of a fixed infrastructure, as well as the dynamic topologies in
WSNs, existing time-synchronization strategies designed for other traditional
wired and wireless networks may not be appropriate for WSNs. Adaptive and
scalable time-synchronization protocols are required for WSNs.

• Fault tolerance and reliability. In WSNs, based on the application requirements,
the sensed data should be reliably transferred to the sink node. Similarly, the
programming/retasking data for sensor operation, command, and queries should
be reliably delivered to the target sensor nodes to ensure the proper functioning
of WSNs. However, for many WSNs applications, the sensed data are
exchanged over time-varying and error-prone wireless medium. Thus, data
verification and correction on each communication layer and self-recovery
procedures are extremely critical to provide accurate results to the end-user.

• Application-specific design. In WSNs, there exists no one-size-fits-all solution;
instead, the alternative designs and techniques should be developed based on the
application-specific QoS requirements and constraints.
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• Secure design. When designing the security mechanisms for WSNs, both
low-level (key establishment and trust control, secrecy and authentication, pri-
vacy, robustness to communication denial of service (DoS), secure routing,
resilience to node capture) and high-level (secure group management, intrusion
detection, secure data aggregation) security primitives should be addressed
(Perrig et al. 2004). In addition, because of resource limitations in WSNs, the
overhead associated with security protocols should be balanced against other
QoS performance requirements. It is very challenging to meet all aforemen-
tioned design goals simultaneously. Fortunately, most WSNs designs have
different requirements and priorities on design objectives. Therefore, the net-
work designers and application developers should balance the tradeoffs among
the different parameters when designing protocols and architectures for WSNs.

In the sections to come, several applications of WSNs are presented.
Applications are categorized into military, industrial, environmental, health, daily
life, and multimedia. Some applications are detailed to focus on concepts and to
guide to other applications that are available in each WSNs category of use.
Military applications will be the start, human instinct of self-defense is the motive
behind innovation, how to combat and overwhelm enemies mean no less than
existence, survival of societies and civilizations. Wars write history, war related
industries create new ideas, some are released to civilian life when overpassed by
newer releases; non-military, peaceful domestic applications, might have originated
in the loud, fiery military industry. When placed in a field, sensors either monitor or
track, they help decisions making based on clear facts, and potentiate preventing
events that may turn out to be catastrophic.

3.2 Military Applications

Several areas of research are encompassed in the use of WSNs in military appli-
cations. Acoustic detection and recognition has been under research since the early
fifties. An analysis of the complex near-field pressure waves that occur within a foot
of the muzzle blast is presented in (Fansler 1998), it gives a good idea of the ideal
muzzle blast pressure wave without contamination from echoes or propagation
effects. Experiments with greater distances from the muzzle were conducted in
(Stoughton 1997).

Another area of research is the signal processing of gunfire acoustics. The focus
is on the robust detection and length estimation of small caliber acoustic shock-
waves and muzzle blasts. The edges of the shockwave are typically well defined
and the shockwave length is directly related to the bullet characteristics. The work
in (Sadler et al. 1998) compares two shockwave edge detection methods, a simple
gradient-based detector, and a multi-scale wavelet detector. It also demonstrates
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how the length of the shockwave, as determined by the edge detectors, can be used
to estimate the caliber of a projectile.

A related topic is the research and development of experimental and prototype
shooter location systems. Researchers at BBN1 (Raytheon 2014) have developed
the Bullet Ears system, which has the capability to be installed in a fixed position or
worn by soldiers (Duckworth et al. 2001). The problem with this approach and
similar centralized systems is the need of the one or handful of microphone arrays
to be in line-of-sight of the shooter. A sensor networked based solution has the
advantage of widely distributed sensing for better coverage, multipath effect
compensation and multiple simultaneous shot resolution (Lédeczi et al. 2005).

Each of the coming sections, as based and named on a leading paper, will
elaborate further on such topics. Chapter 8 of this book includes the datasheets of
the hardware used in the proposed approaches and projects.

3.2.1 Countersniper System for Urban Warfare

In (Lédeczi et al. 2005) an ad hoc WSN-based system is presented, it detects and
accurately locates shooters even in urban environments. The presented sensor
network-based solution surpasses the traditional approach because it can mitigate
acoustic multipath effects prevalent in urban areas and it can also resolve multiple
simultaneous shots. These unique characteristics of the system are made possible by
employing novel sensor fusion techniques that utilize the spatial and temporal
diversity of multiple detections.

Countersniper systems can use several different physical phenomena related to
the shot or the weapon itself, such as acoustic, visual, or electromagnetic signals.
A detectable visual event is the muzzle flash, as in case of the Viper system (Moroz
et al. 1999), or the reflection from the sniper’s scope (Vick et al. 2002). The
electromagnetic field or heat generated by the projectile can also be used for
detection (Vick et al. 2002). In spite of the wide range of possibilities, so far
acoustic signals, such as the muzzle blast and the ballistic shockwave, provide the
easiest and most accurate way to detect shots, and hence, the majority of existing
countersniper systems use them as the primary information source (Duckworth
et al. 2001).

The most obvious acoustic event generated by the firing of any conventional
weapon is the muzzle blast. The blast is a loud, characteristic noise originating from
the end of the muzzle, and propagating spherically away at the speed of sound,

1Raytheon BBN Technologies delivers innovative solutions in quantum sensing, quantum com-
munications, quantum computing, multisensor processing systems, speech recognition, software
systems. Their solutions are widely used in the U.S. Navy, the UK Royal Air Force and the
Canadian Navy.
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making it ideal for localization purposes (Fig. 3.1). A less favorable property of the
blast is that it can be suppressed by silencers or rendered ambiguous by acoustic
propagation effects.

Typical rifles fire projectiles at supersonic velocities to increase both the range
and accuracy, producing acoustic shocks along their trajectory. The shockwave is
the result of the air being greatly compressed at the tip, and expanded at the end of
the bullet, as it slices through the air. Under ideal circumstances the pressure signal
detected by a microphone has a characteristic and distinctive waveform, called
N-wave referring to its shape. Because of its very fast rise time (<1 μs), it cannot be
produced by any other natural phenomenon. The ideal shockwave front is a cone
(the Mach cone) moving along the trajectory of the projectile. The angle of the cone
depends on the speed of the bullet. Note that this angle is continuously increasing as
the bullet decelerates producing a distorted conical shape, as shown in Fig. 3.1.
Since N-waves can be accurately detected, shockwaves provide excellent means to
determine projectile trajectories.

The proposed sensor networking approach allows the use of possibly several
orders of magnitude higher number of inexpensive sensor units, but requires quite
different processing approach because of the very limited communication band-
width. Some of the processing must be allocated to the sensor units, while the
sensor fusion needs to be carried out on a more powerful computer. The concept is
illustrated in Fig. 3.1. The sensors accurately detect shockwave and/or muzzle blast
events and measure their time of arrival (TOA). These timestamps of detected
events are sent to a central basestation, where the fusion algorithm calculates the
shot trajectory and/or the shooter location, based on the TOA measurements and the
known sensor locations. The communication in the network is provided by ad hoc
routing protocols, incorporating the time synchronization service as well.

Fig. 3.1 The sensor network based shooter localization system using shockwave and muzzle blast
time of arrival data (Ledeczi et al. 2005)
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3.2.1.1 Architecture

Hardware Platform

The hardware platform is built upon the UC Berkeley MICA2 mote device running
the TinyOS embedded operating system (Crossbow 2002; Hill and Culler 2002), a
widely used component-based architecture targeting wireless sensor network
applications. Open interfaces at the software and hardware levels made it possible
to integrate specialized smart sensor elements and supporting middleware services.
Each MICA2 mote is furnished with an ATmega 128L 8-bit microcontroller with
128 Bytes instruction memory (Atmel 2011), 4 KBytes data memory and typical
embedded peripherals built in. The on-board radio transceiver operates in the
433 MHz ISM band and has a maximum transfer rate of 38.4 Kbits/s with the
maximum range of about 300 feet (Moog Crossbow 2013).

Real-time detection, classification and correlation of acoustic events require
processing power and buffer sizes not present in standard microcontroller based
embedded devices. To overcome these limitations, application-specific sensor-
boards have been designed and built at Vanderbilt University. The different
architectures reflect the current dilemma faced by many signal processing
engineers:

• The first version of the sensorboard (Fig. 3.2) utilizes a Xilinx XC2S100 FPGA
chip (Xilinx 2008) with three independent analog channels exploiting the
inherent parallelism of the hardware. The algorithms implemented in VHDL are
focusing on precise time domain analysis of acoustic signals captured at high
sample rates (1 million Sample/s). Hardware and software interfaces (I2C bus,
interrupts, led display and serial A/D) are implemented as custom intellectual
property core (IP cores) in the same gate array. While this approach offers very
appealing features, that is, high accuracy (note that on-board angle of arrival
estimate is possible), high speed (though not fully utilized for audio purposes),
and efficient resource utilization, the size of the field-programmable gate array
(FPGA) component severely constrains the complexity of the applicable algo-
rithms. Suboptimal power consumption of the processing unit and the lack of
effective power management modes are among the handicaps of the sensor
network domain.

• To overcome these limitations, another sensorboard has been developed, where
customized analog signal paths and an energy-efficient, powerful digital signal
processor (DSP) make the unit uniquely suitable for power constrained appli-
cations. At the heart of the second platform (Fig. 3.3) is a low-power fixed point
ADSP- 218x (Analog Devices 1998) digital signal processor running at
50 MHz. Its internal program (48 KByte) and data (56 KByte) memory buffers
with advanced addressing modes and direct memory access (DMA) controllers
enable sophisticated signal processing and advanced power management
methods.
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Two independent analog input channels with low-cost electret microphones (Pui
Audio 2008) pick up the incoming acoustic signals utilizing 2-stage amplification
with software programmable gain (0–54 dB). The analog to digital (A/D) converters
sample at up to 100 KSample/s at 12-bit resolution. Analog comparators with
software adjustable thresholds can be used to wake up the signal processor from
low-power sleep mode, enabling continuous deployment for weeks on two AA
batteries.

The FPGA and the DSP boards running the detection algorithms continuously
draw 30 and 31 mA, respectively. In the power saving mode on the DSP board, this
number drops to 1–5 mA, depending on the sleep mode. For comparison, the
MICA2 mote draws 15 mA on average running the countersniper application.

Fig. 3.2 The FPGA-based
acoustic sensorboard

Fig. 3.3 The DSP-based
acoustic sensorboard
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Software Structure

As the system evolved, different versions of the system architecture were described
in detail in (Simon et al. 2004) and (Ledeczi et al. 2005). Figure 3.4 presents a
summary of the latest software architecture. The Muzzle Blast and Shockwave
Detectors are implemented in VHDL on the FPGA of the first generation sensor-
board and in C on the DSP board. The TOA data from either board is sent through
the inter-integrated circuit (I2C) interface to the mote. A separate software com-
ponent translates the time from the clock of the sensorboard to that of the mote. The
Acoustic Event Encoder assembles a packet containing the TOA data and passes it
to the Message Routing service.

In addition to transporting the packets to the basestation through multiple hops,
the Message Routing service also performs implicit time synchronization.
Additional software components running on the mote include a remote control
service enabling the configuration/polling of a single node, a group of or all of the
nodes from the basestation. A Stack Monitor makes sure that the limited memory of
the mote is not exhausted.

The basestation runs the sensor fusion algorithm utilizing the known sensor
positions and displays the results on the user interface. The accuracy and/or range of
existing sensor self-localization methods including the authors are not satisfactory
for the shooter localization application (Sallai et al. 2004). Hence, all tests of the
system were performed utilizing hand-placed motes on surveyed points. Later
systems use localization based on the accurate radio interferometric geolocation
technique (Maróti et al. 2005).

Fig. 3.4 The software architecture of the system (Ledeczi et al. 2005)
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3.2.1.2 Detection

A block diagram of the signal processing algorithm is shown in Fig. 3.5. The
incoming raw acoustic signal is compressed using zero-crossing (ZC) coding. The
coded signals are used to detect possible occurrences of shockwave and muzzle
blast patterns by the shockwave detection (SWD) and muzzle blast detection
(MBD) blocks, respectively. Although the operation of the two detection blocks is
mainly independent, the SWD block can provide information (time of arrival of the
detected shockwave) for the MBD block to facilitate the detection of a muzzle blast
after a shockwave. Both blocks measure the TOA of the detected acoustic event
using the on-board clock and then notify the mote. The MICA2 mote reads the
measurement data (TOA and optionally signal characteristics) and performs time
synchronization between its own clock and that of the acoustic board. The mea-
surement data is then propagated back to the basestation using middleware services
of the sensor network.

The signal detection algorithm proved to be quite robust. It recognized 100 % of
the training events and more than 90 % of the other recorded shot events. It is to be
noted that, in reality, a shot may be detected by some sensors and may not be
recognized by others, depending on the location of the sensor. False positives could
be produced only by physical contact with the microphone itself (Simon et al. 2004).

3.2.1.3 Routing Integrated Time Synchronization

An integrated time synchronization and routing algorithm is proposed, that is, no
additional radio messages, no support for power management, and the low imposed
overhead on message size, make the algorithm suitable for many power-aware data
collecting applications (Kusy et al. 2006)

To find the position of the shooter(s), a consistency function on the
four-dimensional space-time space is defined. A fast multi-resolution search algo-
rithm recursively finds the maxima of this function, which corresponds to the
location and time of possible shots. Then, these maxima are further analyzed to

The raw sampled signal is compressed and coded in the Zero-Crossing (ZC) Coder 
The Shock Wave Detector (SWD) utilizes the ZC-coded signal 

The Muzzle Blast Detector (MBD) uses a filtered version 
The detectors can communicate with the mote through an I2C interface 

ADC ZC Coder

MBD

SWD

ZC Filter

<
I2C

Clock

Fig. 3.5 Block diagram of the signal processing algorithm (Ledeczi et al. 2005)
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eliminate false positives caused by echoes. The consistency function is de- fined in
such a way that it automatically classifies and eliminates erroneous measurements
and multipath effects.

3.2.1.4 Sensor Fusion

The TOA measurements originating from either the muzzle blast or the shockwave
can be used in the estimation process. Muzzle blasts are extremely useful in
near-field position estimation (Simon et al. 2004), while shockwaves provide
effective means to determine the direction of a distant shooter (Balogh et al. 2005).

Muzzle blast and shockwave detections carry information about the shooter
location, and the projectile trajectory, respectively. Either type of events, or both,
combined can be used for localization purposes. The muzzle blast fusion algorithm
works very well when the shooter is located within the sensor field and there are
enough (at least 8–10) line-of-sight measurements. Once the shooter is shooting
outside of the sensor field, the accuracy starts to decrease. One reason is that the
angle of the sensor field from the shooter (field of view) is getting smaller and
hence, individual measurement errors have larger effects on the result. The other
reason is that, as the distance to the shooter increases, fewer and fewer sensors are
able to detect the muzzle blast at all. Once the shooter is beyond 50 m or so, muzzle
blast alone is typically not enough to make accurate localization.

Shockwave fusion alone cannot determine the exact location of the shooter, but
provides the trajectory of the bullet, even for long-range shots. The sensor network
is presumably deployed in and around the protected area, and as long as the bullet
goes through this region, the sensors can detect shockwave events, independently of
the distance from the shooter. Naturally, shockwave trajectory estimation and
muzzle blast ranging can be combined to provide accurate localization, if at least a
few muzzle blast detections are available.

Range Estimation

Using the estimated trajectory based upon shockwave measurements and at least a
few muzzle blast detections, the range of the source can also be estimated. Again,
special care must be taken of potential multipath measurements and multiple shots.

Once the trajectory is estimated, the projectile location (X,Y,Z) at time instant t0
is available, along with the elevation, azimuth and the speed of the projectile. Thus,
the complete timeline of the bullet can be computed, provided the speed of the
projectile is constant, by associating a time instant t with each bullet location (x,y,z)
on the trajectory. As the unknown location of the shooter is also on the trajectory, a
straightforward solution is to correlate the timeline of the bullet and the muzzleblast
TOA data, using a simplified consistency function approach. It is to be noted that
the search in this case is reduced to the one-dimensional space along the estimated
trajectory, as to be clarified. A sliding window is moved backward on the trajectory
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to find the shooter position. The simplified consistency function at the trajectory
position (x,y,z) and its corresponding time t is defined as:

Cd x; y; z; tð Þ ¼ counti¼1;...;Nðdimin\ðti � tÞvsound\dimaxÞ ð3:1Þ

where dimin and dimax are the minimum and maximum distances, respectively,
between sensor position (xi,yi,zi) (with TOA measurement ti) and the sliding win-
dow of width δ, centered at (x,y,z) along the trajectory. The width of the window is
determined by the estimated detection errors, a typical number being 1 m. The
window position (x,y,z) with the highest consistency value Cδ(x,y,z,t) gives the
estimated origin of the shot and, hence, the range. Similarly to the muzzle blast
case, this solution automatically eliminates the erroneous measurements, and also
the measurements corresponding to other shots.

3.2.1.5 Experimentation

During the development period, several field tests were conducted in two U.S.
Army facilities to evaluate the performance and accuracy of the shooter localization
system. The data collected in the field tests were used to determine the accuracy of
the system and its sensitivity to various sources of errors. For fusion technologies
based on the muzzle blast, the localization error of the system is studied in 3D and
2D. In 3D, error is the total localization error, while in 2D, the elevation infor-
mation is omitted. The system accuracy is remarkably good in 2D, the average error
was 0.6 m, 83 % of shots had less than 1 m of error, and 98 % had less than 2 m of
error. In 3D, the average error was 1.3 m, 46 % of the shots had less than 1 m, and
84 % of shots had less than 2 m of localization error.

The shockwave fusion algorithm was tested in the U.S. Army Aberdeen Test
Center, in December 2004. Various targets were placed inside and outside the
sensor field opposite from the shooter positions. In one particular experiment, 12
shots were fired over the middle of the network shooting approximately 100 m from
the edge of the sensor field, so there were sensors on each side of the trajectory. The
average azimuth error was 0.66°, the average elevation error was 0.61°, and the
average range error was 2.56 m. Another 11 shots were fired from the same distance
near the edge of the network, so there were no or only a few sensors on one side of
the trajectory. The average error increased to 1.41° in azimuth, to 1.11° in elevation
and to 6.04 m in range.

For fusion technologies based on the shockwave, multiple simultaneous shots
have also been tested with mixed results. The typical test involved two shots only.
About half the time, the system correctly localized both trajectories. There were
cases, however, when three trajectories were found. Two of these were typically
very close to each other and to one of the true trajectories. This error can happen
when there is more than double the number of detections needed for localizing a
single trajectory. In such a case, the error value corresponding to a subset of the
detections may be smaller than the one involving all the detections for one
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trajectory. The error function and the genetic algorithm need to be adjusted to avoid
this situation.

The latency of the shockwave-based fusion algorithm is somewhat greater than
that of the muzzle-blast-based technique, the calculation of a single-shot trajectory
takes about 3–4 s on a 3 GHz PC.

3.2.2 Shooter Localization and Weapon Classification
with Soldier-Wearable Networked Sensors

This work as presented in (Volgyesi et al. 2007) moves from a static sensor
network-based solution to a highly mobile one, which presents significant chal-
lenges. Specifically, the sensor positions and orientation need to be constantly
monitored. Also, as soldiers may work in groups of as little as four people, the
number of sensors measuring the acoustic phenomena may be an order of magni-
tude smaller than before. Moreover, the system should be useful to even a single
soldier. Finally, additional requirements may be provided for caliber estimation and
weapon classification in addition to source localization.

The firing of a typical military rifle, such as the AK47 or M16, produces two
distinct acoustic phenomena. The muzzle blast, that is generated at the muzzle of
the gun and travels at the speed of sound. Also, the supersonic projectile generates
an acoustic shockwave, a kind of sonic boom. The wavefront has a conical shape,
the angle of which depends on the Mach number, the speed of the bullet relative to
the speed of sound. The shockwave has a characteristic shape resembling a capital
N. The rise time at both the start and end of the signal is very fast, under 1 μs. The
length is determined by the caliber and the miss distance, the distance between the
trajectory and the sensor. It is typically a few hundred μsec. Once a trajectory
estimate is available, the shockwave length can be used for caliber estimation.

The proposed system is based on four microphones connected to a sensorboard.
The board detects shockwaves and muzzle blasts and measures their time of arrival
(TOA). If at least three acoustic channels detect the same event, its angle of arrival
(AOA) is also computed. If both the shockwave and muzzle blast AOA are
available, a simple analytical solution gives the shooter location. As the micro-
phones are close to each other, typically 5–10 cm, very high precision is not
expected. Also, this method does not estimate a trajectory. However, the sensor-
boards are also connected to COTS MICAz motes (Crossbow 2006; Koh 2006) and
they share their AOA and TOA measurements, as well as their own location and
orientation, with each other using a multihop routing service (Maróti 2004).
A hybrid sensor fusion algorithm then estimates the trajectory, the range, the caliber
and the weapon type based on all available observations.

The sensorboard is also Bluetooth capable for communication with the soldier’s
PDA or laptop computer. A wired USB connection is also available. The sensor
fusion algorithm and the user interface get their data through one of these channels.
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The orientation of the microphone array at the time of detection is provided by a
3-axis digital compass. Currently the system assumes that the soldier’s PDA is
GPS-capable and it does not provide self-localization service itself. However, the
accuracy of GPS is a few meters degrading the overall accuracy of the system. The
latest generation sensorboard features a Texas Instruments CC-1000 radio (Texas
Instruments 2007) enabling the high-precision radio interferometric self localization
approach (Kusy et al. 2006).

3.2.2.1 Hardware

The board utilizes a powerful Xilinx XC3S1000 FPGA chip (Xilinx 2013) with
various standard peripheral IP cores, multiple soft processor cores and custom logic
for the acoustic detectors (Fig. 3.6). The onboard Flash (4 MByte) and the pseu-
dostatic random-access memory (PSRAM) (8 MByte) modules allow storing raw
samples of several acoustic events, which can be used to build libraries of various
acoustic signatures and for refining the detection cores off-line. Also, the external
memory blocks can store program code and data used by the soft processor cores on
the FPGA.

Fig. 3.6 Block diagram of
the sensorboard (Volgyesi
et al. 2007)
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The sensorboard supports four independent analog channels sampled at up to 1
million Sample/s. These channels, featuring an electret microphone Panasonic WM-
64PNT (Panasonic Corporation 2013), amplifiers with controllable gain (30–60 dB)
and a 12-bit serial ADC AD7476 (Analog Devices 2013), reside on separate tiny
boards which are connected to the main sensorboard with ribbon cables. This
partitioning enables the use of truly different audio channels (e.g., slower sampling
frequency, different gain or dynamic range) and also results in less noisy mea-
surements by avoiding long analog signal paths.

The sensor platform offers a rich set of interfaces and can be integrated with
existing systems in diverse ways. An RS232 port and a Bluetooth Bluegiga WT12
(Bluegiga 2013; Glyn Store 2013) wireless link with virtual universal asynchronous
receiver/transmitter (UART) emulation are directly available on the board and
provide simple means to connect the sensor to personal computers (PCs) and
personal digital assistants (PDAs). The mote interface consists of an I2C bus along
with an interrupt and general-purpose input/output (GPIO) line (the latter one is
used for precise time synchronization between the board and the mote). The motes
are equipped with IEEE 802.15.4 compliant radio transceivers and support ad hoc
wireless networking among the nodes and to/from the basestation. The sensorboard
also supports full-speed universal serial bus (USB) transfers (with custom USB
dongles) for uploading recorded audio samples to the PC. The on-board JTAG
chain, directly accessible through a dedicated connector, contains the FPGA part
and configuration memory and provides in-system programming and debugging
facilities.

The integrated Honeywell HMR3300 digital compass module (Honeywell 2012)
provides heading, pitch and roll information with 1◦ accuracy, which is essential for
calculating and combining directional estimates of the detected events.

The first prototype of the proposed system employed ten sensor nodes. Some of
these nodes were mounted on military kevlar helmets (Dupont 2013) with the
microphones directly attached to the surface at about 20 cm separation. The rest of
the nodes were mounted in plastic enclosures with the microphones placed near the
corners of the boxes to form approximately 5 cm × 10 cm rectangles.

3.2.2.2 Software Architecture

The sensor application relies on three subsystems exploiting three different com-
puting paradigms. Although each of these execution models suits their domain
specific tasks, this diversity presents a challenge for software development and
system integration. The sensor fusion and user interface subsystem is running on
PDAs and were implemented in Java. The sensing and signal processing tasks are
executed by an FPGA, which also acts as a bridge between various wired and
wireless communication channels. The ad hoc internode communication, time
synchronization and data sharing are the responsibilities of a microcontroller based
radio module.
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3.2.2.3 Detection Algorithm

There are several characteristics of acoustic shockwaves and muzzle blasts, which
distinguish their detection and signal processing algorithms from regular audio
applications. Both events are transient by their nature and present very intense
stimuli to the microphones. The detection algorithms have to be robust enough to
handle severe nonlinear distortion and transitory oscillations. Since the muzzle blast
signature closely follows the shockwave signal and because of potential automatic
weapon bursts, it is extremely important to settle the audio channels and the
detection logic as soon as possible after an event. Also, precise angle of arrival
estimation necessitates high sampling frequency (in the MHz range) and accurate
event detection. Moreover, the detection logic needs to process multiple channels in
parallel (4 channels on the proposed hardware).

Themost conspicuous characteristics of an acoustic shockwave are the steep rising
edges at the beginning and end of the signal (Fig. 3.7). Also, the length of the N-wave
is fairly predictable and is relatively short (200–300 μs). The shockwave detection
core is continuously looking for two rising edges within a given interval. The only
feature calculated by the core is the length of the observed shockwave signal.

In contrast to shockwaves, the muzzle blast signatures are characterized by a
long initial period (1–5 ms) where the first half period is significantly shorter than
the second half (Fansler 1998). Due to the physical limitations of the analog cir-
cuitry, irregular oscillations and glitches might show up within this longer time
window as they can be clearly seen in Fig. 3.8. Therefore, the real challenge for the
matching detection core is to identify the first and second half periods properly.

The detection cores were originally implemented in Java and evaluated on
pre-recorded signals because of much faster test runs and more convenient
debugging facilities. Later on, they were ported to Verilog hardware description
language (VHDL) and synthesized using the Xilinx ISE tool suite.

Fig. 3.7 Shockwave signal
generated by 5.56 × 45 mm
NATO projectile (Volgyesi
et al. 2007)
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3.2.2.4 Sensor Fusion

The sensor fusion algorithm receives detection messages from the sensor network
and estimates the bullet trajectory, the shooter position, the caliber of the projectile
and the type of the weapon. The algorithm consists of the distinct computational
tasks outlined below:

1. Compute muzzle blast and shockwave directions of arrivals for each individual
sensor.

2. Compute range estimates. This algorithm can analytically fuse a pair of
shockwave and muzzle blast AoA estimates.

3. Compute a single trajectory from all shockwave measurements.
4. If trajectory available then compute range, else compute shooter position first

and then trajectory based on it.
5. If trajectory available then compute caliber.
6. If caliber available then compute weapon type.

3.2.2.5 Results

An independent evaluation of the system was carried out by a team from the
National Institute of Standards and Technology (NIST) at the US army Aberdeen
test center in April 2006 (Weiss et al. 2006). The experiment was setup on a
shooting range with mock-up wooden buildings and walls for supporting elevated
shooter positions and generating multipath effects. Ten sensor nodes, statistically
placed, were deployed on surveyed points in an approximately 30 × 30 m2 area.
There were five fixed targets behind the sensor network. Several firing positions
were located at each of the firing lines at 50, 100, 200 and 300 m. These positions

Fig. 3.8 Muzzle blast
signature produced by an
M16 assault rifle (Volgyesi
et al. 2007)
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were known to the evaluators, but not to the operators of the system. Six different
weapons were utilized: AK47 and M240 firing 7.62 mm projectiles, M16, M4 and
M249 with 5.56 mm ammunition and the 0.50 caliber M107.

The tests outcome may be outlined in what follows:

• During a one-day test, there were 196 shots fired. The system detected all shots
successfully. Since a ballistic shockwave is a unique acoustic phenomenon, it
makes the detection very robust. There were no false positives for shockwaves,
but there were a handful of false muzzle blast detections due to parallel tests of
artillery at a nearby range.

• The caliber and weapon estimation accuracy rates are based on the 189 shots
that were successfully localized. For four of the weapons (AK14, M16, M240
and M107), the classification rate is almost 100 %. There were only two shots
out of approximately 140 that were missed. The M4 and M249 proved to be too
similar and they were mistaken for each other most of the time.

• There are several disadvantages of the single sensor case compared to the net-
worked system. Namely, there is no redundancy to compensate for other errors
and to perform outlier rejection, the localization rate is markedly lower, and a
single sensor alone is not able to estimate the caliber or classify the weapon.

• Errors in the time synchronization, node localization and node orientation
degrade the overall accuracy of the system.

• Successful localization goes down from almost 100–50 % when tests go from
ten sensors to two even without additional errors. This is primarily caused by
geometry, for a successful localization, the bullet needs to pass over the sensor
network, that is, at least one sensor should be on the side of the trajectory other
than the rest of the nodes.

• There is hardly any difference in the data for six, eight and ten sensors. This
means that there is little advantage of adding more nodes beyond six sensors as
far as the accuracy is concerned.

• The speed of sound depends on the ambient temperature. It would be
straightforward to employ a temperature sensor to update the value of the speed
of sound periodically during operation. Also, wind may adversely affect the
accuracy of the system. The sensor fusion, however, could incorporate wind
speed into its calculations.

• Silencers reduce the muzzle blast energy and hence, the effective range the
system can detect it at. However, silencers do not effect the shockwave and the
system would still detect the trajectory and caliber accurately. The range and
weapon type could not be estimated without muzzle blast detections. Subsonic
weapons do not produce a shockwave. However, this is not of great significance,
since they have shorter range, lower accuracy and much less lethality. Hence,
their use is not widespread and they pose less danger in any case.

• Irregular armies may use substandard, even hand manufactured bullets, this
affects the muzzle velocity of the weapon. For weapon classification to work
accurately, the system would need to be calibrated with the typical ammunition
used by the given adversary.
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3.2.3 Shooter Localization Using Soldier-Worn Gunfire
Detection Systems

This paper (George and Kaplan 2011) presents the development of a sensor fusion
module that would take full advantage of the team aspect of a small combat unit
(SCU) to provide a fused solution that would be highly accurate and suitable for a
command and control geographic information system (C2 GIS) map display
compared to the individual soldier’s solution. The objective is to improve accuracy
across an entire SCU so even soldiers in non-ideal settings (out of range, bad angle,
etc.) can exploit the good solutions from their neighbors to come up with improved
solutions, both geo-rectified and relative. The individual soldier wearable gunfire
detection systems (SW-GDSs) considered in this work is composed of a passive
microphones array that is able to localize a gunfire event by measuring the direction
of arrival for both the acoustic wave generated by the muzzle blast and the
shockwave generated by the supersonic bullet (Duckworth et al. 2001; Bedard and
Pare 2003). After detecting a gunfire, the individual sensors report their solution
along with their global positioning system (GPS) positions to a central node. At the
central node, the individual solutions are fused along with the GPS positions to
yield a highly accurate, geo-rectified solution, which is then relayed back to indi-
vidual soldiers for added situational awareness.

It is recognized that there is an eminent need for highly precise small-arms
gunfire detection systems on individual soldiers for added battlefield situational
awareness and threat assessment. Today, several acoustic shooter localization
systems are commercially available (Duckworth et al. 2001; Bedard and Pare
2003). Currently operational SW-GDSs can provide an appropriate level of local-
ization accuracy as long as the soldier is at an ideal location (range, attitude, etc.)
when incoming fire is received (Maroti et al. 2004; Kuckertz et al. 2007; Ash et al.
2010). The localization system suffers severe performance degradation when the
soldier is at a non-ideal location. Moreover, when a relative solution, i.e., the
shooter location relative to the sensor, is transformed into a geo-rectified solution
using a magnetometer and GPS, the solution often becomes unusable due to
localization errors. Geo-rectified solutions are necessary when displaying hostile
fire icons on a C2 GIS map display.

SW-GDSs use acoustic phenomena analysis of small-arms fire to localize the
source of incoming fire, usually with a bearing and range relative to the user
(Kaplan et al. 2008). These individual SW-GDSs operate separately and are not
designed to exploit the sensor network layout of all the soldiers within a SCU to
help increase accuracy. Researchers are exploring some novel solutions that utilize
the team aspect of these SCUs by exploiting all SW-GDSs in a squad/platoon to
increase detection rates and accuracy (Ledeczi et al. 2005; Volgyesi et al. 2007;
Lindgren et al. 2009).
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3.2.3.1 Mathematical Formulation

Consider a SCU consisting of n individual soldiers equipped with the SW-GDS. In
order to set up the problem and develop a sensor model, a first scenario is con-
sidered where there is only one shooter and the SW-GDS receives both the muzzle
blast and the shockwave. The shooter or the target location and the soldier or the ith
sensor location are defined as T and Si, respectively. For simplicity, the problem is

formulated in R2, i.e., T 2 R � Tx
Ty

� �
and Si 2 R2 � Six

Siy

� �
. Now define the indi-

vidual range, ri, and bearing, φi, between the ith sensor node and the target as:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTx � SixÞ2 þðTy � SiyÞ2

q
ð3:2Þ

;i ¼ arctan 2ðTy � Siy ; Tx � SixÞ ð3:3Þ

When a gun fires, the blast from the muzzle produces a spherical acoustic wave
that can be heard in any direction. The bullet travels at supersonic speeds and
produces an acoustic shockwave that emanates as a cone from the trajectory of the
bullet. Because the bullet is traveling faster than the speed of sound, the shockwave
arrives at the sensor node before the wave from the muzzle blast, which is simply
referred to as the muzzle blast. Figure 3.9 illustrates the geometry of the shockwave
and the muzzle blast for the ith sensor node when the orientation of the bullet
trajectory is ω with respect to the horizontal axis. As the bullet pushes air, it creates
an impulse wave.

The wavefront is a cone whose angle θ with respect to the trajectory is:

h ¼ arcsinð1=mÞ ð3:4Þ

where m is the Mach number. The Mach number is assumed to be known since the
typical value for a Mach number is m = 2 (Kaplan et al. 2008). Since the Mach
number directly influences the range estimates, uncertainty in bullet speed may be
treated as range estimation error. As indicated in Fig. 3.9, the angle φi indicates
the direction of arrival (DOA) of the muzzle blast, and φi indicates the DOA of the
shockwave. The muzzle blast DOA is measured counter-clockwise such that
0 ≤ φi ≤ 2π. Details are available in (Kaplan et al. 2008). Figure 3.10 indicates the
field of view (FOV) for both the muzzle blast and the shockwave. Note that
the FOV of the muzzle blast is 2π, i.e., omnidirectional, and the FOV for the
shockwave is π − 2θ. SW-GDS receives the shockwave only if the muzzle blast
DOA is within the bounds:

p=2þ hþx\/i\3p=2� hþx ð3:5Þ
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Now the DOA angle for the shockwave can be written as:

ui ¼ �p=2� hþx; if pþx\/i\3p=2� hþx;
p=2þ hþx; if p=2þ hþx\/i\pþx

�
ð3:6Þ

The first case pþx\/i\3p=2� hþx corresponds to the scenario where the
sensor is located above the bullet trajectory and the case p=2þ hþx\/i\pþx

Fig. 3.9 Geometry of the bullet trajectory and propagation of the muzzle blast and shockwave to
the sensor node (Volgyesi et al. 2007)

Fig. 3.10 Muzzle blast and shockwave field of view (Volgyesi et al. 2007)
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corresponds to the scenario where the sensor is located below the bullet trajectory
(as shown in Fig. 3.9). The case where /i ¼ pþx corresponds to the scenario
when the sensor is located on the bullet trajectory and here such a scenario is not
considered.

If /i is outside the bound given in Eq. 3.5, the sensor node only receives the
muzzle blast and it is outside the FOV of the shockwave. Under the assumptions
that the bullet maintains a constant velocity over its trajectory, the time difference
between the shockwave and the muzzle blast can be written as in (Bedard and Pare
2003):

si ¼ ri
c
1� cos /i � uij j½ �; 8/i 6¼ ui ð3:7Þ

where c indicates the speed of sound. Using Eq. 3.6, the bullet trajectory angle, ω,
can be obtained from the shockwave DOA angle. Though this work assumes that
the bullet speed is constant over its trajectory, others have proposed localization
algorithms (Lindgren et al. 2009) that employ more realistic bullet speed models at
the expense of computational efficiency.

3.2.3.2 Data Fusion at Sensor Node Level

When the sensor node is within the FOV of the shockwave, the three available
measurements are the two DOA angles and the time difference of arrival (TDOA)
between the muzzle blast and the shockwave, i.e.,

/̂i ¼ h1 T; Si;xð Þþ g/ ð3:8Þ

ûi ¼ h2 T; Si;xð Þþ gu ð3:9Þ

ŝi ¼ h3 T; Si;xð Þþ gs ð3:10Þ

where h1(·) is given in Eq. 3.3, h2(·) is given in Eq. 3.6, and h3(·) is given in Eq. 3.7.
The measurement noise is assumed to be zero mean Gaussian white noise, i.e.,
g/ �Nð0; r2/Þ; gu �Nð0; r2uÞ; and gs �Nð0; r2sÞ. Let T̂i ¼ /̂i r̂i x̂i

� �
denotes

the individual sensor level estimates on the target bearing, range, and the bullet
trajectory. Data fusion at the sensor node involves calculating these individual
estimates based on the three sensor measurements.

Using Eq. 3.6, the bullet trajectory angle, ω, can be obtained from the shock-
wave DOA measurements. Thus, the observations on the trajectory angle can be
written as:

x̂i ¼ xi þ gu ð3:11Þ
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For a sensor located in the FOV of the shockwave, the target location can be
estimated as:

T̂xi ¼ Ŝix þ r̂i cos /̂i ð3:12Þ

T̂yi ¼ Ŝiy þ r̂i sin /̂i ð3:13Þ

When the sensor is located outside the shockwave FOV, the only estimate would
be the bearing angle. After individual estimates are obtained at the sensor node
level, the measured information is transmitted to a central node where it is fused to
obtain a more accurate estimate of shooter location.

3.2.3.3 Data Fusion at the Central Node

While sensors in the FOV of the muzzle blast and the shockwave yield a range,
bearing, and trajectory angle estimates, the gunfire detection systems outside the
FOV of the shockwave yield a muzzle blast DOA. Also, GPS measurements are
available on each sensor locations. At the central node, this information from the
individual sensor nodes is fused to obtain an accurate estimate of the shooter
location, bullet trajectory angle, and the sensor location.

3.2.3.4 Results

Simulation results reveal that:

• The fused estimate is superior to the individual sensor estimates, and the
uncertainty associated with the fused estimates is much less than the uncertainty
associated with the individual sensor estimates.

• The fusion algorithm was able to improve the sensor location accuracy by
reducing the GPS uncertainties.

3.3 Industrial Applications

The application of WSN technology to the design of field-area networks for
industrial communication and control systems has the potential to provide major
benefits in terms of flexible installation and maintenance of field devices, support
for monitoring the operations of mobile robots, and reduction in costs and problems
due to wire cabling. This section targets such applications with emphasis on their
features, constraints and requirements. It is well known that industrial applications
are more than plentiful, the goal of this section is to zoom in on the used WSN
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techniques and types of sensors used, at the research and practice levels.
Additionally, getting acquainted with the big players who manufacture and design
WSN building blocks is a major asset to be released after this section.

3.3.1 On the Application of WSNs in Condition Monitoring
and Energy Usage Evaluation for Electric Machines

The work in (Lu et al. 2005) proposes a scheme for applying WSNs in energy usage
evaluation and condition monitoring for electric machines. The importance of this
scheme lies in its non-intrusive, intelligent, and low-cost nature as will be eluci-
dated in the coming sections.

3.3.1.1 Energy Evaluation and Condition Monitoring

Energy usage evaluation and motor condition monitoring are two basic functions of
an energy management system for an industrial plant. They have their unique
motivations and requirements, but also share many common needs, such as data
collection.

Energy Usage Evaluation

It is estimated by the Department of Energy (DOE) that motor-driven systems use
over 2/3 of the total electric energy consumed by industry in the United States. In
industry, motors below 200 hp make up 98 % of the motors in service and consume
85 % of the energy used. On average, these motors operate at no more than 60 % of
their rated load because of oversized installations or under-loaded conditions, and
thus at reduced efficiency which results in wasted energy. As the global energy
shortage and the greenhouse effect worsen, the improvement of energy usage in
industry is drawing more attention. Obviously, to improve energy efficiency, an
evaluation of the energy usage condition of the industrial plant is required.

Among all the energy usage evaluation functions, motor efficiency estimation is
the most important. In the literature, many motor efficiency estimation methods
have been proposed (Electric Machines Committee 1997; Wallace et al. 2001).
A common problem of these methods is either expensive speed and/or torque
transducers are needed for rotor speed and shaft torque measurements, or a highly
accurate motor equivalent circuit needs to be developed from the motor parameters.
Generally, these methods are too intrusive, and are often not feasible for in-service
motor testing. To overcome these problems, (Lu et al. 2006) presents a complete
survey on motor efficiency estimation methods, specifically considering the
advances in sensorless speed estimation and in-service stator resistance estimation
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techniques. Three candidate methods for non-intrusive efficiency estimation are
modified for in-service motor testing. The non-intrusive characteristic of these
methods enables efficiency evaluation with a WSN.

Condition Monitoring

Motor condition monitoring gives the health condition of running electric motors
and avoids economical losses resulting from unexpected motor failures. Sharing
many common requirements with energy usage evaluation in terms of data col-
lection, motor condition monitoring could be naturally added into an energy
management system considering that the necessary data are readily available. For
example, the motor stator currents need to be measured in the energy management
system since they are required by almost all efficiency estimation methods. On the
other hand, many condition monitoring algorithms such as the detection of the
stator winding turn faults, broken rotor bars, worn bearings, and air-gap eccen-
tricities, use the motor current spectral analysis (MCSA) technique, which also
requires the stator current waveforms to be sampled and collected (Habetler et al.
2002). Therefore, it would be natural to incorporate these condition-monitoring
functions in the energy management system without additional cost for data
collection.

Additional Requirements

Generally, the measurements needed for each efficiency estimation and
condition-monitoring method are different, but essentially all require the input line
voltages and the line currents. Some methods require the nameplate data (rated
voltage, current, horsepower, speed, etc.), stator resistance, RS, or rotor speed, ωr.
Among these, the measurements or estimates of stator resistance and speed have for
years been regarded as stumbling blocks. However, research has made great pro-
gress in the area of stator resistance and speed estimation (Lu et al. 2006). Most of
these estimators utilize the terminal voltages and currents, which are available in the
energy evaluation and condition monitoring system.

WSNs target primarily the very low cost and ultra-low power consumption
applications, with data throughput and reliability as secondary considerations.
Fueled by the need to enable inexpensive WSNs for monitoring and control of
non-critical functions in the residential, commercial, and industrial applications, the
concept of a standardized low rate wireless personal area networks (LR-WPANs)
has emerged (Gutiérrez et al. 2004). In October 2003, the LR-WPANs standard
finally became the IEEE 802.15.4 standard (Callaway et al. 2002). The unique
characteristics of the IEEE Std. 802.15.4/LR-WPANs such as the flexibility,
inherent intelligence, fault tolerance, high sensing fidelity, low-cost, and rapid
deployment make WSN the ideal structure for low-cost energy evaluation and
planning system incorporating energy usage evaluation and condition monitoring
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functions together, and furthermore constructing a high level intelligent power
management system in industrial plants.

3.3.1.2 Energy Evaluation and Condition Monitoring Using WSNs

Due to the unique characteristics of WSN, it could be applied as the backbone
structure of the low-cost electric machine energy management system incorporating
energy usage evaluation and condition monitoring functions. The deployment of
WSN results in a sensor-rich environment, which allows for a high-level intelligent
power management system for industrial plants.

System Description

In an industrial plant, motor control centers (MCCs) provide power for motors of all
different sizes. The motor terminal data are collected and processed in the central
supervisory station (CSS). Based on the reports from CSS, the user can assess the
plant operational cost and make decisions. It is necessary to point out that a typical
plant usually has more than one MCC and CSS. Traditionally, communication
cables need to be installed to collect data from the MCCs or motors and send them
to the CSSs. These communication cables could be eliminated by deployment of
WSNs.

Due to the challenges of WSN technology, such as the relatively long latency,
and limited reliability and security, the objective of engaging WSN in an industrial
plant is not to replace the existing wired communication and control systems
completely. Rather the objective is to form a wireless and wired coexisting system;
wherein the non-critical tasks such as efficiency estimation, operating cost evalu-
ation, and diagnosis are carried out by the wireless part to reduce the overall cost,
while the critical tasks (in terms of time requirement and cost) such as real-time
motor controls and overload protection are still performed by the wired system for
reliability reasons.

The WSN sensor node has both sensing and communication capabilities and can
work as a transmitter node, a receiver node, or a relay node. Figure 3.11 illustrates a
WSN transmitter node. It first measures the motor terminal quantities (i.e., line
voltages, line currents, and temperature, if available) and scales them into analog
signals in the range of 0–5 V; then, these scaled signals are passed through an
analog to digital conversion (ADC) unit; finally, the digitized signals are passed via
the serial peripheral interface bus (SPI) to the radio unit and the data packets are
transmitted through the WSN.

Figure 3.12 illustrates a WSN receiver node. It first receives the data packets
from WSN, then the raw packets are reconstructed into the original digitized signals
in the interface unit; finally, these digital signals are sent to the CSS through an
RS232 link. When a sensor works as a relay node, it does nothing but receives data
packets and sends the same packets out.
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Figure 3.13 shows the proposed energy usage evaluation and condition moni-
toring system for electric machines with a WSN architecture. The terminal quan-
tities of each motor are measured at the MCCs and transmitted to the CSSs through
the WSN. Using these data, non-intrusive methods are used to estimate the energy
usage and health condition of each motor in the plant. These results from the CSSs
are finally reported to the plant manager to evaluate the operational cost of the
whole plant and make planning decision such as replacing oversized or malfunc-
tioning motors.

Energy Usage Evaluation

The key to the electric machine energy usage evaluation is non-intrusive motor
efficiency estimation. In (Lu et al. 2006), the ORMEL96, OHME, and AGT
methods are suggested and modified as non-intrusive candidates for in-service
motor efficiency estimation that only relies on line voltages, line currents, and motor
nameplate information.
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Fig. 3.11 WSN transmitter node (Lu et al. 2005)
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Among these methods, the AGT method is regarded as the best in terms of
accuracy and ease of implementation. For simplicity, only the AGT method is
briefly introduced. The original AGT method proposed in (Hsu and Scoggins 1995)
calculates the air-gap torque using Eq. 3.14 from the motor instantaneous input line
voltages, line currents, and stator resistance:

Tair�gap ¼ poles

2
ffiffiffi
3

p f iA � iBð Þ �
Z

½vCA � Rs iC � iAð Þ�dt � iC � iAð Þ

�
Z

½vAB � RsðiA � iBÞ�dtg ð3:14Þ

The friction and windage loss, Wfw, and rotor stray-load loss, WLLr, are obtained
from the no load test. Finally, the motor efficiency is calculated using Eq. 3.15:

g ¼ Tshaft�xr

Pinput
¼ Tair�gap � xr�Wfw�WLLr

Pinput
ð3:15Þ

where, poles is the number of poles, iA, iB, and iC are three line currents, vCA and vAB
are two line voltages, RS is the stator resistance per phase, and ωr is the rotor speed.

A significant advantage of this method is that it considers the losses associated
with the unbalances in the voltages and currents, which reflects the working envi-
ronment of a real motor. It is reported in (Hsu et al. 1998) that the AGTmethod shows
high accuracy (±0.5 % error) and ease of implementation, however, it requires the no

Fig. 3.13 Energy usage evaluation and condition monitoring system for electric machines using
WSNs (Lu et al. 2005)
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load test and direct measurements of stator resistance and rotor speed, which makes it
highly intrusive. In the proposed system, the following modifications and assump-
tions are added to improve the non-intrusiveness of the original AGT method:

• The friction and windage loss is assumed to be a constant percentage of the rated
output power, e.g., 1.2 % for 4-pole motors below 200 hp, similar to the
ORMEL96 method in (Hsu et al. 1998).

• The stray-load loss at rated load is assumed to be a constant percentage of the
rated output power depending on the motor sizes.

• The rotor speed is estimated from motor current spectrum, using methods
summarized in (Lu, Habetler and Harley 2006).

• The stator resistance is estimated from induction motor model-based or signal
injection-based stator resistance estimation methods, as summarized in (Lu et al.
2006).

Motor Condition Monitoring

Motor condition monitoring includes the detection of air-gap eccentricities and
misalignment, worn bearings, stator winding turn faults, broken rotor bars, winding
overheating, and load torque oscillations. As pointed out in Sect. 3.3.1.1, motor
condition monitoring could conveniently be added to the energy evaluation system
using the data from the WSN. Similar with the requirements of efficiency estima-
tion, non-intrusive methods are required for motor condition monitoring using only
motor terminal quantities. Various current-based condition-monitoring techniques
have already been developed and summarized in (Habetler et al. 2002).

Applicability Analysis

The risk of success of the proposed scheme is minimized by the fact that several
major concerns of WSN, energy evaluation, and condition monitoring are no longer
problems of this specific integrated application:

• Power Consumption. Power consumption or battery life is the dominating factor
that affects the design of WSN. In this application, power consumption con-
straints can be simply neglected because in industrial plants the WSN sensor
nodes are installed in the MCCs and the power can be obtained easily from very
inexpensive ac/dc converters. This also eliminates the implementation of com-
plicated protocols and routing algorithms of WSN, which are primarily intended
to resolve the power constraints.

• Accuracy. The motor energy usage evaluation and condition monitoring results
are mainly provided for the industrial plant managers to make their planning
decisions. To do this, even rough estimates of motor efficiency and health
conditions are of great value. This greatly relieves the requirements for the
accuracy of the algorithms in the proposed system.
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3.3.1.3 Experimentation Results

The proposed system has been implemented by combining WSN data transmission,
energy usage evaluation, and condition monitoring functions. For the time being,
the stator resistance is assumed to be a constant for simplicity.

Energy Usage Evaluation—Motor Efficiency Estimation

As a key function of the energy evaluation system, the motor efficiency estimation
algorithm is evaluated by both computer simulations and real experiments. In the
experimental setup, a 3-phase induction motor is line connected to a 230 V mains
supply. The motor has the following nameplate information: 4-pole, NEMA-A, 7.5
hp, 230 V, 18.2 A, and 89.5 % nominal efficiency. A DC generator connected to
resistor boxes serves as the dynamometer. An in-line rotary torque transducer
measures the shaft torque, while an optical encoder measures the speed.

The voltages and currents are slightly unbalanced, and reflect the actually motor
working condition. The estimated motor efficiency and shaft torque are calculated
using the AGT method, which uses only line voltages and currents. The air-gap flux
is obtained through the integral of the stator voltages subtracting the stator IR drop
(voltage drop) with zero initial conditions. Then, the DC offset in the air-gap flux is
removed by a 3 cycle (50 ms) moving average window. The actual efficiency is
directly calculated from measured speed and shaft torque.

It has been shown that the estimated motor efficiency has a very good agreement
(±2 % error) with the measured efficiency, especially in the normal motor load
range (40–90 % of rated load). Besides, the proposed system also gives relatively
accurate efficiency estimates at underloaded and overloaded conditions, which are
useful for industrial energy management. If the estimated temperature varying stator
resistance is used, the error in the stator copper loss estimation will be reduced. As a
result, the accuracy of the estimated efficiency and shaft torque will be improved.

Condition Monitoring—Detection of Air-Gap Eccentricities

A substantial portion of induction motor faults is air-gap eccentricity related (Huang
et al. 2007). Basically, there are two types of eccentricities: static eccentricity and
dynamic eccentricity. In practice, they tend to coexist due to an inherent level of
either static or dynamic eccentricity even in a new motor. In general, online con-
dition monitoring of air-gap eccentricity primarily depends on the detection of
fundamental side band harmonics located at fe ± frm, where fe is the fundamental
excitation frequency and frm is the rotor rotational frequency.

As an example motor condition monitoring technique, an air-gap eccentricity
detection algorithm is investigated using only a single-phase motor line current. The
same experimental setup adopted in the previous section is used. The static
eccentricity is created by first machining the bearing housings of the end bell
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eccentrically and then placing a 0.01 inch shim in the end bell to offset the rotor.
The dynamic eccentricity is created by first machining the motor shaft under the
bearings eccentrically and then inserting a 0.01 inch offset sleeve under the bear-
ings. A FFT is applied to the measured single-phase stator current to obtain its
spectrum. Experimentation was carried on when the motor was running at 1752 rpm
(fe ≈ 60 Hz and frm = 29.2 Hz), the air-gap eccentricity fault was detected.

3.3.2 Breath: An Adaptive Protocol for Industrial Control
Applications Using WSNs

This work (Park et al. 2011) proposes the Breath protocol, a self-adapting efficient
solution for reliable and timely data transmission. The protocol adapts to the net-
work variations by enlarging or shrinking next-hop distance, sleep time of the
nodes, and transmit radio power, just like a breathing organism. The system model
considers nodes that have to send packets to the sink via multihop routing under
tunable reliability and delay requirements. The protocol is based on randomized
routing, CSMA/CA MAC and randomized sleep discipline that are jointly opti-
mized for energy consumption. The protocol contribution entails what follows:

• It provides explicit analytical relations of the reliability, delay, and total energy
consumption as a function of MAC, routing, physical layer, duty cycle, and
radio power. The approach is based on simple yet good approximations whose
accuracy is systematically verified.

• The analytical relations allow developing and solving a mixed integer-real
optimization problem where the energy minimization is achieved under tunable
reliability and delay requirements.

• Based on this optimization, a novel algorithm is developed to allow for rapid
deployment and self-adaptation of the network to traffic variations and channel
conditions, and to guarantee the application requirements without heavy com-
putation or communication overhead.

• The protocol is implemented on a testbed using Tmote sensors (Moteiv 2006).
Analysis and experimental evaluation show the benefits of the proposed solution.

3.3.2.1 System Set-up

The system scenario is quite general, because it applies to any interconnection of a
plant by a multihop WSN to a controller that tolerates a certain degree of data loss
and delay (Zhang et al. 2001; Schenato et al. 2007; Witrant et al. 2007). Figure 3.14
depicts a scenario where a plant is remotely controlled over a WSN (Hespanha et al.
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2007; Schenato et al. 2007). The following assumptions and considerations are
adopted in Breath:

• Outputs of the plant are sampled at periodic intervals by the sensors with total
packet generation rate of k packets/s.

• It is assumed that packets associated to the state of the plant are transmitted to a
sink, connected to the controller, over a multihop network of uniformly and
randomly distributed relaying nodes. No direct communication is possible
between the plant and the sink. Relay nodes forward incoming packets.

• The measurements received by a controller are used in a control algorithm to
compensate the control output. The control law induces constraints on the
communication delay and the packet loss probability. Packets must reach the
sink within some minimum reliability and maximum delay. These boundaries
are application requirements that are chosen by the control algorithm designers,
they can be changed from one control algorithm to another, or a control algo-
rithm can modify the application requests from time to time.

• Nodes of the network cannot be recharged, so the operations must conserve
energy.

Sensor nodes uniformly distributed over the walls or the ceiling, form a WSN
infrastructure that supports control of the states of the robots in a manufacturing
cell. A cell is a stage of an automation line, its physical dimensions range from 10
to 20 m on each side. Several robots cooperate in the cell to manipulate and
transform the same production piece. The state of a robot is monitored by observing
its vibration pattern; if the values of the vibrations are above a given threshold, a
controller sends a control message to the robot. Hence, each node senses vibrations
and reports the data to the controller within a delay. The decision-making algorithm
runs on the controller, which is usually a processor placed outside the cell. Multihop
communication is needed to overcome the deep attenuations of the wireless channel
due to moving metal objects and to limit energy consumption.

Fig. 3.14 WSN control loop
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3.3.2.2 The Breath Protocol

The Breath protocol groups all N nodes between the cluster of nodes attached to the
plant and the sink with h-1 relay clusters. Data packets can be transmitted only from
a cluster to the next cluster closer to the sink. Clustered network topology is
supported in networks that require energy efficiency, since transmitting data
through relays consumes less energy than routing directly to the sink (Heinzelman
et al. 2002). In (Ma and Aylor 2004), a dynamic clustering method adapts the
network parameters. In (Heinzelman et al. 2002) and (Younis and Fahmy 2004), a
cluster header is selected based on the residual energy levels for clustered envi-
ronments. However, the periodic selection of clustering may not be energy-efficient,
and does not ensure the flexibility of the network to a time-varying wireless channel
environment. A simpler geographic clustering is instead used in Breath. Nodes in
the forwarding region send short beacon messages when they are available to
receive data packets. Beacon messages carry information related to the control
parameters of the protocol. When a node receives a beacon message with the
updated number of clusters h-1, then the node adapts to its cluster based on a rough
knowledge of its location.

In the two coming sections, the protocol stack and state machine of Breath are
described.

3.3.2.3 The Breath Protocol Stack

Breath uses a randomized routing, a CSMA/CA mechanism at the MAC, radio
power control at the physical layer, and sleeping disciplines. In many industrial
environments, the wireless conditions vary heavily because of moving metal
obstacles and radio disturbances. In such situations, routing schemes that use fixed
routing tables cannot provide the flexibility necessary for mobile equipment,
physical design limitations, and reconfiguration characteristic of an industrial
control application. Fixed routing is inefficient in WSNs due to the cost of building
and maintaining routing tables. To overcome this limitation, routing through a
random sequence of hops has been introduced in (Zorzi and Rao 2003). The Breath
protocol is built on an optimized random routing, where next hop route is efficiently
selected at random, nodes route data packets to next-hop nodes randomly selected
in a forwarding region. Randomized routing allows reducing overhead because no
node coordination or routing state needs to be maintained by the network, it also
considerably increases robustness to node failures.

The MAC of Breath is based on a CSMA/CA mechanism similar to the IEEE
802.15.4. Both data packets and beacon packets are transmitted using the same
MAC. Specifically, the CSMA/CA checks the channel activity by performing clear
channel assessment (CCA) before the transmission can commence. Each node
maintains a variable NB for each transmission attempt, which is initialized to 0 and
counts the number of additional backoffs the algorithm does while attempting the
current transmission of a packet. Each backoff unit has duration Tca msec. Before
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performing CCAs, a node takes a backoff of random (0, W-1) backoff units, i.e., a
random number of backoffs uniformly distributed over 0,1,…, W-1. If the CCA
fails, i.e., the channel is busy, NB is increased by one and the transmission is
randomly delayed (0, W-1) backoff periods. This operation is repeated at most Mca

times, after which a packet is discarded.
Each node, whether transmitter or receiver, does not stay in an active state all

time, but goes to sleep for a random amount of time, which depends on the traffic
and channel conditions. Since traffic, wireless channel, and network topology may
be time varying, the Breath protocol uses a randomized duty-cycling algorithm.
Sleep disciplines turn off a node whenever its presence is not required for the
correct operation of the network. GAF (Xu et al. 2001), SPAN (Chen et al. 2002),
and S-MAC (Ye et al. 2004) focus on controlling the effective network topology by
selecting a connected set of nodes to be active and turning off the rest of the nodes.
These approaches require extra communication, since nodes maintain partial
knowledge of the state of their individual neighbors. In Breath, each node goes to
sleep for an amount of time that is a random variable dependent on traffic and
network conditions. Let lc be the cumulative wake-up rate of each cluster, i.e., the
sum of the wake-up rates that a node sees from all nodes of the next cluster. The
cumulative wake-up rate of each cluster must be the same for each cluster to avoid
congestions and bottlenecks.

The Breath protocol assumes that each node has a rough knowledge of its
location. This information, which is commonly required by the applications (Willig
2008), can be obtained by running a coarse positioning algorithm, or by using the
received signal strength indicator (RSSI), typically provided by off-the-shelf sensor
nodes (Texas Instruments 2005). Some radio chips already provide a location
engine based on RSSI (Texas Instruments 2005). Location information is needed
for tuning the transmit radio power and to change the number of hops. The energy
spent in radio transmission has a tangible role in the energy budget and for the
interference in the network. Breath, therefore, includes an effective radio power
control algorithm.

3.3.2.4 State Machine Description

Breath distinguishes between three node classes: edge nodes, relays, and the sink:

• The edge nodes wake up as soon as they sense packets generated by the plant to
be controlled. Before sending packets, the edge node waits for a beacon message
from the cluster of nodes closer to the edge. Upon the reception of a beacon, the
node sends the packet.

• The detailed behavior of a relay node k is illustrated by the state machine of
Fig. 3.15:

– Calculate Sleep state. The node calculates the parameter lk for the next
sleeping time and generates an exponentially distributed random variable
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having average 1=lk . Then, the node goes back to the Sleep state. lk is
computed such that the cumulative wake-up rate of the cluster lc is ensured.

– Sleep state. The node turns off its radio and starts a timer whose duration is
an exponentially distributed random variable with average 1=lk: When the
timer expires, the node goes to the Wake-up state.

– Wake-up state. The node turns its beacon channel on, and broadcasts a
beacon indicating its location. Then, it switches to listen to the data channel,
and goes to the Idle Listen state.

– Idle Listen state. The node starts a timer for a fixed duration that must be
long enough to receive a packet. If a data packet is received, the timer is
discarded, the node goes to the Active-TX state, and its radio is switched
from the data channel to the beacon channel. If the timer expires before any
data packet is received, the node goes to the Calculate Sleep state.

– Active-TX state. The node starts a waiting timer for a fixed duration. If the
node receives the first beacon coming from a node in the forwarding region
within the waiting time, it retrieves the node ID and goes to the CSMA/CA
state. Otherwise, if the waiting timer expires before receiving a beacon, the
node goes to the Calculate Sleep state.

– CSMA/CA state. The node switches its radio to hear the data channel, and it
tries to send a data packet to a node in the next cluster by the CSMA/CA
MAC. If the channel is not free within the maximum number of tries, the
node discards the data packet and goes to the Calculate Sleep state. If the
channel is free within the maximum number of attempts, the node transmits
the data packet using an appropriate level of radio power and goes to the
Calculate Sleep state.

• The sink node sends periodically beacon messages to the last cluster of the
network to receive data packets. Such a node regularly estimates the traffic rate
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Fig. 3.15 State machine of a relay node executing Breath (Park et al. 2011)
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and the wireless channel conditions. By using this information, the sink runs an
algorithm to optimize the protocol parameters. Once the results of the opti-
mization are achieved, they are communicated to the nodes by beacons.

According to the Breath protocol, the packet delivery depends on the traffic rate,
the channel conditions, the number of forwarding regions, and the cumulative
wake-up time.

3.3.2.5 Results and Experimentation

Breath is a protocol based on a system-level approach to explicitly guarantee re-
liability and delay requirements in wireless sensor networks for control and actu-
ation applications. The protocol considers duty cycle, routing, MAC, and physical
layers all together to maximize the network lifetime, by taking into account the
trade-off between energy consumption and application requirements for control
applications. Analytical expressions are developed for the total energy consumption
of the network, as well as for reliability and delay of the packet delivery. These
relations allow to pose a mixed real-integer constrained optimization problem to
optimize the number of hops in the multihop routing, the wake-up rates of the
nodes, and the transmit radio power as a function of the routing, MAC, physical
layer, traffic, and hardware platform. An algorithm is devised for the dynamic and
continuous adaptation of the network operations to the traffic and channel condi-
tions, and application requirements.

A testbed implementation of the protocol is provided by building a WSN with
TinyOS and Tmote sensors. Experimentation was conducted to test the validity of
Breath in an indoor environment with both AWGN and Rayleigh fading channels
(Goldsmith and Varaiya 1997). Experimental results illustrate that Breath achieves
the reliability and delay requirements, while minimizing the energy consumption. It
outperformed a standard IEEE 802.15.4 implementation in terms of both energy
efficiency and reliability. In addition, Breath reveals good load balancing perfor-
mance, and is scalable with the number of nodes. Given its satisfactory perfor-
mance, Breath is a convenient candidate for many control and industrial
applications, since these applications require both reliability and delay requirements
in the packet delivery. A practical application of the protocol is disclosed in
(Witrant et al. 2007).

3.3.3 Requirements, Drivers and Analysis of WSN Solutions
for the Oil and Gas Industry

Oil and gas industry extends in harsh landless and weatherless environments,
working is hard and research is stiff; life is non-friendly for humans, backbreaking
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even for bulky sturdy instruments, and is definitely unlivable for miniature tiny
feeble sensors. This explains the scarcity of published work on how WSNs may be
involved in such industry. WSN in the oil and gas industry has been studied in
(Carlsen et al. 2008; Petersen et al. 2008). The detailed study in (Petersen et al.
2007) will be the focus of this section.

The IEEE 802.15.4 specification has enabled low-power, low-cost WSNs cap-
able of robust and reliable communication. The main objective of the work in
(Petersen et al. 2007) was to investigate whether or not currently available IEEE
802.15.4 based WSN solutions fulfill the technical requirements for WSNs within
the boundaries of the oil and gas industry. From an oil and gas standpoint,
switching from wired to wireless sensors will enable a cost-efficient means to
provide additional measurement points through the elimination of cables; further-
more, it will extend the reach of data collection into areas that are too remote or
hostile for wires. Also, for temporary installations, the use of wireless technology
will reduce costs related to installation, personnel, and equipment. However, there
are concerns related to the use of WSNs, of which reliability, power consumption
and standardization are most important. Experiments have been performed to
determine whether or not currently available technologies fulfill these requirements.
The conclusion was that an open, and energy-efficient, standard is needed before
WSNs can be fully utilized in the oil and gas industry.

This work was experimented in the laboratory facilities at Statoil’s Research
Centre in Trondheim, Norway. Statoil ASA (Statoil 2014) is a Norwegian based
integrated oil and gas company with international activities in more than 33
countries.

The physical environment of offshore and onshore oil and gas production
facilities provides some interesting challenges for RF transmissions. Typical
installations have several layers of process decks, constructed of reinforced steel
and concrete. The steel cage structure of such decks is expected to demonstrate
some degree of Faraday cage effects. Since deck-space is a limiting factor, as much
equipment as possible is placed in each process deck.

In addition to coping with the offshore steel environment, WSNs will also have
to co-exist with other typical offshore systems such as large power generators,
UHF/VHF radios, radars, and safety and automation systems (SAS). However,
early results from offshore spectrum analysis do not indicate any significant
background noise in the 2.4 GHz frequency band. On the other hand, future
deployments of WLAN (IEEE 802.11) and WiMax (IEEE 802.16) systems may
change this picture.

3.3.3.1 Technical Requirements

A number of technical requirements have been identified by the oil and gas industry
for competent WSN deployment.
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Long Battery Lifetime

The oil and gas industry is pushing for battery lifetimes in excess of 5 years (at a
1 min update rate) for wireless sensors. A key driver for this requirement is the
maintenance effort needed to replace either the batteries or, the device, if the battery
is encapsulated or otherwise non-rechargeable. An enormous effort, if affordable, is
needed to maintain thousands of deployed wireless sensors.

Quantifiable Network Performance

The performance of WSNs is more susceptible to environmental changes than their
wired counterparts. Thus, it is central to be able to reasonably quantify the expected
and operational reliability and availability of wireless communication links and
networks. Moving equipment or personnel and even fluctuations in temperature and
humidity, can influence the quality of a wireless link. Several techniques can be
employed to improve the performance of a WSN, specifically, the use of redundant
paths, self-healing formations, and link quality-aware nodes, which can deliver
reliability and availability close to that expected from a wired system.

Network performance quality also includes:

• Predictable behavior when the system is scaled up or down.
• Easy commissioning and engineering.
• Fail-safe operation in the event of intentional (e.g. jamming) and unintentional

(e.g. interference or propagation problems) loss of wireless links.

Friendly Co-Existence with WLAN

It is certain that WLAN is a vital technology within the oil and gas sector. The
promotion of integrated operations models and the continuous requirements to
connect offshore facilities with onshore experts is leading to necessities for mobility
in the field. These services are delivered using WLANs, nevertheless, for WSN
solutions to set foot in oil and gas industry, it is crucial that they coexist neatly with
WLANs. This means no noticeable degradation in WLAN or WSN performance
when operating within the same area.

Security

As wireless data is transmitted over the air, it is more susceptible to eavesdropping
and security breaches than wired transmissions. The two most common threats are
towards privacy and access. Encryption techniques are employed to protect the
privacy of the data being communicated, while access threats are counteracted by
using tools for transmitter authentication and data consistency validation.
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Open Standardized Systems

The use of standardized, open communication protocols over proprietary protocols
provides the industry with the freedom to choose between suppliers with guaranteed
interoperability. Standardized solutions usually have a much longer lifespan than
proprietary solutions. Furthermore, a standardized solution allows a single wireless
infrastructure to deliver a communications medium to many devices, and poten-
tially many applications.

On the other hand, as the creation of an international standard is a slow and
time-consuming process, standardized solutions normally enter the market later
than their proprietary counterparts. In addition, the security mechanism employed in
standardized solutions is habitually published and obtainable, making standardized
protocols somewhat more vulnerable to attacks than closed, proprietary systems.

As such, the need for long term and technologically stable solutions makes open
standardized systems highly preferable for the oil and gas industry, provided that
the disadvantages are duly handled.

3.3.3.2 Proprietary Solutions Based on IEEE 802.15.4

Two proprietary solutions are available, SmartMesh (Linear Technology 2014) and
SensiNet (Wireless Sensors, LLC 2011). Dust Networks have created time syn-
chronized mesh protocol (TSMP), a time-driven (i.e. scheduled) solution based on
guaranteed time slots (GTS) ensuring low-power and low-bandwidth reliable net-
working (Pister and Doherty 2008). A SmartMesh network consists of two types of
devices; one network coordinator and up to 250 sensor nodes. Each sensor node is
also a router, which enables a full-mesh network topology.

Sensicast Systems have a slightly different approach, using dedicated mesh
routers and sensor nodes in a star-mesh network topology. Therefore, a SensiNet
network consists of one network coordinator, and multiple mesh routers and sensor
nodes.

Both solutions implement frequency-hopping schemes; SmartMesh with a
pseudo-random predetermined hop sequence and SensiNet with an adaptive algo-
rithm with blacklisting of channels with low link quality. Due to the plenty of its
details, SmartMesh will be presented in the coming section.

3.3.3.3 SmartMesh Experimentation and Interpretations

To investigate whether or not proprietary available WSN solutions are able to fulfill
the technical requirements of the oil and gas industry, a SmartMesh network and a
SensiNet network were deployed in the laboratory facilities at Statoil Research
Centre. The laboratory contains real-size replicas of equipment used in Statoil
installations, providing a test environment that is almost identical to an on-site
installation.
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Of the five technical requirements identified in Sect. 3.3.3.1, battery lifetime,
quantifiable network performance and coexistence with IEEE 802.11b/g were
supposed suitable for laboratory investigation.

The SmartMesh software enables the user to extract summarized average net-
work statistics (latency, stability and reliability) for 15 min intervals. Latency is the
average time it takes for a data packet from a sensor node to reach the network
coordinator. Stability is the percentage of successfully transmitted data packets in
the network (the inverse of packet loss). Reliability is the percentage of expected
data packets that are received by the network coordinator. Due to retransmissions of
lost data packets and the inherent redundancy in a mesh network topology, the
reliability of a network can be high even when the stability is low. The SmartMesh
network used for the network performance and coexistence tests consisted of one
network coordinator and 10 sensor nodes.

Network Performance

As shown in Fig. 3.16, the self-healing mechanism of the SmartMesh network can
be observed by the slow increase in stability and latency occurring during the first
few hours of the test. This is due to changes in network routing and formations
related to path optimization and the creation of new communication paths involving
more hops than the old ones. If the increased latency were due to packet loss, one
would also observe a decrease in stability. For the latter part of the test, a stable
network is achieved with 93–94 % stability and 340–360 ms latency. The reliability
of the network remained at 100 % for the duration of the test.

Fig. 3.16 SmartMesh network performance (Petersen et al. 2007)
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From the accomplished tests, several suggestions are made to realize reliability
and availability for a WSN in an oil and gas environment:

• Mesh networking allows for the creation of redundant paths, which combined
with link-to-link acknowledge-based retransmissions, will ensure that data is not
lost even if one or more nodes temporary lose their connection to the network.

• Self-healing algorithms are also an important feature, as the network will
dynamically adjust routing paths to combat weak or missing links due to noise
and interference. Using frequency hopping can also reduce the effects of fre-
quency and time variant noise and interference.

Coexistence with IEEE 802.11b

From Fig. 3.17, the IEEE 802.11b networks were activated after 1 h and turned off
shortly before 4 h had passed. The outcomes of the experimentation can be outlined
in what follows:

• When the IEEE 802.11b networks are enabled, the introduced interference from
the 802.11b data traffic causes packet loss in the communication paths in the
SmartMesh network. As a result, there is an increased number of retransmis-
sions, which justifies the decrease in stability and increase in latency occurring
as the 802.11b networks are activated.

• The TSMP protocol uses a self-healing algorithm, which at all times attempts to
optimize the performance of the network. If a path suffers from high packet loss,
alternate paths will be considered in order to increase to overall stability and
decrease latency. The continuous self-healing capabilities of the SmartMesh

Fig. 3.17 SmartMesh coexistence statistics (Petersen et al. 2007)
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network can be observed after approximately 2 h into the test, lasting until the
IEEE 802.11b networks are turned off. In this period, the stability increases
gradually from around 79 to 87 %, and the latency decreases from 450 to
375 ms.

• When the IEEE 802.11b networks are disabled, there is an immediate increase
in stability and decrease in latency due to the sudden absence of the interference
from the IEEE 802.11b network traffic.

• It is worth noting that the reliability of the SmartMesh network remained at
100 % throughout the entire coexistence test.

Thus, Friendly coexistence with IEEE 802.11b network(s) can be achieved by
using adaptive frequency hopping to limit communication in the channels occupied
by the IEEE 802.11b network(s). However, this is not a necessary feature, as the
laboratory experiments showed that even with the non-adaptive frequency-hopping
scheme utilized by the SmartMesh network, the impact of IEEE 802.11b networks
on a WSN is limited to a slight reduction in stability and increase in latency, while
the reliability remained at 100 %.

Power Consumption

In order to examine how the network topology affects the power consumption of the
SmartMesh sensor nodes, two topologies are set; tree (hierarchical) and linear. Two
test series were performed on each network topology, each series featuring a dif-
ferent reporting rate (6 and 60 s). The calculations for the estimated battery lifetime
are based on a typical high capacity ANSI AA battery delivering 2250 mAh.
Measurements revealed interesting findings:

• The sensor end nodes have deterministic behavior with equal power con-
sumption characteristics.

• The power consumption of a sensor node depends on both the reporting rate and
its number of children and grandchildren. A high reporting rate results in a high
radio activity as sensor data is transmitted more often, and with higher radio
activity the power consumption is increased. As a sensor node is also a router, it
has to relay sensor data from each of its children and grandchildren. The power
consumption will thus increase for each of the node children and grandchildren.

• The topology of the children and grandchildren of a sensor node does not
influence its power consumption. However, the power consumptions of each of
the children and grandchildren are influenced by their relative topology.

As an inference, to ensure long battery lifetime of the sensor nodes, the fol-
lowing is proposed:

• Nodes must be able to enter a low-power sleep-mode. The utilization of the
sleep-mode feature requires the network to be completely time-synchronized so
that the sensor nodes know when, and for how long, they can sleep before they
have to transmit or receive data.
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• Battery life can be prolonged by employing efficient routing protocols that
optimize network traffic, so that the number of hops and retransmissions are kept
to a minimum.

The power consumption tests showed that current WSN technologies are not
capable of fulfilling the oil and gas industry demand for battery lifetimes in excess
of 5 years.

Security

The communication protocol of a WSN in an oil and gas facility must be secure, and
as resistant as possible to eavesdropping and denial-of-service attacks. These secu-
rity issues have been addressed in the 2006 edition of the IEEE 802.15.4 standard.

Open Standardized Systems

A WSN in oil and gas industry should be based on a standardized open solution in
order to provide long term and technologically stable systems with guaranteed
interoperability between different vendors. Adequate open standards, as detailed in
Chap. 1, are found in the WirelessHART (Kim et al. 2008; Song et al. 2008), the
ZigBee Pro (ZigBee Alliance 2013), and the ISA SP100 (Costa and Amaral 2012).

3.4 Environmental Applications

Environment is defined as (Oxford Dictionaries 2014):

• The surroundings or conditions in which a person, animal, or plant lives or
operates.

• The natural world, as a whole or in a particular geographical area, especially as
affected by human activity.

According to this definition, environment related applications comprise agri-
culture, farming, mining, seismology, climatology, volcanology, wildlife surveil-
lance, and many others.

Environmental sensor networks (ESNs) facilitate the study of fundamental
processes and the development of hazard response systems (Fig. 3.18). They have
evolved from passive logging systems that require manual downloading, into
intelligent sensor networks that comprise a network of automatic sensor nodes and
communications systems, which actively communicate their data to a sensor net-
work server (SNS) where these data can be integrated with other environmental
datasets. The sensor nodes can be fixed or mobile, and may range in scale and
function appropriate to the environment being sensed. Following is the scale and
function classification (Hart and Martinez 2006):
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• Large-scale single-function networks. They tend to use large single purpose
nodes to cover a wide geographical area.

• Localized multi-function sensor networks. They typically monitor a small area
in more detail, often with wireless ad hoc systems.

• Biosensor networks. They use emerging biotechnologies to monitor environ-
mental processes as well as developing proxies for immediate use.

It is envisaged that ESNs will become a standard research tool for Earth System
and Environmental Science. Not only do they provide a virtual connection with the
environment, they allow new field and conceptual approaches to the study of
environmental processes to be developed.

Environmental monitoring applications can be broadly categorized into indoor
and outdoor monitoring (Arampatzis et al. 2005):

• Indoor monitoring applications typically include buildings and offices moni-
toring. These applications involve sensing temperature, light, humidity, and air
quality. Other important indoor applications may include detection of fire and
civil structures.

• Outdoor monitoring applications include chemical hazardous detection, habitat
monitoring, traffic monitoring, earthquake detection, volcano eruption, flooding
detection and weather forecasting. Sensor nodes have also found their appli-
cability in agriculture; soil moisture and temperature monitoring is one of the
most important application of WSNs in agriculture.

When monitoring the environment, it is not sufficient to have only technological
knowledge about WSNs and their protocols, knowledge about the ecosystem is also
necessary. Several projects, with real implementations, have focused on ESNs; the
coming two sections will care for introducing some of these applications, con-
ceptually overviewing for some and in illustrative details for an agriculture related
ESN application.

Increased mobility
Increased CPU, 
memory, storage

Sensor 
network
server

Basestations

Sensors

Fig. 3.18 ESN hierarchy
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3.4.1 Assorted Applications

3.4.1.1 Large Scale Habitat Monitoring

Berkeley’s habitat modeling at Great Duck Island (GDI) analyzed bird-nesting
habits, using camouflaged motes in the birds burrows (Szewczyk et al. 2004). Two
different motes were used; burrow motes for detecting occupancy using non-contact
infrared thermopiles and temperature/humidity sensors, and weather motes for
monitoring surface microclimates. Microclimate is a climatic condition in a rela-
tively small area, within a few feet above and below the Earth’s surface and within
canopies of vegetation. Microclimates are affected by such factors as temperature,
humidity, wind and turbulence, dew, frost, heat balance, evaporation, the nature of
the soil and vegetation, the local topography, latitude, elevation, and season.
Weather and climate are sometimes influenced by microclimatic conditions, espe-
cially by variations in surface characteristics (Merriam Webster 2014). GDI
application comprised 147 Berkeley MICA2DOT sensor nodes equipped with
TinyOS (Crossbow 2002). Readings from sensor nodes are periodically sampled
and relayed from the local sink node to a basestation on the island. The basestation
sends the data using a satellite link to a server connected to the Internet.

3.4.1.2 Environmental Monitoring

In SECOAS project (Britton and Sacks 2004) a sensor network was deployed at
Scroby Sands Wind Farm, off the coast of Great Yarmouth, with the purpose to
monitor the impact of a newly developed wind farm on coastal processes. New
sensor hardware based on MCU PIC 18F452 (Microchip 2000) was developed in
this project, and a new operating system, kOS was adopted (Sacks et al. 2003). The
sensor nodes register pressure, turbidity, temperature and salinity. Sensor nodes,
basestations on sea and land stations, form the hierarchical and single hop network.
Nodes transmit their data to the sea basestations, which will then transmit the data
to the land station. Basestations are sensor nodes equipped with additional func-
tionalities, more power supplies and larger communication range. Data is Internet
accessed from the land station.

3.4.1.3 Precision Agriculture

Measurement of the microclimate in potato crops is the main goal of Lofar-Agro
project (Baggio 2005; LOFAR 2014). Based on the circumstances within each
individual field, the collected information helps improving the decision on how to
combat phytophtora within a crop. Phytophtora is a fungal disease in potatoes; their
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development and attack of the crop strongly depend on the weather conditions
within the field. A total of 150 sensorboards, namely TNOdes, very similar to the
Mica2 motes from Crossbow are installed in a parcel for monitoring the crop. The
nodes are manually localized so that a map of the parcel can be created. The
TNOdes are equipped with sensors for registering the temperature and relative
humidity.

Earlier deployments have shown that the radio range is dramatically reduced
when the potato crop is flowering. To maintain sufficient network connectivity, 30
sensorless TNOdes act as communication relays. To further improve communica-
tion, the nodes are installed at a height of 75 cm while the sensors are installed at a
height of 20, 40 or 60 cm. In addition to the TNOdes, the field is equipped with a
weather station registering the luminosity, air pressure, precipitation, wind strength
and direction. Since humidity of the soil is a major factor in the development of the
microclimate, a number of sensors that measure soil humidity are deployed in the
field. Finally, an extra sensor measures the height of the groundwater table.
A TNOde records the temperature and relative humidity every minute.

For energy-efficiency considerations, the nodes are reporting data only once per
ten minutes. To further save energy, the data sent over the wireless links are
minimized by using delta encoding. The T-MAC protocol (Van Dam and
Langendoen 2003) cares for energy efficiency as well and imposes on the radio a
duty cycle of 7 %. The TNOdes use TinyOS as operating system. Data is thus sent
using the multihop routing protocol MintRoute available within TinyOS. In addi-
tion, the nodes are reprogrammable over the air using Deluge (2008). The data
collected by the TNOdes are gathered at the edge of the field by a so-called field
gateway and further transferred via WiFi to a simple PC for data logging, the Lofar
gateway. The Lofar gateway is connected via wire to the Internet and data is
uploaded to a Lofar server and further distributed to a couple of other servers under
XML format.

3.4.1.4 Macroscope in the Redwoods

The WSN, macroscope, enables dense temporal and spatial monitoring of large
physical volumes (Tolle et al. 2005). Some refer to sensor networks as “macro-
scopes” because the dense temporal and spatial monitoring of large volumes that
they provide offers a way to perceive complex interactions. This work conducted in
Sonoma California presents a case study of a WSN that recorded 44 days in the life
of a 70 m tall redwood tree, at a density of every 5 min in time and every 2 m in
space. Each node measured air temperature, relative humidity, and photosyntheti-
cally active solar radiation. The network of MICA2DOT TinyOS nodes (Crossbow
2002) captured a detailed picture of the complex spatial variation and temporal
dynamics of the microclimate surrounding a coastal redwood tree.
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3.4.1.5 Active Volcano Monitoring

A team of computer scientists at Harvard University collaborated with volcanolo-
gists at the University of North Carolina, the University of New Hampshire, and the
Instituto Geofísico in Ecuador (Werner-Allen et al. 2006). Studying active volca-
noes typically involves sensor arrays built to collect seismic and infrasonic
(low-frequency acoustic) signals. In August 2005, they deployed a network on
Volcán Reventador in Northern Ecuador. The array consisted of 16 nodes equipped
with seismo-acoustic sensors deployed over 3 km. The system routed the collected
data through a multihop network and over a long-distance radio link to an
observatory.

The WSN 16 stations are equipped with seismic and acoustic sensors. Each
station consisted of a Moteiv Tmote Sky node (Moteiv 2006), an 8 dBi 2.4 GHz
external omnidirectional antenna, a seismometer, a microphone, and a custom
hardware interface board. Every one of 14 nodes was fitted with a Geospace
Industrial GS-11 geophone (Geospace Technologies 2014) a single-axis seis-
mometer with a corner frequency of 4.5 Hz, vertically oriented. Each of the two
remaining nodes was equipped with triaxial Geospace Industries GS-1 seismome-
ters (Geospace Technologies 2014) with corner frequencies of 1 Hz, yielding
separate signals in each of the three axes.

The Tmote Sky, designed to run TinyOS (TinyOS 2012), is a descendant of the
University of California, Berkeley Mica mote sensor node. The Tmote Sky is
chosen because its MSP430 microprocessor (Texas Instruments 2011) provides
several configurable ports that easily support external devices, and the large amount
of flash memory is useful for buffering collected data. Over 3 weeks, the network
captured 230 volcanic events, producing useful data that permit to evaluate the
performance of large-scale sensor networks for collecting high-resolution volcanic
data.

3.4.1.6 Sensor and Actuator Networks on the Farm

Agriculture has two cares, plants and cattle. Managing farms, particularly
large-scale extensive farming systems, is hindered by lack of data and increasing
shortage of labor. To address these issues, (Sikka et al. 2006) propose the
deployment of a large heterogeneous sensor network on a working farm to explore
sensor network applications. The network is solar powered and has been running
for over 6 months. The implemented deployment consisted of over 40 moisture
sensors that provide soil moisture profiles at varying depths, weight sensors to
compute the amount of food and water consumed by animals, electronic tag readers,
up to 40 sensors that can be used to track animal movement (consisting of GPS,
compass and accelerometers), and 20 sensor/actuators that can be used to apply
different stimuli (audio, vibration and mild electric shock) to the animal. The static
part of the network is designed for 24/7 operations and is linked to the Internet via a
dedicated solar powered high-gain radio link.
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The initial goals of the deployment are to provide a testbed for sensor network
research in programmability and data handling while also being a vital tool for
scientists to study animal behavior. The longer-term aim is to create a management
system that completely transforms the way farms are managed. Also, in (Huircán
et al. 2010), a localization scheme in WSNs for cattle monitoring applications in
grazing fields is designed. No additional hardware was required for distance esti-
mation since operation is based on the link quality indication (LQI), which is a
standard feature of the ZigBee protocol. Experimental results have shown accept-
able localization performance at low cost and little power consumption. In the
sections to come, A2S planting system is detailed.

3.4.1.7 Cultural Property Protection

In (Sung et al. 2008) WSNs are deployed in Bul-guk-sa Temple, which is one of the
most important UNESCO cultural property sites in Korea. Such WSN has two
objectives, periodic environmental information collection to monitor any changes in
wooden structures, and detecting fire in the surrounding forest outside the wooden
temple. Collected data from the surrounding environment include temperature,
humidity, light, pressure, flame and carbon monoxide (CO). A software system is
developed, it utilizes sensor data on top of the ANTS EOS (evolvable OS) sensor
network operating system (Kim et al. 2005) and ANTS series of sensor node
hardware. The sensor node hardware is classified into two, precinct sensor node and
perimeter sensor node. The precinct sensor nodes are used to gather and provide
essential information such as temperature, humidity, and pressure in order to check
conditions of wooden buildings. These nodes are located inside the temple, and
send sensory data over a RF communication.

The processor on the single board is an Atmel ATmega128L 8-bit microcon-
troller (Atmel 2011), which is used in tiny sensor nodes. It has 128 KBytes of Flash
memory, a 4 KBytes SRAM, and a 4 KBytes EEPROM inside the processor.
The RF transceiver is a Chipcon CC2420 (Texas Instruments 2005) that operates in
the 2.4 GHz frequency band. Three types of sensors are used, temperature/humidity
sensor, pressure sensor, and light sensor. Since such sensors require low power
consumption, a battery without external power supply is used. The outside sensor
nodes consist of separate processor boards and a sensorboard with a 41-pin con-
nector. The processor is an Atmel ATmega128L 8-bit microcontroller, which is the
same as the precinct sensor node. The RF transceiver is a Chipcon CC1100 (Texas
Instruments 2005), a low power single chip UHF transceiver. It can be easily
programmed and configured for operation at frequencies in the 300–348, 400–464
and 800–928 MHz bands. To alleviate the power requirements of the sensor and
processor boards, a 4.5 V 140 mA solar cell is installed.

Since the temple is located at the center of a deep forest and the mission of the
network is to detect and alert of fires that may spread from outside the temple, the
suitable topology is to encircle the temple with connected nodes. To achieve reli-
ability and fast delivery of the event data, the network was divided into two
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separated string-shape networks, each of which is assigned to specific communi-
cation channels. Each network was consisting of 16 sensor nodes and had a ded-
icated relay station that is connected to a basestation using CDMA connections.
Three WSNs consisting of 30 sensor nodes were deployed around a real cultural
property, and operated for 6 months.

3.4.1.8 Underground Structure Monitoring

Environment monitoring in coalmines is an important application of WSNs. In (Li
and Liu 2007) the design of a structure aware self-adaptive WSN system (SASA), is
proposed. By regulating the mesh sensor network deployment and formulating a
collaborative mechanism based on a regular beacon strategy, SASA is able to
rapidly detect structure variations caused by underground collapses. A prototype is
deployed with 27 TinyOS Mica2 motes (Crossbow 2002).

3.4.1.9 Foxhouse Project

Foxhouse (Hakala et al. 2010) project, jointly implemented by The Kokkola
University Consortium Chydenius (later Chydenius) and MTT Agrifood Research
Finland, gets real-time information about the habitat of foxes in a foxhouse.
The WSN for environmental monitoring was implemented in the Fur Farming
Research Station at Kannus. The amount of light received is presumed to be the key
factor in stimulating reproduction of foxes, so measuring light intensity in different
parts of the foxhouse was the focal point of interest. Measurement data for lumi-
nosity as well as temperature and humidity were gathered outdoors over a period of
1 year. Also observed are the functionality and usability of the network; some tools
for network maintenance were developed during the project.

The WSN produces measurements data, which is delivered to the gateway (sink
node). The sink node is connected to a PC server via an RS232 cable. The PC
server runs a Java program for reading packets from the serial port. All received
information is stored into an SQL database in the PC. Data in the database can be
browsed by a web application. Cluster topology appeared to be the most suitable
topology for this project, the network nodes included two kind of devices, reduced
function device for sensing (RFD) and full function device for routing (FFD).

The WSN in the Foxhouse case consisted of 14 nodes in two clusters, the front
cluster and the rear cluster. The nodes used in the Foxhouse network were CiNet
nodes. CiNet is a research and development platform for WSN implemented by
Chydenius. The hardware is the IEEE 802.15.4 compatible CiNet node specially
designed for WSNs and consisting of inexpensive standard off-the-shelf compo-
nents; it has an ATmega 128 MCU (Atmel 2011) and a transceiver on board as well
as one temperature sensor for testing purposes. More sensors are needed in real
monitoring. These sensors can be placed on a special sensorboard, which can be
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connected to the main board. The sensing nodes are equipped with temperature,
humidity and light sensors.

3.4.1.10 Sensor Scope for Environmental Monitoring

SensorScope (Ingelrest et al. 2010) is such an environmental monitoring system
based on a time-driven WSN, developed in collaboration between two laboratories
at EPFL (École Polytechnique Fédérale de Lausanne), LCAV (signal processing
and networking) and EFLUM (hydrology and environmental fluid mechanics).
SensorScope is a turnkey solution for environmental monitoring systems, based on
a WSN and resulting from a collaboration between environmental and network
researchers, it aims at providing high resolution spatio-temporal data for long
periods of time.

The mote is a Shockfish TinyNode (Dubois-Ferrière et al. 2006) composed of a
Texas Instruments MSP430 16-bit microcontroller running at 8 MHz (Texas
Instruments 2011), and a Semtech XE1205 radio transceiver, operating in the
868 MHz band, with a transmission rate of 76 Kbps (Semtech 2008). The mote has
48 KByte ROM, 10 KByte RAM, and 512 KByte Flash memory. This platform is
mainly chosen for the good ratio it offers between communication range and power
consumption (up to 1200 m outdoors for 60 mA). The power source is composed of
three modules. The first is a 162 × 140 mm MSX-01F polycrystalline module solar
panel that provides a nominal power output of 1 W in direct sunlight, with an
expected lifetime of 20 years (BP Solar 2014); such low power solar energy system
achieves power autonomy during deployments. The second is a primary150 mAh
NiMH rechargeable battery, NiMH battery is chosen over a supercapacitor due to
its higher capacity and its lower price, it allows for up to 5 days of solar blackout
(considering a networking duty-cycle of 10 %). The third is a secondary Li-Ion
battery with a capacity of 2200 mAh. The sensing station, is composed of a
two-meter-high flagstaff, to which the solar panel and up to seven sensors are fixed.

Seven outdoor deployments were conducted, ranging in size from 6 to 97 sta-
tions and from EPFL campus to high-up in the Alps. The measured quantities were
air humidity and temperature, precipitation, soil moisture, solar radiation, surface
temperature, water content, wind direction and speed.

3.4.2 A2S: Automated Agriculture System Based on WSN

A2S (Yoo et al. 2007) consists of WSNs, gateways, and a management subsystem.
Twenty five sensor nodes, one actuator node, and three sink nodes are deployed in
greenhouses and operated during harsh cold weather, one of the sensor nodes was
plunged in a field near one of greenhouses to endure heavy snows at −15 °C
coldness. Three industrial PC-based gateways are installed to transform RS-232
data from sink nodes to TCP/IP servers data. WLAN access points (APs) with
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directional antennas provide the long-range wireless link between WSNs and the
management subsystem located at 0.5 km from the greenhouses. The management
subsystem manages the WSNs, and provides easy interface to farmers equipped
with hand-help devices such as personal data assistants (PDAs).

3.4.2.1 System Architecture

A2S comprises several functional components and performs a multiplicity of tasks
(Fig. 3.19):

• A-node. It is an Agriculture sensor node intended to be deployed in a green-
house to sense its environment. The A-node embeds in a printed circuit board
(PCB) board, an 8-bit microcontroller (MCU), an IEEE 802.15.4 compatible
transceiver (2.4 GHz band), a complex programmable logic device (CPLD) for a
sleep timer to wake up the MCU from power down mode (Xilinx 2014), and
sensors (ambient light, temperature and humidity). A sensor node is equipped
with a lithium-ion rechargeable cells battery whose voltage level is monitored
for maintenance purpose. The A-node software is based on the initial version of
ANTS-EOS (Kim et al. 2005). EOS is a lightweight C-based multi-threaded
operating system developed to support multiple WSNs platforms.
After setting up the network topology, an A-node runs its application software.
The application software begins its active period by turning on its sensors, it
reads sensed temperature, humidity, and luminance of a greenhouse and reports
via A-node parents to the sink. If during its active time the A-node receives
packets from its children, it relays them to its parent. After transmitting its
sensed data, an A-node waits for another work schedule, sent from the sink, in a
sleep order message. The application software then turns off its attached sensors
and puts the transceiver to power down mode; finally, it sets up the internal
sleep timer to the sleep period. After timer expiration, the application software
restarts its next active periods by turning on the transceiver and the sensors to
pursue sensing the greenhouse environment.

• C-node (aCtuator node). Designed to control the illumination intensity of the
growing melon greenhouse, it has an additional relay board to A-node to control
the light switches in the greenhouse. The application software of C-node waits
for a command from the sink, once received, it controls the relay to turn lights
on or off.

• Sink node. It is developed to gather the sensing information from A-nodes and
to transmit commands to A-nodes and C-node. As the core component of the
gateway, the sink node has an additional interface board to A-nodes to provide
RS-232 serial link to the gateway. The main MCU module of the sink node has
the same hardware specification of A-nodes, except that the sink node is not
equipped with sensors. The sink node gets the sensing schedule from the
application server and schedules the operation of the internal A-nodes by
sending sleep order message every sensing period.
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• The gateway. It transforms RS-232 sink data to TCP/IP server data and vise
versa. The gateway is implemented on a Pentium-M 1.6 GHz industrial PC. The
gateway is connected to AP via a WLAN link or a wired Ethernet link. The AP
is connected to the management subsystem 0.5 km distant via WLAN link.

• The management subsystem. It consists of a DB server, an application server,
and a web server. The application server receives data from WSN and stores
them in the DB server, and configures the WSNs. The sensing schedule is
configured by the application server. The whole sensing data are stored in the
DB server and can be accessed by users (PC or PDA) via the web server.

Fig. 3.19 Automated agriculture system architecture
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A lightweight CSMA based MAC protocol and a robust multihop ad hoc routing
protocol are implemented. When an A-node has a packet to send, it checks the
channel. If the channel is idle the packet is transmitted. If there is no acknowl-
edgement from the recipient of the packet, the MAC layer retransmits the packet up
to three times. To simplify the route discovery, a tree-level which is the same as the
hop count from the sink node is preprogrammed in an electrically erasable pro-
grammable read-only memory (EEPROM) chip with a unique 16-bit network
address.

To conserve power, the order-based sleep scheme is used. When the sensing
schedule (sensing period) is set (or ordered) by the application server, the sink node
keeps the schedule and spreads the sleep order message over its network every
sensing period. Whenever an A-node receives the sleep order message, it sets the
expiration time of its sleep timer to the value of the duration field included in the
message. When the timer expires, the A- node senses its ambient environment and
the voltage level of its battery and sends the data to the sink, and waits for the next
sleep order message. A-nodes are placed at a priori planned positions decided by
agriculturists in accordance with the cultivation requirements.

3.4.2.2 Experimentation Results

A2S was operated for one month in severe cold winter. From this real deployment,
an interesting experience was acquired:

• Line of sight (LOS) communication range of A-nodes was up to 70 m.
However, the range was reduced to 30 m in greenhouses because of interfering
sources such as iron wires and foliage.

• Originally, an A-node was planned to be awaken from the sleep mode by an
external timer in on-board CPLD to reduce drawing current. However, the
power consumption of the CPLD was found relatively high. Also, some of the
sensed data was lost due to battery exhaustions of some sensor nodes. It is
recommended to resort to a real-time clock using an internal timer and an
external low frequency crystal oscillator in order to minimize the power
consumption.

• Although the order-based sleep scheme does not require complex time syn-
chronization schemes, the parent node should be awaken earlier than the child
node to relay the sensing data to the child node. Noteworthy, because the sleep
order message is spread out from sink to nodes level-by-level, the parent node
goes to sleep mode earlier than the child node.

• Despite the use of accurate sensors, they did not show the same output levels in
the same place. It is found that there were interferences from some components
such as power-control ICs in the PCB and some components such as batteries in
the same enclosure. The recommendation is thus to isolate the sensors from the
other interfering components in the PCB and the enclosure.
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• The comparison between Korean Meteorological Administration (KMA) stan-
dard and WSN measurements revealed a difference up to 4.5 °C and an average
of 2.7 °C. Calibrating the sensors leads to more accurate results.

3.4.3 Learning from Researching and Trialing

Despite careful design and concerns about possible deployment issues, many
problems arise. Learning from one’s own experience and from those of others
shortens distances and avoids pitfalls and stumbling. This section outlines hand-on
experience outcomes, by describing problems and how they may be solved and
avoided, it is worthy to have them shared with the WSN community (Ingelrest et al.
2010).

3.4.3.1 Hardware and Software Development

Consider Local Conditions

It is not always obvious how, possibly drastic, variations in temperature and
humidity will affect hardware devices, so that a lack of testing under real conditions
may lead to serious issues. For instance, Li-Ion battery should not be charged when
the temperature is below freezing, as it could explode. It is therefore crucial to
simulate the anticipated conditions as accurately as possible. Studying the impact of
weather conditions may be done by using a climate chamber, in which arbitrary
temperature/humidity conditions are created. In most cases, basic tests inside a
household freezer will expose potential points of failure.

Sensor Packaging

Outdoor packaging is difficult, as it must protect electronics from humidity and dust
while being unobtrusive (Szewczyk et al. 2004). International Ingress Protection
(IP) codes are used to specify the degree of protection for electrical enclosures (The
Engineering ToolBox 2014). The required level for outdoors is IP67, which pro-
vides full protection against dust and water, up to an immersion depth of one meter.
Any lesser degree of protection exposes electronics to humidity and atmospheric
contaminants, potentially leading to irreparable damages. Corrosion may cause the
malfunction of a sensor connector, consequently corrupting the data from that
sensor. Even more disastrous, humidity may cause a short circuit in the connector,
resulting in permanent damage and/or continuous rebooting of the affected station.
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Keep It Small and Simple

To avoid as much as possible unexpected interactions between software compo-
nents, Protocols must be well-fitted to the application (Buonadonna et al. 2005).
Sometimes, complexity cannot be avoided, but whenever the benefits are ques-
tionable, simple solutions should be preferred. For instance, when stations are
equipped with a solar panel, an overall positive energy balance is sufficient to
achieve long-term autonomy, which helps avoiding complex, ultra low-power
MAC layers, generally requiring high-precision synchronization, which may be
difficult to achieve in realistic conditions. Furthermore, because of channel degra-
dation, packet losses with such complex protocols are more likely to occur in harsh
conditions (e.g., heavy rain).

Think Embedded

On a computer, code is easy to debug, using debugging statements or tools. It is
more difficult with sensor motes, as the simplest way for them to communicate with
the outside world is by blinking their LEDs or using their serial port. These
interfaces are not only limited, but also mostly untraceable once a network is
deployed. Moreover, embedded programs are more often subject to hardware
failures, so that their behavior can be incorrect, even if the code itself is actually fine
(Szewczyk et al. 2004). It is thus important to be practically able to determine what
happens inside the network.

Get All Data You Can

The primary goal must be to develop a working system and to succeed in collecting
environmental data. Issues related to publishing obtained measurements to the
networking community must go along successful deployments. It is important to
gather data related to network conditions, not just environmental conditions. Once a
network is deployed, it becomes too late to think about such issues. By planning
early on what data is useful for networking issues, like performance analysis, the
code to gather needed data can be incorporated into the development process.

Data that Is Useful

A successful deployment consists not only of gathering data, but also of exploiting
it. A WSN exists to transport data from one point (i.e., the targeted site) to another
one (e.g., a database), but there is no purpose in gathering data just for the sake of it.
The final objective of a WSN deployment is to gather data for an end-user. This
end-user must be present in all the stages of the deployment preparation, from
sensor selection, placement and calibration, to data analysis (Tolle et al. 2005).
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3.4.3.2 Testing and Deployment Preparation

Check for Interferences

When setting up a deployment, the first priority should be to inspect the radio
spectrum to detect possible interferences. The optimal way is to use a spectrum
analyzer, but due to its size, weight, and power consumption, it can be difficult to
use at the deployment site. A simpler way is to run a test program to determine
losses over time. There are actually a lot of radio devices that can create interfer-
ence, which compromises the results and leads to thinking that the code is incorrect.

Data You Can Trust

Although sensors should be pre-calibrated, some manipulations (e.g., packaging)
can affect their measurements (Buonadonna et al. 2005). Sensors, once packaged,
should be tested before deployments, first indoors, then outdoors. Readings are to
be compared to high-precision reference stations over several days, and bad sensors
must be discarded. Calibration may also be required at the time of deployment; an
example of this is the wind direction sensor, which must be North-oriented to
provide accurate data. Once a deployment is over, and sensors are back at the
laboratory, it is important to repeat the calibration process.

Be Consistent

At some point one may be tempted to change some parameters or to switch to new
drivers, just before a deployment, to improve a given aspect. With new versions,
however, always come new bugs, and it is by far easier to detect them on a testbed
rather than during a deployment. The exact same configuration should thus be used
during both tests and real deployments. Another possible issue is the “last minute
commit,” which can kill a complete deployment (Langendoen et al. 2006).

3.4.3.3 Deployments

Consider Local Conditions—Once Again

Some bugs can be hard to spot before the real deployment, because they do not
occur under normal testing conditions. For instance, cellular connectivity may be
good on campus but rather poor or non-existing outside, potentially leading to
malfunction. Also, the crystal of the sink’s mote and the crystal of the general
packet radio service (GPRS) chip react differently to temperature variations. Thus,
knowing that communications between the mote and the GPRS occur over a serial
bus, the drift caused by temperature changes should result in a loss of

3.4 Environmental Applications 125



synchronization between the mote and the GPRS chip, and consequently in packets
loss. Moreover, manipulating electronics outdoors must be kept to a minimum to
avoid bad weather and dust.

Get a Watchdog

To promptly detect problems and malfunctions, all data must be scrutinized as soon
as they reach the server. However, while some incorrect measurements may be easy
to detect, other problems may be subtler such as those due to bugs in a sensor
driver.

Keep All Data

On the back-end server, there will be various programs processing data, never-
theless, all the raw data must be securely archived for future reference. For instance,
there may be some needed statistics that were not envisioned at first. Also, one may
discover that the equation used to transform raw data into the international system
of units (SI) was poorly implemented; if the original data is no longer available, the
obtained data may be worthless.

Data You Can Interpret

Gathering data is a step forward, but interpreting it is a lot of work and reasoning.
Sensors provide only a partial view of the real world, which may be insufficient to
correctly rationalize their readings. For instance, whether readings are collected
while raining or snowing may pose question marks. To better understand gathered
data, equipping one or more stations with a camera is likely to provide a meaningful
visual feedback.

Traceability

As the software on both server and motes will evolve over time, traceability
becomes more and more important. Traceability of individual measurements is
required, for instance, when a bad sensor is detected, it is common practice to
exchange it. Without any further provision, it is impossible to determine which
values from previous deployments should be double-checked. Tagging motes and
sensors with radio-frequency identification readers (RFIDs) is a solution. With the
corresponding reader, it is possible to scan stations during deployments to associate
sensors and stations. Storing this information in a database allows retracing the
exact history of all devices and measurements.
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3.5 Healthcare Applications

The medical applications of WSNs aim to improve the existing healthcare and
monitoring services especially for the elderly, children and chronically ill.
Numerous benefits are achieved with these systems (Alemdar and Ersoy 2010):

• Remote monitoring capability. It is the main benefit of pervasive healthcare
systems. With remote monitoring, the identification of emergency conditions for
at-risk patients will become easy and the people with different degrees of
cognitive and physical disabilities will be assisted to have a more independent
and easy life. The little children and babies will also be cared for in a more
secure way while their parents are away. Consequently, the special depend-
ability on caregivers will be lessened.

• Real-time identification and action taking. In healthcare applications, a real-time
system is actually a soft real-time system, in which some latency is allowed
(Shin and Ramanathan 1994). Identifying emergency situations like heart
attacks or sudden falls in a few seconds or even minutes will suffice for saving
lives considering that, without real-time systems these conditions will not be
identified at all. Hence, providing real-time identification and action taking in
pervasive healthcare systems are among the main benefits.
The technology advancements in consumer electronics have reduced the pro-
duction costs and have made it possible to afford inexpensive sensor devices for
ordinary users as well. Together with the mature and also inexpensive RFID
technology, the costs for pervasive healthcare systems are within the affordable
range for many people. In Caregiver’s Assistant (Philipose et al. 2004), inex-
pensive RFID tags are placed on household object and the systems precision can
be increased, at very low costs, by tagging more objects with these RFID tags.

• Being able to identify the context is another benefit achieved with pervasive
healthcare systems. Context-awareness enables understanding the conditions of
the people to be monitored constantly and the environments in which they are.
This context information is achieved mostly by sensing systems that incorporate
more than one type of sensing capabilities. By fusing the information gathered
by several sensors, a more clear understanding of the context may be obtained.
The context information helps better in identifying the unusual patterns and
making more precise inferences about the situation. For instance, during
night-time, being in the sleeping room in a lying position may not indicate
something serious, whereas lying down in the sleeping room in the middle of the
day may indicate an alarm situation. Context-awareness provides this useful
information.

An array of prototypes and commercial products for WSNs based healthcare is
available. When several applications are investigated, it is observed that they have
common properties. Precisely, most of the existing solutions include one or more
types of sensors carried by the patient, forming a body area network (BAN), and one
or more types of sensors deployed in the environment materializing a personal area
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network (PAN). BAN and PAN are connected to a backbone network via a gateway
node. At the application level, the healthcare professionals or other caregivers can
monitor the vital health information of the patient in real-time via a graphical user
interface (GUI). The emergency situations produce alerts by the planned application;
these alerts and other health status information can be reached via mobile devices
like laptop computers, personal digital assistants (PDAs) and smartphones.

Generally speaking, two types of devices can be distinguished, sensors and
actuators. The sensors are used to measure certain parameters of the human body,
either externally or internally. Cases include measuring the heartbeat, body tem-
perature or recording a prolonged electro-cardiogram (ECG). The actuators (or
actors) on the other hand take some specific actions according to the data they
receive from the sensors or through interaction with the user. For instance, an
actuator equipped with a built-in reservoir and pump manages the correct insulin
dose to be given to diabetics based on the glucose level measurements. Interaction
with the user or other persons is usually handled by a personal device, e.g., a PDA
or a smartphone, which acts as a sink for data of the wireless devices.

The overview of a WSN based healthcare application setup is depicted in
Fig. 3.20. Based on this observation, in a typical scenario, there are four different
categories of actors other than the power users of the systems such as administrators
and developers:

• Children. This group consists of young people who are not capable of taking
care of themselves like babies, infants, toddlers or those who are more grown-up
but still need to be constantly monitored.

• Elderly and chronically ill. This category includes the chronically ill people who
have cognitive difficulties or other medical disorders related with heart, respi-
ration, etc., and the elderly people who also may have these symptoms, besides,
who are more susceptible to sudden falls.

Fig. 3.20 Healthcare application actors and subsystems
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• Caregivers. They are the parents and the babysitters of the children group, as
well, the caregivers and other care network of the elderly and the chronically ill.

• Healthcare professionals. These are the professional caregivers like physicians
and other medical staff who are responsible for the constant health status
monitoring of the elderly and the chronically ill people, and are capable of
giving the immediate response in case of an emergency situation.

These groups of actors constantly interact with the WSN healthcare systems
throughout different subsystems. Characteristically, five subsystems are available in
such a scenario:

• BAN subsystem.
• PAN subsystem.
• Gateway to the wide area network (WAN).
• WANs.
• End-user healthcare monitoring application.

The following sections provide a detailed emphasis on the issues to be con-
sidered in the design and setup of each subsystem (Alemdar and Ersoy 2010).

3.5.1 Body Area Network Subsystem

The BAN subsystem is the ad hoc sensor network and tags that the children and the
elderly carry on their body. The RFID tags, electro-cardiogram (ECG or EKG)2

(WebMD 2005) sensors, and accelerometers worn by the patient, are example
components of the BAN. An example of a medical BAN used for patient moni-
toring is shown in Fig. 3.21. Several sensors are placed in clothes, directly on the
body or under the skin of a person and measure the temperature, blood pressure,
heart rate, ECG, electro-encephalogram (EEG)3 (WebMD 2005), respiration rate,
SPO2-levels (oxygen saturation), etc. Next to sensing devices, the patient has
actuators, which act as drug delivery systems. The medicine can be delivered on
predetermined moments, triggered by an external source (i.e. a doctor who analyzes
the data) or immediately when a sensor notices a problem. One example is the
monitoring of the glucose level in the blood of diabetics. If the sensor monitors a
sudden drop of glucose, a signal can be sent to the actuator in order to start the
injection of insulin. Consequently, the patient will experience fewer nuisances from
his disease. A BAN can also be used to offer assistance to the disabled. For
example, a paraplegic can be equipped with sensors determining the position of the
legs or with sensors attached to the nerves. In addition, actuators positioned on the

2Test in which electrode patches are attached to the skin to monitor the electrical activity of the
heart.
3Test that measures and records the electrical activity of the brain.
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legs can stimulate the muscles. Interaction between the data from the sensors and
the actuators makes it possible to restore the ability to move (Latré et al. 2011).

Several issues are pertinent to healthcare BAN devices and distinguish them
from issues specific to other applications, as considered in this chapter. The coming
subsections will emphasize them all.

3.5.1.1 Power Consumption

One of the main issues about the BAN is the power consumption, since changing
the batteries is a burdensome task. Because of this, development of energy efficient
MAC protocols and energy efficient sensor devices are critical (Omeni et al. 2008).
Technologies like Bluetooth and WiFi fail to provide support for energy efficient
systems since they can only offer one or two weeks runtime on a coin like small
battery (Bhatia et al. 2007). The proper use of the wireless communication channels
during routing ensures energy efficiency (Fariborzi and Moghavvemi 2007; Kumar
and Rao 2008). Moreover, by using very low power pyroelectric infrared (PIR)
sensors4 (Murata Manufacturing Co. 2012; Adafruit Learning Technologies 2014),
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Fig. 3.21 Healthcare BAN sensors

4PIR sensors allow to sense motion, they detect whether a human has moved in or out of their
range (Adafruit Learning Technologies 2014).
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as in (Lee et al. 2007), a simple yet efficient remote monitoring application can be
developed.

3.5.1.2 Output Transmission Power of the Sensor Nodes

The output power must be kept minimal for health issues, which may lead to
coverage and communication problems. The study presented in (Ren and Meng
2006) investigates the bioeffects caused by radio frequency transmission of sensor
nodes, including thermal and athermal5 effects, and proposes a control algorithm to
reduce the bioeffects.

3.5.1.3 Unobtrusiveness

Unobtrusiveness must be a design consideration that cannot be overlooked.
A design of an adhesive bandage type ECG sensor that is wirelessly powered by a
health monitoring chest band is proposed in (Yoo et al. 2010). The sensors do not
include batteries and are wirelessly charged via the chest band instead. The network
controller on the chest band is able to find the locations of sensors automatically
and provide power only to selected sensors. The sensor IC is very small (4.8 mm2

area) and the network controller is also relatively small (15 mm2 area). They
consume only 12 lW and 5.2 mW average powers, respectively, which makes them
power-efficient devices. A watch-shaped activity recorder, which provides six
degrees-of-freedom, inertial data is presented in (Barth et al. 2009). The device
contains a three-axes accelerometer and two gyroscopes, and data transmission is
accomplished via Bluetooth. The system draws 185 mW in full operation mode
where all sensors and the radio module are functioning.

3.5.1.4 Mobility and Portability

Mobility and portability are considerations for the physical design of such sensors,
since the patients have to wear the BAN devices all the time, thus mobility limi-
tation is not acceptable. The sensor devices must be designed with the aim of
providing the highest degree of mobility for the patients (Seo et al. 2007), which
necessitates the integration of several network technologies like RFID and near field
communication (NFC) as proposed in (Lahtela et al. 2008). In (Lee and Chung
2009), a smart shirt which measures ECG and acceleration signals continuously and
transmits the physiological ECG data and physical activity data to IEEE 802.15.4
ad hoc network. The shirt consists of sensors for continuous monitoring of the
health data and conductive fabrics to get the body signal as electrodes. The study in

5Adjective describing any process that does not involve either heat or a change in temperature.
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(Lee et al. 2009) also makes use of ZigBee and mobile phone for ECG and blood
glucose measurement. In a similar study (Morris et al. 2009), a sensor that can be
integrated into clothing is designed to measure biochemical changes in sweat,
which may indicate some health related problems. The study has shown that the
sensor has the potential to record real-time variations in sweat during exercise.

3.5.1.5 Real-Time Availability and Reliable Communications

The real-time availability and reliable communications of the system is a further
major issue since the data gathered by such system may be critical. In (Nyan et al.
2008) there is a design of a wearable fall detection system that can detect the falls
with an average lead-time of 700 ms before the incident occurs. A framework
proposal for high levels of reliability and low delays is available in (Varshney
2008). The performance results show that reliable message delivery and low
monitoring delays can be achieved by using multicast or broadcast-based routing
schemes in an ad hoc network.

3.5.1.6 Multihop Design

Additionally, designing multihop systems are of great importance. As in (Lai et al.
2009), continuous monitoring of the patients ECG, without range limit due to the
extended communication coverage by multihop wireless connectivity, is one of the
basic needs for such critical applications.

3.5.1.7 Security

Finally, security issues also need to be considered since the physiological data of
the individuals is highly confidential. In (Bao et al. 2005), the authors design a
physiological signal based entity authentication scheme. The information extracted
from physiological signals is used to generate identity information for mutual
authentication. The proposed scheme allows the secure identity verification during
wireless link setup process. In (Daǧtas et al. 2008), a secure key establishment and
authentication algorithm is used for transmitting medical data from body sensors
like ECG sensors to a handheld device of the mobile patient.

3.5.2 Personal Area Network Subsystem

The PAN subsystem is composed of environmental sensors deployed around, and
mobile or nomadic devices that belong to the patient. The issues to be considered
for a proper PAN design and installation are tackled in what ensues.
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3.5.2.1 Contextual Information Acquisition and Location Tracking

The environmental sensors like RFID readers, video cameras, or sound, pressure,
temperature, luminosity, and humidity sensors help providing rich contextual
information about the people to be monitored. Location tracking can also be
achieved by this subsystem. The smart appliances that are capable of communi-
cating with other devices and taking actions can be included in the system.

3.5.2.2 Modular and Scalable Design

Keeping the design modular, scalable, and allowing the easy integration of new
functionalities are key issues. In (García-Sáez et al. 2009), a wireless personal
assistant device is proposed; it supports communications with three different
medical devices, namely a glucometer, an insulin pump and a continuous glucose
sensor. With the help of the patient PDA device, medical devices can be controlled,
and context-awareness with a user-friendly interface is provided to the patient.

3.5.2.3 Efficient Locating Algorithms

Efficient algorithms for locating RFID tagged objects through appropriate data
collection and preventing data interference are needed. RFID tagged objects are
also significant for this subsystem. They can convey detailed contextual information
by mature and widely used RFID technology that can also support battery-free
operation with the help of inexpensive tags. However, although a tag may be
present, it may not necessarily be visible to the tag reader due to blocking by an
impenetrable object (Tu et al. 2009).

3.5.2.4 Energy Efficiency of the MAC Layer

The energy efficiency of the MAC layer is a major issue. In (Lamprinos et al. 2006),
a MAC protocol is proposed, it aims to improve energy efficiency by giving
emphasis on the prevention of main energy consumption sources, such as collision,
idle listening and power outspending. Also in (Chen et al. 2008) a variable control
system is suggested to optimize the measurement resolution, thus saving power.
The higher resolutions of sensor devices will consume more energy. By using this
system, the users can flexibly set the resolutions in any situation. In their experi-
ments, the signal-to-noise ratio (SNR) of ECG can be promoted from 25 to 73 dB
when extraordinary ECG signal occurs.
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3.5.2.5 Self-Organization Between Nodes

The self-organization between the nodes is essential. In miTag system (Gao et al.
2008), the data collected from a self-organizing wireless network of sensors that
operate in mesh mode is relayed to the Internet. By making use of mesh mode
operation and distributed processing, the system can be used during serious disaster
conditions by deploying repeaters quickly and providing easily extendible cover-
age. In (Osmani et al. 2008), a self-organizing distributed scheme is proposed for
recognition of people activities.

3.5.3 Gateway to the Wide Area Networks

The gateway subsystem is responsible for connecting the BAN and PAN subsystems
to the WANs. The gateway can be a mobile device carried by the user like a PDA or
a smartphone, or a sensor node deployed in the environment as well as a laptop or a
server computer. The issues to be considered for the gateway setup are twofold:

3.5.3.1 Local Processing Capability at the BAN and PAN Subsystems

The main function of the gateway subsystem is to provide the connection between
the ad hoc sensor networks to the infrastructure based WANs. Because of this
property, the gateway subsystem can easily become the weakest link of the overall
scenario. Therefore, local processing capability at the BAN and PAN subsystems
has a great impact on the gateway subsystem, by preventing network congestion
through reducing the amount of the transferred data. The study in (Chung et al.
2007) focuses on this issue by collecting the ECG data coming from the sensor and
processing the data on the cell phone locally before sending. In (Pawar et al. 2008),
context-awareness provides the capability of selecting the suitable network interface
for the data transfer.

3.5.3.2 Security

Security demands to be handled by the gateway subsystem. The security necessities
for this subsystem include verifying the correct identity of the source and not
modifying the patient data, except for aggregation or other defined transformations
(Leister et al. 2008). The security scheme proposed in (Hu et al. 2008) employs a
session key buffer to defeat gateway attacks. The delay between receiving the new
session key and using it helps identifying the gateway compromise. The scheme
also brings solutions to the man-in-the-middle (MITM) attacks, and fake data
injection. An MITM attack is a type of cyber attack where a malicious actor inserts
himself into a conversation between two parties, impersonates both parties and
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gains access to information that the two parties were trying to send to each other.
An MITM attack allows a malicious actor to intercept, send, and receive data meant
for someone else, or not meant to be sent at all, without either outside party
knowing until it is too late (Veracode 2006). In Table 3.1, the summary of security
requirements is given and possible solutions are provided.

3.5.4 WANs for Healthcare Applications

For a remote monitoring and tracking scenario, a network infrastructure is inevi-
table. The gateway can relay information to one or more network systems
depending on the application. The models of network systems can vary from cel-
lular networks to ordinary telephone network, or from satellite networks to the
Internet. These WANs have their own issues and properties independent of the
healthcare application. Whenever the data rate and reliable communication proto-
cols for WANs advance, the ubiquitous healthcare applications will also benefit.
The new and existing broadband networking technologies are needed to be inte-
grated into the pervasive healthcare solutions in order to provide coverage up to
global scale. In Table 3.2, the characteristics of the candidate wireless connections
and mobile networking technologies are provided.

In order to extend the healthcare to a global scale, satellite communication
systems may be needed as well; satellite-based telemedicine networks, telemedicine
applications and services offer wide opportunities (Wootton et al. 2006; Martinez
et al. 2008). These tasks mainly focus on improvement of the healthcare in remote

Table 3.1 WSNs security requirements and solutions (Ng et al. 2006)

Security threats Security requirement Possible security
solutions

Unauthenticated or
unauthorized access

Key establishment and trust setup Random key distribution
Public key cryptography

Message disclosure Confidentiality and privacy Link/network layer
encryption
Access control

Message modification Integrity and authenticity Keyed secure hash
function
Digital signature

Denial-of-service
(DoS)

Availability Intrusion detection
Redundancy

Node capture and
compromised node

Resilience to node compromise Inconsistency detection
and node revocation
Tamper-proofing

Routing attacks Secure routing Secure routing protocols

Intrusion and
high-level security
attacks

Secure group management, intrusion
detection, secure data aggregation

Secure group
communication
Intrusion detection
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locations, like marine vessels, or healthcare-deficient parts of the world that have no
technological infrastructure. With the increased transmission capacity of the net-
work, teleconsultation with remote experts will be possible. Likewise, satellites or
high altitude platforms (HAPs) can provide healthcare services for disaster areas
with quick and easy deployment.

3.5.5 End-User Healthcare Monitoring Application

The application is at the heart of the system at which the collected data is inter-
preted and required actions are triggered. The application has a processing part and

Table 3.2 Wireless technologies for healthcare systems (Kuran and Tugcu 2007)

Technology Candidate
subsystem

Data rate Cell radius Frequency
band

IEEE 802.11 g/WiFi BAN/PAN 54 Mbps 50–60 m 2.4 GHz

IEEE 802.11n/WiFi BAN/PAN 540 Mbps 50–60 m 2.4 GHz

ETSI HiperLAN/2 BAN/PAN 54 Mbps 50–60 m 5 GHz

IEEE 802.16/WiMAX WAN 36–135 Mbps
for LOS

Up to 70–80 km 2–66 GHz

75 Mbps
for NLOS

IEEE 802.16e/WiMAX WAN 30 Mbps Up to 7080 km 2–6 GHz

ETSI HiperACCESS WAN 25–100 Mbps 1.8–2.5 km 11–43.5 GHz

ETSI HiperMAN WAN 25 Mbps 2–4 km <11 GHz

WiBro WAN 18 Mbps 1 km 2.3–2.4 GHz

High Altitude Platforms
(HAP)

WAN Varies Varies 28–31 GHz
and
42–43 GHz

IEEE 802.20 WAN 16 Mbps >15 km 3.5 GHz

IEEE 802.22 WAN 18 Mbps 40 km 54–862 MHz

Satellite geostationary
earth orbit (GEO)

WAN Up to a few
Gbps

Four satellites give
global coverage

4–8 GHz
(C Band)

10–18 GHz
(Ku band)

18–31 GHz
(Ka band)

37–50 GHz
(Q/V band)

Satellite medium earth
orbit (MEO)

WAN Up to a few
Mbps

11 satellites give
global coverage

Same as GEO

Satellite low earth orbit
(LEO)

WAN Up to a few
Mbps

Varies Same as GEO
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a graphical user interface (GUI) part. The processing part performs the reasoning
with some signal processing algorithms to understand a distorted cardiac signal for
instance, and with machine learning algorithms to identify an unexpected situation
from an image or video. The GUI is used for real-time monitoring of the vital sign
information together with an alerting mechanism in case of an emergency. The
application should also provide an interface for the definition and configuration of
the system overall behavior. What kind of alarms will be generated, and via which
network the messages will be delivered, and who are the intended users, are cases of
the application configuration. For such applications, the issues related to the design
and setup are as provided in the coming subsections.

3.5.5.1 Security

Security must be ensured throughout the healthcare application scenario. Therefore,
end-to-end security mechanisms are needed. Based on the security requirements
provided in Table 3.1, the systems must be resistant to security attacks; the patients
sensitive health information must be viewed only by the authorized parties. The
mainly studied security issues are related to encryption. There are several proposals
for key distribution protocols for encryption mechanisms (Garcia-Morchon et al.
2009; Garcia-Morchon and Baldus 2009). Yet, before establishing encryption, the
security policies must be addressed in the first place. Moreover, for multi-modal
systems such as RFID enhanced pervasive healthcare systems, the security issues
for every modality should be studied separately and there must be strong mecha-
nisms against all kinds of attacks (Xiao et al. 2006).

3.5.5.2 Privacy

Privacy is of utmost importance, although in a study conducted with randomly
selected seniors from several elderly community groups in Australia, it was sug-
gested that privacy of health information is not perceived as a highly significant
concern, and does not have a significant effect on an elderly person perception or
acceptance of WSN systems (Steele et al. 2009). On the other hand, the same study
reveals that, the seniors strongly reject being monitored by cameras. The users
should have autonomy, they must be permitted to have control over their infor-
mation so that they can decide which information is transferred and during which
intervals as in the CareNet display project (Consolvo et al. 2004). As such, the
application must guarantee a well-defined degree of privacy with precisely for-
mulated and verified rules. In Smart Home Care Network (Tabar et al. 2006), the
use of image sensors is proposed only under emergency conditions and only for
verification purposes. This scheme changes a probable privacy flaw into a
privacy-respecting mechanism.
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3.5.5.3 Reliability

The application should be reliable. Reliability issues are classified into three main
categories: reliable data measurement, reliable data communication, and reliable
data analysis (Lee et al. 2008). Although the reliable data measurement and com-
munication issues belong to the BAN and PAN subsystems, they are essential for
the reliable data analysis at the application layer. A typical architecture handles data
cleaning, data fusion, and context and knowledge generation for reliable data
analysis. Data analysis is critical for pervasive healthcare systems since the infer-
ences are obtained from the data. The application system should prove to be doing
the job it is designed for, and faulty system components and exceptions must not
result in system misbehavior.

3.5.5.4 Middleware Design

The combination of sensors from different modalities and standards makes it nec-
essary to develop hardware independent software solutions for efficient application
development (Triantafyllidis et al. 2008). In this context middleware design is a
major concern, it helps to manage the inherent complexity and heterogeneity of
medical sensor networks. The concept is to isolate common behavior that can be
reused by several applications and to encapsulate it as system services. In this way,
multiple sensors and applications can be easily supported, thus resource manage-
ment and plug and play functions becomes easy (Chatzigiannakis et al. 2007).

3.5.5.5 Context-Awareness

Context-awareness is defined as providing relevant information and/or services to
the user, where relevancy that depends on the user task (Abowd et al. 1999), is the
core issue for smart home applications as well as remote health monitoring appli-
cations. Context-awareness can be provided through the use of different sensing
modalities together, while considering previously mentioned issues, such as proper
data aggregation and analysis. There are several ways for improving context
information. Context models and context management frameworks are proposed in
(Paganelli and Giuli 2007; Paganelli et al. 2008). With ontology-based models,
analyzing not only the rule-based alarm conditions but also more complex patterns
becomes easier. This semantic representation of WSNs data enables structured
information to be understood. Ontology-based semantic collaboration mechanisms
provide the cooperation among different persons anytime, anywhere, and with
anybody, thus reducing the complexity of making correct decisions and taking
correct actions (Kim et al. 2008).
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3.5.5.6 Seamless Healthcare Tracking and Monitoring System

In a probable futuristic design of a multi-modal, seamless healthcare tracking and
monitoring system, the chronically ill person lying in his bedroom carries on his
body a group of wireless sensors that construct a BAN. These sensors constantly
measure the vital signs of the patient, and relay this data to the basestation node
connected to specially configured home-server computer acting as a gateway
between the BAN and the WANs like the Internet and the cellular or fixed tele-
phony networks. The video and audio sensor nodes, RFID tags and other sensors
for humidity, temperature, motion, etc. are disseminated in the living place, and
they are used to provide detailed context information about not only the patient but
also the living place conditions. These sensors form the PAN. In such a scenario,
small inexpensive RFID tags can be used for location tracking, i.e. in which room
the patients or the other residents are. In this way, when an emergency situation
occurs, the location information helps to activate the closest video sensor node to
obtain the best scene about the event. These video images can be delivered to the
caregivers or healthcare professionals for further exploration via the Internet or
cellular network through the gateway server.

By using smart home appliances, the living place can be controlled or the
interaction with the residents can be achieved. For instance, if the patient is
observed to be sitting on the coach in front of the television at medication time, then
the smart set-top box can provide a reminder for the patient to take his or her
medications. For the infants and babies, when the temperature of the room where
the baby is sleeping goes below or above the optimal value, then the air condi-
tioning device in the room can be automatically activated. Also, when the baby is
observed to be crying in his or her room and the caregiver is in another room for
some time, the speakers in the room can be activated to alert him. These scenarios
are not very far from becoming ordinary for our lives with the development of
seamless, pervasive healthcare systems.

3.5.6 Categorization and Design Features of WSN
Healthcare Applications

3.5.6.1 Applications Prototypes

There are several prototype and commercial applications for pervasive healthcare
monitoring for the elderly, children and chronically ill people. When these appli-
cations are explored, it is observed that the main focus categories include (Alemdar
and Ersoy 2010):

• Activities of daily living monitoring. These applications identify and differen-
tiate everyday activities of the patients and the elderly such as watching tele-
vision, sleeping, ironing, and work on detecting abnormal conditions.
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• Fall and movement detection. Such applications are focused on the physiolog-
ical conditions such as posture and fall detection for persons who need special
care, like the elderly who are susceptible to sudden falls, which may lead to
death, or the infants and patients recovering from an operation.

• Location tracking. Applications that help cognitively impaired people to survive
independently by having their steps watched.

• Medication intake monitoring. Applications to help cognitively impaired people
to survive independently by observing how they take their medication.

• Medical status monitoring. Such applications make use of medical and envi-
ronmental sensors in order to obtain comprehensive health status information of
the patients, including ECG, heart rate, blood pressure, skin temperature, and
oxygen saturation.

3.5.6.2 Wearable and Implantable Systems

Wearable and implantable systems are such systems that encompass one or more of
the aforementioned prototypes. Wearable and in vivo implantable health systems
can be used both indoors and outdoors to monitor people 24 h a day, and 7 days a
week (Chan et al. 2008). Such systems are not just for monitoring, they can also
affect the vital body functions and deliver therapy. These devices have the potential
to greatly enhance comfort, health, and the efficiency of disease prevention. If vital
functions are maintained at a normal level, complications and hospitalization can be
avoided. Such biomedical sensors are usually worked into textiles, equipped with
data storage and a wireless transceiver system. The data are sent to a central
processing unit, a medical center, able to diagnose the situation and organize
assistance if needed.

Wearable and in vivo systems must be easy to operate, small in size, and
unobtrusive. In addition, they must be waterproof and possess a long battery life.
They also must automatically collect their measurements, without the intervention
of a third party, and provide total confidentiality and reliable data. There are several
forms for these systems, a textile garment (Marques et al. 2004), a wrist-worn
device (Ho et al. 2005), a ring (Lopez-Nores et al. 2008), a sensor attached to the
belt (Pang et al. 2009), an over-the-shoulder pouch, a small box worn on the patient
head (Konstantas and Herzog 2003), a chest belt for stress monitoring (Shnayder
et al. 2005), a glucose sensor with a needle (Wood et al. 2008), etc.

3.5.6.3 Design Features of WSN Healthcare Applications

Research projects and applications in healthcare are distinguishable by several
design features:

• They use different sensor types ranging from tiny biosensors to battery-free
RFID tags. Some of the proposals deploy only a single type of sensors such as
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passive RFID tags or accelerometers while others deploy a combination of
sensor types allowing multi-modal sensing. Most of the proposed works also
present their special sensor hardware designs to provide specific measurements
and interfaces to other devices.

• Likewise, nearly all of the projects have special software development with
appropriate APIs, middleware and GUI.

• As far as the routing of critical information indicating health status of the
patients is considered, there are very few applications that use multihop routing.
Multihop routing is important in enlarging the coverage area of the application
thus providing flexibility at the cost of complexity.

• Moreover, the level of being unobtrusive differs among applications. Some of
them use very tiny sensors integrated into clothing or video cameras that are not
carried by the patient. These applications obtrusiveness level is low. As the size
and amount of the devices carried by the patients increase, this level goes up.

• Similarly, the context-awareness is at different levels among the applications.
Some of them provide rich contextual information such as the time, location and
status of different sensors, while others give only limited information about
some specific event condition. In that sense, location-tracking utility is impor-
tant in providing detailed contextual information as well. When deducing
meaningful information from sensor data, machine-learning techniques are also
important besides signal processing.

• Finally, several applications utilize inexpensive RFID tags to make location
tracking and activity classification easier.

A classification of some healthcare based WSNs applications is offered in
(Alemdar and Ersoy 2010). In the following section, a representative application
proposal is described.

3.5.7 Using Heterogeneous WSNs in a Telemonitoring
System for Healthcare

The proposal in (Corchado et al. 2010) presents a distributed telemonitoring system
that improves healthcare and assistance to dependent people at their homes. It
implements a service-oriented architecture (SOA) based platform, which allows
heterogeneous WSNs to communicate in a distributed way independent of time and
location restrictions. This approach provides the system with a higher ability to
recover from errors and a better flexibility to modify behavior at execution time.

The proposed system makes use of the Services laYers over Light PHysical
devices (SYLPH) platform. SYLPH is based on an SOA model for integrating
heterogeneous WSNs into ambient intelligence (AmI) systems, it focuses on dis-
tributing the systems functionalities into independent functionalities (i.e., services).
This model provides a flexible distribution of resources and facilitates the inclusion
of new functionalities in highly dynamic environments. WSNs provide an
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infrastructure capable of supporting the distributed communication AmI-based
telemonitoring system.

AmI-based developments require the use of several sensors and actuators
strategically distributed in the environment. This provides the systems with
context-aware capabilities in order to automatically change its behavior. The
ZigBee standard operates in the frequency range belonging to the radio band known
as industrial, scientific, and medical (ISM), especially in the 868 MHz band in
Europe, the 915 MHz in the U.S.A., and the 2.4 GHz in almost all over the world
(ZigBee Alliance 2013). The underlying IEEE 802.15.4 standard is designed to
work with low-power and limited computational resources nodes (IEEE 2013),
(IEEE 2013). ZigBee incorporates additional network, application, and security
layers over the 802.15.4 standard, it allows up to 65 534 nodes connected in a star,
tree, or mesh topology network (Baronti et al. 2007). Bluetooth is another standard
to deploy WSNs, it allows multiple WPAN and WBAN applications for inter-
connecting mobile phones, earphones, personal computers, printers, etc. Bluetooth
also operates in the ISM 2.4 GHz band, it creates star topology networks of up to
eight devices in which one of them acts as master and the rest as slaves. Several
Bluetooth networks can be interconnected by means of Bluetooth devices that
simultaneously belong to two or more networks, creating thus more extensive
networks.

Although there are plenty of options for creating WSNs, the main problem is the
difficulty for integrating devices from different technologies in a single network
(Lei et al. 2006). In addition, the lack of a common architecture may lead to
additional costs due to the necessity of deploying nontransparent interconnection
elements between networks. Moreover, the developed elements (e.g., devices) are
too dependent on the application to which they belong, hence complicating their
reutilization. Some approaches attempt to integrate devices by implementing
middleware layers as reduced versions of virtual machines (e.g., Squawk Java
virtual machine), they require devices with high computational power and large
memory microcontrollers (Simon and Cifuentes 2005). As such, there is a need for
more expensive devices with larger size or more costly miniaturization. These
drawbacks are very important regarding WSNs, as it is essential to deploy appli-
cations with reduced resources and low infrastructural cost, especially in homecare
scenarios. The SYLPH platform integrates an SOA approach for facilitating the
distribution and management of resources (i.e., services) into heterogeneous WSNs.
There are several attempts to integrate WSNs and an SOA approach (Meshkova
et al. 2008; Moeller and Sleman 2008; Song and Lee 2008). In SYLPH, unlike
these approaches, services are directly embedded on the WSN nodes and can be
invoked from other nodes in the same network or from other connected networks.

Efficient solutions are required to allow building AmI environments for pro-
viding dependent people healthcare at their homes. One of the key aspects for the
construction of these environments is obtaining context information through sensor
networks. There are several healthcare approaches for telemonitoring based on
WSNs (Jurik and Weaver 2008; Varshney 2008). However, they do not take into
account their integration with other systems and are difficult to adapt to changing
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scenarios. The use of SYLPH is proposed in order to face some of these issues
while integrating heterogeneous WSNs.

3.5.7.1 SYLPH Platform

The SYLPH platform is a distributed architecture, which integrates an SOA
approach over WSNs for building systems based on the AmI paradigm. As pre-
viously stated, the SOA approach has been chosen because such architectures are
asynchronous and non-dependent on context (i.e., previous states of the system,
which must not be confused with context-aware environments). Thus, devices do
not continuously spend processing time and are free to do other tasks, which saves
energy.

SYLPH can be executed over multiple wireless devices independently of their
microcontroller or the programming language they use; being distributed, the
application code does not have to reside on a central node. Applications run
independent of the lower layers related to the WSNs formation (i.e., network layer),
and the radio communication between nodes (i.e., data link and physical layers).
SYLPH allows interconnecting several networks from different wireless technolo-
gies, such as ZigBee or Bluetooth; thus, a node designed through a specific tech-
nology can be connected to a node from a different technology. In this case, both
WSNs are interconnected by means of a set of intermediate gateways connected to
several wireless interfaces simultaneously.

SYLPH organization is based on a stack of layers. Figure 3.22 shows the dif-
ferent layers added over the application layer of each WSN stack. The SYLPH
message layer (SML) offers to the upper layers the possibility of sending asyn-
chronous messages between two wireless devices through the SYLPH services
protocol (SSP). SSP is the internetworking protocol of the SYLPH platform, it has
functionalities similar to those of the Internet protocol (IP), that is, it allows sending

Fig. 3.22 SYLPH
architecture (Corchado et al.
2010)
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packets of data from one node to another node regardless of the WSN to which each
one belongs. The messages specify the origin and target nodes, and the service
invocation in a SYLPH services definition language (SSDL) format. The SSDL
describes the service itself and its parameters to be invoked. Applications can
directly communicate between devices, using the SML layer or by means of the
SYLPH services directory sublayer (SSDS) which in turn uses the SML layer.
The SSDS offers functionalities related to discovering the services offered by the
network nodes. A node that stores and maintains services tables is called SYLPH
directory node (SDN).

The functioning of SYLPH is further described in the coming subsections.

3.5.7.2 SYLPH Services

The behavior of SYLPH is in essence similar to that of any SOA. However, SYLPH
has several characteristics and functionalities that make it different from other
models. Figure 3.23 shows the basic operation of SYLPH.

As a start, a service registers itself on the SDN and broadcasts its location, the
parameters it requires and the type of returned value after its running. The interface
definition language (IDL) used by SYLPH is created to work with limited resources
nodes. Distributed architectures use an IDL in order to enable communication
between software components, regardless of their programming language or
hardware implementation. Unlike other IDLs as web service definition language
(WSDL), based on extensible markup language (XML) and used on web services

Fig. 3.23 SYLPH basic operation (Corchado et al. 2010)
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(Corchado et al. 2008), SSDL uses a few intermediate separating tags and its
services descriptions are short binary data sequences. These constraints reduce
processing in the devices microcontrollers. A simple IDL thus allows utilizing
nodes with fewer resources, less power consumption, and lower cost. It is enough
with a few floating-point data to inform the status of a sensor; hence, most service
definitions require only a few bytes. SSDL considers the basic types of data (e.g.,
integer, float, or Boolean), allowing also more complex data structures as variable
length arrays or character strings.

Once the service has been registered in the SDN, it can be invoked by any
application by means of SYLPH. Both the SDN and the services can be stored in
any node of the WSN or in other subsystem connected to the WSN. This system can
be, for instance, a simple personal computer connected through a universal serial
bus (USB) port to a wireless interface. Thus, developers may decide, which nodes
or subsystems will implement each part of the distributed application. Using SSDL,
any node in the network can ask the SDN for the location of a determined service
and its specification.

3.5.7.3 SYLPH Directory Nodes

For the sake of a distributed architecture, it is allowed to have more than one SDN
in the same network. The SDN can be stored in a node of the network, in a memory
external to the microcontroller, if necessary, or in a computationally higher machine
connected to the WSN, as a data server or a personal computer with wireless
connection.

For a node (Node 0) to discover available services, it registers itself in the WSN
by means of SYLPH. Then, it sends a broadcast message, after connecting to the
WSN, searching for existing SDNs. The active node (Node 1) responds by sending
a message informing of its situation (i.e., SSP address) and its setup parameters. An
example of a setup parameter is whether the SDN will inform periodically of its
presence or if the nodes will have to poll it. Accordingly, the requesting node
becomes able to communicate with the replying node to obtain information about
the services existing in the network. Later, Node 3 registers itself in the WSN, as
having SDN functionalities, it informs the rest of the nodes by means of a broadcast
message. Node 1 stores this information on its SSDS entries list and informs Node 3
about its role as SDN. Any node in the network cannot only offer or invoke SYLPH
services, but also includes SDN functionalities in order to provide services
descriptions to other network nodes.

3.5.7.4 Telemonitoring System Implementation

The system makes use of several WSNs in order to gather context information in an
automatic and ubiquitous way. Several functionalities are directly embedded on the
WSN nodes and can be invoked from other nodes in the same network or in other
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connected networks by means of the SYLPH platform. SYLPH gateways are used
in order to interconnect different heterogeneous WSNs, it is accordingly possible to
connect WSNs based on different radio and link technologies (e.g., ZigBee,
Bluetooth, Wi- Fi, etc.). In addition, SYLPH focuses specially on devices with
small resources in order to save microcontrollers computing time, memory size, and
energy.

Two types of sensors are available in the system, biomedical sensors and
automation sensors. Biomedical sensors (e.g., electrocardiogram, blood pressure,
body temperature, etc.) obtain continuous information about vital signs, whose
samples are important and should not be lost. Automation sensors (e.g., building
temperature, light, humidity, etc.) collect information at a relatively lower fre-
quency compared to biomedical sensors (Sarangapani 2007). Biomedical sensors
should be smaller and easier to wear. It is necessary to interconnect several WSNs
from different radio technologies in a telemonitoring scenario to obtain a compat-
ible distributed platform for healthcare applications (Jurik and Weaver 2008).

Figure 3.20 reiterates the basic communication and infrastructure schema of the
telemonitoring system. A network of ZigBee devices has been designed to cover the
home of each patient to be monitored. A ZigBee remote control carried by the
monitored patient has a button that can be pressed for remote assistance or urgent
help. Moreover, there is a set of ZigBee sensors that obtain information about the
home environment (e.g., light, smoke, temperature, doors states, etc.) and that
physically respond to the variations (e.g., light dimmers, fire alarms, or door locks).
Each of these ZigBee nodes includes a C8051F121 microcontroller (Silicon
Laboratories 2004) and a CC2420 IEEE 802.15.4 radio frequency transceiver
(Texas Instruments 2005). There are also several Bluetooth biomedical sensors on
the monitored patient body. Biomedical sensors allow the system to continuously
acquire data about the vital signs of the patient. Each patient carries three different
biomedical sensors, an ECG monitor, a respiration monitor (implemented by means
of an air pressure sensor), and a micro-electro-mechanical systems (MEMS) triaxial
accelerometer for detecting possible patient falls. These Bluetooth nodes are
Bluetooth 2.0 standard compatible; they use a BlueCore4-Ext chip with a reduced
instruction set computer (RISC) microcontroller having a 48 KByte RAM and a
1024 KByte external Flash memory. ZigBee and Bluetooth devices work as
SYLPH nodes and can both offer and invoke functionalities (i.e., services)
throughout the entire WSN.

A computer is connected to the remote healthcare telemonitoring center via the
Internet. Alerts can be forwarded from the patient’s homes to the caregivers in the
remote center, allowing communication with patients to check for possible inci-
dences and proper reaction. These alerts may detect a patient fall or a high smoke
level in his home. The computer acts as a ZigBee master node through a physical
wireless interface, it is also the master node of a Bluetooth network formed by the
biomedical sensors working as slave nodes. At the SYLPH level, it acts as a
gateway that connects WSNs.

Although this system is mainly focused on monitoring tasks, it also provides
additional useful facilities to the patients and caregivers. For example, the remote
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center can consult really simple syndication (RSS) sources from external and
internal web servers in order to obtain weather reports or entertainment options for
patients and notify them about their scheduled medical staff visits. Such information
is shown on a graphical user interface (GUI) on a display connected to the computer
at home. The display is a touch-sensitive screen, for an easy and intuitive patient
interaction. Moreover, the application includes home automation capabilities, such
that a light sensor can switch or dim a lamp.

3.5.7.5 Experimentation Results

Several test cases were satisfactorily conducted over 4 weeks to evaluate the overall
system performance, especially the management of emergency situations. The tests
involved 13 patients and six caregivers. The evaluation considered the four main
objectives, defined for WSNs use in healthcare development, specifically, mini-
mizing error rates, conducting diagnosis with real-time patient data, improving
efficiency, and reducing cost.

The use of multimedia WSNs in healthcare applications is presented in Sect. 3.7.

3.6 Daily Life Applications

Daily life applications are plentiful; they are intended to make life easier, more
friendly, at home, at work, while shopping, driving, and many more. This section
exhibits some of the available applications to enlighten their technologies and how
to use, and to stress on the fact that applications overlap on sensors and standards.
Two applications are chosen for illustration, an intelligent car park management
system, and a WSN of everyday objects in a smart home environment.

3.6.1 An Intelligent Car Park Management System Based
on WSNs

This section as built upon (Tang et al. 2006) describes a WSN-based intelligent car
parking system. In this system, low-cost wireless sensors are deployed into a car
park field, where each parking lot is equipped with one sensor node, which detects
and monitors the occupation of the parking lot. The status of the parking field
detected by sensor nodes is reported periodically to a database via the deployed
wireless sensor network and its gateway.

In preceding work, Irisnet (Campbell et al. 2005) offered a wide-area architec-
ture, for pervasive sensing networks, which enables driving users to retrieve the
information about available car parking space via distributed accessing methods. In
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this system, the video cameras (webcams), microphones, and motion detectors are
employed to detect and recognize automobiles. The sensory data, for example
parking field images captured by webcams, will be processed in a networking
environment. The processed data will be published on the web, then, the user can
acquire the interesting information by using the web access technologies. However,
the video cameras generate a large amount of data. The transmission and processing
of these data will consume a great deal of the limited WSNs resources, including
communication bandwidth, processing cycles, and energy.

MIT Intelligent Transportation System (Massachusetts Institute of Technology
2014) proposes transportation applications based on WSNs. Automobile sensors are
deployed on both sides of a road and into a roadbed to detect the relevant infor-
mation about automobiles. Although the systems can be effective for traffic and
road condition monitoring, they are not designed for car parking management.

An important problem in designing a car parking and transportation system is
how to accurately detect the mobility of automobiles, especially when the vehicles
move at high speed. There are studies that use magnetic sensors (Cheung et al.
2005), however, these sensors are energy consuming (Anastasi et al. 2004). The
widespread deployment of such sensors is still a challenging problem in the energy
constraint WSNs.

3.6.1.1 Car Parks Requirements

From a business standpoint, the common goal for all car parks is to attract more
drivers to use their facilities that are required to fulfill several conventional
necessities:

• The location of the car park should be easy to find in the street network.
• The entrance of the car park should be easy to discover.
• There should be many parking lots, and a parking lot should be spacious.
• A parking lot should be easy to exit and to re-enter on foot.

Also, an intelligent car parking system should provide more convenience and
automation to both the parking lot business and the customers:

• The system should provide plenty of informative instructions or guidelines to
help drivers find an available parking lot.

• The system should provide effective security measures to prevent cars from
crashing, or being stolen, etc.

• The system should provide suitable auto toll methods.
• The system should provide powerful functions to facilitate administrators and

managers to manage a car park.

In accordance with the above requirements, an automatic and smart car park
management system should minimize human intervention, so as to reduce the cost
of manpower and prevent human mistakes, which enhances security and efficiency.
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3.6.1.2 System Overview

Hardware Components

The wireless sensor nodes and gateway used as the underlying hardware platform
are from Crossbow Technology Inc., which is one of the suppliers of WSNs.
Crossbow series of WSNs are based on Berkeley motes. The products used in the
proposed system are:

• Motes. The devices consisting of a processor and a radio chip are commonly
referred as motes processor radio boards (MPR). Each of these battery-powered
devices is pre-loaded with the open-source TinyOS (TinyOS 2012) operating
system, which provides low-level event and task management services, and the
Crossbow’s XMesh networking stack (Crossbow 2006). The MPR2400 mote is
selected (Crossbow 2004). The motes are compatible with IEEE802.15.4 and
can be extended to connect with different sensorboards.

• Sensorboards. Sensor and data acquisition boards (MTS and MDA) mate
directly to the mote processor radio board (MPR). The sensorboard MTS310
(Crossbow 2007) is equipped with sensors of light, temperature, and acoustic
and a sounder.

• Gateways. The mote interface board (MIB), MIB510 (Crossbow 2004), pro-
vides a gateway for the motes and allows the acquisition of sensory data on a
PC, as well as, on other standard computer platforms via a RS232 serial
interface. Alongside data transferring, the MIB board allows the motes to accept
control command from the upper layer application systems.

Datasheets of the system building blocks are detailed in Chap. 8.

Structure of the WSNs Based Application System

The application system based on WSNs adopts a 3-layers framework:

• The first layer is the mote layer, which is a wireless sensor mesh network. The
motes are programmed as TinyOS firmware to perform some tasks, such as
environment monitoring.

• The second layer is server layer, which provides data logging and database
services for sensory data transferred to the basestation and stored on the server.

• Finally, the software at the client layer provides visualizing, monitoring, and
analyzing tools to display and interpret sensory data. MOTE-VIEW is a free
software tool developed by Crossbow and can be used to perform the above
manipulations of sensory data.
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Intelligent Car Park Management System

The architecture of the proposed system, as shown in Fig. 3.24, illustrates the
relationship between the sensor network, MOTE-VIEW (Crossbow 2006),
PostgreSQL database (PostgreSQL 2013), TinyOS, CarRecord database, and the
car park application. The sensor nodes are deployed in a car-parking field to collect
the real-time information on occupation and vehicles. The collected information can
be transmitted to a gateway via wireless communication among the sensor nodes.
The gateway is connected to a database server via the Internet. The car park
management application operates on top of the database. This architecture effec-
tively decouple the upper layer application from the underlying WSNs.
Accordingly, modifications of the underlying WSNs will not lead to changes on the
upper layer application system.

3.6.1.3 System Implementation

This section, gives a brief introduction of the main functional parts of the intelligent
car parking management system, and then describes the event-driven processing
and interactions of these modules.

Fig. 3.24 Architecture of intelligent car park management system using WSNs
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Functional Components of the System

The software system of the proposed application can be divided into three parts, the
bottom part includes the motes and the network, the middle part contains the
database system, and the top part embodies the application system. The interaction
between the bottom part and top part is via the middle part that contains the
database system. The application layer focuses on the business logic of the car park
administration and the processing of the collected information stored in the database
system.

The three parts of the software system are described as follows:

• The bottom part of the software system supports the operations of the WSNs
composed of motes. A Mote is loaded with TinyOS, a lightweight operating
system for WSNs. The adopted XMesh network protocol is specifically devel-
oped for mote networks.

• The middle part is implemented using the PostgreSQL (PostgreSQL 2013)
database system. The data stored in the database is updated by the underlying
WSNs. The sensory report generated by the mote is transmitted to the database
system and used by the upper layer applications.

• The top part, the application system, is divided into four main modules:

– Parking lot management module that monitors and detects the occupation of
parking lots.

– Auto toll module, which manages the payment of parking fee.
– Security management module, which alerts the illegal departure of cars,

previously parked in a parking lot.
– Statistic and reporting module that generates various reports to help man-

agers or administrators to understand the running status of the car-parking
field.

Event-Driven Processing

The prototype system is implemented using the object-oriented programming
approach and is event- driven for processing. In the system operations, there are five
major types of events:

• Timer event. The system timer generates this event to refresh the sensor status
stored in the PostgreSQL database.

• Car-in event. Indicates that a car has just checked-in.
• Driving status. Designates the moving path of the car and its parking status as

sensed by wireless sensors.
• Car-out event. Specifies that a car has just checked out from the system.
• Field management event. This event detects a manager that performs the

management task of the car-parking field.
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The events, as such, are intended to trigger the interactions and the operations to
be performed by the various function modules described above.

3.6.1.4 System Evaluation

The intelligent car parking system is built for real applications that must be reliable
and accurate. Some testing experiments were carried out using a prototype system
built upon remote-controlled toy cars, several test scenarios help evaluate its
functionalities.

3.6.2 Wireless Sensor Networking of Everyday Objects
in a Smart Home Environment

Within a smart home environment the information processing is supposed to be
thoroughly integrated into everyday objects that provide functionalities beyond
their primary purpose, thereby enhancing their characteristics, properties and
abilities. By correlating the sensor output of such everyday objects, the WSN as a
whole can potentially provide functionality that an individual everyday object
cannot. Using a middleware, such functionalities include situation and activity
awareness of the inhabitants. The backbone of this section is the work presented in
(Surie et al. 2008).

3.6.2.1 Requirements for WSNs in Smart Home Environments

From the conducted assessment, the requirements for deploying a WSN in a home
environment are found to be:

• Usability, availability, installation (non-functional). The spotted preferences are:

– The systems must be readily available, off-the-shelf at an affordable price,
and easy to install.

– It is required to carry few devices as part of the wearable outfit (one device is
enough).

– Changing the way one would interact with everyday objects, is not welcome.

• Performance (functional). Several likings are recorded:

– The system to use must be primarily reliable with adequate performance.
Hence, the sensing precision and recall values for the system as a whole are
important evaluation aspects.

– The transmission/reception range is an important parameter to consider as
well. This issue may be tackled via a mobile receiver that is part of the user’s
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wearable outfit, and thus is more often within the range of the sensor nodes
activated based on the user’s interaction with the concerned object.

– Battery lives of the sensor nodes were considered more important, since it is
difficult to frequently charge all the nodes. On the other hand, the receiver
node is expected to have a good battery life, but with a slightly lesser
priority.

3.6.2.2 System Overview

The system described in (Surie et al. 2008) consists of a set of everyday objects
present in a smart home environment connected to a wearable personal server
(Want et al. 2002) worn by the user and running an activity-centered computing
middleware (Surie and Pederson 2007).

Wireless Personal Area Network

The everyday objects are embedded with stick-on nodes that sense the internal
states and state changes of the objects, and transmit this information wirelessly
using ZigBee (ZigBee Alliance 2013) communication protocol to the user’s per-
sonal server. ZigBee was preferred over Bluetooth for WPAN due to its usage of
low-power digital radios intended for low data rate, long battery life and secure
networking applications. ZigBee supports up to 65,000 nodes, which enhances the
possibility to include additional everyday objects.

Generic communication boards are designed with easily replaceable sensor
connectors. Maxstream XBee 802.15.4 transceiver (MaxStream 2007) and Atmel
ATmega88-20PU microcontroller (Atmel 2011) are used in such boards. The XBee
transceiver operates at ISM 2.4 GHz frequency, 1mW (0 dBm) power output and
allows for data rates of up to 250 Kbps. The average data rate of all the sensor
nodes was 20.4 Hz (a maximum of 100 Hz for some nodes and a minimum of
10 Hz for most of them). The microcontroller runs at 8 MHz. The communication
boards embedded onto everyday objects include a 2.4 GHz omnidirectional antenna
with 1⁄2 k wavelength and a gain of 2.90 dBI. The boards require 3 V, and are
powered by three 1.2 V 2600 mA NiMH batteries in series.

The receiver node connected to the user’s personal server include a Maxstream
XBee 802.15.4 transceiver and a circuitry board for USB connection to a Sony Vaio
VGN-UX70 notebook with 1 GHz processor and 512 MB RAM. The majority of
the sensor nodes (70 %) operate at a low sampling rate of 10 Hz, regarding the
application where the nodes transmit only when there is a change in the sensor
reading range defined by threshold values in the microcontroller. The internal states
and state changes of the everyday objects are calibrated in the personal server based
on their unique identities. Such a double-step calibration allows for introducing
additional internal states for everyday objects within the personal server, based on
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the requirements from other components within the middleware, and also the
applications running above the middleware.

The sensor nodes transmit the sensed data three times (default ZigBee protocol
value that could be increased, but was found sufficient for the proposed application)
to the receiver node before a time-out. The probability of correctly receiving packet
at the receiver node increases with the number of retransmissions. This is important
considering channel noise and collisions. However, too many retransmissions can
block-up the network bandwidth, thereby requiring a threshold for the number of
retransmissions. Within the sensor node, the microcontroller sends the data four
times (experimentally found out to be the ideal number) through a universal
synchronous/asynchronous receiver/transmitter (USART) to the XBee transceiver
and awaits an ACK message in return.

The data format used for communication include Object Identity (3 Bytes),
Sensor Data (S1, S2,…,Sn), and End-of-Frame (1 bit). The length of the sensor data
depends on the everyday object. (S1, S2,…,Sn) values are set with a minimum of
4 Bytes and a maximum of 17 Bytes. Sensor type information is not included in the
data format to reduce the size of the data frame. The Object Identity information is
used within the personal server to query a database containing information about
everyday objects present in the user’s environment.

The star topology is adopted for the WSN, chosen for its simplicity (no need for
complex routing or message passing protocols), better performance (no need to pass
data packets through unnecessary nodes), power efficiency, and isolation of
everyday objects that are not changing their internal state. A star network topology
demands that all the sensor nodes be within the vicinity of the receiver node. In the
proposed application, the receiver node is worn by the user, creating a mobile
context within a home environment. The state changes are created by the user
interaction with environmental everyday objects. The range within which the
receiver node can receive sensor data with acceptable noise (<5 %), was evaluated
to be 33 m with a single wall obstruction and 19 m with multiple (greater than two)
wall obstruction.

In the proposed smart home application, 81 sensors were distributed (chosen
from the eight sensor types described in Table 3.3) onto 42 everyday objects in a
live-in laboratory home environment as the one shown in Fig. 3.25. The receiver
node receives sensor data from the sensor nodes that are based on a combination of
these sensor types. Making minor firmware modifications can easily include
additional sensor types with RS232, I2C, or SPI output. Analog sensors can also be
encompassed within the sensor node, but with an external circuit that condition the
signal to the ADC input voltage range of 3 V.

Personal Server Running an Activity-Centered Computing Middleware

The sensor data from the everyday objects are received and processed within the
object manager, a software component of the activity-centered computing
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middleware described in (Surie and Pederson 2007) (Fig. 3.26). The middleware
object manager is implemented in C#, and is loaded with several tasks:

• Discovering the set of everyday objects present in the user’s environment.
• Querying a database during the initialization phase for additional information

about the everyday objects based on their unique identities.
• Initializing and managing communication with the everyday objects.
• Transferring information, about the everyday objects, to other middleware

components and to the intelligent environment applications.

W: window, D: door

Fig. 3.25 A home environment with Tx/Rx node placement point and signal strengths (Surie et al.
2008)

Intelligent environment applications

Activity-centered computing middleware

Professionally designed

Sensors and actuators 
embedded on everyday objects

End-user designed

Activity recognizer Interaction manager

Object manager Situation monitor

Wearable sensors

Explicit input devices

Explicit output devices

Fig. 3.26 An activity-centered wearable computing infrastructure for intelligent environment
applications (Surie and Pederson 2007)
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Experimental Setup

Four volunteers for a week’s duration performed the experiments individually. In
addition to the system components (wearable personal server and receiver node),
the volunteers were given a wearable camera connected to a mobile digital video
recorder (DVR) to obtain the ground truth (state changes of everyday objects).
Experience sampling method (ESM) (Intille et al. 2003) is a commonly used
method to obtain the ground truth, such that the subject manually enters to a PDA
the events he produces while performing activities.

The volunteer subjects were asked to collect ground truth for the set of 10 activities
presented in Table 3.4. Time-based synchronization was used to map the sensor
firings with the ground truth. The subjects were not restricted on how to perform the
activities, however were briefed on how to use the system. For a week, the activities
were performed from a minimum of 7 times to a maximum of 20 times. The subjects
were interviewed after the experimentation period for qualitative evaluations.

System Evaluation

Wireless Communication: Transmission-Reception Range and Signal
Strength Measures

In an outdoor environment, the transmission reception range is usually evaluated
within line of sight and free of obstructions. However, in a typical indoor home
environment, the transmission reception range is 33 m with a single wall
obstruction, and 19 m with multiple wall obstructions. Signal strength is measured
with a certain amount of background noise, created when the everyday objects like
the fridge, microwave oven, regular oven, vacuum cleaner, etc. are turned on.
In Fig. 3.25, one of the subjects marked by Rx is stationed near the dining room.

Table 3.4 Percentage precision and recall values after sensing object state changes for a set of 10
everyday activities (Surie et al. 2008)

Activity Sensing precision Sensing recall

1. Drinking coffee 84.1 98.8

2. Baking cake, bread, etc. 100.0 98.8

3. Doing the dishes 90.0 100.0

4. Repairing the coffee machine 74.7 88.0

5. Changing clothes 91.0 99.0

6. Heating up the frozen food 93.6 100.0

7. Toilet routine 99.0 99.0

8. Preparing dinner 87.6 99.0

9. Setting-up the table 100.0 95.7

10. Having dinner 100.0 100.0

Global 91.2 98.8
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The signal strength from the various sensor nodes was evaluated by a push button
(on-off event) and was recorded five times at eight different locations in the home
environment. It is revealed that 97.5 % of the times, the signal strength values at the
eight different locations are acceptable (>10 dB). Table 3.5 lists the signal strength
at the eight locations. In both the toilet-toilet corridor case, and the
bedroom-bedroom corridor case, the state of the door (closed or open) was a factor
to consider. Similarly, the line-of-sight cases (living space, dining hall and kitchen)
have performed better than cases having wall obstructions.

Sensing Precision and Recall Values

The accuracy in sensing the object state changes based on the user’s interaction
with those objects is an important factor to evaluate. The sensing system was tested
within scenarios where the subjects performed a set of everyday activities. Several
measures were adopted while evaluating:

• The sensing system should be evaluated as a whole instead of being a sum of
individually isolated parts.

• The sensing system should be evaluated in a realistic setup where the subjects
are performing everyday activities by interacting with everyday objects.

• The data collected for activity recognition should be used with the additional
information known about the accuracy of the sensing system.

The precision and recall metrics adopted to measure system performance are
defined as follows:

Precision ¼ True Positives
True PositivesþFalse Positives

ð3:16Þ

Recall ¼ True Positives
True PositivesþFalse Negatives

ð3:17Þ

Table 3.5 Signal strengths at eight locations with the subject located near the dining hall (Surie
et al. 2008)

Signal
strength

Living
space
(%)

Dining
hall
(%)

Kitchen
(door
open)
(%)

Bedroom
corridor
(%)

Bedroom
(door
closed)
(%)

Toilet
(door
closed)
(%)

Toilet
corridor
(%)

Office
(door
open)
(%)

Best
(>30 dB)

100 100 80 60 0 0 60 0

Good
(>20 dB)

0 0 20 40 40 0 40 60

Medium
(>10 dB)

0 0 0 0 60 80 0 40

Low
(<10 dB)

0 0 0 0 0 20 0 0
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Table 3.4 shows that the sensing system has an overall precision value of 91.2 %
and an overall recall value of 98.8 %. The results are promising considering the
amount of background noise present in a wireless environment, and the fact that
sensing some of the internal state changes of objects was tricky. For instance, the
ambient light present in the user’s environment affected the decision of determining
if the dustbin, that uses a light sensor, was full or empty. Hence, there was a need
for performing ambient light noise cancellation for cases involving the light sensor.
The location, number and type of sensors embedded onto everyday objects are
significant factors to address for obtaining good performance measures.

It is worth-noting that the installation of the WSN was performed by two
individuals separately. One of them needed 65 min, while the other one took 45 min
to install 81 sensors onto 42 objects. The mobile receiver connected to the personal
server weighted 0.632 kg with dimensions of 15 × 10 × 4 cm3. All other sensor
nodes are instrumented in the environment instead of including them in the user’s
wearable outfit. The wearable camera and DVR were used only for experimentation
purpose but are not part of the actual system.

3.6.3 What Else?

What is applicable at home is valid for office, and for activities confined to
buildings, with care accorded to scale adaptation when necessary. Noteworthy,
smart installations are built upon harmonizing interactions between several tech-
nologies, such as sensor nodes, radio communication, and smart outlets. Smart
energy saving is a typical application that leans towards less sensors dependence for
more of radio communication and smart outlets as to be elucidated.

A scheme for human detection is applicable via the automatic control of home
appliances’ power consumption; it uses a wireless smart outlets network, and
changes of received signal strength indicator (RSSI) between stationary commu-
nication nodes (2.4 GHz smart outlets). The main idea is to monitor the changes of
RSSI which violate the established radio communication field between nodes inside
a room, due to a human’s presence (Mrazovac et al. 2012). A person entering into
the established radio communication field induces the change of RSSI, which is
periodically read during the message exchange between wireless nodes. Based on
the detected changes with regard to the initial thresholds, the system detects human
presence and responds with the automatic control of power consumption of all
appliances connected to the power network. Such an approach saves installation
costs, and increases users’ awareness by contributing to the energy savings. Instead
of integrating various sensors which require complex installation and processing
algorithms, use of existing smart outlets and light switches has two roles: (1) they
are in charge of controlling the plugged device as well as of giving an overview on
energy consumption; (2) they detect the human presence inside a room by using an
existing wireless network established for communication between nodes (smart
outlets or light switches) and making use of the RSSI change.
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3.7 Multimedia Applications

Scalar sensor networks measure physical phenomena, such as temperature, pres-
sure, humidity, or location of objects that can be conveyed through low-bandwidth
and delay-tolerant data streams. More and more, the focus is shifting toward
research and practice aimed at revisiting the sensor network paradigm to enable
delivery of multimedia content, such as audio and video streams and still images, as
well as scalar data. This trend led to distributed, networked systems, referred to as
wireless multimedia sensor networks (WMSNs).

The integration of low-power wireless networking technologies with inexpen-
sive hardware such as complementary metal-oxide semiconductor (CMOS) cameras
and microphones is enabling WMSNs, that is, networks of wireless, interconnected
smart devices that enable retrieving video and audio streams, still images, and scalar
sensor data. As an example, the Cyclops image-capturing and inference module
(Rahimi et al. 2005), designed for extremely lightweight imaging, can be interfaced
with a host mote such as Crossbow’s MICA2 or MICAz, thus realizing an imaging
device with processing and transmission capabilities. WMSNs enable the retrieval
of multimedia streams and will store, process in real-time, correlate, and fuse
multimedia content captured by heterogeneous sources.

The characteristics of a WMSN diverge consistently from traditional network
paradigms, such as the Internet and even from scalar sensor networks. Most
potential applications of a WMSN require the sensor network paradigm to be
rethought to provide mechanisms to deliver multimedia content with a predeter-
mined level of quality of service (QoS). Whereas minimizing energy consumption
has been the main objective in sensor network research, mechanisms to efficiently
deliver application-level QoS and to map these requirements to network-layer
metrics, such as latency and jitter, have not been primary concerns.

3.7.1 Network Architecture

The architecture of WMSNs where users connect through the Internet and issue
queries to a deployed sensor network is shown in Fig. 3.27. The functionalities of
the various network components are summarized in a bottom-up manner as listed
beneath (Akyildiz et al. 2007):

• Scalar sensors. These sensors sense scalar data and physical attributes, such as
temperature, pressure, and humidity and report measured values to their clus-
terhead. They are typically resource-constrained devices in terms of energy,
storage capacity, and processing capability.

• Multimedia processing hubs. These devices have comparatively large compu-
tational resources and are suitable for aggregating multimedia streams from the
individual sensor nodes. They are integral to reducing both the dimensionality
and the volume of data conveyed to the sink and storage devices.
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• High-end video sensors. Located at the upper tier of the WMSN, they are directly
connected to the sink, to send their own data or the aggregated data received from
the multimedia processing hubs. They are of medium or high resolution.

• Storage hubs. Depending upon the application, the multimedia stream is desired
in real-time or after further processing. These storage hubs allow data-mining
and feature-extraction algorithms to identify the important characteristics of the
event, even before the data is sent to the end user.

• Sink. The sink is responsible for packaging high level user queries to network
specific directives and returning filtered portions of the multimedia stream back
to the user. Multiple sinks may be required in a large or heterogeneous network.

• Gateway. It serves as the last mile connectivity by bridging the sink to the
Internet, and it is also the only IP-addressable component of the WMSN.
A gateway is meant to maintain a geographical estimate of the area covered
under its sensing framework to allocate tasks to the appropriate sinks that for-
ward sensed data through it.

(a) (b) (c)

Fig. 3.27 Typical architecture of a WMSN (based on Akyildiz et al. 2007). a Single-tier flat,
homogeneous sensors, distributed processing, centralized storage. b Single-tier clustered,
heterogeneous sensors, centralized processing, centralized storage. c Multi-tier, heterogeneous
sensors, distributed processing, distributed storage
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3.7.2 Design Issues of WMSNs

Amultimedia sensor device may be composed of several basic components, as shown
in Fig. 3.28, a sensing unit, a processing unit (CPU), a communication subsystem, a
coordination subsystem, a storage unit (memory), and an optional mobility/actuation
unit. Sensing units are usually composed of two subunits, sensors (cameras, micro-
phones, and/or scalar sensors) and analog-to-digital converters (ADCs).

Overall components’ functioning is emphasized to be (Akyildiz et al. 2007):

• The analog signals produced by the sensors, based on the observed phe-
nomenon, are converted to digital signals by the ADC and then fed into the
processing unit.

• The processing unit executes the system software in charge of coordinating
sensing and communication tasks, and is interfaced with a storage unit.

• The communication subsystem interfaces the multimedia sensor device to the
network and is composed of a transceiver unit and of communication software.
The communication software includes a communication protocol stack and
system software, such as middleware, operating systems, virtual machines, and
so on.

• The coordination subsystem is in charge of coordinating the operation of dif-
ferent network devices, by performing operations such as network

Memory

CPU

Sensors

Power unit

Communication 
subsystem 

Coordination
subsystem 

Mobility 
actuation unit 

System 
software & 
middleware 

Protocol
stack

Location 
management

Motion 
controller 

Network 
synchronization 

Servos

Motors

Audio/video

Scalar 

ADC

Transceiver

Energy 
harvesting 

Power line

Data line

Optional   

Fig. 3.28 Internal organization of a multimedia sensor (Akyildiz et al. 2007)

162 3 WSNs Applications



synchronization and location management. An optional mobility/actuation unit
can enable movement or manipulation of objects.

• Finally, a power unit that may be supported by an energy-scavenging unit, such
as solar cells, powers the whole system.

The design of a WMSN is subject to several factors as itemized below (Akyildiz
et al. 2008):

• Resource constraints. Sensor devices are constrained in terms of battery,
memory, processing capability, and achievable data rate.

• Variable channel capacity. In multihop wireless networks, the capacity of each
wireless link depends on the interference level perceived at the receiver. This, in
turn, depends on the interaction of several functions that are distributively
handled by all network devices such as power control, routing, and rate policies.
Hence, the capacity and the delay attainable on each link are location dependent,
vary continuously, and may be bursty in nature, thus making QoS provisioning a
challenging task.

• Cross-layer coupling of functionality. Because of the shared nature of the
wireless communication channel, in multihop wireless networks, there is a strict
interdependence among functions handled at all layers of the communication
stack. This interdependence must be explicitly considered when designing
communication protocols aimed at QoS provisioning.

• Application-specific QoS requirements. In addition to data delivery modes that
are typical of scalar sensor networks, multimedia data include snapshot and
streaming multimedia content. Snapshot-type multimedia data contain
event-triggered observations obtained in a short time period (e.g., a still image).
Streaming multimedia content is generated over longer time periods and
requires sustained information delivery.

• High bandwidth demand. Multimedia contents, especially video streams, require
transmission bandwidth that is orders of magnitude higher than that supported
by current off-the-shelf sensors. Hence, high data rate and low power,
consumption-transmission techniques must be leveraged. In this respect, the
ultra-wide-band (UWB) transmission technology seems particularly promising
for WMSNs.

• Multimedia source coding techniques. State-of-the-art video encoders rely on
intra-frame compression techniques to reduce redundancy within one frame, and
on inter-frame compression (also predictive encoding or motion estimation) to
exploit redundancy among subsequent frames in order to reduce the amount of
data to be transmitted and stored. Because predictive encoding requires complex
encoders, powerful processing algorithms, and also entails high-energy con-
sumption, it may not be suited for low-cost multimedia sensors. However, it was
shown in (Girod et al. 2005) that the traditional balance of complex encoder and
simple decoder can be reversed within the framework of so-called distributed
source coding. These techniques exploit the source statistics at the decoder and
by shifting the complexity at this end, and enable the design of simple encoders.
Clearly, such algorithms are very promising for WMSNs, where it may not be
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feasible to use existing video encoders at the source node due to processing and
energy constraints.

• Multimedia in-network processing. Processing of multimedia content has been
approached mainly as a problem isolated from the network design problem, with
a few exceptions, such as joint source-channel coding (Johnson et al. 2006) and
channel-adaptive streaming (Kurkowski et al. 2005). Similarly, research that
addressed the content delivery aspects has typically not considered the char-
acteristics of the source content and has primarily studied cross-layer interac-
tions among lower layers of the protocol stack. However, processing and
delivery of multimedia content are not independent, and their interaction has a
major impact on the achievable QoS. The QoS required by the application will
be provided by means of a combination of cross-layer optimization of the
communication process and in-network processing of raw data streams that
describe the phenomenon of interest from multiple views, with different media,
and on multiple resolutions. Hence, it is necessary to develop application-
independent and self-organizing architectures to flexibly perform in-network
processing of multimedia contents.

In the ensuing sections, WMSNs applications, and hardware platforms are to be
detailed.

3.7.3 WMSNs Applications

WMSNs enable several applications, which are broadly classified into five cate-
gories (Akyildiz et al. 2008):

• Surveillance. Video and audio sensors enhance and complement existing
surveillance systems against crime and terrorist attacks. Large-scale networks of
video sensors can extend the ability of law-enforcement agencies to monitor
areas, public events, private properties, and borders. Multimedia sensors could
infer and record potentially relevant activities (thefts, car accidents, traffic vio-
lations) and make video/audio streams or reports available for future query.
Multimedia content such as video streams and still images, along with advanced
signal processing techniques, may be used to locate missing persons or to
identify criminals or terrorists.

• Traffic monitoring and enforcement. Which makes it possible to monitor car
traffic in big cities or highways and deploy services that offer traffic routing
advice to avoid congestion. Multimedia sensors may also monitor the flow of
vehicular traffic on highways and retrieve aggregate information such as average
speed and number of cars. Sensors could also detect violations and transmit
video streams to law-enforcement agencies to identify the violator, or buffer
images and streams in case of accidents for subsequent accident scene analysis.
Moreover, smart parking advice systems based on WMSNs (Campbell et al.
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2005) allow monitoring available parking spaces and provide drivers with
automated parking advice, thus improving mobility in urban areas.

• Personal and healthcare. Multimedia sensor networks can be used to comple-
ment scalar sensors described in Sect. 3.5 to monitor and study the behavior of
elderly people as a means that identifies the causes of illnesses affecting them
such as dementia (Reeves 2005). Networks of wearable or video and audio
sensors can infer emergency situations and immediately connect elderly patients
with remote assistance services or with relatives. Telemedicine sensor networks
are the type of networks that provide ubiquitous healthcare services. Patients
will carry medical sensors to monitor parameters such as body temperature,
blood pressure, pulse oximetry, electrocardiogram, and breathing activity.
Furthermore, remote medical centers will perform advanced remote monitoring
of their patients via video and audio sensors, location sensors, and motion or
activity sensors, which can also be embedded in wrist devices (Sect. 3.5).

• Gaming. Networked gaming is a popular recreational activity. WMSNs will find
applications in future prototypes that enhance the effect of the game environ-
ment on the game player. As an example, virtual reality games that assimilate
touch and sight inputs of the user as part of the player response (Capra et al.
2005) need to return multimedia data under strict time constraints. In addition,
WMSN application in gaming systems will be closely associated with sensor
placement and the easiness of carrying the sensors by the players. The growing
popularity of such games will undoubtedly propel WMSN research in the design
and deployment of pervasive systems involving a rich interaction between the
game players and the environment.

• Environmental and industrial. Several projects on habitat monitoring that use
acoustic and video feeds are being envisaged, in which information has to be
conveyed in a time-critical fashion. For example, arrays of video sensors are
already used by oceanographers to determine the evolution of sandbars via image
processing techniques (Holman et al. 2003). Multimedia content such as imaging,
temperature, or pressure, among others, may be used for time-critical industrial
process control. For example, in quality control of manufacturing processes, final
products are automatically inspected to find defects. In addition, machine vision
systems can detect the position and orientation of parts of the product to be picked
up by a robotic arm. The integration of machine vision systems with WMSNs can
simplify and add flexibility to systems for visual inspections and automated
actions that require high speed, high magnification, and continuous operation.

3.7.4 Hardware Platforms of WMSNs

In order to have the capability of handling multimedia applications in WMSN, the
ability to support their requirements and challenges, and to examine and test the
proposed protocols and algorithms developed for WMSNs, the underlying supporting
technology and platforms are required to be more efficient, and must overcome the
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drawbacks of the existing hardware designed for WSN that detect scalar events. Many
efforts have been presented in the literature to modify the existing hardware platform or
present new hardware implementation and testbeds. These proposed platform and
testbeds are more powerful, and have more potential to process and efficiently handle
multimedia traffic in terms of processing power, memory, data rate, power consump-
tion, and communication capabilities (Fig. 3.29). In the coming sections, currently
off-the-shelf hardware is to be presented. Testbeds forWMSNs are detailed in Chap. 5.

3.7.4.1 Classification of Wireless Motes

There are several commercially available wireless motes that can be used as WMSN
motes. Depending on their processing power and storage capacity, these wireless
motes can be classified into three groups (Almalkawi et al. 2010):

• Lightweight-class platforms. Devices in this category are initially designed for
detecting scalar data, such as temperature, light, humidity, etc. Their main
concern is to consume less amount of energy as possible. Therefore, they have
low processing power capability and little storage; most of them are equipped
with a basic communication chipset, such as IEEE 802.15.4 on CC2420 radio
(Texas Instruments 2005). The CC2420 chipset just consumes 17.4 and
19.7 mA for sending and receiving respectively, and has a maximum transmit

WMSN Platforms

Hardware

Testbeds

Wireless motes 
classes

Hardware Software

Camera motes 
resolution

Hardware

PDA 

Single-tier

Intermediate Lightweight 

Multiple-tier

Testbeds

Low Intermediate High

Fig. 3.29 WMSN platforms classification (Almalkawi et al. 2010)
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power of 0 dBm with data rate of 250 Kbps. Table 3.6 illustrates comparative
exemplars of lightweight-class wireless motes, typically, Mica-family motes
(Chap. 8) and FireFly (Mangharam et al. 2007).

• Intermediate-class platforms. The devices in this group have better computa-
tional and processing capabilities, and larger storage memory compared to the
lightweight-class counterparts. However, they are also equipped with low
bandwidth and data rate communication modules (e.g., CC2420 IEEE 802.15.4
compatible chipset). Tmote Sky (Moteiv 2006) is such intermediate-class mote,
it was used to implement a camera mote amongst CITRIC (Chen et al. 2008)
and CMUCam3 (Rowe et al. 2007).

• PDA-class Platforms. The devices in this category are more powerful in terms of
computational and processing power, they are designed for fast and efficient
processing of multimedia content. They can run different operating systems
(e.g., Linux, TinyOs) and may run Java applications and .NET micro frame-
works, and also support several radio standards with different data rates (IEEE
802.15.4, IEEE 802.11, and Bluetooth). However, they relatively consume more
power. Stargate and Imote2 are instances of PDA-class platforms (Chap. 8):

– Stargate board (Crossbow 2004), designed by Intel and manufactured by
Crossbow, uses the 400 MHz 32-bit Intel PXA255 XScale RISC processor
with 32 MByte Flash memory and 64 MByte SDRAM, and runs Linux
operating system. It can be interfaced with Crossbow’s MICA2 or MICAz
motes for IEEE 802.15.4 wireless communication as well as PCMCIA IEEE
802.11 wireless cards or compact Flash Bluetooth. Consequently, Stargate
board can be used as a sensor network gateway, robotics controller card, or
distributed computing platform. It forms a camera mote when it is connected
with a camera device (e.g., webcam) as shown in the Meerkats testbed (Boice
et al. 2005) to be described in Chap. 5, and in the hardware platforms laid-out
in (Kulkarni et al. 2005; Feng et al. 2005) as presented in Sect. 3.7.4.3.

– Imote2 (Crossbow 2005), also designed by Intel and manufactured by
Crossbow, is a wireless sensor node platform built over the low-power 32-bit
PXA271 XScale processor and integrates a CC2420 IEEE802.15.4 radio with
a built-in 2.4 GHz antenna. It operates in the range 13-416MHz with dynamic
voltage scaling and includes 256 KByte SRAM, 32 MByte Flash memory,
32 MByte SDRAM, and several I/O options. It can run different operating
systems such as TinyOs and Linux with Java applications and it is also
available with .NET micro framework. Imote2 integrates many I/O options
making it extremely flexible for supporting different sensors including cam-
eras, A/Ds, radios, etc. The PXA271 processor includes a wireless MMX
coprocessor to accelerate multimedia operations and add media processor
instructions to support alignment and video operations. Imote2 uses in
address-event imagers (Teixeira et al. 2006) as will be illustrated
in Sect. 3.7.4.3; an Imote2 implementation of a dual-camera sensor is presented
in (Xie et al. 2008).

A comparison between wireless motes classes is provided in Table 3.6.
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3.7.4.2 Camera Motes Features

To reduce the amount of resources required for transmitting multimedia traffic
(images, videos) over WMSN, the multimedia content should be intelligently
manipulated and processed using appropriate compression and coding algorithms
along with other application-specific multimedia processing such as background
subtraction, feature extraction, etc. However, most of these algorithms are complex
and require high computational and processing power as well as larger memory for
buffering frames. Sometimes, these requirements cannot be satisfied with the lim-
ited resources offered by the wireless motes as previously mentioned, especially if
they require floating-point operations for efficient multimedia processing.
Therefore, camera sensors are to be coupled with additional processor (microcon-
trollers, DSPs, FPGAs, etc.) and memory resources before relaying the processed
data to the wireless mote for wireless communication. Yet, the additional processor
and memory resources require more energy consumption and cost, which prompts a
tradeoff between energy consumption and cost against computational power and
traffic amount. It has been shown that the time needed to perform relatively com-
plex operations on a 4 MHz 8-bit processor, such as the ATmega128 (Atmel 2011),
is 16 times higher than the time needed with a 48 MHz 32-bit ARM7 device, while
the power consumption of the 32-bit processor is only six times higher (Downes
et al. 2006). This designates that powerful processors, such as 32-bit ARM7
architecture, are more power-efficient in multimedia applications.

Section 3.7.4.3 surveys the existing WMSN platforms and compares their
specifications and use. It is perceived that camera motes have different capabilities;
consequently, they have different functionalities that permit them to have different
roles. For instance, low-resolution cameras can be used at the lower-tier of a
multi-tier network for a simple object detection task that exploits their low-power
consumption feature, which allows them to be turned on most of the time (or in
duty cycle manner). Cyclops (Rahimi et al. 2005), CMUCam3 (Carnegie Mellon
University 2007), and eCam (Park and Chou 2006) are models of low-resolution
cameras. Intermediate and high-resolution cameras can be used at higher-tiers of the
network for more complex and power-consuming tasks, such as object recognition
and tracking. These types of cameras consume more power and hence are awakened
on-demand by lower-tier devices, when detecting an object of interest. Webcams,
attached with Stargate board or Imote2, can be considered as
intermediate-resolution cameras, while PTZ cameras used in (Kulkarni et al. 2005)
are typical high-resolution cameras.

3.7.4.3 Available Camera Mote Platforms

Cyclops

Cyclops (Rahimi et al. 2005) is a small camera device developed for WMSN. It is
compatible with the computationally constrained WSNs (motes) and exploits the
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characteristics of CMOS camera sensors as they are low power, low cost, and of
small size. Cyclops platform isolates the camera module requirement for high-speed
data transfer from the low-speed capability of the embedded controller, and pro-
vides still images at low rates. It is designed to interface with the common motes
used in WSNs such as MICA2 (Crossbow 2002) and MICAz (Crossbow 2006)
detailed in Chap. 8. Cyclops hardware architecture consists of (Fig. 3.30):

• An imager, Agilent compact common intermediate format (CIF) CMOS
ADCM-1700 (Agilent Technologies 2003). The clock is set to 4 MHz to give
the CPLD enough time to grab an image pixel and copy it into memory.
The CIF resolution of the image sensor is 352 × 288. The output of the image
array is digitized by a set of ADCs.

• An 8-bit RISC Atmel ATmega128L MCU (Atmel 2011). It controls Cyclops for
images capturing and for interfacing the camera with a lightweight wireless host.

Cyclops

ADCM-1700  
CMOS camera
module 

MICA2

CPLD

ATmega
128L 
MCU

SRAM

Flash 
memory

Transceiver

ATmega
128L 
MCU

(a)

(b)

Fig. 3.30 Cyclops platform. a Cyclops platform building blocks. b Cyclops with an attached
MICA2 mote (Rahimi et al. 2005)
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• A Xilinx XC2C256 CoolRunner (Xilinx 2007) complex programmable logic
device (CPLD). With its 16 MHz high-speed clock, compared to the 4 MHz
imager, it provides synchronization and memory control required for image
capturing. CPLD acts as a lightweight frame grabber to provide on-demand
access to high-speed clocking at capture time, and to perform limited amount of
image processing such as background subtraction or frame differentiation.

• An external 64 KByte extended RAM (SRAM) (Toshiba 2002), and an external
512 KByte CMOS Flash programmable and erasable ROM (Atmel 2003).

Cyclops firmware is written in nesC language (UC Berkeley WEBS Project
2004) and runs under TinyOS operating system (TinyOS 2012). In addition to the
libraries provided by TinyOS, Cyclops provides primitive structural libraries, such
as matrix operation libraries or histogram libraries, and advanced or high-level
algorithms libraries, such as coordinate conversion and background subtraction.
Cyclops is a low power device, its energy consumption depends on the power
consumption and time duration at different states, like image capturing, memory
access, micro-controller processing, sleep, etc., as well as on the input image size
and the ambient light intensity.

Panoptes

In (Feng et al. 2003) the design, implementation, and performance of video-based
sensor networking architecture using visual sensor platform, called Panoptes, are
introduced. The Panoptes platform was originally developed on the Bitsy board
from Applied Data Systems (Liotta 2000). The video sensor as developed is based
on the following components:

• Intel StrongARM 206 MHz embedded platform (Intel 2000). The SA-1110 is a
general-purpose, 32-bit RISC microprocessor with a 16 KByte instruction cache
(Icache), an 8 KByte write-back data cache (Dcache), a minicache, a write
buffer, a read buffer, a memory-management unit (MMU), a liquid crystal
display (LCD) controller, and serial I/O combined in a single component. The
SA-1110 provides portable applications with high-end computing performance
without requiring users to sacrifice available battery time.

• 64 MBytes of memory.
• Linux 2.4.19 operating system kernel. Linux was adopted because it provides

the flexibility necessary to modify parts of the system to specific applications.
The functionality of the video sensing itself is split into a number of components
including capture, compression, filtering, buffering, adaptation, and streaming.

• A Logitech 3000 USB-based video camera.
• An 802.11-based networking card. While 802.11 is being used, it is possible to

replace it with a lower-powered, lower frequency RF radio device.

The complete device including the compression and transmission over 802.11
consumes approximately 5.5 Watts of power while capturing and delivering video
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of 320 × 240 resolution at 18–20 fps. It is approximately 17.8 cm long (with the
802.11 card inserted) and approximately 10.2 cm wide.

Panoptes was also implemented on the Crossbow Stargate platform (Feng et al.
2005). The Stargate platform (Crossbow 2004) features the 400 MHz 32-bit Intel
PXA255 XScale RISC processor with 32 MByte Flash memory and 64 MByte
SDRAM, and runs Linux operating system. It is also equipped with an 802.11b
PCMCIA wireless card (11 Mb/s), and a USB camera.

Panoptes accomplished an array of meaningful contributions:

• A low-power, high-quality video capturing platform is developed, to serve as
the basis of video-based sensor networks as well as other application areas such
as virtual reality or robotics.

• A prioritizing buffer management algorithm is designed to effectively deal with
intermittent network connectivity or disconnected operation to save power.

• A bit-mapping algorithm is designed for the efficient querying and retrieval of
video data.

Address-Event Imagers

An implementation is available in (Teixeira et al. 2006) for a camera mote aimed at
behavior recognition in WMSNs based on biologically inspired address-event
imagers and sensory grammars. In address event representation (AER), the camera
networks operate on symbolic information rather than on images by filtering out all
redundant information at the sensor level and outputting only selected handful of
features in address-event representation. This leads to minimizing power con-
sumption and bandwidth, only a few μW of power in active camera state are
consumed. A different computation model, that is faster and more lightweight than
conventional image processing techniques, is used. The output of the AE imagers
can be connected into the sensing grammar that converts low-level sensor mea-
surements to higher-level behavior interpretation based on probabilistic context free
grammars (PCFGs).

Three different platforms have been developed to experiment the above tech-
niques where each platform is built on top of the XYZ sensor node (Lymberopoulos
and Savvides 2005). XYZ uses an Oki ML67Q5002 processor (Oki Semiconductor
2004) based on ARM7TDMI core running at 58 MHz. The processor has 32 KByte
of internal RAM and 256 KByte of Flash, and there is an additional 2 Mbit memory
available on-board. XYZ platform operates on SOS, which is a lightweight oper-
ating system that follows an event driven design similar to TinyOS. Unlike TinyOS,
SOS supports the use of dynamically loadable modules (Han et al. 2005):

• The first platform is XYZ-OV7649 (OmniVision Technologies 2003), an XYZ
sensor node with a camera sensor from OmniVision (OmniVision Technologies
2011) that can capture color images at resolution of 640 × 480 VGA and
320 × 240 quarter-VGA (QVGA), and also supports a windowing function that
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allows the user to acquire images at different resolutions by defining a window
on the image plane (Fig. 3.31a).

• The second platform is XYZ-ALOHA, an XYZ sensor node with ALOHA
image sensor (Teixeira et al. 2005) that is composed of four quadrants of 32 × 32
pixels, and is able of generating 10,000 events in 1.3 s with a power con-
sumption of 6 μW/quadrant. The ALOHA image sensor uses the simple
ALOHA medium access technique to transmit individual events to a receiver
(Fig. 3.31b).

• The third platform consists of a software emulator of AE imagers. It allows
quick simulation of AER imager prototypes, as well as the development of
algorithms for these prototypes before they are even fabricated. The software is
written in Visual C++ and runs under Windows. It takes an 8-bit grayscale input
stream from a commercial off-the-shelves (COTS) USB camera and outputs a
queue of events to a text file. Additionally, an image may be displayed by
constructing it from the output events.

Afterward, Imote2 was used with OmniVision OV7649 camera (Teixeira and
Savvides et al. 2007). A lightweight, online people-counter utilizing a novel,
AE-friendly motion-histogram is developed. The histogram is robust to pixel
intensity fluctuations, gradual lighting changes and furniture repositioning. Abrupt
alterations in lighting may, at times, cause false positives, but they vanish within a
few frames.

eCAM

eCAM (Park and Chou 2006) is an ultra-compact, high data-rate wireless sensor
node with a miniature camera. It is constructed by interfacing a video graphics array
(VGA) quality digital video camera with the Eco node (Park and Chou 2006). The
Eco sensor node (Fig. 3.32) consists of four subsystems:

Fig. 3.31 XYZ sensor node interfaced to COTS camera modules (Teixeira et al. 2006).
a XYZ-OV7649. b XYZ-ALOHA
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• MCU/Radio. nRF24E1 is a 2.4 GHz RF transceiver with embedded 8051
compatible microcontroller, and 9 input 10 bit 100 KSample/s ADC (Nordic
Semiconductor 2004). The MCU has a 512 Byte ROM for a bootstrap loader, a
4 KByte RAM for the user program, SPI (3-wire), RS-232, and a 9-channel
ADC. The ADC is software-configurable for 6-12 bits of resolution. A 32
KByte SPI EEPROM stores the application program. The nRF24E1’s 2.4 GHz
transceiver uses a Gaussian frequency-shift keying (GFSK) modulation scheme
with 125 frequency channels that are 1 MHz apart. The transmission output
power is also software-configurable for four different levels: −20, −10, −5, and
0dBm. The AN9520 RainSun chip antenna (RainSun 2009) has a maximum
gain of 1.5 dBi.

• Sensors. Eco has a 3-axial acceleration sensor, Hitachi-Metal H34C
(3.4 mm × 3.7 mm × 0.92 mm). It measures acceleration from −3 g to +3 g and
temperature from 0–75 °C, while consuming 0.36 mA at 3 V in active mode.
Eco has also an S1087 light sensor.

• Power. Eco’s power subsystem includes a 3.3 V regulator (LTC3204-3.3 V),
battery protection circuitry, and a custom 30 mAh rechargeable Li-Polymer
battery.

• Expansion Port. Eco’s expansion port has 16 pins, including 4 digital I/Os, one
analog input, SPI, RS232, 3.3 V output, and voltage input for a regulator and
battery charging. This port enables Eco to interface with other sensing devices
such an image sensor, gyroscope, pressure sensor, or compass.

In addition to the Eco node, eCAM contains (Fig. 3.33):

• A C328-7640 camera module, which can operate as either a video camera or a
JPEG compressed still camera. It consists of a lens, an OmniVision’s OV7640
image sensor (OmniVision Technologies 2003), and an OmniVision’s OV528
compression/serial-bridge chip (OmniVision Technologies 2002). The OV7640
is a low-voltage CMOS image sensor that supports various image resolutions
(VGA/CIF/SIF/QCIF/160 × 128/80 × 64) as well as various color formats (4

Fig. 3.32 Eco sensor node on
the index finger (Park and
Chou et al. 2006)
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gray/16 gray/256 gray/12-bit RGB/16-bit RGB). It can capture up to 30 frames
per second (fps) and provide complete user control over image quality, for-
matting and output data transfer.

• 170 mAh PL-052025x1Li-Polymer battery.

eCAM is capable of much higher data rate than most platforms, its theoretical
peak bandwidth is 1 Mbps, four times Zigbee’s 250 Kbps, and can reliably deliver
the live video feed without further compromising video quality. eCAM achieves
higher efficiency by:

• In-camera hardware compression, which is much more power efficient than
software implementations.

• High-speed, low-power wireless communication interface with a simple MAC,
instead of a complex MAC with much higher power.

• Overall streamlined system-level design from the camera, node, and RF to the
basestation and uplink.

• Highly optimized board-level system design for very compact form factor.

WiSN

A mote architecture with minimal component count was introduced at Stanford’s
Wireless Sensor Networks Lab (Downes et al. 2006). It deploys several components
at its core (Fig. 3.34):

• A 32-bit ARM7 microcontroller operating at clock frequencies up to 48 MHz,
and accessing up to 64 KByte of on-chip RAM, and up to 256 KByte on-chip
Flash (Atmel 2011).

• Up to 2 MBytes Flash memory.
• Wireless communication is provided by the Chipcon CC2420 radio (Texas

Instruments 2005), which operates in the 2.4 GHz ISM band and is compliant
with the IEEE 802.15.4 standard for low-power, low data rate (250 Kbps)
communication.

• An integrated USB and serial debug interface allows simple programming and
debugging of applications.

Fig. 3.33 eCAM with US dime coin for scale (Park and Chou et al. 2006)
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• Agilent ADCM-1670, 352 × 288 CIF resolution, CMOS camera module
(Agilent Technologies 2003), and Agilent ADNS-3060 high-performance
optical mouse Sensor (Agilent Technologies 2003)

This mote connects to multiple vision sensors as it can host up to four
low-resolution Agilent ADNS-3060 sensors, and two Agilent ADCM-1670 camera
modules. Both types of vision sensors feature a serial interface thus eliminating the
need for additional FPGA or CPLD devices. In addition to interfacing to cameras,
the mote is able to connect to other sensors (passive infrared, temperature, pressure,
humidity, etc.).

FireFly Mosaic

FireFly Mosaic, a vision-enabled wireless sensor platform and image-processing
framework (Rowe et al. 2007), uses camera motes consisting of FireFly wireless
node coupled with a CMUcam3 camera sensor (Rowe et al. 2007):

• FireFly sensor node has a low-power Atmel ATmega 128L 8-bit processor with
8 KByte RAM and 128 KByte Flash memory (Atmel 2011), connected with
Chipcon CC2420 802.15.4 (Texas Instruments 2005) radio capable of trans-
mitting at 250 Kbps for up to 100 m. The platform has several sensors, namely,
light, temperature, sound, passive infrared motion detection, and dual axis
acceleration Fig. 3.35. The FireFly nodes run the Nano-RK real-time operating
system (Eswaran et al. 2005) and communicate wirelessly using the RT-link
collision-free TDMA-based protocol. FireFly Mosaic is designed to be low-cost,
energy efficient, and scalable compared to the centralized wireless
webcam-based solution. The used RT-link provides tight global time synchro-
nization to prevent collisions and to save energy, while Nano-RK operating
system provides hooks for globally synchronized task processing and camera

Fig. 3.34 WiSN mote (Downes et al. 2006). a Block diagram. b Implementation
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frame capturing. While network communication relies on TDMA-based link
layer, the internal communication between the camera and the wireless node is
based on the serial line IP (SLIP).

• The CMUcam3 camera of FireFly Mosaic consists of (Fig. 3.36):

– CMOS OmniVision OV6620 camera chip (OmniVision Technologies 1999)
capable of capturing fifty 352 × 288 color images per second.

– An AL440B 4 MBits FIFO Field Memory (AverLogic Technologies 2002).

Fig. 3.35 FireFly sensor
node (Eswaran et al. 2005)

Fig. 3.36 CMUcam3 mated
with the CMOS camera
board. An MMC memory
card for mass storage is seen
on the right side of the board.
The board is 5.5 cm × 5.5 cm
and about 3 cm deep
depending on the camera
module (Rowe et al. 2007)
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– An ARM7TDMI-S core based microcontroller that features a 16/32 bit
LPC2106 with 128 KBytes Program Flash, a 64 KBytes RAM, a real-time
clock (RTC), and up to 60 MHz operation (Philips 2004).

– Four on-chip servo controller outputs, which can be used to actuate a pan-tilt
device.

CMUcam3 is an open-source camera that comes with several libraries (named
CC3) and example applications such as JPEG compression, frame differencing,
color tracking, convolutions, edge detection, connected components analysis, and a
face detector. This multiplicity of image processing algorithms can be run at the
source, the results are sent over the multihop wireless channel to the FireFly
gateway. CMUcam3 can be also interfaced with other type of sensor nodes such as
(Moteiv 2004), Telos (Polastre et al. 2005), and Tmote Sky (Moteiv 2006) motes
running different operating systems. Table 8.6 that compares Berkeley motes, and
datasheets are made available in Chap. 8.

MeshEye

An energy-efficient smart camera mote, MeshEye (Hengstler et al. 2007), is pro-
posed for distributed intelligent surveillance application in WMSN. A “smart”
camera is a camera that can do on-board processing itself instead of transmitting all
video data to a central controller (Fig. 3.37). The smart camera is motivated by the
much lower power consumption of processing compared to transmitting raw data
through a wireless link.

MeshEye mote architecture is designed to support in-node image processing
with sufficient processing power capabilities, for distributed intelligent algorithms
in two tiers WSN, while minimizing component count and power consumption:

• In the first tier, a low-resolution stereovision system is used to determine
position, range, and size of moving objects in its field of view.

• The second tier includes high-resolution color cameras that are triggered in case
of detecting objects by the first tier.

The MeshEye architecture is hosting several components (Fig. 3.38):

System-on-chip (SoC), single or multiprocessor architecture

Se
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or
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USB, Ethernet, 
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Fig. 3.37 Typical architecture of a smart camera (Rinner and Wolf 2008)
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• An Atmel AT91SAM7S family microcontroller (Atmel 2008) at the core of the
architecture. It features a USB 2.0 full-speed port and a serial interface for wired
connection.

• A multimedia card/secure digital (MMC6/SD7) flash memory card that provides
sufficient and scalable non-volatile memory for temporary frame buffering or
even image archival.

• The mote can host up to eight kilopixel imagers8 (The Free Dictionary 2014) and
one VGA camera module, equipped with an Agilent Technologies’ ADNS-3060
high-performance, 30 × 30 pixel, 6-bit grayscale, optical mouse sensor (Agilent
Technologies 2004), and an Agilent Technologies’ ADCM-2700 landscape
VGA resolution CMOS camera module (640 × 480 pixel programmable,
grayscale or 24-bit color). A datasheet for the ADCM-2700 is not available, close
by features are available in the ADCM-2650 (Agilent Technologies 2003).

• Wireless connection to other motes in the network can be established through
Texas Instruments CC2420, a 2.4 GHz IEEE 802.15.4/ZigBee-ready 250 Kbit/s,
1 mW transmit power, RF transceiver (Texas Instruments 2005). Although the
supported data rate is not high enough for multimedia streaming, it is possible to
perform in-node intermediate-level visual processing for efficient image com-
pression and/or descriptive representations, such as axis projection, color his-
togram, or object shaping.

• The mote can either be powered by a stationary power supply, if available, or it
may be battery-operated for mobile applications or ease of deployment.

Fig. 3.38 MeshEye platform
(Hengstler et al. 2007)

6A tiny memory card that uses flash memory to make storage portable among various devices,
such as car navigation systems, cellular phones, eBooks, PDAs, … (TechTarget 2014).
7A tiny memory card used to make storage portable among various devices, such as car navigation
systems, cellular phones, eBooks, PDAs, … (TechTarget 2014).
8An electronic device that records images.
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MicrelEye

MicrelEye (Kerhet et al. 2007) is a wireless video sensor node, intended for video
processing and image classification in WMSNs. The MicrelEye node is used for
people detection, where a smart camera positioned at a critical position (e.g., main
entrance of a building) discriminates between the objects within its FOV (i.e.,
whether the object is a human being or not). The main motivation is developing an
intelligent system capable of understanding certain aspects of the incoming data by
performing image classification algorithms.

MicrelEye hardware platform harbors several components:

• The processor is an Atmel field programmable system level integrated circuit
(FPSLIC) SoC, composed of anAT40KMCU,which is a field programmable gate
array (FPGA) comprising 40 K gates, and 36KByte of onboard SRAM (16KByte
can be used for data and 20 KByte is reserved for program storage). The external
memory for frame storage is a 1 MB SRAM for multimedia processing and par-
allelized computation between hardware and software (Atmel 2002).

• An OV7640 (OmniVision Technologies 2003), CMOS VGA image sensor.
• An LMX9820A Bluetooth transceiver for wireless communication (Texas

Instruments 2007). Its range is 100 m, it is few cubic centimeters, and is featured
by the low power consumption, the ease to interface MicrelEye with other
devices, and its high data rates (up to 704 Kbps). LMX9820A is now obsolete.

MicrelEye has no operating system. The Bluetooth serial port profile is used in
MicrelEye to allow the establishment of a virtual serial port between the transceiver
and a remote device. The algorithm implemented in MicrelEye is split between the
FPGA and the MCU to achieve parallelism, where image processing tasks
involving high speed logic and high computational power (e.g., background sub-
traction, sub-window transfer) are performed at the FPGA and the higher level
operations (e.g., feature extraction, support vector machine operations) are per-
formed at the MCU. The portion of the algorithm run on the MCU is written in C.

The image stream coming from the CMOS imager includes both luminance and
chrominance components. After a complete frame is transferred to the FPGA, back-
ground subtraction is performed by pixel differencing with the reference frame (which
can be updated as needed). The region of interest (ROI) within the frame (128 × 64) is
extracted and transferred to the internal memory and the remaining higher-level
operations are performed by the MCU. The feature vector is extracted from the ROI,
which is normalized to [0,1] interval by using a highly efficient algorithm. The feature
vector consists of 192 elements (the averages of the rows and the columns). The
feature vector is fed into a state vector machine-like (SVM-like) structure (called
ERSVM), which is used to recover unknown dependencies. SVM is a “learning from
examples” technique that requires a set of training data to be able classify the incoming
feature vectors, which is provided before the classification operation starts. The end
result is a binary classification of whether the feature vector describes a human being
or not. The device targets a power budget of 500mW, and supports people detection at
15 fps at 320 × 240 quarter-VGA (QVGA) image resolution.
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In MicrelEye, having both an MCU and an FPGA block on the same chip,
eliminates the energy dissipation on the capacitive loading introduced by the
inter-chip PCB connections. The main function of the FPGA is to accelerate
computationally demanding vision tasks, which cannot be efficiently handled by the
MCU (e.g., image capture high speed logic, SRAM memory access management,
most of the image processing tasks for detection, interface between the FPSLIC and
the transceiver, the finite state machine governing the overall system operation).

WiCa

WiCa (Kleihorst et al. 2007) is another camera mote designed for WMSNs. It is a
wireless smart camera based on a single instruction multiple data (SIMD) processor,
a technique employed to achieve data level parallelism. WiCa main components are
(Fig. 3.39):

• SIMD processor for low-level image processing and suitable for parallel pro-
cessing. It is the IC3D (Kleihorst, Schueler and Danilin, Architecture and
Applications of Wireless Smart Cameras 2007), a member of the non-commercial
Xetal family of processors. A key feature of this processor is the use of
single-instruction multiple-data (SIMD) that allows one instruction to operate in
parallel on several data items instead of looping through them individually. This
is especially useful in audio and image processing as it considerably shortens the
processing time. The IC3D has a linear array of 320 RISC processors, with the
function of instruction decoding shared between them. With a 10 Mbit memory,
up to 4 VGA-sized video frames can be stored on-chip allowing energy-efficient
inter-frame and intra-frame computations. In addition, one of the components,
called global control processor (GCP), is equipped to carry out several

Fig. 3.39 Architecture of WiCa (Kleihorst et al. 2007)
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signal-processing functionalities on the entire data. The lower power application
consumption (below 100 mW) and the ease of programmability through extended
C (XTC) language makes this processor useful for WMSN applications. WiCa is
an efficient VSN platform with its unique design and its use of an SIMD processor
rather than an FPGA chip for low-level image processing operations.

• Atmel 8051 (Atmel 2008), a general purpose processor for higher-level oper-
ations. It includes 256 Bytes of on-chip RAM, 2048 Bytes of on-chip ERAM,
64 KBytes Flash, and 2 KBytes EEPROM to store the parameters and
instruction code for the IC3D processor.

• Both processors have access to a 128 KByte dual port RAM that enables them to
share a common workspace, which enables both processors to collectively use
the data and even pipeline the processing of data in a flexible manner.

• One or two VGA color image sensors.
• Communications module. A Phillips Aquis Grain ZigBee module developed

around the CC2420 transceiver (Texas Instruments 2005).

The multimedia processing in this camera sensor mote is divided into three
levels Fig. 3.40:

• Low-level image processing (pixel level) is manipulated by the SIMD processor,
and is associated with typical kernel operations such as convolutions, data
dependent operations using neighboring pixels, and initial pixel classification.

• The intermediate and high-level image processing (object level) are done by the
general purpose processor because it has the flexibility to implement complex
software tasks, to run an operating system, and to do networking application.

Fig. 3.40 Levels of image
processing algorithms (based
on Kleihorst et al. 2007)
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CITRIC

A wireless camera network system called CITRIC is developed in (Chen et al. 2008)
for WMSNs to enable in-network processing of images in order to reduce com-
munication overheads. The CITRIC platform consists of a camera daughter board
connected to a Tmote Sky board (Fig. 3.41). The Tmote Sky (Moteiv 2006) is a
variant of the popular TelosB mote (Moteiv 2004), dedicated for wireless sensor
network research, it uses a Texas Instruments MSP430 microcontroller and Chipcon
CC2420 IEEE 802.15.4-compliant radio, both selected for low-power operation.
The camera daughter board is comprised of a 4.6 cm × 5.8 cm processor board and a
detachable image sensor board. The design of the camera board uses a small number
of functional blocks to minimize size, power consumption, and manufacturing costs.

To choose a proper onboard processor, two options were available, to use a
field-programmable gate arrays (FPGAs) or a general-purpose processors running
embedded Linux. Although FPGAs have advantages in terms of speed and
low-power consumption, the user would need to program in a hardware description
language, making algorithm implementation and debugging a time-consuming
process. On the other hand, many image processing and computer vision algorithms
have been efficiently coded in C/C++, such as the OpenCV library (OpenCV 2014).
Therefore, it was chosen to use a general-purpose processor running embedded
Linux, as opposed to TinyOS (TinyOS 2012), for the camera board to achieve rapid
prototyping and ease of programming and maintenance. The components are as
revealed:

• CMOS image sensor. The camera for the CITRIC platform is the OmniVision
OV9655 (OmniVision Technologies 2006), a low voltage super XGA (SXGA)
1.3 Megapixel CMOS image sensor that offers the full functionality of a camera
and image processor on a single chip. It supports image sizes SXGA
(1280 × 1024), VGA, CIF, and any size scaling down from CIF to 40 × 30, and

Fig. 3.41 CITRIC mote (Chen et al. 2013). a Assembled camera daughter board with TelosB.
b Camera daughter board with major functional units outlined
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provides 8-bit/10-bit images. The image array is capable of operating at up to 30
frames per second (fps) in VGA, CIF, and lower resolutions, and 15 fps in
SXGA. The OV9655 is designed to perform well in low-light conditions. The
typical active power consumption is 90 mW (15 fps @SXGA) and the standby
current is less than 20 μA.

• Processor. The PXA270 (Intel 2005) is a fixed-point processor with a maximum
speed of 624 MHz, 256 KByte of internal SRAM, and a wireless MMX
coprocessor to accelerate multimedia operations. The processor is voltage and
frequency scalable for low power operation, with a minimum voltage and fre-
quency of 0.85 V and 13 MHz, respectively. Furthermore, the PXA270 features
the Intel Quick Capture Interface, which eliminates the need for external pre-
processors to connect the processor to the camera sensor. Moreover, the
PXA270 is chosen because of its maturity and the popularity of its software and
development tools. The current CITRIC platform supports CPU speeds of 208,
312, 416, and 520 MHz.

• External Memory. The PXA270 (Intel 2005) is connected to 64 MB of 1.8 V
Qimonda Mobile SDRAM (Qimonda AG 2006) and 16 MByte of 1.8 V
Intel NOR Flash (Intel 2005). The SDRAM is for storing image frames during
processing, and the Flash is for storing code. 64 MByte of SDRAM is more than
sufficient for storing two frames at 1.3 Megapixel resolution (3 Bytes/pixel × 1.3
Megapixel × 2 frames = 8 MByte), the minimal requirement for background
subtraction. 64 MByte is also the largest size of the single data rate
(SDR) mobile SDRAM components natively supported by the PXA270 cur-
rently available on the market. As for the Flash, the code size for most computer
vision algorithms falls well under 16 MByte. The selection criteria for the types
of non-volatile and volatile memory are access speed/bandwidth, capacity,
power consumption, cost, physical size, and availability.

The choices for non-volatile memory were NAND and NOR Flash. NAND has
lower cost-per-bit and higher density but slower random access, and NOR has the
capability to execute code directly out of the non-volatile memory on boot up
(eXecution-in-Place, XIP). NOR Flash was chosen not only because it supported
XIP, but also because NAND Flash is not natively supported by the PXA270
processor.

The choices for volatile memory were Mobile SDRAM and Pseudo SRAM, both
of which consume very little power. Low power consumption is an important factor
when choosing memory because it has been demonstrated that the memory in
handsets demands up to 20 % of the total power budget, equal to the power
demands of the application processor. Mobile SDRAM was chosen because of its
significantly higher density and speed.

• Microphone. In order to run high-bandwidth, multi-modal sensing algorithms
fusing audio and video sensor outputs, it was important to include a microphone
on the camera daughter board rather than using a microphone attached to the
Tmote Sky wireless mote. This simplified the operation of the entire system by
dedicating the communication between the Tmote Sky and the camera daughter
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board to data that needed to be transmitted over the wireless network. The
microphone on the board is connected to the Wolfson WM8950 mono audio
ADC (Wolfson Microelectronics 2011), which was designed for portable
applications. The WM8950 features high-quality audio (at sample rates from 8
to 48 KSample/s) with low-power consumption (10 mA all-on 48 KSample/s
mode) and integrates a microphone preamplifier to reduce the number of
external components.

• Power Management. The camera daughter board uses the NXP PCF50606
(Philips 2002), a power management IC for the XScale application processors,
to manage the power supply and put the system into sleep mode. When com-
pared to an equivalent solution with multiple discrete components, the
PCF50606 significantly reduces the system cost and size. The entire camera
mote, including the Tmote Sky, is designed to be powered by four AA batteries,
or a USB cable, or a 5 V DC power adapter cable.

• USB to UART bridge. The camera daughter board uses the Silicon Laboratories
CP2102 USB-to-UART bridge controller (Silicon Laboratories 2013) to connect
the UART port of the PXA270 with a USB port on a personal computer for
programming and data retrieval.

A back-end client/server architecture is proposed, it provides a user interface to
the system and supports further centralized processing for higher-level applications.
CITRIC mote enables a wider variety of distributed pattern recognition applications
than traditional platforms because it produces more computing power and tighter
integration of physical components while still consuming relatively little power.
Furthermore, the mote easily integrates with existing low-bandwidth sensor net-
works because it can communicate over the IEEE 802.15.4 protocol with other
sensor network platforms. CITRIC was tested on three applications, image com-
pression, target tracking, and camera localization.

ACME Fox Board Camera Platform

A little known example of medium-resolution camera mote for WMSN applica-
tions, is the embedded camera mote platform (Capo-Chichi and Friedt 2008) based
on ACME (ACME Systems srl 2014) Fox Board. The designed platform has a
multiplicity of components (Fig. 3.42):

• The Fox Board LX416 has 100 MHz CPU, 4 MByte Flash, and 16 MByte of
RAM. It runs GNU/Linux as operating system. Because of such capabilities it
may be used for a high-level device in a multi-tier model.

• Webcam QuickCam Zoom (Logitech 2004).
• Several sensors including GPS positioning receiver.
• Current consumption sensor. It is used as an energy analyzer to study energy

consumption of nodes during image transmission.
• This sensor node relies exclusively on a Bluetooth radio. This radio choice is an

interesting attempt to strike the balance between a high-power 802.11 (WiFi)
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radio and a limited data rate 802.15.4 (Zigbee ready) radio with very low energy
consumption.

The platform can be connected via USB ports with webcam QuickCam Zoom or
Labtec9 Webcam (Logitech 2001), and Bluetooth dongle. The designed platform
uses Bluetooth IEEE 802.15 for data transmission, rather than the 802.11, as
compared to other high-level platforms like Panoptes and SensEye. It is experi-
mentally shown that image grabbing and transmission needs more power than
image routing.

Vision Mesh

Also lightly known, Vision Mesh is a scalable video sensor network
(VSN) platform for water conservancy engineering (Zhang and Cai 2010). Vision
Mesh is composed of a number of image or video sensor nodes, vision motes, to
obtain multi-view image or video information of field of view (FOV). A vision
mote is built upon several components:

• AT91SAM ARM-based Embedded MPU (Atmel 2011). It runs 210 MIPS at
190 MHz, and operates under the Linux operating system; it is also responsible
for video processing and power management.

• K9F1G08 chip used as 128 MByte NAND Flash (Samsung Electronics 2006).
• K4S561632 chips used as 64 MByte SDRAM (Samsung Electronics 2004).
• Zigbee transceiver module Chipcon CC2430 that operates at 2.4 GHz, the

theoretical transmission speed of Chipcon CC2430 can reach 250 Kbps (Texas
Instruments 2006).

• CMOS camera used as image or video source. Compared to charge-coupled
device (CCD) cameras, CMOS cameras are smaller, lighter, and consume less

Fig. 3.42 ACME Fox Board camera platform (Capo-Chichi and Friedt 2008). a ACME Fox
Board LX416. b The Fox Board with QuickCam Zoom webcam and Bluetooth dongle

9Logitech bought Labtec in Februay 7, 2001.
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power. Hence, they constitute a suitable technology to interface sensors with
vision motes.

• DS18B20 temperature sensor embedded in Chipcon CC2430 (Maxim Integrated
2008).

OpenCV machine vision lib (OpenCV 2014) is migrated to Vision Mesh plat-
form so as to improve video processing ability. The obtained maximal processing
time for 320 × 240 pixel JPEG coded images is 10 ms, while it is 16 ms for
640 × 480 pixel images. The wireless transmission rate can approach 35 Kbps in
practice.

Table 3.7 compares the WMSN platforms presented in this section, exemplifying
the basic components features and performance indicators. On which tier are the
WMSN motes installed (Fig. 3.27) and what are their distinctive applications are
important closing points not to be left over, Table 3.8 takes charge of this finale.
Several interesting efforts compare WMSN motes regarding the used image pro-
cessing techniques are found in (Seema and Reisslein 2011) and (Tavli et al. 2012).

3.7.4.4 Distributed Smart Cameras

The term “distributed camera” refers in computer vision to a system of physically
distributed cameras that may or may not have overlapping fields of view. The
images from these cameras are analyzed jointly. Distributed cameras allow viewing
a subject of interest from several different angles. This, in turn, helps solving some
tedious problems that arise in single-camera systems. Distributed smart cameras
helps facing several key issues (Rinner and Wolf 2008).

Occlusion

Occlusion is a major problem in single-camera systems. A subject may be occluded
by another object; if the subject is nonconvex, part of the subject may be occluded
by another part. With multiple views of a subject, it is much more likely to be able
to see the parts of an object occluded in one view by switching to another camera’s
view. Occlusion may be static or dynamic. A fixed object, such as a wall or a table,
causes occlusion problems that are easier to predict. When one moving object
occludes another, such as when two people pass by each other, occlusion events are
harder to predict.

Pixels on Target

The ability to analyze a subject is limited by the amount of information, measured
in pixels, that is available about that subject. Not only do distributed cameras give
several views, but, one camera is more likely to be closer to the subject.
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A traditional camera setup would use a single camera to cover a large area; subjects
at the opposite end of the space would be covered by very few pixels. Distributed
camera systems help covering the space more evenly.

Field of View

The number of cameras needed to cover a space depends on both the field of view
(FOV) of the camera and the required number of pixels on target. For a typical
camera with a rectangular image sensor, the FOV is a pyramid extending from the
lens, as shown in Fig. 3.43. The angular FOV of the lens determines the size of this
pyramid. A normal lens provides the same angular FOV as does the human eye,
between 25° and 50°. A wider lens covers more area in the scene, spreading a given
number of pixels over a larger area in the scene. A longer lens covers less area in
the scene, putting more pixels on the target.

The pixels-on-target criterion and the size of the smallest target of interest tell
how far this pyramid extends from the camera. For example, a common intermediate
format (CIF) image is 362 × 240 pixels. When this array of pixels is placed across the
FOV pyramid, as shown in Fig. 3.43, it is feasible to easily calculate the number of
pixels that cover a target of a given size at various distances from the camera.

Given the FOV volumes dictated by the cameras and application requirements,
and given the number of different cameras that should cover any given point in a
space, it is possible to determine the number of cameras required to provide that
coverage. A simple case is a rectangular room as shown in Fig. 3.44. Once a simple
occluding object is added, such as a box, covering the space becomes harder. If the
occluding object occupies less volume than the FOV that it blocks, then cameras
must be added to maintain the same coverage. A thin occluding object, such as a
wall or table, is a worst-case occlusion since it occupies little spatial volume but can
block a large FOV volume.

Fig. 3.43 Field of view and
pixels on target of a camera
(Rinner and Wolf 2008)
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As occlusion may be static or dynamic, when Person 1 walks behind the box, it
causes a temporary, dynamic occlusion, while a static object behind the box is
statically and permanently occluded. Subjects can also occlude each other, as when
Person 3 blocks Person 2.

Tracking

Tracking is one of the major topics in computer vision. A variety of algorithms have
been developed to track moving objects. Local data aggregation is an effective
means to save sensor node energy and prolong the lifespan of wireless sensor
networks. However, when a sensor network is used to track moving objects, the
task of local data aggregation in the network presents a new set of challenges, such
as the necessity to estimate, usually in real-time, the constantly changing state of the
target based on information acquired by the nodes at different time instants.

To address these issues, distributed object tracking systems are needed; they
employ a cluster-based Kalman filter in a network of wireless cameras. When a
target is detected, cameras that can observe the same target interact with one another
to form a cluster and elect a cluster head. Local measurements of the target acquired
by members of the cluster are sent to the cluster head, which then estimates the
target position via Kalman filtering and periodically transmits this information to a
basestation. The underlying clustering protocol allows the current state and
uncertainty of the target position to be easily handed off among clusters as the
object is being tracked. This allows Kalman filter-based object tracking to be
carried out in a distributed manner. An extended Kalman filter is necessary since
measurements acquired by the cameras are related to the actual position of the target
by nonlinear transformations. In addition, in order to take into consideration the
time uncertainty in the measurements acquired by the different cameras, it is
compulsory to introduce nonlinearity in the system dynamics. Such object tracking
protocol requires the transmission of significantly fewer messages than a centralized
tracker that naively transmits all of the local measurements to the basestation
(Medeiros et al. 2008).

Fig. 3.44 Occlusion and
fields of view (Rinner and
Wolf 2008)
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3.8 Conclusion for Further

Marathon chapter, that goes by lands, waters, hills, rocks, sands; some run, others
jog, but, the finish line is reachable. WSNs are infiltrating the environment in its
wide sense, indoors and outdoors, in the human body, in unapproachable
emplacements; they have found their way into a wide variety of applications and
systems with vastly varying requirements and characteristics. Guardian angels?
Watchdogs? Whatever, they are intended to work properly, faultlessly, no matter
when and where. As a consequence, it is becoming increasingly difficult to forge
unique requirements regarding hardware issues and software support. This is par-
ticularly important in a multidisciplinary research and practice area such as WSNs,
where close collaboration between users, application domain experts, hardware
designers, and software developers is needed to implement efficient systems.

In this chapter, who is who in WSNs are identified, motes, building blocks,
producers, techniques, applications. A categorization of WSNs applications
according to their intended use is presented considering deployment, mobility,
resources, cost, energy, heterogeneity, modality, infrastructure, topology, coverage,
connectivity, size, lifetime and QoS. The considered application categories, though
non-exclusive, are branded as military, industrial, environmental, healthcare, daily
life and multimedia. Typical applications tasks are:

• Performance monitoring.
• Surveillance.
• Environmental monitoring.
• Process control.
• Tracking of personnel and goods.
• Emergency management.

When compared with conventional Mobile Ad hoc Networks (MANETs),
WSNs have different characteristics, and present different engineering challenges
and considerations:

• WSNs protocols and solutions tend to be very application-specific.
• WSNs have great long-term economic potential and are expected to manage

daily life in numerous areas.
• WSNs pose many new system-building challenges, which leads to a must

explore multiplicity of convenient conceptual and optimization problems, such
as localization, deployment, and tracking, where many applications depend on.
Coverage in general, tickles the concerns about quality of service that can be
provided by a particular sensor network.

• The integration of multiple types of heterogeneous sensors such as seismic,
acoustic, optical, etc. in one network platform and the fulfillment of an overall
coverage also impose several imperative challenges.

• An integrated and efficient framework for sensor placement must incorporate
power management and fault tolerance.
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• Routing and data dissemination protocols must be specifically designed for
WSNs with energy awareness as a prime issue.

• WSNs have become a dependable tool for military applications involving
intrusion detection, perimeter monitoring, information gathering and smart
logistics support in an unfriendly deployment area.

See, hear, smell, taste, touch, and may be foresee are five plus one senses. Any
living being can partially survive with some of the senses, but he will never exist
without them all. Wireless sensors are the get together with the surroundings in a
whole dynamic era becoming more and more machine dependent, automated, but
with intelligence.

3.9 Exercises

1. What are the applications categories of WSNs?
2. What are the functional challenges of forming WSNs?
3. Elaborate on the design objectives of WSNs.
4. Write an article on Fieldbus.
5. How would DoS affect the performance of WSNs?
6. Define muzzleblast and shockwave.
7. Emphasize the research topics involved in the military applications of WSNs.
8. Compare the military applications approaches in WSNs.
9. Describe the Breath protocol.

10. Explain the condition monitoring for electric machines.
11. Describe the energy usage evaluation for electric machines.
12. What are the technical requirements for the deployment of WSNs in the oil and

gas industry?
13. Describe the SmartMesh network.
14. Investigate the literature for WSNs use in the oil and gas industry.
15. Describe the cattle monitoring WSNs applications.
16. What are the measures that must be taken when deploying WSNs?
17. What are the considerations of using WSNs in applications?
18. Elaborate on the subsystems of a sensor based healthcare system.
19. What are the issues pertinent to BANs?
20. What are the issues pertinent to PANs?
21. How can security be compared in the subsystems of a sensor based healthcare

system?
22. Explain unobtrusiveness in a sensor based health care system.
23. Describe the MITM attacks.
24. Illustrate the application prototypes of a sensor based healthcare system.
25. Compare security, privacy and reliability of a sensor based healthcare

application.
26. Compare home automation sensors and healthcare sensors.
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27. How WSNs may be used in car parking systems?
28. What are the requirements for deploying WSNs in smart home applications?
29. Design and implement a WSN based home application.
30. Design and implement a WSN based office application.
31. What are the design considerations in WMSNs?
32. Describe the components of a WMSN node.
33. Elaborate on the applications of WMSNs.
34. Why are testbeds used in WSMNs?
35. Compare the WMSN motes based on the camera resolution.
36. Compare the WMSN platforms regarding the used MCU.
37. Compare the different WMSN platforms considering the number of cameras.
38. Compare the WMSN platforms noting the power consumption.
39. Describe the CMUcam3.
40. Explain the issues related to distributed smart cameras.
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Chapter 4
Transport Protocols for WSNs

A good business is reliable… A successful person is dependable

4.1 Presumptions and Considerations of Transport
Protocols in WSNs

Wireless sensor networks (WSNs) generally consist of one or more sinks (or bas-
estations) and from tens to thousands of sensor nodes scattered in a physical space.
With integration of information sensing, computation, and wireless communication,
the sensor nodes can sense physical information, process crude information, and
report them to the sink. The sink in turn queries the sensor nodes for information.
WSNs have several distinctive usually recalled features:

• Unique network topology. Sensor nodes are generally organized in a multihop
star-tree topology that is either flat or hierarchical. The sink at the root of the tree
is responsible for data collection and relaying to external networks. This
topology can be dynamic due to the time varying link condition and dynamic
nodes status.

• Diverse applications. WSNs may be used in different environments supporting
diverse applications, such as habitat monitoring, target tracking, security
surveillance, industrial control, home automation. These applications may focus
on different sensory data and therefore impose different requirements in terms of
quality of service (QoS) and reliability.

• Traffic characteristics. In WSNs, the primary traffic is in the upstream direction
from the sensor nodes to the sink, although the sink may occasionally generate
certain downstream traffic for the purposes of query and control. In the
upstream this is a many to one type of communication. Depending on specific
applications, the delivery of upstream traffic may be event driven, continuous
delivery, query driven delivery, or hybrid delivery.
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• Resource constraints. Sensor nodes have limited resources, specifically, low
computational capability, small memory, low wireless communication band-
width, and a limited, usually non rechargeable battery.

• Small message size. Messages in sensor networks usually have a small size
compared with the existing networks. As a result, there is usually no concept of
segmentation in most applications in WSNs.

These unique features pose distinct challenges in the design of WSNs that should
meet application requirements and operate for the longest possible period of time.
Typically, care should be accorded to issues such as energy conservation, relia-
bility, and QoS.

Transport protocols are used to mitigate congestion and reduce packet loss, to
provide fairness in bandwidth allocation, and to guarantee end-to-end reliability.
However, the traditional transport protocols that are currently used for the Internet,
i.e., UDP and TCP cannot be directly implemented for WSNs. UDP has several
pitfalls:

• It does not provide delivery reliability that is often needed for many sensor
applications.

• It does not offer flow and congestion control, which leads to packet loss and
unnecessary energy consumption.

On the other hand, TCP has several other drawbacks:

• The overhead associated with TCP connection establishment might not be
justified for data collection in most event driven applications.

• Flow and congestion control mechanisms in TCP can discriminate against
sensor nodes that are far away from the sink, and result in unfair bandwidth
allocation and data collections.

• TCP has a degraded throughput in wireless systems, especially in situations with
a high packet loss rate, because TCP assumes that packet loss is due to con-
gestion and triggers rate reduction whenever packet loss is detected.

• In contrast to hop-by-hop control, end-to-end congestion control in TCP has a
tardy response, meaning it requires a longer time to alleviate congestion and in
turn leads to higher packet loss when congestion occurs.

• TCP relies on end-to-end retransmission to provide reliable data transport,
which consumes more energy and bandwidth than hop-by-hop retransmission.

• TCP guarantees successful transmission of packets, which is not always nec-
essary for event driven applications in sensor networks.

Sensory data, as the main concern in WSNs, may be categorized in many ways
(Rahman et al. 2008):

• Based on the direction, they are named as upstream sensory data traffic (Wan
et al. 2003, 2005; Stann and Heidemann 2003; Hull et al. 2004; Iyer et al. 2005;
Wang et al. 2006) and downstream sensory data traffic (Wan et al. 2002;
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Park et al. 2004; Levis et al. 2004; Tezcan and Wang 2007). When the sensory
data flows from the sensing nodes to the basestation, it is called upstream
sensory data traffic and the reverse scenario is referred to as downstream data
flow. Some literature refers to upstream data flow as many-to-one,
sensor-to-sink, or converge-cast and to downstream data flow as one-to-many,
sink-to-sensor, or multicasting.

• Based on the traffic pattern experienced by any sensor node, the net traffic seen
by any sensor node is received from two sources (Wang et al. 2006, 2007). The
first source is the sensed data captured by a sensor node and injected within the
WSN. The second source are the neighbors of a sensor node whose data are
routed upstream or downstream. Downstream traffic is sometimes referred to as
route-thru, en-route or transit traffic.

• Based on traffic sources density, dense sources that produce a high traffic rate,
sparse sources that generate low rates, and sparse sources that deliver high rates
(Wan et al. 2003).

• Applications types and network topology also shape the nature of traffic flowing
within the network. A traffic pattern may be bursty, continuous, time interval
based or query based (Hull et al. 2004; Iyer et al. 2005; Akan and Akyildiz
2005). Event-based applications generally produce bursty traffic. Some WSN
applications need continuous delivery of captured sensory data. Other applica-
tions require timely dissemination of data, while there are applications
requesting reactive responsive data from the sensor network based on the query
sent.

Section 4.2 presents all aspects that are stringent to transport layer protocols
tailored for WSNs.

4.2 Obsessions of Transport Protocols for WSNs

Obsession is a persistent preoccupation, idea, or feeling, it is a sign of life, protocols
are alive caring for satisfactory networks performance. The transport protocol runs
over the network layer. It enables end-to-end message transmission, where mes-
sages may be fragmented into several segments at the transmitter and reassembled
at the receiver. Transport protocol stocks several functions, orderly transmission,
flow and congestion control, loss recovery, and possibly QoS guarantees such as
timing and fairness . In WSNs several new factors, such as the convergent nature of
upstream traffic and limited wireless bandwidth, can result in congestion.
Congestion impacts normal data exchange and may lead to packet loss. In addition,
wireless channel introduces packet loss due to higher bit error rate, which not only
affects reliability but also wastes energy. As a result, congestion and packet loss
(Park et al. 2004) are two major problems that WSN transport protocols need to
cope with in a performance metrics frame as enlightened in what is coming.
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4.2.1 Transport Protocols Performance Metrics

Transport protocols for WSNs should provide end-to-end reliability and
end-to-end QoS in an energy efficient manner. Performance of transport protocols
for WSNs can be evaluated using metrics such as energy efficiency, reliability, QoS
(e.g., packet loss ratio, packet delivery latency), and fairness.

4.2.1.1 Energy Efficiency

Sensor nodes have limited energy. As a result, it is important for the transport
protocols to maintain high energy efficiency in order to maximize system lifetime.
Packet loss in WSNs can be common due to bit error and/or congestion. For loss
sensitive applications, packet loss leads to retransmission and the inevitable con-
sumption of additional battery power. Therefore, several factors need to be carefully
considered, including the number of packet retransmissions, the distance (e.g., hop)
for each retransmission, and the overhead associated with control messages.

4.2.1.2 Reliability

Reliability in WSNs can be classified into the several categories:

• Packet reliability. Applications are loss sensitive and require successful trans-
mission of all packets or at a certain success ratio.

• Event reliability (Tezcan and Wang 2007). Applications require only successful
event detection, but not successful transmission of all packets:

R vð Þ ¼
PK

k¼1 Prob success of vkð Þ
K

ð4:1Þ

where, v is a message, K is the total number of events defined by the application,
k is the event that needs to be delivered reliably, and vk is the message
containing the event k.

• Query reliability (Tezcan and Wang 2007). The end-to-end query transfer is
referred to as all queries are received by essential nodes successfully. If there is a
number of K 0 queries to be sent during a time interval, then query reliability in
an update interval is defined as:

R qð Þ ¼
PK0

k¼1 Prob success of qkð Þ
K 0 ð4:2Þ

• Destination-related reliability (Park et al. 2004). Messages might need to be
delivered to sensor nodes according to one of four patterns; (i) delivery to the
entire field, which is the default, (ii) delivery to sensors in a subregion of the
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field, which is representative of location based delivery, (iii) delivery to sensors
such that the entire sensing field is covered, which is representative of redun-
dancy aware delivery, and (iv) delivery to a probabilistic subset of sensors,
which corresponds to applications that perform resolution scoping.

4.2.1.3 QoS Metrics

QoS metrics include bandwidth, latency or delay, and packet-loss ratio. Depending
on the application, these metrics or their variants could be used for WSNs. For
example, sensor nodes may be used to transmit continuous images for target
tracking. These nodes generate high speed streams and require higher bandwidth
than most event based applications. For a delay sensitive application, WSNs may
also require timely data delivery.

4.2.1.4 Fairness

Sensor nodes are scattered in a geographical area. Due to the many-to-one con-
vergent nature of upstream traffic, it is difficult for sensor nodes that are far away
from the sink to transmit data. Therefore, transport protocols need to allocate
bandwidth fairly among all sensor nodes so that the sink can obtain a fair amount of
data from all the sensor nodes.

4.2.2 Congestion Control

Congestion as a term is the overcrowding or overfilling that terminates with
clogging, too bad in health, in traffic, everywhere. In WSNs, there are two main
causes for congestion (Wang et al. 2006):

• The first is due to packet arrival rate exceeding the packet service rate. This is
more likely to occur at sensor nodes close to the sink, as they usually carry more
combined upstream traffic.

• The second cause is link level performance aspects such as contention, inter-
ference, and bit-error rate. This type of congestion occurs on the link.

Congestion in WSNs has a direct impact on energy efficiency and QoS. Typically:

• Congestion can cause buffer overflow that may lead to larger queuing delays and
higher packet loss. Packet loss degrades reliability and application QoS, but it
can also waste the limited node energy.

• Congestion can also degrade link utilization.
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• Link level congestion results in transmission collisions if contention based link
protocols such as Carrier Sense Multiple Access (CSMA), are used to share
radio resources. Transmission collision in turn increases packet service time and
wastes energy.

Therefore, congestion in WSNs must be efficiently controlled, either to avoid it or
appease it. Typically, there are three mechanisms that can deal with this problem:

• Congestion Detection. In TCP, congestion is observed or inferred at the end
nodes based on a timeout or redundant acknowledgments. In WSNs, proactive
methods are preferred. A common mechanism would be to use queue length
(Wan et al. 2003; Stann and Heidemann 2003) packet service time (Iyer et al.
2005), or the ratio of packet service time over packet interarrival time at the
intermediate nodes (Wang et al. 2006). For WSNs using CSMA like Medium
Access Control (MAC) protocols, channel loading can be measured and used as
an indication of congestion (Stann and Heidemann 2003).

• Congestion Notification. After detecting congestion, transport protocols need to
propagate congestion information from the congested node to the upstream
sensor nodes or the source nodes that contribute to congestion. The information
can be transmitted, using a single binary bit (called congestion notification
(CN) bit in (Stann and Heidemann 2003), or more information such as allowable
data rate, as in (Iyer et al. 2005), or the congestion degree, as in (Wang et al.
2006). Disseminating congestion information has a two fold categorization:

– The explicit congestion notification that uses special control messages, such
as suppression messages, to notify the involved sensor nodes of congestion.

– The implicit congestion notification that piggybacks congestion information
in normal data packets. By receiving or overhearing such packets, sensor
nodes can access the piggybacked information. For instance, the sensor
nodes that detect congestion will set a CN bit in the header of data packets to
be forwarded. After receiving packets with CN bit set, the sink learns the
network status, congestion or no congestion.

• Rate Adjustment. Upon receiving a congestion indication, a sensor node can adjust
its transmission rate. If a single CN bit is used, additive increase multiplicative
decrease (AIMD) schemes or its variants are usually applied (Stann andHeidemann
2003). On the other hand, if additional congestion information is available, accurate
rate adjustment can be implemented (Iyer 2005; Wang et al. 2006).

4.2.3 Loss Recovery

Losing is in nobody’s fair plan, in exams, games, economics, politics, and definitely
networks are not different. In wireless environments, both congestion and bit error
can cause packet loss, which deteriorates end-to-end reliability and QoS, and lowers
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energy efficiency. Other factors that result in packet loss include node failure,
wrong or outdated routing information, and energy depletion. Also, Interference as
a main reason of packet loss is also to be outlined:

1. If the transmitting sensor is far from the receiving sensor, the signal will
attenuate significantly by the time it reaches the receiver. The signal attenuation
is tricky to model since the radio signal strength is not uniform at the same
distance from a sensor in all directions.

2. If more than one sensor in the sensor network are transmitting simultaneously,
interference will occur at the listening sensor which is within range of the
transmitting sensors. In general, sensors can be far away to be considered
neighbors, but are still close enough to interfere with reception. This type of
interference is also complex to model due as stated in the previous point.

Causes 1 and 2 of packet loss, due to interference, are dependent on the exact
location and environment in which the sensors are deployed, as well as on the
radio technology implemented. For instance, sensors placed less than 1 m (3
feet) apart on a wall may not be able to hear each other due to reflections off the
wall, which makes it hard to have any control over such losses.

3. Self-interference, that is, a node transmission interferes with itself at the recei-
ver. The key challenge in implementing full-duplex based wireless systems is
the self-interference caused by the coupling of the transceiver’s own transmit
signal to the receiver while attempting to receive signal sent by another
equipment in a WSN.

4. Loss occurs when a packet is successfully received by a sensor but has to be
dropped due to queue overflow. This of losses is due to congestion within the
network, the correct implementation of congestion control will minimize it.

In order to overcome packet loss, one can increase the source sending rate or
introduce retransmission based loss recovery:

• Increasing the source sending rate, which is also used in event-to-sink reliable
transport (ESRT), works well for guaranteeing event reliability for event driven
applications that require no packet reliability. However, this method is not
energy efficient compared to loss recovery.

• The retransmission based loss recovery method is more active and energy
efficient, and can be implemented at both the link and transport layers. Link
layer loss recovery is hop-by-hop, while the transport layer recovery is usually
done end-to-end. Loss recovery consists of loss detection and notification and
retransmission recovery as will be presented in the following sections.

4.2.3.1 Loss Detection and Notification

Since packet loss can be far more common in WSNs than in wired networks, loss
detection mechanisms have to be carefully designed. A common mechanism is to
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include a sequence number in each packet header; the continuity of sequence
numbers can be used to detect packet loss. Loss detection and notification can be
either end-to-end or hop-by-hop. In the end-to-end approach, such as in TCP
protocol, the end-points (destination or source) are responsible for loss detection
and notification. In the hop-by-hop method, intermediate nodes detect and notify
packet loss.

For several reasons, the end-to-end approach is not that effective for WSNs:

• The control messages that are used for end-to-end loss detection would utilize a
return path consisting of several hops, which is not energy efficient.

• Control messages travel through multiple hops and could be lost with a high
probability due to either link error or congestion.

• End-to-end loss detection inevitably leads to end-to-end retransmissions for loss
recovery. Worth noting that end-to-end retransmission consumes more energy
than hop-by-hop retransmission.

In hop-by-hop loss detection and notification, a pair of neighboring nodes is
responsible for loss detection, and can enable local retransmission that is more
energy efficient, as compared to the end-to-end approach. Hop-by-hop loss detec-
tion can further be categorized as receiver based or sender based, depending on
where packet loss is detected:

• In sender based loss detection, the sender detects packet loss on either a timer
based or overhearing mechanism. In timer-based detection, a sender starts a
timer each time it transmits a packet. If it does not receive an acknowledgment
from the targeted receiver before the timer expires, it infers the packet has been
lost. Taking advantage of the broadcast nature of wireless channels, the sender
can listen to the targeted receiver (passively and in an indirect manner so as to
detect packet loss) in order to determine if the packet has been successfully
forwarded.

• In receiver-based loss detection, a receiver infers packet loss when it observes
out-of-sequence packet arrivals. There are three ways to notify the sender, ACK
(Acknowledgment), NACK (Negative ACK), and IACK (Implicit ACK). Both
ACK and NACK rely on special control messages, while IACK piggybacks
ACK in the packet header. In IACK, if a packet heard in the link, this implies
that it has been successfully received and thus simultaneously acknowledged.
However, the application of IACK depends on whether the sensor nodes have
the capability to overhear the physical channel. In the case where the trans-
mission is corrupt or the channel is not bidirectional or the sensor nodes access
the physical channel using Time Division Multiple Access (TDMA) based
protocols, IACK may not be feasible.

Loss detection and notification can also indicate the reason for packet loss, which
can be further used to improve system performance. Specifically, if packet loss is
caused by buffer overflow, source nodes need to reduce the sending rate. However,
if channel error is the cause, then it is unnecessary to reduce the sending rate in
order to maintain high link utilization and throughput.
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4.2.3.2 Retransmission Based Loss Recovery

Retransmission of lost or damaged packets can also be either end-to-end or
hop-by-hop. In the end-to-end approach, the source performs retransmission. In
hop-by-hop retransmission, an intermediate node that intercepts loss notification
searches its local buffer, if it finds a copy of the lost packet, it retransmits the packet,
otherwise it relays loss information upstream to other intermediate nodes. If the
node with a cached packet is considered a cache point and the node where the lost
packets are detected as a loss point, the hop number between them can be referred
to as the retransmission distance. The retransmission distance is an indication of
retransmission efficiency in terms of energy consumed in the process of retrans-
mission. Hence, it is to be noticed that:

• In end-to-end retransmission (such as in TCP), the cache point is the source
node. However, in hop-by-hop retransmission, the cache point could be the
predecessor node of the loss point.

• The end-to-end retransmission has a longer retransmission distance, while the
hop-by-hop approach is more energy efficient, it requires intermediate nodes to
cache packets.

• The end-to-end approach allows for application dependent variable reliability
levels, like that realized by ESRT. On the other hand, the hop-by-hop recovery
approach is preferred if 100 percent packet reliability is required, although some
applications in WSNs, such as event driven applications, may not require 100
percent reliability from sensor node. It is to be noted though, that hop-by-hop
loss recovery cannot assure message delivery in the presence of node failure.

Since end-to-end and hop-by-hop retransmissions require the caching of transmitted
packets at cache points for possible future retransmission request, the following
question would arise: How long should a cache point buffer? This is especially
important if the cache point does not receive an acknowledgment. For end-to-end
retransmission, the cache duration should be close to round-trip-time (RTT). In
wireless systems that use NACK based acknowledgments, NACK messages could
be lost or corrupted on the reverse channel and the destination would be required to
send NACK more than once. In such a case, source nodes need to buffer a packet
for a time duration longer than RTT. For hop-by-hop, the cache duration is only
influenced by the total local packet service time and one hop packet transmission
time.

Hop-by-hop retransmission in WSNs entails further considerations:

• When to trigger retransmission? Retransmission can be triggered immediately
upon the detection of a packet loss. This results in shorter delay, which is
desirable by time sensitive applications. However, if packet loss is caused by
congestion, the immediate retransmission could aggravate the congestion situ-
ation and cause more packet losses.

• Where to cache the transmitted packets? In the hop-by-hop approach, each
packet could be cached at each and every intermediate node. Given the limited
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memory in sensor nodes, packets may only need to be cached at selected nodes.
The central issue is how to distribute cached packets among a set of nodes.
Distributed TCP Cache (DTC) (Dunkels et al. 2004), balances the buffer con-
straints and retransmission efficiency by using probability based selection for
cache points. In order to optimize retransmission efficiency, another possible
approach is to cache packets at the intermediate node that is closer to the
potential congested node where packet loss is more likely to arise.

4.3 Transport Protocols for WSNs

4.3.1 COngestion Detection and Avoidance (CODA)

CODA maintains an upstream congestion control mechanism (Wan et al. 2003). To
do so, it introduces three schemes: congestion detection, open-loop hop-by-hop
back-pressure, and closed-loop end-to-end multi-source regulation. CODA senses
congestion by taking a look at each sensor node’s buffer occupancy and wireless
channel load. If they exceed a predefined threshold value, a sensor node will notify its
neighbor source node(s) to decrease the sending rate through an open-loop hop-by-hop
backpressure. Receiving a backpressure signal, the neighbor nodes simply decrease the
packet sending rate and also replay the back-pressure continuously.

CODA regulates the multi-source rate by the closed-loop end-to-end approach,
which works as follows. Before sending a packet, a sensor node probes the channel
at a fixed interval, and if it finds the channel busy more than a predefined number, it
enables a control bit, called congestion bit, in the outgoing packet header to inform
the basestation that it is experiencing congestion. When the basestation receives a
packet with the congestion bit enabled, it sends back an ACK control message to
the source node(s) informing them to decrease their sending rate. When the con-
gestion is cleared, the sink actively sends an ACK control message to the source
nodes to inform them to increase their data rate.

Despite its satisfactory performance, CODA shows humble congestion handling
as the number of source nodes and data rate increases. It does not have a reliability
mechanism as well, and the latency time of closed-loop multi-source regulation
increases under heavy congestion.

4.3.2 Event-to-Sink Reliable Transport (ESRT)

ESRT aims at providing both upstream event reliability and congestion control
while maintaining the minimum energy expenditure (Akan and Akyildiz 2005).
ESRT can also reliably deliver multiple concurrent events to the basestation. ESRT
guarantees only the end-to-end reliable delivery of individual events, not individual
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packets from each sensor node. The notion of reliability is defined with respect to
the number of data packets originated by any event that are reliably received at the
basestation. The basestation node runs the ESRT algorithm to decide that the event
is reliably detected at the basestation or not. To do this, the basestation tracks the
event reporting frequency (f) of the successfully received packets, originated by a
particular event within a time interval, and matches it with the required reliability
metric. In ESRT, the WSN can stay in one of 5 states: “no congestion, low relia-
bility (NC, LR)”, “no congestion, high reliability (NC, HR)”, “congestion, high
reliability (C, HR)”, “congestion, low reliability (C, LR)”, and “optimal operating
region (OOR)”. According to each scenario ESRT reacts:

• If the current calculated reliability at the basestation falls below the required
reliability and there is no congestion (NC, LR), ESRT increases f abruptly.

• If there is no congestion and the reliability level is high (NC, HR), ESRT
decreases f cautiously.

• When congestion is detected despite high reliability level (C, HR), ESRT
decreases f to get rid of congestion without compromising the reliability.

• In case congestion is detected and reliability falls (C, LR), ESRT exponentially
decreases the value of f.

• In OOR, the required reliability is attained with minimum energy expenditure.
ESRT tries to operate on the optimum point where any event is reliably reported
to the basestation without causing congestion to the network.

ESRT assumes that the basestation has a high power radio and can reach all the
sensor nodes in a single broadcast message. The basestation broadcasts the newly
calculated value of f to the whole sensor network. Upon receiving the event
reporting frequency, each sensor node calculates its event reporting duration and
checks at the buffer level at the end of each reporting interval to guess any possible
congestion.

However, ESRT has some performance glitches:

• ESRT assumes that the basestation is one-hop away from all the sensor nodes,
which might not be applicable to many WSNs applications.

• ESRT floods the value of f to the whole network to override their event sensing
rate, which is unfair because different portions of the network or different
individual sensor nodes might face different traffic and therefore contribute
different levels of congestion.

4.3.3 Reliable Multi-segment Transport (RMST)

RMST guarantees upstream packet reliability using in-network processing (Stann
and Heidemann 2003). It adopts a cross layer synergy by working in cooperation
with the underlying routing protocol at the network layer and MAC protocol at the
link layer in order to guarantee hop-by-hop reliability. RMST uses the term
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fragmentation/reassembly, which simply means the packets originating from a
source node (called RMST entity) are fragmented and then reassembled at the
basestation. Fragmentation is necessary to adjust the size of the maximum trans-
mission unit (MTU) permissible by the transit nodes. The notion of reliability
adopted by RMST is the reliable delivery of fragments originating from any par-
ticular RMST entity to the basestation.

RMST introduces two modes of operations, cached and non-cached:

• In caching mode, the nodes between the source and basestation cache the
fragments and any RMST node can initiate recovery for missing fragments
along the path toward the source.

• In non-cached mode, only the source and the basestation maintain the cache and
the basestation monitors the integrity of an RMST entity in terms of the received
fragments. RMST uses selective NACK-based protocol to detect a fragment loss
and sends NACK from the detecting RMST node to the source node.
Each RMST entity receiving the NACK first looks at its cache to find out the
missing segment. In the negative case, it forwards the NACK to the RMST
entity down the hierarchy toward the source node. RMST is evaluated via
simulation.

RMST has some hitches, though. RMST is only suitable for applications that send
large size sensory data, such as JPEG image, which take advantage of fragmentation
at the source and reassembly at the basestation (Stann and Heidemann 2003). Also,
RMST might not be suitable for reliably delivering fragments from multiple RMST
entities to the same basestation, since it cannot ensure the orderly delivery of
fragments to the basestation. More number of fragments will cause more contention
for the channel i.e. more in-network data flow will happen. Moreover, RMST does
not provide any real-time reliability guarantee or congestion control.

4.3.4 Pump Slowly Fetch Quickly (PSFQ)

PSFQ is designed to provide downstream reliability where the control message
from the basestation is sent to the downstream sensor nodes at a relatively slow
pace, it allows any intermediate sensor node suffering packet loss, to quickly
recover any lost segment from immediate neighbors (Wan et al. 2002, 2005). This
protocol is suitable for timely dissemination of code segments to a group of specific
target sensor nodes for retasking their jobs. PSFQ employs a hop-by-hop error
recovery mechanism in which intermediate nodes also cache fragments and share
responsibility for loss detection and recovery.

PSFQ introduces three operations to maintain reliability:

• Pump operation. The basestation slowly broadcasts a packet containing control
scripts to its neighbors every T unit of time interval.
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• Fetch operation. It is triggered as soon as a sequence number gap is found by
any downstream node. In this mode, a sensor node halts its regular data routing
operation to its downstream nodes and issues a NACK message to its immediate
upstream neighbors to recover missing fragments. PSFQ supports the term
called loss aggregation in which case the fetch operation deals with more than
one packet loss.

• Report operation. Each node along the path toward the source node piggybacks
its status information in the report message, and then propagates the aggregated
report.

However, PSFQ has several minuses:

• PSFQ cannot recover the loss of every single packet due to congestion because
it uses only NACK.

• Both pump and the fetch operation are performed through broadcast, which
might be expensive in terms of energy usage.

• The slow nature of pump operation in PSFQ results in large delay.
• PSFQ does not allow any out-of-order delivery of packets, which poses a greater

challenge on cache management by the intermediate nodes.
• It is only intended for retasking the sensor node applications and thus might not

be suitable for upstream data reliability.
• It does not provide a congestion control mechanism.

4.3.5 Garuda

Garuda in small letters is a large mythical bird or bird like creature that shows in
Hindu and Buddhist mythology. Garuda Indonesia is the flag carrier of Indonesia.
GARUDA of this section is a reliable downstream data delivery transport protocol
for WSNs (Park et al. 2004). It addresses the problem of reliable data transfer from
the sink to the sensors. Reliability is defined in four categories:

• Guaranteed delivery to the entire field.
• Guaranteed delivery to a sub-region of sensors.
• Guaranteed delivery to a minimal set of sensors to cover the sensing region.
• Guaranteed delivery to a probabilistic subset of sensors.

GARUDA design is a loss-recovery core infrastructure and a two-stage
NACK-based recovery process. The core infrastructure is constructed using the
first packet delivery method. The first packet delivery method guarantees first
packet delivery using a Wait-for-First-Packet (WFP) pulse. WFP pulse is a small
finite series of short duration pulses sent periodically by the sink. Sensor nodes
within the transmission range of the sink will receive this pulse and wait for the
transmission of the first packet. The first packet delivery determines the hop-count
from the sink to the node. Nodes along the path can become candidates for the core.
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A core candidate elects itself to be a core node if it has not heard from neighboring
core nodes. In this manner, all core nodes are elected in the network. An elected
core node must then connect itself to at least one upstream core node.

GARUDA uses an out-of-order forwarding strategy to overcome the problem of
under-utilization in the event of packet losses. Out-of-order forwarding allows
subsequent packet to be forwarded even when a packet is lost. GARUDA uses a
two stage loss recovery process:

• The first stage involves core nodes recovering the packet. When a core node
receives an out-of-sequence packet, it sends a request to an upstream core node
notifying that there are missing packets. The upstream core node receiving that
message will respond with a unicast retransmission of the available requested
packet.

• The second stage is the non-core recovery phase, which involves non-core
nodes requesting retransmission from the core nodes. A non-core node listens to
all retransmissions from its core node and waits for completion before sending
its own retransmission request.

However, the approach followed by GARUDA might not be suitable for upstream
data reliability. In case of a very large WSN, the core construction and loss recovery
might be overly lengthy. GARUDA only offers reliable transfer of the very first
packet without guaranteeing the remaining packets of a particular message. Also, it
does not provide a congestion control mechanism, and is only evaluated through
simulation, not through testbed experimentation.

4.3.6 Tiny TCP/IP

Tiny TCP/IP tends to modify the TCP/IP protocol suite to make it viable for WSNs,
it also provides reliability that is a blend of end-to-end and hop-by-hop reliability
(Dunkels et al. 2003, 2004). The protocol assumes that each sensor node knows its
spatial location a priori and falls into any of the predefined subnets. Each sensor
node obtains the first two octets from the subnet and calculates the last two octets
based on its spatial location within the subnet.

Tiny TCP/IP proposes four modifications to the existing TCP/IP protocols,
spatial IP address assignment, shared context header compression, application
overlay routing, and distributed TCP caching (DTC). Sensor nodes of the same IP
subnet do not need to transmit a full IP header. Hence, the IP header can be
compressed and shared among the sensor nodes of the same subnet. Local IP
broadcasting of UDP datagrams is used to form an application layer overlay net-
work on top of the physical sensor network. Finally, DTC provides the packet
reliability using a distributed approach.

Tiny TCP/IP proposes a novel idea of TCP packet caching within the in-network
sensor nodes to minimize the burden of the end-to-end retransmission of fragments
in case packet loss occurs. Figure 4.1 shows the packet loss recovery process where
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intermediate nodes 5 and 7 cache packets 1 and 2 respectively and hence, in case
both the packets are lost, node 5 supplies packet 1 while node 7 retransmits packet 2
to the receiver (Rahman et al. 2008). In the worst case, the receiver fetches the lost
packet from the sender if the lost packet is not cached by any intermediate node.
The protocol is evaluated through both simulation and an actual WSN.

Tiny TCP/IP likely experiences some performance issues:

• The assumption of static spatial subnet IP makes it unsuitable for many of the
mobility-supported WSN applications.

• The protocol reliability performance depends on the efficiency of caching the
last seen packets. Which node will cache which packets thus makes a complex
design issue of this protocol.

• It does not explicitly define any congestion control mechanism.
• Finally, it does not explicitly address the design challenges of upstream or

downstream reliability.

4.3.7 Sensor TCP (STCP)

STCP is a generic end-to-end upstream transport protocol for a wide variety of
WSN applications. STCP provides both congestion detection and avoidance and a
variable degree of reliability based on the application requirement (Iyer et al. 2005).
STCP uses three types of packets: session initiation, data, and ACK. The session
initiation packet is meant to synchronize any sensor node with the basestation.
A sensor node is capable of originating multiple types of flow, such as event-driven,
continuous, etc.

STCP data packets play an important role in maintaining congestion information.
STCP functionalities is focused on the basestations. The basestation uses NACK for
applications requiring continuous end-to-end sensory data flow; hence, clock syn-
chronization is to be maintained between the basestation and the source nodes. In the
case of event-driven sensory data flow applications, source nodes use ACK to make
sure that the basestation has successfully received the packets. Each packet is kept in
the source node cache until it gets an ACK from the basestation. Intermediate nodes
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Fig. 4.1 Distributed caching
in Tiny TCP/IP (Rahman
et al. 2008)
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detect congestion based on queue length and notify the basestation by setting a bit in
the data packet headers. STCP was evaluated through simulation.

STCP assumes that all the sensor nodes within the WSN have strict clock
synchronization with the basestation, which might cause a performance problem.
Sensor nodes waiting for the ACK reply from the basestation suffer long latency in
large scale multihop WSNs.

4.3.8 SenTCP

SenTCP is an open loop hop-by-hop congestion control protocol intended for up-
stream traffic flow (Wang et al. 2005). SenTCP measures the degree of congestion
in every intermediate sensor node by taking a look at the average local packet
servicing time, local packet inter-arrival time, and the buffer occupancy. Against
congestion, SenTCP makes each intermediate sensor issue a feedback signal, to its
neighbors, carrying the local congestion degree and the buffer occupancy ratio. To
adjust the local data sending rate, SenTCP adopts a mechanism to process the
received feedback signal. The use of hop-by-hop feedback control regulates con-
gestion quickly and reduces packet dropping, which in turn preserves energy and
increases the throughput.

However, SenTCP only provides congestion control without loss recovery and
does not guarantee reliability. The efficiency of SenTCP is tested via simulation, its
suitability needs to be verified on a physical testbed.

4.3.9 Trickle

Trickle facilitates WSN reprogramming by allowing downstream nodes to intelli-
gently infer any new code availability and subsequently pushing the actual code in a
hop-by-hop approach (Levis et al. 2004). Trickle uses the concept of polite gossip to
propagate metadata regarding any updated code that needs to be pushed downstream.
Trickle focuses onmetadata propagation rather than on actual code propagation inside
the network. When a sensor node detects any older metadata from its neighbors, it
updates its neighbors by broadcasting the appropriate code. Conversely, if any sensor
node receives newer metadata from its neighbors, it broadcasts its own metadata,
which makes the receiving sensor node broadcast its own new code.

Trickle is evaluated through simulation and is experimented through a testbed.
The empirical results show that Trickle imposes an overhead of 3 packets/h and can
reprogram the entire network in 30 s. Although Trickle guarantees the delivery of
metadata about the code, it does not guarantee reliable delivery of the code itself.
Trickle does not provide a mechanism of knowing the current code version from
any one or a set of sensor nodes, this makes the basestation unaware of the current
status of the WSN.
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4.3.10 Fusion

Fusion provides an upstream congestion control mechanism that fuses three tech-
niques, hop-by-hop flow control, rate limiting of source traffic in the transit sensor
nodes to provide fairness, and a prioritized MAC protocol (Hull et al. 2004):

• Using hop-by-hop flow control, a sensor node performs congestion detection
and congestion mitigation. Congestion is detected through both queue occu-
pancy and channel sampling techniques. A node signals local congestion to its
neighbors by setting a congestion bit in the header of every outgoing packet, it
thus dampens any sensor node from sending to a neighbor who is overrunning
its queue.

• Rate limiting of source traffic in the transit sensor nodes tries to maintain the
fairness of allocating resources in the en-route sensor nodes so that a packet
crossing a significant amount of hops gets a proper treatment.

• Prioritized MAC protocol helps a sensor node under congestion to drain its
output queue by having prioritized access to the physical channel. Thus, a sensor
node experiencing congestion makes its back-off window one fourth the size of
a normal sensor back-off window, so that a sensor node experiencing congestion
has higher probability of winning the contention race.

The efficiency of Fusion was tested with a physical WSN testbed composed of 55
sensor nodes. The congestion handling capacity of Fusion was tested for both
event-based and periodic data traffic. Frequent channel probing is a cause of energy
depletion. Fusion lacks packet recovery mechanism and hence, does not provide for
reliability measure.

4.3.11 Asymmetric and Reliable Transport (ART)

ART is an asymmetric and reliable transport mechanism, which provides
end-to-end reliability in two directions based on energy-aware node classification
and a congestion control mechanism (Tezcan and Wang 2007). ART protocol
operations include three main functions:

• Reliable query transfer
• Reliable event transfer
• Distributed congestion control

In ART, sensor nodes are classified as essential (E-nodes) and non-essential
(N-nodes), end-to-end reliable communications are provided by using asymmetric
acknowledgement (ACK) and negative acknowledgement (NACK) signaling
between E-nodes and the sink node. A distributed energy aware congestion control
mechanism, which relies on receiving ACK packets from the sink, is devised. When
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congestion is detected, ART simply regulates data traffic by temporarily squelching
the traffic of N-nodes. When there is no congestion, both E-nodes and N-nodes
participate in relaying messages to the sink. However, only E-nodes are responsible
for providing end-to-end event and query reliability by recovering the lost
messages.

4.3.11.1 Reliable Query Transfer

Reliable query (sink-to-sensors) transfer is provided using negative acknowledge-
ments sent from E-Nodes to the sink if there is a query loss. Since the queries sent
by the sink are in order, sensors can detect the lost message by use of sequence
numbers in the query messages. A NACK message is sent if a gap is detected, i.e.,
an out of sequence number, when a sink sends a new query message to the
E-Nodes. When an E-Node detects a gap in the sequence number of the new query,
it sends an NACK back to the sink to recover the previous query. However, lost
query messages can be detected when E- Nodes receive a new query message. This
may result in two problems:

• Loss of the last query message cannot be detected. Consider the last message qk
with sequence number k is lost. E-Node may not handle the lost message since
there is no consecutive query.

• The query transmission frequency might be very low such that lost queries
cannot be recovered before timeout.

To differentiate the final query message, an extra Poll/Final (P/F) bit can be set by
the sink node. P/F bit is set either when a message is the last query or the next query
will not be sent before timeout. The sink retransmits this message until an ACK is
received because ACK mechanism is used in reliable event transfer. Therefore,
E-Nodes, which receive a query with P/F bit set, send an ACK to the sink indicating
a successfully received query. An example query transmission scenario is illustrated
in Fig. 4.2. In Fig. 4.2a, the P/F bit is not used, the sink sends queries 1, 2 and 3
consecutively where q3 is lost. After q3, the sink decreases the query transmission
frequency and sends q4 after a time period Tq. In this case, q3 is recovered when q4
is received. If the loss recovery period Tq is very long, even though q3 can be
recovered, long recovery period may affect the performance. Instead, the same
scenario is depicted when P/F bit is set in Fig. 4.2b, where q3 is recovered before
the next query, since an ACK is not received at the sink. This method is very
helpful when the query traffic pattern is not uniformly distributed, the interarrival
times between queries are not constant, hence, the use of P/F bit makes the transport
protocol flexible and reliable.
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4.3.11.2 Reliable Event Transfer

The NACK mechanism used in query transfer does not work for reliable event
transfer because event information is sent by individual sensors and it is usually out
of sequence. Hence, NACKs cannot handle the lost event messages by finding the
gap in sequence numbers. However, using an ACK mechanism that requires ac-
knowledgement for each message may result in inefficient use of battery power,
which is a very scarce resource in WSNs. For event reliability, ART proposes a
lightly loaded ACK mechanism between the E-Nodes and the sink node. Each

Sink

Tq

q1 q2 q3

q4 NACK        q3

Time   E-node

Sink

Time out

q1 q2 q3
q4

Time   E-node

q3

Time out

E-node

Intermediate nodeE-node

Intermediate nodeE-node

Sink E-node Intermediate node

(a)

(b)

(c)

Fig. 4.2 Reliable transfers (Tezcan and Wang 2007). a Connectionless query reliability.
b Connection-oriented query reliability. c Event reliability
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E-Node waits for acknowledgement for only the first message that reports an event,
i.e., event-alarm. When a new sensing value is obtained, an E-Node decides if it
reports an event or not. If it is an event-alarm, it simply marks the message by
setting the event notification (EN) bit. Therefore, the sink node sends ACK for only
the messages that are marked as event-alarm. EN bit, is used to force the sink to
send acknowledgement. Event-alarm rate depends on the distribution of events
detected in the sensing field. Similar to downstream communications, only the
E-Nodes are responsible for waiting the acknowledgement and may retransmit if
necessary.

In Fig. 4.2c an event transfer scenario is illustrated where v3 and v6 are
event-alarm messages and their EN bits are set. In this example, the first event alarm
message is received by the sink, and the ACK is transmitted. However, next alarm
message v6 is lost. Since the sender is responsible for loss detection and recovery,
E-Node retransmits v6 after retransmission timeouts. Therefore, loss recovery is
triggered only for event-alarm messages by the E-Node, which is very effective in
energy saving.

4.3.11.3 Distributed Congestion Control

In ART, congestion control is handled by the E-nodes in a distributed manner. It is
based on monitoring the ACK packets of event reports. If an ACK is not received
during a timeout period by the E-node, the traffic of non-essential sensors is reduced
by sending congestion alarm messages, which will temporarily make them stop
sending their measurements. When an ACK is received, congestion-safe message is
announced to resume normal operation of the network.

4.3.12 Congestion Control and Fairness for Many-to-One
Routing in Sensor Networks (CCF)

CCF exactly adjusts traffic rate based on packer service time along with fair packet
scheduling algorithms, while Fusion performs stop-and-start non-smooth rate
adjustment to mitigate congestion (Ee and Bajcsy 2004). CCF was proposed as a
distributed and scalable algorithm that eliminates congestion within a sensor net-
work and ensures the fair delivery of packets to a sink node. CCF exists in the
transport layer and is designed to work with any MAC protocol in the data-link
layer. In the CCF algorithm, each node measures the average rate r at which it can
send packets, divides the rate r among the number of children nodes, adjusts the rate
if queues are overflowing or about to overflow, and propagates the rate down-
stream. Figure 4.3 displays a typical congestion control scenario.
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CCF uses packet service time to deduce the available service rate; congestion
information is thus implicitly reported. Congestion is controlled on a hop-by-hop
manner, and each node uses exact rate adjustment based on its available service rate
and child node number. CCF guarantees simple fairness, but it has some
shortcomings:

• The rate adjustment in CCF relies only on packet service time, which could lead
to low utilization when some sensor nodes do not have enough traffic or if there
is a significant packet error rate.

• Furthermore, it cannot effectively allocate the remaining capacity and as it uses
work conservation scheduling algorithm, it has a low throughput in the case that
some nodes do not have packets to send.

• Allocating equal resources for each sensor node to provide equal opportunity
might be inefficient for many scenarios. For instance, some sensor nodes might
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Fig. 4.3 Congestion control scenario (Ee and Bajcsy 2004). a The grey colored node suffers
congestion. b It informs downstream nodes to reduce transmission rates. c Congestion is reduced.
d It informs downstream nodes to increase transmission rates
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be capturing events more often than others, a video sensor capturing 10 frames
per second needs a higher bandwidth and channel access than that required by a
static sensor.

CCF is evaluated through simulation and in a real WSN environment; it implements
the congestion control algorithm in the transport layer, and is independent of the
underlying network and MAC layers. CCF does not provide a reliability
mechanism.

4.3.13 Priority-Based Congestion Control Protocol (PCCP)

PCCP is designed to avoid/reduce packet loss while guaranteeing weighted fairness
and supporting multipath routing with lower control overhead (Wang et al. 2007).
PCCP design motives are:

• In WSNs, sensor nodes might have different priorities based on their function or
location. Therefore congestion control protocols need to guarantee weighted
fairness so that the sink can get different, but in a weighted fair way, throughput
from sensor nodes.

• With the fact that multipath routing is used to improve system performance of
WSNs, congestion control protocols need to be able to support both single path
routing and multipath routing.

• Congestion control protocols need to support QoS in terms of packet delivery
latency, throughput and packet loss ratio, which is required by multimedia
application in WMSNs.

PCCP consists of three components: intelligent congestion detection (ICD), implicit
congestion notification (ICN), and priority based rate adjustment (PRA), as detailed
below:

• ICD detects congestion based on packet interarrival time ta
i , and packet service

time ts
i . The joint participation of interarrival and service times reflect the current

congestion level and therefore provide helpful and rich congestion information.
A congestion degree d(i), over a specified time interval in each sensor node i as
calculated:

d ið Þ ¼ tis
tia

ð4:3Þ

The congestion degree is intended to reflect the current congestion level at each
sensor node. When the interarrival time is smaller than the service time, d(i) is
larger than 1 meaning a node experiences congestion, when d(i) is smaller than 1
congestion abates. Based on d(i) the child nodes adjust their transmission rate.
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• In ICN, congestion information is piggybacked in the header of data packets.
PCCP uses implicit congestion notification to avoid transmission of additional
control messages and therefore help improve energy efficiency. Taking advan-
tage of the broadcast nature of wireless channel, child nodes can capture such
information when packets are forwarded by their parent nodes towards the sink,
assuming that there is no power control and the omni-directional antenna is
used.

• PCCP designs a priority based algorithm, PRA, executed in each sensor node for
rate adjustment, in order to guarantee both flexible fairness and throughput.
In PRA, each sensor node is given a priority index, it is designed to guarantee
that:

– The node with higher priority index gets more bandwidth, proportional to the
priority index.

– The nodes with the same priority index get equal bandwidth.
– A node with sufficient traffic gets more bandwidth than a node that generates

less traffic. The use of priority index provides PCCP with high flexibility in
realizing weighted proportional fairness.

The performance of congestion control protocols mostly depends on whether
congestion can be detected in time or even correctly predicted in advance, whether
congestion degree can be accurately measured, whether the detected or predicted
congestion can be reported quickly to the nodes generating heavy traffic, and
whether these nodes can trigger correct rate adjustment. PCCP uses hop-by-hop
implicit congestion notification, Eq. (4.3) captures congestion degree at interme-
diate nodes much more precisely than queue-length based congestion detection in
existing work (Wan et al. 2003, 2005; Hull et al. 2004). However the speed with
which PCCP detects congestion is dependent on how quickly packet interarrival
and service times can be correctly measured.

PCCP has been evaluated through simulation. With many attractive features,
PCCP has some limitations. PCCP does not provide a packet loss recovery
mechanism, and it lacks the notion of reliability guarantee.

4.3.14 Siphon

Siphon is an upstream congestion control protocol that aims at maintaining appli-
cation fidelity, congestion detection, and congestion avoidance by introducing some
virtual sinks (VS) with a longer range multi-radio within the sensor network (Wan
et al. 2005). Generally, congestion control schemes are effective at mitigating
congestion through rate control and packet drop mechanisms, but at the cost of
significantly reducing application fidelity measured at the sinks. To address this
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problem Siphon exploits the availability of a small number of all wireless,
multi-radio virtual sinks that can be randomly distributed or selectively placed
across the sensor field. Virtual sinks are capable of siphoning off (drawing off or
taking out) data from regions of the sensor field that are beginning to show signs of
high traffic load.

Siphon comprises a set of fully distributed algorithms that support virtual sink
discovery and selection, congestion detection, and traffic redirection in sensor
networks. Siphon is based on a Stargate implementation of virtual sinks that uses a
separate longer range radio network (based on IEEE 802.11) to siphon events to one
or more physical sinks, and a short range mote radio to interact with the sensor field
at siphon points.

VSs can be dynamically distributed so that they can tunnel traffic events from
regions of the sensor field that are about to show signs of a high traffic load. At the
point of congestion, these VSs divert the extra traffic through them to maintain the
required throughput at the basestation. The siphon algorithm mainly aims at
addressing the VS discovery, operating scope control, congestion detection, traffic
redirection, and congestion avoidance.

VS discovery works as follows:

• The physical sink periodically sends out a control packet with an embedded
signature byte. The signature byte contains the hop count of the sensor nodes
that should use any particular VS.

• Each ordinary sensor node maintains a list of neighbors through which it can
reach its parent VS.

• Finally each VS maintains a list of its neighbor VSs. Each VS has a dual radio
interface, a long range radio interface to communicate with other VSs or with a
physical sink (if applicable), and a regular low power radio to communicate with
the regular sensor nodes. In the case of congestion, a sensor node enables the
redirection bit in its header and forwards the packet to its nearest VS. When the
VS finds the redirection bit enabled, it routes the packets using its own long
range communication network toward the physical sink, bypassing the under-
lying sensor network routing protocols.

Siphon uses a combination of hop-by-hop and end-to-end congestion control
depending on the location of congestion. If there is no congestion, it uses
hop-by-hop data delivery model. In case of congestion, it uses hop-by-hop data
delivery model between source nodes and the VS at point of congestion and an
end-to-end approach between the VS handling the congestion and the physical sink.

Several metrics have been devised to analyze the performance of Siphon on
sensing applications:

� Energy Tax ¼ Total packets dropped in the network
Total packets received at the physical sink

ð4:4Þ
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Since packet transmission/reception consumes the main portion of the energy of
a node, the average number of wasted packets per received packet directly
indicates the energy saving aspect of Siphon.

� Energy tax savings ¼ Average Energy Taxwithout Siphonð Þ � Average Energy Taxwith Syphonð Þð Þ
Average Energy Taxwithout Siphonð Þ ð4:5Þ

This metric indicates the average Energy Tax improvement or degradation from
using Siphon.

� Fidelity Ratio ¼ Packets received at the physical sink with Siphonð Þ
Packets received at the physical sink without Siphonð Þ ð4:6Þ

The ratio indicates the average fidelity improvement or degradation from using
Siphon.

� Residual Energy ¼ Remaining Energy
Initial Energy

ð4:7Þ

The ns-2 energy model for IEEE 802.11 network is used to measure the
remaining energy of each node at the end of a simulation. The residual energy
distribution allows to examine the load balancing feature of Siphon and to
estimate the effective network lifetime.

Siphon has been implemented on a real sensor network using TinyOS (TinyOS
2012) on Mica2 motes (Hill et al. 2000). Results from the analysis, ns-2 simulation
(The Network Simulator - NS2 2013), and from an experimental testbed show that
virtual sinks can scale mote networks by effectively managing growing traffic
demands while minimizing the impact on application fidelity. The optimality of
Siphon depends on the optimality of the number of VSs. Although Siphon
addresses the congestion detection and avoidance mechanism, it does not provide
for packet recovery. Also, Siphon does not address reliability.

4.3.15 Reliable Bursty Convergecast (RBC)

RBC addresses the challenges of bursty convergecast in multihop wireless sensor
networks (Zhang et al. 2007), where a large burst of packets from different locations
needs to be transported reliably and in real-time to a basestation (convergecast).
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RBC attempts to overcome issues related to hop-by-hop control mechanisms,
specifically:

• They do not schedule packet retransmissions appropriately; as a result,
retransmitted packets further increase the channel contention and cause more
packet loss.

• Due to in-order packet delivery and conservative retransmission timers, packet
delivery can be significantly delayed in existing hop-by-hop mechanisms, which
leads to packet backlogging and reduction in network throughput.

On the other hand, the new network and application models of bursty convergecast
in WSNs offer unique opportunities for reliable and real-time transport control:

• First, the broadcast nature of wireless channels enables a node to determine, by
snooping the channel, whether its packets are received and forwarded by its
neighbors.

• Second, time synchronization and the fact that data packets are time-stamped
relieve transport layer from the constraint of in-order packet delivery, since
applications can determine the order of packets by their timestamps.

Addressing the highlighted challenges, and taking advantage of the unique WSNs
models, RBC features some mechanisms:

• For improved channel utilization, RBC uses a window-less block acknowl-
edgment scheme that enables continuous packet forwarding in the presence of
packet and ACK-loss. The block acknowledgment also reduces the probability
of ACK-loss, by replicating the acknowledgment for a received packet. Given
that the number of packets competing for channel access is less in implicit-ACK
based schemes than in explicit-ACK based schemes, RBC is based on the
paradigm of implicit-ACK (i.e., piggybacking control information in data
packets).

• For a better retransmission incurred channel contention, RBC introduces dif-
ferentiated contention control, which ranks nodes by their queuing conditions as
well as the number of times that the queued packets have been transmitted.
A node ranked the highest within its neighborhood accesses the channel first.

In addition, RBC embodies techniques that address the challenges of timer-based
retransmission control in bursty convergecast:

• To deal with continuously changing ACK-delay, RBC uses adaptive retrans-
mission timer which adjusts itself as network state changes.

• To reduce delay in timer-based retransmission and to expedite retransmission of
lost packets, RBC uses block-NACK, retransmission timer reset, and channel
utilization protection.
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RBC priority queue management for window-less block management merits further
elaboration. An arbitrary pair of nodes S and R, where S is the sender and R is the
receiver are considered. The sender S organizes its packet queue as (M + 2) linked
lists, as shown in Fig. 4.4, where M is the maximum number of retransmissions at
each hop. For convenience, the linked lists are called virtual queues, and are
denoted as Q0, …, QM + 1. The virtual queues are ranked such that a virtual queue
Qk ranks higher than Qj if k < j.

Virtual queues Q0, Q1, …, and QM buffer packets waiting to be sent or to be
acknowledged, and QM + 1 collects the list of free queue buffers. The virtual queues
are maintained as follows:

• When a new packet arrives at S to be sent, S detaches the head buffer of QM + 1,
if any, stores the packet into the queue buffer, and attaches the queue buffer to
the tail of Q0.

• Packets stored in a virtual queue Qk (k > 0) will not be sent unless Qk − 1 is
empty; packets in the same virtual queue are sent in FIFO order.

• After a packet in a virtual queue Qk (k ≥ 0) is sent, the corresponding queue
buffer is moved to the tail of Qk + 1, unless the packet has been retransmitted
M times in which case the queue buffer is moved to the tail of QM + 1.

• When a received packet is acknowledged, the buffer holding the packet is
released and moved to the tail of QM + 1.

The above rules help identify the relative freshness of packets at a node, which is
useful in the differentiated contention control; they also help maintain without using
sliding windows the order in which unacknowledged packets have been sent,
providing thus the basis for window-less block acknowledgment. Moreover, newly
arrived packets can be sent immediately without waiting for the previously sent

Fig. 4.4 RBC virtual queues at a node (Zhang et al. 2007)
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packets to be acknowledged, which enables continuous packet forwarding in the
presence of packet and ACK-loss.

For block acknowledgment and reduced ACK-loss, each queue buffer at S has an
ID that is unique at S. When S sends a packet to the receiver R, S attaches the ID of
the buffer holding the packet as well as the ID of the buffer holding the packet to be
sent next. In Fig. 4.4, for example, when S sends the packet in buffer a, S attaches
the values a and b. Given the queue maintenance procedure, if the buffer holding
the packet being sent is the tail of Q0 or the head of a virtual queue other than Q0,
S also attaches the ID of the head buffer of QM + 1, if any, since one or more new
packets may arrive before the next queued packet is sent in which case the newly
arrived packet(s) will be sent first. For instance, when the packet in buffer c of
Fig. 4.4 is sent, S attaches the values c, d, and f.

When the receiver R receives a packet p0 from S, R learns the ID n’ of the buffer
holding the next packet to be sent by S. When R receives a packet pn from S next
time, R checks whether pn is from buffer n’ at S: if pn is from buffer n’, R knows that
there is no packet loss between receiving p0 and pn from S; otherwise, R detects that
some packets are lost between p0 and pn.

RBC is evaluated by experimenting with an outdoor testbed of 49 MICA2 motes
(Drexel University 2013) and with realistic traffic trace from a previous project
called Lites (Arora et al. 2004), where a typical event generates up to 100 packets
within a few seconds and the packets need to be transported from different network
locations to a basestation, over multi-hop routes.

4.3.16 More TCP Protocols for WSNs

The technology wheel never stops, it goes on spinning in all dimensions, new
protocols will continue emerging, catching them should persist, this section will go
on introducing more protocols, while Fig. 4.5 and Table 4.1 compare those who
came under focus throughout the previous sections.

The segmented data reliable transport (SDRT), is proposed to achieve reliable data
transfer in underwater sensor network scenarios (Xie et al. 2010). SDRT is essentially
a hybrid approach of automatic repeat request (ARQ) and forward error correction
(FEC). It adopts efficient erasure codes, random forward-error correction codes
transferring encoded packets block by block and hop by hop. Compared with tradi-
tional reliable data transport protocols, SDRT can reduce the total number of trans-
mitted packets, improve channel utilization, and simplify protocol management.

Tunable reliability with congestion control for information transport in WSNs
(TRCCIT) provides for a tunable reliability with congestion control for information
transport in WSNs (Shaikh et al. 2010). TRCCIT provides desired application
reliability, despite evolving network conditions, by adaptive retransmissions and
suppression of the unnecessary information. Reliability of information transport is
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achieved by hybrid acknowledgement (HACK) mechanism aided by localized
retransmission timer management. TRCCIT efficiently monitors the information
flow and adapts between single path and multiple paths in order to alleviate con-
gestion such that desired application reliability is maintained.

Energy efficient and Reliable Transport Protocol for Wireless Sensor Networks
(ERTP), is designed for data streaming applications, in which sensor readings are
transmitted from one or more sensor sources to a basestation (or sink) (Le et al.
2009). ERTP uses a statistical reliability metric, which ensures that the number of
data packets delivered to the sink exceeds a defined threshold. Extensive discrete
event simulations and experimental evaluations show that ERTP is significantly
energy efficient and can reduce energy consumption. Consequently, sensor nodes
are more energy efficient and the lifespan of the unattended WSN is increased.

Distributed transport for sensor networks (DTSN) is a reliable transport protocol
for convergecast and unicast communications in WSNs (Marchi et al. 2007).
In DTSN, the source completely controls the loss recovery process in order to
minimize the overhead associated with control and data packets. The basic loss
recovery algorithm is based on automatic repeat request (ARQ), employing both
positive ACK and NACK delivery confirmation. Consequently, DTSN is able to
detect when all packets of a session are lost, besides scattered gaps in the data
packet sequence. Caching at intermediate nodes is used to avoid the inefficiency of
the strictly end-to-end transport reliability TCP-like model, commonly employed in
broadband networks. Reliability differentiation is achieved by means of the smart
integration of partial buffering at the source, integrated with erasure coding and
caching at intermediate nodes. The simulation results attest the effectiveness of both
the total reliability and the reliability differentiation mechanisms in DTSN.

Transport protocols for WSNs

Reliability Congestion control Reliability and
Congestion control

Upstream:
RBC 

RMST 
TinyTCP/IP

Downstream:
GARUDA

PSFK
Trickle

CODA
CCF 

Fusion
PCCP 

SenTCP
Siphon

ART
ESRT
SCTP

Fig. 4.5 Classification of TCP protocols for WSNs
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Table 4.1 Comparison of TCP protocols for WSNs

Congestion control mechanism

Protocol Upstream Congestion
detection

Congestion
notification

Rate adjustment End-to-end/
Hop-by-hop

ART Y Service time Implicit Regulates traffic by
decreasing active
N-nodes

Y/–

CCF Y Service time Implicit Rate adjustment by
explicit feedback

–/Y

CODA Y Queue length &
Channel loading

Explicit AIMD Y/Y

ESRT Y Queue length Implicit Rate adjustment by
controlling f at the
basestation

Y/–

Fusion Y Queue length Implicit Explicit feedback &
draining congested
nodes & MAC layer
transmission priority
for congested sensors

–/Y

PCCP Y Service/Interarrival
times

Implicit Rate adjustment
depending on
measured congestion
degree and priority
index

–/Y

SenTCP Y Queue length &
Service/Interarrival
times

Explicit Rate adjustment by
explicit feedback

–/Y

Siphon Y Queue length &
application fidelity

Traffic redirection Y/Y

STCP Y Queue length Implicit AIMD Y/–

Reliability mechanism

Protocol Upstream/
Downstream

Type Loss recovery Loss detection &
notification

End-to-end/
Hop-by-hop

ART Y/Y Event/Query Packet
retransmission

ACK & NACK &
Time out

Y/–

ESRT Y/– Event Increase
reporting
frequency

Time out Y/–

GARUDA –/Y Code/Packet Packet
retransmission

NACK & Out of
sequence

–/Y

PSFQ –/Y Packet Packet
retransmission

NACK & Time out
& Out of sequence

–/Y

RBC Y/– Event/Packet IACK & NACK –/Y

RMST Y/– Packet Packet
retransmission

NACK & time out –/Y

STCP Y/– Packet/Event Packet
retransmission

ACK & NACK &
time out

Y/–

TinyTCP/IP Y/– Packet Packet
retransmission

ACK & Out of
sequence

Y/Y

Trickle –/Y Metadata Packet
retransmission

Out of sequence –/Y
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4.4 Conclusion for Enrichment

As shown throughout this chapter, the transport layer main task is to ensure the
reliability and quality of data at the source and the sink. Transport layer protocols in
WSNs should support multiple applications, variable reliability, packet-loss
recovery, and congestion control. A transport layer protocol should be generic
and independent of the application. Transport protocols are quite abundant, with
varying design goals to match their intended use.

Depending on their functions, WSN applications can tolerate different levels of
packet loss. Packet loss may be due to bad radio communication, congestion, packet
collision, full memory capacity, and node failures. Packet loss can result in wasted
energy and degraded quality of service (QoS) in data delivery. Detection of packet
loss and correctly recovering missing packets can improve throughput and energy
expenditure. There are two approaches for packet recovery: hop-by-hop and
end-to-end. Hop-by-hop retransmission requires that an intermediate node cache the
packet information in its memory. This method is more energy efficient since
retransmission distance is shorter. For end-to-end retransmission, the source caches
all the packet information and performs retransmission when there is a packet loss.
End-to-end retransmission allows for variable reliability whereas hop-by-hop
retransmission performs better when reliability requirements are high.

A congestion control mechanism monitors and detects congestion, thereby
preserving energy. Before congestion occurs, the source is notified to reduce its
sending rate. Congestion control helps reduce retransmission and prevents sensor
buffer overrun. As in packet-loss recovery, there are two approaches to congestion
control: hop-by-hop and end-to-end. Hop-by-hop mechanism requires every node
along the path to monitor buffer overflows. Hop-by-hop mechanism lessens con-
gestion at a faster rate than the end-to-end mechanism. When a sensor node detects
congestion, all nodes along the path change their behavior. End-to-end mechanism
relies on the end nodes to detect congestion. Congestion is flagged when timeout or
redundant acknowledgements are received. There are tradeoffs between hop-by-hop
and end-to-end approaches for packet-loss recovery and congestion control
mechanism. Depending on the type, reliability, and time sensitivity of the appli-
cation, one approach may be better than the other. As presented in details all over
this chapter, transport layer protocols in WSNs addresses, with different interests,
the above design issues.

As time goes by, knowledge and experience accumulate, what is worthy persists,
protocols are not different, as much they are useful, they are recalled, cited.

4.5 Exercises

1. State the distinctive features of WSNs.
2. Differentiate between traditional transport control and those for WSNs.
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3. What are the performance metrics of transport Protocols for WSNs?
4. How data may be categorized in WSNs?
5. Discuss the obsessions of transport protocols in WSNs.
6. How could reliability be evaluated in WSNs?
7. Define congestion and explain how it effects energy consumption.
8. What are the mechanisms that may be used to control congestion in WSNs?
9. What are the causes of packet loss in WSNs? How to overcome packet loss?

10. Categorize the transport protocols for WSNs into end-to-end and hop-by-hop.
11. Compare the WSNs transport protocols that account for reliability.
12. Compare the WSNs protocols that control congestion.
13. Compare the WSNs protocols that consider both reliability and congestion.
14. Which of the transport protocols considered in this chapter are experimentally

tested?
15. Look up for newly introduced transport protocols for WSNs. Determine their

features and functionality.
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Part II
WSNs Experimentation and Analysis



Chapter 5
Testbeds for WSNs

Simulation is imagining … Testbed is sore reality.

5.1 WSN Testbeds Principles

As iterated throughout this book, WSNs are large-scale distributed embedded
systems incorporating small, limited energy, and resource constrained sensor nodes
communicating over wireless media. Because of their massively distributed nature,
the design, implementation and evaluation of sensor network applications, mid-
dleware and communication protocols are difficult tasks. The first design steps can
often be made with the help of simulations; however, they frequently force the
designer to make non-realistic assumptions about traffic, failure patterns and
topologies. The coming after steps of implementation, and evaluation of application
performance, as well as assessment of error resilience, and other nonfunctional
properties, require the use of real hardware, realistic environments and realistic
experimental setups.

Practically, real experiments with distributed systems like WSNs become very
cumbersome if the number of nodes exceeds a few dozens. In fact, all the phases of
the experiment are almost infeasible without a targeted, specialized support,
specifically:

• Deployment of the nodes in the desired, maybe heterogeneous or hierarchical
configuration.

• Making changes in the software of individual nodes.
• Conducting experiments that include both data processing and

self-reconfiguration of the network.

For all but the smallest experiments, a dedicated infrastructure supporting the
above listed steps is necessary. This infrastructure, referred to as testbed, makes it
possible to create, modify and observe the target configuration, as hardware and
software, in its whole complexity including nodes, communication protocols,
middleware and application. This target configuration is in some literature referred
to as system under examination (SUE) (Handziski et al. 2006).
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Current surveys and forecasts predict that the number of wireless devices is
going to increase tremendously. These wireless devices can be computers of all
kinds, notebooks, netbooks, smartphones and sensor nodes that evolve into
real-world scenarios forming in the future a “Real-World-Internet”. In current
research of the Future Internet small battery driven devices forming the “Internet of
Things” are of special focus as the number of wireless devices is going to increase
tremendously. A survey of the wireless world research forum predicted that in the
year 2017 there will be seven trillion wireless devices for seven billion humans
which is equivalent to 1000 devices per human being on average (Gantz et al.
2008).

In recent networking research, testbeds gain more and more attention, especially
in the context of Future Internet and WSNs. This development stems from the fact
that simulations and even emulations are not considered sufficient for the deploy-
ment of new technologies as they often lack in depth view of the inner minute
functioning details. In order to investigate how protocols and algorithms perform in
real world, experimental research is a capable means. In research institutions,
testlabs or testbeds are deployed exclusively for all kinds of research experiments.
Setup in realistic environment is indispensable to understand large-scale networks
enclosing many devices.

Several global initiatives for experimental network research have started. While
these large projects include all aspects of the Future Internet, some special projects
focus on the Internet of Things and the Real-World-Internet. Especially in the
Internet of Things with WSNs, there is an upcoming need for large heterogeneous
testbeds available 24 h a day, and that can be automatically used without
supervision.

The deployment of testbeds is challenging and user and operator requirements
need to be considered carefully. Therefore, the goal is to design an architecture that
allows operators of WSN testbeds to offer numerous users access to their testbeds in
a standardized flexible way that matches these requirements. In Sect. 5.1.1 of this
chapter, these requirements are comprehensively identified. Section 5.1.2 describes
Full-scale and Miniaturized Testbeds. Section 5.1.3 illustrates the concepts of
Virtualizing and Federating Testbeds. Section 5.2 focuses on the design and
applications of the most significant testbeds, regarding concepts illustration, hard-
ware, software, and specific deployment and experimentation. Chapter 7 surveys
the WSN manufacturing companies, while Chap. 8 focuses on the datasheets of the
sensor motes and the multiplicity of components used in typical testbeds
implementations.

5.1.1 Requirements from Testbeds Deployment

This section identifies the main requirements and design goals for a WSN testbed.
Precisely, all phases of the sensor network life cycle are to be considered, specifically,
design, deployment, test, and experiment implementation and evaluation. A testbed
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solution supporting these features will offer substantial help in terms of speeding up
the preparation and conducting of experiments with different SUEs and tuning their
parameters. As such, a testbed, that is expected to replicate an environment and
support all research and experimentation activities, must meet a number of require-
ments (Lundgren et al. 2002; Handziski et al. 2006; Slipp et al. 2008):

• Building different SUE architectures. A number of different WSN architectures
have emerged. As previously elaborated in Chap. 3, in the flat architecture the
sensor network is composed of homogeneous sensor nodes running the same
application and protocol code. In a segmented architecture a number of flat
networks are coupled by gateways. The different flat networks can use incom-
patible radio technologies. In a multi-tier architecture or hierarchical architecture
a sensor network application is partitioned such that parts of it run on low-end
sensor nodes, whereas other parts run on more capable high-end sensor nodes
which have no energy constraints and have better memory and computational
resources. As an example, the IEEE 802.15.4 protocol, where the full-function
devices (FFDs) have much more responsibilities than the reduced-function
devices (RFDs) (LAN/MAN Standards Committee 2006). In addition to being
connected to the low-end nodes, the high-end nodes can interact among
themselves and with entities higher in the hierarchy via a backbone network.

• Instrumentation and experimental control. The testbed must provide instru-
mentation for generating data and examining network performance. Facilities
must also be provided to monitor, program, test, and run the SUE. It is awkward
to obtain an adequate understating of the behavior of some networks without
comprehensive instrumentation.
Another requirement in the setup of experiments is to have control over the
times when certain actions like the configuration or start of sensor nodes have to
be performed. For example, to investigate the influence of interference on the
transmission of data between two nodes, the transmitting node and the inter-
fering node should be started at the same time. It is practically simple for an
experimenter to describe such scenarios and have them executed in the testbed.
The testbed must also ensure programmable configuration of network and node
parameters such as application selection, data logging, selection of the nodes
that will participate, and ability to pause, resume, and stop experiments.
Repeatability of experiments is a requirement to account for varying environ-
mental necessities and functional parameters.
For an industrial environment, the testbed may have to replicate the multipath
that exists in radio harsh environment (RHE), and provide for the control of
electromagnetic interference (EMI) that would particularly exist. It should also
provide control over signal strength to enable testing under varying signal
strength conditions; this includes effects due to changes in distance.

• Easy reprogramming and debugging. The implementation and debugging of
sensor network applications requires frequent reprogramming of the nodes with
new software. This is needed to compare different solutions, but most critically
for stepwise debugging and improving of the software. There exist approaches
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(and protocols) to distribute new application code within the sensor network
application and over the wireless interface (Wan et al. 2002; Hui and Culler 2004),
but this can be tedious in case of low communication bandwidth and sporadic
reachability of individual nodes. It is therefore desirable to support the repro-
gramming of nodes in an “out-of-band” fashion using the testbed infrastructure.
To save time, especially in large testbeds, the reprogramming of nodes should be
executable in parallel. Fixing bugs on single nodes can be a hard task and it gets
considerably more complicated in a distributed system like a WSN, where indi-
vidual nodes only contribute slightly to the global state, and race conditions can
cause serious headache to the programmer. Determining the current state of the
system and how it was reached, is crucial for distributed debugging.
However, hosting a distributed debugger that allows a complete
“happened-before” ordering of the events simply exceeds the computational
capacities of the sensor nodes. A testbed should provide some support for
distributed debugging. Simply, the programmer of a sensor node should have
some printf()-like routine for generating debug messages with additional
time-stamping at its disposal. When the timestamps have a reasonable resolution
and are properly synchronized with the timestamps generated at other nodes, it
is possible to figure out the ordering of events. Noteworthy, generating mes-
sages with debug information changes the execution timing of the sensor node
software, and hence possibly its behavior. This cannot be avoided, but a testbed
should give the possibility to transport such debug messages in an “out-of-band”
fashion, i.e. without using the primary wireless air interface of a sensor node.
This way, the debug messages do not influence the protocol behavior or the
bandwidth sharing between sensor nodes, nor is any additional congestion
created.

• On-the-fly configuration changes. The main purpose of a testbed is the inves-
tigation of different solutions in reproducible experiments under controlled
conditions. Checking the robustness of applications and protocols against node
failures or addition of new nodes is one of the major experiments to be con-
ducted. A WSN testbed should offer support for testing this robustness under
realistic circumstances. Specifically, it should be possible to emulate the expiry
of sensor nodes due to energy depletion (fault injection) or the addition of new
nodes to the network, while assuring complete repetitiveness of the experiment
across different software solutions.
Energy consumption is one of the major performance metrics of sensor network
protocols and applications. Sensor nodes often have a finite energy budgets and
sensor networks have highly time-variable topologies due to energy depletion of
nodes and deployment of new nodes.

• Remote accessibility. The testbed must be remotely accessible to promote col-
laboration between geographically dispersed teams. Working conditions may
vary depending on the location, as well as motes types and software, which
necessitate exchange of information in order to reach the best possible instal-
lation and equipment.
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• Testbed management. In WSN applications, having unique node identifiers is
usually not overly important. But this does not apply to testbed management. To
keep the testbed operational, it is important to correctly identify nodes, for
instance to decide whether experimental results pertain to the operation of the
SUE or whether they are the result of misconfiguration or/and malfunctioning of
the sensor nodes. Malfunctioning nodes must be identified and replaced before
the experiment is repeated. To this end, knowledge of the exact identifier of the
nodes and its position is helpful. Since the exchange of nodes in a testbed will be
a frequent event (especially in large testbeds), the node identifiers and their
positions should be independent of each other, i.e. the node identifier should not
encode its position or vice versa. To find malfunctioning nodes, an association
between node identifiers and positions should be nonetheless maintained.
Ideally, this association is automatically updated every time a node is added or
removed from the testbed, and the testbed user should be able to formulate
queries about this association. As a secondary benefit of such an association, the
localization information can be made available to the SUE. The SUE imple-
menter hence does not necessarily need to implement localization algorithms on
his own and can concentrate on other aspects of the application. When, on the
other hand, the problem happens to be the implementation and test of a local-
ization algorithm, the known positions provide a ground truth against which the
new algorithm can be compared.

• Scalability and extensibility. It is not only a general requirement for sensor
networks, but also the testbed infrastructure should support non-trivial numbers
of sensor nodes. Consider as an example the continuous generation of debug
data or the gathering of application data. Data from all sensor nodes are required
to obtain full insight into the operation of the network. For a large sensor
network the sheer volume of debug data can be overwhelming and appropriate
mechanisms for aggregating, compressing or filtering this data are needed.
Easy extensibility means supporting the variety of existing and newly emerging
mote platforms. A rigid SUE is definitely limited and doomed to fading out with
the introduction of different technologies and techniques, or the need to use
other motes.

• The cost of the testbed must be reasonable. A testbed must ensure the support of
several SUEs, and provide trustworthy outcomes without unnecessary spending
due to overestimated network size, or choice of overpowered motes and
equipment.

5.1.1.1 Additional Requirements

Furthermore the testbed operation would be more convenient if the following
requirements are mostly supported, depending on the application and environment
(Slipp et al. 2008):
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• Real-time monitoring. The testbed should provide the ability to monitor, in
real-time, the progress of the test with typical measured values, and specific
performance metrics such as time delay and error assessment.

• Malfunction alerts. In the event of a malfunction, there should be an alert for the
operators so that the appropriate action can be taken as-soon-as-possible. This
will minimize downtime and avoid wasting time running a test for which data
may be tainted.

• Collaboration. The testbed should promote collaboration between researchers by
providing the means to easily share WSN technologies developed for use in the
testbed. For example it should be easy to share routing and security protocols
and power models.

• Support for simultaneous users. But it is to be noted that simultaneous users
would create conditions that are not repeatable. This refers mostly to the sharing
of the wireless bandwidth and potential interference.

• Mobility. Although mobility is important to some industrial networks, it may
not be a concern to petroleum facilities consisting almost entirely of static nodes.

5.1.1.2 User Requirements from a Testbed

A user is responsible of doing research on WSNs based on testbed experimentation,
he investigates protocols and communication concerns on the testbed before typical
WSN implementation, modification or extension. From a user standpoint, several
requirements are necessary to make testbeds useful and efficient (Chatzigiannakis
et al. 2010):

• Transparent access to the testbed. Transparency in this context means that
sensor nodes in a remote testbed can be handled in the same way as local sensor
nodes. In order to use the testbed, a robust, fast and simple reservation is
essential, including support for isolated (non interfering) experiments with other
users.

• Heterogeneity and scale of the testbeds. They are significant in order to address
challenges that occur in real-world deployment scenarios. Many algorithms and
applications do not scale or behave unstably in large scale; therefore, the net-
work size should be as large as possible. As deployment cost is still a domi-
nating factor, the concept of testbed federation to enable experiments at scale
can help to reduce overall facility cost. To enable federation standardization,
application program interfaces (APIs) is a key concept if not a prerequisite. In
the same way heterogeneity can affect the performance of an application.
Heterogeneity might include memory (program and data), wireless transceivers
characteristics, or microcontroller. Heterogeneity can be introduced by using
different classes of devices from an embedded 8-Bit microcontroller platform to
a fully equipped PC. A full support of a testbed for heterogeneity even allows
performing interoperability tests.
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• Reproducibility. It is a property that is very difficult to achieve in a testbed.
However, the support to repeat experiments is needed to reach statistical
soundness of the experiment. An additional supporting feature is detailed log-
ging capabilities to enable post-failure analysis and debugging support. User
interaction is very helpful to stimulate events or errors in the testbed during
experiment runtime in order to investigate reactions of the system under test.

• Mobility. In the future, support for mobility in testbeds will become more
important. Therefore, testbeds deployed today must be prepared for a next step
extension by mobile devices.

5.1.1.3 Operator Requirements from a Testbed

The operator is the one who checks the testbed access and the functioning of its
constituents, obtains the required measurements and reports malffunctions. The
operator requirements additionally include several qualities that make testbeds
handy to manage (Chatzigiannakis et al. 2010):

• Robustness of the testbed. It is definitely desirable for the user too. When nodes
or the whole WSN crash due to software errors, the testbed must recover from
such failure. Therefore, support for remote or even better automatic reset of the
experimental facility to a safe and basic state is compulsory.

• Access control system to the testbed. It is a need to monitor the activities and
allow for future accounting and even payment per use.

• Easy installation and a fully automated reservation system. A fully integrated
testbed management and maintenance system including performance-
monitoring capabilities is definitely helpful and can be addressed as a
long-term goal when the testbeds grow in size. The testbed software must be
ready for future extensions; therefore, open software is preferable over a closed
or proprietary system.

5.1.2 Full-Scale and Miniaturized Testbeds

What are the approaches followed for the design and implementation of testbeds?
Specifically, two distinct approaches are taken (Maltz et al. 2001; De et al. 2005):

• Full-scale testbeds that provide propagation over the actual distances where the
network is designed to operate.

• Miniaturized testbeds that foreshorten actual distances using some electronic
means.

This dichotomy exists for several reasons based primarily on need and practi-
cality. Based on need, two classifications of users are distinguishable:
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• Users involved in the evaluation and development at the physical layer and
cannot ignore the effects of multipath on network performance. Researchers
interested in the physical layer typically require a full-scale testbed, as pure
software simulation is not that practical. Although there are hardware multipath
simulators in existence, such as Elektrobits’s Propsim line of radio channel
emulators (EB 2006), they have a limited number of paths and they are extre-
mely expensive for equipping a wireless lab.

• Users involved in the development of routing protocols that need control over
the topology to determine the effects on network performance. However, the
full-scale testbeds do not lend themselves easily to topology control due to the
relatively large distances between motes and the irregular geometry of their
placement. Researchers interested in topology control typically need a minia-
turized testbed. As its name implies, in a miniaturized testbed the motes are
placed closer together. This placement is usually according to a regular geom-
etry, such as a grid as used in ORBIT (Raychaudhuri et al. 2005) or Kansei
(Arora et al. 2006). Such testbeds are typically equipped with some form of
attenuator as in EWANT (Sanghani et al. 2003), MiNT (De et al. 2005), and
MeshTest (Clancy and Walker 2007), and they may have their signals routed
through an antenna or connected through a hardwired matrix such as in
MeshTest (Clancy and Walker 2007). However, by definition, the miniaturized
testbed does not provide realistic multi-path, for instance, efforts such in (Judd
and Steenkiste 2004) utilize an FPGA based solution for emulating a signal
propagation model, which are still far from reality (De et al. 2005).

On the practicality side, researchers must balance the trade off between available
space and cost. Full-scale testbeds take up a lot of space, require considerable
infrastructure, and are relatively expensive to operate. Miniaturized testbeds can
usually be placed in available laboratory space and are considerably less expensive
than their counterparts; they also have the added advantage of providing a more
controllable environment thus supporting more repeatable experiments.

As detailed in Sect. 5.2, falling in the category of full-scale testbeds are MoteLab
(Werner-Allen et al. 2005), Trio (Dutta et al. 2006), TWIST (Handziski et al. 2006),
SignetLab (Crepaldi et al. 2007), SenseNeT (Dimitriou et al. 2007). Moreover,
large testbeds are accompanied by software that provides users with the facilities to
conduct experiments with the testbed nodes, but are generally limited in their
adaptability and configurability to the users’ needs. Capabilities such as reconfig-
uring the network topology, or federating multiple testbeds to form a larger vir-
tualized facility may be lacking.

In the category of miniaturized testbeds are MiNT (De et al. 2005), MiNT-m (De
et al. 2006), and MeshTest (Clancy and Walker 2007). MeshTest is particularly
interesting because of its ability to control interference and attenuation while
supporting mobility and providing users with control over topology. It does this
using a unique RF matrix switch. MiNT is a hybrid testbed, providing both real
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nodes and ns-2 simulation to provide scalability. It focuses on ad hoc networks and
uses attenuators to reduce transmission ranges, but its major drawback is the use of
manual attenuators. MiNT-m performs similarly using a number of mobile robots
for the mobile nodes.

ORBIT (Raychaudhuri et al. 2005) is a distinct wireless testbed in significant
respects. It includes both an indoor miniaturized testbed (sandboxes) and an out-
door full-scale testbed, the miniaturized testbed provides a more controlled envi-
ronment that facilitates reproducibility, while the full-scale testbed supports
real-world testing. ORBIT is also one of the few to incorporate electromagnetic
interference (EMI), which it does by employing a vector signal generator (VSG).

Before delving into testbed platforms as made available in the literature, the next
section built upon (Baumgartner et al. 2010), introduces the concept of virtual links
and federated testbeds in light of its importance for testbeds design and
implementation.

5.1.3 Virtualizing and Federating Testbeds

In recent years, experimentally driven research on WSNs has been contributory in
advancing the state of the art towards new sensing applications, network archi-
tectures, and protocol stacks optimized to operate over varied radio technologies
and restricted resources under specific deployment strategies. The most commonly
applied technique is simulation, which allows rapid development, offers debugging
tools and enables easy repeatability. The technical step that follows is to implement
the system on real hardware platforms and experiment through tailored testbed
environments. This allows researchers to avoid the inherent limitations of simula-
tion regarding typical hardware characteristics (e.g. buffer sizes, available inter-
rupts) and communication technology behavior (e.g. transmission rates, interference
patterns).

In most of the cases, due to the costs of hardware, researchers evaluate their
solutions in local testbeds of limited size. While small testbeds provide useful
insights into the effectiveness of the system in real conditions, they only offer
limited support in terms of heterogeneity, scalability and mobility. Furthermore, in
most cases, as much as a tightly coupled network and software architecture are
applicable on a testbed, they limit the number of possible configurations of that
testbed.

To overcome limitations in scale, a number of testbeds of significant size have
been developed in the last few years. Their size currently levels up to 1000 nodes,
and there is a trend towards building even larger testbeds as seen by projects such as
SENSEI (Presser et al. 2009) and WISEBED (Chatzigiannakis et al. 2010).
Acknowledging the clear and continuing need for large open testbeds in WSN
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research, the use of federated testbeds that unite isolated WSN testbeds via virtual
links provide promising solutions to such questions as:

• How to deal with the ever-increasing total number of nodes demand?
• How do large testbeds cope with heterogeneity in available sensors, radios,

computational resources, etc.?
• How to maintain a very large WSN testbed efficiently?
• How to provide hybrid simulation approaches, i.e., the combination of real and

simulated testbeds in order to produce extremely large-scale WSN testbeds?
• How to utilize the facilities provided by these testbeds and adapt them to each

experiment’s needs, i.e. how to define and use specific network topologies that
fit into the target application domain?

As suggested in (Baumgartner et al. 2010) virtualized network links are visioned
in the following ways:

• Between physically distinct testbeds of varying features (location, size, etc.),
and between specific nodes of such testbeds, resulting in larger testbeds with
customized cross-network edges.

• Between nodes inside a single testbed, thus defining a customized network
topology.

• Between real and simulated nodes, enabling hybrid simulation for massive
network sizes.

A virtual link basically enables two testbed nodes, that have otherwise no direct
physical radio connection, to communicate in a way that is transparent to the user
applications; additionally, existing links, that are reachable within one-hop radio
range, can be selectively deactivated between neighboring nodes. Both kinds of
virtualization are done in a way that is entirely transparent to a deployed
application.

5.1.3.1 Virtual Links and Federated Testbeds

This section details the virtualizing testbeds approach. A virtualized testbed is
defined as (Baumgartner et al. 2010):

• A single physical testbed with a virtualized topology.
• Two or more physically distinct testbeds federated into a single unified testbed.
• A simulated testbed similarly federated with a physical testbed.
• Any combination of the above.

The key components of the proposed architecture are shown in Fig. 5.1.
A testbed server that acts as the Internet-facing gateway represents each testbed,
physical or simulated. A testbed is composed of a number of sensor nodes that can
communicate with the testbed server, potentially via gateway devices inside a
physical testbed.
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A virtual link is then a unidirectional connection between two nodes, in the same
or in different testbeds, which would not normally be able to communicate. An
arbitrary number of virtual links can thus be created to define a virtualized topology
and federate distinct testbeds. It is also possible to deactivate existing physical
reachability between two nodes by selectively dropping packets to allow complete
topology control. Specifically, virtual links are enabled with a special software on
each sensor node, it is a virtual radio which contains a routing table of the form {ID,
interface}, such that when sending a message to a specific node ID, the radio can
decide on which ‘interface’ to send this message, the node’s real radio or the virtual
interface which forwards the message to the testbed server.

5.1.3.2 Topology Virtualization

As illustrated in Fig. 5.2, topology virtualization involves two key elements, virtual
radio components, and testbed servers.

Experimentation setup is initialized according to a determined arrangement:

• The IDs of virtual radios across the entire virtualized topology are configured by
an overall controlling component to ensure uniqueness.

• Virtual topology is configured by each testbed server informing its local sensor
nodes of their virtual neighbors, where a virtual neighbor entry in a sensor
node’s virtual radio simply consists of an ID along with ‘virtual’, meaning any
packets to this ID should be sent to the testbed server for further routing.

• How messages reach the testbed server depends on the architecture of the
deployed testbed. Routing may be via an out-of-band backbone infrastructure
when sensor nodes are connected 1:1 with gateway devices, or alternatively may
reuse the wireless medium of the sensor nodes in testbeds where not every
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Fig. 5.1 Virtualized testbeds architecture (based on Baumgartner et al. 2010)
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sensor node is directly connected to a gateway device. In either case the pro-
cedure is transparent to the application software.

The process of sending a message through the virtualized architecture works as
follows:

• Applications on a sensor node send a packet to its virtual radio component. On
some operating systems, such as TinyOS, using a virtual radio instead of a real
one is simply a matter of component configuration. On others, it may require
changing radio function calls in the application’s source.

• The virtual radio component then uses its local routing table, as configured by
the testbed server to decide on which interface to send this message, whether via
the real radio or the virtual topology service thru the testbed server. When
broadcasting, a packet is simply sent on both interfaces.

• If the message is sent to the testbed server, the server examines the destination
ID of the packet and forwards this either to another testbed server, which is
responsible for that node, or to the corresponding node in the local testbed. If the
packet is broadcast, the testbed server forwards the message to all virtual
neighbors of this node by generating one message for each neighbor.

• Finally, when receiving a message on the real radio interface, the virtual radio
component checks its routing table to determine whether or not the sender is
configured to be a neighbor in the currently configured topology, if not the
packet is dropped and so it never reaches the application.

All components of this procedure are completely transparent to the application,
which simply sees a radio component conforming to a common radio API.

Through experimentation, building scalable federated testbeds provided inter-
esting results (Baumgartner et al. 2010):

• The interconnection of two closely located testbeds, i.e. with short delays
between testbed servers, works very well in practice, as the virtual links operate
significantly faster than physical links. An experiment can be tuned so that
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Fig. 5.2 Communication between virtual radio drivers on sensor nodes (based on Baumgartner
et al. 2010)
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applications cannot detect that they are running in a physically separated
network.

• When moving to wider-area networks, the existence of a sufficiently fast Internet
backbone becomes a must, since latency may degrade and severely affect
realism in large intercontinental federations.

Optimistically, topology virtualization is a promising approach to create large
federations of physically detached and heterogeneous networks.

The following section details the most widely quoted testbeds, their hardware
and software composition, and how they may be categorized. Many of the testbeds
were snapshots in time, they satisfied a given experimentation and ceased to exist,
that is why the focus of this chapter is on the experimentation on typically
implemented testbeds aside from their current existence. Tables 5.2 and 5.3 com-
pare the pertinent features and composition of the presented testbeds and focus on
the categories that embrace them.

5.2 Testbeds Illustrated

5.2.1 ORBIT

The open-access research testbed for next-generation wireless networks (ORBIT)
was first funded in 2003 under the network research testbeds (NRT) program and
subsequently under follow-on grants (ORBIT 2014). Construction of the 464.5 m2

(5000 ft2), 400 nodes ORBIT radio grid facility at the WINLAB1 (WINLAB 2010)
Tech Center II building in North Brunswick, NJ, was completed in mid-2005,
leading to the first community release of testbed services in October 2005. Since
then it has become a widely used community resource for evaluation of emerging
wireless network architectures and protocols.

Generally, the development of a general-purpose open-access wireless multiuser
experimental facility poses significant technical challenges that do not arise in wired
network testbeds such as Emulab (Flux Group 2014). In particular, it is far more
difficult to set up a reproducible wireless networking experiment due to random
time variations in mobile user location and associated wireless channel models. In
addition, wireless systems tend to exhibit complex interactions between the phys-
ical, medium access control and network layers, so that strict layering approaches
often used to simplify wired network prototypes cannot be applied here. Some of

1Wireless Information Network Laboratory (WINLAB), an industry-university cooperative
research center focused on wireless technology, was founded at New Jersey’s Rutgers University
in 1989. Its research mission is to advance the development of wireless networking technology by
combining the resources of government, industry and academia. The center’s educational mission
is to train the next generation of wireless technologists via graduate research programs that are
especially relevant to industry.
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the basic characteristics of radio channels that need to be incorporated into a viable
wireless network testbed are as follows (Raychaudhuri et al. 2005):

• Radio channel properties depend on specific wireless node locations and
surroundings.

• Physical layer bit-rates and error-rates are time varying.
• Shared medium layer-2 protocols on the radio link have a strong impact on

network performance.
• There are complex interactions between different layers of the wireless protocol

stack and currently their mutual interaction cannot be studied easily.
• Users exhibit random mobility, location also plays a role.

The key design goals as adopted in ORBIT are (Raychaudhuri et al. 2005):

• Scalability in terms of the total number of wireless nodes (hundreds).
• Reproducibility of experiments, which can be repeated with similar environ-

ments to get similar results.
• Open-access flexibility giving the experimenter a high-level of control over

protocols and software used on the radio nodes.
• Extensive measurements capability at radio PHY, MAC and network levels,

with the ability to correlate data across layers in both time and space.
• Remote access testbed capable of unmanned operation and the ability to

robustly deal with software and hardware failures.

Functionally, ORBIT is a two-tier wireless network emulator/field trial designed
to achieve reproducible experimentation, while also supporting realistic evaluation
of protocols and applications:

• The radio grid testbed. It is central to the ORBIT facility uses a novel approach
based on a 20 × 20 two-dimensional grid of programmable radio nodes, which
can be interconnected into specified topologies with reproducible wireless
channel models.

• Outdoor ORBIT network. Once the basic protocol or application concepts have
been validated on the radio grid emulator, users can migrate their experiments to
the outdoor ORBIT network which provides a configurable mix of both
high-speed cellular (WiMAX, LTE) and 802.11 wireless access in a real-world
setting.

The main ORBIT radio grid and outdoor testbeds have been further supple-
mented with a number of experimental “sandboxes” which allow researchers to
debug and test their code without tying up the resources of the larger radio grid.
Further details are provided in Sect. 5.2.1.1.

As of 2014, there are over 1000 registered ORBIT users who have conducted a
total of over 200,000 experiment-hours on the radio grid testbed to date, with
55,701 experiment-hours served during 2013. The ORBIT testbed is also being
used to support wireless aspects of the global environment for network innovation
(GENI) future Internet testbed (Sect. 5.2.12), and the ORBIT management frame-
work (OMF) is being used as one of the core control frameworks in GENI.
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Examples of specific experiments that have been run on the ORBIT testbed include
multi-radio spectrum coordination, cognitive radio networks, dense WiFi networks,
cellular/WiFi multi-homing, vehicular and ad hoc network routing,
storage-aware/delay tolerant networks, mobile content delivery, location-aware
protocols, inter-layer wireless security, future Internet architecture, and mobile
cloud computing.

ORBIT is available for remote or on-site access by academic researchers both in
the U.S. and internationally (prospective users should first send in an account
signup request using a registration form). Users will have access to the following
resources (ORBIT 2014):

• Range of radio resources including, WiFi 802.11a/b/g 802.11n 802.11ac,
Bluetooth (BLE), ZigBee, software defined radio (SDR) platforms such as
universal software defined radio (USRP)2 (National Instruments 2014), USRP
N210 (Ettus Research 2012), USRP X310 (Ettus Research 2014), wireless open
access research platform (WARP) (WARP 2014), RTL-SDR (RTL-SDR.com
2014).

• Software defined networking (SDN) resources, NEC (NEC 2014) and Pronto3

switches (Pica8 2014), NetFPGA 1G (NetFPGA 2014) and NetFPGA 10G
(NetFPGA 2014) platforms.

• WiMAX and LTE basesations and clients.

5.2.1.1 Hardware

The ORBIT laboratory is comprised of three test domains in which experimenters
can use the hardware provided by WINLAB for use in wireless experimentation. As
emphasized in the coming sections these domains are (ORBIT 2014):

• ORBIT grid.
• Outdoor testbed.
• Sandboxes.

Moreover, a Chassis Manager (CM) is a simple, reliable, platform-independent
subsystem for managing and autonomously monitoring the status of each node in
the ORBIT network testbed.

2Universal Software Radio Peripheral (USRP) is a range of software-defined radios designed and
sold by Ettus Research and its parent company, National Instruments. Developed by a team led by
Matt Ettus, the USRP product family is intended to be a comparatively inexpensive hardware
platform for software radio, and is commonly used by research labs, universities, and hobbyists
(Ettus 2014).
3Pronto and PICA8 were merged in February 1, 2012, the merged company is named PICA8 Inc.
Pronto became PICA8’s brand name (Pronto Systems 2012).
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ORBIT Grid

The main domain is the ORBIT grid. As illustrated in Fig. 5.3, it consists of a
multiply interconnected, 20 × 20 grid of ORBIT radio nodes, some non-grid nodes
to control RF spectrum measurements and interference sources, front-end servers,
application servers and back-end servers that support various ORBIT services. The
back end ORBIT infrastructure delivers overall services and control to the test
facility. Each node of the 20 × 20 grid has at least two wireless interfaces.

A radio node is a PC typically equipped with two 100BaseT Ethernet ports, radio
cards and a CM to control the node. The two Ethernet ports are connected to data
and control subnets. While Control is used primarily for node access, experiment
management and measurement collection, the data subnet is exclusively available to
the experimenter. In addition to the standard radio cards on most of the nodes, there
are many other devices throughout including devices for various communication
protocols as well as software radio platforms such as USRP.

A recent LV-67J motherboard, that features Intel third generation core i7/i5/i3
equipped with a two DDR34 1066/1333 MHz up to 16 GByte SDRAM
(COMMELL 2014a–f), is intended to replace the LV-67C and the LV-67G still
being used in the grid as well as some of the sandboxes. LV-67C is provided with an
Intel core i7/i5/i3 Pentium desktop and two up to 8 GB DDR3 1066/1333 MT/sec

Fig. 5.3 ORBIT hardware (ORBIT 2014)

4Double Data Rate Type Three (DDR3) is the current standard for the fast SDRAM system
memory and predecessor to DDR4 (Murray 2012).
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DIMM5 (COMMELL 2014a–f). The LV-67G is a second-generation Intel core i7/i5/
i3/Pentium/Xeon desktop with two up to 16 GByte DDR3 1066/1333 MHz DIMM
(COMMELL 2014a–f).

Experimenters can access the ORBIT radio grid via an Internet portal, which
provides a variety of services to assist users with setting up a network topology,
programming the radio nodes, executing the experimental code, and collecting
measurements.

Outdoor Testbed

The Secondary large ORBIT domain is the outdoor testbed consisting of 22 nodes:

• Ten fixed nodes placed at five different locations within ORBIT/WINLAB
facility. Each location features two ORBIT radio nodes.

• Twelve mobile nodes that can be installed in ORBIT vehicular facilities. There
have been three versions of mobile nodes to date, however there are very limited
numbers that have actually been deployed from the latest version, LV-67 K,
which is a third generation Intel core i7/i5/i3 mobile processor with two up to
16 GByte DDR3 1066/1333/1600 MHz SO-DIMM6 (COMMELL 2014a–f).
The two versions being used are the LV-67B that features an Intel Penryn pro-
cessor with two up to 8 GByte DDR3 800/1066 MHz SO-DIMM (COMMELL
2014a–f) and the LV-67F provided with Intel core i7/i5/i3, Celeron,
Pentium Mobile processor and two up to 8 GByte DDR3 800/1066 MHz
SO-DIMM (COMMELL 2014a–f).

Sandboxes

In addition to the main grid, there are also nine additional smaller test grids
(sandboxes). The LV-67C and the LV-67G used in the ORBIT grid are also
adopted in the sandboxes. Available sandboxes include WiFi, WiMAX, OpenFlow7

(McKeown et al. 2008) and USRP2.

5Dual In-line Memory Module (DIMM) is a double SIMM (Single In-line Memory Module). Like
a SIMM, it is a module containing one or several RAM chips on a small circuit board with pins
that connect it to the computer motherboard. Transfer speed is computed in million transfers/sec
(MT/sec) (WhatIs.com 2014).
6Small Outline Dual In-line Memory Module (SO-DIMM) used in laptops is about half the length
of a regular size DIMM. Most desktop computers have plenty of space for RAM chips, so the size
of the memory modules is not a concern. However, with laptops, the size of components and
memory modules, as well, matters significantly (PC Glossary 2014).
7OpenFlow is an open standard that enables researchers to run experimental protocols in the
campus networks used every day. It is added as a feature to commercial Ethernet switches, routers
and wireless access points, and provides a standardized hook to allow researchers to run experi-
ments, without requiring vendors to expose the internal workings of their network devices. Major
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Chassis Manager

The ORBIT Chassis Manager (CM) is a simple, reliable, platform-independent
subsystem for managing and autonomously monitoring the status of each node in
the ORBIT network testbed. Each ORBIT grid node consists of one radio node with
two radio interfaces, two Ethernet interfaces for experiment control and data, and
one CM with a separate Ethernet network interface. The Radio nodes are positioned
about one meter apart in a rectangular grid. Each CM is tightly coupled with its
radio node host. CM subsystems are also used with non-grid support nodes. There
are basic requirements the CMs must preform:

• Issue a system reset to the radio node.
• Control the power state of the radio node.
• Obtain chassis status.
• Provide a pass-through Telnet8 (TechTarget 2014) session to the radio node.
• Provide CM diagnostics. These include:

– Provide a means to locally interrogate the grid position of the node. The grid
position is either the x, y coordinate of the node, or the ID number of a
non-Grid node. The grid position is used to create the static IP address of the
CM.

– Provide local visual indication of a node operational status.
– Provide a control API to the experiment controller. An Experiment

Controller (EC), also referred to as the “node handler”, is the ORBIT system
component that configures the grid of radio nodes for each experiment.

5.2.1.2 Software

The ORBIT Radio Grid testbed is operated as a shared service to allow a number of
projects to conduct wireless network experiments on-site or remotely. Although
only one experiment can run on the testbed at a time, automating the use of the
testbed allows each one to run quickly, saving the results to a database for later
analysis.

Precisely, as displayed in Fig. 5.4, ORBIT may be viewed as a set of services
into which one inputs an experimental definition and receives the experimental
results as output. The experimental definition is a script that interfaces to the
ORBIT Services. These services can reboot each of the nodes in the 20 × 20 grid,
then load an operating system, any modified system software and application

(Footnote 7 continued)

vendors, with OpenFlow-enabled switches now commercially available, are currently implement-
ing OpenFlow.
8Telnet is a user command and an underlying TCP/IP protocol for accessing remote computers.

268 5 Testbeds for WSNs



software on each node, then set the relevant parameters for the experiment in each
grid node and in each non-grid node needed to add controlled interference or
monitor traffic and interference. The script also specifies the filtering and collection
of the experimental data and generates a database schema to support subsequent
analysis of that data.

Experiment Control

The main component of the Experiment Management Service is the Node Handler
that functions as an Experiment Controller. It multicasts commands to the nodes at
the appropriate time and keeps track of their execution. The Node Agent software
component resides on each node, where it listens and executes the commands from
the Node Handler, it also reports information back to the Node Handler. The
combination of these two components gives the user the controls over the testbed,
and enables the automated collection of experimental results. Because the Node
Handler uses a rule-based approach to monitoring and controlling experiments,
occasional feedback from experimenters may be required to fine-tune its operation.
Figure 5.5 illustrates the execution of an experiment from the user’s point-of-view.

Finally, using the Node Handler, via a dedicated image nodes experiment, the
user can quickly load hard disk images onto the nodes of his/her experiment. This
imaging process allows different groups of nodes to run different OS images; it

Fig. 5.4 ORBIT software
(ORBIT 2014)

Fig. 5.5 Execution of an experiment from a user point of view (ORBIT 2014)
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relies on a scalable multicast protocol and the Frisbee system for saving, trans-
ferring, and installing entire disk images (Hibler et al. 2003). Similarly, the user can
also use the Node Handler save the image of a node’s disk into an archive file.

Measurement and Result Collection

The ORBIT measurement framework and library (OML) are responsible for col-
lecting the experimental results. It is based on a client/server architecture as
depicted in Fig. 5.6. The Node Handler for a particular experiment execution starts
one instance of an OML Collection Server. This server listens and collects
experimental results from the various nodes involved in the experiment, it uses an
SQL database for persistent data archiving of results.

On each experimental node, one OML Collection Client is associated with each
experimental application. An application forwards any required measurements or
outputs to the OML collection client. The OML client will optionally apply some
filter/processing to the measurements/outputs, and then sends them to the OML
Collection Server.

Finally, the ORBIT platform also provides the Libmac library. Libmac is a
user-space C library that allows applications to inject and capture MAC layer
frames, manipulate wireless interface parameters at both aggregate and per-frame
levels, and communicate wireless interface parameters over the air on a per-frame
level. Users can interface their experimental applications with Libmac to collect
MAC layer measurements from their experiments.

5.2.2 MoteLab

Manually reprogramming dozens of WSN nodes, deploying and locating them on
the physical environment, and instrumenting them to gather, extract, and debug

Fig. 5.6 OML component architecture (ORBIT 2014)
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performance data is tedious and time-consuming. To address this need, MoteLab
(Werner-Allen et al. 2005), one of the early testbeds, has been developed and
deployed at Harvard University, it is a Web-based sensor network testbed. MoteLab
has several features:

• It consists of a set of permanently deployed sensor network nodes connected to a
central server in charge of handling reprogramming and data logging while
providing a Web interface for creating and scheduling jobs on the testbed.

• It accelerates application deployment by streamlining access to a large, fixed
network of real sensor network devices; it also speeds up debugging and
development by automating data logging, thus allowing the performance of
sensor network software to be evaluated offline.

• Additionally, by providing a Web interface MoteLab permits both local and
remote users access to the testbed; also, its scheduling and quota system ensure
fair sharing.

• A node is equipped with a network-connected digital multimeter, allowing the
MoteLab backend to continuously monitor the energy usage of the node.
Current consumption data is logged and returned with other data generated
during the experiment. Gathering energy usage data simply requires checking a
box in the Web interface.

MoteLab proved to be invaluable for both research and teaching, its source is
freely available, easy to install, and already in use at several other research
institutions.

5.2.2.1 Technical Details

MoteLab is a set of software tools for managing a testbed of Ethernet-connected
sensor network nodes. A central server handles scheduling, reprogramming nodes,
logging data, and providing a Web interface to users. Users access the testbed using
a Web browser to set up or schedule jobs and download data.

MoteLab hardware and software are detailed in the sections to come. Figure 5.7
displays MoteLab software components and illustrates how they communicate.
From the figure, three external users are using the lab. User A is setting up a job to
be run later. User B is accessing the MySQL tables directly to process data collected
during a previous experiment. User C has a job running and has made a direct
connection to a serial forwarder (SF) to receive or send messages to the attached
node.

MoteLab Hardware

MoteLab software manages a fixed array of WSN nodes equipped with Ethernet
interface backchannel boards allowing remote reprogramming and data logging. The
original testbed comprised 26 Mica2 motes (Crossbow 2002a). A Mica2 mote consists
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of a 7.3 MHz ATmega128L processor, 128 KByte of code memory, 4 KByte of data
memory, and a Chipcon CC1000 radio operating at 433 MHz with a data rate of
approximately 34 Kbps (Chap. 8). These were attached to 26 Ethernet interface boards,
specifically, 6 Ethernet PRogramming Boards (EPRBs) developed at Intel research by
Phil Buonadonna and 20 Crossbow MIB 600 emotes (Crossbow 2004a). Both provide
one TCP port for reprogramming and another for data logging. MoteLab was later
upgraded to embody 30 MicaZ motes (Crossbow 2006a), which upgrade the Mica2
with Chipcon CC2420 IEEE 802.15.4 compliant radios (Chap. 8).

MySQL Database Backend

MoteLab software runs on a central server running Linux with Apache, MySQL,
and PHP. A MoteLab job consists of some number of executables and testbed
nodes, a description mapping each node used to an executable, several Java class
files used for data logging, and other configuration parameters, such as whether or
not to perform power profiling during the experiment. Once a job is created,
MoteLab stores the configuration information allowing the same job to be run
multiple times, for different amounts of time or at different times of day.

MoteLab uses a MySQL database to store all information needed for testbed
operation. This information is divided into two categories, job-generated data and
testbed state. When a user account is created, a MySQL database is created for that
user to hold all his job-generated data. A new set of tables is created for each
instance of a job run, one table for each message type associated with the job. The
user is given access rights to his database, allowing him to leverage the MySQL
query language for post-processing.

Fig. 5.7 Interaction between MoteLab components and users (Werner-Allen et al. 2005)
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A separate database holds all lab state information, including user information
and access rights, node state, information about uploaded executables and class
files, job properties, and a representation of the lab schedule. Such state information
is provided to and modified by all of the other main MoteLab components.

Web Interface

MoteLab uses PHP to generate dynamic Web content, and Javascript to provide an
interactive user experience. This allows users to access the lab in a
platform-independent way. After logging in, a normal user has access to several
Web interface functionalities:

• Home Page. It provides a summary of pending, running, and completed jobs,
and the ability to download data logged by the lab during past experiments.

• User Info. Such as the instructions for database access, serial forwarder
(SF) access, and the ability to change lab passwords.

• Create Job. Users can upload executables, choose which executables will run on
which testbed nodes, upload class files for message parsing, and choose from
among various options including whether to run power profiling during the
experiment. Administrators can also choose to run a job as a daemon for a given
period at specified intervals, and choose programs to run on MoteLab during
and after job execution.

• Edit Job. It permits the same abilities as the job creation page, but reloads it with
information from a stored job.

• Schedule. It presents a view of the current state of the lab, including finished,
running, and pending jobs, and the ability to schedule a job at various degrees of
granularity. Users can delete their own pending jobs; administrators can delete
any.

Two additional pages are provided for administrators. The first allows new user
accounts to be created and modified, the second allows lab partitioning to be
configured.

DBLogger

DBLogger is a Java program to be started at the beginning of every job. It connects
to each node via the data logging TCP port, and uses class introspection to parse
messages sent over its serial port and inserts them into the appropriate MySQL
database. The individual fields of each message sent are parsed and their values
extracted into the database. The resulting table structure is identical to the message
structure, with the addition of fields identifying which testbed node originated the
message, the time the message was inserted into the database, and a global sequence
number.
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Job Daemon

The Job Daemon is a Perl script9 (Perl.org 2002) run as a cron job10 (HostGator
2002). The Job Daemon sets up experiments that involves reprogramming nodes
and starting other necessary system components (including the DBLogger and
serial forwarders), and tears them down when finished that is stopping node
activity, killing processes necessary during the job, and dumping the data from the
MySQL database into a format suitable for download.

User Quotas, Direct Node Access, Power Measurement

Several practices in MoteLab operation merit attention:

• User quotas. They facilitate sharing the lab between multiple users. The quota
does not control how much total access a user can have, rather, it limits the
number of outstanding jobs that the user can post to the lab at once.

• Direct node access. In addition to logging data to a database through DBLogger,
users have direct access to each node’s serial port over a TCP/IP connection.
This permits the use of custom programs for monitoring and injecting data into
the running application. Because the interface boards allow a single TCP con-
nection to the node, the TinyOS SerialForwarder program (TinyOS Wiki 2012),
which acts as a TCP multiplexer, is used.

• In situ power measurement. One node on the network is connected to a net-
worked Keithley 2701 digital multimeter (Keithley Instruments 2002), the use
of this device is displayed on the Create Job page. The Keithley multimeter can
sample continuously at 250 Hz, and it bursts at 3000 Hz; actually only con-
tinuous operation was supported. Time-stamped current data is included in the
download archive if the user has selected this option.

5.2.2.2 Use Models

There are two different ways to use MoteLab, batch mode and real-time access.
Users can schedule a large number of jobs to be run unattended in a batch fashion,
or they can interact directly with their running job by attaching to the exposed
per-node serial forwarders or by exploiting real-time access to the MySQL
database.

9Perl is a family of high-level, general-purpose, interpreted, dynamic programming languages. The
languages in this family include Perl 5 and Perl 6.
10A cron job is a Linux command for scheduling a command or script on a server to automatically
complete repetitive tasks. Scripts executed as a cron job are typically used to modify files or
databases; however, they can perform other tasks that do not modify data on the server, like
sending out email notifications.
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Batch Use

Sensor network experimentation begins on the desktop. Following local testing to
verify that his application produces data, a user is ready to use MoteLab. After
logging on users proceed to the Create Job page. Subsequently, uploading the
necessary files and specifying job parameters they go to the Schedule page and
schedule their job some time later in the future.

When the job is ready to run, the Job Daemon reprograms the network and starts
the DBLogger with the user-uploaded class files. The job is now live, and data sent
to the serial port of any node will be parsed and inserted into the appropriate
MySQL tables created for this job. When the job completes, the Job Daemon
removes the executable from the lab, and archives job data. After a job completion,
post-processing can be done by parsing the data dump files in the job download or
by directly accessing the MySQL database.

Real-Time Access

MoteLab allows researchers to connect directly to the serial forwarder running
during their job via a set of dedicated ports on the MoteLab machine, this permits
several ways of interacting with a running job:

• A researcher may have a data set to inject for simulation, either because the data
collected is not of the type that could be collected on MoteLab, or to make
experiments reproducible.

• Another use of the direct serial forwarder access is to analyze real-time data.
Real-time data processing is possible either by connecting to the serial for-
warders providing a data stream for each node, or by accessing the MySQL
database during the job.

The Connectivity Daemon is an example of the applications that use real-time
access, as well as almost every other feature available on MoteLab. The
Connectivity Daemon is a job used to collect information eventually used to
graphically illustrate connectivity between lab nodes on the Maps page.

5.2.2.3 MoteLab Applications

Several applications have benefited from MoteLab for research and teaching:

• MoteTrack (Lorincz and Welsh et al. 2004). It is an RF-based location tracking
system developed for TinyOS-based motes. MoteTrack represents a case where
MoteLab is used not just to develop a complete sensor network application in an
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arbitrary environment, but as a valuable infrastructure in its own right. The
distribution of MoteLab nodes around the university of Harvard campus allowed
to achieve good coverage and develop a building-wide location tracking system,
which would not have been possible in a single, smaller lab.

• The Harvard CodeBlue project (Lorincz et al. 2004) developed robust protocols
and services for integrating wireless devices into a range of medical care set-
tings. MoteLab was an essential resource for developing the CodeBlue system,
permitting tests and experimentation in a realistic setting on real motes.

• Instructional use. MoteLab is a valuable tool for teaching sensor network
concepts, allowing students to experiment with a real testbed. The Web-based
interface simplifies the mechanical aspects of programming and debugging the
network.

• External users and external MoteLabs. MoteLab accounts were made available
to external researchers upon request.

5.2.3 Meerkats

Meerkats as developed at the University of California, Santa Cruz (UCSC) is a
wireless network of battery-operated camera nodes that can be used for monitoring
and surveillance of wide areas (Boice et al. 2005). An important feature of Meerkats
when compared, with systems like Cyclops (Rahimi et al. 2005) is that nodes are
equipped with sufficient processing and storage capabilities to be able to run rel-
atively sophisticated vision algorithms, e.g., motion estimation locally and/or
collaboratively.

Meerkats’ main contributions include:

• Application-level visual sensor acquisition and processing techniques such as
image acquisition policies including cooperative, event-driven policies, and
visual analysis for event detection, parameter estimation, and hierarchical
representation.

• Resource management strategies that dynamically assess the power versus
application-level requirements to make decisions on the tasks to be performed
by the system, e.g. what data representation level to use in transmitting data at a
given point in time.

• Network-level techniques for bandwidth and power adaptive routing as well as
media scaling.

The coming section focuses on Meerkats hardware and software composition.
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5.2.3.1 Hardware

Meerkats consists of eight visual sensor nodes and one gateway also used as the
information sink. The laptop is a Dell Inspiron 4000 with PIII CPU, 512 MByte
memory, and 20 GByte hard disk, it is used as the sink and as a gateway. It runs
Linux (kernel 2.4.20) and uses an Orinoco Gold 802.11b wireless card for com-
munication (Lucent Technologies 2015).

Visual sensor nodes use Crossbow’s Stargate (Crossbow 2004b). In a Meerkats
node (Fig. 5.8) the Crossbow’s Stargate platform, has an XScale PXA255 CPU
(400 MHz) with 32 MByte Flash memory and 64 MByte SDRAM. PCMCIA and
Compact Flash connectors are available on the main board. The Stargate also has a
daughter board with Ethernet, USB and serial connectors. Each Stargate is con-
nected with an Orinoco Gold 802.11b PCMCIA wireless card and a Logitech
QuickCam Pro 4000 webcam (PC 2015) connected via USB. The QuickCam can
capture video with a resolution up to 640 × 480 pixels. A customized 7.4 Volt, 1
Ah, 2 cell Lithium-Ion (Li-Ion) battery is used and an external DC-DC switching
regulator with efficiency of about 80 %. The operating system is Stargate version
7.3, which is an embedded Linux (kernel 2.4.19) system.

The choice of Crossbow’s Stargate as the Meerkat’s node main component was
based on several considerations:

• Design focus is not on hardware, so off-the-shelf components are picked up.
• A platform that runs an open source operating system is chosen.
• Since the webcam is the visual sensor, there is a need for a board with a USB

connector.
• A platform is required to provide reasonable processing and storage capabilities.

Fig. 5.8 Visual sensing node
in Meerkats (Boice et al.
2005)
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An important feature provided by the Stargate is its battery monitoring capa-
bility. This is achieved through a specialized DS2438 chip (Maxim Integrated
2005) on the main board. Two kernel modules provide access to the battery monitor
chip and retrieve information about the battery’s current state.

5.2.3.2 Software

The Meerkats nodes software organization, shown in Fig. 5.9, consists of three
main components, namely the Resource Manager, Visual Processing, and
Communication modules.

Resource Manager

The Resource Manager is the main thread of control running on the Meerkats node.
It controls the activation of the webcam and wireless network card in order to perform
image acquisition/processing and communication-related tasks (e.g., transmit an
image), as needed. For energy conservation, the Resource Manager has the Meerkats
sensor node operating on a duty-cycle basis, i.e., the node periodically wakes up,
performs some task as needed, and goes back to either idle or sleep mode. Whereas
sleep is the mode with the lowest power requirements, idle mode has a number of
variations. At a minimum, the processor is awake and ready to work, even though
there are no active processes running. Other variations of idle are:

• Processor and wireless network card ready.
• Processor and webcam ready.
• Processor, wireless network card, and webcam ready.

These variations correspond to the cases where the node is ready to engage in
communication-related tasks, image acquisition/processing tasks, or both. More on
energy consumption is presented in Sect. 5.2.3.3. An accurate power consumption
analysis for the different elementary tasks forming a duty cycle, along with a
number of different duty cycle configurations and related energy measurements,
was presented in (Margi et al. 2006).

R
esource

M
anager

Visual Processing

Communication

Visual sensor node hardware

Fig. 5.9 Meerkats software
organization (Boice et al.
2005)
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Visual Processing

The Visual Processing module performs all vision-related tasks, including image
acquisition, compression, and processing, it is invoked by the Resource Manager
after activating webcam. The goal is to detect events, in the form of moving images.
Upon completion, Visual Processing returns control to the Resource Manager with
a parameter flagging whether an event has been detected, as well as a set of
parameters including the number of moving blobs in the image and the velocity of
each blob. If an event is detected, the relevant portion of the image is JPEG
compressed and transmitted to the sink.

Moving blobs in the image are detected using a fast motion analysis algorithm
described in (Lu and Manduchi 2006). The algorithm is comprised of three stages:

• First, local differential measurements are used to determine an initial labeling of
image blocks, and exercising a total least squares approach with fast
implementation.

• Then, belief propagation is used to impose spatial coherence and resolve
aperture effect inherent in textureless areas.

• Finally, the velocity of the resulting blobs is estimated via least squares
regression. On the Meerkats node, the motion analysis algorithm, applied on a
pair of consecutive images, takes about 0.9 s and consumes 0.16 Coulomb.

Communication

Communication between nodes and the sink is based on 802.11b links. Multihop
routing is performed using the dynamic source routing (DSR) protocol (Johnson
and Maltz 1996). This is an on-demand routing mechanism especially designed for
multihop wireless ad hoc networks. The version of DSR running on the Meerkats
nodes was ported from the DSR kernel module available for the PocketPC Linux
(Song 2001).

Two types of data are handled by the application layer, specifically, control
packets exchanged between nodes via UDP for synchronization and alerting, and
image data transmitted from nodes to the sink via TCP. The sink runs a multi-
threaded server program that listens for connection requests from sensor nodes,
opens a connection, receives image files and renders images on the sink’s console.

Experiments revealed sporadic instability problems using the 802.11b links. In
order to minimize the effect of this instability, a simple fault recovery procedure is
implemented:

• When control packets are transferred via UDP, the receiver is required to send
an ACK back to sender. If within a fixed period of time the sender does not
receive an ACK from the receiver, it resends the same control message during
the next duty cycle.
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• In the case of image data being sent from a camera node to the sink via TCP, a
timer is set up at the sender to monitor the establishment of a TCP connection. If
the TCP connection is not built within a fixed period of time, the sender con-
siders that transmission failed, and tries to set up a TCP connection again in the
next duty cycle.

Two nodes may coordinate when tracking a moving object in the scene. In an
adopted master-slave scenario, the master node acquires and processes images on a
regular basis. If it detects an event, it sends a short alert packet to the slave node.
Meerkats node are not interruptible while in sleep more, and therefore the slave
node needs to periodically wake up and listen for messages from the master; if it
receives an alert packet, it takes and compresses an image.

5.2.3.3 Energy Consumption Characterization Benchmark

Energy consumption characterization benchmark consists of a set of basic opera-
tions that are representative of activities performed by visual sensor nodes.
Meerkats benchmark consists of five main task categories (Margi et al. 2006):

• Idle. The idle or baseline benchmark captures the energy consumption behavior
of the node when only basic operating system tasks are running. This bench-
mark characterizes energy consumption when the system is idle and also serves
as baseline for all other tasks.

• Processing-intensive. The characterization of processing-intensive tasks is per-
formed using the FFT benchmark (Frigo and Johnson 2015), which is part of
SPEC CPU2000 (Henning 2000), an industry-standardized CPU-intensive
benchmark suite.

• Storage-intensive. The storage media available on the Stargate is flash memory.
In order to understand its energy consumption behavior, a program is used to
read and write files with random data.

• Communication-intensive. To characterize the energy consumed by
communication-related tasks, a set of UDP client/server programs is used. The
client program transmits a certain amount of random bytes, provided as an
argument, to the server. To obtain the energy cost of transmission, the client
program is run on the Stargate being monitored, then the Stargate is monitored
when running the server program to obtain the energy cost of reception.

• Visual sensing. Power consumed by the webcam is characterized using the
videotime program available on the Stargate 7.3, to acquire a sequence of frames.

At steady state, Meerkats node running the different benchmarks with different
combinations of active hardware subsystems highlighted a number of interesting
observations:

• There is a considerable difference in power consumption when comparing
results from the “sleep” and “idle” benchmarks.
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• Communication-related tasks (i.e., receive and transmit) are less expensive than
intensive processing and flash access when the radio modules are loaded.

• The processing-intensive benchmark results in the highest current requirement.
• Flash reads and writes cost about the same.
• Transmit is only about 5 % more expensive than receive.

5.2.3.4 Image Acquisition Analysis

The goal of Meerkats is to detect and track moving bodies within the area covered.
Ideally, when a body enters the field of view (FOV) of a camera, the camera would
take one or more images of it. The visual data is used for event detection, data
transmission in the chosen representation, and activation of nearby nodes, which are
likely to see the body next. However, due to the finite acquisition rate of the
cameras, it is possible that a moving body traverses a camera’s FOV without being
detected, and it is therefore important to assess the probability of this occurrence.

Let the presence of a moving body in the network be denoted by the event X1. If
a body enters the ith camera FOV (FOVi), an event F1i occurs. Every time a body
circulating in the area covered by the network enters the ith camera’s FOV and is
not detected, there is a “miss” event M1

i for camera i. More in general, one may
consider the case of n bodies circulating in the network (event Xn), r of which enter
the FOVi at some point (event Fri ), with the ith camera missing k of the body in its
FOV (event Mk

i ). It can be assumed that Mk
i is independent of Xn given Fri (since

objects outside the camera’s FOV cannot be detected):

P Mk
i jFr

i ;X
n

� � ¼ P Mk
i jFr

i

� � ð5:1Þ

Further, assuming that P Mk
i jFr

i

� �
is binomial, means that each “miss” event is

independent from the others. This makes sense if the case of “rare events”, that is,
when two bodies are unlikely to appear at the same time in the same FOV. It is also
possible postulate that P Fr

i jXn
� �

is binomial, a reasonable assumption in the case of
independently moving bodies.

A possible measure of performance of a camera node is the miss rate MRi, the
ratio of the expected numbers of “miss” events to the expected number of bodies in
the network:

MRi ¼ E Mi½ �=E X½ � ð5:2Þ

where, E[.] is the expectation operator.
Let P MjFð Þ ¼ P M1

i jF1i
� �

and P FjXð Þ ¼ P F1i jX1
� �

: Using the total probability the-
orem, and remembering that the conditional distributions of interest are binomial:
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Hence, from Eq. 5.2

MRi ¼ P MjFð ÞP FjXð Þ

Farther results are made available in (Boice et al. 2005).

5.2.4 MiNT

A miniaturized network testbed for mobile wireless research (MiNT) (De et al.
2005) serves as a platform for evaluating mobile wireless network protocols and
their implementations. Like a generic wireless network testbed, MiNT consists of a
set of wireless network nodes that communicate over one or multiple hops with one
another using wireless network interfaces. A prime feature of MiNT is that it
dramatically reduces the physical space requirement for a wireless testbed while
providing the fidelity of experimenting on a large-scale testbed. For example, using
MiNT it is possible to set up an IEEE 802.11b-based 3-hop wireless network with
up to 8 nodes on a 3.66 m × 1.83 m (12 ft × 6 ft) table. This space reduction is
achieved by attenuating the radio signals on the transmitter and the receiver.
Through this miniaturization it is possible to substantially reduce setup, fine-tuning,
and management efforts required for a wireless network testbed. Additionally,
attenuation on the transmitters reduces the interference of the testbed with the
production wireless networks operating in its vicinity.

Specifically, MiNT makes several contributions:

• It introduces the architecture and implementation of a miniaturized wireless
network testbed that features mobile multihop ad hoc networking on a
tabletop. The testbed additionally incorporates comprehensive remote manage-
ment, traffic monitoring, and fault injection facilities.

• It introduces pioneering hybrid simulation platforms that can run unmodified
ns-2 simulations while its link, MAC and physical layers are replaced by real
hardware and driver implementations. The large number of wireless network
protocols and traffic models already coded for ns-2 can thus be directly used on
MiNT. MiNT allows unmodified ns-2 scripts to be executed on a set of physical
nodes. Since the effects of radio signal propagation, like multipath fading and
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interference, are better captured while executing simulations in the hybrid mode,
it produces much more realistic results for simulation experiments.

• It verifies the fidelity of the miniaturization approach and points out its limi-
tations through extensive experimentation on an operational prototype.

5.2.4.1 MiNT Architecture

MiNT consists of a collection of core nodes managed remotely by a central
Controller Node, as shown in Fig. 5.10. A Core Node communicates with its peers
in the testbed using an IEEE 802.11b wireless NIC that is connected to a low-gain
external antenna through radio signal attenuators. The antenna is mounted on a
mobile robot to enable mobility. Each Core Node has another optional wireless
interface for the purpose of sniffing traffic and collecting packet trace. The
Controller Node oversees the operations of all the core nodes. A Core Node
communicates with the Controller Node through a dedicated network interface that

Miniaturized testbed

Controller Node

Fig. 5.10 MiNT architecture (De et al. 2005)
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can be either wired Ethernet, or any other wireless technology, that does not
interfere with the 802.11b transmissions in the testbed.

Core Nodes

A collection of core nodes constitutes a MiNT testbed. As MiNT goal is to build a
multihop wireless testbed, the design of a Core Node is at the heart of the overall
testbed design. A typical wireless testbed spans a large geographical area because
the radio signal can be received over a large radius of the order of few hundred
meters. In order to build a testbed that can fit on a tabletop, it is crucial to restrict the
radio signal within a small space, this enables to set up several nodes on a table and
still establish multiple collision domains. Mobility is one more issue in the design
of core nodes. The design of the core nodes with respect to miniaturization of the
overall testbed and mobility of the core nodes is emphasized in what follows:

• Miniaturization. The key to miniaturization of the testbed lies in limiting the
radio signals within a small space. The simplest technique is to adjust the
transmit power on the wireless interface card.
Fixed radio signal attenuators are used to limit the transmit power to a minia-
turized tabletop setup. A desktop PC equipped with a NETGEAR MA311
wireless PCI card (NETGEAR 2002) that does not have an internal antenna is
used for the core nodes. The PCI wireless NIC is connected to a radio signal
attenuator that in turn connects to an external antenna using an RF cable.

• Mobility. Node mobility is implemented using mobile robots. As the desktop
node itself is not mobile, the external antenna is placed on the mobile robot. This
limits the robot movement by the length of the cable connecting the external
antenna to the wireless card. A LEGO robot from Mindstorms (LEGO 2014) is
controlled from the desktop PC using an infrared (IR) Tower. The IR Tower is
attached to the robot so that infrared signal from one tower does not interfere
with another robot’s movements (Fig. 5.11).

Controller Node

The Controller Node enables centralized control and management of the testbed
through a console-based/Web-based remote access. The functionalities provided by
the Controller Node are used by the administrator and the users (experimenters):

• The administrator is primarily concerned with status monitoring and routine
maintenance, e.g. software upgrades, of the testbed nodes.

• A user accessing a shared MiNT testbed deployment, requires other function-
alities that let him configure each node, monitor the status of individual links, set
up scripts on different nodes, and control experiment execution on the testbed.
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A remote management system is the underlying mechanism to enable this
remote operability of MiNT, it is based on the simple network management pro-
tocol (SNMP)11 (Ranjan et al. 2005), where each testbed node is treated as a
managed device.

In order to collect management data while an experiment is in progress, a control
network is installed to be separate from the wireless network used for experiments.
This control network operates on a non-interfering channel, in the current MiNT
prototype it is over wired Ethernet. One can also use 802.11a for control channel
since it does not interfere with 802.11b channels used for the experiments. The
wireless control interface is not attenuated, enabling each node to communicate
with the Controller Node over a single hop. This is unlike a full-scale testbed, where
the control network also needs to operate over multiple hops (Chambers 2002).

5.2.4.2 Experimentation on MiNT

This section clarifies how experiments are controlled and analyzed on MiNT.

Fig. 5.11 MiNT core node
(De et al. 2005)

11Simple Network Management Protocol (SNMP) is the protocol governing network management
and the monitoring of network devices and their functions, it uses the User Datagram Protocol
(UDP) and is not necessarily limited to TCP/IP networks. SNMP is described formally in the
Internet Engineering Task Force (IETF) Request for Comment (RFC) 1157 and in a number of
other related RFCs.
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Experiment Control

Defining an experiment on any testbed involves several steps, exclusively, con-
figuring network topology, setting up applications, defining mobility patterns, and
setting the required per-node parameters. MiNT facilitates this configuration
through a graphical user interface (GUI) that can be used by an experimenter to set
up and manage experiments. The following steps illustrate experiment setup:

• Topology configuration. In configuring a wireless network topology, an
experimenter is primarily interested in the radio-connectivity between different
node-pairs. This is achieved by placing the nodes in such a way that each
node-pair satisfies specified link properties, like signal to noise ratio (SNR) or
link error rate. In manual topology configuration as adopted in MiNT, the user
determines correct location of all the nodes to satisfy the link properties.
However, with large number of nodes this method quickly becomes tedious.
Ideally, the user should declaratively specify the topology constraints, and the
node positions should be automatically calculated based on a priori measure-
ments done on the testbed. For automated topology configuration, one can start
by calculating approximate node positions from relative signal strength using
multihop trilateration12 (Encyclopædia Britannica 2014). Iteratively changing
the node locations and measuring the signal quality to achieve the desired
pairwise configuration can then improve the initial positions.

• Application configuration. This involves setting up the traffic generators and
traffic sinks, and can be done in two ways:

– The user can write his applications.
– He can choose from MiNT-supported library of ready-made applications,

similar to the traffic sources/sinks provided by the ns-2 simulator.

• Mobility configuration. A user can configure node mobility by specifying:

– Node trajectories.
– Target locations.
– Mobility models, such as the random waypoint model and the random walk

model.
Mobility scripts are installed on each node using the GUI. Multiple nodes
moving at the same time could collide; a script for full mobility must thus be
validated to avoid such node collisions.

• Setting node/card properties. Changing node/card configurations, as well as
installing kernel modifications are common user requirements that are provided
via the GUI. Users are also granted privileged access, which is required for

12Trilateration, method of surveying in which the lengths of the sides of a triangle are measured,
usually by electronic means, and, from this information, angles are computed. By constructing a
series of triangles adjacent to one another, a surveyor can obtain other distances and angles that
would not otherwise be measurable.
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accessing many of the functionalities such as raw socket and broadcast socket.
An alternate approach to providing privileged access is to support limited access
programming interfaces providing similar functionalities.

• Experiment execution. The next step in experiment control is providing the user
with ways to fine-tune an experiment by observing the results during execution.
In addition to simultaneous start/stop of an experiment on all the testbed nodes,
an ability to pause the experiment, modify parameters on the fly, and then
continue the experiment, could substantially reduce experimentation time.

• Application/Protocol debugging. MiNT is a distributed experimentation plat-
form, hence an experimenter faces all the difficulties of debugging distributed
applications and protocols. To address this problem, MiNT incorporates a fault
injection and analysis tool, which was earlier implemented for wired network
protocol testing (De et al. 2003). The tool helps a developer generate realistic
network faults, like dropping, delaying, or corrupting of specific packets, using a
simple scripting language. It is also possible to check for violations of protocol
conditions, and thus catch implementation bugs. Such facility is also useful in
understanding the behavior of wireless protocols like AODV in presence of
multiple errors such as control packet losses.

Once an experimental configuration is finalized, the user can save all the con-
figuration settings, such as node coordinates, applications and mobility scripts.
A saved configuration can be then used to quickly and automatically set up the
experiment next time onwards.

Experiment Analysis

A crucial component in an experiment life-cycle is its analysis stage. A network
application/protocol is usually analyzed by looking at various packet dynamics
during the experiment execution. MiNT incorporates a full-scale packet trace col-
lection, aggregation, and visualization facility to aid such analysis:

• Trace collection. Network sniffers, such as tcpdump13 (Nguyen 2004) and
ethereal14 (Nguyen 2004), are standard tools for Ethernet-layer packet capture.
One can additionally switch a wireless card to the RF monitor mode, where it
can capture all 802.11 link-level transmissions including 802.11 protocol
headers and control frames. In a distributed environment multiple monitor nodes
are required to collect the entire network trace (Yeo et al. 2004). In MiNT, each
Core Node also performs the monitor function using an additional wireless

13Tcpdump is a command-line tool for monitoring network traffic. Tcpdump can capture and
display the packet headers on a particular network interface or on all interfaces. Tcpdump can
display all of the packet headers, or just the ones that match particular criteria.
14Network traffic analyzer (console) Ethereal is a network traffic analyzer, or “sniffer”, for Unix
and Unix-like operating systems. A sniffer is a tool used to capture packets off the wire. Ethereal
decodes numerous protocols.
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interface. This approach is most accurate in reconstructing each testbed node’s
view of the wireless channel during an experiment. It is also possible to separate
the monitoring facility from experiment nodes. This requires strategically
placing the nodes to completely cover the signal space of all the nodes.
Additionally, the packets observed by a monitor node could be different from
those seen by an experiment node.

• Trace aggregation. The trace collected on each node is sent to the Controller
Node over the control network. Here all the traces are merged based on
timestamps. This merge step requires that all nodes be synchronized at the
beginning of any experiment. It is possible for the same packet to be captured by
multiple monitor nodes. The duplicate packets are eliminated to create the final
trace.

• Trace visualization. Trace visualization shows the transition of packets with
respect to time. Visualization could be real-time or offline, depending on
whether the collected trace on individual nodes are transported and aggregated
while the experiment is running, or at the end of the experiment. Real-time
visualization requires that parse, collate and display operations be done in
real-time. Display of the network-wide packet dynamics must show the packet
exchanges over time for each node. Also, different frames, like control, man-
agement and data frames, must be highlighted separately for ease of under-
standing. MiNT prototype supports offline analysis, and uses Ethereal for
visualizing the aggregated trace.

• Data filtering. Another useful element of experiment analysis is the set of filters
used to reduce the amount of trace collected on each node. This aids the online
visualization of trace by reducing the amount of traffic that must be transferred
in real-time. The user could not only specify the network layer at which the
packets are collected, but also the types of packets, e.g. HELLO packets, that are
collected at each node. A similar filter is available with the visualization tool to
further aid the trace analysis.

Fidelity of MiNT

It was shown by experimentation that the miniaturization technique based on
attenuators does not affect the fidelity of the results. Results of experiments con-
ducted on the testbed are compared with and without the use of attenuators on the
signal path. Comparisons verify that miniaturization technique does not alter the
behavior of any layer in the network stack; it only shrinks the physical space used
by the testbed:

• Physical layer. As signal propagation is a key aspect of the wireless physical
layer, the impact of attenuation on signal propagation characteristics is studied.
In this experiment, two nodes are connected in ad hoc mode and different levels
of attenuation are applied. The resulting spatial distribution of signal quality
(SNR) is compared with that of the non-attenuated case as listed below:
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– The obtained results reveal that when the attenuation is removed completely,
the signal quality improves, but the nature of its variation is preserved
compared to the attenuation cases.

– To configure a topology in MiNT, it is required to reduce signal attenuation
and keep the space unchanged, which makes the entire space better con-
nected. By adjusting attenuation level to a specific research task’s needs, one
can trade off the minimum signal quality with the physical space requirement
of the setup.

• MAC layer. This experiment studies the impact of attenuation on fairness
property of the channel access algorithm. A string topology of four nodes is set,
as shown in Fig. 5.12a. Node N2 is sending unicast traffic to node N1, and node
N3 to node N4. Since N2 and N3 are in the interference range of each other,
they contend for access to the shared wireless medium. Two different setups are
compared, one with attenuators and the other without attenuators, while keeping
the same link quality across both setups. The instantaneous throughput of the
two UDP flows for both cases is measured. It was shown that the channel is
shared equally between the two contending flows, and the bandwidth sharing
behavior is same in the attenuated and the non-attenuated case.

• Routing layer. This experiment shows that the behavior of the routing layer
protocols is not affected by introducing attenuators on the signal path. A 4-node
network topology is devised, where the end nodes are connected over two hops,
as shown in Fig. 5.12b. This experiment resorts to the AODV-UU15 protocol
(SourceForge 2013) to route packets between N1 and N4. The link quality is
maintained alike across the attenuated and the non-attenuated runs.
In each experiment, the route between node N1 and node N4, as chosen by
AODV-UU, is made to fail by artificially failing the intermediate hop. The
obtained results depict the time taken for new route discovery when such a
failure occurs; it was shown that the time taken in both attenuated and
non-attenuated cases holds similar values.

• Transport layer. To prove that the transport layer is unaffected by attenuators, a
1-hop TCP experiment is set. Two nodes are connected in ad hoc mode and the

Fig. 5.12 MiNT fidelity experimentation (De et al. 2005). a String topology where N2 and N3
contend. b 2-hop topology to run AODV

15AODV-UU is an implementation of the Ad hoc On-demand Distance Vector routing protocol
(IETF RFC 3561). It runs in Linux and ns-2 and was initially created at Uppsala University, hence
the UU-suffix.
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throughput of a TCP connection between them is measured. The link quality is
again maintained same across the attenuated and the non-attenuated setup.
The average TCP throughput is exhibited to be identical for the non-attenuated
and the attenuated cases for a period of 120 s. Even the instantaneous variations
have similar comportment, suggesting that the transport layer behavior is not
affected by use of attenuation.

MiNT Limitations

The key feature of a MiNT testbed is its ability to limit the signal propagation range
between two nodes to within a few feet through use of attenuators. However, the
attenuation approach has certain limitations that are to be under focus:

• Selective attenuation. The most obvious difference in MiNT from a typical
full-scale testbed is that in MiNT the radio signals are attenuated at the trans-
mitter and the receiver ends. As the core nodes are placed in a noisy environ-
ment, the nodes operate in presence of external noise sources, like microwave
oven, cordless phones, and other interfering channels. The RF signals from these
noise sources are attenuated only at the receivers. Also, the thermal noise at the
receiver is unattenuated because it does not go through the receiver antenna.
Since the attenuation of signal is more than that of the noise, one might suspect
that the signal-to-noise ratio (SNR) for a link in MiNT is lower than that of an
unattenuated testbed. However, this effect can be overcome by reducing either
the attenuation level or the distance between the nodes.

• Near-field effect. Typically in MiNT trimmed space, since the nodes, and hence
the antennas, are placed in proximity of each other, the receiver is in the
near-field zone of the sender. This is unlike a full-scale testbed, where the nodes
are typically placed far from each other, hence the receiver is usually in the
far-field zone of the sender.

• Spatial variation of signals. Multipath effects in signal propagation lead to
small-scale variation in the signal strength. On the other hand, constructive and
destructive interference resulting from the multipath effects are dependent only
on the frequency of the signals. Hence a solution to this problem is to scale
down the frequency of the signals which would make the number of crests and
troughs same. However, changing the frequency would change the properties of
the wireless medium under test, and hence is not a viable solution.
This limitation impacts the mobility-related experiments where the extent of
signal quality variation encountered by a mobile node in MiNT will differ from
that of full-scale testbed.

• Non-repeatability. Finally like any other testbed, experiments on MiNT are not
exactly repeatable because the external factors affecting signal propagation
cannot be fully controlled across experiments.
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5.2.4.3 Hybrid Simulation

Raising doubts about the veracity of simulation results is common. The drawback is
mostly attributed to the lack of detailed models for the physical layer properties
such as signal propagation and error characteristics. A usual practice in many
academic researches is to use simplistic physical layer models. This is one of the
prime reasons for the lack of simulation fidelity. With growing interest in
cross-layer designs of protocols, it becomes imperative to provide accurate results at
different layers in the protocol stack. Hybrid simulation alleviates some of these
problems faced by pure simulation.

Hybrid simulation is a technique where some layers of the simulator’s protocol
stack are replaced with their real implementations. It is clear that majority of the
inaccuracies in simulations stem from incomplete physical layer models. In MiNT,
the link layer, the MAC layer, and physical layer of the ns-2 simulator are replaced
with wireless card driver, firmware, and real wireless channel respectively.

The benefit of the hybrid simulation approach is that it requires minimal change
to the already existing simulation code and scripts. The same simulation experiment
can be used to obtain results in a realistic setting. The questionable effects of the
physical layer models in simulation are removed through use of real wireless
channel.

Implementation Issues

MiNT provides a way to conduct simulations in realistic settings to test, debug, and
evaluate protocol implementations before going for their larger-scale deployment;
ns-2 simulator is accordingly modified to support hybrid simulations. The chal-
lenges involved in implementing hybrid simulation capability into a standard
discrete-event simulator, and the techniques used to overcome these challenges for
the ns-2 simulator are underlined below:

• Event Scheduler. Two key design components in a simulator are:

– The way to model execution logic of different entities based on events,
activities or processes.

– The way the simulation time is advanced. ns-2 is a discrete-event simulator,
where the execution logic is based on events, and the time is advanced at the
pace of event execution time using a global virtual clock.

In a hybrid simulation, all packet communication is carried over real wireless
medium. This leads to inconsistency between the virtual clock that determines
the dispatch rate of simulation events, and the real-world clock that determines
the transmission rate of packets over actual wireless channel.
To overcome such issues, MiNT uses system clock on all the nodes that are
synchronized at the beginning of each experiment, to update the simulator’s
virtual clock. Events are thus dispatched according to their real execution time

5.2 Testbeds Illustrated 291



instead of being executed as soon as the previous event has finished execution.
ns-2’s built-in RealTime Scheduler is modified accordingly.

• Limiting the number of events. The correctness of hybrid simulation requires
that events should not be scheduled “in the past”. For instance, if the amount of
time spent in processing the simulator’s execution logic is too large, then an
event dispatching a packet to another node could be delayed and may be
dequeued by the scheduler when the real-time has advanced past its scheduled
execution time. Such delayed event execution is prevented by reducing the
number of events that the scheduler needs to process.

• Transmission/reception of packets. The internal packet format used in a simu-
lator does not conform to the exact specifications of the real protocols. Hence, a
packet from the simulator needs to be modified before it can be sent over the
wireless medium. In order to transmit an ns-2 packet sent from the routing layer
onto the link layer, a wrapper is implemented to encapsulate an ns-2 packet in a
UDP packet payload, and delivers it to the destination node using standard
socket layer.

• Changes to ns-2 script. The goal is to minimize changes to the existing ns-2
scripts to have them executed on the hybrid simulation platform. To provide a
single-script abstraction, the required changes are kept independent of the
individual core nodes. All changes are composed at the central distribution
node, and same script is loaded on all the core nodes.
The changes to an existing script are:

– The script must point to the MiNT link layer implementation instead of the
ns-2 link layer.

– Each testbed node is assigned a physical node-id that is used in the ns-2
script. The physical node-id for each node is preassigned and the ns-2 script
reads it from an environment variable local to each node.

In MiNT, only one virtual node is mapped onto a physical node. This might limit
the size of the network that can be tested in hybrid simulation by the number of
physical nodes available.

Hybrid Simulation Versus Pure Simulation

A study of the impact of physical layer characteristics is conducted; specifically,
signal propagation and error characteristics influence on data transfer rates for both
the platforms. Significant findings are obtained and elucidated.

Signal Propagation

This experiment tracks the impact of signal propagation on experimental results in
pure simulation and hybrid simulation. Two unicast flows are used, between nodes
N1–N2 and N3–N4, as shown in Fig. 5.13. The MAC layer on the senders N1 and
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N3 senses the channel before transmitting. A channel is perceived busy if the signal
from one active sender, say N1, reaches the other sender, say N3. If N1 cannot
sense N3 then there will be no interference, and the two flows will be active
simultaneously, giving higher throughput to both flows.

In ns-2, the two-ray ground propagation model16 (Henderson 2011) is used, with
a ratio of 1:2 for hearing and sense ranges, that is, 6.71 m: 13.41 m (22 ft: 44 ft). In
MiNT, the signal propagation is dependent on the environment, and this determines
whether one node can hear/sense another node’s activity. In ns-2 the channel
capacity is set to 2 Mbps, in MiNT, the card transmission rate is set to 2 Mbps. For
both cases a constant bit rate (CBR)17 traffic source (Cisco 2005) is used on N1 and
N3 to pump packets of size 1000 Bytes at 2 Mbps that ensures that both senders are
constantly trying to access the channel.

The obtained results reveal the impact of signal propagation characteristics on
the behavior of the MAC layer. Use of the two-ray ground propagation model in
pure simulation leads to the MAC layers of the senders perceive the other sender’s
transmission till they are out of “sense range”, throughput variation is uniform till
the senders are out of each other range. In hybrid simulation, the signal quality
variation is non-uniform, and the senders move in and out of sense-threshold, and
hence there is a non-uniform throughput variation in hybrid simulation.

It is clear that the interference is initially higher leading to channel contention
between the senders, but later the interference fades, and both flows can pump data
simultaneously. Pure simulation fails to capture this non-uniform spatial and tem-
poral variation of throughput, which is an artifact of signal propagation
characteristics.

Fig. 5.13 Topology to study the impact of signal propagation on channel access (De et al. 2005)

16A single line-of-sight path between two mobile nodes is seldom the only means of propagation.
The two-ray ground reflection model considers both the direct path and a ground reflection path.
17The CBR service class is designed for ATM virtual circuits (VCs) needing a static amount of
bandwidth that is continuously available for the duration of the active connection. An ATM VC
configured as CBR can send cells at peak cell rate (PCR) at any time and for any duration. It can
also send cells at a rate less than the PCR or even emit no cells.
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Error Characteristics

The conducted experiments illustrate the difference in error characteristics when
using pure ns-2 simulation and hybrid simulation running on MiNT. A CBR traffic
source to pump data from one node to another is used. In pure ns-2 based simu-
lation studies, each packet is corrupted according to a uniform random variable and
pre-specified error probability. On the other hand, errors in hybrid simulation occur
due to the ambient noise in the environment.

The obtained results show that simple bit error models in simulation could
produce qualitatively different behavior than those observed in real radio channels
as seen on MiNT. Therefore, testing wireless protocols that depend on accurate bit
error characteristics becomes much easier and produces realistic results with the use
of hybrid simulation technique.

5.2.5 MiNT-M

MiNT-m (De et al. 2006), is an experimentation platform devised specifically to
support arbitrary experiments for mobile multihop wireless network protocols. In
addition to inheriting the miniaturization feature and hybrid simulation from its
predecessor MiNT, MiNT-m has several additional features:

• It enables flexible testbed reconfiguration on an experiment-by-experiment basis
by putting each testbed node on a centrally controlled untethered mobile robot.

• To support mobility and reconfiguration of testbed nodes, MiNT-m includes a
scalable mobile robot navigation control subsystem, which in turn consists of a
vision-based robot positioning module and a collision avoidance-based trajec-
tory planning module.

• Further, MiNT-m provides a comprehensive network/experiment management
subsystem that affords a user full interactive control over the testbed as well as
real-time visualization of the testbed activities.

• Finally, because MiNT-m is designed to be a shared research infrastructure that
supports 24 × 7 operation, it incorporates an innovative automatic battery
recharging capability that enables testbed robots to operate without human
intervention for weeks.

To support autonomous node mobility and topology reconfiguration in a wire-
less network testbed it is necessary to mount each testbed node on a mobile robot.
Though conceptually simple, there are several technical challenges in designing and
implementing such a wireless testbed:

• Each testbed node must be battery-operated and self-rechargeable. The key
design issue is how to build completely untethered mobile robots that can
operate autonomously, thereby far exceeding in usability the ones that are
simply battery operated and thus requiring frequent management.
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• To set up a given initial topology or to enact a particular run-time node
movement pattern, an accurate positioning mechanism is required to track and
control the position of each wireless network testbed node.

• To grow a mobile wireless network testbed to a significant size of about 100
nodes, the targeted size of the MiNT-m project, the cost of each testbed node
must be low, and the design of various testbed control functions, such as node
movement and position tracking, must be scalable.

As detailed in Sect. 5.2.5.1, a MiNT-m node is built using a low-cost commodity
robotic vacuum cleaner called Roomba (iRobot 2014), which supports a limited
number of externally controllable movements, and is able to carry a large payload
up to 13.6 kg (30 pounds), as well comes with an effective auto-recharging capa-
bility. Mounted on each Roomba is a wireless network node supporting four 802.11
interfaces, each of which is attached to an antenna through a radio signal attenuator
to reduce its signal coverage.

A network/experiment management system is essential to the robustness and
usability of any wireless network testbed. The network/experiment management
system designed for MiNT, called MOVIE (Mint-m cOntrol and Visualization
InterfacE) has a multiplicity of functions:

• Providing real-time display of network traffic load distribution, pairwise
end-to-end routes, node/link liveliness, protocol-specific state variables, posi-
tions of individual nodes and inter-node signal-to-noise ratios.

• Allowing users to control a simulation run dynamically, including pausing a
simulation run at a user-specified breakpoint, inspecting its internal states and/or
network conditions, modifying different simulation parameters, and resuming
the run.

• Supporting a rollback mechanism that allows one to go back to a previous state
of a long-running simulation, and resume from there with a different set of
simulation parameters.

5.2.5.1 MiNT-M Architecture

MiNT-m derives from MiNT (De et al. 2005) the feature of using radio signal
attenuation to shrink physical space. The improvement is in designing completely
untethered nodes that was lacking in MiNT due to use of desktop PCs as testbed
nodes. More specifically, MiNT-m mounts a battery-powered small form-factor
RouterBOARD (MikroTik 2002) on the Roomba robotic vacuum cleaner.

Hardware Components

MiNT-m hierarchy is built upon the control server, the tracking server, and the
mobile nodes (Fig. 5.14):
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• Logically, each MiNT-m testbed node is a wireless networking device mounted
on a mobile robot. A testbed node design entails more than a factor. First, cost,
since MiNT-m was planned to scale to a size in the order of 100 nodes. Next, for
mobility, the wireless networking device should have a small form factor so that
it can be easily mounted on a simple robot, and should be power efficient to
maximize its runtime even on a small battery.
A mobile node comprises of a wireless computing device and a mobile robot for
physical movement. In MiNT-m, the wireless device is RouterBOARD 230
(MikroTik 2005), a small-form-factor PC with a 266 MHz processor and runs on
an external laptop battery. It also comes with a PCI extension board (RB-14),
which allows connecting four Qualcomm Atheros-based 802.11 a/b/g mini-PCI
cards (Qualcomm Atheros 2014). Each of these cards is connected to a 2 dBi
external antenna through a 22 dB attenuator. This adds a total of 44 dB atten-
uation on the signal path from transmitter to receiver and thus makes it possible
to deploy a 12-node MiNT-m prototype within a space of 3.37 m × 4.29 m
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Fig. 5.14 MiNT-m hardware and software components (based on De et al. 2006)
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(132.75” × 168.75”) (Fig. 5.15). In addition to the fixed attenuation, the transmit
power on the mini-PCI cards can be altered by 20 dBm to provide additional
flexibility in tuning inter-node signal-to-noise ratio.
Roomba IR-based remote control facility permits two primitives for arbitrary
movements:

– Move the mobile robot forward.
– Turn the robot by a specified angle.

Roomba’s remote control codes are learnt using a Spitfire programmable remote
controller (Innotech Systems 2000). The central control server moves a testbed
node by sending a movement command to the testbed node’s RouterBOARD,
which then sends a corresponding command to Spitfire over its serial port.
Eventually Spitfire issues the associated infrared code to instruct the node’s
Roomba to move accordingly. The RouterBOARD is equipped with 4 wireless
NICs each connected to a separate omni-directional antenna via a radio signal
attenuator (Fig. 5.16).
Roomba’s auto-recharging circuitry is modified to power up both Roomba and
the wireless network node. Moreover, a residual power estimation and a
recharge scheduling algorithm is designed to keep track of the battery status of
each node and determine the next recharge time for a node. A vision-based
positioning system is designed to track the position of each mobile node in the
testbed. The positioning system robustly tracks the nodes with zero false pos-
itives, and requires only commercial off-the-shelf webcams. The resulting node
position estimates are used for monitoring and for planning trajectories for
collision-free node movement.

• The control server is a PC equipped with three wireless network interfaces. All
control traffic is transported on an IEEE 802.11 g channel and thus does not
interfere with IEEE 802.11a channels that are used in actual experiments.

Fig. 5.15 MiNT-m prototype
with 12 nodes and charging
stations (top left corner) (De
et al. 2006)
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Multiple NICs give the flexibility to scale the testbed to increasing number of
testbed nodes.

• The tracking server is a cluster of three PCs that periodically receives snapshots
of the entire testbed, as captured by a (3 × 2) grid of commodity web cameras,
and uses them for testbed node identification and positioning. Smaller physical
space requirement also reduces the number of cameras needed.

Software Components

The key software components in MiNT-m are:

• The control daemon running on the central control server.
• The node daemon residing on each testbed node.
• MOVIE, the network monitor and control interface.

The control daemon running on the control server collects position updates of
testbed nodes from the tracking server and event traces from experiment nodes, and
correspondingly updates the MOVIE display. It also communicates user-issued
control commands, regarding node position or configuration changes, to individual
node daemons that in turn control the movement of mobile robots. Because all
event messages from the testbed nodes pass through the control server, the control
daemon also maintains a complete log of activities in the testbed.

The node daemons on the testbed nodes communicate with the central control
daemon over an IEEE 802.11 g channel that is determined at start-up time. The
messages that are communicated are either movement commands from the central

Fig. 5.16 MiNT-m testbed
node (De et al. 2006)
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control daemon, or simulation events reported by testbed nodes back to the central
control server. Other programs running on testbed nodes, for example, an ns-2
simulator, a TCP sender, or an RF monitoring agent, rely on the node daemon for
any communications with the central control server. For example, critical events in
the event trace that an ns-2 simulation run generates are passed in real-time through
the node daemon to the controller node for display.

MOVIE provides a comprehensive monitor and control interface that offers
real-time visibility into the testbed activity and supports full interactive control over
testbed configuration and hybrid simulation runs. MOVIE is derived from Network
Animator (NAM), an off-line visualization tool for ns-2 traces, but introduces
several powerful features for real-time monitoring and controlling simulation runs
and for interactively debugging simulation results such as protocol-specific
breakpoints and state rollback (Sect. 5.2.5.4).

5.2.5.2 Using MiNT-M

Running a hybrid simulation on MiNT-m involves three steps: experiment con-
figuration, experiment execution and experiment analysis.

Experiment Configuration

To configure an experiment running on MiNT-m, a user could specify the testbed
topology, the applications to run on the testbed nodes, the mobility patterns of
testbed nodes, and the network interface card parameters such as radio channel,
transmission power, etc. MOVIE allows configuring the network topology through
simple drag of a node icon in the canvas. Accordingly, the control daemon triggers
physical movement of the chosen node, followed by update of the pairwise signal
strengths in MOVIE.

When the user runs an ns-2 simulation on the MiNT-m testbed, an ns-2 instance
runs on each testbed node. In order to use MiNT-m as a protocol development
platform, Linux implementations of the protocol can be installed and executed on
each testbed node. To describe node mobility pattern, the user specifies the inter-
mediate positions and final destinations, along with their relative temporal offsets
with respect to the beginning of the simulation run. From this information, instead
of statically computing a global trajectory for each moving testbed node, MiNT-m
relies on a run-time collision avoidance algorithm that dynamically resolves pos-
sible collisions among testbed nodes by halting some of them when collisions
become imminent.

The user can also configure individual testbed nodes. One can first gain a root
shell on individual nodes and then deploy applications or kernel modules, and then
change their wireless network card parameters, such as transmit power and retry
count.
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Experiment Execution

Executing an experiment in MiNT-m has several facets:

• Through MOVIE the user initiates the experiment and controls execution by
observing its progress and intermediate results.

• MiNT-m enables starting, stopping, temporarily pausing an experiment, modi-
fying simulation parameters on the fly, and then resuming the experiment.

• MiNT-m supports the ability to rollback an experiment back to a previous
specified time, modify some simulation parameters and restart the simulation
run from the restored state.

• MiNT-m duplicates from VirtualWire (De et al. 2003) a facility to introduce
controlled faults that are designed to expose potential bugs in protocol
implementations.

Experiment Analysis

MiNT-m allows the user to specify simulation events of interest and to request the
associated values to be displayed in real-time. In addition, MOVIE supports
real-time display of several wireless network parameters that are generally useful
across all wireless protocols, such as the inter-node signal-to-noise ratio, the
throughput on each wireless link, and the route between a pair of nodes.

5.2.5.3 Autonomous Node Mobility

Position and Orientation Tracking

To enable autonomous robot movement, the central control daemon must keep
track of the current position and orientation of each testbed node. An optical or
vision-based position/orientation tracking system is adopted; it only requires
off-the-shelf webcams and color patches mounted on testbed nodes. The resulting
tracking system is able to uniquely identify each testbed node, and accurately
pinpoint its (X, Y) position and orientation (θ). Moreover, it can scale to over 100
nodes, which is the target size of MiNT-m design.

MiNT-m testbed covers a floor space of 3.37 m × 4.29 m (11.06’ × 14.06’).
A Logitech QuickCam 4000 is used; its image resolution is 320 × 240 pixels. Each
webcam is placed at a height of 2.77 m (9.1 ft) from the ground, and is able to cover
a floor region of approximately 2.21 m × 1.68 m (7.25’ × 5.5’) which means each
pixel corresponds to 0.48 cm2 (0.075 in2). To cover the entire testbed arena, the
prototype uses 6 webcams. These webcams are placed such that they overlap with
one another and the overlap area is large enough to completely hold a Roomba. As
a result, every Roomba is fully captured by at least one webcam and the image
streams from the 6 webcams can be processed independently.
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Colors represented in the HSV model are used to identify each testbed node and
its position/orientation. The HSV (Hue, Saturation, Value) model, also called HSB
(Hue, Saturation, Brightness), defines a color space in terms of three components
(ACA Systems 2011):

• Hue (H), the color type (such as red, green). It ranges from 0 to 360°, with red at
0°, green at 120°, blue at 240° and so on.

• Saturation (S), of the color, ranges from 0 to 100 %. Sometimes it is called the
“purity”. The lower the saturation of a color, the more “grayness” is present and
the more faded the color will appear.

• Value (V), the Brightness (B) of the color ranges from 0 to 100 %. It is a
nonlinear transformation of the RGB color space.

MiNT-m associates a four-color pattern with each testbed node, as shown in
Fig. 5.17. The head and tail color patches are the same for all testbed nodes. Only
the center patch, which consists of two colors, is used in node identification. The
location of a testbed node is the centroid of the ID patch. The orientation is
determined based on its direction, computed as the vector connecting the centroid
of the tail patch to that of the head patch. Using same colors for head and tail
patches introduces redundancies that guard against noises and simplifies the
determination of robot orientation. The vector from the centroid of the tail patch to
the centroid of the head patch is used to determine the Roomba’s direction, thereby
computing a node’s orientation in the testbed arena. The node location and iden-
tification are done using the center ID patches.

The color recognition algorithm used in MiNT-m uses standard image pro-
cessing techniques for edge detection.

Fig. 5.17 Color patch on a
node (De et al. 2006)
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Node Trajectory Determination

MiNT-m trajectory computation is based on a static trajectory planning algorithm,
which computes a robot’s path assuming the world is static, and a dynamic collision
avoidance algorithm, which detects and resolves collision by fine-tuning
pre-computed trajectories.

Given the current position and the target destination of a testbed node, the
control server takes a snapshot of the positions of other testbed nodes and treats
them as obstacles in the calculation of the testbed node trajectory. The static tra-
jectory planning algorithm first checks if there is a direct path between the testbed
node current position and its destination. If such path does not exist, the algorithm
identifies the obstacle closest to the source position, and finds a set of intermediate
points that lie on the line which passes through the obstacle and is perpendicular to
the line adjoining the source and destination and have a direct path to both the
source and destination. If no such intermediate points exist, the algorithm finds a
random intermediate point that is δ steps away from the obstacle closest to the
source and is directly connected to the source, and the algorithm repeats from this
new intermediate point as if it is a new source.

In Fig. 5.18, node N1 is set to move from Ainitial to Afinal. However, N2, N3 and
N4 block the direct path between Ainitial and Afinal. The trajectory planning algo-
rithm first figures out that N3 is the obstacle closest to Ainitial, and then computes the
intermediate points P1, P2, …, P6 to search for 2-hop paths to Afinal. Because the
paths L1 and L2 are partially blocked, the algorithm eventually chooses path L3,
which passes through the intermediate point P3.

In addition to static trajectory planning, MiNT-m also requires a dynamic col-
lision avoidance algorithm, because while testbed nodes are moving the robot
movement may not be perfect. Given a snapshot of the testbed, which appears once

Fig. 5.18 Finding the
trajectory from N1 current
position (De et al. 2006)
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every 1/4 s in MiNT-m prototype. MiNT-m performs a proximity check for each
testbed node, if any two nodes are closer than a threshold distance, both of them
stop, a new path is re-computed for each, and the algorithm moves them on their
new trajectory one by one. In the event that two nodes collide with each other, the
algorithm again detects it through a proximity check and stops the nodes imme-
diately. In this case, the algorithm also recomputes a new path for each of the two
nodes, and moves them one by one.

24 × 7 Autonomous Operations and Auto-Recharging

To render the testbed self-manageable and providing uninterrupted 24 × 7 con-
tinuous operation, each testbed node is powered with batteries that are recharged
periodically. MiNT-m supports automatic recharging of the nodes’ batteries.

Roomba provides a docking station to charge its batteries. The Roomba docking
station emits an IR beacon that is received by a Roomba over a distance of around
1.52 m (5 ft). When a Roomba’s battery power drops below a threshold, it starts
looking for a beacon emitted by the docking station and uses the signal to home into
the docking station for recharge. On the other hand, Roomba’s built-in battery
cannot be used to directly power the RouterBOARD; hence, a separate universal
laptop battery is used to power the RouterBOARD. To recharge the RouterBOARD
battery along with the Roomba battery, the RouterBOARD battery is connected to
the charging tip of the Roomba battery. This allows both batteries to be charged
simultaneously from the same docking station.

5.2.5.4 Hybrid Simulation

Pause/Breakpointing

In hybrid simulation mode, the simulator is running in a distributed manner across
all the nodes in the testbed. Debugging such a distributed application is a chal-
lenging task. In addition to simultaneous start and stop of an experiment on all
nodes, MiNT-m simplifies protocol debugging by introducing other standard fea-
tures of a typical debugger, namely pause and breakpointing of the experiment.

The implementation of the pause feature in MiNT-m requires modification to the
RealTime scheduler in the hybrid ns-2. When the simulation is paused, the exe-
cution of events pending in the event queue as well as those in transit to other nodes
is stalled. In the pause state, the user is allowed to change the physical configuration
of the testbed, or alter any physical parameters of the nodes in the testbed, like node
positions or transmit power, before resuming the execution.

The breakpoint feature is implemented by using the pause mechanism. In
breakpointing, the user specifies a watch on ns-2 packet header fields. Each node
matches the outgoing/incoming packet headers for pre-specified values, and when a
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match occurs, a breakpoint signal is sent to the controller node. The controller node
then informs all the nodes to pause their experiment execution.

Rollback Execution

The rollback feature for an experiment running in hybrid simulation mode gives the
flexibility to a user to repeat the experiment from a snapshot time in the past with
modified parameters fed to the experiment. This saves on experimentation time as
the entire simulation experiment need not be repeated from the beginning.

Performance

The core computing platform used is a processor-limited RouterBOARD-230 that
has a 266 MHz CPU. As more processing overhead on the system is added, the
maximum achievable throughput goes down. The throughput degradation of a
single hop is measured with different features, specifically, remote tracing,
per-packet local tracing, experiment breakpointing, and experiment rollback:

• Tracing. A study is conducted for the impact of different forms of tracing on the
maximum throughput achieved between two communicating MiNT-m nodes:

– Without tracing, ns-2 application agents could only achieve 20.5 Mbps as
compared to 33 Mbps achievable by a simple UDP flow running between the
same nodes. This is because of the additional processing overhead intro-
duced by ns-2, in contrast with a simple UDP sender that needs almost no
processing to prepare a packet.

– A throughput degradation results from any form of tracing that introduces
further CPU processing overhead due to string operations done by ns-2. For
instance, online remote tracing as done for selected events results in a
17.043 Mbps throughput.

• Breakpointing of experiments. This feature requires matching expressions to
trigger the breakpoints when the event occurs. Since matching different fields
incurs overhead, the throughput reduces. Despite the CPU bottleneck, the
throughput overhead increases only slightly with increasing number of
expressions. This is because the expressions are only checked once for each
packet, limiting the extra processing burden introduced by breakpointing.

• Rollback. This feature requires regular snapshot (using fork() system call) of
ns-2 process running on every MiNT-m node. Linux kernel’s fork() system call
automatically uses copy-on-write technique to avoid copying of all the pages at
the fork time. This spreads out the throughput degradation to a few seconds after
the fork() system call. Even with a 1 min snapshot granularity, the overall
throughput degradation was less than 0.25 Mbps.
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5.2.6 Kansei

The Kansei testbed at The Ohio State University is designed to facilitate research on
networked sensing applications at scale (Arora et al. 2006). The basic idea is to
couple one or more generic platform arrays that support a broad set of users, with
multiple domain-specific sensing platform arrays. Based on this concept Kansei
needs to be extensible to readily add new platforms, particularly domain-specific
ones. To address the scaling challenge, the idea is to use arrays that are large
enough so as to mirror deployment scale, and, if they are not large enough, they
should be capable to high fidelity capture radio phenomena at a resolution that
enables their scaling via software. The Kansei facility has been developed since
Spring 2004, partly through equipment support obtained from the Defense
Advanced Research Projects Agency (DARPA) for the ExScal project (Arora et al.
2005) as well as Intel Corporation and The Ohio State University. While a basic
purpose for developing Kansei was to shorten the long cycle time of ExScal
field-testing in multiple outdoor settings, Kansei was supporting a significant
number of diverse use cases and users.

Since Kansei has been made openly available, it has being used for research
projects at Ohio State University and elsewhere, at project-based graduate and
undergraduate courses, as well as in short classes for training XSM and Stargate
users. Kansei has also assisted in transitioning software to industry partners, in part
by getting them to execute validation tests on components being transitioned.

By its design focus on sensing and scaling, Kansei embodies a combination of
characteristics:

• Heterogeneous hardware infrastructure with dedicated node resources for local
computation, storage, data exfiltration18 and back-channel communication to
support complex experimentation.

• Time accurate hybrid simulation engine for simulating substantially larger
arrays using testbed hardware resources.

• High fidelity sensor data generation and real-time data and event injection.
• Software components and associated job control language to support complex

multi-tier experiments utilizing real hardware resources and data generation and
simulation engines.

• Kansei exports a Web interface on which experiments can be scheduled and the
results retrieved.

18Data exfiltration, also called data extrusion, is the unauthorized transfer of data from a computer.
Such a transfer may be manual and carried out by someone with physical access to a computer, or
it may be automated and carried out through malicious programming over a network (TechTarget
1999).
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5.2.6.1 Kansei Composition

Kansei consists of a set of hardware platforms, access to which is managed by a
remotely accessible Director framework. The composition supports several tools,
for high fidelity sensor data generation (Sect. 5.2.6.2) and hybrid simulation
(Sect. 5.2.6.3).

Hardware Infrastructure

Kansei’s hardware infrastructure consists of three components: stationary array,
portable array, and mobile Array:

The Stationary Array

The stationary array consists of 210 sensor nodes placed on a 15 × 14 rectangular
grid benchwork with 91.4 cm (3 ft) spacing. Each node in the stationary array
consists of two hardware platforms, eXtreme Scale Motes (XSMs) (Arora et al.
2005) and Stargates (Crossbow 2004b) (Fig. 5.19). XSM is a derivative of Berkeley
prototype sensor nodes, was developed by Crossbow and DARPA Network
Embedded System Technology (NEST) team at Ohio State University, for use in
the ExScal Project. Each XSM is equipped with a 7.3 MHz 8-Bit CPU, 128 KByte
instruction memory and 4 KByte RAM. For communication, the mote uses a
433 MHz low-power radio. The radio’s reliable communication range is between
15 and 30 m when placed on ground level. Each mote accommodates a variety of
sensors, such as a photocell, a passive infrared (PIR), a temperature and a mag-
netometer sensor, and a microphone. The motes run TinyOS (TinyOS 2012),
a lightweight event-based operating system that implements the networking stack
and communication with the sensors, and provides the programming environment
for this platform.

Fig. 5.19 Stationary array (Arora et al. 2006). a Extreme Scale Motes (XSMs). b Stargate
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Stargate (Crossbow 2004b) is an expandable single-board computer with Intel’s
400 MHz PXA255 CPU running the Linux operating system. It also has a
daughter-card, which contains an interface to a mote and a number of other
interfaces including RS-232 serial, 10/100 Ethernet, and USB. Its in-band19 com-
munication (The Free Dictionary 2014) is via an 802.11b wireless NIC card. The
characteristics at outdoor environments for these specific 802.11b radios were
extensively measured.

The XSM is connected to the Stargate through a dedicated 51-pin connector. The
Stargate devices serve as integration points for the mote-level devices, providing
them with channels for data-collection, data-analysis, and local sensor data gen-
eration and injection. These devices are connected through high-speed network
switches to an Ethernet back-channel network, which provides high-bandwidth
connectivity to and from the nodes for management commands, data injection and
extraction.

The Ethernet back channel of the stationary array connects to a cluster of PCs.
One PC serves as the primary server node for Kansei Director platform as well as
for the remote access to Kansei. Other PCs are used for running visualizations,
compute-intensive analysis, high fidelity sensor data generation, hybrid simulation
and diagnostic analysis. Lately, 150 nodes were upgraded to contain Tmote Sky
nodes as a third hardware platform, which features an IEEE 802.15.4 radio oper-
ating at 2.4 GHz, and an integrated on-board antenna (Moteiv 2006b).

The nodes are placed on customized benchwork, with a Plexiglas20 plane
(Arkema 2013) layered on top to support the mobile nodes. Four high-resolution
SONY SNC-RZ30 N cameras (Sony Corporation 2002) with pan-tilt-zoom, and
wireless as well as networked programmability, provide slew-to-cue capability for
configurable image feeds of indoor testbed operation. These image feeds will serve
sensing, visualization and, in some experiments, ground truth purposes.

Portable Array

The stationary array infrastructure is designed to be coupled with one or more
portable arrays for in situ recording of sensor data and field-testing of sensor
network applications. Each portable array consists of domain specific sensors and
generic software services for data storage, compression, exfiltration,
time-synchronization and management.

Kansei currently includes a portable array of 50 Trio motes. The UC-Berkeley
designed Trio integrates the XSM sensor board (acoustic, passive infrared, 2-axis
magnetometer, and temperature) with Tmote Sky nodes and a solar power charging
system. The Tmote Sky features an IEEE 802.15.4 radio operating at 2.4 GHz, and

19In-band signalling or CAS, channel associated signaling. Transmission of control signals in the
same channel as data. This is commonly used in the public switched telephone network (PSTN)
where the same pair of wires carries both voice and control signals, e.g. dialling, ringing.
20Plexiglas MC diffusion acrylic sheet designed specifically for the lighting industry, the sheet
diffuses light from LED sources without sacrificing significant light transmission.
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an integrated on-board antenna. This particular array duplicates the sensors in the
stationary array for at-scale high fidelity sensing validation studies. The
solar-powered charging makes it suitable for long-term deployments.

Mobile Array

This platform consists of five robotic mobile nodes that operate on the transparent
Plexiglas mobility plane (Fig. 5.20). The transparency of the plane allows light
sources mounted under the robots to activate the photo-sensors of the nodes in the
stationary array. Robots from Acroname, Inc. (1994) with built in motor-boards and
a Stargate interface, are used. A Stargate on each robot features an 802.11b radio
with the optional attenuated antenna, as in the stationary array. In addition, each
robot contains an XSM and Tmote Sky node to communicate with the stationary
array as well as to run native code for the XSM and Tmote platforms.

Director: A Uniform Remotely-Accessible Framework for Multi-tier WSN
Applications

The Kansei Director is an extensible software platform that enables integrated
experimentation on the stationary array, portable arrays and mobile array. It pro-
vides basic services:

• Experiments scheduling, deployment, monitoring and management for all array
platforms.

• Creation and management of testbed configurations in support of multiuser and
multiple-use scenarios, such as for allocation to experiments. Thus, “jobs”
potentially consisting of multiple WSN executables, scripts and data files, can be
programmed to run on a specific configuration of the testbed for a specified
length of time. The status of these jobs may be monitored during their execution.

Fig. 5.20 Mobile node on the
stationary array (Arora et al.
2006)
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• Gathering the state of the Kansei testbed to optimize resource utilization. The
complexity of network embedded applications is growing rapidly, yielding for
applications that are multi-phase and that are reconfigured from time to time.
WSN resources however are not growing at a rate that significantly exceeds
application needs. Hence, unlike traditional network based systems, network
embedded computing continues to involve operating networks “on the edge”, as
opposed to well within network capacity. Thus, application-dependent opti-
mization of resource utilization is an important integration challenge. This
implies awareness of network resources and rapid configuration of applications
in accordance to available resources, which is done by collecting state
information.

• Reconfiguration at runtime. A core integration challenge is to support applica-
tion management neatly, both for human users as well as for mechanization.
Thus, the Director also supports the orchestration of an experiment consisting of
multiple phases. In ExScal, for example, a “localization” phase calculated and
disseminated to each mote its (x,y) grid position, which was then stored in flash
memory. The mote was then rebooted to a “sensing” phase that initialized itself
by reading this localization information. Complex multiphase experiments
especially occur when iteratively tuning the application to the environment in
conjunction with tuning the middleware to the application.

• Implementing a core set of system-level utilities and runtime components.
Examples include tools for data injection, for instance, when an experiment
requires the injection of the output data from a previous phase as input for the
next one, health monitoring, and logging for all array platforms. Components
could simply be specific middleware such as for routing, or runtime components
for implementing “reflective” applications that, for example, monitor resource
utilization on the node and reconfigure themselves appropriately. It is to be
noted that the development of applications and system utilities and components
is done outside the Director.

• System administration services. These services include user management, such
as creation and deletion of users, and the assignment of access rights; also
included platform administration, such as the restarting or setting the network
configuration of a node.

• Remotely exposing services for experiment scheduling, configuration, deploy-
ment and management, system utility deployment and configuration and system
administration. End-users access these services through a Web interface and
programs through web-services.

• Supporting as a “plug-and-play” both the current and the future variety of
hardware and operating systems platforms across all tiers. Each platform
exposes its tailored uniform set of services. This uniformity allows the end-user
of Kansei to essentially be platform skeptical in the specification of the
experiment, including in its orchestration.
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Director Architecture

In the main Director, several subsystems are contained (Fig. 5.21):

• The Configuration subsystem that manages testbed configurations, such as a
topology and its nodes on the stationary array and on the portable arrays used in
an experiment.

• The Access Management subsystem that manages the levels of users and their
access rights.

• The Platform Management subsystem that abstracts the services of the arrays to
enable platform plug-and-play, through platform manifest files which are
installed on Kansei when a new platform is incorporated.

• The Experiment Management subsystem is responsible for experiment
scheduling, configuration, deployment, and monitoring.

The Director uses orchestration services for the sequencing of steps within a
multi-phase job.

Director services are implemented not just by components that run on the
top-level of the arrays, but also on nodes within arrays. For example, deploying an
application on a mote involves invoking a director component on the Director
server, which in turn invokes a component on the Stargate that serves as a gateway
to the mote. Just as the Director is hierarchical, so are several of the Kansei utilities.

Software implementation is performed as follows:

• The main Director runs on a Linux server, which also runs the Web-server for
the Web interface.

• Testbed scheduling, administration, management, and experimentation are
implemented in a multi-threaded daemon that uses scripts and utilities written as
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Fig. 5.21 Kansei Director architecture
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Perl (Perl.org 2002) modules and which encapsulate testbed services, such as
UISP21 (UISP 2014) for XSM programming via the serial port of the Stargate.

• PHP modules implement the Web-accessible testbed services, such as
job-creation, storage of experiment data, and a testbed health-monitoring page.

• A MySQL database provides persistence for storing job configurations and user
reservations. Data generated by jobs are stored on the server file system and may
be retrieved by links on the Web interface.

5.2.6.2 High Fidelity Sensor Data Generation Tools

Sensor data generation is a key component of high fidelity design and testing of
applications at scale. In addition to its utility in validation of applications and
network services, it provides a theoretical basis for the design of algorithms for
efficient sampling, compression and exfiltration of the sensor readings. Kansei users
can generate sensor data fields of arbitrary size at high fidelity using the methods
detailed below, specifically sample based modeling tools, and synthetic data gen-
eration from parametric and probabilistic sensor models.

Sample Based Modeling Tools

For many sensor modalities the physical phenomena of signal generation and
propagation is too complex for accurate parametric modeling and computationally
feasible simulation. In these instances a generic sample based model can be used to
simulate sensor readings at large scale. The model maintains a database of sensor
snippets indexed by ground truth parameters collected for the source phenomena.
To capture spatial correlations in sensor readings, the recordings are made simul-
taneously on an appropriately sized patch of sensors. Examples are passive infrared
energy recordings on a small mesh of sensors as a personnel intruder passes through
a tile of sensors, acoustic energy recorded on a small mesh of sensors for a windy
day indexed by the wind speed at that time and location, and signal energy, time
and direction of arrival recordings for all neighboring sensor locations for a buzzer
node indexed by their relative location to the source. Generation of the sensor data
at the desired scale is accomplished by replaying the snippets with appropriate time
and spatial shifts.

21UISP is a tool for AVR (and AT89S) microcontrollers, which can interface to many hardware
in-system programmers. UISP was written to work in a GNU/Linux environment, but can also run
inside Microsoft Windows systems, by using Cygwin.
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Synthetic Data Generation Using Parametric Models

For many sensor modalities the physical relationship between the sensor reading
and the underlying natural phenomena is well understood and the sensor readings
are dominated by the foreground signal. Consequently, sensor readings can be
generated from a parametric model of the underlying phenomena. In Kansei,
physics based parametric sensor models are developed for a variety of sensing
modalities including models of passive acoustic, seismic, infrared and magnetic
sensors.

Probabilistic Modeling Tools

An alternative modeling strategy relies on accurate estimation of the spatial and
temporal correlation of the sensor readings. Many sensor modalities can be modeled
as time varying random Markov fields. Examples are temperature, gas, humidity
and turbulent wind energy distribution.

5.2.6.3 Hybrid Simulation

For simulation to be an effective tool in evaluating sensor network algorithms, it has
to correctly model the physical environment for radio signal propagation as well as
adequately represent the application being run by the sensor network. Kansei fea-
tures a high fidelity hybrid simulation capability where a PC simulation server is
connected to the stationary or the portable array.

A hybrid simulator has to coordinate both real and simulated events. Thus, the
problem of reconciling the real and simulated time arises. One approach is to allow
the real events to occur at their own speed and periodically resynchronize the
simulated part with real events. However, this approach has potential scalability and
fidelity problems. In hybrid simulation, hundreds of virtual sensor nodes can be
simulated using real radio hardware to communicate messages. This ensures fidelity
of the simulator with respect to the radio propagation in realistic deployment
environments.

In Kansei, the hybrid simulator is applicable to the Berkeley motes running
TinyOS (TinyOS 2012) applications. A part of the simulator is TOSSIM (TinyOS
Wiki 2013), a TinyOS simulator. The main simulator component is running on the
PC. For hybrid modeling the simulator utilizes the out-of-band access to the
physical sensor nodes on the stationary array. The simulator allows TOSSIM to run
the application on the host PC but relays the communication and sensing requests to
the physical motes connected to the PC. This is done by replacing the components
that simulate communication and sensing in TOSSIM with components that handle
the interaction with the motes.
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5.2.7 Trio

Trio is one of the largest solar-powered outdoor sensor networks; it offers a unique
platform on which both systems and application software can be tested safely at
scale (Dutta et al. 2006). The testbed is based on Trio, a new mote platform that
provides sustainable operation, enables efficient in situ interaction, and supports
fail-safe programming. The motivation behind this testbed was to evaluate robust
multi-target tracking algorithms at scale.

Outdoor sensor network deployments like ZebraNet (Liu et al. 2004), GDI
(Szewczyk et al. 2004), Redwoods (Tolle et al. 2005), VigilNet (He et al. 2006),
and ExScal (Arora et al. 2005) provide unmatched realism, but these networks have
achieved either large scale or long life, but usually not both. Contrarily, indoor
testbeds like MoteLab (Werner-Allen et al. 2005) and Mirage (Brent et al. 2005)
use real radio hardware that provides much greater communications realism but
does not capture the nuances of outdoor environments. Not to be sidestepped from
consideration, portable testbeds like EmStar (Elson et al. 2003) allow realistic
outdoor experimentation but their wired backchannels have two sides of a coin, on
one side they provide great visibility, but on the other side they limit the scale of the
deployment. Testing at realistic scales is imperative because each order of mag-
nitude increase in network size ushers in a new set of unforeseen challenges.

Trio is an open four tier experimental platform designed to better address the
requirements of a large-scale, long-lived, outdoor testbed as illustrated in Fig. 5.22
(Dutta et al. 2006):

Fig. 5.22 The four tiers of Trio (Dutta et al. 2006)
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• Trio nodes reside in the lowest tier (Tier-1) of the architecture. Trio provides
support for application-level experimentation through a sensor suite optimized
for detection and classification of humans and vehicles as well as support for
system-level experimentation through hardware and firmware for fault-tolerant
operation. Trio integrates Telos (Moteiv 2004), the eXtreme Scale Mote
(XSM) (Arora et al. 2005), and Prometheus (Jiang et al. 2005), it improves upon
their designs in several ways. Trio addresses a multiplicity of issues:

– Sustainable operation through a solar-power based renewable energy supply
with super capacitor and Lithium-Ion battery storage elements.

– Support for efficient in situ maintenance and fail-safe operation, and envi-
ronmentally hardened package design.

– Scalability by reducing the cost of human-in-the-loop operations, such
operations that require human interaction.

– Fail-safe flexibility is addressed through the use of the Deluge network
reprogramming system (Hui and Culler 2004), watchdog22 (Dien and
Ghing-Hsin 2000) and grenade23 (Stajano and Anderson 2000) timers, and
one-touch recovery.

The 557 Trio nodes in the testbed are organized into multiple routing trees, with
each tree rooted at a gateway (Fig. 5.22). Gateways forward traffic between the
802.15.4 Trio network and an 802.11 wireless backbone network. Each Trio
node dynamically associates with the closest gateway based on routing cost.
Gateways are physically distributed throughout the mote tier and support net-
work scalability by adding gateways as the number of nodes increases.
Gateways support sustainable operation through solar power and since they
simply forward traffic statelessly, flexibility is not required.

• Seven gateways sit in Tier-2 of the system architecture along with 802.11
repeaters and access points which bridge the 802.11 network to an 802.3
Ethernet network.

• A single root server resides in Tier-3 and connects to all of the gateways. The
server maintains a TCP session with each gateway while a daemon on the server
multiplexes these TCP sessions using gather-scatter communications and
exposes them as a single TCP session. This approach simplifies client interac-
tion by presenting a unified view of the network and abstracting superfluous
implementation details. The server also runs network monitoring and manage-
ment software that allows active querying or passive monitoring of the network
and stores the resulting data for online or later offline analysis. The monitoring

22A watchdog timer (WDT), also known as a computer operating properly (COP) timer, is an
embedded timing device that automatically prompts corrective action upon system malfunction
detection. If software hangs or is lost, a WDT resets the system microcontroller via a 16-bit
counter.
23The grenade timer is an evolution of the watchdog timer that can impose a hard limit on the CPU
time that a guest program may consume, in the absence of a protected mode on the host processor.
Unlike its predecessor, it is resistant to malicious attacks from the software it controls; but its
structure remains extremely simple and maps to very frugal hardware resources.
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software supports scalability by aggregating large amounts of information from
several sources into simple but informative graphics and tables. The manage-
ment software supports flexibility by allowing network programming and other
control functions. Section “Tier-3: The Root Server” considers the software that
runs on the server.

• The clients Tier-4 consists of one of more desktop computers that run client-side
applications. These applications access the network via the Tier-3 server, which
forwards traffic to and from the gateways Tier-2. The multi-target tracking
(MTT) was the first application to use the Trio testbed.

More elaborate Trio details are provided in the sections to come.

5.2.7.1 Trio Architecture

Tier-1: The Trio Node

The Trio node, shown in Fig. 5.23, is designed for long-lived operation with
minimal physical maintenance. Each node is based on three components:

• Telos mote (Moteiv 2004), which provisions for low-power operation and
remote reprogrammability, a necessity for flexible, long-lived applications.

• XSM mote (Arora et al. 2005) provides a Trio grenade timer for fail-safe
operation, and includes a sensor suite of passive infrared (PIR) motion sensors, a
magnetometer, and a microphone.

• The Prometheus solar charging system (Jiang et al. 2005) ensures sustainability
via a renewable energy supply.

A trio node supports sustainable operation, efficient physical interaction, and
fail-safe flexibility as detailed below. Software residing in Tier-1 is illustrated in
Fig. 5.25.

Fig. 5.23 Components of a Trio node (Dutta et al. 2006)
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Sustainable Operation

Sustainable operation is supported in two ways, through a renewable energy supply
and by environmentally hardening the Trio enclosure:

• Renewable energy. Trio circumvents the typical lifetime limitation resulting
from a non-rechargeable battery by including a renewable energy supply based
on the Prometheus solar charging system (Jiang et al. 2005) for
maintenance-free self-charging. The original Prometheus design is modified to
improve its performance and ensure fail-safe operation. A Trio node with a
depleted capacitor or battery starts to wake up after solar energy charges the
super-capacitor enough to produce a supply voltage of 1.8 V, the minimum
operating voltage for the MSP430 processor and CC2420 radio. However,
initializing sensor modules and writing to flash requires a higher supply voltage.
A component of the modified Prometheus driver enforces hysteresis and waits to
wake up the rest of the system until the supply voltage rises past 2.75 V, which
is enough to power the sensors and write to the flash memory. The application
program is only started once the system voltage exceeds 2.75 V.

• Environmental hardening. One of the key design challenges was to harden the
Trio enclosure for an outdoor environment without hampering sensor perfor-
mance or node maintainability. Several components of Trio, e.g. solar cell, PIR
sensor, microphone, buzzer, and user/reset switches, are exposed to the envi-
ronment for sensing, solar energy harvesting, and user input. These components
are made weather-resistant so that Trio nodes could operate under varying
weather conditions.

Efficient Physical Interaction

The Trio node supports scalable operation through efficient physical interaction.
The node also provides audible feedback about certain states and state transitions.
When a node’s capacitor voltage drops below a safe operating voltage, the node
chirps every few seconds. These audible cues allow operators to passively gauge
system status.

Fail-Safe Flexibility

Since Trio can be programmed wirelessly using the Deluge network programming
system, it is possible to program Trio with a buggy or even Byzantine program24

(Lamport et al. 1982). Deluge is included in the Trio platform software, so network
programming is automatically compiled into every application that uses the Trio

24The Byzantine problem is built around an imaginary General who makes a decision to attack or
retreat, and must communicate the decision to his lieutenants. A given number of these actors are
traitors (possibly including the General). Traitors cannot be relied upon to properly communicate
orders; worse yet, they may actively alter messages in an attempt to subvert the process.
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libraries. The external flash can be used to store up to seven programs and simple
Deluge commands can be issued to switch between the programs.

Several mechanisms are used to support fail-safe operation and recover from
buggy or Byzantine programs:

• Watchdog timer to ensure that software is making progress, tasks are executing,
and interrupts are being handled.

• Grenade timer to guarantee that a node can recover from Byzantine applications
by periodically transferring control to a trusted kernel.

• USB override that allows even the trusted code to be reprogrammed if
necessary.

• Hardware override on the power system to guarantee that the system always
reverts to the solar power supply in the event the battery dies during operation.

Tier-2: A Network of Gateways

In a large-scale deployment, a wireless high-bandwidth gateway backbone spread
throughout the network can serve several purposes. Specifically, it can partition the
traffic to lessen the overall network utilization, provide points for traffic observa-
tion, and can support scalability through hierarchy. Hierarchy allows a large sensor
network to be partitioned into multiple smaller networks that operate in parallel.

Figure 5.24 shows a gateway node and the backbone network architecture. The
backbone network consists of a gateway node that forwards mote traffic to and from

Fig. 5.24 Gateway node architecture (Dutta et al. 2006)
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the 802.11 backbone network, optional 802.11 repeaters, and an 802.11 access
point that connects this network to the root server.

Seven gateway nodes are available in Tier-2. A gateway node includes three
major components:

• Telos mote.
• Tmote Connect software (Moteiv 2006a) to be installed on a Telos-to-Ethernet

gateway such as NSLU2 (Linksys 2008) to forwards messages from the attached
Telos mote to the Ethernet interface.

• An 802.3–802.11 bridge that forwards messages from the Tmote Connect to the
802.11 network.

A 9 dBi omnidirectional antenna extends the gateway radio range. To attain
sustainable operation the gateway nodes are designed to operate on solar power.
The power supply for a gateway node consists of a solar panel, a charging con-
troller, a gel cell battery, and a DC-DC converter.

Scalability is supported through hierarchy. Seven gateway nodes are deployed to
support 557 Trio sensor nodes. Because the diameter of the network was larger than
the 200 m range of the gateway nodes, 802.11 repeaters with higher-gain antennas
were placed at key locations in the field. The backbone network required basic IP
routing, and management was performed through the web consoles of both the
Tmote Connect and the 802.3–802.11 bridge. Each gateway node was assigned an
IP address on the same subnet as the access point. Figure 5.25 displays the software
that runs the gateways functions.

Tier-3: The Root Server

As iterated, the Trio testbed consists of a total of 557 Trio nodes distributed over an
area of approximately 50,000 m2. The testbeds large scale and remote location
makes it difficult to monitor the nodes directly and raises the need for remotely

Fig. 5.25 Trio software (Dutta et al. 2006). Legend Each color matches a tier in Fig. 5.22
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accessible tools to manage the network. Thus, the Golden Image (Techopedia 2015)
and the management framework that runs alongside testbed applications on the
mote include the Nucleus network management system, a second-generation ver-
sion of simple network management system (SNMS) (Tolle and Culler et al. 2005).
Figure 5.25 displays the used software.

Network Health Monitoring

The Nucleus query system enables a testbed user to determine which nodes are
running at any particular time. The Nucleus query server that runs on the root server
provides an XML-RPC25 (Kidd 2001) interface to be used by a monitoring daemon
that periodically injects queries into the network, collects responses, and records
statistics. The monitoring daemon tracks which nodes are running, which nodes had
been running but have stopped responding, and which nodes have never run. The
monitoring daemon also marks a node as awake if a gateway overhears a protocol
message containing a source address such as Deluge (Hui and Culler 2004). The
daemon then provides this collected health information to a PHP-based web
application, which fuses this data with previously measured GPS coordinates for
each node and produces real-time network health maps that can be accessed
remotely.

Power Monitoring

In addition to ensuring that the network is running, a user of the testbed should be
able to verify that it is running sustainably. The monitoring daemon uses Nucleus to
query the Prometheus logic running on each node, periodically collecting measured
battery and capacitor voltage, along with flags indicating whether the node is
charging its battery or running on it. This information is also displayed on the map
provided by the web management console for online viewing, and is logged on the
server for offline charting and analysis.

Monitoring Network Programming

The monitoring daemon also collects information from Deluge, which permits
tracking the progress of an image through the network and visually identifying
nodes that are unable to acquire the image. Low battery voltages can prevent
Deluge from writing data to the flash storage, which leads to low-voltage nodes
requesting new data but never saving it. This Deluge “tension” can create hotspots
of traffic within the network that impede the flow of application and management

25XML-RPC is a quick-and-easy way to make procedure calls over the Internet. It converts the
procedure call into an XML document, sends it to a remote server using HTTP, and gets back the
response as XML.
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data. The acquired health maps enabled identifying the tense nodes and rebooting
them or simply shutting them off.

Monitoring and Control of Applications

The Nucleus management framework, or an alternate visibility and debugging
system called PyTOS (Whitehouse et al. 2006), can provide remote monitoring and
control of an application running on the testbed. Even though executing a new
application stops the Golden Image26 (Techopedia 2015) from running, nonetheless
maintaining the ability to query nodes and build health maps is highly desirable.
Though management traffic can conflict with an application being tested, perpet-
ually available management is fundamental to the successful operation of a
long-lived outdoor testbed.

Tier-4: Client Applications

Trio is created for a large-scale study of multi-target tracking algorithms developed
at UC Berkeley. In (Oh et al. 2005), MTT algorithms are ported to receive detection
events via the root server. Using a 144-node subset of Trio, they successfully
demonstrated in front of a large audience, real-time tracking of three people
crossing paths through the center of Trio field, as shown in Fig. 5.25. The use of
Trio for this application has highlighted problems with the system software and has
raised new challenges that would not have been discovered in a small-scale or
indoor setting.

5.2.7.2 Experimenting with Trio

Familiarities with Renewable Energy

Renewable energy, in the form of a solar power supply, has been both the bene-
diction and nuisance of this experience. The most promising discovery was how
renewable energy fundamentally simplifies system operation, management, and
maintenance, enabling the familiar “deploy first, develop later” approach used with
wired testbeds. The tricky side stemmed from the dynamics of solar power and the
logistics of node initialization that raised many new concerns and exposed several
unknown weaknesses in the network protocols and management strategies.

26In network virtualization, a Golden Image is an archetypal version of a cloned disk that can be
used as a template for various kinds of virtual network hardware. Using golden images as tem-
plates, managers can create consistent environments where the end user does not have to know a
lot about the technology.
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Limited Availability

Trio can be operated at 100 % duty-cycle during only a few hours in the middle of
day when direct sunlight is present. However, a duty-cycle ranging from 20 to
40 %, depending on the time of year, allows continuous operation. This availability
limitation stems from several factors:

• Limited awareness of the subtleties of solar energy harvesting. Specifically,
seasonal and daily variation in solar power, the angle of inclination of the solar
cell, the effect of dirt and bird droppings on the solar cell, the importance of
maximizing power transfer from the solar cell, and the policy surrounding
energy transfer between the primary and secondary energy stores.

• High power draw and lack of a low-power TinyOS MAC layer for the CC2420
radio.

• Several inaccuracies in the design of the Prometheus solar energy harvesting
system.

Emergency Battery Daemon

As a consequence of limited availability that is operating with a power deficit it is
impractical to rely on the battery to supply enough power at all times. Thus
Prometheus is prevented from automatically switching to the battery in times of low
energy availability. Because Prometheus no longer switches automatically from
capacitor to battery, a module called the Battery Daemon is added to permit
manually managing this switchover. The Battery Daemon uses Drip (Tolle and
Culler et al. 2005) to disseminate a command that directs each node to acquire a
short lease. While holding the lease, a node can switch to battery when either the
capacitor voltage runs low, or with a different command, until the lease expires.

Epidemic Protocol Failures

The Golden Image includes Deluge (Hui and Culler 2004) and Drip (Tolle and
Culler et al. 2005), both of which use the Trickle algorithm (Levis et al. 2004). In
these protocols, one node can send an advertisement message that contains
out-of-date metadata, which causes neighboring nodes to generate traffic in order to
update the advertising node. When exercising the protocols at scale, unstable solar
power supply led to nodes powering down, losing their saved metadata, and
sending out-of-date advertisements when power was restored. During times of low
or occluded sunlight, these reboots happened frequently enough that the excess
update traffic created network hotspots. Such excess traffic noticeably slowed down
network programming time and disrupted network monitoring and management
operations. The power instability present in Trio has exposed several problems in
network and transport protocols that are unlikely on a stable indoor testbed.
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Variability at Scale

Non-justified significant variance is revealed across the nodes in their solar energy
harvesting and an almost linear growth in the percentage of nodes using the battery
in the afternoon from 0 % at 13:30 h to just below 70 % at 16:30 h. These results
are surprising because all nodes in Trio run the same software and are oriented in
the same way with the solar cells facing south.

5.2.8 TWIST

TKN wireless indoor sensor network testbed (TWIST) is a scalable and flexible
testbed architecture for indoor deployment of WSNs, it is developed and experi-
mented at TKN (Telecommunication Networks Group at Technical University of
Berlin) (Handziski et al. 2006). TWIST is based on cheap off-the-shelf hardware
and uses open-source software. It is thus cost-effective and open for solutions that
can be reproduced by others. The design of TWIST is based on an analysis of
typical and desirable use-cases and is thus capable of supporting a multiplicity of
features:

• It provides basic services like node configuration, network-wide programming,
out-of-band extraction of debug data, and gathering of application data.

• It supports experiments with heterogeneous node platforms.
• It provides active power supply control of the nodes. This enables easy tran-

sition between USB-powered and battery-powered experiments, dynamic
selection of topologies as well as controlled injection of node failures into the
system.

• It permits creation of both flat and hierarchical sensor networks. For this a layer
of “super nodes” is introduced, that not only forms a part of the testbed
infrastructure but can also play a role as element of the sensor network.

The self-configuration capability, the use of hardware with standardized inter-
faces and open-source software makes the TWIST architecture scalable, affordable,
and easily replicable. A specific realization of TWIST spans three floors of an office
building and supports over one hundred sensor nodes.

5.2.8.1 TWIST Architecture

The following sections elaborate a description of the individual testbed entities,
starting from the lowest layer, the sensor nodes, and moving up to the testbed
backbone with the attached server and control station (Fig. 5.26).
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Sensor Nodes

The sensor nodes need a set of hardware capabilities facilitating their smooth
integration with the components of the testbed infrastructure. The overall archi-
tecture of the TWIST is remarkably centered on the use of the USB interface.
A heterogeneous mixture of WSN platforms is supported, as long as they dis-
seminate capabilities such as power-supply, programming and communication via a
standard-compliant USB interface. Generally, any platform having a USB 1.1
interface can be used. This feature is supported by Telos (Moteiv 2004) and
EyesIFX (Handziski et al. 2004) mote families, which have been successfully
interfaced with TWIST.

The operating system running on the sensor nodes has to satisfy several basic
requirements:

• It has to provide a suitable execution environment for the application logic of
the SUE.

• It should support node configuration, instrumentation of the application code
and allow for out-of-band communication with the super nodes over the USB
infrastructure.

TinyOS (TinyOS 2012) is chosen as it satisfies these requirements and runs on
both the Telos (Moteiv 2004) and the EyesIFX (Handziski et al. 2004) platforms.

Server                         Control station 

Ethernet backbone

Super nodes      … 

USB 2.0 hubs      … 

Active USB cable 

Passive USB cable 

Active USB cable 

Passive USB cable 

USB socket 

WSN node 

WSN nodes     … 
USB socket 

Fig. 5.26 Hardware architecture of the TWIST testbed (based on Handziski et al. 2006)
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Testbed Sockets and USB Cabling

A testbed socket is the point where the USB interface of the sensor node attaches to
the USB infrastructure of the testbed. The sockets have unique identifiers, and their
geographical position is known and does not change over time. The node identifiers
are associated to the socket identifiers and hence to the geographic position of the
sockets. The sockets are connected to other testbed components using a combi-
nation of passive and active USB cables, depending on the distance between the
socket and the next element of the infrastructure, the USB hubs. Using passive
cables a maximum distance of 5 m can be bridged. For greater distances, active
USB cables can be used (single port USB hubs with fixed cable), or several USB
hubs can be daisy-chained together.

USB Hubs

The hubs are the central element of the TWIST USB infrastructure and provide
support for some of the most important features of TWIST:

• At the most basic level, the USB hub is a multiplexing device that enables to
break the one-to-one correspondence between the sensor nodes and the
second-level testbed devices that can be found in many of the existing WSN
testbeds. This enables significant cost savings without compromising the testbed
functionality.

• Even more, the USB hubs give TWIST one of its most powerful capability, the
binary power-control over the sensor nodes in the testbed.

The USB hub specification 2.0 requires that self-powered hubs support port
power switching. By sending a suitable USB control message, the software can
control the power state of a given port on the hub, effectively enabling or disabling
the power supply for any attached downstream device. In the case of TWIST, these
downstream devices are the sensor nodes plugged into the testbed sockets.
Depending on whether the sensor node attached to the socket is battery equipped or
not, four different state transitions are enabled:

• From “USB-powered” to “off”.
• From “off” to “USB-powered”.
• From “USB-powered” to “battery-powered”.
• From “battery-powered” to “USB-powered”.

Super Nodes

If TWIST only relied on the USB infrastructure, it would have been limited to 127
USB devices (both hubs and sensor nodes) with a maximum distance of 30 m
between the control station and the sensor nodes (achieved by daisy-chaining of up
to 5 USB hubs). While suitable for small to medium size testbeds, these limitations
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do not allow for scalability of the architecture and support for deployments over
large geographical areas.

To tackle the scalability problem, several requirements must be met:

• There is a need for a distributed solution that spreads the testbed functionality
among multiple entities.

• The super nodes must have the ability to interface with the earlier described
USB infrastructure. In addition, they have to support a secondary communi-
cation technology that does not have the size and cable length limits of the USB
standard, and that forms the testbed backbone to which the server and control
stations can be attached.

• Adequate computational, memory and energy resources are needed.

To satisfy these requirements, while keeping reasonable expenses for a medium
to large-scale testbed, the class of 32-bit embedded devices is used for attaching
networked storage. At the same time, these devices have similar capabilities as the
so-called “high-end wireless sensor nodes” or “microservers”, enabling dual use of
the super nodes as parts of the testbed and as parts of the SUE. For TWIST, the
Linksys Network Storage Link for USB 2.0 (NSLU2) (Linksys 2008) depicted as
super node has two USB 2.0 ports, it uses an IXP420 processor from Intel’s XScale
family (clocked at 133 MHz), with 32 MByte SDRAM and 8 MByte Flash as
persistent storage. One particular feature of the IXP4xx family are the two inte-
grated network processor engines (NPE) that implement, among else, two full
Ethernet MAC and physical layer units along with the related packet-processing
functionality. The Linksys-supplied firmware for NSLU2 is a customized Linux
OpenSlug (Linksys 2008), now called SlugOS/BE (Linksys 2009).

Server

The server and the control stations must interact with the super nodes using the
testbed backbone, so they have to support the same communication technology.
The role of the server is critical, it contains the testbed database, provides persistent
storage for debug and application data from the SUE, runs the daemons that support
the system services in the network, etc.; its hardware resources should thus be
adequately dimensioned to guarantee high levels of availability.

The operating system support on the server is also based on Linux, a standard
Fedora Core 3 server installation (Red Hat 2004). Fedora Core 3 was codenamed
Heidelberg and was over in January 16, 2006 for a newer version. The current
version is Fedora 20, codenamed Heisenbug, and was released on December 17,
2013 (Fedora 2014).

For the management of the super node network, the server runs the DHCP, DNS,
NTP, and NFS daemons, as well as the UnionFS kernel module. At the heart of the
server is the PostgreSQL database (PostgreSQL 2013) that stores a number of tables
including configuration data like the registered nodes (identified as NodeIDs), the
sockets and their geographical positions (identified as SocketIDs) as well as the
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dynamic bindings between the SocketIDs and NodeIDs. The database is also used
for recording debug and application data from the SUE. A significant motive for
choosing PostgreSQL is the availability of the PostGIS extension that permits to
represent the locations of the sockets in a natural 3D coordinate system, and pro-
vides support for spatial queries and experimentation with location-based services.

Control Station

The control station hardware can be any workstation that is attached to the back-
bone, though the ability to run Linux eases its integration into the testbed. Software
functions are two sided:

• A number of developed Python scripts that run locally on the super nodes and
provide functionalities like sensor node programming, executing power control,
collecting debug and application data, and more.

• The actual invocation of these scripts is done by the control station using ssh
remote command execution27 (Red Hat 2008).

Without further optimization, the control station would have to log onto the
super nodes serially and invoke the Python scripts. Clearly, this would require a lot
of time when activities involving all the nodes (like reprogramming) have to be
executed. To speed up such tasks, a hierarchical threading approach is adopted to
exploit parallelism; the control station first creates a separate thread of control for
each of the super nodes. Every such thread starts the Python scripts on its associated
super node via the ssh remote command execution. On the super node, each of these
Python scripts in turn creates separate threads for quasi-parallel reprogramming of
all the attached sensor nodes. In this way, by utilizing the natural parallelism in the
system, it is possible to execute network wide tasks in approximately the same
amount of time as it would have taken on a single sensor node.

5.2.8.2 TWIST Installation

This section illustrates how TWIST is installed to satisfy the multiplicity of features,
laid out earlier, using cheap off-the-shelf hardware and open-source software.

Matching SUE and TWIST Architectures

The flat, segmented, and multitier sensor network architectures, can be easily
realized with TWIST due to the flexible boundary between the SUE and testbed
functionalities:

27The ssh command is a secure replacement for the rlogin, rsh, and telnet commands. It allows to
log into a remote machine, as well as execute commands on that machine.
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• Flat sensor networks. Under this scenario, the boundary between the SUE and
the testbed is just the USB interface on the sensor nodes. The super node, the
server, and the control station exclusively perform testbed functions. The testbed
is used to program the sensor network and to extract debug data or
application-related data from the WSN. The extracted data can be preprocessed,
compressed, filtered or aggregated already in the super nodes in a distributed
fashion. The debug data is transferred out-of-band and does not consume any
wireless bandwidth. In cases where even the instrumentation of SUE code with
debug code causes unwanted interactions, the sensor node population can be
partitioned into SUE nodes and nodes doing only packet sniffing on the wireless
medium.

• Hierarchical sensor networks. In such a case, the super nodes can play a role
both in the SUE and in the testbed. They do this in two ways. Either to let some
of the super nodes act as high-level nodes in the sensor network application and
others as testbed nodes, or to execute both roles at the same time on a single
super node. Hence, the super nodes are dual-use devices. Again, debug data
originating in sensor nodes is not transmitted over the wireless channel. But, for
time-sharing, the super nodes have to split their computational resources and
bandwidth between SUE and testbed-related functionalities.

• Segmented sensor networks. To implement this scenario, super nodes can be
used as gateways between different flat segments. The selected super node
hardware offers the possibility to equip them with WLAN, Bluetooth or other
communication technology for this purpose.

The communication between the super nodes, the server, and the control station
is carried out using TCP/IP, making it easy to export the testbed services to
authorized remote users. The super nodes also play a key role in addressing the
scalability requirement. They can be used to filter, aggregate, or compress the
generated data, thus pushing the “congestion barrier” on the backbone network
towards higher numbers of nodes. The server and control station can be used to
store the aggregated data and present online and offline evaluations to the user.

Programming and Time Synchronization

Reprogramming is supported by TWIST over the USB interface, and it is paral-
lelized as possible by letting the super nodes reprogram their nodes in parallel. The
current approach of TWIST towards distributed debugging follows the printf()
approach. Specifically, when the application on the sensor node dumps debug data,
this data is transported over the USB interface to the super node and timestamped
there. The super nodes receive their timing information via the network time pro-
tocol (NTP) protocol (Authors 2011) from the server. The precision of NTP in local
networks is in the range of hundreds of microseconds to few milliseconds. The time
resolution achievable by this approach is sufficient for many WSN applications.
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Power Supply Control

A key facility of TWIST is binary power supply control. By switching off the USB
connection of a sensor node, and thus its power, the extinction of nodes can be
emulated. Conversely, by repowering the USB connection the deployment of new
nodes is mimicked. Importantly, this “life control” does not require any cooperation
from the sensor nodes. Thus it is possible to observe under controlled, precisely
repeatable conditions, the response of self-configuration algorithms of the SUE,
such as routing, to such configuration changes.

When an experiment requires battery-driven nodes, for example to obtain life-
time results, this can also be achievable with TWIST; when both a battery and the
USB power source are available, the node is powered from the USB port. When the
USB port is switched off, the nodes run on battery power only.

Management

Management in TWIST has several characteristics:

• Powering the nodes via USB cables has a major benefit in alleviating the need
for frequent battery changing, which in a larger testbed could create significant
additional work and costs.

• As already discussed in Sect. 5.2.8.1, the association between node identifiers
and geographic positions is created via the USB sockets.

• The super nodes play a key role in the automatic maintenance of this
association:

– The USB interface on the super nodes detects when a node is plugged into a
socket or when it is removed. As a result, a software event is triggered.

– On receiving such an event, the super node extracts the nodes manufacturer
serial number from the event data and determines the unique node identifi-
cation (nodeID) from a database on the server.

– After that, the super node registers the binding between the node and the
socket identifier in the database. This database also contains the geographical
position of each socket. It is thus possible to put nodes into arbitrary sockets
and to automatically keep the database in a consistent state. Furthermore, it is
an easy task to figure out the precise position of a sensor node given its
identification, to determine all sensor node identifications pertaining to a
given geographical area and so forth.

5.2.8.3 TWIST Deployment

The local instance of TWIST spans three floors at TKN building. Specifically, 90
locations are fixed for nodes with known positions and there are additional 90 free
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slots on the USB hubs. Also, 37 NSLU2 s are used, 53 USB hubs and about 600 m
of USB cables. The NSLU2 s communicate over Ethernet. An alternative is a
USB-to-WLAN adapter that can be attached to the free port of the NSLU2, and to
establish a wireless backbone network.

One of the assets of TWIST is the possibility to experiment with different node
densities, network sizes and node dynamics. For instance, such parameters are
changed to test Drain routing protocol (Tolle and Culler 2005).

5.2.9 SignetLab

SignetLab is a sensor network testbed deployed at the University of Padova, Italy
(Crepaldi et al. 2007). In its design, a two-folded approach is adopted, exactly,
design of the physical deployment, and design of the software tool. The software
tool is made as independent from the physical deployment as possible, this allows
the testbed to grow and change without the need to re-implement the software. It
also, permits other laboratories to easily make use of this tool without the need to
replicate the hardware used in SignetLab. The software tool was freely available on
the SignetLab group website.

The works that are most relevant to SignetLab are MoteLab (Werner-Allen et al.
2005), Mobile Emulab (Johnson et al. 2006), and TWIST (Handziski et al. 2006).
They are aimed at maximizing testbed utilization among different users by pro-
viding a web interface through which users can schedule jobs.

5.2.9.1 Hardware

The choice of hardware for SignetLab supports a number of goals:

• The radio should provide sufficient range and power settings to allow the testing
of a variety of protocols.

• The nodes must provide a means to alter their sensing capability in order to
provide support for a variety of applications.

• The processor on the nodes should provide sufficient computational resources to
allow the execution of interesting protocols and applications while still being
realistic for a sensor node.

• There should be a reasonable way to get real-time status and debugging infor-
mation from the testbed without interfering with the execution of the main
application.
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Deployment Space

SignetLab is deployed in a 10 m × 11 m laboratory due to space limitations at the
University of Padova. The deployment is on a grid suspended 60 cm from the
ceiling and 2.4 meter above the floor. In this way, the laboratory is not overtaken by
the sensor network deployment. The network is made up of 48 EyesIFXv2 nodes
(Handziski and Lentsch 2005), separated by 160 cm in one direction and 120 cm in
the other direction. These distances were chosen to provide a uniform distribution in
the laboratory.

Sensor Nodes

The EyesIFXv2 nodes were developed during a three year European research
project on self-organizing energy-efficient sensor networks (Handziski et al. 2004).
The nodes use an ultra-low power MSP430F1611 processor with 10 KByte on chip
RAM, 48 KByte Flash, and an additional 512 KByte serial EPROM. The radio chip
is a low power FSK/ASK transceiver, providing half-duplex, low data rate com-
munication in the 868 MHz ISM band. It operates using FSK modulation, with <
−109 dBm sensitivity, enabling up to 64 Kbps, half-duplex, wireless connectivity.

The platform is also equipped with an on-board stripline antenna and a
sub-miniature version A (SMA)28 (Wellshow 2015) connector for external antenna.
The external antenna is the default. The onboard antenna can be selected by sol-
dering a resistor into the correct location on the chipboard. However, using either of
the available antennae created a radio range, which reduced the testbed to a one-hop
network. One option was to use a low-gain setting at the receiver; however, this
does not decrease the interference range of the transmitters. As this option is not
required, SignetLab uses homegrown, low-gain antennae inserted into the external
antenna plug to provide multihop transmission ranges.

The nodes are equipped with onboard temperature and light sensors as well as a
serial peripheral interface (SPI) expansion port that can be used for additional
sensing capabilities. The SPI bus is shared between the expansion port, the radio,
and the processor. Therefore, there is a hard restriction on the amount of resources
used at a time.

The nodes can be powered either by batteries with a capacity 1000 mAh, or
through a power supply connected via an external polarized connector or a USB
connection.

28SMA is a coaxial RF connector with a 50 ohm impedance, 1/4-36 thread type coupling
mechanism. SMA offers excellent electrical performance from 0 to 18 GHz.
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Backplane Connection

To avoid interference between debugging and data gathering with the operation of
the testbed, a backplane using USB connections is made available. These same
USB connections are used to supply power to the nodes; therefore, only a single
cable is required to connect each node. Figure 5.27 depicts the backplane archi-
tecture, which is composed of two tiers of hubs. Each of the used 15 hubs has its
own power supply. The gray squares represent the 12 second-tier hubs, each of
which connects four sensor nodes. The solid rectangles represent the three first-tier
hubs, each connecting four second-tier hubs. The first-tier hubs are connected
directly to the controlling PC. One of the driving factors in this layout was the fact
that USB cable lengths could not be greater than 5 m, in order to keep transmission
error rates sufficiently low. This is due to insufficient power at the hubs to transmit
signals that can be accurately decoded over long distances.

Hub 3 

Hub 2

Hub 1 

Fig. 5.27 SignetLab nodes distribution (Crepaldi et al. 2007)
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5.2.9.2 Software Tool

The software tool of SignetLab was designed to support a number of goals:

• Providing a single intuitive to use programming interface to all users.
• Being supported on multiple operating systems to allow easy integration into

users work environment.
• Supporting multiple physical sensor network testbeds, i.e., different node

technologies, different node layouts, etc.
• Programming nodes, either all or some subset, including compiling and

uploading code, should be simple and automated, giving the users as much
control as possible during their use of the testbed.

• It should be easy for users to add functionality to the tool.

The SignetLab software tool is a Java application and a set of configuration files
that set up the environment, it does not have a component installed on each node
and does not rely on TinyOS. A number of example plugins for TinyOS was offered
to demonstrate the tool use.

The GUI node selection pane reproduces the topology of the network as spec-
ified in the topology configuration file. The user has the ability to select the entire
set of nodes or any subset of nodes either by clicking on the nodes and moving
them, or by using the selection menu. Once nodes are selected, various plugins can
be used to program the nodes and begin code execution.

5.2.9.3 Analysis of SignetLab

Considering the signal propagation from a single sensor node for a given transmit
power level, two metrics are defined to analyze the testbed. Theoretically, in the
absence of any interference or reflections, the area where the signal is received at
greater than some strength, x, would define a circle. Practically, a horizontal slice of
the transmission pattern at a given signal strength, x, does not describe a perfect
circle. For an indoor environment, the contour resulting from such a slice would, in
general, be very different.

The two metrics are defined in terms of inscribing and circumscribing circles for
the signal strength slices:

• The greatest continuous distance reached is defined as the radius of the
inscribed circle, which is the distance inside which the average received signal
strength is guaranteed to be greater than x.

• The farthest distance reached is defined as the radius of the circumscribed
circle, which is the distance outside which the average received signal strength
is guaranteed to be less than x.

Instead of the received signal strength as the metric to a slice, the percentage of
packets received is used, which is essentially the same, as received signal strength
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can always be translated to a probability of packet error. Obtained experimentation
results show:

• The performance of the network with respect to the farthest distance is not very
sensitive to the definition of reachability in terms of percentage of packets
received.

• The continuous distance is more sensitive because a single node in a region of
poor signal quality will reduce the defined radius of the inscribed circle.

These metrics are key to the design of SignetLab to provide the ability to fit the
nodes within the space of the Lab, while still providing an adequate multihop
environment to test routing protocols. More results are offered in (Crepaldi et al.
2007).

5.2.10 WISEBED

The WISEBED project is a joint effort of nine academic and research institutes
across Europe. The project took place between June 2008 and May 2011. It was
funded by the European Commission under the Information Communication
Technologies program part of the Seventh Framework, as project number 224460.
The WSN testbed, WISEBED, architecture (Coulson et al. 2012; FIRE 2014) was
designed with a focus on generality through creating a set of standardized APIs by
which a testbed is accessed from a user’s perspective (Chatzigiannakis et al. 2010).
Users can thus accesscompatible testbeds using the same clients, no matter if the
testbed comprises only a single node connected to a laptop or a full-blown testbed
with thousands of nodes. Using the same API and hence the same client software,
researchers can automatically deploy the same experiment to a number of testbeds
and compare results.

Implementations of the APIs are up to the operators of testbeds. Also, a number
of backend implementations of the WISEBED APIs are available under
open-source licenses and individuals or research organizations can easily download
and deploy the software to run WISEBED compatible testbeds. Thus a growing
ecosystem, of testbed client/backend software including documentation, is built and
it is possible to online put descriptions of experiments for use by others for
repeating experiments and verifying the results.

WISEBED provides solutions for small and large-scale experiments. The main
benefit is that these experiments can be performed across testbed platforms at
different sites spread all over the world even with heterogeneous sensor node
hardware. All testbed sites implement the same interfaces and therefore provide a
consistent API to users. Thereby, testbed users gain complete remote access to the
sensor nodes including program memory and a stream oriented debugging interface
achieving the same flexibility like doing experiments in a local environment.
WISEBED operators on the other hand keep control of their testbed site by means
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of authentication and reservation mechanisms that provide security features and
allow only registered with appropriate user rights to perform experiments.

A significant opportunity is to use the WISEBED software components to
deploy a private testbed that is not part of the WISEBED federation but that is API
compatible. The WISEBED APIs are designed in a way that they are technology
independent. This allows deploying different backend implementations ranging
from small-scale deployments on a single PC to a full-blown testbed federation. In
the simple case, no authentication or reservation may be required and dummy
implementations for both APIs can be used. In the case of a large federation, more
complex implementations are required.

Currently, some but not all of the testbeds are still operational and some but not
all of the software solutions are still being developed (FIRE 2014).

5.2.10.1 Architecture

WISEBED architecture as embodying the following components is detailed in
Fig. 5.28 (Hellbrück et al. 2011):

• Testbed Server (TS). Each testbed comprises a number of sensor nodes that are
managed and controlled by TS. TS exposes the functionalities of a testbed to
users in the Internet by running a software that provides WISEBED
API-compatible Web services. Using these Web services, users can run

Fig. 5.28 Testbed federation architecture (Hellbrück et al. 2011)
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experiments on single testbeds. The WISEBED APIs that users call to interact
with the testbed, consist of:

– Sensor network authentication and authorization (SNAA) API.
– Reservation system (RS) API.

The above two APIs provide interfaces for authentication and authorization
of users as well as resource reservation.

– Wireless sensor network (WSN) API. This API describes the main entry
point for conducting experiments and allows users to interact with the nodes
(e.g., program/reprogram and send messages).

– Controller API. Users that conduct experiments start a Web service endpoint
implementing the Controller API where the Web service listens for output
generated by the nodes (e.g., using the serial interface).

• Federator. Testbeds are interconnected by a Federator component, which exposes
a federation of testbeds using the sameWISEBEDAPIs and thus creating a virtual
large-scale unified testbed. From an API standpoint, the federation appears to be a
single testbed. This allows users to use all sensor nodes of all testbeds at the same
time and as part of a single experiment transparently. To interconnect spatially
divided testbeds, WISEBED employs the concept of virtual links as enlightened
in Sect. 5.1.3. Virtual links emulate broadcast connectivity between arbitrary
nodes by tunneling messages between the communication partners using the
WISEBED APIs. Additional nodes can be added to the federation by integrating
simulated nodes into experiments. The Shawn network simulator (Kröller et al.
2005; Fekete et al. 2007) has been extended to support the WISEBED APIs and
can hence be part of a federated testbed.

The architecture of a typical testbed is detailed in Fig. 5.29. Two different types
of testbed architectures are distinguished, wired and wireless:

• Wired testbed where every sensor node is attached to a host system (gateway)
via a serial USB connection. The use of additional gateway components may be
required if not all sensor nodes can be directly attached to the testbed server,
e.g., because they are spread over multiple rooms. Typically, such a gateway is
an embedded PC or a netbook-class computer.

USB link

TCP/IP

WISWBED API

Tesbed

Sensor

Gateway

Testbed server
Testbed clients

Fig. 5.29 Testbed architecture (based on Hellbrück et al. 2011)
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• Wireless testbeds that have at least one sensor node that is not connected to any
kind of wired communication backbone, i.e., communication with and repro-
gramming of such nodes can only be done wirelessly.

The Testbed Server and the gateways habitually communicate through a wired
infrastructure, such as Ethernet to provide a reliable backbone. Additional sensor
nodes can be attached wirelessly as described above. Programming and repro-
gramming of these nodes is based on an over-the-air programming (OTAP)
mechanism which must be present on the sensor nodes at any time.

5.2.10.2 WISEBED Compatible Testbeds

The nine partners (Fig. 5.28) provided testbeds comprising a total of 700 + hetero-
geneous wireless sensor nodes of various architectures and vendors. Table 5.1
details as possible the constituents of each testbed. The listed data depend on the
available information that is vastly diversified in the literature; a first priority is
accorded for (FIRE 2014), then to a recent publication (Hellbrück et al. 2011). All
these testbeds are permanent installations with wired backbones. The wired back-
bone enables out-of-band interaction with the nodes to collect traces and debug
information or send commands to the nodes. Apart from the permanently installed
wired testbeds, several sites offer on demand extensions such as the possibility to
introduce mobility into experimentation by using robots that piggyback wireless
sensor nodes and move autonomously through the testbeds.

In addition to the WISEBED testbeds provided by the nine partners, a number of
WISEBED compatible testbeds have been recently deployed (Hellbrück et al.
2011):

• Wireless solar powered outdoor testbeds are available at the University of
Braunschweig and the University of Lübeck, Germany. They can be used to
perform experiments under realistic, outdoor conditions.

• The University of Applied Sciences in Lübeck, Germany, extended one of the
WISEBED APIs implementations to support their custom made TriSOS
(3-SOS) sensor node platform (Hellbrück 2012). The troika TriOS stands on
smart object systems, self-organizing systems, and service-oriented systems.
The TriSOS platform is based on AVR Raven evaluation board. Their testbed is
now run using WISEBED software and is accessible using the WISEBED APIs
and clients.

• The upcoming testbed of the citywide deployment of the SmartSantander project
(SmartSantander 2014) is based on WISEBED technology and will contribute
actively in the further evolution of APIs, client and backend implementations.

• The project MOVEDETECT (Langmann et al. 2013), which is funded by the
Federal Office for Information Security (BSI), base its deployment architecture
on the WISEBED APIs and the testbed runtime implementation.
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The above listed activities reveal the WISEBED ecosystem as made available in
the WISEBED website (FIRE 2014).

5.2.11 Indriya

Indriya (Doddavenkatappa et al. 2012), is a WSN testbed deployed at the National
University of Singapore (NUS) across three different floors of the main School of
Computing building. The deployment over 3 floors, covers spaces used for different
purposes, including laboratories, tutorial rooms, seminar rooms, study areas, and
walkways. The network has several inter-floor links providing three-dimensional
connectivity. It has been available for internal use since April 2009 and is publicly
available since December 2009. Users from more than 35 universities use the
testbed for research. It is also used for teaching within NUS. Indriya is installed
with 127 TelosB motes. More than 50 % of the motes are equipped with different
sensor modules, including passive infrared (PIR), magnetometer, accelerometer,
etc. It is built on a reliable active-USB infrastructure that employs special active
USB cables. The infrastructure provides a remote programming back channel and it
also supplies electric power to the sensor devices.

Indriya’s design has the following three advantages:

• It is designed to reduce the costs of both deployment and maintenance of a
large-scale testbed. The average installation cost per node in Indriya is sub-
stantially less compared to the costs in Motelab (Werner-Allen et al. 2005) and
Kansei (Arora et al. 2006) testbeds. When compared to TWIST (Handziski et al.
2006), which is also centered on an active-USB infrastructure, Indriya avoids
the costs and difficulties involved in setting-up and maintaining a large number
of single-board computers like NSLU2 (Linksys 2008; Linksys 2009). Indriya
has been in use by beyond 100 users. The total maintenance cost so far is less
than US $500 plus a recurring cost of 1–2 h per week of time spent by one PhD
student. Most of the cost is spent on replacing failed AC-to-DC adapters, as
these devices are not designed for long-term usage.

• As deployment of Indriya is over three floors, wireless connectivity among
nodes is three-dimensional. This allows experimentation of protocols that are
sensitive to placement and connectivity, such as geographical routing protocols.

• Unlike most of the existing testbeds that provide only a wireless infrastructure,
Indriya is equipped with different types of sensor boards, thus allowing evalu-
ation of numerous WSN applications.
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5.2.11.1 Indriya Composition

Motes

It is not feasible to use batteries to power motes for sustained and long-term
experimentation, in particular for a large-scale testbed. On the other hand,
wall-powering individual nodes suffers significant equipment and labor cost for
installing power points and electric cables. In order to avoid these costs, USB-based
motes are selected so that they can be powered by the remote programming
back-channel which is built over USB active cables. TelosB devices (Moteiv 2004)
are chosen, as they are the most popularly used USB motes in the WSN community.
TelosB has a Texas Instruments MSP430 microcontroller with 10 KByte of RAM
used for storing program data only (Texas Instruments 2011a, b). The program code
is stored in an internal Flash of size 48 KByte. TelosB has a Chipcon CC2420 radio
transceiver operating at 2.4 GHz with indoor range of approximately 20–30 m.

Sensors

More than 50 % of the motes in Indriya are installed with different types of sensors,
thus allowing experimentation of diverse WSN applications. The main types of
sensors deployed are WiEye (EasySen LLC 2008), SBT80 (EasySen LLC 2008),
and SBT30EDU sensor boards (EasySen LLC 2008). The WiEye board is com-
monly used to detect the presence of objects that emit invisible infrared rays,
particularly, human beings. The SBT30EDU board includes visual light, acoustic
and infrared sensors. In addition to these sensors, SBT80 contains temperature,
2-axis acceleration and 2-axis magnetic sensors.

Sensors manufacturers are listed in Chap. 7, and datasheets are obtainable in
Chap. 8.

USB Active Cables

While using a normal USB cable, the maximum distance between a host and a
TelosB mote is limited to 5 m; this limitation is overcome by employing USB
active cables. As stated in Sect. 5.2.8, an active cable is a special USB cable that
incorporates electronics to sustain data signals so that five of them can be
daisy-chained to cover a maximum distance of 25 m. It is crucial to use high-quality
active cables; otherwise, a host computer often loses USB connection with the
sensor devices.
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Design of a Back-Channel for Remote Programming

Existing testbed deployments either individually attach testbed nodes to
single-board computers such as Stargate NetBridge (Crossbow 2007b), or use such
computers as super devices with each controlling a group of nodes. In both cases,
the single-board computers are accessed over Ethernet. Although the later design is
relatively cost-effective, the required number of super devices is still quite large.
Particularly, TWIST is based on such a design and it uses 46 NSLU2 single-board
computers to control 204 sensor nodes.

Unlike these deployments, Indriya does not employ single-board computers.
Instead, it is based on an efficient cluster-based design with each cluster consisting
of a single cluster-head that can accommodate up to 127 sensor devices. Moreover,
an individual cluster can geographically span a circle of diameter of up to 50 m.
Three floors of the large building are covered with only six clusters. Compared to
existing 3D testbeds, Indriya is the largest in terms of geographical size as mea-
suring 23,500 m3, when compared to the 12,000 m3 MoteLab and 6,630 m3 TWIST
(Gnawali et al. 2009).

Figure 5.30 depicts the design of a cluster of Indriya. A Mac Mini PC (Apple
Inc. 2014) constitutes the cluster-head. This PC is a very small footprint computer
(19.7 cm × 19.7 cm × 3.6 cm) but as resourceful as a desktop PC. The motes are
connected to the cluster-head using USB hubs and active cables. Belkin 7-port USB
hubs (Belkin International Inc. 2014) are used and a mix of local-supplied and
ATEN USB active cables (ATEN 2014). Cluster-heads are connected to the server
via Ethernet. The server manages the testbed and provides the user interface.

Fig. 5.30 Cluster-based structure in Indriya (Doddavenkatappa et al. 2012)
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User Interface

Indriya uses Motelab’s user interface software that provides Web-based access to
the testbed nodes. As design of Indriya is cluster-based that differs from that of
Motelab, changes are required. Particularly, in the code that is responsible for
communicating with testbed nodes. However, from the perspective of users, clus-
ters in Indriya are transparent and the testbed is simply a wireless network of 127
nodes. The interface allows users to evaluate WSN systems implemented over
TinyOS (TinyOS 2012), the de facto standard operating system for WSNs. Users
can upload, monitor, and control their jobs remotely and in real-time.

5.2.11.2 Indriya Compared

This section compares Indriya against three existing testbed deployments, Motelab,
Kansei and TWIST, as presented in Sects. 5.2.2, 5.2.6, 5.2.8. The comparison is
basically from the perspective of deployment cost and difficulties involved in
setting-up and maintaining a large-scale testbed:

• Motelab as deployed at Harvard University is composed of 190 Tmote Sky
sensor nodes with currently 85 of them being active (as of February 2011).
Back-channel support is Ethernet-based with individual motes attached to sep-
arate Stargate NetBridge single-board computers. Like Motelab, devices in
Kansei are also individually coupled to devices called eXtreme Scale Stargate
(XSS) (Arora et al. 2005) which are, configuration wise, similar to NetBridge.
Each XSS has an Intel 400 MHz PXA255 XScale processor with 64
MByte SDRAM, 32 MByte Flash, type II PCMCIA slot, USB port, and 51-pin
mote connector; packaging is watertight (Crossbow 2004b). Kansei is deployed
at the Ohio State University (OSU) with 210 eXtreme Scale Motes (XSMs)
(Arora et al. 2005). The XSM circuit board has a 3” × 3” footprint and the
enclosure has dimensions of 3.5” × 3.5” × 2.5”. The XSM platform integrates an
Atmel ATmega128L microcontroller, a Chipcon CC1000 radio operating at
433 MHz, a 4 Mbit serial Flash memory, quad infrared, dual-axis magnetic and
acoustic sensors, weatherproof packaging. Datasheets are embodied in Chap. 8.
XSMs are commercially available under the trade name of MSP410CA Mote
Security Package (Willow Technologies 2013).

• Contrary to Motelab and Kansei, Indriya incorporates an efficient cluster-based
design eliminating the need for coupling individual motes to separate
single-board computers. Instead, Indriya uses a MAC Mini capable of con-
trolling 127 sensor devices. This significantly reduces the cost per node in
addition to avoiding painstaking difficulties involved in setting-up and main-
taining single-board computers. Moreover, single-board devices are typically
wall-powered, thus incurring both labor and equipment costs for installing
power points and electric cables. Whereas nodes in Indriya are powered over
USB.
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• The average cost per node in Indriya is US $158, which is considerably less,
compared to the costs in Motelab and Kansei. The cost per node in Motelab and
Kansei is almost the same as they incorporate similar designs and devices. The
cost is approximately US $548 (NetBridge/XSS: US $449 + Tmote/XSM: US
$99) plus the cost of providing wall-power and Ethernet connectivity.
Furthermore, extending Indriya with additional motes is comparatively less
pricy as each MAC Mini can accommodate up to 127 USB devices and cur-
rently there is an average of only 22 nodes per cluster.

• Since both TWIST and Indriya incorporate similar USB backbones, the average
cost per node in these deployments is almost the same. But, this is true only to
the existing deployment instance of TWIST, adopting its design is actually
expensive. This is because of the fact that NSLU2 is a discontinued product
since 2008, and is now called SlugOS/BE (Linksys 2009). A natural replace-
ment to NSLU2 is either Stargate NetBridge or WRT600 N (Linksys 2007).
Stargate NetBridge is a Crossbow (Crossbow 2007b) modified and expensive
version of the original NSLU2. On using either of these latest devices, the cost
of replicating TWIST will rise by at least US $70 per node compared to Indriya.

• Moreover comparing Indriya versus TWIST, which is also centered on a USB
infrastructure. TWIST uses 46 single-board and wall-powered NSLU2 com-
puters to manage 204 testbed nodes. Whereas in Indriya, there are only 6 Mac
Mini PCs to manage 127 nodes, with each Mac Mini capable of accommodating
more than 100 USB devices. Both testbeds span three floors of a building but
Indriya covers almost three times larger geographical volume, as per the
dimensions provided in (Gnawali et al. 2009).

• In TWIST, NSLU2 devices use the OpenSlug distribution of Linux customized
specifically for testbed usage (Linksys 2008). On the other hand, Mac Mini
devices in Indriya can use any desktop OS without any specific changes.
Currently, Ubuntu Linux running the 2.6.12 kernel is used without any modi-
fication (Ubuntu 2014). This also allows employing standard tools available for
programming and managing sensor motes, while NSLU2 like single-board
devices demand significant changes or a new set of tools. Another important
issue with NSLU2 devices is that they are very resource-constrained, particu-
larly, their limited flash memory. Requirements such as file system over network
using NFS29 (Indiana University 2014) like protocols are memory greedy. All
these issues Significantly add to the difficulties involved in setting-up and
maintaining a large-scale testbed.

29NFS stands for network file system, a file system developed by Sun Microsystems, Inc. It is a
client/server system that allows users to access files across a network and treat them as if they
resided in a local file directory.
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5.2.12 GENI

The global environment for network innovation project (GENI) (The GENI Project
Office 2008), (Berman et al. 2014) concretely illustrates an architecture where WSN
fabrics are key components (Sridharan et al. 2011). GENI is an innovated experi-
mental network research infrastructure. It includes support for control and pro-
gramming of resources that span facilities equipped with fiber optics and switches,
high-speed routers, citywide experimental urban radio networks, high-end com-
putational clusters, and sensor grids. GENI is intended to support sizeable numbers
of users and large simultaneous experiments with extensive instrumentation
designed to make it easy to collect, analyze and share real measurements, and to test
load conditions that match those of current or projected Internet usage.

GENI provides a virtual laboratory for education, networking and distributed
systems research, it is well suited for exploring networks at scale, thereby pro-
moting innovations in network science, security, services and applications (GENI
2014). GENI allows experimenters to:

• Obtain compute resources from locations around the United States.
• Connect compute resources using Layer 2 networks in topologies best suited to

their experiments.
• Install custom software or even custom operating systems on these compute

resources.
• Control how network switches in their experiment handle traffic flows.
• Run their own Layer 3 and above protocols by installing protocol software in

their compute resources and by providing flow controllers for their switches.

Figure 5.31 depicts the GENI architecture from a usage perspective. In a nut-
shell, GENI consists of three entities, namely, researchers, clearinghouses, and sites
also known as resource aggregates. Typically, a researcher interacting, via specially
designed portal, queries a clearinghouse for the set of available resources at one or

Researcher

Portal

Clearinghouse

User APIs
------------------- 
Site Authority 1

Sensor Fabric 1

User APIs
------------------- 
Site Authority 2

Sensor Fabric 2

Fig. 5.31 Federated fabric/
GENI model (Sridharan et al.
2011)
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more sites and requests reservations for the resources he requires. To run an
experiment, a researcher configures the resources allocated to his slice, which is a
virtual container for the reserved resource, and controls his slice through
well-defined interfaces.

By programmable WSN fabrics (Sridharan et al. 2011), it is meant that indi-
vidual sensor arrays offer not just resources on which programs can be executed;
they also provide network abstractions for simplifying WSN application develop-
ment and operation. Examples include APIs for scheduling tasks, monitoring sys-
tem health, and in-the-field programming and upgrade of applications, network
constituents, and sensing components. Fabrics can also support and manage the
concurrent operation of multiple applications. Figure 5.32 compares the traditional
WSN model with the emerging fabric model of WSNs.

Through federating WSN testbeds (Sect. 5.1.3), multiple WSN testbeds are
loosely coordinated to support geographically and logically distinct resource
sharing. A federation provides users with a convenient, uniform way of discovering
and tasking desired WSN resources. Experiments can simultaneously use resources
in multiple testbeds, for applications ranging from regression testing,
producer-consumer, parallel processing, to enterprise-edge co-operation.

Researchers and sites in GENI establish trust relationships and authenticate each
other via GENI clearinghouses (Sridharan et al. 2011). The clearinghouse keeps
track of the authenticated users, resource aggregates, slices, and reservations. Each
resource provider may be associated with its own clearinghouse but there are also
central GENI clearinghouses for federated discovery and management of all
resources owned by participating organizations. GENI also relies on all entities to
describe their underlying resources. Resource descriptions serve as the glue for the
three entities because all interactions involve some description of resource, be it a
physical resource, such as a router and a cluster, or a logical resource, such as CPU
time or wireless frequency.

GENI is not included in the comparison Table 5.2 due to lack of information
regarding typical WSN deployment.

Hardware

Application

Traditional model 
(Node centric)

Researcher 
Application

Trusted base  
(optional)

Hardware array

Fabric model 
(Network centric)

Fab
ric 

serv
ices

Legend: 

Non programmable

Programmable

Fig. 5.32 Traditional and fabric models (Sridharan et al. 2011)
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5.2.12.1 Federated WSN Fabrics

As previously illustrated (Fig. 5.31), the federated WSN fabric model distinguishes
three actors:

• The clearinghouse that enables discovery and manages resource inventory and
allocation.

• The site that owns and maintains WSN aggregate resources.
• The researcher who deploys/tests applications via a portal and who is not

necessarily a WSN expert.

In what follows the roles and requirements of each of these actors will be laid
out. Noteworthy, the main goal of the federated WSN fabric model is to make user
experimentation easy, repeatable, verifiable and secure, while maximizing resource
utilization.

Clearinghouse Tasks

As the GENI clearinghouse is a collection of related services supporting federation
among experimenters, aggregates and the GENI Meta Operations Center (GMOC),
it has two broad functions:

• Identification and authentication of various actors in the system as revealed in
Sects. “Federation Services, Authorization Services, Accountability Services”
(GENI 2014).

• Resource management that includes resource representation, resource discovery
and allocation as displayed in Sects. “Resource Representation, Resource
Discovery, Resource Allocation” (Sridharan et al. 2011).

Federation Services

The clearinghouse represents a trust anchor for all software entities (tools, aggregates,
services) in the GENI Federation. Any member of the GENI federation trusts any-
thing trusted by the GENI Federation. The installation of the GENI certificate as a
trust root at any GENI service allows for federated trust across all users, aggregates
and services. In this way, there is no need for each entity to explicitly trust each other
entity to allow for federation-wide trust, each entity needs only to trust GENI.

The clearinghouse provides a series of services for managing and asserting the
credentials of entities trusted by GENI:

• An Identity Provider (IdP) that provides certificates and public key infrastructure
(PKI) materials to human users, registering them with the GENI federation as
GENI users.

• A Project Authority to assert the existence of projects and the roles of members,
such as principal investigator (PI) and Experimenter.
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• A Slice Authority that offers experimenters with slice credentials by which to
invoke aggregate manager (AM) API calls on federation aggregates.

• A Service Registry that delivers to experimenters with a “yellow pages” of
URLs of all trusted services of different types. In particular, the list of all
available aggregate managers trusted by GENI, possibly satisfying particular
criteria, are provided.

• A Single-Sign-on portal, which provides Web-based authentication and access
to the authorized clearinghouse services and other GENI user tools.

Authorization Services

The clearinghouse provides services to determine whether particular actions (within
the clearinghouse or with respect to a particular Aggregate) are permitted by fed-
eration policy. There are two essential types of authorization policy, specifically,
Trust Policy and Resource Allocation Policy:

• Trust Policy is a statement or sequence of statements from which allowable
actions may be inferred from the attributes of a principal. The GENI software
architecture recognizes two types of credentials:

– Attribute-based Access Control (ABAC) provides a representation for trust
delegation statements and a reasoning engine that proves that a given entity
is trusted to take a particular action based on the set of ABAC statements
provided.

– Slice Federation Architecture (SFA) credentials use a table-driven mecha-
nism to map attributes into allowable actions.

• Resource Allocation Policy is a statement limiting the resource allocations or
allocation behaviors associated with a given project, slice or experimenter. For
example, it may be required to limit the number of compute nodes (computers or
VMs) allocated to a given project at any given time.

The clearinghouse Authorization Service determines whether a given action is
permitted by policy. It contains a series of guards, each of which may veto a given
action, i.e., an act is authorized if and only if any guard does not prohibit it.

The clearinghouse provides a Credential Store that provides authorized
read/write access to all credentials for all GENI-trusted entities. This store allows
for federation or local authorization services or other policy decision or enforce-
ment points to have access to the appropriate credentials without needing to carry or
compute these at the time of each customer request.

Accountability Services

The clearinghouse provides services that log transactions (successful or failed)
between user tools and aggregates to support real-time and post-facto forensics
analytics. By maintaining logs and databases of transaction callers and arguments,
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of projects and their slices and slivers, the GMOC can have critical timely trace
back to find the identities of possibly misbehaving users or responsible project
leads. They can then, depending on the situation, contact the project lead, shut
down all or some slivers associated with a misbehaving aggregate or user or some
combination thereof.

The Logging Service provided by the clearinghouse fronts a store for writing and
querying data associated with transactions, allowing for determining what entity
made what requests and got what results. The Logging Service provides the
traceability between slivers and slices. The Slice Authority provides the link of
slices to projects, while the Project Authority provides the link of projects to
investigators. Together, these provide the ability to find the responsible party to
contact in case of problematic behavior on the part of an experimenter.

Resource management is emphasized in the upcoming sections (Sridharan et al.
2011).

Resource Representation

A basic issue for federated WSN fabrics is how to represent a resource in a way that
allows multiple sites with different types of fabrics to publish resources to the same
clearinghouse, while allowing sites, portals, and clearinghouses to evolve over time.
The choice of this representation potentially affects all actors, specifically, sites
need to advertise the resources, portals needs to request the resources, and clear-
inghouses need to match portal requests to resources available at sites. Also,
clearinghouses may need to communicate with each other for federated resource
discovery and allocation. All of the above requires a language that can be used to
precisely specify information about the resource.

It is to be noted that the need for a resource description language does not mean
that the same type of device/network must be defined by all fabrics in a globally
unique approach. Given the vast heterogeneity of sensor devices, aggregate
architectures, fabric service abstractions/semantics, and administrative domains,
each fabric may locally define its resources in a unique way. For sake of illustration,
even the use of IP addressing for WSN devices remains a controversial issue, some
fabrics may use this choice while other may not. Likewise, each fabric may choose
to associate only locally unique identifiers with devices in its namespace while
others might insist on globally unique identifiers.

The WSN device/network specifications, RSpecs, tend to be declarative rather
than descriptive. In other words, they concisely define what the resource is and
eschew details about how the resource is used. RSpecs need not necessarily be
human-readable because most researchers are expected to interact with portals in
appropriate ways, e.g. with graphical interfaces or library support to help and
automate the composition of resource requests.
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Resource Discovery

Sites advertise their resources to well-known clearinghouses, so that researchers can
discover their resources. Clearinghouses of different levels may discover resources
directly from the fabric provider through their advertisements or indirectly through
other clearinghouses. A hybrid clearinghouse architecture is envisioned where
hierarchical, as well as peer-to-peer, communication is possible. Figure 5.33 shows
the communications in such a (hypothical) federation. Push and pull models of
resource discovery are conceived. In the push model, a clearinghouse periodically
announces to its peers or upper-level clearinghouses the available resources at its
associated fabrics that can be shared. In the pull model, a clearinghouse requests
from its peers or upper-level clearinghouses their latest resource availability. The
pull model is likely to be used in an on-demand manner when a clearinghouse
cannot find enough resources to satisfy a user request.

Resource Allocation

In a federated experiment, a researcher might want to request, via one or more
clearinghouses, resources from multiple sites into a slice. It is possible that not all
requested resources are available at the same clearinghouse, so portals may have to
coordinate requests. Broadly speaking, there are two approaches for federated
resource allocation depending on whether the clearinghouse or the portal will own
the responsibility of getting all of the requested resources:

• The portal will directly request the resource from multiple clearinghouses,
though this approach lacks scalability. This approach is adopted by KanseiGenie
(Sridharan et al. 2011).

• The portal communicates with a single clearinghouse, which in turn commu-
nicates with other clearinghouses to get the requested resources. This approach
requires clearinghouse-to-clearinghouse resource delegation, as shown in
Fig. 5.33.

Asian Sensornet 
clearinghouse 

US Sensornet 
clearinghouse 

European Sensornet 
clearinghouse 

Academic 
clearinghouse

Non-academic 
clearinghouse

KanseiGenie 
clearinghouse 

Non-KanseiGenie 
clearinghouse

Enterprise 
clearinghouse 

… Peer-to-
peer 

Hierarchical 

Fig. 5.33 Clearinghouse to clearinghouse interaction architecture (Sridharan et al. 2011)

5.2 Testbeds Illustrated 353



Site Requirements

Sliceability

In the GENI model of experimentation, each researcher owns a virtual container, a
slice, to which he can deploy/execute experiments and add/remove resources. This
view fundamentally decouples the physical location of the resource from its reuse.
It follows that all resources leased to a researcher should be able to communicate
with each other and only with each other. Sliceability is also fundamental for
federated experimentation where a researcher selects resources from multiple sites
and adds them to a federated slice and runs experiments on this federated slice.

Sliceability may be fine-grained. To share memory, processing, or links between
slices in a transparent manner, it is necessary to achieve node/network virtualization
of resources. A fabric model suits virtualization since it allows users to interact with
resources only through well-defined APIs.

Virtualization

The requirement that sites allow WSN resources to be sliced finely enables multiple
slices to co-exist. The challenge in virtualization is to provide as much control to
the users (as low in the network stack as is possible) while retaining the ability to
share and safely recover the resource.

Virtualization in WSN fabrics is nontrivial. Not only do sites have to virtualize
the hardware, but also the network. Recall that WSN fabrics may span multiple
arrays of sensors, and multiple researchers may run their experiments concurrently
on subsets of one or more arrays. Usually sensors are densely deployed over space,
and share with different degrees the same geographical space, as well, they are
subject to similar, if not statistically identical, physical phenomena/environments.
Wireless interference between slices is thus an inherent problem due to the
broadcast nature of the wireless communications. Virtualization has to thus isolate
the communications of an experiment running on a slice, to enable repeatable
performance. For instance, channel properties such as signal to noise ratios among
wireless nodes may need to be (statistically) similar across repeated experiments.

Programmability

WSN fabrics are expected to provide the hardware and software infrastructure for an
end-to-end reprogramming service, which reliably deploys the sensing applications
composed by researchers on the corresponding slice. Sites should also provide
monitoring and logging services. In particular, they should also provide feedback to
the researcher about the environment and any failures that occur during programming
or execution of an experiment. When sites are situated in environments that are not
representative of sensing phenomena, it is desirable that they provide services for
external sensor data injection. Finally, sites and/or portals should support workflow
services that will allow staging and complex experimentation.
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Researcher Requirements

Resource Utilization

To simplify the researchers task in using federated resources, a portal needs to
provide a uniform resource utilization or experimentation framework. This is
challenging since the federation may consist of fabrics with a great variety of
available platforms, sensors, radios, operating systems and libraries. For instance,
while for some platforms such as XSM (Arora et al. 2005) and TelosB (Moteiv
2004) the default is to program on bare metal, others such as iMote2 (Crossbow
2005), SunSPOT (Ritter 2007; Tantisureeporn and Armstrong 2008) and Stargate
(Crossbow 2004b) host their own operating systems. Moreover, the execution
environments in these platforms vary from a simple file download and program-
ming the flash, to command line interfaces and virtual machines.

All of above necessitates an experiment specification language that enables
researchers to configure slices in a generic manner. Intuitively, an experiment
specification should include the resource description that the experiment is to run
on. It also includes a selection of user services that is relevant to the experiment. In
addition to these declarative elements, the experiment specification language
includes procedural descriptions (or workflow elements). Unlike resource specifi-
cations where readability is not important, experiment specifications should provide
good readability since a researcher might want to script his experiments to iterate
through a bunch of test parameters. Also, he might need to reuse the same
experiment specification on different slices, which makes the experiments
repeatable.

Resource Translation

It is often more convenient for a researcher to request a networked resource in an
abstract manner. For instance, requesting a 5 × 5 connected grid or a linear array of
10 nodes with 90 % link delivery radio is much easier than identifying specific
sensor devices which match the required topology. Since the resources published at
the clearinghouses are specified concretely, a portal needs to translate the abstract
specification to embed it into site resources, although it is possible that this be
realized at the clearinghouse as well.

In a federated setting where resources are variously represented by different
sites, a service is required to provide a mapping between the researchers resource
need and a resource request that can be processed by different clearinghouses. This
service is likely to be implemented at the portal, if not in a clearinghouse.

5.2.12.2 Why to Use GENI?

GENI might be fitting for experimenters eager for the following requirements
(GENI 2014):
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• A large-scale experiment infrastructure. GENI can potentially provide experi-
menter with more resources than is typically found in any one laboratory. GENI
gives access to hundreds of widely distributed resources including compute
resources such as virtual machines and “bare-machines”, and network resources
such as links, switches and WiMax basestations.

• Non-IP connectivity across resources. GENI allows to set up Layer 2 connec-
tions between compute resources and run one’s own Layer 3 and above pro-
tocols connecting these resources.

• Deep programmability. With GENI, experimenter can program not only the end
hosts of his experimental network but also the switches in the core of his
network. This allows to experiment with novel network layer protocols or with
novel IP-routing algorithms.

• Reproducibility. Experimenter can get exclusive access to certain GENI
resources including CPU resources and network resources. This gives control
over experiment’s environment and hence the ability to repeat experiments
under identical or very similar conditions.

• Instrumentation and measurement tools. GENI has two instrumentation and
measurement systems that experimenter can use to instrument his experiments.
These systems provide probes for active and passive measurements, measure-
ment data storage and tools for visualizing and analyzing measurement data.

5.2.12.3 Key GENI Concepts

Based on (GENI 2014) several GENI concepts are identified and clarified in the
coming sections.

Project

A project organizes research in GENI, it contains both people and their experi-
ments. A project is created and led by a single responsible individual, the Project
Lead. A project may have many experimenters as its members and an experimenter
may be a member of many projects. The Project Lead is ultimately accountable for
all actions by project members in the context of the project. GENI experimenters
must have Project Lead privileges to create projects. Only faculty and senior
members of an organization can be project leads (e.g. students cannot be project
leads).

Figure 5.34 illustrates a situation where a professor is the Lead for two GENI
projects, one that he uses for his research project Hactar and the other for the
networking class CS404 he is teaching. Members of the project Hactar are the
professor’s research assistant and his post-doc. Members of the project CS404 are
the teaching assistant for CS404 and all the students in the class. The professor
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gives his teaching assistant administrative privileges to project CS404 to permit him
adding students to the project or removing them.

Slice

GENI is a shared testbed i.e. multiple experimenters may be running multiple
experiments at the same time. This is possible because of the concept of a slice.
A GENI slice is:

• The unit of isolation for experiments. A GENI experiment lives in a slice. Only
experimenters who are members of a slice can make changes to experiments in
that slice.

• A container for resources used in an experiment. GENI experimenters add GENI
resources (compute resources, network links, etc.) to slices and run experiments
that use these resources. An experiment can only use resources in its slice.

• A unit of access control. The experimenter that creates a slice can determine
which project members have access to the slice i.e. are members of the slice.
The Project Lead is automatically a member of all slices created in a project.

Figure 5.35 shows two slices created by the research assistant in Project Hactar.
He has added to Slice 1 three compute resources connected by three network links.
He has also added the post-doc associated with his project as a member of the slice.
His professor was automatically added to the slice as he is the Project Lead. Slice 2
has two compute resources connected by a link. He has not added the post-doc as a
member of this slice and so she cannot perform any actions on this slice or even
view the resources in this slice. An experiment in Slice 1 can only use resources in
Slice 1 and an experiment in Slice 2 can only use resources in Slice 2.

Fig. 5.34 GENI projects (GENI 2014)
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Aggregates

A GENI aggregate provides resources to GENI experimenters. For example, a
GENI rack at a university is an aggregate; GENI experimenters may request
resources from this aggregate and add them to their slice. Different aggregates
provide different kinds of resources. Some aggregates provide compute resources,
virtual machines or bare machines or both. Some aggregates provide networking
resources that experimenters can use to connect compute resources from multiple
aggregates. Figure 5.36 shows a GENI slice with resources from multiple
aggregates.

Fig. 5.35 GENI slices (GENI 2014)

Fig. 5.36 GENI slice and Aggregates (GENI 2014)
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The GENI AM API and GENI RSpecs

Experimenters request resources from aggregates using a standard API called the
GENI Aggregate Manager API or GENI AM API. The AM API allows experi-
menters to, among other things:

• List the resources available at an aggregate.
• Request specific resources from the aggregate be allocated to their slices.
• Find the status of resources from the aggregate that are allocated to their slices,

and
• Delete resources from their slices.

TheAMAPI uses resource specification documents, commonly referred to asGENI
RSpecs, to describe resources. RSpecs are just XML documents in a prescribed format.
Experimenters send to aggregates a “request” RSpec that describes the resources they
want and get back from the aggregates a “manifest” RSpec that describes the resources
they got. The manifest includes information the experimenters will need to use these
resources such as the names and IP addresses of compute resources (e.g. virtual
machines), user accounts created on the resources and VLAN tags assigned to network
links. Most experimenters will not need to learn details of the AM API or read/write
RSpec files; GENI experimenter tools hide much of this complexity.

There is a third type of RSpec called an “advertisement” RSpec. This is the
RSpec returned by an aggregate when an experimenter lists the resources available
at the aggregate. It describes all the resources available at the aggregate.

Figure 5.37 displays an experimenter adding resources from two different
aggregates to his slice using the Allocate call of the GENI AM API.

Getting Access to GENI and GENI Resources

Experimenters need an account to use GENI and can get an account from any one
of GENI’s federated authorities called clearinghouses. Commonly used clearing-
houses include the GENI Project Office (GPO), Emulab (Sect. 5.2.13.1) and
PlanetLab (Sect. 5.2.13.2). The GPO provides system engineering and project
management expertise to guide the planning and prototyping efforts of GENI.

GENI aggregates federate with one or more clearinghouses i.e. they choose to
trust GENI accounts issued by these clearinghouses. Most GENI aggregates fed-
erate with all three of the clearinghouses listed above so most experimenters should
not have to concern themselves with which clearinghouse to use to get an account.

Tying up All Together: The GENI Experimenter Workflow

The succeeding is a sample workflow for a typical GENI experiment. Without
being exhaustive, the objective is to show how the concepts described above tie
together.
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Experiment Setup

An experiment can thus be set according to several steps:

• Get a GENI account.
• Join an existing project or create a new project. Only faculty and senior tech-

nical staff with project-lead privileges can create projects.
• Create a slice.
• Use an experimenter tool to:

– Craft a Request RSpec that specifies the resources needed.
– Make the appropriate GENI AM API calls on the aggregates from where the

resources are being requested.

Experiment Execution

Use information in the manifest RSpec returned by the aggregates to log into
compute resources, install software, send traffic on the network links, etc.

Finishing-up

Delete resources obtained from the aggregates by using an experimenter tool to
make the appropriate GENI AM API calls on these aggregates.

Fig. 5.37 GENI slice, Resources and Aggregates (GENI 2014)
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5.2.13 Further Testbeds

This section spotlights on more testbeds for abundant consideration of what has
been presented in the literature. Noteworthy surveys are accessible in
Jiménez-González et al. (2013) and Horneber and Hergenroder (2014).

5.2.13.1 Emulab

Emulab is a network testbed, incorporating a number of centrally managed
general-purpose computers and network resources (White et al. 2002). The initial
and largest Emulab, which includes several hundred nodes, is located at the
University of Utah, where it is managed by the Flux Research Group (Flux Group
2014). Emulab software is available on an open source basis, and has been used to
stand up dozens of Emulabs worldwide. There are also installations of the Emulab
software at more than two dozen sites around the world, ranging from testbeds with
a handful of nodes up to testbeds with hundreds of nodes. Emulab is widely used by
computer science researchers in the fields of networking and distributed systems. It
is also designed to support education, and has been used to teach classes in those
fields (Emulab - Network Emulation Testbed Home 2015).

Emulab is a public facility, available without charge to most researchers
worldwide; it provides integrated access to a wide range of experimental
environments:

• Emulation. An emulated experiment allows specifying an arbitrary network
topology, giving experimenters a controllable, predictable, and repeatable
environment, including PC nodes on which full “root” access is granted, and
running any chosen operating system.

• Live-Internet experimentation. Using the RON (MIT 2015) and PlanetLab
(Bavier et al. 2004; PlanetLab 2007) testbeds. Emulab provides a full-featured
environment for deploying, running, and controlling experimenter application at
hundreds of sites around the world.

• 802.11 wireless. Emulab‘s 802.11a/b/g testbed is deployed on multiple floors of
an office building. Nodes are under experimenter full control and may act as
access points, clients, or in ad hoc mode. All nodes have two wireless interfaces,
plus a wired control network.

• Software-defined radio. USRP devices from the GNU Radio project give
experimenter control over Layer 1 of a wireless network; everything from signal
processing up is done in software.

Emulab unifies all of these environments under a common user interface, and
integrates them into a common framework. This framework provides abstractions,
services, and namespaces common to all, such as allocation and naming of nodes
and links. By mapping the abstractions into domain-specific mechanisms and
internal names, Emulab masks much of the heterogeneity of the different resources.
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The Emulab software also forms the basis for ProtoGENI, a GENI prototype and
control framework, which extends the Emulab model to bridge multiple physical
sites and support the GENI API (Ricci et al. 2012).

The fundamental GENI abstraction of multiple general-purpose computers,
interconnected by layer two networks in experimenter-specified topologies, draws
directly on the basic capabilities of Emulab. In addition, several of the specifics of
the GENI API derive basic ideas and/or implementation from Emulab and
ProtoGENI. Notable among these are the content and format of GENI Rspecs, and
portions of the experiment lifecycle. In addition, the ProtoGENI implementation of
multiple sites interconnected at layer two over Internet2 links is a major influence
on GENI stitching.

The primary ProtoGENI site at Utah and several other ProtoGENI sites also
share resources with GENI by exporting aggregates that speak the GENI API. The
primary resources exported are bare metal computers connected by layer two and
layer three networks, although virtual machines are also available. One of the GENI
rack implementations, InstaGENI, is built on Emulab/ProtoGENI software.

5.2.13.2 PlanetLab

PlanetLab is a global research network that supports the development of new
network services (Bavier et al. 2004). A consortium of academic, industry, and
government institutions for the benefit of the research community manage
PlanetLab (PlanetLab 2007). PlanetLab embodies a collection of machines dis-
tributed over the globe; most of the machines are hosted by research institutions and
are connected to the Internet. The goal for PlanetLab is to grow to 1,000 widely
distributed nodes that peer with the majority of the Internet’s regional and long haul
backbones.

Many key GENI (Sect. 5.2.12) components trace their origins, either in code or
in concept, back to roots in PlanetLab. The slice-based federation architecture
(SFA), an approach to federation growing primarily out of the PlanetLab experi-
ence, is the basis for much of the GENI API (Peterson et al. 2009). In particular, the
aggregate manager API is adapted from the SFA.

Other ideas pioneered in PlanetLab and prominent in GENI include:

• Use of a common overlay network infrastructure as a mechanism for validating
and deploying novel network services.

• Providing a widely available leasing service for networked compute resources.
• The slice concept.
• Use of lightweight host virtualization for efficient support of many long-lived

services.

As an overlay network deployed over the global Internet, PlanetLab is intended
to support experiments that run at or above layer three. This design decision permits
PlanetLab to present a simple, well-understood, and powerful network abstraction
to potential experimenters. More recently, some PlanetLab variants, such as Virtual
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Network Infrastructure (VINI) (Bavier et al. 2006), VICCI (Peterson et al. 2011),
and Great Plains Environment for Network Innovation (GpENI) (Sterbenz et al.
2011) and (Medhi et al. 2014) are reaching into lower layers of the network stack.

In addition to architectural contributions, PlanetLab also shares resources with
GENI by supporting the AM API and exporting a GENI aggregate. Via this
interface, experimenters have access to PlanetLab’s worldwide network of virtu-
alized compute resources. Some experimenter tools originally developed with
PlanetLab in mind were readily generalized into a GENI context. Examples include
GENI user shell (Gush) (Albrecht and Huang 2011), Stork (Hartman et al. 2014)
and Raven (Hartman and Baker 2014) experiment management tools.

5.2.13.3 Mobile Emulab

Mobile Emulab, developed at University of Utah, is a general-purpose testbed that uses
robots to providemobility toWSNnodes, it has been open for public use until 2008 and
was popular for research on mobile WSNs (Johnson et al. 2006). Mobile Emulab is
designed to provide unified access to a variety of experimental environments:

• A Web-based front end, through which users create and manage experiments.
• A core that manages the physical resources within a testbed. It consists of a

database and a wide variety of programs that allocate, configure, and operate
testbed equipment.

• Numerous back ends which interface to various hardware resources. Back ends
include interfaces to locally managed clusters of nodes, virtual and simulated
nodes, and a PlanetLab interface (Sect. 5.2.13.2).

Mobile Emulab uses a modular and distributed architecture and is designed for
open use. It provides a high degree of interaction with the user allowing remote
operation through a GUI. The user can position the robots, run programs and
configure data logging. The GUI also shows live maps and images of the experi-
ment. Emulab users create experiments, which are essentially collections of
resources that are allocated to a user by the testbed management software, and act as
a container for control operations by the user and system.

Mobile Emulab is composed of robots and fixed motes. It is comprised of six
Acroname Garcia robots and a static WSN composed of 25 Mica2 nodes deployed
in a L-shaped controlled indoor area of 60 m2 and 2,5 meters high. Overlooking this
area are six cameras used by the robot tracking system, and three webcams that
provide live feedback to testbed users.

The robots operate completely wirelessly through IEEE 802.11b card and a
battery that provides two to three hours of use to drive the robot and power the
onboard computer and mote. Precisely, Garcia robots are equipped with an
XScale-based Stargate (Crossbow 2004b) small computer running Linux and
connected to a 900 MHz Mica2 mote (Crossbow 2002a) (Fig. 5.38). To the Stargate
is attached an IEEE 802.11b card that acts as a separate “control network”, con-
necting the robot to the main testbed and the Internet. The Stargate serves as a
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gateway for both Emulab and the experimenter to control and interact with the
mote, and for the user to run arbitrary code. Users can login to the Stargate, and will
find their Emulab home directory NFS-mounted.

The 25 stationary motes are arranged on the ceiling in a 2-m grid and on the
walls near the floor. All of the fixed motes are attached to MIB500CA serial
programming boards (Crossbow 2004a) to allow for programming and communi-
cation. The 10 near-floor motes also feature an MTS310 full multi-sensor board
(Crossbow 2007a) with magnetometers that can be used to detect the robot as it
approaches. These motes are completely integrated with the Emulab software,
making it trivial to load new kernels onto motes, remotely interact with running
mote kernels via their serial interfaces, or access serial logs from experiments.

It is to be noticed that in Emulab two wireless networks are included, one for the
robots and one for the WSN. Robots are localized using the overhead cameras.

5.2.13.4 SenseNet

SenseNet (Dimitriou et al. 2007) is a low cost sensor network testbed that exploits
only the wireless channel to transfer data. It offers benefits to users and adminis-
trators like ease of deployment, ease of use, no need of a wired infrastructure,
coping with multiple users at the same time and most importantly scalability.

SenseNet satisfies several design features:

• Absence of a wired backchannel. The common fact in other testbed approaches
is the existence of a wired backchannel that is used for reprogramming, data
logging and network monitoring purposes. This implies that an Ethernet or USB

Fig. 5.38 Mobile Emulab (Johnson et al. 2006). a Acroname Garcia robot with Stargate, WiFi
and Mica2. b GUI to track robots and control them with click and drag
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channel exists through which newer versions of code are downloaded to the
mote; also packets originating from that mote are uploaded to a sink. The benefit
of this approach is that the wireless link is left free for purely application
purposes at the expense, of increasing cost, maintenance problems and reduced
scalability.

• Absence of supernodes. In some implementations (Dutta et al. 2006),
(Handziski et al. 2006), as illustrated in Sects. 5.2.7 and 5.2.8, there exist some
nodes with advanced capabilities compared to those of the motes. Their exis-
tence offers solutions to problems like addressing a remote node, aggregating
packets, forwarding traffic between different types of networks, or acquiring the
role of a cluster-head in a routing protocol. However, such approach might
reduce scalability as the administrators, and sometimes users, have to guarantee
the proper functionality of these nodes to guarantee that tasks can be performed.

• Existence of multiple users at the same time. The existence of multiple users at
the same time offers the capability of simultaneously hosting more than one
experiment, which prevents one user from blocking all other potential users of
the infrastructure.

• Scalability. This means, that transparently to users or existing tasks, adding new
nodes in the network is straightforward and without extra hardware. Moreover,
from an algorithmic point of view, adding a new node should only affect the
new node’s neighborhood and not the entire network. Reliance of SenseNet only
on software that utilizes the wireless channel in order to achieve the necessary
functionality helped boosting scalability. More specifically, deployment does
not demand cables, special hardware and specific drivers. The only requirement
is the inclusion of software in the motes.

SenseNet architecture embodies several components:

• Web Server. Communication between a user and SenseNet is carried out
through a Web interface. When assigned a username and password, users from
everywhere can access the services provided by the testbed. The web pages are
written in HTML/JSP30 (Tutorialspoint 2014) and provide a simple and practical
user interface. The web server used is Apache Tomcat, which is free to
download and use.

• Application Server. When a new task arrives to the system, the application
server is triggered through a remote method invocation (RMI)31 call
(Techopedia 2015). All information about such task is retrieved from the

30JavaServer Pages (JSP) is a technology for developing web pages that support dynamic content
that helps developers insert java code in HTML pages by making use of special JSP tags.
31RMI is a distributed object technology developed by Sun for the Java programming language.
RMI permits Java methods to refer to a remote object and invoke methods of the remote object.
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database as stored by the Web server. The Application Server sends to the
appropriate motes, using Deluge (Hui and Culler 2004), the executables of the
task, and keeps motes status till task termination.

• MySQL Database Server. It is the repository where the Web Server places
information regarding user tasks and where the Application Server finds what to
retrieve and exploit appropriately. The database holds the most recent status of
the sensor network and the motes, needed for both the application and Web
interface.

• Serial Forwarder. It is a tool that comes with the used TinyOS. It is mainly used
to provide a communication link between the serial port, where the basestation
is connected, and the Ethernet (TCP/IP). Hence, the SerialForwarder (TinyOS
Wiki 2012) binds the serial port and waits for connections from applications that
need to send or receive packets.

SenseNet was experimented on several topologies that involved 8 Mica2 motes,
and provided satisfactory performance.

5.2.13.5 Ubiquitous Robotics

Ubiquitous robotics integrates a wide variety of heterogeneous technologies
including networked mobile robots, WSN and RFID networks, camera networks
and networks of personal mobile computing devices. These technologies have been
divided in two groups (Jiménez-González et al. 2013):

• Ubiquitous systems with physical actuation capabilities. These are the robots,
they can move, carry sensors or other ubiquitous systems and can interact with
the environment.

• Ubiquitous systems without physical actuation capabilities. They include tech-
nologies based on nodes with sensing, computational and communication
capabilities that organize autonomously into networks. They also group WSN
and RFID networks, camera networks and personal mobile computing networks.
These devices can sense the environment, can interact with humans and can
perform actions such as turning lights on, but they cannot perform physical
actions and are static unless mounted on robots or carried by humans.

In ubiquitous robotics testbeds, multirobot (MR) systems can be comprised of
ground, aerial or marine robots (Reich et al. 2008; Kitts and Mas 2009):

• Ground robots typically use small or medium sized platforms and include
sensors such as cameras, RGB-D sensors, laser range finders, ultra-sound sen-
sors, bumpers, GPS receivers and Inertial Navigation Systems.

• Aerial robots, although limited in payload and, thus, in onboard sensing and
processing, can move in 3D. Vertical takeoff and landing quad-rotors are the
most commonly used, although blimps, fixed-wing platforms and helicopters are
also found in outdoor testbeds.
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• Underwater or surface vehicles are rarely found in ubiquitous robotics testbeds.

While low cost, low size and low energy constrain the features of sensors
integrated in WSN platforms, robots can carry and provide mobility to sensors with
higher performance. Moreover, WSNs were designed for low-rate and low-range
communications, whereas Wi-Fi networks, typically used by multirobot systems,
can provide up to 36 Mbps experimental bound at greater distances. As camera
networks are frequent in ubiquitous robotics testbeds, they most adopt schemes
with decentralized image processing for scalability and bandwidth efficiency. Also,
the popularization and improvement of performance of smartphones and PDAs
have boosted their use in testbeds.

Basically, testbeds need an architecture that integrates heterogeneous compo-
nents. A high percentage of the testbed flexibility, extensibility and scalability
depends on its architecture. If the testbed is designed to solely serve one experiment
or functionality, its architecture tends to be monolithic. In contrast, the architecture
of general-purpose testbeds with open public access tends to be modular and use
standard interfaces and open source software. Some testbeds include usability tools
such as simulators and tools for experiment programming, logging and monitoring.

In general, the purpose of testbeds as experimental tools is twofold:

• In some cases, as placed in indoor laboratories, they provide a controlled
environment to allow algorithm testing and debugging with simulation-like
conditions.

• In other cases they are used to fill the gap between research and market, enabling
testing in conditions close to the final application. These are typically deployed
in settings, which can range from office buildings to an entire city.

Figure 5.39 shows a typical ubiquitous robotic testbed.

Fig. 5.39 General
architecture of ubiquitous
robotic testbed
(Jiménez-González et al.
2011)
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5.3 Conclusion for Extension

Testbeds are representative of WSNs, they support the diversity of their hardware
and software constituents, they are deployed in the same conditions and would be
environment, they make use of the protocols to be used at a larger scale. Testbeds
are intended to safeguard would be implemented WSNs from malfunctions that
may not be seen in theoretical simulations. Malfunctions may be in inconvenient
hardware, buggy software, and deployment prone to energy depletion and radio
interferences. By momentarily tolerating faults, that cannot be accepted in everyday
actual WSNs, testbeds find the curing solutions.

In the literature many testbeds are reported, not all are typically implemented,
not all are available now. Knowledge is to be acquired from who got it by
researching, trying and experimenting; this chapter considers testbeds with
authentic information even if they ceased to subsist. Pioneering testbeds, as fully
illustrated, continue to offer models in concepts, implementation, and applications.
Some of the testbeds are built for general use, while others are meant for typical
applications such as visual surveillance.

As fully detailed in this chapter, based on the researchers and practitioners’
interests, testbeds can be classified under several categories. They may be full-scale
or miniaturized, deployed on a 2D or 3D pattern, mobile or static, provide Web
services or are just accessible from the deployment location, limited to homoge-
neous platforms or they are extended to support heterogeneity, provide for hybrid
simulation as a tool for enhanced analysis or are contented with experimentation
analysis. As elucidated, a testbed is not confined to a single category, it may be
static, deployed on a 2D field, and provide Web access (Table 5.3).

Testbeds and simulators are complementary; ideally getting benefits from both
of them is the best option. Theoretical simulation studies provide numerical metrics
that are truly needed for practical testbed implementation and deployment. But, is
the topmost approach always possible? Not all the wishes are usually attainable.
Testbeds are the expensive choice, both in money and effort; simulation is realis-
tically the less risky resort when budgets and time are short, and when typical
deployment is not insisting.

Simulators are the inevitable tools for analysis; they help previewing the per-
formance metrics needed for proper testbeds deployment. The next chapter con-
siders in full details the most common WSN simulators.
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5.4 Exercises

1. What is a testbed? Why are testbeds needed?
2. Identify the requirements from testbeds.
3. Explain virtualization, federation.
4. How is topology virtualized?
5. Compare full-scale and miniaturized testbeds.
6. Why is TinyOS widely used in WSNs?
7. Discuss the homogeneity of the testbeds involved in this chapter.
8. How do Web services vary in the offering testbeds.
9. Which of the laid-out testbeds support federation? How?

10. For the testbeds presented in this chapter, compare:

• The outdoor testbeds.
• The indoor testbeds.
• The full-scale testbeds.
• The miniaturized testbeds.
• The 3D testbeds.

11. Search the literature for more outdoor, indoor, full-scale, miniaturized, visual,
3D, and Web interfaced wireless sensors testbeds.
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Chapter 6
Simulators and Emulators for WSNs

Simulation is acting … Acting is not typical of real-life.

6.1 WSN Testbeds, Simulators, and Emulators

Testbeds, simulators, and emulators, are effective tools to evaluate algorithms and
protocols at design, development and implementation stages. Many of these tools
are available, each with different features, characteristics, models and architectures
for performance testing of WSNs. They are the focus of this book, as discussed in
the previous chapter and accomplished in this one. It is arduous for a researcher or a
practitioner to choose an appropriate tool for performance evaluation without the
knowledge of the available tools, their features, as well as the pros and cons.
Similarly, efforts to improve existing simulators or designing a new one require
detailed understanding of useful tools readily available. This necessitates compre-
hensive horizontal and vertical analysis among competitors at different stages. For
vertical validation of experiments, a singular approach for conducting simulation,
emulation, and real world experiments in mobile ad hoc networks using a single
tool is proposed in (Krop et al. 2007). As such, vertical analysis complements
horizontal analysis that is performed by investigating different testbeds at almost the
same level of abstraction. Recognizing the immense and diverse literature available,
this chapter aims at clarifying in full details all concepts and features related to
modeling and simulation, simulators and emulators.

Studying and analyzing WSNs goes through different phases and approaches,
starting theoretical by simulation, ending up practical via testbeds, or working
midway as in emulation. The basic differentiation, as shown in Fig. 6.1, can be
outlined in what follows (Coulson et al. 2012):

• Physical testbeds as detailed in the previous chapter excel at high-fidelity
evaluation of mature WSN designs, as well as detailed planning for real-world
deployments. However, physical testbeds for WSN systems tend to be small in
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scale, expensive to maintain, and time-consuming to set up. They also lack
flexibility, often offering a single, fixed, connectivity topology and restricted
heterogeneity, such as only a single type of sensor node, radio, operating sys-
tem, or programming language. They also tend to be limited in their pro-
grammability at lower levels of the system; for instance, many use fixed
operating systems and networking stacks. They are also often unfitted to
experimentation scenarios requiring repeatability of experiments, since many
relevant operating parameters are beyond user control, such as local radio
interference due to infrastructure and other experiments.

• Simulation is useful for rapidly trying out new ideas and for examining the
behavior of new protocols and mechanisms in varied topologies at large scale
and in a repeatable manner (Levis et al. 2003; Fekete et al. 2007). The most
notable drawback is a lack of fidelity, often making it impractical to simulate
fully at the instruction-execution level and with high-fidelity radio or
power-consumption characteristics. While such restrictions are not necessarily
problematic in traditional network environments where simulators such as ns-2
are prominent, they represent significant drawbacks in WSN environments
where resource scarcity and incidental physical characteristics are of the
essence. Simulation alone is therefore of limited use in planning for real-world
WSN systems and deployments.

• Emulation is situated between physical reality and simulation (Girod et al. 2004;
Wu et al. 2004), (Judd and Steenkiste 2004). Whereas simulation abstractly
models target systems, emulation duplicates the functionality of one system in
terms of another system and is therefore capable of much greater fidelity than
simulation while potentially offering greater flexibility than a purely physical
testbed. Emulation is a much less exploited approach in the WSN testbed
context despite much potential; precisely, emulation in the form of network
overlay technology could be used to support different inter-node connectivity
patterns in a physical testbed. Alternatively, a battery-based power supply on a
physical node could be emulated by interposing an electricity-powered hardware
module with degrading power over time.

Physical reality

Simulation Emulation

Hardware
implementation

Modeling and
software

implementation

Tuning and
comparison of results

Fig. 6.1 Physical reality, simulation, emulation interrelated
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6.2 Modeling and Simulation

Modeling and simulation are two complementary procedures. Without simulation,
models are just paperwork, theories that may not come true. Simulation lacking
theoretical study is non-founded, misses a matching vision of a system that should
come to life. In this section basic concepts of modeling and simulation are illus-
trated with a pinpoint to the essential literature.

6.2.1 Basic Definitions

A model is the first representation of the system to be studied for the purpose of
collecting specific metrics, either for the sake of knowledge, or for subsequent
implementation. Simulation is the upper block of a hierarchy that has to be stepped
up (Sargent 2005):

• The problem entity is the system, real or proposed, to be modeled.
• The conceptual model is the mathematical, or logical, or verbal representation of

the problem entity developed for a particular study; it is developed through an
analysis and modeling phase.

• The computerized model, simulation model, is the conceptual model imple-
mented on a computer, it is developed through a computer programming and
implementation phase. The simulation model specification is a written detailed
description of the software design and programming for the conceptual model
implementation on a particular computer system. Inferences about the problem
entity are obtained by conducting computer experiments on the computerized
model in the experimentation phase.

The above-mentioned models must undergo several procedures that detect and
correct errors in their representation of the required entity, and in the true matching
of their outcome with the must obtain data. For clear understanding, several defi-
nitions draw borderlines between a multiplicity of concepts:

• Model verification, is ensuring that the computer program of the model and its
implementation are correct (Sargent 2005). Verification is also defined to be the
process of determining that a model implementation accurately represents the
developer’s conceptual description of the model and its solution (Thacker et al.
2004).

• Model validation, is the substantiation that a computerized model within its
domain of applicability possesses a satisfactory range of accuracy consistent
with the intended application of the model (Schlesinger et al. 1979). Validation
is also defined to be the process of determining the degree to which a model is
an accurate representation of the real-world from the perspective of the intended
usage patterns of the model (Thacker et al. 2004).
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• Operational validation, is determining that the model’s output behavior has
sufficient accuracy for the model’s intended purpose over the domain of the
model’s intended applicability (Sargent 2005).

• Data validity, is guaranteeing that the data necessary for model building, model
evaluation and testing, and conducting the model experiments to solve the
problem are adequate and correct (Sargent 2005).

• Model accreditation, is the determination that a model satisfies defined model
accreditation criteria according to a specified process (Sargent 2005).

• Model credibility, is giving potential users the confidence they need to use a
model and to believe the information derived from that model (Sargent 2005).

6.2.2 Validation and Verification

A model should be developed for a specific purpose, or application, and its validity
determined with respect to that purpose. If the purpose of a model is to answer a
variety of questions, the validity of the model needs to be determined with respect
to each question. Numerous sets of experimental conditions are usually required to
define the domain of a model’s intended applicability. A model may be valid for
one set of experimental conditions and invalid in another. A model is considered
valid for a set of experimental conditions if the model accuracy is within its
acceptable range, which is the amount of accuracy required for the model’s
intended purpose. This requires identifying the model output variables and deter-
mining their required accuracy. The amount of accuracy required should be spec-
ified prior to starting the development of the model or in the early model
development process. If the variables of interest are random variables, then prop-
erties and functions of the random variables such as means and variances are of
interest and are used in determining model validity. Several versions of a model are
to be developed prior to obtaining a satisfactory valid model.

The substantiation that a model is valid, i.e., performing model verification and
validation is often costly and time consuming, tests and evaluations are to be
conducted until obtaining acceptable confidence that a model can be considered
valid for its intended application (Sargent 2005). If a test determines that a model
does not have sufficient accuracy for any one of the sets of experimental conditions,
then the model is invalid. However, determining that a model has enough accuracy
for numerous experimental conditions does not guarantee that a model is valid
everywhere in its applicable domain.

Verification is concerned with identifying and removing errors in the model by
comparing numerical solutions to analytical or highly accurate benchmark solutions.
Validation, on the other hand, is concerned with quantifying the accuracy of the
model by comparing numerical solutions to experimental data. Thus, verification
deals with the mathematics associated with the model, whereas validation deals with
the physics associated with the model (Roache 1998). Mathematical errors can
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eliminate the impression of correctness by giving the right answer for the wrong
reason; thus, verification should be performed to a sufficient level before the vali-
dation activity begins.

The verification activity can be divided into code verification and calculation
verification. When performing code verification, problems are devised to ensure
that the code can compute an accurate solution. Code verification problems are
constructed to verify code correctness, robustness, and specific code algorithms.
When performing calculation verification, a model that is to be validated is exer-
cised to ascertain that it is computing a sufficiently accurate solution.

Fundamentally, software validation and verification is different from model
validation and verification. Software validation and verification is required when a
computer program or code is the end product. Model validation and verification is
required when a predictive model is the end product. A code is the computer imple-
mentation of algorithms developed to facilitate the formulation and approximate
solution of a class of models. Amodel is the conceptual, mathematical, and numerical
description of a specific physical scenario, including geometrical, material, initial, and
boundary data.

As shown in Fig. 6.2 an iterative process is used to develop a valid simulation
model:

• A conceptual model is developed and validated; this process is repeated until the
conceptual model is satisfactory.

• Next the computerized model is built from the conceptual model and is verified;
this process is repeated until the computerized model is satisfactory.

• Then, operational validity is conducted on the computerized model. Model
changes required by conducting operational validity can be in either the con-
ceptual model or in the computerized model.

Verification and validation must be performed anewwith any model modification.
Commonly several models are developed prior to obtaining a valid simulation model.

Problem entity
(System)

Computerized
model 

Conceptual
model 

Computerized
model verification

Conceptual
model validation

Operational
validation Analysis and

modeling
Experimentation

Computer program
implementation

Data validity

Fig. 6.2 The modeling process (Sargent 2005)
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6.3 Simulation Principles and Practice

Simulation is a valuable tool in many areas where analytical methods and experi-
mentation are not feasible. Researchers generally use simulation to analyze system
performance prior to physical design or to compare multiple alternatives over a
wide range of conditions. However, if simulation fails to reflect a meaningful aspect
of reality, the insight into the operating characteristics of the system under study is
lost. Generalization and lack of depth lead to inaccurate data, which result in wrong
conclusions or inappropriate implementation decisions. Simulation principles,
concepts and practice are found in a wealthy literature that includes among many
(Maria 1997) in addition to those referenced in this section.

Most research on MANET routing protocols includes a simulation to study a
proposed solution performance. Network simulation packages are complex, and
require sufficient time to learn and master. Moreover, conducting a study using
more than one simulation package might lead to different results, which highlights
the inherent simulator technique and its view of the system under study that may be
closer or further from the typical reality involved. Factually, matching results
among multiple simulators does not mean they are technically credible unless
investigators independently validate the simulators and confirm their application for
each instance (Andel and Yasinsac 2006).

In the literature, many significant contributions focused on how to make credible
simulations; not to be unobserved (Jain 1991; Kurkowski et al. 2005; and Andel
and Yasinsac 2006). Particularly, in (Kurkowski et al. 2005), there is an interesting
consideration of the state of MANET simulation studies as published in the
esteemed Proceedings of the ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc) from 2000–2005 (ACM SIGMOBILE
2000). Findings are displeasing; in general, outcomes published on MANET sim-
ulation studies lack believability. The work in (Andel and Yasinsac 2006) ques-
tioned the validity of simulation and illustrated how it can produce misleading
outcomes; it also presented cautionary advices to enhance simulation credibility.

Compulsorily, to qualify for trustworthiness and believability, a
simulation-based research, must be:

• Repeatable. A properly published paper must discuss or reference all details that
satisfy the repeatability criteria. A researcher should be able to repeat the sim-
ulation results for his contentment, for future reviews, and for further devel-
opment. Several factors jeopardize repeatability:

– Overlooking the identification of the simulator and its version, the operating
system, and all variable settings.

– Unavailability to the community of the code and configuration files; in the
conducted survey, no paper with a simulation study made a statement about
code availability.
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– Leaving out the adopted scenarios settings such as transmission distance and
bit rate, the techniques used to avoid initialization bias (influence of empty
queues, etc., at the start), and the methods used to analyze the results.

• Rigorous. The scenarios and conditions used to test the experiment must truly
exercise the aspect of MANETs being studied. For a rigorous study, factors such
as node density, node footprint, coverage, speed, and transmission range must
be set correctly to exercise the protocol under test. Explicitly, a study that uses
scenarios with average hop counts, between source and destination, below two
are solely testing neighbor communication not true routing.

• Statistically sound. The execution and analysis of an experiment must be based
on mathematical principles. For a statistically sound study, a careful task must:

– Account for initialization bias.
– Execute a number of independent simulation runs, and address sources of

randomness such as pseudo random number generator (PRNG) to ensure
independence of runs.

– Provide the confidence levels that exist in the results.
– List all embraced statistical assumptions.
– Collect data after deleting transient values or eliminating it by preloading

tables and queues.

• Unbiased. The results must not be confined to the exclusive scenario used in the
experiment. For a study to be unbiased, a project must address initialization bias,
random number issues, and use a variety of scenarios. A single scenario use is
just is to prove a limitation or counter a generalization.

• Multiply run. To ensure credibility of a simulation study multiple runs, up to 30
times, are compulsory. Specifically, executing with different PRNG seeds to
account for convergence, deviation, and modal values provide statistical
validity.

• Precise. Mathematical models measure results by orders of magnitude, while
simulation models show percentage improvements between MANET protocols.
However, simulation is functionally imprecise and is subject to errors injected
by inaccurate parameters or false assumptions:

– Transmission range is generally represented as a circle radius.
– Node distribution is modeled as uniform or random; in fact, roads, trees,

water, and other obstacles affect node distribution.
– Interference models are typically based on signal to noise ratio (SNR) or bit

error rate (BER), which disregards interference based on increasing traffic or
unpredictable background noise.

– Use of unfitting radio models, for instance, free-space radio models are
enough during early development, but two-ray and shadow models are more
realistic throughout data collection and analysis.

– Unrealistic traffic assumption, such as CBR, which may not be representative
of the application under study.
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– Node communication is assumed bidirectional, however, in wireless com-
munication there is no guarantee that signal transmission, and reception
distances are similar. MANET nodes might have different power levels
available for transmission.

– Node mobility is modeled as random, but it rarely is, there is usually a
pattern to follow.

– Area is assumed square or rectangular network area, which does not reflect
reality.

• Validated. The simulation must be validated in all its details, specifically, pro-
tocol design, traffic, radio model, against a real-world implementation; or when
being at the early phase of concept development, against analytical models or
protocol specifications. The later handling is less precise, but it can be refined
later when implementation is achieved.

Generally, an alarming lack of believability in MANET simulation research is
revealed, even-though using simulation to test performance is almost a common
factor; that is adopted in 114 out of the 151 (75.5 %) published MobiHoc papers
(Kurkowski et al. 2005).

6.3.1 Simulating the Advance of Time

For representative simulation, continuous systems and discrete systems are to be
comprehensibly differentiated. In continuous systems, the state variables change
continuously with respect to time, whereas in discrete systems the state variables
change instantaneously at separate points in time. Unfortunately for the computa-
tional experimentation there are but a few systems that are either completely dis-
crete or completely continuous state, although frequently one type dominates the
other in such hybrid systems. The real challenge is to find a computational model
that mimics closely the behavior of the system under study; specifically the sim-
ulation of time-advance is tricky. There are a number of means for modeling the
progress of time. Specifically, time-slicing, discrete-event, and continuous time
approaches. The time-slicing method is useful for understanding the basics of the
simulation approach. Discrete-event simulation and continuous time simulation are
the most commonly adopted approaches as illustrated below.

6.3.1.1 The Time-Slicing Approach

The simplest method for modeling the progress of time is the time-slicing approach
in which a constant time-step (Dt) is adopted. It is relatively simple to set up a
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time-slicing simulation for this situation. There are two main problems with the
time-slicing approach:

• First, it is very inefficient. During many of the time-steps there is no change in
the system-state and as a result many computations are unnecessary. This
problem is only likely to be exacerbated the larger the simulation becomes.

• A second problem is determining the value of Dt. In most simulations the
duration of activities cannot be counted in whole numbers. Also, there is often a
wide variation in activity times within a model from possibly seconds (or less)
through to hours, days, weeks or more. The discrete-event simulation approach
addresses both of these issues.

As shown in Fig. 6.3, the points of interest are those when a customer arrives,
when a server receives it, and when the server completes (5 arrivals, 5 services, 4
completions); computations are made though on all time steps even when there is
no state change.

6.3.1.2 The Discrete-Event Simulation Approach

In discrete-event simulation only the points in time at which the state of the system
changes are represented. In other words the system is modeled as a series of events,
that is, instants in time when a state-change occurs. Examples of events are a
customer arrives, a server starts, a server completes service. Each of these occurs at
an instant in time. A number of mechanisms have been proposed for carrying out
discrete-event simulation, among them are the event-based, activity-based,
process-based and three-phase approaches used by a number of commercial sim-
ulation software packages (Pidd 1998).

Figure 6.4 illustrates the seven points of time that are of interest based on the
example of Fig. 6.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 Time

• Customers arrive every 2 t.

• Service takes 3 t.
• At instants 2,7,12 two events occur: a 

customer arrives and Server 1 takes it.
• At instants 4,9 two events occur: a 

customer arrives and Server 2 takes it.

• Four customers are serviced till 12 t.

Server 1

Server 2 

Fig. 6.3 Time-slicing approach
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6.3.1.3 The Three-Phase Simulation Approach

In the three-phase simulation approach events are classified into two types:

• B (bound or booked) events. These are state changes that are scheduled to occur
at a point in time. For instance, a phone call arrivals in a call center model occur
every 3 min. Once a call has been taken by an operator, it can be scheduled to
finish 5 min later. This principle applies even when there is variability in the
model, by predicting in advance how long a particular activity will take. In
general B-events relate to arrivals or the completion of an activity.

• C (conditional) events. These are state changes that are dependent on the con-
ditions in the model. For instance, an operator can only start serving a customer
if there is a customer waiting to be served and the operator is not busy. In
general C-events relate to the start of some activity.

6.3.1.4 The Continuous Simulation Approach

In a whole range of situations, operations are not subject to discrete changes in
state, but the state of the system changes continuously through time. The most
obvious of these is in operations involving the movement of fluids, for instance,
chemical plants and oil refineries. In these systems tanks of fluid are subject to
continuously changing volumes. Systems that involve a high volume of fast moving
items may also be thought of as continuous. In these situations the level of gran-
ularity with which the system is to be analyzed determines whether it is seen as
discrete or continuous.

Digital computers cannot model continuous changes in state. Therefore, the
continuous simulation approach approximates continuous change by taking small
discrete time-steps (Dt). The smaller the time-step the more accurate the approxi-
mation, but the slower the simulation runs, because of the more recalculations with
the more simulated time units. This approach is clearly the same as the time-slicing
method described above.

Point in time Event
2 Customer arrival + service at Server 1
4 Customer arrival + service at Server 2
5 Server 1 completes
7 Customer arrival + service at Server 1 + Server 2 completes
9 Customer arrival + service at Server 2

10 Server 1 completes 
12 Customer arrival + service at Server 1+ Server 2 completes

Fig. 6.4 Discrete-event simulation approach
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Some discrete-event simulation packages also have facilities for continuous
simulation, while it is always possible to imitate a continuous simulation in a
discrete-event package by including a regular event that mimics a time-step (Dt).
This is useful in circumstances where discrete and continuous changes need to be
combined, for instance, process failures (discrete change) in a chemical plant
(continuous change). In general, discrete-event simulation is more appropriate when
a system needs to be modeled in detail, particularly when individual items need to
be tracked through the system.

6.3.2 Proof of Concept

A proof of concept (POC) is a demonstration to verify that certain concepts or
theories have the potential for real-world application. POC is therefore a prototype
that is designed to determine feasibility, but does not represent deliverables. POC is
also known as proof of principle (Techopedia 2015a, b).

According to (Andel and Yasinsac 2006) a proof of concept is possible only after
thorough simulation and when testbeds may be available for added experimental
information or data, omitting details or oversimplifying the model may lead to
erroneous outcome. There is no necessity to compare protocols against each other.
A different understanding of the meaning of proof of concept means a basic sim-
ulation (Stojmenovic 2008). Such simulation is built for a very simple model and
scenario that matches the model and assumptions needed to design the protocol,
with the simple purpose of demonstrating that what is expected about its very basic
performance is true. Simulations simply replace theoretical proofs of performance,
as they are almost impossible to derive; thus, basic claims and expectations are
confirmed.

It is further argued in (Stojmenovic 2008) that a rigorous proof of concept may
produce a “lack of concept” when too much realism is introduced, or “defeat”
because of introducing too much complexity in the search for realism.
Alternatively, it may not be clear which concept is under simulation, or the claim
made for a particular concept may end up being valid/ invalid for another concept.

It is sometimes advisable, in the pursuit of simplicity, to limit analysis and
advances to one parameter or variable at a time, test it on the simplest possible
simulator, and understand it fully before making a next step that involves more
parameters or variables. For instance, simulations done with realistic physical layers
normally lead to investigating phenomena with many variables and puzzles, which
leads to few explanations, and insufficient hints for future progress. Therefore
simulations should proceed stepwise from the simplified unit disk graph
(UDG) toward realistic physical layers (Stojmenovic 2008).
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6.3.3 Common Simulation Shortcomings

Several simulation deficiencies impact the reliability of a simulation-based study.
These defects, as detailed below, are grouped into four categories that match the
simulation phases, namely, simulation setup, simulation execution, output analysis,
and publishing (Kurkowski et al. 2005).

6.3.3.1 Simulation Setup

Setup begins with determining the simulation type, validating the model, validating
the pseudo random number generator (PRNG), defining variables, and developing
scenarios. Though important, simulation setup is a phase of the MANET research
job that is frequently disregarded, which blemishes simulation credibility.

Simulation Type

Identifying the type of simulation, terminating or steady state, is a commonly
unnoticed step. As uncovered in the MobiHoc survey, 66 out of the 114 (57.9 %)
simulation papers did not state whether the simulation was terminating or steady
state. It is believed that most simulations are steady state because MANET studies
are typically interested in the long-term average behavior of an ad hoc network.

If the simulation type is not defined, unsound statistical results are an unpleasant
consequence. Executing one type of simulation and reporting results on the other
types of simulation is a common error. Precisely, executing a terminating simula-
tion for a specified number of seconds and claiming the results represent the steady
state performance.

A MobiHoc paper identifying the simulation type used is presented in (Melodia
et al. 2005).

Model Validation and Verification

The step that follows determining the type of simulation is to prepare the simulation
model; a model must be validated as a baseline to start any experimentation. Several
considerations are to be regarded in this context:

• A common error is to download the ns-2 simulator, compile it, and execute
simulations with a model that has not been validated for the environment.

• Making changes to ns-2 without validating these modifications or
enhancements.

• A protocol that is being evaluated must be verified to ensure that it has been
coded correctly and is operating in accordance with the protocol specifications
(Balci 1994).
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• Missing to validate the model or verifying code, when software changes, is a
usual flaw. Precisely, upgrading to a new compiler may implement a broadcast
function in a protocol differently than earlier executions, which might impact
protocol performance.

A MobiHoc paper discussing validation prior to evaluation is obtainable in
(Zheng et al. 2003).

PRNG Validation and Verification

With the high computing power obtainable and the complexity of the ns-2 model,
MANET researchers need to ensure that PRNG is appropriate for the study.
Specifically, the ns-2 PRNG does not allow a separate request stream for each
dimension (i.e., a unique request stream) that exists in a simulation study.
A three-dimension instance is when a simulation has three different random
parameters, such as jitter, noise, and delay, it is required that all three of these
parameters (dimensions) be uniformly distributed with each other and within each
stream (e.g., the jitter stream needs to be uniformly distributed). In (L’Ecuyer and
Simard 2001; Pawlikowski et al. 2002) it is shown that a 2-dimensional request on a
PRNG is valid for approximately 8

ffiffiffi
L3

p
, where L is the cycle length. In ns-2, the

cycle length is 231−1, which means that only around 10,000 numbers are available
in a 2-dimensional simulation study. Thus, (Pawlikowski et al. 2002) estimate that
the ns-2 PRNG is valid just for several thousand numbers before the potential
non-uniformity of numbers or the cycling of numbers. This cycling time occurrence
is obviously dependent on the number of PRNG calls made during a simulation.
Notably most network simulations spent as much as 50 % of the CPU cycles
generating random numbers.

On the other hand, testing of PRNG cycling shows that cycling impact is
minimal because the repetition of numbers does not occur within the simulator in
the exact same state as the previous time (Kurkowski et al. 2005). However, based
on (Pawlikowski et al. 2002), the dimensionality of the numbers is likely to cause a
correlation hitch. So, before publishing results, a researcher should validate the
PRNG to ensure it did not cause correlation in the results. If the cycle length is an
issue with ns-2, Akaroa-2 (McNickle et al. 2010) offers an ns-2 compatible PRNG
with a cycle of 2191−1, it provides several orders of magnitude more numbers and is
valid to 82 dimensions.

Variable Definition

Variable definition has to be considered in more than a direction:

• ns-2 uses hundreds of configurable variables during an execution so as to satisfy
general wired and wireless network simulation requirements. Specifically, there
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are 538 variables defined in the ns-default.tcl file of ns-2.1b7a, and 674 vari-
ables defined in the ns-default.tcl file of ns-2.27. Such large number of variables
makes it difficult to track each variable’s default setting.

• The review of the tcl driver files, as well as the simulation instances provided by
ns-2, show that many simulation driver files leave key parameters undefined
(Kurkowski et al. 2005). Typically, three out of 12 (25 %) of the ns-2 MobiHoc
simulations did not define the transmission range of a node (Kurkowski et al.
2005). If the transmission range default is changed from an ns-2 version to the
next, the simulation outcome would be considerably different. A researcher
should define all variables by using his own configuration file or tcl driver file
(Perrone 2003).

Scenario Development

The conducted MobiHoc survey highlighted the importance and extent of devel-
oping a simulation scenario:

• A simulation scenario should involve the number of nodes, the size of the
simulation area, and the transmission range of nodes. Just 48 of the 109 (44 %)
MANET protocol simulation papers provided all three of these input parameters,
itemizing 61 simulation scenarios with a wide range of values. The number of
nodes in these scenarios ranged from 10 nodes to 30,000 nodes, the simulation
area varied from 25 m × 25 m to 5000 m × 5000 m, and the transmission ranges
was from 3 meter to 1061 meter. The survey highlights the wide range of
simulation scenarios used to conduct MANET research and the lack of uniform
rigorous testing of MANET protocols.

• The derived parameters aggregate multiple input parameters to further charac-
terize a scenario and provide a common basis for comparison across scenarios.
For instance, for input parameters width (w), and height (h) several parameters
may be derived such as simulation area (w × h), node density (n=ðw� h) where
n is the number of nodes, and maximum path (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðw2 þ h2
p

).
• There is a lack of independence between parameters, such as node density

(n=ðw� h)) and node coverage (p� r2), where r is the transmission range.
• If there were benchmark scenarios for small, medium, and large sized simula-

tions, then there would be three groupings of values for each simulation area.
• MANET research lacks consistent rigorous scenarios to validate and test solu-

tions to the confronted issues.
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6.3.3.2 Simulation Execution

Well-implemented simulation is essential to save execution time cost. Several
execution defects that impact data output, analysis, and ultimately results are laid
out in what follows.

Setting the PRNG Seed

In ns-2 based simulation studies, it is essential to set the seed of the PRNG properly
for several causes:

• ns-2 uses a default seed of 12,345 for each simulation run, thus, if an ns-2 user
does not set the seed, each simulation will produce identical results.

• If the seed is not set or is poorly set, it can revoke the independent replication
method typically used in analysis. Introducing correlation in the replications
invalidates the common statistical analysis techniques and the results.

The MobiHoc survey (Kurkowski et al. 2005) reported that none of the 84
simulation papers addressed PRNG issues. The researcher should set the seed
correctly in his tcl driver file and use the ns-2 Random Class for all random
variables.

Scenario Initialization

Such pitfall usually occurs from a lack of understanding of the two types of sim-
ulation, terminating or steady state:

• In terminating simulations, the network is usually started in a certain configu-
ration that represents the start of the simulation window. Specifically, if the
researcher is trying to simulate a protocol’s response to a failure event, he needs
to have the failure as the initialization of his analysis.

• The simulation fills the caches, queues, and tables that were initially empty until
a steady state activity is reached. Determining and reaching the steady state level
of activity belongs to the initialization. Data generated prior to reaching steady
state is biased by the initial conditions of the simulation and cannot be used in
the analysis. Steady state simulations require that the researcher address ini-
tialization bias (Schruben 1982). Typically, in protocols that maintain neighbor
information, the size of the neighbor table should be monitored to determine
when the table entries stabilize, because the protocol will perform differently
with empty routing tables. Akaroa-2 (McNickle et al. 2010) monitors variables
during execution to determine steady state.

Only eight of the 114 (7.0 %) simulation papers in the MobiHoc survey
addressed initialization bias, and all eight use the unreliable method of arbitrarily
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deleting data. More information on statistically sound methods of addressing ini-
tialization is available in a MobiHoc’2001 paper (Dyer and Boppana 2001).

Metric Collection

The metrics collected via simulation are of significance; there is no point of cor-
rectly running simulation without obtaining the required data (Pawlikowski et al.
2002). Appropriate output is critical, specially, if it has to be categorized.
Unambiguously, if the researcher is trying to track delivery ratio for data packets
and control packets, each type of packet must be identified along with the source
and destination to determine the number of each type of packet sent and success-
fully received. Outputting only the number of packets sent and the number of
packets received will not provide the granularity required in the measures.

In (Lee and Kim 2000) a MobiHoc paper describes and defines the statistics used
in calculating results.

6.3.3.3 Output Analysis

Output analysis is the weak point of many simulation studies. When the preceding
steps take longer than planned, enough time is not provided for output analysis at
the end of the schedule. Whether it is the publication deadline, or the thesis defense
date, correct analysis is habitually conceded as below detailed.

Single Set of Data

Taking the first set of results from a simulation and accepting them, as “correct” is a
fault to be avoided. With a lone result there is a high probability that the single point
estimate is not descriptive of the population statistics. A single execution of a
discrete-event simulation cannot account for the inherent randomness of the
experiment; it may produce good results, however, the single point estimate pro-
duced will not give enough confidence in the unknown population mean. The
researcher has to determine the number of runs necessary to produce the confidence
levels required for a trustworthy study (Law and Kelton 2000).

In the MobiHoc survey (Kurkowski et al. 2005), only 39 of the 109 (35.8 %)
MANET protocol simulation papers stated the number of simulation runs.
A MobiHoc paper using multiple replications to achieve high confidence is given in
(Hu and Johnson 2001), and a proper documentation of the number of replications
used and how the quantity was chosen is presented in (Dyer and Boppana 2001).
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Statistical Analysis

Failing to use the correct statistical formulas with the different forms of output is a
common imperfection; for instance, using the standard formulas for mean and
variance without ensuring the data is independent and identically distributed (IID).
Use of IID based formulas on correlated data produces biased results, and hence
compromises simulation reliability. To ensure IID and prevent correlated results, a
researcher has to use batch means or independent replications of data (Goldsman
and Tokol 2000).

From the survey in (Pawlikowski et al. 2002), the statistical methods used in
analysis are overlooked in 76.5 % of the papers. A MobiHoc paper that described
the analysis and data used to calculate the results is presented in (Sadagopan et al.
2003).

Confidence Intervals

This defect is a wrap out of several of the previous analysis issues. Confidence
intervals provide a range where the population mean is thought to be located
relative to the point estimate (Brakmo and Peterson 1996). Confidence intervals
account for the randomness and varied output of a stochastic simulation.

In (Kurkowski et al. 2005), 98 of the 112 (87.5 %) simulation papers using plots
did not show confidence intervals on the plots. A MobiHoc paper that used con-
fidence intervals is given in (Zheng et al. 2003).

6.3.3.4 Publishing

From (Kurkowski et al. 2005), imperfect publishing prevents researchers in the
MANET community from benefiting in several ways:

• The lack of consistency in publishing simulation-based results directly impacts
the trustworthiness of the studies and inhibits the direct comparison of results.

• A new researcher cannot repeat the studies to start his follow-on work. As
previously stated, in the ns-default.tcl file of ns-2.27 there are 674 defined
variables. To ensure repeatability a researcher must document the ns-default.tcl
file used and changes made to the variables settings in the file. Also, it is prime
to state if the code is available and how to obtain it (Perrone 2003). There should
be a code statement even if the code’s release is restricted by copyright or third
party ownership.
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• The lack of labels and units can cause readers of the papers to misinterpret or
misunderstand the results:

– Plots of simulation results are common, i.e., 112 of the 114 (98.2 %) sim-
ulation papers used plots to describe results.

– However, 12 of the 112 (10.7 %) simulation papers with plots did not
provide legends or labels on his or her charts.

– Additionally, 28 of the 112 (25.0 %) simulation papers with plots did not
provide units for the data being shown.

• Overlooking documentation and referencing of the parameters set to execute the
simulation hamper repeatability and comparisons. Example missed data are
statistically detected:

– Noticeably, 47 of the 109 (43.1 %) MANET protocol simulation papers did
not state the transmission range of the nodes.

– Also, 78 of the 109 (71.6 %) MANET protocol simulation papers did not
mention the packet traffic type used in the simulation.

• Overlooking charts discussion in the text or the text failing to reference charts as
supportive lead to ambiguity and mistrust in the published work as a whole.

As exhaustively elucidated throughout Sect. 6.3, trustworthy studies can be
barred due to unrepeatable, biased, non-rigorous, and non-statistically sound sim-
ulation as resulting from deficient simulation setup, faulty execution, erroneous
output analysis, and unsound document describing the work.

6.3.4 Unreliable Simulation Revealed

Lack of credibility is an inevitable turnout due to imperfect and inaccurate simu-
lation setup, simulation execution, output analysis, and publishing. It is unveiled in
(Kurkowski et al. 2005) that:

• Less than 15 % of the published MobiHoc papers are repeatable.
• It is impractical to repeat a simulation study when the version of a publicly

available simulator is unknown. Only seven of the 58 (12.1 %) MobiHoc
simulation papers that use a public simulator mention the simulator version
used.

• It is unthinkable to repeat a simulation study when the simulator is
self-developed and the code is unavailable.

• Only eight of the 114 (7.0 %) simulation papers addressed initialization bias and
none of the 84 simulation papers tackled random number generator issues. Thus,
over 90 % of the MobiHoc published simulation results may include bias.

• With regard to compromising statistical soundness, 70 of the 109 (64.2 %)
MANET protocol simulations papers did not identify the number of simulation
iterations used, and 98 of the 112 (87.5 %) papers that used plots to present
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simulation results did not include confidence intervals. Hence, only approxi-
mately 12 % of the MobiHoc simulation results appear to be based on sound
statistical techniques.

As obviously disclosed throughout Sect. 6.3, making a simulation credible is a
serious task. Nevertheless, based on incomplete literature reviews and true protocol
comparisons, several simulation practices adopt “I am the best” approach evading
mentioning maybe better existing solutions. Moreover, it becomes a harder task to
criticize or evaluate such type of work due to poor documentation such as
incomplete algorithmic descriptions, vague pseudo-code, unclear concise descrip-
tion of new ideas and meaningful case studies. Additionally, comparing a proposed
solution to some existing ones that are clearly inferior leads to nowhere. Even a
comparison with a better protocol using different assumptions or metrics gives an
unfair advantage. For instance, many papers allege being superior to ad hoc
on-demand distance vector routing (AODV), dynamic source routing (DSR) routing
in terms of delay, power consumption, or other metrics. However, AODV, DSR
route discovery protocols mainly use hop count as a metric without addressing
congestion or power consumption issues (Stojmenovic 2008).

6.3.5 The Price of Simulation

Deciding to simulate may be a necessity choice; certainly demanding, definitely
challenging, but worth perseverance, and being up to the price that is not bound to
money only. Simulation hurdles are evoked to be (Robinson 2004):

• Expensive. Simulation software is not necessarily low-priced and the cost of
model development and use may be considerable, particularly if consultants
have to be employed.

• Time consuming. Simulation is a time consuming approach, this adds to the cost
of its use and signifies that the benefits are not immediate.

• Data hungry. Most simulation models require a significant amount of data. This
data is not always immediately available and, where it is, much analysis may be
required to put it in a form suitable for the simulation.

• Expertise demanding. Simulation is more than the development of a computer
program or the use of a software package. It requires, among other things, skills
in conceptual modeling, validation and statistics, as well as skills in working
with people and project management. This expertise is not always readily
available.

• Overconfidence insinuative. There is a risk that whatever produced on a com-
puter is considered right. Through simulation this is further intensified with the
use of an animated display that gives a maybe deceitful appearance of reality.
When interpreting the results from a simulation, consideration must be given to
the validity of the underlying model and the assumptions and simplifications
that have been made.
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6.4 Simulators and Emulators

Simulators are knowledge wealthy, in networks, hardware, software, and mathe-
matics; studying a simulator urges understanding the underneath foundations in
such a multiplicity of areas. A simulator, thus, is not meant to be a black box that
produces output for some input. In the quest for mastering a simulator, this section
provides an in depth layout of its building blocks with a care to how it is efficient as
compared to peer simulators.

Diverse network simulators and emulators are presented in this section, some are
for general networking, others are dedicated to wireless networking with or without
focus on WSNs. Simulators also differ in their time approach, whether it is
discrete-event driven, or continuous; furthermore, they are built in a diversity of
languages that are different in their techniques such as the support of object oriented
programming which necessarily impacts their scalability, or the support of
component-based models. Open-source simulators extend their use and lifetime by
providing the researchers with the ability to add extra insights and scenarios into the
main framework. On the contrary, emulators are hardware dependent, which one to
use is a straightforward choice. Noteworthy, some simulators seized to exist due to
lack of development and support, or due to the advances in networking that went
beyond their intended design goals.

With the wide diversity of simulators, it becomes such a hard task to make a
choice. This section provides a thorough analysis of the most widely known sim-
ulators, with a focus on their intended use, be it for general networking or for
WSNs, and on how the underlying theory and models implementation languages
and techniques are manageable. Could someone buy any car? How to make the
decision? Brand name first or cost? Which engine technology? Manual or auto-
matic? A complex procedure that should involve an answer to each question, and a
priority, which answer should come first. In general, few go for the unknown, a No
for taking risks, brands usually comes first, they are trustworthy by history and
production, a lower ranked “brand” though may be more efficient for a typical
purpose. Then comes the intended use, whether it is for urban driving, or for
highways, and so on till reaching a narrow selection margin. Nonetheless, the
differences between the same class cars remain minimal. Simulators are cars. Are
the widely used simulators convenient for the task? If none of them is, what are the
alternatives? Is it a right decision to start by looking in the less known simulators?
Would free license simulators be efficient? Then, how easy they are to learn and
use? Nonetheless, simulators are intelligent tools that require up to the level users.
This section provides an analysis that makes the tricky decision easier.

Without been exhaustive, this section lays out the simulators and emulators
frameworks, chronologically as possible, without sidestepping those deserted,
aiming so at introducing the goals and techniques beyond a simulator, and making a
newly born simulator more familiar, and linked to roots in theory and practice.
A wide variety of simulators and emulators is presented, lot more is available in the
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literature, among many (Egea-López et al. 2005; Singh et al. 2008; Rahman et al.
2009; Imran et al. 2010; Musznicki and Zwierzykowski 2012).

For collective picturing, Table 6.1 assembles, zooms in, and compares the
simulators and emulators as a recapitulation of the details exposed in the coming
subsections.

6.4.1 The Network Simulator (ns-2)

ns-2 is a discrete-event simulator targeted at networking research. ns-2 provides
substantial support for simulation of TCP, routing, and multicast protocols over
wired and wireless (local and satellite) networks (ISI 2011). ns-2 began as a variant
of the REAL network simulator (Keshav 1997) in 1989 and has evolved substan-
tially since then. In 1995 ns-2 development was supported by the Defense
Advanced Research Projects Agency (DARPA 2015), through the VINT project
(Helmy and Kumar 1997) at Lawrence Berkeley National Laboratory (LBNL
2009), in collaboration with Xerox PARC (Xerox PARC 2015), the University of
California Berkeley (UCB 2015), and the University of Southern
California/Information Sciences Institute (USC/ISI 2015). Later, ns-2 development
was supported through DARPA with SAMAN (Lan 2001) and through NSF with
CONSER (Chen 2002), both in collaboration with other researchers including
ACIRI (The ICSI Networking and Security Group 2015). ns-2 has always included
significant contributions from other researchers including wireless code from the
Daedalus group at UCB and Monarch projects at Carnegie Mellon University
(Johnson 1996) and Sun Microsystems (Oracle 2015).

ns-2 is a discrete-event simulator targeted at networking research. ns-2 provides
extensive support for simulation of wired and wireless networks, it considers TCP,
UDP, etc. at the transport layer level, and unicast, multicast, and a multiplicity of
other routing protocols at the network layer, as well as traffic sources such as CBR,
FTP, HTTP, telnet, etc. (ISI 2011).

ns-2 is object oriented, it uses a Tcl/Otcl (Tool command language/Object ori-
ented Tcl) (Heidemann et al. 2015) as a command and configuration interface. Four
types of files are related to ns-2:

• Models are described in .tcl or .ns files, which have some common commands
without being fully compatible.

• Simulation trace files .tr are created during the session.
• Network Animator (Nam) is a Tcl/TK based animation tool for viewing network

simulation traces and real-world packet traces. Nam supports topology layout,
packet level animation, and various data inspection tools (Buchheim 2002). It is
mainly intended as a companion animator to the ns-2 simulator. .nam files are
created to visualize the behavior of the network protocols as well as traffic of the
model. Once created, users can operate the .nam file like a media player and
repeatedly check the model behavior.
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ns-2 is widely used due to the many facilities it provides:

• It is configurable and permits simulation using two languages, OTcl and C++.
C++ is used for implementing protocols and extending the ns-2 library. OTcl is
used to create and control the simulation environment itself, including the
selection of output data. Simulation is run at the packet level, allowing for
detailed results.

• It is open-source and modular approach has effectively made it extensible. The
object-oriented design of ns-2 allows for straightforward creation and use of
new protocols. The combination of easiness in protocol development and ns-2
popularity has ensured that a high number of different protocols are publicly
available, despite not being included as part of the initial simulator’s release. Its
status as the most used sensor network simulator has also encouraged further
popularity, as developers would prefer to compare their work to results from the
same simulator.

• Dynamic behavior can be traced using Nam.

The many benefits of ns-2 are attainable, but not with full ease, ns-2 has its own
roadblocks that should be located for smooth experimentation:

• It is not highly scalable, large scale networks may not be fully simulated.
Particularly, ns-2 does not scale well for sensor networks; this is partly due to its
object-oriented design. While this is beneficial in terms of extensibility and
organization, it is a holdback on performance in environments with large
numbers of nodes. Every node is its own object and can interact with every other
node in the simulation, creating a large number of dependencies to be checked at
every simulation interval, leading to an n2 complexity.

• It is not customizable for WSNs. Packet formats, energy models, MAC proto-
cols, and the sensing hardware models all differ from those found in most
sensors. Moreover, there is no direct support of mobility and sharing wireless
radio channels.

• It does not provide an application model. In many network environments this
may not be a serious setback, but sensor networks often involve interactions
between the application level and the network protocol level.

• The APIs are not all complete.
• Real-time simulation is not supported.
• A non-short time period is required for acquaintance and perfection, besides a

non-clear source code documentation that makes the get to use task harder.

Version 35 of ns-2 was released in November 4, 2011 (Table 6.1).
Simulators built on the ns-2 environment are presented in Sects. 6.4.10 and

6.4.11.
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6.4.2 The Network Simulator (ns-3)

The ns-3 consortium is a collection of organizations cooperating to support and
develop the ns-3 software. The consortium is governed by an agreement established
between the founding members, INRIA and the University of Washington (ns-3
Consortium 2015). Development of ns-3 began in July 2006, it is written from
scratch using the C++ programming language. The first release, ns-3.1 was made in
June 2008, and afterwards the project continued making quarterly software releases,
and more recently has moved to three releases per year. ns-3 made its twenty first
release (ns-3.21) in September 2014.

ns-3 is a discrete-event network simulator targeting research and educational use
(ns-3 Consortium 2015). ns-3 is a free licensed software that is publicly available
for research, development, and use. The goal of the ns-3 project is to develop a
preferred, open simulation environment for networking research; it is conforming to
the simulation needs of modern networking research and motivates community
contribution, peer review, and validation of the software.

The ns-3 software infrastructure encourages the development of simulation
models which are sufficiently realistic to allow its use as a real-time network
emulator, interconnected with the real-world and which allows many existing
real-world protocol implementations to be reused within ns-3. The ns-3 simulation
core supports research on both IP and non-IP based networks. The large majority of
its users focus on wireless/IP simulations, which involve models for Wi-Fi,
WiMAX, or LTE for layers 1 and 2 and a variety of static or dynamic routing
protocols such as OLSR and AODV for IP-based applications.

ns-3 also supports a real-time scheduler that facilitates a number of
“simulation-in-the-loop” use cases for interacting with real systems. For instance,
users can emit and receive ns-3 generated packets on real network devices, and ns-3
can serve as an interconnection framework to add link effects between virtual
machines. Another emphasis of the simulator is on the reuse of real application and
kernel code. Frameworks for running unmodified applications or the entire Linux
kernel-networking stack within ns-3 are presently being tested and evaluated.

When approaching ns-3, it is worth noting that:

• ns-3 is open-source, and the project strives to maintain an open environment for
researchers to contribute and share their software.

• ns-3 is not a backwards-compatible extension of ns-2; it is a new simulator. The
two simulators are both written in C++ but ns-3 is a new simulator that does not
support the ns-2 APIs. Some models from ns-2 have already been ported from
ns-2 to ns-3. The project continues to maintain ns-2 while ns-3 is being built,
and will study transition and integration mechanisms.

• ns-3 is lacking the support for protocols, like WSN, MANET, etc. which were
supported in ns-2.

Many simulation tools exist for network simulation studies; ns-3 though has
several distinguishing features in contrast to other tools:
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• ns-3 is designed as a set of libraries that can be combined together and also with
other external software libraries. While some simulation platforms provide users
with a single, integrated graphical user interface environment in which all tasks
are carried out, ns-3 is more modular in this regard. Several external animators
and data analysis and visualization tools can be used with ns-3. However, users
should expect to work at the command line and with C++ and/or Python soft-
ware development tools.

• ns-3 is supported on the following primary platforms:

– Linux x86 and x86_64: gcc versions 4.2 through 4.8.
– FreeBSD x86 and x86_64: clang version 3.3, gcc version 4.2.
– Mac OS X Intel: clang-500.2.79, based on LLVM 3.3svn (OS X Mavericks

and Xcode 5.0.1), and gcc-4.2 (available with Xcode version 4 or earlier).

• The following platforms are lightly supported:

– Windows Visual Studio 2012.
– Windows Cygwin 1.7.

6.4.3 GloMoSim

Global mobile information system simulator (GloMoSim) is a scalable simulation
environment that was intended for large wireless and wired communication net-
works (Takai et al. 1999); however, only wireless networks were considered. Under
funding from DARPA (DARPA 2015), a scalable simulation facility has been
developed with objective to simulate networks with up to hundred thousand nodes
linked by a heterogeneous communications capability that includes multicast,
asymmetric communications using direct satellite broadcasts, multihop wireless
communications using ad hoc networking, and traditional Internet protocols. The
scalability of the simulator to very large networks is achieved primarily by
exploiting parallelism on state of the art parallel computers. Moreover, parallel
model execution achieves dramatic reductions in execution times. A detailed
simulation of a large wireless network with 10,000 mobile radios has been
implemented. Using parallel execution, it was possible to reduce the execution time
sufficiently such that a model with 10,000 wireless nodes could be simulated on a 6
processor symmetric multiprocessor in less time than a network with half as many
nodes using purely sequential execution.

6.4.3.1 Parsec

GloMoSim uses a parallel discrete-event simulation capability provided by
PARSEC. PARSEC (for PARallel Simulation Environment for Complex systems)
is a C-based simulation language developed by the Parallel Computing Laboratory

404 6 Simulators and Emulators for WSNs



at UCLA, for sequential and parallel execution of discrete-event simulation models
(Bagrodia et al. 1998). Moreover, PARSEC can be used as a parallel programming
language with the capability of running on several platforms, including UNIX
variants and Windows.

PARSEC adopts the process interaction approach to discrete-event simulation.
An object, also referred to as a physical process, or set of objects in the physical
system, is represented by a logical process. Interactions among physical processes
(events) are modeled by time-stamped message exchanges among the corre-
sponding logical processes. One of the important features of PARSEC is its ability
to execute a discrete-event simulation model using several different asynchronous
parallel simulation protocols on a variety of parallel architectures.

PARSEC is designed to neatly separate the description of a simulation model
from the underlying simulation protocol, sequential or parallel, used to execute it.
Thus, with few modifications, a PARSEC program may be executed using the
traditional sequential (Global Event List) simulation protocol or one of many
parallel optimistic or conservative protocols. In addition, PARSEC provides pow-
erful message receiving constructs that result in shorter and more natural simulation
programs.

6.4.3.2 Visualization Tool

GloMoSim has a Visualization Tool that is platform independent because it is
coded in Java (Nuevo 2004). To initialize the Visualization Tool, Java GloMoMain
is to be executed from the Java GUI directory. This tool allows to debug and verify
models and scenarios; stop, resume and step execution, show packet transmissions,
show mobility groups in different colors, and show statistics.

6.4.3.3 GloMoSim Library

GloMoSim is a scalable simulation library for wireless network systems built using
the PARSEC simulation environment (Bagrodia et al. 1998). The protocol stack
includes models for he channel, radio, MAC, network, transport, and higher layers.
It also supports TCP, IEEE 802.11 CSMA/CA, MAC, UDP, HTTP, FTP, CBR,
Telnet, AODV, etc. GloMoSim also supports two different node mobility models.
Nodes can move according to the “random waypoint” model (Johnson and Maltz
1996) and the “random drunken” model (Jardosh et al. 2003). In the random
waypoint model, a node chooses a random destination within the simulated terrain
and moves to that location based on the speed specified in the configuration file.
After reaching its destination, the node pauses for a duration that is also specified in
the configuration file. In the random drunken model, a node periodically moves to a
position chosen randomly from its immediate neighboring positions. The frequency
of the change in node position is based on a parameter specified in the configuration
file.
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As most network systems adopt a layered architecture, GloMoSim is designed
using a layered approach similar to the OSI seven-layer network architecture.
Simple APIs are defined between different simulation layers to allow the rapid
integration of models developed at different layers by different researchers. Actual
operational code can also be easily integrated into GloMoSim with this layered
design, which is ideal for a simulation model as it has already been validated in
real-life and no abstraction is introduced. As instance, a TCP model was imple-
mented in GloMoSim by extracting actual code from the FreeBSD operating sys-
tem. This also reduces the amount of coding required to develop the model (Takai
et al. 1999).

6.4.3.4 Aggregation

In contrast to network simulators such as OPNET and ns-2, GloMoSim has been
designed and built with the primary goal of simulating very large network models
that can scale up to million nodes using parallel simulation to significantly reduce
execution times of the simulation model. It is open-source and uses an object
oriented approach, like ns-2, but to avoid the resulting limitation on scalability,
GloMoSim partitions the nodes such that each object is responsible for running one
layer in the protocol stack of every node in its given partition, which helps reducing
the overhead of large networks. The coming subsections explore the techniques of
node and layer aggregation that are used to achieve this scalability (Takai et al.
1999).

Node Aggregation

The node aggregation technique is introduced into GloMoSim to give significant
benefits to the simulation performance. Initializing each node as a separate entity
inherently limits the scalability because the memory requirements increase dra-
matically for a model with large number of nodes. With node aggregation, a single
entity can simulate several network nodes in the system. Node aggregation tech-
nique implies that the number of nodes in the system can be increased while
maintaining the same number of entities in the simulation. In GloMoSim, each
entity represents a geographical area of the simulation. Hence the network nodes,
which a particular entity represents, are determined by the physical position of the
nodes.

Layer Aggregation

For ease of implementation, the various GloMoSim layers are integrated into a
single entity. Each entity encompasses all the layers of a simulation. Every layer is
implemented as three function calls by the protocol modeler:
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• The researcher (developer) has to provide an initialization function that will be
called for each layer on every node at the beginning of the simulation.

• The next function call provided by the researcher is automatically invoked when
a particular layer of a particular node receives an incoming packet/event. Based
on the contents of the message, the appropriate instructions will be executed.
Function calls are also provided for a layer to send messages to its lower or
upper layer in the simulation.

• At the end of the simulation, another researcher provided function call is
invoked. This can be used to collect any relevant statistics for that layer.

Mostly, the researcher writes pure C code. The presence of the PARSEC runtime
and interactions with the runtime are completely hidden from the user.

Actually, GloMoSim is limited to IP networks because of the low-level design
assumptions, which makes it similar to ns-2 (Sect. 6.4.1) in its limitations with
regard to packet formats, lack of energy models, and the MAC protocols that are
not representative of WSNs. Additionally, GloMoSim does not support phenomena
occurring outside of the simulation environment, all events must be generated from
a node within the network.

GloMoSim stopped releasing updates in 2000 and is limited to some educational
institutions; it is now updated as a commercial product called QualNet
(SCALABLE Network Technologies 2014).

6.4.4 OPNET

OPNET (Optimized Network Engineering Tool) was launched in 1987 as a first
commercial available simulation tool for communication networks; it provides a
comprehensive development environment for the specification, simulation and
performance analysis of communication networks1 (Riverbed Technology 2015).
A large range of communication systems from a single LAN to global satellite
networks can be supported. Discrete-event simulations are used as the means of
analyzing system performance and their behavior.

For maximum effectiveness, a simulation environment should be modular,
hierarchical, and take advantage of the graphical capabilities of today’s worksta-
tions. OPNET is an object-oriented simulation environment that meets all these
requirements and is a powerful general-purpose network simulator. OPNET’s
comprehensive analysis tool is suitable for interpreting and synthesizing output
data. A discrete-event simulation of the call and routing signaling was developed
using a number of OPNET’s features such as the dynamic allocation of processes to

1On October 29, 2012, Riverbed acquired OPNET Technologies to build on Riverbed’s strong
heritage and experience in delivering solutions that improve the performance of technology for
business. OPNET Technologies has built its success on application performance management
(APM) and is recognized by a leading analyst firm as a leader in the magic quadrant for APM.
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model virtual circuits transiting through an ATM switch. Moreover, its built-in
protoc language support2 (Ubuntu 2010) provides it with the ability to realize
almost any function and protocol (Chang 1999).

OPNET is extensively used for the study of TCP transport across different types
of ATM bearer capabilities and DiffServ per hop behavior. Moreover, it supports
routing protocols such as OSPF, RIP, EIGRP, BGP, IGRP, DSR, TORA, PNNI.
Also included MAC, nodes mobility, ad hoc connectivity, different application
models, node failure models, and modeling of power consumption.

For detailed elaboration, the features included in OPNET are as laid out below:

• Modeling and simulation phases. OPNET provides powerful tools to assist users
to go through building of models, the execution of a simulation, and the analysis
of the output data.

• Hierarchical modeling. OPNET employs a hierarchical structure to modeling.
Each level of the hierarchy describes different aspects of the complete model
being simulated.

• Tailored for communication networks. Detailed library models provide support
for several protocols and allow researchers and developers to either modify
these existing models or develop new models of their own.

• Automatic simulation generation. OPNET models can be compiled into exe-
cutable code. An executable discrete-event simulation can be debugged or
simply executed, resulting in output data.

OPNET supports C and Java languages. As a commercial package, it has several
advantages, such as extensibility, the large customer base, the provision for pro-
fessional support, an extensive documentation, and its inclusion of a large number
of built-in protocols. It is though costly and requires considerable time to learn and
use. OPNET suffers from the same object-oriented scalability problems as ns-2.
Noteworthy, it is not as popular as ns-2 or GloMoSim, at least in research being
made publicly available, and thus does not have the high number of protocols
available to those simulators.

OPNET IT Guru is an academic, one license per user, free edition that provides
pre-built models of protocols and devices. It allows the creation and simulation of
different network topologies. Yet, the set of protocols and devices is fixed, it is not
possible to create new protocols nor modify the behavior of existing ones, however
common parameter values can be modified. For example, IT Guru includes a model
of a wireless LAN device (a laptop using IEEE 802.11b). It is conceivable to create
a topology with multiple wireless LAN devices, set parameters such as RTS
threshold, packet arrival rate and data rate, and simulate to measure the network
performance. The behavior of IEEE 802.11 DCF cannot be changed, nor the

2protoc is a compiler for protocol buffers definitions files. It can generate C++, Java and Python
source code for the classes defined in PROTO_FILE.
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simulation of IEE 802.11 g, n, or e. The Academic edition of IT Guru is limited to
simulating 50 million events (typical events are receiving a packet, timeout
occurring). For example, a wireless LAN network with 10 devices all generating a
high load will reach 50 million events in about 5 min of simulation time. The
academic edition also limits the number of devices in particular topologies.

The commercial OPNET Modeler provides the same ability to create and sim-
ulate network topologies as IT Guru (without the limitations of academic edition),
but also provides access to the models of protocols and devices. Such access
provides the possibility of editing the source code of the IEEE 802.11 DCF model
to experiment with variations of the access scheme. Including the user-contributed
models, Modeler allows for analysis of the latest network protocols and algorithms
in use, and being researched today. Unlike ns-2 and GloMoSim, OPNET supports
the use of modeling different sensor-specific hardware, such as physical-link
transceivers and antennas. It can also be used to define custom packet formats.

6.4.4.1 Hierarchical Modeling

OPNET provides four tools called editors to develop a representation of a system
being modeled. These editors are Network (upper layer), Node, Process, and
Parameter (lower layer); they are organized in a hierarchical fashion to support the
concept of model level reuse (Chang 1999). Models developed at one layer can be
used by another model at a higher layer. The Parameter Editor is a utility editor, and
is not considered a modeling domain.

Network Model

Network Editor is used to specify the physical topology of a communications
network; it defines the position and interconnection of communicating entities, i.e.,
nodes and links. The specific capabilities of each node are realized in the Node
Editor. A set of parameters or characteristics is attached with each model to cus-
tomize the node’s behavior. A node can either be fixed, mobile or satellite. Simplex
(unidirectional) or duplex (bi-directional) point-to-point links connect pairs of
nodes. A bus link provides a broadcast medium for an arbitrary number of attached
devices. Mobile communication is supported by radio links. Links can also be
customized to simulate the actual communication channels.

The complexity of a network model is unmanageable when numerous networks
are modeled as part of a single system. Complexity is alleviated by an abstraction
known as a subnetwork. A subnetwork may contain many subnetworks, at the
lowest level; a subnetwork is composed only of nodes and links. Communications
links facilitate communication between subnetworks.
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Node Model

Communication devices created and interconnected at the network level need to be
specified in the node domain using the Node Editor. Node models are expressed as
interconnected modules; they are grouped into two distinct categories:

• Modules that have predefined characteristics and a set of built-in parameters.
Examples are packet generators, point-to-point transmitters and radio receivers.

• Highly programmable modules referred to as processors and queues; they rely
on process model specifications.

Process Model

Process models, created using the Process Editor, are used to describe the logic flow
and behavior of processor and queue modules. Communication between processes
is supported by interrupts. Process models are expressed in a language called
Proto-C, which consists of state transition diagrams (STDs), a library of kernel
procedures, and the standard C programming language.

6.4.4.2 Data Generation

Probe Editor

Most OPNET models contain objects that are capable of generating vast amounts of
output data during simulations. The sources of output data include predefined and
user-defined statistics, automatic animation, and custom-programmed animation.
Users can use Probe Editor to specify which data to collect. A probe is defined for
each source of data that the user wishes to enable.

Analysis Tool

As previously stated, simulations can be used to generate a number of different
forms of output. These forms include several types of numerical data, animation,
and detailed traces provided by the OPNET debugger. Moreover, since OPNET
simulations support open interfaces to the C language, and the host computer’s
operating system, simulation developers may generate proprietary forms of output
ranging from messages printed in the console window, to generation of ASCII or
binary files, and live interactions with other programs.

The service provided by the analysis tool is to display information in the form of
graphs. Graphs are presented within rectangular areas called analysis panels. An
analysis panel consists of a plotting area with two numbered axes, horizontal and
vertical. The plotting area can contain one or more graphs describing relationships
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between variables mapped to the two axes. The analysis tool can generate error rate
and throughputs, delay queue size. Packet trace may be done. Output can be plotted
in graph, such as end-to end delay versus queue buffer capacity, loss ratio versus
queue buffer capacity. Probability distribution function, cumulative distribution
function as well as histogram can be plotted for several data sets.

Filter Tool

Numeric filters may also operate on the data presented in the Analysis Tool. These
are constructed from a predefined set of filter elements in the Filter Editor. Filter
models are represented as block diagrams consisting of interconnected filter ele-
ments. Filter elements may be either built-in numeric processing elements, or ref-
erences to other filter models.

6.4.5 OMNeT++

OMNeT++ (Objective Modular Network Testbed in C++) simulation environment
has been made publicly available since 1997; it is an object oriented C++ based
simulator for modeling communication networks, multiprocessors and other dis-
tributed or parallel systems (Mallanda et al. 2005; Varga and Hornig 2008),
(OpneSim 2015). OMNeT++ is public-source, and can be used under the Academic
Free License (Open Source Initiative 2015) that makes the software free for
non-profit use. The motivation of developing OMNeT++ was to produce a powerful
open-source discrete event simulation tool that can be used by academic, educa-
tional and research-oriented commercial institutions for the simulation of computer
networks and distributed or parallel systems. OMNeT++ attempts to fill the gap
between open-source, research-oriented simulation software such as ns-2
(Sect. 6.4.1) and expensive commercial alternatives like OPNET (Sect. 6.4.4).
OMNeT++ is available on all common platforms including Linux, Mac OS/X and
Windows, using the GCC3 tool chain (GCC Team 2015) or the Microsoft Visual
C++ compiler.

OMNeT++ represents a framework approach. Instead of directly providing
simulation components for computer networks, queuing networks or other domains,
it provides the basic machinery and tools to write such simulations. For many areas
of application, ready-to-use components already exist. For the simulation of TCP/IP
networks, the INET framework contains modules for protocols like UDP, TCP, IP,
IPv6, ARP, Ethernet, etc. Among many published applications, a work extends the

3The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada,
and Go, as well as libraries for these languages (libstdc++, libgcj, …). GCC was originally written
as the compiler for the GNU operating system. The GNU system was developed to be 100 % free
software, free in the sense that it respects the user’s freedom.
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OMNeT++ INET framework for simulating real-time Ethernet with high accuracy
(Steinbach et al. 2011).

There are several INET-based model frameworks maintained by independent
research groups (OpneSim 2015):

• OverSim is an open-source overlay and peer-to-peer network simulation
framework for the OMNeT++ simulation environment (KIT/TeleMatics 2010).
The simulator contains several models for structured (such as Chord, Kademlia,
Pastry), and unstructured (like GIA) P2P systems and overlay protocols.

• Veins is an open source inter-vehicular communication (IVC) simulation
framework composed of an event-based network simulator and a road traffic
micro-simulation model (Sommer 2015).

• Others are ReaSE, HIPSim++, INET-HNRL, EPON, mCoA++, SimuLTE,
TTE4INET, EBitSim, Quagga.

Since its first release, simulation models have been developed by various indi-
viduals and research groups for several areas including wireless and ad hoc net-
works, sensor networks, storage area networks (SANs), optical networks, queuing
networks, file systems, high-speed interconnections (InfiniBand), etc. Some of the
simulation models are parts of real-life protocol implementations like the Quagga
Linux routing daemon (Lamparter and Troxel 2015) or the BSD TCP/IP stack
(Wikipedia 2015), others have been written directly for OMNeT++. A study on the
accuracy of OMNeT++ in the WSN domain is presented in (Colesanti et al. 2007).

In addition to university research groups and non-profit research institutions,
companies like IBM, Intel, Cisco, Thales and Broadcom are also using OMNeT++
successfully in commercial projects or for in-house research.

6.4.5.1 The Design of OMNeT++

OMNeT++ was primarily designed to support network simulation on a large scale.
This objective leads to the following main design requirements:

• Enabling large-scale simulation. Simulation models need to be hierarchical, and
built from reusable components as much as possible.

• The simulation software should facilitate visualizing and debugging of simu-
lation models in order to reduce debugging time that usually consumes a large
portion of simulation projects.

• The simulation software should be modular, customizable and should allow
embedding simulations into larger applications such as network planning
software.

• Data interfaces should be open. It should be possible to generate and process
input and output files with commonly available software tools.

• Providing an integrated development environment that largely facilitates model
development and results analysis.
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Model Structure

An OMNeT++ model consists of modules that communicate with message passing.
The active modules are termed simple modules; they are written in C++, using the
simulation class library. Simple modules can be grouped into compound modules
and so forth; the number of hierarchy levels is not limited.

Both simple and compound modules are instances of module types. While
describing the model, the user defines module types; instances of these module
types serve as components for more complex module types. Modules are imple-
mented as C++ objects using support functions from the simulator library.
Topology of module connections is specified using NED. Finally, the user creates
the system module as a network module, which is a special compound module type
without gates to the external world.

Modules communicate with messages that in addition to usual attributes such as
timestamp may contain arbitrary data. Simple modules typically send messages via
gates, but it is also possible to send them directly to their destination modules. Gates
are the input and output interfaces of modules (Fig. 6.5). Modules can have
parameters. Parameters are mainly used to pass configuration data to simple
modules, and to help define model topology. Parameters may take string, numeric
or Boolean values.

The NED Language

The user defines the structure of the model, i.e. the modules and their intercon-
nection, in OMNeT++’s topology description language, NEtwork Description
(NED) (OpenSim 2015). Typical ingredients of a NED description are simple
module declarations, compound module definitions and network definitions. Simple
module declarations describe the interface of the module, gates and parameters.
Compound module definitions consist of the declaration of the module’s external
interface (gates and parameters), and the definition of submodules and their inter-
connection. Network definitions are compound modules that qualify as
self-contained simulation models.

The NED language has been designed to scale well, however, recent growth in
the amount and complexity of OMNeT++-based simulation models and model

System module

Compound module

Simple
module

Simple
module

Simple
module

Fig. 6.5 System, compound, simple modules and gates
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frameworks made it necessary to improve the NED language as well. Thus, in
addition to a number of smaller improvements, the major features included in the
coming subsections have been introduced.

Graphical Editor

The OMNeT++ package includes an integrated development environment, which
contains a graphical editor using NED as its native file format; moreover, the editor
can work with arbitrary, even hand-written NED code. The editor is a fully two-way
tool, i.e. the user can edit the network topology either graphically or in NED source
view, and switch between the two views at any time. This is made possible by
design decisions about the NED language itself. NED is a declarative language, and
as such, it does not use an imperative programming language for defining the
internal structure of a compound module. Declarative constructs, resembling loops
and conditionals in imperative languages, enable parametric topologies; it is pos-
sible to create common regular topologies such as ring, grid, star, tree, hypercube,
or random interconnection whose parameters (size, etc.) are passed in
numeric-valued parameters. With parametric topologies, NED holds an advantage
in many simulation scenarios both over OPNET where only fixed model topologies
can be designed, and over ns-2 where building model topology is programmed in
Tcl and is often intermixed with simulation logic, so it is generally impossible to
write graphical editors which could work with existing hand-written code.

Separation of Model and Experiments

It is a good practice to separate the different aspects of a simulation as much as
possible. Model behavior is captured in C++ files as code, while model topology
and the parameters defining the topology are defined by the NED files. This
approach allows the user to keep the different aspects of the model in different
places that in turn allows having a clearer model and better tooling support.

Simple Module Programming Model

Simple modules are the active elements in a model. They are atomic elements in the
module hierarchy; they cannot be divided any further. Simple modules are pro-
grammed in C++, using the OMNeT++ simulation class library. OMNeT++ pro-
vides an integrated C++ development environment so it is possible to write, run and
debug the code without leaving the OMNeT++ integrated development environ-
ment (IDE) (Techopedia 2015a, b).

The simulation kernel does not distinguish between messages and events; events
are also represented as messages. Message sending and receiving are the most
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frequent tasks in simple modules. Messages can be sent either via output gates, or
directly to another module.

Modifying the topology of the network can be done dynamically. One can create
and delete modules and rearrange connections while the simulation is executing.
Even compound modules with parametric internal topology can be created on
the fly.

Design of the Simulation Library

OMNeT++ provides a rich object library for simple module implementers. There
are several distinguishing factors between this library and other general-purpose or
simulation libraries. The OMNeT++ class library provides reflection functionality,
which makes it possible to implement high-level debugging and tracing capability,
as well as automatic animation on top of it. Memory leaks, pointer aliasing and
other memory allocation problems are common in C++ programs not written by
specialists; OMNeT++ alleviates this problem by tracking object ownership and
detecting bugs caused by aliased pointers and misuse of shared objects.

Recently it has become more common to do large-scale network simulations
with OMNeT++, with tens of thousands network nodes. To address this require-
ment, aggressive memory optimization has been implemented in the simulation
kernel, based on shared objects and copy-on-write semantics.

Parallel Simulation Support

OMNeT++ also has support for parallel simulation execution. Very large simula-
tions may benefit from the parallel distributed simulation (PDES) feature, either by
getting speedup, or by distributing memory requirements. If the simulation requires
several Gigabytes of memory, distributing it over a cluster may be the only way to
run it. For getting speedup, the hardware or cluster should have low latency and the
model should have inherent parallelism.

Real-Time Simulation, Network Emulation

Network emulation, together with real-time simulation and hardware-in-the-loop4

like functionality (Applied Dynamics International 2015), are available because the
event scheduler in the simulation kernel is pluggable too. The OMNeT++ distri-
bution contains a demo of real-time simulation and a simplistic example of network

4Hardware-in-the-Loop (HIL) simulation is a technique that is used increasingly in the develop-
ment and test of complex real-time embedded systems. The purpose of HIL simulation is to
provide an effective platform for developing and testing real-time embedded systems.
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emulation. Interfacing OMNeT++ with other simulators (hybrid operation) is also
largely a matter of implementing one’s own scheduler class.

Animation, Tracing, and Visualizing Dynamic Behavior

An important feature of OMNeT++ is the easy debugging and traceability of
simulation models, associated features are implemented in Tkenv, the GUI user
interface of OMNeT++. As the behavior of large and complex models is usually
hard to understand because of the complex interaction between different modules,
OMNeT++ helps to reduce complexity by mandating the communication between
modules using predefined connections. The graphical runtime environment allows
the user to follow module interactions, one can animate, slow down or single-step
the simulation.

OMNeT++ 5.0b1 was released on March 6, 2015, the primary aim is to provide
a new simulation environment and speed up development (OpenSim 2015). The
main highlights of this release are extended logging facilities, and the new
Canvas API that allows models to draw freely on the surface of a module. This beta
version as available for test download should be sufficiently stable for daily use, but
does not yet contain all changes planned for the 5.0 release. More betas can be
expected in the next months, adding the missing pieces.

Simulators built on the OMNeT++ environment are presented in Sects. 6.4.17,
6.4.18 and 6.4.20–6.4.22.

6.4.6 TOSSIM

TinyOS simulator (TOSSIM) is a discrete-event simulator for TinyOS sensor net-
works (Levis and Lee 2003; TinyOS Wiki 2013). Instead of compiling a TinyOS
application for a mote, users can compile it into the TOSSIM framework, which
runs on a PC. This allows users to debug, test, and analyze algorithms in a con-
trolled and repeatable environment. TOSSIM is a TinyOS library based on nesC
language (Gay et al. 2003), an extension of C language.

A TinyOS simulator satisfies four objectives:

• Scalability. To enable handling large networks of thousands of nodes in a wide
range of configurations. The largest deployed TinyOS sensor network was
approximately 850 nodes.

• Completeness. Many system interactions must be covered, to accurately seize
behavior at a wide range of levels.

• Fidelity. The behavior of the network at a fine grain must be captured. Catching
subtle timing interactions on a mote and between motes is important both for
evaluation and testing.
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• Bridging. The gap between algorithm and implementation must be bridged to
allow developers to test and verify the code that will run on real hardware.

TOSSIM is actually an emulator for WSNs operating under the control of
TinyOS operating system; different from simulators, emulators run actual appli-
cation code. The environment simulates networks at the bit level; specifically,
hundreds of simulated nodes may communicate with a number of actual nodes and
create a common topology running exactly the same TinyOS applications (Levis
et al. 2003). TOSSIM, as included in the TinyOS, supports the MicaZ node plat-
form (Crossbow 2006), emulating radio interface, analog-to-digital converters
(ADCs) and EEPROM.

TOSSIM does not model the real environment, but it provides a probabilistic
representation of transmission errors occurring between two nodes. TinyViz is a
GUI tool that permits users to visualize, monitor, control and debug running sim-
ulations; it may capture and inject radio messages (Levis and Lee 2003). TinyViz
has the AutoRun feature, a special script allowing it to run multiple simulations, set
breakpoints, and define actions taken before and after each simulation such as
collecting statistics.

To enhance thorough analysis of the WSN hardware design, the SUNSHINE
project (Zhang et al. 2011) has been inaugurated; it focuses on the integration of
TOSSIM, with an Atmel AVR family microcontroller simulator SimulAVR (Rivet
and Klepp 2012), and a hardware simulator GEZEL (Schaumont 2012). Tython is a
scripting environment that extends TOSSIM to repeatedly execute complex simu-
lations in different scenarios (Demmer et al. 2005). SimX is an add-on tool that
complements TOSSIM with simulation speed control, topology manipulation and
variable watching (Yang et al. 2007). PowerTOSSIM is a power modeling exten-
sion to TOSSIM for energy-constrained environments (Shnayder et al. 2004).

6.4.7 ATEMU

ATEMU (ATmel EMUlator) (Blazakis et al. 2004) is an open-source tool built as a
software emulator for AVR processor-based systems such as MICA2 and its
peripheral devices. ATEMU picks up where TOSSIM left off. Like TOSSIM,
ATEMU code is binary compatible with the MEMSIC Mica2 platform (formerly
Crossbow Mica2), it emulates the processor, radio interface, timers, LEDs and other
devices, making the platform able to run TinyOS. CPU instructions are decoded
and executed according to the Atmel ATmega 128L microcontroller specification.
However, emulation is more fine-grained than in TOSSIM; ATEMU uses a
cycle-by-cycle strategy to run application code through emulation of the AVR CPU
used by Mica2 (Crossbow 2002).

The main features of ATEMU are related to the low-level emulation of
MEMSIC Mica2 sensor platform. Nevertheless, it is customizable enough to be
extended to support different hardware platforms used in heterogeneous network
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simulations by allowing the user to set different system parameters for each single
node.

ATEMU comes with XATDB, a graphical debugger that allows setting break-
points, showing values of variables, statuses of peripherals, etc.; it also provides the
ability to single step through either assembly instructions or at the C instruction
level. The ATEMU platform supports a configuration specification based on XML
files (W3C 2015) to define hardware and software configurations along with the
physical location of each node.

ATEMU offers an accurate emulation model in which each Mica2 mote can run
a different application code. ATEMU accuracy over TOSSIM is attained at the
expense of speed and scalability; it only runs accurately with up to 120 nodes.
Besides the overhead involved in decoding instruction-by-instruction, ATEMU also
suffers the same overhead as object oriented models. One radio transmission can
affect every other node in the network, creating an n2 algorithm. Despite its scal-
ability problems, ATEMU is one of the most accurate discrete-event sensor sim-
ulators available; its simulation speed though is 30 times slower than TOSSIM
(Titzer et al. 2005).

6.4.8 Avrora

The name Avrora is derived from a Latin phrase “aurora borealis” meaning “the
dawn of the north”, it refers to a spectacular phenomenon also known as the
“Northern Lights”, where charged particles streaming from the sun are caught and
channeled by the Earth’s magnetic field. The proper name Aurora was used by the
Romans to refer to the personification of dawn as a goddess. When the Avrora
project was being named, the u was replaced with a v; the first three letters became
avr, referring to the AVR architecture from Atmel (Avrora 2004).

Avrora, a research project of the UCLA Compilers Group (UCLA 2005), is a set
of simulation and analysis tools for programs written for the AVR microcontroller
(Atmel 2015) produced by Atmel and for the Mica2 sensor nodes (Crossbow 2002).
Avrora embodies a flexible framework for simulating and analyzing assembly
programs, providing a Java API and infrastructure for experimentation, profiling,
and analysis.

As simulation is a basic step in the development cycle of embedded systems,
Avrora open-source implementation is motivated by the need to acquire more
detailed inspection of the dynamic execution of microcontroller programs and
accurate diagnosis of software problems before deploying software onto the target
hardware. Avrora also provides a framework for program analysis, allowing static
checking of embedded software and an infrastructure for future program analysis.
Avrora flexibility stems from provisioning a Java API for developing analyses and
removes the need to build a large support structure to investigate program analysis
(Titzer et al. 2005).
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An Avrora main feature is its accuracy and scalability for simulating the actual
hardware platform on which sensor programs run; it has an almost full emulation of
the Mica2 and MicaZ hardware platforms, with a nearly all-inclusive ATMega128L
and CC1000 radio implementations. Avrora, as a discrete-event simulator, can also
run a sensor network simulation with full timing accuracy, allowing programs to
communicate via the radio using the software stack provided in TinyOS. Avrora has
also an extension point that permits users to create a new simulation type depending
on the number and orientation of the nodes.

Avrora is a middle ground between TOSSIM and ATEMU. Since, it runs code
instruction-by-instruction and avoids synchronizing all nodes after every instruction
to achieve better scalability and speed. Therefore, it conducts simulation experi-
ments with sensor networks of up to 10,000 nodes and performs as much as 20
times faster than previous simulators with equivalent accuracy. Like ATEMU,
Avrora simulates a network of motes, runs the actual microcontroller programs,
rather than models of the software, and runs accurate simulations of the devices and
the radio communication. Avrora is implemented in Java, which boosts flexibility
and portability, while TOSSIM and ATEMU are implemented in C. Avrora and
ATEMU gain language and operating system independence by simulating machine
code, while TOSSIM can simulate only TinyOS programs. Noteworthy, Avrora is
50 % slower than TOSSIM, while ATEMU lags behind Avrora by a factor of 20
and behind TOSSIM by a factor of 30 (Titzer et al. 2005).

A limitation of Avrora is that it does not model clock drift, a phenomenon where
nodes may run at slightly different clock frequencies over time due to manufac-
turing tolerances, temperature, and battery performance.

6.4.9 EmStar

Current sensor networks commonly share two characteristics: the use of mote-class
sensor platforms with their inherent computational and communications constraints;
and, heterogeneous deployments consisting of both mote-class and
microserver-class component systems. Characteristics of both make designing,
developing, debugging, deploying, and maintaining sensor networks a tricky
problem. EmStar developed at the Center for Embedded Networked Sensing
(CENS) at UCLA (CENS 2015), is a comprehensive and extensible development
platform in the Linux environment that greatly reduces the costs and challenges of
sensor network development (Girod et al. 2007). EmStar provides a complete
mote-class simulation environment (EmTOS), and a general simulation environ-
ment (EmSim), it also supports emulation of selected components (EmCee),
including radios. Moreover, EmStar allows for full native deployment, offers
visualization features (EmView), and provides a robust monitoring and restarting
facility at a software component level (EmRun).
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EmStar, a Linux-based software framework addresses the difficulties in creating
robust software in the sensor network domain. Broadly speaking, its contributions
fall into several areas:

• EmStar’s execution environments address the problem of visibility into an
in situ system, it provides a spectrum of runtime platforms, a pure simulation, a
true distributed deployment, and two hybrid modes that combine simulation
with real wireless communication and sensors in the environment. Each of these
modes run the same code and use the same configuration files, allowing
developers to seamlessly iterate between the convenience of simulation and the
reality afforded by physically situated devices

• EmStar’s programming model aims to promote software reusability while being
more flexible than a strictly layered stack. EmStar’s modules may be flexibly
interconnected using standardized interfaces; connections can be a flow of
packets, stream data, state updates, or configuration commands. EmStar permits
applications’ domain knowledge affect modules that are common across
applications, without making application-specific changes to those modules.

• EmStar’s programming model aims to be inclusive. Unlike systems such as
TinyOS that are tightly coupled with a specific language, EmStar does not
restrict users to use certain specific languages. In fact, in some cases whole
legacy binaries can be used unchanged, this is advantageous from a perspective
of rapid development and integration. Integrated code has numerous advantages,
because it can leverage many features of EmStar that make it fit to building
sensor network applications. One of the languages that can be used to write
EmStar modules is NesC/TinyOS. Using a wrapper library called EmTOS, a
TinyOS application can be run as a single module within EmStar.

EmStar uses a very simple environmental model and network medium for two
reasons. First, as the purpose is to migrate the code to a real sensor environment,
simple environment and network medium abstractions are satisfactory for the
developers. Secondly, the simulator will only run code for the types of nodes that it
is designed to work with.

EmStar was designed to be compatible with two different types of nodes. As
such, like other emulators, it can be used to develop software for Mica2 motes; it
also offers support for developing software for iPAQ5 based microservers
(Webopedia 2015a, b). The development cycle is the same for either hardware
platform. In the development cycle, EmStar uses data collected from actual sensors
in order to run its simulation; the half-simulation/half-emulation approach is
adopted, similar to SensorSim’s (Sect. 6.4.10), where software is running on a host
machine and interfacing with the actual sensor. This allows using the actual
communication channel and sensors.

5iPAQ is the name of the HP PDA. The iPAQ was initially introduced by Compaq, but after
Hewlett Packard's acquisition of Compaq, the product has been marketed under the HP brand.
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In the deployment, EmStar brings together a number of the stronger features of
other simulators and emulators. While not as efficient and fast as other frameworks
like TOSSIM, EmStar’s use of the component-based model allows for fair
scalability.

6.4.9.1 Experimentation

As to be presented in this section, EmStar offers several modes of operation,
namely, pure simulation, testbeds, emulation, and is further extended through
EmTOS (CENS 2015; Girod et al. 2007).

Pure Simulation

The first EmStar execution environment, EmSim, is a pure simulation model. An
important limitation of EmSim is that it can only run in real-time, using real-timers
and interrupts from the underlying operating system. In contrast, a discrete-event
simulator such as ns-2 runs in its own virtual time, and therefore can run for as long
as necessary to complete the simulation without affecting the results. Discrete-event
simulations can also be made completely deterministic, allowing the developer to
easily reproduce an intermittent bug. Identical copies, n, of a sensor node software
stack run centrally on a single machine. Models of the communication and sensor
channels define the effective range of each packet and the input of sensors. As in
reality, instances of the stack cannot share state directly; they are forced to com-
municate with each other via the simulated communication channel. EmSim allows
software to be developed and debugged with the convenience of simulation.

Testbeds

EmStar also supports several execution environments that run all the code on a
central server, making debugging easy, but use real channels for sensing and
communications. Two permanent testbeds are created for such use:

• A uniform array of 54 Mica1 motes (Culler et al. 2002) on the ceiling of the
laboratory. The motes are all wired for power and have a serial-port connection
back to a central simulation machine.

• An array of 40 Mica2 motes (Crossbow 2002), stretched across a 200 m × 10 m
L-shaped area. Because of the longer range of the Mica2 radio, the testbed must
be physically larger in order to achieve multihop topologies. The Mica2 testbed
also supports remote reprogramming, enabling the mote software to be more
readily upgradable. This second testbed also includes a dozen Stargate micro-
servers to enable rich heterogeneous topologies of motes and microservers.
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Emulation

In emulation mode, each mote is programmed to be a wireless transceiver and
sensor interface board. EmCee, like EmSim, runs instances of each node’s stack
centrally, and provides an interface to real low power radio, not simulated radio
model. No channel simulator is used; instead, each simulated node is mapped to one
of the motes on the laboratory ceiling. When a node sends, a packet is transmitted
and received by real motes, through the real channel. This mode gives developers
the convenience of simulation, while bringing real aspects of channel dynamics.

Using the testbeds, it is also easy to emulate heterogeneous systems, such as the
Extensible Sensing System (ESS) (Guy et al. 2006). ESS is a software application
that provides high-level interfaces for controlling data sampling, transformation,
and collection from the sensor network that embodies a microserver basesation and
sensors; it also includes lower-level tools such as energy-efficient routing algo-
rithms and sensor interface drivers. Also, using the Mica2 (Crossbow 2002) testbed,
experiments can be performed such that emulated EmStar systems interact with
networks of real standalone motes. This is done by selectively reprogramming some
of the testbed motes directly with the mote application code, and having the
remaining motes programmed for transmit and receive.

EmTOS

Heterogeneous systems can also be emulated using an extension of EmStar,
EmTOS, which is a wrapper library that enables NesC/TinyOS code to run as an
EmStar module. Using EmTOS, the mote application can be run on the central
server along with other emulated EmStar nodes. This enables the mote application
to be debugged in friendly environment, while being part of a complete hetero-
geneous system such as ESS. It is also possible to test hybrid emulation modes,
where some of the motes in the system are real motes running the real application,
and others are emulated motes running inside EmTOS.

6.4.10 SensorSim

SensorSim, an event driven simulator, developed at UCLA (Park et al. 2000; Park
2001), targeted ns-2 as a base, and was intended to extend it in several directions:

• It comprises an advanced power model that takes into account each of the
hardware components that would need battery power to operate.

• It includes a sensor channel that was a forerunner to the phenomena introduced
to ns-2 in 2004. Both function in approximately the same way, but SensorSim’s
model is slightly more complicated and includes sensing through both a geo-
phone and a microphone.
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• An interaction mechanism with external applications is provided in SensorSim
targeting to interact with actual sensor node networks, which allows for real
sensed events to trigger reactions within the simulated environment. To achieve
such goal, each real node is given a stack in the simulation environment. The
real node is then connected to the simulator via a proxy, which provides the
necessary mechanism for interaction.

• The use of SensorWare, a middleware platform, to make possible the dynamic
management of nodes in simulation. This gives the user the ability to provide
the network with small application scripts than can be dynamically moved
throughout. Thus, it is not necessary to preinstall all possible applications
needed by each node, and a mechanism is provided for distributed computation.

J-Sim framework for WSNs (Sect. 6.4.12) is derived from SensorSim; however,
SensorSim was unfinished and has been withdrawn due to the inability to provide
the necessary support.

6.4.11 NRL SensorSim

This project developed at Naval Research Laboratory (NRL) focused on extending
ns-2 by targeting a non-tackled notion of a phenomenon such as chemical clouds or
moving vehicles that could trigger nearby sensors through a channel such as air
quality or ground vibrations (Downard 2004). Once a sensor detects the ping of a
phenomenon in that channel, it acts according to the sensor application defined by
the ns-2 user. The application determines how a sensor will react once it detects its
target phenomenon. For example, a sensor may periodically report to some data
collection point as long as it detects the phenomenon, or it may do more sophis-
ticated action, such as collaborating with neighbor sensor nodes to more accurately
characterize the phenomenon before alerting any outside observer of a supposed
occurrence. WSN applications accomplish phenomena detection, such as surveil-
lance, environmental monitoring, etc.

In NRL SensorSim, sensor network simulations have phenomenon nodes that
trigger sensor nodes; the traffic the sensor nodes generate once they detect phe-
nomena depends on the function of the sensor network. For instance, sensor net-
works designed for energy efficient target tracking would generate more
sensor-to-sensor traffic than a sensor network designed to provide an outside
observer with raw sensor data (Yang and Sikdar 2003). This function is defined by
the sensor application customized according to the traffic properties associated with
the sensor network being simulated.

NRL’s sensor network extensions to ns-2 and NRL SensorSim are online, but are
no longer under development, nor supported (Networks and Communication
Systems Branch 2015).
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6.4.12 J-Sim

Java-simulator (J-Sim) project has been developed in 2003 with the collaborative
support of Next Generation Software Program at the National Science Foundation
(NSF) (The National Science Foundation 2015), Network Modeling and Simulation
Program of the Defense Advanced Research Projects Agency/Information
Processing Techniques Office (DARPA/IPTO) (Federal Grants 2015), the
Multidisciplinary Research Program of the University Research Initiative /Air Force
Office of Scientific Research (MURI/AFOSR), Cisco Systems, Inc., Ohio State
University, and University of Illinois at Urbana-Champaign.

J-Sim is a modeling, simulation, and emulation framework for WSNs; it is
real-time process driven, open-source, application development framework,
component-based compositional network simulation environment (Sobeih et al.
2006). J-Sim is built upon the autonomous component architecture (ACA) and the
extensible internetworking framework (INET). Both ACA and INET have been
implemented in Java, and the resulting code, along with its scripting framework and
GUI interfaces, is called J-Sim. In J-Sim, essential suites of wireline and wireless
network components and protocols have been implemented. Moreover, a set of
classes and mechanisms to realize network emulation is also included.

J-Sim possesses noteworthy programming features, as below listed:

• The fact that J-Sim is implemented in Java, along with its autonomous com-
ponent architecture, makes J-Sim a truly platform-independent, extensible, and
reusable environment.

• J-Sim provides a script interface that allows its integration with different script
languages such as Perl, Tcl, or Python. The latest release of J-Sim (version 1.3)
has been fully integrated with a Java implementation of Tcl interpreter, called
Jacl, with the Tcl/Java extension (The Tcl/Java Project 2008). Thus, similar to
ns-2 (Sect. 6.4.1), J-Sim is a dual-language simulation environment in which
classes are written in Java (C++ for ns-2) and “glued” together using Tcl/Java.
However, unlike ns-2, classes/methods/fields in Java need not be explicitly
exported in order to be accessed in the Tcl environment. Instead, all the public
classes/methods/fields in Java can be accessed (naturally) in the Tcl
environment.

Also, J-Sim includes a set of classes and mechanisms that realize network
emulation in sensor network environments, where network emulation means that
the virtual simulation environment is integrated with a small number of real
hardware devices to facilitate performance evaluation of real-life devices in a
large-scale, but well-controlled environment. As real-life packets have to be
seamlessly transported between the two environments, the main task is to syn-
chronize the virtual time used in the simulation engine with the wall time, and to
convert packet headers and payloads from the real-life format to that used in the
simulation environment.
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6.4.12.1 ACA Overview

A component-based architecture is composed of components that are interfaced via
ports and bound by contracts (Google Sites 2003). In the coming subsections a
quick review of the component-based architecture is to be presented as a prelude to
J-Sim.

Component

In software, a component is the basic entity in the autonomous component archi-
tecture (ACA). An application is a composition of components. The notion of
components has been used in several commercial component-based software stan-
dards such as JavaBeans, CORBA6 (TechTarget 2015) and COM/DCOM/COM+7

(Microsoft 2015). Differently though, the components in J-Sim are loosely coupled,
they communicate with one another by “wiring” their ports together, and are bound
to contracts.

As shown in Fig. 6.6, a clarifying analogy with the component-based archi-
tecture is the known integrated circuit (IC) architecture, where a hardware module
(a software system) is assembled by connecting a set of integrated circuits
(ICs) (components) through their pins (ports). When the signals arrive at the pins of
an IC chip, the chip performs certain tasks in compliance with the specification in
the cookbook (contract), and may send signals at some other pins. A component can
be reused in other software systems with the same contract context, in much the
same fashion as IC chips are used in hardware design.

The main goal of the component-based architecture is to mimic the hardware
assembling architecture. Typically, a wide set of IC chips are available in the
market, by selecting and connecting an appropriate set of chips, one can readily
compose a hardware component with desirable functions. An important step
towards such a goal is to build a set of software components that can be reused in
applications of similar nature.

In its framework, J-Sim specifies the components of:

• Target, sensor and sink nodes.
• Sensor channels and wireless communication channels.
• Physical media such as seismic channels, mobility models and power models

(both energy-producing and energy-consuming components).

6Common Object Request Broker Architecture (CORBA) is an architecture and specification for
creating, distributing, and managing distributed program objects in a network.
7Microsoft COM (Component Object Model) technology in the Microsoft Windows-family of
Operating Systems enables software components to communicate. COM is used by developers to
create reusable software components, link components together to build applications, and take
advantage of Windows services. The family of COM technologies includes COM+,
Distributed COM (DCOM) and ActiveX® Controls.
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New application-specific models can be defined by subclassing appropriate
classes defined in the simulation framework.

Component Hierarchy

In J-Sim, a parent component may include several sub-components, called child
components.

A component is uniquely identified within its parent component by its ID. Ports
of a child component or the child component itself may be exposed to the outside
world of its parent. Port exposure is realized by creating a port for the parent and
then connecting it to the port of the child. The port of the parent component acts as
a shadow port of that of the child component. The real communication occurs
between the outside world and the child component’s port. Figure 6.7 illustrates the
concept of hierarchy.

Child exposure is realized via a twofold procedure:

• Creating a shadow port of the parent for every port of the child, when the child
is included in the parent.

• Creating a port of the child when a port of the parent is created, and making the
parent’s port a shadow of the child’s port.

Component

Port

Dataflow

Component - Port

IC chip - Pins

(a) (b)

Fig. 6.6 Component model (Google Sites 2003). a Component-based architecture. b Component-
IC analogy
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Port

A component communicates with the rest of the world via its ports. A component
may own more than one port. The programming interface between a component and
its port is well defined. Since a component only interfaces with its ports, one
component can be developed without the existence of other components. Also, the
actual communication mechanism a component uses to communicate with the
outside world is completely hidden in ports.

Ports in a component can be organized into different groups. A port group is
uniquely identified within a component by its group ID. A port is uniquely iden-
tified within a port group by its assigned port ID. Therefore, a port is uniquely
identified within a component by its port group and port IDs.

Contract

The behavior of a component is described by the port contract and the component
contract. A port contract is bound to a specific port or a group of ports, it defines the
communication pattern between the component that owns the port(s), and the other
components that are connected to the port(s). A component is expected to work
properly if all the adopted contracts are fulfilled.

Contracts specify the causality of data sent/received between components, but do
not specify the components that participate in the communication. Contracts are
bound at design time and components are bound at system integration time. One
immediate advantage of this separation is that different components can be inde-
pendently developed on different platforms and/or different programming lan-
guages, and integrated later.

When a user writes a component, he has only to follow the contracts adopted by
the component, without worrying about the other components or the communica-
tion mechanism between them.

Zoom-in

Component

Port

Dataflow

Fig. 6.7 Component hierarchy (Google Sites 2003)

6.4 Simulators and Emulators 427



6.4.12.2 J-Sim Framework

The major objective of WSNs is to monitor, and sense events of interests in, a
specific environment. Upon detecting an event of interest, such as change in the
acoustic sound, seismic, or temperature, sensor nodes report to sink (user) nodes,
either periodically or on demand. Events, termed as stimuli, are generated by target
nodes. For instance, a moving vehicle may generate ground vibrations that can be
detected by seismic sensors. From the perspective of network simulation, a WSN
typically consists of three types of nodes (Fig. 6.8). Namely, sensor nodes that
sense and detect the events of interest, target nodes that generate events of interest,
and sink nodes that utilize and consume the sensor information. Figures 6.9 and
6.10 depict, respectively, the internal view of a target, a sink, and a sensor node as
defined and implemented in J-Sim framework.

Communication Model

J-Sim framework for WSNs is derived from the SensorSim framework
(Sect. 6.4.10). In a nutshell, sensor nodes detect the stimuli (signals) generated by
the target nodes over a sensor channel and forward the detected information to the
sink nodes over a wireless channel. Figure 6.8 depicts the top-most view of the
proposed simulation framework. Noteworthy, the nature of signal propagation
between target nodes and sensor nodes over the sensor channel is inherently dif-
ferent from that between sensor nodes and sink nodes over the wireless channel.
Two different models for signal propagation are therefore included, a sensor
propagation model and a wireless propagation model:

• A sensor node is equipped with a sensor protocol stack that enables it to detect
signals generated by target nodes over the sensor channel, and a wireless pro-
tocol stack that allows it to send reports to the other sensor nodes (and even-
tually to sink nodes) over the wireless channel.

• A target node has only a sensor protocol stack.
• A sink node has only a wireless protocol stack.
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Fig. 6.8 Typical WSN
environment (Sobeih et al.
2006)
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The operation of J-Sim framework can be illustrated by considering a simplified
event-to-sink transport protocol. A stimulus is periodically generated by a target
node and propagated over the sensor channel. As shown Fig. 6.9, a target node can
“only send” data packets over the sensor channel. The neighboring sensor nodes,
that are within the sensing radius of the target node, will then receive the stimulus
over the sensor channel.

Figure 6.10 illustrates that a sensor node can “only receive” stimuli over the
sensor channel. However, due to the signal attenuation in the course of being
propagated over the sensor channel, a sensor node receives and detects a stimulus
only if the received signal power is at least equal to a predetermined receiving
threshold. The received signal power is determined by the adopted sensor propa-
gation model (e.g., seismic or acoustic). Inside a sensor node, the coordination
between the sensor protocol stack and the wireless protocol stack is done by the
sensor application and transport layers.

Likewise, a sensor/sink node receives, and further processes, a data packet from
the wireless channel only if the received signal power exceeds a predetermined
receiving threshold. The embraced wireless propagation model determines how to
calculate the received signal power. The latest release of J-Sim includes classes for
three wireless propagation models, typically, the free space model, the two-ray
ground model, and the irregular terrain model (Sarabandi et al. 2001).

As the sink node may not be in the vicinity of a sensor node, communication
over the wireless channel is usually multihop. Specifically, to send a packet from a
sensor node to a sink node, intermediate sensor nodes serve as relays (routers) to
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Sensor channel Wireless channel

Physical layer
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Transport layer

Sensor application layer

Fig. 6.9 Internal view of target and sink nodes (Sobeih et al. 2006)
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forward that packet along the route from the source sensor node to the sink node.
This justifies why sensor nodes have to be able to both send and receive data
packets over the wireless channel (Fig. 6.10). As sensor nodes may fail or fade out
due to power depletion, the network topology of a WSN may change dynamically
and the multihop routing protocol has to adapt to the topology change through
routing protocols such as ad hoc on-demand distance vector routing (AODV)
(Perkins et al. 2003) or geometric routing such as greedy perimeter stateless routing
(GPSR) (Karp and Kung 2000).

The information received at the sink node over the wireless channel can be
further analyzed by a control server and/or a human operator. Based on the content
of the information, the sink node may have to send commands/queries to the sensor
nodes. This explains why, as shown in Fig. 6.9, sink nodes have to be able to both
send and receive data packets over the wireless channel.

Three WSN protocols have been implemented in J-Sim and reported:

• Localization. It is how each sensor node obtains its accurate position, even in the
presence of different geographic shapes of the monitoring region, different node
densities, irregular radio patterns, and anisotropic terrain conditions.
A distributed positioning algorithm, called ad hoc positioning system/distance
vector-hop (APS/DV-hop) (Niculescu and Nath 2003) has been implemented in
J-Sim.

• Geographic routing. Most of the geographic routing protocols operate under the
assumption that each node knows its own geographic position, and nodes can
exchange their position information with their neighbors. Instead of building a
routing table with the use of shortest paths and transitive reachability,
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Fig. 6.10 Internal view of a sensor node (Sobeih et al. 2006)
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geographic routing protocols make hop-by-hop routing decisions by using
geographic positions of nodes. Sensors are usually not associated with IP
addresses, but instead are attributed by their geographic positions, thus, geo-
graphic routing has been used to route data packets that contains sensed
information to sink nodes. The greedy perimeter stateless routing (GPSR)
algorithm has been adopted in J-Sim (Karp and Kung 2000).

• Directed diffusion. It is a data-centric information dissemination paradigm for
WSNs (Intanagonwiwat et al. 2000). In directed diffusion, a sink node period-
ically broadcasts to its neighbors an interest message, containing the description
of a sensing task it is interested in knowing, such as detecting a vehicle in a
specific area. Interest messages are diffused throughout the network, e.g., via
selective flooding, and gradients are set up within the network.

Directed diffusion consists of several elements. Data is named using
attribute-value pairs. A sensing task is disseminated throughout the sensor network
as an interest for named data. This dissemination sets up gradients, within the
network designed to “draw” events, i.e., data matching the interest. Events start
flowing towards the originators of interests along multiple paths. The sensor net-
work reinforces one, or a small number of these paths. Specifically, a gradient is a
direction state created in each node that receives an interest message. The gradient
direction is set toward the neighboring node from which the interest message is
received.

After receiving an interest, a node may decide to resend the interest to some
subset of its neighbors. To its neighbors, this interest appears to originate from the
sending node, although it might have originated from a distant sink. In such a
manner, interests diffuse throughout the network. Not all received interests are
resent. A node may suppress a received interest if it recently resent a matching
interest.

Power Model

A sensor node has also a power model that embodies the energy-producing com-
ponents, such as battery, and the energy-consuming components, such as radio and
CPU (Fig. 6.10). Moreover, in order to enable simulation of mobile nodes, such as
moving vehicles, a mobility model is included. The sensor function model, i.e.,
combination of the sensor protocol stack, the network protocol stack and the sensor
application and transport layers, is subject to the power model. The energy incurred
in handling a received data packet is dictated by the CPU model, and the energy
incurred in sending and/or receiving data packets is dictated by the radio model. In
the J-Sim framework, both the CPU and radio models can be in one of several
different operation modes that determine the amount of energy consumed. The radio
model can be in idle, sleep, OFF, transmit or receive modes. The CPU and radio
models can report their operation mode to the sensor function model, and the sensor
function model can change the operation mode of the CPU and radio models.
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6.4.12.3 Network Emulation

Network emulation is an inexpensive approach to testing, validating, and evaluating
protocols and approaches in a realistic but well-controlled network environment.
The protocol or approach to be tested is usually executed in the real environment,
while other interacting components are executed in the well-controlled, virtual
environment.

Network emulation in J-Sim is realized in both the top-down and bottom-up
hierarchy:

• In the top-down approach, a Java-compliant socket layer is developed with real
applications on top. As shown in Fig. 6.11a, the socket layer essentially gives
applications the illusion that they are interfacing with the operating system,
rather than with a virtual network environment.

• In the bottom-up approach, real-life packets are intercepted at the device driver
level and transported to the Packet Converter utility that converts packet headers
and payloads from the real-life format to that of J-Sim. Packets can then be
directed to different layers depending on the header information. As illustrated
in Fig. 6.11b, to implement this technique, the packet capturing facility, such as
PCAP8 in Linux and Windows (Tech-FAQ 2015), is used to intercept real-life
packets and redirect them to the Packet Converter. Outbound packets will be
processed by the Packet Converter and directed via IP raw sockets to real device
drivers.
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Fig. 6.11 Network emulation in J-Sim (Sobeih et al. 2006). a Top-down network emulation.
b Bottom-down network emulation

8PCAP (Packet Capture) is a protocol for wireless Internet communication that allows a computer
or device to receive incoming radio signals from another device and convert those signals into
usable information. It allows a wireless device to convert information into radio signals in order to
transfer them to another device.
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WSN Network emulation, as depicted in Fig. 6.12, involves Berkeley Mica
motes (Crossbow 2002). Berkeley motes, equipped with sensors and RF circuitry,
are used as the real “small dust” 9 (Webopedia 2015a, b) devices to extract physical
environment data. With the use of the TinyOS SerialForwarder program (TinyOS
Wiki 2012), the generic two-ways communication tool, real-life data are relayed
from motes to I/O device and vice versa. These real-life packets are then intercepted
at the serial link, converted by the Packet Converter to proper formats, and then fed
into one of the virtual J-Sim classes.

Several layouts of network emulation in WSNs are devised as listed below from
the simplest to the most complex:

• Extracting sensor data from real devices. In this layout, motes serve as sensor
hardware that provides one-way data traffic from real devices to the simulation
environment. Specifically, the functionality of the sensor physical layer com-
ponent is implemented in motes. All other WSN functions, such as in-network
processing and information relay to the sink nodes, are simulated in J-Sim.

• Processing sensor data in real devices. Different from the previous layout, the
task of processing sensor data is moved from the simulation environment to real
devices. The functionalities of both the sensor physical layer and the sensor
application layer components are implemented in motes, while the communi-
cation over the shared wireless channel is still simulated in J-Sim. In this form,
packets are forwarded bidirectionally between motes and wireless physical layer
components in J-Sim.

Mote 1 Mote 2 Mote 3 Mote 4 Mote 5

J-Sim

Fig. 6.12 Network emulation in J-Sim (Sobeih et al. 2006)

9Also termed “smart dust”. These are millimeter-scale self-contained micro-electromechanical
devices that include sensors, computational ability, bidirectional wireless communications tech-
nology and a power supply. As tiny as dust particles, smart dust motes can be spread throughout
buildings or into the atmosphere to collect and monitor data. Smart dust devices have applications
in everything from military to meteorological to medical fields.
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• Processing and transmitting sensor data in real devices. In this layout, both data
processing and wireless communications take place in real devices as well as in
the simulation environment. Real devices communicate with virtual sensor
nodes, and synchronize their operations and wireless communication events in
the shared channel. Obviously, the simulation paradigm J-Sim adopts is
real-time process-driven simulation. Specifically, each event in J-Sim is exe-
cuted in an independent execution context and event executions are carried out
in real-time, not at fixed time points in discrete-time event-driven simulation.

6.4.12.4 J-Sim Performance Compared

The performance of J-Sim simulation framework is tested and compared against
ns-2 in several WSN scenarios. Of interest, the effect of network sizes on the
execution time required to complete simulation, and the resulting number of gen-
erated events and the memory thus consumed. Noteworthy, the execution time
includes both the time required to set up the nodes, i.e., the time incurred in creating
and configuring the network before the simulation starts, and the time required to
conduct a T-second simulation run. Each data point reported was an average of 20
simulation runs.

Target Tracking

This simulation scenario consists of one sink node, and two target nodes. The
sensor nodes are evenly distributed over a 1500 × 1500 m2 region. The two target
nodes move according to the random waypoint model with a maximum speed equal
to 10 m/s. Each target node generates a stimulus every one second, and the sensing
radius is 200 m. The simulation time, T, is 1000 s.

The execution time and the number of events generated versus the network size
n2 + 2, where n varies from 10 to 22, are evaluated for both J-Sim and ns-2. It was
shown that ns-2 stops at n = 18 because ns-2 ran out of memory for n > 18. J-Sim
incurs however a considerably longer execution time, even though the number of
events generated is almost the same, especially in the range 10 ≤ n ≤ 16. These
results are due to the inherent slowness of a Java program as compared to the
C/C++ counterpart. Specifically, the execution time in J-Sim is up to 41.6 % higher
than that in ns-2, and the number of events generated by J-Sim is up to 27.5 %
higher than that in ns-2.

Also evaluated, the amount of memory allocated before the start and before the
end of the simulation. The memory usage before the start of the simulation rep-
resents the amount of memory allocated to set up the nodes and other components
in the simulation, e.g., wireless and sensor channels. While memory usage before
the end of the simulation represents the amount of memory allocated to complete
the 1000-sec simulation. The rate of increase in memory usage before the start of
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the simulation in ns-2 is higher causing J-Sim to outperform ns-2 for n ≥ 15. This
indicates that the data structures are used in a more scalable manner in J-Sim to
represent different classes and their interaction in the WSN framework. Moreover,
the memory allocated to complete the 1000 s simulation in J-Sim is at least two
orders of magnitude lower than that in ns-2. This is attributed to the better garbage
collection mechanism used in Java to reclaim unused memory.

Using GPSR Routing Protocol

The simulation scenario is identical to that in the previous subsection except that
GPSR is used as the underlying routing protocol instead of AODV. Obtained results
indicate that ns-2 cuts off at n = 14 because it ran out of memory for n > 14. Close
execution time and number of events values are obtained for ns-2 and J-Sim; J-Sim,
though, incurs a smaller execution time to carry out simulation.

Regarding memory usage before the start and end of the simulation. Once more,
the memory usage in J-Sim is at least two orders of magnitude lower than that in
ns-2. As compared with AODV, GPSR incurs much less memory as well, due to the
fact that AODV incurs significant routing overhead.

From the two previous performance experiments, the ability of J-Sim, to carry
out simulation for n > 18 at the cost of a reasonable amount of memory, reveals the
scalability of the WSN simulation framework in J-Sim. This is coupled with added
extensibility acquired from the autonomous component architecture (ACA) (i.e.,
new components can be defined by subclassing appropriate base classes that are
readily inserted into the framework with matched contracts).

J-Sim is however, relatively complicated to use, no more complicated though
than the much more popular ns-2. J-Sim, while more scalable than many other
simulators, has its share of inefficiencies. Java, in general, is possibly less efficient
than many other languages. There is also the added overhead in the intercommu-
nication model. Moreover, IEEE 802.11 is the only supported MAC protocol that
can be used, such a limitation that occurs in WSN support built on top of
all-purpose simulators.

J-Sim version 1.3 released on February 2nd, 2004 (Table 6.1).

6.4.13 Prowler/JProwler

The Probabilistic Wireless Network Simulator (Prowler) was developed in 2003 at
the Institute for Software Integrated Systems (ISIS) in Vanderbilt University (ISIS
2015). It is a free event-driven simulator that can be set to operate in either
deterministic mode to produce replicable results while testing the application, or in
probabilistic mode to simulate the nondeterministic nature of the communication
channel and the low-level communication protocol of the motes (Simon et al.
2003). Prowler is able to simulate all the important aspects of sensor networks built
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from Berkeley motes, it can incorporate arbitrary number of motes, on any, possibly
dynamic topology. It was designed to be easily embedded into optimization algo-
rithms. Prowler runs under MATLAB providing thus a fast and easy way to pro-
totype applications; moreover, its GUI provides nice visualization capabilities.
Prowler is designed to allow users, interested in algorithmic rather than imple-
mentation details, to do fast and realistic prototyping of sensor networking appli-
cations using mote-class nodes, without the need of expert knowledge for low level
issues concerning the hardware platform, the operating system, the programming
language or even a special simulation environment.

Prowler models the important aspects of all levels of the communication channel
and the application. A probabilistic radio channel model characterizes the nonde-
terministic nature of the radio propagation. Also, a simplified, yet accurate model is
used to describe the operation of the MAC layer. Applications interact with the
MAC layer through a set of events and actions.

6.4.13.1 Prowler Framework

Radio Propagation Models

The radio propagation model determines the strength of a transmitted signal at a
particular point of the space for all transmitters in the system. Based on this
information the signal reception conditions for the receivers can be evaluated and
collisions can be detected. The signal strength from the transmitter to a receiver is
determined by a deterministic propagation function, and by random disturbances:

• The deterministic part of the propagation function models the fading of signal
strength with distance, it can be any user-supplied function, yet a frequently
used model of the signal strength versus distance is given by:

Prec;ideal dð Þ ¼ Ptransmit � 1=1þ dc ð6:1Þ

where Prec;ideal is the ideal reception signal strength, Ptransmit is the transmission
signal power, d is the distance between the transmitter and the receiver, and c is
a decay parameter with typical values 2� c� 4:

• Random disturbances account for real signals behavior; they model the fading
effect, the time-varying nature of the signal strength, and other miscellaneous
transmission errors. The signal strength can be seriously impacted by distance
changes. Also, the signal strength can change even if the distance between the
transmitter and receiver is constant. This fading effect is modeled by random
disturbances in the simulator. The received signal strength from node j to node
i is calculated from the propagation function (Eq. 6.1) by modulating it with
random functions:
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Prec i; jð Þ ¼ Prec;ideal di;j
� � � 1þ a di;j

� �� � � ½1þ bðtÞ� ð6:2Þ

The random variable a depends on the distance only, thus in the simulator it is
calculated only when the position of either the transmitter or the receiver
changes; while b is time-dependent, so its value is recalculated at the beginning
of every transmission. The random variables a and b have normal distributions
NðO; raÞ and NðO; rbÞ, respectively, with adjustable parameters ra and rb.

Signal Reception and Collisions

Prowler provides two models to account for signal reception and collision:

• Model 1. The signal is received if its strength is greater than a reception limit
parameter. The channel is sensed idle if there is no signal that could be received.
Collision occurs if two transmissions overlap in time and both could be
received.

• Model 2. Each receiver has a noise variance parameter r2
n. The signal to

interference and noise ratio (SINR) for receiver i and transmitter j is defined by:

The total signal strength at node i is defined by:

SINR ¼ Precði; jÞ
r2n þ

P
k 6¼j Precði; kÞ ð6:3Þ

The total signal strength at node i is given by:

Ptot ið Þ ¼
X
k

Precði; kÞ ð6:4Þ

The signal is received if the SINR at the receiver is greater than the reception
threshold during the whole transmission time. The channel is sensed idle if the
total signal strength is smaller than an idle threshold, which depends on the
noise variance of the receiver. There is a collision if the SINR at the receiver
becomes smaller than the reception threshold at any time during the reception.

Model 1 is simple and fast, while Model 2 is more accurate; the choice of the
model is a usual compromise between speed and accuracy. The radio models in the
simulator are interchangeable plug-ins, thus a new model can be easily added on
need.
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MAC-Layer Model

The MAC layer in Prowler simulates a CSMA MAC protocol similar to that of the
Berkeley Mica motes (Crossbow 2002). A simplified event channel, illustrated in
Fig. 6.13, models the MAC layer communication:

• The application emits the Send-packet event, after a random Waiting-time
interval the MAC layer checks if the channel is idle.

• If not idle, it continues the idle checking until the channel is found idle; the
Backoff-time is a random interval that precedes each idle check.

• When the channel is idle the transmission begins and after Transmission-time
the application receives the Packet-sent event.

• After the reception of a packet on the receiver’s side, the application receives a
Packet-received or Collided-packet-received event, depending on the success of
the transmission. Notably, collision occurs if two or more stations transmit at the
same time after sensing an idle channel.

The Waiting-time and Backoff-time parameters are random uniformly distributed
variables in predefined intervals, while Transmission-time is constant, that is all
messages have the same length.

The Application Layer

Similarly to the real TinyOS framework, the applications are event-based. Several
events can be noticed, Init-application, Packet-sent, Packet-received, etc.
Debugging and visualization commands are also available, e.g. switch ON/OFF the
LEDs on the motes, draw lines and arrows, and print messages.

6.4.13.2 Optimization Framework

In the development phase of new protocols, it is required to provide optimal per-
formance in some metric, versus a certain set of design parameters. This optimiza-
tion problem leads to the search of an error surface above a parameter space. There
are multiple solution methods if the error surface is well defined. Basically, they
depend on some kind of exploration of the error surface, either a gradient-based

Waiting-time Backoff-time Backoff-time Transmission-time

Send-packet Packet-sent
Channel-idle-check

Fig. 6.13 MAC layer communication (Simon et al. 2003)
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method, Monte-Carlo search, or an annealing method (Press et al. 2002). These
optimization methods use “function calls” to compute the value of the cost function.
The more computationally expensive the function call, the more cost efficient is to
keep the number of function calls low.

As Prowler can be used to test protocols and algorithms, it provides metrics on
the performance of the tested application. Similarly to the core of Prowler, the
applications can be parameterized, so different settings can be easily tested. The
adopted optimization algorithm is built around Prowler and calls it with the required
parameters.

The error function can be any performance metric defined above the parameter
space, such as, time, energy, application-specific metrics, or combination of them.
Optimization though has its concerns:

• Due to the stochastic nature of the environment, a useful performance metric
does not result out of a single experiment, but rather an average value, a min-
imum or a maximum. To calculate such a performance metric, several experi-
ments must be made, i.e. several simulation runs. Thus a single “function call”
of the optimizer algorithm can be very expensive.

• Some a priori knowledge would be necessary on the error surface so that the
necessary precision of calculating the error surface could be determined.
Generally such information is not available, thus the necessary number of
experiments is practically unknown. This can result in imprecise error surface
estimations, and thus the optimization algorithm may not converge to the right
minimum.

The main features of the proposed optimization algorithm are as listed:

• The search is performed over a finite set of predefined parameter values, i.e.
discrete points in the parameters space.

• The function call for one point returns the outcome of one experiment only. The
search method uses this “noisy” cost function value. Calls are calculated for the
same point several times, thus in certain points the error surface becomes more
and more accurate during the search process.

• The search algorithm makes steps on the discrete parameter space after each
function call, depending on the result of the last function call and the values of
the averaged error function.

6.4.13.3 Prowler Performance

As illustrated, Prowler can be combined with an optimization algorithm to optimize
parameters of middleware services and applications in WSNs. It is advised to use
Prowler, over other simulators, for the beginners because of its user friendly GUI,
fast and easy prototyping in MATLAB as well as easy debugging. However, it does
not have sensor node energy modeling. Prowler is not widely used because of its
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specific use and capabilities; as well, no comparative studies with well-known
simulators are provided to ascertain its performance.

Routing Modeling Application Simulation Environment (RMASE) (Zhang et al.
2006), is an application built on top of Prowler, it provides a layered routing
architecture with routing scenario specifications and performance metrics for
algorithm evaluations. Both Prowler and RMASE are easily extensible with new
models, metrics and components.

In (Barberis et al. 2007) modifications are made to prowler making its MAC
protocol model compliant with the crossbow mote running on Tiny OS (Crossbow
2006). Moreover, radio propagation models were added to the simulator, and
importantly an energy consumption estimation model of the CC2420 radio chip has
been implemented. WSNs applications were developed with a particular emphasis
on energy consumption optimization and consequently battery lifetime.

Prowler version 1.25 was released in January 28th, 2004 (Table 6.1).

6.4.13.4 JProwler

The JProwler tool is a discrete event simulator for prototyping, verifying and
analyzing communication protocols of TinyOS ad hoc wireless networks (ISIS
2004). The simulator supports pluggable radio models and MAC protocols and
multiple application modules. Two radio models are implemented; specifically,
Gaussian and Rayleigh, and one MAC protocol for MICA2 (Crossbow 2002) with
no acknowledgment. These components have the same underlying dynamic
physical model as in the MATLAB Prowler. JProwler is implemented in Java and
optimized for raw speed. It can run a simple network-wide broadcast protocol on a
5000-node network in real-time (around 1.3 s). However, the startup time, during
which the simulator creates static data structures, is 35 s for a 5000-node network
and 1.5 s for a 1000-node network. The simulator can visualize the status of the
network and application data.

JProwler version 1.0 was created in February 13th, 2004 and is available for
download (Table 6.1).

6.4.14 SENS

Sensor, Environment and Network Simulator (SENS) was developed in 2004 at the
Department of Computer Science University of Illinois at Urbana-Champaign.
SENS is a C++ written simulator for WSNs; it has a modular, layered architecture
with customizable components to model an application, network communication,
and the physical environment (Sundresh et al. 2004). By choosing appropriate
component implementations, users may capture a variety of application-specific
scenarios, with accuracy and efficiency tuned on a per-node basis. For the sake of
realistic simulations, typical values from Mica2 sensors are used to represent the
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behavior of components’ implementations. Such behavior includes sound and
radio signal strength characteristics and power usage. Furthermore, SENS is
layout-independent as it allows new WSN layouts with the possibility of adding and
including their parameter profiles. The ability to develop portable applications is an
important asset, knowing that WSN layouts constantly evolve as new sensor node
implementations rise up.

Moreover, SENS introduces an innovated mechanism for modeling physical
environments. WSN applications are characterized by tight integration of compu-
tation, communication and interaction with the physical environment. When a node
drives its actuator, it may affect the environment and alter network propagation
characteristics. Thus, the validity and effectiveness of simulation results depend
heavily on how accurately the environment is modeled. To provide users with the
flexibility of modeling the environment and its interaction with applications at
different levels of detail, SENS defines an environment as a grid of interchangeable
tiles.

6.4.14.1 Simulator Structure

SENS consists of several simulated sensor nodes interacting with an Environment
component. Each node consists of three components, namely, Application,
Network, and Physical (Fig. 6.14). Each component has a virtual clock; messages
can be sent with any delay past the sender’s current virtual time. For instance, a
node’s Network component may simulate the reception of two colliding packets
and hence are not received, while at the same virtual time the node’s Application
processes some data. Clearly, components are isolated and interchangeable; a user
may employ any of the implementations SENS provides, modify existing compo-
nents, or write entirely new ones for custom applications, network models, sensor
capabilities, or environments.

Sensor node

Application

Network

Physical

Environment

Derived

Base class

…

…

Fig. 6.14 SENS components
interconnection (Sundresh
et al. 2004)
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Application Components

An Application component simulates the execution of software on a single sensor
node. A node’s Application component communicates with its Network component
to send or receive packets, and with its Physical component to read sensor values or
control actuators. A C++ base class provides interface for applications. An
Application component may receive and act upon received message; results are sent
back as a message.

Users may create an Application component in two ways:

• They may derive a new class from the Application class to directly implement
an application. However, such a program may not run directly on existing WSN
layouts.

• Alternatively, a thin compatibility layer is developed to enable direct portability
between SENS and real sensor nodes. When compiling a source code intended
to run on a real sensor node, it is linked with a library, which translates sensor
node API calls to SENS Application APIs. This technique allows a SENS target
for TinyOS (TinyOS 2012), similar to the approach used in TOSSIM
(Sect. 6.4.6) and TOSSF10 (Perrone and Nicol, A Scalable Simulator for TinyOS
Applications 2002).

In SENS applications used for the simulations can be ported to real network
devices, which is a noteworthy advantage.

Network Components

A Network component simulates the packet send and receive functions of a wireless
sensor node. All such components are derived from the Network base class, which
specifies the basic network interface. Each Network component is connected to a
single Application component and the Network components of neighboring nodes.
The format of messages exchanged between neighbors is fixed to allow multiple
implementations with different characteristics.

Physical Components

Each simulated node includes a Physical component that models sensors, actuators
and power, and interacts with the Environment component. Initially, each Physical
component registers its node with the Environment. The Environment then replies
with a list of the node’s neighbors, along with radio and sound signal strength and

10TOSSF is a simulator, which allows for the direct execution, at source code level, of applications
written for TinyOS, the operating system that executes on Smart Dust. TOSSF also provides
detailed models for radio signal propagation and node mobility.
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delay for each neighbor. Microphone (sensor) and speaker (actuator) devices are
provided.

The Physical component also simulates a node’s power usage. When the
Application or Network component enters a different power mode, they notify the
Physical component by actuate messages to turn ON or OFF associated virtual
hardware. When a radio message is transmitted, the Network component sends the
duration of transmission to the Physical. The current is multiplied by a nominal 3 V
and power usage is accumulated over time.

Environment Component

The role of the Environment component is to provide a useful model of a real
environment with which nodes’sensors and radios might interact. By varying the
Environment component, developers can test a wide variety of settings with less
effort as compared to setting up actual experiments. The Environment component
yields models of various types of surfaces that influence the radio and sound
propagation parameters. An environment is simulated as a 2-D grid of inter-
changeable square tiles to allow modular, reconfigurable scenarios. This helps
modeling sensors on the ground outdoors. Tiles use experimentally measured
parameters for radio and sound waves propagation. SENS provides tiles to simulate
grass, concrete sidewalks, and walls. Concrete is considered a baseline, and other
tiles with greater signal attenuation or delays are called obstacles.

The Environment component models circular wave propagation through the 2-D
grid of tiles. Since a tile may be anywhere on the map, propagation rules must use
only local information about a wave. This information is modified by tiles as the
wave propagates, and passed on to neighbors tiles arranged along the propagation
paths. Tiles receive and propagate the following information describing (part of) a
wave:

• Source location (xs, ys).
• The amount of energy contained in that part of the wave.
• The delay profile along the edge through which the wave entered a tile.

An ideal 2-D circular wave propagation performed on a grid of tiles is shown in
Fig. 6.15. Angle θ13 = θ12 + θ23, the angle from the source spanning tile (x,y),
determines the total energy that passes through the tile. Angle θ23 represents the
fraction that passes through tile (x, y) and the tile above (x, y + 1), while θ12 the
fraction through tiles (x, y) and (x + 1, y).

Signal strength (SS) measured by a sensor depends on energy density.
Measurements are made for 2-D and 3-D propagation models. Environment data,
such as sound and radio propagation parameters, is obtained using Mica2 sensor
motes (Crossbow 2002).
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6.4.14.2 Simulation Examples

Two example applications have been devised to illustrate the features of SENS.
Several random environments were created, ranging from 0 to 100 % obstacle tiles
(grass, walls), with concrete for the remaining tiles.

Spanning Tree

A service which generates a partial spanning tree via flooding is initiated at time 0
by a root node in the middle of a 400 m × 400 m region containing 1000 nodes. The
root broadcasts a single spanning tree message containing its ID. When a node
receives such a message, it reads the sender’s ID, stores it as its parent, broadcasts a
new spanning tree message containing its own ID, and goes to sleep. It is revealed
that for 25 % obstacle:

• The spanning tree coverage peaks at 914 of 1000 nodes. It then drops quickly as
more obstacles are added, such that some nodes become entirely cut off from the
root. Tree coverage also decreases with increased obstacle density.

• Noticeably, the problem under very low obstacle density is collisions; obstacles
decrease radio range, and hence increase usable network capacity until the point
where the network is partitioned. Also, collisions greatly outnumbered broadcast
messages sent, because they were counted at each receiving node.

Simplified Localization

Many sensor network applications need location information to correlate mea-
surements. A simple localization service based on acoustic ranging is studied.
Simulations were performed in a 50 m × 50 m environment with 6 anchor nodes
and 200 non-anchors. Anchors are nodes with known locations; all others are
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(x+1,y)

(x,y+1)

Source

Fig. 6.15 Circular wave
propagation through adjacent
tiles (Sundresh et al. 2004)
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non-anchors with unknown locations. Anchors periodically broadcast their ID and
location over the radio, immediately followed by a 0.1 s beep. When a non-anchor
receives such a radio message, it measures the delay until it hears the beep to
estimate the distance to the anchor node. Furthermore, non-anchors take the median
of the past 10 measurements from an anchor node to filter out erroneous data.

For simplification, non-anchors estimate their location by averaging
anchors’locations, weighted by the inverse of the approximate distance to each
anchor node:

x; yð Þ ¼ 1
r1

x1; y1ð Þþ . . .þ 1
rn

xn; ynð Þ ð6:5Þ

A node is considered successfully localized if it has computed its own location to
within 10 meters (the large tolerance compensates for the error in Eq. 6.5). Several
findings were obtained out of this test case:

• The number of successfully localized nodes varies inversely, roughly linearly
with obstacle density. This linear decline indicates that anchor-based acoustic
ranging has fairly predictable behavior with respect to obstacles, as opposed to
the accelerating drop-off in spanning tree coverage.

• Nodes with several barriers between themselves and any anchor tend to have
worse errors. Furthermore, localized positions are primarily skewed towards
those anchors to which they have a more direct path. This is because direct paths
appear shorter than indirect paths obstructed by walls, and provide a stronger
signal than those where sound signals are attenuated by grass. In general, the
component structure of SENS allows users to quickly run and visualize their
applications because obstacles, network models, etc. can simply be plugged-in
rather than rewritten.

• The decrease in localization error for large obstacle densities may seem sur-
prising. However, based on the low number of nodes successfully localized, it is
apparent that for high obstacle densities, nodes either have relatively direct
sound paths to anchor nodes, or cannot hear them at all.

6.4.14.3 SENS Performance

A simulator should offer a strong performance advantage over setting up real sensor
networks. Considering the simplified localization with varying numbers of ran-
domly positioned nodes, the performance was satisfactory. Results are encouraging
having n nodes, and a

ffiffiffi
n

p � ffiffiffi
n

p
meter environment with n/16 anchors and 50 % of

the tiles assigned as obstacles. For a network of 8192 nodes, 1000 virtual seconds of
the application were simulated in only 136 s of real-time on a 2.5 GHz Pentium 4
with 512 MByte RAM running Linux 2.4.20; of them, 124 s were spent on envi-
ronment initialization, with a mere 12 s dedicated to actual execution.
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However, SENS is less customizable than other protocols since it does not
provide the opportunity to modify the MAC protocol or any other lower layer
protocols. Although power utilization analysis is supported, phenomena detection
capabilities are limited to sound. Also, SENS does not provide a GUI.

SENS latest version was available for download in January 31st, 2005
(Table 6.1).

6.4.15 SENSE

Sensor Network Simulator and Emulator (SENSE) is a sensor network simulator
developed in 2004 at the Department of Computer Science, Rensselaer Polytechnic
Institute, New York (Chen et al. 2005). It was designed to be efficient, powerful,
and easy to use, while satisfying three main factors; namely, extensibility,
reusability, and scalability. SENSE targets three types of users, high-level users,
network builders, and component designers:

• For high-level users, the process of building a simulation merely consists of
selecting appropriate models and templates and changing some parameters;
there is no need for programming skills, their main concern is scalability.

• The network builders need to create new network topologies and traffic patterns,
they may not have knowledge of popular programming languages, such as C,
C++, Java. For them, models must be reusable so that they can be plugged into
many simulations.

• The component designers intend to modify available models or build new ones
from scratch. Their main concern is the extensibility, how easily existing models
can be extended or replaced.

The most significant feature of SENSE is the balanced concern of modeling
methodology and simulation efficiency. SENSE is a very fast and user-friendly
simulator. Unlike object-oriented network simulators, it is based on a novel
component-oriented simulation methodology that promotes extensibility and
reusability to the maximum possible, without overlooking the simulation efficiency
and scalability.

Extensibility is achieved in SENSE by avoiding a tight coupling of objects via
the introduction of the component-based model that removes the interdependency
of objects often encountered in object-oriented architectures (Sect. 6.4.12.1). This is
attained by the proposed “simulation component classifications”. They are essen-
tially interfaces, which allow exchanging implementations without the need of
changing the actual code. Reusability at the code level is a direct consequence of
the component-based model.

SENSE is influenced by three other frameworks. It attempts to implement the
same functionality as ns-2 (Sect. 6.4.1), however, it moves away from the
object-oriented approach using J-Sim‘s (Sect. 6.4.12) component based architec-
ture. Like GloMoSim (Sect. 6.4.3), SENSE also includes support for parallelization.
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Through its component-based model and support for parallelization, the developers
attempt to address such critical factors in simulation as extensibility, reusability,
and scalability.

G-Sense is a tool that greatly improves SENSE user friendliness, with graphical
input of simulation parameters, save and load of simulation features, and man-
agement of simulation results with plot view (NetGNA 2008; Rosa et al. 2009).
G-Sense uses SENSE simulation engine in a transparent way, the user may thus be
focused on the simulation itself, not in the underlying simulation tool.

6.4.15.1 Component-Based Design

SENSE is built on top of COST (Chen and Szymanski 2002), a general-purpose
discrete event simulator. The design of COST was influenced by concepts of
component-based software architecture and component-based simulation. In the
component-based model, a component communicates with others only via inports
and outports (Fig. 6.16). An inport implements certain functionality; it is similar to
a function. An outport serves as an abstraction of a function pointer; it defines what
a functionality it expects of others. The component-based model is implemented
in C++.

The existence of outports distinguishes components from objects. Outports
impose constraints on the dynamic runtime interaction between components. Due to
their use, the development of a component can be fully separated from the appli-
cation context in which the component is to be used, leading to surely reusable
components. Moreover, components become more extensible, because there are
fewer constraints on the component that provides the desired functionality. On the
other hand, in an object-oriented environment, if an object A is to be replaced by an
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Application
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Fig. 6.16 Sensor node components (Chen et al. 2005)
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object B, object B has to be derived from A. In the component-based model, this
constraint is no longer necessary, any component providing the required func-
tionality can be used, regardless of its type.

6.4.15.2 Sensor Network Simulation Components

The component-based model gives the users a wide freedom in configuring sensor
nodes. A sensor node is a composite component that consists of a number of
smaller primitive components, each implementing a function (Fig. 6.16). Also, a
sensor node has some layered network protocol components, a power component
and a battery component that are related to power management, and more com-
ponents such as mobility and sensor. The inports and outports of the sensor node
component are directly connected to the corresponding inports and outports of
internal components. This structure is modifiable; a user can freely remove or add
components, as demanded by the targeted simulation. For instance, the network
protocol stack can be simplified by removing the network component, or tuned up
by adding a new transport layer without affecting other components. A queue
component can be added between the network layer and the MAC layer to prevent
packets from being dropped when the MAC layer is busy transmitting other
packets. Nodes can be configured using C++, TCL (Tcl Developer Xchange 2015)
or XML (W3C 2015).

The component-based model clarifies the role of components in the development
of general software systems. To extend the component-based model to the simu-
lation domain, simulation components are grouped according to the way of han-
dling simulation time into time-independent, time-aware, and autonomous classes:

• Type I, time-independent, component does not have the notion of simulated
time, and it is passive, as it does not generate events without receiving an event
first.

• Type II, time-aware, components are time-aware, they can make a simulated
time advance via an object called timer.

• Type III, autonomous classes, components are autonomous because they
maintain their own simulation clock. A clock indicates the simulated time
throughout the simulation. For parallel simulation, Type III components have to
be synchronized via some algorithms so that they can correctly interact with
each other by exchanging events.

Such classification of simulation component leads to a hierarchical modeling
process in SENSE, which gives advanced users the option of building their own
simulation engines instead of using built-in engines as in other parallel network
simulators.
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6.4.15.3 Components Repository

As below illustrated, SENSE encompasses an extensive set of components ranging
from application layer to physical layer, as well as energy and mobility models that
are specifically targeted at sensor networks:

• IEEE 802.11. This component implements the distributed coordination function
(DCF) described in the IEEE 802.11 standard (Bianchi 2000). The IEEE 802.11
implementation has the same level of details as that of ns-2 (Sect. 6.4.1);
however, the source code in SENSE is twice as short as that in ns-2, due to the
simplicity and effectiveness of SENSE APIs.

• AODV. The ad hoc on-demand distance vector routing (AODV) implementa-
tion in SENSE is based on the AODV Internet draft (Perkins et al. 2003). The
essential components to AODV’s basic operation have been implemented. This
includes all steps required to actually build routes. However, some route
maintenance functions have not been included in the current simulation, such as
maintaining local connectivity, processing route error packets, and implement-
ing local repair functions.

• DSR. The dynamic source routing (DSR) (Johnson and Maltz 1996) is a widely
used on-demand routing protocol for wireless networks. Like AODV, DSR
provides a mechanism of route discovery if the route from the source to the
destination is unknown. But unlike AODV, after the route has been discovered,
the entire route is included in the packet header, and intermediate nodes will
determine the next hop by looking at the routing information contained in the
packet. SENSE implements an initial version of the DSR component, which
imposes some restrictive assumptions within DSR specifications. Specifically, all
nodes are assumed to be bi-directional, without support for promiscuous com-
munications, and running in a homogeneous link layer environment. Moreover, it
is assumed that all communication links, once established, are not subject to
damages, and hence there is no need for error handling and route recovery.

• Battery models. Two battery components have been implemented in SENSE
(Chen et al. 2005):

– In the SimpleBattery component, the discharge rate is always proportional to
the power drawn from the battery, and is independent of the current. Its
capacity is a constant defined by the simulation parameter. Let E′ be the
previous remaining energy and P the power consumed in the time unit; the
energy remaining after a consumption period of t can be expressed as:

E ¼ E
0 � P � t ð6:6Þ

• In the more complex RealBattery component, the discharge rate is dependent
on the current, larger current renders the battery discharge quicker, thus
resulting in less actual capacity at the end of the usage period than the
smaller current would do (Park et al. 2001). A discharge rate dependence
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parameter, k, determines how the value of the current affects the discharge
rate. More specifically, Eq. 6.6 becomes:

E ¼ E0

ð1þ k � IÞ � P � t ð6:7Þ

• The RealBattery component also models relaxation (Park et al. 2001), which is
the phenomenon of a battery gradually recovering some of its lost capacity if
the discharge current suddenly drops to be very small. It is assumed that
relaxation only occurs if the current first sustains for a fast discharge period of
at least TRwith a current larger than IR, and then suddenly drops from above IR
to 0. Let λ be the recovery rate, g the growth ratio that can be eventually
reached; then, during the relaxation period the capacity is governed by:

E ¼ g � E0ð1� e�ktÞ ð6:8Þ

• Power model. In SENSE, the power component is responsible for power
management. A SimplePower component has been implemented, which can
operate on any of five modes; typically, TRANSMIT, RECEIVE, IDLE,
SLEEP, and OFF. Four parameters specify the energy consumption rate for each
of the first four modes, while in the OFF mode there is no energy consumption.
As a response to accepting control signals from networking components, the
power component switches from one mode to another. Current is drawn from
the battery depending on the operating mode.

6.4.15.4 Performance Comparison

The performance of SENSE versus ns-2 version 2.26 was tested in terms of exe-
cution speed and memory efficiency. Simulating flooding was used as the com-
parison benchmark. All nodes run the IEEE 802.11 protocol using only the
broadcast functionality due to the nature of flooding. For the comparison, TCL and
C++ scripts were written to randomly generate traffic and topology files, while both
simulators were modified to read from the same input files.

To compare the execution speeds of both simulators, aWSNcomposed of 60 nodes
with the same random placement over a 1000 m × 1000 m terrain, is devised. Twelve
sources were randomly chosen to send 1000 bytes length packets, at fixed 10 s
intervals. Simulation results revealed that SENSE is consistently twice as fast as ns-2.

The performance difference between ns-2 and SENSE is attributed to the ways
they allocate and release packets. In ns-2, when a packet is being broadcast, every
neighboring node will receive a copy, so the number of packet allocations is equal
to the number of received packets. In SENSE, all receivers always share a packet,
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so the number of packet allocations is equal to the number of sent packets. In a
dense WSN, a node can usually communicate with many neighbors; consequently,
the number of received packets is far greater than the number of sent packets. By
having all sensors use the same packet in memory, assuming that the packet should
not be modified, SENSE improves scalability.

SENSE’s packet sharing model improves scalability by reducing memory use,
allowing thus an improvement over ns-2 and other object-oriented models.
However, the model is simplistic and places some communication limitations on the
user. While implementing the same basic functionality as ns-2, SENSE cannot
match the ns-2 extensions. Whether because it is new, or because it has not
achieved the popularity of ns-2, there has not been research into adding a sensing
model, eliminating physical phenomena and environmental effects.

SENSE, also, is not a match for the parallelization abilities of GloMoSim,
leaving to the user a significant portion of parallelizing. It does, however, give the
user the option to optimize for parallelization or for sequential operation.

Worth mentioning, SENSE is similar to J-Sim in that it is component based, but
it is written in C++ to avoid the perceived inefficiency of Java.

While being in its active development phase, SENSE version 3.0.3 was made
available in April 28th, 2008 (Table 6.1).

6.4.16 Shawn

Shawn (Kroller et al. 2005; Fekete et al. 2007) is an open-source discrete event
simulator developed in 2004 under the SwarmNet project (SwarmNet Project 2004)
funded by the German Research Foundation (DFG). For maximum performance,
Shawn is written in C++ and runs under Windows and many variations of
Unix/Linux. Due to its high customizability, it is extremely fast, and tunable to the
required accuracy. Released under the GNU General Public License (Free Software
Foundation 2007),11 it is currently in active development and successful use by
different universities and companies to simulate WSNs with large number of nodes.

Knowingly, the utmost goal of WSN simulators is to be as “realistic” as possible
by simulating physical effects, data and message encoding, wireless interference
impacts, processor limitations, etc. However, high accuracy comes at the price of
long simulation times. When developing sensor network algorithms at the appli-
cation layer, accuracy is not really required during testing and improving an
algorithm, since at such a step the developer usual concern is results, quality and
whether termination is correct. Furthermore, the large number of factors that
influence the behavior of the whole network renders it nearly impossible to isolate a
specific parameter of interest.

11The GNU General Public License is intended to guarantee the freedom to share and change all
versions of a program, to make sure it remains free software for all its users.
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Shawn uses the concept of discrete time to speed up simulations where node
polling happens at much larger intervals, but events can be scheduled to happen in
between, at any time, with any precision. Non-discrete event simulators often
trigger their simulated nodes periodically, e.g. every few msec. So, even inactive
nodes slow down the simulation, and the effects that happen in less than this fixed
interval may go unobserved.

The central idea of Shawn is replacing low-level effects with abstract and
exchangeable models; the simulation can be used for huge networks in reasonable
time. With the motivation of being fast without compromising realism, Shawn was
built upon design paradigms that make it different from other simulators:

• Simulating the effects. The design rationale behind Shawn is to simulate the
effects of a phenomenon, not the phenomenon itself, by implementing and using
abstract models. By selecting the actual granularity and behavior, a user is able
to adapt the simulation to his specific needs. For instance, instead of simulating
a complete MAC layer including the radio propagation model, its effects such as
packet loss and corruption are modeled in Shawn. This impacts simulations on
several ways; specifically, they get more predictable and meaningful. Also, there
is a huge performance gain, because such a model can often be implemented
very efficiently. On the other hand, this results in the inability to come up with
the detail level that simulators like ns-2 provide with regard to physical layer or
packet level phenomena. For almost all aspects in Shawn, one can choose
between an abstract, a simplified, or a realistic model implementation.
A simplified model is fast, it is needed if the particular aspect is not important in
the current development phase. On the other hand, the realistic model is
preferable when a certain simulation aspect is the focus of investigations such as
radio propagation properties or lower protocol layers issues.

• Simulation of huge networks. A main benefit of the above paradigm is superior
scalability. Networks consisting of millions of nodes can be studied. Successful
simulations were run on standard PC equipment with more than 100,000 nodes.

• Supporting a development cycle. Shawn inherently supports the development
process with a complete development cycle that begins at the initial idea till
reaching a fully distributed protocol. The complete development cycle of sim-
ulations using Shawn is as listed with each step being optional:

– Performing a structural analysis of the problem at hand, given the first idea of
an algorithm, is assumed to precede designing some protocol. To get a better
understanding of the problem in this first phase, it is helpful to look at some
example networks and analyze the network structure and underlying graph
representation.

– A first centralized version of the algorithm is to be implemented to achieve a
rapid prototype version. A centralized algorithm has full access to all nodes
and has a global, flat view of the network. This provides a simple means to
obtain results and a first impression of the overall performance of the
examined algorithm. The results emerging from this process can provide
optimization feedback for the algorithm design.
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– The feasibility of the distributed implementation can be investigated in depth
after achieving a satisfactory state of its centralized version. Only a sim-
plified communication model between individual sensor nodes is used. Since
the goal of this step is to prove that the algorithm can be transformed to a
distributed implementation, the messages exchanged between the nodes are
simple data structures passed in memory. This allows for efficient and fast
implementation that lead to meaningful results.

– Defining the actual protocol and rules for the nodes to run the distributed
algorithm ensues arriving at a fully distributed and working implementation.
Messages that have been in-memory data structures and passed as references
may be represented in the form of individual data packets. With the protocol
and data structures in place, the performance of the distributed implemen-
tation can be evaluated. Performance issues can be explored, such as the
number of messages, energy consumption, runtime, resilience to message
loss and environmental effects.

6.4.16.1 Architecture

As to be detailed below and illustrated in Fig. 6.17, Shawn consists of three major
parts; namely, models, sequencer, and simulation environment.

Sequencer

Starts and parameterizes

Simulation Controller

Simulation Task

Models

Uses

Uses

Transmission model

Edge model

Communication model

Simulation environment

Manages
Offers services

Manages
Offers services

World

Node

Processor

Starts and
parameterizes

Influences

Full access

Manages

Fig. 6.17 Shawn architecture (Kroller et al. 2005)
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Models

To attain reusability, extensibility and flexibility, exchangeable models are used
wherever possible in Shawn. A thorough distinction between models and their
respective implementations supports these goals. Shawn maintains a flexible and
powerful repository of model implementations that can be used to compose sim-
ulation setups simply by selecting the desired behaviors through model identifiers at
runtime. Some models shape the behavior of the virtual world, while others provide
more specialized data. Models that form the foundation of Shawn are the com-
munication model, the edge model and the transmission model:

• The communication model determines for a pair of nodes whether they can
communicate. There are models that represent unit disk graphs for
graph-theoretical studies, models based on radio propagation physics, and
models that resort to a predefined connectivity scenario.

• The edge model uses the communication model to provide a graph represen-
tation of the network by giving access to the direct neighbors of a node. This
leads to two main implications:

– It allows for simple centralized algorithms that require information on the
communication graph. In this respect, Shawn differs from ns-2 and other
simulators, where the check for connectivity is based on sending test
messages.

– Simulations of relatively small networks allow storing the complete neigh-
borhood of each node in memory thus providing remarkably fast replies to
queries. However, huge networks will impose impractical demands for
memory; therefore, an alternative edge model trades memory for runtime by
recalculating the neighborhood on each request, or only caches a certain
number of neighborhoods.

• The transmission model determines the properties of an individual message
transmission. It can arbitrarily delay, drop, or alter messages. Thus, when the
runtime of algorithms is not in question, a simple transmission model without
delays is sufficient. A more sophisticated model may account for contention,
transmission time and errors. Moreover, specialized models provide data for
simulations:

– Random variable model. To test algorithms with different underlying random
variables.

– Node distance estimate model. To mimic distance measurements for local-
ization algorithms among others.

Shawn allows running a separate application on each network node. Moreover,
simulation scenarios can be saved to and loaded from XML files (W3C 2015). The
runtime parameters can be typed manually or loaded from a configuration file.
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Sequencer

The sequencer is the central coordinating unit in Shawn. It configures the simula-
tion, executes tasks sequentially and drives the simulation. It consists of the
Simulation Controller, the Event Scheduler and the straightforward concept of
Simulation Tasks:

• The Simulation Controller is the central repository for all available model
implementations; it drives the simulation by transforming the configuration
input into parameterized calls of Simulation Tasks. These are arbitrary pieces of
code that are configured and run from the simulation’s setup files. Because they
have full access to the whole simulation, they are able to perform a wide range
of jobs. Instance uses are the steering of simulations, gathering data from
individual nodes, or running centralized algorithms.

• The Event Scheduler triggers the execution of events that can be scheduled at
arbitrary discrete points in time.

Simulation Environment

The simulation environment is the home for the virtual world where the simulation
objects reside. All nodes of a simulation run are contained in a single world
instance. The nodes are a container for Processors, which are the workhorses of the
simulations; they process incoming messages, run algorithms and emit messages.

Shawn features persistence and decoupling of the simulation environment by
introducing the concept of Tags. They attach both persistent and volatile data to
individual nodes and the world. They also decouple state variables from member
variables, thus allowing for an easy implementation of persistence. Another benefit
is that portions of a potentially complex protocol can be replaced without modifying
code, because the internal state is stored in tags and not in a special node
implementation.

6.4.16.2 Shawn Compared

Figure 6.18 categorizes some of the most prominent simulation frameworks
according to the criteria of scalability and abstraction level. This representation does
not express the maximal feasible network sizes, but rather reflects the typical
application domain.

Conducted case studies against ns-2 revealed that Shawn approach outperforms
in terms of runtime and memory usage especially for very large networks. To be
noticed, Shawn inability to come up with the detailed level that ns-2 provides with
respect to physical layer or packet level phenomena.
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A special extension entitled JShawn is capable of interpreting simple Java-based
scripts defined in the startup files (Frick 2013). The latest version of Shawn was
uploaded in June 6, 2007 (Table 6.1).

6.4.17 SenSim

The design of WSNs requires the simultaneous consideration of the effects of
several factors such as energy efficiency, fault tolerance, quality of service
demands, synchronization, scheduling strategies, system topology, communication
and coordination protocols. SenSim is a simulator for WSNs based on the discrete
event simulation framework OMNeT++; it is developed at the Sensor Network
Research Group at Louisiana State University (Mallanda et al. 2005).

6.4.17.1 SenSim Design

The topology of the WSN field in SenSim is derived from the simple and com-
pound module concept of the OMNeT++ framework (Sect. 6.4.5). The architecture
of a sensor node is depicted in Fig. 6.19. Each layer of the sensor node is repre-
sented as a simple module of OMNeT++. Each layer has a reference to the
Coordinator. These simple modules are connected according to the layered archi-
tecture of a sensor node. The different layers of the sensor node have gates to other
layers to form the sensor node stack. A simple module with wireless channel
functionality is used to communicate with the compound modules (sensor nodes)
through multiple gates. The functionalities provided by each module are described
below with the hardware model of a sensor node composed of the radio, CPU and
battery modules.
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Fig. 6.18 Application levels
of simulators (Kroller et al.
2005)
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Coordinator Module

Coordinator module has the functionalities that enable coordinating the activities of
the hardware and the software modules of the sensor node. Through the
Coordinator any layer may access and update the properties of other layers. For
example the battery module needs to be informed on the packets transmitted or
received by the physical module so as to update the energy consumption at the
node. During simulation the Coordinator class is responsible for registering the
sensor node to the sensor network. Registering a sensor node indicates that it is up
and functioning. On the other hand when the available energy is completely
depleted, the node is unregistered from the network.

Hardware Model

The hardware module encompasses several functions as laid out in the bullets
below:

• Battery model. This module is an essential component of the sensor node; it
supplies the necessary energy to CPU module, radio module, and the sensors
used to sense the environment. At regular intervals, the module updates its
remaining energy depending on the type of battery model used. Various models
such as linear battery model, and discharge rate dependent model are being
implemented.

• CPU model. The nodes in a sensor network are usually equipped with low-end
processors or microcontrollers; their power consumption for performing various
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Fig. 6.19 Structure of the sensor node in SenSim (Mallanda et al. 2005)
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operations should be very limited. A processor needs different levels of energy
consumption in the idle, sleep and active states.

• Radio model. This module is used to characterize the antenna property of a
node.

Wireless Channel Model

The wireless channel module controls and maintains all potential connections
between sensor nodes. Statistic connections are provided from all the nodes to the
wireless channel module and from the module to all the nodes in the NED file.
These connections enable the sensor nodes to exchange data and communicate with
each other. Any message from a node is sent to all the neighbors within its
transmission region with a delay d, where d is

Distance between the communicating sensor nodes=Speed of light:

Various radio propagation models are used to predict the received signal power
of each packet. These models, as derived by the wireless channel module, affect the
communication region between any two nodes:

• Free space propagation model. The free space propagation model assumes an
ideal propagation condition where there is only one clear line-of-sight path
between the transmitter and receiver.

• Two-ray ground reflection model. A single line-of-sight path between two
mobile nodes is seldom the only means of propagation. The two-ray ground
reflection model considers both the direct-path and a ground-reflection path; it
gives more accurate prediction at a long distance than the free space propagation
model.

Sensor Node Stack

The simple module at the highest level of the hierarchy of the sensor node,
specifically sensor application, simulates the behavior of the application layer. New
applications can be incorporated to this module.

The simple network module simulates the packets sent and received by the nodes
in the network; it initially receives application layer messages and adds to them the
network header. The particular features of this layer depend on the protocol
implementation. Directed diffusion with geographic and energy aware routing
(GEAR) protocol is implemented at the network layer. The structure of a packet
sent from the network layer to the MAC layer has a field for the next hop in the
route.
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The MAC layer provides the interface between the physical layer and the net-
work layer. It has the basic functionality of media access and supports the IEEE
802.11b implementation. Such a modular structure of entities simulated with
OMNeT++ makes SenSim more flexible as compared to ns-2.

Based on simulations with the IEEE 802.11 MAC and directed diffusion inte-
grated with GEAR, it was found that SenSim is at least an order of magnitude faster
than ns-2 with a more efficient memory use.

Sensim 3.0 is available for free download (Table 6.1).

6.4.18 PAWiS

The power aware wireless sensors (PAWiS) simulation framework (Weber et al.
2007; Glaser et al. 2008) built at the Institute of Computer Technology, Technical
University of Vienna, Austria (TU Wien 2015), helps developing, modeling, sim-
ulating, and optimizing WSN nodes and networking protocols. Concurrent simu-
lation of the power consumption of every sensor node is provided. Moreover, it
supports detailed power reporting and modeling of wireless environments. PAWiS
reduces the overall power consumption by carefully optimizing various design
aspects within the context of the application, which impels new applications that
would not be possible otherwise due to insufficient battery lifetime or the limited
energy scavenging systems. As shown in Fig. 6.20 the PAWiS simulation frame-
work is based on OMNeT++ the object oriented C++ based discrete event simulator
(Sect. 6.4.5).
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PAWiS framework

C++
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CPU Power
management

Misc Radio

Air

OMNeT++

Programmer

Fig. 6.20 Structure of the PAWiS simulation framework (Weber et al. 2007)
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The PAWiS framework offers several capabilities:

• Enabling researchers to program models of a wide variety of abstraction.
• Modeling the details of WSN nodes as well as the communication between

them, with a distinction between software and hardware tasks.
• Accurately elaborating power simulation. In WSN nodes, components with

different supply voltages are combined necessitating low dropout regulators
(LDOs) and DC/DC converters. PAWiS allows modeling this hierarchical
supply structure as well as the efficiency factor of the converters.

• Providing powerful analysis and visualization techniques to evaluate the sim-
ulation results and proceed towards optimization.

• Supporting cross-layer design to exploit the synergy between layers.
• Modeling RF communication according to the real-world wave propagation

phenomena. Models include interferers, noise, and attenuation due to distance.
No preset topology is needed as packets are transmitted to all nodes within
range. The network topology originates from the link quality and the routing
algorithm, thus routing protocols, especially ad hoc protocols, can be imple-
mented. The transmission model is independent of the underlying modulation
technique enabling the simulation of any type of modulation.

• Modeling dynamic behavior, such as mobility and environmental dynamics, via
an embedded scripting language.

6.4.18.1 Structure and Functions

In PAWiS, user-defined models are implemented as C++ classes (Fig. 6.20). Node
composition and network layout along with environmental and setup parameters are
specified in configuration and script files. The modules are compiled and linked
with the simulation kernel, resulting in the simulation application. A GUI-based
interface enables visual debugging of the communication processes of the model on
a per-event basis at simulation runtime. An optional command line-based interface
can be utilized for increased simulation performance.

PAWiS framework is primarily focused on simulating inter- and intra-node
communication (Grammarist 2014).12 Additionally, fine-grained aspects, such as
CPU instruction set, can be easily emulated as in ATEMU (Sect. 6.4.7). However, a
tradeoff between simulation details and execution performance is to be considered
when the number of network nodes increases (Heidemann et al. 2001). The
obtained model contains information regarding the functional description and
architecture specifications along with low-level implementation details. Simulation
results comprise timing and power consumption profiles as well as event records.

12The prefix inter- means between or among different nodes. The prefix intra- means within a
node, between CPU and memory for instance.
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Jointly processing events from OMNeT++ and SystemC (Accellera 2015)13 is
achievable by combining the OMNeT++ and the SystemC simulation kernels.

Modularization

A wireless sensor node is typically composed of multiple modules, specifically,
CPU, timer, radio, and network layers. Every module is based on one or more tasks.
PAWiS framework defines two types of tasks. The first task type models a hardware
component, such as timer, and ADC, whereas the second type is a software task,
such as application, routing, MAC, and physical layer. Every module is imple-
mented as a C++ class derived from a framework base class. Tasks are implemented
as methods within a module class.

CPU

In a sensor node, the CPU executes software tasks. Noteworthy, multiple software
tasks cannot run in parallel, since only one CPU is available. The CPU module in
PAWiS framework ensures that only one task’s code simulation is executed at a
time. To model the power consumption and timing behavior of software tasks, the
PAWiS simulation framework splits the simulation into two parts. The functional
part is implemented in the C++ method of the task, and the timing and power
consumption part that is delegated to the CPU module.

The PAWiS simulation framework supports modeling a CPU which scales
processing time and power consumption according to its individual properties, and
a CPU which offers special low-power modes. A high accuracy modeling of the
CPU considers the percentage of integer, floating point, memory access, and flow
control operations.

Timing

Modeling time delays consider whether they occur in firmware or hardware mod-
ules. For hardware modules the framework provides a simple wait method to sus-
pend execution for a certain amount of time. Several distinct implementations of the
wait method are available with support for fixed and conditional timeouts. On the
other hand, if delays are needed in software, the corresponding module has to use a
loop, or a similar construct, to wait for a certain time and therefore utilize the CPU to

13SystemC is a set of C++ classes and macros, which provide an event-driven simulation interface,
that enable a designer to simulate concurrent processes described using plain C++ syntax.
SystemC processes can communicate in a simulated real-time environment using signals of all the
data types offered by C++, by the SystemC library, as well as user defined.
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achieve the delay. Moreover, the CPU can be put to a low-power mode, which stops
execution too, and therefore delays until an external or timer event occurs.

Environment and Air

All sensor nodes are deployed at 3D positions within the environment to represent
the outer world and surroundings of all nodes including the RF channel. Besides
nodes, objects like walls, floors, trees, interferers, heaters, light sources, global
properties, and more are defined within the environment. The environment can be
configured with configuration and scripting files.

The air is a main part of the environment to handle RF channels that are defined
by 3D node placement in space and obstacles between the nodes. In the PAWiS
simulation framework, it is possible to model effects like an RF signal subject to
wave propagation phenomena such as attenuation, interference, noise, reflection,
refraction, and fading (multipath propagation).

Alike to a wired network, packet transmission is modeled without a predefined
topology. Specifically, every RF message is transmitted to all other nodes; the
received RF power is calculated from the transmitter power, antenna properties, and
the distance and obstacles between the transmitter and the receiver. The network
topology results from the reachability between nodes, which is limited by the
minimum received signal quality.

Power Simulation

A key feature of PAWiS is simulating the power consumption of tasks. A central
power meter object logs the power consumption values that are reported by all
modules of all nodes. Only tasks that simulate dedicated hardware directly report
power consumption. Different electrical behaviors are proposed, that is, the current
I depends in different ways on the supply voltage U. Software tasks report their
CPU utilization; the CPU module calculates and reports their power consumption.
Reporting power consumption is accomplished by calls to special methods offered
by PAWiS framework classes.

Worth noting, modules of a sensor node do not consume constant power
throughout their lifetime. The CPU consumes less power when being in sleep mode
(and hence does not execute instructions); also, the power consumption of the radio
differs whether in transmit or in receive, in phase locked loop (PLL) or in idle
mode. The model developer has to report new power consumption figures every
time the state of the module changes.

Power simulation values are not evaluated during the simulation run; rather they
are analyzed and visualized using the data post-processing tool when the simulation
is over.
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Dynamic Behavior

The PAWiS framework supports modeling dynamic behavior such as mobility and
environmental dynamics via an embedded scripting language. Scripting languages
are platform independent and need a virtual machine for execution. The scripting
language Lua14 has been adopted due to its simplicity, extensibility, prevalent
usage, fast execution, and maturity (PUC-Rio 2015). Simple topologies can be
setup with the OMNeT++ intrinsic NED language, but more complex topologies
can be easier created utilizing PAWiS scripts.

6.4.18.2 Optimization

Several strategies for the optimization of the wireless sensor system are available:

• System level optimization. This includes the node composition and modifica-
tions of the whole system behavior like choosing different network layout or
application patterns. System level optimization results in an adequate system
architecture.

• Cross-layer optimization. More than one network layer is modified at a time.
While if a single module updating itself would degrade the node performance,
the interaction of all module updates leads to an improvement of the entire node
performance.

In PAWiS deciding which aspects for model optimization can be based on the
pure function of the model. With the GUI it is possible to see wrong or insufficient
behavior during runtime. Additionally, the proposed data post-processing tool
permits to analyze the power consumption profile of nodes and distinct modules; it
can also be used to check the timing behavior and progression of certain events.

The PAWiS simulation framework version 2.0 was released on July 1st, 2008,
(Table 6.1).

6.4.19 MSPsim

MSPsim was developed in the Swedish Institute of Computer Science (SICS)
(Eriksson et al. 2007). MSPsim, a Java-based, extensible instruction level emulator
for the MSP430 microcontroller (Texas Instruments 2011), is intended to be a
component in a larger sensor network simulation system supporting cross-level
simulation (Osterlind et al. 2006). MSPsim simulates unmodified target platform

14Lua (pronounced LOO-ah) means “Moon” in Portuguese. As such, it is neither an acronym nor
an abbreviation, but a noun. Lua is designed, implemented, and maintained by a team at PUC-Rio,
the Pontifical Catholic University of Rio de Janeiro in Brazil.
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firmware. Also, MSPsim is a part of the Contiki operating system (Doxygen
2012)15 and can be used in cross-level simulations conducted with the Cooja
platform (Contiki Developers 2015).16

MSPsim extensibility means that it is adaptable to new sensor boards while
requiring no more than the implementation of a few Java classes. Easily extensi-
bility with peripheral devices makes it possible to simulate various types of
MSP430 based sensor nodes. As an instruction-level simulator, it is easy to achieve
accurate timing simulation. MSPsim also provides a graphical representation of the
sensor board in an on-screen window to verify that an application is correctly
simulated.

Version 0.97 of MSPsim was made available in April 30th, 2009 (Table 6.1).

6.4.20 Castalia

Castalia (Castalia 2013) was developed in C++ at the Australian National
Information and Telecommunications Technology (ICT) (Australian Government
2015). The name Castalia comes from the Greek mythology. Castalia was a nymph
whom Apollo transformed into a fountain at Delphi (the place where all important
oracles came from, in ancient Greece). All oracle seekers stopped and washed their
hair in the fountain. Metaphorically, for the designer’s purposes, it can be seen as a
representation of the truth.

Castalia is a simulator for WSNs, BANs and generally networks of low-power
embedded devices. It is based on the OMNeT++ platform and can be used by
researchers and developers who want to test their distributed algorithms and/or
protocols in realistic wireless channel and radio models, with a realistic node
behavior especially relating to radio access. Since it is highly parametric, Castalia
can also be used to evaluate different platform characteristics for specific applica-
tions, and can simulate a wide range of platforms. The main features of Castalia are:

• Advanced channel model, based on empirically measured data, that has several
characteristics:

– Defines a map of path loss, not simply connections between nodes.
– It is a complex model for temporal variation of path loss.
– It fully supports mobility of the nodes.
– Interference is handled as received signal strength, not as separate feature.

15Contiki is an open source, highly portable, multi-tasking operating system for memory-efficient
networked embedded systems and wireless sensor networks. Contiki is designed for microcon-
trollers with small amounts of memory.
16Cooja is the Contiki network simulator, it allows large and small networks of Contiki motes to be
simulated.
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• Advanced radio model based on real radios for low-power communication with
support for:

– Probability of reception based on SINR, packet size, modulation type. PSK
and FSK are considered; custom modulation is allowed by defining
SNR-BER curve.

– Multiple TX power levels with individual node variations allowed.
– States with different power consumption and delays switching between them.
– Flexible carrier sensing (polling-based and interrupt-based).

• Extended sensing modeling capabilities:

– Highly flexible physical process model.
– Sensing device noise, bias, and power consumption.
– Measuring node clock drift, CPU power consumption.
– Availability of MAC and routing protocols.
– Designed for adaptation and expansion. With proper modularization,

Castalia was designed right from the beginning so that the users can easily
implement/import their algorithms and protocols into Castalia while making
use of the features the simulator is providing. The modularity, reliability, and
speed of Castalia are partly enabled by OMNeT++.

Noteworthy, Castalia is not sensor platform-specific; it is meant to provide a
generic reliable and realistic framework for the first order validation of an algorithm
before moving to implementation on a specific sensor platform. Castalia is not
useful if one would like to test code compiled for a specific sensor node platform.
For such usage there are other simulators/emulators available, e.g., Avrora
(Sect. 6.4.8).

Castalia version 3.2 was released in March 3, 2011 (Table 6.1).

6.4.21 MiXiM

OMNeT++ provides a powerful and clear simulation framework, but it lacks the direct
support and a concisemodeling chain forwireless communication (Sect. 6.4.5).Mixed
simulator (MiXiM) fills such gap by joining and extending several existing simulation
frameworks developed for wireless and mobile simulations in OMNeT++ (Köpke
et al. 2008; MiXiM Developers 2011). MiXiM is a merger of several OMNeT++
frameworks written to support mobile and fixed wireless networks such as WSNs,
BANs, ad hoc networks, vehicular networks, etc. The built upon previous MiXiM
frameworks are the Channel Simulator (ChSim) by Universitaet Paderborn
(Universitat Paderborn 2010), MAC Simulator by Technische Universiteit Delft
(University of Twente/Technical University of Delft 2005), Mobility Framework
(MF) by Telecommunication Networks Group at Technische Universitaet Berlin
(Löbbers and Willkomm 2007), and Positif Framework (PF) by Technische
Universiteit Delft (University of Twente/Technical University of Delft 2005).
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MiXiM offers detailed models of radio wave propagation, interference estima-
tion, radio transceiver power consumption and wireless MAC protocols such as
Zigbee. Also, MiXiM provides a user-friendly graphical representation of wireless
and mobile networks in OMNeT++ that supports debugging and defining complex
wireless scenarios. MiXiM extensive functionality and clear concept may motivate
researchers to contribute to this open-source project.

Noticeably, discrete event simulators like OMNeT++ are standard tools to study
protocols for wired and wireless networks. In contrast to the wired channel, the
wireless channel has a complex influence on the protocol performance; it requires
in-depth knowledge of the level of detail necessary to make a sound performance
analysis. The basic components of MiXiM can be divided into five groups:

• Environment models. In a simulation, only relevant parts of the real world
should be reflected, such as obstacles that hinder wireless communication.

• Connectivity and mobility. When nodes move, their influence on other nodes in
the network varies. The simulator has to track these changes and provide an
adequate graphical representation.

• Reception and collision. For wireless networks simulations, movements of
objects and nodes have an influence on the reception of a message. The reception
handling is responsible for modeling how a transmitted signal changes on its way
to the receivers, while taking transmissions of other senders into account.

• Experiment support. The experimentation support is necessary to help the
researcher compare the results with an ideal state, find a suitable template for his
implementation, and to support different evaluation methods.

• Protocol library. A rich protocol library enables researchers to compare their
ideas with already implemented ones.

Logically, MiXiM can be divided into two parts:

• The base framework that provides the general functionality needed for almost
any wireless simulation, such as connection management, mobility, and wireless
channel modeling.

• The protocol library complements the base framework with a rich set of standard
protocols, including mobility models.

In order to have clearly defined interfaces between the base framework and the
protocol library, MiXiM provides a base module for the OMNeT++ modules.
Following this concept makes it easy to implement new protocols for MiXiM while
facilitating reusability. An architectural overview of the modeling and the imple-
mentation of the physical layer within the MiXiM simulation framework are offered
in (Wessel et al. 2009).

6.4.21.1 MiXiM Base Models

Simulating wireless communication systems requires a suitable abstraction of the
environment, the radio channels, and the physical layer. This section presents the
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basic modeling approaches and the assumptions behind them, as well as imple-
mentation relevant aspects such as model abstraction level and model support for
trading-off accuracy and calculation complexity.

Environmental Model

Simulations are usually carried out on a limited area, a playground, on which nodes
and objects are placed. Nodes represent the wireless devices with their protocol
stack and are modeled as isotropic radiators that do not have a physical dimension.
An object, in contrast, is anything with a physical dimension that resides in the
propagation environment and can possibly attenuate a wireless signal. Both, objects
and nodes may be mobile. Nodes may even be combined with objects to model a
sensor node mounted on a car. The term entity is used to refer to both, nodes and
objects.

The mobility of objects is a time-continuous process, which raises a trade-off
between accuracy and computational complexity. In MiXiM, the user can choose
the level of accuracy and, thus the computational complexity of modeling mobility.
Mobility also requires to handle collisions with entities and to handle border
crossing of the playground. Among the situations that might involve collisions and
border crossing there are:

• A collision may cause an error.
• A new position may be randomly chosen upon collision and the entity is placed

there afterwards, as long as this position does not coincide with another entity.
• The entity may be reflected in an angle that it had when it collided.

MiXiM provides the Object Manager as a central authority for managing objects
in the propagation environment. Objects are characterized by dimensions, position,
optionally by angle of rotation, and by frequency-dependent attenuation factors. An
object that obstructs the line-of-sight between any pair of interconnected nodes
causes additional signal losses during transmission (Fig. 6.21). Since entities can be
mobile, intersections of the line-of-sight of two nodes with one or more objects
must be determined at runtime.

An object within the line-of-sight between
two nodes s and b yields a weaker received
signal than that of a non-obstructed pair s
and a at the same distance.

s a

b

Fig. 6.21 Signal loss (Köpke et al. 2008)
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Connection Modeling

In contrast to wired simulations, connectivity modeling is a challenging task in
wireless simulations. In wired simulations, two nodes are connected by wires,
which can be easily modeled, e.g. in OMNeT++ by connections. In wireless
simulations, however, the “channel” between two nodes is the air, which is a
broadcast medium and cannot be easily represented by one connection. MiXiM
divides the connection modeling into two parts as described in the two coming
subsections, the connectivity between nodes, and the wireless channel and its
attenuation property.

Nodes Connectivity

Theoretically, the signal sent out by a node affects all other nodes in the simulation,
if operating in the same frequency range. However, when the signal is attenuated,
the received power at nodes far away from the sending node may be as low to be
negligible. In order to reduce the computational complexity in MiXiM, nodes are
connected only when they are within the maximal interference distance. The
maximal interference distance is a conservative bound on the maximal distance at
which a node can still possibly disturb the communication of a neighbor. A node
that wants to receive a message from a communication peer, also receives all
interfering signals, and can thus decide on the interference level and resulting bit
errors.

The presence of objects in the propagation environment also impacts the max-
imal interference distance. As illustrated in Fig. 6.21, objects may shield two nodes
from each other.

Wireless Channel Models

MiXiM’s channel models support multiple parallel radio channels in frequency (e.g.
in terms of OFDM subcarriers), and space (e.g. as in multi-antenna systems). For
each of these channels, radio propagation effects are expressed as a time variant
factor of the linear instantaneous signal-to-noise ratio (SNR) of the received signal.
Although such SNR-based models abstract the exact signal behavior, such as
current phase shift, they support the separate calculation of channel effects at
various time-scale. This enables to trade-off between calculation complexity and
model accuracy by selecting the modeled effects and time-scale, specifically,
reducing complexity by modeling channel variation per packet instead of per
modulation symbol. Nonetheless, if more accuracy is required and increasing cal-
culation complexity is feasible, MiXiM’s modular structure enables to include
models operating on digital signal level such as modulation symbols. However, at
SNR abstraction level, MiXiM already includes widely accepted channel models
for path loss, shadowing, large and small-scale fading (Simon and Alouini 2005).
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Physical Layer Models

At the physical layer, essentially the used modulation and forward error correction
(FEC) coding and decoding functions define the bit error rate and throughput of a
system. As for wireless channels, the effect of these functions can be modeled at
SNR-level (Lichte and Valentin 2008).

MiXiM last version is 2.3, it was released in March 8, 2013 (Table 6.1).

6.4.22 NesCT

The NesCT project (OMNeT++ Wiki 2011) has been supported by Featherlight
project at University of Twente, the Netherlands (University of Twente 2014), and
European Embedded WiseNt project (Information Society Technologies 2006) at
Wireless Networks Laboratory Yeditepe University, Turkey (Wireless Networks
Laboratory 2015). NesCT is a programming language translator that uses NesC
programming language (Gay et al. 2003) as an input and produces C++ classes for
OMNeT++. The primary aim is to provide a new simulation environment and speed
up development.

NesCT enables to write code in NesC using TinyOS components while still
making use of functionalities from OMNeT++ (Sect. 6.4.5) and Mobility
Framework (MF) by Telecommunication Networks Group at Technische
Universität Berlin (Löbbers and Willkomm 2007). Such approach grants the
advantage of writing code for actual hardware. With small modifications,
researchers can test their implementation on a given hardware. Original NesC code
is translated into C++ classes.

Worth noting, NesCT relies on other available simulation frameworks for
physical and MAC layers. Thus, implementing both layers at NesCT would create
needless efforts since the main focus of NesCT is to reuse TinyOS components with
the available frameworks.

Currently, NesCT is compatible with OMNeT++ 4.2 and TinyOS 1.1.x releases.
A NesCT release has been issued on August 4, 2011 (Table 6.1).

6.4.23 SUNSHINE

Sensor Unified Analyzer for Software and Hardware in Networked Environments
(SUNSHINE), is developed at Virginia Polytechnic Institute and State University
(Virginia Tech 2015). SUNSHINE is an open-source scalable hardware-software
emulator for sensornet applications; it effectively supports joint evaluation and
design of sensor hardware and software performance in a networked context (Zhang
et al. 2011). SUNSHINE captures the performance of network protocols, software
and hardware up to cycle-level accuracy through its seamless integration of three
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available sensornet simulators, specifically, a network simulator TOSSIM
(Sect. 6.4.6), an instruction-set simulator SimulAVR (Rivet and Klepp 2012), and a
hardware simulator GEZEL (Schaumont et al. 2006). SUNSHINE handles several
sensornet simulation challenges, including data exchanges and time synchroniza-
tions across different simulation domains and simulation accuracy levels.
SUNSHINE also provides hardware specification scheme for simulating flexible
and customized hardware designs. Experimentation demonstrated that SUNSHINE
is an efficient tool for software-hardware co-design in sensornet research.

SUNSHINE is developed to overcome limitations of available
simulators/emulators. Sensornet simulators, such as TOSSIM (Sect. 6.4.6),
ATEMU (Sect. 6.4.7), and Avrora (Sect. 6.4.8) focus on evaluating the designs of
communication protocols and application software, while assuming a fixed hard-
ware platform that cannot accurately capture the impact of alternative hardware
designs on the performance of network applications. As such, sensornet researchers
cannot easily configure and evaluate diverse joint software-hardware designs and
are bound within the constraints of available fixed sensor hardware platforms. This
lack of simulator support makes it difficult to improve the sensor hardware plat-
forms and their applications.

6.4.23.1 SUNSHINE Components

SUNSHINE buildup is based upon three sturdy constituents:

• TOSSIM. An event-based simulator for TinyOS-based WSNs (Sect. 6.4.6).
TOSSIM is able to simulate a complete TinyOS-based sensor network as well as
capturing the network behavior and interactions. TOSSIM provides
functional-level abstract implementations of both software and hardware modules
for several sensor node architectures, such as the MICAz mote (Crossbow 2006).
In TOSSIM, sensor nodes’ behaviors are regarded as functional-level events that
are kept sequentially in TOSSIM’s event queue according to the events’ times-
tamps. These events are processed in ascending order of their timestamps.
Even though TOSSIM is able of capturing the sensor motes behaviors and
interactions, such as packet transmission, reception and packet losses at a high
fidelity, it does not consider the sensor motes processors’ execution time.
Therefore, TOSSIM cannot capture the fine-grained timing and interrupt prop-
erties of software code.

• SimulAVR. An instruction-set simulator that supports software domain simu-
lation for the popular Atmel AVR family of microcontrollers (Rivet and Klepp
2012). SimulAVR provides precise timing of software execution and can sim-
ulate multiple AVR microcontrollers in one simulation. SimulAVR is integrated
into the hardware domain simulator in SUNSHINE to evaluate interactions
between sensor hardware and software. As SimulAVR does not support simu-
lating sleep or wakeup modes of sensor nodes, they are added to SUNSHINE to
provide simulation support for energy saving mode of sensor networks.
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• GEZEL. A hardware domain simulator that includes a simulation kernel and a
hardware description language (Schaumont et al. 2006). GEZEL is an open-source
tool that offers stand-alone simulation, cosimulation, and code-generation into
synthesizable (VHDL) code.Throughuser-defined library-block extensions inC++,
new cosimulation interfaces can be added.
In GEZEL, a platform is defined as the combination of a microprocessor con-
nected with one or more other hardware modules such as coprocessor or radio
chip. To simulate the operations of such a platform, there should be a combination
of software simulation domain to capture software executions over the micro-
processor, and hardware simulation domain that captures the behaviors of hard-
ware modules and their interaction with the microprocessor. GEZEL is able of
providing a hardware-software co-design environment that seamlessly integrates
the hardware and software simulation domains at cycle-level. GEZELmodels can
be directly translated into a hardware implementation, which permits determining
the functional correctness of that custom hardware within actual system context,
and monitoring cycle-accurate performance metrics for the design.
Among several applications, GEZEL has been used for cryptographic hashing
modules (Knezzevic et al. 2008), and formal verification of security properties
of hardware modules (Köpf and Basin 2007).

6.4.23.2 SUNSHINE Functioning

By integrating TOSSIM, SimulAVR and GEZEL, SUNSHINE enables simulating
sensornet in network, software, and hardware domains. A user of SUNSHINE has
thus a twofold choice:

• Selecting a subset of sensor nodes to be emulated in hardware and software
domains. These nodes are called cycle-level hardware-software co-simulated
(co-sim) nodes; their cycle-level behaviors are accurately captured by
SimulAVR and GEZEL.

• Simulating other nodes in network domain by TOSSIM and capturing only the
high-level functional behaviors. These nodes are named TOSSIM nodes.

SUNSHINE is able of running multiple co-sim nodes with TOSSIM nodes in one
simulation. The network topology in the right side of Fig. 6.22 illustrates the func-
tioning of SUNSHINE. TOSSIM nodes are simulated in network domain, while co-
sim nodes are emulated in software and hardware domains.When running simulation,
TOSSIM nodes and co-sim nodes interact with each other according to the network
configuration and sensornet applications. Cycle-level co-sim nodes detail sensor
nodes’ behaviors, such as hardware behavior, but are relatively slower to simulate.
On the other hand, TOSSIM nodes do not simulate many details of the sensor nodes
but are simulated much faster. The mix of cycle-level simulation with event-based
simulation guarantees that SUNSHINE can achieve the fidelity of cycle-accurate
simulation, while still benefiting from the scalability of event-driven simulation.
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Fig. 6.22 SUNSHINE functioning (Zhang et al. 2011)

The simulation process in SUNSHINE as illustrated in Fig. 1 goes through
several steps:

• For co-sim nodes that emulate real sensor motes, executable binaries are com-
piled from TinyOS applications using nesC compiler (ncc) and executed directly
over these co-sim nodes that emulate a hardware platform at cycle level.

• TinyOS executable binaries can be interpreted by SimulAVR,
instruction-by-instruction. At the same time, GEZEL interprets the sensor node’s
hardware architecture description, and simulates the AVR microcontroller’s
interactions with other hardware modules at every clock cycle. The GEZEL
simulated radio chip module provides an interface to TOSSIM that models the
wireless communication channels. Through these wireless channels, co-sim nodes
interact with other sensor nodes, whether simulated as co-sim nodes by GEZEL
and SimulAVR, or as functional-level nodes by TOSSIM. The correct causal
relationship that rules the interactions betweenTOSSIMnodes and co-sim nodes is
based on the timing synchronization and cross-domain data exchange techniques.

6.4.23.3 Cross-Domain Interface

To permit the simulated AVR microcontroller exchange data with the simulated
hardware modules, GEZEL creates cycle accurate hardware-software co-simulation
interfaces according to the AVR microcontroller’s datasheet (Crossbow 2002). With
the support of GEZEL’s co-simulation interfaces, SUNSHINE forms an emulator
(P-sim) that captures the sensor nodes’ hardware-software interactions and
performance.
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Network simulator TOSSIM and hardware-software emulator, P-sim, are inte-
grated in SUNSHINE for the sake of scalability. Proper synchronization is achieved
to obtain a match in simulation time between event-driven simulation and
cycle-level simulation. Functionality, SUNSHINE includes a time synchronization
scheme as depicted in Fig. 6.23. TOSSIM uses the Event Scheduler to handle all the
network events, while P-sim uses the Cycle-level Simulation Engine to control at
every clock cycle the simulation of the AVR microcontroller and the hardware
modules. In the Event Queue, all network events are sorted according to timestamps
that record their occurrence time. The Event Scheduler processes the head-of-line
(HOL) event in the Event Queue only when the Cycle-level Simulation Engine has
progressed to the event’s timestamp. By selecting either an event or a cycle-level
simulation to be simulated next, SUNSHINE maintains the correct causality
between different simulation schemes in the whole network.

As shown in Fig. 6.23, SUNSHINE also provides synchronization for co-sim
nodes in sleep mode by maintaining an Active Node List that holds the active nodes
to be simulated with cycle-level accuracy. The Event Scheduler adds or removes
nodes from the list upon node wakeup or sleep events. At each cycle-level simu-
lation step, the Cycle-level Simulation Engine only processes a clock cycle for the
nodes of the Active Nodes List.

For the integration of the simulators working in three different domains,
SUNSHINE implements interfaces for cross-domain data exchange between
SimulAVR and GEZEL, and between hardware-software emulator P-sim with
event-based simulator TOSSIM. SUNSHINE experimentation integrates TinyOS
version 2.1.1, SimulAVR and GEZEL version 2.5.

6.4.23.4 SUNSHINE Compared

Contending with TOSSIM, Avrora, and ATEMU, SUNSHINE provides hardware
flexibility and extensibility, permits user-defined platform architecture, and allows
transition between event-based and cycle-accurate simulation.

SUNSHINE download is available (Table 6.1).

Event Scheduler

Event Queue

Cycle-level
Simulation

Engine

Node 4
Node 5 

Node 25
Node 8 

. 

. 

Active Nodes List

Run next event Run next cycle

Timestamp of the
HOL event (t1)

Time for
executing the
next cycle (t2)

t1 > t2

Yes No

Fig. 6.23 Synchronization scheme (Zhang et al. 2011)
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6.5 Conclusion for Takeoff

In this chapter an in depth study of simulators and emulators has been presented,
with care accorded to their features, implementation and use. Since emulators are
hardware dependent, selecting one to use is straightforward. On the other hand,
with the wide variety of simulators, the choice is rather complex, and is subject
mainly to how is the simulator easy to use, and fulfilling the model requirements.
Remarkably, different simulators do not give similar results for the same model due
to their different underlying features and implementations.

Simulation has proven to be a valued tool in many areas where analytical
methods are not applicable and experimentation is not feasible. Researchers gen-
erally use simulation to analyze system performance prior to physical design or to
compare multiple alternatives over a wide range of conditions. Noteworthy, errors
in simulation models or improper data analysis often produce incorrect or mis-
leading results. Although, there exists an extensive row of performance evaluation
tools for WSNs, it is impractical to have an all-in-one integrated tool that simul-
taneously supports simulation, emulation and testbed implementation.

In-fact there is no all-in-one stretchy simulator for WSNs. Each simulator
exhibits different features and models, each has advantages and weaknesses.
Different simulators are appropriate and most effective in typical conditions, so in
choosing a simulation tool from available picks it is fruitful to elect a simulator that
is best suited for the intended study and targeted application. Also, it is recom-
mended to weight the pros and cons of different simulators that do the same job, the
level of complexity of each simulator, availability, extensibility and scalability.
Usually, WSNs applications consist of a large number of sensor nodes; therefore it
is recommended to settle on the simulation tool capable of simulating large-scale
WSNs. Essentially, the reported use besides simulation results of a simulator should
not be unobserved before deciding which simulator to prefer. The exercises at the
end of the chapter are designed to pinpoint the simulators comparison and selection
criteria suitable to the model under study.

As projected in this chapter, many simulators have been developed in the past
15 years to account for the broad the range of applications entailed in the
unbounded WSNs realm. Each of the simulators targets a specific application
domain in which it can deliver best results. The semantics of what is actually meant
by “simulation” varies heavily among researchers in their publications, depending
on the goals of the simulations in question. This sometimes results in focusing on
the simulation of physical phenomena such as radio signal propagation character-
istics and ISO/OSI layer protocols, e.g., media access control (MAC). On the other
hand, other approaches focus on algorithmic aspects and hence they abstract lower
layers. The first approach delivers a precise image of what happens in real networks
and how the protocols interact with each other at the anticipated cost of
resource-demanding simulations, leading accordingly to scalability problems. The
second approach employs abstract models of the real world, instead of simulating it
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down to the bit level. Important questions, thus, arise about the analysis of the
network structure as well as the design and evaluation of algorithms, not protocols.

When bottom up building a simulator, many decisions need to be made.
Developers must consider the pros and cons of different programming languages,
whether simulation is event-based or time-based, component-based or
object-oriented architecture, the level of complexity of the simulator, features to
include and to not include, use of parallel execution, ability to interact with real
nodes, and other design choices that are pertinent to a typical application.
Weighting decisions can thus be summarized as below listed:

• For sake of efficiency, most simulators use a discrete event engine.
• Component-based architectures scale significantly better than object-oriented

architectures, but are more difficult to implement in a modularized way.
Defining each sensor as its own object ensures independence amongst the nodes.
The ease of swapping-in new algorithms for different protocols also appears to
be easier in object-oriented designs. However, with careful programming,
component based architectures may perform more efficiently.

• With the dominant use of C++ and Java, the use of the implementation language
depends on the intended application; nevertheless, there is no clear cut answer
that favors a language or make it a default simulation language.

• Generally, the level of complexity built into the simulator has a lot to do with
the goals of the developers and the time constraints imposed. It is satisfactory
and time efficient if the simulator job is achieved, using a simple MAC protocol
or with less protocols.

• Other design choices are dependent on intended situation, programmer ability,
and available design time.

• A simulator is a professional work intended for researchers at large, it should
encompass as much models as possible and provide a benchmark for compar-
ison between different simulation studies. The major difference, between using a
professional simulator and a modeling program written for a specific research, is
trust. A custom made modeling program may provide biased or incomplete
comparisons between a proposed work and the literature, which blemishes
results credibility. Focusing on one’s research is a tedious task that should not be
deviated by writing a modeling program that is hard by itself and cannot match
the professional simulator functionalities and efficiency.

• A simulator is a research necessity, when building a simulator; developers’
efforts must match researchers concerns of clarity and ease of use, as well as
GUI facilities. Some researchers evade the harder task of learning how to use a
professional simulator by building their own modeling programs which results
in non-truly compared work.

For researchers, choosing which simulator to use is not an easy duty, a full
understanding of one’s own model is however the first major step before looking
into the bookshelf of simulators. Then follows a survey of the available simulators
that can do the job. A major step comes after, the careful weighting of the simu-
lators features, against the model under study and the programming capabilities of
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the researcher. Annoyingly, a suitable simulator for the model may reveal unfitness
of the researcher on how to use and program, such a non-pleasant barrier that may
restrain some researchers from wasting time learning a simulator. Learning how to
use a professional simulator may cost extra months overhead on the research work,
a price to be afforded for trustworthy research. Understanding a simulator means
full awareness of questions and answers about the traffic pattern, the area size, the
number of nodes, the nodes density, the routing protocol used, the MAC layer
handling of collisions, the power model, the radio model, the mobility pattern, etc.
A simulator should not be thought of as a black box that just receives inputs and
produces outputs; inputs as well as the inner simulator structure should conform to
the model under study. Simulator outputs should not be taken for true before
adjusting and tuning the simulator to the research necessities, and running several
case studies that range from small to larger.

Conclusively, who drives whom? Is the researcher simulator driven? Or it is the
other way?

6.6 Exercises

1. What are the requirements for a credible simulation?
2. Explain the interrelationship between the different models used for simulation.
3. When is validation to be used?
4. How may simulation be incorrectly done?
5. Based on Sect. 6.3 perform a study on the latest two MobiHoc conferences.
6. Some simulators are open-source. Discuss the pros and cons of such approach.
7. Compare the simulators that are built upon object-oriented programming. As

illustrated in Sect. 6.4, identify the impact of object oriented programming on
simulator performance.

8. Write a technical report on the component-based software architecture. Do no
stop at what has been made available in Sect. 6.4.12.1.

9. Differentiate between object-oriented and component-based simulators.
10. Java and C++ languages are commonly used by the simulators presented in

Sect. 6.4. Identify the resemblances and differences that arise when using such
simulators.

11. Which of the simulators considered in Sect. 6.4 never came to life, and which
are no longer maintained?

12. Which of the simulators illustrated in Sect. 6.4 are for general networking?
Which are for wireless networking? And which are for WSNs?

13. Is ns-3 a replacement of ns-2? Clarify your answer in a technical report.
14. Identify and compare the simulators based on OMNeT++.
15. SENSE (Sect. 6.4.15) is built on top of COST, a discrete event simulator whose

design was influenced by the concepts of component-based software archi-
tecture and component-based simulation. Write a report on COST and how
does it compare with the simulators presented in Sect. 6.4.
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16. Compare the simulators presented in Sect. 6.4 based on their power modeling.
17. Compare the simulators presented in Sect. 6.4 based on their radio modeling.
18. Identify and compare the component-based simulators as laid-out in Sect. 6.4.
19. A simulator should not be used as a black box. Discuss technically.
20. Compare the emulators presented in this chapter.
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Chapter 7
WSNs Manufacturers

Manufacturers and Products … Drive each other

7.1 Adaptive Wireless Solutions (2015)

Adaptive Wireless Solutions Ltd, located in UK, specializes in industrial and
commercial monitoring and control solutions using wireless and other remote
telemetry systems. It offers a full range of products and services from individual
system elements to complete solutions tailored to customer requirements.

7.2 AlertMe (2014) and British Gas (2015)

AlertMe was a leader in connected homes with over than five years’ expertise in
building a platform for scale deployment. Its vision was to make the connected
home accessible to the mass market, simple, useful and affordable for all, with
services that make consumers lives easier and safer and transform the productivity
of the businesses that provide them. For consumers, AlertMe provided a full range
of applications in energy, home monitoring and home automation in one ecosystem
where things work together simply and intelligently. This allowed the user to
connect as many devices as they like, customize notifications and alerts and trigger
actions automatically.

In March 17th, 2015 British Gas has acquired AlertMe to create the UK’s
leading connected homes provider. This move brings together British Gas’ ability
to innovate for customers with AlertMe’s next generation Internet-of-Things
technology and expertise. The acquisition has created a highly experienced and
fully integrated team which will accelerate the development of new connected home
services in the UK and worldwide.
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7.3 ANT Wireless Division of Dynastream (Dynastream
Innovations 2014)

The ANT+ Alliance is an open special interest group of companies who have
adopted the ANT+ promise of interoperability. The Alliance ensures standardized
communications through optimized brand value and partnerships with other top tier
products. ANT, ANT+ and the ANT+ Alliance are all managed by the ANT
Wireless division of Dynastream Innovations Inc. Established in 1998, Dynastream
introduced the first accelerometer-based speed and distance monitor for runners in
2000. In 2003, the wireless protocol ANT was launched, and in 2004 the first ultra
low power wireless standard, ANT+ was created. In 2005 integrated PAN solutions
were elaborated with Nordic Semiconductor (Nordic Semiconductor 2004). In
December 2006, Garmin Ltd, once a valued Dynastream customer, purchased the
company.

Today, hundreds of companies are members of the ANT+ Alliance, building
products across a range of personal area network (PAN) applications, including
sports, wellness and home health monitoring.

7.4 Atmel (2015)

Founded in 1984, Atmel corporate headquarters is located in in San Jose, California.
Atmel microcontrollers deliver a rich blend of efficient integrated designs, proven
technology, and groundbreaking innovation that is ideal for today’s smart, connected
products. In this era of the Internet-of-Things (IoT), microcontrollers comprise a key
technology that fuels machine-to-machine (M2M) communications.

Building on decades of experience and industry leadership, Atmel offers proven
architectures that are optimized for low power, high-speed connectivity, optimal
data bandwidth, and rich interface support. By using a wide variety of configura-
tion options, developers can devise complete system solutions for all kinds of
applications.

Atmel microcontrollers can also support seamless integration of capacitive touch
technology to implement buttons, sliders, and wheels (BSW). In addition, Atmel
microcontrollers (MCUs) deliver wireless and security support. Atmel offers a
compelling solution that is tailored to customer needs today and tomorrow.
Applications for Atmel microcontrollers include automotive, building automation,
home appliances and entertainment, industrial automation, lighting, smart energy,
mobile electronics, PC peripherals, Internet-of-Things.
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7.5 Cisco (2015)

Cisco whose headquarter is located in San Jose, California, is a communications
giant that provides communication devices that cover almost everything. Among
many, at Cisco they deliver solutions for Internet-of-Things and for wireless
networking.

7.6 Coalesenses (2014)

Coalesenses is a young company providing solutions for massively distributed
systems with a focus on wireless sensor networks (WSNs). Coalesenses originates
from a university background in this new application area and holds on to the
concept of cooperation with public research facilities. Hence at Coalesenses, they
have under their command a state-of-the-art research knowledge. Coalesenses
employ PhDs, engineers and students to incorporate latest research results into their
projects.

Coalesenses line of products includes WSN solutions, WSN software and pro-
tocol stacks, WSN devices, and WSN modules.

7.7 Crossbow Technologies (Aol 2015)

Crossbow Technology, Inc. manufactured and supplied WSNs and inertial sensor
systems. It offered accelerometers, angular rate sensors (gyros), magnetometers,
GPS, and air-data sensors for instrumentation, navigation, and control applications
in land, marine, and airborne environments. Also provided, inertial systems,
accelerometers, tilt sensors, and magnetometers for general aviation, automotive
test, antenna stabilization, unmanned aerial vehicles, agriculture and construction,
vibration monitoring, and towed sonar arrays. The company also delivered WSN
development kits, wireless modules, sensor boards, gateways, and wireless solu-
tions blog for industrial, environmental monitoring, building automation, academic
programs, and asset management applications. In addition, it offered MoteWorks,
an OEM software platform that offers developers the comprehensive benefits of
wireless technology in a given sensor application.

Crossbow Technology, Inc. was acquired by Moog (Sect. 7.18) on June 3rd,
2011.
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7.8 Dust Networks (2015)

Dust Networks, a pioneer in the field of WSN, is defining the way to connect smart
devices. Dust Networks delivers reliable, resilient and scalable wireless embedded
products with advanced network management and comprehensive security features.
Dust Networks products are built on breakthrough Eterna 802.15.4 System-on-Chip
(SoC) technology, delivering ultra low power consumption for wire-free operation
on batteries or energy harvesting.

Dust’s portfolio of standards-based products include (Chap. 1 of this book):

• SmartMesh IP that is built for IP compatibility, and is based on 6LoWPAN and
802.15.4e standards. The SmartMesh IP solution is widely applicable and
cost-effective and enables low power consumption even in harsh, dynamically
changing RF environments.

• SmartMesh WirelessHART products are designed for the harshest industrial
environments, where low power, reliability, resilience and scalability are
essential, making them well suited for general industrial applications as well as
WirelessHART-specific designs. SmartMesh WirelessHART complies with the
WirelessHART (IEC 62591) standard, it offers the lowest power consumption in
its class and is the most widely used WirelessHART product available.

7.9 EasySen (2015)

EasySen located in South Bend, Indiana, is a small company specializing in
state-of-the-art wireless sensing solutions. It offers customized hardware designs,
algorithms and other consulting services for designing commercial and research
applications of wireless sensor networks. EasySen expertise includes autonomous
mobile sensor and actuator platforms, ultra-low complexity swarm systems, energy
harvesting solutions for sensor networks, software algorithms for sensor signal
processing and navigation. EasySen takes pride in an excellent customer service
that assists in the exploration of new research frontiers in sensor network
applications.

7.10 EcoLogicSense (2015)

EcoLogicSense located in Rousset, France, specializes in the design of communi-
cating products for real-time monitoring of air quality. EcoLogicSense is the leader
of producing sensors for measuring air quality via innovative technology.
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EcoLogicSense main objective is the development and design of molecular and
particles sensors to meet real-time measurements of air quality in controlled envi-
ronment (clean rooms), indoor and outdoor environment. Based on its expertise in
atmospheric chemistry for over 10 years, the EcoLogicSense technical team has
combined its experience in the field of chemistry, electronics and computing to
meet collection, treatment and diffusion of environmental data.

7.11 EpiSensor (2015)

EpiSensor whose headquarters are located in Limerick, on the west coast of Ireland,
is one of the world’s leading suppliers of easy to deploy, secure and reliable
wireless sensors. EpiSensor was founded in 2007 at the intersection of three
technology waves; specifically, wireless sensor networks, cloud computing, and
mobile communication. This new technology stack, known as the
“Internet-of-Things”, is applied to the world’s energy and efficiency problems.

All EpiSensor products are designed by EpiSensor in Ireland. A “full chain” of
technology from sensor to server has been developed, which means that EpiSensor
can be extremely responsive and flexible. EpiSensor Internet-of-Things platform
can dramatically increase efficiency, reduce costs and improve sustainability. Data
produced by EpiSensor systems can transform the efficiency of an organization by
providing insight into areas of waste that could not be achieved using traditional
monitoring, control and automation systems. EpiSensor’s products are trusted by
some of the world’s largest and most secure organizations.

At the research level, EpiSensor has contributed to many local and international
research projects; it is the only small and medium-sized enterprises (SME) core
member of the CLARITY Centre for Sensor Web Technologies. CLARITY is a
partnership between University College Dublin, Dublin City University, and
Tyndall National Institute in Ireland; it focuses on the intersection between two
important research areas, Adaptive Sensing and Information Discovery.

7.12 Ers (2015)

Embedded Research Solutions (ERS) is privately held and located in Annapolis,
Maryland. ERS creates products and the enabling technologies for pervasive
computing applications. The technology base includes software and hardware that
allows multihop communication, ad hoc networking, mesh networking, power
management, location awareness, real-time responsiveness and dynamic
reconfiguration.

ERS has created the first truly deployable solution for pervasive applications.
The software architecture is uniquely scalable. It has been shrunk to fit on the
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smallest and least expensive embedded processors, yet maintains a rich set of
functions. In addition, the software can run as middleware on standard operating
systems including Linux and Windows. Other attributes of ERS solutions include
low-cost, guaranteed real-time performance, dynamic configurability, modularity,
ease of use and low maintenance.

ERS has also developed a platform software, known as ZEE, that consists of a
configurable, modular, hardware independent, framework uniquely suited for
highly distributed systems and networks required to deliver data in real-time.

7.13 GainSpan (2015)

GainSpan was founded in 2006, its headquarters are located in San Jose, California.
Since 2006, GainSpan have designed and marketed WiFi chips, modules and
solutions to connect traditionally non-connected devices to smartphones or to the
Internet. More recently, a combo WiFi/Thread/6LoWPAN chip and modules was
added. It is planed to expand GainSpan portfolio to offer the most suitable wireless
solutions to continue to connect “Things” to the Internet, and People to “Things.”

In the near future, GainSpan anticipates seeing commercial buildings where
WiFi equipped sensors will detect temperatures and initiate heating or cooling
responses wirelessly. In the not-too-distant future, GainSpan embedded WiFi could
be used to control the lights at home, monitor elderly parent’s health, or turn off air
conditioner during periods of peak energy use when no one is home.

7.14 Infineon (2015)

Infeneon has a headquarter for production, R&D, and sales at El Segundo,
California, and headquarters for R&D and sales at Neubiberg, Germany, and at
Reigate, UK. For industrial applications, Infeneon develops a wide variety of
sensors to account for renewable energy, industrial automation and e-mobility.
Offerings include products such as magnetic position and speed sensors as well as
integrated pressure sensors and current sensors. For electric drives, a key area in
industrial applications, the portfolio comprises a full range of energy-saving sensors
for electric commutated drives. In the increasingly important solar sector, Infineon
sensors help customers achieve optimum system efficiency and meet country-
specific regulations.

For automotive applications, Infineon has a noticed record of perfection. Over
three billion of the integrated magnetic sensors are installed in cars all over the
world, delivering reliable results in safety-relevant applications, such as ABS, and
in harsh environments such as engines and transmissions.
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7.15 Libelium (2015)

Libelium located in Zaragoza, Spain, delivers a powerful, modular, easy to program
open source sensor platform for the Internet-of-Things, enabling system integrators
to implement reliable smart cities and machine-to-machine (M2 M) solutions with
minimum time to market. Libelium versatile platform allows implementation of any
WSN, from smart parking to smart irrigation solutions.

7.16 Memsic (2015)

MEMSIC delivers powerful sensing solutions to enhance life. With sight and
sound, touch and smell, communication with the world around is established. Just
as eyes sense light and ears sense sound and relay that information to the brain
enabling to sense the environment, sensors comprehend the surrounding world and
relay these electrical signals back through intricate integrated circuitry (IC) and
electronic systems.

MEMSIC (MEMS + IC) enables intelligent powerful sensing solutions by
combining all the essential elements for the application needs. By integrating IC
and electronic system functionality, with manufactured solid-state low-cost sensors,
MEMSIC solutions are launched to optimize life. As such, gaming systems have
taken the player experience to new levels by sensing actions and motion, cars are
intrinsically safer by automatically sensing and controlling the movement of the
vehicle, industrial equipment and machines perform their functions without human
intervention, mobile phones have built-in intelligence so they can respond to ges-
tures and position with a simple user interface and location-aware services. The
surrounding environment responds to humans when instrumented with wireless
sensors, avionics equipment has been retrofitted with high performance yet lower
cost systems. The possibilities are endless when the solutions are effective.
MEMSIC technology drives the advancement of sensors and sensing solutions to
create a better life for all.

7.17 Millennial Net (2012)

Millennial Net, Inc. is a privately held company, headquartered in Chelmsford,
Massachusetts. Millennial Net develops wireless sensor networking software, sys-
tems, and services that enable original equipment manufacturer (OEMs) and sys-
tems integrators to quickly and cost-effectively implement WSNs. WSNs enable the
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remote monitoring and management of critical devices while providing data to
enable more informed decision-making, better control and increased revenue
opportunities. Millennial Net is an industry leader in real-world deployments with
networks installed across commercial building and industrial environments.

MeshScape wireless sensor networking products reveal innovative Millennial
Net solutions.

7.18 Moog Crossbow (2014)

Moog Crossbow specializes in connecting the physical world to the digital world
within the Moog Aircraft Group. Founded in 1995, the company is a leading
supplier of low-cost, smart-sensor technology to military programs and high-value,
asset tracking operations. Moog Crossbow has shipped more than half a million
sensors to customers including Raytheon, Lockheed Martin, Airbus, US DOD,
DRS and Israel aerospace industries, as well as leading global logistics companies.
Moog Crossbow is headquartered in Milpitas, California.

Over sixty years ago, Moog Crossbow started as a designer and supplier of
aircraft and missile components. Today, its motion control technology enhances
performance in a variety of markets and applications, from commercial aircraft
cockpits and power-generation turbines, to Formula One racing and medical infu-
sion systems.

History begins with the founder, William C. Moog, inventor, entrepreneur and
visionary. In 1951, Bill Moog developed the electro-hydraulic servo-valve, a device
that translates tiny, electrical impulses into precise and powerful movement. In July
of 1951, Bill, his brother Arthur, and Lou Geyer, rented a corner of the abandoned
Proner Airport in East Aurora and formed the Moog Valve Company.

7.19 Moteiv (Sensors Online 2007)

Founded in 2003, Moteiv Corp. is a leading provider of wireless sensor network
solutions. Moteiv makes wireless sensor network technology accessible through
innovative hardware platforms, robust open-source software, and whole-solution
development services. Headquartered in San Francisco, Moteiv’s products are used
in a wide variety of applications, including climate monitoring, asset management,
homeland security, and industrial control. Moteiv’s mission is to broaden adoption
of this remarkable technology by making it approachable, affordable, and intimately
familiar to those accustomed to traditional IT infrastructures.
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7.20 National Instruments (2015)

National Instruments (NI) was founded in 1976, its headquarters are located in
Austin, Texas, with offices distributed over nearly 50 countries. With the NI WSN
platform, it is easy to monitor assets or environment with reliable, battery-powered
measurement nodes that offer industrial ratings, and local analysis and control
capabilities. Each wireless network can scale from tens to hundreds of nodes and
seamlessly integrate with existing wired measurement and control systems.

WSN architectures combine different types of nodes and gateways to meet the
unique needs of customer application. Either creating a simple, PC-based WSN
monitoring system with the NI WSN-9791 Ethernet gateway; or a headless,
embedded monitoring system with the NI 9792 programmable gateway, which can
run deployed NI LabVIEW real-time applications. For applications that require the
combination of high-speed I/O (or control) and distributed wireless monitoring, the
NI 9795 C Series WSN gateway may be used.

7.21 OmniVision Technologies (2011)

Founded in 1995 and headquartered in Santa Clara, California, OmniVision cur-
rently houses 19 offices in 12 different countries worldwide, including a design
center and state-of-the-art testing facility in Shanghai, China. OmniVision
Technologies (NASDAQ: OVTI) is a leading developer of advanced digital
imaging solutions. OmniVision workforce is 2200 worldwide. It has shipped over
4,3 billion CMOS image sensors. Their award-winning CMOS imaging technology
enables superior image quality in many of today’s consumer and commercial
applications, including mobile phones, notebooks, netbooks and webcams, security
and surveillance, entertainment, digital still and video cameras, automotive and
medical imaging systems.

7.22 Sensirion (2015)

Sensirion is the leading manufacturer of high-quality sensors and sensor solutions
for the measurement and control of humidity, and of gas and liquid flows. Founded
in 1998 as a spin-off from the Swiss Federal Institute of Technology (ETH) Zurich,
the company is based in Stäfa near Zurich, Switzerland, and employs people
in countries such as the USA, South Korea, Japan, China, Taiwan, and Germany.
The headquarters in Switzerland is responsible for research, development, and
production.
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Together with the capacitive humidity sensor, the product range includes liquid
flow sensors, mass flow meters, mass flow controllers and differential pressure
sensors. Using Sensirion microsensor solutions, OEM customers benefit from the
proven CMOSens Technology and excellent technical support. Among a large
variety of applications, the flow and humidity sensors are successfully used in the
automotive and medical industry.

7.23 Shimmer (2015)

Headquartered in Dublin, Ireland with an R&D center located in Boston, USA,
Shimmer is a leading provider of wearable wireless sensor products and solutions
since its foundation in 2008. For academic, applied and clinical researchers inte-
grating wearable sensing technologies into a wide range of applications, Shimmer
offers a flexible wireless sensor platform, scientifically reliable data, and complete
control of data capture, interpretation and analysis.

Also, Shimmer delivers mature, robust and reliable market ready technology that
eliminates up to 80 % of the development time and expense for wearable wireless
sensing applications.

7.24 Silicon Labs (2015)

Silicon Labs headquartered in Austin, Texas, is a leading supplier of mixed-signal
intelligent sensor solutions that are characterized by high reliability, compact size,
high levels of integration and ease of use for a variety of applications. Diverse
sensor product portfolio includes optical sensors, digital relative I2C humidity and
temperature sensor ICs, and capacitive touch sense microcontroller devices. Also,
Silicon Labs offers integrated, robust, reliable, and easy-to-use wireless and RF IC
solutions. By using mixed-signal ICs designed in standard CMOS from Silicon
Labs, designers are able to eliminate many discrete components and use fewer
external components. Customers can focus on value-added features and speed time
with ZigBee, Bluetooth, WiFi, ISM band and Wireless MCUs from Silicon Labs.

7.25 SOWNet Technologies (2014)

SOWNet Technologies is a company specialized in wireless sensor network solu-
tions, founded in 2006 as a spinout of the Dutch research institute TNO (2014).
SOWNet Technologies is dedicated to providing cutting edge, high quality sensor
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network solutions to several different markets. After successfully completing pro-
jects in a variety of sectors including logistics, public transport and precision
agriculture, there is a focus on developing the GuArtNet art security system with the
partner Automatic Signal (2014).

7.26 Spi (2015)

Sensor Products Inc. (SPI) is a world leader in the niche field of tactile surface
pressure and force sensors. The privately held company was founded in 1990; it is
headquartered in Madison, New Jersey with offices in Toronto, Canada and
Guadaljara, Mexico. The line of products includes sensors for cars, industry,
homes, and dailylife.

7.27 Texas Instruments (TI 2015)

Texas Instruments (TI) headquartered in Dallas, Texas, is a technology giant that
has products that cover almost everything. TIers are differentiators; TI is a global
semiconductor company operating in 35 countries. From the TIer who unveiled the
first working integrated circuit in 1958 to the more than 30,000 TIers around the
world today who design, manufacture and sell analog and embedded processing
chips; they are problem-solvers collaborating to change the world through tech-
nology. For WSN, a line of innovations includes tools and software, microcon-
trollers, ARM, and digital signal processors (DSP).

7.28 Valarm (2015)

Valarm was founded in the spring of 2012; it is based in the new “Silicon Beach” of
Los Angeles, California. Valarm products cover monitoring anything, anywhere.

From oil and gas to agriculture and viticulture, to fleets of vehicles with
precious cargo and remote tanks of liquids, to environmental factors (such as air
and water quality, water usage, flood alerts and liquid level detection) in distant
facilities.

In Industry Applications, Valarm sensor solutions (water levels, air quality,
temperature, humidity, switches, GPS, tanks, light, water usage/flow and others)
with powerful connectivity (any mobile network carrier, WiFi, Ethernet) perform
remote environmental monitoring and telemetry wherever, whenever needed.
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Cloud-based web tools provide powerful real-time, ad hoc mobile sensor net-
works due to Valarm’s open platform (with easy-to-use APIs) and integration of a
variety of sensors, such as, water, temperature, humidity, CO2, volatile organic
compounds (VOCs), switches, 0–10 V, PWM, electrical resistance, location,
liquids, and 4–20 mA.

7.29 WhizNets (2015)

WhizNets is located in San Ramon, California; its solutions address the challenges
of a continuously evolving connected ecosystem by innovation and collaboration.
The portfolio of solutions and services includes a broad range of embedded WiFi
modules, embedded wireless solutions, cloud and mobile solutions.

WhizNets innovative low cost, low footprint, highly integrated WiFi module
solutions allow making micro-controller based products WiFi ready at lowest cost.
WiFi starter kits are available for many processor technologies based on
Cortex-M3, Cortex-M4, Cortex-M0+, AVR32, PIC32, ARM7, ARM9 CPUs with
SPI and SDIO interfaces.

WhizNets IoT cloud solution is a complete solution offering the IoT devices,
cloud platform, infrastructure and applications which enable people and enterprise
to be mobile, interactive and available, thus increasing the overall productivity,
effectiveness and efficiency. The solution serves the application requirements across
many verticals:

• Energy conservation.
• Security and surveillance.
• Transportation.
• Smart buildings.
• Transportation.
• Healthcare.

WhizNets service and product offerings enable delivering intelligent wireless
solutions that simplify the connected world. For many years WhizNets provides
easy integration of:

• Wireless connectivity (WiFi, WIMAX, LTE).
• Sensors for machine-to-machine (M2 M) and IoT.
• Cloud Internet-of-Things /Internet-of-Everything (IoT/IoE) platform integration.
• Android platform and applications.
• Customized system development.
• Testing and Inter-op.
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7.30 Willow Technologies (2012)

Established in 1989, Willow Technologies is located in Copthorne, West Sussex,
UK. They provide electronic solutions to customers by designing, manufacturing
and supplying components and systems globally to the electrical and electronic
marketplace. Willow Technologies are specialists in switching, sensing, resistive
and hermetic seal solutions and have a wide portfolio of sensing technologies. Their
in house engineering capability and rapid prototyping facility for custom parts
enable to develop products to match specific application requirements
(ISO9001:2000 registered).

7.31 Xandem (2015)

Xandem located in Salt Lake City, Utah, has a line of products that covers security,
elderly care, automation, and customizing applications. Xandem’s technology is
brilliant in security sensing; it covers large areas, remains totally hidden, without
being blocked or fooled, and it smartly detects motion through walls and
obstructions. Elderly care systems based on Xandem products monitor motion over
the entire home, the system remains completely hidden and the patient does not
need to wear a device. As for automation, knowledge about where people are is
essential for automation in smart buildings and homes. Xandem products provide
this knowledge to systems that control lights, appliances, and heating, ventilating,
and air conditioning (HVAC) units.

Developers and integrators can use Xandem products to build exciting and
innovative applications.
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Datasheets
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8.1 Agilent ADCM-1670 CIF Resolution CMOS Camera
Module (Agilent Technologies 2003)
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8.2 Agilent ADCM-1700-0000 CMOS Camera Module
(Agilent Technologies 2003)
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General specifications
Feature Value
Output format 8-bit parallel YCbCr CCIR 656-compliant 

8-bit parallel YCbCr or RGB 
Maximum frame rates 15 fps at 352 x 288 (CIF) 
Image modes Grayscale and full color 
YCbCr (YUV) formats 4:4:4 YCbCr 

4:2:2 Y1Cb12Y2Cr12 4:2:2 Cb12Y1Cr12Y2 4:2:2 Y1Cr12Y2Cb12 4:2:2 Cr12Y1Cb12Y2

Gamma correction 33 value programmable interpolated table 
Data synchronization End_of_Line, End_of_Frame, Data_Clock 
Video synchronization HSYNC, VSYNC, VCLK
Serial control identification 0×51 
Supply voltage requirements 2.65 to 3.1 V
External clock frequency 4 to 32 MHz
Power consumption 42 mW typical, CIF output, 13 MHz clock 
Scene illumination (minimum) 5 lux 

Optical specifications
Feature Description
Pixel count 352 288 (CIF landscape mode)
Pixel size 5.6 µm×

×
5.6 µm

Effective fill factor ~ 80%
IR filter Integrated 
Lens type Plastic singlet aspheric 
Focal length 2.10 mm
F/# 2.8
Focus Fixed focus 
Depth of focus 100 mm to infinity
Field of view 52 full angle (horizontal) 
Distortion 4% 
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8.3 Agilent ADCM-2650 CMOS Camera Module
(Agilent Technologies 2003)
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8.4 Agilent ADNS-3060 Optical Mouse Sensor
(Agilent Technologies 2004)
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8.5 AL440B High Speed FIFO Field Memory
(AverLogic Technologies 2002)

Applications Features
o Multimedia systems 
o Video capture or editing systems 

for  NTSC/PAL or SVGA resolution 
o Security systems 
o Scan rate converter 
o PIP (Picture In Picture) video 

display 
o TBC (Time Base Correction) 
o Frame Synchronizer 
o Digital Video Camera 
o Hard Disk cache memory 
o Buffer for Communication System 

*80MHz High-Speed Version

o DTV/HDTV video stream buffer

o 4 Mbits (512k x 8 bits) organization FIFO 
o Independent 8-bit data I/O port operations 
o Available in 2 speed grades: 80 and 40Mhz 
o Input Enable control (write mask) 
o Output Enable control (data skipping) 
o Supports Input ready/Output ready flags 
o Selectable control signal polarity 
o Programmable window mode data access with 

mirroring function support 
o Self-refresh 
o 5V signals input tolerance 
o 3.3V±10% power supply 
o Standard 44-pin TSOP (II) package

Description
The AL440B is a high-performance FIFO 
(First-In-First-Out) field memory chip 
designed to buffer audio/video/graphic 
digital data for a wide range of applications. 

Ordering Information 
Part number Package Power supply 

AL440B-24 
(40MHz) 

44-pin plastic 
TSOP (II) 

+3.3V±10% 

AL440B-12 
(80MHz) 

44-pin plastic 
TSOP (II) 

+3.3V±10% 
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8.6 Atmel AT29BV040A Flash Memory (Atmel 2003)
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8.7 Atmel AT91 ARM Thumb-Based Microcontrollers
(Atmel 2008)
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8.8 Atmel AT91SAM ARM-Based Embedded MPU
(Atmel 2011)
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8.9 Atmel Microcontroller with 4/8/16 KBytes In-System
Programmable Flash (Atmel 2011)

8.9 Atmel Microcontroller with 4/8/16 KBytes … 523



8.10 Atmel Microcontroller with 128 KBytes In-System
Programmable Flash (Atmel 2011)

524 8 Datasheets



8.11 Atmel FPSLIC (Atmel 2002)
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8.12 Bluegiga WT12 (Bluegiga Technologies 2007)
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8.13 C8051F121 Mixed-Signal MCU
(Silicon Laboratories 2004)
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8.14 CC1000 (Texas Instruments 2007)
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8.15 CC1020 (Texas Instruments 2014)
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8.16 CC1100 (Texas Instruments 2005)
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8.16 CC1100 (Texas Instruments 2005) 531



8.17 CC1101 (Texas Instruments 2014)
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8.17 CC1101 (Texas Instruments 2014) 533



8.18 CC2420 (Texas Instruments 2005)
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8.19 CC2430 (Texas Instruments 2006)
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8.20 CC2431 (Texas Instruments 2005)
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8.20 CC2431 (Texas Instruments 2005) 537



8.21 CP2102/9 Single-Chip USB to UART Bridge
(Silicon Laboratories 2013)
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8.22 Digital Compass Solutions HMR3300
(Honeywell 2012)

The Honeywell HMR3300 is a digital compass solution for use in precision heading
applications. Honeywell’s magnetoresistive sensor is utilized to provide the relia-
bility and accuracy of these small, solid-state compass designs. This compass
solution is designed for generic precision compass integration into customer sys-
tems using a 5 V logic level serial data interface with commands in ASCII format.
The HMR3300 includes a MEMS accelerometer for a horizontal three-axis, tilt
compensated precision compass for performance up to a ±60° tilt range. Table 8.1
lists HMR3300 specifications.

Table 8.1 HMR3300 specifications

Characteristics Conditions Min Typ Max Units

Heading

Accuracy Level 1.0 deg
RMS0° to ±30° (HMR3300 only) 3.0

±30° to ±60° (HMR3300 only) 4.0

Hysteresis HMR3300 0 2 0.4 deg

Repeatability HMR3300 0.2 0.4 deg

Pitch and roll

Range Roll and pitch range ±60 deg

Accuracy 0° to ±30° 0.4 0.5 deg

±30° to ± 60° 1.0 1.2

Null
Accuracy*

Level 0.4 deg

−20° to +70 °C Thermal Hysterisis 1.0

−40° to +85 °C Thermal Hysterisis 5.0
(continued)
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Table 8.1 (continued)

Characteristics Conditions Min Typ Max Units

Resolution 0 1 deg

Hysteresis 0.2 deg

Repeatability 0.2 deg

Magnetic field

Range Maximum magnetic flux density ±2 G

Resolution 0.1 0.5 mG

Electrical

Input Voltage Unregulated 6 – 15 V DC

Regulated 4.75 5.25

Current HMR3300 22 24 mA

Digital interface

UART ASCII (1 Start, 8 Data, 1 Stop, 0 Parity)
User selectable baud rate

2400 – 19,200 Baud

SPI CKE = 0, CKP = 0 Psuedo Master

Update Continuous/Strobed/Averaged
HMR3300

8 Hz

Connector In-Line 8-Pin Block (0.1″ spacing)

Physical

Dimensions Circuit board assembly 25.4 × 36.8 × 11 mm

Weight HMR3300 7.50 g

Environment

Temperature Operating −20 – +70 °C

Storage −55 +125

*Null zeroing prior to use of the HMR3300 and upon exposure to temperature excursions beyond
the Operating Temperature limits is required to achieve highest performance
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8.23 DS18B20 Programmable Resolution 1-Wire Digital
Thermometer (Maxim Integrated 2008)
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8.24 DS18S20 High-Precision 1-Wire Digital
Thermometer (Maxim Integrated 2010)
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8.25 G-Node G301 (SOWNet Technologies 2014)
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8.26 GS-1 Low Frequency Seismometer
(Geospace Technologies 2014)

GS-1 Low Frequency Seismometer
The GS-1 is a high sensitivity, self-generating velocity detector with extremely low
natural frequencies. It is an excellent choice for detecting seismic activity for
structural analysis, geologic hazards, vibration isolation, etc.

GS-1 seismometers are available in 1.0 and 2.0 Hz natural frequencies, and
vertical or horizontal oriented models. Sensitivities range from 3.0 to 15.0 V/in./s
depending on coil configurations. Optional weather resistant cover (w/level bub-
ble), calibration coil and adjustable leg bases are available. A vernier spring
adjustment is included.
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Spec Sheet:
GS-1 Specifications

8.27 GS-11D Geophone (Geospace Technologies 2014)

Geophones GS-11D

Natural frequency 1.0 Hz ± 10 %

Orientation angle Vertical ± 7.5°

Horizontal ± 0.5 %

DC resistance 450 Ω ± 5 %

4550 Ω ± 5 %

17,400 Ω ± 5 %

Sensitivity (V/in./s) 3.0 V/in./s ± 10 %

7.0 V/in./s ± 10 %

15.0 V/in./s ± 10 %

Open circuit damping 0.54 ± 20 %

Moving mass 700 g ± 5 %

Coil excursion >0.25 in. P–P

Operating temperature −40 to 100 °C

Dimensions (basic unit) Height: 6.45 in.

Diameter: 3.0 in.

Weight: 69 oz

Shock 50 G

Notes
1. Specification temperature is 25 °C
2. Two Hz model also available
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Rotating Coil Geophone

• Field proven design
• Shock resistant, rotating dual coil construction
• Gold plated contacts for positive electrical connection
• Precision springs, computer designed and matched
• Full 1 year warranty

The GS-11D is a high output, rotating coil geophone designed and built to
withstand the shocks of rough handling. The precision springs of this field proven
geophone are computer designed and matched to optimize performance specifica-
tions even under the most extreme conditions.

Gold plated contacts assure positive electrical connections. The Geo Space
manufacturing process includes checking all geophone operating parameters with
the ATS, an automated computerized test system.

Natural frequencies are 4.5, 8, 10 and 14 Hz, with standard coil resistance of
380 Ω. The PC-21 Land Case is used with the GS-11D geophone.

Cases Available PC-21 Land Case
Spec Sheet:
GS-11D Specifications

Natural Frequency 4.5 ± 0.75 Hz 8 ± 0.75 Hz 10 ± 0.75 Hz 14 ± 0.75 Hz

Coil Resistance @
25 °C ± 5 %

380 Ω

Intrinsic Voltage Sensitivity
with 380 Ohm Coil ± 10 %

81 V/in./s (0.32 V/cm/s)

Normalized Transduction
Constant (V/in./s)

042 (sq. root of Rc)

Open circuit Damping 0.34 ± 20 % 0.39 ± 10 % 0.32 ± 10 % 0.23 ± 10 %

Damping Constant with 380
Ohm Coil

762 602 482 344

Optional Coil
Resistances ± 5 %

4,000 Ω

Moving Mass ±5 % 23.6 g 16.8 g 16.8 g 16.8 g

Typical Case to Coil Motion
P–P

0.07 in.
(0.18 cm)

0.07 in.
(0.18 cm)

0.07 in.
(0.18 cm)

0.07 in.
(0.18 cm)

Harmonic Distortion with
Driving Velocity of 0.7 in./s
(1.8 cm/s) P–P

N/S 0.2 % or less

@ 12 Hz @ 12 Hz @ 12 Hz

Dimensions

Height (less terminals*) 1.32 in. (3.35 cm)

Diameter 1.25 in. (3.18 cm)

Weight 3.9 oz (111 g)

*Terminal height is 0.135 in.
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8.28 Imote2 (Crossbow 2005)
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8.29 Intel PXA270 Processor (Intel 2005)
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8.30 Intel StrataFlash Embedded Memory (Intel 2005)
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8.31 Intel StrongARM* SA-1110 (Intel 2000)
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8.32 iSense Security Sensor Module (Coalesenses 2014)
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8.33 MICA2 Mote (Crossbow 2002)
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Table 8.6 compares the family of Berkeley motes up to Telos (Sect. 8.58).
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8.34 MICA2DOT (Crossbow 2002)
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Table 8.6 compares the family of Berkeley motes up to Telos (Sect. 8.58).
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8.35 MICAz Mote (Crossbow 2006)
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8.36 ML675K Series (Oki Semiconductor 2004)
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8.37 MOTE-VIEW 1.2 (Crossbow 2006)

MOTE-VIEW is designed to be an interface (client layer) between a user and a
deployed network of wireless sensors. MOTE-VIEW provides users the tools to
simplify deployment and monitoring. It also makes it easy to connect to a database,
to analyze, and to graph sensor readings. Figure 8.1 depicts a three-part framework
for deploying a sensor network system. The left column represents the wireless
sensor network itself. The server layer aggregates the data and allows for a con-
nection to another network or terminal. The client layer software is for viewing and
manipulating sensor network data. MOTE-VIEW is a free software tool and is
available at www.xbow.com.

All of Crossbow’s sensor and data acquisition boards are also supported by
MOTE-VIEW (Table 8.2 Sensor (MTS series) and data acquisition boards sup-
ported by MOTE-VIEW). MOTE-VIEW supports the MICA-series platforms of
wireless sensor network hardware, including the MICA2, MICA2DOT, and MICAz
Motes (Table 8.3). In addition, sensor integrated platforms such as the
security/intrusion detection system based on the MSP motes and the environmental
monitoring system (based on the MEP Motes) can be deployed and monitored
(Table 8.4).

Fig. 8.1 Software framework
for a WSN

560 8 Datasheets

http://www.xbow.com


Table 8.2 Sensor (MTS series) and data acquisition boards supported by MOTE-VIEW and their
plug-and-play compatible mote platforms

Sensor and data acquisition boards Mote platforms

MICAz MICA2 MICA2DOT

MTS101 ✓ ✓

MTS300/310 ✓ ✓

MTS400/MTS420 ✓ ✓

MTS410 ✓ ✓

MTS510 ✓

MDA100 ✓ ✓

XBW-DA100 ✓ ✓

MDA300 ✓ ✓

MDA320 ✓ ✓

XBW-DA325 ✓ ✓

MDA500 ✓

Table 8.3 Mote processor/radio (MPR) platforms supported by MOTE-VIEW

Mote platforms Model number(s) RF frequency band(s)

MICAz MPR2400 2400–2483.5 MHz

MICA2 MPR400 868–870 MHz; 903–928 MHz

MPR410 433.05–434.8 MHz

MPR420 315 MHz (for Japan only)

MICA2DOT MPR510 868–870 MHz; 903–928 MHz

MPR510 433.05–434.8 MHz

MPR520 315 MHz (for Japan only)

Table 8.4 Sensor integrated (MEP, MSP) platforms supported by MOTE-VIEW

Sensor integrated mote platforms Description of usage

MEP410 Microclimate and ambient light monitoring

MEP510 Temperature and humidity monitoring

MSP410 Physical security and intrusion detection
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8.38 MSB-A2 Platform (Baar et al. 2008)
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8.39 MSP430F1611 Microcontroller
(Texas Instruments 2011)
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8.40 MSP430F2416 Microcontroller
(Texas Instruments 2007)

8.40 MSP430F2416 Microcontroller (Texas Instruments 2007) 565



566 8 Datasheets



8.41 MSX-01F Solar Panel (BP Solar 2014)

BP SOLAR—MSX-01F—SOLAR PANEL, 1.2 W

Product Information
SOLAR PANEL, 1.2 W

• Power Rating: 1.2 W
• Power Voltage Max: 7.5 V
• Current at P Max: 150 mA
• Open Circuit Voltage: 10.3 V
• Short Circuit Current: 160 mA
• Length: 127 mm
• Width: 127 mm
• Height: 3 mm
• DC Power: 1.2 W
• External Depth: 10 mm
• External Length/Height: 161 mm
• External Width: 139 mm
• Lead Length: 750 mm
• Nom Voltage: 6 V
• Output Current Max: 0.15 A
• Output Voltage Max: 8.4 V
• Weight: 0.34 kg
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8.42 MTS/MDA (Crossbow 2007)

The MTS series of sensorboards and MDA series of sensor/data acquisition boards
are designed to interface with Crossbow’s MICA, MICA2, and MICA2DOT family
of wireless Motes. There are a variety of sensor boards available, and the sensor-
boards are specific to the MICA, MICA2 board or the MICA2DOT form factor.
The sensorboards allow for a range of different sensing modalities as well as
interface to external sensor via prototyping areas or screw terminals. Table 8.5 lists
the currently available sensor boards for each Mote family.

Table 8.5 Crossbow’s sensor and data acquisition boards

Crossbow
part name

Motes supported Sensors and features

MTS101CA MICAz, M1CA2,
MICA

Light, temperature, prototyping area

MTS300CA IRIS, MICAz,
MICA2, MICA

Light, temperature, microphone, and buzzer

MTS300CB

MTS310CA IRIS, MICAz,
MICA2, MICA

Light, temperature, microphone, buzzer, 2-axis
accelerometer, and 2-axis magnetometerMTS310CB

MTS400CA IRIS, MICAz,
MICA2

Ambient light, relative humidity, temperature, 2-axis
accelerometer, and barometric pressureMTS400CB

MTS400CC

MTS420CA IRIS, MICAz,
MICA2

Same as MTS400CA plus a GPS module

MTS420CB

MTS420CC

MTS510CA MICA2DOT Light, microphone, and 2-axis accelerometer

MDA100CA IRIS, MICAz,
MICA2

Light, temperature, prototyping area

MDA100CB

MDA300CA IRIS, MICAz,
MICA2

Light, relative humidity, general purpose interface for
external sensors

MDA320CA IRIS, MICAz,
MICA2

General purpose interface for external sensors

MDA500CA MICA2DOT Prototyping area
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8.42 MTS/MDA (Crossbow 2007) 569



8.43 Omron Subminiature Basis Switch (Omron 2014)
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8.44 OV528 Serial Bus Camera System
(OmniVision Technologies 2002)

8.44 OV528 Serial Bus Camera System … 571



8.45 OV6620/OV6120 Single-Chip CMOS Digital Camera
(OmniVision Technologies 1999)
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8.46 OV7640/OV7140 CMOS VGA CAMERACHIPS
(OmniVision Technologies 2003)

8.46 OV7640/OV7140 CMOS VGA CAMERACHIPS … 573



8.47 OV9655/OV9155 (OmniVision Technologies 2006)
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8.48 PCF50606/605 Single-Chip Power Management
Unit+ (Philips 2002)

8.48 PCF50606/605 Single-Chip Power Management Unit+ (Philips 2002) 575



8.49 PIC18 Microcontroller Family (Microchip 2000)
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8.49 PIC18 Microcontroller Family (Microchip 2000) 577



8.50 Qimonda HYB18L512160BF-7.5
(Qimonda AG 2006)
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8.51 SBT30EDU Sensor and Prototyping Board
(EasySen LLC 2008)

8.51 SBT30EDU Sensor and Prototyping Board (EasySen LLC 2008) 579



8.52 SBT80 Multi-modality Sensor Board for TelosB
Wireless Motes (EasySen LLC 2008)
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8.53 Spartan-3 FPGA (XILINX 2013)
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8.54 Stargate (Crossbow 2004)
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8.55 Stargate NetBridge (Crossbow 2007)
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8.56 T-Node (SOWNet 2014)
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8.56 T-Node (SOWNet 2014) 587



8.57 TC55VCM208ASTN40,55 CMOS Static RAM
(Toshiba 2002)
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8.58 Telos (Moteiv 2004)

Table 8.6 compares the family of Berkeley motes up to Telos.

8.58 Telos (Moteiv 2004) 589



Table 8.6 Berkeley family of motes up to Telos (Polastre et al. 2005)

Mote type year WeC
1998

René
1999

René2
2000

Dot
2000

Mica
2001

Mica2Dot
2002

Mica
2
2002

Telos
2004

Microcontroller

Type AT90LS8535 ATmega163 ATmega128 TI
MSP430

Program
memory (KB)

8 16 128 48

RAM (KB) 0.5 1 4 10

Active power
(mW)

15 15 8 3 3

Sleep power
(μW)

45 45 75 15 15

Wakeup time
(μs)

1000 36 180 6 6

Nonvolatile storage

Chip 24LC256 AT45DB041B ST
M25P80

Connection
type

I2C SPI SPI

Size (KB) 32 512 1024

Communication

Radio TR1000 TR1000 CC1000 CC2420

Data rate (kbps) 10 40 38.4 250

Modulation
type

OOK ASK FSK O-QPSK

Receive power
(mW)

9 12 29 38

Transmit power
at 0dBm (mW)

36 36 42 35

Power consumption

Minimum
operation (V)

2.7 2.7 2.7 1.8

Total active
power (mW)

24 27 44 89 41

Programming and sensor interface

Expansion none 51-pin 51-pin none 51-pin 19-pin 51-pin 16-pin

Communication IEEE 1284 (programming) and RS232 (requires additional
hardware)

USB

Integrated
sensors

No No No Yes No No No Yes
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8.59 TinyNode (Dubois-Ferrière et al. 2006)

Figure 8.2 illustrates the core of a TinyNode.

8.60 Tmote Connect (Moteiv 2006)

Fig. 8.2 TinyNode core module
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8.61 Tmote Sky (Moteiv 2006)
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8.62 TSL250R, TSL251R, TSL252R Light to Voltage
Optical Sensors (TAOS 2001)

8.62 TSL250R, TSL251R, TSL252R Light to Voltage Optical Sensors … 595



8.63 WiEye Sensor Board for Wireless Surveillance
and Security Applications (EasySen LLC 2008)
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8.64 WM8950 (Wolfson Microelectronics 2011)

8.64 WM8950 (Wolfson Microelectronics 2011) 597



8.65 Xbee/Xbee-PRO OEM RF Modules
(MaxStream 2007)
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8.66 XC2C256 CoolRunner-II CPLD (XILINX 2007)

8.66 XC2C256 CoolRunner-II CPLD (XILINX 2007) 599



8.67 XE1205I Integrated UHF Transceiver
(Semtech 2008)
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Takeoff



Chapter 9
Last Reminders

Is takeoff possible with unfastened seatbelts?

Throughout this book all aspects related to WSNs were presented in full details as
made available in the literature. References were checked and double-checked for
accuracy; authors were contacted for missing or unclear information, some did
thankfully reply.

The start was by laying out the main features and distinguished characteristics of
WSNs, followed by the standards that arose with the awakening of their endless
applications. The transport layer in WSNs is a main awareness in this book as it
differs widely than that of other wireless and wired networks due to the limited
processing, storage and energy. The applications of WSNs are given ample space to
stress on their wide use in military and civil domains. Starting military, WSNs have
penetrated all daily life applications, from health to mining, industry, agriculture,
traffic, car parking, etc.

Modeling and analyzing WSNs are major domains for study, research and
industry. To test and check WSNs deployment and protocols, testbeds are required
before typical in-field deployment. This book presented an in depth coverage of the
testbeds obtainable for public use, or those bound by restricted use in several
research and industrial institutions for a variety of applications. Testbeds acquired
particular importance in WSNs due to the risk of deploying a network in large
numbers of nodes before full awareness of the underlying protocols from the
physical layer up to the application layer.

Complementary to testbeds, emulators and simulators of WSNs are profoundly
exposed. Emulators are software tools to check hardware compatibility with the
protocols to be used and surrounding environment; they are hardware dependent
and thus are easy to pick up. On the contrary, simulators are numerous, either for
general networking, for wireless, or for WSNs. Selecting a typical simulator is not
an easy decision, it depends on the model under study, on the simulator conve-
nience, and importantly on the researcher skills at the programming level. A full
analysis of main emulators and simulators is covered in this book to help whoever
are interested understand and choose.
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WSNs are not just theories, a broad spectrum of WSN industry products and
technologies are available, as well as a wide diversity of manufacturers engages in
the market with astounding innovations. Chapters 7 and 8 are meant to provide the
full range of the WSN industry products, and the leading manufacturers. The
appendices are not to be left over; they must be accessed whenever a product, or a
manufacturer is cited in the text.

This book is a helper and mentor at more than a level. It is for senior under-
graduates willing to understand WSNs and build their graduation projects. Also,
intended for graduate students making a thesis and in need for specific knowledge
on WSNs and the related emulators and simulators. Moreover, it is targeting
practitioners interested in features and applications of WSNs and the available
testbeds.

Before takeoff, a book is a hop forward …
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