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The book is devoted to methods of theoretical and experimental research of antennas 
and to problems of antenna engineering. The presentation material is based on the 
electromagnetic (EM) theory. 

The book begins with the theory of thin antennas. Thin antennas represent one of 
the main types of radiators, which are widely used in practice as independent antennas 
and as elements of complex antennas. Thereby the theory of thin antennas is the basis 
of the antennas analysis. 

Techniques for calculation of the electrical characteristics of thin linear antennas are 
described and analyzed in the book consistently, beginning with the method of Poynting 
vector, but the basic attention is given to integral equations for an antenna current, and 
also to the method of complex potential and to the synthesis of antennas with required 
characteristics.

Particular attention is paid to the integral equation of Leontovich-Levin. This is the 
equation for the current along an axis of a thin-walled metal cylinder, it is equivalent to 
the equation of Hallen with a precise kernel, but unlike him, the equation of Leontovich-
Levin allows to accomplish the calculation of the second and subsequent approximations 
assuming that the current is concentrated on the axis of the radiator, which greatly 
simplifies the calculations. Two solutions of the equation are considered. The first option 
allows to obtain for the input impedance of the dipole in the second approximation the 
well-known result in the form of the set of table functions. The second variant makes 
it possible to write an expression for the current distribution and hence for the input 
impedance of the radiator in integral form. This result is compared with the calculation 
results of the input impedance by using other equations and by means the method of 
induced electromotive force (emf).

The resulting integral formula for the input impedance of the dipole is identical to 
the integral formula obtained by the method of induced emf (the second formulation), 
if the length of the radiator is not close to its length at the frequency of the parallel 
resonance. This explains the well-known coincidence of the input impedances, calculated 
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by means of both methods in the form of the set of table functions. Application of the 
theorem about oscillating power for analysis of power transmission between objects 
allows us to prove the validity of the second formulation of the method of induced 
emf in comparison with the first formulation, which is based on the equality of reactive 
powers not having physical meaning.

Serious attention along with an analysis is paid in the book to a synthesis problem. 
The purpose of synthesis consists in providing high electrical characteristics of antennas 
—with the aid of development of new variants of radiators, and also by optimizing the 
electrical characteristics of known radiators.

For a long time engineers tried to solve an optimization problem by finding a law 
of the current distribution, which provides required electrical characteristics. The task of 
choosing magnitudes and dimensions of antenna elements in order to optimize antenna 
characteristics was first staged in relation to the Yagi-Uda antenna. Its solution confirmed 
rightness of chosen approach.

Later on still two tasks have been considered. The aim of the first task was selecting 
the shape of the curvilinear monopole, which provides maximal directivity at the given 
frequency. The second task was more general and in essence dealt with a problem of 
creating the wide-band radiator. It consisted in determining a type and magnitudes of 
concentrated loads, which are placed into a linear radiator in series and provide in a 
given frequency band the required electrical performance, including the good matching 
of antenna with the signal source, the high efficiency and the necessary directional 
pattern. The solution of problem was based on understanding advantages of in-phase 
current distribution and on the hypothesis of Hallen about usefulness of capacitive 
loads, whose magnitudes are changed along the radiator axis in accordance with linear 
or exponential law.

Selected approach confirmed the hypothesis of Hallen, demonstrated the rightness of 
choice of capacitive loads and gave numerical results. Its use helped to solve still three 
tasks. The first one was selecting loads, which provide in a given range the required 
current distribution. Thus, in particular, the efforts adopted for finding the current 
distribution, which creates desired characteristics, have been justified. The second result 
enabled to determine loads for diminishing distortion of directional pattern of antenna by 
closely spaced superstructures. Finally, the method was used for selecting concentrated 
loads, which are placed in series along the wires of V-antenna and significantly expand 
the frequency range, over which the antenna has high directivity along its axis. V-antenna 
with curvilinear arms allows to obtain without resistors the equal phases of the fields 
of all antenna segments in the far region.

These tasks are consistently considered in the book. During the work a reasonable 
sequence of solving each problem was defined. In the first instance one must propose an 
approximate method of analysis, in order to use later its result as initial values for the 
numerical solution of task by methods of mathematical programming. When analyzing 
the radiator with loads, as approximate methods the method of impedance long line 
and the method of two-wire line with the concentrated loads were used. At the same 
time it becomes obvious that by choosing magnitudes of the elements (capacitors, coils 
of inductance, resistors) and the coordinates of their location as parameters, one can 
obtain at all frequencies not the given characteristics, but only characteristics maximally 
close to them. Effectiveness of the methodology also is obvious compared with helpless 
method of trial and error.

The method of complex potential is widely used for solving of cylindrical (two-
dimensional) tasks, for example, for the calculating of electrostatic fields and mutual 



capacitances of several infinitely long wires located in the homogeneous dielectric 
medium in parallel to each other with charges uniformly distributed along their lengths. 
Significant interest is the use of these results for solving three-dimensional tasks with 
similar mutual placement of metal bodies, since the problem of calculating electric fields 
of charged bodies is substantially simplified, if the all geometrical dimensions depend 
only on two coordinates. It is known that in the fullness of time the comparison of 
conical and cylindrical problems was of great benefit to antenna theory.

In this book the method of complex potential firstly is generalized on the case 
of piecewise homogeneous media and, secondly, is applied to the three-dimensional 
structures: conical and parabolic. Comparison of parabolic and cylindrical problems 
with each other allows to find the equalities relating the replaceable variables. If these 
equalities are accomplished, the Laplace’s equation remains valid in transition from one 
task to another. In this way, the parabolic problems are reduced to the corresponding 
cylindrical ones, i.e. parabolic filaments, cylinders, and shells are replaced by parallel 
filaments, cylinders, and coaxial cylindrical shells. Parabolic structures differ from conic 
structures in that their equipotential surfaces intersect the axis of symmetry at different 
points. This allows to use parabolic structures to calculate fields in a phantom in order 
to determine the influence of its shape and dimensions on a magnitude of created there 
field.

Separately the principle of complementarities was examined. It is shown that the 
self-complementary antenna can be located not only on a plane but also on the surface 
of rotation, in particular conic and parabolic. In the book it is proposed the method of 
calculating complex flat and three-dimensional self-complementary antennas, including 
antennas with rotational symmetry, i.e. self-complementary antennas consisting of 
several metallic and slot radiators.

The obtained results show that a class of self-complementary antennas is considerably 
wider than that it was considered previously. This class must be complemented, firstly, at 
the expense of structures, consisting of several metal and slot radiators and, secondly, at 
the expense of three-dimensional structures, located on surfaces of rotation, in particular 
on the surfaces of the circular cone or the paraboloid. Closeness of the values of wave 
impedances of antennas and cables is necessary condition of antennas effectiveness. 
Known variants of self-complementary antennas do not satisfy this condition, since their 
wave impedances are substantially higher than wave impedances of standard cables. 
Antennas, which are regarded in the book, have very different, including sufficiently 
small values of the wave impedances. That should greatly facilitate the task of matching 
and expand the scope of using self-complementary antennas.

Problems of antenna engineering are considered in the second half of the book. 
Among them there are described results of application of a compensation method for 

protection of human organism against irradiation and are considered different antenna 
arrays, including log-periodic, reflector and adaptive. Characteristics of known and 
offered V-antennas are given.

In the book there are results of studying properties of new types of antennas and 
methods of their analysis. Among them results of researching transparent antennas are 
given. In the end of the book the properties and structural features of ship antennas 
are discussed, including decreasing influence of metal bodies on antenna characteristics 
and reducing influence of cables on the directional patterns of coaxially placed radiators. 
Also there are presented the principal circuit, design and characteristics of the antenna-
mast with inductive-capacitive load, which was developed with the participation of the 
author.
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The theory of electrically coupled lines allows to calculate characteristics of different 
antennas, in particular of folded and multi-folded radiators, a multi-level radiator with 
adjustable directional pattern in a vertical plane, an antenna with meandering load, an 
impedance folded radiator, etc. Also this theory explains the reasons of appearance of 
cross talks and in-phase currents in multi-conductor cables.

In the chapter devoted to log-periodic antennas the different ways of reducing their 
transverse and longitudinal dimensions are considered separately. The main attention 
is given to new structure of this antenna. It is based on two innovations. Firstly the 
antenna elements are made in the form of straight and spiral dipoles connected in 
parallel with each other. Secondly, a two-wire distribution line is replaced by a coaxial 
cable, and dipoles are replaced by monopoles connected to the central conductor of this 
cable. As a result asymmetrical coaxial antenna is not in need of rotator and balancing 
transition from coaxial cable to a symmetrical two-wire line. This version of log-periodic 
antenna is better than other versions of these antennas with the same dimensions from 
standpoint of the range width and the radiated power. Its dimensions are smaller than 
the dimensions of well-known antennas intended for the same frequency range.

In the last chapter a problem of creating antennas for underground radio 
communication and a question of measuring an antenna gain in a Fresnel zone are 
discussed.

The proposed book is a natural addition to the known monographs. It is intended for 
professionals, which are engaged in development, placing and exploitation of antennas. 
The benefit from this book will be also for lecturers (university-level professors), teachers, 
students, advisors etc. in the study of fields radiated by antennas. The contents of the 
book can be used for university courses.

Boris Levin
Israel
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1.1 FIRST STEPS

Ronald King wrote very briefly about the first antennas and first steps in antenna 
engineering [1]. Through twenty years after Maxwell formulated his famous equations, 
which have established the foundations of classical electrodynamics [2], Hertz by means 
of an experiment proved the existence of the wave phenomena predicted by these 
equations. He used a spark gap for exciting damped oscillations in a wire of length 
60 cm with metal plates at the ends [3,4]. Hertz’s experiment gave a start to the future 
rapid development of radio engineering. 

The first two Maxwell’s equations in differential form are written as

∂ ∂
= + = -

∂ ∂

� �
�� �

,
D B

curl H j curl E
t t

, (1.1)

where 
�
H  is the vector of magnetic field strength, 

�
j  is the vector of volume density of 

conduction current, D
�

 is the electric displacement vector, t is time, E
�

 is the vector of 
electric field strength, B

�
is the vector of magnetic induction. Hereinafter the International 

System of Units is used. 
Equations (1.1) are to be complemented with the equation of continuity

r∂
=

∂

�
div j

t
, (1.2) 

where r is the volume density of the electrical charge. 
Typically, two more equations are included into the system of Maxwell’s equations:

and 0div D div Br= =
� �

, (1.3)

but they follow from equations (1.1) and (1.2) [5].

1
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Equation (1.1) associate the electromagnetic fields and currents in free space. It 
would be wrong to consider that the left or the right side of an equation is the source 
of the field and, accordingly, that the other side is the consequence. The electric and 
magnetic components of fields exist only jointly. And none of these quantities is the 
cause of appearance of the other.

The field of the antenna is the result of supplying power from a transmitter. In 
order to take it into consideration, the extraneous currents and fields as the original 
sources of excitation should be included in the set of equations, in accordance with the 
Equivalence theorem. They are introduced as summands of quantities 

�
j , E
�

and
�
H. Their 

nature and placement depend on the model of the segment near a generator, which is 
commonly called the ‘excitation zone’. The total electromagnetic field of an antenna is 
equal to a sum of the field produced by the excitation zone and the field produced by 
the currents in the wires, which arise on switching on of the sources. As a rule, on a 
great distance from the antenna the first field is substantially less than the second one 
and can be neglected.

Maxwell’s equations for electromagnetic field, which are complemented with 
boundary conditions on the some of another antenna, allow writing the equation 
for the current in the conductor of the antenna. Solving it and finding the current 
distribution along the wire, one can determine the electrical characteristics of a radiator. 
But researchers in the first few decades after the works of Hertz were published, were 
interested in other matters. Among engineers trying to solve the problem of signal 
reception, the names of Marconi and Popov are the most known.

In 1894, 23-year-old Rutherford manufactured a device for receiving radio signals, 
which was based on demagnetization a bunch of needles. He even demonstrated it to 
Marconi, and the latter undertook to improve it. The invention of radio tubes was very 
important in order to solve the problem of radio transmission. Then onwards, the power 
of radio tubes began to grow from year to year.

The article [6], published in 1884, was devoted to calculating the power of radiated 
signals. This article introduced Poynting’s vector

[ , ]S E H=
� � �

. (1.4)

where magnitude S
�
 is the density of the power flux. Its projection onto the normal to 

the corresponding part of a closed surface is equal to the density of power flux outgoing 
from the volume, bounded by the surface.

Using Poynting’s vector, one can find the active component of an antenna input 
impedance. The power, passing through an antenna surface, does not change in free 
space and is equal to the power flux in the far region. The vectors of electric and 
magnetic field strengths are mutually perpendicular. Here, 

|H| = |E|/Z0,

where Z0 = 120p is the wave impedance of free space. Since the field strength of a 
vertical linear antenna in the spherical coordinate system is 

E = EmF(q,j), 

where Em is the field in the direction of maximal radiation, and F(q,j) is the directional 
pattern, the radiation power of such antenna is equal to an integral of Poynting’s vector 
over a closed surface
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P
Z

E F dSm

S

S = Ú1

0

2 2

( )

( , )q j . (1.5)

Integration is performed over the surface of sphere S of a great radius. The surface 
element is dS = R0

2  sinq dqdj. Calculating the ratio of the radiation power to the square 
of the generator current, we obtain the antenna input resistance 

R
J Z

d E F R dmS = ÚÚ1
02

0

2

00

2
2

0
2

( )
( , ) sinj q j q q

pp

. (1.6)

Let us calculate the electric field in the far region and the directional pattern of a 
radiator, considering the radiator as a sum of simple electrical dipoles (Hertz’ dipoles). 
The field of such dipole with length b and the current I, located along z-axis, is 

Eq 0 = j(30kIb/R)exp(–jkR)sinq. (1.7)

Here k = w me  is the propagation constant in the surrounding medium, w is the circular 
frequency of the signal, m is the permeability, e = er e0 is the absolute permittivity (er is the 
relative permittivity and e0 is the absolute permittivity of air). The current distribution 
along a symmetrical dipole with arm length L is determined by the expression 

J z J
k L z

kL
( ) ( )

sin

sin
=

-( )
0 . (1.8)

Figure 1.1 Field in the far region.

Putting R = R0 – z cosq (see Figure 1.1), I = J(z), b = dz and neglecting small 
magnitudes, we obtain for the field of the symmetrical dipole

E j
k jkR

R
J z jkz dz

r L

L

q
q

e
q=

-

-
Ú30 0

0

exp( )sin
( )exp( cos ) , (1.9)

where R0 is the distance from the dipole center to the observation point. Substituting 
(1.8) into (1.9), we get

.: 

i\1 

y 

X 
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E j
J

kL
jkR

R
kL kL

r
q e

q
q

= ◊
-

◊
-60 0 0

0

( )
sin

exp( ) cos( cos ) cos
sin

. (1.10)

The last factor of this expression defines directional pattern of the dipole. Substituting 
of (1.10) into (1.6) gives

R
kL

kL kL
d

r
S =

-[ ]Ú60
2 2

2

0
e

q
q

q
p

sin

cos( cos ) cos
sin

. (1.11)

Such method of calculating resistance is well-known as the Poynting’s vector method. 
If the dipole length is small (kL 1), we find limiting ourselves to the first terms of the 
function expansion in series (cosx at small x is equal to cosx = 1 – x2/2):

R k L rS = 20 2 2 2/e . (1.12)

For comparatively short antennas (L < 0.3l, here l is the wavelength), one can proceed 
from the expression (1.11) 

R k he rS = 20 2 2 2/e , (1.13)

where h
k

kL
e = 2

2
tan  is the effective length of the symmetrical dipole.

The next step in the theory of linear radiators was made only in the 20th century. It 
is known as the method of induced emf. But before proceeding to it let us first consider 
the field of the conduction current along a filament and a circular cylinder. 

1.2 FIELD OF A FILAMENT AND A CIRCULAR CYLINDER

Maxwell’s equations require solutions. The solution of the equations is simplified 
essentially, if we introduce additional functions called potentials. A vector potential 
(an auxiliary vector field) is introduced by comparing the second equation from (1.3) 
with the mathematical expression (identity)

divcurlA
�

= 0,

where 
�
A is an arbitrary vector. This comparison shows that vector B

�
can be presented 

as a curl of some vector 
�
A:

� �
B curlA= , (1.14)

Yet, Eqn (1.14) defines vector 
�
A ambiguously. To define it unambiguously, one should 

also specify the value of div
�
A.

Substituting (1.14) with the second equation of the set (1.1) and using the mathematical 
identity

curlgradU = 0,

where U is an arbitrary scalar function (scalar potential of field), we obtain

�
�

E
dA
dt

gradU= - - . (1.15)
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Substituting (1.14) and (1.15) into the first equation of the set (1.1) and taking into account 
the mathematical identity

curlcurl
�
A = graddiv

�
A – D

�
A,

we obtain

D
�

�
� �

A
d A
dt

grad divA
dU
dt

j= - - + = -me me m
2

2 ( ) . (1.16)

Let us define div
�
A to simplify the last expression as far as possible. For this purpose, 

let 

divA
dU
dt

�
= -me . (1.17)

This equality is known as the calibration condition, or Lorentz condition. In accordance 
with (1.16) and (1.17)

D
�

�
�

A
d A
dt

j- = -me m
2

2
. (1.18)

For harmonic fields, which depend on the time in accordance with the exponential 
function exp( jwt), Eq. (1.18) takes the form

D
� � �
A k A j+ = -2 m . (1.19)

Equation (1.19) is called the vector wave equation. Its solution permits to find the vector 
potential 

�
A, and then the electric and magnetic fields of antenna. Expressions (1.20) are 

obtained from (1.14), (1.15) and (1.19),

� � � � �
E

k
graddivA k A H curlA= - + =

w
m2

2 1
( ), . (1.20)

If the electromagnetic field sources are distributed continuously in some region V,
and the medium surrounding the region V is a homogeneous isotropic dielectric, the 
solution of the Eq. (1.19) for harmonic field has the form

� �
A jGdV

V

= Úm
( )

, (1.21)

where G = exp(–jkR)/(4pR) is the Green’s function.
A similar expression for the scalar potential follows from Eqs. (1.17), (1.21) and (1.2): 

U j GdivjdV GdV
VV

= = ÚÚ1 1
we e

r
�

( )( )

. (1.22)

It should be noted that region V, where the electromagnetic field sources are located, 
may be multiply connected (if, e.g., one must regard radiation of several antennas, or 
metal bodies are located close to the antenna).

Further, consider the special case when the field sources are the electrical currents 
located in parallel to the z-axis in some region V and having the axial symmetry

� �
j j e j j z constz z z z= = =, ( ) ( )j . (1.23)
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Here, the cylindrical system of coordinates (r, j, z) is used, with unit vectors 
� � �
e e ej zr , ,

along the axes. As seen from (1.21), the vector potential in this case has only component 
Az: � �

A A z ez z= ( , )r , (1.24)

i.e.

divA
A
z

graddivA
A

z
e

A

z
e curlA

Az z z
z

z
� � � � �

=
∂
∂

=
∂
∂ ∂

+
∂
∂

= -
∂
∂

, ,
2 2

2r rr
��
ej ,

and in accordance with (1.20)

E z
j

k
k A

A

z
E z

j

k

A
z

Hz z
z z( , ) , ( , ) , (r

w
r

w
r

rr j= - +
∂
∂

Ê

ËÁ
ˆ

¯̃
= -

∂
∂ ∂2

2
2

2 2

2

,, ) ,z
A

E H Hz
z= -

∂
∂

= = =
1

0
m r j r . (1.25)

Obviously, if the distribution of current J(z) along the radiator is known, one can 
calculate the electromagnetic field of the current with the help of presented formulas. If 
the antenna is excited at some point (e.g., z = 0) by a generator with concentrated emf e,
the antenna input impedance at the driving point is 

ZA = e/J(0). (1.26)

and in order to determine this impedance, it is enough to know the current magnitude 
at the corresponding point. When calculating the power absorbed in the load of a 
receiving antenna, the current magnitude is needed also. So the current distribution 
along the antenna constitutes a very important characteristic.

As a model of a vertical linear radiator, one can use a straight perfectly conducting 
filament, coinciding with the z-axis (Figure 1.2a), along which the conduction current 
flows. Current density

�
j is related to this current by 

� �
J z jdS

S

( )
( )

= Ú ,

where S is the filament cross-section. From (1.21) and (1.25)

A z J G d E z
j

J k G
G

z
dz z

L

L

( , ) ( ) , ( , ) ( )r m V V r
we

V V= = +
∂
∂

Ê

ËÁ
ˆ

¯̃
-
Ú1

2
1

2
1

2
1

--
Ú
L

L

. (1.27) 

Here G1 = exp(– jkR1)/(4pR1), distance R1 from observation point M to integration point 

P is equal to z -( ) +V r2 2 .
In the considered model the radiator radius is zero. The model of a radiator shaped 

as a straight circular thin-wall cylinder with radius a (Figure 1.2b) has finite dimensions. 
Both ends of the cylinder left open, without covers, in order to the current as before 
had only longitudinal component. The surface density of current along the cylinder is 
JS(z) = J(z)/2p a). Since a volume element in the cylindrical system of coordinates is equal 
to dV = rdrdjdz, and r = a on the cylinder surface, so, in accordance with (1.21) and (1.25),

A z J G d d E z
j

J k G
G

z
dz z( , ) ( ) , ( , ) ( )r

m
p

V j V r
we

V V= = +
∂
∂

Ê

ËÁ
ˆ

¯̃2
1

2
2

2

2
2

2
---
ÚÚÚ
L

L

L

L

0

2p

, (1.28)
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where G2 = exp(– jkR2)/(4pR2), and the distance R2 from observation point M to integration 

point P is ( ) cosz a a- + + -V r r j2 2 2 2 . In particular, if the observation point is located 

on the radiator surface, R z a2
2 2 24 2= - +( ) sin ( / )V j .

Figure 1.2 The dipole models in the shape of a straight filament (a) and a thin-wall circular 
cylinder (b).

Sometimes the dipole model shaped as a filament with finite radius a, i.e. expressions 
(1.27) are used for Az and Ez, but distance from the observation point to the integration 

point is equal to R z a3
2 2 2= - + +( )V r .

The obtained expressions for the vector potential and the vertical component of the 
electrical field strength produced by different models of a radiator, confirm the opinion 
about significance of the current distribution along the radiator. An assumption that 
this distribution has sinusoidal form played a great role in the antenna theory. It was 
based partly on results of measurements, but mainly on a simple understanding that the 
current distribution along wires of two-wire long line does not change if the wires move 
and diverge from each other. Later on, at derivation and solution of integral equations 
for currents in radiators, it was rigorously shown that the sinusoidal distribution is the 
first approximation to the true current distribution. Thus, its use received a reliable 
justification.

Here it is implied that the sinusoidal distribution may have any phase. In particular, 
the conduction current on the ends of a dipole and monopole is equal to zero. In this 
case there is a sinusoidal distribution – see Eq. (1.8). The current distribution along the 
folded radiator may have an antinode at the upper end, i.e. the current may follow the 
cosine distribution law.

For a perfectly conducting filament used as a model of a symmetrical radiator, in 
accordance with (1.28)

E
j

J k
z

jkR
R

jkR
Rz

L

= +
∂
∂

Ê
ËÁ

ˆ
¯̃

-
+

-È

Î
Í

˘

˚
˙

+

+

1
4

2
2

2
0

p we
V( )

exp( ) exp( )ÚÚ dV . (1.29)

This expression takes into account the currents’ symmetry in the radiator arms and 
accordingly the substitution of variable (–V for V) is performed at the lower arm, and 

the designation used is: R z+ = - +( )V r2 2 .

a) z.f 

.\f(P.O,; ) 

b) .z,f 

L 

-L 

M(P.O.;) 

f 1= ~a2 +Pl- 2aPCOS({J 
- • 1\f 
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Since
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∂
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∂
∂
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Twice integrating the first term of the expression by parts, we get 

E
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. (1.30)

If the current along the radiator is distributed in accordance with (1.8), the first 
factor in the integrand and hence the first term of the expression are zero. As is easy 
to verify, the second summand is zero too, since the first factor becomes zero at V = 
L, and the second factor vanishes at V = 0. Derivative of the current is calculated, and 
auxiliary relation is taken into account k/(4pwe0) =30:

E j
J

kL
jkR

R
jkR

R
kL

jkR
z

r
= -

-
+

-
-

-30 0
21

1

2

2

( )
sin

exp( ) exp( )
cos

exp(
e

00

0

)
R

È

Î
Í

˘

˚
˙ , (1.31)

where R z L R z L R z1
2 2

2
2 2

0
2 2= - + = - + = +( ) , ( ) , (r r r are the distances from obser-

vation point M to the upper end, to the lower end and to the middle of the radiator, 
respectively (see Figure 1.2a). 

Let us present without proof two components of the electromagnetic field for a 
straight filament:

E j
J

kL
z L jkR

R
z L jkR

R
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r e r

=
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-
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jkR jkR kL jkR
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j pe r

= - + - - -ÈÎ
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exp( ) exp( ) cos exp( )
0

4
21 2 0 ˘̊̆ . (1.32)

The rest of the components are zero, see (1.25).
If the model of a symmetrical radiator in the shape of a straight circular cylinder 

is used, it is necessary to proceed, when calculating the field, from expression (1.28). 
We obtain instead of (1.31):
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jkR

R
jkR

R
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j , (1.33)

where 

R z L a a1
2 2 2 2= - + + - ¢( ) cosr r j , R z L a a2

2 2 2 2= - + + - ¢( ) cosr r j , R z a a0
2 2 2 2= + + - ¢r r jcos .
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Such great attention is paid to the sinusoidal distribution of the current along the 
radiator because the method of induced electromotive force (method of emf) is based 
in particular on this distribution.

1.3 THEOREM ABOUT OSCILLATING POWER

Before going to the method of induced emf, it is necessary to consider the theorem 
about oscillating power.

The theorem and its proof were published for the first time in the book [7]. The 
book arose on the basis of lectures delivered by the author to undergraduate and 
graduate students and was devoted to electromagnetic waves of ultra-high frequencies. 
The reaction of many specialists to the theorem about oscillating power was sharply 
negative. In their view, the appearance of this theorem was caused by misunderstanding 
of the sense of the reactive power, although this statement clearly conflicts with the well 
known postulate, which these experts constantly repeat in articles and lectures. The 
postulate contends that the reactive power has no physical meaning.

During the years from the date of its first publication, the famous theorem allowed 
to explain a great many problems.

Let us start with the so-called symbolic method, i.e. with writing equations of the 
electromagnetic field in a complex form. Widely used electromagnetic fields, time-
varying in accordance with the sinusoidal law, are called harmonic or monochromatic 
fields. Both in the theory of alternating currents and in the field theory it is expedient in 
mathematical researches of harmonic processes, which are described by linear equations, 
to introduce complex magnitudes. The transition to these designations is performed 
in the following way: complex magnitudes denoted as E(w) and H(w) correspond to 
magnitudes of electric E

�
(t) and magnetic 

�
H(t) fields at a given point. 

Relation between the physical magnitudes and their complex magnitudes is given 
by the relationships: 

E
�
(t) = Re[E(w)exp( jw t)] and 

�
H(t) = Re[H(w)exp( jw t)], (1.34)

where Re A is the real part of a complex vector, located in square brackets and w is 
the circular frequency of the investigated process. Complex magnitudes E(w) and H(w), 
related with the instantaneous values by the relations of the type (1.34), correspond to 
two scalar physical magnitudes E(t) = E cos wt and H(t) = H cos E wt. If E(w) and H(w), 
are complex magnitudes: 

E(w) = Ee ja and H(w) = He jb, (1.35)

where E and H are the amplitudes, and a b are the arguments of the complex 
magnitudes, then

E(t) = E cos(w t + a) and H(t) = H cos(w t + b ) (1.36)

Thus, the amplitudes   of the complex magnitudes are the amplitudes of the 
corresponding instantaneous values of the physical quantities, and the arguments of 
the complex magnitudes determine the phases of the instantaneous values of these 
quantities. Similarly, complex magnitudes are introduced for all physical magnitudes, 
incoming in the Maxwell equations. Formal coupling of complex equations with the 
initial equations is simple: in order to obtain complex equations one must replace the 
differentiation operator ∂/∂t by the operator of multiplication jw.
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As is well known, energy magnitudes are determined by products (or squares) of 
instantaneous values   of fields and currents. If to create a product

a t b t AB t( ) ( ) cos( ) cos( )= - + + +ÈÎ ˘̊
1
2

2a b w a b (1.37)

and to calculate its average value for the period T, one may obtain

a t b t
T

a t b t dt AB a b
T

( ) ( ) ( ) ( ) cos( ) Re ( ) ( )= = - = ÈÎ ˘̊Ú1 1
2

1
2

0

a b w wi . (1.38)

Similar expressions are true for vector magnitudes also. These expressions permit 
to calculate the average value (constant part) of the energy value in accordance with the 
known complex amplitudes. A similar method can be used to calculate the average value 
of the variable fraction of the energy (oscillating energy). Indeed, according to (1.37) 

a t b t a t b t( ) ( ) ( ) ( )= + Q� ,

where it is natural to assume that the time-dependent second term 

Q� = + +0 5 2. cos( )AB tw a b (1.39) 

is the oscillating fraction of the product a(t)b(t). This part oscillates in time with a 
frequency 2w, and its average value is zero. One can rewrite the expression (1.39) as 

Q� = ÈÎ ˘̊0 5 2. Re ( ) ( )exp ( )a b j tw w w . (1.40)

It is seen that half the product of complex amplitudes is the complex amplitude of the 
oscillating fraction of the product a(t)b(t).

As is well known, the energy conservation law for the electromagnetic field is 
given by 

dW/dt + P + S = 0. (1.41)

Here, W is the electromagnetic energy contained in a volume V, P is an outgoing power 
(which flows out the volume through its bounding surface), and S is the radiation 
power. Passing from the differential formulation to the integral formulation and using 
the appropriate complex magnitudes, one can write the theorem about the oscillating 
power in the form 

- = +S� � �P j W2 w . (1.42) 

In deriving this expression, each term is considered as the sum of the active magnitude 
(average for the period of oscillation) and the oscillating (variable) fraction. In particular, 
for an instantaneous value of the power flux one can write according to (1.38)

p t P P( ) = + � , (1.43)
where 

P EH P EH j t= = ÈÎ ˘̊0 5 0 5 2. Re( *), . Re exp( )� w

From here the physical meaning of magnitudes EH* and EH is clear. The first 
magnitude is the complex amplitude of the active part of the power flow, equal to its 
average value. The second magnitude is the complex amplitude of the oscillating part 
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of the power flow. In accordance with the law of energy conservation, if the source of 
radiation is located inside of a closed surface, then the active (average for the period of 
oscillation) power, supplied by the source, is equal to the active power passing through 
a closed surface. It is natural to assume that this equality of powers is true for any time, 
i.e. the oscillating fraction of the power supplied by the source, is equal to the oscillating 
fraction of the power passing through a closed surface. 

1.4 METHOD OF INDUCED EMF 

The induced emf method was proposed in 1922 by Rojansky and Brillouin simultaneously. 
Klazkin was the first to use it for calculating radiator characteristics. Later on, Pistolkors, 
Tatarinov, Carter, Brown et al. have contributed to its development. Reference list in the 
book [8], which is dedicated to regulation and generalization of the results available in 
the literature, consists of 96 items.

The method of induced emf allows determining both the active and reactive 
components of the antenna input impedance. Since the active component can be 
calculated with a similar accuracy by a simpler method of Poynting’s vector (see 
Section 1.1), the method of induced emf actually for practical purposes, as emphasized 
in [9], is only one of the methods for determining input reactance of antenna.

The theorem about the oscillating power has significantly changed the understanding 
of the induced emf method, which has been the only way to calculate an antenna 
input reactance for a long time. The method of induced emf is formulated as follows: 
A cylindrical radiator of height 2L and radius a is placed inside a closed surface. 
A power, created by the emf source (by a generator), is equal to a complex power 
passing through this surface. Assume that the closed surface is a circular cylinder of 
height 2H and a radius b, along the axis of which the symmetrical radiator is located 
(Figure 1.3a). A density of power flux, which leaves a volume, bounded by a closed 
surface, is determined by the Poynting vector, or rather by its projections onto the 
normal to the sections surface: to the side surface and to the tops of the cylinders. These 
projections have the following form: 

P E H P E Hz zr j r j= - =0 5 0 5. , .* . (1.44)

Figure 1.3 Closed surface around a radiator.
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Let the cylinder surface coincide with the surface of the radiator, i.e. H = L, b = a.
Then, if the radiator radius is small, power fluxes passing through the upper and lower 
covers of the cylinder, will also be small. Therefore, power passing through a closed 
surface is determined by integrating only over the side surface of the cylinder 

P P ad dz
L

L

1

0

2

= ÚÚ
-

r

p

j

Here Pr is determined from (1.44) and does not depend on the coordinate j, because the 
field components do not depend on it. Taking into account that Hj

*  = J*(z)/(2pa), we obtain

P E J z dzz

L

L

1 0 5= -
-
Ú. ( )* . (1.45)

If a current J(z) is excited by a single generator, located in the middle of the radiator, 
then the power, created by it, is

P J ZA2
20 5 0= . ( ) , (1.46)

where ZA is an input impedance of the antenna. Equating the power created by the 
source of emf, to the power passing through the closed surface, we obtain

Z
J

E J z dzAl z

L

L

= -
-
Ú1

0 2( )
( )* (1.47) 

The expression (1.47) reveals the essence of the induced emf method. Two other variants 
of deducing this expression are described in [10] and [11].

If to equate to each other, instead of complex powers, two analogous oscillating 
powers: the power passing through the closed surface, 

P E J z dzK z

L

L

1
1
2

= -
-
Ú ( ) (1.48)

and the power, created by the generator, 

P eJ J ZK A2
21

2
0

1
2

0= =( ) ( ) , (1.49)

where e is the emf of the generator, we obtain

Z
J

E J z dzAII z

L

L

= -
-
Ú1

02 ( )
( ) . (1.50)

After the appearance of an expression (1.50), equation (1.44) has been called the 
first formulation of the induced emf method. Expression (1.50) was called the second 
formulation of the induced emf method. This expression was first obtained on the basis 
of the theorem of reciprocity [12–14]. This theorem holds not only for two separate 
antennas but also for two points on the same antenna. Using that circumstance and 
applying the theorem to one radiator, one can obtain the expression (1.50). As is shown 
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here, if to use the concept of oscillating power, then this expression is easily deduced 
from the energy relations. But despite the fact that the expression (1.50) by means of the 
theorem about the oscillating power was obtained many years ago [15], most experts 
kept to argue that it is derived in accordance with the reciprocity theorem by contrast 
to the expression (1.47) obtained from an equality of powers.

As can be seen from the above, the difference between the first and second 
formulations is caused by the fact that the first one is based on the equality of complex 
powers, and the second one - on the equality of the total powers, consisting of the 
active and oscillating components. Even here an advantage of the second formulation is 
obvious, since a reactive power unlike the oscillating power has no physical meaning.

Analysis shows that the second formulation is stationary. To verify this, one must 
show that if the antenna current is changed by the value of the first order infinitesimal, 
the input impedance will change by the value of the second order. The input impedance 
ZAII obtained from (1.50) is not be changed in the first approximation for any trial current 
distribution, which differs from the true current J0(z) by a small value dJ(z). This means 
that if at J(z) = J0(z) a self-impedance of the radiator is equal to ZAII, then on J(z) = J0(z) +
dJ(z) the self-impedance is also equal to ZAII. The corresponding proof was given by 
J.E. Storer and is described in [16]. The stationary property of the second formulation is 
due to the fact that the integral in this expression is a rough functional of the current 
function, although an integrand is no rough functional of it [9].

Let a straight, perfectly conducting filament of a finite small radius a, whose axis 
coincides with z-axis, be located in a lossless medium and be used as a model of a 
vertical symmetrical dipole with arm length L (see Figure 1.4a). The current distribution 
along it is determined by the expression

J z J
k L z

kL
( ) ( )

sin

sin
=

-( )
0 , (1.51)

i.e. a tangential component of the electric field of the filament along a radiator surface 
is equal to 
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exp( ) exp( )
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exp(
e

00
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)
R
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Î
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˘

˚
˙, (1.52)

where R z L a R z L a R z a1
2 2

2
2 2

0
2 2= - + = - + = +( ) , ( ) , ( are distances from observation 

point M to an upper end, to a lower end and to the middle of the radiator, respectively, 
and er is the air relative permittivity. In this case both formulation of the induced emf 
method give the same result:

R C Ci Si Si C CiA = + - + - + + +
30

2 2 2 2 4 2 2 2 42sin
( ln ) sin ( ) cos ( ln

a
a a a a a a a aa a-[ ]2 2Ci )

X C Ci Ci L a Si SiA = + + - - - -
30

2 4 2 2 2 2 2 4 2 22sin
sin ( ln ln( ) cos (

a
a a a a a a a)) +[ ]2 2Si a . (1.53) 

Here Six u u du
x

= Ú (sin / )
0

 is sine integral, Cix u u du
x

=
•
Ú (cos / ) is the cosine integral, a = kL,

and C = 0.5772... is the Euler’s constant.
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Figure 1.4 Symmetrical (a) and asymmetrical (b) dipoles.

As can be seen from the expression for antenna reactance, XA consists of terms of 
a various order infinitesimal. The great summand is equal to 

X L a C L aA0 230
2

2 2 2 120 2= ◊ - ª -
sin
sin

[ ln( / ) / ] ln( / )cot
a
a

a . (1.54)

The value c = 1/W is called a small parameter of the thin antennas theory (W is a 
parameter, used by Hallen). The parameter c is equal to c = 0.5/ln (2L/a). Introducing 
the notation W = 60/c, we obtain an expression for the input reactance of an equivalent 
long line, open at the end: XA0 = -W cota .

In order to calculate losses in antenna conductors (e.g., loss due to skin effect), one 
must add to a purely real propagation constant a small imaginary value. Calculations 
show that in this case the second formulation gives positive value of a loss resistance and 
the first formulation, a negative one. A similar situation occurs during calculating losses 
in a ferrite shell of the antenna. Thus, if losses exist in the medium or in the antenna, 
applying of conception of reactive power gives an obvious mistake. The rightness of 
the second formulation, based on the conception of oscillating power, becomes a fact.

The second formulation of the induced emf method was analyzed when integral 
equations of Hallen [17] and Leontovich-Levin [18] for the current along a radiator axis 
were already written and solved. Solutions have been given in the form of expansions 
into a power series. If we use the formulas presented in [10] and [18], one can show 
that the solutions of both equations are same [19]. In this case, the coincidence of the 
results is not only numerical. The results were obtained in an explicit form (in the form 
of identical tabulated functions).

As already mentioned, solutions obtained by induced emf method for the perfectly 
conducting filament, using different formulations, gave identical results. They coincide 
with the solutions of integral equations for different length of radiator, if this length 
is not close to the parallel resonance when J
impedance, calculated by the induced emf method, becomes infinitely large, and the 
integral equations give the finite results. 

Summarizing, one can say that both formulations of the induced emf method are 
based on the same two theses. The first thesis assumes the sinusoidal character of the 
current distribution along the radiator. The second thesis signifies the equality of the 
source power and the power passing through the closed surface. 

a) . z b) 

p 
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Both formulations are useful only in the case the current distribution J(z) along a 
radiator is known. The selection of the law of the current distribution may be based 
only on a solution of integral equations for the current, i.e. on a rigorous solution of 
the problem. Physical base for the selection of another distribution law does not exist. 
Hence there is no sense in speaking about the accuracy of the induced emf method, 
excluding artificially the error caused by the inexact current definition. The accuracy 
of this method is the mutual accuracy of (1.51) and (1.47) or (1.50). The experience 
in calculations shows that (1.51) gives a quite acceptable approximation, if a p/2. 
Therefore, the first thesis is questionable, because this thesis has an approximate nature. 

As to the second thesis used for derivation of the first formulation, its inapplicability 
is obvious, since the reactive power has no physical sense, and the input reactance of 
antenna is determined as a result of equating two quantities no having physical sense. 
Equating of two such quantities cannot be justified.

1.5 APPLICATION OF THE INDUCED EMF METHOD TO 
COMPLICATED ANTENNAS AND TO ANTENNA SYSTEMS 

One can use the induced emf method for analyzing more complicated radiators. The 
expressions (1.47) and (1.50) were obtained without indicating a concrete coordinate of a 
feeding point. For this reason, they are applicable to the radiator with h
radiator with a feed point displaced from the radiator center to point z = h (Figure 1.4b), 
the flux of an oscillating power through the side cylinder surface by analogy to (1.48) is

P E J J z dzK z

L

L

1 = -
-
Ú ( ) ( ) . (1.55)

The oscillating power created by one generator by analogy to (1.49) is equal to

P eJ h J h ZK A2
2= =( ) ( ) , (1.56)

By equating the right parts of the expressions, we come to

Z
J h

E J J z dzA z

L

L

= -
-
Ú1

2 ( )
( ) ( ) . (1.57) 

Note that in this expression unlike (1.50) not only the denominator other, but also 
another current distribution J(z) along the radiator and another field Ez( J) of its current.

In the case of a radiator with nonzero surface impedance in (1.50) instead of Ez( J) one 
should substitute the difference [Ez( J) – HjZ(z)]. Here Z(z) is the surface impedance, i.e. 
the impedance of the square surface section. Actually, in accordance with the boundary 
condition on the radiator surface, it is necessary to take into account that a voltage drop 
along the self radiator makes no contribution to its radiation. Then for an antenna with 
constant surface impedance Z (Figure 1.5a) in a shape of a straight circular cylinder 
with radius a we find

Z
J h

E J ZJ z a J z dzA z

L

L

= - -[ ]
-
Ú1

22 ( )
( ) ( )/( ) ( )p . (1.58)
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If h = 0, the current distribution J(z) coincides in the first approximation with the 
current distribution along an impedance long line, open at the end:

J z J k L z k L( ) ( )sin /sin= -( )0 1 1 . (1.59) 

Here k k j k Z aZ1
2

02= - ( )c /  is the propagation constant of a wave along the impedance 
line.
For a symmetrical radiator with piecewise constant surface impedance (Figure 1.5b) one 
can write:

Z J E J Z J z a J z dzA z m
m

m m

b

b

m

N

N

m

m

= - -ÈÎ ˘̊

+

ÚÂ
=

1 22

1

2

1

/( ) ( ) ( )/( ) ( )( ) p , (1.60)

where m is the segment’s number, 2N is the total number of segments, Z(m) is the 
surface impedance on the segment m. Current distribution Jm(z) on the each segment 
m is sinusoidal. Current distribution J(z) along the radiator coincides in the first 
approximation, if h = 0, with the current distribution along a stepped impedance long 
line open at the end:

J z I k z b z bm m m m m m m( ) sin( ),= + £ £+j 1 , (1.61)
where
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In these expressions zm = bm – z is the coordinate along the segment m, km is the wave 
propagation constant along this segment, and lm is its length. The expressions are true 

for the segment N too, if to adopt that the product 
p N

N

= +
’

1
 is equal to 1.

In the case of a radiator with one concentrated load Z1 located at point z = z1
(Figure 1.6a), the power is firstly radiated by the antenna:

P E J J z dzK z

L

L

1 = -
-
Ú ( ) ( ) , (1.62)

and secondly it is wasted in the complex load:

P J z ZK2
2

1 1= ( ) . (1.63)

The oscillating power produced by the generator is equal to the sum of these powers:

PK = J2(h)ZA = PK1 + PK2, (1.64)
i.e.
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For several loads Zn, located at points z = zn of the asymmetrical radiator (Figure 1.6b)

Z
J

E J J z dz Z J zA z n n
n

NL

= - -
Ï
Ì
Ô
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¸
˝
Ô

Ǫ̂=
ÂÚ1

02
2

10
( )

( ) ( ) ( ) . (1.66)

Free terms in (1.65) and (1.66) are proportional to the square of the current and the 
magnitude of the concentrated load. It is worth emphasizing that the connection of 
loads changes the current distribution along the radiator and the field of the current.

Figure 1.5 Antennas with constant (a) and piecewise constant (b) surface impedances.

Figure 1.6 Antennas with one (a) and several (b) concentrated loads.

For a folded radiator (Figure 1.7a), which is an example of an antenna consisting of 
several parallel wires, we obtain

Z
J

E J J z dzA
g

z

L

L

= -
-
Ú1

2 ( ) ( ) . (1.67)
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Here Jg is the generator current, J(z) is the total current of an antenna. The current 
distribution along the antenna wires coincides in the first approximation with the 
current distribution along the wires of an equivalent long line and is determined by 
means of the theory of electrically coupled lines. Generator current Jg of a folded radiator 
is not always equal to total current J(z) at z = 0. If the radiator has a gap at point A
then, Jg = J(0). When calculating the field, it is necessary to use the total current, i.e. the 
sum of the currents of both wires.

Multi-radiator antenna, which is shown in Figure 1.7b, is an example of a radiator 
consisting of wires with different lengths. The antenna contains the central radiator 
with complex load Z1 and side radiators situated around it and connected with it at the 
base. In this case, one can find the antenna input impedance from (1.65). The current 
distribution along the antenna wires is found by means of the theory of electrically 
coupled lines. The equivalent line (Figure 1.7c) consists of three wires. The first wire is 
equivalent to the central radiator, the second wire is equivalent to the system of identical 
side radiators, and the third wire is the ground. 

Since the wires of the equivalent line have different lengths and the complex load 
is connected in the central radiator, the line should be divided into three segments. The 
numbers m of segments are shown in Figure 1.7c. Using the boundary conditions at the 
segment ends, one can find the current of each wire and the total currents along the 
segments. Function J(z z l1 and behaves as 
sinusoid along each segment. But its derivative dJ(z)/dz has a jump on the boundaries 
of the segments. With allowance for jumps of the derivative we obtain instead (1.31):
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where R a z R a l z R a l zm m m m0
2 2

1
2 2

2
2 2= + = + - = +, ( ) , ( ) ; a is the radiator radius at 

point z, and dJ(lm + 0)/dz and dJ(lm – 0)/dz are the values of derivative on the right and 
on the left of point z = lm.

As it is noted in Section 1.3, the induced emf method does not permit to obtain 
the finite values of the input impedance at the points of parallel resonance, where            
J(h) = 0, and near these points. The second (integral) variant of solving the Leontovich-
Levin integral equation allows in the case of the symmetrical radiator, if J(h
come to the expression
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One can obtain similar expressions also for more complicated radiators. For example, 
the input impedance of a radiator with N concentrated loads and with the displaced 
feed point is equal to
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Figure 1.7 Folded antenna (a), multi-radiator antenna with the complex load (b), and the 
transmission line equivalent to a multi-radiator antenna (c).

These formulas expand essentially the scope of the method of induced emf. 
Comparison of the results of calculations by these formulas and numerical methods 
confirms their correctness.

Up to now the subject of discussion was application of the induced emf method for 
calculating the input impedance of an antenna. But this method is applied widely also 
for solving another problem – estimating the reciprocal influence of radiators by means 
of calculating their mutual impedances.

The analysis of two-radiator systems is based on the fact that the current of one 
radiator creates the field, which has the electrical component tangential to the surface of 
the second radiator. This component induces the field EV(J1)dV on the surface of element 
dV of the second radiator. In order to execute the boundary condition EV = 0 on this 
surface, the own field of the second radiator on its surface must be equal to –EV(J1)dV.
The generator of the second radiator must increase the power in the element dV by dP
= –EV(J1)J2(V)dV and, accordingly, the power in the entire radiator by

P E J J d
L

L

= -
-
Ú V V V( ) ( )1 2

2

2

.

Power P is equal to the power induced by the first radiator in the second radiator, and 
the ratio of power P to the square of the current of the second generator determines 
the magnitude of additional impedance, which the first radiator induced in the second 
radiator:
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E J J dind

L
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2
2 1 2
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2

2
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-
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( ) ( )V V V . (1.71)

The Kirchhoff equation for the second radiator takes the form

e J Z Z J Z J Zind2 2 22 21 2 22 1 210 0 0= +[ ] = +( ) ( ) ( ) , (1.72)

where Z E f f d
L

L

21 1 2

2

2

= -
-
Ú V V V( ) ( ) is the mutual impedance of the first and the second radiators, 

f1(z) = J1(z)/J1(0), f2(V) = J2(V)/J2(0). One can write a similar expression for the first radiator. 
In the case of Q radiators, it has the follow form for the radiator p:

a) 

2 - • • ,q,_;;;;::.~,. 
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e J Z J Zp p q pq
q

Q

= +
=
Â1 1

2

0 0( ) ( ) . (1.73)

The corresponding circuit for the radiator p is given on Figure 1.8.
The expressions presented in this section are given in the accordance with the 

second formulation of the induced emf method. The formulas, which allow to calculate 
the mutual impedances of linear radiators for the different variants of their relative 
geometrical replacement, are collected in [8]. 

Figure 1.8 The circuit of radiator p with serial connection of elements. 

1.6 LOSS RESISTANCE IN THE GROUND                                             

As already mentioned, the theorem about the oscillating power has significantly changed 
the understanding of the induced emf method. The losses of asymmetric vertical 
antenna in an earth and ground are another example of this change. It is presented in 
this section.

For a long time the calculation of losses in the ground was carried out according 
to the procedure of Brown [20]. It proceeds from the idea of   a high conductivity of 
the ground, owing to which a magnetic field Hj at the ground surface (Figure 1.9) is 
virtually identical to a magnetic field of an antenna, located above a perfectly conducting 
ground, and its strength is equal to a density of a surface current in the ground: 

jr(r) = Hj0(r). (1.74) 

The surface current has a radial character. 
If a resistance per unit area of   the earth’s surface is equal to R0, then the resistance 

of an element in the form of a ring with radius r and width dr is dRg = (R0/2pr)dr. The 
power of losses in this ring is dPg = (2pr|Hj0|)2dRg. The resistance of losses, referred to 
the base of the antenna, is found from the expression
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Here J(0) is the current in the base. Resistance per unit area is R s0 1 11= =/( ) / ,s p sl
where s is the depth of current penetration into the ground and s is the conductivity 
of the ground.

A lower limit of integration in (1.75) is the antenna radius or the radius of the 
ground, whose conductivity can be considered infinitely great. The upper limit b must 
tend to infinity. It is easy to see, however, that in this case, the integral diverges. Indeed, 
the magnetic field of the monopole in the form of a thin conductive filament, mounted 
vertically on the perfectly conducting ground, can be written as 
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Hence the integrand is

H
J

kL
kL kL k Lj r

p r
r r0

2 2

2 2
2 2 20

4
1 2= + - + -( )È

ÎÍ
˘
˚̇

( )
sin

cos cos cos .

If b2 b1 L, the integral

H d
J kL

kL
In

b
b

b

b

j r r
p0

2 2 2

2 2
2

1

0 1
4

1

2

=
-Ú ( )( cos )
sin

increases unlimitedly with increasing of the upper limit and, consequently, the resistance 
Rg increases unlimitedly also.

In [21] it was suggested to assume that the upper limit of the integral (1.75) is equal 
to l/2. Outside the boundaries of this area the component of zonal current, which 
decreases with increasing distance in accordance with the law 1/r, is dominated. This 
component is taken into account, when the radiation resistance is calculated. Inside the 
indicated area, the induction component of zonal current, which decreases according to 
the law 1/r2, is dominant. It is believed that this component causes losses in the ground. 
These qualitative considerations were a cause for quantitative evaluation, justifying 
actually arbitrary choice of the upper limit. 

The expression for the additional resistance of the antenna caused by a non-ideal 
conductivity of the ground (as the resistance of losses in the ground is called commonly), 
was derived and published in 1954 [22]: 
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Here Ep is a radial component of the electric field on the ground’s surface and J(z) is 
the current along the antenna. 

According to the authors’ opinion Hj0 is a component of the magnetic field on the 
surface of the perfectly conducting ground.

Figure 1.9 Magnetic field near a radiator.
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Expression (1.77) is derived by means of an intricate procedure, using direct and 
inverse Fourier-Bessel transformation. A similar result can be obtained using the theorem 
about the oscillating power. 

This theorem is applied to a volume V, bounded by a hemisphere SR of a large 
radius R, a ground surface Sg and an antenna surface SA (Figure 1.10). Let R tend to 
infinity. Since in the steady-state mode the energy within the volume is constant, then 

�� � � � �
EjdV E H dS j H E dV

V
n

VS S S SR A g

= ÈÎ ˘̊ + +( )Ú ÚÚ
= + +( ) ( )

, w m e2 2
, (1.79) 

where j is a density of an extraneous current, n is an outward normal to the surface 
S, w is a circular frequency, and m and e are permeability and permittivity of a free 
space relatively.

Figure 1.10 Closed surface around a radiator.

The left part of (1.79) is the total (active and oscillating) power associated with the 
energy of external sources, i.e. with the antenna. It is equal to 

P E J z dz J Z ZI z A g

L

= = +Ú ( ) ( )( )2
0

0

0 . (1.80)

Here ZA0 is the input impedance of the antenna in the case of a perfectly conducting 
ground. In the absence of losses in the wires, the active component of this impedance 
is equal to the radiation resistance. Within the limits of solution accuracy, it is supposed 
that the ground conductivity is high, and the electromagnetic field coincides with the 
field of an antenna mounted on the ground with infinite conductivity, i.e. losses in the 
ground do not affect the radiation resistance.

The right part of (1.79) is equal to

P P P P j WII = + + +1 2 3 2 w . (1.81)

Here, P E H dS P E H dS P E H dSn R
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= +( )Ú1
2

2 2m e
� �

 are 

total powers of the radiation, of the losses in the wires, of the losses in the ground, 
as well as the oscillating energy in the volume V. Since electromagnetic fields are 
considered the same, when the ground conductivity is great or infinite, then 
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J2(0)ZA0 = P1 + P2 + 2jwW, P3 = J2(0)Zg,
i.e.
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Here, Er and Hj are the field components on the surface of a highly conducting ground. 
Expression (1.82) differs from (1.77) only by substitution Hj for Hj0. As is seen from 

(1.82), it is necessary to include in the integrand the field of not perfectly conducting, 
but of the real ground. Since J(z) is the current of the real antenna, which like the input 
impedance is distinguished from the current along the antenna mounted on a perfectly 
conducting ground, then Hj is the magnetic field on the surface of the ground, which has 
a finite conductivity. The statement in [22] that it is a component of the magnetic field 
in the case of the perfectly conducting ground is a mistake. This erroneous argument 
was repeated by other authors too (see, for example, [23]).

Thus the theorem about the oscillating power allowed not only to obtain simply and 
clearly the result derived by means of an intricate procedure, but enabled to discover 
the mistake [24].

Impedance boundary conditions on the ground surface are of the form 

Z0 = –Er/Hj, (1.83) 

where Z0 is the surface impedance. Here, the minus sign is caused by the fact that the 
current density

� � �
j n H= [ , ] is directed radially toward the origin along the ground. For 

the ground with high conductivity

Z0 = R0(1 + j), (1.84)
i.e. 
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The active component is
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where Hj1 = ReHj, Hj2 = ImHj.
The difference between the results of Waite-Pope and Brown is clear from (1.86) and 

(1.75). If Hj = Hj0, when b2 b1  L,
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i.e. integral in (1.86) converges. 
Just as expression (1.86) follows from the theorem about the oscillating power, 

expression (1.75) with an upper limit equal to infinity can be obtained on the basis of the 
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theorem about the complex power. Both formulas follow from the fact that the additional 
instantaneous power, created by the generator because of losses in the ground, at any 
given point of time, in accordance with the law of conservation of energy, is equal 
to the instantaneous power losses in imperfectly conducting ground. Therefore, both 
expressions should be true.

Integrands in these expressions are different, because Re (Er Hj Er Hj
* ). 

However, this difference does not exclude equality of integrals. The magnitudes of Rg
must be equal to each other upon substituting into integrals a magnetic component Hj 
of field on the surface of a real ground. For this, when r L, the magnitude of Hj 2
must be equal to zero, i.e. the tangential component of the magnetic field on the ground 
surface in the far zone must be in phase with the current J(0) in the antenna base.

It is easy to verify that Hj 0 satisfies this requirement only in the vicinity of the 
antenna: if r  L, Hj 0 = J(0)/2pr). When r L, Hj 20 /Hj 10 = cotkL, i.e., Hj 0 differs 
substantially from Hj. The experiment confirms that Hj coincides with Hj 0 only at a 
short distance from the antennas [25]. Let Hj 0 be different from Hj on some complex 
value: Hj 0 – Hj = M1 + jM2. Then one can find the difference of integrands in expressions 
for Rg in the cases of perfectly and imperfectly conducting ground. Using expressions 
(1.75) and (1.82), we obtain that this difference in the first case is equal to
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and in the second case it is
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The magnitude D1 depends on the sum of the squares of the real and imaginary 
components of error, and magnitude D2 depends on their difference. If M1 + jM2 is a

value of an order exp(–jkr) and b2 grows, an integral DÚ 1

1

2

r rd
b

b

unlimitedly increases, and

integral DÚ 2

1

2

r rd
b

b

 tends to be zero in proportion to 1/b1. The second version is natural,

since the tangential component of the magnetic field on the surface of the real ground 
far from the antenna cannot have the character of no damped spherical electromagnetic 
wave, i.e. cannot contain summands of order exp(–jkr)/r incoming in the expression 
for Hj 0.

The authors of [22] attempted to calculate a change of radiated power, caused by 
the finite conductivity of the ground. They considered that it is equal to a difference 
between the additional power of the generator determined in accordance with (1.77) 
and the power of losses in the ground determined by (1.75). This attempt is incorrect, 
since within the limits of accuracy of the proposed method the radiated power does 
not depend on the conductivity of the ground, and the power of losses in the ground 
and the additional power of the generator are identical.

For a radiator, whose feed point is shifted from the middle to point z = h (Figure 1.11).
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Figure 1.11 A radiator with a shifted feed point.

The magnetic field on the surface of a real ground
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Substituting (1.88) into (1.86), we find
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where a2 = k(L – h), F1 and F2 for the short radiator with a small radius a of grounding 
are equal to

F L h a F1 2
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Here, a = kL, a 0 = kh, a 1 = k(L + h). As is seen from expression (1.89) for the short 
radiator, the reactive component Xg of the loss impedance has an inductive character and 
is equal in magnitude to the active component Rg. With growth of h the impedance Zg

h Zg with respect to h, is positive always. 
In the general case F1 and F2 have a more complicated character [24]. 

Results of calculating loss resistance in the ground (water) in HF range are presented 
in Figure 1.12. It is assumed that the magnitude s is equal to 3 Sm/m. Dimensions 
are given in meters. Calculations are made in accordance with (1.89): solid lines—in 
accordance with the general expression, dotted lines—in accordance with (1.90). 

z 

p 
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Figure 1.12 Loss resistance in water for a radiator with shifted feed point.

The considered example shows that the theorem about the oscillating power changes 
significantly the understanding of the processes related with the transfer of power 
between the objects.
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2.1 INTEGRAL EQUATION FOR LINEAR METAL RADIATOR 

As shown in Chapter 1, knowledge of the current distribution along a linear radiator 
allows to determine the electromagnetic field and all electrical characteristics of the 
radiator. For this reason, calculation of the current distribution is an important problem 
of the antenna theory. 

The current J(z) of a dipole creates an electromagnetic field Ez( J) satisfying the 
boundary condition 

E a z K zz L z L( , ) ( )- £ £ + = 0 (2.1)

Here the cylindrical coordinate system is used. a and L are the radius and the arm length 
of a dipole, respectively, K(z) is an extraneous emf. Current at the radiator ends is absent: 

J(±L) = 0. (2.2)

Expression (2.1) is the mathematical record of the fact that the full field, which is a sum of 
the extraneous field and the current field, is zero on the surface of a perfectly conducting 
radiator. The extraneous field is specified usually as the product of potential difference 
e between the edges of the gap and d-function. Magnitude K1(z) = ed (z) corresponds to 
connecting the generator in the radiator middle, at point z = 0, and K2(z) = ed (z – h)
corresponds to its displacement, i.e. to connecting the generator at point z = h.

Equation (2.1) contains as in embryo all the integral equations of the theory of the 
thin antennas. The external appearance of the equations depends mostly on the selection 
of function Ez( J). For example, using (1.27), we obtain the integral equation of Hallen 
for the current along a filament.

J G d
j

Z
C kz

e
k z

L

L

( ) cos sinV V1
0 2

= - +Ê
ËÁ

ˆ
¯̃

-
Ú , (2.3)

2
Integral Equation Method
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where G1 = exp(– jkR1)/(4pR1), R1 = |z – V|.
.
Using (1.28), we obtain Hallen’s integral 

equation for the current along a straight thin-wall metal cylinder (the equation with 
exact kernel)

1
2 22

00

2

p
V j V

p

J G d d
j

Z
C kz

e
k z

L

L

( ) cos sin= - +Ê
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ˆ
¯̃ÚÚ

-

. (2.4)

Here G2 = exp(– jkR2)/(4pR2), R z a2
2 2 24 2= - +( ) sin /V j . The integral equation for the 

current along a filament of a finite radius (the equation with approximate kernel) is 
widely used:

J G d
j

Z
C kz

e
k z

L

L

( ) cos sinV V3
0 2

= - +Ê
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ˆ
¯̃

-
Ú , (2.5)

where G3 = exp(– jkR3)/(4pR3), R z a3
2 2= - +( )V . Constant C in each equation is found 

from condition (2.2).
Substituting filament field Ez( J) into (2.1) in accord with (1.27) and replacing R1 by 

R3, one can obtain Pocklington’s equation [26]
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Ú , (2.6)

which also is the integral equation for the current along a filament of a finite radius.
The first solution of Hallen’s equation with an approximate kernel was found 

by Hallen himself and is described in detail in [10]. The solution uses magnitude
W = 2 ln(2L/a) = 1/c as the parameter, in inverse powers of which function J(z) is 
expanded into a series. By means of a successive approximation method (iterative 
procedure) one can obtain the expression

J z j
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Î
Í

˘

˚
˙) . Functions Ni(z)

and Bi(z) are integrals, which can be expressed in terms of integral sine and cosine. 
The iterative procedure proposed by King and Middleton [27] yields more accurate 

results. The common expression for the current in it is similar to (2.7), but expansion 
parameter W is replaced with Y. For example, zero approximation instead of J0H(z)/W
is given by
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k L zKM0 60

( )
cos

sinY
Y

= -( ).

To find expansion parameter Y, magnitude y (z) is used. It is calculated as 

y
V

V( )
( )
( )

exp( )
z

J
J z

jkR
R

dKM

KML

L

= ◊
-

-
Ú 0

0

.



29Integral Equation Method

By way Y, the value of y(z) at point z = zm, where the current is maximum or close to 
maximum, was taken, i.e.

Y =
£

- >
Ï
Ì
Ó

y p
y l p

( ), / ,

( / ), /

0 2

4 2

kL

L kL .

Such selection of the expansion parameter is caused by the fact that function y (z) is
proportional to the ratio of vector potential Az(z) at point z on the antenna surface to 
current J(z) in the same cross-section. For that reason, function y (z) varies slowly along 
the antenna, or more precisely it is almost constant except for the segments near the 
wires ends.

2.2 INTEGRAL EQUATION OF LEONTOVICH-LEVIN 

The Leontovich-Levin equation [18] played an important part in the progress of the 
theory of the thin antennas. If the electrical currents parallel to the z-axis and having a 
circular symmetry are taken by a source of electromagnetic field:

j = jzez, jz = jz (z) = const(j), (2.8)

a vector potential A of a field has only component Az, which on the surface of the 
radiator model in a shape of a thin-walled straight metal cylinder with circular cross-
section of a radius a, is equal to

A z T z dz ( , ) ( , )r
m
p

j j
p

= Ú8 2
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2

, (2.9)
where
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is the propagation constant in the medium surrounding the antenna, w is the circular 
frequency, m and e are the absolute permeability and permittivity of the medium 
respectively.

If to integrate T(z, j) by parts and to use successively the circumstance that the 
radiator radius is small in comparison with its length and the wavelength, i.e. if to 
neglect by the summands of order of a/L and ka and to keep the summands proportional 
to the logarithm of these quantities, we obtain:
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where p is a some constant having the dimensions of inverse length. Since at r > a,

ln ln( cos ) lnp d p a a d pr j r r j j p r
pp

1
2 2

0

2
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2

2 2∫ + - =ÚÚ ,

then
Az(r, z) = (m/4p)[–2J(z)ln pr + V(J, z)], (2.10)
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where

V J z jk z p z jkJ sign z dJ d d
L

L

( , ) exp ln ( ) ( ) ( )/= - -( ) - + -ÈÎ ˘̊
-

V V V V V V V2ÚÚ .

The tangential component of the electric field of the antenna is
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. (2.11)

This expression coincides with the first expression of (1.25). Substituting (2.10) into (2.11) 
and setting r equal to a, we find:
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Here c = –1/(2 ln pa) is a small parameter of the theory of the thin antennas, used in [18]. 
As is shown in [28], in the capacity of constant 1/p, one should choose the distance to 
the nearest inhomogeneity, i.e. the smallest of three magnitudes: wavelength l, antenna 
length 2L and the radius Rc of its curvature. In case of a straight radiator, the length of 
which does not exceed the wavelength, one can consider that 1/p = 2L, i.e.

c c= [ ] =1 2 2 0 5 2/ ln( / ) . /ln( / )L a L aeor . (2.13)

From (2.11) and (2.12), we obtain the desired equation

d J
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k V
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Î
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˙c p we ( ) . (2.14)

This equation together with the components, which contain the extraneous emf, the 
current and the current derivative, also has the element incorporating the integral       
V( J, z) and its derivative. It is known that one concentrated emf cannot create the 
sinusoidal current along the dipole [29]. The mentioned element is the additional emf, 
which depends on the current of the antenna. This emf is distributed along the antenna 
and takes the radiation into account.

The meaning of manipulations performed during derivation of (2.14), firstly, is that 
a logarithmic singularity was set off. The function Az in expression (2.10) including 
integral V( J, z) is a continuous function everywhere in contrast to the original integral 
(2.9). Another important advantage of the equation (2.14) is the absence of an argument 
j, since the integration with respect to j has been executed. Nevertheless, this equation 
is derived for the current along a straight thin-wall cylindrical antenna, and equation 
(2.14) is equivalent to the equation of Hallen with exact kernel.

In [18] in order to solve the equation (2.14), the perturbation method is used, i.e. 
the solution is sought in the form of expansion into a series in powers of the small 
parameter c:

J(z) = J0(z) + c J1(z) + c 2J2(z) + … . (2.15)

Substituting this series into the equation (2.14) and equating coefficients of equal powers 
of c, we obtain, in the case of an untuned radiator [when J0(z) = 0] the set of equations: 
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In the first approximation the current at an arbitrary point of the radiator is

J z j
e

kL
k L z1 60

( )
cos

sin= -( ) . (2.17)

It is easy to make sure that the input impedance of the antenna in this approximation is

ZA1 = –j60 c–1 cot kL. (2.18)

It has only the reactive component. It coincides with the input impedance of the 
equivalent long line, whose wave impedance is equal to 60/c. The expression for the 
antenna current in the second approximation, derived using this procedure for an 
arbitrary point of the radiator, is given in [19].

Another solution of the set of simultaneous equations (2.16), which was published for 
the first time in [30], is described in the book [19]. This solution gives the opportunity to 
clarify some questions of the theory of thin antennas. When n > 1, if the value W (Jn–1)
is known, one can use the method of variation of constants. The result is:
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We find magnitudes W (c n–1Jn–1) by substituting n first members of the series (2.15) for 
the current into (2.12):

Ez (cJ1) = –K(z) + W (cJ1); Ez (c n Jn) = –W(cn–1 Jn–1)+ W(c n Jn), n > 1,
i.e.
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In particular, if n = 2,
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Here a = kL. The equation (2.19) allows finding term n of the series (2.15) for the current 
and accordingly nth approximation, if (n–1)th approximation is known. Equation (2.20) 
allows finding the second approximation for the current at any point of the radiator. 
For this purpose, as it follows from (2.20), it is necessary to calculate the field of the 
current found in the first approximation.

As is seen from (2.16), when calculating the second and subsequent terms of the 
series (2.15), one can consider that the current of the radiator is concentrated on its 
axis. The accuracy level, accepted in derivation of equation (2.14) (accuracy of order of 
a/L) is retained. This circumstance simplifies essentially the calculation based on the 
recurrent formulas. 

Expression (2.20) allows to calculate the second approximation for the input current. 
It depends on the first approximation (2.15), which in accordance with (2.17) at a point 
z = 0 is equal to
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The second term of the series in accordance with (2.20) at this point is
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This value consists of two summands corresponding to two elements in square brackets. 
It is seen that the first summand is equal to cJ1(0). The second summand with allowance 
for (2.21) is equal to
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where the value of ZA0 coincides with (1.50), i.e. ZA0 is the known expression for the 
input impedance of the dipole, which was obtained by method of induced emf (second 
formulation). In order to refine this expression, one must substitute in the integral the 
field of the current cJ1 on the radiator surface 
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Integral Y1 consists of two integrals. Applying in the first integral the substitution 
t = –R1 + L – V and in the second integral the substitution u = –R1 – L + V, we obtain 

Y
j

jkt
t

dt
jku

u
du

L L a

a

L L a

a

1
1
2

22 2

= +
È

Î

Í
Í
Í

˘

˚

˙
˙

- - +

-

- +

-

ÚÚ exp( ) exp( )

˙̇
=

- - - - -
È

Î
Í
Í

˘

˚
˙
˙

1
2

2
2

2
2

j
Ei jka Ei

jka
L

Ei j kL( ) ( ) ( ) .

Results of the integration contains terms with arguments of the order of kL and with 
small arguments of the order of ka and smaller. If an argument x is small,

Ei ( jx) = Cix + jSix = ln g x + jx,

where ln g = 0.5772… is Euler’s constant. Summarizing the integration results gives
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where F(a) = e2ja [Ei(–4ja) – 2Ei(–2ja) + lng a] + 2ln2g a – 2Ei(–2ja) – 2j sin2a ln(L/a),
and the small magnitude D is equal to
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Calculations show that as a rule D  F(a), i.e. the value of D may be neglected: 

ZA0 = 30 F(a)/sin2a (2.25)

The comparison shows that, if the value of D is neglected, then one can use the 
expression (2.23). The reason for this coincidence will be explained later. But at first it is 
necessary to show the consequences, which are follow from this result. In accordance with 
(2.15) and (2.20) – (2.25), the input current of the antenna in the second approximation is
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This means that the input impedance of the antenna in this approximation is equal to
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2.3 INTEGRAL EXPRESSION FOR CURRENT AND EMF METHOD 

Let us return to the expression (2.25). In accordance with (2.15) the input current of no 
resonant radiator in the second approximation is equal to

J(0) = +cJ1(0) + c 2J2(0),

and c 2J2(0) << cJ1(0), if J1
a first approximation:
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As is shown in Section 2.2 – see (2.22),

c 2J2(0) = cJ1(0) + c2J22(0).

Substituting c 2J2(0) into (2.28), we find
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where, as it follows from (2.21) and (2.23),
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It is seen that the substitution (2.30) into (2.19) gives an expression identical to (1.50), 
i.e. identical to the second formulation of the method of induced electromotive force.

Thus, when J1
by the method of emf coincides with the integral formula obtained as a result of solving 
integral equation of Leontovich-Levin. The identity of integral formulas explains the 
known fact of coincidence of input impedances (in the second approximation) calculated 
by the two methods and expressed in terms of tabulated functions.

As it is known, the solution of Leontovich-Levin equation gives in the area of 
the parallel resonance of the antenna the finite magnitudes of the active and reactive 
components of the input impedance. The method of emf in contrast to the integral 
equation gives infinite magnitude of the input impedance. Really, in accordance with 
(2.25), if a tends to np, where n is natural number, then sin a tends to zero, and the 
input impedance ZA0 grows indefinitely, i.e. this method leads to incorrect results. 

The opposite situation occurs in the area of the serial resonances of the antenna, 
when a = (2n + 1)p/2 It is easy to see that in this case the magnitude of the input 
impedance including the active component in accordance with the expression (2.27) is 
equal to zero. In this regard, it is expedient to proceed from (2.25). A reason of that is 
an approximate nature of expression (2.27) in the area of serial resonance. 

Essentially, both formulas—(2.25) and (2.27)—give more accurate results in one area 
and have an approximate nature in another area. This allows to offer on the basis of 
both formulas a general expression that gives high and approximately identical accuracy 
in both areas:
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Here ZS is the impedance, which is calculated in accordance with (2.25), ZP is the 
impedance, which is calculated in accordance with (2.27), p/2 is the value of kL at the 
point of the serial resonance, p is the value of kL at the point of the parallel resonance, 
and a is the value of kL at an arbitrary point. As can be seen from this expression, when 
a changes from p/2 to p the value of the first term uniformly decreases from ZS to zero, 
and the value of the second term increases uniformly from zero to ZP.

Figure 2.1 shows the active and reactive components of the input impedance of a 
symmetrical cylindrical radiator (dipole) depending on the arm length. Components 
of the input impedance calculated in accordance with expression (2.31) are marked 
by number 1, in accordance with (2.25)—by number 2, in accordance with (2.27)—by 
number 3.

Figure 2.1 Input impedance of a symmetrical cylindrical antenna: curve 1—in accordance 
with (2.31), curve 2—in accordance with (2.25), curve 3—in accordance with (2.27).

Calculations were made for the radiator with the parameter c = 0.1, i.e. for the 
antenna with the rather great transverse dimensions. This choice of a small parameter 
allows more rigorously analyzing the described procedure. Comparison of the received 
results with the results of the application of the Moment method shows good agreement 
of a form of the curves and components of the input impedance. The only difference 
is that the curves obtained by the Moment method, have a weak shift of resonances to 
side the lower frequencies.

The calculation results are compared in Table 2.1 with the results presented in [16]. 
Input impedance is given for four variants of the arm length. It is assumed that the 
radius of the antenna is equal to 0.01 wavelengths, i.e. it varies with the frequency. Such 
parameters adopted for ease of comparison of the input impedance with results of other 
authors collected in [16]. The values presented in this article in accordance with (2.31), 
are given in Table 2.1 as the results of solving equation of Leontovich-Levin. 

The methods used by different authors at different times have been seriously 
substantiated. The equation of Leontovich-Levin is the most rigorous variant among 
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integral equations of the theory of thin antennas. Unfortunately, for a long time it was 
in the shadow of other well-known equations. It is necessary to show that this equation, 
which was created by our predecessors, has not lost its value. Small changes of methods 
of solving this equation allow to obtain new rigorous results.

The method, which was employed for calculating the input impedance of dipole 
in the second approximation, allows to calculate the current distribution in this 
approximation:

J z J z J z
J

t
J

( ) ( ) ( )
( )

sin
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= + = -( ) -2
2 0 30 0

1
2

22
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2
1
2
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c
a

F(( )sin( )t ta + ,

where F( ) ( ) ( ) ( )t Ei j Ei jt Ei j t= - - + - - - -ÈÎ ˘̊2 2 2a a

+ - - - + - - - +{ } + -e Ei j Ei j Ei jt Ei j t tj2 4 2 2 2 2a a a a ga a( ) ( ) ( ) [ ( )] ln[ ( )// ] ln( / )t e t tj+ +- a a 2 , (2.32)

and t = kz.

Table 2.1 Input Impedances of Cylindrical Dipole

Method
Arm length

l /8 l /4 3l /8 l /2

19.4–j359 80.4+j35.7 268+j526 1685–j1357

Equation of Hallen, second approximation 16.0–j240 87.3+j35.7 437+j318 559–j599

Solution of King-Middleton, second approximation 14.0–j166 92.5+j38.3 543+j32.2 177–j339

Storer’s approximation 11.6–j185 101+j32.8 566+j3.1 290–j363

Method of emf, second formulation 13.4–j391 73.1+j42.5 386+j533

Equation of Leontovich-Levin 13.4–j391 73.1+j42.5 334+j520 1296–j816

2.4 INTEGRAL EQUATION FOR TWO RADIATORS

Generalizing the Leontovich-Levin equation, one can write similar equations for the 
currents in the system of several radiators, i.e. in antenna array. Consider two parallel 
symmetrical radiators of different lengths, displaced axially relative to each other     
(Figure 2.2). In accordance with (1.25) and (2.11), if electrical currents JI(s) and JII(V)
flow along the radiators, they create the field 

E j
k

k A
A

zz z
z= - +

∂
∂

Ê
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ˆ

¯̃
w

2
2

2

2
.

In accordance with the superposition principle

Az = Az1 +Az2.

Model of each radiator is a straight thin-wall circular metal cylinder with radii a1 and 
a2, respectively. The vector potential of the field created by the current of the cylinder is 
calculated with the help of (2.9), and distances R1 and R2 between the observation point 
with coordinates (r1, j0, z) and integration points (a1, j, s) and (a2, y, V) are calculated 
in accordance with the explication to this expression. If the observation point is situated 
near the surface of a first radiator, then at 
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a1, a2 << d, (2.33)

where d is the distance between the axes of the radiators, one can say:
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V V V( )exp( )/ , ( ) . (2.34)

Vector potential Az1, as in the case of a single radiator, if r1 is small, has a logarithmic 
singularity. If this singularity was set off, then 
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1 14
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c , (2.35)

Here c1 = 1/[2 ln (2L1/a1)] is a small parameter, and V(JI, z) is the integral, expression 
for which is presented in Section 2.2. Vector potential Az2 has no such singularity, since, 
if the assumption (2.33) is true, the distance R2 is not small at any V : R2 d – r1 – a2.
Accordingly, the tangential component of the electric field created by current JI contains

a large magnitude of order of c1
1- :
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and field Ez(JII, a1, z) created by current JII of the second radiator on the surface of the 
first radiator does not contain large component for reasons given above. 

Figure 2.2  System of two parallel radiators.

A boundary condition, similar to (2.1), must be met on the surface of the first 
radiator:
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E J a z E J a z K zz I z II L z L I( , , ) ( , , ) ( )1 1 0+ + =- £ £
, (2.37)

where KI(z) is an extraneous emf. Substituting (2.36) into (2.37), we obtain the equation 
for JI(z):

d J
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k J z j K z W J z E J a zI

I I I z II
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1 14+ = - + +[ ]( ) ( ) ( , ) ( , , )p wec , (2.38)

where 4pjw eW(JI, z) = d2V( JI, z)/dz2 + k2V( JI, z), and JI(±L1) = 0.
The right part of this expression contains three components in square brackets: 

the first component is the exciting emf, the second component is emf which takes the 
radiation into account, and the third component is emf caused by influence of the 
second radiator.

While solving the equation (2.21), we present the currents JI(z) and JII(V) in the 
form of series in powers of small parameters c1 and c2, respectively. Since functionals         
W(JI, z) and Ez(JII, a1, z) are linear, they can also be presented in the form of similar 
series. If c1 and c2 have the same order of smallness:

c1 ~ c2, (2.39)

then the equation (2.38) for not resonant radiator reduces to the set of equations, which 
is a generalization of the set (2.16), written for a single radiator:
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As it follows from the first equation of the system (2.40) for the radiator excited by 
concentrated emf KI(z) = eId(z), its current in the first approximation in the presence of 
the second radiator also has a sinusoidal nature:
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If n > 1, then, in accordance with (2.40), using the method of variation of constants and 
considering that magnitudes W( JI, n–1) and EII( JII, n–1) are known, we obtain 
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Substituting of the first terms of the series for current JI(z) into the expression (2.36), 
allows to find magnitudes W Jn
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i.e.
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If to replace n in (2.43) by (n – 1), to calculate magnitude W Jn
I n( ),c1

1
1

-
-  by means of 

obtained expression, and to substitute it in (2.42), we find the member n of the series 
for current. In particular, if n = 2,
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Equation (2.44) allows finding the second term of the series for the current at any 
point of the first radiator. For this purpose, as it follows from (2.44), it is necessary 
to calculate the fields of the currents in the first approximation. From (2.44), it is 
see also, as a matter of course, that the magnitude of the second term of the series 
depends on the geometric dimensions of the second radiator and on the relative position 
of radiators. In the general case, the expression (2.42), after substituting into it the 
magnitude W Jn

I n( ),c1
1

1
-

-  permits to find the member n, if the currents of both radiators 
are known in approximation (n – 1).

From the set of equations (2.40) it follows that, when calculating the second and 
subsequent terms of the series, one can consider that the current of the first radiator 
is concentrated on its axis. Also, from (2.34) it follows that the current of the second 
radiator also is concentrated on the axis. And the accepted in derivation of the equation 
(2.21) accuracy level (accuracy of order of a1/L1) is retained. This circumstance simplifies 
essentially calculating members of the series for the current based on the recurrence 
formula, in particular the calculations of the terms n and (n – 1), since this formula 
allows calculating these fields as the fields of the filaments. As a result, calculating the 
second term of the series for the current of the single radiator, based on using expression 
(2.44), is simplified, since one can use the expression (2.41) as the first term.

It is interesting to compare the results of solving Leontovich-Levin equation for 
one and two radiators with solutions obtained by the induced emf method. The input 
impedance of the first radiator is
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The input impedance in the approximation n is equal to 
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Let us write the first component of the denominator in the form 
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the first order of smallness. Since the polynomial in square brackets of the integrand is 
a magnitude of (n – 1)th order of smallness, as is easily seen from (2.43), the addition 
of terms of higher order does not change the accepted accuracy level. Hence,
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As a result, we obtain
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One can rewrite the expression (2.28) as 
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This expression generalizes the expression (1.50), which was presented in Section 1.4 
and is called the second formulation of the induced emf method. In (1.50) the sinusoidal 
distribution of the current along the radiator is used to calculate the input impedance in 
the second approximation with respect to c. The (n – 1)th approximation for the current 
in the form of (2.49) permits calculating the input impedance in the nth approximation 
with respect to c. The equation (1.50) is applicable only to a single radiator, whereas 
equation (2.49) is true in the presence of the second radiator too. The expressions (2.47) 
and (2.27) allow to write expressions (1.69) and (1.70).
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Comparison of these results with results obtained by the induced emf method allows 
to draw the following conclusions: 

The integral formula of the induced emf method for the radiator input impedance, 
if the condition (2.48) holds, coincides completely with the integral formula obtained 
from the solution of the integral equation. 

Really, if to take the expression (2.41) as the first term of the series (2.15) and further 
to perform the transition from the input current to the input impedance of the radiator, 
which is similar to the transition from (2.45) to (2.49), the result will be identical with the 
result of calculation performed by the induced emf method. Since the condition (2.48) 
at the point of a parallel resonance for the sinusoidal distribution of the current is not 
met, the method of emf gives incorrect results near that point. Resistance and reactance 
will be increased indefinitely, while the measured values of the input impedances will 
remain finite. 

The derivation of (2.49) uses conditions (2.33) and (2.39). The fulfillment of the 
conditions is necessary to avoid possible mistakes.

The first formulation of the induced emf method can be reduced to a form similar 
to expression (2.49):
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As it is shown in [19], this expression is obtainable by the direct transition from (2.49). 
But for that, the equality J J1

1
1
1( ) ( )*( ) ( )s s= - must be accomplished. In accordance with 

this equality, the current should be purely reactive, i.e. there should be no losses in the 
radiator and in the environment. 

From the foregoing it follows that in the analysis of the methods of calculating 
characteristics of the antenna it is necessary to take into account that in the second and 
subsequent approximation the current along the antenna wire contains not only reactive 
but also active component. The method of induced emf is equivalent to the analysis 
of the antenna in the second approximation. The discussion, devoted to the first and 
second formulations of this method, considered the question of the solution stability in 
each of these formulations. Stability of the solution using the second formulation was 
immediately proven. One well-known specialist presented a proof of stability of the 
solution using the first formulation. The error of the published proof consisted in that 
the author proceeded from purely reactive magnitude of the current.

2.5 INTEGRAL EQUATIONS FOR COMPLICATED ANTENNAS

The previous sections were devoted to integral equations for the currents along straight 
metal radiators. Antennas with distributed and concentrated loads are more complicated 
variants of radiators. An antenna in the form of a metal rod coated by a layer of magneto 
dielectrics (Figure 1.5a) is an example of a radiator with distributed load. In contrast to 
(2.1), the boundary condition on the surface of a dipole with distributed load is given as

E a z K z
H a z

Z zz
L z L

( , ) ( )
( , )

( )
+

=- £ £
j

, (2.51)

where Ez(a, z) and Hj(a, z) are the tangential component of the electric field and the 
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azimuthal component of the magnetic field, respectively, and Z(z) is a surface impedance, 
which is in the general case dependent on coordinate z. The boundary condition of such 
kind is valid, if the structure of the field inside one medium (e.g., inside a magneto 
dielectric sheath) is independent of a field structure in another medium (ambient space). 

If boundary conditions (2.51) on the antenna surface are valid and the surface 
impedance substantially changes the distribution of current along the antenna already 
in the first approximation, the antenna is called an impedance antenna.

In accordance with the equivalence theorem, one can, when calculating the field, 
replace the radiator by the field on its boundary, and afterwards use only the field as 
source of the signal. On the other hand, for clearness and simplicity, it is expedient to 
metallize the antenna surface. Surface density 

�
jS  of the electric current is related to

magnetic field strength 
�
H  as

� � �
j e HS = [ , ]r , where 

�
er  is the unit vector in the r direction, 

i.e.
H a z j z J zzj pa( , ) ( ) ( )/( )= = 2 , (2.52)

where J(z) is the linear current along a metallized antenna (it is equal to the total radiator 
current).

The tangential component of the field is determined by the expression (2.36). 
Substituting (2.36) and (2.52) into (2.51), we obtain the equation for the current along 
an impedance radiator:
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which should satisfy the condition (2.2). Three components in the right part of the 
equation correspond to the exciter emf, to the radiation, and to the presence of the 
distributed load, respectively.

As before, we shall seek the solution as a series in powers of small parameter c,
presenting the surface impedance as 2jkZ(z)/(aZ0) = c–1U. That allows obtaining the set 
of equations for the not resonant radiator:
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Here k k U1
2 2= - . If both components are of the same order of smallness, the surface 

impedance substantially affects the distribution of current, and one may attribute to the 

magnitude k k j k Z z aZ1
2

02= - c ( )/( ) the meaning of a new wave propagation constant 
along an antenna. From the first equation of set (2.54) it follows that the current, 
distributed along the antenna, has in the first approximation sinusoidal character
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160

( )
cos

sin= -( ). (2.55)

Ratio k1/k is usually referred the slowing.
Solution of the equation for J2(z) of the set (2.54) allows to find the current in the 

second approximation, to determine the active component of input impedance and to 
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define more precisely the magnitude of reactive component. If to use the integral method 
of solving the equation described in Section 2.2, the additional component

Z J zm m

m

N

/( ) ( )2 1
1

pa c
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Â
will appear in the right part of expression (2.43). If the condition (2.48) holds, then, by 
analogy to (2.49), we find for the single radiator 
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This expression generalizes the expression (1.50) written in accordance with the induced 
emf method. 

A radiator with constant surface impedance is a particular case of a radiator with 
impedance, changing along the antenna. Let, for example, emf be located in the radiator 
center, the radiator be symmetrical and consist of 2N segments of length lm. Surface 
impedance Z(m) is constant in each of them (Figure 1.5b). The equation for current Jm(z)
along the segment m of a radiator takes the form
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Considering that the impedance affects essentially the current distribution in the first 

approximation, one can introduce propagation constant k k j k Z aZm
m= -2

02 c ( ) /( )  on 
each segment and write the current as a series in powers of small parameter c to obtain 
the set of equations:
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The current and the components of the series for current are continuous along 
the radiator and absent at its ends. From the first equation, it follows that the current 
distribution along each antenna segment has in the first approximation a sinusoidal 
character. In order to find the law of distribution of the current along the entire radiator, 
it is necessary to complement condition of the current continuity on the segment 
boundaries by condition of the charge continuity, i.e. by equality of derivatives of the 
current on the left and the right side of each boundary. This condition means continuity 
of voltage along the entire radiator, except the point of the generator placement.

The above-mentioned conditions allow expressing the amplitude and phase of the 
current at any segment through the amplitude and phase of the current of preceding 
segment, and, therefore, through segments’ parameters and one of the currents. The 
current distribution along the entire radiator coincides in the first approximation with 
current distribution along a stepped long line open at the end. For the symmetrical 
radiator excited at the center, the current distribution is determined by the expression 
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(1.61). If the condition (2.48) holds, the expression for the input impedance in the 
approximation n with respect to c takes the form
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, (2.59)

i.e. the expression (1.60), obtained by the induced emf method, is generalized.
In the course of researching the radiator with the impedance, which changes along its 

length, the issue of rational changing the surface impedance along the antenna with the 
aim of improving matching of the antenna with a cable arises obligatory. The analysis of 
the problem shows that at a fixed frequency of the first resonance, the surface impedance 
must be concentrated at a small antenna segment near the generator. A typical wire 
antenna with an extending coil in the base meets this requirement.

An example of a radiator with concentrated load is given in Figure 1.6a. The integral 
equation for the current in such antenna is easily derived from the equation for the 
current in a metal dipole. The connection of concentrated complex impedance Zn in a 
wire (at point z = zn) is equivalent to connection of additional concentrated emf en = 
–J(zn)Zn, which produces the extraneous field

E J z Z z zn n n n= - -( ) ( )d . (2.60)

The boundary condition for the electric field on the radiator surface with N loads will 
has the form

E a z K z J z Z z zz L z L n n n
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i.e.
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If the radiator is symmetric and loads Zn placed in both arms are identical and 
located at identical distances zn from the coordinates origin, it follows from (2.61) that
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For example, Hallen’s equation (2.3) for the current along a filament takes the form
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This equation was used in paper [31]. If the radiator has only one load Z1 connected 
in the wire (at point z = zn), it follows from (2.62) that

d J z
dz

k J z j K z W J J z Z z z
2

2
2

1 1 14
( )

( ) ( ) ( ) ( ) ( )+ = - + - -[ ]p wec d . (2.64)

Three components in the right part of the expression correspond to the exciting 
emf, the radiation and to the presence of the load, respectively. We seek the solution 
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as a series in powers of small parameter c, which allows obtaining the set of equations 
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The equations were written provided that Z1 has the magnitude of order of 1/c, i.e. 
it is comparable with the antenna wave impedance. The solution of the first equation 
for the particular case when the antenna feed point is displaced from the center, i.e., 
K(z) = ed(z – h), takes the form
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The solution of the equations for Jn(z) at n > 1 may be found by replacing magnitude 
K(V) in equation for J1(z) by W( Jn–1). If we take into account (2.66), we get at the excitation 
point:
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If to use an equality of the type (2.43), in which the additional component in the form
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Â
appears in accordance with (2.64) due to the concentrated load Z1, then from this equality 
one can find magnitude W(cn–1Jn–1) and substitute it in cnJn(h). If the condition (2.48) 
holds, then, by analogy to (2.49),
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This expression at Z1 = 0, h = 0 coincides with (2.49) in the absence of the second 
radiator. As is seen from (2.67), if a concentrated load is connected in the antenna 
wire, then a free member, proportional to the impedance magnitude and the square of 
the current at the point of connection, appears in the formula for ZA together with the 
integral. The addition of such member does not contradict the logic of the induced emf 
method. The expression (2.67) generalizing the expression (1.65), corresponds to this 
method. In the case of several (N) loads with magnitudes Zn, located at points z = zn
(see Figure 1.6b), we come to the expression generalizing the formula (1.58). 



46 Antenna Engineering: Theory and Problems

Therefore, the solution of the integral equations for currents in antennas of different 
types confirms and defines more precisely the results determined by the method of 
induced emf when its second formulation is used. The conclusion is true also for 
radiators made of several parallel wires. They are considered in Chapters 3 and 4. 
The results of using the theory of the impedance antennas and of the antennas with 
concentrated loads are considered in Chapter 5.

2.6 INTEGRAL EQUATIONS FOR A SYSTEM OF RADIATORS 

In Section 2.4 the system consisting of two radiators was analyzed with the help of 
the integral equation. The expression (2.49) of this Section shows clearly that an input 
impedance of a radiator in the system is equal to the sum of the self-impedance ZI I

n( ) in
the approximation n with respect to c and the additional impedance, equal to a product 
of the mutual impedance ZI II

n( ) of radiators and the ratio of currents at centers of radiators. 
By analogy, in the case of several (Q) radiators, the strength of the electric field on the 
surface of radiator p is 

E E Jp p q
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=
=
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1

, (2.68)

where Ep(Jq) is the field along the radiator p, created by current Jq = Jq(0)fq(s) of the 
radiator q, fq(s) is the current distribution in the radiator q. The oscillating power, created 
by the radiator p with current Jp = Jp(0)fp(s) in all radiators, is 
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i.e. the input impedance of the radiator p is 
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where Z E f f dqp p q p
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-
Ú ( ) ( )s s  is the mutual impedance of the radiators q and p.

In the notation system adopted in Section 2.4, where the order n of smallness is 
taken into account, this expression is given in the form:
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Multiplying the current of the source into the input impedance of radiator, we obtain 
the magnitude of emf, located at the center of radiator p:

e J Z J Z p Qp p p q qp
q
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= = =
=

Â( ) ( ) , , ,0 0 1 2
1

� . (2.70)
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This is Kirchhoff’s equation for a close circuit. According to the equation, the emf in the 
circuit is the sum of the voltage drops on the elements. Since the equality is true for each 
radiator, then really the complete system of equations is written by one formula (2.70). 
The expression (2.70) is identical to the equation (1.73), written in accordance with the 
logic of the induced emf method. 

Note that (2.70) corresponds to the connection of circuit elements with each other 
in series (see Figure 1.8). The circuit of connection in series is employed widely in the 
analysis of radiators system. The input impedance of each radiator is calculated usually 
in accordance with expression of the type (1.50). For this reason, the connection in series 
is true for the system of radiators with the arm length smaller than 0.4l. At higher 
frequencies near the parallel resonance it is expedient to use the connection of circuit 
elements in parallel. Here, the input impedance is calculated in accordance with an 
expression of the type (1.69).

In spite of seeming diversity of the described methods, they have a common essential 
disadvantage. They are developed for specific radiators and possess no flexibility and 
freedom for the analysis of arbitrarily constructed radiators. The method, which allows 
analyzing a wire structure consisting of straight segments located arbitrarily and 
connected partially with each other, offers in this context much greater possibilities 
(Figure 2.3a). It is considered that current flows along thin, perfectly conducting filaments. 
Two segments of a filament are shown in Figure 2.3b. The distance from point Op of the 
segment p to element ds of the segment s is

R r pe r sep p s s p
= + - -ÈÎ ˘̊

=

� � � �
0

, (2.71)

where
�
rp  and 

�
rs  are radii vectors from the coordinates origin to points Op and Os of 

the corresponding segments, p and s are coordinates measured along the segments and�
ep and

�
es  are the unit vectors, directions of which coincide with wire axes.

Figure 2.3 An antenna, consisting of several straight segments (a), two straight segments (b)
and curvilinear variant (c).

Let us write for the current along the segment s:
� � �
j j s es s s= ( ) . According to (1.21),

� � � �
A j A j e e J s G dss s s s s s

S

S

( ) ( ) ( )= = ¢Úm 3

1

2

,

where S1 and S2 are the coordinates of the beginning and end of the segment s on the 
s-axis. In order to find the vector potential of the total field, one has to sum up the 
vector potentials of fields of all segments:

a) 
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where n is the segment’s number, N is the number of segments, and 

A j J s G dssn sn n

Sn

Sn

n( ) ( )= Úm
1

2

3
.

In accordance with (1.20) and (1.21), the field of the segment s at point Op is
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The differentiation in the last term is performed with respect to the coordinates of the 
observation point. Since in the rectangular coordinate system the distance between the 
observation point and the integration point is equal to

R x x y y z zp s p s p s= - + - + -( ) ( ) ( )2 2 2,

where xp, yp, zp are the coordinates of the observation point, and xs, ys, zs are the 
coordinates of the integration point, then as a result of symmetry gradpG = –gradsG
(here the differentiation is performed with respect to coordinates p and s). Taking into 
account that in accordance with the gradient definition 

�
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The projection of the field of wire s onto direction p is calculated as a product of
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and
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and the projection of the complete field is the sum of the field’s projections of all 
segments:
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Substituting this field in (2.1), we get the equation generalizing the Pocklington’s 
equation (2.6): 
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If N = 1, Eq. (2.74) converts to (2.6),
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To this end, first the replacement of variables is performed: p z snÆ Æ, V . Furthermore, 
one should take into account that the Green’s function is symmetrical relative to the 
coordinates of the points of observation and integration: ∂ ∂ = -∂ ∂G z G3 3/ / V .

Let the wire antenna have a shape of a polygonal line, along which the coordinate 
V is postponed, and the lengths of straight segments tend to be zero. Then from (2.74) 
we obtain the integral equation of Pocklington for the current in a curvilinear wire 
(Figure 2.3c):
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Here,
�
ez  and 

�
eV  are unit tangent vectors at the points of observation and integration. 

If the curvilinear wire is symmetrical relative to some middle point, the form of this 
equation completely coincides with the form of (2.75).

2.7 GENERALIZED INDUCED EMF METHOD

An analytical solving problem of antenna radiation has been obtained for a small number 
of the simplest variants of radiators. As a rule, the small-scale radiators situated in 
free space were considered. This is explained by the difficulty of the problem. In this 
connection, numerical methods allowing reducing the problem to solution of a set of 
linear algebraic equations became frequent practice in solving integral equations for the 
antenna current. These methods permit to find characteristics of complex antennas of 
great dimensions (in comparison with a wavelength), and also to take into account the 
influence of nearby antennas and metal bodies.

Integral equation reduces to a set of algebraic equations with the help of Moment 
method. In the general case the integral equation for the current in a wire antenna has 
the form 

J K z d F z
l

V V V( ) =Ú ( , ) ( )
( )

, (2.77)

where J(V) is the sought function (the current distribution along a wire), K(z, V) is the 
kernel of the equation, which depends on coordinate Z of the observation point and 
on coordinate V of the integration point. F(V) is a known function, it is determined by 
extraneous sources of the field. The terms proportional to the current may enter into 
this function, for example in the case of antenna with loads. Here this is of no great 
importance. The integral is taken over an all wire length. It is easy to verify that the 
equations considered earlier are particular cases of the equation (2.77).

Unknown current J(V) is expressed in the form of a sum of linearly independent 
function fn(V), which are called by the basis functions:

J I fn n
n

N

( ) ( )V V
=

Â
1

, (2.78)



50 Antenna Engineering: Theory and Problems

where In are unknown coefficients, which in the general case are complex. Substituting 
(2.78) into (2.77), we obtain:

I f K z d F zn n
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V V V =ÚÂ
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. (2.79)

Often the second system of linearly independent functions jp(z) is introduced. They 
are called by the weight functions. If to multiply both parts of equation (2.79) by jp(z)
and to integrate over entire wire length and then to repeat the operation at different p,
we shall obtain the set of equations:
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Obviously number N of equation (2.70) must coincide with the number N of 
unknown magnitudes. The integration result of each expression is its moment. From 
this the method’s name comes.

If the system of weight functions coincides with the system of basis functions, such 
a variant of the Moment method is known as Galerkin’s method. In this case

I f z f K z d dz f z F z dz p Nn p n p

llln

N

( ) ( ) ( , ) ( ) ( ) , ,
( )( )( )

V V V = =ÚÚÚ
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One can rewrite this set of equations as

I Z U p Nn np p
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where
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Equation (2.82) is true also for the set of equations (2.80), if one replaces fp(z) with jp(z)
in formulas for Znp and Up.

Expression (2.82) is the set of linearly independent algebraic equations with N
unknown In, having the dimensionality of the current. Coefficients Znp and Up have the 
dimensionalities of the impedance and voltage; they can be calculated, e.g. by means of 
numerical integration. Accordingly, one can interpret the expression (2.82) as Kirchhoff’s 
equation for the contour p with current Ip and emf Up, which enters into the system of 
N coupled contours. Here Zpp is the own impedance of the contour element, and Znp is 
the mutual impedance of the contours n and p.

The set of equations (2.82) can be solved on the computer with the help of standard 
software. If to write down the set in a matrix form:

[I][Z] = [U], (2.83)

where [Z] is the impedance matrix, [I] and [U] are a current and a voltage vectors, then 
one can say that the solution is obtained by means of the standard method of matrix 
inversion:

[I] = [Z]–1[U]. (2.84)
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Substitution of values In into (2.78) allows to calculate current distribution J(V), and 
afterwards all electrical characteristics of the radiator.

In practice the calculation of matrix elements Znp may prove to be difficult, since it 
is connected with the double numerical integration. To alleviate the difficulties, one can 
use d-functions in the capacity of weight functions: jp(z) = d(z – zp). Then, the double 
integral in the calculation of Znp becomes a simple integral, the calculation of Up requires 
no integration, and the expression (2.80) takes the form

I f K z d F z p Nn n p p

ln

N

( ) , ( ), ,
( )

V V V( ) = =ÚÂ
=1

1 2… .

One can obtain this equation directly from (2.77) and (2.78), if the left and right parts 
of the equation (2.77) are equated to each other at isolated points. Their number 
N corresponds to that of the obtained equations. For this reason, the variant of the 
Moment method is known as the point-matching technique or the collocation method 
(see, e.g., [31]). 

The collocation method ensures an exact equality of the left and right parts of the 
equation (2.77), at N points at least. In the intervals between the points the difference 
between the two parts of the equation may increase sharply. When using the Moment 
method with weight functions of other type, the equality may not take place in all points 
of the interval of z changing. But equating of both moments of function (integration with 
some weight) minimizes the difference between the left and right parts at whole interval 
of z changing. This property in the final analysis is almost always more important than 
the exact equality at isolated points. Therefore, Galerkin’s method allows providing, as 
a rule, an essentially more accurate solution than the collocation method. Yet, sometimes 
the collocation method is useful too.

The choice of basis functions is of great importance for using the Moment method, 
since the successful selection of the system permits to decrease the amount of calculation 
under given accuracy or increases the accuracy under the same calculation time. For that 
end, as a rule, the basis functions must correspond to the physical sense of the problem, 
i.e. must coincide, in the first approximation, with the actual distribution of the current 
along a radiator or its elements.

Basis functions are subdivided into two types: entire domain functions, which are 
other than zero along the entire radiator length, and functions of sub-domains, which are 
other than zero along segments of radiator. In the capacity of basis functions of the first 
type, one can use, for example, terms of Fourier series and polynomials of Tchebyscheff 
or Legendre. Their field of application is limited mainly by solitary radiators of a 
simple shape. Basis functions of sub-domains are typically employed for an antenna of 
a complex shape. In particularly, such approach is expedient, if the antenna consists of 
arbitrarily situated segments of straight wires partially connected with each other. A 
straight radiator may also consist of physically isolated segments, if concentrated loads 
are located in the conductor of the radiator at given distances from each other. Piecewise-
constant (impulse) functions (Figure 2.4a), piecewise-linear functions (Figure 2.4b), and 
piecewise-parabolic functions (Figure 2.4c) are shown at Figure 2.4 for illustration of 
basis functions of sub-domains. These basis functions are special cases of a wider class 
of basis functions – of polynomials. A simplest variant of approximation with the help 
of a polynomial is proposed in [32]:
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Here, Mn is the selected degree of the polynomial on the segment n, and Inm are unknown 
coefficients. Comparing this expression with (2.78), we obtain:
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Figure 2.4 The curve line as the sum of pulsed (a), piecewise-linear (b) and piecewise-
parabolic (c) basis functions of sub-domains. 

One can use terms of Fourier series as basis functions of sub-domains. A particular 
case of such functions are piecewise-sinusoidal functions:
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Comparing this expression with (2.78) and choosing a simpler variant, one can write:
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Application of expression (2.78) with the basis functions in the form of (2.86) is 
equivalent to dividing of wire onto short dipoles with overlapped arms and with centers 
at points Vp, wherein Ip is the current at the center of dipole p. In this sense, expressions 
(2.78) and (2.86) are the generalization of expression (1.8). When lengths of short dipoles 
are decreased, piecewise-sinusoidal basis functions are converted to piecewise-linear 
functions. Figure 2.4b permits to visualize how the basis functions of sub-domains form 
the curve line corresponding to distribution of the current along an antenna. 

In [33] it is proposed to use the functions in the form (2.86) as the basis and weight 
functions. Such variant of the Moment Method has two advantages. First, a rapid 
convergence of results is ensured, i.e. dimension of the matrix [Z] is small in comparison 
with dimensions of the matrixes when using other basis and weight functions. This means 
that application of piecewise-sinusoidal functions as the basis and weight functions 
corresponds to the physical content of the problem. Second, expressions containing sine 
integrals and cosine integrals can be used to calculate many matrix elements.

a) 
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If to substitute the current distribution (2.78) with weight functions (2.86) into the 
equation (2.74) for the complicated wire radiator and to multiply in accordance with 
Galerkin’s method, both parts of the equation to weight function fS(z) and after that 
to integrate along the entire wire length, then we obtain, repeating this operation for 
different s, a set of p equations of type (2.82) with p unknown magnitudes Ip and with 
the coefficients
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Comparing (2.87) with expression (1.50), where magnitude Eps is taken from (2.73), it 
is easy to verify that the formula for Zps corresponds to the mutual impedance between 
dipoles p and n, calculated by the induced emf method. As seen from (2.87), the dipoles 
are considered as isolated, i.e. the current of each dipole follows the sinusoidal law. 
Substituting extraneous field Ks(z) into (2.87), we see that magnitude Us is the emf of 
the generator connected at the center of the dipole s. Therefore, the set of equations 
(2.82) with coefficients Zps and Us is the set of Kirchhoff equations for the set of dipoles 
constituting the wire antenna.

Thus, the variant of Galerkin’s method, which was proposed by Richmond for 
calculating the current distribution in a complicated antenna, is equivalent to dividing 
of the radiator onto isolated dipoles. Their self- and mutual impedances are calculated 
by the induced emf method. For this reason, Richmond’s method can be named by the 
generalized induced emf method.

It is expedient to divide the antenna wire with connected in it concentrated loads 
onto short dipoles so that to place each load in the center of a dipole. Then, in accordance 
with (2.59), one can generalize the set of equations (2.82) and write it in the form:

I Z U I Z s Np ps s s s
p

p

= - =
=

Â , ,1 2
1

… , (2.88)

or in matrix form

I Z U I Zp ps s s sÍÎ ˙̊ ÍÎ ˙̊ = [ ]- [ ][ ]. (2.89)

The accuracy of the induced emf method for calculating a dipole as is known 
decreases when the dipole length increases. The accuracy of calculation is acceptable 
at dipole arm length L l. The advantage of the generalized induced emf method 
consists in the fact that one can divide the long dipole onto several short dipoles, e.g., 
with the arm length no greater than 0.2l. That allows ensuring the required exactness.

Calculation of the coefficients Zps requires the double numerical integration. But the 
problem is simplified essentially, if the method described in [8] is used for calculating 
the mutual impedance of two arbitrarily situated dipoles. Here, the double integrals 
are reduced to ordinary integrals, and each integral is a sum of alternating series. The 
components of series are calculated by means of recurrence formulas, almost as quickly 
as the components of the power series. 

From all the above it follows that the induced emf method is a constant companion 
and satellite of the integral equation method. Also it is inseparable from the concept 
of an equivalent long line open at the end with the the sinusoidal current distribution 
coinciding with the current distribution along the symmetrical dipole. In the case of the 
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usual line of metal wires, the propagation constant of a wave along the line is equal to 
the propagation constant of a wave in the air.

The generalized induced emf method in substance is the basis of all programs of 
calculation used in modern computers. This allows us to stop talking about the strict 
theory of thin linear radiators. But before that, we should say a few words on the cross-
sectional shape of the radiators.

The radiator’s models considered in the first two chapters, are shaped like a straight 
circular cylinder. But a cross-section of the dipoles may have an arbitrary shape. In 
practice, the circular (see Figure 1.4) and rectangular cross-sections are encountered most 
often. The circular cross-section is the usual cross-section of metal radiator. Slot radiators 
in a metal sheet have a rectangular cross-section. Appearance of printed circuits caused 
an interest in thin dipoles of rectangular cross-section. They are printed on dielectric 
substrates and excited by strip lines. In order to provide a distinction between dipoles 
of circular and rectangular cross-section the latter dipoles often are called strip dipoles.

Calculations as a rule are limited by the variants, in which the dipoles consist of 
conductors with perfect conductivity. Maximal linear dimension of the cross-section is 
u L. The currents flow along conductors’ surface. This implies that a potential 
difference, created by a generator between edges of a gap, is not a function of a 
coordinate along the perimeter of the cross-section. But the field of antenna depends 
on the shape and dimensions of its cross-section. 

This question is considered in [16]. The author studies the dependence of the 
vector-potential of the field on the antenna shape. The solution is based on the first 
expression of (1.28), in which the integral is taken along the perimeter of the antenna 
cross-section, particularly along the perimeters of the gap and adjacent segments. Using 
the mean value theorem in order to simplify the problem, it is possible to calculate the 
vector potential for the cross-section of an elliptical cylinder, and compare it with the 
vector potential of a circular cylinder. They are equal to each other, if the radius of the 
circular cross-section is equal to ae = 0.5(ae + be). Here 2ae and 2be are large and small 
axes of the ellipse.

The similar result is given in [13]. Here it is assumed that the equivalent radius of the 
flat antenna with a width b is equal to ae = b/2. That permits to find the self capacitance 
of the flat antenna with this equivalent radius. It is equal to C01 = 2pe/ln(2L/ae) = 2pe/
ln(4L/b). The other self-capacitance of a rectangular plate with the length 2L and the 
width b per unit of its length is given in [34]. When 2L/b C02 = 2pe/ln (2.4L/b).
The formulas obtained for C01 and C02 lie within the limits of accepted accuracy.



3.1 ELECTRICALLY RELATED LONG LINES PARALLEL TO 
METAL SURFACE

Antennas from the parallel wires (symmetric and asymmetric), spaced on a distance, 
which is small in comparison with a length of a wave and a length of a wire, are 
widespread side by side with conventional linear radiators. The simplest version of such 
radiators is the symmetric antenna of two thin wires of the identical diameter, excited 
in the middle of one of the wires (Figure 3.1). This antenna is called the symmetrical 
folded radiators. Two asymmetrical variants of this radiator are shown in Figure 3.2. In 
the first variant, the second (unexcited) wire is shorted to the ground (Figure 3.2a), in 
the second variant there is a gap between this wire and the ground (Figure 3.2b). In the 
general case the diameters of wires forming the radiator are not the same (Figure 3.2c).
The upper ends of the wires of an asymmetric radiator are connected or not connect 
with each other and may be positioned at different heights (Figure 3.2d). The radiator 
may be formed in the shape of coaxial structure (Figure 3.2e).

Figure 3.1 Symmetric folded radiator.

3
Folded Antennas of 

Metal Wires
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Figure 3.2 Asymmetric folded radiators: (a) with the ground connection of the second wire,  (b)
with a gap in the second wire, (c) with wires of different diameter, (d) with wires of different 
length, (e) in a form of a coaxial structure.

An advantage of antennas consisting of parallel conductors is in the first place in the 
fact that it is substantially shorter than the linear antennas intended for operating at the 
same frequency. Selecting variant and dimensions of such antennas provides additional 
degrees of freedom for obtaining the desired electrical characteristics, for example, for 
improving matching with signal source (with generator or cable). To sum up, we can 
conclude that the folded radiators combine the functions of radiation and matching.

The two-wire long line open at the end is a useful analog of a conventional linear 
radiator. This line allows finding the current distribution along an antenna wire. An 
analog of folded radiator is an equivalent asymmetric line of two wires located above 
an infinitely large metal surface—above the conductive ground (Figure 3.3). In the 
general case, the number of wires can be significantly greater than two. They form the 
structure from electrically related lines located above the ground. Theory of coupled lines 
designed by A.A. Pistolkors [35] makes a basis of the analysis of antennas consisting 
of parallel wires.

This theory permits to analyze antennas and cables as multi-wire lines. In particular, 
it permits to study structures of N closely spaced parallel wires with allowance of the 
ground. An asymmetrical line of two wires (see Figure 3.3) is the simplest example of 
such structure. This line is equivalent to a folded radiator with a gap (see Figure 3.2b).
Telegraph equations for the current and potential of wires 1 and 2 in this line take the 
form:
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Here ui is the potential of the wire i relative to the ground, ii and is the current along 
the wire i, and Xik = wLik is the self- or mutual inductive impedance per unit length.

The two left equations of the set (3.1) are based on the fact that the decrease of 
potentials at segment dz of each wire is the result of the emf influence. The emf’s are 
induced by the self-currents and by the currents of the adjacent wires. The other two 
equations are written on the basis of the electrostatic equations relating charges and 
potentials in accordance with the equation of continuity.
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Figure 3.3 The asymmetrical line, which is equivalent to a folded radiator with the gap: 
(a) circuit, (b) cross-section.

Dependence of the current on coordinate z is adopted in the form exp(g z), where 
g  is the propagation constant. Differentiation of the right equations and substituting 
them into the left equations brings to a set of uniform equations, which shows that 
propagation constant g in the system of two metal wires is equal to k. We search the 
solution of the set of equations in the form of U1 = Ai coskz + jBi sinkz. Assuming z =0
in order to determine constant quantities A and B, we obtain
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where I1(2) and U1(2) are the current and the potential at the beginning of wire 1 or 2 
(at point z = 0), W1(2)S and r1(2)S are the electrostatic and the electrodynamics wave 
impedances between wire 1 or 2 and wire S.

In the general case, when the system consists of N parallel metal wires located 
above the ground, expressions for the current and the potential of wire n take the form
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where In and Un are the current and potential at the beginning of wire n (at point z = 0)
respectively and Wns and rns are the electrostatic and electrodynamics wave impedances 
respectively between wire n and wire s:
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Here, a ns is the potential coefficient (with due account of a mirror image in the perfectly 
conducting ground surface), b ns is the coefficient of electrostatic induction, and c is the 
light velocity. The coefficients b ns and a ns are related as follows:

b ns = D ns/DN, (3.5)

where DN = |a ns| is the N × N determinant, and D ns is the cofactor of the determinant DN.
For an asymmetrical line of two wires, we can write
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Finally, if the wires of an asymmetrical line have unequal lengths, or if concentrated 
loads are connected into them, one must divide the line to segments. The expressions 
for the current and potential of wire n at segment m take the form: 
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where bns
m( ) and Un

m( ) are the current and potential of wire n at the beginning of segment 
m (at point zm = 0), respectively, M is the number of wires in segment m, and Wns

m( )  and 
rns

m( ) are the electrostatic and electrodynamics wave impedances between wires n and s
at segment m respectively. Equation (3.8) generalizes the expressions (3.3).

In order to solve each set of equations, the boundary conditions are used. They 
establish the absence of currents at the free ends of the wires, the continuity of the 
current and potential along each wire, the abrupt changes in potential at the points of 
connecting loads and generator e. If to calculate the current magnitude J(0) at the feed 
point, one can find the input impedance of the asymmetrical line,

Zl = e/J(0). (3.9)

It is equal approximately to the reactive impedance of the antenna, whose equivalent 
is the given asymmetrical line. One can find the antenna impedance more accurately, if 
the antenna is treated as a linear radiator, the current along which is equal to the total 
current along the line. 

When calculating the antenna input impedance, one needs, as a rule, to find field 
EV at antenna surface. And it should be kept in mind that, while current function J(V)
is continuous along the entire length of the antenna and sinusoidal at each segment, 
function dJ/dV may have a jump near the segment boundaries.

Equation (3.8) use wave impedances Wns
m( ) and rns

m( ), equation (3.3) use similar 
magnitudes. The magnitudes of the wave impedances, as is seen from (3.4), are 
determined by the potential coefficients. The coefficients are found by the method of 
mean potentials in accordance with the actual position of antenna wires. The simplest 
variant of this method is the Howe’s method. It easily shows that the mutual potential 
coefficient of two parallel wires of equal lengths, which dimensions and position are 
presented in Figure 3.4, is given as

ans = a(L,l,b)/(2pe), (3.10)
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Figure 3.4 The mutual location of two wires.

If the parallel conductors are located upright, i.e. perpendicular to conductive 
ground, then the self-potential coefficient of conductor n at segment m with the account 
of the mirror image is
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where lm and lm+1 are the boundary coordinates of segment m, an
m( ) is the radius of wire 

n at segment m. The mutual potential coefficient between wires n and s at segment m is
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Here, bns
m( )  is the distance between the axes of wires n and s at segment m. As an example 

of such structure the circuit of one of possible variants of a multi-radiator antenna is 
presented in Figure 3.5a. The circuit of an equivalent long line is given in Figure 3.5b.

Figure 3.5 Multi-radiator antenna (a) and equivalent long line (b).

It is necessary to emphasize the important detail of the method history. The method 
was at first proposed for calculating the electrical characteristics of related lines which 
are parallel to each other and to the ground. But this method allows to find the current 
distribution along the parallel wires, which are perpendicular to the ground, taking 
into account the mirror image in its conductive surface, i.e. it permits to determine the 
electrical characteristics of multi-wire vertical structures.
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Summing up, it is important to note the general principle underlying the theory 
of related lines. The theory allows to find, in the first approximation, the current 
distribution along each wire in order to use later this distribution for calculating the 
active component and for defining more precisely the reactive component of the input 
impedance with the help of the induced emf method. As is known, this principle was 
used in calculating the input impedances of linear radiators by means of the induced 
emf method, since the current distribution along the linear radiator coincides in the first 
approximation with the current distribution along a uniform long line.

A similar approach is used in calculating the electrical characteristics of impedance 
antenna, i.e. of the radiator with nonzero boundary conditions on its surface. One can 
obtain the current distribution along the radiating structure by analyzing the integral 
equation for the current. Here, the laws of a current distribution along the wires of the 
radiator and along the wires of the equivalent line (or of system of lines) are identical. 
The advantage of equivalent lines is the maximal simplicity in finding the law and 
the efficiency of applying the obtained results to designing radiators with required 
characteristics.

As already mentioned, the asymmetrical line of two wires situated above the ground 
is an equivalent of a folded antenna. The theory of related lines is a base for the analysis 
of antennas, consisting of parallel wires. 

3.2 FOLDED ANTENNAS, PERPENDICULAR TO A METAL 
SURFACE

We begin to consider method of calculating folded antennas, using as an example an 
asymmetric folded radiator with a gap in an unexcited wire (see Figure 3.2b). At first 
in this gap between the free end of the antenna and the ground we connect in parallel 
two generators of a current of equal magnitude (mJ) and opposite sign (Figure 3.6). Also 
we divide a main generator (with a current J) onto two parallel generator of identical 
sign and different magnitude: mJ and (1 – m)J.

Figure 3.6 Calculation of the folded radiator with a gap.

The voltage at the point A in accordance with the principle of superposition is equal 
to the sum of the voltages created in it by all generators. Therefore, as it is shown in 
Figure 3.6, the circuit of the folded radiator may be split into two circuits, with two 
generators in each circuit. The voltages at point A, created in each of these circuits, are 
calculated and summed up. Let the currents of the wires of the first circuit be in anti-
phase, i.e. equal in magnitude and opposite in direction. This means that the first circuit 

+ 

8 A B 
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is the two-wire long line short-circuited at the end. Let the currents of the wires of the 
second circuit be in phase, i.e. the potentials of the points of both wires located at the 
same height (including the points near the antenna base) are identical. This means that 
the second circuit is the linear radiator (monopole), excited in the base.

As shown in Section 3.1, depicted in Figure 3.3 asymmetric line of two wires located 
above the ground is equivalent to folded radiator. Currents and potentials in the line 
wires are defined by the set of equations (3.2). Electrostatic and electrodynamics wave 
impedances included in these equations are defined by equalities (3.4). From the first 
equation of (3.2) follows that in considered line there are only anti-phase currents         
(i1 = –i2), if the following conditions are met:

I1 = –I2, U1/W11 – U2/W12 = –(U2/W22 – U1/W12),

where from in accordance with (3.6) U1 = –U2/g. From the second equation of (3.2) and 
the equality (3.6) it follows that the ratio of potentials of points located in the different 
wires of the same section is equal to u1/u2 = U1/U2 = –1/g. This means that the voltages 
in points A and B of short-circuited two-wire line are related by the equality

VA1/VB1 = –1/g. (3.13)

If only in-phase currents exist in asymmetric line, the potentials of wires in the same 
cross-section of line should be equal along the entire length of the line (u1 = u2), i.e.

U1 = U2, r11I1 + r12I2 = r12I1 + r22I2,

where from I1 = gI2. This means that the currents of wires in each cross-section of the 
monopole (including the base of the monopole) are related by

i1/i2 = JA2/JB2 = g. (3.14)

From (3.13) and (3.14), we obtain

(V – VA1)/VA1 = (J – JB2)/JB2 = g.

Here V = VA1 – VB1 is the voltage at the input of the line, and J = JA2 + JB2 is the current 
in the base of the folded radiator, which is equal to the total current (to the current of 
the generator). From here

VA1/V = JB2/J = m = 1/(1 + g). (3.15)

From (3.15) and Figure 3.6 it is clear that m is a fraction of the in-phase current in the 
right wire of the monopole.

In the first circuit (in the short-circuited two-wire line) the voltage at the point A is

VA1 = mV = m2 JZl

where Zl = jWl tan kL is the input impedance of the line, Wl is its wave impedance. In 
the second circuit (monopole)

VA2 = JZe (ae)

where Ze (ae) is the input impedance of the asymmetric linear radiator of height L with 
an equivalent radius ae. Dividing the total voltage at the point A on the current of the 
generator, we find the input impedance of the folded radiator with a gap: 
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As it follows from this expression, from point of view of the input impedance, the 
folded radiator with a gap is a serial connection of the monopole and the short-circuited 
two-wire long line.

Similarly, the input impedance of the folded radiator with the ground connection of 
the second wire is a parallel connection of the monopole and the short-circuited long line:
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l e e
= +

1 2
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. (3.17)

Here p = 1 – m = g/(1 + g) is the fraction of the in-phase current in the left wire of 
the radiator. In order to obtain (3.17), one must connect in the right wire of the closed 
folded radiator in series two generators of voltage, which are equal in magnitude (pe)
and opposite in sign. Also one must divide the main generator (with electromotive 
force e) on two consistently connected generators with the same direction and with 
electromotive forces pe and (1 – p)e. Further the circuit of the folded radiator is divided 
into two circuits—the short-circuited two-wire line and the monopole, and the currents 
in the base of the left wire created in each of these circuits are calculated and summed.

Expression (3.17) was obtained in [36], where procedure of calculating the folded 
radiator with wires of different diameters and the ground connection of the second wire 
is given. If the folded radiator is formed by two identical thin wires with radii a = a1
= a2 << b (here b is the distance between the axes of the wires—see Figure (3.3), then
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In the general case
m = C22/(C11 + C22), (3.19)

where C22 is the self-capacitance of the right wire and C11 is the self-capacitance of the 
left wire. From (3.15) and (3.19) it follows that the currents in the wires of the monopole 
are proportional to the self-capacitances of the wires, and potentials of the wires of the 
long line are proportional to the capacitive reactances Xn = –1/(w Cnn) between the wires 
and the ground. 

The limiting case (m = 1, C11 = 0) is shown in Figure 3.2e. Here the folded radiator 
is designed as a segment of the coaxial line, which is open below and closed at the top. 
According to (3.16),

ZA = Ze (ae) + jWl tan kL

where Wl = 60 ln(a2/a1). If the outer conductor of the coaxial line is shorted to the 
ground, then according to (3.17),

YA = –j/(Wl tan kL)

Thus, in extreme cases, expressions (3.16) and (3.17) give a sufficiently obvious result.
As can be seen from expressions (3.16) and (3.17), the replacement of a linear radiator 

by a folded radiator changes significantly the input impedance of the antenna. Folded 
radiator with a gap, if the length of this radiator is less than a quarter of a wave length, 
contains the inductive reactance of a short-circuited line. This inductive reactance is
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Figure 3.7 Input impedance of folded radiator with a gap (a), of the monopole (b) and 
of the long line (c).

connected in series with the input impedance of the monopole and compensates its 
capacitive reactance. Therefore, when the height of a linear and a folded radiator are 
the same, the frequency of a first parallel resonance of the folded radiator is close to the 
frequency of the first serial resonance of the linear radiator. Accordingly, the frequency of 
the first serial resonance of the folded radiator is substantially lower than the frequency 
of the first serial resonance of a linear radiator, approximately twice. Figure 3.7 shows 
typical active and reactive components of the input impedance of the folded radiator 
with a gap and the wires of equal diameter (a) and also the input impedances of its 
elements: of the monopole (b) and of the long line (c).

Input impedance of folded radiator with the ground connection of the second wire in 
contrast to folded radiator with a gap is a parallel connection of the input impedances of 
the monopole and a short-circuit long line, i.e. it has a more complex character. However, 
this option allows transforming an active component of a monopole input impedance. 
Indeed, according to expression (3.17) the input admittance of the folded radiator at the 
resonant frequency of a monopole is

Y
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i.e. neglecting the first term of the numerator as against the second term and substituting 
the value p in accordance with the (3.18), we obtain
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Selecting the radii of the wires permits increasing a level of matching such antenna 
with a cable or a generator.

It is necessary to say a few words about the physical meaning of the obtained results. 
It is obvious that in the free space two closely spaced parallel wires, along which equal 
currents flow in opposite directions, do not radiate the signal, since the fields of wires are 
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mutually cancel each other. The conductive metallic surface (ground), on which antenna 
is installed, causes appearance of displacement currents between the wires and ground 
(they are shown by dotted lines in Figure 3.8) and decreasing the conduction currents 
in parallel wires with increasing distance from the ground. Displacement currents are 
returning to the generator pole along the ground surface. They create the radiation and 
cause the emergence of the summand in the input impedance of the antenna, analogous 
to the resistance of the monopole.

Figure 3.8 Displacement currents and currents in the ground near the folded radiator.

3.3 FOLDED RADIATOR WITH WIRES OF DIFFERENT LENGTH

The previous sections were devoted to folded radiators and equivalent long lines made 
of parallel wires of equal length. Procedure of calculating a current distribution along 
wires of line is based on the theory of electrically coupled lines. In order to determine 
the input impedance of a folded antenna, its circuit is divided into a linear radiator 
and a two-wire long line. If an asymmetrical folded radiator is formed by wires of 
different lengths (see Figure 3.2d), the structure may be similarly split into the line and 
the radiator, but the method of calculating the line and the radiator is not obvious. This 
is not the sole task that requires determining electrical characteristics of a line and a 
radiator with wires of different lengths.

An example of a line with wires of different lengths is shown in Figure 3.9a. As 
can be seen from the figure, it is distinguished from the line shown in Figure 3.3 and 
consists of two segments. The lengths of the upper and lower segments are equal 
respectively to l = l1 – l2 and L = l2. Here l1 is the length of a longer wire, and l2 is the 
length of a shorter wire. The lower segment is made in the form of two parallel wires 

Figure 3.9 Long line with wires of different length (a) and its capacitive load (b).

b) 
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of the same length with the same cross-section, for example, circular cross-section with 
the radius a. Capacitance per unit length of the wire between two thin wires located in 
a homogeneous medium with permittivity e is equal to

C0 = p e/ln (b/a) (3.21)

where b is the distance between the axes of the wires. This capacitance determines the 
wave impedance of the lower segment of the two-wire long line.

Influence of the upper segment of the line on its input impedance will be taken 
into account by means of calculating the capacitance between the upper segment of the 
longer wire (with length l) and the short wire. We shall define an input impedance of 
the line with wires of different lengths as the input impedance of the line with short 
wires and capacitive load at the end. The electrostatic structure in this case consists 
of three conducting elements designated as (1), (2) and (3) in Figure 3.9a. C is the 
capacitance between elements (2) and (3) in the presence of element (1). It is not equal 
to the capacitance between isolated elements (2) and (3) in the absence of element (1). 
For this reason let us find the necessary capacitance as the difference of two capacitances:

C = C1 – C0L. (3.22)

Here, C1 is the total capacitance between the long and short wire, and C0L is the 
capacitance between the wires of the lower segment. At that C1 is the capacitance of an 
electrically neutral system consisting of two conductors (see, for example, [34]):

C1 = (a11 + a22 – 2a12)
–1, (3.23)

where aik are potential coefficients, calculated by the following formulae:
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Sometimes inequalities L/b, l/b >> 1 are true. In this case the expression for a12 gets 
simplified:
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Calculations show that the capacitance C is small as compared with the capacitance 
C0L. In particular, if wires are located in the air, i.e. e = 1/(36p · 109), and L = 7.5, 
b = 1.0, 2a = 0.05, when the excess length l changes from 1 to 4 (all dimensions are 
in centimeters), we have C0L = 7.07 pF, and C changes from 0.05 to 0.1 pF. Thus the 
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excess length l creates the capacitive load at the end of the two-wire line. This load is 
equivalent to lengthening of the line by a value l0:

l0 = (1/k) cot–1[1/(w CWl)]. (3.24)

where Wl is the wave impedance of the line. The results of calculating capacitances C, 
and equivalent lengths l0 for the above mentioned dimensions at 1 GHz are given in 
Table 3.1. 

It is easily convinced that the capacitance between the elements (2) and (3) in the 
absence of the element (1) is significantly greater than the capacitance presented in 
Table 3.1. 

Table 3.1 Capacitive Loads and Values of Lengthening

l, cm
2a = 0.05 cm 2a = 0.2 cm

l0, cm l01, cm C, pF l0, cm l01, cm C, pF
0.0 0 0 0.020 0 0 0.047
0.5 0.22 0.19 0.037 0.21 0.15 0.073
1.0 0.41 0.39 0.050 0.37 0.30 0.093
1.5 0.56 0.52 0.063 0.49 0.45 0.108
2.0 0.69 0.86 0.073 0.58 0.61 0.119
2.5 0.80 1.10 0.081 0.65 0.79 0.128
3.0 0.90 1.38 0.089 0.71 1.00 0.135
3.5 0.98 1.66 0.095 0.75 1.24 0.140
4.0 1.05 1.94 0.101 0.78 1.48 0.144
4.5 1.12 2.17 0.107 0.81 1.64 0.148

These calculations were verified by simulations with the help of CST program. 
The model of structure, which was applied at this simulation, is shown in Figure 3.10, 
where e is a generator with output impedance R = 50 Ohm. The simulation results for 
the value l01, of lengthening are also presented in Table 3.1. Since the distance b between
the wires is finite, then the dimensions l0 and l01 for l = 0, based on the two-wire line 
approximation, differ from 0. The cause of this circumstance is the self-capacitance 
of the wires. In order to clearly demonstrate how the excess length l has an effect on 
lengthening of the line, dimensions l0 and l01 are decreased by their values at l = 0. 

As it is seen from Table 3.1, the calculation and simulation results agree well for 
l l . It turns out that the input impedance of a line with wires of unequal lengths 
differs comparatively weakly from the input impedance of a two-wire line with such 
length as the shorter wire. 

Similar results at 2a = 0.2 cm are given in Table 3.1.

Figure 3.10 Simulation model for a two-wire long line with wires of different lengths.

In accordance with the obtained results one can write the current distributions along 
the wires of line as: 

i z
I kl k L l z kl L z L l

I k L l z z1
0 0

0 0 0
( )

sin sin ( )/sin , ,

sin ( ),
=

+ - £ £ +
+ - £ ££

Ï
Ì
Ó L,

,



67Folded Antennas of Metal Wires

i z
L z L l

I k L l z z L2
0 0

0

0
( )

, ,

sin ( ), ,
=

£ £ +
- + - £ £

Ï
Ì
Ó

. (3.25)

where I0 is the current of a generator. A long line line with equal length of wires located 
in free space can radiate only in the case when the distance between the wires is not too 
small compared with the wave length. In case of wires of unequal lengths, the excess 
lengths l of the longer wire radiates, as it follows from expressions (3.25) for the currents. 

The obtained results allow to consider another problem—calculating the input 
impedance of a linear radiator (monopole) composed of two parallel wires with different 
lengths (Figure 3.11a). Figure 3.11b shows an equivalent asymmetric line for such a 
structure.

In this case it is necessary to divide the equivalent line into two segments, as shown 
in Figure 3.11b. The segment 1 has one wire; the segment 2 consists of two wires. The 
segment number is indicated in parentheses, the number of wire is indicated in its base. 
The currents and potentials along the mth segment of the nth wire of the asymmetric 
line are given by (3.8), where n = 1, 2, m = 1, 2. If the distance between the wires is 
small in comparison with the wires lengths, one can consider that
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The zero currents at the ends of the wires and the continuity of the current and potential 
along each wire permit to write the boundary conditions:
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Figure 3.11 Monopole formed by the wires of different length (a), and 
an equivalent long line (b).

From these boundary conditions we get 
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The current distribution along the first segment of the longer wire is given by
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The current along the second segment is
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and the current along the shorter wire is

i jU kl
W W W2

2
1
1

1
2

2
2

1
2

2
2

1
1

1 1
1( ) ( )

( ) ( )

( ) ( )

( )cos ta= - -
-È

Î
Í
Í

˘

˚
˙
˙

r r
nn tan sinkl kl kz2 2

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
. (3.28)

The total current along the second segment is
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These expressions show that the current distribution along each segments of the 
monopole is sinusoidal, i.e. it is similar to the current distribution along a monopole 
consisting of two segments with different wave impedances (for example, with different 
wire diameters).

Let us write the expression for the total current along the monopole in the form
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The input reactance of the monopole is equal to the input impedance of the equivalent
line:
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where
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The radiation resistance of the monopole is equal to 

E k heS = 40 2 2. (3.33)

where he is the effective height of the monopole given by
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These expressions define the currents along each wire of the asymmetric radiator 
and allow calculate more accurately its input impedance. Considering that an antenna 
is a linear radiator and the current along it is equal to a total current of both wires, it is 
possible to find the input impedance, for example, by the method of induced emf (second 
formulation). During calculating the tangential component of the electric field, one must 
take into account the discontinuity of the current derivative on the segment boundaries. 

3.4 LOSS RESISTANCE IN THE GROUND

Application of folded radiators largely depends on their losses, particularly losses in 
the ground. Each of the elements, of which antenna consists (i.e., monopole and a long 
line), has losses in the ground. Loss resistance Rge for a monopole is calculated in the 
usual manner. With regard to a long line, its loss resistance Rgl in the ground is also 
non-zero. Of course, magnetic fields, created by opposite currents of two closely spaced 
parallel wires of a line, cancel each other, and the radius of an area, in which the full 
compensation is absent, is relatively small (the center of this area is located at the 
middle point between wires). However, it is necessary to take into account that, when 
an observation point is approaching to a conductor with the current, the magnetic field 
increases.

Let J1 and J2 be the currents in left and right wire of the line: 
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Here mJ is the current in the base of the wire and l = l/4 – L is the wire length        
(Figure 3.12a). If the origin of a rectangular coordinate system is placed in the middle of 
the interval between the wires, the vector potential of the electromagnetic field produced 
by the current J1 at an arbitrary point on the ground surface with coordinates (x, y, 0)

located at the distance r = +x y2 2 from the axis of the first wire in view of mirror 
image is equal to
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The tangential components of the magnetic field are
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Here R L= +r2 2 . In calculating the integral, the substitution R L= +r2 2 was used.

Figure 3.12 Current distribution along the wire (a), area of losses (b) and 
currents on a ground surface in the outer area (c).

The current density in the ground coincides with the strength of the magnetic field 
created by wires of the long line. Its components are equal to 
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Introducing a value d satisfying the inequality

b/2<< d << L, l/2, (3.36)

one can divide the area of losses (Figure 3.12b) into two areas, the boundary between 
which is a circumference of radius d. In the outer area the distance from the long line 
to the observation point is large in comparison with the distance between the wires. 
Here the fields produced by the currents J1 and J2 cancel each other (Figure 3.12c). Thus, 
for example, when x = 0, i = i1b/r bHx1/r, and taking (3.36) into account, we find
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where R0 = 1/(ss) is the resistance per unit area of the ground surface. In accordance 
with (3.36), this value is small and can be neglected. In the inner area r << L, l/2
expressions for the components of the surface current are greatly simplified:
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Without wasting adopted accuracy, we calculate the losses not in a circle of radius d,
but in the square of side 2d, (see Figure 3.12b). Power of losses in the inner area is
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0 916 is the Catalan’s constant. The value d, as would be 

expected, in this expression, is not included. Taking into account that b/a >> 1, we find
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This result can also be obtained using known analogy between electric field in a 
conductive medium and an electrostatic field. The rightness of this approach follows 
from (3.37): a magnetic field and current density in the ground in the area of the losses 
are determined only by the currents in the base of wires and have a quasi-static nature.

Similarly, one can obtain for the coaxial line (see Figure 3.2e)
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As can be seen from (3.38) and (3.39), the loss resistance in the ground for vertically 
located long line (both two-wire and coaxial) does not depend on its length L. This 
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resistance depends only on the ratio of the distance between the wires to the wire 
radius. Figure 3.13 shows the dependence of loss resistance Rgl of a two-wire line on 
the frequency at different values b/a and d (of sea water). The calculation shows that 
ignoring the losses in the water is irregular.

Figure 3.13 Loss resistance of the vertical two-wire long line in the water.

One must emphasize that the loss resistance Rge of the monopole in the ground 
should be connected in series with the input impedance of the radiator itself, and the 
loss resistance Rgl of the line in the ground should be connected in series with the 
input impedance of the line. This is easily seen, proceeding from Figure 3.14, where the 
contour along which the current flows, is shown for both antenna elements. Taking into 
account losses in the ground, the expression for the input impedances of folded radiator 
with a gap and the expression for the input admittance of folded radiator with ground 
connection of the second wire take the form: 

Z Z a R jm W kL m R Y
R jW kL

p
R Z aA e e ge l gl A

gl l ge e e
= ( ) + + + =

+
+ (

2 2
21

tan ,
tan ))

. (3.40)

Loss resistances of folded radiators in the wires are considered in Section 4.2.

Figure 3.14 Direction of currents in monopole and ground (a), and 
in two-wire line and ground (b).
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3.5 IMPEDANCE FOLDED RADIATORS 

Folded radiators, on whose surface in contrast to metal radiator nonzero boundary 
conditions are performed, are called impedance folded radiators. Nonzero boundary 
conditions outside an excitation zone have the form:

E a z
H a z

Z zz
L z L

( , )
( , )

( )
j

- £ £ = . (3.41)

Here Ez (a, z) and Hj (a, z) are the tangential component of the electric field and the 
azimuthal component of the magnetic field respectively, Z(z) is the surface impedance, 
which in the general case depends on the coordinate z and substantially changes the 
distribution of current along an antenna in the first approximation. As mentioned 
already, the boundary conditions of this type are valid, if the structure of a field in 
one of a media (for example, inside the magneto dielectric sheath of the antenna) does 
not depend on a field structure in another medium (ambient space). Using the surface 
impedance (or concentrated loads) creates an additional degree of freedom and permits 
to expand opportunities of the antenna [28].

Two asymmetrical variants of the impedance folded radiator are shown in 
Figure 3.15. In the first variant there is a gap between the second (unexcited) wire and 
the ground (Figure 3.15a). In the second variant this wire is shorted to the ground 
(Figure 3.15b).

Figure 3.15 Asymmetric impedance folded radiators with a gap in the second (unexcited) wire (a),
and with the ground connection of this wire (b).

The method of calculating an impedance folded radiator, similarly to calculation of a 
metal folded radiator, is based on the theory of asymmetric lines [37]. For two-wire 
impedance long lines, consisting of two wires with impedance coating (see Figure 3.3) 
and located above ground, telegraph equations (3.1) are valid: 
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Here, as in Section 3.1, ui is the potential of the wire i relative to ground, ii is the current 
along the wire i, Xik = w Lik is the self- or mutual inductive impedance per unit length. 
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Besides that, jQi = Zi/(2p ai) is the additional impedance per unit length due to surface 
impedance Zi.

The two left equations of the set (3.42) are based on the fact that the decrease of 
potentials at segment dz of each wire is the result of the emf influence. The emf’s are 
induced by the self-currents and by the currents of the adjacent wires. The other two 
equations were written on the basis of the electrostatic equations relating charges and 
potentials in accordance with the equation of continuity. Dependence of the current on 
coordinate z is adopted in the form exp (g z), where g is the propagation constant.

Differentiation of the right equations and substituting them into the left equations 
brings to a set
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g l

. (3.43)

This system of equations has a solution, if the condition is satisfied

g
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, are coefficients

of electrostatic induction. Thus a system of two non metallic wires located above the 
ground has two different propagation constants. If the impedance is a purely reactive, 
they are equal

k1 2 1 2
2

( ) ( )= -g .

We seek a solution in the form

ul = A cos klz + jB Sin klz + C cos k2z + jD Sin k2z. (3.45)

The ratio of the currents obtained from (3.43) is substituted in the first equation of (3.42):

i j
k

Q
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cos sin cos sin(( ) , (3.46)

where a k k k Qi i i i= -( )/( )2 2 . From (3.46) and similar relationship between i2 and u2 one 
can obtain

du
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Q i
Q i

2 1 2 2

1 1
: = , (3.47)

i.e.

u2 = b1(A cos klz + jB Sin klz) + b2(C cos k2z + jD sin k2z). (3.48)

and b
Q
Q

k X Q k X

k k Xi
i

i

=
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2

1

2
11 1

2
11

2 2
12( )

. Finally from (3.47) and (3.46) it follows that

i2 = a1c1 (B cos k1z + jA sin k1z) + a2c2 (D cos k2z + jC sin k2z), (3.49)

where ci = biQ1/Q2.
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Putting z = 0, we find: A = U11, D = I11/a1, C = U12, D = I12/a2. Here U11, U12, I11,
I12 are fractions of voltages and currents at the beginning of the first wire (near load), 
which correspond to phase constant k1 and k2. Considering that the positive current is 
the current flowing from the generator to the load, i.e. in the direction of negative z,
we rewrite (3.45), (3.46), (3.48) and (3.49), taking into account the calculated coefficients:
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One must emphasize the important conclusion, which follows directly from (3.50). 
Currents and potentials of both wires are connected by rigid relations depending not 
on the details of the connecting antenna in a circuit (not in accordance with so-called 
boundary conditions), but on the wires, diameters and the surface impedance. Therefore, 
it is impossible, changing only the boundary conditions (for example, changing the 
point of connecting emf, magnitudes and points of connecting loads), to obtain in 
the wires of the impedance folded radiator purely in-phase or anti-phase currents 
(by contrast to purely metallic folded radiators). Accordingly, the input impedance of 
such impedance radiators cannot be presented as an aggregate of impedance lines and 
radiators, connected with each other in parallel or in series. Only identical wires, as it 
will be shown below, are an exception.

We apply these results to the calculation of the input impedance of a folded radiator 
with a gap in the second (unexcited) wire (see Figure 3.15a). The boundary conditions 
for this variant have the form:

i1(0) + i2(0) = 0, u1(0) = u2(0), i2(L) = 0, u1(L) = e. (3.51)

Substituting (3.50) into (3.51), we find
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Then the input impedance of impedance line is 
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Expression (3.53) makes it possible to determine the approximately reactive 
component of the input impedance of the impedance folded radiator (similarly to the 
fact as formula for the input impedance of an equivalent long line allows to determine 
a reactive component of an input impedance of the line radiator). The antenna input 
impedance can be found more precisely by the method of induced electromotive force. 
Equating the oscillating part of the power passing through a closed surface surrounding 
the antenna and the oscillating part of the power passing through the source of emf, 
we obtain (for the asymmetrical radiator)

Z
J

E J y dyA y
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= - Ú1
01

2
0

( )
( ) . (3.54)

Here Ey is a field on the antenna surface, J1(0) = i1(L) is the current of the generator and 
J(y) = J1(y) + J2(y) is a total current of an antenna as function of coordinate y = L – z
(see Figure 3.15a).

Expression (3.54) is a generalization of the second formulation of the method of 
induced emf as applied to the folded radiator. For the folded radiator with a gap 
between the second (unexcited) wire and the ground a total input current of the antenna 
coincides with a generator current. For the folded radiator with the ground connection 
of this wire this coincidence is absent. 

In the vicinity of parallel resonance, where the method of induced emf gives the 
wrong result, for the folded radiator with a gap, one must use the expression
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and the total current of this antenna is equal to
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The field in the far region with allowance for a mirror image is 
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An effective length of asymmetric radiator is 
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Thus, the calculation of the folded radiator with nonzero boundary conditions 
is divided into two stages. First, the current distribution along the antenna wires is 
determined using the theory of coupled lines, afterwards electrical characteristics of the 
antenna are calculated. In order to calculate the far field, the total current of antenna 
is used. Input impedance is calculated by the method of induced electromotive force, 
or by solving the integral equation. Coefficients Wi, bi, ci, ki depend on the inductive 
impedances Xik = wpik/c2 per unit length, where aik are the potential coefficients, which 
are determined by a method of an average potential (for example, by method of Howe), 
in accordance with the actual location of the antenna wires.

Practically, important special cases, when the surface impedance on one wire of the 
folded radiator is equal to zero, are of particular interest. Main characteristics of folded 
antennas with a gap, if one or the other wire is purely metallic, are given in Table 3.2. 
One must note that in the calculation of the difference k k1

2 2- , it is necessary to expand 
it into the series of Maclaurin.

Table 3.2 Characteristics of Folded Radiators with a Gap
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If the radiator is made up of two identical wires (Q1 = Q2, a2 = a4), then
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where from, b1 = c1 = 1, b2 = c2 = –1, d1 = 0, i.e. expressions (3.50) take the form
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This means that in this particular case, irrespective of the boundary conditions for 
the currents and voltages, their components with the propagation constant k1 are equal 
in magnitude and opposite in sign (anti-phase wave). Accordingly, the input impedance 
of the folded radiator with a gap (see Figure 3.15a) can be presented as an aggregate of 
input impedances of two-wire line and monopole:

X W k L W k LA m l= - +cot , tan1 20 25
. (3.60)
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is the wave impedance of an impedance long line also consisting of two wires located 
symmetrically relatively surface of zero potential (ground). Magnitudes C11 and C12 in 
these expressions are partial capacitances.

For the folded radiator with the ground connection of the second wire (see 
Figure 3.15b), instead of the third boundary condition (3.51) we have

u2(L) = 0. (3.61)

Therefore, instead of the third equation of the set (3.52), we obtain
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and d2 will take the place of the coefficient d1 in expressions for electrical characteristics 
of the radiator. When Q2 = 0, coefficient d2 is equal to d2 = –cot kL. When Q1 = 0,
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When Q1 = Q2, a2 = a4,

Y
W k L W k LA

l m
= -

1 1
42 1tan cot

. (3.63)

When Q1 = Q2 = 0, i.e. k1 = k2 = k, equalities (3.60) and (3.63) become by expressions 
(3.16) and (3.17).

As an example, in Figure 3.16 the model of the impedance folded radiator is 
presented. One wire of this radiator is made in the form of a rod with a ferrite coating 
(relative magnetic permeability of the coating is 10), and the other wire is made of a 
metal tube. Dimensions of a model are given in millimeters.

Figure 3.16 Model of the impedance folded radiator.

The calculated curves and experimental values of active RA and reactive XA
components of the input impedance of the presented radiator for the different variants 
of its connection to the generator and the ground, as well as for different diameters 
of the tube are given in Figures 3.17 and 3.18. The coincidence of the calculated and 
experimental results is quite satisfactory. As can be seen from the figures, the radiator 
characteristics are substantially changed, if one or the other wire is excited. Using 
slowing coating allows to decrease resonant frequencies in 2-2.5 times. 



80 Antenna Engineering: Theory and Problems

Figure 3.17 Input impedance of the impedance folded radiator with excited impedance wire:    
with a gap (a), with a shorting to the ground (b).

Figure 3.18 Input impedance of the impedance folded radiator with excited metal wire:
with a gap (a), with the ground connection of the second wire (b).
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4.1 METHOD OF CALCULATING MULTI-FOLDED RADIATORS

As is shown in Section 3.1, asymmetric folded radiators consisting of two parallel wires, 
upper ends of which are connected with each other, combine the functions of radiation 
and matching. In a folded radiator with a gap, a length of which is less than a quarter of a 
wave length, a capacitive impedance of a linear radiator (of a monopole) is compensated 
by an inductive impedance of a long line with shorting at the end. In a folded radiator 
with a ground connection of an unexcited wire a long line, connected in parallel with 
an input impedance of a linear antenna, transforms its resistance.

A multi-folded radiator (Figure 4.1) gives more opportunities in order to obtain 
useful results in this direction. This radiator is a group of parallel wires connected in 
pairs at the top and bottom so that there is formed a system of coupled and connected 
in series elongated loops (of two-wire long lines). In the particular case when the number 
of wires is two, this antenna is converted into a folded radiator.

Figure 4.1 Multi-folded radiator.

4
Multi-Folded and

Multi-Level Antennas
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If the transverse dimensions of a multi-folded radiator are small in comparison 
with its height L and the wavelength l, then, as is shown in the article [38], devoted to 
a research of electromagnetic oscillations in systems of parallel thin wires, the current 
in each wire of such system can be divided into in-phase and anti-phase components, 
and the entire system may be reduced to an aggregate of linear radiator and non-
radiating long lines. The method of calculating the characteristics of such antenna may 
be considered using an example of a two-folded radiator with a gap (Figure 4.2).

Figure 4.2 Two-folded radiator with a gap: circuit (a), cross-section (b).

At first we must divide the two-folded antenna onto a radiator and long lines. 
For that, into the gap between the free end of the antenna and the ground we include 
two parallel generators of the current, which are equal in magnitude (mJ) and opposite 
in sign (Figure 4.3). Here J is the current of the main generator. The main generator 
is also divided onto two generators of currents, identical in direction and different 
in magnitude: mJ and (1 – m)J. The total current of the generator as a result of such 
operation is not change; the total current in the gap is zero as before.

Figure 4.3 Calculating the two-folded radiator with a gap.

According to the superposition principle a voltage at point A is equal to a sum of 
voltages, produced by all generators. Therefore, as it is shown in Figure 4.3, one can 
divide the circuit of the two-folded antenna onto two circuits, with two generators in 
each one, and then add up the voltages at the point A, created in each of these circuits.

In the first auxiliary circuit the generators are identical and connected in series. 
Therefore, the voltage between the point A and the ground is

VA1 = V/2 = 0.5mJZl, (4.1)

a) b) 

2 3 4 t~) 2P 

2a 
• • , ~0 

l ---------3 

Ge,J 

2 + 1 4 z 3 4 
B 

~ 
c ft e A 

0 

~mJ mJ mJ ~~ mJ mJ 
(1-m)J mJ 
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where V = VA1 – VB1 is the input voltage, and Zl is the impedance of a complicate long 
line. More precisely, this is two coupled lines with the same distance b 2  between wires 
and the equal wave impedances. W1 = 120 ln( b 2 /a). One of these lines is a load for the 
other line. In the first approximation it could be considered that it is a united two-wire 
line, bended in the middle at an angle 180o. If to use the theory of electrically coupled 
lines, W1 in this expression will be replaced by the value W2 = W3W4/(W4 – W3), where

W
b a

b a
W b a3

2 2

3 3 460
4 2 2

2
240 2= ( ) -

( )È
Î

˘
˚

= ( )Í
Î

˙
˚

ln / ln

ln /
, ln / .

It is easy to make sure that for small radius of wires(b  a)

W2 W1 b/a).

The points A and B in the second auxiliary circuit are connected with each other 
as equipotential points. It means that m = 1/2, if the wires diameters are identical. The 
second circuit is the folded radiator, in which each “conductor” consists of two parallel 
wires (1 and 4, 2 and 3 respectively). This circuit can also be divided into two ones: 
the four-wire line of length L, with shorting at the end, and the asymmetric radiator 
(the monopole) of height L. The wave impedance Wl of the line is equal to

W b a5 60 2= ÍÎ ˙̊ln /( ) . Equivalent radius of the monopole with four wires                               

(of radius b/ 2 ), located along the cylinder generatrices, is equal to a abe = 34 2 . Input 
impedance of the second circuit is

ZA2 = Zm(ae) + jm2Wl tan kL.

This impedance is calculated by means of the same procedure of dividing the initial 
circuit onto two circuits (the monopole and the long line), and adding up the input 
voltages. For the voltage between point A and the ground in the second circuit, one 
can write

VA2 = J[Zm(ae) + j0.25W5 tan kL]. (4.2)

Hence, the input impedance of the entire antenna

ZA = Zm(ae) + j0.25W2 tan 2kL + j0.25W5 tan kL. (4.3)

This result is illustrated by Figure 4.4, which shows the input impedances of the antenna 
and its components. From the point of view of the input impedance the considered 
antenna is a series connection of the monopole and two lines of length L and 2L, with
shorting at the end. The wave impedances of these lines are close to values

W(n n)ln (b/a), (4.4)

where n is the number of wires in each “conductor” of the line.
From (4.4) and Figure 4.4 it follows that the radiation resistance of the two-folded 

antenna with a gap is equal to the radiation resistance of the monopole of the same 
height. The reactive component of the input impedance has additional resonances, and 
the first parallel resonance is caused by the parallel resonance of the long line with length 
2L, i.e. its frequency is half the frequency of the first serial resonance of an ordinary 
monopole. The frequency of the first serial resonance of the antenna is even smaller 
(but not necessarily twice).
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Figure 4.4 Impedance of two-folded antenna (a) and of its components: monopole (b), line of 
length 2L (c), line of length L (d).

Due to increase of the wires number and a corresponding increase of the length 
of the total antenna wire, the number of resonances increases in a concrete frequency 
range. For example, if the loop’s number is equal to N = 2n, then for the antenna with 
a gap we obtain similarly to (4.3)

Z Z a j W NkLA m e
m m

m

n

= + ( ) ( )
=

Â( ) . tan /0 25 2 2
0

. (4.5)

Here ae = 2N 2 2 1Na Nr -  is the equivalent radius of the monopole, consisting of N
loops, which are located along the generatrices of the cylinder with the radius r (if N
grows, the equivalent radius tends to be r). The frequency of the first parallel resonance 
of the antenna (i.e. of its second resonance) is N times lower than the frequency of the 
first serial resonance of an ordinary monopole. Such character of the input impedance 
allows, firstly, to use multi-folded antenna in the range of longer waves, and secondly, 
when it is necessary, to tune the antenna onto several frequencies.

If N-folded antenna with the ground connection of the unexcited wire consists of 
the wires of identical diameter (see Figure 4.1, dotted line), its input admittance is

Y
j b a NkL ZA

N
= ( ) +

1
120

1
4 2ln / tan /

, (4.6)

where ZN/2 is the input impedance of the N/ 2-folded antenna with a gap and with 
“conductors” of two wires. This result generalizes expression (3.17) and is obtained 
similarly.

For the odd number of antenna wires, the calculation becomes more complicated. 
For example, a radiator of three wires (Figure 4.5) may be divided onto a three-wire line 
and a monopole with a height L (Figure 4.6). Potentials of all wires of the monopole 

L /J.. 

b) Zm 

1/8 ...-: / 1/4 L I J.. 
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:) 0.25W2tan2kL 
c I I 

I / 
/ / 

~/ / 
/ 

1/8 ./ 1/4 3/8 L/ J.. 
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in each cross-section must be the same. So in accordance with (3.19) the magnitude m
depends on the relation of capacitances of two branches of folded antenna. The right 
branch consists of two wires, and its capacitance is twice as much. Therefore one derives 
that m = 2/3. One can show, using the theory of electrically coupled lines  that an 
impedance of a three-wire line of the identical three wires (of a first circuit) is equal to

Z j b a
kL kLl = ( )

+
80

1
2

ln /
cot cot

. (4.7)

In this circuit there are only anti-phase currents, and their sum is equal to zero in 
each cross-section. The sum of potentials in an arbitrary cross-section also is zero, i.e.

VA1 = -2VB1 = 2V/3,

where V = VA1 – VB1 is the voltage at the input of the line. From here the impedance 
of the three-wire antenna is

Z
V V

J
Z a j b a

kL kLA
A A

m e=
+

= + ( )
+

1 2 80
1

2
( ) ln /

cot cot
. (4.8)

Figure 4.5 Three-wire antenna: circuit (a), cross-section (b).

Figure 4.6 To the calculation of three-wire folded antenna with a gap.

Equivalent radii of the three-wire monopole and the three-folded radiator are equal 
accordingly to aem = ab23 and aer = 6 56 ab . If the number of loops is N n= ◊3 2 , then

a) b) 

2 3 

+ 
V B 
~ef5 

mJ mJ 
mJ 
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Z Z a j W NkL j W
kL kLA m e

m m n

m

= ( ) + ( ) ( ) + ( ) +=

0 25 2 2 0 33 2
1

2
0

. tan / .
cot cot

nn

Â . (4.9)

The value of ae is given earlier.

4.2 ELECTRICAL CHARACTERISTICS OF
MULTI-FOLDED RADIATORS

The first section of this chapter is devoted to the method of analysis of multi-folded 
antennas and to their input impedances. Here we shall briefly talk about other properties 
of these radiators.

The directional patterns of a multi-folded antenna do not differ from the directional 
patterns of an ordinary monopole, since fields of long lines in a far zone upon small 
distances between wires may be neglected.

In calculating a loss resistance RgA of multi-folded antennas in the ground it is 
necessary to determine a loss resistance Rgl for lines of complex shape. Figure 4.7a
shows the two-wire line of length 2L, which in the middle is bent at an angle of 180o.
The losses of such line in a ground do not differ from the losses of the line shown in 
Figure 3.14b because the currents in the ground between projections of the wires 2 and 
3 are practically absent. The currents between the wires 2 and 3 flow mainly along the 
connecting bridge AA’, especially if the distance between these wires is less than the 
distance d between this bridge and the ground.

Figure 4.7 Losses in the ground for lines of complex shape (a)
and with two wires in “conductor” (b).

The loss resistance of the long line, an each “conductor” of which consists of n wires, 
is smaller by a factor n2 than the loss resistance of an ordinary line. This situation is 
illustrated by Figure 4.7b for the case when n = 2. The current of each wire of “conductor” 
flows into the n directions to n wires of the other “conductor”, thereby forming a system 
of n2 resistances, included in parallel. Each resistance is equal to the resistance  Rgl0 of 
a sector between single wires. Thus, the loss resistance in the ground of multi-folded 
radiator with a gap is equal to

R R
R

ngA ge
gl

mm

n

= +
=

Â1
4

0
2

0

, (4.10)

where nm is the number of wires in each “conductor” of the line m.



87Multi-Folded and Multi-Level Antennas

Values RgA for some antennas are given in Table 4.1. The table demonstrates that if 
the transverse dimension of an antenna is the same, increasing of the number of loops 
affects weakly the losses in the ground.

Table 4.1 Loss Resistance of Multi-folded Radiators with a Gap 

Type of radiator
Loss resistance in 

a ground RgA

Loss resistance in wires 
RwA

Folded Rge + 0.25Rgl0
R L

kL
kL

kL
~

sin
sin

2 2
1

4
4

-Ê
ËÁ

ˆ
¯̃

Two-folded Rge + 0.313Rgl0
2

4
1

8
82

R L

kL
kL

kL
~

sin
sin

-Ê
ËÁ

ˆ
¯̃

Four-folded Rge + 0.328Rgl0

4
8

1
16

162
R L

kL
kL

kL
~

sin
sin

-Ê
ËÁ

ˆ
¯̃

Linear Rge
R L

kL
kL

kL
~

sin
sin

2 2
1

2
22 -Ê

ËÁ
ˆ
¯̃

Further we consider losses in the antenna wires caused by a skin effect. As is known, 
the surface resistance of a round copper wire per one meter is

R f a~ /= 24 , (4.11)

where f is a frequency, in MHz, a is a wire radius, in mm. The resistance of the steel 
wire is 2.3 times as much.

The surface resistance causes the longitudinal attenuation of electromagnetic waves. 
Therefore, the propagation constant of a wave along the wire and the wave impedances 
of the long line and the monopole become complex quantities. One can find, substituting 
them into the expression for the input impedance, this impedance with allowance for 
the skin effect losses.

The imaginary additive to the propagation constant in the first place increases the 
magnitude of the active impedance RA, since the latter is small in comparison with the 
reactive impedance XA everywhere except the vicinity of resonances. An addition to a 
given above radiation resistance RS is a sought value of loss resistance RwA in the wires.

In Table 4.1 the values RwA are given for several variants of multi-folded radiators 
with a gap, when attenuation in the wires is weak. It is believed that the radii of wires 
are small in comparison with the distances between them, i.e. the proximity effect and 
the corresponding redistribution of current over the wire cross-section are neglected. 
For comparison, the table demonstrates the loss resistance in the wires of a monopole.  

The table shows that the losses in the wires cause the appearance of additional 
maxima on the curve for the active impedance when kL = (2m + 1)p/2 (m is a natural 
number), i.e. near the parallel resonances of the long lines. In these bands of the 
frequency range it is impossible to ignore the skin effect losses. At the low frequencies 
(kL 1) the loss resistance increases proportionally to the number and the length of 
wires.

One can write that the input admittance of the N-folded radiator with the ground 
connection of the unexcited wire with allowance for the losses in the ground and in 
the wires is equal to
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Y
j b a NkL R R ZA

gl wl N
= ( ) + +

+
1

120
1

4 2ln / tan /
, (4.12)

where ZN/2 is the input impedance of the N/2-folded antenna of two-wire “conductors” 
with a gap (in view of the losses), and Rwl and Rgl are the loss resistances of the two-
wire long line in the wires and in the ground, relatively, at that

R
NR L

NkLwl = ~

cos2
.

Calculation and experimental verification confirmed the rightness of the obtained 
results. Figures 4.8 and 4.9 show the input impedances of two-folded and four-folded 
radiators with a gap in different frequency bands. The experimental values of the 
resonant frequencies in the figures are shifted in comparison with the calculated results 
in the direction of lower frequencies. This small shift is caused by the fact that the 
calculation did not take into account the length of the horizontal connecting bridges 
between the wires.

Figure 4.8 Input impedance of two-folded radiator with a gap.

Further, we pass to Q-factor. Q-factor (quality) is an important electrical characteristic 
of the antenna. It defines in particular the frequency band within which one may obtain 
the given level of matching an antenna with a cable without a change of a tuning. 
Q-factor characterizes the rate of changing the antenna input impedance as the result of 
the influence of various external factors and can be used to quantify the sustainability of 
the antenna tuning, if the sustainability is understood as the preservation of the results 
of the antenna tuning. From this standpoint, the higher the quality factor, the worse 
the stability, and vice versa.

The parameter Q is the magnitude similar to the quality factor of the resonant 
circuit. It is calculated at the point of the serial resonance of the antenna in accordance 
with the formula

Q
R

dX
d

kL

R
dX
d kL

i

Ai

A i

Ai

A
kL kLi i1 2 2

= =
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w

w w w ( ) . (4.13)

600 
R!\., ..--Y .. Ohm . ' 

I 
400 

I 

11° 

I _II 
200 

~:v\ 
40 60 80 0 

I 
-200 

/ 
1/ -400 

-600 I 

I 

/ n· 
II 

100~>:?'·-l'\ 
/ 120 

/ 

/ 
I 

cl 

0 .-----
0 - ~.y 

140 / 160 

I 

f, 
IvlHz 



89Multi-Folded and Multi-Level Antennas

Here RAi is the active component of the input impedance on the frequency fi, in the 
vicinity of which RAi it is considered to be constant.

The expressions for calculating the electrical length (kL)i and Q-factor of four-folded 
radiator with a gap in the first four points of the serial resonances are given in Table 4.2            
as an example. The table also indicates for the comparison the electrical length and the 
quality factor of a quarter-wavelength radiator and of a short linear radiator with a 
matching device. The table uses the following designations: Wm is the impedance of the 
linear radiator, in particular of the equivalent radiator with radius a; Wl = 120 ln(b/a) is 
the wave impedance of two-wire long line; D = +( ) =W W W p Ll m l/ , /( )4 5 4l .

Table 4.2 Expressions for Calculating Electrical Length and Quality of 
Four-Folded and Linear Radiators 

Radiator
Number of 
resonance

Electrical length Q-factor

Four-folded 1
1
4

9 63 0 6041tan . .- -
Ê
ËÁ

ˆ
¯̃

W
W

m

l

1
0 94 0 38 18 2

1

2

R
W W

W
WA

m l
m

l
- + +

Ê

ËÁ
ˆ

¯̃
. . .

“ 2
1
2

8 0 51tan .- -
Ê
ËÁ

ˆ
¯̃

W
W

m

l

1
0 56 6 3

2

2

R
W

W
WA

l
m

l
. .+

Ê

ËÁ
ˆ

¯̃

“ 3
1
4

1 66 0 11tan . .- -
Ê
ËÁ

ˆ
¯̃

W
W

m

l

1
0 5 1 14 1 62

3

2

R
W W

W
WA

m l
m

l
. . .+ +

Ê

ËÁ
ˆ

¯̃

“ 4 (p – d  )/2

1
0 79 1 4

1 03 3 34 0 196
4

2

2 2

R
W

W
A

m

l

[ . ( / )

( . . . / ) ]

+ +

+ + +

D

D D
Quarter-
wavelength 1 p/2 Wm/93

Short with  a 
matching device 1 p/(2p) pWm/[4pRAsin2(p/2p)

Figure 4.9 Input impedance of four-folded radiator with a gap.
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4.3 ANTENNA WITH MEANDERING LOAD                                                                                              

In this section we consider an example of using a multi-folded structure—a meandering 
load, which is applied in the capacity of a horizontal load of a wire antenna. The antenna 
with a meandering load is analyzed by means of the theory of coupled lines.

As is known, the horizontal load serves for increasing an effective height of the 
antenna by changing a current distribution along a radiating vertical wire. The equivalent 
length of the horizontal segment of the antenna is equal to

l
k

W
W

kL
W l
We

H

V

V

H
=

Ê
ËÁ

ˆ
¯̃

ª-1 1tan cot . (4.14)

If dimensions of the horizontal segment are small in comparison with a wave 
length, then its equivalent length is inversely proportional to its wave impedance WH
and directly proportional to its length l and also to wave impedance WV of the vertical 
segment. Therefore, the horizontal load is usually fabricated in the form of several 
parallel wires, whose ends are connected with each other (Figure 4.10a).

Figure 4.10 Inverted-L antenna (a) and antenna with meandering load (b).

Figure 4.10b shows the antenna circuit, in which the wires of the horizontal load 
are connected with each other in series [39]. In this circuit, the current path along the 
load is extended, and its equivalent length also increases. The antenna was called in 
accordance with the shape of the horizontal load.

In order to calculate the input impedance of the load we use, as already mentioned, 
the theory of coupled lines located above the ground. The current and the potential 
of each wire of asymmetric line, consisting of N parallel wires, are defined by the 
expressions (3.3), and the wave impedances between the wires are defined by the 
expressions (3.4).

For example, calculating the input impedance of a three-wire load presented in 
Figure 4.11 begins with writing the boundary conditions for the currents and the 
potentials:

u u i i i

u l u l i l i l
1 2 1 2 3

2 3 2 3

0 0 0 0 0 0 0( ) ( ), ( ) ( ) , ( ) ( ),

( ) ( ), ( ) (

= + = =
= + )) , ( )= =0 1u l e

. (4.15)

It is considered that the radii of wires are small as against distances b between them. 
Since the height L of their suspension is commensurable with the wire length l, then the 
method of average potentials is used for calculating potential coefficients. Taking into 
account the mirror image, we obtain:
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a 11 = a 22 = a 33 = a 1/(2p e), (4.16)

where

a1
1 20 307 2 1 2 2= ( ) - - ( ) + + ( ) --ln / . / / /l a sh l L L l L l .

Similarly

a 12 = a 21 = a 23 = a 32 = a 2/(2p e), a 13 = a 31 = a 3/(2p e). (4.17)

Here

a2
1 2 1 2 2 2 2 2 21 4 1 4 4= ( ) - + ( ) + - +( ) + + +( ) -- -sh l b b l b l sh l L b L b l L/ / / / / ++ b l2 2/ ,

and a3 is obtained from a2, if to replace b by 2b. Since the distance between adjacent 
wires of the load is small in comparison with L and l, it is possible put for simplifying 
calculations that

a2 = a3. (4.18)

                             Figure 4.11 Meandering load of three wires.

This assumption does not cause significant error because sh x x x- = + +1 2 1ln( ), i.e. the 
error is logarithmic. It is also justified by the fact that the length of connecting wires (of 
bridges) at the load ends can be taken into account in the used method only indirectly 
(by means of replacing l by l + b).

From (3.4) and (4.16)–(4.18) we obtain 

r
r
rns

n s

n s
=

=
π

Ï
Ì
Ó

1

2

,
,

, (4.19)

where r1 = 60a1, r2 = 60a2. Coefficients bns and ans are connected by relationship (3.5). 
From (3.4), (3.5) and (4.19) it is follows that

W
W c n s

W c n sns =
= ( ) =

= - ( ) π

Ï
Ì
Ô

ÓÔ
1 11

2 12

1

1

/ ,

/ ,

b

b
, (4.20)

and for three-wire load

1
2

1
21

1 2

1 2 1 2 2

2

1 2 1 2W W
=

+
-( ) +( ) =

-( ) +( )
r r

r r r r
r

r r r r
, . (4.21)

Substituting (4.3) into the boundary conditions (4.15) and taking into account (4.19) 
and (4.21), we obtain:

U2 = U1, I2 = –I1, I3 = 0, U3 = U1 + j(r2 – r1)I1 tan kl,
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I j
U kl

kl
U e

kl

kl
1

1

1 2 1
2 1

1 2 1
2

1 2

2
2

2

2
=

+ -
=

+ -
+

tan
tan

,
tan

cosr r r
r r r

r r -- -( )ÈÎ ˘̊3 21 2
2r r tan kl

. (4.22}

From here the input impedance of three-wire load 

Z
u l
i l

j kl
kl

kl3
1

1

1 2 2 1
2

2

2 2 3

3
= = -

+ + -( )
-

( )
( )

cot
tan

tan

r r r r
. (4.23)

In order to test the effect of the adopted assumption (4.18) on the result of the 
calculating electrical characteristics of the antenna we shall consider that r3 = 60a3. In 
this case the electrodynamics wave impedances are equal to

W W W11 33
1 3 1

2
1 3 2

2

1
2

2
2 22

1
2

1 3 2
2

1

2 2
= =

-( ) + -( )
-
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+
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r r r r

r
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rr3

,

W W W W W W13 31
1 3 1

2
1 3 2

2

1 3 2
2 12 21 23 32

1
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= =
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-
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r r r
r

,
++ -r r r

r
1 3 2

2

2

2 ,

and expression for Z3 will take the form

Z j kl
A B kl

C D kl3

2

2= -
+
+

cot
tan

tan
, (4.24)

where

A
W W W W
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.

As the calculation results show, impedances Z3, calculated in accordance with (4.23) 
and (4.24) for real antennas differ from each other by no more than 1–2%. 

The example of calculating the input impedance of a three-wire load shows that the 
use of the approximate expressions (4.19) and (4.20) has little effect on the calculation 
result, if the inequality a b l is true. At the same time, the application of these 
approximations greatly simplifies the calculation and allows to use it for load of any 
number of wires.

Determinant DN in accordance with (3.5) is written in the form

DN =

a a a a
a a a a
a a a a

a a a

1 2 2 2

2 1 2 2

2 2 1 2

2 2 2

...

...

...
... ... ... ... ...

.... a1

. (4.25)

It is easy to check to see that for N, equal to 1, 2, 3,
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DN = (a1 – a2)
N–1 [a1 + (N – 1)a2]. (4.26)

The method of mathematic induction allows to prove that this expression is true 
for any positive integer N. For this it is necessary to show that the rightness of this 
expression for the determinant DN means its rightness for the determinant DN+1. We 
expand the determinant by the elements of the first line:

D D DN N
r

r N N
r

N

M N D+
+

=

+

= + - = -Â1 1 2
1

1 1 2
2

1

1a a a a( ) . (4.27)

Here M1r is minor of the determinant DN+1, DN = M12 is the determinant of the Nth order:

DN =

a a a a
a  a a a
a a a a

a
a a a

2 2 2 2

2 1 2 2

2 2 1 2

2

2 2 2

...

...

...
... ... ... ...

.... a1

.

For it the expression similar to expression (4.27) is true:

DN = a2DN–1 – (N – 1)a2DN–1.

At the same time in accordance with (4.25)
DN = a1DN–1 – (N – 1)a2DN–1.

From the last two equalities
DN = DN + (a2 – a1)DN–1. (4.28)

Substituting into (4.28) the value DN from (4.26) and the value DN–1, which in accordance 
with (4.26) is equal to DN–1 = (a1 – a2)

N–2 [a1 + (N – 2)a2], we obtained
DN = a2(a1 – a2)

N–1, (4.29)
From here in accordance with (4.27)

DN+1 = a2(a1 – a2)
N–1 [a1 + (N – 2)a2] – Np2

2  (a1 – a2)
N–1 = (a1 – a2)

N (a1 – Na2),
as required.

Since
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n s
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Ï
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2 1 2
21

,

( ) ,a a a
, (4.30)

i.e. accordingly (4.20) electrostatic wave impedances are equal to

W
N
N

W
N

1 1 2
1 2

1 2
2 1 2

1 2

2

1
2

1
= -

+ -
+ -

= -
+ -

( )
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, ( )
( )

r r
r r
r r

r r
r r

r
. (4.31)

Boundary conditions for currents and potentials of wires of the load differ for 
even and odd number of wires. For an odd number of wires N = 2m – 1 the boundary 
conditions are:

u u i i i

u l u
n n n n m

n n

2 1 2 2 1 2 2 1

2 2 1

0 0 0 0 0 0 0- - -

+

= + = =
=

( ) ( ), ( ) ( ) , ( ) ,

( ) (ll i l i l u l en n), ( ) ( ) , ( ) .2 2 1 10+ = =+
(4.32)
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In this case, as shown in [40], the input impedance of the load is

Z
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where
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Similarly, for an even number of wires (N = 2m)
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where
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For the sake of convenience of calculating, numerators and denominators of expressions 
(4.33) and (4.34) can be presented as an expansion in powers of the value tan2b [40].

In Table 4.3 expressions for calculating the load impedances with different numbers 
of wires are given. If tan b < 1, the calculation accuracy in accordance with (4.34) and 
with expressions, presented in Table 4.3, is determined by the number of calculated 
terms. If b << 1, then, limited in (4.34) by the first two terms of the numerator and 
denominator, we find:

Table 4.3 Impedances of Loads

Number
of wires

Expressions for calculating
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This expression is true also for the odd number of wires.
Knowing the load impedance, one can determine all electrical characteristics of the 

antenna. Figure 4.12a presents for two antennas with meandering load the calculated 
curves and experimental values of the reactance. Dimensions of the load (in meters) 
are: L = 200, l = 300, a = 0.1. The number of wires in the load is equal to four. The 
distance between the wires axes of the first antenna load (curve 1) is equal to b = 5, of 
the second antenna (curve 2) b = 2. This experiment was performed on a model. The 
coincidence of experimental values with calculation is good. For comparison, the input 
reactance of the inverted-L antenna with the same sizes is given in the figure by dotted 
lines (curves 3 and 4). As can be seen from the figures, the use of meandering load 
increases the electrical length of the antenna and shifts its resonances in the direction 
of low frequencies.

Figure 4.12b presents the results of calculation and experiment for the antenna with 
meandering load of six wires. Dimensions of the antenna are: L = 50, l = 70, b = 1.54, a =
3.75.10–3. Here the coincidence of results of the calculation and experiment also is good.

Figure 4.12 Reactance of antennas with meandering loads of four (a) and six (b) wires.

Figure 4.13a presents the calculated curves and experimental values of the input 
impedance for similar antenna (curves 1) with six wires in the load and with dimensions: 
L = 50, l = 45, b = 1.54, a = 2. 5.10–2. For comparison, the input impedance of the inverted 
L-antennas with the same height and with the length of the horizontal load 90 and 45 m 
(curves 2 and 3) are given. In Figure 4.13b the calculated efficiency of these antennas is 
given. As seen from the figures, in the range of 200–500 kHz efficiency of the antenna 
with meandering load is substantially higher than the efficiency of the inverted-L
antenna of the same size and is comparable with the efficiency of such antenna having 
double length of the load.

The use of antenna with meandering load in MF range allows reducing a size of a 
plot, which the antenna occupies, an area of the grounding and a price of construction.

The first specimen of this antenna was put into operation in 1983 in the town 
Pavlovo on the radio center of the Baltic Shipping Company. In 1987, the radio center 
of commercial sea port in Ventspils (Latvia) was equipped with three antennas. The 
effectiveness of the new antenna has been tested by measuring the field’s strength, 
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produced by new antennas in comparison with the inverted-L antenna. Antennas 
operated with the same transmitter. Tests have shown that the field created by the 
antenna with a meandering load is greater in 1.5–1.6 times. This is equivalent to 
increasing the transmitter power in 2.3–2.6 times.

Figure 4.13 Input impedances (a) and efficiency of antenna with meandering load and 
inverted-L antennas with different length of load (b).

The correct selection of elements of antenna device requires calculation of currents 
and voltages arising therein. For example, the magnitudes of the voltages between the 
wires ends and the ground determine the choice of insulators, on which the load is 
suspended. Diameters of wires depend on the maximum currents, etc.

We examine in particular the load of the three wires using condition (4.18) for 
simplifying calculation. As shown earlier, substituting the boundary conditions (4.15) in 
the equations (3.3) for the currents and the potentials along the load wires, we obtain 
equalities (4.22). By means of (4.22) and (4.31) in accordance with the first equation of 
the set (3.3) one can obtain expressions for the currents along the load wires. The current 
in the first wire is

i1(z) = I sin(2b + kz), (4.36)
where

I j
U

j
e

=
+ -( ) =

+ - -( )ÈÎ ˘
1

2
1 2 1

2 3
1 2 1 2

22 2 3 2cos tan cos tanb r r r b b r r r r b ˚̊
.

Similarly,
i2(z) = –I sin(2b – kz), i3 (z) = I sin kz. (4.37)

The total current in the load wires is

i z i z I kzn
n

( ) ( ) ( cos )sin= = +
=

Â 2 2 1
1

3

b , (4.38)

i.e. current is distributed depending on coordinate z in accordance with sinusoidal law.
Figure 4.14 shows the current distribution along the wires of a three-wire load, 

constructed in accordance with (4.36) and (4.37), and the total current, constructed in 
accordance with (4.38). If to straighten mentally the load wire, it will be seen that the 
current of the wire and the total current are distributed in accordance with sinusoidal 
law.
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Potential does not submit to this law. The expressions (3.3), (4.22) and (4.31) give 
for the potential another result: 

u1(z) = U1 coskz + j(r1 – r2)I1 sinkz = U1 coskz – U cot a sinkz, (4.39)
where

U
e

=
-( )

+ - -( )ÈÎ ˘̊
2

2 3 2
1 2

2

1 2 1 2
2

r r b

b r r r r b

tan

cos tan
.

Similarly,

u2(z) = U1 coskz + U cotb sinkz, u3(z) = U1 coskz + U cot kz. (4.40)

Thus, the potential of the load wire is the sum of two summands. Both summands and 
its sum are shown in Figure 4.14.

Figure 4.14 Currents and potentials along the wires of the load.

Sinusoidal law of the current distribution along the load wire remains valid for a 
greater number of wires. For example, if a load consists of four wires,

i1(z) = I sin(3b + kz), i2(z) = –I sin(3b – kz), i3(z) = I sin(b + kz), i4(z) = –I sin(b + kz), (4.41)

where
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The calculated results of the input current of the load (for different number N of 
wires) and the potential at the end of the load are given in Tables 4.4 and 4.5. The 
presented magnitudes of the current and the potential are maximal in all frequency 
range up to the frequency of serial resonance. Therefore, it is possible to choose the 
diameters of the wires and the type of insulators in accordance with these magnitudes.
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Figure 4.15 gives as an example the calculated values of the maximum potentials 
and currents of the load for an antenna with the dimensions: L = 50, l = 45, b = 1.54, 
a = 2.5.10–2. The number of wires in the load is N = 6. The maximum potential is 
specified with respect to the voltage e at the load input and to emf at the antenna input. 
The maximum current is specified with respect to e and to the input current JA of the 
antenna. It was taken into account that

e e
k L l

kl
J i l

k L l

klA
e

e
A

e

e
=

+( )
=

+( )cos (

cos
, ( )

sin

sin1 , (4.42)

where l
k

jW Ze N= --1 1tan ( / ) is an equivalent length of the load with input impedance  
ZN.

Figure 4.15 Maximum potential (a) and maximum current (b) as functions of frequency.

Table 4.4 Input Current of the Load
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Table 4.5 Potential on the End of Load Wire
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4.4 MULTI-LEVEL ANTENNA WITH ADJUSTABLE 
DIRECTIONAL PATTERN IN A VERTICAL PLANE

Considered in the previous section, an antenna with meandering load is a concrete 
example of using structures of parallel wires for improving electrical characteristics of 
an antenna. Multilevel antenna is the other example of such kind.

 Vertical linear radiators, for example whip antennas, are widely used for a short-
wave radio communication of mobile objects. They take up little space and do not 
interfere with the overview. Their disadvantage is that the maximum radiation is 
directed horizontally if only the electrical length of the antenna is small. With the 
growth of an electrical length the horizontal signal decreases. If the antenna height 
L is greater than 0.7l, a main lobe of a radiation pattern in a vertical plane separates 
from a ground and the radiation in the horizontal direction drops sharply. Changing 
of the height, for example by a telescopic construction, allows to improve the antenna 
characteristics. But such mechanical tuning consumes a lot of time and complicates the 
design of the antenna. Folded structures allow to create an antenna, in which the length 
of the radiating segment is changed without changing the geometric dimensions of the 
device [41].

In the simplest embodiment, the antenna is designed for operation in two frequency 
bands (similar to the telescopic antenna, which may have two geometrical heights during 
operation). The antenna is made as two-tiered and consists of two radiators, which are 
located one above the other and connected together. The upper radiator is linear, the 
lower radiator is folded (Figure 4.16). The exciting emf e1 and e2 are connected in both 
wires of the folded radiator and may vary in amplitude and phase by means of tuning 
circuit.
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If the antenna operates in the first frequency band, emfs are included in phase, 
creating in both wires of folded radiator the currents in one direction. These currents 
become by the current of the linear radiator. As a result the current is created along 
the entire antenna, and the height of the radiating segment is equal to the total height 
of the antenna.

If the antenna operates in the second frequency band, the current is created only 
in the wires of the folded radiator. With this aim excited emfs are included in the anti-
phase, and their magnitudes are chosen so that the potential at the point of joining of 
the linear radiator to the folded radiator is zero. This eliminates the immediate excitation 
of the linear radiator. The upper segment of the antenna, consisting of one wire, can be 
excited by electromagnetic fields of the currents flowing along the wires of the folded 
radiator. However, if the length of the upper segment is far from the resonance (is not a 
multiple of l/2), the current along this segment is small, i.e., the height of the radiating 
section of the antenna is equal to the height of the folded radiator.

Figure 4.16 Two-tiered antenna: common circuit (a), with coaxial cable (b), with reactive load (c).

Changing the height of the radiator allows to provide the operation in two frequency 
bands. If the frequency ratio in each band is equal to kf, the total frequency ratio is equal 
to k 2

f  . The height of the folded radiator is chosen to be equal to

l = L/kf. (4.43)

The considered circuit of the antenna can be generalized for use in N of the frequency 
bands (instead two bands). For this, the number of tiers of the antenna should be 
increased to N. The two upper tiers are similar with the described embodiment. The 
lower ends of each wire of the folded radiator connect with the upper points of the 
folded radiator of the next (third) tier etc. Overall frequency ratio of N-tiered antenna 
is equal to k N

f  . The heights of the lower tier and the rest tiers are given by expressions

L
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where n is the tier number, counting from the top.
Multi-tiered antenna creates a new prospect for the development of a broadband 

antenna. In this direction the most significant results were obtained earlier by means 
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of connecting concentrated capacitive loads and optimization of these loads [19]. 
Calculations show (see Section 5.5) that the capacitive loads allow extending the antenna 
range in the direction of higher frequencies with a sufficiently high level of matching, 
ensuring the frequency ratio of the order of 10. But at the same time the directional 
pattern in the vertical plane deteriorates sharply in high frequency part of a range. With 
allowance for obtaining acceptable directional patterns in the vertical plane the frequency 
ratio does not exceed three. Using of the multi-tiered structure and the capacitive loads 
in the wires of each tier allows to ensure in a wide range the high level of matching 
and the required directional pattern.

Let us return to the two-tiered variant of the antenna, more precisely to its excitation 
in the anti-phase mode. The antenna will radiate, if to provide asymmetry in the folded 
radiator, i.e. it is necessary to obtain different amplitudes of the currents in the left and 
the right branches of the radiator. With this aim one of the wires must be accomplished 
in the form of a coaxial cable (see Figure 4.16b), i.e. generator must be included not in 
the lower, but in the upper point of the wire. Another way of creating an asymmetry 
is connection of a reactive load in one of the wires (see Figure 4.16c).

In the presence of asymmetry not only anti-phase currents, but also in-phase 
currents will flow in the branches of the folded radiator. In-phase currents are caused 
by the presence of the ground (see the last paragraph of Section 3.2 and Figure 3.8). 
These in-phase currents create radiation. However, for the sake of simplicity we shall 
conventionally call by anti-phase mode the mode of antenna operation, when the 
potential at the point of joining of the linear radiator to the folded radiator is zero.

In order to analyze the two-tiered antenna we shall apply the theory of electrically 
coupled long lines, described in Section 3.1. This theory allows to find the currents and 
the potentials along each wire of the line and emf of generators providing the required 
operation mode. In this case, the equivalent line (Figure 4.17) is considered in the general 
form—with two generators in one of the branches and two complex loads. The set of 
equations (3.3) for the three wires in this case takes the form:

i I kz j U W U W kz u U kz j I1 1 1 1 11 2 12 1 1 1 1 11 1 12= + - = + +cos [ / / ]sin , cos (r r II kz2 1)sin ,

i I kz j U W U W kz u U kz j I2 2 1 2 22 1 12 1 2 2 1 12 1 22= + - = + +cos [ / / ]sin , cos (r r II kz2 1)sin ,

i I kz j U W kz u U kz j I kz3 3 3 3 33 3 3 3 3 33 3 3= + = +cos ( / )sin , cos sinr . (4.45)

Figure 4.17 Equivalent asymmetric line.
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The boundary conditions for the currents and the potentials are

i i i i u e u ez z z L l z l z l3 0 1 2 0 3 1 1 2 23 1 3 1 1
0= = = - = == + = = =, , , ,

u Z i u Z i e uz z z L l1 1 1 0 2 2 2 0 3 31 1 3
- = - + == = = - . (4.46)

Equalities (4.45) and the boundary conditions (4.46) are the set of equations with 
six unknown magnitudes Ui, Ii (i = 1, 2, 3). Substituting (4.45) into (4.46), we obtain:

I3 = 0, I2 = –I1 + j(U3/W33) sin k(L – l), U1 = Z1I1 + U3 cos k(L – l),

U2 = –e3 – Z2 I1 + U3 cos k(L – l)[1 + j(Z22/W33) tan k(L – l)],

e1 = I1 cos kl[Z1 + j(r11 – r12) tan kL] + U3 cos kl cos k(L – l)[1 – (r12/W33) tan kl tan k(L – l],
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The rest two formulas permit to express the magnitudes I1 and U3 through emfs 
of the generators. But the corresponding expressions are cumbersome, are hence not 
used for further analysis and thus not presented here. The previous four equalities after 
substituting into (4.45) allow expressing the current distribution along each wire as a 
function of magnitudes I1 and U3:
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(4.48)

Further, we shall consider the specific embodiments of antennas as partial cases of 
general equivalent circuit. The circuit of two-tiered antenna with the coaxial cable is 
shown in Figure 4.16b. Here a few of elements of the overall circuit is absent, i.e.

Z1 = Z2 = e2 = 0.

In the anti-phase mode in accordance with the boundary condition u z L l3 3
0= - =  we 

find that U3 = 0. Then from (4.47) we obtain emf of generators

e1 = j(r11 – r12) I1 sin kl, e3 = –j(r22 – r12) I1 tan kl = –j(r22 – r12) sec kl/(r11 – r12). (4.49)

It is necessary to emphasize that the relationship between emf of two generators 
is an obligatory condition for providing anti-phase mode in the antenna. The currents 
along the antenna wires in this mode according to (4.48) are
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r r
,
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i z I k l z
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r r
. (4.50)

The expressions (4.50) confirm that the currents along the first and the second wires 
contain in-phase and anti-phase components. The total antenna current (sum of currents) 
varies along the antenna similarly to the current along the linear radiator of the length 
l—in full accordance with the results presented in Chapter 3:
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Here it is taken into account that (see Section 3.1)
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The current distribution along the antenna wires in the anti-phase mode is shown in 
Figure 4.18a. The boundary between the components of current in each wire is given by 
a dotted line, and the total current of the wire and the total current of the antenna are 
given by solid curves. Impedance on the output of each generator, exciting asymmetric 
long line, is equal to
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These expressions allow determining approximately the reactive component of the 
loading impedance of each generator (similar to the formula for the input impedance of 
an equivalent two-wire long line, which allows determining approximately the reactive 
component of the input impedance of a linear antenna).

Figure 4.18 Currents in the two-tiered antenna with a coaxial cable in anti-phase (a)
and in-phase (b) modes.

From the viewpoint of radiation, as seen from (4.50) and Figure 4.18a, the antenna in 
anti-phase mode consists of two parallel radiators of the height l with in-phase currents 
in the base:

i
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The radiation resistance of each radiator consists of the self-resistance and the mutual 
resistance multiplied by the ratio of the currents. In particular, for the first radiator we 
write:

R R R
i

i
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i1 11 12
2

1

0

0
= +

( )

( )

( )

( )
. (4.53)

where R11 is a self-radiation resistance, R12 is the mutual radiation resistance, and  
R12 R11, since the radiator heights are the same and the distance between the radiators 
is small in comparison with the wave length. Thus,

RA1 = R11(1 – W12/W22), RA2 = R11(1 – W22/W12). (4.54)

In the anti-phase mode the electric field strength in the far region and the directional 
pattern coincide with the similar characteristics of the conventional linear radiator of 
a height l. Expressions (4.50)–(4.54) are sufficiently simple and allow determining the 
influence of antenna geometric dimensions upon the current magnitude in each wire and 
upon the electrical characteristics of the radiator. More precisely, the input impedance 
of the antenna can be calculated by using an algorithm of calculation, based on the 
integral equation for the current, the Moment Method and the systems of piecewise 
sinusoidal basis functions.

Let us move on to an analysis of the in-phase mode. For the implementation of this 
mode one must ensure equality of potentials in both branches of the folded radiator, i.e.,

u1(z) = u2(z). (4.55)

Applying this condition to the set of equations (4.45), we find:
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Currents along the wires consist in this case of the in-phase components only:

i z i z I W k L l k l z1 2 1 33
11 22 12

11 22 12
2

2
( ) ( ) cot ( )sin ( )+ =

+ -
-

- -
r r r

r r r
++

-
-

-I kl k l z1
11 12

22 12

r r
r r

tan sin ( )

+ +
-
-

Ê
ËÁ

ˆ
¯̃

- = +
-
-

I k l z i z I1
11 12

22 12
3 1

11 12

22 1
1 1

r r
r r

r r
r r

cos ( ); ( )
22

Ê
ËÁ

ˆ
¯̃

-
-

sin ( )
sin ( )

k L z
k L l

. (4.57)

The current distribution along the wires is shown in Figure 4.18b. Impedances on the 
output of each generator, exciting asymmetric long line, are
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The radiation resistance is calculated according to formulas similar to (4.53). But R11
is the resistance of the radiator of height L, the current along which is determined by 
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(4.57). Since the derivative of the current has discontinuity on the border of segments, 
the calculation should use the technique described in Section 1.5, i.e. should take into 
account the break of the current derivative. Correspondingly it is necessary to replace 
the known expression (1.31) by the equality of type (1.68)
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Here Rm1 and Rm2 are the distances from observation point to the segments’ borders in 
the upper and the lower arms of the radiator, M is the number of borders, 

dJ l

dz
m +( )0

 and
dJ l

dz
m -( )0

are the values of the current derivatives from the left and the right of point
z = lm.

It should be noted that for the same diameters of the antenna wires the formulas 
become far simpler.

As an example of the two-tiered antenna with a coaxial cable we consider the 
antenna with dimensions (in meters): L = 1.0, l = 0.39, b = 0.037, a1 = 0.002, a2 = 0.025. 
Here, b is the distance between the axes of the wires of the folded radiators, a1 and a2
are the radii of the wires (see Figure 4.16b). Calculation of the antenna characteristics is 
made by means of the Moment method.

Figure 4.19 shows the calculated curves for the directional patterns in the vertical 
plane—in the in-phase (a) and anti-phase (b) modes. The model of the antenna was 
made in full size.  The results of the experimental verification are given for frequencies 
150 and 300 MHz. As can be seen from the figures, the coincidence of the calculation 
and the experiment is quite satisfactory. The high level of radiation in the direction 
perpendicular to the axis of the radiator (along the ground) is provided in the double 
frequency range. However, in the anti-phase mode when the length of the third wire (of 
the upper segment of the antenna) is a multiple of half the wavelength, i.e. at frequencies 
245 and 490 MHz, the main lobe of the directional pattern is located at a large angle 

Figure 4.19 Directional patterns of antenna in the vertical plane in the 
in-phase (a) and anti-phase (b) modes.

a) b) 
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to the horizontal. Here the current along the third wire is too large. The dimensions of 
the antenna must be chosen such that the resonance frequencies were lying outside the 
operating range.

Figure 4.20 shows the current distribution along the antenna wires in the anti-phase 
mode, including the current distribution along the left wire and the connecting bridge 
between the wires of the folded radiator, and also the current distribution along the 
right wire and the upper (third) wire. These current distributions of currents are the 
graphic illustration of the processes in the anti-phase mode of the two-tiered antenna. 
The results are shown at four frequencies, including frequencies 245 and 490 MHz with 
increased current of the third wire.

Figure 4.20 Current distribution along the wires of two-tiered antenna with 
coaxial cable at four frequencies (in anti-phase mode).

The circuit of a two-tiered antenna with a reactive load is shown in Figure 4.16c.
Here a few of elements of the overall circuit is absent also, i.e. Z2 = e3 = 0. Let us assume 
that r11 = r22. In the anti-phase mode the boundary condition u3|z3 = L–l = 0 should be 
executed. This means that the emfs of the generators are connected by the relationship

e2 = –e1 + Z1I1 cos kl. (4.60)

Currents along the antenna wires in this mode
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Reactances of generators’ load are
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Resistances are calculated in accordance with (4.53), and
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The in-phase mode has the salient features. Since the load is connected in the upper 
section of the folded radiator, it is impossible to produce the equality of voltages in both 
its wires. Let us assume

u1(z) – u2(z) = U cos k (l – z).

For executing this condition it is necessary that

e2 = e1 – Z1I1 coskl. (4.63)

The currents along the wires are calculated in accordance with the expressions
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Reactive impedances of generators’ load are
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The current distribution along the wires of the antenna with the reactive load in 
the in-phase and anti-phase modes is shown in Figure 4.21. The in-phase currents are 
designated by symbol (i), the anti-phase currents are designated by symbol (a).

Figure 4.21 Currents in the antenna with the reactive load in anti-phase 
(a) and in-phase (b) modes.

Summarizing the results presented in this section, one should make the following 
conclusion. The principle of changing electrical height of the radiator without changing its 
geometric dimensions, realized in the circuit of a two-tiered antenna, is very promising, 
quite efficient and requires careful study to implement it in real structures. 



5.1 IMPEDANCE LONG LINE

Distribution of a current along the radiator defines electrical characteristics of the 
radiator, i.e. its input impedance, directional pattern, etc. In order to change this 
distribution, one can use extraneous fields (exciters) or loads—both distributed and 
concentrated loads. Even only one load can significantly change the current distribution, 
and hence the electrical characteristics of the antenna.

If a great number of loads are placed along the antenna at small electrical distances 
from each other, we can consider that they are included uniformly and continuously 
along the entire antenna length, and this means that the radiator with a finite number 
of loads turned into the radiator with distributed load, i.e. it turned into the impedance 
radiator. The boundary conditions on the surface of this radiator along the z-axis of the 
cylindrical coordinates system, between the points z = –L and z = L are given by (2.51).

The impedance radiator unlike the metal radiator has additional degrees of freedom. 
By means of loads one can solve the inverse problem of the thin antennas theory—to 
create an antenna with required electrical characteristics. A particular case of the 
problem is creation of the radiator, which ensures in a wide frequency range a high 
matching level and the field maximum in the plane, perpendicular to the radiator axis. 
This problem has a great practical importance.

A typical linear radiator (thin, without loads) fails to meet these requirements. The 
reactive component of its input impedance is great everywhere, except in the vicinity 
of the serial resonances. That results in the antenna mismatch with a cable. If the 
radiator arm is larger than 0.7l, the radiation in the plane, perpendicular to antenna 
axis, decreases, since the current distribution along a thin linear monopole without loads 
(Figure 5.1a) is close to the sinusoidal, and at high frequencies anti-phase segments are 
formed on the current curve (Figure 5.1b, curve 1).

5
Antennas with 

Concentrated Loads
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Figure 5.1 A linear monopole (a) and the laws of current distribution along it (b).

If to connect concentrated loads along the radiator length, one can, depending on 
their magnitudes and points of connection, obtain the other, not sinusoidal distribution 
of the current. The experimental results show that a radiator with linear or exponential 
in-phase current distribution exhibits good performance (high matching level, required 
shape of the vertical directivity pattern) in a wide frequency range. In particular, such 
distribution is created with the help of capacitive loads [42, 43]. These results confirm 
the known fact that the radiation maximum in the direction, perpendicular to the 
dipole axis, is attained, if the current is in-phase along the entire length of the antenna. 
Moreover, a long radiator with an in-phase current has high radiation resistance, which 
allows increasing the matching level.

Thus, the experiment confirms that the use of concentrated loads for the creation 
of antenna with the desired characteristics is promising. But before moving on to this 
problem we must consider an antenna with constant and changing surface impedance 
and also an equivalent impedance long line.

The main results of applying the method of induced emf and solving the integral 
equation for analysis of impedance antennas are given in Sections 1.5 and 2.5. An 
ordinary two-wire long line is an equivalent of a metal radiator. An impedance two-wire 
long line is an analogous equivalent of an impedance radiator. But unlike the metallic 
radiator the tangential component of the electric field on the surface of the impedance 
radiator is not equal to zero, and this causes an additional voltage decrease on each 
element of wire length. According to (2.51) and (2.52), this voltage decrease is equal to

dU
Z z

a
J z dz=

( )
( )

2p
, (5.1)

Infinitesimal small element dz of the impedance line, which is equivalent to a symmetric 
radiator, comprises, beside an inductance dL = D1dz and a capacitance dC = C1dz, the 

complementary impedance
Z z

a
dz

( )
p

(coefficient 2 takes into account that the radiator 

consists of two wires). Here L1 and C1 are the inductance and the capacitance per unit 
length of the radiator. 

The impedance long line, which is equivalent of the impedance radiator, is shown 
in Figure 5.2. 
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Figure 5.2 Equivalent long line in the case of constant surface impedance.

If the surface impedance is constant along the long line, the telegraph equations 
for such line are
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We consider that the capacitance between the radiator arms per unit of their length 
is equal to half of the self-capacitance C0 of an infinitely long wire per unit of its length. 
Since the radius of the radiator is much less than its length, the surface of zero potential 
may be placed on the distance 2L from the radiator axis, i.e. capacitance per unit length 
of the line, which is equivalent of the symmetrical radiator, is equal to
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Solving equations (5.3), we find the current J(z) and the input impedance Zl of the 
open at the end impedance long line:
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where J(0) is the generator current, W is the wave impedance of the long line:
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Since the input current J(0) of the line is J(0) = e/Zl, the current J(z) along the line is 
equal to

J z j
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k L a k L
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ln( / )cos
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120 21 1
1 . (5.9)

That coincides with (2.55), i.e. with a first approximation for the antenna current.
If the surface impedance is changing along the antenna (more precisely, if this 

magnitude is piecewise constant), the equivalent impedance long line is a non-uniform 
line, i.e. it is a stepped line. It consists of N uniform sections of length lm with the wave 
impedance Wm, current Jm and voltage um. We shall designate the surface impedance of 
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the segment m as Z(m) (Figure 5.3). A comparison of the segment m of the impedance 
radiator and of the impedance line allows coming to a formula, obtained in Section 2.5             
for the propagation constant km and to an expression for the wave impedance Wm,
similar to (5.8):
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From the theory of the long lines it is known that

um = Um cos(kmzm + jm), Jm = jJm sin(kmzm +jm), (5.11)

and Im = Um/Wm. Since the voltage and the current along the stepped long line, which 
is equivalent to the radiator, are continuous:
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Dividing the first of expressions (5.12) onto the second expression and taking into 
account (5.10) and (5.11), we find:
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Equalities (5.13) enable us to express the amplitude and phase of the current in any 
section through the parameters of sections and one of the currents:
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The last expression is true for the Nth section, if we accept that =
= +
’ 1

1p N

N

.

Since the current of the generator is

J(0) = JN sin(kNlN + jN),
then

Im = AmJ(0), (5.15)

Figure 5.3 Equivalent long line in the case of changing surface impedance.



112 Antenna Engineering: Theory and Problems

where 
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Expressions (5.11) together with (5.14) and (5.15) present the approximate laws for the 
distribution of the voltage and the current along the radiator with piecewise constant 
surface impedance.

The required value of the surface impedance and a predetermined law of its change 
along the radiator can be realized by means of the concentrated loads, connected in the 
antenna wire. Consider the monopole with the height L and N loads Zm (Figure 5.4a). 
Let loads be located uniformly at distance b along the antenna. If the distance b is small 
(kb << 1), the current distribution along the antenna undergoes practically no change, 
if to replace the concentrated loads by continuous surface impedance Z(z), distributed 
across a length of each segment. Assume that the surface impedance of the antenna 
segment m is constant and equal to Z(m). Then

Zm = bZ(m)/(2pam), (5.16)

where am is the radius of this segment.

Figure 5.4 Antenna with a few concentrated loads (a) and an equivalent long line (b).

5.2 METHOD OF AN IMPEDANCE LONG LINE

As already mentioned, the current distribution along the antenna with a piecewise 
constant surface impedance is, in the first approximation, identical to the current 
distribution along an open at the end stepped long line (Figure 5.4b), i.e. a transmission 
line with stepwise variation of propagation constant (see Figure 5.3). In this case, one can 
write the expression for the generalized wave propagation constant gm at the segment m
of the long line in accordance with the equation for current Jm(z) along the segment m
of a radiator in the form: 

(2) (1) 

.... e 
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- = -g cm
m

mk j k Z a Z2 2
02 ( ) /( ). (5.17) 

Here, c = 0.5/ln(2L/a) is a small parameter, a is middle radius. In the general case, gm
is a complex magnitude. In a particular case, when this magnitude is purely imaginary 
(gm = jkm), the current distribution at the segment m of the line has sinusoidal character.

If the law of changing the propagation constant, which allows ensuring the required 
current distribution, is found, expressions (5.17) and (5.16) can be used to calculate, first, 
the surface impedance Z(m) and, second, concentrated loads Zm, respectively. The current 
of the segment m of a stepped line at arbitrary gm is

J(zm) = Im sinh(gmzm + jm),  zm  b, (5.18)

where Im and jm are the amplitude and the phase of the current on the segment 
m, respectively, and zm is the coordinate, measured from the segment end, i.e.                            
zm = (N – m + 1)b = z.

Suppose we want to obtain the given current distribution along the long line,

J(z) = JAf(z z L, (5.19)

where JA is the input current of the line (current of generator), f(z) is the real and positive 
distribution function, which corresponds to the in-phase current. We equate currents
J(z) and J(zm) at the beginning and the end of the each segment. In this case, if the 
segment length is small, the current distribution along the line is close to the required. 
In accordance with (5.18) and (5.19), at zm = b and zm = 0 

I b J f N m b I J f N m bm m m A m m Asinh ( ) , sinh ( )g j j+( ) = -[ ] = - +[ ]1 .

If to divide the left and right parts of the first equation onto the respective parts 
of the second equation and to confine by the first terms of expansion of hyperbolic 
functions with small arguments into series (considering that b is a small magnitude), 
we get

tanh /
( )

( )
j gm mb

f N m b
f N m b

=
-[ ]

- +[ ] -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂1

1 . (5.20)

For the segment (m + 1), similarly to (5.20),

tanh /
( )

( )
j gm m b

f N m b
f N m b+ +=

- -[ ]
-[ ] -

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

1 1
1

1 . (5.21)

The voltage and the current are continuous along the stepped line, hence

tanh jm+1 = (gm+1/gm) tanh (gmb + jm). (5.22)

Equations (5.20) and (5.21) present a set of equations that allow to relate gm and gm+1
with each other. The solution of this set shows that magnitude gm is independent of gm+1:

gm b
f N m b f N m b

f N m b
= -

-[ ]- - -[ ]
- +[ ]

1
1

2 1
1

( ) ( )
( )

. (5.23)

As is clear from (5.19), function f(z) characterizes the law, in accordance with 
which the amplitude of the current changes along the radiator. In the case of in-phase 
distribution of the current along the antenna, its directional pattern in the vertical plane 
has a form
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F f z jkz dz
L

L

( ) sin ( )exp( cos )q q q=
-
Ú . (5.24)

Calculations show that in this case in contrast to the sinusoidal distribution, the radiation 
maximum with growing frequency does not deviate from the perpendicular to the 
radiator axis. Increasing L/l makes the main lobe narrower and increases the maximal 
directivity.

At linear distribution of the in-phase current amplitude (see Figure 5.1b, curve 2),

J2(z) = JA(1 –z/L),
where z = (N – m + 1)b – zm, i.e. 

f2(z) = (L – z)/L = [(m – 1)b + zm]/(Nb). (5.25)

The linear distribution is a particular case of the exponential one (see Figure 2.1b, curves 
3 and 4):

J z J
z L

LA3 4 1, ( )
exp( ) exp( )

exp( )
=

- - -
- -
a a

a
,

that is

f z
z L

L

m b zm
3 4 1

2 1
, ( )

exp( ) exp( )
exp( )

sinh / ( )
=

- - -
- -

=
( ) - +[ ]{ }a a

a
a
ssinh( / )aNb 2

, (5.26)

where a is the logarithmic decrement. If a is positive, the curve of a current is concave, 
i.e. the current quickly decreases from the maximum value near the generator to zero 
near the free end of the antenna. If a is negative, the curve of a current is convex, i.e. 
the current is more uniformly distributed along the dipole. The steepness of a curve 
depends on the value of a. It is easy to show that if a tends to zero, the expression for 
J3,4(z) turns into J2(z). 

The antenna input impedance in the first approximation is equal to the input 
impedance of the stepped long line: 

Zl = –jWN coth (gNb + jN).

Here, as is seen from (5.8), WN = gN W/k, where W is the wave impedance of a metal 
monopole of the same dimensions without loads.

If m = N, we find for the linear current distribution, using equalities (5.21) and (5.22) 
and taking into account that f(0) = f2(0) = 1: 

Zl = –j(W/kb)[f2(–b) –1]. (5.27)

As seen from this expression, reducing the reactive component of the input impedance 
requires a slow variation of function f(z) near the antenna base, so that the difference 
in square brackets should be a small magnitude—of the order of kb. Otherwise, the 
reactive component of input impedance will be great.

For the exponential distribution, replacing f2(–b) with f3(–b), we obtain from (5.27) 

ZA3 = –j(W/kl)fx(aL/2) (5.28)

where fx(x) = x(1 + coth x). The graph of function fx(x) is given in Figure 5.5a. In particular 
for the linear distribution

Z j
W
kb

N
N

jW kLA2
1

1= -
+

-Ê
ËÁ

ˆ
¯̃ = /( ).
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Figure 5.5 Graph of function fx(x) (a) and input impedances of uniform and non-uniform line (b).

Figure 5.5b compares the input impedance XA1 of a uniform line with sinusoidal 
current distribution and the input impedance XA3 of a non-uniform line with exponential 
current distribution depending on the frequency. Here, the magnitude a is assumed 
constant. In the first case the input impedance has a form of a cotangent, in the second 
case the curve smoothly approaches to zero with growing frequency, and that allows 
ensuring good matching in a wide range. As seen from Figure 5.5a and expression 
(5.28) for ZA3, if a decreases, the input impedance of a long line at a given frequency 
diminishes. It means that a decrease of a results in a decrease of the reactive component 
of the antenna input impedance. Simultaneously the effective height grows, since the 
area, bounded by the curve of the current, increases; hence, the radiation resistance 
grows, too. Thus, at exponential distribution, it is expedient to decrease a in particular, 
into the region of negative values. 

According to (5.16) and (5.17),

- = -g cm mk jk Z b2 2 30/( ), (5.29)

In order to create the in-phase current distribution, magnitude gm should be purely real 
or purely imaginary along the entire antenna, and magnitude g m

2 , correspondingly, only 
positive or only negative:

sign constg m m2 = ( ) .

In order to the in-phase distribution has been realized in a wide frequency range, 
magnitude gm should be real:

g m
2 0> . (5.30)

Indeed, if the values of gm (and also jm) are purely imaginary, the hyperbolic sine in 
the formula (5.18) would become the trigonometric sine. With frequency growth, an 
argument of a sine will increase and will exceed p, and the sine will change sign. If gm
is real, then, as seen from (5.28), if function f(z) decreases monotonically, the sign of jm
coincides with sign of gm. As it follows from (5.23), in order that gm was real, following 
condition must be carried out

f N m b f N m b f N m b( ) ( ) ( )-[ ] £ - +[ ]+ - -[ ]{ }1
2

1 1 , (5.31) 

i.e., function f(z) cannot be convex. 
Two variants of carrying-out of condition (5.30) in a wide frequency range follow 

from (5.29). The first variant takes place at

k2 << jk cZm/(30 b), (5.32)
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i.e. 
g cm mjk Z b2 30= /( ). (5.33)

If one takes into account that parameter c is, strictly speaking, a complex magnitude 
(c = c1 – jc2), then the admittance of load is according with (2.19),

Ym = 1/Zm = jw Cm + 1/Rm, (5.34)
where

C b R bm m m m= =4 41
2 2

2pec g g pewc/( ), /( ).

As follows from (5.34), in order that magnitude g m
2 has been positive, each load should be 

executed as a parallel connection of a resistor and a capacitor (Figure 5.6a). The resistance 
of the resistor should vary in inverse proportion to frequency, and the capacitance of 
the capacitor should remain constant. When creating an actual antenna, it is expedient 
to choose the value of Rm for the middle frequency of band.

In order to achieve required current distribution f(z) along the antenna, the 
magnitude gm should correspond to (5.23). Its substitution into (5.34) gives

C b
f N m b f N m b

f N m b
Rm = -

-[ ]- - -[ ]
- +[ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂
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4 1
2 1

11

1

pec
( ) ( )

( )
, mm

mC
=

c
c w

1

2

. (5.35)

By comparing (5.31) and (5.35), one can easily verify that, if inequality (5.31) holds, the 
values of Cm are non-negative. For exponential and linear distribution,

C
b m b

C m Rm m m3
1

2 2 1
1

2

8

1 1 2
4

1=
+ -ÈÎ ˘̊{ } = - =

pec
a a

pe
a

c
c

c wcoth ( ) /
, ( ),

CCm
. (5.36)

One can see from (5.36) that in the particular case, if one must obtain a law of current 
distribution, close to the linear, capacitances of loads should decrease towards to the 
free end of the antenna in proportion to the distance from it:

Cm2 = CN2(m – 1)/(N – 1), (5.37)

where CN2 is the capacitance of the capacitor near the antenna base. The resistances of 
resistors should grow towards to the free end of the antenna:

Rm2 = RN2(N – 1)/(m – 1). (5.38)

Figure 5.6 An antenna circuit with capacitors and resistors (a) and 
the frequency dependence of propagation constant (b). 
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Thus, to create the in-phase current distribution, which ensures high electrical 
characteristics of an antenna in a wide frequency range, each load should represent 
parallel connection of the resistor and the capacitor. For the first time the expediency 
of using a complex load for creation of a linear current distribution was demonstrated 
in [44]. But later on, a greatest attention was given to antennas with capacitive loads. 
The calculation results show that if resistors are connected in parallel with capacitors, 
the linear law of current distribution along the radiator is carried out more precisely, 
and the operating frequency range increases. However, connection of resistors results 
in decreasing the antenna efficiency, so the issue of their application should be solved 
in each particular case.

Figure 5.6b shows a graph of g m
2 depending on frequency for an antenna with 

capacitive loads:
g c pem mk bC2 2

1 4= - + /( ). (5.39)

In order for the propagation constant to be real at a given frequency f, capacitances of 
capacitors should not exceed

C
k bc f bm £ =

◊c c1
2

5
1

230
2 54 10. . (5.40)

Here, c is the speed of light, capacitance C is measured in farads, if frequency f is given 
in Hertz’s. In the case of linear distribution, capacitance CN2 of the capacitor near the 
antenna base is greater than other capacitances and should be chosen in accordance with 
(5.40). Similarly, under other distributions, this expression determines the maximum 
capacity.

As follows from (5.39), the propagation constant at low frequencies is real along the 
entire antenna. As the frequency increases, the magnitudes gm become purely imaginary 
(first of all, on segments, adjoining to the generator), i.e. the current distribution along 
these segments of the radiator becomes sinusoidal, and the main lobe of the vertical 
directional pattern deviates from the perpendicular to the dipole axis. This effect 
limits the antenna frequency range from above. From below, the range is limited by 
frequencies, where the reactive component of input impedance is still great. In order 
that magnitude gm does not become purely imaginary with increasing frequency, the 
capacitances of capacitors should decrease with growth of frequency (e.g., vary in inverse 
proportion to square of the frequency).

Regarding the second variant of realization of condition (5.40) in a wide frequency 
range, with its help one can make similar conclusions. This variant takes place, if the 
second summand of the right part of (5.29) is proportional to k2:

- = -g cm mk j Z kb2 2 1 30[ /( )] , (5.41)

i.e. load Zm represents negative inductance Lm:

Z jm m= - w L , (5.42)

where LM mb k c= +30 1 2 2( / )/( )g c . At small gm/k the inductance is independent of 
frequency f.

In this case, the value of g cm mk c b2 2 30 1= -[ /( ) ]L is positive, if 

Lm b c> 30 /( )c . (5.43)
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The negative inductance is an element of a circuit, which has purely reactive 
and negative impedance, proportional to f. This element is equivalent to a frequency-
dependent capacitance:

- =j j Cm mw wL 1/( ) , (5.44)
where

C C f fm m m= =1 2
0 0

2 2/( ) /w L , (5.45)

Cm0 is the magnitude of capacitance Cm at frequency f = f0. Cm0 is independent on f.
Thus, in order to retain the in-phase current distribution in a wide frequency range, 

the capacitances of concentrated loads, which connected in an antenna wire, should vary 
in inverse proportion to the square of the frequency. As one can easily verify, inequality 
(5.30) will be true at all frequencies, and constraint (5.32) will be removed, if the negative 
inductances are connected in series with loads, determined by expression (5.34).

The proposed method allows making a number of practical conclusions. In order 
that concentrated loads may efficiently influence the current distribution, the distance 
between them should be small in comparison with the wave length. For creating the 
wideband (wide-range) radiator only capacitors must be used as reactive elements, since 
inclusion of reactive two-terminal networks of a more complex type, whose structure 
includes inductance coils, results in narrowing of the operating range. Capacitors enable 
to create along an antenna in a wide frequency range an electromagnetic wave with 
real propagation constant, which corresponds to the exponential change of the current 
amplitude with positive decrement (concave curve of the current). Obtaining a convex 
curve of the current with the help of simple concentrated elements (resistors, capacitors, 
inductance coils) is impossible. Among distributions with positive a, the antenna with 
distribution, which is close to linear one and is created by capacitances decreasing to 
the free end of the antenna in proportion to the distance from it, has a higher matching 
level and narrower main lobe of the directional pattern.

Method of the impedance long line and results of its use were first described in [45].

5.3 METHOD OF A LONG LINE WITH LOADS

Together with the method of impedance long line there is another approximate method 
for calculating magnitudes of the loads, which provide the given current distribution 
[46]. By means of this method, one can find on the basis of the given current distribution 
the law in accordance with which the equivalent length of the long line grows along 
it. That allows to calculate the load of each segment, corresponding to this law. Use of 
this method and the method of impedance long line gives analogous results.

Figure 5.4a shows an asymmetrical radiator of height L with N loads, which are 
uniformly located along it at a distance b from each other. A current distribution along 
the radiator in a first approximation is similar to the current distribution along the 
open at the end long line, with the impedances Zm connected in series. The current 
distribution along each segment, located between adjacent loads, has a sinusoidal 
character:

J s J k s l s bm m m e m m( ) sin ( ),,= + £ £-1 0 , (5.46)

where sm = (N – m + 1)b – z is the coordinate, measured from the end of segment m, Jm
is the current amplitude in the segment m, le,m–1 is the equivalent length of all preceding 
segments with (m – 1) loads and the total length (m – 1)b. The values le,m and le,m–1 are 
mutually related by the expression:
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–jW cot klem = Zm – jW cot k (b + le,m–1). (5.47)

Here W is the wave impedance of the line. Note that the value le,m, if m = N, is equal 
to the equivalent length Le of the radiator.

Expression (5.47) permits to find the magnitude Zm:

Zm = –jW [cotklem – cotk(b + le,m–1)]. (5.48)

If the distance between the loads is small (kb<<1), then 

Z jW
k b l l

kl k b l
jW

k b l
m

e m em

em e m

e m= -
+ -

+
ª -

+-

-

-sin ( )

sin sin ( )

(,

,

,1

1

11
2

- l

kl
em

em

)

sin
. (5.49)

With the help of expressions (5.48) and (5.49) one can calculate the magnitudes of 
loads. For that it is necessary to know the function, in accordance with which the 
equivalent length grows along the line. The choice of this function depends on the 
current distribution along the radiator, which must be obtained in the first stage of 
solving the synthesis problem. In the general case

J s J f z s b N m b z N m bm A m( ) ( ), , ( ) ( )= £ £ - £ £ - +0 1 , (5.50)

where JA is the current amplitude in the antenna base, and f(z) is the function of the 
current distribution. Henceforth we shall assume that the function f(z) is real and 
positive, i.e. we shall consider only the in-phase distributions. 

Suppose we want to obtain along the antenna a given current distribution J(z). For 
this we assume that the current J(sn) at the beginning and the end of each line segment 
coincides with the current J(z). If the lengths of the segments are small, the current 
distribution along the line is close to the required one. In the general case we have in 
accordance with (2.32) and (2.36)

J k b l J f N n b at s bn en A n+ ++( ) = - -[ ] =1 11sin ( ) ,

J kl J f N n b at sn en A n+ += -[ ] =1 1 0sin ( ) .

Divide the left and right sides of the first equality into the corresponding sides of the 
second one. Considering that the magnitude b is small and retaining only the first terms 
of the expansion of trigonometric functions into a series, we obtain

1 1+ = - -[ ] -[ ]kb kl f N n b f N n bencot ( ) / ( ) ,
i.e.
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( ) / ( )
. (5.51)

As is seen from (5.51), the equivalent length lem is frequency dependent. Knowing len,
one may in accordance with the expression (5.48) find the values   of loads. They also 
have a frequency-dependent nature:
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An input impedance of the open at the end transmission line is a first approximation 
to the reactive impedance of the antenna. In general case it is equal to 
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Z jW kL j
W
kb

f bA e= - = - - -cot [ ( ) ]1 . (5.53)

This expression shows that the function f(z) should change slowly near the antenna base 
and the difference f(–b) – 1 should be small, of the order of kb. Otherwise, the reactive 
impedance of the antenna will be great.

Consider, for example, the exponential distribution (5.26) of the current amplitude 
along the radiator. The linear distribution (5.25) is its particular case. The equivalent 
lengths of the long lines for the exponential and linear distribution in accordance with 
(5.51), (5.26) and (5.25) are equal to
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kb m b
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. (5.54)

As is seen from (5.54), if a > 0, the equivalent length of the antenna arm may not exceed 
a quarter of the wave length. The input impedance of a long line with the exponential 
and linear current distribution may be written in the form

Z j
W b

kb L
Z jW kLA A3 4 2

1

1,
exp( )

exp( )
, /( )= -

-ÈÎ ˘̊
- -ÈÎ ˘̊

= -
a

a
. (5.55)

Using expressions (5.52) and (5.27), we find the magnitudes of the loads, which provide 
the exponential law of distribution for the amplitude of the current along the radiator:
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If the product a b is not small, then, neglecting the second summand of the numerator, 
we obtain

Zm = 1/(jw Cm), (5.57)
where

C
b m b

Wc bm =
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(cosh )

a
a

, (5.58)

and as is seen from this formula, the sign of Cm coincides with the sign of a.
Thus, in order to obtain an exponential distribution of current amplitude and a 

sufficiently great magnitude of decrement, one must use the capacitive loads. Capacitors 
allow creating only the concave current distribution ( a > 0). In order to obtain a convex 
distribution (a < 0), capacitances must be negative. If ab << 1, then, confining by the 
first terms of the functions expansion into a series, we find from (5.56): 

Zm = 1/( jw Cm) + jw Lm, (5.59)
where 

C
m

cW
Wb m

cmm m= = -
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a
,

( )
L

1 . (5.60)

In order to obtain the exponential distribution with a small decrement a, the negative 
inductances Lm should be included in series with capacitors. They can be neglected, if 
the first term of (5.59) is much larger than the second one, i.e. a >> k2b(m – 1). If a = 0, 

Z j jkbW m mm m= = - -wL ( )/1 , (5.61)
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i.e. in the case, when the loads are fabricated in the form of negative inductances, 
proportional to (m – 1)/m, we obtain a purely linear distribution. 

As it follows from the analysis made in this section, the method of the long line with 
loads and the method of the impedance long line lead to similar results. Comparison of 
these results allows applying these methods to specific problems, using specific details 
of the current distribution along the radiators. Results obtained by means of these 
methods, can be used for solving the problem of optimization of antennas with loads 
by the mathematical programming method. 

5.4 METHOD OF MATHEMATICAL PROGRAMMING 

Use of the mathematical programming method [47] plays a major role in solving the 
inverse problems. The mathematical programming method allows determining optimal 
parameters of an antenna, in particular its geometric dimensions, magnitudes of the 
connected in the antenna concentrated and distributed loads, etc. It allows obtaining 
radiators with the given characteristics or with characteristics so close to the given 
characteristics as much as possible.

This remark is due to the fact that the variation interval of radiator parameters 
is bounded, i.e., not every value of antenna electrical characteristic can be realized 
practically. Different characteristics are optimal for different values of parameters. 
Moreover, an antenna should exhibit certain properties not at a single fixed frequency, 
but in the entire operation range. Therefore, the selected parameters are the result of a 
compromise, which is reached with the help of the mathematical programming method.

The problem of mathematical programming in the general case is stated as follows: 
one has to find vector 

�
x  of parameters that minimizes some objective function F(

�
x )

under imposed constraints ji(
�
x F(

�
x ) and 

ji(
�
x ), mathematical programming is divided into linear, convex and nonlinear ones. In 

the case at hand, the problem is solved by nonlinear programming methods, since the 
type of function F(

�
x ) is unknown.

The objective function (or the general functional) is a sum of several partial 
functional Fj(

�
x ) with weighting coefficients pj and penalty function Fip:

F x p F x Fj j ip
ij

( ) ( )
� �

= + ÂÂ . (5.62)

The partial functional is an error function for one or the other characteristic. The 
weighting function allows to take into account an importance of this characteristic and 
a sensitivity of corresponding functional to results of changing the vector. A penalty 
function is zero, if the parameters lie within the given intervals, and has a great 
magnitude, even if only one of the parameters falls outside the interval limits.

Present an example of antenna parameters. Controlled parameters x for an antenna 
with concentrated loads are magnitudes of the loads, coordinates zn of the points of their 
placement and the wave impedance W of the cable. The loads are the simple elements 
or the sets of simple elements (capacitors with capacitances Cn, coils with inductances 
Ln and resistors with resistances Rn). Values zn, W, Cn, Ln and Rn are to be real, positive 
and frequency-independent, and zn are to be smaller than antenna length L. These 
requirements, naturally, limit the interval of parameters change. 

Different ways of an error function formation are known. For example, the quasi-
Tchebyscheff criterion gives the good results: 
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Here, Nf is a number of points of the independent argument (e.g. a number of frequencies 
in a given range), nf is a point number (e.g. a frequency number), fj(

�
x ) is one of the 

electrical characteristics of an antenna, fj min(
�
x ) is its minimal value in the considered 

interval, fj0 is a hypothetical value of the characteristic, which must be reached, S is the 
index of power, allowing to control the method sensitivity.

A root-mean-square criterion is other error function
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Here, Nf and Nl are numbers of points of the independent argument (e.g. a number 
of frequencies in given range and a number of points on the wire), nf is a frequency 
number, nl is a point number, fj(

�
x ) is one of the electrical characteristic of an antenna 

(e.g. a current or a voltage), fj0 is a hypothetical value of the characteristic, which must 
be reached. 

The choice of function fj(
�
x ) depends on the stated problem. For example, for creation 

of a wide-band radiator one must use as functions fj(
�
x ) the travelling wave ratio (TWR) 

in the cable and the pattern factor (PF), which is equal to the average level of radiation 
at predetermined angles: 

TWR PF=
+ + + + + -

=
=

Â2
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Here a = RA/W, b = XA/W are respectively the active and reactive components of the 
antenna impedance, relative to a wave impedance of a cable, K is a number of angles 
qk within the limits of angular sector from q1 to qK (e.g. from 90° to 60°), and F(qk) is 
a magnitude of normalized directional pattern in the vertical plane for an angle qk. If 
resistors with the resistances Rn are used as the loading elements, it is necessary to 
supplement the set of fj(

�
x ) by the function of antenna efficiency

hA
A A

n n
n

N

J R
J R= -

=
Â1

1
2

2

1

, (5.66)

where N is the number of loads, Jn and JA are the currents in the load n and in the 
antenna base, respectively.

If it is necessary to obtain a given current distribution J(z), it is expedient to use as 
functions fj(

�
x ) (the electrical characteristics of an antenna) either real and imaginary 

current components 
f1 = Re J(z, f ), f2 = Im J(z, f ), (5.67)

or the amplitude and the phase of the current:

f J z f f z f z f3 4
1= = ÈÎ ˘̊-( , ) , tan Im( , )/Re( , ) . (5.68)

In the cases, when analytical expression for objective function F(
�
x ) is absent, one 

can find the minimum of this function by a numerical method, based on searching 
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the gradient. The gradient method is an iterative procedure, in which we go step by 
step from one set of parameters 

�
x m to another set 

�
x m+1 in the direction of the maximal 

decrease of the function (the steepest descent method):
� � �
x x gradF xm m m m+ = -1 a ( ). (5.69)

Here m is the iteration number, a m is the scale coefficient, determined as a result of a 
linear searching the minimum of the functional in the direction of anti-gradient.

The minimum of the functional and the values of parameters, which are correspond 
to this minimum, are determined for each iteration. Each iteration is, in essence, a search 
for the minimum of a function of one variable – a. The method with increasing the step 
(e.g. with doubling it) and subsequent interpolation function in the considered interval 
by a polynomial of the given power is the most rational. It is convenient to apply the 
cubic interpolation, since the number of interpolation nodes is great enough (four), and 
the root of the derivative (the value of a, causing the derivative to vanish) is found 
analytically. If the first step results in an increase, rather than decrease, of the objective 
function, the step should be reduced by a factor of 10p, where p = 1, 2…, whereupon the 
linear search goes on again with doubling of a step.

A modification of the steepest descent method is the method of the conjugate 
gradients. In this case the iteration 1, (Q – 1), (2Q + 1) and so on are calculated according 
to anti-gradient (here Q is a number of parameters) and the rest steps correspond to 
the expression

� � �
x x Gm m m m+ = -1 a , (5.70)

where 
� � � � �
G gradF x gradF x gradF x Gm m m m m= + - -( ) ( )/ ( )1

2
1 .

The calculation is over, when the decrease of the objective function from iteration to 
iteration becomes smaller than a preset value, or the magnitude of iterations exceeds 
certain limit (m M).

The mathematical programming method (synthesis) presupposes frequentative 
computations of the antenna electrical characteristics at different initial parameters 
(analysis). Performing such calculations requires incorporation of a special program into 
the synthesis software. This program allows to determine at given loads and exciting 
emf’s all electrical characteristics of an antenna, i.e. calculating functions fj(

�
x ) for known 

vector
�
x  of initial parameters.

The most laborious in the calculation is computation of the self- and the mutual 
impedances between the antenna segments (between so-called short dipoles). Therefore, 
in order to speed up the calculations, it is expedient to fixate, for example, points of 
placing concentrated loads, in order to the coordinates of short dipoles and their mutual 
impedances do not might change from iteration to iteration. If there are enough many 
loads, i.e. the distances between them are small in comparison with the wave length,
this restriction will have no effect on the synthesis results.

As the initial values of the antenna parameters, one must use the magnitudes, 
found by the approximate method, according to the physical content of the problem. The 
results of calculations show that the computational process in this case is accelerated, 
and most importantly, the error probability decreases, since the process of optimization 
at the arbitrary choice of the initial parameters may lead to a local, rather than true 
extremum of the objective function. Examples of the approximate physical methods are 
presented in the following sections.
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The synthesis program, based on the mathematical programming method, permits 
to bring the problem solution to an end. Other methods of solving often stop and do not 
reach the goal. For example, earlier the synthesis of the antennas with given electrical 
characteristics was broken up into two stages: at the first stage the distribution of current 
was computed. The parameters of the antenna, providing such distribution, must be 
determined at the second stage. The first question has been investigated sufficiently. 
It covers a wide class of the tasks (the task of creating a wide-band antenna is one of 
possible variants). Far less attention has been paid to the second stage of synthesis.

In principle, if the required current distribution along a wire antenna is known, one 
can split the wire of an antenna onto short dipoles and define currents at the centers of 
these dipoles. The amplitudes of piecewise-sinusoidal basis functions are equal to the 
magnitudes of the currents at the corresponding antenna points. It is easy to calculate 
the magnitudes of loads, which one must connect at these points to obtain the desired 
currents.

But the impedances of loads, calculated by this method, consist of active and reactive 
components, which are changed with frequency. The calculated active component of load 
impedance may be obtained negative, and this is an evidence of impossibility to create 
such distribution with the help of passive elements. As to the reactive component, it is 
necessary to solve still the problem of its implementation in the given frequency range 
with the help of a set of simple elements. Therefore, it is necessary to solve the problem 
of creating an antenna with the chosen type of loads in order to ensure in the desired 
range not the given current distribution, but the current distribution close to the desired 
distribution as much as possible. This problem, as the problem of creating a wide-band 
radiator, is solved by the mathematical programming method.

The method of mathematical programming offers wide scope for solution of various 
problems of synthesis.

5.5 SYNTHESIS OF WIDE-BAND RADIATOR

As already mentioned, the described approximate methods of the analysis of antennas 
with concentrated loads (method of the impedance transmission line and method of 
the transmission line with loads) allow making a number of practical conclusions. 
The distance between loads should be small in comparison with the wavelength. 
For creating the wide-band dipole only capacitors must be used as reactive elements. 
Capacitors enable to create along an antenna in a wide frequency range in-phase current 
distribution in the form of concave curve. The antenna with distribution, which is close 
to linear one and is created by capacitances, decreasing to the free end of the antenna 
in proportion to the distance from it, has a higher matching level and narrower main 
lobe of the directional pattern.

On the one hand, the mentioned methods have a sufficiently general character. 
They allow to derive analytical expressions for impedances of loads, which ensure 
different laws of the current distribution along the radiator. On the other hand they 
have an approximate character, i.e. verification of obtained results by means of rigorous 
calculation and experiment is necessary. 

Consider as an example a monopole of height 6 m and radius 6.67 · 10–3 m with ten 
capacitors, which are located along it at distance 0.6 m from each other. The capacitance 
of the capacitor near the antenna base is adopted equal to 17.7 pF. In this case the 
propagation constant gn is real along the entire antenna up to frequency 40 MHz. The 
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capacitances of other capacitors are calculated in accordance with (5.37). Calculating the 
electrical characteristics of the antennas was performed by means of a general-purpose 
program based on the Moment Method and built in accordance with the procedure 
described in Section 2.7.

Figure 5.7a shows the frequency dependence of active RA and reactive XA components 
of the input impedance as well as TWR in a cable with wave impedance 75 Ohm for 
the described asymmetrical antenna. Here, for the sake of comparison, the experimental 
data obtained on a full-scale model-up are given. Figure 5.7b presents the calculated 
directional patterns in the vertical plane. Placement of inductance in the antenna base 
and selection of cable allow to obtain a higher level of matching. Curves TWR200 and 
TWR200

c  demonstrate the level of matching with the cable, whose wave impedance is 
equal to 200 Ohm, without compensation of antenna reactance and with its compensation 
by means of the inductance 76.4 nH.

Figure 5.7 Input characteristics (a) and directional patterns (b)
of the radiator with constant capacitive loads.

Calculation and experiment confirm that characteristics of radiators with loads are 
much better than their characteristics without loads. Under the identical requirements 
to electrical characteristics and under the identical dimensions, the frequency ratio is 
changed from 1.3 to 1.5 MHz for thin whip antennas, from 1.5 to 3—for radiators with 
capacitors, and from 3 to 4—for radiators with capacitors and resistors. In the case of the 
radiators with loads the upper limit of the frequency ratio is defined by the deviation of 
the main lobe of directional pattern from the perpendicular to the radiator axis. As to 
the matching level, it remains high in a wider range (with the frequency ratio about 10).

As is shown in Section 5.2, in order to retain the in-phase current distribution in a 
wide frequency range, the capacitances of concentrated loads, located along the antenna 
wire, should vary in inverse proportion to square of the frequency. Calculation confirms 
that the antennas with frequency-dependent capacitances have a wider frequency range 
than the antennas with constant capacitances. Figure 5.8a gives TWR for three variants 
of the monopoles in the cable with the wave impedance 75 Ohm. The calculations are 
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performed for the antenna of the height 12 m and the radius 0.03 m, with ten capacitors 
located at the distance 1.2 m from each other (the upper and lower capacitors are placed 
at the distances 0.6 m from the ends of the monopole).

Figure 5.8 Input characteristics (a) and directional patterns (b) of radiators without loads (1), 
 with constant (2) and frequency-dependent (3) capacitive loads.

Curve 1 in Figure 5.8 corresponds to the radiator without loads (to the whip antenna), 
curve 2—to the radiator with loads, whose capacitances are frequency independent. 
Here, the capacitance CN0 of the lower capacitor was chosen equal to 177 pF. In this 
case the propagation constant gn is real along the entire antenna up to frequency 
10 MHz. Capacitances Cn0 of others capacitors are decreased to the free end of the 
antenna in proportion to the distance from it. This allows to obtain the law of current 
distribution along the radiator, which is close to the linear one. Curve 3 is plotted for 
the radiator with frequency-dependent capacitive loads. Their capacitances are changed 
in accordance with (5.45), where f0 = 20 MHz.

Table 5.1 shows lower f1 and upper f2 frequencies of the operating range of each 
antenna. At the frequency f1 TWR becomes greater than 0.2, at the frequency f2 the 
field strength along the perpendicular to the antenna axis becomes less than 0.7 of the 
maximum (as a rule, it corresponds to the second maximum on curve of TWR). TWR 
of the whip antenna with growing frequency quickly decreases below the level of 0.2, 
and the value of frequency, corresponding to this point, is taken as f2. Besides, Table 5.1   
reports the range width Df = f2 – f1 and frequency ratio kf = f2/f1.

As is seen from Figure 5.8a and Table 5.1, the level of matching of the variant 3 at 
low frequencies approaches to the level of matching of a whip antenna, and the upper 
frequency of the variant 3 in comparison with the variant 2 is displaced to the right, 
since the main lobe of directional pattern deviates from the perpendicular to the antenna 
axis at a higher frequency. In addition, the minimum TWR increases in the middle of 
the operating range.

Table 5.1 Frequency Ratio of Radiators.

Version of 
antenna

Frequency, MHz Range width 
Df, MHz Frequency ratio kff1 f2

1 5.2 7.7 2.5 1.5

2 12.3 26.0 13.7 2.1

3 6.3 34.0 27.7 5.4

J, l.lioo 30{ =3Q MHz 
0.8 3 

0.6 600 
0 . 2 
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 Figure 5.8a presents also the results of experimental verification of TWR for the 
variant 3. The measurements were performed on the model of the antenna on a scale 
1:10. The frequency range was split into short intervals, and the capacitance of the 
capacitor used in each interval was equal to the capacitance, calculated for the middle of 
the interval. The agreement of calculated and experimental data was good. Figure 5.8b
demonstrates for the same antennas variants the calculated curves and the measured 
directional patterns in the vertical plane.

The task of implementation of frequency-dependent capacitances is not easy, but 
is promising. Yet, the use of tunable capacitors seems by more realistic. In this case 
expression (5.45) determines the optimal dependence of the capacitance on the frequency. 
The continuous changing of its magnitude can be replaced with stepwise switching, 
which is easier implemented.

The method of impedance long line allows finding the potential capabilities of 
antennas with loads. Furthermore, the results, obtained by means of this method, can be 
used for solving the optimization problem of an antenna with loads by the mathematical 
programming method, described in Section 5.4.

The results of the synthesis of wide-range antennas with loads were given in 
[48]. The program of synthesis was used for selection of the optimal capacitive loads, 
allowing to obtain maximal TWR and PF in the predetermined range of frequencies 
f1 – f2. Calculations showed that it is enough 4-5 iterations for the synthesis of antenna. 
Number of optimized electrical characteristics has little effect on the synthesis time. 
For example, duration of optimizing TWR and PF is almost the same as duration of 
optimizing only TWR. Selection of criterion is almost not affected the results of synthesis 
and the calculation time. For example root-mean-square criterion has no advantage over 
quasi-Tchebyscheff criterion. So, only the last one was used in subsequent calculations. 
As a hypothetical value of the characteristic, which must be reached (e.g., TWR), it is 
expedient to select the maximum, because its decrease leads to deterioration of the 
results. Increasing the index S in quasi-Tchebyscheff criterion leads to faster convergence 
of the process. This index was adopted in the calculations equal to S = 6. The all 
weighting coefficients pj were taken by identical.

Figure 5.9 gives the basic dimensions of two antennas with loads. The first antenna 
is the monopole of height 11.31 m with four capacitors, irregularly spaced along the 

Figure 5.9 Synthesized antennas with four (a) and nine (b) capacitors.
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radiator. The second antenna is the monopole of height 12 m with nine capacitors spaced 
equidistantly. The capacitance Ci = 15 pF, equal to the capacitance of a typical ceramic 
insulator, was connected at the base of the second antenna in parallel with its input.

The results of the synthesis of the considered antennas are presented in                 
Tables 5.2 and 5.3. The basic characteristics of the radiators are given in Table 5.2. 
Optimal capacitive loads are given in Table 5.3. In Table 5.2 the following designations 
are used: N is the number of capacitors, Nf is the number of frequencies, used in the 
range for calculations, M is the required number of iterations. 

Table 5.2 Main Characteristics of Antennas

Variant L, m a, m N f1 – f2, MHz Nf M TWR min PF min

1 11.31 0.03 4 11.5–16.5 11 4 0.310 0.860
2 “ “ “ “ “ 5 0.360 0.812
3 12 0.03 9 7.5–15 16 4 0.123 0.819
4 “ “ “ 15–30 “ 4 0.273 0.610
5 “ “ “ 30–60 “ 5 0.360 0.562
6 “ 0.15 “ 7.5–15 “ 4 0.205 0.813
7 “ “ “ 15–30 “ 5 0.414 0.680
8 “ “ “ 30–60 “ 4 0.380  0.605
9 “ 0.03 “ 8.5–13 10 3 0.217  0.870
10 “ “ “ 13–22 “ 5 0.216 0.790
11 “ “ “  22–60 20 8 0.204  0.437
12 “ 0.15 “ 8.5–13 10 5 0.314 0.829
13 “ “ “ 13–22 “ 4 0.278  0.859
14 “ “ “ 22–60 20 5 0.322 0.565

Table 5.3 Optimal Capacitive Loads

Variant
Optimal capacitive loads, pF

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 44.3 33.2 91.2 432 - - - - -
2 84 164 143 182 - - - - -
3 37.3 81.1 127 181  58 369 516 691 883
4 8.7 20.6 36.5 51.1 58.7 53.3 50.6 88.1 156
5 2.0 3.9 5.4 6.1 9.5 12.2 15.7 21.1 18.3
6 51.2 134 219 340 477 633 804 981 1150
7 10.7 28.4 57.0 76.7 86.4 86.8 53.5 216 409
8 4.5 19.0 11.4 15.8 26.4 29.8 32.4 23.0 35.7
9 33.9 72.8 115 164 223 296 385 492 608
10 8.4 18.4 30.3 40.4 47.1 53.3 82.8 151 248
11 1.7 5.6 12.2 11.7 17.6 41.0 30.5 56.4 240
12 21.1 0.2 39.2 231 519 909 1380 1900 2450
13 20.3 76.3 122 78.5 0.1 107 351 761 1340
14 2.9 26.9 0.3 42.1 22.6 59.1 35.8 55.0 73.1

The frequency dependences of TWR and PF of the antenna with the height 
11.31 m (the first variant) for the different number m of the iteration are shown in                    
Figure 5.10a,b. The input characteristics and the directional patterns of the synthesized 
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antenna are presented in Figure 5.10c,d. As is seen from the figure, the curve of TWR has 
a maximum in the area of series resonance, and the magnitudes of PF decrease gradually 
with growth of f. The capacitances increase to the antenna base, but not monotonically.

The second variant is distinguished from the first variant by the fact that the wave 
impedance of a cable is used as a regulated parameter in addition to the magnitudes 
of the capacitances. The optimal wave impedance is equal to W=238 Ohm. In this case 
the antenna has the optimal characteristics in the area of the parallel resonance.

The other variants of Tables 2.2 and 2.3 concern the antenna of a height 12 m with 
an insulator at the base. Frequency ratio for the antennas 3–8 is adopted equal to two. 
As is seen from Table 5.2, the increase of antenna radius from 0.03 m to 0.15 m at 
frequencies up to 30 MHz, results in growing minimal TWR approximately by a factor 
1.5. The variation of radius has a weaker effect upon the minimal PF.

Figure 5.10 Change of TWR (a) and PF (b) depending on m, and input impedance (c) and the 
vertical directional pattern (d) of synthesized antenna of the height 11.31 m.

Figure 5.11 shows the electrical characteristics of variants 3–5 (the radius of the 
antenna is 0.03 m) as well as of the whip antenna with the same geometrical dimensions 
and the same capacitance Ci of the insulator. The characteristics of the antennas with 
radius 0.15 m (variants 3– 8) are similar. As seen from the Figure 5.11, the curve of 
TWR can have two maximums at high frequencies. The curve of PF does not decrease 
monotonically with frequency, but has extremums too. In addition to calculated curves, 
Figure 5.11 shows (by dots and other symbols) the results of experimental verification, 
carried out on the models on a scale 1:5. The calculation and experiment agree well.

As it follows from Table 5.2 (variants 3–8), if frequency ratios in various sub-ranges 
are identical, the level of antenna matching with a cable can be different in the different 
sub ranges. This level substantially rises, if the frequency grows. In order to obtain 
more uniform and, on the whole, better characteristics over the entire frequency range 
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(at unaltered number of sub-ranges), it is expedient to split the total range onto such 
fractions that the frequency ratio of sub-ranges increases with increasing frequency. The 
results of solving this problem are presented in Table 5.2 as variants 9–14.

Figure 5.11 Input characteristics of the antennas of the height 12 m and the radius 0.03 m (a)
and their vertical directional patterns (b).

The electrical characteristics of variants 12 –14 as well as of the monopole of radius 
0.15 m without loads (with capacitance Ci of the insulator at the base) are given in 
Figure 5.12. Data of Table 5.2 confirm a general increase of TWR level in comparison 
with variants 6–8. In each sub-range, increasing the antenna radius causes the rise of 
minimal TWR (approximately by a factor 1.5), together with the rise of minimal PF at 
high frequencies.

 The results of optimization of 12-meter antennas with capacitance Ci = 15 pF at 
the base are used to plot in Figure 5.13 the curves for the minimal TWR depending 
on relative antenna length L/lmax (lmax is the maximum wavelength of the range) at 
various frequency ratios kf and different antenna radii a. These curves determine the 
maximum attainable characteristics, which can be obtained with the help of antennas 
with constant capacitive loads.

The calculation results show that, if this is necessary, the operating range of the 
antenna can be expanded in the direction of high frequencies at a sufficiently high level
of TWR, but the vertical directional patterns deteriorate significantly in the additional 
(high-frequency) fraction of the range. In this connection, the frequency ratio of an 
antenna with capacitive loads does not exceed 3 (at PF ≥ 0.5 and TWR ≥ 0.2). As it is 
shown in the Section 4.4, the application of a multi-tiered structure allows in a wide 
range to ensure desired directional pattern. Joint use of both principles, i.e. of the multi-
tiered structure and the capacitive loads in the wires of each tier allows in a wide range 
to ensure high level of matching and desired directional pattern.
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Figure 5.12 Input characteristics of the antennas of the height 12 m and the radius 0.15 m (a)
and their vertical directional patterns (b).

Figure 5.13 The maximum level of matching for the antenna with constant capacitances.

Thus, the method of mathematical programming is an efficient method of optimization 
of antennas with capacitive loads. Its software may be used for optimization of antennas 
with loads of other kinds. It can also be applied to solution of other synthesis problems, 
for example, in order to find loads ensuring the required current distribution along the 
radiator.

5.6 SYNTHESIS OF CURRENT DISTRIBUTION: 
REDUCING SUPERSTRUCTURES IMPACT 

It is necessary to emphasize that similarly the previous problem of ensuring the required 
current distribution along the radiator does not mean a rigorous coincidence of an 
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obtained current distribution with the given distribution, but creating the distribution, 
closest to the required as far as possible.

Examples of antenna synthesis with the given current distribution, realized in a 
certain frequency range, were presented in [46]. The calculation was performed for the 
described in Section 5.5 monopole of height 6 m with ten capacitive loads. Figure 5.14a
shows the equivalent lengths measured along the monopole from its free end to the 
points, where the capacitors must be installed. In Figure 5.14b the capacitances of these 
capacitors are given. The tasks were considered: creating a linear distribution of current 

Figure 5.14 Equivalent length of antenna (a) and 
capacitances, calculated by approximated method (b).

(curves, along which the equivalent lengths and the magnitudes of the capacitances are 
presented, are designated by label “lin”) and creating an exponential distribution of 
current with the logarithmic decrement a = 2 (corresponding curves are designated by 
label “exp”). The calculations are performed by the approximated method of a long line 
with loads in accordance with the expressions (5.54) and (5.58) at frequency f = 40 MHz.

These results were used for strict calculating the amplitude and the phase along 
antennas with the loads. They are given in Figure 5.15a for a linear distribution and 
in Figure 5.15b for an exponential distribution. As can be seen from the figures, at                 
f = 40 MHz the amplitude distribution is close to the required one, the phase curves have 
a slight slope. When the frequency changes (at f = 30 and f = 50 MHz), the amplitude 
and the phase distribution of the current are not conserved.

In order to provide the required current distribution in the continuous range from 
40 to 80 MHz, the synthesis of the antenna was made by the method of mathematical 
programming. The results are shown in Figure 5.16 for the linear (a) and exponential 
(b) distributions respectively. The amplitude and phase of the current are obtained as 
result of optimization of electrical characteristics of the antenna. The error function 
was formed, using the root-mean-square criterion. The values, calculated by a method 
of the long line with loads at the middle frequency f = 60 MHz, were taken as a zero 
approximation. In the calculation it was adopted that the number of frequencies in the 
given range is equal to 9, and the number of the points on the wire is equal to 11.

The results were improved significantly. In each figure the four curves for the current 
amplitude are drawn: curve, labeled by f0, corresponds to the required distribution, and 
curves labeled by f = 40, 60 and 80 corresponds to the result of synthesis at frequencies 
40, 60 and 80 MHz. As is seen from the figures, the obtained distribution is, on the 
whole, close to the given distribution, but is not identical to it. However, this difference 
is not caused by the inexact method. Primarily the reason of this difference is the limited 
potential opportunities of antennas. Thus, in addition to the successful solution of the 
problem the method permits to determine the potential opportunities of the antennas.
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Figure 5.15 Currents in the antenna with approximate loads designed for creating the linear (a)
and exponential (b) distribution of the amplitude at f = 40 MHz.

Figure 5.16 Linear (a) and exponential (b) distributions 
of the current in the antenna with loads.
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The use of loads also gives freedom in choosing the antenna length (taking into 
account the possibilities of manufacture and installation), since they permit securing 
the desired characteristics in the required frequency range at given antenna length. The 
freedom in choosing the radiator length enables weakening the effect of the adjacent 
metal bodies, e.g. of the superstructures, on the directional pattern of an antenna or an 
antenna array. Figure 5.17 shows the calculation results for the directional pattern of a 
monopole, situated near a metal superstructure in a shape of a circular metal cylinder 
of finite length. The directional patterns in the horizontal plane are calculated at two 
frequencies of HF range.

Figure 5.17 An antenna near a superstructure (a) and its horizontal pattern (b).

Two options are considered: 1—the monopole without loads of the height 6 m and 
the diameter 0.016 m, 2—the monopole of the height 12 m and the diameter 0.06 m with 
9 capacitive loads, selected with the aim to ensure the optimal electrical characteristics 
on the frequencies from 8 to 22 MHz. The relative placement of the superstructure and 
the monopole as well as the superstructure dimensions are shown in Figure 5.17a. The 
circular cylinder during calculation was replaced with a wire structure from equidistant 
conductors, located along generatrices of the cylinder and the radii of its end surface. 
As is seen from Figure 5.17b, the radiation of an ordinary monopole in the direction 
of superstructure decreases sharply, and the use of the monopole with loads allows to 
lessen this effect.

Figure 5.18 demonstrates similar results for the uniform linear array, situated near 
the superstructure. The mentioned above two variants of monopoles are adopted as 
radiators of the array. The relative placement of the superstructure and radiators as 
well as the superstructure dimensions are given in figure, the phase shift between the 
currents of the radiators is adopted zero. The calculation results show that in the upper 
part of the frequency range the influence of the superstructure on the directional pattern 
of array, consisting of the monopoles without loads, is slighter than its influence on the 
directional pattern of the separate monopole. This is, apparently, related to the fact that 
the superstructure does not hinder the propagation of electromagnetic waves from the 
side radiators. Nevertheless, the use of monopoles with loads in this case also allows 
to reduce the impact of the superstructure and to increase the signal in its direction.
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Figure 5.18 A linear array near a superstructure (a) and its pattern in the horizontal plane (b).
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6.1 THE SHAPE OF A CURVILINEAR RADIATOR WITH 
MAXIMUM DIRECTIVITY 

In the previous chapter the synthesis problem of a straight radiator with concentrated 
loads was regarded. Together with loads the radiator shape substantially affects the 
antenna’s characteristics, in particular its directivity. 

One must refine the considered problem. It is the optimization of the shape of the 
thin radiator with the aim of obtaining maximal signal in the predetermined direction. 
Unlike the previous chapter the problem is solved for a single frequency (or for a single 
electrical length of the radiator). A thin curvilinear radiator of an arbitrary geometry 
is situated in a lossless medium in the single vertical plane, e.g. in the plane zOy of 
rectangular coordinate system (Figure 6.1a). For a certainty directivity is calculated 
in the y-direction. Selecting the radiator shape is limited by the necessity to exclude 
super directivity in order to decrease the reactance of the antenna. The reason for such 
restriction is negative properties of the super directive antennas, which impede the 
realization of small-sized antennas of such kind.

Figure 6.1 Symmetrical radiator of an arbitrary geometry in the shape of a curve (a) and 
a broken (b) line.

6
Synthesis of

Directional Radiators



137Synthesis of Directional Radiators

A rigorous analysis of the problem of the super directivity is given in [49]. This 
analysis studies an antenna in a shape of a sphere (Figure 6.2), in which only surface 
currents exist. It is assumed that the field has a circular symmetry relative the axis z,
as well as it is symmetrical with respect to the equatorial plane. This simplification 
means a radiation concentration in the E-plane and a circular directional pattern in the 
H-plane. Simplification of the solved problem does not interfere to make the most general 
conclusions about the features of small antennas with high directivity.

Figure 6.2 An antenna in the shape of a sphere.

Under these conditions the electromagnetic field in a spherical coordinates system 
has only three components, which are not equal to zero: ER, Eq and Hj. Maxwell’s 
equations take the form:
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Substituting ER and Eq  from  the  first  two  equations in  the  third  equation  and

introducing a potential function U H
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Applying the method of separating variables (the eigenfunction method), in 
accordance with which

U R= ¬ ( ) ( )Q q , (6.3)

we come as a result to the following two equations:
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They have particular solutions, respectively, in the form of Hankel functions of the 
second kind of order integer plus one half ¬ = +( ) ( )/

( )R C RH kRn n 1 2
2  and of the Legendre 

polynomials Q(q) = Pn(cosq). Thus
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In order to satisfy the condition of the field symmetry with respect to the equatorial 
plane, the indices n in these expressions must take on only the odd values.

If to replace at large distances from the radiator, i.e. at large values of kR,  the Hankel 
functions with their asymptotic magnitudes, we may write for the far field
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where N  kR/2. Substitution of the fields into the expression for the directivity
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and calculation of the coefficients corresponding to the case of the maximal directivity 
allows to find
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From (6.10) it follows that the directivity increases with the increasing number of the 
series terms and does not depend on the antenna dimensions. The total current on the 
sphere surface (R = a) is equal to
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A graph of the function Pn
( )1 (cosq) for some values of n is given in Figure 6.3. 

The values of the functions H kan+1 2
2

/
( ) ( ) for the same n are shown in Table 6.1. As it is 

seen from Figure 6.3, the individual components of the series (6.11) are the alternate 
short segments of the currents with the different phases, wherein the number of these 
segments is equal to the index n. Obviously, that the more number of segments with 
currents of different phases, the less the radiated field for the same total current. Also 
obviously that the more often the currents alternate, the greater currents, creating the 
field of sufficient magnitude.



139Synthesis of Directional Radiators

That is confirmed by Table 6.1. At the same value of ka it is seen that the greater 
n, the greater the absolute value of the current of each segment. And the current turns 
out almost purely reactive.

Figure 6.3 The graph of function Pn
( )1 (cosq).

Performed analysis shows that, in principle, a high directivity can be obtained 
by means of the relatively small-sized antenna. But this antenna must necessarily be 
variably-phase antenna. With growing directivity the number of alternations increases 
and anti-phase segments become shorter. Great reactive currents are inherent to this 
antenna. These currents must be distributed on individual segments with high precision. 
Great reactive currents are associated with high quality (Q) and low stability of a system 
and lead to low efficiency and a narrow bandwidth. Such systems require the use of 
powerful transmitters. In consequence of these negative characteristics, designing and 
making super directive antennas of small dimensions become inexpedient.

Table 6.1 Values of Hankel Function H kan+1 2
2

/
( ) ( ).

n ka = 1 ka = 2 ka = 3 ka = 4

1 0.2403+j0.4311 0.3474+j0.2797 0.2758–j0.0502 0.0926–j0.1836

3 0.0072+j0.8764 0.0527+j1.1843 0.1213+j0.4054 0.1829+j0.1744

5 0.0001+j797.44 0.0021+j14.834 0.0131+j1.7929 0.0413+j0.5288

7 0.0000+j1.12.105 0.0001+j416.15 0.0006+j2.4352 0.0040+j3.1818

9 0.0000+j2.83.107 0.0000+j35183 0.0000+j609.72 0.0001+j42.676

Analogous results are given in [50, 51]. 
We return to the optimization of a radiator with a flat curvilinear profile [52]. In 

accordance with (6.9)
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where
�
F (q, j) is a vector directional pattern of the radiator, and q0 and j0 are angular 

coordinates defining the direction of maximal radiation. For the radiator located in the 
plane zOy components of the current in spherical coordinates system are

Jx(l) = 0, Jy(l) = J(l)sina, Jz(l) = J(l)cosa. (6.13)

Here l is the coordinate along the radiator, a is a value of an angle q in the radiator point 
with the coordinate l. Components of the radiator pattern with arm length equal to L are
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Placing the radiator in a vertical plane allows to simplify the procedure of the 
calculation and optimization of the directivity. One can consider that the antenna 
directivity is equal to the product                                                                                  

D = DjDq, (6.15)
where
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In order to exclude the effect of the super directivity, the directivity is divided into 
reactivity coefficient:
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Minimization of the functional allows to find the shape of the curve, provided 
the maximal directivity for a given arm length L. The mentioned minimization is 
accomplished by two ways. The first way was used in [52]. The radiator arm was 
replaced by a broken line consisting of M straight segments with equal length D = L/M
(see Figure 6.1b). The directional pattern of this radiator is calculated by the formula
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Here the integral is replaced by the sum of the integrals along the segments, and lm is 
the coordinate along segment m. The first exponent determines the phase of the current 
at the segment beginning, and the second exponent—along the segment. Each integral 
over the segment contributes its share to the radiation. It is assumed that the current 
distribution along the entire wire is sinusoidal, i.e. on the segment m we obtain
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where JA is the current in the feed point of the radiator.
Calculation of the integrals allows obtaining a rather cumbersome formula for

Fq (q, j). Actually it is a function of one variable—a. The selection of this function is 
performed by trial-and-error method. Optimal geometry for the arm of length 0.75l,
found when M = 10, is shown in Figure 6.4 (curve 1). The calculated magnitude of the 
directivity is equal to 6.2.

Figure 6.4 Optimum configuration of the arm with length 0.75l, calculated by the first 
(curve 1) and the second (curve 2) way.

The second version of the calculation [53] did not confirm this result. Apparently, a 
significant error was caused by using sinusoidal distribution not along each segment, but 
along the entire broken line. In the second calculation, the equation for the current along 
the antenna has been written in matrix form. A curvilinear radiator was represented as 
a set of short dipoles connected in series. The segments forming the short dipoles are 
not considered to be straight, but selected in the form of the cubic splines. That permits 
to decrease the number of segments and to approximate more accurately the shape of 
the curve. The piecewise constant (pulsed) functions are used as the basis functions for 
the current, and this choice apparently reduces the calculation accuracy as compared 
with using piecewise sinusoidal functions. The shape of the antenna axis is determined 
depending on the directivity. The calculation was performed for the curvilinear antenna 
with arm length 0.75l, divided into three segments with lengths of 0.0714l, 0.4286l
and 0.25l.  The antenna radius is 2 mm. Optimum configuration of the arm is shown 
in Figure 6.4 (curve 2). The calculated magnitude of the directivity is equal to 4.9. The 
directional patterns in the vertical plane and the curve of the current distribution along 
the radiator are shown in Figure 6.5a and 6.5b. Curve 1 in Figure 6.5a corresponds to the 
directional pattern of the straight radiator with arm length 0.75l, curve 2 corresponds 
to that of the curvilinear radiator with the same arm length.
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Figure 6.5 The directional patterns in the vertical plane (a)
and the curve of the current distribution along the radiator (b).

Let us compare this result with the directivity of the symmetrical straight vertical 
radiator. The directivity of the straight dipole with the arm length 0.75l is close to 1. 
Maximal directivity of this dipole is obtained when the arm length is equal to 0.62l.
This directivity is equal to 3.2. Thus, the optimal directivity of curvilinear radiator with 
the arm length 0.75l is significantly higher than the directivity of straight dipole with 
the same arm length and one and half times higher than the maximal directivity of the 
straight dipole. This result was obtained at the expense of reducing the vertical projection 
of the segments with negative current (of the segments, in which current flows in the 
opposite direction).

Indeed, comparing the versions of the straight and curvilinear dipoles, one can 
easily verify that the vertical projection of the curvilinear dipole with arm length 
0.75l is significantly decreased. From this point of view it is useful to compare the 
results of this section with the results of the Chapter 5, devoted shortening the electrical 
length of the radiator by incorporating capacitors. It should be emphasized that the 
reactance of capacitors has frequency-dependent character. This allows the creation 
of in-phase currents in antenna in a wide frequency band and thereby ensures the 
high characteristics, similar to a certain extent with characteristics in the area of series 
resonance of radiator. Curvilinear radiator of constant length and shape does not have 
such a frequency-dependent character, i.e. allows to get a positive result in one frequency 
only.

These critical remarks should not detract from the usefulness of the considered work. 
The idea of the optimization of antennas characteristics is important itself, irrespective 
of the parameters, selected for searching their optimal values. In accordance with the 
terminology, presented in Section 5.4, a set of changeable parameters is called a vector. 
A few options were considered as such vector: the magnitudes of concentrated loads, 
made in the form of simple elements (this option is described in Chapter 5), the shape 
of a curvilinear thin antenna (option presented in this Section), the dimensions of the 
straight rods—elements of an Yagi-Uda antenna (see Section 6.3). These variants are 
known, because they brought to a useful result. In addition, it is necessary to remember 
that optimizing the shape of a thin curvilinear radiator was accomplished many years 
ago, during the endless and futile debates about the possibility of practical using abstract 
theoretical distributions of the current along the wire.

At present, the shape selection can be executed at a higher level, in a frequency 
band instead of one frequency, with a sinusoidal current distribution along the each 
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segment, with increased number of these segments. It is expedient also to consider the 
antenna wire in three-dimensional space.

6.2 CALCULATING DIRECTIVITY OF ANTENNA ARRAY ON 
THE BASIS OF THE MAIN DIRECTIONAL PATTERNS

As is well known, directivity D is one from basic electrical performances of any antenna. 
An antenna gain G is equal to

G = Dh, (6.19)

where h is an efficiency. Knowledge of these magnitudes allows planning the improvement 
of the antenna characteristics. The value of G can be defined by direct measurements. 
As regards magnitudes D and h, it is very difficult to measure them or to interpret the 
measurements’ results. For example, for an evaluation D it is necessary to know the 
three-dimensional antenna patterns. But as a rule, these patterns are measured only 
in two main planes: horizontal and vertical. The calculation difficulties increase with 
decreasing the cross-section of the main lobe, i.e. with increasing directivity, caused for 
example by increased numbers of radiators in the antenna array.

Calculating the directivity of the narrow-beam antenna is described in [54]. It is 
based on the method of calculating the intermediate values in the directional pattern by 
means of using the measurements’ results, which was proposed in [55].

Sometimes it is regarded that the magnitude of the antenna pattern in arbitrary 
direction is equal to

F(q, j) = F1(q)F2(q), (6.20)

where F1(q) is a pattern in a vertical plane xOz, F2(j) is a pattern in a horizontal plane 
xOy, q and j are the angles in the spherical coordinates system, and x, y and z form a
rectangular coordinates system (Figure 6.6). The calculations show, that the expression 
(6.20) is true only in a narrow area, limited by a main lobe of a directional pattern.

Figure 6.6 The coordinates system and a directional pattern.

The method proposed in [55] is based on revealing a curve, which is a locus of 
points with an identical signal. Here, the angle d = p/2 – q is used instead of an angle  q.
Respectively magnitudes of a directional pattern are equal to

f(d, j) = f(d1, 0) = f(0, j1), (6.21)

where d1 and j1 are values of coordinates d and j in the points of intersections of a 
mentioned curve with planes xOz (j = 0) and xOy (d = 0) respectively (see Figure 6.6).
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Assume that the direction of the maximum radiation coincides with x-axis, and the 
pattern is symmetric about the planes xOz and xOy (Figure 6.7). For example, in-phase 
array, located in a plane yOz, has such directional pattern. In this case curves with 
identical directivity in the first approximation will be have the form of circles or ellipses: 

f(d1, 0) = f1(d1), f(0, j1) = f2(j1). (6.22)

If to introduce for convenience a new angular coordinate b, measured from x-axis (see 
Figure 6.7), then as it is easy to show the new and the old coordinates will be connected 
among themselves by relation:

b = cos–1(cosd cosj). (6.23)

Figure 6.7 Symmetric directional pattern.

If the curves with identical directivity represent circles, i.e. if the main lobe of the 
three-dimensional pattern has circular symmetry, then

d1 = j1 = b = cos–1(cosd cosj). (6.24)

In more common case these curves are ellipses. Let a1 be  length of its vertical axis, 
i.e. the arc length between the upper and the lower points of the pattern, corresponding 
to the given magnitude of a signal (to the given magnitude of the directional pattern). 
In the same way a2 is the length of its horizontal axis, i.e. the arc length between the 
left and right points of the pattern corresponding to the given magnitude of a signal. 
Relation of lengths of vertical a1 and horizontal a2 axes is equal to a = a1/a2. Then at a > 1
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As is known, maximal directivity of antenna with the pattern, symmetrical about 
planes xOz and xOy, is equal to
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whence
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The first addend of a denominator corresponds to a forward half-space, the second 
addend—to a back half-space. Here in the second integral the change of variable                
j = p – y is performed. At a < 1 in accordance with (6.21), (6.22) and (6.25) 

f f f a( , ) ( ) cos (cos cos )d j d d j= = ÍÎ ˙̊-
1 1 1

1 . (6.29)

At a > 1 according to (6.21), (6.22) and (6.26) one can obtain a similar expression. 
The expression (6.28) subject to (6.29) allows calculating the antenna directivity, if its 
directional patterns are given in the main planes.

In Figure 6.8 the experimental directional patterns of a planar uniform antenna 
array with in-phase excitation are given at the frequency 3.4 MHz. As one can see from 
the figure, the factor a is equal to 1 in intervals 160–180° and 135–145°, to 0,63 in an 
interval 145–160° and to 0,69 in an interval from 90° to 120° along an azimuthal angle. 
It means that the main lobe of the three-dimensional pattern has circular symmetry, i.e. 
the locus of points with identical signal, located on the main lobe, is a circumference.  
Such circular symmetry on some side lobes is absent, and that should be taken into 
account for increasing calculation accuracy. In an interval 120–135° the factor a is greater 
than 1. Calculation according to the described method at a = 1 gives a directivity value, 
equal to 18,6 dB. Calculation with allowance for a > 1 in the interval 120–135°gives an 
outcome 18.2 dB. The measured antenna gain is equal to 18 dB. Thus, one must admit 
a good conformance of calculated and experimental results.

Figure 6.8 Experimental directional patterns of antenna.

For antennas with one narrow major lobe and small minor lobes, the theory (see, 
for example, [13]) recommends the expression

D = 41253/(q1q2), (6.30)

where q1 and q2 are half-power beam widths of the pattern (in degrees) in two mutually 
perpendicular planes. For planar arrays a better approximation is (see in [13])

D = 32400/(q1q2), (6.31)
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The calculation in accordance with these formulas for the patterns, presented on 
Figure 6.8, gives accordingly 20.2 and 19.2 dB, i.e. a much greater error.

The program of directivity calculation used two procedures: the procedure of antenna 
pattern estimation at intermediate angles and the procedure of integrals calculation by 
summation of numerical masses. These methods can be used for the solution of other 
problems too, for example, for an estimation of increasing antenna directivity at the 
expense of decreasing side lobes.

 If it is required to calculate, as far as the directivity will be changed due to diminution 
of a side lobes to level f0, one must first determine the initial value of the directivity in 
accordance with (6.27) and next to reduce the side lobes, which exceed f0 (for example 
in a vertical plane in the range of angles from j11 to j11 and in a horizontal plane in the 
range of angles from d11 to d11) to level f0 and to calculate the new directivity (at a < 1)
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The program of the magnitude D calculation was performed in Matlab and presented 
in [54].

6.3 OPTIMIZATION OF THE DIRECTOR ANTENNAS

In this section we consider the problem of optimization of end-fire antenna array (of 
Yagi-Uda antenna). It is one of the most well-known directional antennas, in particular 
of VHF antennas. The standard version of this antenna, consisting of an active dipole, 
one or two reflectors and several equidistantly located directors of identical length is 
used for many years. Results of generalizing experimental data about these antennas 
and recommendations on selecting their geometric dimensions were given in [56]. 
The experimental data are showing that there is opportunity for significant increasing 
directivity, for expanding operating bandwidth and for lowering level of side lobes, if we 
select correctly the lengths of dipoles and the distances between them. But experimental 
optimization of such antennas is accomplished at the expense of long-term work and big 
money, since this optimization requires the creation of a reliable model with variable 
geometry and performance of numerous measurements of high quality.

Therefore, Yagi antenna, as already mentioned in Section 6.1, was among the first 
antennas, for which the optimization program has been specifically designed. Work on 
the program was brought to the real results.

The task of optimization of antenna arrays with passive dipoles as a rigorous task of 
mathematical programming was formulated in [57]. In [58] the task of creating end-fire 
array with maximal directivity was divided on two tasks: the choice of directors’ lengths 
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at the beginning and the choice of distances between directors after that. Most completely 
the problem was solved in [59], where independent selection of lengths and distances 
was used, and modern methods of mathematical programming were employed.

The antenna circuit is shown in Figure 6.9a, the general view of the standard antenna 
with vertical polarization is given in Figure 6.9b. In this case, the optimization problem 
has been formulated in the following way: it is required to determine the dipoles’ lengths 
2Li (here i is the dipole number, Li is the length of its arm) and their coordinates di along 
the axis of the antenna, providing the maximal directivity in the direction of the said 
axis for a given number N of the dipoles and restrictions on the total antenna length, 
on the dipoles’ lengths, and on the distances between adjacent dipoles.

Figure 6.9 Circuit of Yagi antenna (a) and general view of a standard antenna 
with vertical polarization (b).

Comparison of this problem with definition of the problem of the mathematical 
programming in the general case (see Section 5.4) shows that the objective function is 
presented here in the form of a partial functional, i.e. in the form of the error function for 
a single characteristic (directivity). Vector 

�
x of parameters is presented by magnitudes 

Li and di. The objective function is written in the form

F x
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where D(
�
x ) is the directivity magnitude, F x yp ( )

� �
-  is the penalty function, 

�
y  is the vector 

of allowable values of optimized parameters, and a is penalty factor.
The error function in this case is constructed using the criterion of Powell [60], which 

does not require the calculation of derivatives during changing direction of the vector 
�
x .

New direction of this vector must be selected on the each iteration in accordance with the 
direction of maximal increasing directivity. When analyzing the antenna characteristics, 
it is considered that the antenna consists of the thin cylindrical wires, and the distribution 
of the currents along these wires obeys  to the system of Hallen’s equations: 
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Here Ji(zi) and ei are the functions of the current distribution and the extraneous emf 
on the dipole i (emf of the passive dipole is zero), G jkR Rij ij ij= -exp( )/( )4p is Green’s 

function, R d z zij ij j i= + -2 2) is the distance between the points of the dipoles i and j,
Z0 = 120p is the wave impedance of the free space. Comparing (6.35) and (2.5), it is easy 
to see that here Hallen’s integral equations with approximation kernel is used. 
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The magnitude of the current is sought in the form of an expansion in spatial 
harmonics

J z I f zi i im im i
m

M

( ) ( )=
=

Â
1

, (6.36)

where Iim is the complex amplitude of the harmonic m of the dipole i, and M is the 
number of harmonics, fim (z) are the power functions fim (zi) = (1–|zi|/Li)

m, proposed 
by Popovich [61], and trigonometric harmonics of King [62]:

f z
k L z i

kz
m

kL
m

m
im i

u i

i i
( )

sin ( ) , ,

cos cos , .
=

-ÈÎ ˘̊ =

-
-

-
≥

Ï
Ì
Ô

Ó
Ô

1

1 1
2

The functions fim (z) are used as spatial harmonics (the first harmonic is taken into 
consideration only on the excited dipole). The problem is reduced to the solution of the 
system of linear algebraic equations for the currents along the antenna segments. These 
equations are written in matrix form. Knowing the currents of the dipoles, one may 
find the field in the far region and the directivity in the direction of an antenna axis.

The results of the optimization of the director antennas are presented in [57] and 
[59]. It is the antennas with three, four and fifteen dipoles. Canonical array, described 
in [56], is taken as the first approximation for the array with fifteen dipoles. Selection 
of its geometrical dimensions in accordance with the procedure described above allows 
to double its maximal directivity. Initial (1) and optimum (2) directional patterns of the 
antenna are shown in Figure 6.10.

Figure 6.10 Initial (1) and optimum (2) directional patterns of the antenna with fifteen dipoles.

The initial dimensions of the antenna with four dipoles were taken in accordance with 
the dimensions of the standard receiving television antenna. Optimization of the antenna 
dimensions lead to directivity increase by 95%. Its directional patterns in the H-plane
are shown in Figure 6.11. Here 1 is initial directional pattern, 2 and 3 are optimum 
directional patterns for three and four current harmonics respectively. Figure  6.11 shows 
that the use of the fourth harmonic improves the calculated directional pattern. However, 
a further increasing the number of harmonics does not affect the result.
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Figure 6.11 Directional patterns of the antenna with four dipoles: 1—initial pattern, 
2—optimum pattern for three harmonics, 3—optimum pattern for four harmonics.

In the calculations of the antenna with three dipoles (Figure 6.12), two problems 
were included into objective function: increasing the directivity and the expansion of 
the operating bandwidth. Optimization allowed to increase the directivity in one and 
half times and to expand the bandwidth by 23%.

Figure 6.12 Frequency characteristic of antenna with three dipoles.

Comparison of the results, obtained in [58], with the results of optimization for 
the antenna with six dipoles, described in [59], shows the advantage of the method 
presented in [59]. The directivity of the last antenna is increased by 4% and the length 
of the antenna was decreased by 0.04l.

During the ongoing research of the end-fire arrays, other characteristics of arrays 
were calculated together with directivity, in particular the input impedance of the 
excited dipole, the level of side lobes, the distribution of amplitudes and phases of the 
currents along the array. These characteristics can be measured on a real model, i.e. 
calculation can be compared with experimental results. The frequency dependence of 
these quantities are genuine characteristics of the antenna array, while, for example, the 
quality factor can be estimated only indirectly.

Results of the synthesis of the director arrays are presented in Table 6.2. Here 
N is the number of the dipoles, Dmax is the maximum directivity, SLL is the level of 
side lobes, ZA1, ZA, and ZA2 are the input impedances at the lower, the main and the 
upper frequency of the range relatively, Df/f0 is the ratio of the bandwidth to the main 
frequency. The bandwidth is defined as the half-directivity bandwidth. Maximum 
lengths of the first five arrays are bounded by the magnitude 1.6l, and lengths of the 
other arrays—by the magnitude 1.8l.
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Table 6.2 Characteristics of the End-Fire Arrays

N Dmax SLL ZA1 ZA ZA2 Df/f0,% Length

4 14.48 0.43 16.2+j27.5 6.0+j91.2 9.4+j145.2 –5.3…+2.8 0.76l
5 18.77 0.36 34.9–j74.5 4.1–j25.5 4.4–j3.2 –6.3…+1.8 1.27l
6 21.69 0.31 26.2–j78.6 3.0–j36.1 2.1–j19.4 –7.3…+1.3 1.6l
7 24.43 0.31 13.6–j16.6 3.6+j33.3 3.8+j65.0 –5.5…+2.0 1.6l
8 24.04 0.35 28.7–j53.9 2.6–j3.5 2.3+j18.2 –7.0…+1.5 1.6l
6 24.39 0.32 29.7–j9.7 6.9+j41.2 6.8+j73.4 –5.5…+1.5 1.66l
7 25.31 0.27 6.9–j211.7 0.8–j180.6 1.9–j172.5 –7.5…+1.0 1.8l
8 25.19 0.28 4.9–j214.2 0.7–j182.6 0.1–j173.7 –7.5…+1.5 1.8l

Calculations show that with increasing frequency the directivity changes faster than 
with decreasing, and the real part of input impedance is quite the opposite. When the 
number of dipoles is fixed, increasing antenna length causes the directivity to increase, 
until the length does not exceed a certain critical value (see the examples of arrays). 
When the length of an antenna is fixed, increasing the number of passive dipoles leads 
to the increase of the directivity, but not always. The frequency bandwidth of antennas 
is 7–9%, which is sufficient for most applications. Low input impedance makes difficult 
the matching of antennas with the standard cable. It is the main their drawback.

Table 6.3 Amplitudes and Phases of Dipoles Currentf

N

Number of dipoles
7 8

Array length
1.6l 1.8l 1.6l 1.8 l

JA jA JA jA JA jA JA jA

1 0.339 –41.7 38.25 –34.4 2.520 92.4 35.63 –34.6
2 0.534 124.0 53.18 126.4 1.926 –106.3 48.54 126.5
3 0.748 –69.1 65.79 –63.9 1.866 –101.7 62.41 –64.4
4 1.011 98.1 95.50 105.9 3.923 62.6 83.39 105.0
5 0.312 118.7 210.2 –85.6 1.502 99.8 33.58 –93.4
6 1.792 –83.7 332.2 89.7 12.55 –127.6 176.8 –84.8
7 1.128 92.2 31.02 –101.8 13.76 22.6 328.6 89.8
8 - - - - 4.610 –132.6 25.5 –104.8

6.4 V-DIPOLE WITH CAPACITIVE LOADS                                                                             

As already mentioned, one of the important tasks of antenna engineering is creating 
a radiator, which ensures in a wide frequency range a field maximum in the 
plane perpendicular to the radiator axis. An ordinary linear radiator fails to meet 
this requirement: if the radiator arm is larger than 0.7l, the radiation in the plane, 
perpendicular to the antenna axis, decreases. In this case one can use V-antenna formed 
by two converging inclined wires. If arm length L is greater than 0.7l, an ordinary 
V-antenna has preferential radiation along the bisector of the angular aperture. However, 
the side lobes of the directional pattern increase with growing frequency, and the main 
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lobe of this pattern diminishes in the antenna plane. If the arm length is greater than 
about 1.25l, the main lobe splits, and the radiation along the bisector sharply decreases.

Mounting of capacitive loads in the antenna wire allows to expand the frequency 
range, in which there are the directed radiation along the bisector of the angular 
aperture, and to increase the useful signal in this direction.

Consider a symmetric V-dipole with arm length L and arbitrary angular aperture 
a = p – 2q  (Figure 6.13). The far field along the bisector of the angular aperture, which 
is created by an elementary segment dV of the upper antenna arm with current J(V), is

Eq(V)dV = Eq(0)[ J(V)/J(0)]exp( jkV sin q0)dV, (6.37)

where Eq(0)dV is the field created by a segment of the upper arm located near point 
O with current J(0), kV sin q0 is the path-length difference, V is the coordinate counted 
off along the radiator axis. In order to the far fields of different segments of the upper 
arm coincide with each other in phase, the current distribution along this arm should 
conform to the expression

J(V) = J(0)f(V)exp(–jkV sin q0), (6.38)

where f(V) is a real and positive function.

Figure 6.13 V-dipole with loads.

Let N loads Zn be connected in each dipole arm, and they be connected uniformly 
along the antenna wire at a distance b from each other. If the load spacing is small 
(kb << 1), then, as well as for the linear dipole, the replacement of concentrated loads by 
distributed surface impedance Z(V) practically does not change the current distribution 
along the antenna. We assume that the surface impedance of each antenna segment with 
load Zn is constant and equal to Z(n).

As mentioned in Section 5.2, the current distribution along the antenna with piecewise 
constant surface impedance coincides in the first approximation with current distribution 
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along an equivalent impedance line, i.e. along the line with stepwise variation of 
propagation constant (see Figure 5.4). Here, the wave propagation constant g n along the 
segment n is related to surface impedance Z(n) in accordance with (5.17). If the variation 
law of propagation constant is known, one can use magnitude g n for calculating with the 
help of (5.29) concentrated loads Zn, which are needed for the embodiment of this law.

The current along the segment n of a stepped line is

J(Vn) = In sinh(g nVn + jn Vn b, (6.39)

where In and jn are the current amplitude and phase at the segment n, respectively, 
and Vn is the coordinate, counted off from the segment end, i.e. Vn = (N – n + 1)b – V.
We equate current J(Vn) at the beginning and the end of each segment to current J(V),
ensuring the phase coincidence of far fields from all dipole segments. The current inside 
each segment does not coincide with current J(V). However, if the segments lengths are 
small, the current distribution along the line is close to J(V).

According to (6.38) and (6.39), at Vn = b and Vn = 0:

In sinh(g nb + jn) = J(0)f [(N – n)b]exp[–jk(N – n)b sinq0],

In sinhjn = J(0)f [(N – n + 1)b]exp[–jk(N – n + 1)b sinq0].

If to divide the left and right sides of the first equation onto the corresponding sides 
of the second equation, then considering that b is a small value and retaining only the 
first terms of series expansions for trigonometric functions of small arguments, we get
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Similarly, to (6.40), for the segment (n + 1)
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Voltage and current are continuous along a stepped line. Therefore, (5.22) is true. 
Together with (6.40) and (6.41), it forms a set of equations that allows to relate g n and 
g n+1. From its solution it follows that magnitude g n is independent of g n+1:
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This expression generalizes (5.23) for a linear dipole and transforms into it at q0 = 0.
The possibility of implementation of propagation constant g n is determined by the 

possibility of manufacturing concentrated loads. According to (5.29), at low frequencies, 
when inequality (5.32) and equality (5.33), which follows from (5.32), are true, the load 
value is

Z j b kbn n= - 30 2( ) ( )g c . (6.43)

By substituting (6.42) into (6.43), we get

Z R j Cn n n= + 1 ( )w , (6.44)
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As seen from (6.44), each load should be a series connection of a resistor and a 
capacitor, where the resistance of the resistor is positive, if function f(V) decreases 
monotonically with growing z, and the capacitance of the capacitor is positive, if function 
f(V) is concave. Here, the resistance depends on the angular aperture of the antenna and 
the form of function f(V), whereas the capacitance depends only on the latter.

For a linear radiator with loads ensuring the maximal radiation in the plane, 
perpendicular to its axis, each load should, when condition (5.29) holds, represent a 
capacitor. Capacitors ensure real wave propagation constant g n and an in-phase current 
distribution along an antenna. For a V-dipole, the resistor is to be connected in series 
with the capacitor, and that will result in a phase delay of the current wave along an 
antenna wire. Such phase delay is necessary for a V-dipole, since it compensates the 
path-length difference from individual dipole segments to an observation point and 
ensures coincidence of phases of the far fields, created by segments along the bisector 
of the angular aperture.

The use of resistors in a transmitting antenna is inexpedient. This means that the 
loads of a V-dipole should not differ from the loads of a linear radiator, which ensure 
an in-phase current distribution along a wire.

At high frequencies, when condition (5.29) does not perform, the in-phase current 
distribution along a linear radiator takes place, if the load represents a negative 
inductance (a capacitance, which is inversely proportional to square of frequency). 
Similarly, the load for a V-dipole should be a series connection of a capacitor with a 
frequency-dependent capacitance and a resistor. In order for propagation constant to be 
real and the current distribution along an antenna may be in-phase, the capacitances 
should not exceed the value determined by inequality (5.40).

As an example, we shall consider V-dipole with arm length L = 1.5 m and radius 
0.025 m. Fifteen capacitors are connected in each arm with spacing 0.1 m between each 
other (the first and last capacitors are placed at the distant 0.05 m from the end and 
center of the antenna). The capacitances of the capacitor nearest to the generator is equal 
to 33.5 pF in order that the propagation constant remains real at frequencies up to 100 
MHz. The capacitances of other capacitors decrease to the antenna end according to the 
linear law. As shown in Section 5.2, in this case one can ensure the distribution of current 
along an antenna, close to linear distribution, and high level of matching with a cable.

Figure 6.14a shows the directivity of a V-dipole with capacitive loads (curve 1) and 
without loads (curve 2) along the bisector of angular aperture (the angle between dipole 
arms is equal to 90o). For the sake of comparison, Figure 6.14b shows similar curves for 
a linear dipole (curve 3 with loads, curve 4 without loads). The values of loads and the 
antenna arm length are the same. The calculations are performed in a frequency range 
from 100 to 500 MHz.

As can be seen from the figure, the directivity of a linear dipole without loads in 
the direction, perpendicular to its axis, quickly decreases at L (0.6–0.7)l. For a linear 
dipole with loads, this threshold value is found at L (1–1.2)l. V-dipoles, especially 
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with loads, allow achieving a high directivity along the bisector of the angular aperture 
in a substantially wider frequency range: at frequencies from 350 (L = 1.75l) to 500 MHz 
(L = 2.5l). The loads increase the directivity of a V-dipole by a factor between 1.4 and 2.8.

Figure 6.14 (a) Directivity of a V-dipole and (b) of a linear dipole.

Figures 6.15 and 6.16 give the directional patterns of the described V-dipole with 
loads (curve 1) and without loads (curve 2) in the plane of antenna and the plane 
perpendicular to it. The calculated curves are compared with the results of the experiment 
(circles).

Figure 6.15 Directional patterns of a V-dipole in the antenna plane.
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As shown in Section 5.4, electrical characteristics of an antenna with loads can 
be improved by optimal selection of the latter with the help of the mathematical 
programming method. Here, in order to calculate the zero approximation, it is expedient 
to use the method of a stepped (piecewise uniform) impedance transmission line. 
In the considered example, the mathematical programming method allows raising 
the directivity level of V-dipole with loads in the lower part of a frequency range 
(Figure 6.14a, curve 5).

V-dipole with capacitive loads can be used as a directional antenna of VHF range.
Additional possibilities associated with the use of V-antenna with loads and 

curvilinear shape of the wires. As is shown in Chapter 5, the connection of capacitive 
loads in the wires allows to change the current distribution along the radiator and to 
obtain owing to optimal choice of loads the electrical characteristics closest to the required 
characteristics as much as possible. In Section 6.1 it was demonstrated that by changing 
the shape of the radiator one can increase its directivity at a given frequency. Actually, 
both methods provide an additional degree of freedom when choosing parameters of 
the antenna with the aim of optimizing its characteristics. As is showed in the current 
section, the use of capacitive loads in the wires of V-antenna allows to increase directivity 
and to expand the frequency range. Use of a curvilinear shape of wires gives additional 
possibilities.

Figure 6.16 Directional patterns of a V-dipole in the plane perpendicular to the antenna plane.

Circuit of a V-radiator with rectilinear arms of length L and an angular aperture 
a = p – 2q0 is given in Figure 6.13. Capacitive loads are uniformly located in the radiator 
wires. Figure 6.17 presents the promising circuit of the curvilinear arm of the V-radiator
with loads.
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Figure 6.17 An arm of a curvilinear V-radiator with loads.
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7.1 METHOD OF A COMPLEX POTENTIAL FOR 
CALCULATING FIELDS

Problem of calculating an electrostatic field is the problem of determining a field strength 
at all points in accordance with the electric charges of the conducting bodies. This 
problem may be completely solved if we are to find the potential as a function of the 
coordinates. If the potential in each point is known, in the case of two conducting bodies 
one can find a capacity between them (as the ratio of charge of one body to difference 
of their potentials). In a system of few conducting bodies one can determine self- and 
mutual potential coefficients and after that partial capacitances.

If any problem of calculating an electrostatic field of charged conducting bodies 
located in homogeneous and isotropic dielectric is solved, then its solution can be used 
for a solution of other problems. For example, the method of electrostatic analogy 
allows to find constant electric fields and currents in a homogeneous weakly conducting 
medium, if the shape and geometrical dimensions of placed in it bodies with a high 
conductivity coincides with a shape and dimensions of bodies placed in a dielectric. 
The principle of correspondence allows building a picture of magnetic field created 
by constant linear currents on the base of a picture of electric field created by linear 
charges, if currents and charges are distributed in a space identically.  The only difference 
between these pictures consist in a fact that lines of equal magnetic potential are located 
on a place of electric field lines and magnetic field lines are located on a place of lines 
of equal electric potential [63].

Electrostatic problem considers usually a system of charged conducting bodies 
surrounded with a dielectric, in which volumetric charges are absent. Either potential Un
of each body n or total charges qn of bodies are given. A distribution of a potential in a 
space is unknown. A charge distribution along the surface of each body is also unknown. 
It is the main difficulty of a problem, especially in the case of inhomogeneous medium. 

7
Method of a Complex 

Potential for Cylindrical Problems
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If a distribution of charges is known, then in a homogeneous medium with 
permittivity e it is possible to find the potential U, which is defined by all charges 
located in a finite volume v of a space from the expression

U
dv
r

v

v

= Ú1
4pe

r

( )

, (7.1)

where rv is a volume density of a charge, r is a distance from an observation point to an 
integration point (point of charge location). This integral is solution of Poisson equation.

If a distribution of charges is unknown, then one must ascertain necessary and 
sufficient requirements, under execution of which a field is determined by only one way 
(uniqueness theorem). It has following requirements. First, in the case of a homogeneous 
medium, since charges are absent in it, a field must satisfy the Laplace’s equation, i.e. 
in the rectangular coordinates system (x, y, z)
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Second, the surfaces of conducting bodies must be surfaces of equal potential, i.e. on 
the each surface U = Un = const. Third, if total charges qn of bodies are given, then for 
each body the condition must be fulfilled
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, (7.3)

where Sm is the surface of the body m; n is the normal to that surface.
The problem of calculating the electric field of charged bodies gets simplified, if 

all the magnitudes characterizing the field depend only on two coordinates. The field 
of several infinitely long and parallel to each other cylindrical wires with the charges 
uniformly distributed along their length (the plane-parallel field) conforms to such 
condition, all lines of the field and also lines of the equal potential lie in the planes 

Figure 7.1 Plane-parallel field of two wires.
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of cross-sections, and the field picture is the same in all such planes. If axis z of the 
rectangular coordinates system is parallel to the wire’s axes, the potential U of the plane-
parallel field is a function of only two coordinates, x and y.

The cross-sections of two wires and the picture of a field around them, i.e. lines of 
the equal potential and lines of the field are represented in Figure 7.1. The surfaces of 
the equal potential are the cylindrical surfaces with generatrix, parallel to the axis z.
The lines of the equal potential in the plane xOy are defined by equations of the type

U(x,y)=const. (7.4)

Let the some line of a field is regarded in the capacity of initial line. If we shall 
connect an arbitrary point M(x.y) with any point A of the initial line, we obtain the 
curvilinear segment MmA. This segment, when it moves in parallel to it in direction of 
the axis z and covers the distance l, describes a certain surface. Let YE is the flux of the 
electrical field E

�
 through this surface. The function

V x y lE( , ) /= Y , (7.5)

is the flux per unit length of wires. It is called by flux function. The magnitude V(x, y)
has the same value for all points located along the same line of field. That is why the 
equation

V(x,y)=const, (7.6)

which defines the aggregate of such points, is called by the equation of the field line.
Note that equations (7.4) and (7.6) define two families of curves intersecting at right 

angle. Let dn be an element of the length of the field line and da an element of the 
length of the line with equal potential, i.e. dn and da are mutually perpendicular. We 
assume that coordinates n and a grow in directions shown in Figure 7.1. The potential 
U increases in direction opposite to the vector E

�
, i.e. in the direction of decreasing the 

coordinate n. It is considered customary that the function of flux increases in the same 
direction, in which a increases. Under these conditions the electric field strength may 
be expressed in terms of U and V in the form of

E
U
n

V
a

= -
∂
∂

=
∂
∂

, (7.7)

or, in Cartesian coordinates,

E
U
x

V
y

E
U
y

V
xx y= -

∂
∂

=
∂
∂

= -
∂
∂

= -
∂
∂

, , (7.8)

from whence after repeat differentiation it is easy to be convinced that both functions 
U and V satisfy the Laplace’s equation.

Thus, the functions U and V satisfying the equations (7.8) correspond to the first 
requirement of above-mentioned theorem of uniqueness.

We shall regard the cross-section plane of the plane-parallel electrostatic field like the plane 
of the complex variable z = x + jy. If V(z) = x(x, y) + jh(x, y) is a regular analytical function 
of the complex variable z, then in accordance with conditions of Koshi-Riman

∂
∂

= -
∂
∂

∂
∂

=
∂
∂

h x h x
x y y x

. (7.9)
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It is easy to be convinced that the equalities (7.9) are similar to the equalities (7.8), 
i.e. one can accept that x = V, h = U and use the regular analytical function                            

V(z) = V(x, y) + jU(x, y), (7.10)

which is called by the complex potential of the field.
As it follows from the foregoing, if V (z) is the regular analytical function of the 

complex variable z in some area, then its real and imaginary part and consequently 
the whole function satisfy the Laplace’s equation and accordingly they satisfy the 
first requirement of the uniqueness theorem. This means that the problem of a field 
calculation is solved, if the function V (z) satisfying the boundary conditions at the wires 
surface is found.

The detailed description of the method of complex potential and examples of its use 
in solving problems about parallel cylindrical wires located in a homogeneous medium 
are given in [63]. In particular there it is shown that for the solitary wire with a circular 
cross-section and with the charge t per unit length located in the homogeneous medium 
with permittivity e, its complex potential has the form

V
t
pe

( ) lnz j z C= - +
2

, (7.11)

where C = C1 + jC2 is the constant magnitude, coefficients C1 and C2 of which depend 
on the selecting the initial field line and the line of zero potential.

The complex potential of the line consisting of two located at the distance 2b from 
each other wires, the linear charge densities of which are accordingly t and –t, is equal to

V
t
pe

( ) lnz j
z b
z b

C= -
+
-

+
2

. (7.12)

In this and follow chapters the method of complex potential is generalized, firstly, 
for piecewise homogeneous media and, secondly, for three-dimensional structures.

7.2 APPLICATION OF A METHOD OF COMPLEX POTENTIAL TO
PIECEWISE HOMOGENEOUS MEDIA 

The problem of a field calculation becomes complicated in the case of the heterogeneous 
(in particular, piecewise-homogeneous) medium [64]. Such problem arises, if the solitary 
wire is located at the boundaries of the two media, for example, air and dielectric, and 
the relative permittivity er of dielectric is different from 1 (Figure 7.2). The wire cross-
section is considered as a circle.

It should be noted that the potential at the wire surface is constant. The potential 
of the infinitely far point may not be equal to zero, since in that case the potential of 
infinitely long wires at the all finite distances will be infinitely great. Nevertheless it is 
obvious that at the great distances from charged wire the potential in the all directions is 
the same. And therefore suppositions that the lines of equal potential are circumferences 
with the center in the origin of coordinates and that the surfaces of equal potential are 
the surfaces of the circular cylinders are natural.
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Figure 7.2 Field of a wire located at two media boundary.

The wire surface may be replaced by a system of N equidistant filaments with linear 
densities tn of charges (n is the filament number), the sum of which is equal to t (to the 
linear density of wire charge). The potential of each filament at distance r from its axis is

Un = –(tn/2p en)ln (r/rp). (7.13)

Here, en is the permittivity of a medium around the filament, rp is the distance to 
the surface of zero potential. In order that the potentials of all filaments may be identical 
on the surface of circular cylinder with the radius r = r + a, where a is the wire radius, 
the ratio tn/en must be the same for all the n:

tn/en=const(n), (7.14)
i.e. the surface density of the wire charge must be proportional to the permittivity of a 
medium adjacent to a given part of the surface. Here the word “adjacent” signifies that 
the medium occupies volume from the wire surface to infinity within an angle equal to 
the arc length of the surface part, which is adjacent to this medium.

Formula (7.11) describing a field structure of the solitary wire with the circular 
cross-section, which is located in homogeneous medium, may be written in the form of 
a more general expression:

V(z) = Aj ln z + C, (7.15)

where A is constant magnitude. Using designation z = rejj, we obtain:

V(z) = –Aj + C1, U(z) = A ln r + C2, (7.16)

from whence the equations of field lines and of equal potential lines take the form 
accordingly:

j = const, r = const. (7.17)

The field structure of the wire located at the boundary of the two media has a 
similar character. In particular, as it is indicated earlier, here the lines of equal potential 
are circumferences with r = const. Therefore for the complex potential of such field we 
shall use the expression (7.15).

The constant A in this expression is determined in accord with the fact that in going 
around the cross-section of the wire along the shorted contour, the angle j increases 
by 2p, and the function V increases by YE/l, where YE is the flux of the vector E

�

through the cylindrical surface covering the wire segment of length l. In the case of 
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the heterogeneous medium it is expedient to replace YE by YD, i.e. to replace the flux  of 
vector E

�
by the flux of vector D

�
, where D

�
 is the vector of electrical displacement. Besides, 

one must take into account that the strength of this flux in the different media may 
be diverse, i.e.

D YV
l Di i

i

= Â1
/e , (7.18)

where i is the medium number.
If rv is a volume density of a wire charge, then integration of Maxwell equation 

divD V

�
= r , (7.19)

with respect to wire volume v gives for left part of equation

divDdv DdS DdSi

SiSv i

� � � �
��= = ÚÂÚÚ

( )( )
,

for the right part

r sv i

Siv

dv dS

i

= ÚÂÚ
( )

.

Here S is the wire surface, Si is the area of this surface adjacent to i-medium, si is a 
density of a surface charge on this area. Equating both sides of the equation, we find 

YDi i
ii

q= ÂÂ , (7.20)

i.e., the flux YDi of the displacement vector through the wire surface into i-medium is 
equal to the charge qi per unit length of the surface area adjacent to this medium.

In accordance with (7.18) 

DV
l

qi i
i

= Â1
/e . (7.21)

If to introduce such a quantity ee that

q qi i e
i

/ /e e=Â , (7.22)

where q is the total wire charge per unit of its length, then as one can see from (7.22), 
the quantity ee has meaning of the equivalent permittivity of the heterogeneous medium. 
Accordingly (7.14), if Dji is the arc length of the wire circumference, which is adjacent 
to the i-medium, then the equality

q const ii i i/( ) ( )e jD = , (7.23)

is true. It is obvious also that

q qi
i

=Â . (7.24)
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It is easy to show by using (7.23) and (7.24) that 

q qi i i i i
i

=
Ê

Ë
Á

ˆ

¯
˜Âe j e jD D/ . (7.25)

whence
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e je
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1
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D . (7.26)

If N media of the same angle width are adjacent to the wire, then

e ee i
i

N

N
=

=
Â1

1

. (7.27)

For variant, depicted in Figure 7.2, N = 2, and the equivalent permittivity is equal to 
the arithmetic average of magnitudes e1 and e2:

e e ee = +( )/1 2 2 . (7.28)

Substituting (7.22) into (7.21) and taking into account that according to (7.16) in going 
around the cross-section of wire along the shorted contour the function V increases by                                  

DV A= -2p , (7.29)
we find

A e= -t pe/2 , (7.30)
and conse.quently

V C U Ce e= + = - +tj pe t r pe/( ) , ln /( )2 21 2 . (7.31)

It is necessary to note that only the magnitude ee is included in the equalities (7.31). 
That means that in this case, as in the case of the homogeneous medium, the angles 
between the lines of the fields are equal to each other (irrespective of the medium, in 
which they are located), if the increase of a flux at the transition from one line of the 
field to other line is identical. If increase of potential between neighbors lines of the 
equal potential is also the same, the radii of the circumferences of the equal potential 
change according to geometric progression. 

Consider using the obtained results, the important practical case of a two-wire 
line (Figure 7.3). In the beginning we shall assume that the wires are infinitely thin. 
The expression (7.12) for the complex potential of the field of such a line located in a 
homogenous medium may be rewritten in the form

V( ) lnz Aj
z b
z b

C=
+
-

+ . (7.32)

If designate z + b = r1 exp(jj1), z – b = r2 exp(jj2), where r1 and r2 are the lengths of 
the segments connecting the observation point M with the axes of the wires, and j1 and
j2 are the angles between these segments and the axis x, we find

V A U A= - =( ), ln( / )j j r r2 1 1 2 . (7.33)

Here it is accepted that C = 0. In this case the line of zero potential is the ordinate axis, 
and the sections of abscissa axis from the wires of the line to infinity. The lines of equal 
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potential are the circumferences with the centers on the axis x, and the lines of the field 
are the circumferences, passing through the wires axes, with the centers on the axis y.

Let a circular dielectric cylinder of radius b be placed between two wires of line, and 
its axis is parallel to the wires and is located at the same distances from both wires. The 
dielectric boundary (the circumference) coincides with the line of the field. The lines of 
equal potential intersect it at the right angle. It means that the dielectric cylinder doesn’t 
change the field structure.

Figure 7.3 Field of two wires located along the generatrices of the dielectric cylinder.

As in the case of the solitary wire, in order to the potential near the wire was 
the identical in the air and in the dielectric, the surface density of the charge must be 
proportional to the permittivity of the medium, adjacent to a given part of the wires. So 
the magnitude A in the expressions (7.32)–(7.33) is defined by the equality (7.30), and 
the equivalent permittivity is defined by the expression (7.28). 

If the wires of the real transmission line are not infinitely thin, but have circular 
cross-sections of the finite radius, then always one can place the axes of the wires such 
that the surfaces of the real wires may coincide with the surfaces of equal potential, 
which are the surfaces of the round cylinders.

The two-wire line may be fabricated in the shape of the round metallic cylinder 
located over the metal plane (Figure 7.4a), in the shape of two round cylinders with 
different axes, which do not encompass one another (Figure 7.4b) and in the shape of 
two analogous cylinders encompassing one another (Figure 7.4c). The dielectric cylinder 
is used in all these cases simultaneously both as an isolator and as a supporting 
construction. One must note that the circumference coinciding with the boundary of the 
dielectric cylinder goes not through axes of the round metallic cylinders, but through 
equivalent infinitely thin straight wires, the fields of which coincide with the fields of 
the round cylinders. Two equipotential surfaces of fields of thin wires coincide with the 
surfaces of the real wires.

The distance between the axis of the round metallic cylinder and the equivalent wire 
for the variant shown in Figure 7.4a is equal to

U=COIISf 

V=COI/Sf ------...... 
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h b h h R- = - -2 2 , (7.34)

where R is the radius of the round cylinder. For the variant shown in Figure 7.4b the
distances between the surface of zero potential and the axis of one round cylinder and 
between this surface and the equivalent wire are equal correspondingly to

h
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where R1 and R2 are the radii of the cylinders, and D is the distance between their axes. 
At last for the variant depicted in Figure 7.4c
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= -, . (7.36)

Figure 7.4 The long line in the shape of the round metallic cylinder over the metal plane (a) and 
in the shape of two cylinders with different axes, which do not encompass (b) and encompass 
(c) one another.

The capacitances of the solitary wire and of the two-wire transmission line 
are proportional to the permittivity e of medium. In the case of the heterogeneous 
medium consisting of homogeneous layers the magnitude e must be replaced by the 
equivalent permittivity—in accordance with above-presented expressions. In particular, 
if the solitary wire is located at the boundary of the two media (see Figure 7.2), the 
equivalent permittivity is equal to the arithmetic average of the magnitudes e1 and e2.
This conclusion conforms completely to the known thesis, in accordance with which the 
capacitance between two conductors located symmetrically relative to a flat boundary of 
two media with the permittivity e1 and e2 is equal to half-sum of the capacitance values 
between the same conductors in the homogeneous media with permittivity e1 and e2
accordingly [34]. In the case of a single wire, the metal cylinder of infinite radius, axis 
of which coincides with the wire axis, may be accepted as the second conductor.



166 Antenna Engineering: Theory and Problems

If the boundary of the two media goes along a broken line, whose point of 
sharp bend coincides with the wire center (this boundary is shown by dotted line in                     
Figure 7.2), then in accordance with (7.26)

e
p

e j e je = +
1

2 1 1 2 2( )D D . (7.37)

If a few media, the boundaries of which coincide with the radial surfaces, are 
adjacent to the solitary wire, then in the case of equal angular width of the adjacent 
media, the equivalent permittivity is determined by the expression (7.27), in the case 
of different angular width this permittivity is determined by (7.26). This conclusion 
coincides with the results obtained in [65, 66].

In [65] it is shown that the electrostatic field of the wires’ system of the arbitrary shape 
located in a piecewise homogenous medium coincides with a field in a homogenous 
medium, if the media boundaries coincide with the surfaces of wires and the surfaces 
of the equal strength of the field in the homogenous medium (this condition is called 
the condition of invariance). Accordingly for the capacitance between the wires located 
in a piecewise homogenous medium [66] gives the expression                                         

C Ci
i

i

N

=
=
Â e

e0
0

1

(7.38)

Here Ci0 is the capacitance between the medium i and the wire segment adjacent to it, 
if the wire is located in a homogeneous medium with permittivity e0.

It is obvious that the condition of invariance is performed in the case when the 
boundaries of the media adjacent to the solitary wire coincide with radial surfaces. If to 
use as the second wire the metal cylinder of the infinite radius coaxial with the solitary 
wire, then it is easy to obtain (7.26) and (7.27) from (7.38).

For the line from two infinitely thin wires located along the generatrices of the 
circular dielectric cylinder, the condition of invariance is performed also. Since the angle 
width of both media adjacent to each wire is equal to Dj1 = Dj2 = p, then C10 = C20, i.e. 
the magnitude ee, is also determined by the equality (7.28). This proposition stays true, 
if the thin wires are located along the arbitrary selected generatrices, the length of arc 
between which is not equal to p.

If a thin dielectric insert with the angle width 2a, limited by arcs of two circumferences, 
the centers of which lie on the axis y in the points y = ±d, is placed between the wires 
(the insert boundaries are shown by the dotted lines in Figure7.3), then in accordance 
with (7.26)

ee = e1 +(e2 – e1) a/p, (7.39)

where e1 is the permittivity of the air and e2 is the permittivity of the dielectric.
The capacitance between the metallic cylinders per unit length (see Figure 7.4) is

C
h R h R h R h R
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˚̇{ }
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2

2 2 2 2
2

pe

ln / ( / ) / ( / )
, (7.40)

where the plus sign in the second square brackets is taken when one must calculate 
the capacitance between the cylinders depicted in Figure 7.4b, and the minus sign 
corresponds to Figure 7.4c.
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For two cylinders of the same radius (R1 = R2 = R)

C
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1 2
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This expression coincides with the expression, which one may obtain from presented 
in [34] expression (8–7) for the linear capacitance of the two-wire line located in the 
dielectric near the cylindrical interface of the two media, if the distance between the 
axis of the each wire and the interface is a small magnitude of the order of the wire 
radius. One must note that the expression (8–7) and the expression (7.41) are true at 
the arbitrary location of the charged filaments (of the equivalent linear wires) along the 
cylindrical interface of two media, i.e. at any arc length between the filaments (not only 
at arc length p).

For the circular cylinder located over a metal plane (see Figure 7.4a)

C
h R h R
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+ -È
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2

12

pe

ln / ( / )
. (7.42)

In the particular case, if h/R � 1,

C h Re= 2 2pe /ln( / ), (7.43)

that coincides with the expression, which one may obtain from presented in [34] 
expression (8–8) for the two-wire line with isolation of the ribbon type.

7.3 SYMMETRICAL CABLE OF DELAY. THE COAXIAL CHAMBER 
FOR CALIBRATING INSTRUMENTS FOR MEASURING 
STRENGTH OF ELECTROMAGNETIC FIELD

Symmetrical delay cable is an example of a specific device for calculating electrical 
characteristics of which it is necessary to take into account the medium heterogeneity. An 
ordinary coaxial delay cable has an interior wire in the shape of a helix and an exterior 
wire in the shape of the circular metallic cylinder. In contrast to it the symmetrical delay 
cable has two interior helical wires.

In principle the helical wires may be wound on two parallel dielectric cores or on a 
common core. An inductance in both cases is approximately the same, but a capacitance 
between the wires in the case of two parallel cores is many times less. So a linear delay 

T C= L (7.44)

is small, and a wave impedance of a cable

W C= L/ (7.45)

is very big (in the presented expressions L is a cable inductance per unit length, and C
is a cable capacitance per unit length). For this reason in symmetrical cables of delay, 
two isolated wires are wound on a common core. The wires are wound in opposite 
directions: otherwise they will form a bifilar helix with low inductance.

It is necessary to remind that the capacitance per unit length of the symmetrical 
cable is equal to
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C = C12 + C11/2, (7.46)

where C12 is the partial capacitance between helical wires, and C11 is the partial 
capacitance between each wire and external screen.

Thus, for the calculation of the delay time and the wave impedance of the cable, 
one needs to calculate the capacitance between the two coaxial cylindrical helices of the 
equal radius wound in opposite directions and also the capacitance between each helix 
and the screen.

Calculation of capacitance C11 is simple. At dense winding, C11 is the capacitance per 
unit length between two coaxial circular cylinders. Radius of the first cylinder is equal to 
the screen radius, and radius of the second cylinder is equal to the winding radius. At 
the rare winding, it is the capacitance between the straight wire and the metal cylinder, 
whose radius is equal to the radius of the screen.

The calculation of the capacitance C12 is a result of solving two problems. The 
first problem is the calculation of the capacitance between the wires located in the 
homogeneous medium (air). This problem is considered in Section 7.4. The second 
problem is an account of influence of the heterogeneity of the medium, since in fact 
the dielectric cylinder (core of polyethylene) with the permittivity differing from the 
permittivity of the air is placed inside the helices. About this problem based on the 
results of previous section one can say the following.

As shown in section 7.2, the capacitance of the long line, the wires of which are 
located along the generatrices of the circular dielectric cylinder, is proportional to the 
equivalent permittivity, which is equal to the arithmetic average of the permittivity of 
the cylinder and the permittivity of surrounding medium (air). This proposition stays 
true if the thin wires are located along arbitrarly selected generatrices, the length of arc 
between which is not equal to p.

From here one can draw with a high degree of reliability a conclusion that at placing 
polyethylene or any different core inside the helices, the capacitance between them 
increases in proportion to the same equivalent permittivity.

A coaxial chamber for calibrating instruments for measuring the strength of an 
electromagnetic field is another example of an analogous device (of the same kind). The 
coaxial chamber is the fraction of coaxial line with increased dimensions, in which the 
electromagnetic wave is excited. The coaxial chamber secures a high degree of screening 
measuring devices. The electromagnetic field in it is uniform. The problem of reflected 
waves doesn’t arise here.

The chamber for calibrating instruments for measuring the strength of electromagnetic 
field in the air is shown in Figure 7.5. Its central conductor 2 is made in the shape of 
a cylindrical helix. The conical transitions 1 at the chamber ends provide connections 
with the standard coaxial connectors, one of which (input 9) is joined to a generator 10, 
and another (output 7) is joined to a matched load 8. The coaxial line and the conical 
transitions are so constructed that the wave impedance is constant.

Figure 7.5 Coaxial chamber with one helical conductor for calibrating instruments for 
measurement of the magnetic field in the air. 
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A calibrated measuring instrument 6 is introduced into the chamber and is placed 
inside the volume confined by the helix. Antenna 6 as a rule is manufactured in the shape 
of a multiturn loop of finite radius. Signal of the instrument through the preliminary 
amplifier 5 and the coupling line 4 feeds the recording device 3.

The described circuit of the measurement gives an error caused by the fact that 
the strength of the magnetic field inside the volume, confined by the helix, has not 
only longitudinal (Hz), but also parasitic transverse component (Hp), which distorts the 
measurement results, since the emf created at the ends of the loop antenna, contains 
terms proportional both components. 

In order to remove the radial component of the magnetic field, it is necessary to 
make the central conductor in the shape of the coaxial chamber, which is shown in 
Figure 7.6. The chamber is built as two helical conductors 12 and 13 with opposite 
direction of winding, and one conductor is connected to a generator through phase 
inverter 14, which changes the phase of current by p. The fields created by the currents 
of both conductors are summed up. 

Consequently the components Hr cancel one another, and the components Hz are 
added together and form practically the uniform magnetic field.

Figure 7.6 Coaxial chamber with two helical conductors for 
calibrating measuring devices of the magnetic field in the conductive liquid.

In the last years a development of methods and facilities for the measurements of the 
electromagnetic field strength in the conductive liquids (the sea water, soil, etc.) acquired 
important significance. The measurement results depend on the medium conductivity, 
which may vary within wide limits. Because of this the preliminary calibration of 
instruments necessary here is extremely.

The coaxial chambers for such calibration in the conductive liquid are described in 
[67]. In particular, for calibrating the measuring devices of the electric field, the part of 
the central conductor of the coaxial chamber is made in the shape of a cylindrical tank 
with dielectric walls. The tank is filled with the conductive liquid, and the measuring 
antenna is placed inside the tank along its axis.

When calibrating instruments for measurement of the magnetic field strength it is 
expedient to place the tank 11 with the conductive liquid inside the volume confined 
by the cylindrical helices (see Figure 7.6). The tank diameter must be less than the 
thickness of a skin layer in order to exclude the error, which is caused by attenuation 
of the electromagnetic field in the radial direction.

The equivalent circuit of the coaxial chamber with two helical conductors excited 
in anti-phase is presented in Figure 7.7. The equivalent circuit of the symmetrical delay 
cable has an analogous view. In the both cases it is asymmetrical line of two wires located 
above the ground (above the outer screen). But in the case of the coaxial chamber, the 
additional reactance jQ per unit length caused by the surface impedance is contained 
in each wire of the line:
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jQ Z Z a Z Z= +[ ]1 2 1 1 22/ ( )p . (7.47)

Here Z1 is the surface impedance of the helical wire, Z2 is the surface impedance of the 
conductive liquid, and a1 is the helix radius.

Figure 7.7 Equivalent circuit of the line with two helical conductors.

The impedance Z1 is introduced in the following way. The outer surface of the helix 
is mentally replaced by a metal coating. The helix turns into the cylindrical wire of radius 
a1. The slowing of wave along this wire is taken into account by means of incorporating 
a linear impedance in the obtained conductor. If to regard this impedance by purely 
reactive (without account of losses in the helical wire), then at low frequencies it has an 
inductive character: the surface impedance of the helical wire is equal to

Z j a1 12= p wL , (7.48)
where w is the circular frequency, 

L = pm w0
2

1
2 2a K La / (7.49)

is the inductance per unit length of the helix, m0 is the permeability of the free space – w
is the number of winds, L is the length of winding, Ka is the coefficient, which is equal 
to 1, if a1 << L, and decreases smoothly, when a1/L increases [68].

With increasing frequency, the self-capacitance of the helix becomes noticeable, i.e. 
the helix behaves as a parallel tuned circuit with the resonant circular frequency w0:

Z j
a

1
1

0
2

2

1
=

- ( )
p w

w w/
L . (7.50)

If the tank with the conductive liquid is placed inside the volume confined by the 
cylindrical helix, this is equivalent to a connection in the wire of the additional surface 
impedance Z2, which is equal to 

Z
k J k a

J k a2
1 0 1 1

1 1 1 1
=

( )
( )s

. (7.51)

Here k1 is the propagation constant in the conductive liquid, and s1 is the conductivity 
of the liquid. The surface impedance Z2 is incorporating in parallel with the impedance 
Z1. It is considered that the radius of the tank the coincides with the helix radius.

The structure from two wires with different surface impedances located above the 
ground has two different propagation constants (see Section 3.5). In the partial case, 
when the wires are the same and have the identical surface impedance, then regardless 
of the boundary conditions (loads at the ends of the line) the components of the currents 
and voltages with the propagation constant ki are the same in both wires (in-phase wave), 
and the components with the propagation constant ka (anti-phased wave) are equal in 
magnitude and opposite in sign, i.e.
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k k Q k k Qa1 2
2

11 12 2
2

11 12= + + = + -w b b w b b( ), ( ) , (7.52)

where k2 is the propagation constant of wave in the medium between the helical wires 
and the external screen, and b11 and b12 are accordingly the self (for the each wire) and 
the mutual (between the wires) coefficients of electrostatic inductions.

In the circuit depicted in Figure 7.7 two emf, equal in magnitude and opposite in 
sign, excite two helical wires, creating only anti-phase currents. The impedance ZAB
between points A and B is the input impedance of the two-wire long line with the 
propagation constant ka and the wave impedance 

W ka a= -[ ]2 11 12/ ( )w b b . (7.53)

If we turn from the coefficients of electrostatic inductions to the partial capacitances 
Cik, we shall obtain: 

k k Q C C W k C Ca a a= + + = +[ ]2
2

11 12 11 122 2w w( ), / ( / ) . (7.54)

Here, as in expression (7.46), C12 is the mutual capacitance per unit length between wires 
and C11 is the analogous capacitance between each wire and the ground (outer screen). 
The mode of traveling wave will exist in the two-wire line, if the loading impedance 
2Zload will be equal to the wave impedance Wa.

As mentioned earlier, the equivalent circuits of the coaxial cable of delay and the 
chamber for calibrating meters of the magnetic field strength are the same. In both cases 
there are two coaxial cylindrical helices of equal radius wound in opposite directions 
and located in the metal screen. In the equalities (7.44)–(7.45) the inductance of the 
helix is taken into account by means of the cable inductance L, in the equality (7.54) 
the inductance of the  helix is taken into account by means of the surface impedance 
Z1 included in the impedance jQ. Additionally in (7.54) the properties of the dielectric 
cylinder (of the tank with the conductive liquid) located inside the volume confined by 
the cylindrical helices (in particular the losses in this cylinder) are taken into account. 

For the calculation of the wave impedance and the propagation constant of the 
equivalent long line one must know the partial capacitances C11 and C12. The problem of 
calculating the capacitances, as already it was said during consideration of symmetrical 
cable of delay, breaks down into two problems. The first problem is the calculation 
of the capacitances between wires located in a homogeneous medium. This problem 
has independent importance, since its solution is necessary for calibrating instruments, 
measuring the magnetic field strength in the air and producing suitable basic standards. 
It is considered in the follow section.

The second problem is the account of heterogeneous medium influence. The 
capacitance between helical wires owing to a presence of a dielectric core (of a conductive 
liquid) inside the helices increases proportionally with an equivalent permittivity. At that 
the permittivity is regarded as the real magnitude, since the imaginary component of
e (losses in the conductive medium) is taken into account by means of introducing the 
surface impedance Z2.

7.4 CAPACITANCE BETWEEN WIRES OF A TWO-THREAD HELIX 

The given section is devoted to calculating a capacitance between two coaxial cylindrical 
helices of the same radius wound in opposite directions (Figure 7.8a). It is considered 
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that the wire diameter 2a is small in comparison with a transverse and longitudinal 
dimension of the helix.

It is known [34] that, if a system consists of two identical wires and a sum of theirs 
charges is equals zero (i.e., the system is electro neutral), the capacitance between wires 
coincides with the mutual partial capacitance and is equal to

Cl = -0 5 11 12. /( )a a , (7.55)

where a11 and a12 are the self- and mutual potential coefficients of the wires respectively. 
We use the cylindrical system of coordinate (r, j, z) with axis z along the helix axis 

and with origin O on the plane going through the initial points of the wires. The letter 
x designates the coordinate, which is counted along the wire. In the arbitrary point of 
the helical wire

x z= +2
0
2 2r j , (7.56)

where r0 is the radius of the cylindrical surface, along which the helix is reeled, and j
is the total rotation angle from the initial point of the wire to the point with coordinate z.

Figure 7.8 Two-thread cylindrical helix with the opposite winding (a)
and the involutes of the first coil (b).

In Figure 7.8b the involute of the first coil of the helix is given. As one can see from 
the figure

z/x = s/b, r0j/x = 2pr0/b, (7.57)

where s is the helical pitch, and b s= +2
0

22( )pr . From here 

x = zb/s, j = 2p x/b. (7.58)

If L is the helix length, then the length of the each helical wire is

l = Lb/s. (7.59)

In accordance with the method of Howe, we consider that the linear charge density 
t is the same along the entire wire length:

t = q/l, (7.60)

where q is the all charge of the wire. Then the potential in the point M with coordinates 
(r0, j’, z’), excited by the charge tdx of the wire element dx, is equal to

dU dx RM = t pe/( )4 0 1 . (7.61)

z z 
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Here e0 is the permittivity of the free space, and R1 is the distance from the point M to 
the element dx with coordinates (r0, j, z). For simplicity we regard that a potential is 
determined by the filament charge located on the wire axis, i.e.
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. (7.62)

The total potential of all charge q in the point M is

U x
q

l
dx
RM

l

( ’) = Ú4 0 10
pe

. (7.63)

Averaging this magnitude over the wire length

U
l

U x dxM

l

11

0

1
= Ú ( ’) ’ , (7.64)

and dividing into q, we calculate the potential coefficient a11:
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When calculating a12 we consider that two helical wires are wound in the opposite 
directions. Besides, the ends of the wires in the initial cross-section are shifted along 
the perimeter of the cross-section by p relatively one another. Therefore, if relationships 
(7.58) are true for one wire, then for the second wire in the observation point M we have  

x’ = z’b/s, j’ = p –2p x’/b. (7.66)

Accordingly, for the distance R2 from the point M to the element dx we obtain instead 
of (7.62)

R
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( ’)r p . (7.67)

Calculating the total potential of all charge q of the adjacent wire in the point M and
averaging this magnitude over the considering wire, we find:                                

a
pe r p

12
0 2 0

2 2 2

2
00

1
4 2

=

- + +È
ÎÍ

˘
˚̇

+
ÚLl

dx
dx

x x
b

s
x x

b
a b
s

l

’

( ’) cos
( ’)

ll

Ú . (7.68)

Integrals (7.65) and (7.68) cannot be expressed in terms of elementary functions, since 
the radicands of their integrands involve besides (x – x’)2 the squares of trigonometric 
functions, arguments of which also depend on x and x’. Therefore one may determine 
them only numerically. The double integral (7.65) may be reduced to the ordinary one. 
If we introduce the notations
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then a11 is equal to

a11

00

= -ÚÚA dx f x x dx
ll

’ ( ’) .

Since f(t) is the even function relative to argument t, and the region of integration 
is the square l cm on side, we obtain:

a11

00

2= ÚÚA dx f t dt
xl

’ ( )
’

.

Changing the order of integration, we find:

a11

00

2 2= = -ÚÚÚA f t dt dx A l t f t dt
l

t

ll

( ) ’ ( ) ( ) . (7.69)

If the wire radius a is small, then if t tends to zero (x tends to x’) the integrand in the 
expression (7.65) rises sharply and complicates the numerical integration. Reducing the 
double integral to the ordinary one substantially facilitates the calculation.

Figure 7.9 The node of crossed straight wires.

For calculating the capacitance between two coaxial cylindrical helices one can 
propose an approximate method as the alternative to a numerical method. The 
approximate method is based on the fact that this capacitance is caused by multiple 
crossing of one wire with the second wire. In order to calculate this capacitance, one 
must sum up the capacitances of the nodes of crossing. One can imagine the each node 
of crossing in the shape of four wire segments with lengths l1 and l2 and connect these 
segments in pairs (Figure 7.9) with the total length

l1 + l2 = l0 = l/(2w), (7.70)

where w is the number of the coils. If to consider for simplicity that the wire segments 
are straight, we obtain
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C C wCl l
n

l
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Â 0 0
2

1

( ) . (7.71)

Here n is the node number, N is the number of the nodes (it is equal to 2w), and 
Cl

n
0

is the capacitance between two crossed straight wires of the node n. Similarly (2.43)

Cl
n n n
0

0 5 11 12= -ÈÎ ˘̊. / ( ) ( )a a , (7.72)

where a11
( )n  and a12

( )n  are the self and mutual potential coefficients of wires of the node 
n. If the radius a of the wire is small in comparison with its length l0, then

a
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l a= -[ ] . (7.73)

In order to find the value of a12
( )n , one must calculate potentials UM(u) and UN(u)

in the points of left and right segments of one wire and average these potentials over 
the entire wire length. In the common case, if the segments lengths are different, we 
obtain (see Figure 7.9):
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Here g is the angle between the wires. Similarly,
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From (7.72)–(7.74),
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If l1 = l2, then taking (7.70)–(7.71) into account we obtain: 
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Here, as it is easy to make sure,

w = l/s, tan(g/2) = 2pr0/s. (7.77)

The calculations and measurements results of the capacitance between the wires of a 
two-thread helix with dimensions (in meters): L = 0.32, 2a = 1.5·10-3, r0 = 0.045 and with 
the different number w of the coils—are presented in Figure 7.10. Curve 1 is obtained 
by the numerical method in accordance with the expressions (7.55), (7.68) and (7.69), 
the curve 2 is obtained by the approximate method, in accordance with the expression 
(7.76). The measured values are marked by the circles. As one can see from figure, 
both calculation methods give the similar results (the difference is from 2 to 4%), which 
coincide well with the experiment. That indicates the applicability of the approximate 
method for the calculation of the capacitance between the wires.

When the wire diameter rises, the accuracy of the approximate method decreases.

Figure 7.10 Dependence of the helix capacitance from the number of the coils.

The obtained results show the applicability of the approximate method not only for 
the calculating the capacitance between two coaxial cylindrical helices, but also for the 
calculation of the capacitance of itself nodes of crossing. The expression (7.75) permits 
to calculate the capacitance between two crossed wires located in the free space and in 
the homogeneous medium with permittivity e or near the interface of two media, whose 
equivalent permittivity is equal to ee (with help of replacement e0 to e or ee).

One can also generalize the approximate method to the case of wires with a sheath 
(Figure 7.11a). If the sheath radius is small in comparison with the transverse and 
longitudinal helix dimensions, i.e. if the sheath thickness is close to the wire radius, 
then one can consider that the wire surface and the outer surface of the sheath are 
equipotential surfaces. So the capacitance Cl between wires consists of three capacitances 
connected in series:

1 1 1 1

1 2 3C C C Cl l l l
= + + , (7.78)

where C1l and C3l are the capacitances of the capacitors created by the external and 
internal surfaces of each sheath, and C2l is the capacitance between the helix wires, 
whose radius is equal to the outer radius a1 of the sheath, i.e. 



177Method of a Complex Potential for Cylindrical Problems

C C l a al l1 3 1 12= = pe /ln( / ) , (7.79)

(here e1 is the absolute permittivity of the sheath), and C2l is calculated in accordance 
with (7.76)—with substitution a1 for a.

Figure 7.11 The cylindrical helix from the wires coated by a sheath (a)
or wound around a dielectric frame (b).

If the two-thread helix is wound around a thin dielectric frame of a cylindrical shape 
(Figure 7.11b), then in the first approximation the capacitance between wires is equal to 
the capacitance between the helix wires in the sheath, the thickness of which is similar 
to the frame thickness.

The calculation results for the capacitance between the wires of two-thread helix 
with the above-indicated parameters, which is wound around a cylindrical frame of 
the thickness a1 – a = 0.005 m with the relative permittivity er1 = 2.6, are presented in 
Figure 7.10 as curve 3. The measured values are marked by the triangles. Coincidence 
of the calculation with the experiments is sufficiently good. 

7.5 CROSSED WIRES NEAR TO MEDIA INTERFACE                                                                                

Two-thread helices wound around a solid dielectric cylinder (Figure 7.12a) is a matter 
of particular interest [69]. As it was shown in Section 7.2, if the helical wires lie on 
the interface of two media with permittivity e1 and e2, then it is necessary, when 
calculating potential coefficients and capacitances, to take as a permittivity of a medium 
an equivalent magnitude ee, which is equal to an arithmetic average. However if the 
wires of the helix are located over a cylinder surface (Figure 7.12b), such a method is 
inapplicable.

Figure 7.12 The cylindrical helix of the wires wound around a dielectric cylinder (a)
and located over a cylinder surface (b).
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Let us use the known expression for the capacitance per unit length of a two-wire 
line located in a dielectric not far from a cylindrical interface of two media [34]:
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Here a constant m is equal to m = (e1 – e2)/(e1 + e2). The meaning of the other designations 
is understandable from Figure 7.12. It is considered that in this expression the radius a
of the wire is small in comparison with other characteristic dimensions. If the distance 
h = r0 – r between the axis of each wire and the interface is the magnitude of the order 
of a, then the second addend of the denominator is equal to
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If the medium is homogeneous (e1 = e2) this summand is equal to zero. For a heterogeneous 
medium, using the conception of equivalent permittivity, one can represent a capacitance 
Cl in the following form:
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If the wires of the two-thread helix are located above the media interface, then, as one 
can see from (7.82), the magnitude ee depends not only on e1 and e2, but also on the 
geometrical dimensions of the structures, in particular at a distance R r0 sin(q/2)
between wires. If wires segments are shifted along a cylinder axis, it is necessary to take 
into account this shift during determination of a distance R. For ee we obtain:
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Here R is defined from (7.62) or (7.67) depending on the fact where the point M and 
the element dx are located—on one wire or on the different wires. 

If to substitute the magnitude ee in the expression (7.61) for the potential produced 
in the point M by the charge tdx of the element dx:
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then for the self-potential coefficient we shall obtain instead of (7.65) 
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or after reducing the double integral to the ordinary one,
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In these expressions the magnitude a is taken as the lower integration limit, that permits 
to get rid of singularity, which is caused by the second addend of integrand and does 
not have a physical sense. Accordingly for the mutual potential coefficient we obtain 
instead of (7.68)
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We find the capacitance Cl as usual from (7.55).
If inequalities

h a h a p a, , , sin / , ln( / ) ln( / )<< <<r r r q0 0 02 , (7.88)

are correct, then the capacitance between the wires located above a cylinder surface 
doesn’t differ from the capacitance between the wires, which lie along the interface.

The calculation results for the capacitance Cl between the wires of two-thread helices 
with parameters (in meters): L = 0.3, 2a = 1.8·10–3, r = 0.03 for the different number w
of the coils are presented in Figure 7.13. Solid curves are obtained in accordance with 
expressions (7.55), (7.86) and (7.87). Curve 1 is plotted for the helix located in the free 
space, the curve 2—for the helix wound around the cylinder with relative permittivity 
er2 = 2.8 (the axes of the wires coincide with the media interface), and the curves 3 and 4 
—for the wires located above the interface at the height of h = 0.75·10–3 and h = 2.25·10–3.

Figure 7.13 The capacitance of a helix would on a dielectric cylinder
depending on the number of coils.

In Section 7.4 the approximate calculation method for the capacitance between the 
coaxial cylindrical helixes located in the air is described. This method is based on the 
assumption that the capacitance is equal to the sum of capacitances of nodes of crossing. 
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For the approximate estimation of the capacitance between the helices located above the 
cylindrical interface it is necessary to increase the mentioned capacitance by a factor 
e1/(1 + Bm), where B = 1 – ln(4h/a)/ln(4r0/a). The results of this estimation are presented 
in Figure 7.13 by dotted lines.

In the case of conical helices with constant winding angle (Figure 7.14), the angle g
between wires at the node of crossing doesn’t change along the helices, and the radius  
r(z) and pitch s(z) of each helix increases in a linear fashion when z rises:

s z s z z z( )/ ( ) ( )/ ( ) /0 0 1 0= = +r r , (7.89)

where z0 is the distance from the helix start to the cone vertex.

Figure 7.14 A conical helix.

The lengths l n
0
( ) of wires, which intersect in nodes, increase in the same fashion. 

If to increase the wire radius in the same fashion when z rises, then the potential 
coefficients a12

( )n and a12
( )n  will be vary in inverse proportion to the length l n

0
( ), and it will 

be necessary in calculating Cl to replace the magnitude ln(l/aw) in the expression (7.76) 
by the magnitude ln[2 l n

0
( )/a(n)], which is the same in all segments. However wire radii 

in conical helices as a rule don’t change along a wire, and that introduces an additional 
calculation error. This error is relatively small, since it has a logarithmic character of 
dependence on a wire radius.

7.6 CAPACITANCES IN A SYSTEM WITH A FEW CONDUCTORS

Generalizing the concept of “capacitance between two conductors” in the case of a 
system with an arbitrary but finite number of conductors, we arrive at the concepts 
of a self -and mutual partial capacitances. A ratio of conductor charge to its potential, 
if all conductors of the system, including the conductor under study, have the same 
potential, it is called self-partial capacitance of the conductor in a many-body system. A 
ratio of one conductor charge to a potential of another conductor, if all conductors of a 
system, except the latter one, have zero potential, is called the mutual partial capacitance 
between the conductors.

The relationship between the charges and potentials in the system of N conductors 
in accordance with these definitions is expressed by a system of equations:

Q C U U i Ni in i n
n

N

= - =
=

Â ( ), , , ...1 2
1

, (7.90)

where Qi and Ui are the charge and the potential of the conductor i, Cii is its self-partial 
capacitance, Cin is the mutual–partial capacitance between conductors i and n(i n).
Here Cin = Cni.
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One can add to a system of N conductors, occupying a finite volume, conductor 
(N+1) in the shape of a sphere of infinite radius. Let this conductor have zero potential. 
In the resulting system the self-partial capacitance of any conductor, except conductor 
(N+1), may be interpreted as a mutual–partial capacitance between this conductor and 
the sphere.

The system of equations (7.90) can be transformed by means of uniting terms with 
the factor Ui and obtaining expressions relating charges and potentials of conductors:

Q U i Ni in n
n

N

= =
=

Âb , , , ...1 2
1

, (7.91)

where bin is called the coefficient of electrostatic induction. Another form of writing 
these relations is

U Q i Ni in n
n

N

= =
=

Âa , , , ...1 2
1

. (7.92)

The values ain are called the potential coefficients.
The coefficients bin and ain are related as follows:

bin in N= D D/ , (7.93)

where DN = |ain|is the N × N determinant, and Din is the cofactor of the determinant 
DN. The coefficients bin and Cin are related also:

C Cin i n in in i n in
n

N

π =
=

= - = Âb b,
1

. (7.94)

In the specific case when the system consists of a single conductor, the concept 
of self-partial capacitance coincides with the concept of the capacitance of the isolated 
conductor. When such conductor consists of several (N) connected conductors, their 
capacitance is equal to

C Cnn
n

N

0
1

=
=

Â . (7.95)

If N = 2, then
C C C C C0 11 22 11 11 12 22 21 22= + = + = +, ,b b b b ,

where

b a a a a b b a a a a11 22 11 22 12
2

12 21 12 11 22 12
2= - = = - -/( ), /( ),

b a a a a22 11 11 22 12
2= -/( ),

i.e.,

C0
11 22 12

11 22 12
2

2
=

+ -
-

a a a
a a a

. (7.96)

As an example, let us consider the open at the end two-wire long line with conductors 
of different lengths (l1 and l2 = l1 – l) and of the same radius a. This line was described 
in Section 3.3 (see Figure 3.11). As it is seen from Figure 3.11b, the considering structure 
consists of three conductors denoted in the figure by Roman numerals: I is the short 
wire, II is the parallel to it segment of the long wire with the same length, and III is the 
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additional segment of the long wire (with the length l). The load of the line (1) is   the
capacitance C between the conductors I and III. It cannot be calculated directly as the 
capacitance between the conductors I and III, located in free space, at least because 
that presence of the conductor II significantly changes it. It is necessary firstly to find 
the capacitance CS between the conductor I and the totality of conductors II and III,
after that to find the capacitance C0 between the conductors I and II and to subtract it 
from the first one: C = CS – C0. The calculation must take into account the self-partial 
capacitances of conductors in accordance with the expression (3.23).

Figure 7.15 Partial capacitances in a system of two wires.

For example, calculating the capacitance between parallel conductors of equal length 
means that not only the mutual partial capacitance between the mentioned conductors, 
but the parallel to it capacitance of a series connected partial capacitances between 
each conductor and the sphere of infinite radius are taken into account. If under the 
calculation only the capacitance between the conductors are taken into account, then 
the calculated value   of l0 for l = 0 will not be different from zero. This result is caused 
by the approximate nature of the theory of two-wire long line, which is based on the 
postulate about the extremely small distance between the wires, axes. If this distance 
tends to zero, the partial capacitance between the conductors becomes infinitely great, 
and the parallel capacitance due to the self-partial capacitance of each conductor to the 
sphere of infinite radius can be neglected.

A widespread misconception that the field of a long line is concentrated mainly 
between the wires is also caused by the approximate theory. In fact, only half energy 
flux is concentrated inside the imaginary cylinder passing through the equivalent thin 
filaments (see Section 8.7).



8.1  COMPARISON OF CONICAL AND CYLINDRICAL 
PROBLEMS. THE FIELD OF A LONG LINE FROM 
THE CONVERGING STRAIGHT WIRES

As was pointed out in the Introduction, the problem of calculating electric fields of 
charged bodies is substantially simplified, if the all geometrical dimensions depend only 
on two coordinates (such a field is called a plane-parallel field). A three-dimensional 
problem is solved only in a few particular cases, whereas a two-dimensional problem 
was considered more widely—for the different number of wires and for various shape 
of their cross-section. In this connection an attempt to use the solution results of two-
dimensional problems for electrostatic fields’ calculations in three-dimensional problems, 
when a mutual location of metal bodies reminds the two-dimensional variant, is of 
interest.

The field calculation of two infinitely long charged filaments converging to one 
point (Figure 8.1a) is an example of such a problem. The linear charge densities of both 
filaments are the same in magnitudes and opposite in sign

t1 = –t2 = t. (8.1)

Analogue of this three-dimensional problem is the two-dimensional problem for two 
parallel filaments (Figure 8.1b). The scalar potential of two such filaments in accordance 
with (1.12) is equal to

U x y( , ) ln= t
pe r2

2

1

r , (8.2)

where e is the dielectric permittivity of the medium, r1 and r2 are the distances from 
the observation point M to the filament axes. At that 

8
Method of Complex Potential for

Three-Dimensional Problems
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r r2
2 2 2

1
2 2 2= - + = + +( ) , ( ) .b x y b x y

Here b is the half distance between the axes of the filaments.

Figure 8.1 Three-dimensional (a) and two-dimensional (b) problems of 
two infinitely long charged filaments.

As has been mentioned earlier, lines of equal potential U = const in the plane field 
of two charged filaments are the circumferences with the centers on the axis of the 
abscissas. From here in particular it follows that the field of two parallel no coaxial 
metallic cylinders has the same character, since one can always locate the axes of the 
equivalent filament so that in their field two surfaces of equal potential coincide with 
the surfaces of the metallic cylinders (Figure 8.2a). Lines of force V = const are the 
circumferences with the centers on the axis of ordinates.

Figure 8.2 The two-dimensional problems for two metal cylinders (a), and the 
three-dimensional problem for two metal cones (b).
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One must remember that in accordance with the uniqueness theorem, the solution of 
an electrostatic problem must satisfy Laplace’s equation, and that surfaces of conductive 
bodies must coincide with the surfaces of equal potential. The three-dimensional problem 
of two convergent charge lines (see Figure 8.1a) is a particular case of a conical problem, 
in which conductive bodies have a shape of a cone with the top in the origin (Figure 8.2b).
The conical and cylindrical problems are compared with each other in [70], where it is 
shown that Laplace’s equation remains correct in going from one problem to another 
problem, if the replaceable variables are related by equalities:

r
q

j j= =tan ,
2 c

. (8.3)

Here r and jc are cylindrical coordinates, and q and j are spherical coordinates.
The result of such transformation of variables is mapping of spherical surface of an 

arbitrary radius R on the plane (r, jc). Here the line of that surface intersection with any 
circular cone (with a vertex in the origin) transforms into the circumference. Therefore 
the three-dimensional conical problem may be reduced to a two-dimensional one, in 
which the coordinates of the conductive bodies are related with the coordinates of the 
bodies by equalities (8.3).

The case of the two convergent charged filaments located at an angle 2q0 to each 
other in the plane xOz (see Figure 8.1a) corresponds if to base on the analogy between 
the conical and the cylindrical problems to two parallel filaments spaced at the distance 
spaced at the distance 2b = 2 tan (q0/2) from each other (see Figure 8.1b). The case 
of the two metal cones with the angle 2y at the vertex of each cone and with the 
angle 2q1 between the cones axes (see Figure 8.2b), corresponds to two metallic cylinders 
of the radius a = (c – d)/2, the distance between axes of which (see Figure 8.2a) is equal 
to 2h = c + d. Since according (8.3)

c d=
+È

ÎÍ
˘
˚̇

=
-È

ÎÍ
˘
˚̇

tan , tan
q y q y1 1

2 2
, (8.4)

it is not difficult to make sure that

a h=
+

=
+

sin
cos cos

,
sin

cos cos
y

q y
q

q y1

1

1

. (8.5)

In particularly, it follows from (8.4) that 

q

y

1
1 1 1

2 2

1 1 1

2
1

2
1

= + =
- -

= - =

- - -

- - -

tan tan tan
( )

,

tan tan tan

c d
h

h a

c d
a

-- -( )
.

h a2 2 (8.6)

It is necessary to emphasize that upon the transition from the cone to the cylinder 
the cone axis doesn’t coincide with the cylinder axis.

The scalar potential of the electric field created by the two convergent charged 
filaments by analogy with (8.2) is equal to

U( , ) ln ,q y
t
pe

r
r

=
Ê
ËÁ

ˆ
¯̃2

2

1
(8.7)
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where

r
q

j
q

j
q

1
2 0
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Í
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In the given case, the surfaces of equal potential U = const are the circular cones, 
the axial lines of which lie in the plane xOz. Each surface satisfies an equation:

r
r

2

1
= =m const. (8.8)

For the plane problem the line of equal potential is the circumference with the center 
in the point hm = (1 + m2)b/(1 – m2) and with the radius am = 2mb/|1 – m2|. Using these 
magnitudes and the equality (8.6), we find the angle qm between the axis z and the axis 
of an equipotential circular cone in the conical problem

q qm
m

m m

h

h a

m

m
=

- -
=

+
-

Ê

ËÁ
ˆ

¯̃
- -tan

( )
tan tan1

2 2
1

2

2 0
2

1
1
1

, (8.9)

and also the angle ym between the cone generatrix and its axis 

y
q

m
m

m m

a

h a

m

m
=

- -
=

-
- -tan

( )
tan

tan

| |
1

2 2
1 0

2

2

1

2

1
. (8.10)

The surfaces of field strength V = const, in which field lines are located, are also 
circular cones. Actually, in the plane problem the flux function appears as

V c c= - -
t
pe

j j
2 2 1( ) . (8.11)

The sense of the angles jc2 and jc1 is clear from Figure 8.1b. The equation of the 
field line

jc2 – jc1 = jn = const (8.12)

is the equation of a circumference, the radius of which is equal to an = b/sinjn, and 
the axis is at a distance hn = b cot jn from axis z. In the conical problem the axial lines 
of the circular cones V = const also lie in the plane yOz forming with axis z the angle

qn = tan–1(cot jn tan q0), (8.13)

and the angle yn between the cone axis and generatrix is equal to

y
q
jn

n
=

Ê
ËÁ

ˆ
¯̃

-tan
tan
sin

1 0 . (8.14)

If to reduce a conical problem to a cylindrical, it permits to calculate the capacitance 
per unit length and the wave impedance of the long line consisting of two convergent 
filaments or cones. It is known, for example, that the capacitance per unit length of the 
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line consisting of two conductors with radius a located at the distance 2h from each 
other is equal to

C
h
a

h a ch h a
l =

+ ( ) -È
ÎÍ

˘
˚̇

= -
pe pe

ln ( )2 1
1

, (8.15)

and the wave impedance is 

W
cC

ch h a
l

= = -1
120 1

( )
( / ) . (8.16)

Here, c is the light velocity.
For two convergent cones we obtain in accordance with (8.5)

C
ch

W ch1 1
1

1
1 1120= =-

-pe
q y

q
y(sin sin )

,
sin
sin

. (8.17)

In particular for a dipole with an angle 2a between axes of conic arms (see Figure 8.3),
sin y = a/L, q1 = a, i.e. 

W ch
L

a2
1120= Ê

ËÁ
ˆ
¯̃

- sin
.

a
(8.18)

Figure 8.3 An inclined dipole.

8.2  NON-CLOSED COAXIAL SHELLS. A SLOTTED ANTENNA 
ON A CONE AND ON A PYRAMID

The case of two convergent charged shells, located along a surface of a circular cone 
with the angle 2q0 at vertex (Figure 8.4a) is of specific interest. Let the arc length in 
a cross-section of a charged shell be equal to 2a. The line of two coaxial cylindrical 
shells (Figure 8.4b) of radius a = tan (q0/2) with the same arc length in a cross-section, 
corresponds to this case. 

One can obtain a concept about the character of an electrostatic field of two cylindrical 
shells, if to sum fields of pairs consisting of symmetrically located parallel filaments 1-1’, 
2-2’, 3-3’ and so on (see Figure 8.4b) are equal in magnitude and opposite in sign charges. 
The lines of equal potential for each pair are the circumferences with the centers on 
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the curve line passing through the filaments. The envelope of the circumferences with 
the same value of constant m is the line of equal potential for the field of the shells. 
It is a curve line of a complicated shape, extended along both sides of each shell and 
smoothly bent around its ends. The axis of structure symmetry, i.e. y-axis, is also one 
of the equipotential lines.

The lines of field strength for each pair of the filaments are circumferences with 
centers on the symmetry axis y, which pass through the filaments. Two lines coincide 
with the circumference, on which the shells are situated, i.e. these lines close two gaps 
between the shells. Field lines inside this circumference connect the symmetrically 
placed filaments with each other and cross the lines of equal potential at right angles. 
The field structure in the case of two convergent shells (see Figure 8.4a) is of a similar 
nature, the only difference being that the surfaces of equal potentials U = const and the 
surfaces of field strength V = const coincides with the conic surfaces rather than with 
cylindrical ones.

Figure 8.4 Three-dimensional (a) and two-dimensional (b) problem of non-closed coaxial shells.

The capacitance Cl per unit length and the wave impedance W of the long line 
formed by two cylindrical shells [34, 71] are equal to

C K k K k W K k K kl = - ( ) = -e p( ) , ( ) ( ),1 120 12 2/ / (8.19)

where K(k) is the complete elliptic integral of the first kind of the argument 

k = tan ( )2 2b . (8.20)

Here 2b is the angular width of the slot, 2a = p – 2b is the angular width of the metal 
shell, i.e. Cl and W depend only on angular slot width 2b and hence on angular width 

b) 
y 

X 
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2a of the cross-section of the metal shell. Magnitudes Cl and W, as it follows from (8.19), 
are independent of cylinder radius a. This means that both expressions are correct for 
a conical structure with the identical cross-section.

Note that this section considers the structure, which consists of two metal plates 
and two slots and is located on a circular cone. This is a particular case of a structure. 
The general problems of calculating wave impedances of these and similar structures, 
located on planes, cones, and pyramids’ sides, with different numbers of metal plates 
and slots are considered in Chapter 9.

Magnitudes Cl and W are constant along the conic line, i.e. two-wire line of the 
convergent shells is a uniform line. As is known, an input impedance of a uniform two-
wire line, when its length infinitely increases, tends to its wave impedance. Therefore, 
the input impedance of an infinitely long line excited by a generator situated near the 
cone vertex is 

Z k K k K kl ( ) ( ) ( )= -120 1 2p / . (8.21)

One can consider the structure under study on the one hand as a two-wire line 
and on the other hand as an antenna. An antenna is a symmetrical V-radiator, with the 
arms shaped as two convergent metal shells located along the surface of a circular cone. 
Finally, we can consider this structure as a slot antenna in a conic screen. If ZE(2a) is 
the input impedance of a metallic (electric) radiator with angular arm width 2a, and 
ZS(2b) is the impedance of a slot antenna with width 2b, then, if the structure length 
is great, we find

Z Z Z k K k K kE S la( ) = ( ) = ( ) = ( ) -b p120 1 2( ). (8.22)

The same slots in a metal cone are shown in Figure 8.5. In the first variant (see 
Figure 8.5a) the slot edge coincides with the cone generatrix. This variant was considered 
earlier. In the second variant (see Figure 8.5b), the slot edge is a helix, and the metallic 
cone with the slot in it forms a two-thread helix, excited near the vertex. The angular 
slot width is considered to be constant. Strictly speaking, expressions (8.19)–(8.22) are 
true only for the variant of the slot antenna shown in Figure 8.5a. But if the angular 
width of the metal shell in both variants is same, one can say with a high degree of 
probability that the capacitances per unit length, the wave impedances, and consequently 
the input impedances of radiators are the same in both cases.

Figure 8.5 The slot antennas at the cone with straight-line (a) and helical (b) edges.
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It is useful to compare the input impedances of metallic and slot radiators with the 
same width. If, for example, the metal shell width is 2a = 2p/3, then b/2 = p/12, k2 = 
0.00515 and K k K k( ) .1 2 562- ( ) = , i.e. ZE(2p/3) = 120p/2.56. In fact, the slot impedance 
is the input impedance of the metallic radiator situated next to it. If the slot width is 

2b = 2p/3, then b/2 = p/6, k2 = 0.111, K k K k( ) .1 1 562- ( ) = . Accordingly, ZS(2p/3) = 
120p/1.56. Therefore, the impedances of metallic and slot radiators of the same width 
2p/3 are related to each other by the expression ZE(2p/3) .ZS(2p/3) = (120p)2/(2.56 .1.56),
from whence it follows

Z ZS E= ( )60 2p . (8.23)

Here ZE is the input impedance of the metallic radiator, which is identical to the 
slot in shape and dimensions. It is easily verified that (8.23) holds for radiators of any 
width.

Radiators with the same width of the metal shell and the slot are of particular 

interest. Setting 2a = 2b = p/2, we obtain: k2 = 0.0294 and K k K k( )/ .1 2 02- ( ) = , i.e.

Z ZE S( ) ( )p p p/ /4 4 60= = . (8.24)

As can be seen from (8.24), the infinite long radiator mounted on a cone has a 
constant and purely resistive input impedance, and hence the high level of matching 
with the cable in an unlimited frequency range. If the radiator is of finite size, the 
frequency range is limited, but remains sufficiently wide. 

These results do not answer the question why, when the width of metallic and slot 
radiators changes, the product of their wave impedances does not change, i.e. expression 
(8.23) remains true. In accordance with (8.24), if a = b = p/4, then k = tan2 (p/8),

K k K k( )/ .1 2 02- ( ) = , and ZE(p/4) = ZS(p/4) = 60p. The function K(k) is the complete 
elliptic integral of the first kind of the argument k. It is calculated by the formula 

K k
dt

t k t
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- -Ú
( )( )1 12 2 2

0

1

. (8.25)

We shall change the angular width of the radiators. Let a/2 = p/8 + d, and 
b/2 = p/8 – d, where d << p/8. Then the magnitude km for the metallic radiator is equal to

km = +tan ( )2 8p d/ .

Introducing the notation T = tan(p/8), it is easy to show that 
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Then
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Similar expressions for slot radiators, more precisely for the metallic radiators located 
next to it with an angular width b, are obtained replacing d with –d. This means that
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Therefore in the first approximation

K k
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2 2-( ) -( ) =
-( ) , (8.26)

i.e. in accordance with (8.23), when the angular width of metallic and slot radiators is 
different,

Z Z ZE S A= 2 ,

where ZA is the input impedance of the self-complementary radiator.
Thus, if a/2 is distinguished from the required magnitude p/8 on small magnitude 

d, the product ZEZS distinguishes from (60p2) on d 2, that confirms the stationary property 
of the ratio (8.24).

It is necessary to emphasize that the last expression and the expression (8.26) have a 
higher degree of accuracy than a first approximation, since the neglected terms are not 
only proportional to d 2, but the factor which is multiplied to d 2, is equal to the product 
of the same functions f(T) = –4T6(1 + T2)2 to the integrals with the same dependence on 

the value k(T) in the numerator of the expression (8.26) and on the value 1 2- k  in the 
denominator of that expression. It should expect that the substitution of functions with 
precision up to d 2 will show that difference between the left and right sides of (8.26) is 
a magnitude of the third order infinitesimal.

The method of calculating the wave and input impedances of metallic and slot 
radiators located along a surface of a circular cone through the wave impedance of an 
infinitely long uniform line may be applied also in other cases, for example to radiators 
located along pyramid sides. Let the pyramid have two metal sides (in the shape of the 
flat triangles) and two air sides, and also a rectangular cross-section (Figure 8.6). The 
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wave impedance of the line formed by two triangular plates depends on the relation of 
the magnitudes b and d, which is constant along the line having the shape of a pyramid 
(b is the plate width in the given cross section, d is the distance between the plates). But 
the wave impedance doesn’t depend on absolute values of these magnitudes. That means 
that this two-wire line is also uniform, and that its input impedance with increasing line 
length tends to the wave impedance W.

Angles a and b are related by the expression tan a/sinb = b/d. As one can see from 
the given formulas, W is the function of two arguments: the ratio b/d and the angle a.
If, for example, b/d = 1, the change of a from 15° to 30° (and accordingly b from 15.5° 
to 35.3°) results in the change of the wave impedance from 42.3p to 45p, i.e.

ZE = ZS = (42.3 – 45)p.

ZS is equal to the input impedance of the metal radiator located next to the slot. If 
b/d = 1, b = 30°, then ZS = 28.2p. ZE is the input impedance of the metal radiator, 
which is identical to the slot in shape and dimensions. One can show that in this 
case, sin sin cos ( )d b a= = 1 2 2/ , g = tan–1(b tan b/d) = 63.4°, i.e. ZE = 54.2p, and 
ZEZS = (39.1p)2.

Figure 8.6 An antenna located along the pyramid sides.

If b/d = 5, b = 15°, then ZE = 127p. As to ZS, it is equal to the input impedance 
located next to the slot metal radiator, whose ratio b/d is equal to 1/5, and the angle 
b is calculated from an equation

tan b/tan g = d/b,

where g = 15° (with mutual replacing b by d the angles b and g are interchanged). It is 
easy to be convinced that b = 53.3°, i.e. ZS = 105p, and ZEZS = (36.6p)2.

As the calculations show, the product ZEZS depends on the ratio b/d, but is always 
smaller than (60p)2. The smaller angle a, the closer wave impedance of the radiator 
located along the pyramid sides to the wave impedance of the conical radiator with 
the same angular width.

On the example of a conical radiator we shall consider in detail results of using 
solutions of two-dimensional problems for an analogous three-dimensional problem. 
It is known that on the cone infinitely long radiators with the same angular width of 
the metal shell and the slots have a constant and purely resistive input impedance. It 
permits to secure a high level of matching in unlimited frequency ranges. If the radiator 
has finite dimensions, then the frequency range is limited, but remains rather wide. 
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Section 7.1 describes the requirements for the task, under which the field is uniquely 
determined. In particular, the shape and size of the conductive bodies in both problems 
should be the same.

In going to the two-dimensional problem in accordance with the conditions (8.3), 
the radiator length remains finite, if the radiator before transition has a finite length 
and therefore it is incompatible with the system of infinitely long cylindrical wires. 
Limitation on the length of wires changes the nature of the problem: it ceases to be 
flat. The line of infinite length can be considered uniform since the capacitance per unit 
length and the line impedance are not dependent on the angle magnitude at the vertex 
of the cone. If the line length is finite, then in calculating the mentioned capacity it is 
necessary to take into account the partial capacitance of each line wire to the surface of 
zero potential (see Figure 7.15). Since the transverse dimensions of the line are small in 
comparison with its length, it is expedient to consider that the distance to the surface 
of zero potential is equal to double generatrix length (2l = 2H/sin q0). Assuming that 
the maximal transverse dimension of the metal shell is 2aa, we estimate the additional 
capacitance per unit length of the cylinder as

C
l a1

2
4

=
pe

aln( )/
, (8.27)

where a is the cross-section radius. 
The partial mutual capacitance between the metal shells depends on the arc length 

2a. If 2a = p/2, this capacitance in accordance with (8.19) is equal to C0(p/2) = 2e.
When the arc length is changed, the capacitances C0 and C1 are changed too. The wave 
impedance of a transmission line formed by the metal shell and its reflection in the 
ground is equal to
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Here C0(2a) is the partial mutual capacitance per unit length, when the value 2a
is arbitrary.

The input impedance of the slot antenna, whose shape and dimensions coincide with 
the shape and dimensions of the metal radiator, is equal to the input impedance of the 
metal radiator located near the slot, whose width is 2b = p – 2a. Its wave impedance 
is equal to
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Here C0(2b) is the partial mutual capacitance per unit length, when the length of 
the metal shell cross section is 2b. The difference between a and b leads to different 
wave impedances in metal and slot radiators. In the general case we are talking about 
the difference in wave impedances between structures answering to expressions (8.28) 
and (8.29). In particular case, such difference exists between the one located on the cone 
structures of a metal and slot antennas with different width. It is also the difference 
between the antennas located along the sides of a regular pyramid (with square cross 
section and a value b/d, equal to 1) and along the sides of an irregular pyramid 
(with rectangular cross section and a value b/d, not equal to 1).
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In the common case, the input impedance of the metal radiator with finite length 
L and angular width 2a is approximately equal to ZA1 = RA1 – jW(2a)f1(kl). Here l = 
L/cos q0 is the generatrix length. The input impedance of the metal radiator situated 
next to the slot is approximately equal to ZA2 = RA2 – jW(2b)f2(kl). The different widths 
of these radiators in spite of having the same length causes a small difference in their 
impedances, which is shown schematically as a distinction between RA1 and RA2 , f1(kl)
and f2(kl). If a = b, the product ZA1 ZA2 is equal to 

Z Z R jW f klA A A1 2 1 1
22= -[ ( ) ( )]a . (8.30)

If a b, the product is

Z Z R R W W f kl f kl jR W f kl jR WA A A A A A1 2 1 2 1 2 1 2 22 2 2= - - -( ) ( ) ( ) ( ) ( ) ( )a b b (( )2 1a f kl( ) . (8.31)

In this case, if a > b, an equivalent radius of the first radiator is greater than that 
of the second radiator, i.e. its partial mutual capacitance per unit length is greater, and 
its wave impedance is smaller. The partial capacitance of each wire to the surface of 
zero potential (see Figure 7.15) also decreases the wave impedance of the radiator. The 
function f1(kl) is changed faster than f2(kl).

When the length of the cone increases, the reactive components of the input 
impedances tend to be zero. If a = b, then these components of both radiators change 
fast and in step, and after that asymptotically approaches to zero. As a result the 
input impedance of each infinite radiator is purely active and does not depend on the 
frequency. This result is consistent with (8.24). If a b, then in accordance with (8.25) 
one can suppose that the reactive components change slowly in the beginning and after 
that begin to oscillate synchronously in opposite phase. In this case the second item in 
the right part of expression (3.31) is positive and compensates the decrease in the first 
item caused by RA2 decrease. 

Further one must emphasize that the performance of self-complementary radiators 
is not always preferable in comparison with that of radiators close thereto in shape. 
They would be better, if the wave impedance of the cable was equal to 60p Ohm. 
When using a standard cable with a wave impedance 100 Ohm, the matching level in 
a given frequency range may be higher, if, for example, a pyramid has not the square, 
but a rectangular cross section, since the change of the cross section may decrease 
the impedance of the antenna, bringing its value closer to the wave impedance of the 
standard cable (see Section 8.6).

8.3  PRINCIPLE OF COMPLEMENTARITIES OF ANTENNAS ON 
A CONE AND ANTENNAS WITH LOADS

The equality (8.23) is the expression for the input impedance ZS of the slot antenna 
which has an arbitrary shape and is cut in a flat plate of unlimited dimensions with an 
infinitely small thickness (Figure 8.7). Let us remember that ZE in this formula is the 
input impedance of the metal radiator, the shape and dimensions of which are the same 
as the shape and dimensions of the slot.

The relation (8.23) for a slot antenna in a flat metal shield is obtained by two 
methods: by means of the duality principle [72–75] and by means of complementary 
principle [76]. The complementarities principle comes from an interconnection between 
scattering properties of the metallic and slot radiators of the same shape and dimensions. 
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Figure 8.7 Flat slot antenna.

Two infinite plates (each plate is aggregate of the metallic and slotted antennas), in 
which metal antennas are replaced by slotted antennas and vice versa) are called 
complementary structures. As it was said formerly, the input impedances of the slotted 
and metal antennas of the identical shape and dimensions are related to each other by 
the expression (8.23).

In the case of this interconnection, the identical in shape and size metallic and slotted 
radiators fill the entire plane. In this case, the structure is called self-complementary. 
Variants of flat self-complementary radiators are shown in Figure 8.8. Characteristics 
of these antennas are independent from frequency [77]. The main distinctive property 
of such antennas is the constancy of angles between the limitative lines of the metallic 
elements of the antenna. The radiator thereby has the same shape at all frequencies (the 
radiator dimensions are proportional to the wave length).

Figure 8.8 The flat self-complementary structures.

As was stated early, an input impedance ZS of a slotted antenna is in fact an 
input impedance of a metallic radiator located alongside it. Impedance Ze is an input 
impedance of another metallic radiator identical to a slotted antenna in the shape and 
size. In the particular case of a self-complementary structure they are identical, i.e. the 
equality (8.24) is performed irrespective of the structure shape and operation frequency. 
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Therefore the self-complementary structure has a constant and purely resistive input 
impedance in a wide frequency range.

An antenna consisting of a metallic (electrical) and a slot (magnetic) radiator of 
identical shape and dimensions needn’t be necessarily flat. For example, the radiators 
depicted in Figure 8.5, which are placed at the surface of a circular cone, satisfy the 
condition of identity in the shape and size. Such antennas should be called volumetric 
self-complementary antennas. But they appeared much later, than the flat antennas, 
and the term itself in the beginning was interpreted otherwise. For example, in [75], 
the structure of two flat antennas located in mutually perpendicular planes was called 
a volume antenna. The author of [75] calls the volumetric antennas located on the cone 
as conically deformed antennas, i.e. he assumes that the electric and magnetic radiators 
which are elements of such antennas, do not form self-complementary antennas. At the 
same time he correctly considers that this structure may be used to create signals with 
circular polarization.

Another point of view is presented in [77], page 42: ‘We can speak of a self-
complementary structure in the conical case, meaning that the region of the cone covered 
by the metal arms is the same as that not covered except for a rotation of 90o.’ In [78] 
it was shown firstly that structures consisting of electric and magnetic radiators of the 
same shape and dimensions may not be flat and secondly that the choice of surface for 
placement of such structures is not random. This is, in particular the case with circular 
cones, which in the limiting case turns into a plane.

The volumetric structure has properties similar to those of a flat structure. Really, 
in the general case the relation analogous to the expression (8.24) is correct for an 
input impedance of a symmetrical double-sided slot antenna of arbitrary shape and 
dimensions, which is located at a circular metal cone of an infinite length and is excited 
on its vertex (Figure 8.9). For derivation of such relation the duality principle is used. 
We consider a symmetrical magnetic V-shaped radiator (Figure 8.10a) located in a free 
space. Its radiation resistance RM and the radiation resistance RE of the electrical radiator, 
identical in shape and size, are related by the expression 

R RM E= ( )120 2p / . (8.32)

Figure 8.9 The symmetrical slot antenna on the circular cone.

This expression is well known. It follows from a comparison of the powers radiated 
by both antennas. If to compare the oscillating powers of both radiators, then we shall 
have obtain similarly to (8.24) 

Zm = (120p)2/ZE, (8.33)
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where ZM and ZE are the input impedances of the magnetic and electrical radiators 
correspondingly.

In order to go from magnetic V-shaped radiators to slot antennas, we divide 
each arm of the magnetic radiator by a conical metallic surface (of a circular cross-
section) passing through their axes. Since the shape of magnetic field lines coincides with 
this surface shape, the radiator field in consequence of the metallic surface insertion 
doesn’t change. Actually, as it is shown in Section 8.1 for the field of a long line of 
converging straight wires, the surfaces of field strength, along which the field lines 
are located, are the circular cones. The magnetic field of magnetic wires has similar 
structure. The axis of a cone coincides with the bisector of the angle between the arms 
of a V-shaped radiator.

The inserted metallic surface divides the magnetic radiator into two radiators located 
with different its sides (inside and on the outside of the metal cone). Since as a result 
the magnetomotive force eM, which excites the radiator, and its oscillating power

P = eMJM (8.34)

do not change, the fraction of magnetic current JM in each newly formed radiator is 
equal to the fraction of power radiated into each part of space.

Assume for definiteness that m is the power fraction in the smaller part of space 
(inside the cone) and 1-m is the power fraction in the greater part of space. The input 
admittance of the magnetic radiator located inside the cone is 

Y e mJ Y mM M1 = =/ /( ) , (8.35)

where Y = 1/Zm is the total admittance of the initial radiator. 
Let the cross section of the magnetic radiator with the current mJM have the shape 

of a curved rectangle with the sides b and a, at that b >> a (Figure 8.10b). The greater 
side b of this cross section is parallel to the metallic surface and has the shape of an 
arc. The interior radiator is equivalent to a one-sided slot of width b. (It is necessary to 
note that the value b is changed along the axis of the slot antenna.)

Figure 8.10 Magnetic V-shaped radiator (a) and double-sided slotted antenna (b).
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The outer radiator is equivalent to the similar one-sided slot with the current 
(1 – m)JM. Its input admittance is

Y e m J Y mM m2 1 1= - = -/ /[( ) ] ( ). (8.36)

If to unite both slotted antennas into a double-sided slotted antenna and to consider 
that its admittance is equal to the sum of the admittances of both antennas, then

Y Y Y Y m mS = + = -1 2 1/[ ( )]. (8.37)

The input impedance of the double-sided slot is

Z Ys s= 1/

or taking into account (8.33) and (8.37),

Z m m Z m m Zs M E= -( ) = ( ) -1 120 12p ( ) ./ (8.38)

The conical surface in the particular case of the straight magnetic radiator becomes 
the plane surface, which divides the space onto two equal parts. Accordingly, the fraction 
of current in each of the newly formed radiators is equal to m = 1/2, and equality (8.38) 
is transformed to the expression (8.24).

If the structure is self-complementary, then the metallic and slotted radiators are 
identical in shape and dimensions. And so 

Z Z m mS E= = -120 1p ( ) , (8.39)

i.e. the volumetric self-complementary structure has properties similar to the plane 
structure properties. It has a constant and purely resistive input impedance, which 
ensures a high level of matching with a cable in the wide frequency range.

The presented consideration shows that a choice of surface for placement of the 
self-complementary radiation structure is not accidental. This surface is the circular 
cone, which in the limiting case turns into a plane. The shape of a metallic and slotted 
radiator, located at the circular cone, may be different – similarly to the shape of flat 
radiators (see Figure 8.8). The simplest shape is obtained, if the edge of a slotted antenna 
coincides with the cone generatrix. From (8.38) and (8.24) it follows that the magnitude m
at least for infinitely long symmetrical slots of this kind located along the circular metal 
cone is equal to 1/2, i.e. the identical power is radiated inside and outside irrespective 
of the vertex angle of the cone and width of the slotted antenna. In the general case, 
the question of the magnitude m is open.

The real antennas constructed in accordance with the considered principle differ 
from the self-complementary structures represented in Figure 8.8. First of all they have 
finite dimensions. Secondly the continuous metal sheet as a rule is replaced by the 
system of wires diverging from the input (from the feed point). 

The flat metallic antenna in the shape of a triangle with the vertex angle p/2, 
suspended on two grounded metal supports (Figure 8.11a), is an example of that 
radiator. The metallic radiator is performed in the form of the system of wires divergent 
at same angles from the lower vertex of a triangle. This antenna with allowance for 
mirror image is the flat radiator consisting of metallic and slot radiators of the same 
shape and dimensions. The metal radiator is limited from the top by a horizontal wire, 
and the slotted antenna is limited from both sides by vertical shunts realized in the 
shape of grounded metal supports. Symmetrical variants of such radiators (Figure 8.11b)
is used as stand-alone horizontal antenna and as an element of an antenna array. 
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Figure 8.11 Flat vertical antenna of finite dimensions: asymmetrical (a) and symmetrical (b).

Three-dimensional antennas constructed on this principle are depicted in Figure 8.12. 
In them the metallic radiator with horizontal axis is located at a sharp angle to ground. 
This permits to increase radiator dimensions (the arm length) at the same height of 
supports, and also to increase its directivity. In order that dimensions of metallic and 
slotted radiators be equal, the distance between the supports must be twice as much 
as their height. Then the vertices A and B and their mirror images coincide with the 
vertices of a regular quadrangle (of a square).

The asymmetrical self-complementary antenna, which is depicted in Figure 8.12a, is 
located on the surface of a round cone. For simplification of construction it is expedient 
to replace a conical shell in each arm of a metal radiator by the flat triangle shell (see 
Figure 8.12b). This is an asymmetrical variant of an antenna located along the sides 
of a pyramid, which was submitted in Figure 8.6. In this case it is impossible to talk 
about complementary or self-complementary structure, since there is no smooth conical 
surface on which the metallic and slotted radiators are located. And so in a given case, 
the expressions (8.38) and (8.39) are inapplicable. As is shown in Section 8.2, the input 
impedance of such radiators is smaller than 60p, but at b/d = 1 it remains constant.

Figure 8.12 Asymmetrical antennas of finite dimensions, located on the cone (a), and pyramid (b).

The flat vertical antennas (see Figure 8.11) create the same bidirectional radiation 
(radiation into both sides from an antenna plane). The inclined antennas (see Figure 8.12) 
create unidirectional radiation with increased directivity to one side.

An interested variant of radiators placement along the faces of the pyramid 
was proposed in [79]. The article describes the octagonal pyramid with log-periodic 
radiators. Radiators are excited on the pyramid vertex and create signals of two mutually 
perpendicular polarizations. The author called this structure as quasi-self-complementary. 
In this case, the metal and slot radiators have not only different angular widths, but 
also different shapes.
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The structure of two inclined antenna, the wires of which diverge in opposite 
directions from the common feed point (Figure 8.13) gives interesting opportunities. 
Upon in-phase excitation (see Figure 8.13a), the directional pattern of a structure in a 
horizontal plane is close to a circular one, if the angle at the vertex of the triangular plate 
is not small. If the structure is excited in anti-phase (see Figure 8.13b), its directional 
pattern is similar to the pattern of a horizontal dipole. In this case, the structure resembles 
an antenna known as a “bow-tie antenna” (see, e.g., [80]). Using this similarity, it 
is possible to optimize the electrical characteristics of the well-known antenna. The 
theory of antennas placed on the pyramid faces may become the basis for analysis of 
characteristics of this antenna.

Figure 8.13 The structure of two inclined antennas with in-phase (a) and anti-phase (b) excitation.

In spite of the fact that the antenna depicted in Figure 8.11a, has finite dimensions, it 
ensures a high level of matching with a cable in the wide frequency range. But the main 
lobe of its vertical directional pattern deviates from the perpendicular to the antenna axes 
(deviates from ground) on the high frequencies, if the antenna height exceeds 0.7l(l/H
= 1.43). This effect, corroborated by calculations and measurements (see Section 8.4), 
sets the upper limit of an antenna frequency range.

In the case of a thin radiator one can expand the antenna frequency range, if to 
connect in it the concentrated capacitive loads permitting to create in-phase current 
distribution along an antenna wire (see Section 5.2). The capacitive loads of the flat 
triangular metal radiator may be performed in the shape of horizontal slots. In order that 
the current distribution in the metallic and slotted radiator coincide with each other, the 
slot radiator must be divided by vertical metal plates, and the width of each plate must 
coincide with a width of according horizontal slot (Figure 8.14). For such flat structure, 
the expression (8.24) remains correct.

Figure 8.14 A self-complementary antenna with loads.
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In derivation of equality (8.39) the metal surface was used. This surface, coincident 
with the shape of magnetic field lines, divided the each arm of the magnetic V-radiator.
In the general case this conical surface may have a cross section in the shape of two 
arcs (in Figure 8.2 these arcs are shown by a dotted line). These arcs may have different 
radii and different centers located in the plane yOz (but not in the shape of the one 
circumference). It is impossible to place the self-complementary radiators on such a 
surface. But the equality (8.38) for the input impedance of the symmetrical double-sided 
slotted antenna remains correct.

8.4  COMPARISON OF PARABOLIC AND CYLINDRICAL 
PROBLEMS. THE FIELD OF A LONG LINE FROM 
THE CONVERGING PARABOLIC WIRES 

As it is shown in Section 8.1, using equalities (8.3), relating the replaceable variables 
of the spherical and cylindrical systems of coordinates, one can reduce conical three-
dimensional problem to two-dimensional problem. This result had played a big role 
in the development of electromagnetic theory and in its use in antenna engineering. A 
similar result can be obtained, if to reduce the parabolic problem to the plane problem. 
The generatrix of a circular cone is a straight wire. A curve line also may be used as 
a generatrix. If, for example, a generatrix has a parabolic shape, the metallic surface 
assumes the shape of a paraboloid. Calculating the field of two infinitely long charged 
filaments of curvilinear shape located on the paraboloid surface and converging to its 
vertex (Figure 8.15) is a matter of unconditional interest.

Figure 8.15 A three-dimensional problem for two infinitely long parabolic filaments (a),
and solid geometrical figures (b).

Use of parabolic coordinates (s, t, j) facilitates an analysis of such structures. This 
is a system of orthogonal curvilinear coordinates [81]. Its coordinate surfaces are firstly 
confocal paraboloids of rotation (s = const, t = const), whose focal point coincides 
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with the origin of the coordinates system, and secondly half-planes (j = const) passing 
through the axis of rotation (see Figure 8.15). Rectangular coordinates are related to 
parabolic coordinates by the equalities:

x = st cos j, y = st sin j, z = (t2 – s 2)/2. (8.40)

Their parabolic wires are located along the surface of a paraboloid, or more exactly 
along the curves of intersection of this surface with the half-planes, passing through 
the axis of rotation.

As in the case of convergent straight wires, it is expedient to reduce the calculation 
problem for the electrostatic field of two charged parabolic filaments to the problem of 
two parallel filaments (see Figure 8.1b). To this end the Laplace’s equation in accordance 
with the uniqueness theorem must remain correct at the transition from one problem to 
another, and the surfaces of conductive bodies (wires) must coincide with the surfaces 
of equal potential.

In the cylindrical coordinates system (r, jc, z), the Laplace’s equation for a potential 
U has the form
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Here, it is taken into account that U/ z = 0, i.e. the lines parallel to z-axis have the 
constant potential (the field is plane-parallel). In the system of parabolic coordinates the 
Laplace’s equation has the form
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As seen from (8.42), this equation is symmetrical with respect to s and t, that is, 
the equation for each unknown quantity is true, irrespective of other equationas. In 
particular, for s we obtain
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Here U(s) = U(t), if other coordinates are the same. If, for example, U/ z = 0, then 

in accordance with (8.40) s t t s= - = +2 22 2z z, , i.e.

∂ ∂ = - ∂ ∂ =s s t t/ / / /z z1 1, , (8.44)
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whence

( ) ( ) .1 1/ /t t s s∂ ∂ = ∂ ∂U U (8.45)

Comparison of (8.41) and (8.43) shows that these equations coincide, if the substituted 
variables are related by equations:

r = s, jc = j. (8.46)

Here r and jc are the cylindrical coordinates, and s and j are the parabolic 
coordinates. Hence, the Laplace’s equation holds true in the transition from the parabolic 
problem to the cylindrical, if expressions (8.46) are true. The previous conclusion of the 
author, which requires the execution of inequality t >> s, is incorrect.
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The substitution of variables in accordance with (8.46) results in the mapping of 
parabolic surface t = const (for arbitrary t) onto the plane (r, jc). The line of this surface 
intersection with any paraboloid s = const is transformed into a circumference. Two 
parabolic filaments situated along surface s = s0 in the plane xOz (see Figure 8.15a)
are transformed into two parallel wires spaced at distance 2b = 2s0 in the cylindrical 
coordinates system (see Figure 8.1b). Two continuous geometrical figures located between 
parabolic surfaces s1 = c and s2 = d (see Figure 8.15b) are transformed into two metal 
cylinders of radius a = (c – d)/2(see Figure 8.2a), whose axes spaced at the distant 
2h = c + d.

The scalar potential of the electric field for two parabolic charged filaments situated 
along surface s = s0 (with linear charge density equal to ±q0) is similar to (8.2) 
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The designation q0 is used here instead of t in order to avoid confusion.
The surfaces of equal potential U = const in the given case are the volumetric 

geometrical figures, and their planes of symmetry coincide with the plane xOz. Each 
surface satisfies an equation 

r2/r1 = m = const. 

For the plane problem the line of equal potential is the circumference with the center 
in the point 

hm = b(1 + m2)/(1 – m2)
and with the radius

am = 2bm/|1 – m2|.

Using these magnitudes, we find the coordinate s of the parabolic surface, on which 
the axis of volumetric figure is located: 

sm = hm = s0(1 + m2)/|1 – m2|, (8.48)

and also the semi-axis length of the shorted curve formed by the intersection of this 
volumetric figures with the surface t = const:

a mm m m= - =( )s s s1 2 02 2/ /|1 – m2|. (8.49)

The angle ym between the paraboloid generatrix and axis is

y m m m ma h a= - -( )È
Î

˘
˚{ }-tan 1 2 22 1  = tan–1(2m/|1 – m2|) tan q0. (8.50)

The surfaces of field strength V = const, in which force lines are located, are circular 
paraboloids. Their axial lines lie in the plane yOz on the parabolic surfaces

sn = hn = s0 cot jn, (8.51)

and the semi-axis lengths of the shorted curves on the surface t = const are equal to

an n n cn= -( ) =s s s j1 2 02 sin . (8.52)

The sense of the angle jcn is clear from Figure 8.1b, where it is designated by jn.
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Indeed in the plane problem the flux function appears as

V q c c= - -0 2 1 2( ) ( ).j j pe/ (8.53)
The equation of the field line

jc2 – jc1 = jcn = const (8.54)

is the equation of a circumference, the radius of which is equal to an = b/sinjcn, and 
the axis is located from axis z to the distance hn = b cotjcn. In the parabolical problem 
the axial lines of the circular paraboloids V = const also lie in the plane yOz and form 
with axis z the angle

q j qn cn= -tan (cot tan ),1
0

(8.55)

and the angle jn between the paraboloid axis and the generatrix is equal to

j q jn cn= -tan (tan sin ).1
0/ (8.56)

From this it is clear that one of the surfaces of the equal strength created by the 
parabolic V-radiator coincides with the parabolic metallic surface passing through the 
axes of this radiator. Lines of magnetic field lie in this surface, and therefore if to insert 
the parabolic metallic surface passing through the axes of this radiator, the radiator field 
does not change.

Use of the equalities (8.46) allows to reduce the parabolic problem to the cylindrical 
problem and to calculate capacitance Cl per unit length and wave impedance W of a 
long line consisting of two volumetric figures with the parabolic axes. By analogy with 
(8.15), we find:

C
ch

W chl =
+( ) -( )ÈÎ ˘̊

= +( ) -( )ÈÎ ˘̊-
-pe

s s s s
s s s s1

1 2 1 2

1
1 2 1 2120, . (8.57)

The input impedance of a uniform two-wire line tends to its wave impedance. When 
the line length increases, the input impedance of the line tends to

Z chAB =
+
-

-120 1 1 2

1 2

s s
s s

. (8.58)

The case of two charged converging shells located along the paraboloid surface 
(Figure 8.16) is of a specific interest. This structure is a variant of placing metallic and 
slot antennas of finite length on surface of rotation. If the arc lengths of the converging 
shells are equal to 2a, then this parabolic problem corresponds to the plane problem for 
a line from two coaxial cylindrical shells. The electrostatic field of such line is shown 

Figure 8.16 Three-dimensional problem of non-closed coaxial shells located on the paraboloid.
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in Figure 8.4b. The field structure in the case of two shells located on the paraboloid
surface is of a similar nature, but surfaces of equal potential U = const and surfaces 
of field strength V = const coincide with the parabolic surfaces rather than with the 
cylindrical surface.

As seen from (8.19), capacitance Cl per unit length and wave impedance W of an 
equivalent line are dependent only on the arc length 2b of the slot antenna in the cross 
section of the paraboloid and, accordingly, on arc length 2a = p – 2b of the metallic 
shell. For this reason, expressions (8.19) are true also for the parabolic envelopes as for 
the conical. Magnitudes Cl and W are constant along the line, i.e. the line of two wires 
is the uniform. The wave impedance and the input impedance of an infinitely long line 
excited by a generator situated near the paraboloid vertex are equal to

W Z K k K kAB= = -( ) ( ) ( )a p120 1 2/ , (8.59)

where in the case of two metal plates (one dipole) k = tan2(b/2). If a = b, the radiator 
is self-complementary, and ZAB(p/4) = 60p.

8.5  CHARACTERISTICS OF FLAT ANTENNAS AND 
THE ANTENNAS ON A CONIC SURFACE

Let us go back to the characteristics of the symmetrical self-complementary vertical 
flat antenna (see Figure 8.11b). The finite dimensions is main its difference from the 
radiator shown in Figure 8.8a. Let each arm of the symmetrical flat antenna be built 
as the metal sheet of the height H and the thickness 0.001H, and the gap between the 
arms in the feed point is equal to 0.001H. The electrical characteristics of this antenna 
depending on l/H, are presented in Figure 8.17 (active RA and reactive XA components
of input impedances), 8.18 (reflectivity and standing wave ratio in a cable with a wave 
impedance of 60p and 100 Ohm), and 8.19 (horizontal and vertical directional pattern). 
These characteristics were calculated using the program CST. Besides, in Figure 8.20 
the pattern factor is shown—see expression (5.65). And in Table 8.1 the maximum gain 
and the radiation efficiency of the flat antenna are given. The gain is calculated with 
due account of matching losses (the wave impedance of the cable is adopted 60p Ohm). 

Figure 8.17 Active RA (a) and reactive XA (b) impedance of the symmetrical flat antenna.
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Figure 8.18 Reflectivity (a) and SWR (b) of the symmetrical flat antenna in the cable with 
wave impedance 60p and 100 Ohm.

Figure 8.19 Horizontal (a) and vertical (b) pattern for j = 0° of the symmetrical flat antenna.

Figure 8.20 Pattern factor of the symmetrical flat and conical antennas.
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Table 8.1 Maximal Gain and Radiation Efficiency of Symmetrical Flat and Conic Antennas

l/H
Gain at q0 q0

90o 30o 15o 90o 30o 15o

1 2.8 16.1 17.8 0.97 0.96 0.98

2 1.9 4.7 4.9 0.91 0.96 0.98

2.5 2.3 3.4 3.4 0.92 0.98 0.95

3 1.9 2.5 2.5 0.93 0.90 0.91

Large radiators with equal angle width of the metallic and slotted radiator have 
the constant and purely resistive input impedance, i.e. permit to secure a high level of 
the matching in wide range of frequencies. The radiators located along the cone and 
operating in a predetermined frequency range allow either to obtain the given electrical 
characteristics when the antenna has smaller height than the height of a vertical antenna 
or to improve the electrical performance at the same height.

Therefore, the interest to the conic self-complementary antennas is explained by two 
factors: by a high level of the matching and by the opportunity to reduce the antenna 
height.

We compare from this point of view the electrical characteristics of a symmetrical 
antenna located along the surface of the cone with horizontal axis and the angle 
2q0 = 60° at the vertex (see Figure 8.5a), which are given by solid curves in 
Figures 8.21–8.23 depending on l/H. Analogous characteristics are given here by dotted 
lines for the cone with the angle 30o at the vertex. Each arm of the antenna is built as 
a thin metal shell of height H and a thickness 0.01H located along the conic surface. 
The gap between the arms is equal to 0.01H. Characteristics are calculated by the 
program CST.

Active RA and reactive XA components of input impedances of these antennas are 
presented in Figure 8.21. A comparison of them shows that their magnitudes depend 
on the angle q0 though for an infinite length of the wires the input impedances are the 
same, i.e. do not depend on the angle at the cone vertex. As it is seen from Figure 8.17 
and 8.21, decreasing the arm length (when the angle 2q0 is changed from 30o to 60o)
leads to displacement of maximums and minimums to the left, in the direction of small 
l, and to decreasing the maximal magnitudes. 

Reflectivity r in the cable with wave impedance 60p is given in Figure 8.22 for the 
angle 30o and 60o at the cone vertex. These magnitudes are compared with each other 
and with corresponding reflectivity of the vertical antenna with the same height, i.e. 
the antenna located at the angle 90o to the earth (this curve is shown by circles). The 
standing wave ratio of the same antennas is presented in Figure 8.23, including SWR
in the cable with wave impedance 60p (Figure 8.23a) and SWR in the cable with wave 
impedance 100 Ohm (Figure 8.23b). As can be seen from these figures, in the operating 
range, reflectivity r of conic antennas is smaller than the corresponding magnitude 
of the vertical antenna. SWR of conic antennas is substantially closer to unity than 
SWR of the vertical antenna. In the cable with wave impedance 60p (see Figure 8.23a)
SWR of the antenna with 2q0 = 60° is smaller than SWR of the vertical antenna in the 
band 1.9 l/H  2.9, SWR of the antenna with 2q0 = 30° is smaller also in the band 
1.75 l/H  2.9. In the cable with wave impedance 100 Ohm, SWR of the symmetrical 
conic antenna with 2q0 = 60° is smaller than the SWR of the vertical antenna in the 
band 2.5 l/H  3.75, SWR of the antenna with 2q0 = 30° is smaller in the band 2.2 
l/H  3.8 (see Figure 8.23b).
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In Figure 8.24 are given the horizontal and vertical patterns of conic antennas. The 
horizontal pattern of the conic antenna is very different on the aperture side and on 
the opposite side, i.e. radiation of the conic antennas is increased in the direction of the 
cone aperture. The horizontal pattern of the flat antenna is symmetrical about the plane 
in which it is located.

Figure 8.21 Active RA (a) and reactive XA (b) impedance of the symmetrical conic 
antennas with the angle 60o and 30o at the cone vertex.

Figure 8.22 Reflectivity of the symmetrical conic antennas with the angle 60o and 30o at vertex 
in the cable with wave impedance 60p (a) and 100 Ohm (b).

Figure 8.23 SWR of the symmetrical conic antennas in the cable with wave 
impedance 60p (a) and 100 Ohm (b).
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Figure 8.24 Horizontal (a) and vertical (b) pattern of the symmetrical conic antennas 
with the angle 60o and 30o at the cone vertex.

The vertical directional pattern of the flat antenna (see Figure 8.19) shows that 
main lobe of its vertical pattern deviates from the perpendicular to the antenna at l/H
about 1.5, and at higher frequencies the value of PF falls down to 0.65. This value for 
the conic antennas is close to 0.8, when l/H  1. Maximum gain of the conic antennas 
(see Table 8.1) is substantially higher than the maximum gain of the flat antenna. Really, 
maximum gain of the flat vertical antenna when the wave impedance of the cable is 
equal to 188 Ohm, in the range 1.0 l/H  3.0 is close to 2, while the maximal gain of 
the conic antenna with 2q0 = 60° varies from 2.5 to 16, and the maximal gain of conic 
antenna with 2q0 = 30° varies from 2.5 to 18 (see Table 8.1). From the same table it can 
be seen that the efficiency of antennas is approximately the same—from 0.9 to 0.99. The 
curves given in the figures, and the numerical values presented in the table are obtained 
using the CST program.

The calculation results were verified on models placed in an anechoic chamber. A 
general view of the set with the model of conic antenna is shown in Figure 8.25. The 
angle at the cone vertex is equal 2q0 = 30°. Experimental values of active and reactive 
components of the antenna impedance are given by circles in Figure 8.21. Since the input 
impedance of the asymmetric version of the antenna is half as many as impedance of 
the symmetric version, then the experimental values are doubled for comparison with 
the calculation. As can be seen from the figures, the coincidence between theory and 
experiment is not only qualitative, but also quantitative.

The measurement results for reflectivity and SWR in the cable with the wave 
impedance 100 Ohm are presented in Figures 8.22b and 8.23b (asymmetric antenna was 
excited by the cable with the wave impedance 50 Ohm). Here the agreement of the 
calculation and the experiment also corresponds to a measurement precision. 

As mentioned in Section 8.2, the wave and input impedances of the antenna with 
infinite sizes do not vary with frequency. If the antenna has finite sizes, then, as the 
calculation and experiment show, the electrical characteristics are frequency dependent.
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Figure 8.25 The general view of the set with the mock-up of conic antenna in 
an anechoic chamber.

8.6  CHARACTERISTICS OF ANTENNAS ON FACES OF A PYRAMID 
AND ON A PARABOLIC SURFACE

In Section 8.3 it was said that for simplification of construction one can perform the arms 
of a metallic radiator not in the shape of conical shells, but in the form of flat triangles 
located along the faces of a pyramid (see Figure 8.12b). This is especially important 
for antenna of great dimensions, i.e. at low frequencies. A set with a model of such an 
antenna is presented in Figure 8.26. The angle at the pyramid vertex is equal to 2q0 = 30°.

The electrical characteristics of such symmetrical antennas are given by solid curves 
in Figures 8.27–8.29 depending on l/H, and also in Table 8.2. Active RA and reactive 
XA components of the input impedance of the antenna, placed along the faces of the 
pyramid with the square cross section and the angle 30o at vertex are presented in 
Figure 8.27. The same components of the input impedance of a conical antenna with the 
same angle at vertex are given for comparison in the same picture. The characteristics 
of different antennas are similar, but not identical. Besides, in Figure 8.30 the pattern 
factor of antennas placed along the pyramid faces is shown.

Figure 8.26 A set with the model of an antenna placed on the faces of a regular pyramid.
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Figure 8.27 Active RA (a) and reactive XA (b) impedance of the symmetrical antennas 
located on a regular pyramid and cone.

Figure 8.28 Reflectivity of symmetrical antennas located on the regular pyramid and cone in 
the cable with wave impedance 60p (a) and 100 Ohm (b).

Figure 8.29 SWR of the symmetrical antennas located on the regular pyramid and cone in the 
cable with wave impedance 60p (a) and 100 Ohm (b).
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Figure 8.30 Pattern factor of the symmetrical antennas on the pyramid.

Table 8.2 Maximal Gain and Efficiency of a Symmetrical Antenna on the Pyramid

Gain at
l/H

a = 30°, b = 15°a = 15°, b = 15°a = 30°, b = 15°a = 15°, b = 15°

0.980.9717.623.31

0.950.9810.26.562

0.950.986.875.212.5

0.940.935.54.083

The directional pattern of an antenna placed along the faces of a regular pyramid has 
in the horizontal plane the shape of an oval, elongated in a direction perpendicular to 
its aperture, i.e. this pattern is similar to the directional pattern of any inclined antenna. 
Already it was pointed out that the use of the volumetric antenna with inclined triangular 
sheet allows for the same height of supports to provide unidirectional radiation and 
to increase the radiator length, i.e. to expand its operation range to the side of lower 
frequencies.

The electrical characteristics of an antenna placed along the faces of the irregular 
pyramid are given in Figures 8.31–8.33 depending on l/H, and also in Table 8.2. The 
pyramid has a rectangular cross-section. The angle at the vertex of the pyramid between 
the arms of the metallic antenna is equal to 60o, and the angle at the vertex between 
the arms of slot antenna is equal to 30o (see Figure 8.6). The same characteristics of the 
antenna placed along the faces of a regular pyramid are given for comparison in the 
same figures. They show that in the given case, SWR of the antenna placed along the 
faces of the irregular pyramid is greater than SWR of the antenna placed along the faces 
of the regular pyramid in the cable with the wave impedance 60p Ohm and smaller in 
the cable with the wave impedance 100 Ohm.

Results of calculating antennas located along the faces of a regular and an irregular 
pyramid show that the characteristics of self-complementary radiators is not always 
preferable in comparison with characteristics of the radiators close thereto in shape. 
As can be seen from Figure 8.31, increasing the angular width of the metal (electric) 
radiator arm increases a current along it and reduces the active and reactive components 
of the input impedance, bringing its value closer to the wave impedance of the standard 
cable.
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Figure 8.31 Active RA (a) and reactive XA (b) impedance of symmetrical antennas located on 
the faces of the regular and irregular pyramid.

Figure 8.32 Reflectivity of symmetrical antennas located on the faces of the regular and 
irregular pyramid in the cable with wave impedance 60p (a) and 100 Ohm (b).

Figure 8.33 SWR of the symmetrical antennas located on the faces of the regular and irregular 
pyramid in the cable with wave impedance 60p (a) and 100 Ohm (b).
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From these results it follows that the optimum radiator choice depends on the used 
cable. If the special cable with an wave impedance 30p = 94 Ohm is employed with an 
asymmetric variant of the antenna, the characteristics of the antenna located along the 
faces of a regular pyramid are better. If the standard cable with the wave impedance 
50 Ohm is used with an asymmetric variant of the same antenna, the characteristics 
of the other antenna are better. In order to match the conic antenna with the standard 
cable, whose wave impedance is smaller than the wave impedance of the antenna, one 
must increase the angular width of the metal radiator.

When selecting the cable wave impedance, the cable length is also essential. Let, for 
example, the cable attenuation in the given frequency range in conditions of traveling 
wave, when SWR = 1, be 0.6 dB/m. As can be seen from Figure 8.33, the average SWR in 
the range 2–4 GHz in the cable with W = 50 Ohm during exploitation of the asymmetric 
flat antenna, and the antennas located along the faces of regular and irregular pyramids 
is equal to 1.5, 2.0 and 2.9 respectively. Calculation shows that for mentioned SWR the 
equivalent attenuation in a cable of length 2 m is equal to 1.3, 1.4 and 1.6 dB respectively, 
and in the cable of length 10 m the equivalent attenuation is equal to 6.3, 6.5 and 7.1 dB.
Efficiency of the first cable is 0.75, 0.73 and 0.7 and the efficiency of the second cable 
is 0.23, 0.22 and 0.19.

Together with the calculating characteristics of the radiators located along the faces 
of a pyramid, the active and reactive components of the input impedance, as well as 
the reflectivity and SWR of these antennas in the cable with wave impedance 100 Ohm 
were measured. The obtained results were found in fairly good conformity with the 
calculation.

The electrical characteristics of antennas placed on a parabolic surface are similar 
to the characteristics of the antennas on a cone. The close correspondence of W and k
for radiators located along parabolic and conic surfaces means that for matching the 
parabolic antenna with the standard cable, whose wave impedance is smaller than the 
antenna wave impedance, one must increase the angular width of the metal radiator. 
That increases a current along it and reduces the active and reactive components of 
the input impedance, bringing their magnitudes closer to the wave impedance of the 
standard cable.

Let the axis of the paraboloid of rotation be located horizontally (Figure 8.34), as in 
the case of conic radiators considered earlier. Its radius in the aperture plane is equal to 
H, the distance from the paraboloid focus to the aperture plane is L, and the inclination 
angle of the straight line from the focal point to the aperture boundary is equal to q0.

Figure 8.34 A self-complementary antenna on a circular paraboloid.

y 
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From (8.40) for the paraboloid it follows that the radius of its cross section is equal 
to R = st, i.e. it varies along its axis z. If to introduce the notation x = t2 and to take into 
account that s2 = R2/t2, then the third expression of (8.40) permits to obtain a quadratic 
equation for x: x2 – 2zx – R2 = 0 in the arbitrary point z. Its solution gives

t = = + +x z z R2 2 .

In the point z = L, the radius R is equal to H, and t t= = +0 L l , where l L H= +2 2 ,

i.e. on the surface of a paraboloid s t0 0= = +H H L l/ / . From (8.40) t s= +0
2 2z ,

where from 

R
H

L l
H z L l= =

+
+ +s t0

2 2 ( ). (8.60)

Note that the vertex of the paraboloid (where R = 0) is located at a point 
z0 = –H2/2(L + l).

The length of a paraboloid generatrix is calculated in different ways. The simplest 
one is based on the equation of the parabola, which in our case has the form: 

z z z ax1 0
2= + = .

At the point of the paraboloid aperture x = H. The factor a and the parameter p are
accordingly equal to 

a L z H L L l H L l H= + = + + +( | |) [ ( ) ]/[ ( ) ]0
2 2 22 2/

and
p a L l H L L l H= = + + +1 2 22 2/ /( ) [ ( ) ] .

The generatrix length is calculated by a known formula 

S z z p p sh z p= +( ) + -
1 1

1
12 2 2 . (8.61)

For the given height H the magnitude L depends on the slope angle q0 of the 
line connecting the focus of paraboloid with the end of the generatrix: L = H cot q0.
If, for example, q0 = 30°, then L = 1.732H, l = 2H, L + l = 3.732H, t0 = 1.932 H ,
s0 = 0.518 H , |z0| = 0.134H, a = 1.866/H, p = 0.268H and the generatrix length is equal to 
S = 1.932H + 0.272H = 2.204H. If q0 = 15°, S = 4.04H.

It is expedient to compare the lengths of self-complementary radiators of different 
shapes. The arm length of a vertical flat radiator is S1 = H, the arm of the conic radiator 
shell for angle q0 between the shell and cone axes is S2 = H/sinq0. In particular, if 
q0 = 30°, then the generatrix length is S2 = 2H. For the paraboloid with q0 = 30° it is 
equal to S3 = 2.204H. Therefore the arm length of a parabolic radiator is larger than 
that of a conic radiator (increasing the overall length of the structure by 7.7% due to 
the segment z0 leads to 10% increase of the generatrix length). One can expect that the 
increase of the radiator length increases the SWR in the cable.

In Section 8.4 it is shown that the magnetic V-radiator of parabolic shape creates 
a field whose force lines coincide with the metal surface of a circular cross section, 
passing through the axes of this radiator arms. As in the case of a magnetic V-radiator
with straight arms, the field of a given radiator in consequence of the surface insertion 
does not change. That permits to go from V-radiator to the slot antenna, i.e. to obtain 
the expression (8.38) and to be convinced that the radiators located on the surface of 
circular paraboloid are complementary.
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Calculation results of characteristics for flat and conic self-complementary antennas 
and also for antennas located a the pyramid are given in Sections 8.5–8.6. The electrical 
characteristics of the symmetrical self-complementary antenna located along the surface 
of the circular paraboloid are given in Figures 8.35–8.37 depending on l/H. The 
inclination angle of the line between the focal point and the aperture boundary is equal to 
q0 = 15° and 30°. Maximal gain and radiation efficiency of these antennas are given in 
Table 8.3. Besides, in Figure 8.38 the pattern factor of these antennas is shown.

Figure 8.35 Active RA (a) and reactive XA (b) impedance of the symmetrical parabolic antennas 
with the angle 2q0 = 60° and 30°.

Figure 8.36 Reflectivity of symmetrical parabolic antennas with angle 2q0 = 60° and 30o in the 
cable with wave impedance 60p (a) and 100 Ohm (b).

Table 8.3 Maximal Gain and Efficiency of Symmetric Parabolic Antennas

l/H Gain at q0 q0

15° 30° 15° 30°

1 12.4 11 0.98 0.98

2 6.81 4.16 0.97 0.96

2.5 5.25 3.51 0.97 0.95

3 4.36 2.78 0.95 0.95
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Figure 8.37 SWR of symmetrical parabolic antennas with angle, 2q0 = 60° and 30o in the cable 
with wave impedance 60p (a) and 100 Ohm (b).

Figure 8.38 Pattern factor of the symmetrical parabolic antennas.

Figure 8.39 Reflectivity of the symmetrical self-complementary antennas located along the 
paraboloid, cone and vertical plane in the cable with wave impedance 60p (a) and 100 Ohm (b).

As is well known, one of the important requirements for an antenna, especially in 
the range of long, medium-frequency and short waves, is the requirement to reduce 
its geometrical dimensions, first of all, its height. If the antenna cost increases linearly 
with increasing the horizontal dimensions, then increasing the height increases the cost 
approximately to a third power. When the antenna is mounted on a vehicle, its height 
affects the air resistance (e.g., to an aircraft), and the stability to the wind. An aspiration 
of developers to reduce the size of antennas without deterioration of their characteristics
is natural. Such developments make possible to improve electrical characteristics of an 
antenna, while maintaining its size. 
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Figure 8.40 SWR of the symmetrical self-complementary antennas located along the 
paraboloid, cone and vertical plane in the cable with wave impedance 60p (a) and 100 Ohm (b).

Therefore, the interest to the three-dimensional antennas is explained by two factors: 
by a high level of matching and by the opportunity to reduce the antenna height. Besides, 
it is necessary to take into consideration that at low frequencies it is easier to realize a 
simpler structure, for example a radiator situated along the pyramid faces is preferable 
than a radiator in the shape of a cone. 

As it is follows from presented results, on the whole the comparison shows 
that decreasing an inclination angle of the antenna arm with respect to ground (and 
corresponding increase of the arm length without height increase) improves the electrical 
characteristics of the antenna. If the inclination angle of the radiator located on the surface 
of a cone, paraboloid and pyramid is the same, then the radiator on the paraboloid 
surface has a greater gain, particularly in the lower part of the frequency range. The 
directional patterns of the radiators situated on the cone and paraboloid in a vertical 
plane (pattern factor) are approximately the same, and the directivity of the flat vertical 
antennas and the antennas located on the pyramid is smaller. The radiation efficiency 
of the different antennas is similar and close to 100%. The level of matching depends 
on the wave impedance of the cable and may be regulated by the change of angular 
width of metallic and slot radiators located on the cone and paraboloid and by the ratio 
of the sides in a rectangular cross section of a pyramid. 

8.7  DISTRIBUTION OF ENERGY FLUX THROUGH 
THE CROSS SECTION OF A LONG LINE

As is shown in Section 7.1, the method of electrostatic analogy and the principle of 
correspondence allow to use calculating an electrostatic field of charged conductive 
bodies for calculating constant currents in a homogeneous weakly conducting medium, 
and also for determining the magnetic field of constant linear currents. In particular one 
may analyze an energy flux distribution through a cross-section of a long line.

In the case of a plane-parallel electrostatic field, the flux function V(x, y) defines 
the flux of vector

�
E  through the cylindrical surface of unit length located between the 

given and zero surface of the field strength. For two parallel infinitely long charged 
filaments, the flux function is defined by the expression (8.11). It is proportional to the 
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difference of angles jc2 – jc1 (see Figure 8.1b), where jci is the coordinate of the metal 
filament i. For any point of the cylindrical surface along the z-axis situated around the 
left charged filament at distance d << b, angle jc2 is constant and equal to p, i.e. the 
magnitude of the flux inside the given angle jc2 – jc1 is proportional to jc1. It means 
that each share of the flux is equal to a fraction of a circumference with radius d. The 
part of the flux falls into the volume bounded by the surface, passing through both 
charged filaments. As is seen from Figure 8.1b, the arc length of this fraction is equal 
to half of the circumference length. This volume is a cylinder, and its cross-section has 
the form of a circle with the center at the coordinates’ origin. That means, in particular, 
that the part of the flux, which falls into this volume, is equal to a half of the total flux.

Likewise in the case of two convergent infinite charged filaments (see Figure 8.1a)
a half of the flux is directed inside a circular cone passing through both filaments. The 
reason for this is based on the equality of the angles at the transition from the cylindrical 
problem to conical: in accordance with (8.3) jc = j. Also it is true for two parabolic infinite 
charged filaments (see Figure 8.15a), since according to (8.46) the angular variables of 
cylindrical and parabolic coordinates systems are related by equality jc = j.

In accordance with the electrostatic analogy method, the fraction of the constant 
current inside the volume bounded by a circular cylinder (or cone, or paraboloid) passing 
through two wires with high conductivity located in a homogeneous weakly conductive 
medium, will be the same, if a constant voltage is applied to the wires.

In accordance with the conformity principle the magnetic field of constant linear 
currents coincides with the electric field of linear charges, if the currents and the 
charges are identically distributed in space. This means, in particular, that a half of the 
energy flux propagating along a long line, consisting of two parallel (divergent) wires, 
is concentrated inside the circular cylinder (cone, paraboloid) passing through these 
wires. Similar postulates are true for the system of two wires with finite radius (see 
Figure 8.2), if we consider the flux inside the cylindrical (conical, parabolical) surface 
passing through the filaments, which create the field, whose equipotential surfaces 
coincide with the outer surfaces of the wires.

If the self-complementary antenna structure is located on the circular cone (or 
paraboloid of rotation), then the line of two non-closed coaxial shells (see Figure 8.4a)
may be imagine as the sum of pairs of the filaments 1-1”, 2-2”, 3-3” and so on, which 
are placed diametrically opposite and have opposite in sign charges (see Figure 8.4b).
The flux of each pair inside the structure also is equal to a half of the total flux. 
That means that if symmetrical slotted antennas are located on the circular metal 
cone (or paraboloid), then the same power is radiated into input and output space 
independently on the angle at the cone vertex. This conclusion coincides with the 
inference in Section 8.3. The field symmetry inside the cylinder, cone and paraboloid is 
the reason of such equality of powers.

One must also remind that (8.22) is true for infinite long line. The input impedance 
of finite line is closed to 60p, but is not equal to it. This fact is confirmed by calculation 
results presented in this chapter. Also the magnitude m in the expressions (8.38) and 
(8.39) for the cone and paraboloid of finite length is closed to 0.5, but is not equal to that.

From the above it follows that only half of the energy flux along the line executed 
in the shape of wire 1 located over ground 2 (Figure 8.41a) goes between this wire and 
ground within the marked cross section 3. The second half of the energy, in spite of 
wide-spread opinion, goes in the surrounding space. 



220 Antenna Engineering: Theory and Problems

If the cross section of the cylinder (or cone, or paraboloid) has a non-closed form, 
for example it consists of two arcs 4 (Figure 8.41b) of different radii, then the flux part 
falling into the structure is not equal to half.

Figure 8.41 Cross section of the line in the form of a wire over ground (a) and a tube (b).



9.1 SELF-COMPLEMENTARY ANTENNAS

The principle of complementarities was briefly formulated in Chapter 8. It proceeds 
from an interconnection between scattering of metallic and slot radiators of the same 
shape and dimensions. Two complementary structures are two infinite plates (each plate 
is aggregate of the metallic and slotted antennas), in which metal sections are replaced 
by slotted sections and vice versa. Two complementary antennas are metal and slotted 
radiators of identical shape and dimensions. Their input impedances are related with 
each other by expression (8.23). When the metallic and slotted radiators of the identical 
shape and dimensions fill the all plane, they are called self-complementary. In this case 
their input impedances are the same and correspond to expression (8.24).

The simplest examples of plane self-complementary radiators are demonstrated in 
Figure 8.8a. As is shown in Chapter 8, these radiators may be placed not only on the 
plane, but also on the surface of rotation, in particular, conic and parabolic. The main 
distinctive property of such antennas is the constancy of angles between the limitative 
lines of the metallic elements of antennas. And thereby the radiator has at all frequencies 
the same shape (the radiator dimensions are proportional to wave length). Characteristics 
of these antennas are independent from frequency, i.e. they have the constant and purely 
resistive input impedance, and hence a high level of matching with the cable in an 
unlimited frequency range. If the radiator has finite dimensions, the frequency range is 
limited, but remains a sufficiently wide.

As stated in Chapter 8, the relation (8.23) for a slot antenna in a flat metal plate was 
obtained by two methods: by means of duality principle and by means of the principle 
of complementarities. We use the principle of duality. Suppose that the metal sheet 
consists of two symmetrical radiators (metallic and slot) with different angular widths. 
In accordance with the principle of duality the slot radiator is a magnetic radiator. Its 
radiation resistance RM and input impedance ZM are related to a radiation resistance RE

9
Principle of 

Complementarities
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and an input impedance ZE of the electric radiator, similar in shape and dimensions, by 
the expressions (8.32) and (8.33) accordingly.

If the each arm of the flat magnetic radiator is to divide along the plane of symmetry 
by means of a flat metal surface, the radiator field doesn’t change, since magnetic field 
lines coincide with this metal surface. This surface divides the magnetic radiator by two 
same radiators, and each of them is equivalent to the one-sided slot, magnetic current of 
which is half as much of magnetic current of the starting magnetic radiator. A magneto 
motive force in this case does not change. It means that the input admittance of each 
one-sided slot is twice as much of the input admittance of the starting magnetic radiator. 
The total admittance of both slots is four times of as much of the input admittance of 
the starting magnetic radiator, i.e. the input impedance of the slot is

Z Y Y ZS S M M= = =1 1 4 4/ / /( ) , (9.1)

and taking (8.33) into account, 

Z ZS E= ( )60 2p / . (9.2)
As shown in Chapter 8, the similar result takes place for two symmetrical radiators 

(metal and slot), which are located on the surface of rotation, in particular, conic and 
parabolic. It is also shown that radiators radiate the equal energy into the inner and 
outer part of space, divided by means of the surface of rotation, regardless of the angle 
at the vertex of this surface.

The structure of two symmetrical radiators located on a plane or on a surface of 
rotation can be considered as a two-wire long line. Capacitance per unit length of the 
long line from two non-closed cylindrical shells with the equal radius (Figure 9.1a) is given 
in [34] and [71]: 

C K k K kl = -e ( ) ( )1 2 / , (9.3)

where e is the dielectric permittivity of the surrounding space (for air it is equal to 1), 

K(k) and K k( )1 2-  are the complete elliptic integrals of the first kind of arguments k

and 1 2- k , and k is equal to
k = tan ( )2 2b/ . (9.4)

Here 2b is the angular width of the slot, 2a = p – 2b is the angular width of the metal 
shell. Accordingly, the wave impedance of this cylindrical line is equal to 

W
k
C

K k K k= = -
w

p120 1 2( ) ( )/ , (9.5)

Magnitudes Cl and W are independent on a cylinder radius a. This means that both 
expressions are correct for a conic (Figure 9.1b) and parabolic (Figure 9.1c) structure 
with the same cross section. They are true also for a flat antenna, where 2a is an angle 
at the vertex of each arm of a metal radiator (Figure 9.1d).

Figure 9.1 Transmission lines on a cylindrical (a), conic (b), parabolic (c) and plane (d) surfaces.
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As is shown in Section 8.2, if 2a = 2b = p/2, the wave impedance W of each 
considered long line is equal to 60p. An input impedance of a uniform two-wire line, 
when its length infinitely increases, tends to its wave impedance. But the length of 
arm of considered antennas is far away infinity. Their input impedance depends on 
a frequency, if 2a = 2b, and has a reactive component. This fact is confirmed with 
calculations presented in Chapter 8.

As already stated, expression (8.24) is written for self-complementary antenna, and 
expression (8.23)—for complementary metallic and slotted symmetrical radiators. In 
this case the word “symmetrical” means that axes of both arms of the radiator coincide 
with each other. It is expedient to compare that antenna with a simple antenna of 
finite dimensions, shown in Figure 9.2a. In this antenna there is one metallic radiator, 
consisting of two flat cones, axes of which do not coincide. The method of calculating 
its input impedance was proposed in [70]. It is based on the conformal transformation 
of geometric figures and on the property of capacitance to retain its magnitude in 
this transformation. The transformation on the plane is called conformal, if the angles 
between any two intersecting lines remain unchanged, and the lengths of all infinitesimal 
segments, passing through a given point of the plane, are changed the same number of 
times. In particular, the method of conformal transformations is applied for calculating 
the capacitance of wires’ systems with the help of replacement of the original system 
by a system with known capacitance.

Before applying this method, it is necessary to reduce the problem to a plane problem. 
In the case of the structures shown in Figure 9.2a, this requirement is satisfied. Further, 
the task can be simplified, if to go from a spherical coordinates system to a cylindrical 
one. When the coordinates system is replaced, Laplace’s equation in accordance with 
the uniqueness theorem must remain true. As shown in [70], this condition is satisfied, 
if the replaceable variables are related by the equalities (8.3).

As a result of such transition, each radial line becomes a point, and the entire 
structure turns into two identical “slits” in the shape of two segments of a horizontal 
straight line (Figure 9.2b). After that the Schwarz-Christoffel transformation maps the 
structure into the interior area of the rectangle, whose two opposite plates having an 

Figure 9.2 Radiator of two flat cones before transformation (a), after conversion into 
two “slits” (b) and in the shape of the plane capacitor (c).
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infinite width create the plane capacitor (Figure 9.2c). The capacitance per unit width 
of capacitor is calculated in accordance with (9.3), and k is equal to

k =
-
+

sin ( ) cos
sin( ) cos

q b
q b

0

0

2
2

/
/

. (9.6)

Here q0 is the angle between the axial lines of the arms of the metal radiator, and 
b is the half-width of the slot, equal to b = q0/2 – a (a is a half-width of a flat metal 
cone). If the axial lines coincide, (9.6) is reduced to (9.4).

As can be seen from the above, the proposed method permits to solve the problem 
for a metal radiator of arbitrary angular width with different angles between the axial 
lines of the arms. But in the case of two dipoles, the described technique leads to four 
straight segments, and in the case of N dipoles to the 2N segments. That offers a method 
for calculating a few capacitances, but does not permit to bring them together to one 
capacitance.

In conclusion it is useful to make a few general comments. Existence of self-
complementary antennas is founded on the principle of duality, i.e., on the symmetry 
of Maxwell’s equations relative to the magnitudes e0

�
E  and m0

�
H . It allows to speak 

about existence of metallic (electric) and slotted (magnetic) radiators, which follows from 
this symmetry. These radiators radiate identical fields, which after replacement of the 
corresponding magnitudes may be calculated in accordance with analogous expressions. 
One can place on a flat metal sheet of infinite dimensions one or more metal radiators and 
also many slot radiators (it is regarded that the sheet is infinitely thin and has an infinite 
conductivity). If the radiators fill the entire sheet, the radiators are called complementary. 
If in addition the radiators are identical in shape and dimensions, they are called self-
complementary. The uniqueness of the self-complementary structures is that they have 
special properties, which are partially retained, if the metal sheet has finite dimensions.

If the metallic and slotted radiators of the identical shape and dimensions occupy 
the entire surface of rotation, they are called three-dimensional or volumetric self-
complementary antennas. But they appeared much later than the flat antennas, and the 
term itself initially was perceived differently. Details are given in Section 8.3.

In [78] it was shown firstly that a structure consisting of electric and magnetic 
radiators of the same shape and dimensions must not necessarily be flat, and secondly, 
the choice of surface for placement of such structures is not random. This is in particular 
the circular cone, which in the limiting case turns into a plane. 

9.2 ANTENNAS WITH ROTATIONAL SYMMETRY 

Antenna with rotational symmetry is the most general variant of the self-complementary 
antennas. It consists of several metal radiators and an equal number of slots. Two 
antennas with rotational symmetry are shown in Figure 9.3. Both antennas have finite 
dimensions. Each antenna consists of four symmetrical radiators of the same shape and 
dimensions: two metal radiators and two slots. In the first antenna (see Figure 9.3a) an 
arm of each radiator has the shape of a flat cone (this is a sector of a circle whose left and 
right sides coincide with the radii, and a base coincides with a structure circumference). 
In the second antenna (see Figure 9.3b) boundaries of radiators do not coincide with the 
radii, but have a log-periodic shape. In both cases, generator poles can be connected 
with a different number of elements, forming symmetrical and asymmetrical versions. 
Also it is possible to excite one antenna by several generators. 
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Figure 9.3 Antennas of four metal plates in the shape of a flat cone (a) and in the 
logo-periodic shape (b).

Consider a procedure of calculating the wave impedance of an antenna with several 
metal dipoles at an example of an antenna with two dipoles (Figure 9.4a). The antenna 
consists of four identical flat cones, equally spaced along the circumference, i.e. separated 
by the same slots. The total angular width of the cone and the adjacent slot is equal to 
q0 = 2(a + b) = p/2.

First, one must go over in accordance with the conditions (8.3) from the spherical 
coordinates system to the cylindrical. As a result of the transition, a radial line n (line 
numbers are shown in Figure 9.4a) is transformed to a point (point numbers coincide 
with the line numbers and are shown in Figure 9.4b) with coordinate rn. For values rn
the general expression is valid

r q an m= - ±ÈÎ ˘̊{ }tan , ( )0 5 2 1 20 , (9.7)

where m = 1, 2, ..., a sign “minus” refers to an odd value of n and a sign “plus”—to 
an even n. If the widths of the slot and metal cone are the same, i.e. a = b = p/8, then 
rn = tan [(2n – 1)a/2]. A general view of the structure, transformed in accordance with 
the conditions (8.3), is shown in Figure 9.4b. This is a horizontal straight line with four 
segments (“slits”), connecting the points with numbers 2n – 1 and 2n.

Figure 9.4 Antenna of two metal dipoles before transformation (a), in the cylindrical 
coordinates system (b) and after the complex transformation (c).

a) 
2 

h) 
rn I V I II 5 

6 7812 3 
4 p 0 c) 1J 

3 
II 

6 rn 5 4 
1 I 2 ~ 

8 
IV 

7 



226 Antenna Engineering: Theory and Problems

Transforming the structure in accordance with the expression

V r q a= = - ±ÈÎ ˘̊-tan( tan ) tan ( )2 2 1 21
0m , (9.8)

i.e., going over from the plane with the cylindrical coordinates r and jc to the plane with 
rectangular coordinates x and h and considering that V = x = jh, we obtain Figure 9.4c,
where four “slits” of the same length are located on four semi-axes. Point numbers are 
shown in the figure in Arabic numerals; “slits” numbers are shown in Roman numerals.

As already mentioned, the generator poles can be connected to different elements. 
Three variants are presented in Figure 9.5. The segments that are connected with each 
other by solid lines are connected to the same pole of the generator. One pole is marked 
with a sign “plus”, the other pole—with a sign “minus”. In the first and second variants 
(Figure 9.5a, b), each pole is connected with two flat metal cones: in the first case with 
adjacent cones, in the second case—through a cone. In the third version, one cone is 
connected with one pole and three cones—with another pole. 

Figure 9.5 Three variants of connecting antenna to poles of generator.

The dashed line in Figure 9.5a is the axis of a system symmetry (it is the line of 
zero potential). Such a system can be divided into two equal subsystems as shown in 
Figure 9.6a. In one of them one can calculate the capacitance between the elements, 
connected to different poles, and then one must double the result. It is easy to see that for 
a second variant of connecting metal cones to the generator poles, the system is divided 
into four subsystems that are identical to the structure, shown in Figure 9.6a. So, the 
antenna input capacitance in this case is twice as many. The magnitude of capacitance 
between the elements of the structure, shown in Figure 9.6a, may be calculated (see, 
e.g., [34]) by the method of direct determination of the field strength. It is equal to 2Cl,
where Cl is calculated by the formula (9.3), and k is equal to

k
a c b d

a d b c
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+ +
+ +
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Figure 9.6 Subsystems for calculating capacitances of antennas with two (a) and four (b) dipoles.
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It is easy to see that in our case a = c, b = d, i.e. 

k ab a b= +2 2 2/( ) . (9.10)

If the angular widths of the cone and the slot are same (a = b = p/8), in accordance 

with (9.8) and (9.10) a = 0.6436, b = 1.5538, k = 0.7071, and K k K k( ) ( )= -1 2  = 1.8541 
This means that the capacitance between the elements of the circuit shown in Figure 9.6a,
is equal to C0 = 2e. Then the total input capacitance of the first antenna variant is twice 
as many, and the capacitance of the second variant is four times more than 2e, so the 
wave impedances of the first and second variants are equal, respectively, to 30p and 
15p. In a third variant of the connecting cones with a generator, the capacitance between 
the first and second “flit” and between the first and fourth “flit” is 2e, the capacitance 
between the first and third “flit” in the first approximation is close to the same value, 
i.e., W ≈ 20p.

Typical examples of active and reactive components of input impedances for flat 
antennas with one or two dipoles and identical width of the metal and slot radiators 
are shown in Figure 9.7. Variant 1 corresponds to the antenna with one metal radiator. 
Variant 2 corresponds to the antenna with two metal radiators, where each pole of the 
generator is connected with two adjacent plates. Variant 3 corresponds to the antenna 
with two metal radiators, where each pole of the generator is connected with two plates 
through a plate. Using a known method and methods proposed here, one can compare 
different variants of antennas and come to some general conclusions.

Figure 9.7 Active (a) and reactive (b) components of input impedances for the flat antennas.

Figure 9.8 shows antennas, where one metal dipole is used. Antennas with two metal 
dipoles are shown in Figure 9.9. They differ from each other by circuit of connection 
with the generator. Figure 9.10 demonstrates the different circuits of connection with the 
generator for antennas, with four metal dipoles. Calculation of their wave impedances 
was made according to the procedure used in the analysis of antennas with two dipoles. 
It leads to the subsystems in the shape of a quadrant, shown in Figure 9.6b. In the first 
variant, the total capacitance is the sum of the capacitances in two such quadrants, and 
in the second and third variants the total capacitance is the sum of the capacitances in 
four quadrants. The number of summed capacitances in the quadrant is always equal 
to two, since the two “slits” of four “slits” are connected with each other, and each pair 
is connected to its pole. Herewith capacitance of the quadrants is equal to the sum of 

2 6 6 8 VL 1o 
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two identical capacitances between the “slits”, located on different distances from the 
coordinate’s origin.

Figure 9.8 Flat antennas with one metal dipole.

Figure 9.9 Flat antennas with two metal dipoles.

Figure 9.10 Flat antennas with four metal dipoles.

Basic parameters and wave impedances W1 of considered antennas are given in 
Table 9.1. The table shows that the wave impedances in it are given for antennas 
in which the width of the metal plate is equal to the slot width. In this case, the 
capacitance between the elements of the quadrant in antennas with two dipoles is equal to 
C0 = 2e. If the angular width of the plate in an antenna with two metal dipoles is equal 
to 60° rather than 45° (the slot width in this case is 30°), then C0 = 1.28e, i.e. wave 
impedance of the antenna decreases 1.28 times. In asymmetric antennas, when the 
symmetrical metal radiators (dipoles) forming the antenna are replaced by asymmetric 
radiators (monopoles) placed above a conductive surface (ground), the magnitudes of 
the wave impedances are reduced by half. Figure 9.11 shows the circuits of connecting 
asymmetrical radiators to a generator, similar to the circuits of connecting for symmetrical 
radiators, which are shown in Figures 9.9a and 9.9b.
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Figure 9.11 Connecting asymmetrical antennas to a generator.

Table 9.1 Parameters and Wave Impedances of Antennas with Rotational Symmetry

Number of
metal dipoles

Figure q0 2a W1 W2

1

9.8a 180° 90° 60p 60p
9.8b 180° 135° 40.8p 40.8p
9.8c 180° 45° 88.2p 88.2p
9.8d 90° 45° 84.9p

2

9.9a 90° 45° 30p 21.2p
9.9b 90° 45° 15p 10.6p
9.9c 90° 45° 20p 15p

3

9.10a 45° 22.5° 21.8p 12.8p
9.10b 45° 22.5° 10.9p 6.4p
9.10c 45° 22.5° 13.6p 8p

9.3  THREE-DIMENSIONAL ANTENNAS WITH ROTATIONAL 
SYMMETRY

The creation of flat antennas with rotational symmetry is a step forward compared to 
the simple antenna in the form of a flat metal dipole with angular width of the arm, 
equal to the angular width of the slot. Another step forward is the development of 
three-dimensional (volumetric) antennas. Their appearance became possible, when it has 
been proved that the self-complementary antenna can be placed not only on a plane 
surface, but also on the surface of rotation, for example, on the surface of a circular 
cone or a paraboloid.

Conical and cylindrical problems were compared with each other in [70]. There it 
is shown that one problem is reduced to another, if the substituted variables satisfy the 
conditions (8.3). Equivalence of parabolic and cylindrical problems [19] takes place, if 
variables satisfy the conditions (8.46).

In conical problems (Figure 9.12) the cone axis is located horizontally, the emf excites 
a structure at the cone vertex, and the radiators’ arms are located along the cone surface. 
The boundaries of each arm coincide with the cone generatrices. The arcs lengths of 
the cross-section corresponding to a metallic and slotted radiators, are designated as 
2a and 2b respectively. A paraboloid has the similar shape of cross section and same 
designations.
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Figure 9.12 Conical antenna with one metal dipole.

The rigorous analysis (see [19]) shows that the input impedances of metallic and 
slotted radiators, located on a circular cone, are related with each other by the expression 
(8.23). When a = b, the expression (8.24) is true. This is natural, since the conical structure 
can be considered as a two-wire transmission line, and this line is uniform, i.e., does not 
differ in this respect from the corresponding transmission line, placed on the surface of 
a circular cylinder with a constant radius of a cross section. That is why, if a b, for 
these conical and similar parabolic antennas, the expressions (9.3), (9.5) and (9.6) hold 
valid. If a = b, k is calculated in accordance with (9.4). 

Three-dimensional antennas as flat antennas may consist of several metal and slot 
radiators, included in parallel with each other, i.e. they may be named by antennas 
with rotational symmetry. An example of such antenna is given in Figure 9.13a. When 
calculating its characteristics we firstly must go over to the plane problem, using the 
conditions (8.3). Since all points of each cone generatrix are located at the same angle q
to the axis z, then, as a result of transformation, they lie down to one point, and a 
metal plate becomes a segment of an arc, on so-called “slit” (Figure 9.13b). If the plates 
and the slots have the same width, the coordinates of the start (xm1

, ym1
) and the end 

(xm2
, ym2

) of these arc segments are defined by the expressions 

x ym m m m1 2 1 2 1 2 1 2( ) ( ) ( ) ( )cos , sin= =r j r j . (9.11)

Figure 9.13 Conical antenna with two metal dipoles: general view (a), the transition to a plane 
problem (b), division along the line of symmetry (c), conformal transformation (d).
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Here, a value r in accordance with (8.3) is r = tan (q/2) (q is the half-angle at the 
vertex of the cone), and jm is the angle measured in the plane xOy from the axis x,
which is equal to 

j j am m= - ±( )2 1 20/ ,

where j0 is the angle on the plane xOy between the projections of the axes of two adjacent 
plates—a sign “minus” corresponds to the arc start and, a sign “plus” corresponds to 
the arc end, a is half of the arc length. 

As in the case of similar flat antenna, there are three possible variants of connecting 
the generator poles to the different antenna elements (Figure 9.14). The elements that are 
connected with each other by solid lines are connected to the same pole of the generator. 
One pole is marked with a sign “plus”, the other pole is marked with a sign “minus”. In 
the first (Figure 9.14a) and second (Figure 9.14b) variants, two metal plates are connected 
to each pole: in the first variant they are the adjacent plates, in the second variant the 
plates are connected through one cone. In the third variant (Figure 9.14c) one plate is 
connected to one pole, and three plates—to another pole.

Figure 9.14 Three variants of connecting the antenna to the poles of the generator.

Axis x in Figure 9.14a and b is the axis of the system symmetry (it is the line of 
zero potential). Such a system can be divided into two identical circuits, shown in 
Figure 9.13c. In one of them one must calculate the capacitance between the elements, 
connected to different poles, and then double the result. It is easy to see that for a 
second variant of connecting metal plates to the generator poles, the system is divided 
into four subsystems that are identical to the structure, shown in Figure 9.13c, i.e. input 
capacitance of the antenna in this case is twice as much than in the first variant.

Each arc in Figure 9.13c is a segment of a circumference of radius r. If the angular 
width of the metal plate and the slot is same, then the coordinates of the start and end 
of the first arc are equal to x11 = y12 = rcosj1, x12 = y11 = r sinj1, where j1 = 22.5o. The 
value z at each point of the arc is equal to z = r(cosj + jsinj). We use a conformal 
transformation of the form 

V r r= +jz jz/ /( ) (9.12)

where V = x + jh. Then

V j j j j j= + - + = -j j j j(cos sin ) (cos sin ) sin ./ 2 (9.13)

i.e. in the plane V, the arc segment will transform into the axis segment between 
points 1 and 2 (Figure 9.13d). A similar transformation will happen with the second 
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arc, connecting points 3 and 4. Dividing the coordinates of points on 2x2, we get the 
value given in Figure 9.13d, and in this case k = 0.4142. Using the Schwarz-Christoffel 
transformation, we find, in accordance with (9.3), the capacitance of the structure shown 
in Figure 9.13c: C0 = 1.414e.

As shown before, the total input capacitance of the first variant of the antenna is 
twice as C0, and the capacitance of the second variant is greater four times. This means 
that the wave impedances of the first and second variants are equal, respectively, to 21.2p
and 10.6p. In a third variant of the connecting plates to the generator, the capacitance 
between the first and second “slits” and between the first and fourth “slits” is C0, the 
capacitance between the first and third “slits” in the first approximation is close to C0,
i.e. the wave impedance is close to 15p.

The values of wave impedances W2 of a three-dimensional antenna, located on the 
conical and parabolic surface of revolution, are shown in Table 9.1 and allow us to 
compare them with the wave impedances of flat antennas.

The obtained results show that a class of self-complementary antennas is considerably 
wider than what was regarded previously. This class must be complemented, firstly, at 
the expense of structures, consisting of several metal and slot radiators and, secondly, by 
means of three-dimensional structures, located on the surfaces of rotation, in particular 
on the surfaces of the circular cone or the paraboloid. The technique of calculating the 
structures, consisting of several radiators is based on the method described by R.L. Carrel 
[70]. Comparison of cylindrical, conic and parabolic problems allows to determine the 
relationship between variables, providing a mathematical equivalence of these problems.

Closeness of wave impedances of the self-complementary antennas and cables is a 
necessary condition for the antenna’s effectiveness. Known variants of antennas do not 
satisfy this condition, since their wave impedances are substantially higher than the 
wave impedances of standard cables. Antennas which were considered here, have very 
different including sufficiently smaller magnitudes of the wave impedances. That should 
greatly facilitate the task of matching and expand the scope of using self-complementary 
antennas.

9.4 SHAPE AND DIMENSIONS OF A PHANTOM MODEL

Application of parabolic coordinates system allows to solve the difficult problem of 
evaluating the impact of the phantom shape and dimensions on the measurement 
results obtained with its help. For this one must to reduce the parabolic problem to the 
plane. This permits to simplify significantly its decision. The phantom as a model of a 
human body was developed in order to measure and to study the parameters of fields 
produced by various radiators, and to determine the level of human body irradiation 
(SAR). But the excessive aspiration to create a device with the shape and dimensions 
as close as possible to the shape and size of a human body led to a wide spread of 
results of measurements in different devices and caused necessity to develop a method 
for evaluating this difference.

The influence of the volume and shape of the phantom on the accuracy of the 
measurement is confirmed by the circumstance that there is an interrelation between the 
shape and dimensions of the phantom, on the one hand, and the measurement results, 
on the other.

The phantom is a simple model, in which the human body is simulated by a liquid 
with dielectric permittivity and conductivity equal to their average values for the human 
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tissues at radio frequencies. The phantom is usually constructed as a vessel with thin 
walls filled with a homogeneous simulation liquid. It is made of fiberglass with low 
relative permittivity and conductivity and is open from top. A probe is immersed into 
the liquid to record the electric field strength inside the phantom. The measurement 
results are processed that to calculate the maximal SAR at the point, the local SAR (the 
loss per unit mass), and the total SAR (the loss in the head).

Figure 9.15a shows the measurement setup of Holon Institute Technology (Israel). As 
a rule, the setup consists of three vessels in the shape of two heads (left 1 and right 2) 
and a body 3. The receiving antenna-probe 4 mounted on the rod allows to measure a 
field at each point of any vessel. An antenna 5 under study is used as the transmitting 
antenna and is located outside the phantom (Figure 9.15b).

Figure 9.15 SAR measurement setup: a view from the top (a) and the bottom (b).
1, 2 — the vessels in the shape of heads, 3 — the vessel in the shape of the body, 4 — the rod 

with the receiving antenna-probe, 5 — the transmitting antenna (dipole).

The field calculation in the phantom is a complicated three-dimensional problem. 
It is necessary to calculate the near field of the transmitting antenna at the point of 
location of receiving antenna and take into account the mutual coupling of two radiators. 
The near region of the transmitting antenna is situated in two different media, and its 
boundary has an intricate shape. The receiving antenna is placed in the adjacent medium. 

As is known from the antenna theory, the near field of an antenna has in a first 
approximation a quasi-stationary nature, and its structure coincides with the structure 
of the electrostatic field. Therefore such a problem may be reduced to the electrostatic 
problem, i.e. to the calculation of electric field of charged conducting bodies.

The signal magnitude in the observation point depends on the capacitance between 
the transmitting and receiving antennas. The problem of calculating this capacitance has 
a three-dimensional character. Therefore it is expedient to reduce the three-dimensional 
problem to a plane (cylindrical) problem. To this end one can use conical or parabolic 
variants of the three-dimensional problem. But the considered task is not conical, 
since the vessel shape has little in common with a cone. In considered problem one 
equipotential surface coincides with the surface of the vessel shell, which is the interface 
of two different media and, for this reason, this surface is a surface of equal potential. 
Other equipotential surfaces intersect the vertical axis of the vessel in other points, 
in particular in point of location of the receiving antenna. In the conical problem 
the vertexes of the all cones are pllaced in one point, located at the vertical axis and 
coinciding with the vessel shell.
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An approximate procedure of calculating the said capacitance is based on the 
similarity of the shapes of a phantom and a paraboloid and on reducing a parabolic 
problem to a cylindrical one. The real phantom structure is more similar to the 
paraboloid, but this paraboloid is not circular, since the horizontal cross section of the 
vessel is not circular. If the vessel is not similar to the circular paraboloid, one must 
approximate it by means of a paraboloid closest to it in shape.

Figure 9.16 shows the arrangement of vessel in the parabolic coordinate system. 
The antenna under study (transmitting antenna) is denoted here by 1. As seen from 
Figure 9.15b, this antenna is a dipole, located along the horizontal line tangentially to 
the bottom of the vessel. The measuring (receiving) antenna is denoted in this figure by 
2, and it is a small probe placed inside the vessel along the vertical axis. It is expedient 
that during the control test of the phantom both antennas must lie in one plane. As is 
clear from Figure 9.16, in this time the vertical axis of the structure (the z-axis) must 
pass through the center of the radiator 1 and the measurement point, in which probe 
2 is located.

Figure 9.16 The vessel in the system of parabolic coordinates.

As shown in Section 8.4, Laplace’s equation holds true at the transition from the 
parabolic problem to the cylindrical if parabolic (s, t, j) and cylindrical (r, jc, z) variables 
are related by the expressions (8.46). The transformation of the parabolic problem to 
the cylindrical problem results, in particular, in the transition from parabolic surface t
= const to plane (r, jc). The equivalent cylindrical problem is presented in Figure 9.17. 
Here the following designations are used: r01 = s01 is the radius of the outer surface of 
the shell, r02 = s02 is the radius of its inner surface, r1 = s1 and r2 = s2 are radii of the 
equipotential surfaces crossing the axis z at the distance 1 and 2 cm above the shell. 
If the paraboloid is circular, the circular cylinder corresponds to it in the cylindrical 
coordinate system. But usually the vessel boundary is of rather intricate nature. Assume 
that its cross section perimeter is an ellipse with a major axis of length 2a and minor 
axis of length 2b, and that the shell thickness is 2 mm. The relative permittivity of the 
medium is equal to e1 = 1 in the range r r01, to 2.7 in the range r02 r r01, and to 
permittivity e2 = 41.5 of the liquid filling the vessel at r r02.
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Figure 9.17 The equivalent cylindrical problem: top view (a), axonometric view (b).

Reducing of the three-dimensional problem to the plane (two-dimensional) simplifies 
the calculation of capacitance between the equipotential surfaces. The capacitance 
magnitude determines the coupling level between the surfaces. It can be used for 
estimating the strength of the field created by the antenna under study at the observation 
point. As is known, the electric component of the field at a given distance from an 
antenna is inversely proportional to the medium permittivity:

E AJ F R Rz A= ( ) ( )e2 (9.14)

where JA is the current in the antenna base, and F(R) is a function of the distance R
from the antenna axis.

As is seen from Figure 9.17, the capacitance between the antennas is formed of a 
few capacitances connected in series with each other. The capacitance per unit length 
between two equipotential cylindrical surfaces of radii r1 and r2 (r1 > r2) is equal to 
(see, for example, [34])

C = 2 2 1 2pe r r/ /ln( ) . (9.15)

If the radius of the equipotential surface depends on j (for example, when the 
cylindrical cross sections are similar ellipses), it is necessary to take the average radius 
rav of this surface as the cylinder’s radius r. In order to calculate the magnitude of C
for the parabolic structure, we should use (8.46) to replace the parabolic coordinates 
by cylindrical ones. For this end, we have to determine the shape and dimensions of 
the phantom in the parabolic coordinate’s system in accordance with the drawing and 
then perform the transition to the cylindrical coordinates. If the vessel has the shape 
shown in Figure 9.17, and x- and y-axes are directed along the major and minor axes 
of the ellipse respectively, the coordinates of the points situated on the vessel walls are 

x f y f z f= = = -st j j st j j t s j( ) cos , ( ) sin , . [ ( )]0 5 2 2 2 . (9.16)

Here, function f(j), which varies from 1 to b/a, defines the dependence of the ellipse 
radius on angular coordinate j.

Comparison of a paraboloid, having the elliptic cross section in the horizontal 
plane, with the paraboloid of rotation with the same perimeter show that in the latter 
case, coordinate s0 will be constant along the entire parabolic surface and at the lower 
point of its surface, where x = y = 0, coordinate t in accordance with (9.16) is zero too. 
Therefore z0 = –0.5s0

2, i.e. s 0 02= z . Magnitude z0 is the coordinate of the lowest 
point of the vessel. 
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Point z = 0 (where t0 = s0) is the focal point of the paraboloid of rotation. In 
Figure 9.16 it is designated by the letter F. And the distance between points z = 0 and 
z = z0 is the focal length |z0|, which is equal to a half of the focal parameter. The 
relationship, similar to s 0 02= z , is true for each paraboloid, including the paraboloid 
with the elliptic cross section. In particular, if the probe is located on the z axis at distance 

d from the bottom point, then s d= -( )2 0z  (see Figure 9.16).
As an example, we consider calculation of the field inside the side and central vessels 

of the phantom shown in Figure 9.15. The approximate dimensions of the set are given in 
[82]. During the calculation, the following dimensions were taken into account and used: 

The left vessel—the length and the width of the entrance (aperture) are respectively 
243 and 206 mm, the maximal depth of the vessel, the shape of which follows the 
shape of the left side of the head, is equal to 79 mm; 
The central vessel—the length and the width of the entrance are respectively 370 
and 255 mm, the maximal depth of the vessel is 110 mm; 
Both vessels—the liquid level is 140 mm.

These dimensions permit to draw the lateral and the longitudinal cross sections of 
both vessels. The vertical cross sections of the side vessel in the lateral (1) and longitudinal 
(2) directions are given in Figure 9.18. They allow determining the parameters of 
parabolic curves. In order to calculate the parameters of the paraboloid, the shape of 
which is the closest to the vessel shape, we use the parabolic equation |z0| + z = ax2

and summarize point by point the values of z and x2. Factor 1/a is defined as the ratio 
of the sums,

1 2
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Figure 9.18 The cross sections of the side vessel in the lateral (1) and 
longitudinal (2) vertical planes.

Applying (9.20) for calculation of the value a, one can largely avoid the computational 
difficulties associated with distinction between the shape of the vessel and the paraboloid 
of rotation. The focus of the paraboloid is located at the point z = 0. A focal length is the 
distance from the point z = 0 to the bottom point of each paraboloid, i.e. to the point of 
intersection of axis z with the surface s = const. From (8.40) it follows that at this point 
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x = y = 0, i.e. t = 0, z = –s 2/2. Accordingly s = 2 z , and

| | /z a= 1 2( ) (9.18)

Let the antenna-probe 4 (see Figure 9.15) be set in succession at three positions along 
the z axis: on the inner surface of the shell, and also at a distance 10 and 20 mm from it. 
In accordance with (9.17) and (9.18) we obtain 1/a = 113 mm, that is the coordinates of 
the points on the inner (z02) and the outside (z01) surface of the vessel, and the coordinates 
of the points inside the vessel (z1 and z2) are equal to –56.5, –58.5 (if the thickness of 
the shell is 2 mm), –46.5 and –36.5 mm respectively. This means that the parabolic and 
cylindrical coordinates of these points are equal s02 = r02 = 10.63, s01 = r01 = 10.82, 
s1 = r1 = 9.64 , s2 = r2 = 8.54, respectively. In accordance with (9.15) the capacitances 
between the adjacent cylindrical surfaces (beginning from the outside) per unit 
length of the cylinder are equal to C01–02 = 0.86 × 10–8 F/m, C02–1 = 2.36 × 10–8 F/m,
C1–2 = 1.90 × 10–8 F/m. Summarizing the capacities, we obtain that the capacity of the 
shell is C01–02 = 0.86 × 10–8 F/m, the capacity of the shell and the first layer of liquid 
is C01–1 = 0.63 × 10–8 F/m, the capacity of the shell and the two layers of liquid is 
C01–2 = 0.47 × 10–8 F/m. The field E0 created by an external antenna will consistently 
decrease after passing through each layer: E0, 0.86E0, 0.63E0, 0.47E0.

Evaluating the capacities per unit length for different vessels, similar in shape, it 
is expedient to take into account the following regularities, follow from (9.17). If the 
height of the vessel will increase n times, the value of |z0| will decrease n times. If the 
diameter or the vessel perimeter will increase n times, the value of |z0| will increase n2

times. If the horizontal dimensions of the vessel in different directions change differently, 
it is expedient to take the smaller factor as n.

In accordance with the last recommendation we obtain for the central vessel: 1/a
= 165MM, z01 = 84.7, z02 = 82.7, z1 = 72.7, z2 = 62.7, s01 = r01 = 13.0, s02 = r02 = 12.9, 
s1 = r1 = 12.1, s2 = r2 = 11.2 mm. The capacities per unit length are equal to 
C01–02 = 1.21 × 10-8, C02–1 = 3.59 × 10–8, C1–2 = 3.19 × 10–8 F/m, i.e. the capacity of the 
shell is C01–02 = 1.21 × 10–8, the capacity of the shell and the first layer of liquid is 
C01–1 = 0.91 × 10–8, the capacity of the shell and the two layers of liquid is C01–2 = 0.71 
× 10–8 F/m. The field E0 created by an external antenna will consistently decrease after 
passing through each layer: E0, 0.82E0, 0.75E0, 0.58E0. The results of the experimental 
check are presented in Table 9.2. The measurements of the field were performed at 
frequency 0.903 GHz. They coincide on the whole with the calculation results. They 
confirm that the field depends on the shape and dimensions of the vessel and show 
that the proposed method permits to take this dependence into account.

Table 9.2 Comparison of Calculation and Experiment

Field E02/E0 E1/E0 E2/E0

The side vessel

Calculation 0.86 0.63 0.47

Experiment 0.86 0.58 0.48

The central vessel

Calculation 0.82 0.75 0.58

Experiment 0.90 0.54 0.33
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9.5  MUTUAL COUPLING BETWEEN SLOT ANTENNAS ON 
CURVILINEAR METAL SURFACES 

The calculation procedure of slot antennas situated on curvilinear surfaces with axial 
symmetry opens new prospects of rigorous analysis of the electrical characteristics of 
slots in non-planar screens.

The antenna theory employs the concept of ideal slotted antenna. This is the 
antenna in an indefinitely large, perfectly conductive, infinitely thin metal screen. In 
accordance with the duality principle, the characteristics of the ideal slot antenna are 
easily determined if the characteristics of a metal radiator with the same shape and 
dimensions are known. As is shown in [83], the outward appearance of integral equation 
for voltage U between the edges of the slot coincides with the outward appearance of 
the corresponding equation for the current of an equivalent metal antenna, identical 
in shape and dimensions. But the linear operator G(U) (integral functional), which is 
included in the equation, depends on the screen shape, i.e. differs, in the general case, 
from operator G(I) of a metal antenna in free space.

We will consider two identical magnetic radiators located in parallel in free space 
and excited in opposite phase (Figure 9.19a). By means of expressions (8.23) and (8.24), 
one can calculate radiation resistance RM and input impedance ZM of each magnetic 
radiator through the radiation resistance RE and input impedance ZE of an electrical 
radiator, the same in shape and dimensions. In order to perform the transition from 
magnetic radiator to slot antenna, we shall divide each arm of the magnetic radiator 
by a metallic surface (of a circular cross section). Since the shape of magnetic field lines 
coincides with the shape of this surface, the radiator field in consequence of the metallic 
surface insertion doesn’t change. The metal surface divides each magnetic radiator into 
two radiators situated on the inside and outside of the cylinder. Since magneto motive 
force eM, exciting the radiator, and oscillating power of the radiator P = eMJM remain 
unchanged, the fraction of magnetic current JM in each newly formed radiator is equal 
to the fraction of the power radiated into each subspace. 

Figure 9.19 Two parallel magnetic radiators (a) and the transition to slot antennas (b).

As it is shown in Section 8.7, in the case of two parallel, infinitely long filaments 
with linear charges opposite in sign, the fraction of the energy flux of each filament 
inside the volume, limited by the circular surface passing through the filaments, is equal 
to half. Taking into consideration the conformity principle and the quasi-stationary 
character of an electromagnetic field of a two-wire line, one can make a conclusion 
that the half energy flux propagating along this line is concentrated inside the circular 
cylinder passing through the wires. One can also be sure that a similar supposition is 
correct for wires of finite length (for electrical and also for magnetic radiators), though 
the magnitude of electrical or magnetic current varies along the wire in these cases. 
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If we take into account that the half power radiated inside the cylindrical volume, 
the input admittance of the inside magnetic radiator is

Y e J Ym m1 2 2= =/ /( ) , (9.19)

where Y = 1/Zm is the total admittance of the original radiator. 
We assume that the radiator cross section inside the cylinder has a rectangular (with 

sides b and a, where b >> a) curved along a cylinder surface (Figure 9.19b). The greater 
side b represents an arc, which is parallel to the metal surface. Such a radiator is equal 
to a one-sided slot of width b. The radiator on the outside of the cylinder is equivalent 
to a similar one-sided slot. Its current and input admittance coincide with the current 
and the admittance of the radiator inside the cylinder:

Y2 = Y1 = 2Y. (9.20)

If to replace both one-sided slots by a single two-sided slot and take into account 
that its admittance is equal to the sum of both slots admittances, then

Y Y Y ZS M= + =1 2 4/ , (9.21)

i.e., the input admittance of the two-sided slot is according to (3.24)

Y ZS E= ( )/ 60 2p . (9.22)

Let us take into account the mutual influence of two parallel magnetic radiators on 
the basis of mutual communication of equivalent electric radiators. In accordance with 
this, we assume that ZE in expression (9.22) is the input impedance of the electrical 
radiator (of the metal antenna) located near another metal radiator, which is parallel to 
the first radiator and is excited in anti-phase to it. In this case 

ZE = Z11 – Z12, (9.23)

where Z11 is the self-impedance of each radiator, and Z12 is their mutual impedance. 
The expression (9.22) in view of (9.23) permits to calculate the input impedance of 

the slot antenna, including in the system of two anti-phase radiators situated along the 
generatrices of the circular metal cylinder. It is necessary to note that it is two arbitrary 
generatrices (with an arbitrary length of the arc between them, located along the cylinder 
circumference). The slot antennas are not obligatorily located at opposite sides of the 
cylinder (when the arc length is equal to p). Really, the insertion of a cylindrical metal 
surface dividing each magnetic antenna into two radiators requires to remember that the 
shape of the magnetic force lines must coincide with the shape of the surface. In given 
case, this is so, since the field lines created by two charged filaments (see Figure 8.2a)
are circumferences passing through the filaments with the centers on the y-axis. The 
fraction of energy flux inside the volume, which is bounded by the circular metal surface 
passing through these filaments, is independent of the arc length between the cylinder 
generatrices, along which the filaments are placed, i.e. it is equal to a half as before.

In accordance with the duality principle, if the moment of current of a magnetic 
radiator is equal to the moment of current of an electrical radiator, the electric field of 
a magnetic radiator is equal in magnitude to the magnetic field of an electrical radiator 
and is opposite to it in sign. The magnetic field of a magnetic radiator is smaller than 
an electric field of an electrical radiator by a factor of (120p)2. It means, in particular, 
that the directional pattern of a system of two-slot radiators coincides with the pattern 
of two metal radiators with the same shape and dimensions. 
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The directional pattern of an array consisting of two identical electrical radiators 
depends on the single radiator pattern and the array factor, i.e. on the radiator spacing. 
Accordingly, the pattern of a system consisting of two thin slots depends on their 
spacing (the pattern of a single slot has the circular shape in the equatorial plane) and 
is independent of the radius of the circular cylinder in which slots are cut, i.e. on the arc 
length (in radians) between the slot axes. As follows from (9.19), the input impedance 
is also independent on the cylinder radius. So, the presence of a cylinder surface has 
practically no effect on the electrical characteristics of two thin radiators. The cylindrical 
metal surface is a structure in which the slot is cut, and can be replaced, e.g. with a 
metal plane passing through both the radiators.

It is easily verified that the expression (9.22) permits to calculate the input impedance 
of the slot have antenna located on an infinite perfectly conducting plane not far from 
the other slot antenna (Figure 9.19a). If the second antenna is identical to the first and is 
excited in anti-phase, magnitude ZE can be found from (9.23). If several slots are located 
on a metal plate, then one must substitute it into the expression (9.22), which remains 
true, the input impedance of a metal radiator ZE included in the radiators system with 
allowance for its position and phasing. The directional pattern of a slot antenna coincides 
with the directional pattern of metal antennas with the same position in space. 

If slot antennas have finite width, the electrical radiators, which are compared with 
them, must have an identical width. They are metal plates with the cross section in 
the shape of a rectangle curved along the cylindrical surface (see Figure 9.19). Angle a
between the perpendiculars to the plates is equal to the arc between their axes, i.e. it 
is dependent on the cylinder radius. If the arc is p, the plates radiate in the opposite 
direction. When calculating ZE, it is necessary to take into account the dimensions 
of cross section and mutual angle of rotation of metal plates. The directional pattern 
changes accordingly. It means that the electrical characteristics of slot antennas in the 
given case will depend on the radius of the cylinder, on which they are set. 

All the aforesaid can be extended onto the case of slot radiators situated on the 
surface of a cone (Figure 9.20a), or a paraboloid (Figure 9.20b), or an arbitrary surface 
with the axial symmetry. In all cases the shape of the metal radiators, whose directional 
patterns coincide with the directional patterns of the slot radiators, must coincide with 
the shape of the corresponding segments of generatrix, the movement of which creates 
the given surface. 

Figure 9.20 Slot antennas at the cone (a) and the paraboloid (b).

Metal bodies of finite length are of particular interest. As the experiments and 
calculations have shown, the directional pattern and input impedance of a whip antenna 
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located near a circular metal cylinder of finite height, exceeding an antenna height by 
more than l/4, practically coincide with the analogous characteristics of the antenna 
located near an infinitely long cylinder. Therefore, if the ends of slot antennas are 
distanced from the end of the metal cylinder with the axial symmetry by more than 
l/4, one may determine the characteristics of two anti-phase slots in the metal body in 
accordance with the characteristics of two radiators of the same shape and dimensions 
located in free space.

In substance, in accordance with this conclusion the expression (9.22) for the input 
admittance of slot antennas placed on the metal cylinder is right. Directional patterns 
of slot and metal antennas coincide with each other and do not depend on the radius 
of the metal cylinder. Any restrictions connecting the radius of the cylinder with the 
antenna length or the wavelength don’t imposed. This means that for the transition from 
a magnetic radiator to a two-sided slot antenna cut in a curvilinear metal surface, and 
also for the transition from a slot antenna to a magnetic radiator it is enough that the 
metal surface is smooth, and the antenna surface coincides with the curvilinear surface 
of the cylinder.

The equivalence of a slot radiator and a magnetic radiator is true, if the field 
structure at the radiator surface is formed by the extraneous source and is independent 
of the structure of electromagnetic field in the surrounding space

At present, the mathematical modeling method, in accordance with which a metal 
surface is replaced by a system of thin wires or metal strips, is used widely to calculate 
the electrical characteristics of radiators located not far from the metal bodies [33, 84]. 
In this formulation the problem reduces to the calculation of the current’s distribution 
in a structure of randomly directed segments of wires or stripes. If the currents along 
the wires (stripes) are known, one can calculate all radiator characteristics.

The considered earlier equivalence of a slot radiator and a magnetic radiator allows 
to extend the mathematical modeling method to the case of calculation of the electrical 
characteristics for slot antennas situated on metal bodies of a complex shape. In this case, 
the magnetic radiator with the magneto motive force is the source of the electromagnetic 
field rather than the electrical radiator with the electromotive force.

As mentioned above, the coincidence of the electrical characteristics of slot radiators 
located on an axially symmetric metal surface with the electrical characteristics of metal 
radiators allows to increase the area of slot antennas, where the rigorous methods of 
solving the electrodynamics problem are applicable.



10.1 METHOD OF COMPENSATION 

Development of radio engineering and the widespread use of the radio devices in the 
national economy and in everyday people life led to the problem of protecting living 
organisms and sensitive instruments from strong electromagnetic fields in the near zone 
of each transmitting antenna. The protection of devices is necessary, since the radiation of 
nearby devices can disrupt their normal operation, cause spontaneous switching on and 
switching off of device, change operating regimes, etc. The protection of living organisms 
is required, firstly, in the vicinity of powerful transmitting centers, where the electrical 
field strength is great, and, secondly, near mobile equipment in the transmitting mode, 
which is located next to the user. A cellular phone is, in particular, such a device.

The undoubted advantage of mobile communication consists in the freedom of its 
use to everyone, regardless of age, wealth and location. If the radio has liberated from the 
fetters of wire systems, the cellular phone allows replacing the radio station, mounted on 
a truck or on other vehicle, by a small device that may fit in a child’s palm. As a result, 
the advent of cellular communication looks like a big bang due to the rapid increase in 
the number of handsets, the widespread proliferation of phone contacts, and also due 
to the rapid growth of concern about the potential harm of these devices for human 
health, in particular its carcinogenic effect.

Together with proliferation of mobile communication systems, there has been an 
increasing concern about possible hazards for the user’s body, especially for the user’s 
head, which is irradiated by a handset antenna. During a phone conversation, the 
personal cellular phone is placed next to the user’s head, and its transmitting antenna 
irradiates sensitive human organs (brain, eyes, etc.). The absorbed power in today’s 
cellular phones can be equal to a half of all radiated power. In order to minimize any 
possible health risk, it is necessary to reduce the amount of that power. 

A correlation between irradiation and parotid tumor is still subject to scientific 
debate, mostly due to the inherent difficulties of empirical research. Rumors and the 
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truth about the potential harm of irradiation require reducing the Specific Absorption 
Rate (SAR) in the user’s head. This is an extremely complex problem, since one must 
reduce the near field of the transmitting antenna without decreasing the far field and 
without deteriorating directional pattern of antenna. In addition, the problem is not 
limited by the cellular phones, since a man often uses or operates with a low-power 
transmitter. This transmitter can be placed nearby in a production area or in a vehicle.

The rather obvious idea of head protection by means of screening, i.e. by shading 
effect, is unrealizable. The near field has no ray structure, and hence the shadow behind 
a metallic screen can cover only an area approximately equal to the screen size. For 
example, in order to protect the head of the cellular phone user, the screen must be 
much larger than the cross-section of the handset housing. For similar reasons, one 
should discard the idea of using an absorber, i.e. a dielectric shield that absorbs some 
part of energy. The distortion of the antenna directional pattern is still another obvious 
disadvantage of using screens and absorbers.

The protective action of the compensation method, proposed by M. Bank [85], is 
based on a different principle—on the mutual suppression of fields, created by various 
radiating elements in a certain area. The diverse variants of introducing this principle 
(mutual compensation of fields of two radiators, use of folded or cavity antennas) possess 
an opportunity to reduce irradiation of user’s organism, especially his head, without 
distorting the antenna pattern in the horizontal plane. In accordance with the key (main) 
variant of the compensation method, as shown in Figure 10.1, the main radiator 1 is 
supplemented with a second (auxiliary) radiator 2, situated in the plane, passing through 
the head center and the feed point of the main radiator. The second radiator is placed 
between the head and the main radiator and is excited approximately in anti-phase with 
it (not exactly in anti-phase, because the phase of the field is changed along the interval 
between the radiators). So, the fields of the two radiators will compensate each other 
at a certain point inside the head, and the point will be surrounded by a dark spot, i.e. 
by a zone of a weak field.

Figure 10.1 Two radiators next to the head.

The dipole moment of the auxiliary radiator must be smaller than that of the main 
radiator, since the field, close by to an electrical radiator, decreases quickly. In order to 
get the same magnitude of field at the compensation point, if the currents of radiators 
differ substantially, it is enough to place the radiators at a distance of a few centimeters 
from each other (1–2 cm at frequency 1 GHz). Therefore, the field of the auxiliary radiator 
may be relatively small, i.e. the common field in the far region is little different from the 
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main radiator field, and the directional pattern remains close to the directional pattern 
in the absence of compensation. 

Placement of linear radiators near the human head is shown in Figure 10.2. As seen 
from the figure, the feed point A1 of the main radiator, which coincides with the origin of 
cylindrical coordinate system, and compensation point C are located along the horizontal 
straight line, passing through a head center. This line is defined as the structure axis. 
The feed point of the auxiliary radiator is placed on this line, at a distance b from the 
main radiator. Assume that both radiators are vertical and have equal lengths. Inside the 
head at compensation point C (at distance r0 from point A2 ) the fields of both radiators 
must be equal in magnitude and opposite in sign:

E b E bz z2 0 1 00 0 0 0( , , ) ( , , ).+ = - +r r (10.1)

Figure 10.2 Placement of phone radiators close to a human head.

In the capacity of linear radiators with finite lengths, one can employ monopoles 
with a feed point in their base. A linear radiator creates two electric field components: 
Ez and Er. If a straight perfectly conducting filament of finite length is used as model 
of a vertical linear radiator, the electric field components with allowance of a mirror 
image in a cylindrical coordinate system (r, j, z) are given by expressions (1.31) and 
(1.32). Similar expressions hold for auxiliary radiators too. As can be seen from them 
the simultaneous compensation of both Ez and Er field components by adjustment of 
the current JA2 of the auxiliary radiator is impossible. Since Ez is greater than Er, and Er
along the r-axis (at z = 0) is zero, we prefer to compensate the Ez components.

Since both feed points A1 and A2 and also the compensation point C lie on the 
structure axis, components Ez of both radiators in a homogeneous medium with relative 
permittivity er are determined by (1.31), but for the main radiator r1 = r, and for the 
auxiliary radiator r r r j2 1

2 2
12= + -b b cos  (Figure 10.3). 

Figure 10.3 Two linear radiators in cylindrical coordinate system (top view).
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Suppose we want to find the current and the input impedance of the radiator 
situated in the near region of the neighboring radiator. If the emf is connected in the 
input of the first radiator, the circuit looks, as shown in Figure 10.4. The radiators are 
accomplished as the monopoles of finite lengths, RA1 and RA2 are the impedances of the 
first and second generators accordingly. Generally R1 = R2 = R.

Figure 10.4 Two radiators in the near region of each other.

The calculation method for a system with two linear radiators is based on the folded 
dipole theory and on the superposition principle. If to connect two voltage generators, 
equal in magnitude to e1/2 and opposite in direction, in a basis of the right radiator 
and to divide also the main generator into two generators, the same in magnitude and 
in direction, then according to the superposition principle, the current at each point is 
the sum of the currents, created by all generators. Therefore, as shown in Figure 10.5, 
one can divide the original circuit onto two circuits with two generators in each circuit 
and then calculate and sum the currents at points B and D, created in each of the 
circuits. This procedure allows analyzing the antenna system as a superposition of two 
subsystems with in-phase and anti-phase currents.

Figure 10.5 Division of the considered circuit onto two circuits.

Let the wires of the first circuit carry only anti-phase currents, e.g. currents equal 
in magnitude and opposite in direction. The two parallel wires form a long line with 
the load 2R in the basis. The line is open on the end. Let the second circuit carry only 
in-phase currents, i.e. the potentials of points, situated in both wires at the same height, 
(including lower points of wires) are identical. With this aim the emf’s in the basis of 
the wires of the second circuit must be equal, if the radii of wires are equal. In this 
case, the parallel wires form a monopole with resistance R/2 between the generator 
and the ground.
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For the two-wire line, we can write

e1 = Jl(Zl + 2R), (10.2)

where Jl is the current in the line basis, Zl = –jWl cot kL is the input impedance of line 
with length L, Wl = 120 ln(b/a) is the wave impedance of the line, b is the distance 
between the wires, and 2a is the diameter of each wire. The current at point B is 
JB1l = e1Y1, and the current at point D is JD1l = –e1Y1, where Y1 = 1/(–jWl cot kL + 2R).

For the monopole, we can write 

e J Z Rr r1 2 2/ /= +( ) , (10.3)

where Jr is the current at the monopole basis, and Zr = Zm(L, ae) is the input impedance 
of the monopole with length L and equivalent radius ae, equal to ab . The currents at 
points B and D are the same and equal to

J J e Z R e YB r D r r1 1 1 1 24 2= = + =/( ) ,  (10.4)

where Y2 = 1/[4Zm(L, ae) + 2R].
So, if emf e1 is connected in the first radiator input, the currents in the first and the 

second radiator basis are

J11 = e1(Y1 + Y2), J21 = e1(–Y1 + Y2). (10.5)

If emf e2 is connected in the second radiator input, so, similarly to (10.5), the currents 
in the first and the second radiator bases are

J12 = e2(–Y1 + Y2), J22 = e2(Y1 + Y2), (10.6)

According to the superposition principle, the terminal currents of the radiators are

J J J e e Y e e Y J e e Y e e YA A1 11 12 1 2 1 1 2 2 2 2 1 1 1 2 2= + = - + + = - + +( ) ( ) , ( ) ( ) . (10.7)

The input admittances of the radiators are

Y J e Y Y e Y Y e Y J e Y Y e Y Y eA A A A1 1 1 1 2 2 2 1 1 2 2 2 1 2 1 2 1= = + + - = = + + -/ / / /( ) , ( ) 22 . (10.8)

As is known, the current and the input impedance of a radiator depend significantly 
on the neighboring radiator current. For a system of two radiators one can write

e1 = JA1Z11 + JA2Z12, e2 = JA1Z21 + JA2Z22. (10.9)

Here, e1 and e2 are the driving emf’s, connected respectively to the terminals of the 
first and second radiators, Z11 and Z22 are their self-impedances, and Z12 and Z21 are
their mutual impedances. Each expression in (10.9) is a Kirchhoff equation for a series 
connection of circuit elements.

The expression (10.9) can be rewritten as

J
e Z e Z

Z Z Z Z
J

e Z e Z
Z Z Z ZA A1

1 22 2 12

11 22 12 21
2

2 11 1 21

11 22 12 21
=

-
-

=
-
-

, , (10.10)

i.e. the current in each radiator is the sum of the currents produced by its self-generator 
and the generator of the neighboring radiator (because of the mutual coupling between 
radiators). The ratio of the currents depends on the level of mutual coupling between 
the radiators, which is determined by their dimensions and position. Comparing (10.5)–
(10.6) with (10.10), one can determine the radiator self- and the mutual impedances (for 
wires of equal radii). Considering that
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we obtain: 
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Summing and subtracting the left-hand and right-hand parts of last two expressions, 
we find: 

2 1 2 11 11 12 2 11 12Y Z Z Y Z Z= - = +/ /( ), ( ),

that is, 
Z Z Y Z Z Y11 12 2 11 12 11 2 1 2+ = - =/ /( ), ( ),

and consequently

Z Z Y Y Z L a j W kL R

Z
m e l11 22 1 2

12

0 25 1 1 0 25
0 25 1

= = + = - +
=

. ( ) ( , ) . cot ,
. (

/ /
// /Y Y Z L a j W kLm e l2 11 0 25- = +) ( , ) . cot . (10.12)

One can see from (10.12) that the result of close proximity of the radiators is an 
additional term of self-impedance of each radiator. A similar approach is true also for 
the second radiator and for the mutual coupling between them.

The mutual coupling between the radiators affects the current distribution along each 
radiator and causes the anti-phase currents in addition to the in-phase components. For 
equal radii of the wires, the in-phase and the anti-phase currents of the first radiator are 

J z e e Y
k L z

kL
J z e e YA

i
A
a

1 1 2 2 1 1 2 1
( ) ( )= +

-
= -( ) ( )

sin ( | |)
sin
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( | |)

sin
.

-
(10.13)

In accordance with (1.31), the total fields of the radiators in plane j = 0 are given by 

E z j F e e Y e e Yz r1 1 1 2 2 1 2 130( ) [( ) ( ) ].= - + + -/e

E z j F e e Y e e Yz r2 2 1 2 2 2 1 130( ) [( ) ( ) ].= - + + -/e (10.14)

Here, F
kL

jkR R jkR R kL jkRm m m m m m= - + - - -
1

21 1 2 2 0sin
[exp( ) exp( ) cos exp(/ / //Rm0 )] ,

where m is the radiator number, R z Lm m1
2 2= - +( ) r , R z Lm m2

2 2= + +( ) r ,

R zm m0
2 2= + r . In order to bring the total field Ez = Ez1 + Ez2 to zero at compensation 

point (r0 + b, 0, 0), the ratio of emf’s, feeding the radiators, must be 

e
e

Y Y F Y Y F
Y Y F Y Y F

2

1

2 1 10 2 1 20

2 1 10 1 2 20
= -

+ + -
- + +

( ) ( )
( ) ( )

. (10.15)

Here, Fm0 is the value of function Fm at the compensation point. Equation (10.15) allows 
finding the voltage amplitude and phase at the input of the second radiator, if those 
amplitude and phase of the first radiator are known. Using (10.9), we find: 

J e Y Y e Y Y e J e Y Y e Y Y eA A1 1 1 2 2 2 1 1 2 1 2 1 2 1 2 1/ / /= + + - = - + +( ) , ( ) .
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Substituting (10.15) in these expressions, we obtain for the driving currents ratio 

J J F FA A2 1 10 20= - . (10.16)

It coincides with the expression in the absence of mutual coupling between the 
radiators. This occurs when the radiators are of the same length. For L = l/4, we obtain 
in the first approximation F10 = exp(–jkR10)/R10, F20 = exp(–jkR20)/R20, i.e.

J J R jk R R RA A2 1 20 10 20 10/ /= - - -exp[ ( )] , (10.17)

where R L R L b20
2

0
2

10
2

0
2= + = + +r r, ( ) . As it follows from the above expressions, 

the dipole moments of linear radiators must be in inverse proportion to the distances 
between the radiators and the compensation point.

10.2  DIMENSIONS OF DARK SPOT AND FACTOR OF 
LOSS REDUCTION

Application of the compensation method requires analyzing its efficiency. To this end, 
one needs to calculate the field in the space, surrounding radiator, and to estimate the 
irradiation reduction factor. The problem is complicated due to the heterogeneous nature 
of the medium. For example, antennas of cellular phone is located in close proximity to 
the user’s head, hand and body, consisting of many tissues with different permittivity, 
which is much higher than the permittivity of free space. Since the field strength and 
hence the dissipated power is maximal near the antenna, the capability to calculate 
correctly the near field of the antenna with due account of the user’s body‘s presence 
is crucial for results’ accuracy.

Consider a linear antenna tangent to the user’s head, which is modeled by a vertical 
prolate ellipsoid (Figure 10.6a). One may interpret the structure in the capacity of a linear 
radiator situated along the flat boundary between two half-spaces—between air with 
er = 1 and the head with er  1, as shown in Figure 10.6b. It is a crude approximation, 
because the head dimensions are magnitudes of the order of the wavelength.

Figure 10.6 Model of the head and the linear antenna (a), the antenna at the 
interface (b), the charge in a heterogeneous medium (c).

The problem of finding the electromagnetic field of a linear radiator, located along 
the boundary between two media, reduces to calculation of the electrostatic field in a 
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heterogeneous (or more exactly, piecewise-homogenous) medium [86]. Such problem 
arises, in particular, if an isolated wire is located at the interface of two media, e.g., air 
and a dielectric medium with er  1, as shown in Figure 10.6c.

As already mentioned in Chapter 7, a structure of the quasi-stationary electrical field 
of alternating linear currents is similar to a structure of the magnetic field, created by 
constant linear currents. The magnetic field structure coincides with the structure of the 
electric field of a line charge (principle of correspondence). The near field of an antenna 
in the first order approximation has a quasi-stationary nature. This analogy allows to 
reduce the calculation of the antenna near field in a piecewise-homogenous medium to 
a calculation of a field in a homogenous medium. But this analogy is true only in the 
approximation of the first order and requires checking.

The solution for the electrostatic field in a heterogeneous medium is demonstrated 
by Figure 10.6c, where an isolated charged straight wire is located at the interface of two 
homogeneous media. As shown in Chapter 7, the field near an interface of a piecewise-
homogenous medium coincides with the field in a homogenous medium, if to assume 
that equivalent permittivity is equal to

e e= +( )1 2r / . (10.18)
Thus, the field of a linear radiator located at the boundary of two media differs 

only in the magnitude of relative permittivity. Analysis of a heterogeneous environment 
that uses a homogeneous medium as an equivalent replacement substantially simplifies 
the problem of calculating the irradiation power and the factor of loss reduction. The 
obtained results are verified with the program CST, based on the Moment Method, 
which allows to take into account detailed characteristics, including heterogeneity of a 
medium.

The relative permittivity of the brain, muscles and skin has similar values and on 
the average is about 40–50. Only the permittivity of bones differs substantially from this 
value. Accordingly, equivalent permittivity ee of the human tissues and the air is close 
to 20–25, and the field magnitudes in the vicinity of an antenna, located near the head, 
can be calculated in a homogenous medium with eer.

The dark spot dimensions for dipoles of finite length can be calculated, using 
equations (10.14), written for the field of such radiators in the cylindrical coordinates. 
The dark spot boundary is determined by radius rn, at which n = |Ez/Ez10| is equal to 
a given value, where Ez is the common field and Ez10 is the field of the main radiator. 

In order to simplify calculation of the factor of loss reduction, assume that the field 
strength increases linearly from the compensation point with the coordinate t = 0 to the 
dark spot boundary, where t = t0, so that |Ez/Ez10| = nt/t0, where n = const, and hence 
the loss power grows in proportion with the square of a distance. If s = t/t0, the total 
power of losses inside the dark spot is given by

P P ns ds P n= =Ú0
2

0

1

0
2 3( ) / (10.19)

where P0 is the loss power within the boundaries of dark spot caused by the main 
radiator in the absence of the auxiliary radiator. For n0 = 0.2, the loss of power is smaller 
by a factor of 3/(0.2)2 = 75 (or 18.8 dB). For n0 = 0.1 the factor of loss reduction is 300 
(24.8 dB), and for n0 = 0.04 the factor is 1875 (32.7 dB). In practice this factor is equal to 
roughly a half of the calculated value, since the field within the dark spot has a more 
complicated structure, i.e. the factor of reduction is approximately equal to

P P n0 0
21 5/ /= . . (10.20)
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In order to find the boundary of the dark spot, one must determine the radius rn as 
a function of z and j. In Figure 10.7 ratio n = |Ez/Ez10| is plotted as a function of r for 
l = 30, L = 7.5, r0 = 1 and different values of b (all dimensions are in centimeters). The 
magnitudes of fields Ez10 and Ez are calculated at z = 0, j = 0 by the above formulas. 
The boundaries of the dark spot in the r-direction, denoted as points r1 and r2, are 
found as the intersection points of curve n with given level n0. Along the segment 
r1r2 (between the points r1 and r2), n is smaller than the required value of n0. Length 

r = r2 – r1 of the segment, i.e., the dark spot length, is presented in Table 10.1 for 
different values of b and n0, i.e. for different levels of field reduction at the boundary of 
the dark spot. One can see from Table 10.1 that the length of dark spot for given level 
n0 decreases, when distance b between the radiators increases. But at large distances, 
when n0 at the boundary of dark spot increases, the length of dark spot increases also. 
Therefore, for small values of b, the dip of curve n becomes narrower and deeper. For 
great values of b, the dip of curve n is wider.

Figure 10.7 Variation of ratio n = |Ez/Ez10| along the r-axis.

Table 10.1 The Length of Dark Spot for Different b and n0

b n0 = 0.01 0.02 0.04 0.07

0.5 3.53 6.80

1 1.89 3.89 7.67

2 1.00 2.00 4.17 8.12

3 0.71 1.42 2.91 5.43

b n0 = 0.07 0.10 0.14 0.25

4 4.28 6.58 11.38

8 2.89 4.29 6.43 49.60

16 2.44 3.56 5.24 23.63

32 2.29 3.35 4.88 11.73

Figure 10.8 shows a few examples of the dark spot boundaries in the horizontal 
plane (z = 0) for f = 1 GHz, r0 = 1 cm and different values of b and n0. In the figure, 
fields Ez10 and Ez are calculated, using equations (1.31) at z = 0 and given angles j, in 
the manner similar to the preceding case. The difference between coordinates r1 and r2,
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denoting the start and end of the corresponding segment with n n0, determines the 
length of dark spot in the given direction.

From Figure 10.8 it is seen that the dark spot width is, as a rule, greater than its 
length. The spot height is close to its length. This result is particularly important, as it 
shows, in which direction movements of the head are more dangerous in terms of the 
growth of the absorbed power.

Figure 10.8 Boundaries of the dark spot in the horizontal plane.

The calculations also show that at the optimal selection of the structure in terms of 
the relative positions of the radiators and the compensation point, the volume of the 
dark spot increases, and the field inside it decreases substantially. One can choose the 
structure parameters so that the spot dimensions would coincide with the human head 
dimensions. That will allow to diminish sharply loss power in the head, and gives high 
tolerance with respect to movements of the user’s head. 

Employing several auxiliary radiators allows increasing the dark spot volume further. 
The use of an auxiliary radiator in the compensation method on the one hand allows 

to reduce the field in the near region and on the other hand must not distort the circular 
pattern in the horizontal plane. Retention of the far field strength and directional pattern 
is a crucial issue for any method of SAR reduction. In order to retain the shape of 
directional pattern and, in particular, to avoid a deep dip in it along the structure axis, 
the phases of the far fields created by the two radiators should not differ by more than 
a few degrees. The small distance between the antennas and the closeness of phases of 
driving currents ensure the preservation of the circular shape of the directional pattern. 
Yet, in order to reduce the common field at the compensation point to zero, the fields 
of radiators at this point must have opposite phases.

If the driving current of the main radiator is JA1, the driving current of the auxiliary 
radiator can be written as JA2 = JA1De–jy, where D is the ratio of the dipole moments of 
the radiators, and y is the phase difference between the driving currents. In this case, 
the field of the auxiliary radiator is Ez2 = Ez1Deju, where Ez1 is the field of the main 
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radiator, and u = kl – y. Here l is the path difference between rays from the radiators 
to a point located at angle j (see Figure 10.3). The common directional pattern in the 
horizontal plane can be written as

F D ju D u D um m= + ( ) +( ) +1 1 2 2 2exp cos sin . (10.21)

Here um is the value of u at the maximum of the denominator. Since D and um are 
constant, the denominator of (10.21) is independent of j. If the directional pattern of the 
main radiator is circular, the ratio of the maximum of directional pattern to its minimum, 
which is a measure of the distortion of directional pattern, is equal to

F

F

De

De

D
D

ju

ju
max

min

max

min

,=
+

+
=

±1

1

1
1 ∓

(10.22)

where the upper sign applies when D is positive, and the lower sign applies if D is 
negative. It is easy to show that when the maximum of directional pattern differs 
from the minimum by 6 dB (deviation of 3 dB from the average level), we obtain 
|D| = 0.33, and when the difference between the maximum and the minimum is 3 dB, 
we have |D| = 0.17. 

It is necessary here to explain that cellular communication is not the only area of 
application where one must create a weak field region near the transmitting antenna. 
The task is vital, if, for example, a mobile transmitter is located in a vehicle close to 
users and other passengers. Creating a weak field region in such cases is an efficient 
technique of protecting against irradiation. A problem is often complicated because of 
the operation of the transmitter in a broad frequency band. The problem is considered 
in Section 10.4. The analysis of directional pattern is essential for this problem, since 
there is habitually some degree of freedom to choose the antenna location. This helps 
to keep the undistorted directional pattern.

From (10.17), taking into consideration that R1 = r0 + b, R2 = r0 (see Figure 
10.2), we obtain the expression D = R2/R1 = r0/(r0 + b), which reduces to r0 = 
b/b, where b = 1/D – 1. Let the main radiator is situated on the structure axis, at 
a distance 3 cm from the head, i.e. r0 + b = 3, and the compensation point is placed 
on the head surface. In this case, if D = 0.33, then b = 2, r0 = b/2 = 1, b = 2; for 
D = 0.17 we have b = 4.88, r0 = 0.5, b = 2.5. The results point out the necessity for a 
tradeoff between the level of irradiation reduction and the directional pattern of the 
two-antenna structure, especially in cases when the antenna platform is subject to spatial 
restrictions. However, the changes of directional pattern are predictable and small. 

Figure 10.9 shows three variants of position of the dark spot relative to the head, 
where boundaries of the dark spot are given by a dotted line and the head boundary are 
given by the solid curve. Feed points A1 and A2 of the main and the auxiliary radiators 
and compensation point C in Figure 10.9a and 10.9b lie on the structure axis, and so 
the dark spot is symmetric relative to the axis. Figure 10.9a has the compensation point 
placed outside the head, and Figure 10.9b has it inside the head, close to its surface. In the 
latter case, the whole dark spot lies inside the head, resulting in a significant reduction 
of loss inside the head. Figure 10.9c corresponds to the case, where the auxiliary radiator 
is located out axis, so that the axis of dark spot would not coincide with the structure 
axis. This may result in such displacement of the dark spot from the head center that 
the loss power in the head increases. 
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Figure 10.9 The dark spot: compensation point is located outside the head (a), inside the 
head (b) and outside the symmetry axis (c).

Calculation of the dimensions of dark spot were accomplished by the Matlab program 
and verified both experimentally and by means of the CST program. The simulations 
were carried out with allowance for the user’s head and without that. The results of 
calculations, simulations and measurements with allowance for the user’s head are given 
in Figure 10.10. The main radiator was located at point r = 0, the auxiliary radiator 
was located at point r = 2 cm. The head was situated at a distance 4 cm from the main 
radiator. The point C was located at r = 5 cm.

Figure 10.10 Field strength in the dark spot: comparison of calculation, 
simulation and measurements.

As mentioned earlier, the calculations were performed by the Matlab program. 
The calculation results are presented in the form of dashed, dash-dotted and solid 
curves plotted for absolute values of fields Ez1, Ez2 and Ez = Ez1 + Ez2, respectively. The 
presence of the head was taken into account by replacing er = 1 with ee. It is easy to 
be convinced that in the interval from r = 4 to r = 10 cm, the field Ez is substantially 
less than the field Ez1.

The simulation was performed by means of CST program. The rectangles, squares 
and empty circles are the simulation results (model of the head is included in the CST 
program). The measurements of the common field Ez were carried out in laboratory 
conditions; they are presented with full circles. The presence of the user’s head was 
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taken into account. If the user’s head is absent, the results of calculations, simulations 
and measurements are in good agreement. However, as one might expect from the 
approximate estimation of ee, the coincidence between the results with allowance for 
the head is not too good, but a qualitative agreement exist.

Table 10.2 shows the total and maximum local SAR (in W/kg) with the auxiliary 
radiator and without it. he compensation points are located in accordance with 
Figure 10.9a and Figure 10.9b. The maximal absorbed power and the maximal local 
SAR exist near the main radiator. And the maximal reduction of the loss power occurs 
here, too. The obtained results show that under realistic conditions the compensation 
method allows to reduce the power, absorbed by the head, of three to four times as well 
as to reduce the maximal local power of five to ten times. The distortion of directional 
pattern due to the auxiliary antenna is relatively small provided that this antenna is 
properly located.

Table 10.2 Level of SAR

Number of 
radiators

Figure Total SAR Maximal local SAR 
(in 1 g)

1 0.00793 0.166
2 10.9a 0.00257 0.0235
2 10.9b 0.00225 0.0162

10.3  STRUCTURES FOR A STRUGGLE WITH EXTERNAL 
INFLUENCES

Application of the compensation method under realistic conditions often meets with 
difficulties because of the changeable environment, since the operation of a complicated 
radiating structure is often disrupted by various external actions. The system disturbances 
are to be counteracted. In particular, approaching of the metallic objects to the antenna 
system or relative displacement of the antennas as a consequence of user’s movement can 
result in a tuning disturbance. In such cases, the compensation point may be displaced 
and the field inside the dark spot can grow significantly. Consider the impact of metallic 
objects approaching to an antenna as an example of the external action.

In order to eliminate the consequences of these influences, one can try to retain the 
amplitudes and phases of the driving voltages and currents (the first method) or prevent 
the change of the radiator fields (the second method). It should be noted, first, that the 
appearance of a metal body near a radiator changes the current at all points along the 
wire of the radiator, whereas the feedback circuits are capable of adjusting the current 
only at a single point in each radiator, e.g., at its input. And, second, one must say that a 
metal body causes different changes of the radiator fields in the entire space, whereas the 
feedback circuits are capable of adjusting the field only at one or two points. Therefore, 
the efficiency of both methods, especially of the first one, is inherently limited. This 
Section is devoted to a comparative analysis of efficiency of both methods. It should 
be emphasized that the analysis regards cases of severe distortion in antenna systems.

The circuit of the antenna system is given in Figure 10.11. The circuit consists of 
two monopoles (A is the main radiator, B is the auxiliary radiator) mounted on a metal 
plate near the model of a human head. The compensation point is located inside the 
head, near to its front boundary. Dimensions in the figure are indicated in centimeters. 
Figure 10.12 shows the same circuit for the case, when a vertical metal sheet in a shape 
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of a square is placed not far from the antenna system (0.5 m from the radiators). Presence 
of a metal sheet in the proximity to a cellular phone may occur, e.g., when a phone’s 
user enters an elevator or a car. The metal sheet affects the antenna system and causes 
the growth of fields in the dark spot.

Figure 10.11 Circuit of antenna system near the model of a human head: top view (a) and side 
view (b).

Figure 10.12 A metal sheet placed not far from the antenna: top view (a) and side view (b).

Let us start with the relatively simple case of a single radiator. The input current 
of a single radiator in the absence of any metal sheet is

JA1 = eA/ZA,

where eA is electromotive force, and ZA is its input impedance. The metal sheet changes 
an input impedance of the radiator and makes it equal to Z A. To avoid the current 
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change in the radiator base, one must change the emf at its input to

¢ = ¢ = ¢e J Z J Z ZA A A A A A/ . (10.23)

For a single radiator of height 10 cm and diameter 1 cm we have: eA = 1, ZA = 38.6 
+ j12.8, Z A = 41.7 + j14.3, e A = 1.09 exp(j0.0145). Figure 10.13 shows the field of single 
radiator A along the horizontal line, passing through the radiator and the center of the 
head in the absence (1) and presence (2) of a metal sheet and after adjustment of the 
emf (3). Figure 10.13 and several others figures were divided into two parts in order to 
use the different scales.

Figure 10.13 The field of the single radiator A in the absence (1) and presence (2) of the metal 
sheet and after adjustment of the emf (3).

In the case of two radiators one must first calculate the amplitude and the phase of 
the emf of the second radiator, which ensures the field compensation at a given point. 
For this purpose one can in turn excite both radiators by emf e1, calculate the fields E1
and E2 of each radiator at the compensation point and take emf e2 = –e1E1/E2 as emf for 
the second radiator. It should be noted that the field and the input impedance of each 
radiator are calculated in the presence of the other radiator, when its input is grounded.

Calculations were performed with the CST program, which permits to simulate 
the total circuit with both generators and find the self-impedances Z11 and Z22 of each 
radiator and their mutual impedance Z12. The solution of the set of two equationse1 = 
J1Z11 + J2Z12, e2 = J2Z22 + J1Z12 allows to find currents J1 and J2. The metal sheet changes 
the self- and mutual impedances of the radiators. To avoid the change of the currents 
at radiators bases, the emf’s must be modified to

e 1 = J1Z 11 + J2Z 12, e 2 = J2Z 22 + J1Z 12, (10.24)

where the new impedances are marked by primes. Calculating the new emf’s, we may 
find the new fields and ascertain the adjustment results.

For two radiators of the same dimensions, we initially obtain: e1 = 1, 
E1 = 0.48 exp(j1.11), E2 = 1.09 exp(j2.54), i.e. e2 = 0.44 exp(j1.71). Accordingly in the 
compensation mode we obtain for impedances: Z11 = 37.3 + j16.2, Z22 = 39.5 + j16.8,
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Z12 = 0.67 – j28.9, and for currents: J1 = 0.013 – j0.0008, J2 = 0.0064 + j0.018. The adjustment 
results for impedances are as follows: Z 11 = 40.6 + j17.1, Z 22 = 42.0 + j18.9, Z 12 = 2.04 
– j28.02, and for emf’s: e 1 = 1.04 exp(j0.04), e 2 = 0.51 exp (j1.70). The calculated curves 
for the fields of the two-radiator structure are presented in Figure 10.14.

Figure 10.14 The field of two radiators in the absence (1) and presence (2) of the metal sheet 
and after adjustment of the emf (3).

The verification of adjustment results involves computation of fields along the 
horizontal line, passing through the radiators and the center of the head, as well as 
calculation of the total SAR and the maximal local SAR (in 1 g). The results obtained for 
the single radiator and for the structure from two radiators in the absence and presence 
of a metal sheet and after adjustment of the emf’s in accordance with expressions (10.23) 
and (10.24), are compared with each other. The total SAR and the maximal local SAR 
for the corresponding cases are given in Table 10.3. The calculated amplitudes of field 
at the compensation point are also given in Table 10.3. The SAR level and the fields 
are presented in W/kg and in V/m, respectively. As one can see from the table and 
figures, the results indicate the rather low efficiency of the correction method, based on 
retaining the driving currents of radiators.

Table 10.3 SAR and Field at Adjustment of emf in Accordance with Currents

Characteristic Total SAR Local SAR Field Total SAR Local SAR Field

One radiator Two radiators

Sheet is absent 4.5 .10–5 1.54 .10–3 0.79 1.4 .10–5 0.3 .10–3 0.0029

Sheet is present 2.8 .10–5 0.29 .10–3 0.68 1.7 .10–5 0.11 .10–3 0.0044

With adjustment 3.4 .10–5 0.34 .10–3 0.74 2.1 .10–5 0.18 .10–3 0.1214

The implementation of the second method calls to use one radiator as a measuring 
antenna and the second radiator as a local transmitting antenna (i.e., as a field source), 
or to use in turn both radiators as a measuring and a transmitting antenna, or to use 
the third radiator as a measuring antenna. The third radiator may be mounted at any 
suitable and convenient place. The adjustment is performed in the following way. The 
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field at the receiving point is measured in the presence of a metal sheet and is compared 
with its magnitude in the absence of the metal sheet (i.e. in the compensation mode), 
and afterwards the emf of transmitting antenna is varied until it is obtained the initial 
value of the field.

The results of such adjustment are given in Figure 10.15 and Table 10.4 for the 
following variants: (1) when the main antenna is used as the transmitting and the 
auxiliary antenna is used as the receiving, (2) the opposite case: the main antenna is used 
as the receiving, whereas the auxiliary antenna is used as the transmitting, (3) both emf’s 
are changed. Figure 10.16 and Table 10.4 present the results of field adjustment, using 
the third antenna located in the center of a metal plate, i.e., at point D (see Figure 10.11)
for the following variants: (4) when the emf and the field of the main antenna is 
changed so that its field at point D becomes equal to its original field (before distortion), 
(5) when the field of the auxiliary antenna is changed for this purpose, (6) when the 
fields of both antennas are changed.

Figure 10.15 The fields of the structure from a two radiators after emf adjustment, based on 
the fields, received from by these radiators.

Table 10.4 SAR and Field at Adjustment of emf in Accordance with Fields

Variant Total SAR Max. Local SAR Field

1 1.99 .10–5 0.137 .10–3 0.035

2 1.83 .10–5 0.151 .10–3 0.070

3 2.02 .10–5 0.152 .10–3 0.052

4 1.57 .10–5 0.102 .10–3 0.070

5 1.45 .10–5 0.125 .10–3 0.130

6 1.18 .10–5 0.090 .10–3 0.047

As one can see from Table 10.4 and Figures 10.15 and 10.16, the method, based on 
the measurement of the fields, demonstrates a higher efficiency. But acceptable results 
are obtained only at application of variant 6. Other variants, including placement of 
the third antenna at points E and F (see Figure 10.11), do not give satisfactory results. 
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And it should be pointed out that the monitoring signal is a weak signal that serves 
as the signal of feedback for both the main and auxiliary radiators. Therefore, proper 
adjustment by both methods requires that no signal from the transmitter impinges on 
the measuring antenna during the measurements of field.

Figure 10.16 The fields of the structure form a two radiators after emf adjustment, based on 
the fields, received by a third radiator.

In order to prevent the changes of field under external actions (e.g., at the approach 
of a metallic object), one may use a manual or an automatic adjustment. Figure 10.17 
gives the block diagram of an automatic adjustment. It contains transmitter 1, main 
radiator A1 and auxiliary radiator A2, connected to the transmitter through the power 
divider 2, the amplitude controller 3 and the phase shifter 4. The amplitude controller 
and the phase shifter provide the initial tuning and the field compensation at a given 
point. The amplitude controller is usually implemented by means the potentiometer, 
and the phase shifter is implemented by means the delay line, the low-pass filter or 
the high-pass filter. Two circuits, consisting of the amplitude controllers 13 and 15 and 
the phase shifters 14 and 16, provide two reference signals for the radiators A2 and A1,
respectively.

Figure 10.17 Block diagram of the proposed automatic adjustment circuit, 
based on the constancy of fields.
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Antenna A3, used for adjustment of the antenna system, receives, in turn, signals from 
the main and auxiliary radiators and changes (switches) the radiators. This procedure 
permits to determine the amplitude and the phase of the radiated and received signals. 

The external action (e.g., an approach of a metal body) changes the phases of the 
signals of the both radiators, received by antenna The phase detector 7 compares in 
turn these phases with phases of the reference signals and produces an error signal, 
proportional to the difference of the said phases.. Low-pass filter 8 removes short-term 
fluctuations of the error signal. The error signal passes through amplifier 9, controls the 
phase shifters 4 and 6 and brings up the optimal phase differences. As it can be seen 
from Figure 10.17, a feedback circuit is constructed, and it provides a phase self-tuning 
action, similar to action of a phase locked loop (PLL). 

The second feedback circuit is used for predicting the optimal signal amplitudes. 
It is similar to an automatic gain control (AGC) circuit. The input signal of radiator A2
is compared in amplitude by comparator 10 (operational amplifier) with the reference 
signal. Low-pass filter 11 removes short-term fluctuations of the signal at the comparator 
output. The error signal passes through the amplifier 12, controls the amplitude controller 
3 and brings up the amplitudes relationship to the optimal ratio.

As a result, two feedback circuits allow optimizing the amplitude relationship and 
the phases of the emf, feeding main radiator A1 and auxiliary radiator A2. In contrast to 
the conventional automatic gain control circuits, the amplitude difference and the phase 
difference of the two different radiator signals are not zero in this case.

The obtained results show that it is possible to automatically adjust a complicated 
antenna system under conditions of intensive disturbances. The proposed method, based 
on measurement of the fields, demonstrates a higher efficiency. It allows obtaining 
acceptable practical results under severe disturbance of the antenna system operation 
even in cases, when (as in our example) the zero-field point is not achievable.

10.4 WIDEBAND FIELD COMPENSATION

The compensation method was proposed to protect the user’s head from the 
electromagnetic field of a cellular phone antenna. But the problem is not limited by the 
cellular phone, since cellular communication is not the sole scope of application where it 
is necessary to create a region of weak field near the transmitting antenna. For example, 
the passengers of a vehicle may be placed nearby a mobile radio station. Secondly, 
one must protect from a strong electromagnetic radiation not only living organisms, 
but also devices. The protection of devices is necessary, since the irradiation of devices 
can disrupt their normal operation, cause spontaneous switching on and switching off, 
change operating regimes, etc. 

Requirements to the weak field may be changed partially. On the one hand, they 
often get more complicated due to the necessity of operation in a broad frequency 
range. On the other hand, the requirements may become less stringent. For example, 
large dimensions of the transmitter allow increasing the room for mounting auxiliary 
radiators. The requirement to the shape of the horizontal directional pattern is somewhat 
weakened.

Operation in a broad frequency band gives rise to additional difficulties, since the 
fields of the main and the auxiliary radiators at the compensation point must have the 
same magnitude and opposite sign at each frequency. The phase shift can be easily 
implemented by using an output stage of a transmitter with balanced output. But, 
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firstly, two specimens of a given radiator type must have identical characteristics at all 
frequencies of the operation range. Secondly, since the main and auxiliary radiators are 
located at different distances from the compensation point, and signal velocities in the 
air and in transmission lines, connecting the radiators and transmitter, are different, it is 
necessary to place a phase shifter in one of a channel. This phase shifter must provide 
the required delay time throughout the frequency range. 

It is not easy to satisfy all these requirements. In order to provide the same signal 
amplitudes, it is necessary to secure identity of both radiators or to install a controlled 
attenuator in one channel. Wideband antennas often have a complicated structure, 
which uses different conducting and dielectric materials. That is why antenna 
characteristics are unstable, i.e., different antenna specimens may have different 
frequency responses, and so their fields are not equal. Attenuators in a wide frequency 
range must be tunable. 

Placement of both radiators at equal distance from the compensation point yields 
better results. A simple structure, consisting of two radiators placed at identical distance 
from the compensation point, is shown in Figure 10.18a (top view). Here the following 
notation is used: 1 is the transmitter top cover, 2 is the user’s body, B1 is the main 
radiator, B2 is the auxiliary radiator, and C is the compensation point. The radiators are 
chosen in the form of two asymmetrical specimens of the same antenna type, which 
have a circular pattern in the horizontal plane and analogous amplitude-frequency 

characteristics. They are located at the same distance B C a b1
2 2= +  from point C,

where a = AC is the distance from point C to the middle line of the transmitter cover 
and b = AB1(2).

Let the phase of an auxiliary radiator differ from the phase of the main radiator by 
180o, and the signal amplitude of the auxiliary radiator is equal to E2 = DE1, where E1
is the signal amplitude of the main radiator, and D  1. If D = 1, i.e., the amplitudes of 
the auxiliary signal and the main signal coincide, the sum of the signals in the plane of 
the structure symmetry is zero, since the signals in this plane are the same in amplitude 
and opposite in phase. If D  1, the summary signal E = E1 + E2 = (1 – D)E1 is equal to 
a fixed small fraction of the main signal and weakly dependent on the frequency, since 
the distance from the radiators to the compensation point is the same, and the radiators 
themselves are similar. A phase shifter in this case is not needed.

Figure 10.18 Compensation structure created by two (a) and three (b) radiators, 
with one (c) and two (d) reflectors.
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One disadvantage of the proposed circuit is the absence of signal along the symmetry 
plane in the far region (in both directions), when E2 = –E1. But, first, is not crucial in 
many applications. Second, the angle (gap width), in which the radiation signal is nearly 
zero, is very small. And third, the influence of the ground and neighboring metal bodies 
leads to a smoothing of the directional pattern, i.e., the depth and the width of the gap 
in the horizontal directional pattern will be reduced in real conditions.

It is useful to estimate the gap width by calculating an angle j between the 
boundaries of the gap, i.e. between the points corresponding to the given small value 
f1 of the directional pattern. Let a = 25 cm and b = 30°. The total signal consists of two 
signals with equal amplitude E1 and opposite phase. It is created by two radiators located 
at distance d = 2a tan b = 28.9 cm from each other and is equal to E = 2E1 sin [(kd/2)
sinj], i.e. Emax = 2E1. If the angle j is small, then

f kd kd1 2= ªsin[( )sin ]/ /2j j , (10.25)

i.e. j = 2j = 4f1/(kd). In particular, if f1 = 0.1 and the wavelength l is 30 cm, then 
j = 3.8°.

Another disadvantage is the fact that when D  1, the factor of loss reduction 
decreases, since the total field even at the compensation point is not equal to zero. But 
this disadvantage is also inherent in the case of antennas placement at different distances 
from the compensation point, due to the limited dimensions of the transmitter top cover. 
Experimental results for the signal magnitude at the compensation point are given in 
Figure 10.19. Curve 1 corresponds to the signal of the main antenna, placed at point 
A (see Figure 10.18a), and curve 2 corresponds to the signal of two antennas, placed 
at points B1 and B2. As seen from the results, mounting both radiators at the same 
distance from point C permits to ensure compensation in a wider frequency band. The 
auxiliary radiator decreases the signal magnitude at the compensation point by 10–15 dB 
(3–6 times) in the band from 1.7 to 2.7 GHz.

Figure 10.19 The frequency dependence of the field at the compensation point, created by the 
one (1) and two (2) radiators.

Using of two auxiliary radiators gives additional advantages. In this case, the 
amplitude of each auxiliary radiator signal may be smaller than that of the main 
radiator. One variant of this compensation structure is presented in Figure 10.18b (top 
view) where the same notation is used. If E0 is the amplitude of the main radiator signal 
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at the compensation point, the amplitude of each auxiliary radiator signal must be 
E1 = E2 = E0/2. In the cylindrical coordinate system, the origin of which coincides with 
point A, the ratio of the auxiliary signal to the main signal in direction j is 

E E jk a b E E jk a b1 0 1 1 2 0 1 10 5 0 5( ) ( ) . exp[ ( )], ( ) ( ) . exp[ ( )]r r r r= - = + , (10.26)

where E0(r) is the main radiator field at distance r, Ei(r) is the field of the auxiliary 
radiator, located at point Bi, and a1 ± b1 are the path-length differences of the signals 
from the main and auxiliary radiators to the observation point. Here, a1 = a(1 – cos b)
sin j, b1 = a sin b cos j (these segments are marked in Figure 10.18b). The total signal is 

E E kb jka( ) ( ) cos ( ) exp( )r r= -ÈÎ ˘̊0 1 11 . (10.27)

The ratio of the total to the main signal is equal to

E E kb ka kb kar r( ) ( ) = -ÈÎ ˘̊ +0 1 1
2 2

1
2

11 cos ( )cos ( ) cos ( ) sin ( ) . (10.28)

In the symmetry plane, the total signal in the far region is

E E jka j jka k( ) ( ) exp ( cos ) exp ( cos ) sinr r b b0 1 1 2 1 2= - -ÈÎ ˘̊ = - -ÈÎ ˘̊/ aa( cos ) ,1 2-[ ]b /

i.e.

E E ka( ) ( ) sin ( cos )r r b0 2 1 2= -ÈÎ ˘̊/ . (10.29)

If, for example, a = 25 cm and b = 30° or 60°, we obtain at 1 GHz |E(r)/E0(r)| = 
0.69 and 1.22, respectively. The total far field in the symmetry plane in both directions 
is other than zero. But the total signal in the far region at any j is other than zero too. 
This is an inherent advantage of such a structure. 

The calculated horizontal patterns at frequency 1 GHz of one radiator, placed at 
point A, of two radiators (see Figure 10.18a) and of three radiators (see Figure 10.18b)
located on the cover of infinite dimensions, are given in Figure 10.20 and marked with 
symbols 1, 2 and 3 respectively.

The considered compensation structures comprise radiators, placed at the same 
distances from the compensation point. The structures require no use of any phase 
shifter. The compensation structures, in which flat metal reflectors (mirrors) are used 
instead of auxiliary radiators, permit to create a weak field in the subspace on the 
side of the reflectors, where the antenna is located, which is similar to the weak field 
generated by three radiators. 

An example of such a structure is presented in Figure 10.18c (top view). Here, the 
following notation is used in addition to the notation used above: R is the metal reflector, 
and B is the location of the equivalent radiator. As seen from the figure, the flat metal 
plate, in which the main radiator A is reflected, is mounted on the transmitter top 
cover along the axis of symmetry (in the vertical plane passing through compensation 
point C). The reflection (or imaging) of the main radiator signal by the metal plate is 
equivalent to the presence in the space before the reflector the second signal created by 
the equivalent radiator located at the same distance behind the plate.
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Figure 10.20 The horizontal patterns of different structures at 1 GHz.

The phase of reflected signal differs from the phase of main radiator by 180o, since 
vector 1E

�
 of the incident signal is located along the tangent to the reflector surface. 

The amplitude of the reflected signal 2E
�

 is E2 = DE1, where D depends on dimensions 
of the reflector and on a distance from it. If the plate dimensions are infinite (or if they 
are in all directions much larger, than the main radiator dimensions), then D = 1, i.e. the 
amplitudes of reflected and main signals coincide, and the total signal in the reflector 
plane is zero. If D  1, total signal E = E1 + E2 = (1 – D)E1 is a fixed fraction of the main 
signal, and the share is independent of frequency, since the distances from both radiators 
to the compensation point are the same, and the radiators themselves are identical.

On the whole, the characteristics of this structure are similar to the characteristics of 
the two-radiator structure, presented in Figure 10.18a. A phase shifter is not needed in 
this structure. An additional and very important advantage of the described structure 
is that the external actions, e.g., an approaching of the metallic objects to the antenna 
system, exert practically no effect on the structure operation, since the signal of the main 
radiator and the reflected signals undergo the same changes upon any external actions. 
Only the appearance of a metal body between a signal source and the compensation 
point is an exception and a very rare one at that.

The influence of a mirror (a metal plate) on the antenna input impedance decreases 
the matching between the antenna and the transmitter. In order to offset the decreased 
matching, it is necessary to increase the distance between the antenna and the mirror 
as well as the mirror width so that the second signal would not decrease. The reflector 
width has only a weak effect on the antenna input impedance, but essentially increases 
the signal. Moreover, the mirror influence on the antenna input impedance is constant 
and can be allowed for a priori. The mirror height must exceed the height of the antenna.

Flat reflectors can be manufactured in the form of a light-weight, strong and 
collapsible construction (if necessary). In such case, each reflector is implemented as a 
set of vertical parallel wires, located at a distance of 0.06lmin, where lmin is the minimal 
wavelength in the frequency range. Use of two reflectors, i.e., presence of two equivalent 
radiators, gives additional advantages. In this case, the amplitude of each reflected 
signal may be smaller than that of the main radiator signal, and so the requirements 
to the reflector become weak. A version of such compensation structure is presented in 
Figure 10.18d (top view), where, as before, B1 and B2 denote the locations of equivalent 
radiators. The characteristics of the structure given in Figure 10.18d is similar to the 
characteristics of the three-radiator structure presented in Figure 10.18b. The distance 
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from all radiators to the compensation point is the same, i.e., field variation due to 
frequency dependence has no effect on the compensation quality.

As stated above, the amplitude of the reflected signal (vertically polarized) is 
E2 = DE1. Here, D depends on the mirror dimensions. An essential drawback of the 
structure with two reflectors is that the reflectors creating the dark spot in the near 
region between them at the same time interfere with the propagation of electromagnetic 
waves in the angular sector, shadowed by them. The signal in this sector increases 
approximately twice. This drawback limits the application of such structures.

The structure with two reflectors was tested experimentally. A general view of the 
experimental setup is presented in Figure 10.21. The following notation is used in the 
figure: 1 is the radiator, 2 is the receiving antenna, placed at the compensation point, 3 
and 4 are flat reflectors, located symmetrically on either sides of the straight line passing 
through the compensation point and the radiator. The distance between the radiator and 
the receiving antenna is 25 cm. The reflector is manufactured in the shape of a vertical 
rectangular plate. Contact with the ground is maintained along the whole width of 
the reflector by means of a metallic segment. In the course of the measurements, each 
reflector was separately moved along a straight line to the point where the received 
signal at 2 GHz (close to the center of frequency range) will decrease by 6 dB. As a 
result the field of antenna at the compensation point in the presence of both reflectors is 
substantially smaller than the field of the antenna without reflectors. The measurements 
are performed at two different values of reflectors width—8 and 15 cm, and at different 
angles (10, 15 and 20o) between the axis of symmetry and the lines, along which the 
reflectors were moved to attain the zero field at the compensation point. In all variants, 
when the distance between the compensation point and the near edge of the reflector 
was 9 cm, the signal was half as strong as its value without the reflector.

Figure 10.21 General experimental setup.

The measurement results are given in Table 10.5. The frequency dependence of the 
signal magnitude at the compensation point without reflectors (1) and with reflectors 
(2) is presented in Figure 10.22, for reflector widths of 8 (a) and 15 cm (b). As is clear 
from the table and figures, the reflectors with width 8 cm permit to decrease the signal 
magnitude without tuning by 10–15 dB for the whole frequency range, and the reflectors 
with width 15 cm perform even better.

The boundaries of the dark spot created by three radiator (see Figure 10.18b) in the 
horizontal plane (z = 0) are determined by the procedure described above. They are 
given in Figure 10.23 for different values n0. They show that these spots have sufficiently 
large dimensions. 
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Table 10.5 Measurement Results for Signal Magnitudes at the Compensation Point, in dB

f, GHz Without
reflector

With reflectors of width (in cm) Difference

8 15 8 15

b/2 = 10° 15 15 10 15 15

0.5 –17 –32.1 –33.3 –35.8 15.1 16.3 18.8

1.0 –19.5 –33.5 –35.8 –34.3 14 16.3 14.8

1.5 –39 –46.4 –43.4 –54.9 7.4 4.4 15.9

2.0 –28.8 –37.3 –40.4 –62.5 8.5 11.6 33.7

2.5 –27.7 –47.1 –42.6 –41.3 19.4 14.9 13.6

3.0 –36.3 –43.9 –47 –42.6 7.6 10.7 6.3

Figure 10.22 Frequency dependence of signal at the compensation point without (1) and with 
reflectors (2) for width 8 cm (a) and 15 cm (b).

Figure 10.23 The boundaries of the dark spot created by three radiators.
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10.5 NEW ANTENNA FOR A PERSONAL CELLULAR PHONE

Cellular communication imposes high requirement for antenna of personal phone and 
at the same time limits the possibility of its installation. An increase in the number of 
subscribers requires using several high frequency bands, and accordingly installation 
of separate antennas (one for each band). One can use a single antenna, but it must be 
very wideband, and that complicates greatly the task. In addition, cell phones support 
the diversity of applications, which require placing many components and devices into 
the phone housing. These circumstances lead to space constraints and leave a small 
area for the antennas.

Extensive use of mobile phones may lead to potential health risk as a result of the 
impact of radiation (or more correctly irradiation) on human organism. 

A new antenna, which is presented in this section, offers a possible solution to the 
described problems. The structure of the offered antenna is shown in Figure 10.24. It is an 
asymmetrical dipole, which is excited by a generator 1 at a feed point 2. The lower arm 
of the dipole is a metal plate 3, to bottom edge of which a small plate 4 is attached at an 
acute angle. The upper arm is a multi-folded structure 5, which is fed at its mid-point 
and open at the ends (at points 6). A dielectric plate 7 is inserted inside this structure.

The first distinction of the offered antenna from the known antennas is its use of the 
phone’s ground (chassis) as a radiator. This suggestion was made in [87]. The phone’s 
ground is a rectangular metal plate, whose length is close to a quarter of a wave length 
at the main operating frequency. This distinction permits to integrate the antenna with 
ground, removing the need for an installation of a separate antenna and a special metal 
counterpoise. Components of radio transmitter and receiver can be mounted on the 
metal antenna, which replaces the ground for those elements. Filters, placed on this 
plate, may provide a short circuit for direct currents and insulation (interruption) of 
circuit at high frequency.

The second distinction of the offered antenna is implementation of the upper arm in 
the shape of a multi-folded radiator. This arm has a small height. Its contribution to the 
antenna’s radiation is small, but it allows to match the antenna to a cable or a generator. 
The reactive component of its impedance compensates the reactive component of the 
lower arm, providing serial resonances at operating frequencies. Its complex structure 
has many degrees of freedom, including number of sections, their dimensions, the width 
and thickness of the wires, types and magnitudes of concentrated loads. That permits 
to change the input reactance of the antenna in wide limits and to provide operation 
at few bands of frequencies.

The third distinction of the offered antenna is the use of special measures for 
decreasing the field in its near region and hence reducing the irradiation of the user’s 
head (reducing SAR). These special measures are firstly the multi-folded radiator 5 with 
the dielectric insert 7 and secondly a small metal plate 4. The multi-folded radiator is 
fabricated in the shape of a three-dimensional structure that protrudes to the direction of 
the user’s head. The dielectric plate is inserted between the wires of this structure. The 
short metal plate is attached to the bottom edge of the lower arm. These structures create 
anti-phase currents in the antenna and hence small auxiliary fields, which compensate 
the main field at a certain point (compensation point) and form around this point an 
area of a weak field (a dark spot).
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Figure 10.24 The equivalent circuit of the antenna.

The multi-folded structure 5 is more sensitive to external objects and actions than 
the plate 3. In order to reduce the impact of the user’s hand, it is expedient to apply the 
plate as the lower arm of the antenna, and the multi-folded structure as the upper arm. 
The user’s hand in this case will lie on the handset housing not far from the plate, but 
far from the multi-folded structure. It is the fourth distinction of the offered antenna.

The input impedance of an asymmetrical dipole, consisting of two different arms, in 
the first approximation, is equal to half the sum of input impedances of two symmetrical 
radiators: one with arms identical to the lower arm of the asymmetrical dipole, and 
other radiator with arms identical to its upper arm [27]. This relation is exact for the 
input reactance of the antenna and has an approximate nature for its resistance. From 
the above it follows that

XA = XA1 + XA2, RA ≈ RA1 + RA2, (10.30)

where XA1 and RA1 are respectively the reactive and resistive components of the input 
impedance of the radiator, shown in Figure 10.25a, XA2 and RA2 are corresponding 
components of the radiator, shown in Figure 10.25b.

The lower arm of the offered antenna is a monopole, realized as a wide metal plate 
with length L1 and width d. As is said in Section 2.7, such an antenna is called a strip 
monopole. Its characteristics are similar to the characteristics of a linear cylindrical 
radiator with a circular cross section of radius ae. In [16] it is shown that ae is equal to 
d/4. It is also considered that it is a trade-off between input impedance and scattering 
characteristics of the radiator [13]. The input impedance of the monopole in the first 
approximation is equal to

ZA1 RA1 – jW1 cot kL1. (10.31)

Here W1 = 30 Ohm is the wave impedance of the monopole,  = 2 ln(2L1/ae1) is the 
parameter of the theory of linear antennas, RA1 at frequencies near the first series 
resonance is close to 40 ohm. If d L1/2, then ae1 = L1/(2p), and  = 2 ln(4p) ≈ 5.
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Figure 10.25 The lower (a) and the upper (b) arms of the asymmetrical dipole.

For good matching, it is expedient to realize a region of the monopole’s excitation 
as a tapered line in the shape of a flat triangle (see Figure 10.25a). It is the transition 
from the wide plate of antenna to the inner conductor of a coaxial cable. Calculations 
show that the wave impedance of the tapered line is close to the standard cable’s wave 
impedance, when the angle at the vertex of the tapered plate is close to 80o.

The upper arm of the antenna in the first approximation may be considered as a 
multi-folded radiator, mounted on a metal plate (see Chapter 4). The current in each 
wire can be divided into in-phase and anti-phase components. This system is reduced 
to an aggregate of a radiating linear antenna (monopole) and few non-radiating long 
lines. The multi-folded radiator can be either with shorting to the ground or with a gap 
(see Figure 10.25b). In the latter case the input impedance of the multi-folded radiator is 
a serial connection of the monopole and the two-wire long lines, shorted at their ends. 
The expressions for the input impedances ZA2

(n) of these antennas with a different number 
n of wires are presented in Chapter 4.

As it can be seen from these expressions, the radiation resistance of this antenna 
is equal to the radiation resistance of a monopole with the same height. The reactive 
component of its input impedance has additional resonances, and the first parallel 
resonance is defined by a line of length SL/2, i.e., its frequency is smaller approximately 
by a factor of S/2 in comparison with the frequency of the first serial resonance of an 
ordinary monopole with the same height. The frequency of the first serial resonance of 
the multi-folded antenna is still smaller, approximately twice.

Such type of the input impedance simplifies selecting dimensions of a structure, 
whose serial resonances coincide with the given operating frequencies. Thus, in this 
case the monopole’s effective length is

h k kL Le = +( ) tan ( ) ,1 2 21 2/ / / (10.32)

where L2 is the length of the upper arm. If, for example, kL1 = p/2, and L2 = L1/4, then 
he = 1/k + L1/8. Accordingly, the radiation resistance of the antenna is 

R  = 20k2he
2 = 20(1 + p/16)2 ≈ 29. (10.33)

From the above it is clear that the radiation resistance of the monopole (of the metal 
plate) determines mainly the antenna’s resistance on the whole, i.e. the latter is close to 
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30 Ohm, if the operating frequency is close to the frequency of the first series resonance. 
Contribution of the upper arm to the radiation resistance is small as compared with the 
contribution of the lower arm. But the reactance of the monopole is close to zero, if the 
plate length is equal to a resonant length, i.e. if it is close to l/4 . Therefore, to ensure 
matching with a cable or generator, the upper arm should have a series resonance at 
the first operating frequency. Accordingly, the reactance of the upper arm of a multi-
band antenna should compensate the monopole reactance at other operating frequencies. 

The directional pattern of the antenna in the horizontal and vertical planes do not 
differ from a typical directional pattern of monopole, since the radiation of the long lines 
can be neglected, provided the distances between the wires are small. 

The analysis of the considered antenna demonstrates that its structure firstly allows 
to obtain the serial resonances at required frequencies. Secondly, the considered antenna 
contains a radiating element of large length, close to l/4, and that permits providing 
an effective radiation and reception of signals.

If the multi-folded antenna is shorted to ground at points A, its input admittance 
is equal to

Y Z j b a SkLA
S

A
S

2 2
21 4 1 120 2( ) ( )= È

ÎÍ
˘
˚̇

+ ÈÎ ˘̊ln ( ) tan ( )/ / , (10.34)

where ( )2
2

S
AZ  is the input impedance of an antenna with a gap, whose conductors consist 

of two wires. Therefore, in this case the input impedance is a parallel connection of a 
S/2-folded radiator with a gap and a close-end line of length SL/2. Such type of the 
input impedance complicates selecting dimensions of a structure.

In order to produce a small auxiliary field with the aim to compensate the main 
field in the user’s head without changing the far field, it is expedient to use the multi-
folded structure, which protrudes toward the user’s head. This structure allows to 
create an anti-phase field in the near region of the antenna and to nullify the total field 
at a compensation point, located not far from the neighboring edge of the user’s head. 
Around the mentioned point an area of a weak field (a dark spot) is created. We shall 
demonstrate this effect by means of a folded radiator with a gap in a point A, which is 
located along a plane passing through the compensation point and placed on the side 
of the phone housing near to the head.

A folded radiator consists of two parallel wires. If to connect two current generators 
of equal magnitude J/2 and opposite directions to the bottom of the right wire in parallel 
with each other and to divide also the main generator into two parallel generators, 
equal in magnitude (to J/2) and coinciding in direction, then as a result, voltages and 
currents of this circuit do not change. According to the superposition principle, the 
voltage and the currents at each point are equal to the sum of the voltages and the 
currents, produced by all generators. Therefore, as shown in Figure 10.26, one can divide 
the considered circuit onto two circuits with two generators in each and then calculate 

Figure 10.26 Division of the folded radiator into two circuits.
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and sum up the currents in any wire, created in each circuit. The left circuit is a linear 
radiator (monopole), the right circuit is a two-wire long line.

The current in each wire consists of an anti-phase current of the line and the fraction 
of the in-phase current of the linear radiator. In Figure 10.27 the currents’ distribution 
along the wires is presented: the distribution of the in-phase currents J1

(in) = pJ and J2
(in)

= mJ along wires 1 and 2 of the monopole (a), the distribution of the anti-phase current 
J1

(an) = mJ and j2
(an) = mJ along the wires of closed at the end line (b) and the distribution 

of the total currents (c).

Figure 10.27 The distribution of in-phase (a), anti-phase (b) and total (c) currents.

The in-phase currents in both wires are distributed by sinusoidal law; the ratio 
of their magnitudes depends on the wire capacitances, and for identical wires the 
magnitudes are equal. The anti-phase currents are the same in magnitude, but opposite 
in sign and are distributed by cosine law. In the first wire the currents are added, 
since they have the same sign. In the second wire they are opposite in sign, and 
under these conditions the dipole moment of negative current is greater due to cosine 
distribution. This gives a possibility for compensation of the fields, created by the wires. 
The total current of the second wire is less than the total current of the first wire. But 
since the second wire is located nearer to the compensation point, then, although the 
wires’ currents are different, their fields at the compensation point are the same in 
magnitude.

This effect is more pronounced if, firstly, the folded radiator is replaced by a 
multi-folded structure, and, secondly, if a dielectric plate is placed between the wires. 
In this case the field of the first wire is attenuated quicker with the wires spacing. As 
a result, firstly, one can decrease this distance, i.e. decrease the thickness of phone 
housing. Secondly, the electric lengths of transmission lines increase, i.e. one can decrease 
geometric lengths of lines, for example, to excite the multi-folded structure in the middle 
of its width and not at a side point.

The additional anti-phase current is produced by the small plate 4 (see Figure 10.24).
It should be emphasized that the structure without a connecting bridge between the 

upper ends of the wires is divided into a monopole and an open-end two-wire line. In 
this case, the in-phase and anti-phase currents of the second wire are equal in magnitude, 
i.e. the total current of the second wire is zero, and hence there is no possibility of 
compensating the field of the first wire.

It is useful to compare the characteristics of the proposed antenna with the 
characteristics of a symmetrical dipole. As previously indicated, if the lengths L1 and 
L2 of the lower and upper arm of the proposed antenna are equal, respectively, to l/4
and l/16, the active component of the input impedance is close to 30 Ohm, and the 
reactive component is close to zero. On the same length of the phone housing one may 
place a symmetrical dipole with arm length l/8, i.e. smaller twice. Its resistance is
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R R nS S= 0
2/ , (10.35)

where R 0  80 Ohm is the active component of the resonant dipole’s input impedance. 
From (10.35) it follows that in this case R  20 Ohm.

It is more substantial that the dipole impedance has a reactive component, which 
increases the losses in the cable much stronger than the low value of R . If the length 
of a dipole arm is l/8, its input reactance is equal to the wave impedance. Let us take 
a relatively small wave impedance of 100 Ohm. It is easy to be convinced that in this 
case the travelling wave ratio (TWR) for the dipole with R  = 20 Ohm and reactance 
100 Ohm in the cable with W = 50 Ohm is equal to 0.08, while TWR for a monopole with 
resistance 30 Ohm and zero reactance in the same cable is 0.6, i.e. 7.5 times greater. This 
example shows the obvious advantage of the proposed antenna, the resonant dimensions 
of which fit into the dimensions of the phone chassis.

Simulation of the proposed antenna was carried out using the CST program, and 
the results are compared with the results of the planar inverted F antenna (PIFA). The 
results of tuning are given in Figure 10.28, where the standing wave ratio (SWR) of the 
proposed antenna is shown. The calculated results of reducing field in a near zone in 
the presence of user’s head along a line perpendicular to the antenna plane are given 
in Figure 10.29 (solid curve—in the direction of user, dotted curve—in the opposite 

Figure 10.28 Standing wave ratio of the proposed antenna.

Figure 10.29 Field in the near region of antenna in the presence of user’s head as a function 
of distance S from the plane of the antenna.
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direction). The calculation uses the model of the head as part of the program CST. The 
fields are presented at frequencies 0.9 and 1.8 GHz as the functions of distance S from
the plane of the antenna. 

A full-scale model of the new antenna was fabricated in accordance with results 
of the calculation. Photo of this model is presented in Figure 10.30. The measurement 
setup is demonstrated in Figure 10.31a. In Figure 10.31b the calculated curves and 

Figure 10.30 The proposed antenna.

Figure 10.31 The measurement setup (a) and calculated curves and experimental values of 
the near field at the frequency 0.9 GHz (b) in the direction of the head (1) and in the opposite 

direction (2).

experimental values of the antenna near field in the head at the frequency 0.9 GHz are 
compared. Fields in the direction of the head are denoted by the number 1 and in the 
opposite direction—by the number 2. As can be seen from the Figure, the field of the 
antenna in the direction of the head is substantially smaller. The experimental values 
were determined by means of measurement in the phantom model. 

The directivity of the offered antenna is presented in Table 10.6. In Table 10.7 the 
level of SAR in the user’s head is shown for the proposed antenna and antenna PIFA
at the frequency 0.9 GHz.

Table 10.6 Directivity of the Proposed Antenna

Frequency, GHz Directivity, dB

0.9 2.59
1.8 4.48

E ,mV/m, 
7,5 .---:--r-r---r---r---r--~ 

0 40 80 120 

f =0.9 GHz 

160 200 
S,mm 
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Table 10.7 SAR of Antennas

Antenna f, GHz Total  Max local in 10 g  Max local in 1 g Max point

PIFA 0.9 0.061 3.62 5.8 345.8

Proposed 0.9  0.013 0.762 1.41 21.6

The proposed asymmetrical antenna with the long arm and zero reactance on 
the operating frequencies has high electrical characteristics and creates in the far 
region the electromagnetic field, which exceeds significantly the field of the other 
antennas of the same dimensions. In particular, the field of the new antenna at the 
same transmitter power is much greater than the field of antenna PIFA. The results of 
researching the new antenna, including simulations and experimental tests, corroborate 
that this antenna is promising for use in modern cellular phones. In contrast to known 
antennas this antenna is multi-frequency, i.e. it can operate on multiple frequencies 
simultaneously and has high electrical characteristics, since it provides without switching 
frequency, good match with the cable and correspondingly high efficiency.

Additional advantage of this antenna is reducing the user’s head irradiation, since 
this antenna uses the new method for its reducing. It should be emphasized that this 
method may be used for reducing the irradiation produced by other antennas, in 
particular by the antenna PIFA.

10.6 DIVERSITY RECEPTION 

Cellular communications, as well as other forms of communication, suffer from various 
types of noises and interferences. Diversity reception, i.e. mounting two receiving antennas 
on the finite (in wavelengths) distance from each other and the creation of the new signal 
from two received signals, is effective measure of a struggle against interferences. As a 
result, the interference or is absent completely or is relaxed substantially. It is obvious 
that at the user’s phone such separation is not possible. But it can be used at the base 
station, where the interference signal can be drastically reduced. In order to filter the 
interference, one can use the bridge circuit and the modulator (Figure 10.32). Receiving 
antennas A1 and A2 are mounted at points 1 and 2 of the bridge.

Figure 10.32 Circuit of interferences filtration.
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Let the source of the useful signal be placed at some point P. The signals from 
this point come to antennas A1 and A2 with different phases, caused by the distances 
difference. The magnitudes of the received signals with allowance for their changes in 
receiving circuits can be written as u1 = S1 exp(jj1) and u2 = S2 exp(jj2) respectively. If 
the distance between the antennas is small, one can assume that the amplitudes of the 
received signals in the first approximation are the same.

These signals arrive to the point 3 of the bridge circuit in phase and summed in it: 

u u S j j1 2 1 1+ = +exp ( )[ exp ( )],j jD (10.36)

where j = j2 – j1. The resulting signal comes to an adder, located at the point 6. 
To the point 5 of the bridge circuit the signals come in anti-phase, i.e. one signal is 
subtracted from the other:

u u S j j2 1 1 1- = -exp ( )[exp ( ) ].j jD (10.37)

Further, the signal difference passes through the modulator, i.e. is multiplied by its 
gain m = M exp(jjm), and also comes to the adder. The useful signal at the output of 
the adder is

u u u m u u S j m m jS = + + - = - + +1 2 2 1 1 1 1( ) exp ( ) [ ( ) exp)( )].j jD (10.38)

A similar expression can be written for the interference. If the distance between the 
antennas A1 and A2 is small, the amplitudes of the interfering signals in these antennas 
are respectively u3 = J exp(jy3), u4 = J exp (jy4). Interference at the output of the adder is

u J j m m jJ = - + +exp ( )[ ( )exp ( )]y y3 1 1 D , (10.39)

where y = y4 – y3. In order that interference is equal to zero at the output of the 
adder, it is necessary that the gain of the modulator is equal to

m
j
j

j=
+
-

=
1
1

2
exp ( )
exp ( )

cot ( )
D
D

D
y
y

y / . (10.40)

From this expression it follows that the modulator has to change the phase of the 
transmitted signal. If the amplitudes of an interfering signals at the antennas A1 and
A2 are not the same, i.e. u3 = J3 exp(jy3), u4 = J4 exp(jy4), then assuming J4/J3 = exp(b),
we find

u J j m m jJ = - + + +3 3 1 1exp ( )[ ( ) exp ( )]y b yD ,

whence

m
j

j

= -
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=
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b y

b y

D
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/ / tt ( ) ( )y b/ csch /2 22ÈÎ ˘̊ (10.41)

In this case, the modulator must change not only the phase but also the amplitude 
of the signal, passing through it. 

Accordingly, for the useful signal at the output of the structure we obtain: 

u S j
j j

jS = +
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¯̃

+
È
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2
1

2
D D

D ˙̇ , (10.42)
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where
exp ( )a = =J J S S2 1 2 1/ / .

Since
coth exp ( ) exp ( )x x x= + -ÈÎ ˘̊ - -ÈÎ ˘̊1 2 1 2 ,

then

u
S j

j
jS =

- - +
- - + -{ }2

1
11exp ( )

exp [ ( )]
exp[ ( )] .

j
b y

a b j y
D

D D (10.43)

As one can be seen from expression (10.43), unlike the interference, which is equal 
to zero at the structure output, the useful signal is different from zero, if the value 
exp[a – b + j( j – y)] is not equal to 1. 

The value j in the expression (10.43) is the phase difference of useful signals 
received by different antennas. It is

j = kd cos g,

where k = 2p/l, d is the distance between the antennas, g is the angle between the normal 
to the segment d and the direction of the useful signal source. Similarly, the value y in 
this expression is a phase difference y = kd cosd between interfering signals, received by 
different antennas (d is the angle between the normal to the segment d and the direction 
to the interference source). If the arrival angles of the signal and the interference are 
close to each other (d ≈ g ), then 

D Dj y g d d g g- = - ª -kd kd(cos cos ) ( ) sin .

Obviously, a and b coincide also. In this case, 

u
S j

j
jkd
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S j
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(10.44)

From (10.44) it follows that the useful signal at the output of the system at similar 
arrival angles of the signal and the interference is proportional to the difference between 
the angles of its arrival. 

If the signal and the interference come from one and the same azimuth, it is 
necessary to separate the antennas for height. Otherwise, if the angle in the vertical 
plane between the directions of arrival of the signal and the noise does not exceed a 
few degrees with the same polarization, the reception is not possible.

Thus, application of this circuit together with the interference attenuation leads to 
a weakening of the useful signal. Also, the areas of weakened reception may appear. 
Indeed, suppose that the antennas A1 and A2 are the same and have a circular directional 
pattern in the horizontal plane. The modulator gain in accordance with (10.40) is equal 
to m = j cot( y/2). If the phase difference between the interferences, received by the 
antenna, is equal to y, and the phase difference between the useful signals is 

j = y ± np,

where n is the natural number, then in accordance with (10.43) uS = 0. However, if 
d is not too great, this does not take place. Suppose, for example, that y = 0.3p,
d ≈ 0.35l, i.e. kd = 0.7p, d = cos–1 0.43 = 0.36p, g = cos–1(±0.86np + 0.36p). The absence 
of real g testifies about the absence of these zones. 

It is necessary to say a few words about the impact of inaccurate adjustment of the 
modulator gain. If the gain differs from the optimum value m in magnitude and phase, 
for example, it is equal to 
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m1 = m(1 + e1) exp(je2), (10.45)

where e1, e2 << 1, i.e. m1 ≈ m(1 + e1 + je2), then the interference signal at the output will 
be different from the zero signal: 

u
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But, as calculations show, it will be significantly less than the initial interference in 
each channel. If, for example, e1 = 0.01, e2 = 1° = 0.017, then, neglecting the differences 
of the interferences amplitudes at two antennas, we obtain

u
J j

j
J j

J = -
- - +ÈÎ ˘̊

+ = -
2

1
0 01 0 017 0 0197

21 2 2exp( )
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1

1
)

exp ( )- - +ÈÎ ˘̊jD

Application of diversity reception as an effective measure of a struggle against 
interferences is known since long. But its effectiveness is essentially enhanced if in 
order to obtain optimum results we use the method of mathematical programming. 
Advantages of this approach are clearly manifested in the struggle against the constant 
interferences. In this case, the optimization problem is the correct choice of amplitude 
and phase modulator characteristics, and the variable parameters x are the modulus and 
phase of the modulator gain.

As already it was said, the method of mathematical programming allows to obtain 
the minimum of an objective function ( )mxF

� , and is based on finding the gradient. 
This method is an iterative procedure, which step by step moves from one set of the 
parameters to another set in the direction of the greatest decrease of the objective 
function. An iteration m is the movement along the surface ( )mxF

�
in the space of the 

vector mx
�

. Figure 10.33 dipicts a particular case of such movement, when the vector 

mx
�

has two parameters: x and y.

Figure 10.33 Iteration as a movement along the surface F( )
�
xn .

The movement is performed in a predetermined direction (along the selected curve). 
At each iteration the objective function minimum and the values of the parameters, under 
which it takes place, are determined. Each subsequent iteration is a descent from the 
point, reached in the previous step, in a new direction, opposite to the gradient direction 
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(it is determined by calculating the gradient at a reached point). The optimization process 
ends, when the objective function decrease as the result of the next iteration becomes 
less than the predetermined decrease.

An algorithm of the iterative procedure is shown in Figure 10.34.

Figure 10.34 Algorithm of the optimization program.
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Solution of the problem would be accelerated, if the set of initial values is adequate 
for the problem. That dramatically reduces the probability of an error, caused by the fact 
that due to an arbitrary choice of the initial parameters the optimization process may 
lead to a local, but not to the true extremum of the objective function. Therefore, as the 
initial values of the parameters x the values, obtained from the expressions (10.40) or 
(10.42), must be taken. Due to the inaccuracy of the quantities in these expressions, in 
the real conditions it is advisable to directly measure the magnitude of interference at 
different parameters x.

Another option is the use of multiple cycles, starting with the jump of the phase (arg 
m) of the modulator gain on a given section of the period. Each jump leads to a new 
set of initial parameters and starts a new search of the minimum of objective function. 
If found minima will differ from each other, one must take the smallest value as a true 
extremum.



11.1 CHARACTERISTICS OF DIRECTIVITY

As noted in Section 1.1, if sources of electromagnetic field are distributed continuously 
in some volume V, and a medium surrounding volume V is a homogeneous isotropic 
dielectric, the solution of equation (1.19) for a harmonic field is given by (1.21). In this 
expression, R is distance from the integration point to the observation point, which in 
the far region in the first approximation corresponds to Figure 1.1. If radiators inside 
the volume are parallel to each other, i.e. have the same direction of radiation, then

A
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j
j jkz dVp

p

p
p

V
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exp ( cos ) ,

0

0
q (11.1)

where Ap(0)dV is the vector-potential of the field, created by an elementary volume 
with current density Jp(0) located at the coordinate origin. If Ep(0)dV is the field of this 
volume, then the total field is
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E
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exp( cos ) .

0

0
q (11.2)

As an example, we shall consider an elementary linear radiator (Hertz dipole) located 
along the z-axis. It is a filament of length b with current amplitude I, constant along the 
filament. In the far region, the filament field is defined by expression (1.7). Substituting 
it in (11.2), we obtain expression (1.9) for the field of a symmetrical radiator (dipole) 
located along the z-axis with the center at the coordinate origin (see Figures 1.4a). If, 
according to (1.8), we consider that the current distribution along the radiator arm is 
sinusoidal one, we come to expression (1.10), the last factor of which gives the vertical 
directional pattern of solitary radiator.

Another example is a linear array situated along the x-axis (Figure 11.1a). In this 
case, one must replace (11.2) with the sum

11
Arrays



281Arrays

E
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J jk n dn
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( )

( ) exp [ ( ) ], (11.3)

where E1 is the field of the first radiator, d1 = d cosj sinq is the path difference of beams 
from the adjacent radiators to the observation point with arbitrary coordinates j and 
q, n is the radiator number, and the antenna arrays are excited by currents with equal 
amplitudes and linearly growing phase displacement: 

J J j nn( ) ( ) exp[ ( ) ]0 0 11= - - y . (11.4)

Figure 11.1 Uniform antenna array: linear (a), rectangular (b).

Here, y is the phase shift between currents of adjacent radiators. Using the formula 
for a sum of N terms of geometric progression with ratio exp[j(kd cos j sin q – y), 
omitting factor exp[j(N – 1)(kd cosj sinq – y)/2] defining phase characteristic of array, 
and normalizing the result to 1, we obtain expression for the amplitude characteristic 
of an array
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As seen from (11.3), the directional pattern of a system of identical, equally oriented 
directional radiators is the product 

F(q, j) = F1(q, j) FN(q, j), (11.6)

where F1(q, j) is the directional pattern of a solitary radiator. Equality (11.6) is called 
the theorem of multiplication of directional patterns, and FN(q, j) is the array factor. 

If a system of radiators consists of no direction in horizontal plane antennas, e.g., of 
vertical monopoles, its horizontal pattern coincides with the array factor, and the vertical 
one depends on the corresponding directional pattern of a solitary radiator. One should 
emphasize that the array factor also depends on angle q.

A rectangular array (Figure 11.1b) can be considered as a linear structure consisting 
of M linear arrays. Therefore, the array factor of the rectangular array is 

FMN = FMFN, (11.7)
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where FM is the array factor of a linear array of M radiators situated along the y-axis:
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2
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(11.8)

The electrical characteristics of radiators system at given frequency are conditioned 
by its phasing mode, i.e. by choice of the phase shift between the currents in radiators. 
Antenna array can have two modes of phasing: the maximal radiation forward and 
the minimal radiation backward. In the first mode, the phases of radiators fields are 
identical at the observation point with a given azimuth; in the second mode, the field 
is minimal or zero in the direction opposite the direction towards the correspondents. 
The first mode can be set up in any array, while the second one is not feasible always. 
For example, it is unfeasible in a linear array.

The phase difference of signals coming from the adjacent radiators of one row of 
the rectangular array to the observation point, located in the same horizontal plane as 
the array, is equal to the value 12 – 11 = kd cos j – y, and the phase difference from 
radiators of adjacent rows is 21 – 11 = kb sin j – x. Here, mn is the phase of signal, 
coming from the radiator m of the row n. At the observation point with azimuth jm,
phases of all signals will be the same, if 

y j x j y jm m m m m mkd kb b d= = =cos , sin ( ) tan ./ (11.9)

These conditions are necessary and sufficient for implementation of the first phasing 
mode.

The second mode can be applied, e.g., in a two-row array, where the fields of 
radiators of each row are summed together in phase, and then the fields of different 
rows are summed together in anti-phase. The condition of no signal in direction j0 has 
the form

y j x j p
y

j p0 0 0 0
0

0= = + = +kd kb
b

d
cos , sin tan . (11.10)

Calculation of the phase shifts in accordance with equalities (11.9) and (11.10) for 
different angles j of the maximum radiation (in the first case j = jm, in the second 
case j = (j0 + p) clearly demonstrates the difference between the modes (Figure 11.2).

Apart from a rectangular array, on object, e.g., aboard a ship, the other variant can 
be implemented. The variant uses the existing set of ship antennas. As a result, an array 
of arbitrarily located radiators is formed. Let the current in the base of the radiator n
be Jn(0) = |Jn exp(–jyn)|. Figure 11.3a presents phase shift jm, ensuring coinciding of 
the field phase of the radiator n in the far region with the field phase of the radiator 
located at the coordinate origin. If the condition is met for all radiators, their fields are 
summed together in the observation point (in the mode of radiation forward). 

The phase of the field of radiator n in the far region is 

n = –krn – yn,

where rn = r – xn cosj – yn sinj is the distance from the radiator to the observation 
point. If n = const (n) = –kr, then yn = k(xn cosj + yn sinj). Let xn/l = D + d/l,
yn/l = B + b/l, where D and B are integers, d/l and b/l are proper fractions. Then

yn = Dy1 + Bx1 + ym = xm. (11.11)
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Figure 11.2 Phase shifts in the modes of maximum radiation forward (a) and zero 
radiations backwards (b).

Here y1 = 2p cosj and x1 = 2p sinj are found from Figure 11.3b (depending on j),
ym and xm—from Figure 11.2a or expression (11.9).
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Figure 11.3 Circuit of the placement of radiator n (a) and dependence of y1 and x1 on j (b).

As is well known, the directional characteristics of a radiator are described by the 
directivity, which is given by the ratio of the maximal intensity of radiation to its average 
intensity in the radiation sphere. This parameter represents the factor, into which one 
must increase the power in going from a directional antenna to isotropic antenna under 
condition of field preservation at the receiving point. 

Since the field strength of a directional antenna is E = EmF(q, j), where Em is the 
field in the direction of the maximal radiation, then the power of such antenna is equal 
to an integral of the Poynting vector over the surface of a sphere with great radius r
(in the far region)
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Here the surface element is equal to dS = r2 sinqdqdj. The radiation power for no 
directional antenna is 
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where E1 is the field of no directional antenna, which in accordance with the condition 
of the field’s equality at the observation point must be equal to E1 = Em(q1, j1). Therefore 
we obtain for directivity in an arbitrary direction
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In particular, in direction of the maximal radiation, when F(q1, j1) = 1, the directivity is
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(11.15)

As one can see from (11.14) and (11.15), the magnitude D1 is determined easily, if
Dm and F(q1, j1) are known: D1 = DmF2(q1, j1).

Figures 11.4–11.6 present the maximum directivity of linear and two-row arrays 
consisting of isotropic radiators. Directivity is calculated in accordance with (11.15). 
For the two-row array F(q, j) in conformity with (11.7) is replaced by FMN(q, j). The 
calculated directivity of several arrays at three frequencies at different azimuths of 
a main lobe is given in Table 11.1 in the mode of the maximal radiation forward. 
Processing calculation results allows to build other characteristics of directivity for the 
system of radiators: the width of main lobe, the level of side lobes, and the level of 
radiation in the opposite direction. In particular, the half-power width of the main lobe 
is presented in Figure 11.7.

Figure 11.4 Directivity of a linear array of 8 radiators.

Figure 11.5 Directivity of a two-row array of 8 radiators in the mode of the 
maximal radiation forward.
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Figure 11.6 Directivity of a two-row array of 8 radiators in the mode of the 
zero radiation backward.

Table 11.1 Directivity of Antenna Arrays in the Mode of Maximal Radiation Forward

Array type d/l = 0/2 0.4 0.6 0.2 0.4 0.6

in units in decibels

Linear, 4 radiators 1.8–3.2 3.1–5.5 2.9–4.9 2.5–5.0 4.9–7.4 4.6–6.9

Linear, 8 radiators 3.3–6.0 6.2–8.9 5.0–10.3 5.2–7.8 7.9–9.5 7.0–10.1

Square, 4 radiators 1.8 3.5–4.0 3.5–3.8 2.5 5.4–6.0 5.0–5.8

Two-row, 8 radiators 2.5–3.5 6.7–7.2 5.7–7.9 4.0–5.4 8.2–8.6 7.5–9.0

Figure 11.7 Main lobe width of a linear array of 8 radiators.

If there are several main lobes, two curves are presented: the lower curve—for width 
of one lobe, the upper curve—for the summary width of two lobes.

The analysis of results presented in table and in figures allows to compare the 
characteristics of different arrays depending on the number of radiators.

11.2 PRINCIPLE OF SIMILARITY AND RECIPROCITY THEOREM

This section is devoted to the principle of electrodynamics similarity and to the reciprocity 
theorem.
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As is known, antennas with the shape defined by angular dimensions, e.g., conic 
radiators of infinite length, satisfy the principle of electrodynamics similarity. In this 
case, a change of the scale does not lead to a change of antenna characteristics, i.e. the 
radiator shape and its dimensions in wavelengths are the same at different frequencies.

Relationships of similarity follow from Maxwell’s equations. For the harmonic field 
created by an antenna in surrounding space, we can write, accordingly (1.1), 

curl H j E curl E j H
� � � �

= + = -( ) , .s we wm (11.16)

Similarly, at another frequency 

curl H j E curl E j H
� � � �

¢ = ¢ + ¢ ¢( ) ¢ ¢ = - ¢ ¢ ¢s w e w m, , (11.17)

where
� � � �

¢ = ¢ = ¢ = ¢ = ¢ = ¢ = ¢ = ¢E k E H k H k k k k l k lE H l, , , , , ,w w e e m m s sw e m s , here, kE, kH, kw,
ke, km, ks, kl are the coefficients, interrelating magnitudes at different frequencies in the 
equation, and l is the distance (arbitrary linear coordinate). The said coefficients are 
called coefficients of modeling, since the use of the principle of similarity allows studying 
antennas characteristics by means of experiment on a model.

If to substitute the coefficients into (11.17) and take into account the linearity of 
magnitudes and of an operator curl

�
A , where 

�
A  is an arbitrary vector, then the resulting 

equations are to coincide with equations (11.16), i.e. kH = kskEkl, kH = kwkekEkL, kE = kwkmkHkl.
If ke = km = 1, then kH/kE = ks kl = kw kl = 1/(kw kl), i.e.

k k k k k kl H E lw s= = =1 1, , . (11.18)

From the expression it follows that the electromagnetic field at different frequencies 
will be the same, if the electrical dimensions of an antenna (the ratio of linear dimensions 
to the wavelength) at different frequencies coincide and the material conductivity is in 
inverse proportion to magnitude kl, i.e. increases with a frequency.

A similar conclusion is true for studying an antenna’s model. When the geometrical 
dimensions of a model are smaller than the dimensions of the original in N times, it is 
necessary to increase the signal frequency and the conductivity of model material in N
times. Since kH = kE, i.e. relationship of the currents and voltages remains the same, the 
resistances of resistors should remain the same, whereas the capacitances of capacitors 
and the inductances of inductors connected in the model should be smaller in N times.
As a rule, the conductivity of model material could not be increased in N times. So, the 
resistances of an antenna and of a model as well as the characteristics depending on 
them (e.g., efficiency, Q-factor, gain) differ substantially from each other.

Self-complementary and log-periodic antennas belong to the class of frequency-
independent antennas. Their characteristics change weakly, if an operation frequency 
changes. The log-periodic antenna is an antenna array. It consists of a few dipoles of 
the same shape and different dimensions, which are connected in a single structure. The 
self-complementary antenna of several dipoles of the same shape and dimensions is also 
an antenna array, although its elements are not parallel to each other.

Another issue, which as it will be shown is concerned with antenna array, is the 
reciprocity theorem. Reciprocity theorem argues that the current in the receiving antenna 
and all characteristics of the antenna can be found, if the characteristics of the antenna 
used in transmission mode are known. Suppose there are any two antennas, which 
are remote from each other by such a distance that their mutual impedance is zero 
(Figure 11.8). This condition is accepted for the sake of simplicity of a proof and has no 
principled significance. In the middle of each antenna with the input impedance ZA the 
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load impedance ZL is connected. If emf eI creates a current J
e

Z ZI
I

AI LI
=

+
 at the input of 

the first antenna, then field E
j J F

I
I I

r
=

- 30
e

 arises near the antenna II and creates in this 

antenna the current JII (see Figure 11.8a). Here the designations adopted in Chapter 10 
are used. In a similar case, when emf eII is connected in the second antenna and creates 
in it the current JII, the current JI arises in the first antenna (see Figure 11.8b).

In accordance with the electrodynamics principle of reciprocity

e J e JI II II I= . (11.19)

From these expressions, which are given for the first antenna, it follows that

e
J

J Z Z

J
j

E Z Z

F J
I

II

I AI LI

II

r II AI LI

I II
=

+( )
=

+( )e
30

Similarly, for the second antenna 

e
J

j
E Z Z

F J
II

I

r I AII LII

II I
=

+( )e
30

,

i.e.

E Z Z

F J

E Z Z

F J
II AI LI

I II

I AII LII

II I

+( )
=

+( ) .

If the magnitudes relating to each antenna are transferred into one part of the 
equation and it is assumed that each side of the equation is a constant, which does not 
depend on the properties of the antenna, we get:

J Z Z

E F
i Ai Li

i i

+( )  = const. (11.20)

Figure 11.8 The reciprocity theorem: antenna I radiates (a), antenna II radiates (b).

If to assume that this expression refers to the receiving antenna, then Ji is the current 
in the middle of this antenna, Ei is the field strength near it, ZAi and ZLi are its input 
impedance and load impedance, Fi is a function characterizing the effective length and 
the shape of the directional pattern of antenna in the transmit mode.
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The constant on the right side of expression (11.20) can be determined by considering 
the simple electrical dipole (Hertz’ dipole) as an antenna. If the axis of receiving dipole 
lies in the plane of a wave incidence, the constant is equal to 1. In a general case, it 
is necessary to take into account the polarization of the field and the azimuth, if the 
horizontal antenna pattern differs from circular. As a result we obtain in accordance 
with (11.20) that the current in the middle of the receiving antenna is equal to

J
E F

Z Z
e

Z Zi
i i

Ai Li

i

Ai Li
=

+
=

+
( )j

. (11.21)

The reciprocity theorem shows that the main characteristics of the antenna (input 
impedance, effective length, directional pattern) coincide for transmit and receive modes.

This theorem allows also to analyze a relationship between the field incident onto 
an array element (single radiator) and reflected from that element. It is known that 
when a wave is incident on a flat perfectly conducting metallic surface it is reflected at 
an angle equal to an angle of incidence. Amplitudes of the incident and reflected fields 
are identical, and the wave phase changes in a stepwise fashion by p. However, when 
a metal surface is replaced with a system of radiators, e.g., with a linear equally spaced 
array, direction and phase of the reflected field could be essentially changed, because 
they depend on parameters and electric characteristics of a separate radiator.

An example of such structure is the in-phase reflector array (Figure 11.9a). It is a flat 
equivalent of a parabolic reflector. The structure consists of primary exciter 1 of antenna 
array (e.g., a horn) and an equally spaced array of secondary micro strip radiators 2, 
situated in one plane along surface 3. In order to sum the signals of secondary radiators 
in the direction, perpendicular to the array plane, their phases should be identical. Since 
distances ri (i is the number of reradiator) between the primary exciter and an arbitrary 
reradiator are not identical, this results in a phase path difference, which should be 
compensated with a phase step in the signal reradiating.

Figure 11.9 Reflector array with the radiation direction perpendicular to the array plane (a)
and in any desired direction (b).

The method of calculating the phase step of the reflected field in comparison with 
the incident field phase in the signal rer-adiating can be constructed on the basis of the 
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reciprocity theorem. The reciprocity theorem for two antennas is described above in the 
form of (11.19). In [14] the theorem is formulated as follows: if emf eI applied to the 
terminals of antenna I establishes current JII at the input of an antenna II, then equal 
emf eII applied to the terminals of an antenna II will create at the input of an antenna 
I the same current JI, i.e.

J e Y Y J eII I I II II I I II= = =, , , (11.22)

where Y Y jI II I II I II, , ,exp( )= j and Y Y jba II I II I= , ,exp( )j are the mutual admittances 
between antennas. It follows that 

jI,II = jII,I, (11.23)

i.e. the difference of phases between the exciting emf and the current excited in an 
adjacent antenna is the same in both cases (in these expressions I is used instead of a
and II instead of b).

In our example, incident field EI acts as a signal source instead of the antenna I 
with emf eI. If into the circuit to introduce a source of field – an antenna I, which is 
excited by the generator eI with infinitely high output resistance and to regard as usually 
that a linear antenna is the aggregate of elementary dipoles with appropriate currents, 
then, since the phase of radiation field outstrips the current phases by p/2 , the phases 
difference between the current JII and emf eI is (see Figure 11.8a)

jI,II = j11 + j12 + j13 + j14, (11.24)

where j11 is the phase shift between the current in the antenna I and emf eI (in this case 
it is absent), j12 is the phase shift between the radiated field EI and the current in the 
antenna I (it is p/2), j13 is the phase shift due to the distance between antennas, j14 is
the phase difference between current JII and field EI that is 

j j p j14 132= - -I II, . (11.25)

The other source of a signal is the current in antenna II (rather than emf eII), which 
creates the reflected field EII. A current distribution along the receiving antenna differs 
from distribution along a transmitting antenna. Antenna II is the aggregate of elementary 
dipoles, each of which is excited by its generator. The currents of the dipoles create in-
phase fields. Let the current in the middle dipole (at the antenna center) be excited by 
the generator eII; it is equal to the product of emf eII and the dipole admittance. Since the 
dipole impedance is capacitive, the current phase outstrips the emf phase by p/2. That 
assertion holds true for other dipoles of antenna II. Accordingly, the phase difference 
between current JI and emf eII is equal (see Figure 11.8b)

jII,I = j21 + j22 + j23 + j24, (11.26)

where j21 is the phase shift between the current in antenna II and emf eII (in this case 
it is p/2), j22 is the phase difference between field EII and the current in antenna II, j23
is the phase shift due to the distance between the antennas (it is j13), j24 is the phase 
shift between the reflected field EII and current JI (it is zero, since the input impedance 
of antenna I is infinitely large), that is 

j j p j22 132= - -II I, . (11.27)

In accordance with the equation (11.23), this implies that the increment of the 
phase of the receiving antenna current compared with that of the incident field and the 
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increment of the phase of the reflected field compared with that of the receiving antenna 
current are identical in magnitude.

As to the amplitudes of incident |E1| and reflected |E2| fields, since the total 
tangential component of both fields on a perfectly conducting metal surface is zero, 
then at the reflection point

|E2| = |E1|cos g cosd, (11.28)

where g is the angle of ray incidence onto an antenna, d is angle of reflection.
The realistic variants of reflect arrays are considered in the follow section.

11.3 REFLECTOR ARRAYS

Lately, reflector arrays became widespread in the capacity of a flat equivalent of a 
parabolic reflector. The calculation method of the array is based on the reciprocity 
theorem described in the previous section. For example, an array of micro strip radiators 
is such an array.

The simplest micro strip antenna is a rectangular metal plate of length L and width 
b situated on a dielectric substrate above a metal plane (Figure 11.10a). Length L of the 
plate is about l1/2, where l1 is the wavelength in the substrate material. A simplified 
model of a micro strip antenna is a planar dipole with a sinusoidal current distribution 
(Figure 11.10b) and dimensions coinciding with those of the micro strip antenna. The 
propagation constant of the current is close to k k r1 = e , the propagation constant of a 
wave traveling in the substrate material (er is the relative permittivity of the substrate). 

Figure 11.10 General view of a rectangular micro strip antenna (a) and it’s excitation at the 
center of the metal plate (b).

The equivalent circuit of the antenna operating in the receive mode is shown in 
Figure 11.11a. Here ZA is the antenna impedance in the transmit mode. In this mode, the 
current distribution along a planar radiator is similar to distribution along an impedance 
electric dipole excited at its center. In the first approximation, the input impedance of 
the radiator when L/2 < 0.3l1 is 

Z R jW k LA A= - ( )S cot 1 2 , (11.29)

where R  is the radiation resistance, WA is the wave impedance of the planar dipole, 
the value of which is equal to the doubled wave impedance of a strip line. The wave 

impedance of a strip line is W t b r= ÍÎ ˙̊120 p e/( ) , where t is the thickness of the substrate 
[88]. If L/2 < 0.3l1, the radiation resistance can be calculated by the formula R  = 20k2le

2,
where le = (2/k1) tan (k1L/4) is the effective length of the antenna. The magnitudes of 
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the input impedance, corresponding to L/2 < 0.3l1, can be calculated with the use of 
the Moment method.

The amplitude and phase of the current created in a reradiator depend on the load 
impedance. For the circuit shown in Figure 11.11b,

I e Z e Z j W R kLA A A A= = ( ) ( )ÈÎ ˘̊{ }-exp cot cot1 2S . (11.30)

Magnitude cot cot- ( ) ( )ÈÎ ˘̊1 2W R kLA S  is the phase increment of the current running 
in the antenna relative to the phase of the incident field. In accordance with the reciprocity 
theorem, the increment is equal to the phase increment of the reflected field relative to 
the phase of the current running in the antenna. Hence, the phase step during reradiation 
is

j1
12 2= ( ) ( )ÈÎ ˘̊-

Âtan cotW R kLA . (11.31)

The value of the step is zero for a tuned antenna, negative for an elongated antenna, 
and positive for a shortened antenna. Increase of dipole radius a lowers its wave 
impedance WA and decreases the phase step (Figure 11.12).

Figure 11.11 Equivalent circuits of a receive antenna with load ZR (a), zero load (b), and a 
capacitive load (c), which is formed by the slot filled with a dielectric (d).

Figure 11.12 Field phase step during re-radiating as a function of the antenna length.
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The approximate method for calculating the phase step of the field reradiated by 
an element of a reflection array is based on the reciprocity theorem and the theory of 
dipoles. The method is simple and efficient. After light clarifications, this method can 
be used to analyze loaded antennas. For the circuit shown in Figure 11.11c,

I
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Z j C
e Z C j

R C
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A A=

- ( ) = + ( ) +Ê
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i.e., the phase step during re-radiating is 
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. (11.32)

Here w is the circular frequency of the signal.
One can apply the above results to calculation of the phase step of a micro strip 

antenna during the re-radiating. In order to sum up the signals from secondary radiators 
in the direction perpendicular to the array plane, the phases of the signals should be 
equal. If the coordinates of the primary feed are x0, y0 and z0 (see Figure 11.9a), then 
the phase step in the re-radiator i, needed to compensate the phase difference in the 

direction of the x-axis, must be equal to xi i ik x y y z z x= + - + - -È
ÎÍ

˘
˚̇0

2
0

2
0

2
0( ) ( ) . The 

choice of geometric dimensions of the re-radiator i allows it to receive phase step j1i = xi.
Figure 11.13 plots the field phase step j1 created at 60 GHz by a micro strip antenna 

situated on a substrate with a thickness of 0.254 mm and a relative permittivity of 2.22 as 
a function of the antenna length. The results were obtained by the proposed technique. 
Curves 1 and 2, respectively, correspond to antenna widths of 0.3 and 2.3 mm. The 
rigorous method for calculating the step value was described in [89]. It relies on the 
analysis of an infinite periodic array of identical elements illuminated by a plane wave, 
i.e., on solution of the analysis problem in the spectral domain and on the Floquet’s 
theorem. The open and closed circles in Figure 11.13 correspond to the results presented 
in [89]. As seen from the figure, the correspondence is satisfactory.

Figure 11.13 Phase steps j1 for micro strip antennas with lengths 
of 0.3 (curve 1) and 2.3 mm (curve 2).
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Along with simple micro strip antennas, in reflection arrays, multilayer (multiple-
stack) micro strip antennas can be used. If the field phase step arising during reradiating 
in a single-layer antenna is less than 360º (the phase increment arising with a sufficiently 
thick substrate, which ensures smooth phase variation during plate length changing and 
a wider frequency band, does not exceed 300º), the maximum phase step, attainable, 
e.g., in a two-stack antenna, is 540º.

The design of a two-stack micro strip antenna is shown in Figure 11.14. In this 
antenna, two rectangular metal plates (of lengths L1 and L2 and widths b1 and b2,
respectively) are separated from each other and from the metal plane by a dielectric 
substrate. The upper plate is smaller than the lower one. Plate length L2 is larger than 
l1/2, where l1 is the wavelength in the substrate material.

Figure 11.14 Two-stack micro strip antenna.

Characteristics of a multiple-stack antenna can be calculated by the method described 
above. The phase step of the field generated at 12.5 GHz by a two-stack micro strip 
antenna containing substrates with a thickness of 3 mm and a relative permittivity of 
1.03 is shown in Figure 11.15 as a function of antenna length L2. The antenna is a square. 
The calculating curves were obtained with the use of the proposed technique. The open 
and closed circles in the figure indicate the results of [90].

In order to set the maximum of the radiation pattern of an antenna array in the 
prescribed direction, the phases of the radiator fields must be equal in this direction. 
Hence, if this angle varies in plane xOz, the phases must vary linearly as functions of 
coordinate zi (see Figure 11.9b): yi = k(z1 – zi) cos q. To simplify the control procedure, 
the field phases should be controlled by an electric signal.

Among the circuits of micro strip antennas, circuits with loads are most suitable 
for continuous control of the phase of the reradiated field. In order to connect the load 
impedance in series into the circuit of a receiving antenna, a slot can be cut in the 
central part of the planar radiator across its long sides (Figure 11.11d). In this case, a 
slot filled with a dielectric forms the simplest load: a capacitor with capacitance C (see 
Figure 11.11c) and reactance 1/jwC. The capacitance of this load can be controlled readily 
via variation of the permittivity of a special material placed between the capacitor plates 
during application of voltage between the plates.

I 
Lt 

N .t:::l ... 



295Arrays

Figure 11.15 Phase steps j for a two-stack micro strip antennas with L1/L2 = 0.6 (1) and 0.8 (2).

For the circuit presented in Figure 11.11c the phase step during reradiation is 
determined by (11.32). The tangent of angle j2 depends on two terms. The first term, a = 
1/(R wC) is due to the presence of the capacitor in the radiator center while the second 
term, b = (WA/R ) cot (k1L/2) is related to the deviation of the radiator length from the 
resonant value. The second term can be used to compensate of the phase difference 
caused by the differences in distances ri between primary feed 1 and reradiators 2 (see 
Figure 11.9a), while the first term can be used for turning the radiation pattern. The 
total phase step in the reradiator i should be j2i = xi + yi. Here, if reactance 1/(jwCi) of 
capacitors Ci, corresponding to er = 1 varies linearly with coordinate zi, then, applying 
equal voltages to the capacitors filled with the same dielectric, we find that the reactance 
of these capacitor retain a linear dependence on this coordinate. This statement is equally 
true for the first term in the expression for the above tangent.

Note, however, that the second term takes different values for different reradiators 
because it depends on distance ri. Therefore, phase j2 will vary nonlinearly after 
application of the same voltage to all capacitors. Note that even if the second term is 
absent, i.e. tanyi = 1/(R wCi) and the angular turning the radiation pattern requires 
a linear dependence of phase yi on coordinate zi, the value tanyi and, accordingly, 
capacitance Ci do not possess this property. Therefore, in the general case, the angular 
displacement of the radiation pattern requires application of an individual voltage to 
each capacitor.

The case when angle q of the maximum radiation of the antenna array is close to 
p/2, i.e. a << b, requires a special analysis. In this case, by expanding the function j2 = 
tan–1(a + b) into the Taylor series, we obtain

j a b b a b2
1 21( ) tan ( )+ = + +- / .
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1/(jwC) of capacitor C. Hence, phases of the fields created by secondary radiators will 
vary linearly with the coordinate upon application of equal voltages to the capacitors 
filled with the same dielectric.

If the direction of the maximum radiation differs substantially from the perpendicular 
to the array plane, different voltages can be applied to several groups of antennas in 
order to bring the law of variation of phase j2 along the antenna closer to a linear 
function. Note that the number of these voltages can be substantially less than the total 
number of radiators.

During calculation of the capacitance formed by a slot cut in the plate of a microstrip 
antenna, it should be taken into consideration that this capacitance consists of two terms: 
capacitance C1 between thin planar plates and capacitance C2 of the planar capacitor 
formed between the surfaces of plate edges. 

11.4  INDEPENDENT CONTROLLING THE DIRECTION OF 
THE MAIN BEAM AND OF THE NOTCH

Phased antenna array found a wide use in antenna technology. These are a system of
radiators, which allow the dramatically increase the directivity of the structure in a 
given direction. They are used both to transmit and to receive signals. Receiving arrays 
have their features, since often, except for receiving a weak signal, they must suppress 
interfering signals, coming from other directions. To do this, the main lobe of the array 
pattern should be directed to the source of the useful signal, and the zeros of the 
pattern—to the sources of interference. In particular, zero in the pattern may be utilized 
for suppression of silencer’s signal.

Beam forming technique for solving this problem is described in [91]. As the authors 
point out, in the simplest embodiment, the structure is divided into two arrays, one of 
which provides a maximum directivity in the arrival direction of the desired signal, and 
the second array receives the interference signal and compensates it with the help of 
an interference signal at the output of the first array. In contrast to this approach side 
lobe compensation can be realized by providing in array the required amplitude-phase 
distribution of current. In order to simplify its search, one can use the expansion of the 
pattern in a series in terms of so-called sinc-functions, forming an orthogonal system 
of functions [92, 93]:

sin ( ) sinc x x x= / . (11.33)

The pattern of a linear equidistant array of N elements is usually written as 

F u I j ju q
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where |Iq| and jq are the amplitude and the phase of q-radiator current, u = (kd/2)*

sinj, k = 2p/l is the propagation constant, l is the wave length in free space, d is the 
distance between the radiators, j is azimuth. This expression can be written through 
sinc-functions as 

F u J c Nu pp
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sin p . (11.35)
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Magnitude Jp is called the selective factor and can be found as 

J
N

F u c Nu p dup

R

R

= ( ) -( )
-
Úp

psin . (11.36)

Number of selective factors Jp is equal to the number of current amplitudes Iq. Equate 
the directivity pattern in the form (11.34) and (11.35). The result is a system of linear 
algebraic equations related Iq and Jp. Its solution gives 

I M Jq q p
p N
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, (11.37)
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Let, for example, the initial current distribution (Figure 11.16a) be created, and the 
desired pattern (Figure 11.16b) constructed. The pattern is calculated in accordance 
with (11.34). In order to ensure zero reception in the pattern in a given direction, the 
following form is used:

F u F u u Z u u1 0 0 2( ) ( ) ( , , )= - ◊ d , (11.38)

where

Z u u
a u u u
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2 2d
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if
1, otherwise

Figure 11.16 The current amplitudes in the radiators (a) and the array pattern, created by the 
initial currents (b).

Position of the main lobe is determined by parameter u0, the zero position in the 
pattern—by parameter u2, the magnitude d defines the width of the zero zone and 
does not affect its placement point. The notch depth x, measured from a zero level, is 
characterized by the parameter a. If a = 1, the notch in the pattern is absent. If a < 0, 
then the phase is modulated too. This phase change in the given pattern results in the 
corresponding change of the current distribution along the antenna array. It is important 
to emphasize that the zero position and the position of the main lobe are not dependent 
on each other and are determined separately by parameters u2 and u0. The amplitude 

a) fo) 
q 

1.2.--------------. 

0.8 

0.4 



298 Antenna Engineering: Theory and Problems

|Iq
(I)| and phase jq

(I) distribution in the linear array may be found by using (11.36) and 
(11.37) (Figure 11.17). Substituting the calculated values into (11.34) gives the directivity 
pattern 1(j) shown in Figure 11.18.

Figure 11.17 Distribution of the current amplitude (a) and phase (b) in the linear array with 
zero in the directional pattern.

Figure 11.18 The array pattern for the fixed positions of the main lobe and zero in the 
directions j0 = 0° and j2 = –20°.

A simple circuit of the receiving antenna array with zero is shown in Figure 11.19. It 
consists of the radiators 1, a set of attenuators/amplifiers 2, the phase-shifters 3, and the 
power divider 4 too. Power divider defines the initial current distribution. Attenuators/
amplifiers and phase shifters are used to adjust the amplitude and to form the desired 

Figure 11.19 Control system of the antenna array.
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phase shifts respectively. Both the phase shifters and attenuators/amplifiers operate in 
an analog mode, providing the correct linear coupling of the main parameters and the 
real phases and amplitudes.

The described procedure of forming antenna array pattern considers the ideal case 
where the mutual influence of radiators on each other is absent. In fact, the mutual 
influence of the array elements can be quite strong. In this case, the pattern may be 
substantially destroyed. Therefore, the effect of mutual coupling must be taken into 
account during the pattern formation. The first step is forming the array impedance 
matrix. For simplicity, the relationship between each radiator and its two nearest 
neighbors, located at a distance d and 2d respectively, is considered.

As previously mentioned, the divider forms an initial current distribution Iq
(0).

Mutual influence of the radiators can be accounted by means of impedance matrix 
related radiators currents with applied voltages: 

U Z Iq q
0 0( ) = [ ]◊ , (11.39)

where [Z] is the impedance matrix, Uq
(0) are the applied voltages, and Iq

(0) are complex 
amplitudes of currents. Directivity pattern, formed by voltage Uq

(0) is equivalent to the 
directivity pattern, formed by the current distribution Iq

(0m) = Uq
(0) . Y11, where Y11 is 

the admittance of a single radiator. Thus, one may say that a mutual coupling of the 
radiators results in the transformation of the distribution Iq

(0) into the new distribution, 
which is equal to 

I Z I Yq
m

q
( ) ( )[ ]0 0

11= ◊( ) ◊ . (11.40)

Here the letter “m” of superscript means taking mutual coupling between the 
radiators into account.

This account allows to change the synthesis procedure. If to replace Iq
(0) by Iq

(0m)

in all subsequent calculations, then instead of pattern 0(j) the pattern 2(j) appears 
(Figure 11.20a). Figures 11.20a and 11.16b differ from each other in that the presented 
in the figures pattern are constructed with and without taking into account the mutual 
coupling between the radiators.

Figure 11.20 Array pattern with taking into account mutual coupling (a) for the fixed 
positions of the main lobe and the zero (b).

The next step relates to the synthesis of the distribution Iq
(m) that compensates 

the side lobe in a given direction. Taking into account the mutual coupling between 
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radiators we obtain a current distribution Iq
(1m) created by attenuators/amplifiers and 

phase shifters
I Z I Yq

m
q

( ) ( )[ ]1 1
11= ◊( ) ◊ . (11.41)

The current distribution Iq
(1m) obtained in this manner forms a directivity pattern 

3(j) (Figure 11.20b). One can find after that the transfer factors Kq
(m) (Figure 11.21a)

and phases jq
(m) (Figure 11.21b):

K I I Iq
m

q
m

q q
m

q
m( ) ( ) ( ) ( ) ( )| | | |, arg ( ).= =1 0 1/ j (11.42)

Figure 11.21 Transfer factors (a) and phases of phase-shifters (b) with allowance for the 
mutual coupling and the zero.

As already mentioned, the mutual coupling of the array elements requires a 
substantial correction of the amplitude and phase current distribution in the radiators. 
After that the shape of the zero zone has little effect on array performance, i.e. one can 
assume that the procedure of forming a pattern without side lobe is more or less stable 
with respect to the effect of mutual coupling.

Considered procedure of pattern synthesis with zero in a given direction is based on 
the changing phase and amplitude current distribution along the array. Its use requires 
additional attenuators/amplifiers, which leads to complication of the entire system. 
Therefore it is expedient to check what will happen if we use the initial amplitude 
distribution and change only the phase distribution in accordance with the described 
procedure. Then the final directivity pattern is calculated as

F u I j ju q
N

q

N

q q
l

2
0

1
0 2

1
2

( ) | |exp( ) ( )= + -
-Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇=

-

Â j , (11.43)

where Iq
(0) is the initial current distribution along the antenna array, and jq

(l) is the phases 
distribution calculated in accordance with the described procedure.

Formed in this manner the directivity pattern is shown in Figure 11.22. The position 
and depth of zero is not changed, but the pattern level rose, and the depth of the null 
node decreased by 6 dB. This example allows to compare two procedures: the amplitude 
and the phase one. The first one allows us to obtain a more uniform pattern, without 
rise, but with a more complicated control system because of requirement in additional 
attenuators-amplifiers. In the second case, their installation is not needed.
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Figure 11.22 The array pattern with unchanged position of the main lobe and zero, based on 
the change of phase distribution.

11.5 ADAPTIVE ARRAY

During receiving a radio signal, possible filtration of interference, i.e. separation of useful 
signal and simultaneous suppression of interfering signals, is of important significance. 
The spatial filtration is one of the most efficient methods of fighting interference. In 
order to apply it, one must know the direction of the useful signal arrival so that the 
main lobe of the reception pattern could be oriented on the source of the signal, and 
nulls of the pattern—on the sources of interferences and disturbances. 

The array of receive antennas forming a unified system with receiving equipment 
can act as an efficient spatial filter [94]. Adjustment of such a system is performed 
with the help of special weighing devices (attenuators), forming the required pattern, 
and adaptive controlling circuit (feedback loop), which uses an iterative procedure to 
automatically choose optimal parameters of the system and then automatically adapts 
to the changing conditions. For this reason, the described antenna system is called an 
adaptive one.

An advantage of adaptive processing is the fact that the suppression of interference, 
as a rule, involves no decrease of the useful signal. The automatic control of parameters 
is of special importance where constant factors, degrading the antenna performance, 
act often together with variable factors that exist, for example, aboard ships: running 
rigging, motion of various steel ropes under the action of wind or pitching and rolling, 
rotation or tuning of nearby antennas, the weather effects, etc.

An adaptive antenna system operates in a situation when the spectrum of the useful 
signal and the direction of its arrival is known, whereas the field structure of the source 
incorporating noise and interference and the direction towards the source are not. The 
system uses an artificially introduced reference signal that is produced in the receiver 
and has the spectral characteristics and azimuth coinciding with those of the useful 
signal approximately known. 

The principle of beam forming in the adaptive antenna system with the help of 
weighting devices is clear from Figure 11.23. When multiplying output signals of array 
elements by weighting coefficients, the latter can be selected to secure that the main 
lobe undergoes almost no change (i.e. that the magnitude of the received useful signal 
remains the same), and the direction of zero reception coincides with that towards the 
interference source. A possible variant to implement the required weighting coefficient W
is using a circuit two parallel channels at each element output with system adjustment 
in amplitude and phase delay by p/2 in one channel only. Such an element is called 

I I 1 o 

-45-30 -15 0 15 30 45cp 
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a circuit with quadrature channels. Introduction of the phase delay equal to p/2 is 
unnecessary, yet useful, since it allows obtaining a close magnitude of the weighting 
coefficient in the adjacent channel. 

Figure 11.23 Antennas array with adaptive control of weighting coefficients.

The adaptive control of weighting coefficients (ACW) is performed with the help of 
a controlling circuit–adaptive processor (AP). It automatically adjusts the weights by the 
iterative procedure in accordance with the chosen algorithm. Error signal e(t) is used 
as a controlling one in adjustment circuits for weighting coefficients. The error signal 
is equal to the difference between reference signal d(t) (close to required output signal) 
and actual signal s(t) at the adder output:

e(t) = d(t) – s(t), (11.44)

where the output signal s(t) is the sum of signals xn(t) with weighting coefficients Wn:

s t x t W
n

N

n n( ) ( )=
=

Â
1

2

. (11.45)

Here, N is the number of antennas, 2N is the number of weighting coefficients. 
Quantity xn(t) is to take into account the phase delay, equal to p/2 for even values of n.

Three adaptation algorithms are applied: (1) differential or greatest steepness, 
(2) least mean squared error, (3) random search [95]. The first two are based on the 
steepest descent method. The adaptation process starts with a set of several arbitrary 
coefficients. Then, if the steepest descent method is used, the gradient of error function 
is measured, and the weighting coefficients are set such that the error function will 
change in the direction opposite to the gradient. The procedure is repeated to ensure 
that the error decreases and the weighting coefficients approach the optimal values. 
If the differential method is used, the gradient is evaluated directly according to the 
error function derivatives. In the least mean squared error method, the error value is 
squared, and the derivatives of the square are used to calculate the gradient. The random 
search method includes the measurement of the mean squared error before and after 
an arbitrary change of the weighting coefficients and the comparison of the results to 
decide whether to accept the change, if the error has decreased, or to discard it otherwise.

The least mean squared error algorithm ensures either the most rapid convergence 
to the same value of error in all cases or the least error in the same operation time. 

x, 
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Implementing it in practice is easier than other one, the algorithm bases on using of 
feedback and adjusting each weighing coefficient following the law

dW dt t Wn n/ = ∂ ∂m e 2 ( )/ , (11.46)

where m is a negative constant governing the convergence rate and the system stability, 
and the overline denotes the mathematical expectation. In this case, the number of 
arithmetical operations is linear in the number of weighting coefficients, that is, far less 
than in the direct calculation of the coefficients with the help of a covariance matrix, 
where the number of operations is proportional to the third power of the number of 
weighting coefficients.

Rather than calculate the gradient of the mean squared error, which requires a great 
number of statistical samples, it is expedient to use the gradient of a single sample of 

the squared error (the gradient estimate), i.e. to replace the derivative ∂ ∂e 2 ( )/t Wn  with 
the derivative ∂ ∂e 2 ( )t Wn/ . Then the law of feedback takes the shape 

dW dt x t tn n/ = - 2m e( ) ( ) . (11.47)
One can show expected value of the gradient estimate to be the gradient, i.e. the 

gradient estimation is unbiased.

If the number of iterations increases without limit, the mathematical expectations 
of the weighting coefficients converge to the Wiener solution, for which gradient 

— = ∂ ∂
=

Âe e2

1

2
2( )t W

n

n

n/  vanishes. But the convergence is secured only in the case, when 

constant m lies within certain limits. A practically convenient restriction (although stricter 
than necessary) is inequality 

–1/P < m < 0, (11.48)

where P is the total power of input signals. 
In accordance with (11.47), input signal xn(t) and error signal e(t) i.e. the difference 

between reference signal d(t) and actual signal s(t) at the adder output, are fed into 
the processor. The error signal would have performed best, if the error signal had 
rather included the required output signal instead the reference one. But the latter is 
unavailable in the receive antenna, and we have to resort to the reference signal, close 
to the required one. For this reason, the main lobe of array in the process of adaptation 
orients in the direction specified by the reference signal. The amplitude response of the 
antenna system in the frequency band of the reference signal becomes uniform, and the 
phase response becomes linear. 

Lest the reference signal distort the useful signal, two manners of adaptation, 
single-mode and dual-mode, are developed and used. In the dual-mode adaptation 
(Figure 11.24) only one processor is used, i.e. it is more economical. As seen from the 
figure, the reference generator signals (RG) outputs have two signals. One signal goes 
as the reference signal d(t) to the circuit for the processing. The second (control) signal 
imitates the useful signal arrival from the given direction. It goes through the circuits 
of delay dn to inputs of array channels. Delays dn are chosen so that the received input 
signals are identical to the signals coming from the given direction.

In the first mode, with the switch set to position I, the control signals are fed to 
the inputs of the adaptive processor channels, and the processor adjusts the weighting 
coefficients so that the output signal does not differ from the reference signal, i.e. turns 
the pattern main lobe in the given direction. In the second mode, with the switch set 
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to position II, the signals from array elements (i.e. from the surrounding space) are 
fed to the inputs of adaptive processor channels, and the reference and control signals 
are removed, lest they distort the external signal. Since there is no reference signal, i.e. 
d(t) = 0, all received signals are suppressed. 

Sustained operation in the second mode leads to the self-clinching of the system, 
when all weighting coefficients tend to zero. But, if the modes rapidly alternate and the 
weights vary little during operation in each mode, the required direction of the main 
lobe is retained (at the operation in the first regime), and the power of interference is 
reduced to minimum (mostly, in the second mode). The useful signal in the second 
mode (switch is set to position II) arrives at the receiver input (R).

Figure 11.24 The structure circuit of dual-mode adaptation. 

Digital simulation adaptive processing of signals confirms the procedure convergence 
and shows that this is an efficient method of the spatial filtration of interference with 
the useful signal retained. The experimental testing of adaptive system confirming its 
efficiency has simultaneously revealed the danger of suppressing the system operation 
by interference with a frequency close to that of the useful signal as well as necessity of 
protection, for example, by means of modulating the useful and reference signals with 
pseudo noise code [96].



12.1  CURRENT DISTRIBUTION ALONG THE TRANSPARENT 
ANTENNA

Thin films of ITO (Indium-Tin-Oxide) placed on high-quality glass substrates are on 
the one hand electrically conductive and on the other hand optically transparent. They 
have high homogeneity of sheet resistance, which allows to use them as flat antennas for 
mobile communications and other applications. As an example in Figure 12.1, quoted in 
[97], the optical transparency of the ITO film for different resistivity Rsq is presented. It 
is specified in Ohm per square section, for light wavelength 550 nm. As it is seen from 
this figure the transmittance increases with increasing the film resistivity and becomes 
high enough (near 95%) if the film resistivity is greater than 5 Ohm/sq.

Figure 12.1 Example of the film transmittance dependence on its sheet resistivity.
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In order to better understand the material constraints imposed by the low conductivity 
of ITO film (this conductivity is low in comparison with conductivity of printed cards 
and metal antennas), we examine the sheet resistivity of a film depending on its thickness 
d. This magnitude is designated as Rsq1. According to impedance boundary condition of 
Leontovich (see, for example, [19]), if the thickness d of a metal film is greater than its 
skin depth s of a current, the sheet resistivity is equal to 

R
ssq1
1

=
s

Ohm . (12.1)

Here s is its specific conductivity for constant current (in S/m), and s is given by 

s f= 1 p ms , (12.2)

where f is frequency (in Hz), m = m0 = 4p . 10–7 F/m is the absolute permeability, l is
wave length (in m). If the thickness d of a metal film is small in comparison with the 
skin depth s, the film’s sheet resistivity is equal to

R R s d dsq sq1 1= =/ /( )s , (12.3)

i.e. Rsq1 does not depend on the frequency. 
The resistivity of ITO films is substantially greater than the resistivity of printed 

cards and metal antennas, where copper or aluminum is used. For example, the sheet 
resistivity Rsq1 of the transparent film CEC005P is equal to 4.5 Ohm/sq. The specific 
conductivities of copper and aluminum are respectively 5.8·107 and 3.5·107 S/m, and 
hence in accordance with (12.1) and (12.2) the sheet resistivity of a copper plate with 
thickness greater than the skin depth at frequencies 1 and 5 GHz is equal to 6.9 .10–3 and 
18.4 .10–3 respectively. Therefore, the resistance Rsq1 of ITO transparent film is greater by 
several orders than the resistance of copper and aluminum.

In recent years, transparent films have been the subject of many works [98–100]. 
However these works were devoted to definition and improvement of characteristics of 
materials. Physical processes in transparent antennas, their electrical characteristics and 
their difference from characteristics of metal antennas with a high conductivity as a rule 
were not considered. Knowledge of law of a current distribution along the antenna axis is 
of great importance for understanding of physical processes in antennas. This knowledge 
allows defining the all main characteristics of the antennas. Therefore, the determination 
of this law is the basic problem of an analysis of any antenna. This postulate holds 
good in spite of elaboration of calculation programs such as program CST, since firstly 
these programs in the main allow calculation of input characteristics of antennas (and 
characteristics dependent on them). Calculation of a current distribution by means of 
these programs is difficult problem. Secondly such program does not permit to find out 
a reason of obtained current distribution, that is does not permit to take into account 
and to use features of antennas. Unfortunately, the character of the current distribution 
along transparent antennas even has not been considered in the papers published so far.

 The flat transparent antenna is the linear antenna with nonzero (impedance) boundary 
conditions. In the case of the cylindrical metal antenna, if the surface impedance is 
large enough, it changes the propagation constant and the antenna current distribution 
already in the first approximation, i.e., significantly alters all electrical characteristics of 
the antenna [28]. Similarly, in the case of a flat transparent antenna it is necessary first 
of all take into account the surface impedance. The width of a flat transparent antenna 
can be taken in account afterwards, since the antenna width has smaller effect.
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Let us write an equation for the current in a flat antenna in accordance with the 
integral equation for the current in a cylindrical antenna. Integral equation (2.53) for 
current J(z) in a cylindrical impedance antenna is given in Chapter 2. Its solution is 
sought as a series (2.15) in powers of the small parameter c. Substituting (2.15) into (2.53) 
and equating coefficients of the same powers of c, we come to a set of integral equations 
and boundary conditions. If Z/(2pa) is of the same order as 1/c, so that the surface 
impedance affects the current distribution along the antenna in the first approximation, 
the set of equations takes the form of (2.54). In the case of a transparent antenna, the 
radiator is a thin rectangular plate (not a circular cylinder). The surface impedance is 
equal to Z = Rsq1, where Rsq1 is the sheet resistivity of the transparent film, which for 
the film CEC005P of thickness 310 nm is equal to 4.5 Ohm/sq. 

An impedance transmission line, which is equivalent to symmetrical radiator (dipole) 
is shown in Figure 5.2. An infinitesimal element dz of the line comprises inductance 
d  = 1dz and capacitance dC = C1dz (here 1 and C1 are the inductance and capacitance 
per unit length), and also the additional resistance (Zdz/2pa).The wave propagation 
constant g along such antenna is a complex magnitude, which in accordance with (5.17) 
is given by

g wec2 2
1

22= - = -k j R a k jsq D . (12.4)

 For transition from the cylindrical to a flat antenna it is necessary firstly to determine 
the parameter c1 and secondly to replace in (12.4) pa by the plate width b. As it is 
shown in Section 2.7, parameter c is a cofactor in the expression for C0. It equals to 
c = C0/(4pe), where C0 is capacitance between antenna wire (per unit length of this wire) 
and the surface of zero potential in the shape of a cylinder with radius 2L, whose axis 
coincides with the antenna wire axis. The self-capacitance of a plate with length L and 
width b per unit length, is equal to (see [34])

C sh L b L b sh b Lr1
1 18= ( ) + ( ) ( )ÈÎ ˘̊- -e ,

if 1  2L/b  10,
and to

Cr2 = 2pe/ln(2.4L/b),

if 2L/b  10. From (12.4),

g 2 = g 02 exp(–j /k2). (12.5)

Here g p e c0
4 24 2

0 18= + =k f R bD D, / , i.e. 

g g j= -0 exp( )j , (12.6)

where

g j0
4 24 1 20 5= + = -k kD D, . tan ( )/ . (12.7)

We write the current distribution in the form of

J z J
L z

L
( ) ( )

sin ( )
sin

=
-

0 1

1

g
g

.

and represent the numerator as an imaginary component of exhibitor 
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sin Im exp Im exp cog g gj j
0 0 0e L z j e z L j z Lj j- --( )ÈÎ ˘̊ = - -( )ÈÎ ˘̊ = - -( ) ss sinj g j- -( )ÈÎ ˘̊0 z L ,

i.e.
sin exp sin sin cosg g j g j1 0 0L z z L L z-( ) = - -( )ÈÎ ˘̊ -( )ÈÎ ˘̊ .

Similarly,
sin exp( ) sin ( cos )g g g j1 0 0L L L= ,

i.e.

J z J z
L z

L
( ) ( )exp( sin )

sin ( )cos

sin( cos )
= -

-[ ]
0 0

0

0
g j

g j
g j

This expression means that the current along the antenna wire is distributed over 
sinusoidal law with the propagation constant g1 = g0 cosj and the exponential decay of 
the amplitude with the decrement (the rate of decrease) b = g0 sinj :

J z J z
L z

L
( ) ( )exp ( )

sin ( )
sin

= -
-

0 1

1
b

g
g

. (12.8)

Accordingly, the reactive component of the input impedance of the antenna, which 
is made in a transparent film, is equal to

XA = –WA cot g1L, (12.9)
where

W j R j C W jb kA sq r= +( ) ( ) = -w wL D1 1 1 0
21 2 . (12.10)

Here W0 is the wave impedance of a metal antenna with the same dimensions. The 
radiation resistance is equal to

R heS = 40 1
2 2g , (12.11)

where g
g

1
1

2
h

L
e

eª Ê
ËÁ

ˆ
¯̃

tan  is the effective length of antenna. It is easily seen that the 

effective length and the radiation resistance of the transparent antenna close to analogous 
magnitudes of the metal antenna with the same dimensions.

The performed analysis leads to an important conclusion. From (12.10) and (12.11) it 
follows that the length of the radiating segment of the antenna is inversely proportional 
to d and in a first approximation is independent on frequency. This means that increasing 
the antenna length for operation on lower frequencies is completely useless.

12.2 EXPERIMENTAL RESEARCH

In accordance with the theoretical results we compared two radiators which are shown 
in Figure 12.2 (dimensions are given in mm). One radiator is made in the metal with a 
perfect conductivity, and another radiator is made in film CEC005P.

Figure 12.3 shows the current distribution J(z) along these radiators calculated 
using program CST. The current curve for a metal antenna is denoted by number 1, 
the current curve for a transparent antenna is denoted by number 2. The current decay 
in the metal antenna with perfect conductivity is absent. The current of the transparent 
antenna decays rapidly.
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Figure 12.2 Antennas with a perfect conductivity (a) and from the film CEC005P with the flat 
metal triangle (b).

1—transparent film, 2—metal triangle, 3—glass substrate, 4—soldered joint, 5—connector,
6—cable, 7—disc, 8—balun.

Figure 12.3 Current distributions along a metal (1) and a film ITO (2) model with a 
length 320 mm for a frequency 5 GHz.

In accordance with the theoretical results the manufactured model of the antenna 
from film CEC005P had a small height. Assuming that the frequency is equal to 
f = 5.109 GHz, we obtain in accordance with given above formulas: c1 = 0.36,  = 284 
1/m2, g1 k, b = 1.4 1/m, |WA|  |W0|. The current distribution along this model 
is presented in Figure 12.4 for a frequency 5 GHz. As the calculation showed, the 
decrement is greater than the calculated value. This circumstance is due to the fact that 
not only losses in the film caused the decrement, but also the proximity of the substrate 
and radiation resistivity.

The calculated curves for the active and reactive components of the antenna input 
impedance are given in Figure 12.5. Experimental values are given accordingly by circles 
and triangles. The model during measurement was mounted on a metal disk with a 
diameter of 0.5 m (Figure 12.6).
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Figure 12.4 Current distributions along the model in Figure 12.2b for a frequency 5 GHz.

Figure 12.5 Active and reactive components of input impedance of antenna 
model shown in Figure 12.2b.

The exponential decay of the current along an antenna means that the signal is 
created by an antenna segment of length 2/b, which is adjacent to the feed point, 
and the current is virtually absent in the rest part of the antenna. Therefore, the input 
impedance of such antenna does not have a sharp resonance, and the effective length 
of the antenna is small. In order to improving matching of the transparent antenna with 
a cable and to raise the antenna efficiency, a metal triangle with the width equal to the 
width of the radiator is connected to the radiator’s base, as shown in Figure 12.2b. This 
triangle permits to create a uniform current distribution across the whole width of the 
antenna. That increases the total current of the antenna and its radiated signal. The 
triangular segment of the described model has been constructed as a printed circuit. 
But the experiment has shown that it can be made from the same film CEC005P.
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Experimental characteristics of this model are presented in Figure 12.7 (reflectivity), 12.8 
(standing wave ratio). The magnitude of the vertical signal in the plane of antenna (1) 
and in the perpendicular direction (2) are shown in Figure 12.9. The antenna directional 
patterns in horizontal (a) and vertical plane (b) are given in Figure 12.10. The results 
of measurements show that this model has stable and rather high characteristics in the 
frequency range 2.5–4.5 GHz and higher.

Figure 12.6 Model of antenna on the disc.

Figure 12.7 Reflectivity of antenna model shown in Figure 12.2b.

Figure 12.8 Standing wave ratio of antenna model shown in Figure 12.2b.
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Figure 12.9 Vertical signal of antenna model shown in Figure 12.2b: 1—in the antenna plane, 
2—in the perpendicular plane.

Additional experiments were made in order to be convinced that increasing the 
antenna length for operation on lower frequencies is ineffective. These experiments 
were carried out on the model of antenna (Figure 12.11a), created by its developers for 
operation at the frequency of 0.5 GHz. The model consists of a transparent plate 1 and 
a metal pad 2. The plate is flat rectangular glass substrate, coated with a thin film ITO. 
Model is placed on a metal disc 3. Compared to the wavelength (0.6 m in free space), the 
size of the plate is not too small: 0.3 m × 0.2 m. The metal pad is significantly smaller: 
it is made as a square metal plate with sides, 0.015 m in length. The measurement setup 
is presented in Figure 12.11b. Such models were used by different performers and gave 
unsatisfactory results of tests, which seemed inexplicable to their creators.

In the first experiment the fields of three models, shown in Figure 12.12a, were 
measured by a vertical receiving antenna located at a distance of 3 m. Model 1 is the 
complete antenna, model 2 consists of a vertical metal pad and a horizontal segment, 
similar to segment 1 in Figure 12.12a, and model 3 is only the vertical pad. Model 2 has 
on the upper end of the pad the horizontal load, whose impedance is close to the load 
of the model 1, but this location leads to a sharp decrease of the vertical component of 
the signal. The field of model 3 is even smaller. The results of measurements in decibels 
are given in Table 12.1. They show that the transparent film creates the major part of 
the radiated signal, since the signal of the pad is significantly weaker. However, the 
total signal is relatively small for an antenna of such height.

Table 12.1 Measured Fields of Three Models

Model Structure Field (dB)

1 –31

2 –37.5

3 Pad only –40

o.--= lE~,~dB~~---r--~~~~--li--Tl 
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Figure 12.10 The directional patterns of antenna model shown in Figure 12.2b in horizontal (a)
and vertical (b) plane.

Figure 12.11 The antenna model for the frequency of 0.5 GHz (a) and measurements setup (b).

Figure 12.12 Experimental models (a) and effective length of the antenna (b).
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The second experiment allowed determining what fraction of the signal is radiated 
by the film. Model 4 of Figure 12.12a was used for this purpose. In this case, the 
transparent film is replaced with a vertical copper strip connected in series with the 
pad. The width of the copper strip is equal to the width of the pad, and the length of 
the copper strip is chosen so that the signals radiated by models 1 and 4 have equal 
values. The measurements showed that in this case the total height of model 4 must be 
0.09 m. Since model 4 is a uniform monopole, it allows determining the contribution of 
each part to the overall radiated signal. Assuming that the current along the monopole 
in the first approximation is linearly distributed (Figure 12.12b), one can calculate that 
the entire effective length of the antenna is 0.045 m and the effective lengths of the pad 
and the transparent film are 0.0137 and 0.0313 m, respectively. This means that the 
transparent film radiates 70% of the signal.

The experimental results confirmed the nature of the current distribution along 
the antenna and demonstrated the usefulness of a smooth transition from the wide 
transparent film to the central wire of the cable that to improve matching and to create 
a uniform current distribution across the whole width of the antenna. If these results are 
not used, then the transparent film radiates weakly in comparison with a conventional 
antenna of similar dimensions.

12.3 TRANSPARENT ANTENNA WITH METAL TRIANGLE

It is expedient to consider other methods of improving the level of matching. As is 
shown previously, the input impedance of the transparent antenna does not have a 
sharp resonance, and the effective length of the antenna is small. Low level of matching 
of the transparent antenna with a cable is an additional reason for its small efficiency. 
This disadvantage for example is inherent in the model of the antenna, shown in 
Figure 12.11a. In order to improve matching of the transparent antenna with a cable and 
to raise the antenna efficiency, a metal triangle was included in the base of the antenna, 
presented in Figure 12.2b.

In order for the current distribution along the rectangular and triangular segments to 
be uniform and the reflectivity be minimal on the segments boundaries and also at the 
point of cable connection, the wave impedances of these segments and the cable must 
be close to each other. The wave impedances of antenna segments will be the same, if 
these segments will be made from the same film and in the shape of a common triangle 
or a common flat cone (Figure 12.13a).

An expression for the wave impedance of the structure in the form of two back-
to back flat cones (symmetric version) with a vertex angle 2a is given in [70]. For an 
asymmetric version (one flat cone and a plane) the wave impedance is half of this 
magnitude:

W K n K n2
260 1= -( )p ( ) , (12.12)

where K(n) is the total elliptic integral of the first kind of argument n = tan2(p/4 – a/2).
The wave impedance of a standard cable is equal to 50 Ohm. It is practically 

impossible to ensure good matching of the flat cone with such a cable, since a vertex 
angle 2a of the cone must be equal approximately to 160o in order for the antenna wave 
impedance to be equal to the cable wave impedance (see Table 12.2). This will cause 
to a sharp increase of spurious currents between the antenna edges and the ground.
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Table 12.2 Wave Impedances of a Metal Triangle

a ° 80 70 60 50 45 40 30 20 10

K k k k( ) ( )/ 1 2- 0.251 0.315 0.391 0.462 0.50 0.542 0.639 0.773 0.996

W2, Ohm 47.3 59 73.7 87.1 94.2 102.1 120.5 145.8 187.8

As it is shown in Chapter 9, the wave impedance of a self-complementary antenna 
depends on the number of metal radiators therein and from the circuit of connection 
of these radiators to poles of the generator. If an antenna consists of two metal dipoles, 
the plates of which are fabricated in the form of metal radiators with an angular width 
45° (Fig. 12.13 ) and connected in pairs, its wave impedance is equal to 15p (47 Ohm). 
By adjusting the angular width of each radiator one can provide exact equality of 
wave impedances of the antenna and the cable. In Figure 12.14 the reflectivity of three 
antennas are compared with each other: the reflectivity of antenna with triangular 
segment (curve 1, this reflectivity is presented in Figure 12.7), the reflectivity of antenna 
with one transparent cone (curve 2, the length L of the arm is equal to 0.045 m), and 
the reflectivity of antenna with two transparent cones (curve 3, an arm length also is 
equal to 0.045 m). As it is seen from Figure 12.14, the antenna with two metal radiators 
provides a smooth change of the reflectivity in a wide frequency range. 

Figure 12.13 Asymmetrical self-complementary antennas of one (a) and two (b) metal flat cones.

This result shows the significant advantage of the antenna embodiment in the shape 
of self-complementary radiator with one or two flat cones.

The analytical and experimental study of a transparent flat antenna, which is made 
of ITO film, placed on high-quality glass substrate, shows that its characteristics differ 
significantly from the characteristics of conventional metal antennas—both thin and 
wide. This difference is due to the fact that low conductivity of the radiator leads to 
an exponential decay of current along the antenna axis and to a substantial shortening 
of the length of the radiating segment in comparison with the antenna length. As a 
result, the antenna effectiveness decreases drastically. If to use the existing films, it is 
impossible to create an effective antenna for operation at frequencies below 1 MHz. At 
frequencies above 1 MHz a rather efficient antenna can be created, if it is performed 
or as self-complementary antenna in the shape of one-two flat cones or in the shape of 
wide plate with triangular transition to the central wire of the cable.
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Figure 12.14 Reflectivity of antenna model with triangular segment (1) and with one (2) and 
two (3) metal cones.



13.1 WIRES ANTENNAS

This section is dedicated to separate issues of designing ship antennas. They are 
representatives of numerous groups of antennas deployed on mobile objects and as 
such have their own specific features, since they are placed in constrained conditions 
in close proximity to metal bodies of different shapes and dimensions.

An antenna of medium frequencies (of hectometer waves) is known as the main 
ship antenna. It must ensure the tuning of the main and emergency transmitters, and 
its efficiency during operation with the main transmitter must be sufficient in order to 
establish the electric field with strength 50 V/m at a distance 150 miles. With allowance 
for details of medium-frequency waves’ propagation, the antenna must create vertically 
polarized electromagnetic waves with the direction of maximum radiation along the 
ground surface. The directional pattern in the horizontal plane must be close to the 
circular one.

For this reason, the hectometer antenna is an asymmetrical vertical radiator. As a 
rule, its height is small in comparison with the wave length, i.e. the radiation resistance 
is low, and that leads to low efficiency. Accordingly, the underlying problem in the 
development of new antenna is the increase of its effective length. Therefore, much 
attention is paid to use of antennas with capacitance loads at the upper end, which 
permits to improve (to make more uniform) a current distribution along the antenna, 
in order to increase their effective length and radiation resistance.

Such antenna is excited as a rule in the base. It is called  inverted-L antenna. Its 
circuit corresponds to Figure 13.1a, and the current distribution is given in Figure 13.1b.
A vertical wire can be connected to the end or to the middle of the horizontal load.

As already mentioned, inverted-L antenna consists of a vertical segment and 
horizontal load (Figure 13.2). The vertical segment is performed in the form of a single 
wire or a fan of wires (i.e., several wires located in one plane and convergent to a 

13
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Figure 13.1 Inverted-L antenna ( ) and a current distribution along it (b).

feed point) or a cylinder of wires (i.e., several wires located along the generatrices 
of a cylinder with cross-section in the shape of a circle with a radius 0.5–0.7 m). The 
horizontal load is stretched between ship masts and consists of one or more wires, which 
are located in a horizontal plane at a distance of 0.7–1.0 m from each other or along the 
generatrices of a round cylinder. The flexible antenna filaments—bronze basket (of type 
PAB) or copper basket (of type PAMG) are used as wires. The antenna design enables 
its rapid ascent and descent, as well as adjustment of a wires tension.

In principle one can use antennas with upper feed (Figure 13.3), when the transmitter 
connects to a wire located inside the mast, the upper end of which is connected with the 
horizontal load (see Figure 13.3a). The circuit is equivalent to placement of the exciting 
emf at the top of the antenna (at the vertex)—between the vertical radiator (the outer 
mast surface) and the load (a horizontal sheet or circular cylinder)—see Figure 13.3b. If 
the wire cannot be laid inside the mast, the variant with a shielded wire is feasible (see 
Figure 13.3c). The current distribution along a top-fed antenna is given in Figure 13.3d.

Figure 13.2 Ship wires antennas: inverted-L (a), T-antenna (b).
1—duck, 2—halyard, 3—block, 4—insulator chain, 5—horizontal load, 6—down-lead,

7—down-lead insulator, 8—antenna column.

In this case, the current antinode is in the radiator base. Since the current varies 
weakly near the antinode, then the effective length in the first approximation is equal 
to the geometric length of antenna, i.e. it is larger than in the case of antenna with feed 
in the base. But the radiation resistance decreases inside an antenna in the direction 
to base (to the point of connecting the exciting emf). In order to weaken this effect, it 
is necessary to increase the ratio of the internal mast diameter and the wire diameter.

a) 
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Figure 13.3 Antenna with the upper feeding: vertical wire inside a mast (a),
equivalent radiator (b), wire inside a shield (c), current distribution (d).

In the case of an antenna with feed in the base, a mast acts as a support and creates 
an additional (parasitic) capacitance between the antenna and the ground, which causes 
decrease of the radiation resistance. In the general case for analysis of the mast effect 
one can rely on the program CST. In the particular case, when the antenna represents 
a vertical wire without load, which is located in parallel to the mast and has the same 
length (Figure 13.4a), one can use an explicit technique based on the theory of the 
folded radiator. As seen from the figure, the radiating wire and the mast form the 
folded radiator with shorting to ground, which is open at the upper end and consists 
of wires with different diameters. By analogy with Section 3.2, one can connect in each 
wire two voltage generators, whose total emf is equal to emf of the antenna exciter and 
zero, and divide the radiator into two auxiliary circuits: a linear radiator of height L
with an equivalent radius and an open at the end long line with wave impedance Wl
(Figure 13.4b). The input admittance of the antenna near the mast is

YA = 1/Zl + p2/Ze(ae). (13.1)

Figure 13.4 The relative disposition of a radiator and a mast (a) and dividing into two circuits (b).

Here, Zl = – jWl cot kL is the input impedance of the two-wire long line, Ze is the 
input impedance of the linear radiator, p = C11/(C11 + C22) is the fraction of in-phase 
current in the excited wire, C11 and C22 are the self-capacitances of excited and passive 
wires. Expression (13.1) is true, if distance b between the antenna and the mast is small 
against the antenna length and the wavelength. If these values are commensurable, 
it is expedient to use the induced emf method, in accordance with which the input 

a) b) c) 

a) b) 
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impedance of the excited radiator near the passive radiator is 
ZA = Z11 – Z12

2/Z22, (13.2)
where Z11 and Z22 are the self-impedances of both radiators, and Z12 is their mutual 
impedance.

For the ship antennas as a rule inequalities are true:
a = kL << 1, d = kb << 1. 

So in calculating active and reactive components of self- and mutual impedances 
one can be confined by first terms of expansion of integral function into a series. For 
example the components of a mutual impedance of monopoles are equal to

R12 = 10a2, X12 2
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Figure 13.5 gives an example of radiation resistances R of wire antennas of the 
length 6.52 and 13 m (the wire radius is a1 = 3.7  10–3 m) at the frequency 460 kHz as 
function of the distance b between the antenna and the mast for different radii a2 of 
the mast. For comparison the magnitude R11 of the radiation resistance for the solitary 
antenna is plotted. Experimental values for the mast of radius a2 = 0.4 m are shown 
with dots. The coincidence of experimental results with the calculations confirms the 
rightness of the obtained results.

Figure 13.5 Radiation resistance of wire antenna with height 6.52 m (a) and 13 m (b) against 
the distance to the mast.

It is seen from the Figure that the active component RA of the antenna input 
impedance drops sharply as the distance between the antenna and the mast decreases. 
Horizontal loads of the wires weaken the influence of the mast. But in this case also it 
is necessary to move the antenna away from the mast as far as possible (from 4 to 8 m, 
depending from the mast height).

Low radiation resistance and lower efficiency are not the sole drawbacks of wires 
antennas. One must add to them such drawbacks as a wide variation range of the 
input impedance, which hampers standardization of antennas types and complicates 
the onboard equipment. Besides, an antenna curtain (horizontal load) can break down 
as a result of an ice formation or a storm. The antenna can hinder cargo handling.  The 
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antenna can require mounting a second mast, which is not necessary for contemporary 
ship. For this reason antenna-masts have found their use as the main ships antennas. At 
first, three variants of such antennas appeared: 1) with guy ropes and guy wires, 2) free 
standing and 3) mounted on the mast. The first variant was throwed soon because of the 
great area occupied by the antenna. So in the first stage self-supporting (free standing) 
antenna-masts were manufactured only for great ships. Further, in order to reduce the 
cost of the antenna and use it on ships of small and medium tonnage, the antenna-masts 
with inductive-capacitive load was designed. It is mounted on the ship mast.

13.2 ANTENNA-MAST WITH INDUCTIVE-CAPACITIVE LOAD

The circuit of this antenna is presented in Figure 13.6a. The circuit corresponds to the 
variant with open vertical wire and can be used on board of an exploited ship. The 
antenna is excited in the base and differs from inverted-L antenna only by the type of 
load. Variants with top excitation are possible also. The load is created in the shape 
of a vertical structure, which is the mast extension. The mast supports the load, so for 
a given mast height the geometric height of the antenna increases. It means that the 
effective height of the antenna increases also and other characteristics are improved.

The antenna load (see Figure 13.6b) consists of four whip antennas connected in the 
base by a conducting ring. The system of four whip antennas is equivalent to a thick 
metal radiator with low wave impedance and high capacitance. Double-turn volumetric 
spiral is connected in series with the system of the whip antennas. The spiral increases the 
antenna electrical length. The system of whip antennas creates the capacitive component 
of the load, and the double-turn volumetric spiral creates the inductive component of 
it. Both elements decrease the input reactance of the antenna and increase its effective 
length.  Use of tilted whip antennas allows decreasing, if necessary, the total height of 
the structure. The access of man to the elements of load is foreseen at the time of parking 
ship in port and of the calm weather. The lightning arrestor (spark gap) is installed at 
the point of antenna wire leading to the radio deck house.

Figure 13.6 Antenna with inductive-capacitive load: circuit (a), device of the load (b).
1—tilted whip antenna, 2—conducting ring, 3—double-turn volumetric spiral, 4—open vertical 

wire, 5—mast, 6—work platform, 7—dielectric column, 8—base insulator, 9—rod insulator.

a) 

1 
~ 



322 Antenna Engineering: Theory and Problems

The antenna-mast with inductive-capacitive load was proposed in 1966 and was 
improved in 1970 [101]. The specimen of antenna was mounted on the board of cargo 
ship Konstantin Shestakov with displacement 3500 ton (Figure 13.7). The antenna is placed 
on the ship’s upper bridge, on the mast of height 9.5 m and of diameter 0.3 m. The 
static capacitance of an antenna is 442 pF, the natural wave length is 240 m, and the 
resistance at frequency 400 kHz is 4.3 Ohm. 

Figure 13.7 Antenna-mast with inductive-capacitive load on the upper 
bridge of cargo ship Konstantin Shestakov.

In later years, the antennas, in accordance with a similar circuit, were constructed 
in other countries (Figure 13.8). They include Norwegian antenna AS9 (in the version 
with possible inclination of the antennas, AS9ST) and antenna 938G-1 of the firm Collins, 
USA. The capacitive load in them, as in the described antenna, is made in the form of 
whip antennas installed on the top of the mast. The inductive load is made by means 
of a coil or spiral connected in series with a system of whip antennas and vertical wire. 

Figure 13.8 Antenna-masts with inductive-capacitance load: 938G-1 (a), AS9 (b).
1—whip radiator of fiberglass with wicker copper mesh, 2—bronze cap, 3—central copper wire, 

4—fiberglass mast, 5—inductor, 6—aluminum tube, 7—fiberglass tube, 8—antenna lead-in.
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They are built as free-standing structures of fiberglass and have the total height 
about 15.3 m. Combining their antennas with a conventional ship mast is not provided. 

Consider the methodology of calculating the electrical characteristics of the antenna 
mast on the example of the antenna with inductive-capacitive load. The equivalent 
circuit of the variant with excitation in the base is shown in Figure 13.9. The antenna 
consists of three segments: (1) the systems of whip antennas of a height L1 with the 
wave impedance W1, (2) the volumetric spiral of a height s with the inductance  and 
(3) the vertical wire of a length h with the wave impedance W2. The wave impedances 
of each section can be determined by the method of Howe.

Figure 13.9 Equivalent circuit of the antenna with excitation in the base (a), current (b) and 
voltage (c) distribution along it.

The input impedance of an equivalent transmission line is

Zl = –jW2 cot k(h + le), (13.3)
where
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Expression (13.3) allows approximately determine the reactive component of the 
antenna input impedance, as well as its natural wavelength l0 = 2p/k0, where k0 is the 
solution of the transcendental equation
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Here c is velocity of light. If the electrical length of the mast and the whip antennas is 
low (k0h, k0L1 << 1),
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The current distribution along each section of antenna shown in Figure 13.9 is 
described by the expressions
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Here J(h) is the current of spiral, L = L1 + s + h is the total height of the radiator, 
J(0) is the current in antenna base:

J(h) = J(0) sin kle/sin k(h + le).

a) Al 
z ee H'i TT~ 

h s L1 c) 

I ill. ~~I 



324 Antenna Engineering: Theory and Problems

Electrical field strength Ez is calculated in accordance with (1.68) and input 
impedance—in accordance with (1.50). An effective height of antenna is

h
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As is seen from Figure 13.9, the current is maximal in the antenna base

J P RA A( ) ,0 = / (13.7)

where PA is the power delivered to the antenna. The voltage is maximal between the 
base of a whip antenna and a grounded mast
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+0 wL , (13.8)

where u(0) = J(0)|ZA| is the voltage in the antenna base. 

The methodology of calculating characteristics of a top-fed antenna is given in [102].

13.3  INFLUENCE OF METAL SUPERSTRUCTURES ON 
THE ANTENNA PERFORMANCE

An important feature of any mobile object, in particular, a ship, is a confined area for 
antenna placement, in this connection the antennas are installed near diverse metal 
structures of complex shape, such as masts, superstructures, pipes, etc. Analysis of 
their impact on the antenna characteristics is difficult even in the simplest cases. The 
superstructure can be considered as an additional passive radiator. Solving the set of 
Kirchhoff equations for the totality of radiators, we can find the current in each one. The 
difficulty lies in large transverse dimensions of the superstructure, i.e. the calculation 
of its self-impedance and mutual impedances between it and other radiators, which is 
based on the thin antenna theory, yields too rough approximation. The analysis method 
based on replacing the metal body with a system of thin wires [33, 83] is more efficient.

 We shall begin with a single superstructure of a regular shape. Figure 13.10 gives 
the circuit of the wire structure, equivalent to a thick superstructure shaped as a round 
cylinder of finite length, next to which a whip antenna is placed. It is assumed that the 
ground surface is perfectly conducting, and the structure is symmetrical with respect to 
this surface. The round cylinder is replaced with the wire structure of eight equidistant 
wires located along the cylinder generatrices and the radii of its covers. Since the 
antenna excites mainly the longitudinal current component in the superstructure, then, 
for simplicity of calculation the horizontal circular wires are disregarded. Diameters of 
wires and the whip antenna are assumed the same. The coordinate origin coincides with 
the superstructure center. The dimensions of the figure are given in meters. 
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Figure 13.10 Whip antenna near a cylindrical superstructure.

Table 13.1 presents input impedance and maximal directivity (with respect to 
maximal directivity of the quarter-wave monopole) for a whip antenna of height 6 m 
near a superstructure of diameter 5 m and of heights 6 and 20 m on the three high 
frequencies. These characteristics are also given for the case when the superstructure 
is absent (LS = 0). Calculating the amplitudes and phases of the currents in a base of 
each wire of the superstructure (at the ground surface) shows that their values are 
symmetrical with respect to axis y, i.e. J21 = J28, etc. At the same time currents in the 
wires on the side of the whip and on the opposite side differ substantially both in 
amplitude and in phase.

Figures 13.11 and 13.12 show calculated directional patterns in horizontal plane and 
vertical plane xOz respectively on the three frequencies of HF region. Together with 
the calculated curves the experimental values are presented. The coincidence of the 
calculated and experimental data is good.

Table 13.1 Characteristics of a Whip Antenna Near a Superstructure

f, MHz ZA, Ohm Dmax

LS = 0 6 20 0 6 20

6.0 6.0 – j353 3.7 – j351 1.8 – j350 1.86 2.46 4.32

12.5 39.7 + j20.9 24.7 + j38 17.0 + j28.2 2.00 5.39 5.32

19.0 289 + j424 356 + j505 185 + i448 2.35 4.76 6.80
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Figure 13.11 Horizontal directional patterns of the whip near the metal 
cylinder of height 6 (a) and 20 m (b).

Figure 13.12 Vertical directional patterns of the whip antenna near the metal cylinder 
on the frequency 6 (a), 12.5 (b) and 19 MHz (c).
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The calculations show that the antenna characteristics to a high degree depend on the 
superstructure presence and on its height. The radiation resistance decreases (excepting 
the region of parallel resonance). The radiation in the direction to the superstructure 
decreases sharply (excepting lower frequencies and the structure, which is shorter than 
the whip antenna). Superstructure height significantly affects the properties of the 
radiator in the entire frequency range.

The good agreement of calculation with experiment confirms indirectly the rightness 
of the wire structure choice. As is seen from Figure 13.10, in this structure the circular 
wires are absent, i.e. calculation does not take into account cross currents induced on 
the cylinder surface. Calculating electrical characteristics of the whip antenna located 
near the superstructure with height 6 m, whose equivalent structure was supplemented 
by horizontal wires, was performed in order to verify the rightness of model. The 
mentioned wires were located in parallel planes at a distance 2 m from each other and 
each of them had the shape of a regular polygon inscribed in a circumference with a 
radius equal to the radius of the cylinder.

The calculation results show that the directional pattern of the antenna located 
near the structure with additional horizontal wires, is almost identical the directional 
pattern without these wires: directivity differs by 1–2%, the input impedance varies in 
the range of 5–10%. The currents in the horizontal wires are substantially smaller than 
currents in the vertical conductors, for example, at a frequency of 6 MHz they smaller 
by a factor of 105.

The calculation allows to find the minimal height of a superstructure, at which the 
antenna characteristics coincide with the characteristics of an antenna, located near an 
infinitely high superstructure. This height exceeds the antenna height approximately by 
a quarter of the wavelength. In actual practice, the superstructure shape is different from 
the cylindrical. Comparison of influence of superstructures differently shaped, e.g., with 
circular or polygonal cross-section, but of close dimensions, which are located on equal 
distance from the antenna axis, shows that their influence on the antennas properties 
remains basically the same.

The variety of variants of antennas’ placement on ships requires typifying these 
variants in order to allow forecasting their characteristics, taking into account the effect 
of closely spaced metal structures. It is expedient to list these structures that distort the 
characteristics of adjacent antennas. This is primarily antennas with large transverse 
dimensions, such as antenna-masts and radar antennas. Usually, the problem is reduced 
to determining the effectiveness of antennas placed close to the two superstructures, such 
as a chimney and a ship mast or a ship mast and the free-standing antenna-mast. An 
additional superstructure causes, as the analysis shows, a further decrease of a radiation 
resistance and an increase of directivity.

The described technique, which allows estimating an effect of the metal superstructure 
situated close to the antenna on characteristics of this antenna, can also be used for the 
analysis of such effect on the characteristics of the linear array of whip antennas (see 
Section 5.6). 

It should be emphasized that the wire structure, which is used in the calculations 
as the electrodynamics equivalent of a metal object, should correspond to the physical 
meaning of the problem. For example, the wires of a structure must be located along the 
supposed lines of a current. This allows upon the given accuracy of calculation to reduce 
significantly the number of wires and, correspondingly, the amount of computation (and 
vice verse, to increase the accuracy of results upon the same volume of calculations).
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Defining the necessary number of wires, which provides an equivalence of 
electrodynamics properties of the model and the original, is an important question upon 
using a considered procedure.  Each wire is divided on the segments (short dipoles). 
The lengths of these segments must not exceed 0.2l. A further decrease in the segments’ 
length and increase in their number has almost no effect on the accuracy of calculations. 
By decreasing the segments’ length up to 0.01l  the calculation accuracy decreases again.

In this connection, the characteristics of the whip antenna located near the round 
metal cylinder were considered. The round metal cylinder was replaced by the wire 
structure of different numbers of wires.  The results of calculating directional patterns 
and experimental verification showed that in this concrete problem the number of wires 
must be chosen so that the distance between the wires was less than 0.08l. If the number 
of wires are more than the specified number, the shape of the directional pattern does 
not change practically, and the input impedance changes slightly—in the range of 5–10%.

Various authors called different values for the minimal number of wires of the 
structure, which provides an equivalence of electrodynamics properties of the model 
and the original object [83]. The number of segments, and hence the number of basis 
functions is accordingly changed. The distance between the wires, which was selected 
in the above described problem, is 0.08l.

Similar results were obtained during calculating the characteristics of antennas 
installed at the edge of a ship’s deck or on a sail yard, and also for symmetric dipole 
on the axis of a trough with finite length. The latter problem occurs if the antenna is 
located near a metal body and mounted flush with the body, i.e. does not rise above 
its surface. Another variant of the same problem occurs if the radiator is placed in the 
dielectric capsule floating along the sea surface.

Sometimes the authors’ conclusions are surprising. For example, in [103] the results 
of measuring field of a quarter-wave monopole mounted on square screens of the same 
size are presented. One screen is fabricated in the form of metal sheet, and others—in the 
form of wire grid with square meshes, dimensions of which in the different screens are 
different. The given results show that the dimensions of the meshes should not exceed 
0.06–0.08l. But the authors argue contrary to the presented graphs that the size of the 
mesh can be increased up to 0.1l.

13.4 ANTENNA FOR COAST RADIO CENTER
An antennas for coast radio centers provides a communication with the ships in the 
ranges of high and medium frequencies. A project of antenna was developed on the basis 
of the theory of self-complementary antennas in two versions—planar and volumetric.  

Both variants were intended for creating an antenna of height 50 m with distance 
100 m between supports. In the high-frequency region the antenna characteristics are 
similar to the characteristics of a self-complementary structure. In the medium-frequency 
region this antenna is a variant of the folded radiator. The first embodiment (see 
Figure 13.13a) provides bi-directional radiation and the second (see Figure 13.13b)—
unidirectional radiation with increased directivity. 

 Figure 13.13a shows a wire structure, used in the calculation of a flat vertical 
antenna. Dimensions are given in meters. It is considered that a ground is perfectly 
conducting and a structure is symmetric with respect to its surface. The central vertical 
wire is located along an axis of the antenna symmetry. The antenna consists of two 
sectors.  Each wire is regarded as an insulated conductor (circuit), which adjoins in the 
end point to the central wire or to the previous side wire.
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Figure 13.13 Wire structures for calculation of flat (a) and volumetric (b) antennas.

Input characteristics of the flat vertical antenna are presented in Figure 13.14a, the 
directional pattern in the horizontal plane in Figure 13.14b, in the vertical plane—in 
Figure 14.14c. The TWR was calculated for a cable with wave impedance 75 Ohm. 
Together with the calculated curves in the figure the experimental values are shown 
by points (in the form of squares, circles and triangles). The experimental values are 
obtained for a model executed on the scale of 1:50. The coincidence of the calculated 
and experimental data in the first part of the range is quite good, in the second—rather 
qualitative.

Figure 13.14 The input impedance (a), the directional patterns in horizontal (b) and 
vertical (c) plane of the flat vertical antenna.

The results of calculation and experiment show that increasing the number of wires 
in the antenna allows to reduce the reactive component of the input impedance and 
to raise the level of TWR. It is expedient to connect the wires of triangular radiator 
with each other by horizontal connecting wires. Increasing diameters of side  shunts 
(supports) also helps to improve matching.
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In Figure 13.15 an experimental TWR is given for an antenna with a triangular 
radiator of 9 wires. Curve 1 corresponds to the antenna with one additional horizontal 
connecting wire, curve 2—with four connecting wires. Curve 3 is given for the antenna 
with four connecting wires and with a diameter of each support increased to 0.7 m. 
The last option allows to obtain TWR more 0.4 at frequencies from 0.9 to 5.3 MHz, i.e., 
bandwidth ratio is equal to 5.9. The project was recommended to realization.

Figure 13.15 Experimental TWR of different antenna variants.

The directional pattern in the horizontal plane has a shape of an oval elongated 
in a direction perpendicular to the antenna plane (see Figure 13.14b). The width of the 
main lobe on the level of 0.7 at frequencies up to 3 MHz is more 80°. In the vertical 
plane the directional pattern is flattened against the ground and has a width from 20 
to 40° (see Figure 13.14c).

Using a volumetric antenna with an inclined triangular radiator (see Figure 8.12b)
allows to create unidirectional radiation and also to expand the range to the side of 
lower frequencies. The wire structure used for the calculation of this antenna is shown in 
Figure 13.13b, and electrical characteristics—in Figure 13.16. From the drawings it is seen  

Figure 13.16 The input impedance (a), the directional patterns of the volumetric vertical 
antenna in horizontal (b) and vertical planes xOz (c) and yOz (d).
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that increasing the dimensions of a triangular radiator shifts to the left of the resonances. 
Radiation is increased in the direction of the triangle’s inclination. Directional patterns 
in mutually perpendicular vertical planes are substantially different from each other.

Table 13.2 shows the directivity of a flat and volumetric antenna (relative to isotropic 
radiator).

Table 13.2 Maximal Directivities of Antennas

Type of antenna f = MHz 3 MHz

Flat 5.9 6.4

Volumetric 7.1 6.9

13.5  INFLUENCE OF CABLES ON A RECIPROCAL COUPLING 
BETWEEN COAXIALLY DISPOSED RADIATORS

Section 4.4 was entirely devoted to the creation of antennas, which provides radiation 
in a plane perpendicular to an antenna axis in wider frequency range. In other words, 
serious attention was paid to the question of creating the vertical antenna with required 
directional pattern in the vertical plane. An issue of obtaining the required directional 
pattern in the horizontal plane is very often not less important. A single symmetric 
about axis vertical antenna has in the horizontal plane a circular directional pattern. But 
if two antennas are located nearby, then their mutual effect leads to a deterioration of 
their electrical characteristics, in particular to the distortion of their horizontal directional 
pattern.

So at high frequencies, for example, in VHF-UHF ranges, coaxial installation of 
antennas is used widely in order to decrease the mutual influence of vertical antennas 
located close to each other. This radiators arrangement greatly reduces their mutual 
influence. In addition, mast or other construction, on which antennas are mounted, is 
expensive structure and should be used as much as possible. If the mast is made of 
dielectric material (plastic) it does not affect the radiators properties. But the mast is 
not the only cause of distorting characteristics of antennas. It should also reduce the 
influence of the cables of antennas located above, as well as other metallic elements. A 
similar problem occurs when one must build a phased antenna array, if the flat vertical 
metal reflector, behind of which it is possible to hide the cables, is absent in this array.

Considering the different ways of counteracting this unpleasant effect, it should 
be clearly understood that the placement of cables around the radiator is better than 
placing radiators around the cables, and that only one radiator should be located in each 
storey. This method of solving the problem allows to approximate the characteristics 
of an antenna mounted on a mast to the characteristics of an antenna in free space, i.e. 
allows to reduce to the utmost the influence of cables on its properties.

A typical placement of vertical radiators on the mast is presented in Figure 13.17. 
Different options of placement of cables and other metal elements around radiators are 
considered in [104]. It assumed that dimensions of cable cross section do not exceed 
0.1 l. Results of analysis are given further for the following variants: 

(1) metal elements in the form of several metal rods evenly located around the radiator 
(Figure 13.18),

(2) metal elements in the shape of a meander, a horizontal segment of which lies in 
a plane passing through the radiator center; the midpoint of a segment coincides 
with this center (Figure 13.19),
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(3) metal elements in the form of several metal rods evenly located around each 
radiator; the upper and lower segments of the rods are displaced relative to one 
another by a half of interval between the rods (Figure 13.20),

(4) metal element in the shape of a vertical cylindrical spiral (Figure 13.21).

It is well known that the directional pattern of a vertical radiator 1, placed next to 
the mast 2 (see Figure 13.17a) is distorted the stronger, the more cross section of the 
mast. Figure 13.17b shows the experimental directional patterns in the H-plane for the 
radiator located at a distance R = 0.19lmax from a vertical metal rod of height lmax with
a cross-section in the shape of a corner with a side 0.025lmax. As can be seen from the 
figure, the directional patterns have areas where the signal level is sharply reduced (up 
to 0.3 of a maximum). It is unacceptable for antennas of mobile objects.

Figure 13.17 Vertical radiators next to the mast (a) and their directional 
patterns in horizontal plane (b).

Directional pattern can be improved if radiator 1 is placed between two metal rods 
2 (see Figure 13.18a). Measurements show that the directional patterns of the radiator, 
located between the two rods of mentioned type at a distance R = 0.19lmax from each 
rod, remain uniform (E  0.7Emax) in the range from fmin to 1,5 fmin (see Figure 13.18b).

Figure 13.18 Vertical radiators between two metal rods (a) and their directional 
patterns in horizontal plane (b).
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Let the metal element have the shape of a meander, and the midpoint of its horizontal 
segment coincides with the center of the radiator (see Figure 13.19a). It allows to improve 
the directional pattern in the H-plane in comparison with the pattern of radiator located 
next to the mast, and at the same time permits to reduce the impact of the metal element 
on the input impedance in comparison with the impact on the input impedance of the 
radiator placed between the rods. As can be seen from Figure 13.19b, in using this metal 
element, fabricated of rods of mentioned type, with a length of horizontal segment 
2R = 0.38l the directional pattern remains uniform in the frequency range from fmin to 
1.5 fmin.

Figure 13.19 Metal element in the shape of a meander (a) and directional patterns 
of the radiator in horizontal plane (b).

The variant shown in Figure 13.20a is a modification of the variant shown in 
Figure 13.18a. It allows to increase the number of metal elements. As the measurements 
show, the higher a number M of metal rods, placed around the radiator, the wider the 
frequency range, in which the directional pattern is close to the circular. On the other 
hand increasing M and decreasing the radius R of free space around the radiator causes 
a growth of the input impedances of the radiator and makes antenna matching with 
a cable more difficult. Figure 13.20b contains experimental data about the growth of 
the active component of the input impedance as a function of R and M in the range 
from fmin to 4fmin. As the curves show, in order to avoid large transverse dimensions of 
the structure and great growth of input impedances (and therefore the high SWR), it 
is needed that the radius of the circumference be equal to R = 0 33. max minl l  and the 
number of M not less than three.

In order to expand the frequency range of the radiator surrounded by vertical rods, 
the rods must be divided by a plane passing through the middle of each radiator (see 
Figure 13.20a) onto the upper 2 and lower 3 segments. Further they should be shifted 
relative to each other by half of interval between the rods (by an angle a = y/2 = p/M).
It is equivalent to doubling the number of vertical rods in accordance with their effect 
on the directional pattern (Me = 2M) and does not increase SWR. Connecting links 4 
connect the rods with each other and with the center of the radiator.
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Experiments show that this form of metal elements, fabricated of metal rods with a 
cross-section in the shape of a corner with a side 0.01lmax, allows obtaining the uniform 
directional pattern in the H-plane (E  0.7Emax). These elements almost do not effect on 
the directional pattern in E-plane. They as a rule increase SWR in comparison with the 
radiator located in the free space not more than 12% in a wide frequency range from 
fmin to 4fmin, if Me = 2M = 6 and R = 0.33(lmaxlmin)1/2.

Figure 13.20 Metal elements in the form of several metal rods (a) and the radiator 
resistance as a function of R and M (b).

Metal element in the shape of a vertical cylindrical spiral (see Figure 13.21a) deserves 
special attention, since the spiral has a minimal effect on the electrical characteristics of 
vertical radiators. It is expedient to choose close values of a spiral pitch S and a spiral 
radius R, since with a growth of S/R the spiral begins to damage radiator characteristics, 
and with decreasing S/R a length of a cable, placed into a spiral tube, becomes excessively 
large, and this means large losses in the cable and a great weight of the device.

Measured characteristics of radiators with SWR  2 showed that the spiral with 
S ≈ R has a very weak effect on the directional pattern in H-plane (less than 2 dB) (SWR 
increases to a maximum of 15%). The influence on radiator resistance took place when 
R/l = 0.04 – 0.6(lmax/lmin = 15), but it allows to use an antenna in a wide frequency 
range, if the spiral parameters do not change.

Figure 13.21b compares vertical directional patterns of the radiator in free space 
(solid lines) and of the radiator placed along the axis of spiral made of a cable with an 
outer diameter 0.0033lmax (dotted lines). Figure 13.22 presents the results of measuring 
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mutual coupling between two identical radiators located along the axis of spiral with 
R = S = 0.04lmax at a distance, which is equal to 0.1lmax and 0.2lmax. In a wide frequency 
range the magnitude of mutual coupling between the radiators is close to the same value 
between the radiators in the free space. It is very substantial from the point of view of 
electromagnetic compatibility.

Figure 13.21 Metal element in the shape of a vertical cylindrical spiral (a) and experimental 
directional patterns of a radiator in a vertical plane (b).

Figure 13.22 Mutual coupling between radiators located along a spiral axis.

The results of calculating input impedances and directional patterns in a system 
of two radiators are presented for following three variants of the cable placement 
(Figure 13.23): 
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(a) the cable is absent,
(b)  the cable is placed vertically (excluding the short horizontal segment),
(c) the cable is placed along the cylindrical spiral and the mentioned radial segment.

The cylinder radius and the distance between the structure axis and the vertical 
cable are taken the same and equal to 0.042lmax. These results demonstrate the weak 
effect of a spiral cable upon the electrical characteristics of radiators.

Figure 13.23 Three variants of cable placement.

The equivalent circuits of the radiating structures for each variant are shown in 
Figure 13.23. It is considered that the upper radiator is passive and short-circuited in 
the middle. Radii of all wires for the sake of simplicity are taken equal to the radius of 
the passive radiator (0.0027lmax).

Figure 13.24a shows curves for TWR of the lower radiator in a range lmax/lmin
= 4 (S = R). As is seen from the figure, placement of the cable along the cylindrical 
spiral (variant c) allows to obtain a higher level of matching. The calculated directional 
patterns in the horizontal plane for different variants of the cable placement and different 
diameters of the spiral are given in Figure 13.24b. The minimal values f(j) = E/Emax of 
the directional patterns are given in Table 13.3. Figures and table clearly confirm that 
the placement of the cable along the cylindrical spiral allows to weaken significantly 
the distortions of the directional patterns.

The results of analyzing characteristics of the antennas located in the form of 
several floors show that the arrangement of cables along the cylindrical spiral, axis 
of which coincides with axis of radiators, facilitates the solution of problem of their 
electromagnetic compatibility.
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Figure 13.24 Level of matching (a) and directional patterns (b) of lower radiator.

Table 13.3 Minimal Values of Directional Patterns

lmax/l Variant a Variant b Variant c

S = R S = 2R S = 4R
1.0 1.0 0.786 1.0
1.5 1.0 0.705 0.997
2.0 1.0 0.600 0.999 0.994 0.905

2.5 1.0 0.554 0.997
3.0 1.0 0.514 0.985 0.986 0.749

3.5 1.0 0.462 0.991
4.0 1.0 0.424 0.982

a) 



14.1   SELF-COMPLEMENTARY STRUCTURE AND 
THE ABILITY TO “CUT-OFF” CURRENTS
AS THE BASIS OF LOG-PERIODIC ANTENNA

Log-periodic dipole antennas (LPDA) have been used widely in the past decades. Their 
creation represents a significant step in the development of wide-range directional 
antennas [105–108]. These antennas belong to the class of frequency-independent antennas. 
They are based on the principle of complementarities and the ability automatically to 
“cut-off” the current. LPDA provides directional radiation along its longitudinal axis 
and retains shape of the directional pattern over a wide frequency range. They have 
also constant input impedance.

In accordance with the principle of electrodynamics similarity any radiator has 
the same electrical characteristics at different frequencies, if its geometric dimensions 
vary with frequency in proportion to the wavelength (in the first approximation the 
requirement about corresponding change of the material conductivity may be neglected). 
Not only the tunable antennas, but also the antennas whose shape is completely 
determined by the angular dimensions, conform to the principle of electrodynamics 
similarity. In this case changing of scale does not change the antenna, i.e. a radiator 
shape and dimensions in wavelengths are the same at different frequencies.

Antennas having the property of the automatic “cut-off” currents arouse among 
frequency-independent antennas a particular interest. This property means that the 
field at each frequency is radiated by a current along a small antenna segment, which 
is called by the active area, and that the electric current outside the boundaries of this 
area is quickly attenuated. Here, coordinates and dimensions of radiated segment are 
rigidly related with the magnitude of a wavelength. If the frequency was changed, the 
antenna segment, radiating the field, shifts along the antenna. The electrical dimensions 
of the area, both longitudinal and cross, remain constant and ensure the invariability of 

14
Log-Periodic Antennas
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the characteristics. Thus, the antenna has the constant input impedance and invariable 
directivity characteristics in an infinitely wide band.

If the antenna has finite dimensions, its frequency range is finite, but in this finite 
range the antenna has the properties of an infinite antenna. The maximal wavelength 
depends on the maximal cross dimension of the antenna (on its width), and the minimal 
wavelength depends mostly on the accuracy of the structure manufacturing near the 
excitation point.

LPDA (Figure 14.1) is a collection of elements (of wires), dimensions of which form 
a geometric progression with denominator 1/t:

Rn+ 1/Rn = ln+1/ln = 1/t. (14.1)

Figure 14.1 Log-periodic dipole antenna. 
1—longitudinal wire, 2—transverse wire, 3—interval between the transverse wires.

Here Rn is the distance from the vertex of the angle a to dipole n, ln is the arm length 
of dipole n, a is the angle between the antenna axis and the line passing through the 
dipoles ends (see Figure 14.1). Accordingly, the antenna’s electrical characteristics are 
repeated at frequencies forming the geometric progression with the same denominator. 
It means that directivity characteristics and input impedance of the antenna are periodic 
functions of logarithm of frequency f, i.e. if the electrical characteristics are drawn as 
a function of ln f, their values are repeated with period equal to ln t. From here the 
antenna name is selected.

Weak variation of antenna’s characteristics within the period is an indispensable 
condition of a weak frequency dependence of these characteristics. In order to meet this 
condition, this period must be small. But this is insufficient. 

LPDA shown in Figure 14.1 consists of two structures situated in one plane. Each 
structure is shaped as a straight wire, with the linear conductors attached to it at right 
angles alternately from the left and from the right. Their lengths increase with the 
growing distance from the excitation point in accordance with the law of geometric 
progression. Such an antenna is a simplified and modified variant of a flat log-periodic 
structure shown in Figure 14.2, which is the self-complementary structure, i.e. it consists 
of metal plates and slots coinciding with each other in shape and dimensions. The input 
impedance of a flat infinite self-complementary structure is purely active, independent of 
the frequency, and is equal to 60p Ohm (see Chapter 8). Designing log-periodic antenna 
in the form of a self-complementary or similar structure ensures a small variation of 
electrical characteristics of the antenna within one period of oscillation.
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Figure 14.2 Flat self-complementary log-periodic antenna. 
1’—metal sector, 2’—metal strip, 3’—slot strip.

Each of the two structures, forming a LPDA (see Figure 14.1), differs from the 
structure, which forms an arm of a flat log-periodic antenna (see Figure 14.2). The metal 
sector 1’ is replaced with the longitudinal wire 1, the metal strip 2’ situated along the 
arc of a circumference is replaced with transverse wire 2, tangent to the arc, and the 
slot 3’ is replaced with the interval 3 between the transverse wires. Such construction is 
essentially simpler for implementation and, at the same time, its electrical characteristics 
are close to the electrical characteristics of original construction.

Rotation of one metal structure (of one arm of the antenna) around the y-axis (see 
Figure 14.2) through angle p and placing both structures in one plane allows providing 
unidirectional radiation. The unidirectional log-periodic antenna shown in Figure 14.1 
may be interpreted as a linear array of symmetrical radiators. These radiators have 
monotonically changing lengths and are excited by a two-wire long line. A generator is 
connected in the line from the side of the shorter radiators.

A reasonable implementation of an antenna design, which requires no special balun, 
is shown in Figure 14.3. The cable is placed inside one of two tubes forming a two-wire 
distribution line. The cable sheath and the tube of distribution line form a single unit, and 
an inner conductor of the cable is connected to the second tube at the antenna vertex. 
This design provides a shortcut circuit of the distribution line. It is implemented at a 
distance lmax/8 from the base of the first dipole. Here lmax is the maximal wavelength.

Figure 14.3 Design of LPDA.

Unfortunately, the opinion that the log-periodic structure itself provides constant input 
impedance is widespread. In [75] it is said that “there are serious misunderstandings. 
It seems, that such ignorance can be attributed to the term ‘log-periodic antenna’ for 
the self-complementary log-periodic antenna, without reference to the most important 
fact that it is a derivative of the self-complementary structure…In order to correct 
such misunderstandings, experimental tests have been done by taking a conically-bent 
modified antenna, which is arranged in the log-periodic manner as shown in Figure 
14.4a (the figures numbers are replaced—B.L.). As the most straightforward arrangement 
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of non-self-complementary log-periodic structure, the antenna shown in Figure 14.4b
was constructed, where one wing of the two half-structures of the antenna is upside-
down… The measured values of input resistance for these two antennas are compared 
in Figure 14.5, and a significant difference is apparent between them, in spite of the fact 
that the two wings of both antennas are identical.

The input resistance of the incorrectly arranged log-periodic structure, which is 
shown in Figure 14.5 by the dotted curve and crosses, varies distinctly in a log-periodic 
manner for varying frequency, though the constant-resistance property is satisfactory for 
the self-complementary antenna (its input resistance is shown by the solid curve and 
circles). From the results described above, it can be concluded that the origin of the 
broad-band property of the “log-periodic antenna” is not in its log-periodic shape, but 
rather in the aspect of the shape that is derived from the self-complementary structure.

It is hardly necessary to add anything to the above words.

Figure 14.4 Two kinds of log-periodic antenna: self-complementary antenna (a), antenna, 
which is built by anti-complementary method (b).

Figure 14.5 Input resistances of a self-complementary antenna (ooo) and of an antenna, which 
is built by anti-complementary method (+++).
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Further we consider the active area of LPDA with the view of explaining the 
principle of its operation. The area consists of dipoles with the arm length close to 
l/4. In their input impedance an active component is predominant, and the reactive 
component is small. In actual practice the number of dipoles forming the active area is 
usually equal to five. For the sake of simplification we assume only three dipoles, with 
the arm length of central dipole being l/4.

As is seen from Figure 14.1, the upper arms of the dipoles connected alternately 
to one or another conductor of the distribution line. That is equivalent to crossing 
conductors of the long line on the segments between the dipoles. With allowance for this 
crossing the electrical current in the larger dipole outstrips in phase the current in the 
resonance radiator, and the current in the shorter dipole lags behind the current in the 
resonance radiator, i.e. the larger dipole acts as a reflector, and the shorter dipole acts 
as a director. As a result, the fields of individual radiators are summed in the direction 
toward the excitation point (to the side of shorter dipoles) and cancel each other in the 
opposite direction.

The waves in the distribution line, reflected from the dipoles of the active area, cancel 
each other to a large degree, since the reactive components of the input impedances of 
short and large dipoles are opposite in sign. This explains a high level of matching of 
the active area with the distribution line. In addition the electrical length of the line 
from the feed point to the active area remains unchanged during the frequency change. 
Therefore, an impedance of active area transformed to the antenna input is the same at 
different frequencies as well.

The dipoles located outside the active area are excited weakly due to the great 
reactive impedance. The short dipoles at the beginning of the structure practically 
fails to radiate, since the fields created by them summed almost in anti-phase because 
of crossing wires and the proximity of dipoles to each other (as compared with the 
wavelength). As a result, the EM wave along this segment of line does not weaken, i.e. 
the distribution of currents and voltages at the line segment between the excitation point 
and the active area is close to that of the traveling wave mode. The short dipoles act 
as capacitances shunting the distribution line and thereby decreasing slightly its wave 
impedance. The long dipoles situated behind the active area radiate weakly too, since, 
first, their input impedances are great and, second, the power of the EM wave at that 
segment of line drops substantially as a result of attenuation in the active area.

14.2 THE METHOD OF LPDA CALCULATION

The method of LPDA calculation [109] is based on antenna presentation in the form 
of a parallel connection of two multipoles (Figure 14.6), one of which describes a 
system of dipoles and is defined by matrix [ZA] of mutual impedances, and the other 
describes the distribution line with matrix [Yl] of admittances. For each cross-section n
of the structure, where the dipole is connected in parallel with the distribution line, the 
following equations are true:

J Z J Y J J JnA nA nl nl nA nl= = +/ , , (14.2)

i.e. Jnl = JnAZnAYnL. Here JnA is the current at the dipole input, ZnA is the input impedance 
of the dipole (with allowance for coupling with neighboring dipoles), Jnl is the current of 
the distribution line, Ynl is the admittance of the line in the cross-section n, and J is the 
extraneous current at given point. It should be noted that in calculating JnA, the mutual 
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coupling with neighboring dipoles is accounted, and in calculating Ynl it is considered 
that the distribution line is shorted at the terminals of neighboring dipoles (according 
to Kirchhoff’s law other sources of emf are replaced by short circuit).

Figure 14.6 Equivalent circuit of LPDA.

The first equation of (14.2) is written for the total voltage along closed circuit, the 
second equation is written for the total current in this point. From here, 

J = (1 + ZnAYnl)JnA. (14.3)

Accordingly, a matrix equation for the column-vector [JA] of the dipole’s input 
current is written in the form

[J] = ([E] + [ZA][Yl])[JA], (14.4)

where [E] is the identity matrix, [J] is the column-vector of currents feeding the lines, 
which connects multipoles with each other. Since the extraneous current is only at the 

distribution line input, in the first cross-section (it is equal to J0), then [J] = 

J0

0

0
�

. Solving 

equation (14.4), we find the column-vector [JA], and then matrix [VA] = [ZA] [JA] of the 
voltages at the dipoles inputs. The first element of the matrix at the input of the shortest 
dipole is the voltage. If the exciting current J0 is equal to 1, this first element is equal 
to the input impedance of the antenna.

In [109], the elements of the matrix [ZA] are calculated, in fact, by means of the 
induced emf method. Later on, to obtain more exact results, the matrix elements 
were calculated by means of the integral equation’s solution with the help of the 
Moment Method [110]. The difference between the approximate and the exact method 
is particularly noticeable, if the LPDA consists of thin radiators or has a wide angle at 
the antenna’s vertex. The energy in such an antenna propagates along the distribution 
line beyond the boundaries of the active area and excites the long dipoles.

When designing LPDA, it is important to choose the geometric dimensions so that 
the electrical characteristics changed weakly in a range from f to t f. The magnitude t and 
all antenna characteristics depend essentially on the parameter s, which is equal to the 
distance between the half-wave dipole and the neighbor shorter dipole (in wavelengths): 

s = 0.25(1 – t) cota. (14.5)

In fact, it is dependent on the angle a in view of t. As is shown in [109, 111], the 
characteristics change weakly, if t > 0.8 and 0.05 s  0.22. Under these conditions, the 
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currents of the dipoles located near the resonant (half-wave) radiator reach a maximum 
and the wave along the distribution line is so attenuated in the active area that the 
follow dipoles practically do not radiate.

In [112] on the basis of generalization of data available in the literature, the optimum 
relationship of the above mentioned basic parameters is defined in the form:

s/t = 0.191. (14.6)

This ratio does not depend on the values of a, ln/an and Z0. Here an is the radius 
of dipole n, Z0 = 60ch–1[(D2 – 2a2)/(2a2)] is the wave impedance of the distribution line, 
a is the radius of the distribution line’s wires, and D is the distance between axes of 
these wires. Substituting (14.6) into (14.5), authors of [112] obtain the simple expressions 
connecting the optimal parameters t and s with the antenna dimensions:

t a s a= + = + - = +1 1 0 765 0 765 1 4 5 231/( . tan ) [ . ( )], ( tan . ).L L l lN/ / (14.7)

The value L in these expressions is the distance between the first and the last (N)
dipole.

The antenna with s/t = 0.191 has a narrow directional pattern and high front-to-
back ratio. Figures 14.7 and 14.8 corroborate these statements. They show the given in 
[112] calculated beam width for LPDA with Z0 = 100 Ohm and ln/an = 177 in the planes 
E and H and also front-to-rear ratio depending on the parameters t and s. SWR of the 
same antenna with the optimal parameters t and s depending on the values ln/an and 
Z0 is presented in Figures 14.9 and 14.10. Magnitude of SWR in a properly designed 
LPDA is typically smaller than 1.5.

Figure 14.7 Dependence of half-power beam width of LPDA with Z0 = 100 Ohm and 
ln/an = 177 in the planes E (a) and H (b) on the parameters t and s.

Figure 14.8 Dependence of front-to-back ratio on the parameters t and s.
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Figure 14.9 Dependence of SWR of the antenna with optimal t and s on value ln/an.

Figure 14.10 Dependence of SWR of the antenna with optimal t and s on Z0.

Under antenna development it is necessary to take into account that the arms of 
each dipole are connected to different conductors of the distribution line, and so they 
are not coaxial. To decrease the influence of misalignment on the antenna pattern, one 
must reduce the distance between the conductors’ axes: it should not exceed 0.02lmin.
Here lmin is the minimum wavelength. 

14.3 DECREASING TRANSVERSE DIMENSIONS OF LPA 

Log-periodic antennas have rather large overall dimensions. In order to decrease 
transverse dimensions, it is expedient to shorten the longest dipoles using loads of 
different kind or structures with the slowing-down, i.e. the same manners, which are 
used for reducing the monopole’s and dipole’s length. Different variants of shortened 
monopoles are presented in Figure 14.11. Among them, inverted-L and T-radiators 
(a, b) and antennas with concentrated inductive loads (c) are. Slowing-down is employed 
in a helical (d) and meandered (e) antennas and in monopoles of fractal shape of Koch (f ).
It should be noted that the slowing factor is always less than the increase of the wire 
length.
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Figure 14.11 Variants of shortened monopoles: inverted-L antenna (a), T-antenna (b), antenna 
with concentrated load (c), helical antenna (d), meandered antenna (e), antenna of Koch fractal 
shape (f ).

Slowing-down allows shortening the monopole, i.e. to reduce the length of the 
monopole by a factor m for the given frequency of the first resonance or to decrease the 
resonance frequency by a factor m for the given length of the monopole. But the radiation 
resistance at the resonance frequency in consequence of the length reduction decreases 
by a factor m2, and the antenna wave impedance is increased by a factor m. And both 
impair matching with the cable of each element of LPDA and the antenna on the whole.

Figure 14.12 demonstrates the results of a rigorous calculation of SWR and gain 
for log-periodic antennas with linear and helical dipoles. Parameters of the antenna are 
the following: N = 15, t = 0.92, a = 10o, ln/an = 100, ln/rn = 20 (here rn is the radius of 
helical dipole n), Z0 = 150 Ohm. The helical dipole arm consists of five turns; the wire 
length is twice as large than the straight dipole’s length. The value of SWR is calculated 
in a cable with wave impedance 100 Ohm. The relative length lN/l of the largest dipole’s 
arm is used as the argument.

Figure 14.12 Characteristics of the log-periodic antennas with helical dipoles (solid curve) and 
straight dipoles (dotted curve): traveling-wave ratio (a), directivity (b).

As can be seen from Figure 14.12, the level of TWR 0.7 for the antenna with the 
helical dipoles is maintained in the range 0.163 lN/l  0.425. The dotted curves in 
the Figure correspond to the log-periodic antenna with straight dipoles. The Figure 
shows that, if both antennas have the same dimensions, LPDA with the helical dipoles 
and a double wire length has an operation range, expanded by half in the direction of 
low frequencies in comparison with the range of ordinary antennas. The useful effect 
is accompanied by decreasing match level and some deterioration of directivity, caused 
by a higher Q of helical dipoles.
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To increase the parameter t up to 0.95 and the number of dipoles up to 24, in the 
considered example we shall obtain the antenna, the characteristics of which are almost 
the same as the characteristics of an antenna with straight dipoles and the transverse 
dimensions reduced by half. Thus, it is theoretically possible to reduce its transverse 
dimensions at the cost of increasing the dipoles’ number and at the same time to 
maintain characteristics of the log-periodic antenna. But practically acceptable designs 
are obtained, if the transverse dimensions are reduced no more than two or three times.

Attempts to decrease longitudinal dimensions of an antenna by using slowing-down 
in the distribution line or at the expense of additional dipoles connection, failed, since 
violation of geometric progression’s relationships and increase of the dipoles number 
causes, as a rule, sharp deterioration of electrical characteristics and gives insignificant 
decrease of overall dimensions.

The variant of log-periodic antenna, which operates in two adjacent frequency bands 
and allows making the antenna shorter than the antenna designed for operation in the 
total range, is described in [112]. Basically the authors’ proposal reduces to the use of 
linear-helical dipoles, i.e. radiators, each of which consists of straight and helical dipoles 
arranged coaxially and having a common feed point (Figure 14.13).

Figure 14.13 The linear-helical dipole.

The dipoles length is the same, but the helical wire length is twice as much as the 
straight rod’s length. Linear-helical dipole in contrast to straight and helical dipole has 
two serial resonances, and the ratio of the resonant frequencies for the same dipole’s 
length is equal to the slowing factor of the helical dipole.

As is well known, the resonant dipole and its nearest neighbors create an active 
area, passing through which the electromagnetic wave, whose frequency is close to the 
resonant frequency, actively radiates energy. LPDA with linear-helical dipoles has two 
active areas, and they provide a signal radiation in two bands of the frequency range. 
The experimental check of log-periodic antenna with linear-helical dipoles, described in 
[112], confirm that this proposal is promising. The antenna is designed for operation in 
the frequency range from 250 to 1250 MHz. The length of mock-up is equal to 0.44 m; 
the dipole maximum length is 0.42 m. The test results are given in Figures 14.14–14.17. 

From Figure 14.14 it is seen that the TWR in the cable with wave impedance 75 Ohm
is greater than 0.3 in the ranges 252–610 and 645–1250 MHz, at the frequencies 613 and 
625 MHz its value decreases to 0.17 and 0.18, respectively. The front-to-back ratio is 
greater 8 dB (see Figure 14.15). The half-power beam width (both in the plane E and
in the plane H) in the lower part of range is wider than in the top (see Figure 14.16). 
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Accordingly, here the antenna directivity is smaller. Directional radiation exists from 
260 to 1250 MHz (see Figure 14.17). Only at 550 MHz this ratio falls sharply to 2 dB.

Figure 14.14 TWR of antenna with linear-helical dipoles.

Figure 14.15 Front-to-back ratio of antenna with linear-helical dipoles.

Figure 14.16 Pattern of antenna with linear-helical dipoles in the 
plane E (a) and in the plane H (b).
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Figure 14.17 Directivity of antenna with linear-helical dipoles.

If electrical characteristics of log-periodic antenna with straight dipoles and with 
linear-helical dipoles are similar, then the length of the antenna with straight dipoles 
is greater in 1.8 times. If only helical dipoles are used, the length of antenna is greater 
than the length of the antenna with linear-helical dipoles 1.3 times. In addition TWR
of the proposed antenna in the upper part of the range is smaller on the average by 
4 dB. Decrease of the antenna dimensions is obtained at the cost of TWR and directivity 
reduction in the narrow band in the middle of the operation range. This reduction is 
caused by the transfer of the active region from the helical elements of LPDA to straight 
elements.

14.4 DECREASING THE LENGTH OF LOG-PERIODIC ANTENNA

The length of the log-periodic antenna can be reduced by increasing the angle a between 
the antenna axis and the line passing through the dipoles ends. This option seems the 
most simple and natural. But, as it is seen from (14.5), increase of a, if t is constant, 
leads to decrease of the distance between the dipoles and to the growth of their mutual 
influence, and as a result to decrease of directivity and active component of input 
impedance and to the deterioration of the frequency-independent characteristics.

One can increase the angle a by another manner. LPDA consists (see Figure 14.1)
of two asymmetric structures located in the same plane and excited in opposite 
phases. If these structures are located at an angle y > a to each other, as is shown in 
Figure 14.18, the resulting three-dimensional structure will incorporate two distant from 
each other planar structures. The monopoles are connected alternately from left and from 
right to the conductor of the distribution line. The distance between the monopoles, 

Figure 14.18 Volumetric antenna of two structures.
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situated on one side of the conductor, is almost twice as large as in a planar LPDA. 
This reduces their mutual influence and allows to increase the angle a. However, this 
antenna occupies a great volume, and that makes difficult its installation and changes 
its characteristics. This, for example, increases inadmissibly input resistance, creates 
additional trouble for antenna’s utilization.

An asymmetrical coaxial log-periodic antenna, described in [112], does not have 
these disadvantages. Two-wire distribution line in this antenna is replaced by a coaxial 
line, and dipoles are replaced by monopoles. Antenna as an assembly is shown in 
Figure 14.19. The antenna consists of two structures, circuits of which are given in 
Figure 14.20. The first of them (Figure 14.20a) is a straight conductor. The wires’ segments 
of required length located in one plane connected to defined points of this conductor at 
the right angle alternately from left and from right. This conductor is the central wire of 
the coaxial distribution line and the wires’ segments are monopoles, which are excited 
by means of this conductor.

Figure 14.19 The circuit of asymmetrical coaxial log-periodic antenna.

The second structure (Figure 14.20b) is designed as a long cylindrical tube with short 
tubes embedded in it, which are opened inside and outside. The long tube is the outer 
shell of the coaxial distribution line, the short tubes are the outer coaxial shells, which 
partially cover the monopoles connected to the inner conductor of the distribution cable. 
As a result, monopoles’ are the radiators with a feed point displaced from the base. As 
one can be seen from Figure 14.19, the first structure is inserted into the second one, 
so that their axes coincide.

In accordance with the usual practice of designing log-periodic antenna, its 
dimensions must correspond to the geometric progression with ratio 1/t:

Rn+1/Rn = ln+1/ln = hn+1/hn = 1/t. (14.8)

Here hn is the distance from the axis of the distribution line to a feed point of 
radiator n. Other values   are defined previously. In addition, it is necessary that the 
ratio of the shell diameter to the central conductor diameter ensured coincidence of 
this segment wave impedance with the radiator resistance on the frequency of the first 
serial resonance.
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Figure 14.20 Internal (a) and external (b) structures, from which asymmetrical 
coaxial log-periodic antenna consists.

From the above it follows that the two-wire distribution line is replaced in the 
proposed antenna by a coaxial cable, and the dipoles are replaced by monopoles 
connected to the inner conductor of this cable. The outer shell of the cable is used as a 
ground. This shell in turn serves as a ground for the monopoles excited in the anti-phase, 
and that substantially distinguishes this ground from a large metal sheet. This means 
that the proposed structure realizes an asymmetrical version of the usual log-periodic 
antenna (symmetrical version of such antenna is implemented as the antenna LPDA). 
Consequently, it is possible to increase significantly the angle a and to shorten the 
antenna without fear of directivity decrease and deterioration of frequency-independent 
characteristics. Since the radiating elements of the antenna are the monopoles, then by 
analogy with the LPDA, where the dipoles play a similar role, it is expedient to name 
this antenna by LPMA.

The principle of a symmetrical antenna’s operation was reviewed earlier by means 
of the analysis of processes in its active area. The processes in the active area of an 
asymmetrical antenna practically do not differ, since the waves in a coaxial distribution 
line are similar to the waves in a two-wire line and are depended on the monopole 
influence, which is similar to the influence of dipoles on the waves in a symmetrical 
structure. In the surrounding space the equally excited dipoles and monopoles produce 
in the same fields. 

Mock-up of an asymmetric log-periodic antenna designed in order to operate in the 
range of 200–800 MHz, has been manufactured and tested. Antenna characteristics were 
measured by authors for the two variants of its mounting on the metal mast (Figure 
14.21): the cantilevered variant, when the radiators are arranged vertically (a), installation 
on the mast top, where the radiators are mounted horizontally, and the gravity center 
coincides with the mast axis (b). Distribution line was formed in the shape of a truncated 
pyramid with a square cross-section and the inner conductor made in the shape of a 
horizontal plate of variable width.

a) R3 
---------=---

3 
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Figure 14.21 Asymmetrical antenna on the metal mast: cantilevered variant (a),
installation on the mast top (b).

Experimental check confirmed that LPMA regardless of the variant of installation 
has frequency-independent electrical characteristics. The cantilevered variant gave the 
following results. The average magnitude of half-power beam width in the operation 
range 200–800 MHz is equal to 70o in the plane E (vertical) and 124o in the plane H
(horizontal). Typical patterns in both planes are shown in Figure 14.22. Back-to-front 
ratio does not exceed 0.15. The directivity value is 6.8 dB.

Figure 14.22 Typical directional pattern of asymmetrical antenna in the 
plane E (a) and in the plane H (b).

The experiment shows that the antenna does not lose the directional characteristics 
up to frequency 2.75 GHz. In Figure 14.23, TWR of antenna is given in the cable with 
the wave impedance 50 Ohm in the range from 0.8 to 2.8 GHz. One can be seen that in 
the range from 1.5 to 2.4 GHz, TWR is equal to 0.3–0.7. The beam width in the plane E
in this range is 35–40° (i.e. by half less than that in the main operation range), and in 
the plane H it is equal to 115–140°. Accordingly, in additional range directivity is higher 
by a half than in the main range.

~0.08lll 
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Figure 14.23 TWR of antenna in the cable with the wave impedance 50 Ohm.

The authors’ point of view on the causes of additional operating range’s emergence 
is absent in [112]. From our point of view, the reason is obvious enough, if we to take 
into account the calculations and measurements results for LPDA with linear-helical 
dipoles presented by the authors. Here each radiator consists of two connected in 
parallel elements with different resonant frequencies. Actually, in this LPDA along the 
distribution line two dipoles’ structures are set. The dipoles’ dimensions are defined 
by two different angles—a and b (see Figure 14.20)—between the axis of the antenna 
and the line passing through the ends of the radiators. Each structure provides the 
required electrical characteristics within its operating range. The sharp deterioration of 
characteristics occurs at the boundary of the ranges.

Similar result during measurements of LPMA is caused by the fact that each radiator 
of the antenna consists of two connected in parallel elements: the monopole and the 
short tube, i.e. the segment of coaxial cable, surrounding the monopole. Structure 
dimensions are chosen so that the distance from the central conductor axis to the end 
of the tube is equal to half of the monopole length. But that does not mean that the 
length of a single element is half of the other element’s length because the length of one 
element is equal to the short tube’s length (it is necessary to subtract the radius of the 
distribution tube). Therefore, the average frequency of the additional range (1.95 GHz) 
is greater approximately four times (not two times) than the average frequency of the 
main range (0.5 GHz).

When the mock-up of LPMA is placed on the mast top, TWR in the cable with a 
wave impedance 75 Ohm does not fall below 0.3 in the range from 115 to 800 MHz 
(Figure 14.24), i.e. the lower frequency decreased by a factor 1.6.

Figure 14.24 TWR of antenna, placed on the mast top. 
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Since for the sake of decreasing the transverse dimensions of the antenna, the 
first monopole was bent at right angle at the height of the third monopole and the 
second monopole was bent at the height of the fourth monopole, the third and the 
fourth monopole have the largest lengths. At a frequency 115 MHz, the length of the 
third and fourth monopole was 0.227l.

Typical directional pattern of antenna placed on the mast top, in the E plane at 
frequencies above 300 MHz, is similar to the directional pattern shown in Figure 14.22. 
When the frequency decreases, the back lobe grows. At frequencies below 160 MHz, the 
directional pattern with two lobes turns and becomes perpendicular to the distribution 
line axis. This rotation is caused by the fact that at low frequencies the outer tube of 
the distribution line becomes the main radiator.



15.1  ANTENNAS FOR UNDERGROUND RADIO 
COMMUNICATION AND OBSERVATION

Reliable underground radio communications is required for many applications, e.g. for 
communication between people, working below ground and on the ground surface [113, 
114]. The need for such communication is especially obvious in the case of underground 
accident, for example, in the mines.

In addition to the need in communication between an underground zone and a 
ground surface, a channel between two subterranean points is also often required. This 
channel is more complicated, and its difficulties grow due to the fact that the signal, 
radiated by an underground source, is subjected to strong attenuation. Besides that it 
propagates in two ways [115, 116]. The first pathway goes in a vertical direction to the 
earth surface, located above the transmitting antenna. Further the signal propagates in 
air along the earth surface, and finally, passing vertically downwards through earth 
layers, reaches the receiving antenna. The second pathway is horizontal, i.e. the signal 
propagates through the earth in a horizontal direction.

The ratio between the two signals at the receiving point depends on a distance 
between the correspondents, on a placement depth of transmitter and receiver, and on 
electromagnetic characteristics of the ground layers along the channel. As a rule, the 
signal, propagating by the first way, is greater. On the other hand, the signal, propagating 
by the second way, may be used in order to secure observation of underground channel 
and detecting its change. In that case, the second signal must be substantially greater 
than the first signal. Or it is necessary be able to extract the second signal from the 
mixture of signals.

Losses in the earth dramatically increase at high frequencies, and the signal, 
propagating through the earth, is quickly attenuated. Using low frequencies requires 
radiating structures of large dimensions. Proceeding from these contradictory 

15
Different Issues
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requirements, one must find a compromise solution. When developing an underground 
communication system it is necessary also to take into consideration that a horizontal 
component of the signal propagating in the earth is attenuated slower than a vertical 
component. Since the efficiency of an antenna, located close to the earth is small, it is 
expedient to create a big air cavity around the transmitting antenna. It should be also 
noted that the presence of a metal sheet underneath of the transmitting antenna increases 
the first signal, propagating in air along the earth, and hence placement of a metal sheet 
under the antenna is harmful for the system of observation. Published works show that 
today it is possible to create an underground communication at a distance of 10 km by 
means of a transmitter of power 100–200 W, operating at frequencies 150–200 kHz [117].

Based on the foregoing, the placement of the transmitting and receiving stations 
in such a system may look as shown in Figure 15.1. In order to increase the signal 
magnitude, the transmitting antenna must be directional. For this purpose, it is expedient 
to use an antenna array, consisting of two or three horizontal dipoles with arm length, 
close to a quarter of wavelength. These dipoles may be active or passive. In the first 
case all dipoles are excited by a generator, and changing the emf phases permits to alter 
the radiation direction. If only one radiator is excited, then for changing the direction of 
radiation one must re-tune the dipoles operating in passive mode. The dipoles are placed 
in the air cavities, located in an earth on a distance of about a quarter of wavelength 
from each other.

Figure 15.1 Placement of transmitting and receiving antennas.

As it is rightly pointed out in [116], due to the high attenuation of electromagnetic 
waves for calculating fields in media with relatively high conductivity it is necessary 
to use rigorous expressions. Therefore, in accordance with Maxwell’s equations for a 
perfectly conducting filament, used as a model of a symmetrical radiator, z-component
of its electrical field in the system of cylindrical coordinates (r, j, z) is calculated in 
accordance with (1.29). The electrical current along the radiator is
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If in the expression (15.1) j = 0, the current is distributed in accordance with 
sinusoidal law (Figure 15.2a). At j = p/2, it is distributed in accordance with cosine 
law (Figure 15.2b). Using relations between derivatives of R and R+ with respect to z
and z, and integrating the expression by parts twice, we come to (1.30). The field of the 
radiator in an equatorial plane (z = 0) is
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where er is a relative dielectric permittivity of the medium, R01
2 2= +z r , and r is the 

distance from an observation point to a middle of the radiator. 

Figure 15.2 Sinusoidal (a) and cosine (b) current distributions along the radiator arm.

Let’s consider a particular task of propagating a direct and reflected signal in a 
region of a radius 1 km. Fields in this region are the far fields, since the main component 
of the field is close to 1/r. The losses in the earth lead to increasing dielectric permittivity 
and to decreasing the signals. The signal magnitude depends on the multiplier exp(–jkr),
where k is equal to

K j= -w em s we( )1 / . (15.3)

Here e, m and em are permittivity, permeability and propagation constant in a lossless 
medium, s is a medium conductivity. Since the wavelength in a lossless medium is 
l l e= 0/ r , where l0 is the wavelength in a free space, then 

k j r= -w em ls e1 60 / . (15.4)

It is easy to see that for the real soil conductivity the second term under the square root 
is much greater than the first term, i.e.

k j r= -w em l s e( ) .1 30 0 / (15.5)

Hence it follows that the signal, which propagates belowground, decays exponentially 
with a decrement, equal to

a p e l l s e p s l= ( ) =2 30 2 300 0 0r r/ / / . (15.6)

If s = 0.5 S/m, l0 = 200 m, then a = 1.72 1/m. If a distance is r = 10 m, signal 
attenuation is equal to exp(ar) = 3 107 times.

Let’s compare field magnitudes created in the far region by radiators with 
sinusoidal and cosine current distribution. Assuming that the input currents of the 
radiators in both cases have the same amplitudes and introducing the notation 
A = –j60J(0)exp(–jkr)/er, we obtain at j = 0 (sinusoidal distribution) and j = p/2 (cosine 
distribution) accordingly
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If l0 = 200, L = 50, r = 2 103, the fields are equal to E01  0.4A, E0II A.
In order to provide a cosine current distribution or distribution close to it, one must 

decide the complicated task of creating wires’ structure on the antenna ends or realize 
a good contact with the ground. Temporarily leaving this task to the side, we shall 
consider electrical characteristics of a radiator with such current distribution depending 
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on arm length of the radiator. An antenna input impedance is ZA = R  + jXA, where for 
the linear radiator in the first approximation one can write

R  = 20(khe)
2, XA = jW tan kL. (15.8)

Here W = 120[ln(2L/a) – 1] is the wave impedance, L is the arm length, a is the 
arm radius. Since J(z) = J(0) cos k(L – |z|)/coskL, the effective length he of the radiator 
is equal to

h
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Let, for example, l = 200, a = 0.1 (dimensions in meters). If L = 0.15l = 30, then XA

= j892, h
ke =

2 75. , R  = 20(khe)
2 = 151. When wave impedance Wc of the cable is equal 
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. If L = 0.2l = 40, then XA = j2102 Ohm, he = 6.16/k, R  = 759 Ohm, 

r = 0.97, SWR = 66. It is obvious that both variants with such matching level are no 
acceptable, and the situation is still worse, when the arm length is close to a wavelength 
quarter.

In addition to the problem of matching, it is necessary to take into account that the 
difference between the fields created by antennas with sinusoidal and cosine current 
distribution at the same radiation power, is relatively small, and that the field decreases 
rapidly with a distance. Therefore the use of cosine distribution is inexpedient. 

In order to decrease the dimensions of the antenna, one can employ a flat self-
complementary antenna with rotational symmetry (see Section 9.2), for example with 
three metal dipoles (see Table 9.1 and Figure 15.3). Each arm of such antenna consists 
of a three plates. As a result, firstly the wave impedance of such antenna is essentially 
smaller unlike that of a flat self-complementary antenna with an arm of one plate. 
This antenna allows to provide a high level of matching with a standard cable. And 
secondly the antenna arm at the frequency of the first series resonance is shorter than 
the quarter of the wave length, i.e. one may decrease the antenna dimensions. Since 
the signal must have horizontal polarization, the antenna must be located in a vertical 
plane along the horizontal axis and be perpendicular to the direction to the placement 
area of the receiving antennas.

Another possible type of radiator is the curvilinear V-dipole with capacitive loads 
(see Section 6.5). 

Figure 15.3 The circuit of the flat self-complementary antenna with rotational symmetry.
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Analysis of the structure, which can be used for underground communication, shows 
that realization of this communication system is possible. For this embodiment it is 
expedient to use the medium frequencies. For the signal transmitting one must use an 
antenna array, consisting of two or three horizontal radiators. As the horizontal radiator, 
one may use a directional antenna of new type: flat self-complementary antennas with 
rotational symmetry or curvilinear V-dipole with capacitive loads.

The research results confirm the opportunity of creating a communication channel 
between two subterranean points and securing observation of underground channel and 
detecting its change.

15.2 MEASURING AN ANTENNA GAIN IN A FRESNEL ZONE

It is known that when measuring directional pattern and gain of antenna, an 
observation point should be placed in a far zone (Fraunhofer zone). If the antenna 
dimensions are big in comparison with a wavelength, the far zone boundary lies at 
the distance

R a0
22= /l , (15.10)

where a is the maximum dimension of the antenna and l is the wavelength.
At R < R0 the observation point falls within a Fresnel zone. In this zone, the form 
of the directional pattern depends on a distance between an antenna center and a 
spherical surface, which passes through the observation points. (This form is different 
from the form of the directional pattern within the Fraunhofer zone.) Also in this zone, 
the radial component of field is rather great.
When measuring an antenna’s characteristics, the limited dimensions of a range and 
also insufficient sensitivity of the measuring equipment frequently requires to place 
receiving and transmitting antennas in the Fresnel zone (for example, during the 
gain measurement). The directional pattern’ dependence on a distance entails the 
corresponding gain change. It is necessary to solve the task: How big is the error in 
a gain measurement for such an antenna’s placement?
The given problem in relation to linear radiators with different laws of current 
distribution was examined in [118]. The results were presented as the curves, which 
can be used as nomograms. In [119] is presented the method for calculating the gain 
of a rectangular aperture in the Fresnel zone, and the results for a uniformly exited 
antenna are given. This solution has analytical restrictions imposed on the calculation 
accuracy of fields created by the separated parts of aperture:

(1) Radii R1 from these parts to an observation point are parallel to the radius R,
connecting the aperture’s center with an observation point. It means (Figure 15.4) that 
the signals are coming to the observation point from the aperture, which is a straight 
segment with the length a = 2R tan (a/2). Here a is the angle, at which the segment a
is seen from the observation point. Actually the signals come to the observation point 
from the curve line, i.e. from the segment in the form of an arc with the length b = 
aR. Since a > b, the signal in the observation point is higher than veritable;
(2) Magnitude 1/R1 = 1/(R + R) is replaced by 1/R, i.e. the influence of a difference 

R = R1 – R on the signal amplitude is neglected.

Note. The author did not change the text of this section, written in accordance with the theorem of complex 
power, since this section considers a lossless medium.
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Figure 15.4 The field of a broadside array.

Here in the analysis method (it is different from the method described in [119]), 
a flat antenna is replaced by an equivalent no flat (convex) structure. The distance of 
any element of this structure from the plane, which passes through the observation 
point P parallel to the flat antenna, is equal to the distance from the corresponding 
element of the flat antenna to the observation point. Then one can consider that rays 
from separate points of antenna to the observation point P are parallel. The suggested 
method is equivalent to the method of Polk, but it is distinguished from one by greater 
obviousness, since geometric interpretation of approximate solution is used herein. This 
permits to select a shape and dimensions of convex structure in order to remove the 
first analytical restriction and change the integrand denominator in order to remove the 
second analytical restriction and to refine results obtained by Polk.

In this section, simple expressions are obtained for calculating measurement error of 
an antenna’s gain. The error depends on the dimensions of the antenna, on a wavelength 
and a distance from measuring the antenna, as well as on the distribution law of a 
field along the antenna’s aperture. Measurement errors induced by repeated indirect 
reflections many times, reflections from ground and antenna’s nonidentity are not 
considered here.

Let us assume that the antenna is represented by a broadside array that consists of 
a number of radiating elements with the identical phase (Figure 15.5). In the observation 
point P, located along a normal to the array center, the fields from antenna edges will 
lag in phase from a central element field by j = 2pd/l, and, as it is clear from figure,

( )R R a0
2

0
2 2+ = +d /4. (15.11)

For d << a, R0

R R R a2 2 22 4+ @ +d / , (15.12)
that is

d = a R2 8/( ). (15.13)

If the allowable difference of phase path of the individual antenna elements is equal 
to p/8, i.e. d = l/16, then from expression (15.13) follows equality (15.10). 

If the radiuses from the antenna points to the observation point are parallel, than in 
order to take into account delay of fields of the different antenna elements, the antenna 
equivalent circuit should correspond to Figure 15.5, and any radius R1 is equal

R1 = R + R, (15.14)

where likewise (15.12) 

R = x2/(2R). (15.15)
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So, in order that the delay of fields from different antenna elements are identical in 
both circuits, the line of intersection of the convex antenna area depicted in Figure 15.5
with the plane xOz must be a piece of parabola (with a length a1). The end point of a 
parabola is removed away axis x by a distance d1 = a1

2/(8R). Let us suppose that in a 
first approximation, the parabola length is equal to

a b b1 1 1 1
21 2 3 2= +ÍÎ ˙̊/ /( ) ,d (15.16)

where b1 is the projection of this segment to axis x. Then 

b a R1 1 11 3= -[ ( )]d / . (15.17)

In case of a rectangular array with the sides a1 and a2

R R x y R1
2 2 2= + +( ) ( )/ . (15.18)

The area projection length to axis y is

b a R2 2 21 3= -[ ( )],d / (15.19)
where d2 = a2

2/(8R).

Figure 15.5 The equivalent circuit of a broadside array.

The replacement of the plane antenna field (with the rays, converging to the point P),
by the field of the convex area (with the parallel rays) allows significantly simplify the 
field calculations. On the other hand the field of the uniformly excited area of a convex 
shape, represented on Figure 15.5, differs from a field of a plane area with parallel rays 
that corresponds to an arrangement of the observation point in the far zone. The bigger 
are ratios a1/R and a2/R the bigger is this difference. The difference between those fields 
allows to estimate the magnitude of the error at the measurement in the Fresnel zone. 
In order to demonstrate this, we calculate the field of the elementary (infinitesimal) 
dipole of length dx, whose electrical current I0 is constant along the dipole length. The 
field is equal to
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where Z0 = 120p is the characteristic impedance of a free space and k = 2p/l is the 
propagation constant of a wave in an air. Accordingly, the field of the direct dipole with 
length a1 and current I0 is equal along a normal to a radiator (for q = p/2) to
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The field of the dipole, bent along the parabola with an arm b1/2 is 
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Note that in order to correct the first analytical restriction, the top limit a1/2 of integral 
J is replaced by b1/2. In order to correct the second analytical restriction, the value of 

R/R is added to the integrand denominator 1. 
Within the scope of a used physical model, which considers that values Kx2/(2R)

and x2/(2R2) are small and limiting by magnitudes of the same order of smallness, we 
shall find:
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that is in view of (15.17) 

E E a R k a R jka Rq q1 0 1
2 2 2

1
4 2

1
21 12 640= - - -[ ( ) ( ) )]/ / /24 . (15.25)

For the direct dipole with length a1 the Pointing’s vector P10 is equal to
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For the curved dipole 
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i.e.

P P a R a R11 10 1
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For the convex uniformly excited area with the sides a1 and a2
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where P0 is the power density created by the plane area along the normal to it. The 
expression (15.30) allows determining a ratio between maximum directivity factors of 
convex and plane antennas (with uniformly excited areas)
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If, for example, the observation point is located at the boundary of the Fresnel and 
Fraunhofer zones, then for a1 = a2

a R a R R a Ri i i
2

0
2 2 4 2 22 6 12 18 1 72= = =l l l/ / / / /, ( ) ( ), ( ) , (15.32)

and
D D R R1 0

20 9861 12 0 9724 6/ / /= - ª -[ . ( )] . ( ).l l (15.33)

The formula above takes into account, that l/(6R) << 1. Thus, the error at the 
directivity measurement in the far zone boundary in a comparison with measurements 
in depth of a far zone, is about 2.8% (0.12 dB). The result, close to this (0.06 dB), is 
obtained in work [120] for the circular aperture. On a twice-smaller distance the error 
will significantly increase: 

a R a R R a Ri i i
2 2 2 4 2 26 6 18 1 18= = =l l l, ( ) ( ), ( ) ,/ / / / (15.34)

that is
D D R R1 0

20 944 6 0 892 3/ /= - ª -[ . ( )] . ( )l l (15.35)

(it is more than 0.5 dB).
The error D in decibels in the general case is equal to
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Since at a << 1 ln(1 + a) = a, then 

DD dB R1 1 2 1
2

2
2 25 7 2 7, . [( )/ . ( )/ ]= - + + +d d d d l . (15.37)

In accordance with the presented analysis the second term in parentheses of 
expression (15.36) is caused by increase of distance from a point of convex area to an 
observation point, and the third term is caused by a phase’s difference of the signals. 
Both reasons result in total signal attenuation and in a diminution of the measured 
directivity. The calculations demonstrate that the third term is greater than the second, 
but the second term is not small and affects the magnitude of the gain. 

If we neglect the first term in (15.37), for a linear radiator of length a we obtain

DD dB a R1 1
2 2 2 215 4 15 4 8, . . ( ) .= - = -d l l/ / (15.38)

Let R = Na2/l. Then D1 = –0.24/N2, that is at N = 0.5; 1; 2; 4 the magnitude D1
is equal to 0.96; 0.24; 0.06; 0.01. This is entirely in agreement with results obtained in 
[118] by the direct calculation. At that 

log10| D1| = –(0.624 + 2log10 N), (15.39)

that is log10| D1| and log10 N are related by a linear correlation. This circumstance is 
also noted in [118].

Let us compare the obtained results with the results presented in [119]. The proposed 
method for the most part is equivalent to the method of Polk, but is more understandable 
which saves from making occasional mistakes. Besides that, R in [119] is taken into 
account only in order to calculate a signal phase. In the proposed method, an influence 
of R on the signal amplitude is also taken into account. That allows at the calculation 
of fields to limit oneself consistently by the meaning of the same order of smallness. An 
accuracy of proposed method of calculation corresponds to determination accuracy of 
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a distance between a convex antenna element and an observation point. Furthermore, 
here the difference between the length b1 of the straight segment connecting the parabola 
ends and the length a1 of a parabola herself is taken into account. This difference allows 
to consider the structures, where radiuses are not parallel. Integration in [119] that goes 
in our notation from –a1/2 to a1/2 causes increase of the antenna area dimensions and 
decrease of the calculation accuracy, i.e. resulting ratio D1/D0 is higher than the veritable.

The values of a ratio D1/D0 for the in-phase square aperture, calculated by the 
proposed method and described in [119] are presented in Table 15.1. They confirm 
the previous remarks. It is seen from the table that at the boundary of far zone (more 
precisely, at the distance, which is considered usually as a boundary of a Fresnel zone 
and a Fraunhofer zone) the magnitude of gain error, calculated by the proposed method 
and by the method of Polk, is practically the same and is close to 3%. Analogous result 
is obtained in [121].

On the other hand, as easy to prove, at R << 2a2/l the proposed method does not 
give a reasonable result, since for functions under the integral sign, a small number of 
a series terms is used in calculation. But this case corresponds to a gain measurement 
in a depth of Fresnel zone (far from the boundary with the Fraunhofer zone), where 
the measurement accuracy is small, since a radial component of field and an oscillating 
power are great and increase the error magnitude.

Table 15.1 Ratio D1/D0 for a Square In-phase Aperture

R/(2a2/l) The proposed method [119]

1 0.9724 – l/(6R0) 0.9726

0.5 0.884 – l/(3R) 0.895

0.25 0.605 – 2l/(3R) 0.641

0.167 0.250 – l/R 0.383

Graphs for the gain error as functions of the magnitude a l= a R/ 2 at different 
values of a2/a1 are given in [122]. They are made in accordance with the article of Polk. 
It is necessary to note that the maximal value of a in these figures is 1.5 that corresponds 
to the magnitude R/(2a2/l) = 0.111. At that point the relative error is close to 100%.

The expression (15.30) allows determining the error of the measuring gain in case of 
uniformly exited radiators. Examples of such radiators are antenna arrays with uniform 
excitation of rows and uniform excitation of elements in each row.

In some cases, the field along an antenna aperture is distributed in accordance with 
the cosine law (for example, field along a horn aperture). Let us consider a field of the 
curved dipole with an arm a1/2 and current I = I0 cos (px/a1). The field’s magnitude is 
calculated as earlier by the formula (15.25). However
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If to limit oneself, as was done earlier, by magnitudes of the first order of smallness, 
we shall find: 
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Integration of the expression for J1 gives:

J a a R k a R jka R1 1 1
2 2 2

1
4 2 2

1
22 1 40 160 40= - - -ÍÎ ˙̊/ / /p p( ) ( ) ( ) . (15.42)

The field of a direct dipole with length a1 and with cosine distribution of the current 
along the dipole is

E Eq q p2 02= / . (15.43)

For the curved dipole at q = p/2

E E J a a R k a R jka Rq q p p3 2 1 1 1
2 2 2

1
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1
22 1 40 160 40/ / / / /= = - - -2( ) ( ) ( ) ( ).. (15.44)

Accordingly, the power density, created by a planar area, if the field along one of 
its sides (with length a1) is distributed in accordance with the cosine law, and along 
other side (with length a2) is fixed, is equal to

P P2 02= /p . (15.45)

The power density of no planar area with the same distribution of fields
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i.e. error in the gain’s measurement, in decibels is

DD R3 1 2 1
2

2
2 25 7 0 3 1 2 2 7= - + + +. [( . ) ( . . ) ].d d d d l/ / (15.47)

As it is seen from (15.37) and (15.47), here an error in gain’s measurement is smaller 
than in case of a uniformly exited antenna.

If the excitation falls down to both edges of an array under the linear law, the 
magnitude D decreases more strongly. It is known, that the field Eq of a direct dipole 
of length a1 with linear current distribution along an arm I = I0(1 – 2x/a1) is equal to 
half of the field of dipole with a current I0, i.e.

E Eq q4 0= /2. (15.48)
For the curved dipole
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where J was calculated earlier, and J is equal to
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i.e.
DJ a a R k a R jka R= - - -1 1

2 2 2
1
4 2
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22 1 7 48 384 16/ / / /[ ( ) ( ) ( )], (15.51)

whence
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and
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If P4 is the power density created by a planar area with currents, falling down to 
its edges under the linear law, then

P4 = P0/4. (15.54)

The power density of convex antenna with the same distribution is

P P a R a R
i

i i5 4
1

2
2 2 4 2 21 24 41= - -

=
’ [ ( ) ( )]./ / l (15.55)

Accordingly, the error of gain’s measurement, in decibels is

DD R5 1 2 1
2

2
2 24 3 3 1 6= - + + +. [( ) . ( ) ]d d d d l/ / (15.56)

Thus, if the antenna aperture is exited not uniformly and the field falls down to 
array edges, the error of measurements decreases.

Figure 15.6 presents the calculation results of the magnitude D, in decibels, for the 
distance R = 5 m between the antenna and the observation point. The magnitude D is
given as a function of frequency for different antenna dimensions (in meters), including 
0.3 m, 0.4 m and 0.5 m. For square antennas with side ai, the magnitude D is given 
as a continuous curve, for linear ones with the lengths a1 magnitude, D is given as 
dashed line. Figure 15.6a presents the curves for antennas with uniform excitation and 
Figure 15.6b shows the curves for antennas with not uniform excitation, falling down 
to edges under the linear law. 

The results of the measurement of the error magnitude for the square antenna with 
a side 0.5 m at three frequencies of a range are denoted by circles. Antennas under 
study are planar in-phase broadside arrays of vertical half-wave micro-strip radiators 
with operating frequencies 6, 8 and 10.4 GHz.

Figure 15.6 The calculation results for the magnitude D: for antennas with uniform 
excitation (a), for antennas with no uniform excitation, falling down to edges under the linear law (b).
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The gain was measured at the distance 5 m and in the far zone. Measurements at the 
distance 5 m were performed in anechoic chamber of length 7.5 m and at an open test 
bench of the length about 30 m. The measurements in the far zone are accomplished also 
at this open test bench. The distance between an antenna under study and a measuring 
antenna was 25 m. The error of measurement is assumed to be the difference of the 
mentioned magnitudes. They are pointed in Figure 15.6a by circles. Measurements were 
made by the standard procedure using the device Vector Network Analyzer.

The proposed method of magnitude error calculation at a measurement of directivity 
of two-dimensional antenna placed in a Fresnel zone is different from the well-known 
method by a greater clarity and allows defining more exactly an error magnitude by 
means of more rigorous calculating dimensions of radiating surface and by means of 
taking into consideration an effect of distances between antenna points and observation 
point on the amplitude of received signal.

If the considered antenna is a broadside antenna with the constant phase and the 
measuring antenna located in its Fresnel zone, a measured gain is less always than 
the true, since fields’ phases from antenna edges do not coincide with a field phase 
from its middle. The measurement error is determined by sizes of both antennas. 
Therefore the measuring antenna must have small dimensions. With a frequency growth, 
if the antenna’s dimensions (geometric dimensions and dimensions in wavelengths) are 
constant and a distance between them is the same, the error is increasing. In the case 
of not uniform excitation, which is falling down to the edges, the error is smaller than 
in case of uniform excitation.

15.3 MULTI-CONDUCTOR CABLES 

The theory of electrically coupled lines (see Section 3.1) permits to show, that the 
mutual coupling between lines in multi-conductor cables results in the emergence of 
the electromagnetic interference (cross talk) in communication channels and that the 
asymmetry of excitation and loads causes the emergence of the common mode currents 
in the lines. 

In order to determine the signal magnitude at the end of a multi-conductor cable 
located inside a metal shield, it is necessary to calculate the electrical characteristics 
of the lines. The values of voltage across loads placed at the ends of an adjacent line 
can be used as a measure of such distortions [123]. The rigorous method of calculating 
the mutual coupling between lines enables the development of a simple and effective 
procedure of preventing interference. 

Electromagnetic interference in communication channels (imbalance of a cable) is 
caused not only by cable asymmetry, but also by asymmetry of excitation and load, 
which provokes the emergence of the in-phase currents in cables (common mode 
currents). The rigorous calculation method of the electrical characteristics of multi-
conductor cables enables to determine these currents. Compensation of the in-phase 
currents allows to decrease the EM radiation and susceptibility to the external fields. 

We employ a rigorous method—first for calculating characteristics of a two-wire line 
located inside a metal screen and then for mutual coupling between lines. The lines are 
considered uniform. The electromagnetic waves are considered transverse (TEM), and 
the cable diameter is considered small in comparison with the wavelength.

A single pair of wires (twisted pair) inside a metal cylinder can be modeled as two 
wires of radius a, situated at a distance b from each other inside a metal cylinder of radius 



368 Antenna Engineering: Theory and Problems

R and length L (Figure 15.7). Wire radius a and distance b in multi-conductor cables 
are small in comparison with cylinder radius R, i.e. a, b << R, so the wave impedance 
of the line is constant along its length (when the axial lines of the twisted pair and the 
cylinder do not coincide, and the inequality is not true, the wave impedance varies along 
the line). We assume that the wires are straight and take into account the twisting by 
increasing length L of the equivalent line.

Figure 15.7 Two wires inside a cylinder.

Since the helical pitch along which each wire is located is greater than the diameter 
b of the helix, inductance  per unit length undergoes a slight change at the replacement 
of a helical wire by a straight wire. The wire capacitance per unit length also varies only 
slightly, i.e., the twisting wires have no effect on the wave impedances of a structure. 
The line asymmetry in a real cable can cause in the two-wire line a change of the wave 
impedance and a change of the input impedance.

The implementation of each two-wire line in the form of a twisted pair (helix) is 
another cause of cable asymmetry. The twisted pair is the design, which leads to a 
difference of the average distances between different wires and to the mutual coupling 
(cross talk) between two two-wire lines surrounded by a single screen, even if the 
exciting emf of each line and the line load are symmetric.

The equivalent circuit of a single line inside the screen is shown in Figure 15.8. The 
two-wire line is located above the ground (inside a metal cylinder). The current and the 
potential along the nth wire of an asymmetrical line of N parallel wires situated above 
ground, in the general case, are determined by (3.3). The boundary conditions for the 
currents and potentials in this circuit are

         i1(0) + i2(0) = 0, u1(0) = u2(0) + i1(0)Z, i1(L) + i2(L) = 0, u1(L) = e + u2(L). (15.57)

Here, Z is the impedance of the line load. Substituting expressions (3.3) in the first 
and second equalities of set (15.57), we find:

I2 = –I1, U2 = U1 – I1Z.

Taking into account formulas (3.6), we find from the third equation of set (15.57) that 
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And, from the fourth equation, we obtain

I e Z kL j kL1 11 22 122= + + -/[ cos ( )sin ].r r r

The input impedance of a two-wire line inside a metal screen (the load impedance 
of generator e) is Zl = e/i1(L). Substituting magnitude i1(L) from expression (3.3) and 
using the relationships between e, I1, I2, U1, U2, we find that 

Z W
Z jW kL
W jZ kLl =

+
+

tan
tan

, (15.58)

where W = r11 + r22 – 2r12.

Figure 15.8 The equivalent circuit of a single line inside a screen.

It is readily seen that expression (15.58) coincides with the expression for the input 
impedance of a two-wire long line that has no losses and is loaded at the end by 
impedance Z. It is located in free space and is characterized by wave impedance W. The 
asymmetry of line leads to a difference of the electrodynamics and electrostatic wave 
impedances of the wires (r11 r22, W11 W22)

The calculation of currents i1(z) and i2(z) shows that the currents in a two-wire line 
are identical in magnitude and opposite in sign:

i z i z I kz jI Z W kz1 2 1 1( ) ( ) cos ( ) sin= - = + / .

In a wire pair, there are only anti-phase currents. There are no in-phase currents in 
the wires, because the emf and load impedance are placed between the line wires. The 
appearance of the in-phase currents can be caused by the connection of an additional 
emf or an additional load between one wire of a line and the screen.

To find the potential coefficients ans, one should take into account the following fact. 
If the system consists of two identical conductors (a wire and its image) and the structure 
is electrically neutral, the mutual partial capacitance coincides with the capacitance 
between the conductors [34] and is equal to

C = -1 2 11 12/[ ( )],a a

where a11 is the self-potential coefficient, and a12 is the potential coefficient of the image. 
The conductor-to-ground capacitance is twice as much as the capacitance between the 
two conductors: Cl = 2C. For two wires of radius a, located inside the metal cylinder of 
a radius R at a distance b from each other, symmetrically with respect to the cylinder 
axes (see Figure 15.7), we can write, using (4.20) from [34],
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Here e is the permittivity of the medium inside the cable. If wire radius a and distance 
b are small in comparison with the cylinder radius R, then, in the air,

r r11 22 60= ª ln ( ).R a/ (15.59)

Similarly, using (4.22) from [34], we find:

r12 60ª ln ( )R ab/ , (15.60)

i.e., the wave impedance of a lossless two-wire line, symmetrically situated inside a metal 
cylinder, is a half of the wave impedance of the same line in free space:

W b a0 11 22 122 60= + - ªr r r ln( )./ (15.61)

If the wires inside a metal cylinder of a radius R are located asymmetrically, e.g., 
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In this case, the wave impedance of the line is
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That is one of the possible causes of changing lines wave impedance inside the screen. 
If the distance between the wires is increased by value , then at b
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(15.63)

This is the second cause. As can be seen from (15.62) and (15.63), a change in the 
distance between wires has a greater effect on the wave impedance of the line than the 
displacement of wire relative to the cylinder axis.

Figure 15.9 Offset wires inside a cylinder.
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Figure 15.10 shows the equivalent circuit of two coupled two-wire lines inside 
a screen. One of the lines is excited by generator e and has on the opposite end the 
complex load Z1. The loads Z2 and Z3 are connected in the wires at both ends of the 
other line. It is necessary to emphasize that such circuit has the most general nature. If, 
for example, generator e1 is located at the end of the second line (at point z = L), the 
currents and voltages created by generator e are calculated considering that Z3 is equal 
to the input impedance of generator e1.

Figure 15.10 The equivalent circuit of two coupled lines placed inside a screen.

We take into account inequalities a << b << d, R (here d is the distance between the 
axes of twisted pairs). The wires inside the screen form the bunch, whose diameter in 
many cases is small in comparison with the diameter of the metal screen. But when the 
bunch consists of many wires, its diameter is close to the screen diameter. However, 
it is necessary to take into account that the maximal mutual coupling exists between 
adjacent lines. Therefore, by analyzing the mutual coupling between them it is possible 
to consider in the first approximation that d << R.

As was stated at the beginning of this section, cable asymmetry leads to mutual 
coupling (cross talk) between two two-wire lines. The reason for such asymmetry is 
the structure of each two-wire line in the form of a twisted pair (helix). The placement 
of the line conductors in different variants of winding is shown in Figure 15.11. If, in 
the initial cross-section of the cable, the ends of helices 1 and 3 are located at the same 
point of their section (we shall call it the initial point) and the ends of helices 2 and 4 
are displaced along the perimeter of cross-section by p from this point, it means that the 
distance between wires 1 and 3 (and also between wires 2 and 4) is D13 = D24 = d along
all length of the cable, whereas the distance between wires 1 and 4 (and also between 
wires 2 and 3) varies along wires from d + b to d – b. For example, the distance between 
wires 1 and 4 (see Figure 15.11a) is 

D d b b d b
b

d14
2 2 2

2 2

2
= + + ª + +( cos ) sin cos

sin
a a a

a

(here a is angular displacement of points 1 and 4 along the perimeter of cross-section), 
i.e., the average distance between these wires
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differs from distance d. The potential coefficients as well as the electrodynamics and 
electrostatic wave impedances vary accordingly.

Figure 15.11 Distance between wires 1 and 4 at the same (a) and the opposite 
direction winding of wire 4 (b).

If, at the initial cross-section of the cable, the ends of helixes 3 and 4 are displaced 
along the perimeter of the cross-section by p/2 and 3p/2 from the initial point, 
respectively, the distance between wire 1 and wire 3 (or wire 4) is 

D d
b b

d13 4

2
2

2 8( ) (cos sin ) (sin cos ) .ª + ± +a a a a∓  (15.65)

Here, the upper sign applies to wire 3, and the lower sign – to wire 4. The average 
distance between the wires from this equation is
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2
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p
(15.66)

i.e., the displacement of the helix ends of the two-wire line by p/2 changes substantially 
the average distance between wires. Difference between (D13)0 and (D14)0 increases from 
value b2/4d to 2b/p, where b << d.

In order for the average distance D0 between wires 1 and 4 does not differ from d,
it is necessary to wind wire 4 in the opposite direction to the direction winding of other 
wires. In this case (see Figure 15.11b)

D = d + b cos a, D0 = d. (15.67)
The electrodynamics wave impedances of the structure at the same direction winding 

are
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In the case of lines located at finite distance H from the cable axis, we find
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These expressions for other quantity rn remain valid. This means that the wave 
impedance of a two-wire line, which has no losses and is situated inside a metal cylinder 
at a distance H from its axis, is in accordance with Equation (15.62) 

W b H R a= -ÍÎ ˙̊60 1 2 2 2ln ( ) ,/ /

i.e., the wave impedance of this line decreases as the result of its displacement from the 
cable axis. When H

According to (3.4), the electrostatic wave impedances are
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(15.69)

where N = |rns| is the N × N determinant, and ns is the cofactor of the determinant 
N. For a structure made of four wires, in accord with (15.68) and (15.69), 

W11 = W22 = W33 = W44 = W1 = 4/ 11, W12 = W34 = W2 = – 4/ 12,

W13 = W24 = W3 = – 4/ 13, W14 = W23 = W4 = – 4/ 14. (15.70)

The current and potential of wire n of an asymmetric line, consisting of N parallel 
wires located above ground, are found from expression (3.3). The boundary conditions 
for the currents and voltages in the circuit shown in Figure 5.10 are

i1(0) + i2(0) = 0, i3(0) + i4(0) = 0, u1(0) = u2(0) + i1(0)Z1, u3(0) = u4(0) + i3(0)Z2,

i1(L) + i2(L) = 0, i3(L) + i4(L) = 0, u1(L) = e + u2(L), u3(l) = u4(L) + i3(L)Z3. (15.71)

Substituting expressions (3.18) in the equations of system (5.15), we find 
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If r3 = r4 (and, accordingly, W3 = W4), then A = 0, the current at the beginning of the 
second line is zero. In this case, the presence of the second two-wire line has no effect 
on the first line. This result obviously corroborates the fact that exactly the asymmetry 
of cable leads in mutual coupling (cross talk) between two two-wire lines.

Knowing all parameters in expressions (3.3), one can calculate the load impedance 
of the generator e:

Z e i L
Z j A kL

j Z W W AZl = =
+ - + -

+ + -
/

/1
1 1 2 3 4

1 1 2
2

2
2 1 1

( )
[ ( )] tan

[ ( / )
r r r r

22 3 41 1( )]tan/ /W W kL-
(15.73)

and the currents in the wires of the second (unexcited) line:

i z I A kz j
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The sum of the currents is zero, i.e., as in the case of one line placed into the screen, 
there is no in-phase current since the emf and the loads connected only between wires 
of each line.
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The voltages across passive loads are 
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As an example, consider a structure from two pairs of wires inside the screen with 
sizes (in millimeters): a = 0.2, b = 0.5, d = 2, R = 2. For the identical loads Z1 = Z2 = Z3 =
100 Ohm, ratio A of the currents at the beginning of the second (unexcited) line and the 
first line amounts to 0.13. If the values of the loads are equal to the wave impedance of 
the single two-wire line inside the metal screen, i.e., in accordance with equation (5.6), 
Z1 = Z2 = Z3 = 55 Ohm, the ratio of the currents is substantially increased (A = –0.76).

The absolute values of the currents as functions of kz are plotted in Figure 5.6. Here, 
k is the propagation constant of a wave in a medium, z is the coordinate along the line 
(see Figure 5.4).

Figure 15.12 The absolute values of the currents in the excited and unexcited wires.

Consider the effect of loads placed between the wires and the screen, using a two-
wire line as an example (Figure 15.13). It differs from the circuit shown in Figure 5.8 
by connection of its wires near the generator to a screen through complex impedances 
Z1 and Z2, whose values depend on the circuit of a line excitation. In a realistic circuit 
the secondary winding of the transformer can act as emf e, exciting a two-wire line. 
In this case, stray capacitances of the winding to ground (to the cable screen) act as 
impedances Z1 and Z2.

The boundary conditions for the currents and potentials in the circuit shown in 
Figure 15.13 are
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Substituting expressions (3.3) in the equations of set (15.76), we find the input 
impedance of a two-wire line 
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and the sum of the currents in the line wires is

i z i z i z jI Z W W U I W W Ws( ) ( ) ( ) [ ( / / ) / ( / / /= + = - + + -1 2 1 12 22 1 1 11 221 1 1 1 2 112 )]sin .kz (15.78)

Therefore, connection of the loads results in the emergence of the in-phase current 
in the wires and in the emergence of the current along the inner surface of the cable 
screen, equal in magnitude but opposite in direction.

Figure 15.13 The equivalent circuit of a single line with loads connected 
between the wires and the screen.

For two wires of the same radius situated symmetrically to the cylinder axis
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and
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It is not difficult to verify that, if 1/Z1 = 1/Z2 = 0, quantity C is zero and the 
expressions for U1 and Zl coincide with the similar expressions for the circuit without 
loads between wires and screen. From the presented results it is easy to obtain also the 
expressions for the cases when there is only one load, for example, 1/Z1 = 0.
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The above analysis confirms that the cause of the emergence of the in-phase currents 
in wires of line is the asymmetry of its excitation due to the connection of complex 
impedances, e.g., stray capacitances of the secondary transformer winding, between 
the wire of line and ground (the cable screen). Asymmetry of loads at z = 0, i.e., at 
the far end of line, produces similar results. The in-phase currents in the excited line 
induce the in-phase currents in wires of the adjacent unexcited line, even if it is totally 
symmetric (with respect to ground and the excited line). Removal of the excitation and 
load asymmetry in the excited line results in the disappearance of these currents in wires 
of excited and unexcited lines.

In order to reduce or eliminate the in-phase currents, it is necessary to violate the 
asymmetry, e.g., to neutralize the effect of stray capacitances to ground (to the cable 
screen). To this end, in [124] it was proposed to compensate the current through stray 
capacitance with the current equal in magnitude and opposite in direction, which is 
created by an additional transformer winding.

As is shown in Section 3.1, the theory of electrically coupled lines is based on the 
telegraph equations and on the relationship between the potential coefficients and the 
coefficients of electrostatic induction. The z-axis is selected in parallel to the wires, and 
the dependence of the current on coordinate z is adopted as exp(gz), where g is the 
complex propagation constant of the wave along the wires.

In the case, when the wires and the medium have no losses, electrostatic Wns and 
electrodynamics rns wave impedances between wires n and s are real-valued quantities 
determined by equations (3.4), and g = jk is a purely imaginary quantities (k is the 
propagation constant of the wave in the medium).

As follows from the above, electrodynamics wave impedance rns is proportional to 
the self- or mutual inductance of wires segment, i.e. is proportional to the reactance, 
which is connected in series with wires. Electrostatic wave impedance Wns is proportional 
to the mutual capacitance between wires, i.e. to the susceptance between them. Therefore, 
it is expedient to connect the resistance of losses in a wire (e.g., the skin-effect loss) in 
series with the inductance and the leakage conductance—in parallel with the mutual 
capacitance.

In order to take into account the loss in the medium and in the wires, one must 
consider that wave impedances Wns and rns and the propagation constant k are complex 
values. If the inductance of the wire n per unit of its length is 0 and its active resistance 
is R0, its impedance per unit length is jrnn = jw 0 + R0, i.e. the self-electrodynamics wave 
impedance of a loss wire is equal to

rnn = r0(1 – jR0/r0), (15.81)

where r0 = w 0 is the electrodynamics wave impedance in the absence of losses and R0
is the total loss resistance in the wire n and in the metal screen per unit length. 

For the mutual electrodynamics wave impedance between wires n and s, we obtain

rns = rns 0(1 – jRns 0/rns 0), (15.82)

where rns 0 = wMns 0, Mns 0 is the mutual inductance between wires n and s per unit 
length, and Rns 0 is the loss resistance in both wires per unit length.

Similarly, for the admittance between wires n and s per unit length we find: jWns = 
jwcns 0 + Gns 0, i.e. the electrostatic wave impedance in a medium with losses is 

Wns = Wns 0(1 – jGns 0/Wns 0), (15.83)
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where Wns 0 = w Cns 0, Cns 0 is the mutual partial capacitance between wires n and s per 
unit length, and Gns 0 is the leakage conductance per unit length.

Thus, the evaluation of the electrical performances of the coupled lines with losses 
can use the results obtained for the lossless lines by substitution of the complex wave 
impedances into the earlier expressions in accordance with equations (15.81)–(15.83). 
Here, the losses in wires and losses in an imperfectly conducting metallic tube (screen) 
is taken into account.

A rigorous method for the calculation of the characteristics of two-wire lines inside 
a metal screen allows revising the mechanism of mutual coupling between lines in 
multi-conductors cables. It permits to determine the values of voltage (interferences) 
across impedances located at the beginning and the end of the adjacent line at the 
given power in the main line. The reason of cross talks is the asymmetry of the cable 
structure (the different average distant between wires) and, accordingly, the asymmetric 
wave impedances. The avoidance of the asymmetry must reduce cross talks in multi-
conductor cables, i.e. will allow to increase the carrying capacity of a channel. This is 
true also for multi-conductor connectors.

The reason for the emergence of the in-phase currents in the lines of a multi-conductor 
cable is the asymmetry of excitation and loads. As it was noted, the compensation of 
this asymmetry will allow to decrease the EM radiation and to reduce its susceptibility 
to external fields.

15.4 MAGNETIC IMPEDANCE ANTENNAS

Electric linear antennas with surface impedance, which are excited by concentrated emf, 
are considered in Sections 1.5 and 2.5. On their surfaces nonzero (impedance) boundary 
conditions in the form of expression (3.41) are performed. It is shown that the surface 
impedance Z, affected the distribution of electric current along the antenna already in 
the first approximation, significantly changes all characteristics of the antenna.

In addition to electrical impedance antennas there are magnetic impedance antennas. 
Boundary conditions on their surfaces have a form

E a z

H a z
Z z

z
L z L

j ,

,

( )
( ) = - ( )- £ £ , (15.84)

where Ej and Hz are components of an electric and magnetic field, z and j are cylindrical 
coordinates of the point on the antenna surface, Z(z) is the surface impedance, which is 
complex in general case. Examples of such antennas are in particular a magnetic core, 
excited by a loop, and a longitudinal slot in the conductive cylinder. A magnetic current, 
excited by the magneto motive force, flows along an axis of such antenna.

Magnetic impedance antennas of finite length were considered for the first time 
by A.A. Pistolkors using the method of eigen functions. A simpler and clearly evident 
method, based on the theory of impedance antennas, was applied in [125]. This method 
allows not only to define the structure of the electromagnetic field, and to establish the 
types of excited waves, but permits also to calculate the input impedance of the antenna.

Integral equation for the magnetic current Jm flowing along z-axis of an impedance 
magnetic radiator is written in [28]:
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k jk

Z
aZ

J j H z G J zM
M z

ex
M

2

2
2 0

02 4+ -Ê
ËÁ

ˆ
¯̃

= - ( ) + ( )ÈÎ ˘̊c
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Here k is the propagation constant of wave in the air, m0 is permeability of the core, 
Z0 is the wave impedance of free space, c = 1/[2 ln (2L/a)] is a small parameter of 
the theory of thin antennas, L and a are the length and the radius of the antenna arm, 
H zz

ex ( )  is the extraneous magneto motive force, G(JM, z) is the functional, which takes 
account of radiation.
It is obviously, the magnitude

k k jk
Z
aZ1

2 02= -
c (15.86)

has the meaning of the propagation constant of the magnetic current along the magnetic 
antenna. From (3) it follows that when the condition Z/Z0 ~ c/(ka) is valid, the surface 
impedance affects the current distribution along the antenna already in the first 
approximation. If the impedance Z is purely reactive, and

k jk
Z
aZ

2 02 0- <
c

, (15.87)

the propagation constant is imaginary, i.e., the magnetic current will not propagate along 
the antenna (the current will attenuate quickly with increasing distance from a source).

The results of an analysis of electrical impedance antennas allow to write, using 
analogy, expressions for the magnetic current distribution and for the input admittance 
of magnetic antenna, excited by a concentrated magneto motive force eM. If the feed 
point is located in the antenna middle, the distribution of the magnetic current in the 
first approximation has the form:

J j J j
k

k k L
e k L zM M M= = -( )Im

cos
sin .c

p240 2

1 1
1 (15.88)

The input admittance in this approximation is purely reactive 

Y jW k L= 1 1cot , (15.89)

where W
k

k
1
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 makes sense of the wave impedance.

In the second approximation the magnetic current at the feed point is equal to 
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Here we use the notation: a b b a b a= = = = + = - ( ) = +kL k L t k z m l Ei jx Cix jSix, , , , ,1 1 ,
and ln . ...g = =C 0 5772 is Euler’s constant. Accordingly, the input admittance is

Y e J ZM m E= ( ) = ( )/ /0 120 2p , (15.91)

where Ze is the input impedance of the electrical antenna having the same dimensions 
and the same value k1 of the propagation constant, as magnetic antenna has.

If the magnetic antenna is made (Figure 15.14) in the form of a ferrite core, excited 
by the loop, then the impedance, caused by the magnetic radiator in the loop, is equal 
to the ratio of the induced in the loop emf (of the magnetic current JM) to the current 
Jl flowing along the loop (to the magneto motive force eM)

Z J e Y Zind M M E= ( ) = =0 1 120 2/ / /( )p . (15.92)

In order to calculate the input impedance of short symmetric radiators (2L l/2),
one may use the expression

Z k k
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j
k
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60
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(15.93)

Directional pattern of the magnetic radiator in analogy with electrical radiator has the 
form

F
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(15.94)

Figure 15.14 The magnetic antenna in the form of a ferrite core excited by a loop.

The surface impedance of the ferrite core can be found by solving the diffraction 
problem for a circular infinitely long homogeneous core. If to consider excitation of 
core by convergent cylindrical wave, we obtain the system of Maxwell equations in 
cylindrical coordinates:

∂
∂

= -
∂

∂
= -

H
j E E j Hz

zr
we

r r
r wmj j, ( ) ,

1

where e and m are absolute dielectric permittivity and magnetic permeability of the 
ferrite. Taking into account the magnitude of the field Ej at r = 0, we find

Z
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H
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. (15.95)
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Here m k r r= m e , er and mr are the relative permittivity and permeability (with allowance 
for demagnetization factor), J1(ma) and J0(ma) are the Bessel function. If a core is thin 
(ma << 1), the surface impedance and the propagation constant are equal to

Z j ka k k
a

r
r

= = -60
4

1
2

2pm
c

m
, . (15.96)

As it follows from (15.96), the magnetic current is propagating along the core, if k1
is a real magnitude, i.e. the restriction

( ) ( )2 42 2p l c m/ /> a r (15.97)

is satisfied. At the same time, as A.A. Pistolkors showed, the directional pattern of a 
radiator is changed: it ceases to be similar to the directional pattern of the loop. The 
equality of the left and right parts of (15.97) corresponds to the critical wavelength. 
If the wavelength is greater than the critical wavelength, the magnetic current decays 
rapidly along the antenna, that is, antenna has a low efficiency, similar efficiency of the 
loop antenna. To improve the efficiency it is necessary to provide the propagation of the 
magnetic current along the antenna, i.e. one must to turn it into a linear radiator. If the 
core has an arbitrary diameter, singular points are determined by the expression (15.95). 
In particular if J0(ma) = 0, then k1 = k, i.e. the ferrite core becomes an ideal magnetic 
radiator. If k1 = k, then Ej = Z = 0. This corresponds to the ideal metal surface.

Another embodiment of impedance magnetic antenna is shown in Figure 15.15. It 
is the narrow longitudinal slot into the conductive cylinder. Distributed capacitance is 
created between the edges of a slot. The capacitance can be increased, if capacitors are 
located along the slot. This antenna like a ferrite core is excited by a loop. The antenna 
design provides a capacitive character of surface impedance and thus the real magnitude 
of the propagation constant for the magnetic current along the antenna.

Figure 15.15 Magnetic antenna in the form of a narrow slot cut in the conductive cylinder.

An analysis of the antenna characteristics is made in [128]. For the sake of generality, 
it is assumed that the cylinder is filled by the ferrite core having a relative permeability 
mr. We consider the practical interest case, when the radius a of a cylinder is small 
compared with the wavelength in the ferrite. If the antenna is divided into segments of 
unit length, then the surface impedance of each ring is equal to

Z
j C
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Here C1 = NC0/ (2L) is the capaciance of the segment, 1 = 60pmr, ka 2pa is the inductance 
of the segment, w0 1 11= / L C  is the natural frequency, N is the number of capacitors 
included along the antenna length 2L, C0 is the capacitance of one capacitor taking into 
account capacitance between the edges of the slot segment. The expression for the square 
of the propagation constant along the antenna 

k k j Z k C1
2 2

0 1
2

0 1
2 2

0
24 4 1= + = + -pwm c pm c w w w/ ( )/ / (15.99)

shows that there is a critical frequency for a wave propagating along the slot in this 
case too. When w = w0, the antenna characteristics are similar to characteristics of an 
ideal magnetic radiator. However, as the frequency increases, the magnitude of the 
propagation constant increases also. As a result, a great number of current half-waves are 
placed along the antenna. Their fields mutually cancel each other, and the real length of 
the radiating antenna quickly decreases. Therefore, this antenna is effective in a narrow 
frequency band. However, this antenna has been applied as a receiving VHF antenna 
[129]. Unfortunately, in this article, these antennas are considered as loop antennas. This 
approach does not allow explain the dependence of the first resonant frequency on the 
antenna length and also the existence of additional resonances.

The results of an experimental research of the antenna in the form of a narrow 
longitudinal slot in the metal cylinder with additional capacitors, located along the 
slot, are given in the figures. Figure 15.16 shows the input impedance of the antenna 
of length 2 m. The radius of the metal cylinder is 11 cm, the width of the slot is 5 cm. 
Capacitors with capacitance 51 pF are soldered at the distance 2.5 cm from each other. 
Numeral 1 denotes the results of the calculation, numeral 2 denotes the experimental 
curve, and numeral 3 is the impedance of a loop. Figure 15.17 represented the far field 
for the same variants. Figure 15.18 shows the experimentally obtained dependence 
of the first resonant frequency of the antenna on its length. The measurements were 
performed on models of antennas with a cylinder radius 2.1 cm and the width of the 
slot 1 cm. Capacitors with capacitance 25 pF are soldered along the slot at a distance 
2 cm from each other.

The experiments clearly confirm the theoretical results.

Figure 15.16 Input impedance of the antenna in the form of a longitudinal slot of length 2 m. 
1—calculated curve, 2—experimental curve, 3—loop.
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Figure 15.17 Field of the antenna in the form of a longitudinal slot of length 2 m. 
1—calculated curve, 2—experimental curve, 3—loop.

Figure 15.18 Dependence of the first resonant frequency on the antenna length.
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Adjustment
~ of adaptive system, 301
~ of directional patterns, vertical, 99
~ of structures during external actions, 254
~ of wires tension, 318
Antenna
~ complicated, 15, 41
~ folded, 55
~~ with a gap, 55
~~ with a surface impedance, 73 
~~ with shorting to ground, 55
~~ with wires of different diameter, 47 
~~ with wires of different length, 62
~ for coast radio center, 95, 328
~ for personal phone, 267 
~ for ship, 317
~ for underground radio communication, 

355
~ linear, 2
~~ with a surface impedance, 15 
~~ with capacitive loads, 101, 116
~~ with concentrated loads, 108
~ log-periodic, 338
~~ dipole, 338
~~ monopole, 350
~~ with decreasing dimensions, 345
~ metal, 5
~ multi-folded, 81

Index

~ multi-level, 99
~ multiple-stack, 294
~ multi-radiator, 19, 59 
~ on conic surface, 187
~ on parabolic surface, 201
~ on pyramid, 192, 
~ slot, 187
~ straight, 6
~ transparent, 305
~ wide-band, 122
~ with inductive-capacitive load, 321 
~ with meandered load, 90
~ with rotational symmetry, 224 
Approximation, 7
~ first, 7, 13
~ second, 31
Array, 280
~ adaptive, 301
~ reflector, 291 

Calculation
~ of antenna array directivity, 280
~ of three-dimensional antennas, 183 
Capacitance
~ in a system of a few conductors, 180 
~ of nodes of crossing, 174
~ of two-thread helix, 171
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~ of wires with a sheath, 176
Chamber coaxial, 167
Characteristics optimization, 122
Conditions
~ of invariance, 166
~ of Koshi-Riman, 160
~ of Leontovich, 306 
Coupling
~ between antennas, 246
~~ slot antennas, 149
~ of coaxially disposed radiators, 198 
Criterion
~ of Powell, 147
~ of Tchebyscheff, 121
~ root-mean-square, 121

Distribution, 2
~ of current along an antenna wire, 2
~ of energy flux through line’s cross-

section, 218
~ sinusoidal, 3
~~ with exponential decay, 308

Efficiency, 122
Equation
~ of Hallen, 15
~~ for a filament, 27
~~ with approximate kernel, 28 
~~ with exact kernel, 28
~ of Kirchhoff, 19
~ of Laplace, 158
~ of Leontovich-Levin, 15 
~~ for antenna with surface impedance, 42
~~ with concentrated loads, 33
~~ for two radiators, 36
~~ for radiators’ set, 1
~ of Maxwell, 1
~ of Pocklington, 28
~ telegraph, 56

Factor
~ of loss reduction, 248
~ pattern, 122
Field
~ of a filament, 7
~ of a circular cylinder, 8 
Force
~ electromotive, 11
~ magneto motive, 222

Function
~ basis, 49
~ objective, 121 
~ of entire domain, 51
~ of sub domain, 51
~ weight, 50
~ d , 27

Impedance
~ constant surface, 15
~ input, 2
~ matrix, 50
~ piecewise constant, 16 
~ wave, 2
Influence
~ of cables on radiators’ coupling, 331
~ of superstructure, 324

Long line
~ impedance, 75
~ metal, 14 
~ stepped, 16
Losses
~ of folded and multi-folded radiators, 69
~~ in a ground, 69, 86
~~ in wires, 87
~ of monopole, 20 
~~ in a ground, 20
~~ in a water, 25

Method
~ collocation, 51
~ gradient, 48, 123
~ of compensation, 242
~~ in a wide band, 260
~ of complex potential, 157
~~ for conical problems, 183 
~~ for parabolic problems, 201
~~ for heterogeneous media, 160 
~ of conjugate gradients, 123
~ of impedance line, 112
~ of induced emf, 11 
~~ first formulation, 11
~~ second formulation, 12
~~ generalized, 49
~ of integral equations, 17
~ of iteration, 123
~ of line with loads, 118
~ of mathematical programming, 121
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~ of Moments, 51
~ perturbation, 30 
Model, 287
~ of the phantom, 231 

Optimization, 98 

Parameter
~ of thin antennas theory, 14
Power
~ active, 11
~ complex, 11
~ instantaneous value, 9 
~ oscillating, 10
~ reactive, 9
Principle
~ of duality, 194
~ of complementarity, 194
~ of similarity, 200
~ of superposition, 245
Procedure, 20
~ of King and Middleton, 28
~ of LPDA calculation, 342

Quality, 88

Radiator
~ asymmetrical, 14
~ electric, 3
~ magnetic, 196
~ symmetrical, 3

Reception diversity, 274
Reducing
~ of conic problem to cylindrical, 183
~ of parabolic problem to cylindrical, 201
~ of superstructure impact, 131 
Region
~ far, 1
~ near, 233
~ of Fresnel, 359

Setup
~ for SAR measurement, 233
~ for measurement of cell phone field, 273
Synthesis
~ of current distribution, 131
~ of directional radiator, 136 
~~ curvilinear, 136
~~ director type, 146
~ of V-dipole, 150
~~ with straight arms, 150 
~~ with curvilinear arms, 155
~ of wide-band radiator, 124
~~ with loads, 124

Theorem
~ of oscillating power, 9
~ of reciprocity, 286 
~ of uniqueness, 158
Transformation conformal, 223
Travelling wave ratio, 122

Vector of parameters, 121
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