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Preface

The book is devoted to methods of theoretical and experimental research of antennas
and to problems of antenna engineering. The presentation material is based on the
electromagnetic (EM) theory.

The book begins with the theory of thin antennas. Thin antennas represent one of
the main types of radiators, which are widely used in practice as independent antennas
and as elements of complex antennas. Thereby the theory of thin antennas is the basis
of the antennas analysis.

Techniques for calculation of the electrical characteristics of thin linear antennas are
described and analyzed in the book consistently, beginning with the method of Poynting
vector, but the basic attention is given to integral equations for an antenna current, and
also to the method of complex potential and to the synthesis of antennas with required
characteristics.

Particular attention is paid to the integral equation of Leontovich-Levin. This is the
equation for the current along an axis of a thin-walled metal cylinder, it is equivalent to
the equation of Hallen with a precise kernel, but unlike him, the equation of Leontovich-
Levin allows to accomplish the calculation of the second and subsequent approximations
assuming that the current is concentrated on the axis of the radiator, which greatly
simplifies the calculations. Two solutions of the equation are considered. The first option
allows to obtain for the input impedance of the dipole in the second approximation the
well-known result in the form of the set of table functions. The second variant makes
it possible to write an expression for the current distribution and hence for the input
impedance of the radiator in integral form. This result is compared with the calculation
results of the input impedance by using other equations and by means the method of
induced electromotive force (emf).

The resulting integral formula for the input impedance of the dipole is identical to
the integral formula obtained by the method of induced emf (the second formulation),
if the length of the radiator is not close to its length at the frequency of the parallel
resonance. This explains the well-known coincidence of the input impedances, calculated
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by means of both methods in the form of the set of table functions. Application of the
theorem about oscillating power for analysis of power transmission between objects
allows us to prove the validity of the second formulation of the method of induced
emf in comparison with the first formulation, which is based on the equality of reactive
powers not having physical meaning.

Serious attention along with an analysis is paid in the book to a synthesis problem.
The purpose of synthesis consists in providing high electrical characteristics of antennas
—with the aid of development of new variants of radiators, and also by optimizing the
electrical characteristics of known radiators.

For a long time engineers tried to solve an optimization problem by finding a law
of the current distribution, which provides required electrical characteristics. The task of
choosing magnitudes and dimensions of antenna elements in order to optimize antenna
characteristics was first staged in relation to the Yagi-Uda antenna. Its solution confirmed
rightness of chosen approach.

Later on still two tasks have been considered. The aim of the first task was selecting
the shape of the curvilinear monopole, which provides maximal directivity at the given
frequency. The second task was more general and in essence dealt with a problem of
creating the wide-band radiator. It consisted in determining a type and magnitudes of
concentrated loads, which are placed into a linear radiator in series and provide in a
given frequency band the required electrical performance, including the good matching
of antenna with the signal source, the high efficiency and the necessary directional
pattern. The solution of problem was based on understanding advantages of in-phase
current distribution and on the hypothesis of Hallen about usefulness of capacitive
loads, whose magnitudes are changed along the radiator axis in accordance with linear
or exponential law.

Selected approach confirmed the hypothesis of Hallen, demonstrated the rightness of
choice of capacitive loads and gave numerical results. Its use helped to solve still three
tasks. The first one was selecting loads, which provide in a given range the required
current distribution. Thus, in particular, the efforts adopted for finding the current
distribution, which creates desired characteristics, have been justified. The second result
enabled to determine loads for diminishing distortion of directional pattern of antenna by
closely spaced superstructures. Finally, the method was used for selecting concentrated
loads, which are placed in series along the wires of V-antenna and significantly expand
the frequency range, over which the antenna has high directivity along its axis. V-antenna
with curvilinear arms allows to obtain without resistors the equal phases of the fields
of all antenna segments in the far region.

These tasks are consistently considered in the book. During the work a reasonable
sequence of solving each problem was defined. In the first instance one must propose an
approximate method of analysis, in order to use later its result as initial values for the
numerical solution of task by methods of mathematical programming. When analyzing
the radiator with loads, as approximate methods the method of impedance long line
and the method of two-wire line with the concentrated loads were used. At the same
time it becomes obvious that by choosing magnitudes of the elements (capacitors, coils
of inductance, resistors) and the coordinates of their location as parameters, one can
obtain at all frequencies not the given characteristics, but only characteristics maximally
close to them. Effectiveness of the methodology also is obvious compared with helpless
method of trial and error.

The method of complex potential is widely used for solving of cylindrical (two-
dimensional) tasks, for example, for the calculating of electrostatic fields and mutual
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capacitances of several infinitely long wires located in the homogeneous dielectric
medium in parallel to each other with charges uniformly distributed along their lengths.
Significant interest is the use of these results for solving three-dimensional tasks with
similar mutual placement of metal bodies, since the problem of calculating electric fields
of charged bodies is substantially simplified, if the all geometrical dimensions depend
only on two coordinates. It is known that in the fullness of time the comparison of
conical and cylindrical problems was of great benefit to antenna theory.

In this book the method of complex potential firstly is generalized on the case
of piecewise homogeneous media and, secondly, is applied to the three-dimensional
structures: conical and parabolic. Comparison of parabolic and cylindrical problems
with each other allows to find the equalities relating the replaceable variables. If these
equalities are accomplished, the Laplace’s equation remains valid in transition from one
task to another. In this way, the parabolic problems are reduced to the corresponding
cylindrical ones, i.e. parabolic filaments, cylinders, and shells are replaced by parallel
filaments, cylinders, and coaxial cylindrical shells. Parabolic structures differ from conic
structures in that their equipotential surfaces intersect the axis of symmetry at different
points. This allows to use parabolic structures to calculate fields in a phantom in order
to determine the influence of its shape and dimensions on a magnitude of created there
field.

Separately the principle of complementarities was examined. It is shown that the
self-complementary antenna can be located not only on a plane but also on the surface
of rotation, in particular conic and parabolic. In the book it is proposed the method of
calculating complex flat and three-dimensional self-complementary antennas, including
antennas with rotational symmetry, i.e. self-complementary antennas consisting of
several metallic and slot radiators.

The obtained results show that a class of self-complementary antennas is considerably
wider than that it was considered previously. This class must be complemented, firstly, at
the expense of structures, consisting of several metal and slot radiators and, secondly, at
the expense of three-dimensional structures, located on surfaces of rotation, in particular
on the surfaces of the circular cone or the paraboloid. Closeness of the values of wave
impedances of antennas and cables is necessary condition of antennas effectiveness.
Known variants of self-complementary antennas do not satisfy this condition, since their
wave impedances are substantially higher than wave impedances of standard cables.
Antennas, which are regarded in the book, have very different, including sufficiently
small values of the wave impedances. That should greatly facilitate the task of matching
and expand the scope of using self-complementary antennas.

Problems of antenna engineering are considered in the second half of the book.

Among them there are described results of application of a compensation method for
protection of human organism against irradiation and are considered different antenna
arrays, including log-periodic, reflector and adaptive. Characteristics of known and
offered V-antennas are given.

In the book there are results of studying properties of new types of antennas and
methods of their analysis. Among them results of researching transparent antennas are
given. In the end of the book the properties and structural features of ship antennas
are discussed, including decreasing influence of metal bodies on antenna characteristics
and reducing influence of cables on the directional patterns of coaxially placed radiators.
Also there are presented the principal circuit, design and characteristics of the antenna-
mast with inductive-capacitive load, which was developed with the participation of the
author.
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The theory of electrically coupled lines allows to calculate characteristics of different
antennas, in particular of folded and multi-folded radiators, a multi-level radiator with
adjustable directional pattern in a vertical plane, an antenna with meandering load, an
impedance folded radiator, etc. Also this theory explains the reasons of appearance of
cross talks and in-phase currents in multi-conductor cables.

In the chapter devoted to log-periodic antennas the different ways of reducing their
transverse and longitudinal dimensions are considered separately. The main attention
is given to new structure of this antenna. It is based on two innovations. Firstly the
antenna elements are made in the form of straight and spiral dipoles connected in
parallel with each other. Secondly, a two-wire distribution line is replaced by a coaxial
cable, and dipoles are replaced by monopoles connected to the central conductor of this
cable. As a result asymmetrical coaxial antenna is not in need of rotator and balancing
transition from coaxial cable to a symmetrical two-wire line. This version of log-periodic
antenna is better than other versions of these antennas with the same dimensions from
standpoint of the range width and the radiated power. Its dimensions are smaller than
the dimensions of well-known antennas intended for the same frequency range.

In the last chapter a problem of creating antennas for underground radio
communication and a question of measuring an antenna gain in a Fresnel zone are
discussed.

The proposed book is a natural addition to the known monographs. It is intended for
professionals, which are engaged in development, placing and exploitation of antennas.
The benefit from this book will be also for lecturers (university-level professors), teachers,
students, advisors etc. in the study of fields radiated by antennas. The contents of the
book can be used for university courses.

Boris Levin
Israel
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1

Theory of Thin Antennas

1.1 FIRST STEPS

Ronald King wrote very briefly about the first antennas and first steps in antenna
engineering [1]. Through twenty years after Maxwell formulated his famous equations,
which have established the foundations of classical electrodynamics [2], Hertz by means
of an experiment proved the existence of the wave phenomena predicted by these
equations. He used a spark gap for exciting damped oscillations in a wire of length
60 cm with metal plates at the ends [3,4]. Hertz’s experiment gave a start to the future
rapid development of radio engineering.

The first two Maxwell’s equations in differential form are written as

curlH=f+a—D,curlE:—a—B, (1.1)
ot ot

where H is the vector of magnetic field strength, j is the vector of volume density of
conduction current, D is the electric displacement vector, ¢ is time, E is the vector of
electric field strength, B is the vector of magnetic induction. Hereinafter the International
System of Units is used.

Equations (1.1) are to be complemented with the equation of continuity

div = 3’; (12)

where p is the volume density of the electrical charge.
Typically, two more equations are included into the system of Maxwell’s equations:

divD=p and divB=0, (1.3)
but they follow from equations (1.1) and (1.2) [5].
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Equation (1.1) associate the electromagnetic fields and currents in free space. It
would be wrong to consider that the left or the right side of an equation is the source
of the field and, accordingly, that the other side is the consequence. The electric and
magnetic components of fields exist only jointly. And none of these quantities is the
cause of appearance of the other.

The field of the antenna is the result of supplying power from a transmitter. In
order to take it into consideration, the extraneous currents and fields as the original
sources of excitation should be included in the set of equations, in accordance with the
Equivalence theorem. They are introduced as summands of quantities j, E and H. Their
nature and placement depend on the model of the segment near a generator, which is
commonly called the ‘excitation zone’. The total electromagnetic field of an antenna is
equal to a sum of the field produced by the excitation zone and the field produced by
the currents in the wires, which arise on switching on of the sources. As a rule, on a
great distance from the antenna the first field is substantially less than the second one
and can be neglected.

Maxwell’s equations for electromagnetic field, which are complemented with
boundary conditions on the some of another antenna, allow writing the equation
for the current in the conductor of the antenna. Solving it and finding the current
distribution along the wire, one can determine the electrical characteristics of a radiator.
But researchers in the first few decades after the works of Hertz were published, were
interested in other matters. Among engineers trying to solve the problem of signal
reception, the names of Marconi and Popov are the most known.

In 1894, 23-year-old Rutherford manufactured a device for receiving radio signals,
which was based on demagnetization a bunch of needles. He even demonstrated it to
Marconi, and the latter undertook to improve it. The invention of radio tubes was very
important in order to solve the problem of radio transmission. Then onwards, the power
of radio tubes began to grow from year to year.

The article [6], published in 1884, was devoted to calculating the power of radiated
signals. This article introduced Poynting’s vector

S=[E, H]. (14)

where magnitude S is the density of the power flux. Its projection onto the normal to
the corresponding part of a closed surface is equal to the density of power flux outgoing
from the volume, bounded by the surface.

Using Poynting’s vector, one can find the active component of an antenna input
impedance. The power, passing through an antenna surface, does not change in free
space and is equal to the power flux in the far region. The vectors of electric and
magnetic field strengths are mutually perpendicular. Here,

|H| = [E|/Zy,

where Z, = 120r is the wave impedance of free space. Since the field strength of a
vertical linear antenna in the spherical coordinate system is

E = E,,F(6,9),

where E,, is the field in the direction of maximal radiation, and F(6,¢) is the directional
pattern, the radiation power of such antenna is equal to an integral of Poynting’s vector
over a closed surface
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p =L jE;PZ 6, 9)dS. (15)
Zy
)
Integration is performed over the surface of sphere S of a great radius. The surface

element is dS = R} sin8d@d¢. Calculating the ratio of the radiation power to the square
of the generator current, we obtain the antenna input resistance

2r T

1 2 02 2 s
Ry = do | E;,F~(6,0)R] sin 6d6- (1.6)
: 12<0>Zoj j "

Let us calculate the electric field in the far region and the directional pattern of a
radiator, considering the radiator as a sum of simple electrical dipoles (Hertz" dipoles).
The field of such dipole with length b and the current I, located along z-axis, is

0

Ego = j(30kIb/R)exp(~jkR)sin. (17)

Here k = ./ i€ is the propagation constant in the surrounding medium, o is the circular
frequency of the signal, u is the permeability, € = ¢, ; is the absolute permittivity (g, is the
relative permittivity and g, is the absolute permittivity of air). The current distribution
along a symmetrical dipole with arm length L is determined by the expression

- sink(L—|z]) 18
](Z)_I(O)—sinkL : (1.8)
- M
R
L R,
z cos (7 .

4 "
-L
-
X g)

Figure 1.1 Field in the far region.

Putting R = Ry — z cos@ (see Figure 1.1), I = J(z), b = dz and neglecting small
magnitudes, we obtain for the field of the symmetrical dipole

iy 30k exp(—jkRy)sin

E
’ &Ry

L
0 _[ J(z)exp(jkz cos 6)dz, (19)
-L

where R, is the distance from the dipole center to the observation point. Substituting
(1.8) into (1.9), we get
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_ . 60](0) . exp(—jkR,) . cos(kL cos 6) — coskL (1.10)
& sinkL Ry sin 0

The last factor of this expression defines directional pattern of the dipole. Substituting
of (1.10) into (1.6) gives

J- T [cos(kL cos 6) — cos kL] . (1.11)

R
*- sin 6

6,2 sin? kL

Such method of calculating resistance is well-known as the Poynting’s vector method.
If the dipole length is small (kL < 1), we find limiting ourselves to the first terms of the
function expansion in series (cosx at small x is equal to cosx = 1 — x?/2):

=20k%[%/ €2. (1.12)

For comparatively short antennas (L < 0.3, here A is the wavelength), one can proceed
from the expression (1.11)

Ry =20k*h?/ €2, (1.13)

where h, = % tan k?L is the effective length of the symmetrical dipole.

The next step in the theory of linear radiators was made only in the 20th century. It
is known as the method of induced emf. But before proceeding to it let us first consider
the field of the conduction current along a filament and a circular cylinder.

1.2 FIELD OF A FILAMENT AND A CIRCULAR CYLINDER

Maxwell’s equations require solutions. The solution of the equations is simplified
essentially, if we introduce additional functions called potentials. A vector potential
(an auxiliary vector field) is introduced by comparing the second equation from (1.3)
with the mathematical expression (identity)

diveurlA=0,

where A is an arbitrary vector. This comparison shows that vector B can be presented
as a curl of some vector A:

B= curlA, (1.14)

Yet, Eqn (1.14) defines VQC'L‘OILA ambiguously. To define it unambiguously, one should
also specify the value of divA.
Substituting (1.14) with the second equation of the set (1.1) and using the mathematical
identity
curlgradU = 0,

where U is an arbitrary scalar function (scalar potential of field), we obtain

E= —Z—‘? — gradU. (1.15)
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Substituting (1.14) and (1.15) into the first equation of the set (1.1) and taking into account
the mathematical identity

curleurlA = graddivA — AA,
we obtain
-
A =— ;wd—f — grad(divA + ygd—u) =—uj- (1.16)
dt dt
Let us define divA to simplify the last expression as far as possible. For this purpose,
let
~ au
divA = —ue— - (117)
AETHE G
This equality is known as the calibration condition, or Lorentz condition. In accordance
with (1.16) and (1.17)
5
AA— MS‘ZT‘Z“ " (118)

For harmonic fields, which depend on the time in accordance with the exponential
function exp(jwt), Eq. (1.18) takes the form

AA+KPA =] (119

Equation (1.19) is called the vector wave equation. Its solution permits to find the vector
potential A, and then the electric and magnetic fields of antenna. Expressions (1.20) are
obtained from (1.14), (1.15) and (1.19),

= ) 52 1 <

E= iz graddivA+k“A),H = ;curlA. (1.20)

If the electromagnetic field sources are distributed continuously in some region V,

and the medium surrounding the region V is a homogeneous isotropic dielectric, the
solution of the Eq. (1.19) for harmonic field has the form

A= uf jGAV (1.21)
V)

where G = exp(-jkR)/(4nR) is the Green’s function.
A similar expression for the scalar potential follows from Egs. (1.17), (1.21) and (1.2):

1 = 1
u ]we j GdivjdV - J pGdV . (1.22)
V) V)

It should be noted that region V, where the electromagnetic field sources are located,
may be multiply connected (if, e.g.,, one must regard radiation of several antennas, or
metal bodies are located close to the antenna).

Further, consider the special case when the field sources are the electrical currents
located in parallel to the z-axis in some region V and having the axial symmetry

= szz’jz = jz (2) = const(¢)- (1.23)
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Here, the cylindrical system of coordinates (p, ¢, z) is used, with unit vectors Ep,e]-,Ez
along the axes. As seen from (1.21), the vector potential in this case has only component

Ay

A=A_(p,2)e,, (1.24)
ie.
2 2
divA = 04, , graddiv]l = aﬁép + J Izz é,, curlA = — 94, é,
0z apaz oz ap s

and in accordance with (1.20)

) . jo A, 1 04,
Ez(p,Z):—k—z[k AZ +?j,EP(p,Z):—k—zw,Hq)(p,Z):—; ap ’E(p :HZ :Hp =0. (125)

Obviously, if the distribution of current J(z) along the radiator is known, one can
calculate the electromagnetic field of the current with the help of presented formulas. If
the antenna is excited at some point (e.g, z = 0) by a generator with concentrated emf e,
the antenna input impedance at the driving point is

Z, = ¢/)(0). (1.26)

and in order to determine this impedance, it is enough to know the current magnitude
at the corresponding point. When calculating the power absorbed in the load of a
receiving antenna, the current magnitude is needed also. So the current distribution
along the antenna constitutes a very important characteristic.

As a model of a vertical linear radiator, one can use a straight perfectly conducting
filament, coinciding with the z-axis (Figure 1.2a), along which the conduction current
flows. Current density j is related to this current by

J)= [ jds,
(%)
where S is the filament cross-section. From (1.21) and (1.25)
L L
1 G
A(p,D) = 1| 9GS Eo(p,2) = — [ 19| K2Gy+ =5 |de. (1.27)
i JOE < 0z

Here G; = exp(-jkR;)/(@nR,), distance R; from observation point M to integration point
P is equal to y(z—¢)* + p*.

In the considered model the radiator radius is zero. The model of a radiator shaped
as a straight circular thin-wall cylinder with radius a (Figure 1.2b) has finite dimensions.
Both ends of the cylinder left open, without covers, in order to the current as before
had only longitudinal component. The surface density of current along the cylinder is

J5s(z) = J(z)/2ra). Since a volume element in the cylindrical system of coordinates is equal
to dV = pdpdedz, and p = a on the cylinder surface, so, in accordance with (1.21) and (1.25),

2

L L
_ M 1 5 82G2
Al D=1 jL 1) ! szqndg,EZ(p,z)——jwe_jLI@[k G+ ]dg, (1.28)
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where G, = exp(-jkR,)/(4nR,), and the distance R, from observation point M to integration

point P is \/(z— g)2 + p2 +a’ —2apcos @. In particular, if the observation point is located

on the radiator surface, R, = \/ (z—¢)* +4a” sin*(@/2) .

a) 14s b) +5¢
L Ar—
TTaaM(2,0,2) T )

P ‘-"‘__-ﬁ—f’f///xx? P}f@d_,.-’;fj‘]ljfp.o‘_.)
B/ [ Ry,

7} = / P o | )
R,/ R/

//
- I

- P{a,®s) p=Jat+pi=2apcosp
P(G&Qg) P ;"l.f - ?’_J 1

(A== \[
e

Figure 1.2 The dipole models in the shape of a straight filament (1) and a thin-wall circular
cylinder (b).

Sometimes the dipole model shaped as a filament with finite radius g, i.e. expressions
(1.27) are used for A, and E,, but distance from the observation point to the integration

point is equal to Ry = /(z—¢)* + p* +a>.

The obtained expressions for the vector potential and the vertical component of the
electrical field strength produced by different models of a radiator, confirm the opinion
about significance of the current distribution along the radiator. An assumption that
this distribution has sinusoidal form played a great role in the antenna theory. It was
based partly on results of measurements, but mainly on a simple understanding that the
current distribution along wires of two-wire long line does not change if the wires move
and diverge from each other. Later on, at derivation and solution of integral equations
for currents in radiators, it was rigorously shown that the sinusoidal distribution is the
first approximation to the true current distribution. Thus, its use received a reliable
justification.

Here it is implied that the sinusoidal distribution may have any phase. In particular,
the conduction current on the ends of a dipole and monopole is equal to zero. In this
case there is a sinusoidal distribution — see Eq. (1.8). The current distribution along the
folded radiator may have an antinode at the upper end, i.e. the current may follow the
cosine distribution law.

For a perfectly conducting filament used as a model of a symmetrical radiator, in
accordance with (1.28)

L 5 . .
L= ﬁ J'](g){szr aa? j{exm JkR) | expCikR) 129
0

Am R R,

This expression takes into account the currents’ symmetry in the radiator arms and
accordingly the substitution of variable (-g for ¢) is performed at the lower arm, and

the designation used is: R, =4/(z—¢)* + p* .
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Since

OR _ 0R OR, R, &’R_0°R 9°R, R,
¢ 9z 9¢ 09z ‘a2 92 a2 92

then

L L
1 0% [ exp(—jkR) exp(—jkR k? exp(—jkR) exp(—jkR
E=— |1 2{ P(-jkR) | exp(-j +)}dg+ ’ JI(G){ P(-jkR)  exp(-j +)}dg_
TTjeE g R R, 471']0)80 R R

+

Twice integrating the first term of the expression by parts, we get

1 { Hdﬁ(g) e QHexp(—ij) . exp(—jk&)} ies

* 4mjoe ‘ dc? R R,
1) ai {exp(—jkm . exp(—jkm} () [eXp(—J'kR) L exp(- ij+>}| 6} . (1.30)
sl R R, i | R R,

If the current along the radiator is distributed in accordance with (1.8), the first
factor in the integrand and hence the first term of the expression are zero. As is easy
to verify, the second summand is zero too, since the first factor becomes zero at ¢ =
L, and the second factor vanishes at ¢ = 0. Derivative of the current is calculated, and
auxiliary relation is taken into account k/(4rwey) =30:

E, ——j 30.](0) exp(—jkR;) N exp(—jkR,) 2 coskl exp(—jkRy)
& sinkL R; R, R, !

(1.31)

where R; = Jz-L)*+p?, R, = Jz-L)* +p?, R, = (2% + p*are the distances from obser-
vation point M to the upper end, to the lower end and to the middle of the radiator,
respectively (see Figure 1.24).

Let us present without proof two components of the electromagnetic field for a
straight filament:

E, = 30].(0) (z—L)exp(—jkRy) N (z—L)exp(-jkR;) 22 coskL exp(—jkRy) ,
g, psinkL R, R, R,

J(0)
4re psin kL

0= [exp(~jkR,)+exp(~jkR,) -2 coskL exp(~jkR;) - (1.32)
The rest of the components are zero, see (1.25).
If the model of a symmetrical radiator in the shape of a straight circular cylinder

is used, it is necessary to proceed, when calculating the field, from expression (1.28).
We obtain instead of (1.31):

i 30 T{exp(—ijl)JreXp(—ijz)_2COSkL w}d% L33
0

: 27e, sinkL J R, R,

where

R, = \/(z—L)2 +p*+a® —2apcos¢’, R, = \/(z—L)z +p? +a® —2apcos¢’, R, = \/zz +p*+a* —2apcose’.
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Such great attention is paid to the sinusoidal distribution of the current along the
radiator because the method of induced electromotive force (method of emf) is based
in particular on this distribution.

1.3 THEOREM ABOUT OSCILLATING POWER

Before going to the method of induced emf, it is necessary to consider the theorem
about oscillating power.

The theorem and its proof were published for the first time in the book [7]. The
book arose on the basis of lectures delivered by the author to undergraduate and
graduate students and was devoted to electromagnetic waves of ultra-high frequencies.
The reaction of many specialists to the theorem about oscillating power was sharply
negative. In their view, the appearance of this theorem was caused by misunderstanding
of the sense of the reactive power, although this statement clearly conflicts with the well
known postulate, which these experts constantly repeat in articles and lectures. The
postulate contends that the reactive power has no physical meaning,.

During the years from the date of its first publication, the famous theorem allowed
to explain a great many problems.

Let us start with the so-called symbolic method, i.e. with writing equations of the
electromagnetic field in a complex form. Widely used electromagnetic fields, time-
varying in accordance with the sinusoidal law, are called harmonic or monochromatic
fields. Both in the theory of alternating currents and in the field theory it is expedient in
mathematical researches of harmonic processes, which are described by linear equations,
to introduce complex magnitudes. The transition to these designations is performed
in the following way: complex magnitudes denoted as E(w) and H(w) correspond to
magnitudes of electric E(f) and magnetic H(f) fields at a given point.

Relation between the physical magnitudes and their complex magnitudes is given
by the relationships:

E®) = Re[E(w)exp(jwt)] and H{) = Re[H(w)exp(jwt)], (1.34)

where Re A is the real part of a complex vector, located in square brackets and ® is
the circular frequency of the investigated process. Complex magnitudes E(w) and H(w),
related with the instantaneous values by the relations of the type (1.34), correspond to
two scalar physical magnitudes E(f) = E cos wt and H(f) = H cos E wt. If E(w) and H(w),
are complex magnitudes:

E(w) = Ee/* and H(w) = He'?, (1.35)

where E and H are the amplitudes, and o u 8 are the arguments of the complex
magnitudes, then

E(t) = E cos(wt + o) and H(t) = H cos(wt + B) (1.36)

Thus, the amplitudes of the complex magnitudes are the amplitudes of the
corresponding instantaneous values of the physical quantities, and the arguments of
the complex magnitudes determine the phases of the instantaneous values of these
quantities. Similarly, complex magnitudes are introduced for all physical magnitudes,
incoming in the Maxwell equations. Formal coupling of complex equations with the
initial equations is simple: in order to obtain complex equations one must replace the
differentiation operator d/dt by the operator of multiplication jw.



10 Antenna Engineering: Theory and Problems

As is well known, energy magnitudes are determined by products (or squares) of
instantaneous values of fields and currents. If to create a product

a(t)b(t) = %AB[COS(OC —B)+cosRot+o + ﬁ)] (1.37)

and to calculate its average value for the period T, one may obtain

T
.([a(t)b(t)dt = %AB cos(a— ) = %Re [a(@)b ()] (1.39)

a(Hb(t) = %

Similar expressions are true for vector magnitudes also. These expressions permit
to calculate the average value (constant part) of the energy value in accordance with the
known complex amplitudes. A similar method can be used to calculate the average value
of the variable fraction of the energy (oscillating energy). Indeed, according to (1.37)

a(H)b(t) = a(Hb(t) + © ,
where it is natural to assume that the time-dependent second term
© =0.5ABcos(2ot + o + B) (1.39)

is the oscillating fraction of the product a(f)b(t). This part oscillates in time with a
frequency 2w, and its average value is zero. One can rewrite the expression (1.39) as

O = 0.5Re[a(w)b(w)exp (2jot)]. (1.40)

It is seen that half the product of complex amplitudes is the complex amplitude of the
oscillating fraction of the product a(¥)b(t).
As is well known, the energy conservation law for the electromagnetic field is
given by
dW/dt + P + X = 0. (1.41)

Here, W is the electromagnetic energy contained in a volume V, P is an outgoing power
(which flows out the volume through its bounding surface), and X is the radiation
power. Passing from the differential formulation to the integral formulation and using
the appropriate complex magnitudes, one can write the theorem about the oscillating
power in the form

-Z=P+2joW. (1.42)

In deriving this expression, each term is considered as the sum of the active magnitude
(average for the period of oscillation) and the oscillating (variable) fraction. In particular,
for an instantaneous value of the power flux one can write according to (1.38)

p(t)=P+P, (1.43)
where
P =0.5Re(EH*), P =0.5Re[ EH exp(2jot) ]
From here the physical meaning of magnitudes EH* and EH is clear. The first

magnitude is the complex amplitude of the active part of the power flow, equal to its
average value. The second magnitude is the complex amplitude of the oscillating part
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of the power flow. In accordance with the law of energy conservation, if the source of
radiation is located inside of a closed surface, then the active (average for the period of
oscillation) power, supplied by the source, is equal to the active power passing through
a closed surface. It is natural to assume that this equality of powers is true for any time,
i.e. the oscillating fraction of the power supplied by the source, is equal to the oscillating
fraction of the power passing through a closed surface.

1.4 METHOD OF INDUCED EMF

The induced emf method was proposed in 1922 by Rojansky and Brillouin simultaneously.
Klazkin was the first to use it for calculating radiator characteristics. Later on, Pistolkors,
Tatarinov, Carter, Brown et al. have contributed to its development. Reference list in the
book [8], which is dedicated to regulation and generalization of the results available in
the literature, consists of 96 items.

The method of induced emf allows determining both the active and reactive
components of the antenna input impedance. Since the active component can be
calculated with a similar accuracy by a simpler method of Poynting’s vector (see
Section 1.1), the method of induced emf actually for practical purposes, as emphasized
in [9], is only one of the methods for determining input reactance of antenna.

The theorem about the oscillating power has significantly changed the understanding
of the induced emf method, which has been the only way to calculate an antenna
input reactance for a long time. The method of induced emf is formulated as follows:
A cylindrical radiator of height 2L and radius a is placed inside a closed surface.
A power, created by the emf source (by a generator), is equal to a complex power
passing through this surface. Assume that the closed surface is a circular cylinder of
height 2H and a radius b, along the axis of which the symmetrical radiator is located
(Figure 1.3a). A density of power flux, which leaves a volume, bounded by a closed
surface, is determined by the Poynting vector, or rather by its projections onto the
normal to the sections surface: to the side surface and to the tops of the cylinders. These
projections have the following form:

P,=-05E.H,,P, =05E,H,, (144)

&)

H
IL\
|
I. IJ
i
=

Figure 1.3 Closed surface around a radiator.
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Let the cylinder surface coincide with the surface of the radiator, ie. H =L, b = a.
Then, if the radiator radius is small, power fluxes passing through the upper and lower
covers of the cylinder, will also be small. Therefore, power passing through a closed
surface is determined by integrating only over the side surface of the cylinder

L 2rn

= J. JPpad(Mz

-L 0

Here P, is determined from (1.44) and does not depend on the coordmate @, because the
field components do not depend on it. Taking into account that H,, ¢ = J'(2)/(27ta), we obtain

P = —0.5'[ E.J (z)dz. (145)
‘L

If a current J(z) is excited by a single generator, located in the middle of the radiator,
then the power, created by it, is

P, =05|J(0) Z,, (1.46)
where Z, is an input impedance of the antenna. Equating the power created by the

source of emf, to the power passing through the closed surface, we obtain

L

! j E.J (2)dz (147)

JO)P

The expression (1.47) reveals the essence of the induced emf method. Two other variants
of deducing this expression are described in [10] and [11].

If to equate to each other, instead of complex powers, two analogous oscillating
powers: the power passing through the closed surface,

ZAI

L
1
Pa=-3 j E.J(2)dz (148)
-L
and the power, created by the generator,
1 1
Pea =50 =2 (02 (149)
where e is the emf of the generator, we obtain
L
L ek j E.J(2)dz (1.50)
Al = " | B2 : .
o

After the appearance of an expression (1.50), equation (1.44) has been called the
first formulation of the induced emf method. Expression (1.50) was called the second
formulation of the induced emf method. This expression was first obtained on the basis
of the theorem of reciprocity [12-14]. This theorem holds not only for two separate
antennas but also for two points on the same antenna. Using that circumstance and
applying the theorem to one radiator, one can obtain the expression (1.50). As is shown
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here, if to use the concept of oscillating power, then this expression is easily deduced
from the energy relations. But despite the fact that the expression (1.50) by means of the
theorem about the oscillating power was obtained many years ago [15], most experts
kept to argue that it is derived in accordance with the reciprocity theorem by contrast
to the expression (1.47) obtained from an equality of powers.

As can be seen from the above, the difference between the first and second
formulations is caused by the fact that the first one is based on the equality of complex
powers, and the second one - on the equality of the total powers, consisting of the
active and oscillating components. Even here an advantage of the second formulation is
obvious, since a reactive power unlike the oscillating power has no physical meaning.

Analysis shows that the second formulation is stationary. To verify this, one must
show that if the antenna current is changed by the value of the first order infinitesimal,
the input impedance will change by the value of the second order. The input impedance
Z 4y obtained from (1.50) is not be changed in the first approximation for any trial current
distribution, which differs from the true current J°(z) by a small value ¢J(z). This means
that if at J(z) = J°(z) a self-impedance of the radiator is equal to Z,j;, then on J(z) = 1°) +
dJ(z) the self-impedance is also equal to Z,; The corresponding proof was given by
J.E. Storer and is described in [16]. The stationary property of the second formulation is
due to the fact that the integral in this expression is a rough functional of the current
function, although an integrand is no rough functional of it [9].

Let a straight, perfectly conducting filament of a finite small radius a4, whose axis
coincides with z-axis, be located in a lossless medium and be used as a model of a
vertical symmetrical dipole with arm length L (see Figure 1.4a). The current distribution
along it is determined by the expression

sink(L—|z
J(z)= ](O)—.( | l), (1.51)
sinkL

i.e. a tangential component of the electric field of the filament along a radiator surface
is equal to

z

£ =300 [exp(kR)  exp(jkRy) , o\ exP(jkRo) | (152)
& sinkL R R, R,

where Ry =4/(z— L) +a%, R, =4/(z— Ly +a?, Ry = \/(22 +a” are distances from observation

point M to an upper end, to a lower end and to the middle of the radiator, respectively,
and ¢, is the air relative permittivity. In this case both formulation of the induced emf
method give the same result:

30

Ry=—= [2(C+1In2a —Ci2a) +sin 2a(Sido — 2Si2¢) + cos 2a(C + In o + Cidor — 2Ci20x) |
sin” o

X, = .3(; [sin20(C +In o+ Cido— 2Ci2— 2In(2L| a)) — cos 2o Sid o— 2Si20) + 2Si2f - (1.53)
sin- o

X X
Here Six = J(sin u/u)du is sine integral, Cix = J(cosu /u)du is the cosine integral, o = kL,

0 oo
and C = 0.5772... is the Euler’s constant.
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L

Figure 1.4 Symmetrical (1) and asymmetrical (b) dipoles.

As can be seen from the expression for antenna reactance, X, consists of terms of
a various order infinitesimal. The great summand is equal to

in2
X4 =305m o

——[2In(2L/a)-C/2] = -120In(2L / a)cot cx . (1.54)
sin” o
The value y = 1/Q is called a small parameter of the thin antennas theory (Q is a
parameter, used by Hallen). The parameter y is equal to y = 0.5/In (2L/a). Introducing
the notation W = 60/y, we obtain an expression for the input reactance of an equivalent
long line, open at the end: X,y = -W cotcr.

In order to calculate losses in antenna conductors (e.g., loss due to skin effect), one
must add to a purely real propagation constant a small imaginary value. Calculations
show that in this case the second formulation gives positive value of a loss resistance and
the first formulation, a negative one. A similar situation occurs during calculating losses
in a ferrite shell of the antenna. Thus, if losses exist in the medium or in the antenna,
applying of conception of reactive power gives an obvious mistake. The rightness of
the second formulation, based on the conception of oscillating power, becomes a fact.

The second formulation of the induced emf method was analyzed when integral
equations of Hallen [17] and Leontovich-Levin [18] for the current along a radiator axis
were already written and solved. Solutions have been given in the form of expansions
into a power series. If we use the formulas presented in [10] and [18], one can show
that the solutions of both equations are same [19]. In this case, the coincidence of the
results is not only numerical. The results were obtained in an explicit form (in the form
of identical tabulated functions).

As already mentioned, solutions obtained by induced emf method for the perfectly
conducting filament, using different formulations, gave identical results. They coincide
with the solutions of integral equations for different length of radiator, if this length
is not close to the parallel resonance when J(0) = 0. In the latter case, the input
impedance, calculated by the induced emf method, becomes infinitely large, and the
integral equations give the finite results.

Summarizing, one can say that both formulations of the induced emf method are
based on the same two theses. The first thesis assumes the sinusoidal character of the
current distribution along the radiator. The second thesis signifies the equality of the
source power and the power passing through the closed surface.
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Both formulations are useful only in the case the current distribution J(z) along a
radiator is known. The selection of the law of the current distribution may be based
only on a solution of integral equations for the current, i.e. on a rigorous solution of
the problem. Physical base for the selection of another distribution law does not exist.
Hence there is no sense in speaking about the accuracy of the induced emf method,
excluding artificially the error caused by the inexact current definition. The accuracy
of this method is the mutual accuracy of (1.51) and (1.47) or (1.50). The experience
in calculations shows that (1.51) gives a quite acceptable approximation, if o < 7/2.
Therefore, the first thesis is questionable, because this thesis has an approximate nature.

As to the second thesis used for derivation of the first formulation, its inapplicability
is obvious, since the reactive power has no physical sense, and the input reactance of
antenna is determined as a result of equating two quantities no having physical sense.
Equating of two such quantities cannot be justified.

1.5 APPLICATION OF THE INDUCED EMF METHOD TO
COMPLICATED ANTENNAS AND TO ANTENNA SYSTEMS

One can use the induced emf method for analyzing more complicated radiators. The
expressions (1.47) and (1.50) were obtained without indicating a concrete coordinate of a
feeding point. For this reason, they are applicable to the radiator with & # 0. Really for a
radiator with a feed point displaced from the radiator center to point z = h (Figure 1.4b),
the flux of an oscillating power through the side cylinder surface by analogy to (1.48) is

L
Per == [ E-(DJ(2)z. (1.55)
-L

The oscillating power created by one generator by analogy to (1.49) is equal to

Py =eJ(h)=]*(W)Z,, (1.56)

By equating the right parts of the expressions, we come to

L
J2 ()

Note that in this expression unlike (1.50) not only the denominator other, but also
another current distribution J(z) along the radiator and another field E,(J) of its current.

In the case of a radiator with nonzero surface impedance in (1.50) instead of E.(]) one
should substitute the difference [E.(]) — H,Z(z)]. Here Z(z) is the surface impedance, i.e.
the impedance of the square surface section. Actually, in accordance with the boundary
condition on the radiator surface, it is necessary to take into account that a voltage drop
along the self radiator makes no contribution to its radiation. Then for an antenna with
constant surface impedance Z (Figure 1.54) in a shape of a straight circular cylinder
with radius a we find

ZA=

L
[ Bz, (157)
-L

L
Z, = ]zih) [IE-)-210)/ o)) (2. (1.58)
L
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If h = 0, the current distribution J(z) coincides in the first approximation with the
current distribution along an impedance long line, open at the end:

J(z)=J(0)sink, (L—|z[)/sink,L. (1.59)

Here k; = \/kz —j2kyZ/(aZ,) is the propagation constant of a wave along the impedance
line.
For a symmetrical radiator with piecewise constant surface impedance (Figure 1.5b) one
can write:
2N b,
Za=-1/G2)Y, [ [E0,)-2"1,(2)/ @a) |1, (2)dz, (1.60)

m=1p,

e+l

where m is the segment’s number, 2N is the total number of segments, Z™ is the
surface impedance on the segment m. Current distribution J,,(z) on the each segment
m is sinusoidal. Current distribution J(z) along the radiator coincides in the first
approximation, if 1 = 0, with the current distribution along a stepped impedance long
line open at the end:

Ju(2) =1, sin(k,,z,, + 9,,), b1 £z by, (1.61)
where
N
A, H sin g,
=m+1
Im = Am](o)/ N i 4
Hsin(kplp +,)
p=m

@, =tan™ {kk_m tan [km_llm_1 +tan”! <I]§’”—_1tan {km_zlm_2 +..+tan”! (i—ztan ki, j }>]}
m-1 m—2 1

In these expressions z,, = b,, — z is the coordinate along the segment m, k,, is the wave
propagation constant along this segment, and [, is its length. The expressions are true
N

for the segment N too, if to adopt that the product H is equal to 1.
p=N+1
In the case of a radiator with one concentrated load Z; located at point z = z;
(Figure 1.6a), the power is firstly radiated by the antenna:

L
Par == [ E-(DJ(2)z, (162)
L
and secondly it is wasted in the complex load:
P, =2 (21)Z (1.63)
The oscillating power produced by the generator is equal to the sum of these powers:
Py =JAZy = Piy + Pra, (1.64)

i.e.

L
1
Zy= —%{L E.()](2)dz zf(zl)} . (165)
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For several loads Z,, located at points z = z, of the asymmetrical radiator (Figure 1.6b)

Zy=- ](0) jE (D)()dz— Zzwﬂ} (1.6

Free terms in (1.65) and (1.66) are proportional to the square of the current and the
magnitude of the concentrated load. It is worth emphasizing that the connection of
loads changes the current distribution along the radiator and the field of the current.

al sz b 12

— b,
'bz
2ay .
2,02
2a 1
- ~1 Hb,
\{:bxﬂ
Za
5,
= P = 1?1,0
e_x ev’y
I N+
'b2N+1

Figure 1.5 Antennas with constant (1) and piecewise constant (b) surface impedances.
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Figure 1.6 Antennas with one (1) and several (b) concentrated loads.

For a folded radiator (Figure 1.71), which is an example of an antenna consisting of
several parallel wires, we obtain

L
- ﬁj (D). (1.67)
g -L
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Here ], is the generator current, J(z) is the total current of an antenna. The current
distribution along the antenna wires coincides in the first approximation with the
current distribution along the wires of an equivalent long line and is determined by
means of the theory of electrically coupled lines. Generator current J, of a folded radiator
is not always equal to total current J(z) at z = 0. If the radiator has a gap at point A
then, J, = J(0). When calculating the field, it is necessary to use the total current, i.e. the
sum of the currents of both wires.

Multi-radiator antenna, which is shown in Figure 1.7b, is an example of a radiator
consisting of wires with different lengths. The antenna contains the central radiator
with complex load Z; and side radiators situated around it and connected with it at the
base. In this case, one can find the antenna input impedance from (1.65). The current
distribution along the antenna wires is found by means of the theory of electrically
coupled lines. The equivalent line (Figure 1.7c) consists of three wires. The first wire is
equivalent to the central radiator, the second wire is equivalent to the system of identical
side radiators, and the third wire is the ground.

Since the wires of the equivalent line have different lengths and the complex load
is connected in the central radiator, the line should be divided into three segments. The
numbers m of segments are shown in Figure 1.7c. Using the boundary conditions at the
segment ends, one can find the current of each wire and the total currents along the
segments. Function J(z) is continuous in the entire interval 0 < z < [; and behaves as
sinusoid along each segment. But its derivative dJ(z)/dz has a jump on the boundaries
of the segments. With allowance for jumps of the derivative we obtain instead (1.31):

B ()= 13 [2EXPCIR) dJ(O) _[exp(jkRy) | exp(—jkRin) |dJ(h)
=TT R, dz Ry Ry iz
i exp(=jkRyn)  exp(=jkR) [dI(lm+0)_dI(lm—0)} ) (1.68)
m=2 R R, dz dz

where Ry =+a?+2z*,R,; =a*+(l, —2)*, R,y =+/a*(l, +2)% a is the radiator radius at
point z, and dJ(I,, + 0)/dz and dJ(l,, — 0)/dz are the values of derivative on the right and
on the left of point z = [,,.

As it is noted in Section 1.3, the induced emf method does not permit to obtain
the finite values of the input impedance at the points of parallel resonance, where
J(h) = 0, and near these points. The second (integral) variant of solving the Leontovich-
Levin integral equation allows in the case of the symmetrical radiator, if J(#) = 0, to
come to the expression

‘ZA: ¢

( : 1.69
{ZI 0) +§ | EZ(I)I(Z)dZI (1.69)
-L

One can obtain similar expressions also for more complicated radiators. For example,
the input impedance of a radiator with N concentrated loads and with the displaced
feed point is equal to

ZA= ¢

i N : 1.70
{2}(k>+i | EZU)J(z)dz—ZZnF(zn)] 70
_L n=I[
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Figure 1.7 Folded antenna (g), multi-radiator antenna with the complex load (b), and the
transmission line equivalent to a multi-radiator antenna (c).

These formulas expand essentially the scope of the method of induced emf.
Comparison of the results of calculations by these formulas and numerical methods
confirms their correctness.

Up to now the subject of discussion was application of the induced emf method for
calculating the input impedance of an antenna. But this method is applied widely also
for solving another problem — estimating the reciprocal influence of radiators by means
of calculating their mutual impedances.

The analysis of two-radiator systems is based on the fact that the current of one
radiator creates the field, which has the electrical component tangential to the surface of
the second radiator. This component induces the field E(J;)dg on the surface of element
dg of the second radiator. In order to execute the boundary condition E. = 0 on this
surface, the own field of the second radiator on its surface must be equal to —E_(J;)dg.
The generator of the second radiator must increase the power in the element dg by dP
= —E(J)]2(9)dg and, accordingly, the power in the entire radiator by

L,
=- | E.00R6)e.

-L2

Power P is equal to the power induced by the first radiator in the second radiator, and
the ratio of power P to the square of the current of the second generator determines
the magnitude of additional impedance, which the first radiator induced in the second
radiator:

Zotina = E.(J1)]2(g)dg. (1.71)
G (0) '[
The Kirchhoff equation for the second radiator takes the form
€2 = J2(0)[Zo2 + Zytina | = 120022 +11(0)Z3y, 1.72)
LZ
where Z,; = - J‘ E.(f1)f>(¢)dg is the mutual impedance of the first and the second radiators,
L2

f1@) = [1(2)/]10), £2(5) = J2(9)/]2(0). One can write a similar expression for the first radiator.
In the case of Q radiators, it has the follow form for the radiator p:
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Q
e, = [1(0)Z,, + Z J,(0Z,,. 1.73)
q=2

The corresponding circuit for the radiator p is given on Figure 1.8.

The expressions presented in this section are given in the accordance with the
second formulation of the induced emf method. The formulas, which allow to calculate
the mutual impedances of linear radiators for the different variants of their relative
geometrical replacement, are collected in [8].

Zpl Zop Zpq ZpQ

Figure 1.8 The circuit of radiator p with serial connection of elements.

1.6 LOSS RESISTANCE IN THE GROUND

As already mentioned, the theorem about the oscillating power has significantly changed
the understanding of the induced emf method. The losses of asymmetric vertical
antenna in an earth and ground are another example of this change. It is presented in
this section.

For a long time the calculation of losses in the ground was carried out according
to the procedure of Brown [20]. It proceeds from the idea of a high conductivity of
the ground, owing to which a magnetic field H, at the ground surface (Figure 1.9) is
virtually identical to a magnetic field of an antenna, located above a perfectly conducting
ground, and its strength is equal to a density of a surface current in the ground:

Jo(P) = Hyo(p). (1.74)

The surface current has a radial character.

If a resistance per unit area of the earth’s surface is equal to R, then the resistance
of an element in the form of a ring with radius p and width dp is dR, = (Ro/27p)dp. The
power of losses in this ring is dP, = (27p|H |)2dR The resistance of losses, referred to
the base of the antenna, is found from the expression

1 ¢, 27R
R =0 1.75
g U(O)lzj [ IOR: _ﬂ ‘Po| pdp (1.75)

Here J(0) is the current in the base. Resistance per unit area is Ry =1/(so)=11xn/ Jor,
where s is the depth of current penetration into the ground and o is the conductivity
of the ground.

A lower limit of integration in (1.75) is the antenna radius or the radius of the
ground, whose conductivity can be considered infinitely great. The upper limit b must
tend to infinity. It is easy to see, however, that in this case, the integral diverges. Indeed,
the magnetic field of the monopole in the form of a thin conductive filament, mounted
vertically on the perfectly conducting ground, can be written as

Hyo(p) = ]27t[)]inkL|: ( jkyp? +L) cos kL exp(— ]kp)] (1.76)



Theory of Thin Antennas 21

Hence the integrand is

2
|H(p0|2 p= ¢)2k[1+cos2 kL—2coskLcosk(\lp2 +12 —p)]

4r*psin® kL
If by > b; > L, the integral

](0)(1 coskL)
J.|H(p0| 4% sin® kL In b

increases unlimitedly with increasing of the upper limit and, consequently, the resistance
R, increases unlimitedly also.

In [21] it was suggested to assume that the upper limit of the integral (1.75) is equal
to A/2. Outside the boundaries of this area the component of zonal current, which
decreases with increasing distance in accordance with the law 1/p, is dominated. This
component is taken into account, when the radiation resistance is calculated. Inside the
indicated area, the induction component of zonal current, which decreases according to
the law 1/ pz, is dominant. It is believed that this component causes losses in the ground.
These qualitative considerations were a cause for quantitative evaluation, justifying
actually arbitrary choice of the upper limit.

The expression for the additional resistance of the antenna caused by a non-ideal
conductivity of the ground (as the resistance of losses in the ground is called commonly),
was derived and published in 1954 [22]:

=3

2r
Zg = —WJ‘EPH(pOpdp (177)
where
-L[ exp( —jk\p* +z )
J(2) (1.78)
Jp? +2°
Here E, is a radial component of the electrlc field on the ground’s surface and J(z) is

the current along the antenna.
According to the authors” opinion H is a component of the magnetic field on the
surface of the perfectly conducting ground.

Z 4

T
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Figure 1.9 Magnetic field near a radiator.
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Expression (1.77) is derived by means of an intricate procedure, using direct and
inverse Fourier-Bessel transformation. A similar result can be obtained using the theorem
about the oscillating power.

This theorem is applied to a volume V, bounded by a hemisphere Sy of a large
radius R, a ground surface S, and an antenna surface S, (Figure 1.10). Let R tend to
infinity. Since in the steady-state mode the energy within the volume is constant, then

[Eav=" | [EH] ds+jo [ (uf?+eE?)av
W) S=Sp+5,+5, ! W) ’

(1.79)

where j is a density of an extraneous current, n is an outward normal to the surface
S, w is a circular frequency, and u and € are permeability and permittivity of a free
space relatively.

ZaA
- T -~
// 4 TG
P s
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/ #2a
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Figure 1.10 Closed surface around a radiator.

The left part of (1.79) is the total (active and oscillating) power associated with the
energy of external sources, i.e. with the antenna. It is equal to

L
By = [E.J@)dz = P O)(Zag +2,). (1.80)
0

Here Z g is the input impedance of the antenna in the case of a perfectly conducting
ground. In the absence of losses in the wires, the active component of this impedance
is equal to the radiation resistance. Within the limits of solution accuracy, it is supposed
that the ground conductivity is high, and the electromagnetic field coincides with the
field of an antenna mounted on the ground with infinite conductivity, i.e. losses in the
ground do not affect the radiation resistance.

The right part of (1.79) is equal to

Py =D +P, +P;+2joW. (1.81)

- - - 1 . -
Here, I = I[E,H]n dSg, P, = j[E,H]n dS,, Py = j[E,H]n dS, and W = —J(uHZ +£E2)dV are

Sg Sp S¢ 2 v
total powers of the radiation, of the losses in the wires, of the losses in the ground,
as well as the oscillating energy in the volume V. Since electromagnetic fields are
considered the same, when the ground conductivity is great or infinite, then
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JH0)Z 49 = Py + Py + 2j0W, Py = JH0)Z,,
i.e.

zZ, = ! j [EH] dsg=—%jEpH¢pdp. (1.82)
0

Here, E, and H, are the field components on the surface of a highly conducting ground.

Expression (1.82) differs from (1.77) only by substitution H, for H,. As is seen from
(1.82), it is necessary to include in the integrand the field of not perfectly conducting,
but of the real ground. Since J(z) is the current of the real antenna, which like the input
impedance is distinguished from the current along the antenna mounted on a perfectly
conducting ground, then H,,is the magnetic field on the surface of the ground, which has
a finite conductivity. The statement in [22] that it is a component of the magnetic field
in the case of the perfectly conducting ground is a mistake. This erroneous argument
was repeated by other authors too (see, for example, [23]).

Thus the theorem about the oscillating power allowed not only to obtain simply and
clearly the result derived by means of an intricate procedure, but enabled to discover
the mistake [24].

Impedance boundary conditions on the ground surface are of the form

Zy = -E,/H,, (1.83)

where Z, is the surface impedance. Here, the minus sign is caused by the fact that the
current density j =[ii, H] is directed radially toward the origin along the ground. For
the ground with high conductivity

Zy =Ry +j), (1.84)
ie.

22R,(14)) T2
=2 pdp. (1.85)
8 ]2 (0) ’ ¢
The active component is

b
_27R,

R, =ReZ, ]O)j H2, ~2H,,H,, ) pdp, (1.86)

a
where H, = ReH,,, Hy, = ImH,,
The difference between the results of Waite-Pope and Brown is clear from (1.86) and
(L75). If H, = Hyp, when b, > by > L,
b,
_[ (Higo = Hpoo = 2Hp10H a0 ) pdp = J*(0)(1 - coskL)* F / 2w sin kLY,
by

o0

where

bZ . bZ
Fe _J'(COSka N sm2kp)dp _ _‘/5_[ coskadp < 1 /
JUp p Jp kby~2
i.e. integral in (1.86) converges.
Just as expression (1.86) follows from the theorem about the oscillating power,
expression (1.75) with an upper limit equal to infinity can be obtained on the basis of the
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theorem about the complex power. Both formulas follow from the fact that the additional
instantaneous power, created by the generator because of losses in the ground, at any
given point of time, in accordance with the law of conservation of energy, is equal
to the instantaneous power losses in imperfectly conducting ground. Therefore, both
expressions should be true.

Integrands in these expressions are different, because Re (E,H,) # Re (EPH;).
However, this difference does not exclude equality of integrals. The magnitudes of R,
must be equal to each other upon substituting into integrals a magnetic component H,,
of field on the surface of a real ground. For this, when p > L, the magnitude of H,,
must be equal to zero, i.e. the tangential component of the magnetic field on the ground
surface in the far zone must be in phase with the current J(0) in the antenna base.

It is easy to verify that H,, satisfies this requirement only in the vicinity of the
antenna: if p < L, Hyy = J(0)/27p). When p > L, Hyy/H,jg = cotkL, ie, H,, differs
substantially from H,. The experiment confirms that H, coincides with H,, only at a
short distance from the antennas [25]. Let H,,, be different from H, on some complex
value: H,, - H, = M; + jM,. Then one can find the difference of integrands in expressions
for R, in the cases of perfectly and imperfectly conducting ground. Using expressions
(1.75) and (1.82), we obtain that this difference in the first case is equal to

_ 2 12 a2 2
Ay =|Hy| —Hy = M} +Mj + 2H,M,,
and in the second case it is
A, = (H<2plo _Hézo _2H¢10H¢20)_H$ = Mj - M; + 2H (M, + jM,).

The magnitude A; depends on the sum of the squares of the real and imaginary
components of error, and magnitude A, depends on their difference. If M; + jM, is a
by

value of an order exp(—jkp) and b, grows, an integraljAlpdpunlimitedly increases, and
b, by

integral J-Az pdp tends to be zero in proportion to 1/b;. The second version is natural,
by

since the tangential component of the magnetic field on the surface of the real ground

far from the antenna cannot have the character of no damped spherical electromagnetic

wave, i.e. cannot contain summands of order exp(—jkp)/p incoming in the expression

for H .

The authors of [22] attempted to calculate a change of radiated power, caused by
the finite conductivity of the ground. They considered that it is equal to a difference
between the additional power of the generator determined in accordance with (1.77)
and the power of losses in the ground determined by (1.75). This attempt is incorrect,
since within the limits of accuracy of the proposed method the radiated power does
not depend on the conductivity of the ground, and the power of losses in the ground
and the additional power of the generator are identical.

For a radiator, whose feed point is shifted from the middle to point z = /i (Figure 1.11).

_ [J(©)coskz/coskh, 0<z<h,
K@_{ﬂmgnuL—m/gnuL—th3zsL (1.87)
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Figure 1.11 A radiator with a shifted feed point.

The magnetic field on the surface of a real ground

_. ]
_]27tpsink(L—h) 8

{exp (‘jk\/P2 +I )— exp (—jk\/p2 +h? )[cos k(L—h)—-tankhsink(L— h)]} - (1.88)

Substituting (1.88) into (1.86), we find

9

R, .
Z, =4.—°2[F1 +E +j(F -F)l, (1.89)
mTsin® o,

where o, = k(L — h), F; and F, for the short radiator with a small radius a of grounding
are equal to

F =205 [In(L + h/2a)-0.5]+4c oty In(r 1/ doc o), Fy = 0. (1.90)

Here, oo = kL, oy = kh, ay = k(L + h). As is seen from expression (1.89) for the short
radiator, the reactive component X, of the loss impedance has an inductive character and
is equal in magnitude to the active component R,. With growth of & the impedance Z,
increases, since 0 < h < L, and a derivative of Z, with respect to , is positive always.
In the general case F; and F, have a more complicated character [24].

Results of calculating loss resistance in the ground (water) in HF range are presented
in Figure 1.12. It is assumed that the magnitude o is equal to 3 Sm/m. Dimensions
are given in meters. Calculations are made in accordance with (1.89): solid lines—in
accordance with the general expression, dotted lines—in accordance with (1.90).
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Figure 1.12 Loss resistance in water for a radiator with shifted feed point.

The considered example shows that the theorem about the oscillating power changes
significantly the understanding of the processes related with the transfer of power
between the objects.
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Integral Equation Method

2.1 INTEGRAL EQUATION FOR LINEAR METAL RADIATOR

As shown in Chapter 1, knowledge of the current distribution along a linear radiator
allows to determine the electromagnetic field and all electrical characteristics of the
radiator. For this reason, calculation of the current distribution is an important problem
of the antenna theory.

The current J(z) of a dipole creates an electromagnetic field E,(]) satisfying the
boundary condition

E,(a,z)_ +K(z)=0 (2.1)

L<z<L

Here the cylindrical coordinate system is used. 2 and L are the radius and the arm length
of a dipole, respectively, K(z) is an extraneous emf. Current at the radiator ends is absent:

J&L) = 0. (2.2)

Expression (2.1) is the mathematical record of the fact that the full field, which is a sum of
the extraneous field and the current field, is zero on the surface of a perfectly conducting
radiator. The extraneous field is specified usually as the product of potential difference
e between the edges of the gap and &-function. Magnitude K;(z) = ed(z) corresponds to
connecting the generator in the radiator middle, at point z = 0, and Ky(z) = ed(z — h)
corresponds to its displacement, i.e. to connecting the generator at point z = h.

Equation (2.1) contains as in embryo all the integral equations of the theory of the
thin antennas. The external appearance of the equations depends mostly on the selection
of function E,(]). For example, using (1.27), we obtain the integral equation of Hallen
for the current along a filament.

L .
j J(9)Gyde = —L(ccos kz +fsink|z|), 2.3)
J Z 2
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where G; = exp(-jkR,)/(4nR,), R; = |z — ¢|. Using (1.28), we obtain Hallen’s integral
equation for the current along a straight thih-wall metal cylinder (the equation with
exact kernel)

L 2 .
1 e .
ZJL ](g)£ Gydgc = _Zio(ccoskz+§smk|z|), (2.4)

Here G, = exp(- jkR,)/(4nR,), R, = \/(z— o) +4a*sin® /2. The integral equation for the
current along a filament of a finite radius (the equation with approximate kernel) is
widely used:

L
J](g)G3dg= —L(Ccoskz+£sink|z|), (2.5)
4 Z 2

where G; = exp(- jkR3)/(47R;), Ry = \/(z—¢)* +a*. Constant C in each equation is found
from condition (2.2).

Substituting filament field E,(]) into (2.1) in accord with (1.27) and replacing R; by
R;, one can obtain Pocklington’s equation [26]

L 2
_[ ](g)(sz:,; + 88 S
L

. ]dg=—ja)€K(z), (2.6)
which also is the integral equation for the current along a filament of a finite radius.

The first solution of Hallen’s equation with an approximate kernel was found
by Hallen himself and is described in detail in [10]. The solution uses magnitude
Q =2 In(2L/a) = 1/ as the parameter, in inverse powers of which function J(z) is
expanded into a series. By means of a successive approximation method (iterative
procedure) one can obtain the expression

J(2)= - sink(L—|2)+N,(2)/Q+N,(2)/ Q +.
“/60Q " coskL+By(L)/Q+By(L)/ Q% +...

C = Jon(2)/ Q4 Ty (2)/ Q2+ 27)

) e . . e | Ny(z) B, (L)
where Jou(2) =] 60coskL. ™M k(L=|2]), iu(2) =] 60 LoskL sink(L—2)
and Bj(z) are integrals, which can be expressed in terms of integral sine and cosine.

The iterative procedure proposed by King and Middleton [27] yields more accurate
results. The common expression for the current in it is similar to (2.7), but expansion
parameter Q is replaced with Y. For example, zero approximation instead of Jyy(z)/Q
is given by

}. Functions Nj(z)

Jokm(2)¥ = sink(L—|z|)-

e
60W coskL

To find expansion parameter ¥, magnitude y(z) is used. It is calculated as

 Joxau(9) exp(jkR) | 5
°L Joxm (2) R

¥(z) =
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By way Y, the value of y(z) at point z = z,,, where the current is maximum or close to
maximum, was taken, i.e.

v v(0), kL<m/2,
TlwL-A/4)kL>7/2.

Such selection of the expansion parameter is caused by the fact that function y(z) is
proportional to the ratio of vector potential A,(z) at point z on the antenna surface to
current J(z) in the same cross-section. For that reason, function y(z) varies slowly along
the antenna, or more precisely it is almost constant except for the segments near the
wires ends.

2.2 INTEGRAL EQUATION OF LEONTOVICH-LEVIN

The Leontovich-Levin equation [18] played an important part in the progress of the
theory of the thin antennas. If the electrical currents parallel to the z-axis and having a
circular symmetry are taken by a source of electromagnetic field:

J = jez Jz = ]z (2) = const(e), (2.8)

a vector potential A of a field has only component A,, which on the surface of the
radiator model in a shape of a thin-walled straight metal cylinder with circular cross-
section of a radius 4, is equal to

2
M
A, (p,2)= Py JT (z,pdo, (2.9)
where 0
T(z,¢) = J]( p(—]kR)dg,R = \/(z—g)2 +p12,p=\/p2 +a* —2apcos ¢,k = o\[ue

is the propagation constant in the medium surrounding the antenna, w is the circular
frequency, u and € are the absolute permeability and permittivity of the medium
respectively.

If to integrate T(z, ¢) by parts and to use successively the circumstance that the
radiator radius is small in comparison with its length and the wavelength, i.e. if to
neglect by the summands of order of a/L and ka and to keep the summands proportional
to the logarithm of these quantities, we obtain:

L

T(z,0) =-2J(2)In pp; - | exp(~jk|g —2[)In 2plc 2| x

-L

{]@ I(G)sign(c - z)}dg,

where p is a some constant having the dimensions of inverse length. Since at p > a,

2w 2r
Jlnpppl(pz J.lrl(p\/p2 +a* —2apcos p)dp=2rxInpp,
0 0

then
Ap, z) = (W/4m)[-2](2)In pp + V(], 2)], (2.10)
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where

L
V(J,2)= [ exp(-jk|~z|)In2p|z—c[[ K (c)+ sign(z~ )] (¢)/ de

-L

The tangential component of the electric field of the antenna is

") 9’A
Ez(p,z)z—]k—2[k2AZ + az;j. (2.11)

This expression coincides with the first expression of (1.25). Substituting (2.10) into (2.11)
and setting p equal to a, we find:

E,(a,z)=

2 2
{751 [ﬂ+k2]]+‘2—‘;+k2V}- (2.12)
Z

drjwe dz*

Here y =-1/(2 In pa) is a small parameter of the theory of the thin antennas, used in [18].
As is shown in [28], in the capacity of constant 1/p, one should choose the distance to
the nearest inhomogeneity, i.e. the smallest of three magnitudes: wavelength A, antenna
length 2L and the radius R, of its curvature. In case of a straight radiator, the length of
which does not exceed the wavelength, one can consider that 1/p = 2L, i.e.

x=1/[2In(2L/a)] or x=0.5/In(2L/ ae). (2.13)

From (2.11) and (2.12), we obtain the desired equation

2 2
%Jrkz J= —x{zmng K(z)+%+k2V} . (2.14)

This equation together with the components, which contain the extraneous emf, the
current and the current derivative, also has the element incorporating the integral
V(J, z) and its derivative. It is known that one concentrated emf cannot create the
sinusoidal current along the dipole [29]. The mentioned element is the additional emf,
which depends on the current of the antenna. This emf is distributed along the antenna
and takes the radiation into account.

The meaning of manipulations performed during derivation of (2.14), firstly, is that
a logarithmic singularity was set off. The function A, in expression (2.10) including
integral V(], z) is a continuous function everywhere in contrast to the original integral
(2.9). Another important advantage of the equation (2.14) is the absence of an argument
@, since the integration with respect to ¢ has been executed. Nevertheless, this equation
is derived for the current along a straight thin-wall cylindrical antenna, and equation
(2.14) is equivalent to the equation of Hallen with exact kernel.

In [18] in order to solve the equation (2.14), the perturbation method is used, i.e.
the solution is sought in the form of expansion into a series in powers of the small
parameter y:

J(z) = Jo(2) + x1(2) + )(2]2(2) + ... (2.15)

Substituting this series into the equation (2.14) and equating coefficients of equal powers
of y, we obtain, in the case of an untuned radiator [when Jy(z) = 0] the set of equations:
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4 ]1(z) +k?J,(z) = -4njweK(z), J,(xL)=0,
2
il]n +Kk2], =—4mjoeN(], ), J,(*xL)=0,n>1, (2.16)
Z
where
2
arjoen () =-| D v,z |

In the first approximation the current at an arbitrary point of the radiator is

Li(z) =] sink(L—|z|)- (2.17)

_°
60coskL
It is easy to make sure that the input impedance of the antenna in this approximation is

Za = —j60 x! cot kL. (2.18)

It has only the reactive component. It coincides with the input impedance of the
equivalent long line, whose wave impedance is equal to 60/y. The expression for the
antenna current in the second approximation, derived using this procedure for an
arbitrary point of the radiator, is given in [19].

Another solution of the set of simultaneous equations (2.16), which was published for
the first time in [30], is described in the book [19]. This solution gives the opportunity to
clarify some questions of the theory of thin antennas. When n > 1, if the value W (], )
is known, one can use the method of variation of constants. The result is:

X
j—F—X
X ]n( ) 3051n2a

L z
{sink(L+z)J.W()(”1]n_1)sink(L—g)dg+sink(L—z) f W(;(”ljn_l)sink(L+g)dg}.
z -L

We find magnitudes W (y""'],_;) by substituting n first members of the series (2.15) for
the current into (2.12):

E. (Z]l) = -K(z) + W (%]1)/ E, (%n ]n) = _W(Zn_l ]n—l)+ W(ln ]n)/ n>1,

i.e.
E, (Z J("]m] = —K(2)+W(Z'],,)-
Then il
X@=ig5— {smk(Ln)j[K(mE [Zx'”]mﬂsmk@ Qg+,
m=1

z n-1
sink(L — z)_[ [K(g) +E, ( ", J]sin KL+ g)dg} : (2.19)

L m=1
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In particular, if n = 2,

L
Pl (2) = jmflza{sin k(L +z) J' [K(¢)+E (x]y)]sink(L— g+

sink (L—z) j [K(6)+E.(x]y)sink(L + g)dg} : (2.20)

-L

Here o = kL. The equation (2.19) allows finding term n of the series (2.15) for the current
and accordingly nth approximation, if (n-1)th approximation is known. Equation (2.20)
allows finding the second approximation for the current at any point of the radiator.
For this purpose, as it follows from (2.20), it is necessary to calculate the field of the
current found in the first approximation.

As is seen from (2.16), when calculating the second and subsequent terms of the
series (2.15), one can consider that the current of the radiator is concentrated on its
axis. The accuracy level, accepted in derivation of equation (2.14) (accuracy of order of
a/L) is retained. This circumstance simplifies essentially the calculation based on the
recurrent formulas.

Expression (2.20) allows to calculate the second approximation for the input current.
It depends on the first approximation (2.15), which in accordance with (2.17) at a point
z = 0 is equal to

_ e%tan(x 221
201(0) = 50 (2.21)

The second term of the series in accordance with (2.20) at this point is

X1 0)=j= — smaj [K(Q+E () Jsink(L~Id)dg = 2 (0)+ 2] (0)- (222)

This value consists of two summands corresponding to two elements in square brackets.
It is seen that the first summand is equal to xJ;(0). The second summand with allowance
for (2.21) is equal to

L
Pl = [ El)h©ds == 20 Z e2)
-L

where the value of Z,, coincides with (1.50), i.e. Z,, is the known expression for the
input impedance of the dipole, which was obtained by method of induced emf (second
formulation). In order to refine this expression, one must substitute in the integral the
field of the current yJ; on the radiator surface

E.Cdh) =

302)1(0)e| exp(=jkRy) _exp(=jkRy) , exp(-jkRy)
jsina R, R, Ry

where R, =+(L-¢)* +a*,R, =[(L+¢)* +a* R =\/g2+a2. The result is
1 2 0

2% J1(0)e

X ]22( )= o

Y1 +Y, -2Y,cos) -
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texp(=jkR,,)
Here, Y,, = _[epR#sin k(L-¢g)dg. In particular
0 m
v _1 j-exp(jk(—R1 +L—g>)_exp(jk<—R1 —L+g>) i
17 o) ) R, R, ¢

Integral Y; consists of two integrals. Applying in the first integral the substitution
t = —R; + L — g and in the second integral the substitution u = -R; — L + ¢, we obtain

—a . —a .

Y. _% J' expt(]kt) g+ J' exp(jku) dul=
u

J L—I[*+a® ~L—*+a

.k 2
%{ZEi(—jka)—Ei(—%)—Ei(—jZkL)}.
Results of the integration contains terms with arguments of the order of kL and with
small arguments of the order of ka and smaller. If an argument x is small,
Ei (jx) = Cix + jSix = In yx + jx,
where In y = C=0.5772... is Euler’s constant. Summarizing the integration results gives
2
P10 =-E 1 [0) 1 ) @24
sin 2o
where ®(0) = % [Ei(-4jo) — 2Ei(-2jor) + Inyo] + 2In2yo — 2Ei(-2ja) — 2j sin2oIn(L/a),
and the small magnitude A is equal to

A= j| -4ka+ka® /(2L) - [ 2ka — 3ka? /(4L) |cos 20 - 3ka® sin 201/4L |

Calculations show that as a rule A < ®(a), i.e. the value of A may be neglected:
Z a0 = 30 @(ar)/sinor (2.25)

The comparison shows that, if the value of A is neglected, then one can use the
expression (2.23). The reason for this coincidence will be explained later. But at first it is
necessary to show the consequences, which are follow from this result. In accordance with
(2.15) and (2.20) — (2.25), the input current of the antenna in the second approximation is

(2.26)

30A

J(0)= 2x11<0>—x2h2(0>[on to ]
sin” o

This means that the input impedance of the antenna in this approximation is equal to

30
X RecD/(4cos2 a)+j[ytana+)(2 Im<I>/(4cos2 a)}

Zyo =e:[22],(0)-30°®(a0) ]} (0)/sin® or | = . (2.27)
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2.3 INTEGRAL EXPRESSION FOR CURRENT AND EMF METHOD

Let us return to the expression (2.25). In accordance with (2.15) the input current of no
resonant radiator in the second approximation is equal to

J(0) = +x1(0) + x°]50),

and x?,(0) << xJ1(0), if J;(0) # O. Taking this inequality into account, one can write in
a first approximation:

m«»} 1 [_;ﬁz(m}, (2.28)

R
7(]1 (0) 2J1(0) 2J1(0) 2J1(0)
As is shown in Section 2.2 — see (2.22),

2°15(0) = 21(0) + 2°T(0)
Substituting x?J,(0) into (2.28), we find

Zp2 == O/ | XTFO)] (2.29)
where, as it follows from (2.21) and (2.23),

P la0)=j % jE(xh)smk( ~Id)ds (2:30)

It is seen that the substitution (2.30) into (2.19) gives an expression identical to (1.50),
i.e. identical to the second formulation of the method of induced electromotive force.

Thus, when [;(0) # 0, the integral formula for the dipole input impedance derived
by the method of emf coincides with the integral formula obtained as a result of solving
integral equation of Leontovich-Levin. The identity of integral formulas explains the
known fact of coincidence of input impedances (in the second approximation) calculated
by the two methods and expressed in terms of tabulated functions.

As it is known, the solution of Leontovich-Levin equation gives in the area of
the parallel resonance of the antenna the finite magnitudes of the active and reactive
components of the input impedance. The method of emf in contrast to the integral
equation gives infinite magnitude of the input impedance. Really, in accordance with
(2.25), if a tends to nm, where n is natural number, then sin « tends to zero, and the
input impedance Z,, grows indefinitely, i.e. this method leads to incorrect results.

The opposite situation occurs in the area of the serial resonances of the antenna,
when o = (2n + 1)m/2 It is easy to see that in this case the magnitude of the input
impedance including the active component in accordance with the expression (2.27) is
equal to zero. In this regard, it is expedient to proceed from (2.25). A reason of that is
an approximate nature of expression (2.27) in the area of serial resonance.

Essentially, both formulas—(2.25) and (2.27)—give more accurate results in one area
and have an approximate nature in another area. This allows to offer on the basis of
both formulas a general expression that gives high and approximately identical accuracy
in both areas:

T—o o-rm/2
+ Zp- (2.31)
w/2 S w/2 P

A=
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Here Zg is the impedance, which is calculated in accordance with (2.25), Zp is the
impedance, which is calculated in accordance with (2.27), /2 is the value of kL at the
point of the serial resonance, 7 is the value of kL at the point of the parallel resonance,
and « is the value of kL at an arbitrary point. As can be seen from this expression, when
o changes from /2 to & the value of the first term uniformly decreases from Zg to zero,
and the value of the second term increases uniformly from zero to Zp.

Figure 2.1 shows the active and reactive components of the input impedance of a
symmetrical cylindrical radiator (dipole) depending on the arm length. Components
of the input impedance calculated in accordance with expression (2.31) are marked

by number 1, in accordance with (2.25)—by number 2, in accordance with (2.27)—by
number 3.

R AN Ohm
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Figure 2.1 Input impedance of a symmetrical cylindrical antenna: curve 1—in accordance
with (2.31), curve 2—in accordance with (2.25), curve 3—in accordance with (2.27).

Calculations were made for the radiator with the parameter y = 0.1, ie. for the
antenna with the rather great transverse dimensions. This choice of a small parameter
allows more rigorously analyzing the described procedure. Comparison of the received
results with the results of the application of the Moment method shows good agreement
of a form of the curves and components of the input impedance. The only difference
is that the curves obtained by the Moment method, have a weak shift of resonances to
side the lower frequencies.

The calculation results are compared in Table 2.1 with the results presented in [16].
Input impedance is given for four variants of the arm length. It is assumed that the
radius of the antenna is equal to 0.01 wavelengths, i.e. it varies with the frequency. Such
parameters adopted for ease of comparison of the input impedance with results of other
authors collected in [16]. The values presented in this article in accordance with (2.31),
are given in Table 2.1 as the results of solving equation of Leontovich-Levin.

The methods used by different authors at different times have been seriously
substantiated. The equation of Leontovich-Levin is the most rigorous variant among
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integral equations of the theory of thin antennas. Unfortunately, for a long time it was
in the shadow of other well-known equations. It is necessary to show that this equation,
which was created by our predecessors, has not lost its value. Small changes of methods
of solving this equation allow to obtain new rigorous results.

The method, which was employed for calculating the input impedance of dipole
in the second approximation, allows to calculate the current distribution in this
approximation:

307272 (0
X]l( ) ( —|t|)— S?ifngloi )

J(2)=2x]1(2)+ 1] (2) = O(t)sin(or+1)

where ®(t) = —Ei(-2jo) + Ei(-2jt) - Ei[ 2 j(a— 1) ]

+e* [Ei(~4jor) - Ei(=2jr) + Ei(=2jt) — Ei[-2j(er + )]} + In[2y0c (0 — £) / ]+ 77 In(er + £/ 2t),(2.32)

and t = kz.

Table 2.1 Input Impedances of Cylindrical Dipole

Arm length
Method
A/8 A4 31/8 A/2

Equation of Hallen, first approximation 19.4-j359 | 80.4+j35.7 | 268+j526 |1685-j1357
Equation of Hallen, second approximation 16.0—j240 |87.3+35.7 | 437+j318 | 559-j599
Solution of King-Middleton, second approximation | 14.0-j166 |92.5+j38.3 | 543+32.2 | 177-j339
Storer’s approximation 11.6-j185 | 101+j32.8 | 566+j3.1 | 290-j363
Method of emf, second formulation 13.4-391 |73.1+j42.5 | 386+j533 0
Equation of Leontovich-Levin 13.4-391 |73.1+j42.5 | 334+j520 | 1296816

24 INTEGRAL EQUATION FOR TWO RADIATORS

Generalizing the Leontovich-Levin equation, one can write similar equations for the
currents in the system of several radiators, i.e. in antenna array. Consider two parallel
symmetrical radiators of different lengths, displaced axially relative to each other
(Figure 2.2). In accordance with (1.25) and (2.11), if electrical currents J;(0) and Jj;(¢)
flow along the radiators, they create the field

2, [ OA
K2A,
]kZ[ +azzj

In accordance with the superposition principle
AZ = Azl +A22.

Model of each radiator is a straight thin-wall circular metal cylinder with radii a; and
a,, respectively. The vector potential of the field created by the current of the cylinder is
calculated with the help of (2.9), and distances R; and R, between the observation point
with coordinates (p;, ¢, z) and integration points (a;, ¢, 0) and (a,, v, ¢) are calculated
in accordance with the explication to this expression. If the observation point is situated
near the surface of a first radiator, then at
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ap, a, << d, (2.33)
where d is the distance between the axes of the radiators, one can say:
h+L,
Ao = [ In(©exp(-jkRy)/ Ry dg Ry = (2= 97 +” (2:34)
h-L,

Vector potential A,;, as in the case of a single radiator, if p; is small, has a logarithmic
singularity. If this singularity was set off, then

An(ay,2) = [ h@+V(h,2)] (2.35)

Here y; = 1/[2 In (2L;/a;)] is a small parameter, and V(J;, z) is the integral, expression
for which is presented in Section 2.2. Vector potential A,, has no such singularity, since,
if the assumption (2.33) is true, the distance R, is not small at any ¢: Ry, = d — p; — a,.
Accordingly, the tangential component of the electric field created by current J; contains

a large magnitude of order of x;':

4rjwe dz?

E.(J),01,2) = — {xf{d ThE 2y )} (’1”+k2vu1,z>} (2.36)

and field E.(Jj;, a1, z) created by current J;; of the second radiator on the surface of the
first radiator does not contain large component for reasons given above.
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Figure 2.2 System of two parallel radiators.

A boundary condition, similar to (2.1), must be met on the surface of the first
radiator:
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Ez(]]1a1/Z)+Ez(]H/allz)LLSZSL +K;(2)=0, (2.37)

where K((z) is an extraneous emf. Substituting (2.36) into (2.37), we obtain the equation
for Ji(z):

I 421, = xjacs (K, + WU, 9+ E- O, ) 239
where 4mjweW(J;, z) = d*V(],, z)/dz* + K*V(],, z), and J}(+L,) = 0.

The right part of this expression contains three components in square brackets:
the first component is the exciting emf, the second component is emf which takes the
radiation into account, and the third component is emf caused by influence of the
second radiator.

While solving the equation (2.21), we present the currents Ji(z) and J;(g) in the
form of series in powers of small parameters X1 and 22, respectively. Since functionals
W(;, z) and E,(Ji;, a1, z) are linear, they can also be presented in the form of similar
series. If 21 and X2 have the same order of smallness:

X~ X (2.39)

then the equation (2.38) for not resonant radiator reduces to the set of equations, which
is a generalization of the set (2.16), written for a single radiator:

4’ j
‘;Il;lz(_Z) +k*J}1(2) = -4mjweK, (2), Jn(#L) =0,
) n-1
d 21”2(2) +k?J1,(2) = —4ﬂ]ws[W(h n- 1)+[j§2 j Ez(fﬂ,n—l)]ffln (#L,)=0,n>1. (240)
1

As it follows from the first equation of the system (2.40) for the radiator excited by
concentrated emf Ki(z) = ¢;8(z), its current in the first approximation in the presence of
the second radiator also has a sinusoidal nature:

. e ,
aln(2) = ]#smk(h —|2))- (2.41)

0coskL,

If n > 1, then, in accordance with (2.40), using the method of variation of constants and
considering that magnitudes W(J;, ,,.;) and E;(Jy, ,.1) are known, we obtain

L
1 (@)= 55 2L sink(Ly +2) [ [W (711 ) + Eo (237t sin k(L ~0)do+
1
sink(L, - z) j W] (it 1t )+ Eo (25 it ) [sink(y +0)do (2.42)

Substituting of the first terms of the series for current J/(z) into the expression (2.36),
allows to find magnitudes W( )({HIL,H):

E.(aJn) =-K;(2)+W(aln)
E, (Jﬁnhn) = _W(Zln_lh,n—l)_Ez (Xg_lfn,n—l)JfW)ﬁ]ln )n>1,
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i.e.
n n—1
E{Zx{"h,m]=—I<1<z>—Ez(Zx;"hf,m}wu?hn). (2.43)
m=1 m=1

If to replace n in (2.43) by (n — 1), to calculate magnitude W(y}™ Ji n-1) by means of
obtained expression, and to substitute it in (2.42), we find the member n of the series
for current. In particular, if n = 2,

L
Z%hz(z) = jmgﬁ—lzm{sm k(Ly +Z)f [KI(O')+Ea(%1]11)+Ea(762]111)]Sin k(L -o)do +

sink(Ly ~2) [ [Ky(0)+Eq(iJn) + Eq ()i Jsin (L, + 0)dor - (2.44)
-L

Equation (2.44) allows finding the second term of the series for the current at any
point of the first radiator. For this purpose, as it follows from (2.44), it is necessary
to calculate the fields of the currents in the first approximation. From (2.44), it is
see also, as a matter of course, that the magnitude of the second term of the series
depends on the geometric dimensions of the second radiator and on the relative position
of radiators. In the general case, the expression (2.42), after substituting into it the
magnitude W(y}™'J 1 n—1) permits to find the member 7, if the currents of both radiators
are known in approximation (1 — 1).

From the set of equations (2.40) it follows that, when calculating the second and
subsequent terms of the series, one can consider that the current of the first radiator
is concentrated on its axis. Also, from (2.34) it follows that the current of the second
radiator also is concentrated on the axis. And the accepted in derivation of the equation
(2.21) accuracy level (accuracy of order of a;/L,) is retained. This circumstance simplifies
essentially calculating members of the series for the current based on the recurrence
formula, in particular the calculations of the terms n and (n — 1), since this formula
allows calculating these fields as the fields of the filaments. As a result, calculating the
second term of the series for the current of the single radiator, based on using expression
(2.44), is simplified, since one can use the expression (2.41) as the first term.

It is interesting to compare the results of solving Leontovich-Levin equation for
one and two radiators with solutions obtained by the induced emf method. The input
impedance of the first radiator is

€
[Zx?h,qm)]
n=1

Ll
1 - -
where x'J,(0)=— J I:KI(()')+EG( n 1))+EG( { 1))] W(o)do. Here for simplicity the
€
,Ll
following designation is used for the current of first radiator in the approximation n:

1@ =Y 2 im.
m=1

Zy=¢e/](0)= (2.45)



40 Antenna Engineering: Theory and Problems

The input impedance in the approximation 7 is equal to

() _ il . (2.46)
A 0)+ 271,(0)

Let us write the first component of the denominator in the form

Ll
0= [ K@) (0)do.
e

Factor ]fl)(a) in the integrand of the second component of the denominator can be
replaced with J{"V(c), i.e. one can add the terms of higher order to the component of
the first order of smallness. Since the polynomial in square brackets of the integrand is
a magnitude of (n — 1)th order of smallness, as is easily seen from (2.43), the addition
of terms of higher order does not change the accepted accuracy level. Hence,

Ly
IO =IO [ [Eo (107 £ (7)1 0o
_Ll
As a result, we obtain
ZXII) = <
L
{215”‘”(0>+:I_jL[EG( ) (170) ] (o)do}‘ 24

One can rewrite the expression (2.28) as

s _ & /P+ﬁmmq~ e P_ﬂmmq,
oL o)

- oL 1)
J D0y =0, (2.48)
then
| 250 = e [[0 - 21, 0]/ 10O ],
1.e.
L
2t J (B (0 )+ B (1572) 1" (0o (2.49)

[ﬁn_l) (0)] L

This expression generalizes the expression (1.50), which was presented in Section 1.4
and is called the second formulation of the induced emf method. In (1.50) the sinusoidal
distribution of the current along the radiator is used to calculate the input impedance in
the second approximation with respect to . The (n — 1)th approximation for the current
in the form of (2.49) permits calculating the input impedance in the nth approximation
with respect to y. The equation (1.50) is applicable only to a single radiator, whereas
equation (2.49) is true in the presence of the second radiator too. The expressions (2.47)
and (2.27) allow to write expressions (1.69) and (1.70).
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Comparison of these results with results obtained by the induced emf method allows
to draw the following conclusions:

The integral formula of the induced emf method for the radiator input impedance,
if the condition (2.48) holds, coincides completely with the integral formula obtained
from the solution of the integral equation.

Really, if to take the expression (2.41) as the first term of the series (2.15) and further
to perform the transition from the input current to the input impedance of the radiator,
which is similar to the transition from (2.45) to (2.49), the result will be identical with the
result of calculation performed by the induced emf method. Since the condition (2.48)
at the point of a parallel resonance for the sinusoidal distribution of the current is not
met, the method of emf gives incorrect results near that point. Resistance and reactance
will be increased indefinitely, while the measured values of the input impedances will
remain finite.

The derivation of (2.49) uses conditions (2.33) and (2.39). The fulfillment of the
conditions is necessary to avoid possible mistakes.

The first formulation of the induced emf method can be reduced to a form similar
to expression (2.49):

Ly

75 = % J 1B (0)+ B0 (152) I (0)dor (2.50)
o) 1,

As it is shown in [19], this expression is obtainable by the direct transition from (2.49).
But for that, the equality ]51)(0')=—]{1)*(0') must be accomplished. In accordance with
this equality, the current should be purely reactive, i.e. there should be no losses in the
radiator and in the environment.

From the foregoing it follows that in the analysis of the methods of calculating
characteristics of the antenna it is necessary to take into account that in the second and
subsequent approximation the current along the antenna wire contains not only reactive
but also active component. The method of induced emf is equivalent to the analysis
of the antenna in the second approximation. The discussion, devoted to the first and
second formulations of this method, considered the question of the solution stability in
each of these formulations. Stability of the solution using the second formulation was
immediately proven. One well-known specialist presented a proof of stability of the
solution using the first formulation. The error of the published proof consisted in that
the author proceeded from purely reactive magnitude of the current.

2.5 INTEGRAL EQUATIONS FOR COMPLICATED ANTENNAS

The previous sections were devoted to integral equations for the currents along straight
metal radiators. Antennas with distributed and concentrated loads are more complicated
variants of radiators. An antenna in the form of a metal rod coated by a layer of magneto
dielectrics (Figure 1.54) is an example of a radiator with distributed load. In contrast to
(2.1), the boundary condition on the surface of a dipole with distributed load is given as

E,(a,z)+K(z)

Hyaz =26 —

where E.(a, z) and H,a, z) are the tangential component of the electric field and the
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azimuthal component of the magnetic field, respectively, and Z(z) is a surface impedance,
which is in the general case dependent on coordinate z. The boundary condition of such
kind is valid, if the structure of the field inside one medium (e.g., inside a magneto
dielectric sheath) is independent of a field structure in another medium (ambient space).

If boundary conditions (2.51) on the antenna surface are valid and the surface
impedance substantially changes the distribution of current along the antenna already
in the first approximation, the antenna is called an impedance antenna.

In accordance with the equivalence theorem, one can, when calculating the field,
replace the radiator by the field on its boundary, and afterwards use only the field as
source of the signal. On the other hand, for clearness and simplicity, it is expedient to
metallize the antenna surface. Surface density j; of the electric current is related to

magnetic field strength H as js = [EP,FI ], where ¢, is the unit vector in the p direction,

i.e.

p
H(a,2) = j.(2) = ](z)/ (270), (2.52)

where [(z) is the linear current along a metallized antenna (it is equal to the total radiator
current).

The tangential component of the field is determined by the expression (2.36).
Substituting (2.36) and (2.52) into (2.51), we obtain the equation for the current along
an impedance radiator:

e ](ZZ) TE() = —4ﬂjw8x[ K(2)+W(,2) _w} (2.53)
dz 2o

which should satisfy the condition (2.2). Three components in the right part of the
equation correspond to the exciter emf, to the radiation, and to the presence of the
distributed load, respectively.

As before, we shall seek the solution as a series in powers of small parameter ¥,
presenting the surface impedance as 2jkZ(z)/(aZy) = x'U. That allows obtaining the set
of equations for the not resonant radiator:

2
ThD 4k )= —dmjoeK@),  J(EL)=0,
2
%+ k2], (2) = ~4mj0eW (], 1,2, o L) = 0, > 1 (2.5

Here ki =k* ~U. If both components are of the same order of smallness, the surface
impedance substantially affects the distribution of current, and one may attribute to the

magnitude k; = \/kz —j2kxZ(z)/(aZ,) the meaning of a new wave propagation constant
along an antenna. From the first equation of set (2.54) it follows that the current,
distributed along the antenna, has in the first approximation sinusoidal character

) k ye .
i X ik (L-l2|). 255
21(2) =] 60k cosk L " 1 (L=12]) (2.55)

Ratio ki /k is usually referred the slowing.
Solution of the equation for J,(z) of the set (2.54) allows to find the current in the
second approximation, to determine the active component of input impedance and to
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define more precisely the magnitude of reactive component. If to use the integral method
of solving the equation described in Section 2.2, the additional component

N
Z/@ra) Y Z"i'(2)

m=1

will appear in the right part of expression (2.43). If the condition (2.48) holds, then, by
analogy to (2.49), we find for the single radiator

Ly

(n) _ _ 1 n— Z n— n-1)
- [0 ] {EZ(]( ")) D}] (2)tz: (250

This expression generalizes the expression (1.50) written in accordance with the induced
emf method.

A radiator with constant surface impedance is a particular case of a radiator with
impedance, changing along the antenna. Let, for example, emf be located in the radiator
center, the radiator be symmetrical and consist of 2N segments of length [,. Surface
impedance Z™ is constant in each of them (Figure 1.5b). The equation for current J,,(z)
along the segment m of a radiator takes the form

2 (m)
d ;mZ(Z) N J&Z |y <a<h, @57)
7 27

Jn(z) = —4rjoy K(z)+ZW(L,z>—

i=1

Considering that the impedance affects essentially the current distribution in the first

approximation, one can introduce propagation constant k,, = \/kz — j2kyZ\™ /(aZ,) on
each segment and write the current as a series in powers of small parameter y to obtain
the set of equations:

d ]ml(z) +k2 ] (2) = —4mjweK(z),

4] (2)
d";’é +k2]mn(z)——47r]w£zw Jin-1/2 ) a1 <z<b,,n>1. (2.58)
i=1

The current and the components of the series for current are continuous along
the radiator and absent at its ends. From the first equation, it follows that the current
distribution along each antenna segment has in the first approximation a sinusoidal
character. In order to find the law of distribution of the current along the entire radiator,
it is necessary to complement condition of the current continuity on the segment
boundaries by condition of the charge continuity, i.e. by equality of derivatives of the
current on the left and the right side of each boundary. This condition means continuity
of voltage along the entire radiator, except the point of the generator placement.

The above-mentioned conditions allow expressing the amplitude and phase of the
current at any segment through the amplitude and phase of the current of preceding
segment, and, therefore, through segments’ parameters and one of the currents. The
current distribution along the entire radiator coincides in the first approximation with
current distribution along a stepped long line open at the end. For the symmetrical
radiator excited at the center, the current distribution is determined by the expression
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(1.61). If the condition (2.48) holds, the expression for the input impedance in the
approximation n with respect to y takes the form

2N Dy

20 =-[150] Y, [{E DS ]-2087 /@ral 1 V@, @259

m=1p,

m+1

i.e. the expression (1.60), obtained by the induced emf method, is generalized.

In the course of researching the radiator with the impedance, which changes along its
length, the issue of rational changing the surface impedance along the antenna with the
aim of improving matching of the antenna with a cable arises obligatory. The analysis of
the problem shows that at a fixed frequency of the first resonance, the surface impedance
must be concentrated at a small antenna segment near the generator. A typical wire
antenna with an extending coil in the base meets this requirement.

An example of a radiator with concentrated load is given in Figure 1.6a. The integral
equation for the current in such antenna is easily derived from the equation for the
current in a metal dipole. The connection of concentrated complex impedance Z, in a
wire (at point z = z,) is equivalent to connection of additional concentrated emf ¢, =
-J(z,)Z,, which produces the extraneous field

En = _](Zn )Zn 5(2 —Zy ) (260)

The boundary condition for the electric field on the radiator surface with N loads will
has the form

N
E.(@,2)| 1o +K(2) = Y J(2,)Z,8z-2,) =0, (2.61)
ie. n=1
&J(2) -
— 5 tk(2) = ~4moer| K(2)+ W(J,2)- 2 1(z,)Z,8z-z,) | (2.62)
n=1

If the radiator is symmetric and loads Z, placed in both arms are identical and
located at identical distances z, from the coordinates origin, it follows from (2.61) that

N/2

<z +K(z)— 2](2 [ &z—z,)+ &z +2,)]=0. (2.63)

N=1

E,(a,z)

For example, Hallen’s equation (2.3) for the current along a filament takes the form

1 N2
J‘](g)Gldg——L{Ccoskz% smk|z|——2](z )Z,, [s1nk|z z,|+sink|z+z, H}
L n=1

This equation was used in paper [31]. If the radiator has only one load Z; connected
in the wire (at point z = z,), it follows from (2.62) that

I 1212) = rjag )+ W)~ )21z 20)] (264
Z

Three components in the right part of the expression correspond to the exciting
emf, the radiation and to the presence of the load, respectively. We seek the solution
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as a series in powers of small parameter y, which allows obtaining the set of equations

dh(z’+k2h<z> ~4rjwe[K(2)- 11(Z)2,8 (2= 2)] (1) =0,

d*J,(z)
d" +k°],(2) = —4rmjwe[W(],_1) - x],(2)Z,8(z—2)) ], ], (L) =0,n>1.  (2.65)

The equations were written provided that Z; has the magnitude of order of 1/, i.e.
it is comparable with the antenna wave impedance. The solution of the first equation
for the particular case when the antenna feed point is displaced from the center, i.e.,
K(z) = ed(z — h), takes the form

2h(z) =]
Xe lez

90051r1 2kL Z; +

e . .
msm k(L+y,h)sink(L—9z)

sink(L + %z, )sink(L + 13z )sink(L — yzh)sink(L — y1z),  (2.66)

where

- 30sin 2kL {+1 7 <z, y {+1,h£z, ={+1,h2z1,
xsink(L+zl)sink(L—zl)' 1,zy>z, /2 7 |-1,h>z, /3 -1,h<z.

The solution of the equations for J,(z) at n > 1 may be found by replacing magnitude
K(¢) in equation for J;(z) by W(J,_1). If we take into account (2.66), we get at the excitation
point:

L
1 -
2100 = [ W (0 2 (<s
-L
If to use an equality of the type (2.43), in which the additional component in the form

D 7228z -2)
m=1

appears in accordance with (2.64) due to the concentrated load Z;, then from this equality
one can find magnitude W(y"'J,;) and substitute it in y"J,(h). If the condition (2.48)
holds, then, by analogy to (2.49),

n 1 n— n— n—
qu)z W{IE ]( 1))]( 1)(0.)(1(7 Zl[]( D(Z )] (2.67)

This expression at Z; = 0, h = 0 coincides with (2.49) in the absence of the second
radiator. As is seen from (2.67), if a concentrated load is connected in the antenna
wire, then a free member, proportional to the impedance magnitude and the square of
the current at the point of connection, appears in the formula for Z, together with the
integral. The addition of such member does not contradict the logic of the induced emf
method. The expression (2.67) generalizing the expression (1.65), corresponds to this
method. In the case of several (N) loads with magnitudes Z,, located at points z = z,
(see Figure 1.6b), we come to the expression generalizing the formula (1.58).
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Therefore, the solution of the integral equations for currents in antennas of different
types confirms and defines more precisely the results determined by the method of
induced emf when its second formulation is used. The conclusion is true also for
radiators made of several parallel wires. They are considered in Chapters 3 and 4.
The results of using the theory of the impedance antennas and of the antennas with
concentrated loads are considered in Chapter 5.

2.6 INTEGRAL EQUATIONS FOR A SYSTEM OF RADIATORS

In Section 2.4 the system consisting of two radiators was analyzed with the help of
the integral equation. The expression (2.49) of this Section shows clearly that an input
impedance of a radiator in the system is equal to the sum of the self-impedance Z” in
the approximation n with respect to y and the additional impedance, equal to a product
of the mutual impedance Z{") of radiators and the ratio of currents at centers of radiators.
By analogy, in the case of several (Q) radiators, the strength of the electric field on the
surface of radiator p is

Mzo

E,(J,), (2.68)
g=1

where E,(J,) is the field along the radiator p, created by current ], = J,(0)f,(0) of the
radiator g, f,(0) is the current distribution in the radiator g. The oscillating power, created
by the radiator p with current J, = ],(0)f,(0) in all radiators, is

4

B, :_2 f E,(J,)],(0)f, (o),

9=1-1,

Q L

i.e. the input impedance of the radiator p is
Q
/0
s J,, 0 "2 Jp<0>

q=1

(2.69)

L
P
where Z,, =- '[ E,(f;)f,(0)o is the mutual impedance of the radiators g and p.
_L}?
In the notation system adopted in Section 2.4, where the order n of smallness is
taken into account, this expression is given in the form:

Z(n) — (n 1) (0) zjgn 1)(0) J. (n 1) (n 1) (G)dO‘

Multiplying the current of the source into the input impedance of radiator, we obtain
the magnitude of emf, located at the center of radiator p:

Q
ey =1,(0Z, = Y J,(0)Z,,,p=1,2,Q. (2.70)

g=1
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This is Kirchhoff’s equation for a close circuit. According to the equation, the emf in the
circuit is the sum of the voltage drops on the elements. Since the equality is true for each
radiator, then really the complete system of equations is written by one formula (2.70).
The expression (2.70) is identical to the equation (1.73), written in accordance with the
logic of the induced emf method.

Note that (2.70) corresponds to the connection of circuit elements with each other
in series (see Figure 1.8). The circuit of connection in series is employed widely in the
analysis of radiators system. The input impedance of each radiator is calculated usually
in accordance with expression of the type (1.50). For this reason, the connection in series
is true for the system of radiators with the arm length smaller than 0.44. At higher
frequencies near the parallel resonance it is expedient to use the connection of circuit
elements in parallel. Here, the input impedance is calculated in accordance with an
expression of the type (1.69).

In spite of seeming diversity of the described methods, they have a common essential
disadvantage. They are developed for specific radiators and possess no flexibility and
freedom for the analysis of arbitrarily constructed radiators. The method, which allows
analyzing a wire structure consisting of straight segments located arbitrarily and
connected partially with each other, offers in this context much greater possibilities
(Figure 2.3a). It is considered that current flows along thin, perfectly conducting filaments.
Two segments of a filament are shown in Figure 2.3b. The distance from point O, of the
segment p to element ds of the segment s is

R=|7, +pe, -7, - sé, ]pzo, 2.71)
where 7, and 7, are radii vectors from the coordinates origin to points O, and O; of
the corresponding segments, p and s are coordinates measured along the segments and
and ¢, are the unit vectors, directions of which coincide with wire axes.

a)

€p

Figure 2.3 An antenna, consisting of several straight segments (1), two straight segments (b)
and curvilinear variant (c).

Let us write for the current along the segment S: j, = j (s)é,. According to (1.21),

5

A= A(Go)es = e [ J(s)Gads,
S

where S; and S, are the coordinates of the beginning and end of the segment s on the
s-axis. In order to find the vector potential of the total field, one has to sum up the
vector potentials of fields of all segments:
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_ N = ~ N
A= ZAsn (]s) = ZAsn (jsn )ésn' (2.72)
n=1

n=1
where 1 is the segment’s number, N is the number of segments, and

Sn2
Aq(o) = 1 [ J(5,)Gadts,
Snl
In accordance with (1.20) and (1.21), the field of the segment S at point O, is

S,
~ 1 . R
E,(O,)= ]E 5[ ](s)[k2G3eS + graddiv(G;e, )J ds-

The differentiation in the last term is performed with respect to the coordinates of the
observation point. Since in the rectangular coordinate system the distance between the
observation point and the integration point is equal to

R=\/(xp _xs)2 +(yp _ys)2 +(Zp _25)2’

where Xy Yp Zp are the coordinates of the observation point, and x,, vy, z; are the
coordinates of the integration point, then as a result of symmetry grad,G = —grad,G
(here the differentiation is performed with respect to coordinates p and s). Taking into
account that in accordance with the gradient definition é,9rad,G =0G/ds and using the
mathematical identity div(Gé,)é,gradG, we find div,(Geé;)=-dG/ds, i.e.
17 G
7 _ 24 5 3
E(O,)= ]E ) ](s){k Gs¢é, +grad, (gﬂ ds.

The projection of the field of wire S onto direction p is calculated as a product of E; O,)
and é,:
P

5
- | 2o 0°G,
Eps = Es (Op)ep = ]E:J](S)|:k G363€p —% dS, (273)

and the projection of the complete field is the sum of the field’s projections of all
segments:

N 1 &% , %G,
E-NE -1 s\ k2G5 —258 g .
p ; pn jw8;S£ ]n( n)|: Senep apasn:| Sy

Substituting this field in (2.1), we get the equation generalizing the Pocklington’s
equation (2.6):
Lt G
24 5 5 3 .
> [ (Sn){k Gsé,é, —%Psn = —jweK,,(p). (2.74)

n=1 S

If N =1, Eq. (2.74) converts to (2.6),
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0°G,

azag}dg = —jweK(z)- (2.75)

L
jf(g)[kzcségéz -
-L

To this end, first the replacement of variables is performed: p — 2,5, — ¢. Furthermore,
one should take into account that the Green’s function is symmetrical relative to the
coordinates of the points of observation and integration: dG; /9dz=-9G; /dg.

Let the wire antenna have a shape of a polygonal line, along which the coordinate
G is postponed, and the lengths of straight segments tend to be zero. Then from (2.74)
we obtain the integral equation of Pocklington for the current in a curvilinear wire
(Figure 2.3c):

.. G
f1efeosa 2o

}dg= —jweK(z). (2.76)
(L)

Here, ¢, and ¢_ are unit tangent vectors at the points of observation and integration.
If the curvilinear wire is symmetrical relative to some middle point, the form of this
equation completely coincides with the form of (2.75).

2.7 GENERALIZED INDUCED EMF METHOD

An analytical solving problem of antenna radiation has been obtained for a small number
of the simplest variants of radiators. As a rule, the small-scale radiators situated in
free space were considered. This is explained by the difficulty of the problem. In this
connection, numerical methods allowing reducing the problem to solution of a set of
linear algebraic equations became frequent practice in solving integral equations for the
antenna current. These methods permit to find characteristics of complex antennas of
great dimensions (in comparison with a wavelength), and also to take into account the
influence of nearby antennas and metal bodies.

Integral equation reduces to a set of algebraic equations with the help of Moment
method. In the general case the integral equation for the current in a wire antenna has
the form

J] (5)K(z,9)dg=F(2), (2.77)
0

where J(¢) is the sought function (the current distribution along a wire), K(z, ¢) is the
kernel of the equation, which depends on coordinate Z of the observation point and
on coordinate ¢ of the integration point. F(g) is a known function, it is determined by
extraneous sources of the field. The terms proportional to the current may enter into
this function, for example in the case of antenna with loads. Here this is of no great
importance. The integral is taken over an all wire length. It is easy to verify that the
equations considered earlier are particular cases of the equation (2.77).

Unknown current J(¢) is expressed in the form of a sum of linearly independent
function f,(g), which are called by the basis functions:

N
J©Y L fu(s) (2.78)
n=1
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where I, are unknown coefficients, which in the general case are complex. Substituting
(2.78) into (2.77), we obtain:

N
L, an(g)K(z, 9dg=F(z). (2.79)
=1

n

Often the second system of linearly independent functions ¢,(z) is introduced. They
are called by the weight functions. If to multiply both parts of equation (2.79) by ¢,(z)
and to integrate over entire wire length and then to repeat the operation at different p,
we shall obtain the set of equations:

N
Y[ 0@ f(OKG dctz= [ g,F@dz, p=1,2..N. (2.80)
n=l () O] 0

Obviously number N of equation (2.70) must coincide with the number N of
unknown magnitudes. The integration result of each expression is its moment. From
this the method’s name comes.

If the system of weight functions coincides with the system of basis functions, such
a variant of the Moment method is known as Galerkin’s method. In this case

N
Y[ £,G] Kz Odsiz= [ f,@F@Mz,  p=1,2..N. (2.381)
n=1 (1 U] (O]

One can rewrite this set of equations as

N
Y 1.Z,=U, p=12.N, (2.82)
where n=1

Zy = [ £,& ] 0K 9dstz, U, = [ f(FG)z,
) ) U]

Equation (2.82) is true also for the set of equations (2.80), if one replaces f,(z) with ¢,(z)
in formulas for Z,, and U,

Expression (2.82) is the set of linearly independent algebraic equations with N
unknown [, having the dimensionality of the current. Coefficients Z,, and U, have the
dimensionalities of the impedance and voltage; they can be calculated, e.g. by means of
numerical integration. Accordingly, one can interpret the expression (2.82) as Kirchhoff’s
equation for the contour p with current I, and emf U, which enters into the system of
N coupled contours. Here Z,, is the own impedance of the contour element, and Z,, is
the mutual impedance of the contours n and p.

The set of equations (2.82) can be solved on the computer with the help of standard
software. If to write down the set in a matrix form:

[11Z] = [ul, (2.83)

where [Z] is the impedance matrix, [I] and [U] are a current and a voltage vectors, then
one can say that the solution is obtained by means of the standard method of matrix
inversion:

[1 = [z1'[ul. (2.84)
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Substitution of values I, into (2.78) allows to calculate current distribution J(g), and
afterwards all electrical characteristics of the radiator.

In practice the calculation of matrix elements Z,, may prove to be difficult, since it
is connected with the double numerical integration. To alleviate the difficulties, one can
use S-functions in the capacity of weight functions: ¢,(z) = 8z - z,). Then, the double
integral in the calculation of Z,,, becomes a simple integral, the calculation of U, requires
no integration, and the expression (2.80) takes the form

N
S0 [ 9Kz 6)ds =z p=1,2...N.

=l ()

One can obtain this equation directly from (2.77) and (2.78), if the left and right parts
of the equation (2.77) are equated to each other at isolated points. Their number
N corresponds to that of the obtained equations. For this reason, the variant of the
Moment method is known as the point-matching technique or the collocation method
(see, e.g., [31]).

The collocation method ensures an exact equality of the left and right parts of the
equation (2.77), at N points at least. In the intervals between the points the difference
between the two parts of the equation may increase sharply. When using the Moment
method with weight functions of other type, the equality may not take place in all points
of the interval of z changing. But equating of both moments of function (integration with
some weight) minimizes the difference between the left and right parts at whole interval
of z changing. This property in the final analysis is almost always more important than
the exact equality at isolated points. Therefore, Galerkin’s method allows providing, as
a rule, an essentially more accurate solution than the collocation method. Yet, sometimes
the collocation method is useful too.

The choice of basis functions is of great importance for using the Moment method,
since the successful selection of the system permits to decrease the amount of calculation
under given accuracy or increases the accuracy under the same calculation time. For that
end, as a rule, the basis functions must correspond to the physical sense of the problem,
i.e. must coincide, in the first approximation, with the actual distribution of the current
along a radiator or its elements.

Basis functions are subdivided into two types: entire domain functions, which are
other than zero along the entire radiator length, and functions of sub-domains, which are
other than zero along segments of radiator. In the capacity of basis functions of the first
type, one can use, for example, terms of Fourier series and polynomials of Tchebyscheff
or Legendre. Their field of application is limited mainly by solitary radiators of a
simple shape. Basis functions of sub-domains are typically employed for an antenna of
a complex shape. In particularly, such approach is expedient, if the antenna consists of
arbitrarily situated segments of straight wires partially connected with each other. A
straight radiator may also consist of physically isolated segments, if concentrated loads
are located in the conductor of the radiator at given distances from each other. Piecewise-
constant (impulse) functions (Figure 2.4a), piecewise-linear functions (Figure 2.4b), 