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Preface

Traditional and existing sensor and actuator networks use wired communi-
cations, whereas, wireless sensors provide radically new communication and
networking paradigms, and myriad new applications. They have small size, low
battery capacity, non-renewable power supply, small processing power, limited
buffer capacity (thus routing tables, if used at all, must be small), a low-power
radio, and lack unique identifiers. Sensors may measure distance, direction, speed,
humidity, wind speed, soil makeup, temperature, chemicals, light, vibrations,
motion, seismic data, acoustic data, strain, torque, load, pressure, and so on.
These nodes are autonomous devices with integrated sensing, processing, and
communication capabilities. Nodes in a sensor network are generally densely
deployed. Thousands of sensors may be placed, mostly at random, either very
close or inside a phenomenon to be studied. Once deployed, the sensors are
expected to self-configure into an operational wireless network, and must work
unattended. The limited energy budget at the individual sensor level implies that
in order to ensure longevity, the transmission range of individual sensors needs to
be restricted. In turn, this implies that wireless sensor networks must be multi-hop
ones.

Current research and implementation efforts are mostly oriented toward a
traditional scenario with stationary sensors and a single static sink that collects
information from sensors where the sink is directly connected to the user (or task
manager). However, the latest research has unearthed the practically unsolvable
problem of uneven energy distribution and energy holes in this scenario. There-
fore, generalized scenarios have been considered, such as sensor networks with
multiple stationary sinks, single mobile sink, or multiple mobile sinks. Mobile
sensors have also been discussed. And, we envision adding actuators to the net-
work. The difference between sinks and actuators is that actuators are able to
act on the environment; mobile actuators may additionally act on the sensors.
Actuators may also perform the roles of sinks, or both sinks and actuators may
coexist in a given network. We will now elaborate on aspects of actuation.

Sensor–actuator networks are heterogeneous networks that comprise net-
worked sensor and actuator nodes which communicate among each other using
wireless links to perform distributed sensing and actuation tasks. Actuators (called

ix



x Preface

also actors) are resource-rich, potentially mobile, and are involved in taking deci-
sions and performing appropriate actions on themselves (e.g. controlled move-
ment), on sensors (such as activating sensors, moving or replacing a sensor),
and/or in the environment (e.g. turn on their own a water sprinkler to stop the
fire). Sensor–actuator networks are expected to operate autonomously in unat-
tended environments. They may be directly connected (using, for instance, web
infrastructure) and responsive to a user (task manager) who controls the network
via sinks. One or more actuator(s) may also play the role of sink(s). In fact, sinks
can be treated as special kinds of actuators, although a better interpretation might
be to associate them with base stations that communicate directly with the user.

Since the actuating task is a more complicated and energy-consuming activ-
ity than the sensing task, actuators are resource-rich nodes equipped with better
processing capabilities, higher transmission powers, and longer battery life. More-
over, depending on the application, there may be a need to rapidly respond to
sensor input. Therefore, the issue of real-time communication is very important
since actions are performed on the environment after the sensing occurs. In addi-
tion, while the number of sensor nodes deployed to achieve a specific application
objective may be in the order of hundreds or thousands, such a dense deployment
is not necessary for actuator nodes due to the different coverage requirements
and physical interaction methods of acting a task. Hence, the number of actuators
is much less than that of sensors.

The goal of this book is to present a fault-tolerant, reliable, low latency,
and energy-aware framework for wireless sensor and actuator networks, so that
the ultimate goal of their applications (protecting critical infrastructures, enabling
timely emergency responses, and environment monitoring) can be fulfilled. Future
sensor–actuator networks will be more heterogeneous and radically distributed,
potentially with millions of nodes. They may respond to multiple tasks, to mul-
tiple and potentially mobile sinks and/or actuators, and multiple sensor networks
may be integrated into a single network. There are algorithmic challenges in
the rapidly emerging field of future heterogeneous super-networks where sensor
networks will be integrated into wired and/or wireless infrastructure. Challenges
of such wide-area sensor systems include scalability, robustness, manageability,
and actuation. Having this futuristic vision in mind, this book will provide a
protocol framework at the network layer, namely data communication and coor-
dination issues. While being general, the framework should generate optimal
solutions when applied/mapped in any specific emerging application; that is, the
very same protocols may be applied in scenarios ranging from a simple scenario
with one fixed actuator to the envisioned super-networks. To achieve such ambi-
tious goals, several primary criteria for protocol design must be followed: energy
consumption, localized design, reliability, parameterless behavior, and simplicity.

This book is problem-oriented, with each chapter discussing computing and
communication problems and solutions that arise in rapidly emerging wireless
sensor and actuator networks. The main direction of the book is to review various
algorithms and protocols that have been developed in the area with emphasis on
the most recent ones. The book is intended to cover a wide range of recognized
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problems in sensor–actuator networks, striking a balance between theoretical
and practical coverage. The theoretical contributions are limited to the scenarios
and solutions that are believed to have practical relevance. This book is unique
in addressing sensor and actuator/actor networking in a comprehensive manner,
covering all the aspects, and providing up-to-date information. It is an appropriate
and timely forum, where industry, operators, and academics from several different
areas can learn more about current trends and become aware of the possible
architectures of sensor and actuator networks, their advantages, and their limits
in future commercial, social, and educational applications.

This book is intended for researchers and graduate students in computer
science and electrical engineering, and researchers and developers in the telecom-
munication industry. It is directed at those who are looking for a reference
resource in sensor and actuator networking and those who want to get a global
view of this area.

The book is based on a number of stand-alone chapters that together cover
the subject matter in a fully comprehensive manner. As a result of the exponen-
tial growth in the number of studies, publications, conferences, and journals on
sensor networks, a number of graduate courses fully or partially concentrating
on sensor networks have emerged recently. It is expected that this book will act
as a supplemental textbook for such graduate courses. It can be also used as a
stand-alone textbook for a course specifically on wireless sensor and actuator
networks. The chapters cover subjects describing state-of-the-art approaches and
surveying the existing important solutions. They provide readable but informa-
tive content, with appropriate illustrations, figures, and examples. A number of
chapters also provide some problems and exercises for use in graduate courses.

The book content addresses the dynamic nature of wireless sensor and actua-
tor networks. Due to frequent node addition and deletion from networks (changes
between active and sleeping periods, done to conserve energy, are one of the con-
tributors to this dynamic), and possible node movement, the algorithms that can
be potentially used in real equipments must be localized and must have minimal
communication overhead. The overhead should consider both the construction
and its maintenance for the structure used in solutions and ongoing protocols.
We believe that this is the only approach that will eventually lead to the design
of protocols for real applications. We will explain now our design principles and
the priorities given to the coverage of topics in this book.

A scalable solution is one that performs well in a large network. Sensor net-
works may have hundreds or thousands of nodes. Priority is given to protocols
that perform well for small networks, and perform significantly better for large
networks (more precisely, are still working as opposed to crashing when other
methods are applied). In order to achieve scalability, new design paradigms must
be applied. The main paradigm shift is to apply localized schemes as opposed
to most existing protocols that require global information. In a localized algo-
rithm, each node makes protocol decisions solely based on knowledge about its
local neighbors. In addition, the goal is to provide protocols that will minimize
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the number of messages between nodes, because bandwidth and power are lim-
ited. Protocols should use a small constant number of messages, often even none
beyond preprocessing ‘hello’ messages. Localized message-limited protocols pro-
vide scalable solutions. Typical local information to be considered is one-hop or
two-hop neighborhood information (information about direct neighbors and pos-
sibly the neighbors of neighbors). Nonlocalized distributed algorithms, on the
other hand, typically require global network knowledge, including information
about the existence of every edge in the graph. The maintenance of global net-
work information, in the presence of mobility or changes between sleep and
active periods, imposes a huge communication overhead, which is not affordable
for bandwidth- and power-limited nodes. In addition to being localized, proto-
cols are also required to be simple, easy to understand and implement , and to
have good average case performance. Efficient solutions often require position
information. It was widely recognized that sensor networks can function properly
only if reasonably accurate position information is provided to the nodes.

BRIEF OUTLINE OF THIS BOOK

This book consists of 10 chapters. It begins with an introductory chapter that
describes various scenarios where sensor and actuator networks may be applied,
problems at physical, medium access, network, and transport layers, and various
application layer tools for enabling applications. It argues for the use of localized
algorithms, and discusses the generation of sensor and actuator networks for
simulation purposes.

Chapter 2 discusses backbones as subsets of sensors or actuators that suf-
fice for performing basic data communication operations. They are applied for
energy-efficient data dissemination tasks. The goal is to minimize the number of
re-broadcasts while attempting to deliver messages to all sensors or actuators.
Neighbor detection and route discovery algorithms that consider a realistic phys-
ical layer are described. An adaptive broadcasting protocol without parameters,
suitable for delay-tolerant networks, is further discussed. We also survey existing
solutions for the minimal energy broadcasting problem where nodes can adjust
their transmission powers.

Sensor networks normally have redundancy for sensing coverage. Some sen-
sors are allowed to sleep while preserving network functionality. Sensors should
decide which of them should be active and monitor an area, and which of them
may sleep and become active at a later time. Sensor area coverage problem has
been considered for both the unit disk graph– and physical layer–based sens-
ing models in Chapter 3. Actuators may similarly run a protocol to decide about
their service areas, releasing some of them from their particular duty. Operational
range assignment for both sensor and actuators nodes is also discussed.

Chapter 4 surveys existing flooding-based and position-based routing
schemes. It also describes a general cost-to-progress ratio-based approach for
designing routing protocols under a variety of metrics, such as hop count,
power, remaining energy, delay, and others. Chapter 4 also describes routing
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with guaranteed delivery for unit disk graphs and ideal MAC layer based on
the application of the Gabriel graph, a localized planar and connected structure.
Solutions are expanded toward beaconless behavior, where nodes are not aware
of their neighborhood. Georouting with virtual coordinates is based on hop
distances to some landmarks. This chapter also discusses physical layer aspects
of georouting, routing in sensor–actuator networks, and load balancing issues
in routing.

Chapter 5 reviews the scenarios where a given message is sent from a sin-
gle source (sensor) to possibly several destinations (actuators). These scenarios
can be subdivided into multicasting, geocasting, multiratecasting, and anycast-
ing. In multicasting, a given message must be routed from one node to a number
of destinations whose locations may be arbitrary and spread over the network.
Geocasting destinations are all nodes located in a given geographical area. Mul-
tiratecasting is a generalization of multicasting, where regular messages are sent
from a source to several destinations, possibly at a different rate for each des-
tination. Finally, in an anycasting scenario, a source must send a message to
any node, preferably only one, among a given set of destinations. Each of these
scenarios corresponds to a typical use case in sensor and actuator networks.

Data gathering aims to collect sensor readings from sensory fields at prede-
fined sinks or actuators (without aggregating at intermediate nodes) for analysis
and processing. Research has shown that sensors near a data sink deplete their
battery power faster than those far apart, due to their heavy overhead of relaying
messages. Nonuniform energy consumption causes degraded network perfor-
mance and shortens network lifetime. Recently, sink mobility has been exploited
to reduce and balance energy expenditure among sensors. The effectiveness has
been demonstrated both by theoretical analysis and by experimental study. In
Chapter 6, we investigate the theoretical aspects of the uneven energy depletion
phenomenon around a sink/actuator, and address the problem of energy-efficient
data gathering by mobile sinks/actuators. We present taxonomy and a compre-
hensive survey of the state of the art on the topic.

The efficiency of many sensor network algorithms depends on characteristics
of the underlying connectivity, such as the length and density of links. The num-
ber and nature of links that are to be used among all potentially available links
can be controlled. Topology control can be achieved by modifying the transmis-
sion radii, selecting a given subset of the links, or moving some nodes (if such
functionality is available). Chapter 7 reviews some of these problems and related
solutions, applicable to the context of sensor and actuator networks. Spanning
structures and minimum weight connectivity are applied for power-efficient and
delay-bounded data aggregation. Detection of critical nodes and links aims to
provide fault tolerance to the applications. Some recent and prospective works
considering biconnectivity of mobile sensors/actuators and related deployment of
sensors, augmentation, area and point coverage are discussed.

In the location service problem, mobile actuators send location update mes-
sages, while stationary sensors send search messages to learn the latest position
of actuators. The task is to minimize combined update and search message cost,
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while maximizing the success rate of finding a target actuator and subsequently
routing to it. In the literature, many location service algorithms have been pro-
posed for mobile ad hoc networks, and they can be directly applied to sensor
and mobile actuator networks. Chapter 8 reviews research efforts on this topic.

Chapter 9 surveys the existing representative work in both, sensor–actuator
and actuator–actuator coordination. Sensor–actuator coordination deals with
establishing data paths between sensors and actuators, and can be used for sensor
deployment. Actuator–actuator coordination includes robot coordination for
sensor placement, dynamic task allocation, selecting the best robot to respond
to reported events, robot dispersion, boundary coverage, and fault-tolerant
response. In coordinated actuator movement problems, actuators are moved to
desired locations to save energy in long-term communication tasks where the
traffic is sufficiently regular and large in volume to warrant nodes expending
energy for moving. Chapter 9 also reviews recent developments in coordination
among flying robots.

Coverage is the functional basis of any sensor network. The impact on cov-
erage from stochastic node dropping and inevitable node failure, coupled with
controlled node mobility, gives rise to the problem of movement-assisted sen-
sor placement in wireless sensor and actuator networks (WSAN). One or more
actuators may carry sensors, and drop them at a proper position, while moving
around, in the region of interest (ROI) to construct desired coverage. Mobile
sensors may change their original placement so as to improve existing cover-
age. Emerging coverage holes are to be covered by idle sensors. Actuators may
place spare sensors according to certain energy optimality criteria. If sensors are
mobile, they can relocate themselves to fill holes. Chapter 10 comprehensively
reviews existing solutions to the sensor placement problem in WSAN.
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Chapter 1

Applications, Models,
Problems, and Solution
Strategies

Hai Liu1, Amiya Nayak2, and Ivan Stojmenovic2

1Hong Kong Baptist University, Hong Kong, P.R. China
2School of Information Technology and Engineering, University of Ottawa,
Ottawa, Ontario, Canada K1N 6N5

Abstract

This introductory chapter describes various applications, scenarios, and models of
wireless sensor and actuator networks. Problems at the physical, medium access,
network, and transport layers as well as various tools needed to enable their
functioning are identified. Various assumptions and metrics used in simulations
and protocol descriptions are discussed. The chapter then describes ways of gen-
erating sensor and actuator networks based on widely accepted unit disk graph
models. Finally, this chapter discusses solution approaches arising in sensor net-
works and advocates the use of localized protocols, where individual sensors and
actuators make their decisions based on local knowledge.

1.1 WIRELESS SENSORS

We will elaborate first on wireless sensors; then on wireless sensor networks
(WSNs) (with a single sink), their properties, models, and application types.
Afterwards, we will add actuators to the model and discuss various combinations
of sensors and actuators that can form a heterogeneous network with different
levels of complexity.

Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication.
By Amiya Nayak and Ivan Stojmenovic. Copyright © 2010 John Wiley & Sons, Inc.
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2 Chapter 1 Applications, Models, Problems, and Solution Strategies

Recent technological advances have enabled the development of small-sized
(a few cubic centimeters), low-cost, low-power, and multifunctional sensor
devices. There are different types of sensors. Sensors are normally specialized,
but sometimes a few capabilities may be available in a single sensor. They
may measure distance, direction, speed, humidity, wind speed, soil makeup,
temperature, chemical composition, light, vibration, motion, seismic activity,
acoustic properties, strain, torque, load, pressure, and so on.

Traditionally, sensors are attached to the environment and their measurements
are sent to a base station (BS) with wired communication. There exists a large
body of knowledge on such models and applications of sensors which have been
studied by a huge community of researchers. During the last decade, a new vision
of sensor nodes as autonomous devices with integrated sensing, processing, and
communication capabilities has emerged. Attaching antenna for receiving signals
and a transmitter enables wireless communication of sensors. Sensors also have a
small processor and a small memory for coding and decoding signals, as well as
for running simple communication protocols. They differ in their battery capacity;
for example, some of them run on small batteries and last a day, whereas others
have larger batteries attached that let them last up to a month with continuous
operation. In some applications, a renewable power supply such as a solar panel
is used. Further, some sensors are embedded into other devices and draw their
required energy from them. Such sensors do not have energy limitations in their
functioning. In some scenarios, sensors could be provided with a wireless single-
hop access to infrastructure networks such as the Internet.

For some applications, sensors may be of a large size, especially if they are
protected by boxes or lifted to a height that improves their communication and
protection level. When collected data is not time critical, sensors may function in
isolation. For example, seismological data or bird presence detected acoustically
can simply be collected in the local sensor memory and downloaded when visited
by humans. This book concentrates, however, on scenarios involving networks
of wireless sensors.

1.2 SINGLE-HOP WIRELESS SENSOR NETWORKS

The majority of the existing applications for “wireless” sensors rely on a single-
hop wireless network to reach a BS for further processing of the measured
phenomena. That is, sensor measurements are sent directly, using a wireless
medium, from sensor to BS. Most of these applications rely on sensors that are
embedded into a different device. Also, the majority of applications for embedded
sensors rely on single-hop wireless communication. For example, small sensors
can be embedded into a traffic surveillance system to monitor traffic on congested
roads or be used to monitor hot spots in a region or building.

Health care is one of the primary applications for wireless networks com-
posed of embedded sensors. Sensors can be embedded into watches which, when
attached to patients, monitor and analyze data such as pulse and blood pres-
sure. In case of potential health risks, individual sensors send alarm messages to
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Figure 1.1 Monitoring limb movement in stroke patient rehabilitation.

a nearby control center via one-hop wireless communication. As these sensors
are battery powered, they can benefit from intelligent sensor management that
provides energy efficiency as well as quality of service (QoS) control.

For example, a wireless motion analysis sensor for stroke patient rehabili-
tation was studied in John et al. (2005). Wearable sensor motes with armbands
were attached to stroke patients to monitor their limb movements and muscle
activity during rehabilitation exercises. The sensor board consisted of a three-
axis accelerometer, a gyroscope, and various electromyogram (EMG) sensors. It
was able to capture a rich set of motion data used for studying the effects of
various rehabilitation exercises on the patient population. The collected data was
transmitted to a data acquisition or control center, such as a laptop or PC, via
one-hop wireless communication. The system architecture is shown in Figure 1.1
below.

Some large-scale sensor networks may also be single-hop in terms of wireless
communication needed for reporting. For example, the sink, or several sinks,
could be mobile and move around the network. This would allow them to get
close enough to the sensors so that report collecting could be done in a single
hop. In other examples, embedded sensors could move toward a fixed sink. For
example, sensors can be embedded into sea mammals to trace their locations over
time. When a sea mammal approaches a fixed BS, reports can be downloaded.

1.3 MULTIHOP WIRELESS SENSOR NETWORKS

Nodes in the WSNs are generally randomly and densely deployed. For example,
thousands of sensor nodes may be dropped from airplanes to monitor an interested
area. Once deployed, these sensors are expected to self-configure into a wireless
network. Since the energy budget of an individual sensor is very limited, the
transmission range of sensors is also restricted. Thus, WSNs usually operate in a
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multihop fashion. A large number of sensor devices can be organized in a multi-
hop fashion to provide unlimited potential to “sense” the physical world. Reports
from individual sensors are sent to other sensors, where they can be combined
with other sensor readings or simply retransmitted to other sensors until a sink
node that is capable of communicating with a user is reached. Therefore, individ-
ual sensor readings may need several wireless hops to reach a BS. Such WSNs
have received significant attention in recent years. A WSN usually consists of a
large number of low-cost and low-energy sensor nodes, which can be deployed
on the ground, in the air, in vehicles, or inside buildings. Nodes in WSNs sense
data, find routes, and forward sensing data to a sink or BS that is usually far
away from the data source. Since sensors usually have a small size, low-battery
capacity, nonrenewable power supply, limited processing ability, small buffer
capacity, and a low-powered radio, WSNs pose new challenges to both industrial
and academic communities.

Applications for WSNs have been envisioned for a wide range of areas. These
include, but are not limited to, the following: environment monitoring (e.g., traf-
fic, habitat, security, etc.), infrastructure protection (e.g., power grids and water
distribution), fire prevention, agriculture, health care, chemical plumes tracking,
building monitoring or control, warehouse management, smart transportation,
and context-aware computing (e.g., smart homes and responsive environments)
as well as industrial sensing, diagnostics and process control, biomedical sensor
engineering, water and waste management, military applications, and so on.

Most of the scenarios considered contain a single sink (also called base
station), which is normally static. The sink in a WSN collects information from
sensors and then analyzes and processes the information for specific applications.
The sink could be connected to the Internet via wireless or wired communications
such that a remote user is able to inquire about data via the Internet (at any time
or from anywhere). Single sink scenarios, or scenarios with multiple fixed or
mobile sinks, have also been explored in literature. Sensors in WSNs are usually
static. However, they can be mobile when attached to robots, soldiers, or vehicles.

1.4 EVENT-DRIVEN, PERIODIC, AND ON-DEMAND
REPORTING

There are three types of applications for WSNs and each has its corresponding
data communication modes: event-driven, periodic, and on-demand reporting . In
the event-driven mode, sensors report the sensing data to the sink once a specified
event (e.g., fire) has been detected. In the periodic reporting (or time-driven)
mode, sensor nodes gather information from the environment at predetermined
times and periodically send the data to the sink. In the on-demand (or query-
driven) mode, users decide when to gather data. They send instructions to the
WSN indicating that they wish to receive data and then wait for the required type
of data to be sent in the requested format. Users may even specify the future
reporting periods; subsequent reports would then be sent in periodic reporting
mode.
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Target or event detection and tracking is a typical example of applications in
event-driven reporting. Its purpose is to detect, classify, and locate specific targets
or events, as well as track the targets or events over a specified region. Once
there is an event or a target emerging in the area, the sensor nodes around the
target or event gather the required information and report back to the sink. One
characteristic of event-driven reporting is its real-time requirement. This means
that data transmission latency is one of the key problems in these applications.

Targets can be divided into two categories: targets in the first category are
individual objects that usually have a small size when compared to the sensing
area of the network. These targets emit noise, light, and seismic waves, such
that nearby sensor nodes are able to detect and track them. A typical example
is to deploy a sensor network to detect troops, such as tanks and soldiers, in a
battlefield. Once a tank moves into a specific area, information on the tank such as
its location and speed, will be gathered by the sensor nodes and reported to the BS
via multihop communication. The targets in the second category are continuous
objects, which spread in the sensing area of the network. An example is the use
of WSNs to detect and track diffused poison gas or chemical/biochemical liquids.

Figure 1.2 shows a typical scenario of event-driven reporting in WSNs.
Sensor nodes are deployed in the sensor field to form a wireless network. Once
there is an event in the monitoring field, such as a fire, a nearby sensor node, say
A, will detect the fire if the sensed temperature exceeds a predefined threshold.
Then A either starts the routing process (reactive) or uses the route in its routing
table (proactive, e.g., A-B -C -D-E ), to report information of the event to the sink.
The sink may then take appropriate actions immediately or store the data in the
database for future statistical use.

Periodic reporting is different from event-driven reporting. Data gathered
in periodic reporting does not require urgent delivery to the sink. Further, the
data in the event-driven reporting usually comes from sensors in the vicinity of
a target or event, whereas the data in periodical reporting is normally gathered
from sensor nodes throughout the sensor field.

Sensors report to the sink by applying data gathering and data aggregation
operations. Data gathering refers to forwarding the measured data to the sink
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Figure 1.2 A scenario of event-driven reporting.
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without further changes on the way toward sink. This is normally achieved via
a routing task, that is, sending a message from a sender node (sensor) to a
destination node (sink), using other sensors to forward the report. However, data
collected by sensor nodes might be redundant, correlated, and/or inconsistent with
data from other sensors. Data aggregation is used to combine data coming from
different sensor nodes. This eliminates redundancy and minimizes the number of
transmissions.

A general approach employed in data gathering and data aggregation is to
construct a spanning tree which is rooted at the sink and connects all sensor
nodes in the network. If one node fails, the topology will be reorganized into a
new topology. Tree maintenance is usually an energy-demanding operation.

In data gathering or aggregation, data from each sensor is forwarded to the
sink along the spanning tree. This is illustrated in Figure 1.3 where a WSN
is deployed for agricultural applications. A large number of sensor nodes are
scattered throughout a field to monitor the temperature, light levels, and soil
moisture. The sink, located in the house, queries the sensors, which configure
themselves. The reporting tree is constructed in the process and rooted at the sink.
Data is periodically collected from all sensors in the field and sent to the sink. In
data gathering operations, individual data from each sensor is forwarded along
the tree without being combined with measurements from other sensors. Data
aggregation may be applied too, for example, combining the readings from all
of the sensors inside a zone and submitting a combined report via data gathering

Figure 1.3 Data gathering or aggregation in agricultural applications.
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operations along the tree hop-by-hop toward the root. For instance, information
on soil conditions in different zones of the same field might be needed to apply
uneven amounts of fertilizer. Sometimes a single report from the whole field
would suffice such as information on the current temperature. In this case, upon
receiving the data from each child node in the tree, a sensor node aggregates the
data with its own before delivery to its parent node in the constructed tree.

The traditional view of large-sized static sensor networks with one fixed sink
has been challenged by their theoretical and simulation analysis discovering some
bottlenecks in their performance. For example, it was reported that while using
the same transmission range for sensors optimizes energy per report (without data
aggregation), it also creates energy holes around the sink while the periphery is
left with almost full energy (Olariu et al., 2006). Moreover, data aggregation is
often impossible. For example, sensors monitoring movements do not generate
the same reports and sink instructions are also not aggregated. Therefore, the
problems do not seem to have a resolution unless the model itself is changed:
It should be either small scale (e.g., up to hundred nodes) or involve multiple
sinks , mobile sinks , mobile sensors , and so on. However, this in turn complicates
network layer protocols.

1.5 UNIT DISK GRAPH MODELING, HOP COUNT
METRIC, AND PROBABILISTIC RECEPTION

Multihop wireless communication in networks of equal devices applying same
and fixed transmission radii (i.e., a homogeneous network), has a simple modeling
that is an excellent and extremely useful simplification of the complex physical
layer. In the unit disk graph (UDG), two nodes communicate if and only if the
distance between them is at most R, where R is the transmission radius which
is equal for all nodes. A UDG is therefore determined by the positions of nodes
and a fixed common transmission range R. To illustrate this, if we use R/2 as the
radius of the disk of each node, two nodes are connected if and only if their cor-
responding disks intersect. An example of a UDG is shown in Figure 1.4 below.
Unit disk graphs successfully model WSNs, wireless ad hoc networks (used in
rescue, conference, and battlefield scenarios), vehicular network communications,
and wireless networks of actuators (to be defined shortly). In combined networks,
such as sensor and actuator networks, they can model communication of each
component network separately by using different transmission radii for them.

B
A

Figure 1.4 An example of a unit disk graph (with
radius R/2).
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Hop count can be used as a metric for routing in UDG if each node applies
the same and fixed transmission power. It is defined as the number of hops from
one node to another. Hop count between two adjacent nodes is 1. In Figure 1.4,
the hop count between node A and node B is 4. In homogeneous networks,
where nodes do not adjust transmission radius, the route with the smallest hop
count from a source to a destination guarantees the minimal energy cost and
the lowest transmission latency (assuming that the delay at each node is the
same).

Although the protocols at the network layer are mostly designed with ideal
UDG assumptions, experiments are normally carried out on simulators that imple-
ment more realistic physical and medium access control (MAC) layers. The UDG
model is not realistic since variations in the received signal strengths are not
considered. In fact, it has been pointed out that the impact of signal strength
fluctuations is sometimes more significant than the impact of node mobility
(Stojmenovic et al., 2005a). Therefore, nondeterministic radio fluctuations cannot
be ignored when designing robust protocols for sensor and ad hoc networks. In
addition to distance, the received signal strength also depends on other factors
such as environment and transmission medium.

Existing physical layer models, such as the combined Friis and two-ray
ground model (Nadeem and Agrawala, 2004) and the lognormal shadowing model
(Stojmenovic et al., 2005b), require nodes to estimate the probability of receiv-
ing a bit or a packet based on either signal strength, distance between nodes,
or merely by deriving statistics from a number of bits or packets recently sent
between two nodes. The realistic physical model normally uses a function to
represent the packet reception probability. For instance, the packet reception
probability p(x ) in the shadowing model (Stojmenovic et al., 2005b) depends
on the length of the packet, and the distance x between two nodes. Suppose R
is the distance so that the packet reception probability is p(R) = 0.5, the func-
tion p(x ) may have approximately the following values: p(0) = 1, p(0.1R) ≈ 1,
p(0.5R) ≈ 0.9, p(R) = 0.5, p(1.5R) ≈ 0.25, and p(2R) = 0. The values give a
sufficient intuition on how to design physical layer–aware routing protocols. If a
fixed signal-to-noise ratio (SNR) is assumed then the function p(x ) looks like the
graph in Figure 1.5 (Kuruvila et al., 2005). In this example, the probability for
successful transmission at distance d = 30 is more than 0.95. If d = 41, the prob-
ability for successful transmission is around 0.5. This means that approximately
half of the transmissions are successful. If d = 50, the probability for successful
transmission decreases to around 0.05. Two nodes can still communicate as long
as they make a sufficient number of attempts.

At the physical layer, the hop count metric may not properly reflect the real
cost involved in a route. For example, suppose there are many long edges in
the shortest path, in terms of hop count. Many retransmissions may be required
between adjacent nodes on these long edges due to low probability of packet
reception. Thus, the expected hop count (EHC ) should be used instead. Expected
hop count is defined as the expected number of messages between the sender and
the receiver, including retransmission, acknowledgments and so on. Extended hop
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Figure 1.5 Packet reception probability versus transmission radius.

count measures can be also used to measure the cost of a route, by summing
EHC values on each edge of the route.

Let S and D denote the sender and receiver, respectively. Suppose that
acknowledgment is required for each successful transmission. Assume also that
the sender repeats sending packets until it receives acknowledgment from the
receiver. Let the distance between S and D be x , and the packet reception
probability for transmission from S to D be p(x ). Thus, the probability that S
does not receive any of the u acknowledgments from D is (1 − p(x))u. That is,
the probability that S receives at least one of the u acknowledgements from D is
1 − (1 − p(x))u. Therefore, p(x)(1 − (1 − p(x))u) is the probability that
S receives an acknowledgment after sending a packet and therefore stops
transmitting further packets. The total EHC between two nodes at distance x is:

1/[p(x)(1 − (1 − p(x))u)] + u/[(1 − (1 − p(x))u)],

where the first term is the message count and the second term is the acknowl-
edgment count. In order to minimize the EHC, the value of u should satisfy
up(x) ≈ 1. That is, the best value of u for a given p(x ) is approximately 1/p(x )
(Stojmenovic et al., 2005b).

1.6 ADJUSTABLE TRANSMISSION RANGE
AND POWER METRIC

Sensor nodes have the capacity to adjust their transmission ranges without incur-
ring any significant cost for the adjustment. A common transmission radius is
normally preferred because medium access protocols currently considered to be
de facto standards, such as Zibgee, require it for proper functioning. However,
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finding a minimal common transmission radius is a nontrivial problem, especially
for its maintenance. A possible compromise is that each sensor is made aware of
its neighbors by using “hello” messages. But when the neighbor for forwarding
is decided, the transmission power could be adjusted to reflect the distance. Here,
we still assume the UDG modeling with adjusted transmission radius. In reality,
there is an impact of the realistic physical layer at critical transmission distances,
which will be discussed later.

A simple power consumption model is introduced in Rodoplu and Meng
(1999). The total power needed to transmit and receive a message between two
nodes at distance d is proportional to dα + c, where α is the signal strength atten-
uation factor which is normally between 2 and 5 depending on the transmission
medium and the environment, and c is a contact that accounts for signal pro-
cessing at the transmitter and receiver, as well as the minimal power to receive
a signal properly. This model has been restated in Heinzelman et al. (2000). The
energy consumption per bit is calculated as follows: power = Etrans + βdα +
Erec, where E trans and E rec are distance-independent terms which represent the
overhead of the transmitter electronics and receiver electronics, respectively. For
simplicity, E trans and E rec are often assumed to be the same (Chen et al., 2004),
and c from Rodoplu and Meng (1999) model is proportional to Etrans + Erec. βdα

is the distance-dependent term that represents the power consumption required
to transmit one bit from a sender to a receiver over distance d . If a message
contains k bits, the power consumption is then normally multiplied by k .

When the transmission range of the nodes is adjustable, power metric is used
to measure the optimality of a routing algorithm in different ways. The simplest
way is to measure power consumption at each hop and look for a route that
minimizes the total power consumption (the sum of powers consumed at each
hop). However, some nodes may be centrally positioned and used on many paths.
Their energies can be depleted while the energies of some peripheral nodes may
remain close to their maximum. The lifetime of a network may be measured in
several ways, including the moment the first node spends all its energy or network
partitioning (the moment a particular sensor is not able to deliver its report to
the sink because of energy holes in the network coming from sensors left with
no energy). Thus, the minimum energy metric routing may not maximize the
network’s lifetime since some sensors may suffer early failure. An alternative is
to maximize the lifetime of the network.

1.7 COST METRICS

A variety of metrics and their combinations can be used to design and evaluate
communication protocols for WSNs. We have discussed so far hop count and
power consumption metrics. A convenient metric that can be used to avoid nodes
with low remaining energy on a routing path is called reluctance (Stojmenovic
and Lin, 2001b). The remaining energy g at a sensor node can be normalized in
the interval (0,1). The resistance f is then f = 1/g , meaning that the reluctance
becomes huge when a sensor is close to depletion.
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Some applications of WSNs, where real-time or multimedia data are involved
in communications, require a guarantee on QoS metrics such as delay, throughput,
and bandwidth. For example, sensor networks for fire detection require short
latency to transmit emergency data to the sink. QoS routing is usually performed
through resource reservation in individual nodes along the route.

In the sequel, the term cost will often be used to denote one of the mentioned
metrics or a newly designed metric which is often a combination of several
existing metrics. One example of a combined metric is power * reluctance, which
can be used in designing routing paths to balance between finding routes with
a low total sum of power metrics on route and also avoiding nodes with low
remaining energy. The cost metric is therefore often used to find a trade-off
among these parameters.

As another example, a conditional max–min battery capacity routing is stud-
ied in Toh (2001). If there is at least one route such that the residual energy of
each node is greater than a specified threshold, the minimum energy metric is
chosen. Otherwise, the route that maximizes the minimum residual energy is
selected. In this algorithm, there exists a hidden cost for finding routes needed to
elect the best one. The sender node needs global network knowledge to gather it,
which requires communication overhead not accounted for in the selected metric
of route efficiency. This point will be further discussed in the Section 1.15.

1.8 SLEEP AND ACTIVE STATE MODELING

Energy consumption is one of the key problems in WSNs. Several energy con-
sumption models have been studied in the literature. The following discussion
and the graph (Fig. 1.6) are based on the study by Barrenetxea et al. (2008). The
graph shows energy consumption of a TinyNode sensor mote in different states.
The experiment shows that the calculation of the sensor node’s receiving costs
depends on the assumption of the node’s status. If it assumes that the radios
of the nodes are always on, the energy consumption of the receiving costs is
negligible since the cost for receiving packets has been included in the cost for
keeping the radios on. More precisely, the energy consumption is equal to 2 mA
when the radio is off but is equal to 16 mA when the radio is on for reception.
This means that it takes about eight times more energy for listening compared
to sleeping state. The total energy consumption for receiving depends on how
long the radios need to be on to receive an incoming packet. Using the example
in Figure 1.6 below, we suppose that transmitting a packet at 15 dB consuming
60 mA takes 5 ms. Receiving the packet takes at least 5 ms. However, it is
not possible for the node to turn on exactly at the time the packet is sent. That
is, to receive the packet, the node should turn on its radio for more than 5 ms
(according to the used protocol). In Figure 1.6, the energy consumption of the
radio is 15 mA. Therefore, if the total time the radio is on is more than 20 ms, the
energy consumption of receiving a packet is more than the energy consumption
of transmitting a packet.
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Figure 1.6 (a) CPU off; (b) CPU on; (c) radio on; (d) sending a packet at 0dB; (e) sending a
packet at 5dB; (f) sending a packet at 10dB; (g) sending a packet at 15dB.

1.9 ARCHITECTURES FOR WIRELESS SENSOR
AND ACTUATOR NETWORKS

Although WSNs have been employed in many applications, such as environment
monitoring and health care, there are an increasing number of applications that
require the use of actuators along with sensors. This occurs when the network
system needs to interact with the physical system or the environment via actua-
tors (also called actors). From the engineering aspect, an actuator is a transducer
that accepts a signal and converts it to a physical action. Actuators transform
an input signal into an action upon the environment. Typical examples of actu-
ators are robots, electrical motors, and humans. Traditional sensor and actuator
networks use wired communications among themselves; these networks have
been well studied. The advent of small, intelligent, low-energy, and low-cost
wireless sensing and actuation devices has the potential to significantly expand
existing applications of wired sensor actuator networks. Wireless sensor actu-
ator networks (WSANs) are emerging as the next generation of WSNs. The
major difference between WSANs and WSNs is that WSANs are capable of
changing the environment and physical world while WSNs cannot. Wireless sen-
sor actuator networks are envisioned for applications that include disaster relief
operations, intelligent buildings, home automation, smart spaces, pervasive com-
puting systems, cyber-physical systems and nuclear, biological, and chemical
attack detection (Xia et al., 2007).

A WSAN usually consists of a group of sensor nodes that are used to gather
information from the environment, and actuator nodes that are used to change
the behavior of the environment. There are wireless links between the sensor
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and actuator nodes. Sensor nodes sense and report the state of the environment
while actuator nodes gather data from sensors and are able to act on the environ-
ment. Wireless sensor actuator networks are expected to be self-organized and
potentially operate autonomously in unattended environments, with basic and
minimal directives from the user that might be remotely connected to the scene.
In typical applications of WSANs, sensor nodes are static while actuator nodes,
such as robots and humans equipped with vehicles, are mobile. However, some
actuators such as sprinklers in fire detection systems, could be static. Sensor
nodes also could be mobile in some scenarios (mobile sensors). For example,
in sensor relocation problems, sensor nodes are required to move to locations
of failed sensors for continued area coverage. Sensors and actuators can even
be integrated into a single robot which is capable of sensing and moving. Com-
pared to sensor nodes, actuator nodes usually have stronger capabilities in data
processing, wireless communication, and power supply (Melodia et al., 2007).
Therefore, the number of sensor nodes deployed in a monitoring region may
be in the order of hundreds or thousands while such size is not necessary for
actuator nodes since they have higher capabilities and can act on larger areas.

Coordination is another aspect of WSANs (Akyildiz and Kasimoglu, 2004).
Unlike WSNs, where the sink performs the functions of data collection and
coordination, sensor-sensor, sensor-actuator, and actuator-actuator coordination is
required in WSANs to achieve the overall application objective. Sensor-actuator
coordination provides the path establishment for transmission of event data from
sensors to actuators. This coordination may be also needed for some control
traffic, such as communication locations of actors to sensors or helping sensors
to learn their geographic position with higher precision. After receiving event
data, actuators need to coordinate with each other to make decisions on the most
appropriate way to perform actions. We refer to this process as actuator-actuator
coordination . The coordination has additional aspects, such as fault tolerance,
activity scheduling, and network design guidelines.

There are two basic architectures for data processing in WSANs described
in Akyildiz and Kasimoglu (2004). One is called automated architecture, where
sensor nodes sense the environment and report the data to actuator nodes which
then initiate appropriate actions based on the received data. This architecture is
shown in Figure 1.7a. The second architecture is called semiautomated architec-
ture where sensor nodes route sensing data back to the sink which may then issue
action commands to actuator nodes. This architecture is shown in Figure 1.7b.
Semiautomated architecture is similar to the architecture of traditional WSNs.
Therefore, current protocols and algorithms for traditional WSNs can be easily
adopted in this architecture. The advantages of automated architecture are as fol-
lows. First, since sensing data is reported to actuators which are closer than the
sink to sensors, communication latency is minimized. Second, in semiautomated
architecture, transmitting the sensing data to the sink usually causes fast energy
depletion of nodes which are around the sink. In automated architecture, sensing
data is reported to actuators and different actuators may be triggered based on
different events. Hence, the communication load can be more evenly distributed
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Figure 1.7 (a) Automated architecture and (b) semiautomated architecture.

among all nodes and it results in a longer lifetime of networks. Therefore, the
automated architecture is able to provide low communication latency and longer
network lifetime, which are desirable in most applications of WSANs.

The third architecture is proposed in Stojmenovic et al. (2007) and will be
referred to here, as the cooperative architecture. In this architecture, sensor nodes
transmit sensing data to actuator nodes via a single-hop or multiple hops. The
actuators analyze the data and may consult the sink(s) before taking any action.
That is, actuators may use their peer-to-peer network to make decisions and
take action, possibly informing the sink about the action taken, or could inform
the sink and wait for further instructions from the sink. A user (task manager)
controls the network via the sinks. One or more of the actuators may also play
the sink role. In fact, sinks can be treated as special kinds of actuators, although
a better interpretation might be to associate them with BSs that communicate
directly with the user. The architecture is illustrated in Figure 1.8, where one
sink is linked to one of the actuators while the other actuators can reach the sink
in a multihop actuator-actuator structure. Usually, actuators are more powerful
and have a larger transmission radius than sensors. In extreme cases, actuators
are able to directly reach all sensors in the network. Sensors route their data to
any actuator. This task is known as the anycasting problem if a sensor is aware
of the geographic positions of all actuators and itself. Sensors may start reporting

User

Sink

Sensor

Actuator

Figure 1.8 Cooperative architecture of sensor–actuator networks.
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toward one selected actuator, but another actuator could be the ultimate receiver
after some dynamic changes of the message destination. Alternatively, routes can
be created by flooding from all actuators and memorized by sensors for reporting
back toward the nearest sink.

The sink monitors the overall network and communicates with the task
manager node and the sensor or actuator nodes. If necessary, the sink issues
commands to actuators which forward them to sensors located inside the area
that needs to be monitored (the circle in Figure 1.8). After sensors detect an event
occurring in the environment, the event data is locally processed and transmitted
to the actuators, which gather, process, and eventually reconstruct the event data.
Coordination is one of the primary characteristics of WSNs.

Ruiz-Ibarra and Villasenor (2008) proposed a taxonomy for cooperation
mechanisms in wireless sensor and actor networks. Wireless sensor actuator
network frameworks consist of an architecture network (automated or semi-
automated), a coordination level (sensor-sensor, sensor-actor, actor-actor), node
mobility (fixed or mobile), and a network density (dense or sparse). Collaborative
procedures include routing protocol, synchronization, localization, aggregation,
clustering, encryption, power control (for event reporting and task execution),
and QoS. The performance criteria include optimization criteria (metrics for
reaching stated objectives), scalability, complexity order, and reliability (secu-
rity, robustness). The application requirements consist of real-time constraints,
event frequency, and concurrent events.

Some other architecture may be envisioned for futuristic applications. For
example, Figure 1.9 shows a vision of merged ad hoc sensor and actuator net-
works in military applications. Sensors are placed in the field to detect minefields
and firing locations, for target tracking, detecting chemical and biological attacks,
and can be also attached to soldiers and vehicles. Vehicles, soldiers, and airplanes
can also serve as actuators in the network.

1.10 SIMPLE MODELS AND APPLICATION
OF WIRELESS SENSOR AND ACTUATOR NETWORKS

Current applications of WSANs rarely use theoretical models described in the
previous section. There exists a gap between theoretical achievements and prac-
tice. We describe here several simple models for wireless sensors and actuators
from recent literature, which do not really fall within presented classification. In
all cases, the wireless communication is a single-hop one, direct communication
between sensor and actuator or between two actuators.

A classical star topology of WSANs was studied in Korber et al. (2007).
In the star topology, the BS serves as a network controller and as a gateway to
upper layers. The BS may have a wired bus and a wireless radio interface. The
TDMA (time division multiple access) technique is employed in the MAC layer.
Each sensor is integrated into an actuator to form a sensor-actuator module. These
modules are able to reach the BS in one-hop wireless communication. A time and
frequency slot is allocated for each sensor and actuator, such that communication
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Figure 1.9 An example in military applications.

collisions between the sensors and actuators can be avoided. There is a trade-
off between QoS, for example reliability and real-time communications, and the
lifetime of nodes in WSANs. However, in many applications of WSANs, it is
preferable to guarantee real-time communications and defined timing behaviors.
The star topology is a good solution to satisfy the real-time requirement. The
authors Korber et al. (2007) also argue that single-hop wireless communication
is important for reliable industrial applications.

There is an application of WSANs in bull breeding paddocks, which is
used to control the aggressive behavior of bulls. This application is described
in Wark et al. (2007). Fighting between bulls during the breeding season may
result in serious injuries to the bulls, which are high value animals. Therefore, it
is critical for the breeding industry to protect these high value animals without
human intervention. The idea is to deploy sensors and actuators in the cattle
collars, which serve to detect and control the bulls’ behavior. A hardware
platform is capable of integrating a wide range of sensors and actuators, and it
consists of an Atmega 128 processor and an 8MB flash memory. The onboard
radio transceiver and hardware platform, along with the integrated stimuli board
which acts as an actuator, are mounted inside a specially designed collar. The
integrated sensor is able to estimate the dynamic states of the bulls from location
and velocity observations. Once aggressive behavior in a bull is detected, the
actuators initiate a stimuli on the bulls.

A sensor and actuator network in smart homes for supporting elderly and
handicapped people was studied in Dengler et al. (2007). The primary goal was
to monitor domestic systems such as air conditioning, lights, and heating, as well
as to control the basic functions of the home entertainment and security systems.
In the experiment, a test area which included “a living area” and “a kitchen” was
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used to represent the smart home environment. The sensor network consisted of
three BTnodes, an autonomous wireless communication and computing platform
based on a Bluetooth radio, and a microcontroller. Each BTnode was equipped
with BTsense v1.1a sensor boards and proper sensors for light, motion, and
temperature detection. Each sensor measured data at intervals of 30 s. If a sensor
sent more than five unacknowledged emergency calls, the mobile robot was
programmed to move directly to the sensor node. Another application for smart
home monitoring has also been described (Li, 2006).

An example of the use of WSANs to monitor environments is the fire detec-
tion system. A group of sensor nodes are placed in a building or an area of
interest. In the event of a fire in the monitoring region, the sensor nodes that
are close to the origin of the fire report the location and intensity of the fire
to water sprinkler actuators. On receiving alarm messages from sensor nodes, the
water sprinkler actuators analyze the intensity of the fire and take appropriate
actions before the fire becomes uncontrollable.

1.11 GENERATING CONNECTED WIRELESS SENSOR
AND ACTUATOR NETWORKS

In this section, we will discuss the population of connected wireless sensor and/or
actor networks, and how to generate one particular sample from the population for
the purpose of simulating them and evaluating performance of proposed commu-
nication protocols. Typically, in literature, connected random UDG is employed
in generating wireless sensor and/or actuator networks. It is generated by placing
a group of nodes in a specific area pattern, such as a rectangle or a circle. The
positions of N nodes are randomly determined (e.g., by selecting their two or
three coordinates at random) and are independent from each other. The desired
network topology is achieved once the generated topology passes the connectiv-
ity test (usually by running centralized Dijkstra’s shortest path algorithm). The
expected node degree (average number of neighbors per node) is the number of
remaining nodes, N – 1 , times the probability that any node will be placed within
the node’s transmission area. This probability can be approximately calculated
by dividing the transmission area by the total area. Thus the expected degree, d
is ≈ (N − 1) × πr2/A, where A is the area of the region of interest and r is the
transmission radius. That is, r ≈ √

dA/(N − 1)π . The exact average degree D
for the generated graph is only an approximation of the desirable average degree
d used in the graph generation.

It was observed that simulations in existing literature were using transmission
radius r as the independent variable, while the corresponding average degree d
was normally not even reported (Stojmenovic and Lin, 2001a). This has led to
reporting simulation data for only dense graphs, for example, and hiding delivery
problems for sparse graphs. To achieve the desired and accurate network density
d , and use it as a parameter in simulations to study performance networks ranging
from sparse to dense, Stojmenovic and Lin (2001a) proposed a method to control
the average number of neighbors d by adjusting the corresponding common
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transmission range R. First, N nodes are generated at random. All (N – 1)N /2
edges are sorted into a list in nondecreasing order. The transmission range R is
set to be the length of the (Nd /2)th edge in the sorted list of all distance lengths.
There is an edge between the two nodes if and only if their Euclidean distance
is not greater than R. The generated network is then tested for connectivity.

The two generation algorithms, with approximate and accurate average
degree as parameters, suffer from two problems. Since sparse networks have a
high probability of being partitioned, they may generate a lot of disconnected
topologies and take a long time before a connected UDG is obtained. Although
it is reasonable to assume that the positions of nodes are independent in some
scenarios, some networks may have characteristics different from random UDGs.
For example, actuator nodes in WSANs create their own network to facilitate
coordination and enhance data communications and actuation performance. This
imposes certain restrictions on their locations with respect to each other. In
some applications, the position of a newly deployed node may depend on the
positions of other nodes that are already in the region of interest. For example,
laptops of attendees in a conference form a multihop ad hoc network. When
a new attendee with a laptop enters the conference venue, a good choice is to
sit not very far from the others, so that the network service is available. At the
same time, the new attendee may try to avoid overpopulated areas in order to
have an acceptable throughput.

Fast generation of several types of wireless ad hoc networks where new
node placement is dependent on other nodes’ placements, has been studied (Onat
et al., 2008). Two classes of algorithms: rejection–acceptance and center node-
based algorithms were proposed. In center node-based algorithms, for example
minimum degree proximity algorithm (MIN-DPA), a center node is chosen among
the already placed nodes before the placement of a new node. The new node is
placed around the center node. In rejection- or acceptance-based’ algorithms, a
random candidate position is selected for each node during each round. Then,
the position is either accepted or rejected depending on some constraints.

There are several constraints for placement of nodes. In the proximity con-
straint , a new node is placed at a minimum safe distance from any other existing
nodes and should be closer than the approximate transmission radius from at
least one of the existing nodes. In the maximum degree constraint , a new node
position is rejected if its placement would make one or more of the existing
or new nodes have a degree exceeding the maximal one set by a threshold. For
sensor networks, coverage constraint is important. A candidate sensor position is
accepted only if it sufficiently increases the overall coverage area. In the extreme
case of aiming at full coverage, a candidate sensor is accepted if its coverage
area is not fully covered by already placed nodes.

The basic idea of MIN-DPA is to place each new node around the center
node that has the smallest degree in the current graph. The first step of the
algorithm is to determine an approximate radius r , which is used to estimate
degrees in the process. One of the existing nodes with the minimum degree
is selected as the center node. A new node is uniformly and randomly placed
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within the transmission range of the center node (subject to possible boundary
constraints). The procedure continues until all the nodes are placed. At the end,
the approximate transmission radius r used in the generation process is replaced
by the transmission radius R corresponding to the desired average degree d , using
the “edge sorting” algorithm (Stojmenovic and Lin, 2001a) described above. After
the placement, the connectivity of the topology is checked. Simulation results
show that generating a connected graph using MIN-DPA is significantly faster
than using UDG, especially for sparse networks.

In MIN-DPA, the position of a new node affects the degree of already placed
neighboring nodes. MAX-DPA (maximum degree proximity algorithm) imposes
a maximum degree constraint for all nodes in the network. In round i , a random
position is chosen for node i , and accepted only if none of the existing or new
nodes exceeds the maximum degree allowed dmax. After all the nodes are placed,
the transmission radius is adjusted and the connectivity of the topology is checked
as in the case of MIN-DPA.

1.12 GENERATING MOBILE WIRELESS SENSOR
AND ACTUATOR NETWORKS

A lot of research has been conducted on fixed sensor networks, where connec-
tivity is normally demanded. However, a number of applications require mobile
sensors. Mobile sensors and mobile actors may not preserve connectivity and
often the application itself involves sporadic connectivity. Examples include
vehicular networks where cars can be seen as sensors carrying information or
actuators with possible actions such as changing speed, lanes or roads. People or
wild animals can also act as actuators.

The model based on social network theory (Musolesi and Mascolo, 2007)
views networks as collections of disconnected clusters. Each cluster is a con-
nected network and nodes may move occasionally from one cluster to another
(social movement), according to attractive “virtual forces” from other clusters.
This is illustrated in Figure 1.10.

Some applications are based on harsh environmental conditions, such as
underwater sensor networks of seals. In this application, batteries are impossible
to change and could be lost since seals change their fur periodically. Networks
can be very sparse. Seals can meet in clusters but then, they rarely meet at sea.
There is no human pattern of day or night behavior.

It is worthwhile to mention that a collection of real mobility traces in various
wireless networks is maintained at http://crawdad.cs.dartmouth.edu/.

1.13 PROBLEMS AT PHYSICAL, MAC,
AND TRANSPORT LAYERS

Since a WSAN can be treated as a union of a WSN and an actuator network
(mobile ad hoc network), current problems and challenges with sensor networks
and ad hoc networks also exist in WSANs.
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Figure 1.10 Social clustered
network and social movement.

At the physical layer , it is required to process signals, deal with the hardware
failure of sensor nodes, manage limited bandwidth and limited power, control
sensing range and transmission range, and select antennas and operating channels.
Energy scavenging and nontraditional power sources are surveyed in Roundy
et al. (2005). Sensors use wireless communication, where RF noise and multipath
fading causes severe packet losses. It is easy to eavesdrop and to launch spoofing
or Denial-of-Service attacks. Infrared and optical lines of sight are alternatives
that are considered. Nodes are at physical risk because they can be defective, lost,
damaged, compromised or can have expired. Wireless communication implies
limited bandwidth and in most cases also limited power (unless rechargeable
battery, solar power or other energy supply alternatives are feasible). Wireless
communication also implies one-to-all communication where messages sent by
one node are simultaneously received by all neighbors within transmission radius.
Smart omnidirectional antennas can also be considered (especially for actors) but
this makes sensors more complex. Small processing power limits processing time
and reduces the choices available for security solutions, data compression, and
error control techniques. Routing table sizes are small due to reduced memory size
and also reduced usefulness of such tables. Sensors are normally assumed to be
all on the same frequency (or perhaps two frequencies, one being used for some
control messages), since otherwise lots of communications sent on a “wrong” fre-
quency can cause significant loss of energy and also the inability to find neighbors
in a timely manner, during the time neighbors are active. Thus, frequency-hopping
solutions like Bluetooth are currently not considered feasible for WSANs.

The MAC layer primarily aims at energy-efficient and collision-free commu-
nications. Medium access in WSNs is currently envisioned via IEEE 801.15.4
standard (IEEE Standard 802, 2003) and its extension known as Zigbee. ZigBee
network specification (ZigBee Alliance, 2004) is one of the first standards for
ad hoc and sensor networks. ZigBee is a specification for a suite of high-level
communication protocols using small, low-rate, and low-power digital radios
for wireless personal area networks (WPANs). The technology is intended to
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be simpler and cheaper than other WPANs, such as Bluetooth. Two network
topologies are allowed by the standard, both relying on the presence of a central
coordinator. In the peer-to-peer topology sensors (devices) may communicate
directly, while in the star-shaped topology they must communicate through a
coordinator. In a typical ZigBee network, the network addresses of nodes are
organized in a hierarchical manner, such that one node can easily identify the
addresses of its tree neighbors, for example its parent and children. A coordinator
buffers all the packets for its associated devices, such that devices can go to sleep
mode and wake up only when they need to retrieve data from the coordinator.
Moreover, the coordinators route all packets for the devices. One can observe that
the roles of coordinators and devices are similar to the roles of actuators and sen-
sors, respectively. Sensors are time synchronized and follow a joint sleep–active
schedule. They are active at the same time, followed by longer sleep periods. At
the beginning of active periods, they compete for upcoming slots to send mes-
sages. While sensors are all active, Zigbee medium access works similar to the
popular WiFi standard based on IEEE 802.11. Time is slotted. A station that has
a message to transmit will first wait for a few slots of interframe separation. It
generates a random number x in a certain interval (e.g., [0.31]) and uses carrier
sense to determine whether or not the channel medium was used in each slot
while waiting for retransmissions. The station will wait for x idle slots (without
transmissions from any station) and afterwards will transmit the full message
without further verification of a possible collision. Some other proposals that
deviate from random access-based Zibgee were also considered. For example,
Z-MAC (Rhee et al., 2005) combines TDMA and CSMA. It switches MAC to
CSMA and TDMA when contention is low and high, respectively.

At the transport layer , data gathering and data aggregation is scheduled in
order to reduce traffic, increase reliability, and provide QoS control. Most of
these problems are well-studied in WSNs and ad hoc networks. Note that tra-
ditional end-to-end reliability in wired networks is not applicable in wireless
networks since link failure is possible due to the mobility or energy depletion of
nodes. Thus, the QoS issues in WSNs usually call for reliability of communi-
cations rather than bandwidth and/or delay. Individual sensor measurements are
not reliable and need to be combined with readings from other sensors to achieve
collective reliability. The primary task in the transport layer in WSNs is, in fact,
to achieve a sufficient level of reliability in the sensor network reports to the sink
while minimizing their energy and bandwidth resources.

Wireless sensor networks and WSANs have a number of additional issues,
often of a cross-layer nature, each of which is covered in literature and is
important for overall network functioning. They will not be investigated in
this book, which instead concentrates on basic network layer problems. The
reader is advised to consult some other sources, such as handbooks on sen-
sor networks (Stojmenovic, 2005), which cover authentication, key manage-
ment, security issues, operating systems, databases, path exposure, target location,
classification, tracking, data gathering and fusion, localization (position determi-
nation), time synchronization, and calibration.
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1.14 PROBLEMS AT THE NETWORK LAYER

Current problems at the network layer can be classified into three categories:
topology control, routing, and coordination. Their coverage follows.

1.14.1 Topology Control

A well-organized network topology can not only prolong the lifetime of a net-
work, but also enhance data communications. Topology control problems can
be subdivided into neighbor discovery problems and network organization prob-
lems. Neighbor discovery problems are defined as problems in detecting and
discovering neighbors which are located within the transmission range. In the
network organization problems, each node chooses its neighbors and constructs
local topology by either adjusting its transmission power or setting its status,
such as sleep and active modes. There are some protocols that achieve desired
network topology by movement control on nodes. For example, the localized
mobility control protocol in Das et al. (2007) constructs a biconnected network
from a connected network through the movement of nodes. In this and a number
of other protocols, topology control is used to create fault-tolerant networks for
reliable communication protocols.

The most important topology control, especially for power-critical sensor
networks, is to place as many possible sensor (and similarly actor) nodes into a
sleep mode as possible. All nodes that are not essential for communication or area
coverage can be placed in sleep mode for prolonged periods, synchronously or
asynchronously. This is in addition to synchronized sleep–active state changes
of currently active sensors for power efficiency at the MAC layer. There are
a number of studies on energy efficiency at the MAC layer, which are also
based on topology control. S-MAC (Ye et al., 2004) divides nodes into clus-
ters based on fixed common sleep schedules to reduce control overhead and
enable traffic-adaptive wake-up. T-MAC (Dam and Langendoen, 2003) extends
S-MAC by adjusting the length of the waking time of the nodes based on the
communication of neighboring nodes. B-MAC (Polastre et al., 2004) employs an
adaptive preamble sampling scheme to reduce the duty cycle and minimize idle
listening.

Some topology control schemes aim at selecting certain nodes from the
network to create a backbone that can be used in several ways. A backbone
is connected if the network of solely backbone nodes remains connected (after
selecting them from the originally connected network). Some backbone structures
are used to improve the efficiency of data communication protocols. For example,
routing or broadcasting remains successful if intermediate nodes are selected only
from connected backbones since each nonbackbone node has a neighbor from
the backbone. Another possible application of the backbone set is to place the
remaining nodes into sleep mode.

Clustering and connected dominating sets (CDSs) are two basic techniques
used to generate the backbone for wireless sensor and ad hoc networks. The
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clustering process divides the nodes of a network into several clusters. In each
cluster, there is a clusterhead , which is responsible for the coordination and data
communication between nodes in the cluster. The selection of clusterheads is
done via global nomination or local election, according to a certain protocol.
Communications within a cluster could be one hop or multihop. The backbone
could contain only clusterheads or may include some gateway nodes to enable
connectivity.

Dominating sets are another technique for backbone creation. A subset of the
vertices of a graph is called a dominating set if every vertex in the graph is either
in the subset or is adjacent to at least one vertex in the subset. A CDS requires
also connectivity among the backbone nodes. In the example of Figure 1.11
below, subsets {1, 2, 3, 5, 6, 10} and {4, 7, 8, 9} are dominating sets. The subset
{4, 7, 8, 9} is also CDS while the former one is not.

Topology control may also be applied to select certain existing edges of the
network while ignoring others. This leads to subgraphs that may have useful
properties. For example, the Gabriel graph is a planar subgraph of UDG which
can be used to guarantee delivery in position-based routing without relying on
any memorization (Bose et al., 1999).

1.14.2 Data Communication

In data communication problems, such as routing, QoS routing as well as multi-
cast, broadcast, and geocast, the primary goal is to fulfill a given communication
task successfully between nodes in the network. It requires, at the same time, the
minimization of communication overhead and power consumption.

Routing is one of the critical issues in almost any type of network. It is used
to find a route from a source to a destination in the network. In WSANs, each of
the source and destination nodes could be either sensor or actor. In QoS routing ,
selected routes should satisfy the QoS criteria such as delay and/or bandwidth
for real-time and multimedia-rich data communications.

In a multicasting task, the same message needs to be routed from a source
node to a fixed number of k known destinations. Broadcasting is a special case
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Figure 1.11 An example of
a connected dominating set.
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of multicasting where k = N , the number of nodes in the network. That is, in
the broadcasting task the message is to be sent from one node to all the other
nodes in the network. In a sensor and actuator network, multicasting is usually
applied from a sensor node to send the same report to a fixed set of actuators.
In some applications, such as monitoring a certain area, geocasting operation is
carried out. In geocasting , the source sends messages to all the nodes located in
a particular geographic region. For example, an actuator may request all sensors
located in a certain region to report sensed movements.

Other basic data communication primitives may be needed in particular sce-
narios. For example, sensors monitoring certain movements may be required to
continuously send video images of the object. At the same time, the actuator or
sink may need to improve the quality of the delivered image by improving the
communication links along the route. In this scenario, the traffic is large enough
in volume and duration to warrant nodes expending energy on movement in order
to forward the large traffic in a more efficient manner. Such a mobility control
routing task and an algorithm were proposed in Liu et al. (2007). The primary
goal was to move toward a route with minimal total power consumption while
preserving communication during mobility, and achieving this with small total
movement distance of actors or mobile sensors involved in routing.

1.14.3 Coordination

Wireless sensor actuator networks require coordination not only among sensors or
actuators, but also between them. To facilitate the coordination, the first problem
is to achieve proper actuator selection. Sensors need to know where and how to
send reports to the closest actuator. Actuators may flood the network with their
position or merely their IDs. Sensors receiving such information may rebroadcast
them (so that more sensors learn about the same actuator) or ignore them if, for
example, a closer actuator was already identified. Such flooding type algorithms
from multiple actuators have been discussed in Ingelrest et al. (2006). Similar
to flooding of route discovery in routing, sensors may learn their paths toward
the nearest actuator, in terms of hop count or other metric distance. If position
information is available and used in routing, the path may be found dynamically.
When a sensor has a data report for actuators, it needs to efficiently find the best
actuator to deliver the report, without flooding all the actuators. Georouting to
the geographically closest actuator is an option, but it is often not the optimal one
if, for instance, there is a void area between the sensor and that actuator. Instead,
it may be more efficient to try to find a route to any of the actuators. Routing
may start toward the physically closest actuator, but the destination actuator
may be changed during the path search. This task is known as anycasting . The
actuator selection problem also exists in the clustering stage of sensor and actuator
networks. Each sensor needs to find available actuators and decide to join the
cluster which is dominated by an actuator.

Sensors usually report to the sink or actuators via hop by hop transmission.
However, mobile actuators are able to move to collect reports periodically via a
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predesigned route and thus minimize power consumption of sensors. For example,
the U.S. Marine Corps used an unmanned airborne vehicle (UAV) to drop several
sensor motes to detect vehicles traveling through an isolated desert area (Hill,
2003). The motes organize themselves to construct a network to monitor moving
vehicles and record tracking information. The UAV plane comes back later and
retrieves each node’s tracking data.

There are several coordination problems associated with location service in
WSANs. In location service problems, actuators need to provide and maintain (if
they move) position information for sensor nodes and sensors need to maintain
position information for the nearest actuator or neighboring actuators. Sensor-
sensor, sensor-actor and actor-actor coordination may be used to provide position
information to some sensors, using position information of nearby actors and
possibly some “landmark” sensors in the field, as well as collaborative processing
of neighborhood graphs.

In the sensor relocation problem, mobile actuators or mobile sensors move
to replace failed sensors. Similar problems include coordinated movement of
sensors to place themselves strategically around the point of interest, for efficient
monitoring (focused coverage problem).

1.15 LOCALIZED PROTOCOLS AS THE SOLUTION
FRAMEWORK

On the basis of the information required to run algorithms, existing algorithms
or protocols in wireless networks can be roughly classified into two groups:
globalized protocols and localized protocols . In globalized protocol, one or more
nodes (usually the central node like a BS) need(s) to gather global information
ranging from detailed information such as the whole network topology to simple
information of global nature, such as the maximum degree in the network, to
execute the protocol. However, in localized protocol, each node makes protocol
decisions based solely on some local knowledge available. To be more precise,
local knowledge in wireless networks is based on information from neighbors
within k hops from a certain node, where k is usually a small integer like 1
or 2. Some protocols, for example beaconless georouting, do not require any
information from neighbors. Another such example is the probabilistic flooding
scheme (Ni et al., 1999) where each node makes its own decision about possible
retransmission using a predefined fixed probability.

Shortest (weighted) path routing is a typical globalized protocol which com-
putes the best route between the source and the destination. Both well known
shortest weighted path algorithms, Dijkstra’s and Prim’s, require all nodes to
know full network topology (all nodes and all edges between them) to make
proper decisions. Globalized shortest path routing has huge setup costs because
of the large number of messages exchanged in order for the source to gather
the network topology. Global information is costly to gather and maintain in
wireless sensor, actuator, and ad hoc networks (unless the network is static
and small scale or single-hop). The dynamic nature of these networks (possible
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mobility and changes in activity status, arrival, and departure of nodes) requires
localized protocols so that communication overhead needed for gathering global
information is avoided. When the network size becomes large, performance of
globalized protocols is degraded dramatically compared to localized algorithms. If
scalability is an important protocol requirement in wireless networks then local-
ized protocols are the best choice. In localized protocols, decisions are made
based only on information from neighbors and natural additional information.
For example, greedy routing (Finn, 1987) is a localized protocol which uses
only position information of one-hop neighbors and the destination. In greedy
routing, the current node on the route selects the neighbor that is closest to the
destination.

In many cases, the global nature of described protocols appears hidden. One
example is the well-known Bellman–Ford algorithm, used for Internet routing,
which also finds shortest path routes. Neighboring nodes periodically exchange
their routing tables that contain the costs and forwarding neighbors for each
destination. Routing tables are then updated after each such exchange. While
this appears to be a localized algorithm because of exchange between neighbors
as the only apparent communication, a repeated application of that operation
involves the arrival of important information from distant nodes in summary
form. Therefore the algorithm is globalized. Some other algorithms are claimed
to be localized in the literature although the message complexity for each node
is not bounded (it is often O(d ), where d is the number of neighbors). While
the required information appears again to be strictly localized, the information
gathered may still be of global nature in the process and the algorithm is not
localized.

Localized protocols can be further classified based on the amount of infor-
mation required and the overhead in the construction and maintenance phases.
The amount of required information is related to the message complexity which
is defined as the average number of messages exchanged per node in the protocol.
In the construction phase, some localized protocols may need extensive message
exchanges among neighbors. The amount of messages may then be compara-
ble to that in the collection and use of global information. In the maintenance
phase, some localized protocols (in the construction phase) may require message
propagation and recomputation of the entire network for a change only in one
part of the network, such as maintenance of a minimal spanning tree (MST) and
a typical clustering structure. Thus, localized protocols can be further classified
into local localized (message complexity in the maintenance phase remains low)
and quasi-local localized (local changes may trigger global updates). Mobility
of nodes and status changes between active and sleep modes require localized
algorithms, preferably local localized.

Note that the expressed criticism for globalized algorithms does not mean
that they are not useful for protocol design in scalable sensor and actuator net-
works. For example, globalized algorithms can be often applied with limited local
knowledge (e.g., two hops), leading to winning protocols in several cases. This
will be elaborated later in this book.
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1.16 IMPLEMENTATION OF SENSOR MOTES

Many different versions of wireless sensor devices (also called motes) have been
designed and built by various companies and institutions. The size of these motes
varies from the size of a box of matches to the size of a pen tip. The smallest
sensors are known as smart dust . We now describe several representative sensor
motes.

The MICA mote is built by Crossbow in the United States. It consists of the
Atmel Atmega 103L processor which is capable of running at 4MHz, has a 128kB
flash memory, a 512kB serial flash, 4kB SRAM and a 4kB EEPROM. The MICA
mote is powered by two AA batteries and the lifetime is up to 1 year under very
low duty cycles. The mote operates at 916MHz or 413MHz and the transmission
rate is 40 kbps with a transmission range of 100 feet. The MICA2 mote is the
next generation commercial mote by Crossbow. It has the same processor and
memory as the MICA mote but the radio transceiver operates on 433MHz or
868/916MHz with a transmission rate of 38.4 kbps. The outdoor range of the
MICA2 mote is up to 500 feet. Both the MICA mote and MICA2 mote use
TinyOS, an open-source embedded operating system developed at University of
California, Berkeley, to control the mote and its attached sensors. The MICA2
motes accept the same sensor boards as the MICA mote.

Intel developed a mote in which the original modular design of the Berkeley
motes are maintained while the data processing and battery life are improved.
The Intel mote consists of a powerful ARM processor, SRAM, and flash memory.
Optimal sensor boards and an optional power regulator are available. It is also
based on TinyOS. The software stack includes an Intel Mote-specific layer with
Bluetooth support and platform device drivers, as well as a network layer for
topology construction and multihop routing. Security features, such as authenti-
cation and encryption, are also provided.

Sun SPOT (Sun Small Programmable Object Technology) is a sensor devel-
oped by Sun Microsystems (it appears to be the recommended choice in 2008).
It can be battery- or USB-powered and is built upon the IEEE 802.15.4 standard.
Sun SPOT is able to host a wide number of add-on boards with USB, TWI, SPI,
I2S, RMII, USART and SD/MMC interfaces (https://spot-espot.dev.java.net). The
most significant feature of Sun SPOT is that it runs Squawk Java Virtual Machine
(VM) without an underlying OS. This VM acts as both, an operating system and
software application platform. Moreover, Sun SPOT is a completely open source
technology based entirely on Java technology. The open source release of the
Sun SPOT platform includes hardware architecture, software, and the VM. The
Squawk VM is the only open source research VM that is Java Logo certified.

Besides sensor motes, there exist integrated sensor and actuator nodes, such
as robots, which are designed by several robotics research labs. For example,
low-flying helicopter platforms provide ground mapping and air-to-ground coop-
eration of autonomous robotic vehicles (Thrun et al., 2003). Autonomous bat-
tlefield robots sponsored by the Defense Advanced Research Projects Agency
are able to detect and mark mines, and carry weapons. The robots developed by
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Sandia National Lab may be the world’s smallest autonomous robots. They are
only 0.25 cubic inch and weigh less than an ounce (Akyildiz and Kasimoglu,
2004).

1.17 EXPERIMENTS ON TEST BEDS

Wireless sensor networks have been implemented on test beds in applications
for environmental monitoring, business, military, health care and so on. A pio-
neering work is the use of a WSN for habitat monitoring on Great Duck Island
(Mainwaring et al., 2002). MICA motes are adopted as sensor nodes. The MICA
Weather Board provides sensors which are able to monitor changing environmen-
tal conditions with the same functionality as a traditional weather station. The
MICA Weather Board includes temperature, photo resistor, barometric pressure,
humidity, and passive infrared sensors. Thirty-two motes were deployed on the
island for 4 weeks.

A recent experiment on environmental monitoring used a flock of micro air
vehicles (MAVs) to sense weather phenomena (Allred et al., 2007). Each MAV
may be equipped with temperature, pressure, humidity, wind speed or direction
and/or other sensors. The MAVs are able to provide detailed mapping of hurri-
canes, thunderstorms and tornados, and also return data to ground stations. These
data are useful in improving storm track predictions and in the understanding of
storm genesis and evolution. In the experiment, the MAV is designed to keep
the weight and the maximum speed of the airplane under 500 g and 20 m/s,
respectively. The CUPIC autopilot board is employed. It contains a CPU, pres-
sure sensor, radio, rate gyro and GPS device that send navigation information
to the CPU. The cost of the entire airplane is less than $600. Five MAVs are
employed in the experiment. An XBee Pro Zigbee class 2.4GHz radio is used
to support both air-to-air and air-to-ground wireless communications. The MAVs
are always operated at an altitude of less than 150 m to avoid potential con-
flict with larger airplanes and to maintain communication with remote control
pilots.

A heterogeneous architecture for light monitoring and control was studied
in Li (2006). It consists of six to eight light-sensing nodes and several actuator
nodes that are connected to dimmers. A sensing network and an actuation network
operate separately but are joined at a central gateway. The sensors, which match
required conditions, reply to the gateway. The condition could be “sensors for
which the light reading is higher than 4000” or “sensors located in the living
room”. The gateway then sends command messages to actuator nodes to control
the lights.

The energy company BP employed motes on the Loch Rannoch, a big oil
tanker, to predict failures of onboard machinery. One hundred and sixty motes
were placed near some of the ship’s equipment to measure vibrations in the
ship’s pumps, compressors, and engine as an indicator of potential failure. The
system initiates an alert if unusual vibration or motion is detected. The experiment
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demonstrates that motes with relatively low cost are able to help protect expensive
machinery (Steel, 2005).

Wireless sensor networks could be integrated into other networks, such as
Internet and 3G networks. A video surveillance system which is composed of
3G, Internet, and WSNs was studied in Tso et al. (2007). The system consists
of five components: a sensor network with a sink, a 3G phone-controlled patrol
robot, a 3G handset, a laptop connected to the Internet, and a central gateway.
The sensor network is used to detect abnormal events or intruders and report the
sensing data to the central gateway via the sink. The central gateway analyzes
the data and, if necessary, automatically sends an SMS notification to a user.
The user can dial and instruct the robot to patrol on-site at a specific location to
retrieve the real-time video via a 3G phone or Laptop. In the experiment, four
sensors are deployed in the corners of the inspected room. The abnormal event
is artificially set to the change of light intensity.

1.18 EXPERIENCES WITH THE DEVELOPMENT
OF SENSOR NETWORK SYSTEMS

In Tanenbaum et al. (2006), authors argue that building sensor systems is a chal-
lenging task by discussing several considered scenarios. Monitoring Mexico’s
borders will be slow and costly for sensors as well as humans nearby. Sensors
dropped in enemy territory need to be close to each other (sensing range about
10 m), therefore having a soldier watching the same area might be much more
productive. Sensors detecting fire in a forest may not be able to deliver the report
because of lifetime issues. Sensors need to be lifted for increased radio range.
Sensors placed to monitor certain small regions can be easily activated with false
alarms (e.g., by intentionally sending animals nearby).

In Barrenetxea et al. (2008), an efficient and cheap out-of-the-box environ-
mental monitoring system is described. It is a time-driven network where sensors
report environmental data (wind speed and direction, soil moisture, temperature,
humidity, radiation, precipitation, etc.) to a sink, which in turn relays data to
a publicly available database server. A sensing station consists of a four-legged
skeleton containing a sensor box (containing a sensor mote as well as primary and
secondary batteries) and a solar panel. Close to 100 such stations were deployed
in the largest system. The communication stack consists of application, transport,
network, and MAC layers as well as a radio medium. The application layer only
queries sensors and batteries, and passes data to the transport layer. The transport
layer does not include any congestion avoidance mechanism. It creates data or
controls packets with 4 bytes of network header (containing hop count, sender
ID, cost to sink, and sequence number) and 24 bytes of application payload.
The network layer passes packets to the MAC layer. The MAC layer manages
the radio and sends or receives packets. It is based on a simple backoff mecha-
nism without carrier sense. The neighborhood is managed by beacon messages
initiated from the sink. Each sensor updates its cost (only hop count was used)
to reach the sink. The link quality is estimated by the ability of a neighbor to
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receive a data packet and to forward it. The time synchronization is achieved by
a similar flooding initiated from the sink. Its frequency is decided to just offset
the time-drift in sensors. The power management is resolved by duty cycling,
where all nodes are synchronously sleeping and waking up, and with messages
not starting before maximum time-drift following wake-ups. Routing is oppor-
tunistic, that is, a message is sent to any neighbor with a smaller hop count and
decided at random at forwarding time. This ensures load balancing.
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Abstract

This chapter first discusses backbones as subsets of sensors or actuators that
suffice for performing basic data communication operations. They are applied in
this chapter for energy-efficient broadcasting. In a broadcasting (also known as
data dissemination) task, a message is to be sent from one node, which could be a
sink or an actuator, to all the sensors or all the actuators in the network. The goal
is to minimize the number of rebroadcasts while attempting to deliver messages
to all sensors or actuators. Neighbor detection and route discovery algorithms that
consider a realistic physical layer are described. An adaptive broadcasting proto-
col without parameters, suitable for delay tolerant-networks, is further discussed.
We also survey existing solutions for minimal energy broadcasting problems,
where nodes can adjust their transmission powers.

2.1 BACKBONES

A backbone is a subset of nodes that are able to perform assigned tasks and serve
nodes which are not in the backbone. Thus, the backbone construction depends on
the task to be carried. This chapter deals with backbones for the communication
between nodes. The next chapter will discuss backbones for sensor area coverage.
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The exact definition depends on the tasks or the particular desirable prop-
erties of the backbone. In wireless sensor networks, a backbone could be the
set of active sensors while the rest of the sensors are sleeping (the problem of
deciding which sensors should be active is often called the activity scheduling
problem). The backbone of a network is normally required to be connected, such
that the backbone nodes are able to communicate to perform assigned tasks. For
instance, connected backbone nodes in ad hoc networks can perform efficient
routing and broadcasting. Use of a backbone in wireless sensor networks could
not only prolong the network lifetime, but could also make the operation of
the network efficient. For instance, typical broadcasting in sensor networks is
normally flooding-based, where each node retransmits the broadcasting message
that it receives. Only nodes in the connected backbone retransmit the message
in backbone broadcasting. Broadcasting via backbone could avoid a lot of use-
less retransmissions especially for dense networks. Backbones are often used to
improve the routing procedure. A source node forwards the message to a back-
bone node. Routing then proceeds among backbone nodes until a backbone node
is forwarded to the destination node.

There are basically three well-known methods to construct backbones: grid
partitioning-based backbone (Xu et al., 2001), clustering-based backbone (Lin
and Gerla, 1997), and connected dominating set (CDS )-based backbone (Guha
and Khuller, 1998). In the grid partitioning-based backbone, the area of the
network is divided into grids and one node in each grid is selected as a backbone
node. The size of grid should be carefully determined to guarantee that the
backbone is connected. In clustering-based backbone, nodes are grouped into
clusters and a node is elected as the clusterhead (CH) in each cluster. Any node
in the network is either a CH or a neighbor of a CH. Additional nodes are
required to be included to make the CHs connected. The concept of CDS has
been introduced in Chapter 1, and will be elaborated on again later in this chapter.

The maximal independent set (MIS) is an important concept which is used in
the construction of some clustering and CDS-based backbones. An independent
set is a set of vertices in a graph where no two vertices are adjacent. A MIS is an
independent set which is not a subset of any other independent set. The largest
MIS is called the maximum independent set .

The independent set problem is equivalent to the clique problem since an
independent set in a graph G is a clique in the complement graph of G . Therefore,
finding the maximum independent set is equivalent to finding the maximum clique
which is a well-known NP-complete problem. However, a MIS can be found in
polynomial time by adding vertices one by one until no more vertices could be
added.

Backbone construction algorithms are normally applied to unit disk graph
(UDG) where all nodes are assumed to have a common transmission range.
In this chapter, we first separately consider sensor and actuator networks since
each of them can be modeled as UDG. Later in Section 2.8, we discuss joint
backbones for sensor and actuator networks. Backbone concepts, where nodes
have an adjustable transmission range are studied in literature but are not covered
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here because of perceived lack of their usefulness. Therefore, most sections here
assume that nodes have fixed transmission radius (exceptions are Sections 2.10
and 2.8 discussing heterogeneous networks of both sensors and actuators).

2.2 GRID PARTITIONING-BASED BACKBONES

A grid partitioning algorithm for backbone construction, called geographical
adaptive fidelity (GAF ), was proposed by Xu et al. (2001). It assumes that loca-
tion information is available via GPS, and each node knows its current location
relative to other nodes. The algorithm divides the whole area of the network into
virtual grids. The virtual grid is defined such that, for any two adjacent grids, any
node in one grid can directly communicate with any node in the other grid. That
is, all nodes in the same grid are “equivalent” from the routing or broadcasting
point of view. Therefore, one representative node from each grid is sufficient to
construct a connected backbone.

Suppose r is the size (edge length) of the virtual grid and R is the transmis-
sion range. In order to guarantee that any two nodes in adjacent grids can commu-
nicate with each other, the following relationship is required: r2 + (2r)2 ≤ R2.
Thus, we have r ≤ R/

√
5.

Geographical adaptive fidelity was further studied by Basagni et al. (2004).
This study shows that the backbone constructed by GAF may disconnect the
graph. The reason is that nodes are not evenly distributed in the grids. It is very
likely for a grid with one or more nodes to be adjacent to one or more empty
grids. Two nonadjacent nonempty grids may be connected when all the nodes
within them are active. However, particular leaders computed by GAF may not
be connected and this results in a partition of the backbone. The partition of the
backbone is illustrated in Figure 2.1 (not all edges of UDG are drawn). Other
disadvantages include the use of parameter (grid size) and global synchronization
for grid boundaries.

Transmission range

Figure 2.1 Partition of the backbone by using GAF.
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2.3 CLUSTERING-BASED BACKBONES

Clustering is one of the commonly used backbones to organize the network in a
hierarchical architecture. It is used to partition nodes of the network into groups
(clusters) in which CHs dominate the other nodes in the clusters. Clustering
provides spatial reuse of the bandwidth which is a limited resource in wireless
sensor networks. Moreover, clustering provides a hierarchical architecture for
efficient routing. Existing solutions for clustering usually consists of two phases:
clustering construction and clustering maintenance. In the first phase, nodes are
chosen to act as coordinators of the clusters (CHs). A CH and some of its
neighbors form a cluster. After clustering construction, clustering maintenance is
required to reorganize the clusters due to node mobility and node failure.

There are different cluster structures. Clusterheads may or may not be
allowed to be neighbors, and other nodes may or may not be always connected
to a CH. For example, nodes in LEACH (low-energy adaptive clustering
hierarchy) protocol proposed by Heinzelman et al. (2000) randomly decide
whether or not to become CHs. The parameter used in decision making is the
percentage of desired CHs in the network. Sensors that decide to become CHs
broadcast their decision. Each node reports to the CH with the highest signal
strength, and thus clusters correspond to Voronoi diagrams of CHs. A CH
allocates a timeslot for each of its cluster members for reporting aggregation
data. Selection of CHs is periodically repeated to balance energy consumption
of nodes. The structure of the backbone computed by LEACH protocol is
illustrated in Figure 2.2. The structure of the clusters constructed by LEACH is
inefficient since the sink may be very far from many CHs. Consequently, direct
reporting may be extremely energy-consuming or even impossible. Furthermore,
two CHs may be neighbors of each other, and many nodes may not have any
CH as a direct neighbor. There are dozens of recent articles describing multihop
reporting or better CH decisions, compared to LEACH. In particular, Xia and
Vlajic (2006) proved that only clustering schemes that position their resultant
clusters within the isoclusters of the monitored phenomenon are guaranteed to
reduce the nodes’ energy consumption and extend the network lifetime. They
also proposed the first clustering algorithm that employs the similarity of the
nodes’ readings as the main criterion in cluster formation.

Sink

EventEvent

Figure 2.2 LEACH protocol.
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A class of clustering algorithms requests that no two CHs could be direct
neighbors, and any other node should be adjacent to at least one CH. A represen-
tative is the algorithm by Lin and Gerla (1997), and its variants. It assumes that
each node has a unique node key and knows the keys of its one-hop neighbors.
The basic idea of the CH algorithm is to use the node key as a priority indicator
when selecting CH in each cluster. It works as follows. Each node compares
its key with the keys of its neighbors. Initially all nodes are undecided. If an
undecided node has the lowest key among its undecided neighbors then the node
decides to create its own cluster and broadcasts the decision and its key as the
cluster key . Upon receiving a message from a neighbor that announces itself to
be a CH, each undecided node will declare itself as a non-CH (and decided)
node and will inform its neighbors by transmitting a message. The declaration
of non-CH will encourage more CHs to create clusters.

In the example in Figure 2.3, IDs of nodes (numbers from 1 to 20) are
used as node keys, with their natural ordering (1 < 2 < . . .< 20). In the first
round, nodes 1, 5, 10, and 18 have the lowest keys among their neighbors and
become CH. The CHs in the first round send their decisions to their neighbors,
which then declare themselves non-CHs and inform their neighbors. In the sec-
ond round, nodes 3 and 15 create their clusters since they receive a non-CH
announcement from nodes 2 and 14, respectively. Nodes are therefore divided
into 6 clusters: {1, 2}, {3, 2, 4, 11}, {10, 11, 12, 13, 14}, {15, 14, 16, 17}, {5,
6, 7, 8, 9, 16}, {18, 19, 20}. Any non-CH node that receives more than two
CH declarations will declare itself as a gateway node, and will belong to all
corresponding clusters (alternatively, it can be assigned to only one of these
clusters by some criteria). In the example, nodes 2, 6, 11, 14, 16, 20 are gate-
way nodes which connect CHs. Any two neighboring CHs are two or three hops
away from each other. They share a gateway node if they are at a distance of
two hops (e.g., path 1-2-3). Some paths between two CHs at a distance of three
hops may contain nodes that belong to a single cluster. For example, path 18-
20-6-5 contains one such as the node 20. These nodes are also considered as
gateway nodes, since otherwise the network of CHs and gateway nodes might
be disconnected.

1

2

3

4

11

6
5

16

14

13

15

17

7

9820
19 18

12

10

Figure 2.3 Clusterheads 1, 5,
10, 18 in round 1 and 3 and 15 in
round 2.
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A distributed clustering algorithm, called distributed mobility-adaptive clus-
tering (DMAC), proposed by Basagni (1999) uses a mechanism to construct
clusters which is similar to the algorithm in Lin and Gerla (1997). However,
it uses the weight of the nodes instead of node IDs as keys when determining
the CHs. The weight of the nodes could be assigned depending on the remain-
ing energy in the cluster or the capacity of the nodes. The algorithm (Lin and
Gerla, 1997) is then followed with such weight instead of the original lowest ID
used in Lin and Gerla (1997). On the basis of the DMAC, a protocol for the
topology control of large wireless sensor networks, called S-DMAC , was pro-
posed in Basagni et al. (2004). The protocol is used to select a subset of sensor
nodes to build a connected backbone and let all other nodes switch to an energy-
conserving “sleep mode.” A connected backbone consists of backbone nodes and
gateway nodes which interconnect the backbone nodes, where backbone nodes
are the CHs computed by DMAC. S-DMAC optimizes the overhead for neighbor
discovery at both the backbone construction and backbone maintenance stages
by limiting the use of “hello” messages. The backbone is reorganized only when
introducing a new batch of nodes with much higher energy than the current nodes,
or when backbone nodes deplete their energy. A nonbackbone node will join a
newly inserted backbone node only when the residual energy of the new back-
bone node exceeds the original one’s energy by a predefined threshold. When
compared with GAF, S-DMAC provides a connected backbone with a smaller
number of nodes. It also reduces the number of backbone reorganizations and
exchanged “hello” messages.

Clustering is a typical example of a quasi-local protocol for both the construc-
tion and maintenance phases (Simplot-Ryl et al., 2005). It has a “chain effect”:
a simple change in an edge or node failure/addition may trigger global backbone
updates by propagation. The propagation is typically suppressed at the expense
of quality of the cluster structure. Another difficulty is to connect CHs into a
connected backbone via gateway nodes. The process normally either elects too
many gateways, or uses too many messages to elect fewer ones.

2.4 CONNECTED DOMINATING SETS
AS BACKBONES

Connected dominating sets are one of the primary techniques used to build back-
bones for wireless sensor and ad hoc networks. The concept of CDS can be
briefly introduced as follows. A dominating set (DS) is a subset of the vertices
of a graph where every vertex in the graph is either in the subset or is adja-
cent to at least one vertex in the subset. A CDS is a connected DS. The nodes
in CDS are called dominators , while other nodes are called dominatees . There
are several metrics used to evaluate the quality of a backbone protocol. They
evaluate its properties such as backbone size, protocol duration, message over-
head and backbone robustness (Basagni et al., 2006). It is normally desirable
to construct a backbone with the smallest size possible and thus prolong the
lifetime of the network and alleviate congestion. That is, it is useful to find the
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minimum connected dominating set (MCDS). However, finding the MCDS in
general graphs has been shown to be equivalent to the set cover problem which
is NP-hard (Garey and Johnson, 1978). The MCDS remains NP-hard even in
UDGs (Clark et al., 1990). Therefore, approximation algorithms and heuristic
algorithms have been proposed in literature to solve the problem. Approxima-
tion algorithms are normally evaluated by the approximation/performance ratio,
which is upper bound on the ratio of the algorithm’s performance to the optimal
algorithm’s performance. Algorithms introduced next can be classified into cen-
tralized algorithms (e.g., Guha and Khuller, 1998) and localized algorithms (e.g.,
Adjih et al., 2005). Some distributed algorithms as implementation of centralized
algorithms are also introduced (e.g., Alzoubi et al., 2002).

2.4.1 Centralized Set Cover-Based Algorithms

Guha and Khuller (1998) proposed centralized algorithms to build a CDS for
general graphs. The basic idea of the first algorithm is to construct the CDS by
growing it from a single node outward. The second algorithm, on the other hand,
constructs CDS simultaneously from several nodes. The first algorithm runs as
follows. Each node is initially colored white. Next, the node with the largest
degree is colored black and all its neighbors are colored gray. This last step is
repeated until there are no white nodes left in the graph. Each time, the gray
node with the largest number of white neighbors is colored black and then all its
white neighbors are colored gray. Node IDs can be used to break ties. Finally,
all black nodes form a CDS. The algorithm is illustrated in Figure 2.4. Nodes
3 and node 5 have the largest degree. Since 3 < 5, node 3 is colored black in
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Figure 2.4 Guha–Khuller algorithm for CDS construction.
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the first step. All its neighbors are colored gray. Since node 5 has the largest
number of white neighbors, it is colored black next and all neighbors of node 5
are colored gray. Similarly, node 6 is colored black and node 1 is colored gray
in step 3. After node 8 is colored black, all black nodes {3, 5, 6, 8} form a CDS.

Cheng et al. (2003) showed that there exists a polynomial-time approxima-
tion scheme (PTAS) for MCDS in UDGs. This means that the performance ratio
for polynomial-time approximations can be 1 + ε for any given ε > 0. However,
the running time grows rapidly as ε approaches 0. Thus, PTAS is not applicable
in practice. Min et al. (2006) proposed to use a Steiner tree with a minimum
number of Steiner nodes (ST-MSN) to construct a MIS.

The algorithm (Min et al., 2006) consists of two phases. In the first phase,
a MIS is constructed (Wan et al., 2004), such that every subset of the MIS
is two hops away from its complement. Suppose I is the MIS and A is an
arbitrary subset of I . The distance of A and I – A is exactly two hops. That is,
there must exist a ∈ I and b ∈ I – A, such that a is two hops away from b.
Note that any MIS is also a DS. All the nodes in the MIS are colored black
and all other nodes are colored gray. In the second phase, a gray node that is
adjacent to at least three connected black components is colored black. If no node
satisfies this condition, a gray node that is adjacent to at least two connected black
components is selected to be colored black. Finally, all black nodes form a CDS.
The approximation ratio of the algorithm has been proved to be 6.8 for UDGs.
It means that the number of nodes in CDS is at most 6.8 times of that in MCDS
in UDGs.

2.4.2 MIS-Based CDS

The basic idea of the algorithms in this category is to compute and then connect
an MIS. There are basically two strategies to compute a MIS. One is based on
a single leader and the other is based on multiple leaders. Two representative
algorithms for these strategies are introduced next.

Alzoubi et al. (2002) proposed two versions of a single leader-based algo-
rithm for CDS construction. In both algorithms, the distributed leader election
algorithm (Cidon and Mokryn, 1998) is employed to construct a rooted spanning
tree. The basic idea is to partition all nodes in the network into several groups.
Each group contains a candidate node and its domain of supportive nodes. These
groups are iteratively merged until there is only one candidate which eventually
becomes the root (leader) of the tree. Then, an iterative labeling strategy is used
to classify the nodes in the tree to be either black (dominator) or gray (domina-
tee) based on their ranks. The rank of a node is a pair {hop_count, ID}, where
hop_count is the number of hops to the root of the spanning tree. The labeling
process starts with the root and finishes at the leaves. At the initialization stage,
the node with the lowest rank colors itself black and broadcasts a “dominator”
message. If a node receives any “dominator” message, it colors itself gray and
broadcasts a “dominatee” message. If a node receives “dominatee” messages
from all its neighbors with lower rank then it will color itself black and send a
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“dominator” message. The algorithm terminates when the leaf nodes are reached.
All black nodes form a MIS.

To connect the nodes in the MIS to form a CDS, initially, the root joins the
CDS and broadcasts an “invite” message. The “invite” message is relayed to all
two-hop neighbors from the current CDS. Upon receiving the “invite” message
for the first time, a black node joins the CDS to the gray node which relayed the
message (and that gray node joins CDS). In turn, the black node broadcasts an
“invite” message. The process terminates when all the black nodes have joined the
CDS. The performance ratio of the resulting CDS has been shown to be at most 8.

The algorithm is illustrated in Figure 2.5. Suppose the leader election algo-
rithm (Cidon and Mokryn, 1998) is used to compute a spanning tree which is
rooted at node 0. The solid lines represent the edges in the spanning tree while
the dashed lines represent the edges in the UDG (each edge of the spanning tree
also belongs to the UDG). According to the algorithm, node 0 is colored black
and sends a “dominator” message to its neighbors 2, 4 and 12 (Fig. 2.5a). Upon
receiving the message, nodes 2, 4 and 12 are colored gray and send “dominatee”
messages. For example, node 4 sends the “dominatee” messages to its neighbors
0, 5, 7, and 10. Node 5 is now colored black since it has received “domina-
tee” messages from all its neighbors with lower rank (node 4 only). Figure 2.5b
shows the colors of the nodes after the labeling process. The final step is to build
the dominating tree from the root. Node 0 broadcasts an “invite” message to its
neighbors which relay the message to its two-hop black neighbors 3, 5, and 7.
These black nodes join the dominating tree with their gray neighbors, 2 and 4,
which relay the message. Finally, all of the black nodes in the dominating tree
form a CDS (Fig. 2.5c).

Cheng et al. (2004) proposed a multiple leader-based algorithm for CDS
construction. The basic idea of the algorithm is as follows. Initially, each node
with the smallest ID among its one-hop neighbors marks itself as a leader. The
leaders serve as roots of trees which form a forest. Then, chains of one or two
nodes are computed to connect neighboring trees. Messages exchanged during the
algorithm are linear in the number of nodes in the network and the performance
ratio was shown to be at most at 147.
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Figure 2.5 MIS-based algorithms.
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The drawbacks of MIS-based CDS algorithms in this section are the use of
significant number of messages to construct and maintain the structures. In real-
istic scenarios, with medium access and realistic physical layers, these messages
may lead to errors in decisions, in addition to causing message overhead and
energy consumption.

2.4.3 Coverage-Based CDS

Wu and Li (1999) proposed a localized algorithm to construct CDS in general
graphs. It assumes that each node knows the local topology of its two-hop neigh-
bors. That is, it has a list of its direct neighbors, and lists of direct neighbors of
each if its neighbors (obtained by exchanging two rounds of “hello” messages).
Alternatively, each node should be aware of its own position, and the position of
all its neighbors, which requires one round of “hello” messages, where each node
informs its neighbors about its own position. We describe a modified definition by
Stojmenovic et al. (2002) (followed by a correction and comments in Stojmen-
ovic (2004)) since it completely eliminates the need for sending any additional
message (in addition to mentioned “hello” messages for gathering needed local
knowledge). More precisely, each node can decide for itself whether or not it is
in CDS without any message exchange with neighbors. However, to learn the
CDS status of neighboring nodes, communication may be required. The two def-
initions and construction algorithms (Wu and Li, 1999) and (Stojmenovic et al.,
2002) always (for any input graph) produce the same CDS. We also assume that
each node has a unique key , and that these keys are distributed to neighbors as
part of required local knowledge.

A node is a 0-gateway node if it has two unconnected neighbors. A node, say
A, is “covered” by a neighbor, say B , if each neighbor of A is also a neighbor
of B and key(A) is less than key(B ). A node A is covered by two connected
neighboring nodes B and C if each neighbor of A is also a neighbor of at least
one of nodes B or C , key(A) less than key(B ) and key(A) less than key(C ).
A 0-gateway node not covered by any neighbor becomes a 1-gateway node.
A 1-gateway node not covered by any two connected neighbors becomes a 2-
gateway node. Finally, the 2-gateway nodes form a CDS. Note 0-gateway and
1-gateway nodes also create CDS, since 2-gateway nodes are their subsets. In
the example in Figure 2.6, nodes 6, 8, 14, 15, 16, 17 are not 0-gateway nodes.
Node 5 is covered by its neighbor 9 since all 5’s neighbors are also neighbors of
9 and 5 less than 9 (keys are assumed to be ordered numerically, 1 < 2 <· · ·).
Thus, 0-gateway node 5 is not a 1-gateway node. Node 2 is covered by two
connected neighbors 3, 12 since they have higher key values and the remaining
neighbors 4, 6 and 16 are covered by 3 and 12. Therefore, 1-gateway node 2 is
not a 2-gateway node. Finally, the remaining 2-gateway nodes {1, 3, 4, 7, 9, 10,
11, 12, 13} form a CDS.

The key of a node could be its ID (Wu and Li, 1999), a pair (degree, ID)
(Stojmenovic et al., 2002) (degree is the number of neighbors of a node) or
a three-tuple (energy, degree, ID) (Wu et al., 2002, 2003). For example, when
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coverage-based algorithms.

(energy, degree, ID) is used, a node with a higher energy level has a higher
probability to be a dominator. If the energy levels of two nodes are equal, then
the node degree is used to break the tie. Similarly, if both energy level and node
degree are the same, node ID is used to break the tie. Such choice for a key
will balance the energy of nodes since generally nodes with higher energy are
selected to be active. The decisions can be periodically reevaluated, so that the
network lifetime is prolonged. Shaikh et al. (2003) proposed several alternative
key definitions, based on combinations of node degrees and remaining energy
levels. A surprising winner was key = energy/degree + energy , but no explanation
was given for such an outcome.

Size of the CDS in Figure 2.6 could be further reduced by applying a gener-
alized rule (Dai and Wu, 2003), where coverage could be provided by an arbitrary
number of connected one-hop neighbors. In the example in Figure 2.6, node 7 is
covered by four connected neighbors 9, 10, 11, 13 since the remaining neighbor
17 is covered by 11 and the key value of 7 is the minimal. Thus, node 7 can be
removed from the CDS. Formally, the rule can be defined as follows. Let N(u)
be the set of u’s connected neighbors which have higher key values than A. If
any of u’s neighbors is either in N(u) or is a neighbor of a node from N(u), then
node u can be removed from the CDS. This rule formulation has been proposed
by Stojmenovic et al. (2004) in order to avoid similar message exchanges among
neighbors. Nodes that remain in CDS by this definition will be called gateway
nodes here.

A simple algorithm for verifying this condition is proposed by Carle and
Simplot-Ryl (2004). First, each node checks if it is 0-gateway node. Then, each
0-gateway node u constructs a subgraph Gh (of original UDG) which consists of
its one-hop neighbors with higher key values and existing edges between them.
If Gh is empty or disconnected, u decides to join the DS. If Gh is connected
but there is a neighbor of u which is not a neighbor of any node in Gh , u also
decides to join the DS. Otherwise, u is covered and is not in the DS. Dijkstra’s
shortest path algorithm could be used locally at each node to test the connectivity.
Note that the required connectivity of neighbors does not imply that any two of
them are the one-hop neighbors, but only that the subgraph of these nodes is a
connected graph.
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We will refer to nodes selected into DS by the generalized rule as gateway
nodes (generalizing the previous definition). These are nodes not covered by any
subset of their connected neighbors. Thus, each node which is not selected as a
gateway node to join CDS is either not a 0-gateway node or there exists a set of k
connected neighbors with higher key values that covers it. It is not immediately
clear whether or not the so defined gateway nodes create a (connected) DS. Each
gateway node is also a k -gateway node for any k . We will now give a proof of
the CDS property. The proof of connectivity is similar to the one given in Wu
and Li (1999) while the proof of DS property is generalized from the one given
in Stojmenovic (2004).

Theorem 2.1. Gateway nodes create CDSs.

Proof. Suppose that, on the contrary, the created set S of gateway nodes is not
a DS. Then, there exist some nodes which are not in S , and which have no
neighbors among nodes in S . Among such nodes, let X be the one with the
largest key value. If all neighbors of X are not 0-gateway nodes, the graph is a
complete graph. Otherwise, let Y be the 0-gateway neighbor of X with the largest
key . Since Y is not a gateway node, it is covered by k of its connected neighbors
U 1, U 2, . . . , U k (this is not necessarily a chain of these neighbors), and has
the lowest key among them. Such neighbors that are not 0-gateway nodes can be
eliminated first without affecting coverage property. X then must be a neighbor
of at least one of these (remaining) 0-gateway nodes, say U i . However, key(Y )
< key(Ui) contradicts the choice of Y . Therefore, the set of nodes, not in S and
not a neighbor of any node in S , is empty, and therefore S is a DS.

The connectivity of created DS follows from the observation that removing
any node, which decides not to participate in CDS, does not disconnect
any existing path between a node S and node D (Wu and Li, 1999). In
the example in Figure 2.7, suppose that S was connected to D by a path
S → . . . → A → U → B → . . . →D, which is composed of bold edges.
Suppose node U is not in DS. That is, U is covered by k ≥ 1, of its connected
neighbors U 1, U 2, . . . , U k. In Figure 2.7, k = 3. Thus, nodes A and B are
connected via U 1, U 2, . . . , U k. The path segment A → U → B can be replaced

A
S

U1
U2

U

U3

B

D

C

Figure 2.7 Connectivity of gateway nodes.
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with A → U i . . . → B . In Figure 2.7, A → U → B can be replaced with A
→ U 1 → U 2 → U 3→ B . Therefore, U can be removed while connectivity is
still preserved. All nodes can be sorted by their keys, and parallel removal can
be considered as a series of removals of nodes, with increased key values. The
connectivity is then preserved at each step, as nodes previously removed are
not used in the removal of new nodes (each node is covered only by higher key
neighbors). �

Enhanced DSs are further studied by Dai and Wu (2003) and Ingelrest et al.
(2007). An enhanced definition for computing a DS is presented here. An inter-
mediate node u is not a dominator if there exists in its two-hop neighborhood
a connected set Au of nodes with higher key value, such that each neighbor
of u either belongs to Au or is a neighbor of a node in Au . In the example in
Figure 2.8a, after applying the algorithm (Wu and Li, 1999), all black nodes form
a CDS. However, its size can be reduced as in Figure 2.8b. Since a is covered
by the two-hop neighbors {b, e, f }, a is removed from CDS. Similarly, b and
all of its neighbors {a , c, e} are covered by its connected higher ID two-hop
neighbors {e, f }. Thus, b is removed from CDS.

The performance ratio of the algorithm (Wu and Li, 1999) has been shown
to be O(n), where n is the number of nodes in the network (Wan et al., 2004).
An example of a worst case behavior are nodes at square grid points (x , y) where
(x , y) is used also as a key value [with a large transmission, but not too large,
for example, n0.5/2)]. All internal points of this mesh remain in CDS. A simpler
example of a worst case behavior is a chain of nodes with increased key values
(and transmission radius that gives e.g., about n/2 neighbors per node), which
forces almost all nodes to be in CDS. However, Dai and Wu (2004) proved that
the generalized CDS concept has a constant approximation ratio on average, and a
very low probability of having an infinitely large approximation ratio. Wiese and
Kranakis (to appear) proved that no algorithm, based on the one-hop positional
information, can achieve constant approximation ratio in the worst case. The proof
is based on an example of an arbitrary number of nodes placed on two concentric
circles, with distance equal to the transmission radius R, so that nodes are paired,
one on each circle, with a distance R between paired nodes. If uv is one such pair
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(b) Enhanced CDS.
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then, based on local knowledge of positions of neighbors, both u and v decide
to join CDS since the other node appears disconnected from the rest in the local
one-hop subgraph. However, a CDS with a constant number of points on each
circle exists, thus showing that the worst case approximation ratio is unbounded.

Major advantages of the algorithm are zero communication overhead (after
“hello” messages to learn neighbors) and its locality of maintenance. In case of
movement or on/off switching of a node, the algorithm only requires neighbors
of the node to update their status. The performance of the algorithm (Wu and
Li, 1999) (more precisely, the variant described here, from (Stojmenovic et al.,
2002) was used) was studied in Basagni et al. (2006) via extensive simulation.
The results show that it is a very fast algorithm and achieves the best trade-off
balance between the low message complexity and size of CDS, compared to all
alternatives (most of them are described here).

2.4.4 Topology Control in 802.15.4-Based
Sensor Networks

Topology control for star-shaped topology of IEEE 802.15.4 (IEEE Standard 802,
2003) based sensor networks (see also Chapter 1 for more detail) was studied
by Ma et al. (2007). This topology defines two roles for a node: coordinator
or device. A coordinator serves its associated devices by buffering and routing
packets for them, such that the devices can go to sleep mode and wake up only
when they need to communicate with the coordinator. Authors Ma et al., (2007)
prove that a route between two nodes is bidirectionally connected if and only if
all intermediate nodes along the route are coordinators. This is because a device
(noncoordinator) node on the route cannot be synchronized at the same time with
the previous and subsequent node on the route. This means that the CDS concept
of backbone is implied by the medium access protocol for star-shaped topology
of IEEE 802.15.4. The duty cycle of every coordinator node is therefore 100%,
while device nodes may periodically sleep. It is therefore important to select
small size CDSs as coordinators.

Three localized pruning algorithms were proposed to construct CDS (Ma
et al., 2007). The self-pruning algorithm works as follows. Let S (v ) be the set of
neighbors of u which have a higher priority than v . Node v is not a coordinator
if (i) S (v ) is nonempty and connected; (ii) any neighbor of v is covered by S (v )
[i.e., it is either in S (v ) or is a neighbor of node from S (v )]. The priority of a
node can be based on its energy level, node ID or node degree. Note that this
definition is the same as generalized rule CDS concept of (Dai and Wu, 2003;
Carle and Simplot-Ryl, 2004; Stojmenovic et al., 2004).

Ordinal pruning (Ma et al., 2007) is a similar concept. The only difference
is that S (v ) includes not only neighbors with higher priorities but also neigh-
bors with lower priorities that have already become coordinators. Therefore the
coordinator node set of the ordinal pruning algorithm is a subset of that of the
self-pruning algorithm. This variant of CDS concept was also described in Dai
and Wu (2004).
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In layered pruning method, instead of waiting for all the neighbors with lower
priorities, each node only considers all neighbors with higher hop distances. That
is, the set S (v ) in the definition contains all neighbors with higher priorities and
all neighbors u with d (u) greater than d (v ), where d (u) is hop count from the
sink. Thus all nodes in the same layer decide their roles simultaneously. The
coordinator set of the layered pruning algorithm has been proven to be a subset
of that of the self-pruning algorithm.

2.4.5 Multipoint Relaying-Based CDS

Several backbone schemes are based on the concept of multipoint relays (MPRs)
of a node S , defined as a minimal size subset of neighbors of a given node
S that will “cover” all the two-hop neighbors of S . It requires that each node
gathers the two-hop knowledge. Node A is covered by a node B if A is a direct
(one-hop) neighbor of B . Relay points of S are the one-hop neighbors of S that
cover all the two-hop neighbors of S . The objective is to minimize the number
of relay points of S . The computation of a MPR set with minimal size is an
NP-complete problem (Qayyum et al., 2002). Relay points are determined by
applying Guha–Khuller algorithm for CDS construction, which is restricted to
a two-hop neighborhood of a given node. It is similar to a heuristic algorithm,
called greedy set cover algorithm , proposed in Lovasz (1975). This algorithm
repeats the selecting node B that maximizes the number of neighbor nodes that
are not yet covered. In the example in Figure 2.9a, gray nodes 2, 5 and 6 are
relay points of node 0 and the size is minimal.

Adjih et al. (2005) proposed an MPR-based algorithm for CDS (MPR-CDS)
backbone construction. Each node computes its MPR set by selecting a sub-
set of the one-hop neighbors which cover all the two-hop neighbors. The node
attaches the relay list to a “hello” message which is broadcasted to its neighbors.
Upon receiving the “hello” message, an intermediate node decides to join the
CDS if it has either the smallest ID in its neighborhood or if it is the MPR for
the neighbor with the smallest ID. Wu (2003) improved the rule by eliminating
the node that has the smallest ID among its neighbors, but without two uncon-
nected neighbors. The construction of the MPR-CDS backbone requires the
two-hop neighbor knowledge, plus a message containing the list of relay nodes of
each node. This can be treated overall as CDS construction requiring three rounds
of messages, plus another round if the CDS decisions are to be communicated
to neighbors.

Consider the example in Figure 2.9b. Since a and b are the nodes with the
smallest ID amongst their neighbors, they decide to belong to the CDS. Node a
computes its MPR set {g , h} and then attaches the list to its “hello” message.
Upon receiving the “hello” message, nodes g and h decide to belong to the CDS
as well. Similarly, node f decides to belong to the CDS since it is the MPRs of
b. Finally, nodes {a, b, f, g, h} form a CDS by the algorithm (Adjih et al., 2005).
Using the improved algorithm (Wu, 2003), node b is not selected for CDS, and
CDS set is {a, f, g, h}.
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Figure 2.9 MPR-CDS algorithm. (a) Relay nodes 2, 5 and 6 of node 0; (b) MPR-CDS nodes
{a, b, f, g, h} by Adjih et al. (2005) and {a, f, g, h} by Wu (2003).

2.5 OVERVIEW OF BROADCASTING TECHNIQUES

Broadcasting is one of the fundamental operations in wireless sensor and ad hoc
networks. It is used to disseminate a message from a node, also called a source,
to all other nodes in the network. In sensor and actuator networks, broadcasting
usually comes from a sink or an actuator and it is directed to all of the sen-
sors or all of the actuators in the network. Applications of broadcasting include
paging a particular host or sending an alarm signal to all nodes in the network.
Broadcasting in wireless sensor networks is normally used to disseminate request
information for measurements such as temperature and noise level. Broadcasting
is often referred to as flooding when it is employed in protocols to disseminate
control messages such as route discovery, route maintenance, topology updating
and synchronization. Since both sensor networks and actuator networks can be
modeled by UDG, we first consider broadcasting separately in sensor networks
or actuator networks. Then later we discuss sensor and actuator network as a
single heterogeneous network.

Since the transmission range is restricted in wireless sensor actuator net-
works (WSANs) due to the limited energy of nodes, it is normally impossible
for the source to directly cover all recipients in the network. Thus, many nodes
have to act as routers by relaying the broadcasting message to their neighbors.
The broadcasting message is propagated hop by hop and ultimately reaches all
the nodes in the network. The simplest implementation of broadcasting is blind
flooding . In blind flooding, every node in the network retransmits the flooding
messages if it is its first time to receive the broadcasting message. If the net-
work is connected and collisions are not considered, blind flooding guarantees
that all nodes in the network can receive the message. However, since each node
retransmits the flooded message, in dense networks many redundant packets are
generated which may cause severe contention and collisions. This problem was
studied by Ni et al. (1999) and was referred to as the broadcast storm problem.
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It is illustrated in Figure 2.10. Suppose node A initiates a broadcast by broad-
casting a message to nodes B and C . According to blind flooding, B and C
retransmit the message if they have not been transmitted it before. Note that B
and C have to contend for the broadcast medium in the shadow area as shown
in Figure 2.10. Node D is inside the transmission coverage of both B and C.
Therefore, D cannot correctly receive the flooding message if B and C retrans-
mit the message at the same time. Moreover, both nodes B and C receive two
copies of the message from A and each other. These redundant messages not
only cost extra energy consumption but also increase the probability of collisions
between the messages. In fact, either B or C rebroadcasting the flooding message
is sufficient to cover node D in Figure 2.10.

To solve the broadcast storm problem, many broadcasting protocols have
been proposed in literature. One of the primary techniques for efficient broad-
casting is backbone broadcasting (Stojmenovic et al., 2002). The broadcasting
can be performed using any constructed backbone. Depending on the choice of
algorithms, the set of retransmitting nodes may be a subset of backbone nodes,
or may include additional nodes, gateways, to connect backbone ones (if not
connected already).

Broadcasting protocols can be divided into two categories based on the way
relay nodes are chosen: sender-based protocols and receiver-based protocols. In
sensor-based protocols, each sender nominates a subset of its neighbors to be
the next hop relay nodes. In receiver-based protocols, each receiver of a flooding
message makes its own decision on whether or not it should forward the message.
For example, the neighbor elimination scheme (Peng and Lu, 2000; Stojmenovic
and Seddigh, 2000) and area-based beaconless broadcasting algorithm (ABBA)
(Ovalle-Martinez et al., 2006) are receiver-based while MPR protocol (Qayyum
et al., 2002) and efficient flooding protocol (Liu et al., 2007) are sender-based.

DA

C

B

Figure 2.10 Collision with blind flooding.
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Broadcasting protocols can also be further divided into three categories
based on the information each node keeps: (i) no need of neighbor information;
(ii) the one-hop neighbor information; (iii) the two-hop or more neighbor informa-
tion. Neighbor information can be further divided into position and topological
information, depending on whether or not nodes are aware of their absolute
or relative geographic coordinates. Blind flooding does not require any neigh-
bor information. Area-based beaconless broadcasting algorithm (Ovalle-Martinez
et al., 2006) also does not require neighbor information but needs the availabil-
ity of geographic position of each node. Efficient flooding (Liu et al., 2007) is
based on the one-hop neighbor information. Multipoint relay protocol requires
the two-hop topological neighbor information. The neighbor elimination scheme
is based on either the one-hop information (if position information is available)
or the two-hop topological information.

Some techniques for efficient broadcasting do not require any backbone
beforehand. However, they can be considered as the process of backbone con-
struction on the fly. They use the local information of nodes to eliminate redun-
dant transmissions and thus decrease both energy consumption and the probability
of collisions. Representative works are the neighbor elimination scheme, ABBA
(Ovalle-Martinez et al., 2006), Efficient Flooding scheme (Liu et al., 2007) and
tree-based broadcasting (Ding et al., 2006). They will be described in following
sections.

2.5.1 Neighbor Elimination Scheme

The neighbor elimination scheme was independently proposed by Peng and Lu
(2000), Stojmenovic and Seddigh (2000), and Lim and Kim (2000) in August
2000. The basic idea is that a node receiving a message waits for a time-out
duration before it retransmits the message. If all its neighbors are covered before
the time-out expires, the node decides not to retransmit the message. Otherwise,
if there are still uncovered neighbors, the node retransmits the message. The
time-out could be randomly chosen or be computed based on several parameters.
For example, it is desirable to let the nodes with larger degree retransmit the
message sooner so that more nodes can be covered by one transmission. Thus,
for example, the time-out could be defined as follows: timeout = C /(number of
uncovered nodes), where C is a constant and the number of nodes that are not
yet covered is based on one node’s knowledge.

The neighbor elimination scheme is illustrated by Figure 2.11. Suppose each
node has the one-hop knowledge (and the position information of neighbors).
Node s initiates a broadcast and sends a message to its neighbors b, d , and g .
Each of the three nodes determines its time-out duration assuming C = 1. Since
each node has the one-hop knowledge, b knows that d has been covered by
broadcasting of s (and vice versa). Therefore, nodes b, d , and g set the time-
out duration to 1/2, 1/3 and 1/2, respectively, as shown in Figure 2.11a. Since
node d has the smallest time-out duration, it transmits next and nodes a , c, and
h receive the message. Node c sets its time-out to 1/2 since it has only two
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Figure 2.11 Neighbor elimination scheme. (a) Step 1, (b) Step 2, (c) Step 3, (d) Step 4.

neighbors which are not covered yet. Node a sets its time-out to 1 = 1/1 since
it is not aware that g has received the message. After transmitting from d , node
g updates the time-out to be 1/6 since 1/3 time units have elapsed. Note that b
knows c is covered by d , therefore it adjusts its initial time-out to be 1. Deducting
the already elapsed time of 1/3, the updated time-out of d is 2/3, as shown in
Figure 2.11b. At step 3 in Figure 2.11c, node g transmits the message to node f
and the time-out duration of nodes a , b, and c are updated accordingly. At the
last step in Figure 2.11d, node c forwards the message to node e and node i .
Eventually, all nodes receive the message.

In the neighbor elimination-based algorithm, a node retransmits the message
when the time-out expires if some of its neighbors (at least one) do not receive the
message. However, these neighbors may receive the message from other nodes
after the time-out. Thus, the retransmission of the node could be redundant. To
reduce these redundant retransmissions, a responsibility-based flooding scheme
(RBS ) was proposed by Khabbazian and Bhargava (2008a). An RBS assumes that
each node knows the location information of its one-hop neighbors. The basic
idea of the scheme is that a node cancels its retransmission if it is not responsible
for any of its neighbors. A node, say A, is not responsible for a neighbor, say B ,
if B has received the message or if there exists another neighbor, say C , such
that C has received the message and B is closer to C than to A [dist(B , C ) <

dist(B , A)].
In the example in Figure 2.12, suppose node A receives a flooding mes-

sage from node F . A learns that nodes E and D have received the message.
Although nodes B and C have not received the message, node A will cancel its
retransmission since dist(B , E ) < dist(B , A) and dist(C , D) < dist(C , A).
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2.5.2 Neighbor Elimination and Backbone-Based
Broadcasting

The neighbor elimination scheme was further extended by Stojmenovic et al.
(2002) by integrating the backbone technique. The framework is based on two
concepts: CDSs as the particular type of backbone that provides reliability, and
the neighbor elimination scheme. The connectivity of CDS provides propagation
through the entire network while the domination of CDS guarantees that all
of the nodes in the network will be reachable. The main goal is to provide
reliable broadcasting with a minimal number of retransmissions. Suppose a CDS
backbone has been constructed in a given network. The general algorithm for
intelligent broadcasting is as follows (Stojmenovic et al., 2002). Suppose a source
node initiates a broadcast message. Upon receiving the message for the first
time, a node will not rebroadcast it if the node is not in the CDS. If it is a
member of the CDS, it will select a time-out period based on several parameters.
During the time-out, the node may receive more copies of the message. It will
update its forwarding list by eliminating all neighbors which have been covered
by these message copies. When the time-out expires, the node will rebroadcast
the message if its forwarding list is nonempty. Otherwise, the retransmission is
canceled.

In the example in Figure 2.13, suppose node S is the source node and that
key = (degree, ID). Nodes B , D , E , F , S , G , H , J , and K have two unconnected
neighbors. Since the neighbors of J are covered by H with a higher key value, J
does not join the CDS. Note that the neighbors of B are covered by connected E
and F which have larger key values. Thus, B does not join the CDS. Similarly,
the neighbors of K are covered by F and H and neighbors of both D and S
are covered by E and G . Ultimately, nodes E , F , G and H form a CDS. After
receiving the message from S , node G sets its time-out to 1/3, since it has
three uncovered neighbors (i.e., E , H , and J ). When the time-out expires, G
retransmits the message to its neighbors. Since node E is not aware of coverage
of node D by S , E sets its time-out to 1/4 due to four uncovered neighbors A, B ,
D and F . H sets its time-out to 1/2 due to two uncovered neighbors F and K .
Node E then retransmits the message because of the shorter time-out. After this
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retransmission, H updates its time-out to 3/4 (adjust the original time-out to 1
and then deduct 1/4 time units that have already elapsed) and F sets its time-out
to 1/3 due to three uncovered neighbors C , I and K . Since the time-out of F
is shorter than that of H , F retransmits the message next. A CDS node H then
cancels its retransmission and all nodes have received the message.

Note that CDS of a complete graph, by definition (Wu and Li, 1999; Stoj-
menovic et al., 2002), is empty. However, the DS is a set of nodes that retransmit
the message, and in case of a complete graph, no retransmission (after the source
sends the message) is needed. If a nonempty DS is indeed always preferred then
the node with the largest key can be added to it. That is, nonintermediate nodes
with larger key than any of their neighbors can be added to the DS. It will have
no impact on broadcasting process because of neighbor elimination (Stojmenovic
et al., 2002).

To increase the reliability at the medium access control (MAC) layer, Sto-
jmenovic et al further introduced the retransmissions after negative acknowl-
edgments (RANA) protocol (Stojmenovic et al., 2002). The collision of two
messages normally occurs after the initial portion of the first message in which
the sender’s information is located has already been received. Therefore, the
receiver can send a negative acknowledgment back to the sender to ask for
retransmission.

2.5.3 Tree-Based Broadcasting in 802.15.4-Based
Sensor Networks

Tree-based broadcasting in IEEE 802.15.4 and ZigBee networks was studied in
Ding et al. (2006). It is assumed that the whole network is organized into a single
tree, which then allows a convenient hierarchical addressing, based on ZigBee
specification. The addresses of parent and children of a given node can be derived
from its network address without any information exchange. Details of an address
assignment in ZigBee networks can be found in http://www.zigbee.org.

Two tree-based broadcasting algorithms are proposed based on a hierarchical
address space in ZigBee networks. In the on-tree self-pruning rebroadcast (OSR)
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algorithm, neighbor elimination is applied on-tree neighbors (parent and children)
of each node, instead of all neighbors of the same node. Note that the two-hop
neighbor information is not directly available in ZigBee networks, but can be
derived from the hierarchical addresses of the one-hop parent and children nodes.
In the optimal on-tree forward node selection (OOS) algorithm, the technique
of MPR (explained in the next section) is applied. The forward node selection
problem for ZigBee networks is reduced to finding the minimal forward node set
to cover tree neighbors of all neighbors of a given node. Thus, partial two-hop
neighbor knowledge is required, with the appropriate memory requirements. The
ZigBee on-tree selection (ZOS) algorithm has a similar performance as the OOS,
but consumes less memory space than OOS; the difference is that ZOS derives
tree neighbors of a node only when necessary while OOS stores the information
beforehand.

2.5.4 MPR-Based Broadcasting

Multipoint relay-based broadcasting was proposed in Qayyum et al. (2002) and
three other articles independently (the remaining references can be found in
Simplot-Ryl et al. (2005)). The set of relay points for a given node are pig-
gybacked to the packet and transmitted as a forward list. An adjacent node that
is requested to relay the packet again determines its forward list, and similarly
transmits its neighbor’s forward list along with the message. This process is
iterated until the broadcast is completed. The methods differ in details on when
and how a node determines its forward list. The general principle of forward
list determination was outlined already in this section on MPR-based backbone.
In the adaptation of multihop relaying presented in Peng and Lu (2000), the
broadcasting node transmits list of its neighbors at time of broadcast packet
transmission, not as part of any “hello” message. The two-hop neighbors knowl-
edge is used to determine which neighbors also received the broadcast packet
in the same transmission, and these nodes are already covered and are removed
from the neighbor’s graph used to choose the next hop relaying nodes. Finally,
if a broadcast message is received from a node that is not listed as a neighbor,
the message is retransmitted, to deal with high mobility issues. In CDS-based
broadcast algorithm (Peng and Lu, 2000), the sender node establishes priori-
ties between forwarding nodes, and each forwarding node should eliminate from
consideration not only neighbors of the sender node, but also neighbors of each
relaying node with higher priority.

Multipoint relay-based broadcasting, when compared to backbone-based
broadcasting, has similar or a somewhat better performance in terms of
rebroadcast savings, but has the message overhead due to inclusion of a
forwarding list in the packet which may be significant for energy limited tiny
sensors. A detailed study can be found in Ingelrest et al. (2007).
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2.5.5 Area Coverage-Based Beaconless
Broadcasting

Sensor area coverage technique was applied in Ovalle-Martinez et al. (2006)
(the same algorithm was also described in the “Conclusion and future work”
section of Shaikh et al. (2003); a similar idea appeared later in Heissenbüttel et al.
(2006)) for the design of beaconless broadcasting protocol in ad hoc and sensor
networks. It assumes that each node knows its geographic position. Distinguished
from most existing broadcasting protocols, the proposed solutions are beaconless,
that is, they do not require any neighbor knowledge for each node. Nodes decide
whether or not to retransmit the broadcast message based only on the information
obtained during the broadcast process. Ovalle-Martinez et al. (2006) proposed
several ABBAs, for two-dimension and three-dimension spaces.

The proposed broadcasting protocol for two-dimension area (2D-ABBA)
works as follows. Upon receiving the first copy of the broadcast message, a
node sets a time-out before it may decide to retransmit the message. The node
may receive several copies of the message from different senders before the
time-out expires. Since the position information of senders is included in the
broadcast messages, the node can determine whether or not its transmission area,
modeled as a circle, is covered by these senders. If the transmission area of
the node is fully covered before the time-out expires, the node stops the timer
and decides not to retransmit the message. Otherwise, the node retransmits the
broadcast message once the time-out expires.

Since all nodes have the same transmission radius, coverage of the transmis-
sion area is equivalent to the coverage of perimeter of the area. In the example
in Figure 2.14a, suppose node A receives the broadcast message from node B ,
C , and D before its time-out expires. Since the perimeter of A is fully covered
by the union of transmission area of B , C , and D , A decides not to retransmit
the message. However, in Figure 2.14b, A finds its perimeter is not fully covered
and decides to retransmit the message.

Two methods were proposed in Ovalle-Martinez et al. (2006) to set the time-
out for each node. One is to set the time-out in reverse proportional to the length
of uncovered portions of the perimeter. The other method simply uses a random
function with values between 0 and 1.

The transmission area of a node is modeled as a sphere in a three-dimension
area. In 3D-ABBA3 algorithm (Ovalle-Martinez et al., 2006), the intersections of
three spheres are considered for coverage criteria. Suppose the three spheres are
centered at A, B , and C , respectively. The two intersection points of any three
spheres are on their 3D perimeter. Suppose A receives the broadcast message
from B and C . If each such intersection point is included inside another sphere
centered at node D that also retransmitted the message, the transmission sphere
of node A is fully covered. Details are given in Chapter 3 where this criterion
has been used for sensor volume coverage.
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Figure 2.14 Coverage of perimeter of the transmission area.

2.5.6 Efficient Flooding and Slice-Based
Broadcasting

Liu et al. (2007) presented a sufficient and necessary condition of guaranteed
deliverability for any flooding scheme that is based on only the one-hop neighbor
information. On the basis of the sufficient and necessary condition, a sender-based
flooding scheme, called efficient flooding , was proposed. The neighbor’s area of
node s is the union of coverage disks of all s’s neighbors plus s itself. Let F (s)
denote the set of forwarding nodes that is computed by node s .

Theorem 2.2. Liu et al. (2007) A one-hop flooding scheme achieves guaranteed
deliverability if and only if for each node s the neighbor’s area of s is covered
by F(s).

On the basis of Theorem 2.2, the efficient flooding scheme computes the
minimal F (s) for each forwarding node s . To minimize F (s), every node in F (s)
must contribute to the neighbor’s boundary of s . Otherwise the node can be
removed from F (s) without affecting the coverage area of F (s).

Two algorithms are proposed in Liu et al. (2007) to compute the minimal
F (s). The first algorithm with time complexity O(n2) works as follows. All one-
hop neighbors of node s are sorted in descending order into a list according to
their Euclidean distance to s . The first node in the list, the farthest away from s ,
is included in F (s) since it is sure to contribute to the boundary of neighbor’s
area of s . Each time, the next node in the list is added to F (s) if its coverage
disk is not fully covered by the so far constructed F (s). The process continues
until all nodes in the list are considered.

The second algorithm (Liu et al., 2007) is to compute the neighbor’s bound-
ary of s , and thus the nodes that contribute to this boundary are the nodes in F (s).
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Its time complexity is O(n log n). The basic idea is to use the pair-wise boundary
merging method to compute the boundary of the neighbor’s area of s . Initially,
each node is arbitrarily paired with another node to merge their coverage bound-
aries. Then, the merged pair’s boundary is further merged with another pair’s
boundary. This merge operation is repeated until there is only one big merged
boundary, which is the boundary of neighbor’s area of s . The minimal F (s)
consists of the nodes that contribute to this boundary.

The source s first computes its F (s) and then broadcasts a flooding message
which attaches IDs of nodes in F (s). Upon receiving the flooding message, each
node u takes the same operation as the sender if its ID is included in the message
and it is the first time for receiving the message. Otherwise, node u ignores the
message. If the transmission is ideal, that is, no collision and no packet loss,
all nodes in the network will ultimately receive the flooding message according
to Theorem 2.2. Forwarding node optimization is further studied in Liu et al.
(2007). A node in F (s) does not need to retransmit the flooding message if all
its neighbors have been covered by node s or other nodes in F (s). Node IDs are
used to break the tie if there is a loop in the optimization.

Khabbazian and Bhargava (2008b) proposed a slice-based broadcasting algo-
rithm which is a sender-based scheme. Similar to (Liu et al., 2007), it assumes
that each node knows the location information of its one-hop neighbors. Each
time, the node that holds the flooding message nominates a subset of its one-
hop neighbors, that is, forwarding set, to forward the message. Upon receiving a
flooding message, only nodes whose IDs are included in the message and have
never retransmitted before will forward the message.

To select neighbors to forward the message, a node divides its communication
region, modeled as a circle, into bulged slices . In the example in Figure 2.15a,
there are three circles with the same radius and the center of each circle locates
exactly at the intersection point of the other two circles. The slice with a bold
border is defined as the bulged slice around node A. The forwarding set of
node A is determined such that any nonempty bulged slice around A contains at
least one node from the forwarding set. Suppose node A starts to compute its
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Figure 2.15 Slice-based broadcasting algorithm.
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forward set. A randomly selects the first node S 1 from its neighbors. Suppose
the current selected node is S i . If the bulged slice of S i is nonempty then the
next node S i+1 is the farthest anticlockwise rotation of the bulged slice of S i . In
the example in Figure 2.15b, S i+1 is such node inside the bulged slice of S i . If
there is no node in the bulged slice of S i then S i+1 is the nearest anticlockwise
rotation, see Figure 2.15c for an example. The selection of forwarding set is
complete at S m if either S m is inside the bulged slice of S 1 or S 1 is inside the
bulged slice of S m . Authors prove that the slice-based broadcasting algorithm can
achieve 100% delivery in a collision-free network (Khabbazian and Bhargava,
2008b).

2.6 PHYSICAL LAYER-BASED FLOODING,
NEIGHBOR DETECTION AND ROUTE DISCOVERY

2.6.1 Route Discovery with Realistic Physical Layer

In reactive routing protocols, such as dynamic source routing (DSR) (Johnson
et al., 1996) and ad hoc on-demand distance vector (AODV) (Perkins et al.,
1999), each node receiving a route discovery message will retransmit the message
if a better route, for example. in terms of hop count and power consumption, is
found. However, each node retransmits the route discovery message at most once.
An important neighbor may miss the message under the given realistic physical
layer, and thus either the route cannot be found or the constructed route may
be far from the optimal one. Therefore, a single transmission cannot guarantee
to reach each potential neighbor which may provide the best or the only route.
Stojmenovic et al. (2005a,b) proposed design guidelines for routing protocols
with a realistic physical layer. They suggested that each node could retransmit
the given route discovery message several times rather than once as in the UDG
model. Such multiple retransmissions may also serve to measure or reevaluate
the packet reception probability. The basic idea is as follows. Upon receiving a
route discovery message, a node checks if the received message contains infor-
mation about a better route. If so, the node stops retransmission of the previously
known best route, if it is still ongoing, and retransmits the new route discovery
with a fresh counter. The optimal number of retransmissions depends on the net-
work density. In very dense networks, a single retransmission of route discovery
may be sufficient to find the best route. In sparse networks, a large number of
retransmissions might be needed to discover important bridges/neighbors in the
network.

The metric used in the route discovery process is based on assumptions. For
example, assuming communication is done with a hop by hop acknowledgement,
the appropriate metric for route discovery is the expected hop count (EHC). ETX
is proposed by De Couto et al. (2003) and counts all (re)transmissions, possibly
acknowledgements between two nodes on a link. Thus EHC includes the expected
number of retransmissions and the expected number of acknowledgments.
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2.6.2 Neighbor Detection and Flooding
with Realistic Physical Layer

In the UDG model, information between neighbors is exchanged by “hello”
messages. After a node broadcasts a “hello” message, all of its neighbors receive
it. However, if a realistic physical layer is adopted, each neighbor receives the
message with certain probability that depends on distance and other factors.
Some “hello” messages are not received and thus nodes cannot properly update
information on their neighbors.

Goel et al. (2008) studied gathering neighborhood information with a real-
istic physical layer. Two neighbor detection protocols were proposed. In the
first protocol, referred to as the s-hello protocol, each node sends exactly s-
“hello” messages to its neighbors. With respect to the performance of localized
position-based routing protocols, simulation results show that the gains in neigh-
bor knowledge become limited for s > 5. In the second protocol, referred to as
the target density protocol, the objective of each node is to learn about at least td
(target density) neighbors, such that the routing protocol achieves good perfor-
mance. Each node keeps sending “hello” messages until it receives td messages
from its neighbors or until a time-out expires. In the case of uniformly distributed
networks, nodes at the boundary of the network have to send a larger amount
of “hello” messages than the nodes inside the network in order to achieve the
target density. The main advantage of the target density protocol is that it saves
a unnecessary “hello” message after the desired number of neighbors are found.
The s-hello protocol on the other hand, blindly keeps sending messages possibly
with too many or too little retransmissions.

The DS concept can be redefined based on the probability for receiving
a packet. This leads to a definition and construction of DSs with the realistic
physical layer. Brief details can be found in Simplot-Ryl et al. (2005), and the
concept still has not been elaborated sufficiently.

2.7 PARAMETERLESS BROADCASTING FOR DELAY
TOLERANT-NETWORKS

Existing broadcasting protocols can be CDS-based protocols for static networks,
blind flooding for moderately mobile networks and Hyper-flooding (Viswanath
and Obraczka, 2002) for highly mobile and frequently partitioned networks. In
static networks, nodes do not move or they move slowly, such that network
topology does not change during broadcasting. However, the line separating
moderately mobile networks and highly mobile networks is often thin. Gen-
erally speaking, the difference is based on the percentage of neighbor changes
for a node during broadcasting. A network is moderately mobile if each node is
either static or moderately mobile. Thus, a network is moderately mobile even if
there is a single moderately mobile node among static nodes in the network. A
network is highly mobile if at least one of its nodes is highly mobile. Therefore,
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a network with a few high-speed vehicles and a lot of pedestrians along the road
is highly mobile (Khan et al., 2008).

Broadcasting protocols for static networks have been discussed in previous
sections. Since the maintenance of neighbor knowledge is expensive or even
impossible in mobile networks, blind flooding can still be applied in moder-
ately mobile networks. However, it may not suffice in networks with temporary
partitions and high mobility. This is due to the fact that each node in the net-
work retransmits the broadcasting message only once and stops retransmission
even if it discovers a new neighbor afterwards. Hyper-flooding , proposed by
Viswanath and Obraczka (2002), addresses such scenarios. In hyper-flooding,
a node will retransmit the broadcasting message whenever it discovers a new
neighbor. Thus, it is able to disseminate messages across partitions when nodes
move during broadcasting. It increases reliability at the cost of a high message
overhead. An adaptive approach was proposed in Viswanath and Obraczka (2002)
for both static and mobile networks, based on using some thresholds. It has been
pointed out in Khan et al. (2008) that the threshold is based on the parameters
for mobility and traffic which may be difficult or impossible to gather.

Khan et al. (2008) studied broadcasting without parameters in static to highly
mobile networks. It is suitable for applications in delay tolerant-networks. The
proposed protocol, PBSM (parameterless broadcasting from static to mobile),
assumes that each node has the two-hop topological knowledge. The goal of the
protocol is to adapt itself to any static/mobility scenario automatically without
calculating any threshold kind of parameter. The protocol combines CDS tech-
nique and the neighbor elimination concept. At the initialization stage, nodes
periodically exchange “hello” messages in order to gain the two-hop knowledge.
A CDS is calculated after each “hello” message round. Each node in the protocol
maintains two lists. One of them, denoted by R, records the neighbors that have
received the messages. The other, denoted by N , records the neighbors that did
not receive the message yet. Each node sets a time-out period. The nodes in CDS
select shorter time-outs than the nodes outside CDS, such that the nodes in CDS
have a higher chance to retransmit the broadcasting message. During the waiting
period, lists R and N are updated upon the receipt of each message copy. When
the waiting period expires, the node retransmits if N is nonempty. The message
is memorized until T “hello” messages are received. N and R are updated for
each “hello” message received. Nodes that are no longer one-hop neighbors are
removed from these lists while new neighbors are added if discovered.

Using example in Figure 2.13, node J will also retransmit since it is not aware
of covering of K by F . Improvement is possible by adding a responsibility-like
concept. J is aware that H from CDS canceled transmission, which was possible
only if H is aware that some other node covered K . Such modification can be
added to the algorithm (Khan et al., 2008).

Example in Figure 2.16 shows how the protocol works in a mobile network
where the network is initially partitioned into two components (position 1A of
node 1). Flooding started from node 0, and all nodes in the left partition receive
the message, and flooding or CDS-based broadcasting stops. When node 1 moves
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Figure 2.16 A mobile network.

to positions 1B or 1C, flooding is not reactivated in these two methods, and the
right portion of the network does not receive the message. In the hyper-flooding
algorithm (Viswanath and Obraczka, 2002), nodes from the left partition system-
atically inform node 1B (and later 1C) as they meet it for the first time. Also,
node 1 retransmits the message any time it sees a new neighborhood on the right
partition, where receiving nodes similarly activate flooding in that partition. This,
overall, amounts to a significant inefficiency of retransmitting messages. Param-
eterless broadcasting from static to mobile (Khan et al., 2008) will let node 3
retransmit after discovering node 1 (at position 1B) since node 3 then becomes a
CDS member (bridging two partitions) and its list N becomes nonempty. Retrans-
mission is similarly done by node 1 and the nodes in the right partition receive the
message. During later movement from position 1B to position 1C, only node 1 is
new in the neighborhood, so nodes on both sides do not retransmit the message
possibly sent by moving node 1 going into a new neighborhood.

2.8 BACKBONES AND BROADCASTING
IN SENSOR–ACTUATOR NETWORKS

Different from sensor networks or ad hoc networks, sensor actuator networks are
normally heterogeneous networks where actuators are more powerful than sen-
sors, in terms of the energy level, communication and computing capabilities and
memory. Therefore, actuators are expected to take more responsibility and play
more important roles in backbone construction and broadcasting. One existing
solution described below uses access points instead of actuators, while the other
is based on higher key assigned to actuators.

2.8.1 Broadcasting for Hybrid ad hoc and Sensor
Networks

Routing and broadcasting for hybrid ad hoc and sensor networks was studied
by Ingelrest et al. (2006a). It assumes that there are two types of nodes in the
hybrid network: mobile nodes and fixed access points. The access points are
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more powerful than mobile nodes in terms of computational ability, memory,
and energy supply. The mobiles can either directly connect to an access point,
or use ad hoc mode to reach the access point via multiple hops. Figure 2.17
shows an example of such a hybrid network. There could be wired or wireless
connection between access points P1 and P2. Mobile nodes a , b, c, f are directly
connected to the access points while mobile nodes e and d require a relay of
other mobile nodes to connect the access points.

Component neighbor elimination-based flooding was proposed in Ingelrest
et al. (2006a). It divides the network into components, one of which consists
of an access point and the mobile nodes attached to the access point (one or
multiple hops). Since the energy consumption of access points is not considered,
the flooding protocol is based on the observation that transmission via access
points is more efficient than that via mobile nodes. The basic idea of the protocol
is as follows. An access point retransmits a flooding message immediately once it
receives the message for the first time. A mobile node that receives the message
for the first time sets a time-out and monitors its neighborhood. It cancels the
relay if all its neighbors have received the message when the time-out expires.
Otherwise, it retransmits the message. The protocol assumes a sparse connected
structure of access points, if they use wireless links between them. Otherwise, it
can be modified by applying CDS-based broadcasting discussed in this chapter.
If access points use wired links among themselves then appropriate link-based
flooding among them needs to be used (this is out of the scope of this book).

The drawback of component neighbor elimination-based flooding is its
increased latency since mobile nodes retransmits the message after its time-out
expires. It was pointed out in Ingelrest et al. (2006a) that there are basically two
methods to transmit the message. One is “ad hoc mode” in which the message
is transmitted via mobile nodes without passing through any access point. The
other is “access point mode” in which the message is transmitted from one
component to the destination component via access points. Adaptive flooding
(Ingelrest et al., 2006a) was proposed to minimize the latency of the broadcast
by adaptively selecting the shorter path between these two methods. In the
example in Figure 2.17, suppose node e receives a message initiated by node
b. If the message has not passed any access point, node e decides to relay the
message if there exists a neighbor f and hc(e, f ) + 1 < hc(b, P1) + hc(f , P2),
where hc(a , b) denotes the hop count between nodes a and b. If the message
has passed an access point, each node relays the message to its neighbors within
the same component.

e b

c d

a

P1P2

f

Figure 2.17 A hybrid
network with two access
points.
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The MPR technique can be easily generalized to hybrid networks (Ingelrest
et al., 2006a). When considering which neighbors should relay the message,
access points should be first added to the MPR set and mobile nodes are included
only when necessary.

2.8.2 Dominating Set-Based Backbone

Suppose V is the set of sensor nodes in the network. k -Dominating Set (k -DS ) is
a subset of V such that each node of V is either a member in k -DS or can reach
at least one node in k -DS within k hops. k-Independent dominating set (k-IDS )
is a k -DS such that any two dominators are within at least k-hop distance of
each other in the set. McLaughlan and Akkaya (2007) proposed an algorithm to
position actuators as CHs such that the number of covered sensors is maximized
and data gathering time is minimized. It is done by finding a k -hop IDS (k -IDS)
of the underlying sensor network, and placing actuators at near selected sensors
for k -IDS. Sensor nodes join its dominator based on the distance to and ID of
the dominator. A weight function is used to prefer certain nodes that have many
k -hop neighbors and are farther from borders of other clusters. Finally, each
actuator acts as a CH in its cluster and all sensor nodes in each cluster can reach
their CH within k hops.

A CDS-based backbone is not necessarily based on UDG. It can be applied
in hybrid networks such as sensor and actuator networks. For instance, the gen-
eralized coverage-based algorithm (Stojmenovic et al., 2002, 2004; Dai and Wu,
2003; Carle and Simplot-Ryl, 2004), introduced in Section 2.4.3, can be extended
to hybrid networks. Note that in the self-pruning rule of the algorithm (Dai and
Wu, 2003), a key of nodes is used to determine the priority. To adapt it to hybrid
networks, the key of a node can be extended to include the energy level of the
node: key(s) = {E s , ID(s)}, where E s is the energy level of the node similarly
as in algorithm in Wu et al. (2002). Since access points have a higher energy
level than mobile nodes, they will always be selected as dominators and thus
will be part of the broadcasting process. Such a model could be applied to sensor
and actuator networks where sensors and actuators are treated as mobile nodes
(although they are normally static) and access points, respectively.

In the example in Figure 2.18, suppose node 0 is an access point and other
nodes are mobile nodes. After applying the algorithm in Dai and Wu (2003), the
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Figure 2.18 CDS construction with different key selections.
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resulting CDS is shown in Figure 2.18a. If the key {E s , ID(s)} is employed, the
access point 0 is selected into the DS and the result is shown in Figure 2.18b.

2.9 RNG AND LMST

The next section on minimal energy broadcasting is based on some geometric
structures. These structures will be described in this section. Basic familiarity
with minimal spanning tree (MST) is assumed. Minimal spanning tree for a
weighted graph with n nodes is a minimal connected graph containing these n
nodes as vertices. Minimal spanning tree is a tree since otherwise the longest edge
in any cycle can be removed without affecting connectivity. This observation is
used in Kruskal’s algorithm (Kruskal, 1956) to construct MST. All edges are
sorted in increasing order, and considered for inclusion in MST in that order.
The candidate edge is included in MST if it does not create a cycle in an already
constructed portion of the MST.

Relative neighborhood graph (RNG) and localized minimal spanning tree
(LMST) are two well-known planar graphs that are utilized in various topology
constructions. A planar graph is a graph, which can be drawn on the plane in such
a way that the edges intersect only at their end points. Figure 2.19 gives examples
of an RNG and an LMST and illustrates also planar graphs. All nondashed edges
form RNG while bold edges form LMST. The dashed edges are remaining edges
in UDG. The edge (1, 4) belongs to RNG while it does not belong to LMST since
the edge is not in MST of the one-hop subgraph of nodes 1 (will be explained
next).

An edge uv is in RNG (first defined in Toussaint (1980)) if it is not the
longest edge in any triangle uvw where w is any third node from the set. In
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Figure 2.19 LMST (bold edges) and RNG (all nondashed edges) of an unit disk graph (all
edges).
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u v

Figure 2.20 Forbidden region of edge uv in RNG

Figure 2.20, the edge uv belongs to RNG if there are no other nodes in the gray
area, also referred to as the forbidden region . For any point w in the forbidden
region, edge uv is the longest edge in triangle uvw . Once a node gathers location
information of all its neighbors (via beacon messages), it can determine for each
of its edges, if there is another neighbor which is included in the forbidden region,
using the above criterion. Construction of RNG therefore does not require any
additional messages. The average degree of RNG is about 2.5 (Hou et al., 2005).
Planarity of RNG follows from planarity of its superset Gabriel graph, which
will be described and proven in Chapter 4.

In LMST (Li et al., 2003), each node u is assumed to collect position infor-
mation of its one-hop neighbors. Node u then computes the MST of its one-hop
neighbors subgraph N (u). An edge uv belongs to LMST if and only if uv is in
both MST(N (u)) and MST(N (v )). To make this decision, a message exchange
between neighbors (in addition to beacon message to learn neighbors) is required.
The average node degree of LMST is about 2.04 (Hou et al., 2005). Li et al.
(2004) showed that LMST is a planar graph (it also follows from planarity of
its superset RNG). They extended LMST to k -hop neighbors. That is, each node
knows positions of its k -hop neighbors and LMST is constructed based on the
k -hop subgraph of each node.

Theorem 2.3. (Ovalle-Martinez et al., 2004; Cartigny et al., 2005) MST ⊆
LMST ⊆ RNG.

Proof. We first give proof of MST ⊆ LMST (Ovalle-Martinez et al., 2004), then
the proof of LMST ⊆ RNG (Cartigny et al., 2005). Both theorems are proven
by contradiction.

Suppose there exist edges that belong to MST but do not belong to LMST.
Let e be the shortest such edge. Suppose Kruskal’s algorithm (Kruskal, 1956) is
used to construct MST in subgraph N(u) of each node u . That is, edges are con-
sidered one by one in the increasing order of their length. When e is considered,
since it is not included in LMST, it creates a cycle C in LMST with e being the
longest edge in the cycle (Figure 2.21). Some edges from C are not in MST (oth-
erwise there is a cycle since e belongs to MST). Consider now expanded cycle
C ’ constructed from C as follow. Let f be an edge from C that is not in MST.
Adding f into MST creates a cycle B with f being the longest edge in the cycle.
The cycle consists of f and a path consisting of edges from MST. Replace f in
C with all the edges from that path. Each such replacement enlarges the cycle
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Figure 2.21 Proof by contradiction that MST ⊆ LMST: e from MST becomes the longest edge
in a cycle.

C , but does not add any edge longer than f , and consequently longer than e.
This replacement process can continue, enlarging C ’ in each step. Finally, after
replacing all non-MST edges with the corresponding paths of MST edges, edge
e remains the longest edge of C ’. But all the other edges of C ’ are now also in
MST. It is a contradiction since MST has no cycles. Therefore, MST ⊆ LMST.

Suppose that there exists an edge uv such that uv ∈ LMST and uv 
∈ RNG.
Since uv 
∈ RNG, there must exist a node w ∈ N(u) ∩ N(v) and uv is the longest
edge in triangle uvw . Since uv ∈ LMST, either uw or vw is not in LMST
(otherwise, there is a cycle and it is not a tree). Without loss of generality,
suppose uw is not in LMST. Edge uv could be replaced with uw in MST(N(u))
and the resulting overall weight in MST is lower than the original one, which is
a contradiction. Therefore, LMST ⊆ RNG. �

Note that the degree of each node u in RNG (and therefore in LMST) can be
bounded (normally to 5, exceptionally to 6) but only if lengths of each edge are
distinct (otherwise there exist examples where an edge in RNG has very large
degree). This can be achieved easily by considering record (|uv |, min (key(u),
key(v )), max(key(u), key(v )), as the new “length” of an edge uv in the above
definition.

2.10 MINIMAL ENERGY BROADCASTING

Broadcasting was discussed so far with the hop count as the metric of their
performance. An alternative metric, often used in the literature, is the power for
transmission and reception between nodes. It can be used if nodes can adjust
their transmission powers, which we assume for this section. The problem of
selecting forwarding nodes, and their transmission radii, so that all nodes in the
network receive the message, and the total power used for these transmissions
is minimized, is known as the minimal energy broadcasting problem. Detailed
surveys of existing solutions can be found in Ingelrest et al. (2005) and Liu et al.
(2005) (see also Stojmenovic et al., 2007 for few additional solutions).

Wieselthier et al. (2000) described centralized broadcast incremental power
(BIP) algorithm. It is the most popular among several dozens of existing central-
ized solutions. In BIP, nodes are added one at a time into an existing growing
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tree, so that the additional power at each (incremental) step is minimized. There
are two options: to add new transmission, or to increase transmission radius of
existing transmitting node, so that a new node is added with the smallest possible
additional energy. broadcast incremental power and other proposed methods in
practice behave like MST since 2 ≤ α in power metric model p(d) = dα + c,
for link at distance d , unless c is significant with respect to network density. The
major disadvantage of centralized algorithms is their communication overhead to
gather and maintain a global network view at each node. This overhead is not a
part of BIP (Wieselthier et al., 2000) and all other proposed centralized solutions.

Ingelrest and Simplot-Ryl (2008) described a localized version of BIP algo-
rithm, called localized broadcast incremental power (LBIP). Each node maintains
a two-hop information instead of network wide information. Sender node makes
BIP decisions for all nodes in its two-hop neighborhood. It attaches a list of
records (A, RA), where A is the one-hop neighbor, and RA > 0 is a nonzero trans-
mission radius to be applied by neighbor A, with the message it transmits for
broadcasting. No instruction is given to neighboring nodes designated as passive.
Nodes receiving a broadcast message for the first time will first check if they
are designated to retransmit. If so, they apply their own two-hop information to
in turn calculate the transmission radii for their neighbors. It may increase its
transmission radius assigned by incoming message, possibly increase the trans-
mission radii of some of its designated neighbors, but not decrease it. That is,
they start from the partial BIP construction already made, and add their two-hop
neighbors, not “seen” by a sender node, to that tree. Note that several neigh-
bors may do such a calculation in parallel. The first of them to transmit will
then make an impact on the other one, to adjust its result before its decision is
announced. If a node receives several instructions with various radii for same
node, itself or neighbor, the larger one will be always taken. Surprisingly, the
performance of this algorithm, in terms of total energy used, is very close to the
performance of centralized BIP protocol, while preserving localized behavior. The
algorithm resembles the behavior of MPR-based broadcasting algorithm, which
also includes a set of retransmitting neighbors with the message. This appears
to be the main disadvantage of the LBIP algorithm, since the increased message
size will impact the algorithm at medium access level, where longer messages
increase the chance of collisions. The problem is especially notable when broad-
casting relatively short messages, since the added length to the message has a
larger percentage of the overall size. This is a very similar problem noticed when
MPR broadcasting was compared to the CDS-based one in Ingelrest et al. (2007).
Another drawback of LBIP, when compared to some other protocols mentioned
here, is that it requires gathering the two-hop neighbor information instead of the
one-hop.

We will now describe existing localized algorithms for minimum energy
broadcasting problem, which do not increase the size of messages. For small val-
ues of constant c, (with respect to other constant α) MST is an optimal tree, but
requires global information. Given a sparse graph that connects all nodes, local-
ized algorithms [the first one was given by Cartigny, Simplot and Stojmenovic in
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Cartigny et al. (2003)] are based on each node deciding its transmission radius
so that all its neighbors in the selected structure are covered by existing trans-
missions. Some nodes may not transmit at all, when neighbor elimination-based
techniques is applied (if a node discovers that all its neighbors in a selected struc-
ture are already covered by existing transmissions, it does not need to transmit
at all).

Consider an example in Figure 2.22, where MST is used as a sparse structure.
A message from source S is sent with a radius equal to the furthest neighbor
C in that structure. It is also received by A and B . Node A needs to cover
the remaining neighbor D and thus chooses transmission radius |AD |. Node B
similarly covers the node C by radius |BE |. Node D transmits with radius |DK |,
which in turn covers C by radius |KC | (node K is not aware of transmission from
node S already covering C ). Node E covers its neighbor F , while its neighbor
F chooses a radius |FH | which is longest toward the remaining neighbors G , J
and F in the structure. Node G does not need to retransmit since all its neighbors
are covered by existing transmissions, like the one from F (neighbor elimination
applied). Finally, node H covers neighbor I . Leaf nodes do not retransmit.

To make an algorithm localized, MST is replaced by RNG in Cartigny et al.
(2003) (algorithm RBOP), and by LMST Cartigny et al. (2005) (algorithm local-
ized broadcast oriented protocol (LBOP)). RNG structure, when replacing MST,
leads to about twice more energy, while an LMST structure has about 50% addi-
tional energy. Relatively few additional edges in LMST prove to be costly with
respect to energy since they are long edges.

For large c with respect to α (in power metric rα + c), many transmis-
sions over short edges become energy expensive due to multiples of c. A single
larger circle centered at a node, covering many one-hop neighbors which are not
neighbors in a selected sparse structure, may be preferred. Large radius is also
power expensive. Therefore, one can expect a trade-off in the size of covering
circles. In Ingelrest et al. (2006b), it is shown that if a node decides to retrans-
mit, the optimal transmission radius should be about (2 c/(α − 2))1/α , increased
if necessary to preserve the desired connectivity. The formula was derived by
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Figure 2.22 Covering neighbors in sparse structure for minimal energy broadcasting.
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considering energy consumption in a regular honeycomb mesh with a variable
edge length over a fixed area, and finding the edge length where minimum is
achieved. Another proof, based on cost to progress paradigm, was given in Sto-
jmenovic (2006). The cost of transmitting a packet is proportional to rα + c,
while the progress made is proportional to the area being covered (i.e., r2). The
ratio (rα + c)/r2 is minimized for r = (2c/(α − 2))1/α .

A target radius localized broadcast oriented protocol (TR-LBOP) by Ingelrest
et al. (2006b) works as follows. Each node manages two lists of neighbors, L and
L’ . L contains LMST neighbors. L’ contains the rest of neighborhood. At the
end of the neighbor elimination time-out period (during which node has listened
to transmissions from some of its neighbors), if L is empty, the retransmission
is canceled. Otherwise, the radius is chosen long enough to reach the furthest
neighbor in L, and the neighbor in L’ that is the nearest one to the target radius
as set in the mentioned formula. The energy overhead of TR-LBOP with respect
to BIP remains below 50% for all densities.

Target radius localized broadcast oriented protocol is further improved in
Ingelrest et al. (2006b) to allow some nodes to be placed to sleep modes, while
performing similarly to TR-LBOP in energy requirements. First, a subgraph
where each node considers only neighbors whose distance is no greater than
the target radius and neighbors in RNG or LMST is constructed. A CDS is then
constructed using this subgraph. Next, nodes not selected for CDS are sent to
the sleep mode (they periodically wake up for sending and receiving messages
from associated closest DS nodes). Nodes in selected CDS remain active and
apply TR-LBOP. Each node chooses a radius that covers its LMST neighbors
and the target radius. The generalized covering rule for CDS is applied. Each
passive node is attached to its nearest dominant neighbor. This may be referred
to as algorithm TR-LBOP-D.

Chen et al. (2003) proposed PABLO algorithm, which needs two-hop topo-
logical information. Each node A verifies whether, for each of its neighbors B ,
there exists a common neighbor C so that p(AC ) + p(CB ) < p(AC ). All such
neighbors B are eliminated. Among remaining neighbors, node A selects the
furthest one, and uses it as the transmission radius. More precisely, it selects
the largest power needed to reach any of the remaining neighbors. The authors
(Chen et al., 2003) cite RBOP (Cartigny et al., 2003) which, instead of compar-
ison p(AC ) + p(CB ) < p(AC ), uses comparison max(|AC|,|BC|) < |AB|) (from
RNG definition), where |XY| is the length of edge XY . Both PABLO (Chen et al.,
2003) and RBOP (Cartigny et al., 2003) does not work well for large values of
c and dense networks.

Wang et al. (2004) proposed the local shortest path tree (LSPT)-based topol-
ogy for power aware routing and broadcasting in ad hoc and sensor networks.
The weight of an edge between two nodes at distance d is p(d) = dα + c. Each
node u applies Dijkstra’s shortest path algorithm to find the shortest weighted
path to each of its neighboring node, using only its local one-hop information (the
concept can be extended to k -hop knowledge). Node u then keeps only edges
that are going out of it in this structure, and removes the others. The result is
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sent to its neighbors. Each node then removes unidirectional links and adjusts its
transmission radius according to the remaining logical links. Stojmenovic et al.
(2007) proposed to use LSPT as the connected structure in minimal energy broad-
casting algorithms, instead of LMST or RNG. This approach will automatically
consider the impact of variable c > 0 since longer directed links can be more
efficient than a multihop path toward them and this happens approximately up to
an optimal target radius. Alternatively, one can simply apply a target radius (one
option is (2c/(α − 2))1/α) in the protocol that would correspond to TR-LBOP
from (Ingelrest et al., 2006b).

A number of articles assume c = 0 in the energy consumption model. For
example, (Chiganmi et al., 2008) described two such algorithms. In the Inside-
OUT Power (INOP) adaptive approach, retransmitting a node’s shortest weighted
paths toward each neighbor, and selects transmission power equal to the distance
to the farthest neighbor to whom the direct transmission is more power efficient
than indirect transmissions via any neighbor. Only neighbors that are believed
not to be covered by previous transmissions are considered. Each node makes
its own decision in INOP, after a backoff timer. In other words, INOP is similar
to RBOP (Cartigny et al., 2003) and LBOP (Cartigny et al., 2005), with LSPT
(Wang et al., 2004) replacing RNG and LMST as the connected structure (also
independently proposed in Stojmenovic et al. (2007) for arbitrary value of c).
PABLO (Chen et al., 2003) can be considered as a version where a path with
two hops only are considered instead of an arbitrary path lengths between two
neighbors. The INOP-1 algorithm (Chiganmi et al., 2008) is based on a neighbor
designation similar to BIP over two-hop neighbors; that is, it is similar to LBIP
(Ingelrest and Simplot-Ryl, 2008) restricted to the case c = 0 .

An adaptive localized scheme for energy-efficient broadcasting in ad hoc
networks with directional antennas was presented in Cartigny et al. (2004). It
follows presented ideas on target radius-based retransmission, where the desired
radius also depends on the antenna angles.
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Abstract

Sensor networks normally have redundancy for sensing coverage. Some sensors
are allowed to sleep while preserving network functionality. Sensors that are
randomly placed in an area should decide which of them should be active and
monitor an area, and which of them may sleep and become active at a later
time. The connectivity is important so that the measured data can be reported
to a monitoring center. Sensor area coverage problem has been considered for
both the unit disk graph and physical layer-based sensing models. Actuators may
similarly run a protocol to decide about their service areas, releasing some of
them from particular duty. Operational range assignment for both sensor and
actuator nodes is also discussed.

3.1 PROBLEMS, MODELS, AND ASSUMPTIONS

One of the fundamental issues in wireless sensor networks (WSNs) is the sensor
coverage problem. Sensor coverage is to deploy a set of sensor nodes in an area
of interest for monitoring and/or tracking. Sensor nodes are normally densely
deployed in WSNs. To prolong the network lifetime, sensors should sleep as
much as possible. Ideally, they should wake up only when they are really needed.
However, this may not be possible since additional hardware may be required for
such ability. For example, a radio-triggered hardware component was introduced
by Gu and Stankovic (2004). Since the events of interest often contain energy,
their energy can be used to trigger the added hardware component which then
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in turn initiates the transition of the system from sleep mode to wake-up mode.
Existing sensors, however, are not equipped with such hardware. In these cases,
when sensors decide to enter sleep mode, they set their clock for waking at a
predetermined time, regardless of events nearby. Wireless sensor networks and
wireless sensor actuator networks (WSANs) employ collaborative mechanisms
for scheduling wake-up and sleep periods.

Wake-up and sleep periods exist for both sensing and communication hard-
ware components. Normally, a portion of nodes is required to be active (with
respect to certain hardware) to perform the given tasks, while other nodes could
sleep to save energy. Both sensor and actuator networks have node redundancies
for communication and/or sensing, since only some nodes are needed for traf-
fic forwarding, monitoring, or servicing. Activity scheduling is to decide which
nodes should be active and which may be allowed to sleep. The decisions are
periodically reevaluated, and the problem is also known as duty cycling . There
are different levels of activity. Sensor nodes may turn off both sensing and com-
munication hardware and therefore fully be in a sleep mode. A set of sensor
nodes that together fully cover a given area is frequently referred to as the area-
dominating set , or as the sensing backbone for the network. The communication
backbone is normally built on top of the sensing backbone. That is, some of the
sensors may have an active sensing device but a passive transmitter and receiver
hardware. Their communication needs can be fulfilled by their neighbors in the
communication backbone (neighbors whose communication hardware is always
turned on). We have discussed communication backbone construction techniques
in the previous chapter. While this chapter refers to the sensor area coverage
problem, actuators can similarly be considered for the analogous actuator cover-
age problem, deciding which of them are needed to service sensors in their areas
while allowing others to rest or perform other duties. This problem occurs when
or if the actuator network is dense and has redundancies.

The chapter focuses on the design of the wake-up or sleep schemes for area
coverage problems in WSNs and WSANs. In a typical area coverage problem,
a set of sensors is distributed over a given area. Each sensor is able to cover a
small area, which is normally assumed to be a circle with radius centered at it.
The problem is to find a subset of sensors that are connected and still cover the
same area, such that these sensors alone are able to perform the monitoring task.

Full coverage, maximum network lifetime, and connectivity are critical
requirements of any area coverage protocol. There are a variety of problem
statements, assumptions, and solution approaches for the problem of sensor area
coverage. The chapter focuses on the area coverage problem in which each
point in a given geographic area should be covered by at least one sensor. The
main objective of area coverage protocol is to achieve full area coverage by a
subset of sensors with the minimal possible number of sensors in the subset.

Assumptions about sensing radii (SR) may vary. In most articles, the SR of
nodes is assumed to be fixed and the same for all sensors (Tian and Georganas,
2002). A more general case is when SR are fixed for each sensor, but are not the
same. SR is assumed to be adjustable in some articles (Wu and Yang, 2004).
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The area coverage problem can be generalized by requesting multiple cov-
erage for each point in the area. The most straightforward generalization is
k -coverage problem. An area is k -covered if every point of the area is cov-
ered by at least k distinct sensors. A more restrictive generalization is k -layer
coverage problem, which requires k disjoint subsets of sensors so that each of
these k subsets provides one-coverage (fully covers the area). A k-layer coverage
is also a k -cover, but the converse may not hold. In the example in Figure 3.1,
the shaded area centered at O is two-covered since every point in the area is
covered by at least two circles. However, we can not find two distinct subsets of
sensors such that each one fully covers the area.

Sensing and communication are normally modeled as unit disk graphs
(UDGs), with the corresponding sensing radius (SR) and communication radius
(CR) denoted by these terms in the rest of the chapter. In the UDG model, a
sensor is able to monitor location of an event if and only if the location is within
the SR of the sensor. In reality, sensing ability decreases with distance, which
can be exploited in a physical layer model, where the probability of sensing
an event depends on the distance from the sensor to the event. Two nodes
are communication neighbors if they are within distance CR from each other.
Sensing neighbors are two nodes whose corresponding sensing areas overlap.
If their sensing areas are disks, then they are sensing neighbors if the distance
between them is less than the sum of their corresponding sensing ranges.

The sensor network may operate with or without time synchronization among
sensor nodes. In a synchronous protocol, all sensor nodes maintain a common
clock by applying some synchronization protocols (Li and Rus, 2004; Romer
et al., 2005). The sensor nodes coordinate with each other to make their activity
schedules according to the common clock. All decisions are made in rounds.
That is, all nodes could wake up at the same time, exchange messages, and
then decide which of them will be active. The ZigBee standard requires sensor

o

Figure 3.1 The shaded area is
two-covered but not two-layer covered.
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nodes to be time-synchronized. Synchronous behavior provides advantages for
energy-efficient communication in addition to efficient area coverage protocols.

In an asynchronous protocol, sensor nodes do not follow a common clock.
Each node makes its own decision to be active or to sleep for a period of time,
based on its individual clock. Each node in an asynchronous protocol may wake
up at its predetermined time and decide whether it needs to be active, based on
a message exchanged with currently active neighbors.

It has been proven that finding the minimum number of connected working
nodes that cover the area of interest is NP-hard (Kumar et al., 2000; Gupta et al.,
2003). Since it is NP-hard for even centralized algorithms, finding localized
algorithms to achieve good performance is an even more challenging task.

3.2 COVERAGE AND CONNECTIVITY CRITERIA

Coverage and connectivity criteria serve as building blocks in area coverage algo-
rithms by providing computationally efficient ingredients. The choice of criteria
depends on the ratios of SR and transmission radius and their uniformity.

If the SR and transmission radius are equal, the coverage property can be
tested by verifying whether or not the whole perimeter of the sensing circle is
covered by other circles. In the example in Figure 3.2a, sensing area of node O
is not fully covered by two other circles since there are two uncovered segments.
The correctness of the criterion follows from the following observation: If two
sensing circles intersect, then each center is inside the other circle. If point A
on the perimeter of circle O is covered by a circle centered at P , all points on
the line segment from A to center O are covered by the same circle since both
O and A are inside the circle centered at P and the sensing area of any circle
is convex. Therefore, instead of testing the whole line segment OA for inclusion
in an other circle, only endpoint A on the circle perimeter needs to be checked.
Note that this (and the following) criteria assume that no two sensors are placed
at the same location.

u

(a) (b)

A

P
O

Figure 3.2 Perimeter-based coverage test.
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This criterion can be generalized to the case of k -coverage. The monitoring
region is k -covered if and only if the perimeter of each sensor is covered by at
least k distinct sensors (Huang and Tseng, 2003). This criterion is not applicable
if the CR is larger than the SR. In the example in Figure 3.2b (for k = 1), suppose
that all nodes are within CR of node u . Although the perimeter of circle u is
covered by other circles, sensing area of u is not fully covered.

Wang et al. (2003) and Zhang and Hou (2005) introduced a covering criterion
to decide whether or not a sensing area is fully covered by other sensing areas.
It does not require the uniform SR of nodes. Furthermore, it does not depend on
ratio of the CR and the SR. It also generalizes to sensing areas of arbitrary shape
(not just disks) and is applied on the corresponding boundaries.

Theorem 3.1. Coverage of circle centered at O by circles centered at C 1, . . . ,
Cm can be reduced to coverage of intersection points of two covering circles Ci

and Cj, or of O and one covering circle Ci, that is inside the sensing area of O ,
as follows: If there are at least two covering circles and any such intersection
point is covered by a distinct covering circle Ck, then the sensing area is fully
covered.

Proof. The basic idea of proof (as given in Gallais et al. (2008)) is illustrated in
Figure 3.3a. Suppose that there is a point P , which is not covered by any sensor in
the region. P lies in an uncovered patch that is bounded by only exterior arcs of a
collection of sensing circles and/or boundary of the sensing area. In Figure 3.3a,
the uncovered patch is the shadow area Q-R-S -T -U . Travel (in any direction)
from P to the boundary of the uncovered patch and follow the boundary until it
meets an intersection point (e.g., point Q in Fig. 3.3a) of two covering circles
C and D (or intersection point U of covering circle D and central circle O) on
the boundary. Q is not covered by any third covering circle. It contradicts the
condition of the theorem. �

The central gray circle in Figure 3.3b is fully covered since any intersec-
tion point of two circles inside the gray area is covered by a third circle. For
instance, intersection point P of circle A and circle C is covered by circle B ,
and intersection point T of circle A and circle D is covered by circle C .

The criterion in Theorem 3.1 provides an efficient method for testing full
coverage of a sensing area. However, it does not provide direct information
about the possible size of the uncovered region if the region is not fully covered.
One possible estimate is to randomly generate a certain number of points and
test coverage of each point with existing circles. The uncovered region could
be estimated by the percentage of uncovered points. The alternative is to make
an estimate based on the area of the polygon with same vertices (e.g., polygon
QRSTU in Fig. 3.3a). There exists a need for designing more accurate and fast-
coverage size-estimation protocols.

Theorem 3.1 can be extended to the three-dimensional scenarios. In Ovalle-
Martinez et al. (2006), it is used for the broadcasting protocol in 3D, where
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Figure 3.3 The gray circle is fully covered if all intersection points are covered.

each node has the same transmission radius. This corresponds to the scenario for
sensor volume coverage where CR = SR (details are in Chapter 2). In this case,
the coverage criterion can be expressed as follows:

Theorem 3.2. Ovalle-Martinez et al. (2006) Suppose that sphere A is inter-
sected by spheres C 1, C 2, . . . ,Cm. Consider all intersection points X on the 3D
perimeters of the spheres centered at A, Ci, and Cj. If there exists at least one
such intersection point and every such intersection point X is located inside at
least one of the remaining spheres (centered at Ck for some k ) then the sphere
centered A is fully covered by the spheres centered at C 1, C 2, . . . ,Cm.

In case of arbitrary ratios of CR/SR, and sensing volumes of arbitrary shapes
(for simplicity, only spherical volumes are stated in the criterion), the follow-
ing generalization holds. Again, no two sensors are assumed to be in the same
location.

Theorem 3.3. Suppose that sphere A is intersected by spheres C 1, C 2, . . . , Cm.
Consider all intersection points X of spheres Ci, Cj, Ck (or by Ci, Cj, and A)
located inside sphere A. If there exists at least one such intersection point and
every such intersection point X is located inside at least of one of the remaining
spheres (centered at Cp for somep) then the sphere centered A is fully covered
by the spheres centered at C 1, C 2, . . . , Cm.

Proof. The proof of Theorem 3.3 is similar to the proof of Theorem 3.1. Suppose
that the volume centered at A is not fully covered by other volumes. Let P be one
of uncovered points. It is located inside a 3D uncovered patch. “Travel” from P



3.3. Area-Dominating Set Based Sensor Area Coverage Algorithm 81

until a boundary is met. It could be boundary of one of the covering circles, or
boundary of A. Traverse further that boundary until a line of intersection of two
spheres is met. Traverse that line until a point of intersection with a third sphere
is encountered. This point is not covered (it is not inside) in any other sphere,
which contradicts the assumptions in the theorem. �

Both the coverage and connectivity criteria were studied in Zhang and Hou
(2005) and Wang et al. (2003). It is proved that if the transmission radius is at
least twice the SR and the area to be covered is convex, then the area coverage
also implies connectivity of the covering sensors. Any two nodes whose sensing
circles intersect are then neighbors within Tian (2004) generalized the proof by
eliminating the convexity condition.

Theorem 3.4. If the transmission radius is at least twice the SR then the area
coverage also implies connectivity of the covering sensors.

Proof. The proof (Tian, 2004) is as follows: If a network is not connected then
there are at least two connected components in the network. The distance of any
pair of nodes that are selected from two components, respectively, is larger than
CR. Since CR > 2SR, there is no intersection between coverage area of nodes
in two components. Therefore, the whole region is not fully covered since the
region is continuous (Tian, 2004). �

The relationship between the degree of coverage and connectivity was further
studied in Wang et al. (2003). A graph is k -connected if it remains connected
when any k – 1 vertices are deleted from the graph.

Theorem 3.5. Wang et al. (2003) A set of nodes that k -cover a convex region
forms a k -connected communication graph if the communication radius is at least
twice the sensing radius (CR > 2SR).

Several centralized sensor area coverage algorithms are surveyed in Simplot-
Ryl et al. (2005). Since centralized algorithms are inefficient in gathering infor-
mation, due to their communication overhead, they are suitable only for very
small networks. We will discuss here only localized algorithms. The presented
algorithms all assume that each sensor is aware of its own location (geographic
coordinates).

3.3 AREA-DOMINATING SET BASED SENSOR AREA
COVERAGE ALGORITHM

Sheu et al. (2007) proposed a localized protocol to find a set of connected sensor
nodes to cover the required region in heterogeneous sensor networks. Sensor
nodes may have different SR and CR. A sensor may need multiple hops to reach
its sensing neighbors if SR > CR. This case is of theoretical interest only since



82 Chapter 3 Sensor Area Coverage

in practice CR > SR. The protocol consists of three phases: neighbor discovery ,
self-pruning , and active sensing neighbors discovery .

Each sensor collects information on its sensing neighbors by “hello” mes-
sages (neighbor discovery). The node information includes a node’s ID, sensing
range, location, and priority. The priority could be residual energy, sensing range,
or communication degree, or a combination of several metrics (priorities are
assumed to be distinct among nodes). Note that flooding is required for a node
to learn its sensing neighbors if SR > CR. Only this phase requires message
exchanges among nodes. The remaining two are decisions made by each node
without communicating with others.

In the self-pruning phase, each node determines whether or not to be active.
It decides to be active if its sensing area is not completely covered by the union
of sensing areas of its sensing neighbors that have higher priority than the node.
After this phase, the required region is fully covered by the active sensing nodes.

In the active sensing neighbor discovery phase, each sensing node A deter-
mines active sensing neighbors. Several sensing neighbors may cover the same
segment of A’s perimeter. A recognizes a sensing neighbor B as active if a seg-
ment of its perimeter is covered by B and B has the highest priority among all
sensing neighbors that cover the same segment of the perimeter.

Suppose the sensing range is the priority and a node with a larger sensing
range has a larger priority value. In the example in Figure 3.4, suppose that the
order of priorities of nodes is A < B < C < D < E < F < G . In the self-pruning
phase, nodes A, B , D , E , F , G decide to be active since their sensing area is not
fully covered by neighbors with higher priority. Node B is active since priority
of A is lower than B , while node C is passive since priority of both F and G is
higher than C . In active sensing neighbors discovery phase, the perimeter of G
is divided into segments by its sensing neighbors. Since segments S 1, S 4, and S 5

are covered only by nodes A, D , and F respectively, A, D , and F are recognized
as active sensing neighbors by G . Segment S 2 is covered by both A and B , and
B is recognized as an active sensing neighbor by G since priority of B is higher
than the priority of A. Similarly, segment S 3 is covered by B and D , but it is
also covered by E which has a higher priority than both B and D . So, E is also
recognized as an active sensing neighbor by G .

Note that a node decides to be passive based on coverage by higher priority
sensing neighbors, and some of them might also decide to be passive. However,
in doing so, these neighbors also recognized higher priority covering neighbors.
For each patch of area to be covered, this leads to a chain of higher priority
sensing neighbors, and the one with the highest priority must be active. Thus,
the set of active sensors indeed covers the original area. The connectivity fol-
lows from the originally constructed paths to each sensing neighbor, including
those recognized to be active. The proposed protocol could be applied in both
synchronous and asynchronous networks since only neighbor discovery phase
involves message exchanges. Decisions can be made originally in synchronous
mode following “hello” message exchanges. Later, dynamic changes in the net-
work can be handled locally and asynchronously, as they are occurring.
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Figure 3.4 Area-dominating set based coverage.

3.4 ASYNCHRONOUS SENSOR AREA COVERAGE

3.4.1 PEAS

Ye et al. (2003) proposed probing environment and adaptive sleeping (PEAS),
which is a localized threshold-based protocol for dynamically selecting an area-
covering set in asynchronous sensor networks. Each sensor is assumed to have the
same probing radius p and the same maximum CR, which is also the maximum
SR. Initially, all nodes are sleeping and the sleep duration is an exponentially
distributed random number. The protocol consists of two phases, probing envi-
ronment and adaptive sleeping.

When a node A wakes up, it broadcasts a probing message using probing
radius p. Any active node receiving the message (that is, active neighbor of A at
distance up to p) will send back a reply message to the node. Node A decides
to work continuously if it does not hear any reply message from neighbors (this
means that there is no active neighbor within distance p of A). Once a sensor
decides to be active, it continues to work until it depletes its energy. Otherwise,
the node selects a new sleeping duration and goes back to sleep mode. It will wake
up at a later predetermined time to reevaluate the decision. In adaptive sleeping
phase, each active sensor measures the current accumulated wake-up rates of its
sleeping neighbors. The measured rate is included in the reply message, which
will be sent back to any probing neighbor. The probing node then adjusts its
sleeping time accordingly, with the goal of having a relatively constant wake-up
rate. The density of active nodes can be controlled by parameter p.

Consider the example in Figure 3.5. The circles with smaller radii are the
probing areas while the circles with larger radii are the communication areas.
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Figure 3.5 PEAS protocol for sensor
area coverage.

Black nodes are active while white nodes are in sleep mode. PEAS cannot guar-
antee full coverage of the monitored area. For example, shaded area between
circles in Figure 3.5 is covered by sleeping white nodes but not by correspond-
ing active black nodes located within distance p. The probability of full coverage
is shown to be close to 1 if the threshold p is less than 1/(1+√

5) ≈ 0.3 of the
SR, that is, pr < 0.3SR. Activation of more sensors by a smaller probing radius
has an insufficient contribution toward covering some new area. The proposed
protocol has a high degree of fault tolerance. In a modification of PEAS (Gui
and Mohapatra, 2004), active nodes report their activity time left, so that sleeping
nodes can adjust their future wake-up times.

Gui and Mohapatra (2004) proposed a simple sleeping scheme for sensor
activity scheduling. Each node independently follows its own sleep schedule
without collaborating with each other on the sleeping issues. To achieve the
required quality of surveillance, the probability p of selecting active status by
any node is determined by n/N , where n is the required number of active sensors
and N is the total number of sensors. Therefore knowledge of n and N , and
uniform node distribution is also desirable for good performance.

3.4.2 ACOS

Cai et al. (2007) proposed an asynchronous area-based collaborative sleeping
(ACOS) protocol for WSNs. The problem is to schedule states of sensors to
maximize the coverage and minimize the energy consumption. The ACOS pro-
tocol cannot guarantee full coverage of the sensing area. It is based on calculation
of the net sensing region of a sensor, which is the region in the sensing range of
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Figure 3.6 The net sensing region for
sensor s0.

the node that is not in the sensing range of any other active sensor. The definition
is illustrated in Figure 3.6. The shaded area is the net sensing region of s0.

The algorithm proposed in Huang and Tseng (2003) is employed to compute
boundary of the net sensing region. In this algorithm, sensor s0 computes the
portions of perimeter of each of its covering circles, which is not covered by
other covering circles, and a similar portion of its own perimeter. This generates
a list of uncovered arcs, which can be then linked into a list. In the example
in Figure 3.6, arcs AB , ED , BC , EF , AF , and CD are identified first, leading
then to a circular list ABCDEF (note that there may be more than one uncovered
region). The area of each sensing region can be approximated by the area of the
polygon formed by its segment sequence. In the example in Figure 3.6, the area
of the net sensing region of s0 is approximated with the polygon ABCDEF .

When a node wakes up, it broadcasts a message to its neighbors within
2SR and waits for a time-out period. Upon receiving the message, each active
neighbor replies with a message, which includes its location and the remaining
awake time. When the time-out expires, the node can compute the net area ratio
based on information it receives from awake neighbors. The net area ratio of a
node is defined by the area of the net sensing region divided by the area of the
maximum sensing region of the node. If the ratio is less than a predetermined
threshold, the node returns to sleep state and sleeps during the minimum awake
times of its neighbors. If the ratio is equal to or greater than the threshold, the
node changes to awake state and decides how long to be awake. The decision is
then transmitted to its neighbors.

3.5 SYNCHRONOUS SENSOR AREA COVERAGE

3.5.1 Coverage with Low Communication Overhead

Tian and Georganas (2002) proposed a localized coverage-preserving node
scheduling algorithm for synchronous sensor networks. The algorithm guarantees
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full coverage of the sensing area. A node decides to go to sleep mode if and
only if the sensing area of the node is fully covered by the union of sensing
areas of its active neighbors. A random back-off scheme was proposed to
determine the time nodes make decisions. Decisions to turn off are announced
to neighbors. Upon receiving such an announcement, adjacent nodes with longer
back-off time periods will delete the sender’s information from active neighbor
lists. Therefore, sleeping neighbors (at decision time) will not be considered
for sensing coverage. The algorithm was extended by Jiang and Dou (2004) by
adding a round of location information exchange, and applying the perimeter
coverage criterion.

Gallais et al. (2008) proposed several localized and synchronous sensor area
coverage protocols for heterogeneous sensor networks. Each sensor may have
its own SR and transmission radius (Gallais et al., 2008). The covering criterion
presented in Theorem 3.1 was used to efficiently decide whether or not a sensing
area is fully covered by neighboring sensors. Neighbor discovery is not needed.
Nodes wait for a random time-out duration while receiving activity decision
messages from neighbors. The maximum time-out duration can be tailored to
prefer sensors that were not elected in previous rounds, or sensors with more
remaining energy. Each sensor evaluates its coverage and connectivity by active
neighbors and decides whether or not to be active when its time-out expires.
Active sensors inform neighbors, whereas decisions to sleep may or may not
be announced (by withdrawal messages). After making a decision to be active,
nodes may hear from more active neighbors, and their sensing area may then
become fully covered. Such nodes may then change their minds by sending a
retreat message to their neighbors. On the basis of whether or not the withdrawal
message and the retreat message are transmitted, four variants of the protocol
were proposed in Gallais et al. (2008).

In the activity, withdrawal, and retreat (AWR) variant, for example, each
message is transmitted if its corresponding condition is satisfied. In the example
in Figure 3.7, CR = SR, and each node selects a random time-out and waits
for messages from neighbors. Suppose that timeout1 < timeout2 < timeout3 <

timeout4 < timeout5 < timeout6. Nodes 1, 2, and 3 decide to be active after their
time-out expires since their sensing areas are not fully covered. They send an
active message to their neighbors. In Figure 3.7a, the gray region is covered by
active nodes 1, 2, and 3. Then node 4 decides to be active and sends an active
message to nodes 1, 3, 5, and 6. Since node 5 receives the active message from
nodes 1, 2, and 4, it decides to go to sleep mode and sends a withdrawal message
to nodes 1, 2, and 4. Afterwards, node 6 decides to be active. After receiving the
active message from node 6, node 4 finds that its sensing area is fully covered
by nodes 1, 3, and 6 (Fig. 3.7b). Thus, node 4 changes its decision to go to sleep
and sends a retreat message to nodes 1, 3, 5, and 6. Finally, nodes 1, 2, 3, and
6 are active while nodes 4 and 5 decide to sleep.

Experimental results with the ideal medium access layer (MAC) layer show
that for a similar number of selected active sensors, four methods (Gallais
et al., 2008) significantly reduce the number of messages to decide the status
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Figure 3.7 Activity, withdrawal, and retreat variant of sensor area coverage algorithm.

compared to localized protocol (Tian and Georganas, 2002; Jiang and Dou, 2004)
where nodes send “hello” messages followed by retreat messages before sleep-
ing. Message losses were also considered (Gallais et al., 2008), induced by a
MAC layer with collisions and/or a realistic physical layer, and showed that the
existing compared method (Tian and Georganas, 2002; Jiang and Dou, 2004)
for dense networks fails to cover the area reasonably with a connected set of
active nodes (nodes may decide to sleep since some retreat messages are not
received, creating coverage holes, and connectivity losses). Methods (Gallais
et al., 2008), however, still remain robust in terms of high area coverage with a
reasonable amount of active nodes and connectivity preservation despite message
losses.

Gallais and Carle (2008) proposed a surface coverage relay protocol based
on the backbone concept in Adjih et al. (2005). Each sensor node A first decides
about its coverage relay sensing neighbors. It sorts its sensing neighbors by their
decreasing distance, and they are considered as possible relays in that order. Thus,
the furthest sensing neighbor of A is its relay. Candidate neighbor becomes a relay
node if it covers a portion of sensing area of A not covered by previous relays.
Relay sets of each sensor can be constructed after a “hello” message from each
sensor, to learn its sensing neighbors. The same message may also be used to
construct the connected dominating set with the MPR-DS algorithm (Adjih et al.,
2005) (described in Chapter 2), if CR is assumed to be equal to SR. This ensures
that two-hop communication neighbors are also sensing neighbors. To construct
active sensors for area coverage, the same rule from Adjih et al. (2005) can be
applied. Every sensor whose key is lowest among the (communication) neighbors
or which belongs to the relay set of the neighbor with the lowest key, must be
active. The set of active nodes covers an area as large as the area covered by all
sensors (Gallais and Carle, 2008).
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3.5.2 Location and Calculation-Free Sleep
Scheduling

Tian and Georganas (2004) studied the location and calculation-free node
scheduling for large-scale WSNs. Three algorithms were proposed. In the nearest
neighbor-based node scheduling scheme, each node is assumed to know the
distance to its neighbors but not their locations. At the beginning of the scheme,
each node transmits a short message to announce its existence to its neighbors.
Each node generates a random back-off time and listens to the channel during
the time. If it receives the turnoff decision message from a neighbor, it deletes
the neighbor from the active neighbor list. Once the back-off time expires, the
node decides its status. In the nearest neighbor-based node scheduling scheme,
each node determines if the distance to its nearest active neighbor is less than
or equal to the threshold D . If so, the node decides to go to sleep mode, and
transmits the decision to its neighbors. Otherwise, the node decides to be active.
The neighbor number-based node scheduling scheme also employs the random
back-off procedure. After back-off time expires, each node counts the number of
active neighbors. If the number is less than a predetermined threshold, the node
decides to be active. Otherwise, it goes into the sleep mode, and transmits the
decision to its neighbors. The threshold is determined to achieve the required
percentage of uncovered sensing area of individual nodes on an average.

The probability-based node scheduling scheme is based on a probability
model and does not use random back-off procedure. In the scheme, each node
generates a random number in (0, 1) and checks if the number is less than the
predetermined threshold. If this is the case, the node decides to go to sleep mode;
otherwise, it decides to be active. The three proposed schemes have low schedul-
ing and time complexities. The disadvantage is that all these schemes cannot
guarantee to preserve the original full network coverage, and are based on some
parameters.

3.6 MULTICOVERAGE BY SENSORS

Fault tolerance of some applications may require that any point in the sensing area
is covered multiple times. Even if single coverage suffices, it may be energy-
efficient to partition and schedule the sensors to work in round-robin manner,
such that the sensing area could be covered multiple times.

Gallais and Carle (2007) proposed an adaptive localized algorithm for multi-
ple sensor area coverage. The algorithm follows the assumptions and algorithms,
including options, outlined in Gallais et al. (2008) and in Section 3.5.1. The only
difference is in the evaluation criterion applied to reach a decision. To address the
k -coverage problem, the basic idea is to divide the sensing area into grids, and it
is required that every grid point be covered by at least k neighbors. Alternatively,
the k -cover criteria from Theorem 3.5 could be utilized.

In the k -layer coverage problem, active neighbors add their layer number
to their positive acknowledgments. A node determines that its sensing area is
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fully k -layer covered if and only if there are at least k active layers and each of
them fully covers sensing area of the node. The problem was studied in Simplot-
Ryl et al. (2005). The algorithm (Simplot-Ryl et al., 2005) adjusts k dynamically
to reflect the sensor density. Each sensor node selects a time-out. Suppose that
node A received a message from a neighbor that informed about i , the cover
layer number selected by that neighbor, and its geographic coordinates. Node A
adjusts its uncovered portion of layer i , and may adjust its time-out appropriately.
When the time-out expires, a decision is made and transmitted. Node A assigns
the layer j , which is a minimal number so that the area in layer j is not yet fully
covered. Alternatively, among layers covered partially by some neighbors and
not yet fully covered, A chooses one that maximizes the uncovered area. Another
option is that, if all layers covered by some neighbors are fully covered, A may
choose a new layer and inform neighbors about covering it.

3.7 PHYSICAL LAYER-BASED SENSING,
PROTOCOLS, AND CASE STUDIES

Most of existing works on sensor area coverage employ the UDG model. The
sensing area of a node is a disk with SR centered at the node itself. A point in
the monitoring region is covered by a sensor if and only if, the point is inside
the coverage disk of the sensor. However, as discussed in previous chapters, the
UDG model is not realistic since variations of received signal strengths are not
considered. Nondeterministic radio fluctuations cannot be ignored in sensor area
coverage, and the monitoring ability of sensors is probabilistic.

Gallais et al. (2006) studied k -layer coverage in WSNs with realistic physical
layers. The probability of detecting an event depends on the distance of sensor
from it. The approximated function that is introduced in Kuruvila et al. (2004)is
applied:

p(x) =
⎧⎨
⎩

1 − (x/SR)2α/2 if 0 < x ≤ SR,

((2SR − x)/SR)2α/2 if SR < x ≤ 2SR,

0 otherwise,
(3.1)

where x is the distance between the point and the sensor, and α is the signal
decline factor which depends on the environment (Eq. 3.1). The SR is selected
so that the probability for a sensor to correctly sense a target, which is located at
distance SR from the sensor is 0.5. The sensing function is drawn in Figure 3.8
where SR = 1 and α = 2. It resembles the lognormal shadowing model used to
model communication between nodes.

The proposed sensor area k -layer coverage protocol (Gallais et al., 2006)
works as follows. Suppose sensors are time synchronized and work in a round-
robin manner. Each node selects a waiting time-out, listening to messages from
neighbors. Activity messages include the layer at which a node has decided to
be active. Depending on the physical layer used for sensing modeling, any node
can evaluate if the provided coverage is sufficient for each layer. If so, the node
can sleep, otherwise it selects a layer to be active.
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Figure 3.8 Lognormal shadowing model for sensing, SR = 1 and α = 2.

To evaluate if the sensing area of a node is sufficiently covered by sensors at
a given layer, the node, say u , randomly selects a set of physical points (inside
the sensing circle with radius SR), denoted by S , and checks the coverage of
these points. The number of selected points depends on the desired accuracy. For
each point P in S , node u computes the probability that P could be correctly
sensed by at least one of its neighbors. The coverage probability can be calcu-
lated as follows: 1 − �

|N(u)|
i=1 (1 − P(di)), where N (u) is the set of neighbors of

u and di is distance between point P and neighbor i . For example, suppose that
node u has three neighbors within its SR: u1, u2, and u3. Distances between
point P and u1, u2, and u3 are d1, d2, and d3, respectively. Then the proba-
bility that P is correctly sensed by neighbors of u is 1– (1 – P (d1))(1 – P (d2))
(1 – P (d3)).

Once the coverage probability of each point in S is computed, the average
of all probabilities is used to compare with the predetermined threshold. If the
average probability is greater than the threshold, the node believes its sensing
area is covered.

3.8 OPERATION RANGE ASSIGNMENT IN WSANs

Younis et al. (2008) studied operation range assignment for both sensor nodes
and actuator nodes in WSANs. A WSAN is randomly deployed in the field. It
assumes that each node, either sensor or actuator, has k different operational
ranges, where sensing range of sensors and acting range of actuators are referred
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to as operational ranges. Each node may not know the location information of
its neighbors and itself. Each node is able to compute the relative positions of its
neighbors (virtual coordinates) based on distance and two-hop information. The
operational range assignment protocol (ORAP) (Younis et al., 2008) is for asyn-
chronous coverage. The goal is to assign operational range for each node, such
that the field area is covered with a probability that is larger than a predetermined
threshold, and the operational lifetime of each individual node is prolonged as
much as possible. It is assumed that coverage probability decreases with distance
and increases with selected operational range.

The basic idea of ORAP is to assign longer ranges to nodes that have more
residual energy. Furthermore, ORAP is periodically retriggered to reassign the
operational ranges, such that the load of nodes is balanced. Operational range
assignment protocol works as follows. All nodes are undecided at initialization
stage. Each node selects its weight as the ratio of residual and maximal energies.
Suppose possible ranges of a node are R1 < R2 < · · · < Rk . A node decides
to use maximal range if its neighbors cannot cover its area with their maximal
ranges. Otherwise, the node computes its operational range based on its weight
and weights of its neighbors. A node v does not make a decision regarding its
working range R unless the node has the highest weight among all its undecided
neighbors. Node v first sets its range R to Rk−1 and range of every undecided
neighbor u to the largest Rj that is smaller than [weight(u)/weight(v )]1/m × R,
j ≤ k – 1, where energy consumption of the sensing or acting stage is assumed
to be proportional to Rm . If this assignment covers the operational range of v , v
reduces its range to Rk−2. The process repeats until node v at its particular range
Ri cannot cover it. Node v then decides to use range Ri+1, changes its state to
decided and informs its neighbors. Finally, nodes check for redundancies based
on all finalized decisions. Node v waits to receive tokens from all the neighbors
with less weight than its own. Once these tokens are available, v computes its
final operational range and releases a token that advertises the new range of v .
If the timer expires before the node receives enough tokens, it keeps its selected
range.
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Abstract

Position information enables development of localized routing methods where
greedy routing decisions are made at each node, based solely on knowledge
of positions of neighbors and the destination, with considerable savings in the
communication overhead. Power consumption can be taken into account in the
routing process. This chapter will survey existing flooding-based and position-
based routing schemes. It also describes a general cost to progress ratio-based
approach for designing routing protocols under a variety of metrics, such as hop
count, power, remaining energy, delay, and others. The chapter also describes
routing with guaranteed delivery for unit disk graphs and an ideal medium access
control (MAC) layer. Gabriel graph, as a localized planar and connected structure
needed for such solutions is described. Solutions are expanded toward beaconless
behavior, where nodes are not aware of their neighborhood. Georouting with
virtual coordinates is based on hop distances to some landmarks. This chapter
also discusses the physical layer aspects of georouting, routing in sensor-actuator
networks, and the load-balancing issue in routing.
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4.1 FLOODING-BASED ROUTING
AND GEOROUTING IN SENSOR NETWORKS

Sensors report their measurement to a monitoring station, also called a base
station , or simply, a sink . Individual reporting of discovered events are normally
done by a routing task, from a sensor to the sink. In a routing task, a packet is to
be sent from a source node to a destination node, via some intermediate nodes
in a given multihop network. In wireless sensor networks, the source is normally
a sensor while the destination is a sink. In sensor-actuator networks, the actuator
(actor) may serve as a source and/or destination node. Sinks, actuators, and even
sensors could be fixed or mobile.

Existing practical implementations of sensor networks normally avoid the
use of position information due to current technological difficulties in providing
it to sensors with sufficient accuracy. Routing is then based on flooding as a step
to find a route. Flooding was covered in Chapter 2. It will be reviewed again in
Chapter 6 to illustrate data gathering and data aggregation by constructing a tree
centered at the sink/actuator. Monitoring center floods route discovery (short)
message to all sensors located inside a region. Sensors establish links toward
the sensor from which the first copy of the packet is received, and use that link
for reporting, or forwarding reports received from neighbors. Thus, effectively,
sensors report along the reverse broadcast tree. In wireless ad hoc networks, this
method is currently a candidate for being a standard, with mobile nodes such
as laptops, palmtops, and mobile phones serving as sources, destinations, and
intermediate nodes. The source then floods the network, and the destination node
replies back to the source upon receiving discovery message(s) using memorized
hops (AODV) (Perkins et al., 1999) or paths (DSR) (Johnson et al., 1996). This
method was applied to sensor networks, and is often cited as “directed diffusion”
following a description under such a name in Intanagonwiwat et al. (2000). There
are many variants of this basic method, including multipath construction, quality
of service (QoS) provision, and so on. The route discovery message may contain
accumulated delay, congestion, power (i.e., a prespecified cost metric) along
paths. The best path is then selected at the destination node. A number of local
route maintenance techniques are proposed to handle the dynamic nature of the
network; however, the maintenance is generally expensive, and often is done
by triggering another network-wide flooding. To reduce the area being flooded,
the expanding ring search is often applied, which floods in a restricted area,
assuming that the destination will be found there; otherwise, the searched area
size is increased (e.g., doubled).

Ding et al. (2003) considered the problem of finding a route from a sensor to
the single sink in a wireless sensor network. Following a reactive route discovery
strategy, the sink floods the network and sets the routes. The difference is that
each sensor does not memorize the whole route, or a single pointer to predecessor
sensor on the route, but instead it memorizes its hop count distance to the sink.
When a packet is sent toward the sink, any neighbor at one less hop distance can
forward it, instead of reporting back to the first node that sent the task assignment
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packet to it. For instance, the report can be sent to the neighbor with the highest
energy and the smaller hop count, or any neighbor that sent the packet with
smaller hop count from the sink (Ding et al., 2003). The node can memorize a
few such alternatives during setup phase and try them one by one. Alternatively,
a neighbor at one less hop distance can simply retransmit, and the node can block
further retransmissions by a separate blocking packet.

Because the geographical location of an event is an important information,
position information of sensors is considered available, while recognizing the dif-
ficulty in gathering it with reasonable accuracy. Geographic routing (georouting)
is the strategy that employs geography information of nodes when routing from
the source to the destination. It assumes that nodes in the networks are provided
with GPS (global positioning system) devices (Hofmann-Wellenhof et al., 1997),
or some localization techniques (Bachrach et al., 2005) are available to obtain
the location information of nodes. The nodes exchange location information with
their neighbors, and forward packets based on the location information of their
neighbors and the destination. It allows routers to be nearly stateless, since packet
forwarding is based on location information of candidate neighbors and the loca-
tion of the final destination only. In wireless sensor actuator networks (WSANs),
the destination is normally a sink or an actuator. Location of the destination is
flooded over the network to all sensors at the initialization stage of the system.
As nodes are not required to maintain routing tables and routing decisions are
made based on geographic information, the routing information grows with the
density of the network, for example, average node degree, rather than size of the
network, for example, total number of nodes. Therefore, the geographic routing
algorithms are normally characteristic of low computation complexity and high
scalability, which are desirable in large-scale wireless networks. By their local-
ized nature, geographic routing algorithms are highly scalable solutions that do
not require any additional control overhead when network topology changes due
to energy-conserving sleep cycles (Frey et al., 2005). However, highly mobile
networks are difficult to handle since geographic routing is normally based on
locations of the destination and neighboring nodes. For instance, obtaining an
accurate location of a mobile destination is even more difficult than routing itself
(Stojmenovic, 2002). This chapter will deal only with the case of static sinks as
or actuator destinations.

4.2 GREEDY, PROJECTION,
AND DIRECTION-BASED ROUTING

The simplest form of geographic routing is greedy routing which was first
described by Finn (1987). In the greedy routing algorithm, each node in the route
forwards packets to the neighbor that is the closest to the destination among its
neighbors. Only the neighbors that are closer to the destination than the current
node are considered. The algorithm is illustrated in Figure 4.1. Suppose node
S is the current node in the route and node D is the destination. All neighbors
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Figure 4.1 Greedy, projection, and
direction-based routing.

of S are within the circle centered at S . Suppose node B is the closest to des-
tination D among all S ’s neighbors and d is the distance between B and D .
According to the greedy routing algorithm, node S selects node B as the next
hop forwarding node. Greedy routing is suitable for large-scale networks with
high density and frequent topology changes because it is simple and localized.
The distance to the destination is minimized in each hop of the routing. The
GEDIR (Stojmenovic and Lin, 2001a) algorithm is a variant of greedy rout-
ing. It considers all neighbors (even in backward direction) and selects the node
that is the closest to the destination. A message is dropped if it would be sent
back to the node where it was previously received from. Another variant is to
select the nearest neighbor among those that are closer to the destination than
the current node [nearest closer (NC) method, proposed in Stojmenovic and Lin
(2001b).

The first geographic routing was described by Takagi and Kleinrock (1984).
The notion of progress was introduced to define the most forward within radius
(MFR) greedy routing algorithm. Suppose A is a neighbor of S . The progress of
A to D corresponds to the dot product SA·SD = |SA

′ ||SD| of two vectors SD and
SA, where SA

′
is the projection of SA onto line SD , and |XY | is the Euclidean

distance between X and Y (dot product formulation of the progress is given in
Stojmenovic and Lin (2001a)). The MFR algorithm considers all neighbors of
S and selects the node A, such that SA·SD is maximized. That is, the (signed)
length of projection |SA

′ | is maximal. Then, node S forwards packets to node
A. Only neighbors with positive progress are considered in MFR. The nearest
neighbor with forward progress (NFP) method (Hou and Li, 1986) selects the
nearest neighbor among nodes with positive progress.

Another strategy of geographic routing utilizes direction information of next
hop candidates with respect to the line toward the destination. Kranakis, Singh,
and Urrutia proposed compass routing (also referred to as the DIR method) in
Kranakis et al. (1999). It selects the next hop by minimizing the angle ∠ASD
between lines toward candidate neighbor A and destination D . In the example
in Figure 4.1, ∠CSD is the minimum such angle among all S ’s neighbors, and
node C is selected as the forwarding node.

Stojmenovic and Lin (2001a) proved that greedy, GEDIR, and MFR routing
are loop-free while DIR routing is not. Greedy routing selects the neighbor that is
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closer to the destination than the current node. There is no backtracking and thus
it is loop-free. The proof that MFR is loop-free follows. Suppose A1, A2, . . . , An

are the nodes in the loop such that A1 forwards packets to A2, A2 forwards packets
to A3, . . . , An –1 forwards packets to An and An forwards packets to A1. At the
current node S , MFR selects the neighbor A for which AD ·SD is minimized, that
is, SA·SD is maximized. We have DAn ·DA1 < DA2·DA1 = DA1·DA2, since node
A1 forwards packets to A2 not An . Similarly, it follows DA1·DA2 < DA2·DA3 <

. . . < DAn –1·DAn < DAn ·DA1. This is a contradiction. Therefore, MFR routing
is loop-free.

The example in Figure 4.2 shows that direction-based routing cannot guar-
antee loop-free routes in UDGs. Suppose S is the source node, and B is not its
neighbor (transmission radius is shown in the figure). According to direction-
based routing, node S selects neighbor A as its deviation from the line SD is
smaller than that of C . Similarly, node A selects B , B selects C , and C selects
S . Thus, direction-based routing enters the loop S →A→B→C →S .

Five routing algorithms: greedy, MFR, direction (compass), shortest path(in
terms of hop count), and NC routing are illustrated in Figure 4.3. The task is to
find a route from the source S to the destination D .
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S→C→U →F→I →M →D , DIR: S→T→E→G→I →N →D , shortest path:
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4.3 APPLICATIONS OF COST TO PROGRESS
RATIO FRAMEWORK TO GEOROUTING

Stojmenovic (2006) proposed a framework for designing network layer protocols
for sensor networks including localized routing, broadcasting, area coverage,
and so on. The framework is based on optimizing the ratio of the cost to
progress, where the cost to reach the next hop forwarding node in routing is
expressed in a certain metric, and the progress is a measure of advance toward the
destination.

Examples of cost metric are hop count, power, reluctance, power * reluc-
tance, delay, and expected hop count (Stojmenovic, 2006) (see also Chapter 1).
Each link has a cost measure, which depends on the assumptions and metrics
used. The framework assumes that each node knows the cost of each of its links
to the neighboring nodes. The basic idea of the framework is as follows. Suppose
the source or current node S has k neighbors, where only neighbors closer to the
destination than the current node are considered to ensure progress at each step.
That is, S has k choices to forward a packet toward the destination. Node S then
computes C i /Pi , i = 1, 2, . . . , k for each neighbor, where C i and Pi are the
cost and progress, respectively, of i th candidate neighbor. The neighbor with the
minimum cost to progress ratio is selected to forward the packet. The same rule
is continuously applied by the receiving node to select the next hop. The routing
process continues until the destination is reached or no neighbors with progress
are available. If no such neighbor exists, the packet is dropped or a recovery
scheme, based on the specific cost metric used, is applied to make a progress
before resuming the scheme. The framework was illustrated by applying it to the
following well-known geographic routing algorithms.

In the greedy routing (Finn, 1987) introduced in the previous section, the
cost metric is the hop count (the number of transmissions on a route) and the
progress made by forwarding is reduction of distance to the destination. For the
current node that holds a packet, the cost to transmit to any of its neighbors is
the same, that is, one hop. In the example in Figure 4.1, the cost to progress
ratio for node B is 1/(|SD | – |BD |). |SD| – |BD| is to be then maximized, as in
the greedy routing algorithm. If the progress metric is defined as the projection
of neighbors on line SD , the routing algorithm becomes the MFR (Takagi and
Kleinrock, 1984).

Another example is the localized power-aware routing, which was described
by Kuruvila et al. (2004). In Figure 4.4, the power required for node C to reach
node A is proportional to |CA|α + c, where α is power attenuation factor, which
is normally between 2 and 6, and c is a constant. The constant c accounts
for the energy and minimal signal strength for correct signal reception. This
power measure is used as the cost. The progress is defined as |CD | – |AD | (only
positive progress is considered, |CD| > |AD |). Thus, the cost to progress ratio of
the power-aware routing is (|CA|α + c)/(|CD| − |AD|). The selected neighbor
minimizes the power spent per unit of progress made in terms of getting closer
to the destination.
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A

C
A′ c

ax

D Figure 4.4 Current node C , candidate
neighbor A, and destination D .

Note that power-aware routing may result in early energy depletion of certain
nodes. If residual energy of nodes is included into cost as reluctance, the goal
of routing is to maximize the number of routing tasks the network can perform.
For instance, let f (A) denote the inverse 1/g(A) of the normalized (in interval
[0,1]) residual energy g(A) in node A. Nodes with more residual energy, that is,
smaller f (A), are more eager to forward packets while nodes with less residual
energy, that is, larger f (A), are reluctant to do so. The routing algorithm selects
a neighbor A that minimizes f (A)/(|CD | – |AD|), subject to |CD| > |AD|. This
routing framework can be applied to other cost metrics, such as QoS requirements,
transmission delay, link quality, and data.

All routing protocols based on the cost to progress ratio can be improved by
applying the iterative improvement method, which was described by Hang et al.
(2004) (for QoS metric costs) and (Kuruvila et al., 2004). Suppose current node
C selects neighbor A to minimize the cost to progress ratio while the overall goal
is to minimize the total sum of costs over the route. If there is another neighbor
B of node C , such that cost(CB ) + cost(BA) < cost(CA) then it could be more
beneficial to forward the packet to node B instead of node A. Such improvement
could be iteratively repeated until no improvement is possible. Note that the
improvement may be locally done at node C without message exchange if node
C has needed information for a given metric (it involves metric between two
neighbors).

The iterative improvement is a special case of the general scheme (Sanchez
and Ruiz, 2006; Wu and Candan, 2007; Elhafsi et al., 2008) (with power con-
sumption as the metric) based on shortest weighted paths toward temporary
destination. Suppose that current node C selects neighbor A having the best
cost to progress ratio (in the first proposal (Sanchez and Ruiz, 2006), temporary
destination is decided by hop count-based greedy routing). Instead of sending
the message directly to A, node C constructs the shortest cost path (using the
same cost metric as weight) from C to A, and forwards the packet to the first
node B on that path (often B = A) to minimize the overall cost. That node then
applies the same reasoning, starting from selecting its own temporary destination
(Elhafsi et al., 2008), or keeping the same destination until it is reached (Wu and
Candan, 2007). To avoid loops between two neighboring nodes, only neighbors
directly connected to the temporary destination are considered. If the temporary
destination is fixed until it is reached (Wu and Candan, 2007) then progress
toward final destination at each step is not verified. Otherwise, to avoid loops,
only nodes closer to final destination (not only temporary one) can participate in
the shortest path (Elhafsi et al., 2008).
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If greedy routing (with a given cost metric) cannot make progress at a given
node, recovery mode is invoked. Recovery mode (covered later in this chapter)
uses hop count as a metric to guarantee recovery [such resolution is proposed
in Stojmenovic and Datta (2004). However, the total cost of following these
predetermined edges is then not optimized with respect to the given cost metric. In
algorithms (Wu and Candan, 2007; Elhafsi et al., 2008), these edges are indirectly
followed, by replacing direct transmission between end points of these edges
with shortest weighted paths between them. Further, Elhafsi et al., 2008 builds
a connected dominating set (CDS) from a given set of nodes, and computes
its Gabriel graph (GG) to obtain the planar graph G’. Face routing is applied
on G’ only to decide which edges to follow in the recovery process. On each
edge, shortest weighted path routing is applied. Then the next edge is similarly
followed, until recovery is possible. This two-phase (greedy-face) routing process
reiterates until the final destination is reached.

One of the major advantages of the cost to progress ratio framework is
that it has no added parameters such as thresholds. In a typical threshold-based
approach, “bad” links are eliminated, and the packet is dropped if there is
no “good” neighbor. However, a reasonable path may contain only one weak
“bridge.” Experiments conducted so far indicate that threshold-based approaches
are inferior for all threshold values, because of either high failure rate if thresh-
old is too restrictive or suboptimal path choices when generous threshold choice
allows one or more very weak links into a path, creating a bottleneck for the
route. This occurs because final selection over “acceptable” links is made nor-
mally by using a metric different from the cost metric. For example, the node
closest to the destination could be chosen, despite its barely acceptable status in
terms of the selected metric, such as delay.

‘Load-balancing is needed to effectively use available sources and keep the
nodes’ energy consumption balanced by equally distributing the load. The prob-
lem is to route data packets avoiding the congested path so as to balance traffic
load over the network and lower end-to-end delay. Distributing the load within
the network has two advantages. First, resource of the network is fully utilized
through distributing network load. An efficient load-balancing routing protocol
is able to improve packet delivery rate and network throughput. Second, energy
consumption is balanced by equally distributed load, so that the network lifetime
can be prolonged. A dynamic parameterless load-balancing georouting protocol
has been proposed in Stojmenovic (in preparation). The node holding the packet
for delivery compares costs of sending the packet to all available neighbors that
are closer to the destination and not fully loaded, against the progress made.
The neighbor with the minimum cost over progress ratio Load (A)/(|SD | – |AD |)
is selected. In this formulation, the load (as selected cost) could be the ratio
of already consumed bandwidth over total bandwidth at node A. The cost is
then increasing linearly with the consumed bandwidth. A more progressive cost
can be used by defining Load (A)= 1/capacity(A), where capacity(A) is the
normalized remaining bandwidth (capacity) at neighboring node A (Stojmenovic,
in preparation).
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4.4 MEMORIZATION-BASED GEOROUTING
WITH GUARANTEED DELIVERY

Greedy based routing stops if a current node cannot find any neighbor that is
making an advance with respect to the selected advance mechanism, such as
reducing the distance to the destination. However, a route from source to desti-
nation may still exist. We consider only localized methods to find the route when
the selected greedy technique fails. They are generally divided into two classes,
depending on whether or not any information about the route has been left at
visited nodes, for possible later consultation. This is not allowed in memoryless
routing, where all needed information is included in the packet. We will first
cover some techniques that do allow memorization. In some cases, memorization
can be justified. One example is the creation of a path between two nodes that
will be used for an ongoing traffic between them (e.g., for QoS-based applica-
tions), where nodes on the path need to memorize the next hop. The alternative
is, obviously, to record the whole path in the message; but, with increased path
lengths this method does not scale well, as increased message size increases col-
lisions and reduces bandwidth. We will describe several recovery mechanisms
based on memorization.

Stojmenovic and Lin (2001a) proposed flooding-based methods, called f-
greedy and f-MFR, which apply greedy routing and MFR at intermediate nodes
and run a recovery mechanism at concave nodes. Each concave node memorizes
message IDs and rejects further copies of the same message. That is, neighbors
of concave node C learn about C ’s concave status from the packet and do not
select C as the next hop forwarding node in future attempts. Each neighbor of the
concave node initiates a separate routing task toward the destination, in parallel.
Some paths can be terminated later when reaching a node already handling the
same routing task for a previous path via that node.

A localized depth first search (DFS)-based routing algorithm was proposed
by Stojmenovic et al. (2002). Depth first search, which is different from f-greedy ,
is single-path routing. Each node remembers if it has already been visited by the
DFS traversal, and the node from where the message was received for the first
time. Packet forwarding is performed by sorting all neighbor nodes according to
their distance from the destination D and selecting the node that is the closest to
D . As already-visited nodes have already transmitted a forward packet, which is
overheard by their neighbors, the neighbors can learn their status and do not select
them for forwarding again (Vukojevic et al., 2008). A returned message will be
sent to the next choice in the sorted list of all next hop nodes. If all neighbors
are explored and return the message, the message is returned to the node from
which it was first received. The DFS method (Vukojevic et al., 2008) is applied
to arbitrary cost metric. Neighbors of the current node are sorted based on the
cost to progress ratio that they can provide, and used in that order in attempts to
find a route.

In the example in Figure 4.5, according to the DFS algorithm in Stojmenovic
et al. (2002), source S sorts three neighbors according to the distance to D , and
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Figure 4.5 DFS routing before (S BFNMF MNF GHLKJD) and after (S BFNM NF
GHLKJD) enhancements.

then forwards to B , which is closest to D . Similarly, B sorts its neighbors A,
C , and F , excluding sender S , and forwards to F . F forwards to N , which then
forwards to M . M forwards to F , which has been visited. Thus, F rejects the
message to M . M returns to N since it has no available neighbors. Similarly,
N returns to F . F does not forward to its second neighbor M since it received
the forwarding message from M already. Instead, F forwards to its last neighbor
G . G forwards to H , which ultimately reaches D via HLKJD . The routing path
of DFS before enhancement is SBFNMFMNFGHLKJD . In the enhanced version
of DFS (Vukojevic et al., 2008), ‘nodes can learn their neighbors’ status by
overhearing the transmissions of already-visited neighbors. In the example, M
eliminates both F and N from its available neighbor list after F forwards to N .
F eliminates both N and M from its available neighbor list after N forwards to
M. So the routing path of DFS after enhancement is SBFNMNFGHLKJD .

The method, however, does not work well in “island” areas with dense node
population, as all these nodes would be visited before exiting the island to try
another route toward destination. To reduce this problem, DFS is applied only
on nodes from a CDS (Vukojevic et al., 2008).

Application of DFS routing for QoS support was further discussed in
Stojmenovic et al. (2002). On the basis of the information about its own physical
location and periodically updated location information of all neighbors, each
node is able to estimate the current speed of any neighbor and estimate how long
the link will exist. The information could be used to find a route that supports a
specified connection-time requirement. In addition, a minimum bandwidth
requirement and maximum delay may be considered as well during DFS
traversal. A message is returned once the maximum delay is exceeded or no
outgoing edge matches the minimum bandwidth requirement. Intermediate
nodes along the path memorize the uplink and downlink of the path, such that
the QoS communication between the source and the destination can be set up.
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Ma et al. (2008) proposed a detouring mode for any geographical routing
protocol (but it has no impact on greedy routing). The strategy is applied to
prune the path found by the georouting protocol when the first packet is routed.
After the first packet is delivered, a pruned path is also obtained, and subsequent
packets can be forwarded using the pruned path. Suppose that a node A forwards
a packet to its neighbor B , and afterwards hears the same packet being forwarded
by another neighbor C , node A can immediately make a shortcut by forwarding
other packets for same destination to C directly, bypassing at least node B . The
algorithm requires some state information to be recorded at nodes that make
shortcuts. Similar bypassing algorithm was previously applied for the specific
case of DFS routing algorithms in Stojmenovic et al. (2002), as natural part of
DFS process, when C = A, as part of constructing QoS route out of initial
route. The bypassing algorithm can be extended to allow common neighbors to
intervene in the path. Suppose that node B hears a packet being forwarded by its
neighbor A, and later on by its neighbor C , with hop count being increased by
more than 2. Then node B may offer node A to forward future packets, which
will be then delivered to neighbor C , thus making detour with two hops from
A to C .

4.5 GUARANTEED DELIVERY WITHOUT
MEMORIZATION

4.5.1 Face Routing in Planar Geometric Graphs

A planar graph is a graph that can be drawn on the plane in such a way that
edges intersect only at their end points. Figure 4.6 shows a planar graph. In
geometric graphs , each node is aware of its position and those of its neighbors,
and therefore angles toward them. Examples of planar and geometric graphs
include street maps, or rooms on the same floor in a building. Planar geometric
graphs divide graph into faces. In the example in Figure 4.6, face F 1 is polygon
SABC and face F 2 is polygon BEFGHC . Kranakis et al. (1999) described the
first localized memoryless routing algorithm for planar geometric graphs, which
guarantees delivery whenever the source and destination are connected.

The face routing in Bose et al. (1999) is an improvement on the routing
algorithm in Kranakis et al. (1999). The main idea of the face routing (Bose
et al., 1999) is to advance (toward destination D) intersections of faces with
a straight line segment that connects the last intersection X (initially it is the
source S ) and the destination D . A packet is routed along the interiors of the
faces until an edge on the route intersects XD between X and D . In Figure 4.6,
the line intersects the planar graph with faces F 1, F 2, . . . , F 7. The boundary
of any face can be traversed by applying the right-hand rule (counterclockwise
traversal) or the left-hand rule (clockwise traversal). In the right-hand rule, the
face is traversed by keeping the right hand on the wall while walking forward.
That is, the packet is forwarded along the next edge counterclockwise from the
edge where it arrived. When the packet arrives at an edge intersecting the line
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Figure 4.6 Face routing.

XD , the next face intersected by the line is handled in the same way. The process
continues until the packet reaches the destination D or the first edge of current
face traversal is traversed twice in the same direction (this case indicates that
source and destination are disconnected, and a loop is created).

Consider the example in Figure 4.6, and assume the left-hand rule is applied.
Face F 1 intersects line SD and the packet traverses in F 1 over path SABC until
edge BC intersects line SD at point X 1. The next face F 2 is traversed on path
CBE until the next intersection X 2, followed by face F 3 on path EBFE and
intersection X 3. The path then follows face F 2 again along EFG , F 4 along GFI ,
F 5 along IFONMLK , and finally face F 6 until delivery to D . The whole path is
indicated with dashed edges. This variant normally traverses intersecting edges
back and forth and is also known as after crossing variant , and can be applied
similarly with the right-hand rule on each face. If we want to avoid intersecting
edges twice, a before crossing variant can be used. It can also start with the
left or right-hand rule, or a choice among them may be based on some other
criteria, for example using smaller initial angle/direction toward D . Face F 1 is
then traversed by edge SC , which is closer in direction to SD than edge SA. The
next face F 2 is selected and the reference line is updated to X 1D . The packet
is forwarded from C to H and then to G until edge GF intersects line X 1D at
point X 4. Similarly, the face switches to F 4 and the packet is forwarded from
G to I with edge IF intersecting line X 4D at point X 5. Finally, the packet will
reach D via path SCHGJKD in bold line.

Note that the traversed face after the intersection may be the same face
traversed before the intersection with XD . Suppose the destination is point P on
line SD in Figure 4.6, and suppose that the same after crossing variant (dashed
line) is followed. While traversing F 5, at point K , the path will continue on F 5

along KJIQ . At the intersection X 7 of IQ and SP , face F 5 is selected again and is
traversed by algorithm (Bose et al., 1999), since it contains the line X 7P , and the
message is delivered to P along IQP in the after crossing or left-hand variants, or
along X 7JKLMNOFX 7RQP line (not shown in the image) in the before crossing
or right-hand variants. The algorithm (Karp and Kung, 2000) however forces
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the change of face at every intersection X i D (note that the X i must be internal
point on the line segment X i –1 D). Then the algorithm (Karp and Kung, 2000)
selects face F 7, and the message traverses along QIR or IRQ indefinitely in a
loop, since X 6 is not inside the line segment X 7P . The face change will never
occur, resulting in a loop. Thus, this step is correctly implemented in Bose et al.
(1999), while it has been mistakenly described in Karp and Kung (2000), leading
to lack of guaranteed delivery in arbitrary planar geometric graphs.

There are several variants of face routing, primarily addressing various deci-
sions on the choice of left or right-hand rules to use for each traversed face. The
differences can also be made based on changing face before crossing an edge on
the route, or after crossing it. Few variants of the face algorithm can be described
as follows:

Face routing
// S : source, D : destination
X ← S
repeat

let f be the face of G with X on its boundary that intersects line XD
traverse f (counter)clockwise until reaching an edge UV

that intersects line segment (X , D) at some internal point Q 
= X
X ← Q
continue routing from node U (before crossing) or V (after crossing XD)

until X = D.

4.5.2 Gabriel Graph

We are interested in face routing in unit disk graphs (UDGs), not in planar
geometric graphs. This is because the UDG is utilized to model wireless ad hoc
and sensor networks. In general, an arbitrary UDG is not planar. We therefore
need a geometric structure that will be derived from UDG and will provide a
planar graph in localized manner. Currently, the most convenient structure for
routing applications is GG.

The GG was first introduced by Gabriel and Sokal (1969). Two points u
and v are joined by an edge in the GG whenever the disk with diameter |uv |
contains no other points from the given point set. In Figure 4.7a, the dashed
circle is the forbidden region of GG where there is no other node. Figure 4.8
shows a GG constructed from a UDG. Bold edges belong to GG and all edges
belong to UDG. In the 3D definition of GG, two points are joined if the sphere,
drawn with them as end points of its diameter, does not contain other points from
the set.

The GG concept is applied on top of an UDG. Let S be a set of points in
the plane and U (S ) the UDG, which contains all points in S . Let GG(S ) denote
the GG induced by S . The following theorem shows that the GG preserves the
connectivity of UDG.
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Figure 4.8 Gabriel graph (bold edges) and unit disk graph (all edges).

Theorem 4.1. (Bose et al., 1999) If U(S) is connected, then GG(S) ∩ U(S) is
connected.

Proof. We will prove that both graphs contain the minimal spanning tree MST (S)
of the same set S ; therefore, their intersection also contains MST(S), and is
therefore a connected graph. We will prove MST(S) ⊆ GG(S) by contradiction. If
MST(S) is not subset of GG then there exists edge PQ ∈ MST(S), PQ /∈ GG. Since
PQ is not in GG, there exists node W inside the disk with diameter PQ . This node
W then satisfies PW < PQ, QW < PQ . Because PQ is in MST(S), either PW or
QW is not in MST. Assume PW /∈ MST(S). Replace PQ by PW in MST(S). The
new MST(S) has smaller sum of edge lengths, which is a contradiction. Therefore
GG(S) contains MST(S), and is therefore connected. Suppose that the radius of
U(S) is R. All edges of U(S) are thus not greater than R. According to Kruskal’s
algorithm (Kruskal, 1956), these edges are first considered in constructing MST(S)
before other edges whose length is greater than R. After considering of all edges
in connected U(S), MST(S) includes all nodes from S and is already completed.
That is, MST(S) ⊆ U(S). So, GG(S) ∩ U(S) is connected. �

Theorem 4.2. Gabriel graph is a planar graph.

Proof. Proof is by contradiction. Assume that it is not a planar graph. Then there
exist two intersecting edges UV and PQ . From UV , PQ ∈ GG(S), it follows
that ∠PUQ < π/2, ∠PVQ < π/2,∠UPV < π/2,∠UQV < π/2. Then the sum
of angles of the quadrilateral UPVQ is < 2π , which is a contradiction. �
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The construction of GG is straightforward from its definition. To test whether
or not an edge uv belongs to GG, node u can check if distance from other points
to the center of line segment UV is > |UV |/2. Alternatively, u can verify if
angles over uv from each of neighboring points is acute. If so, the edge is in
GG, otherwise it is not included in GG. The computational time complexity of
this algorithm for testing all edges at a node is O(d2), where d is the maximum
degree in the network. However, the communication in wireless networks is much
more expensive than computation. If node u is already aware of the geographic
locations of itself and all its neighbors, no additional messages are involved in
the construction of GG. This makes GG a localized scheme. Moreover, it is a
zero-message planar graph construction method, a very desirable property.

The relative neighborhood graph (RNG) is described in Chapter 2. It has
been pointed out (Li et al., 2001) that the number of edges in RNG and GG are
bounded by 3n – 10 and 3n – 8, respectively, where n is the number of nodes
in the networks. Thus, the average node degree in RNG and GG is bounded by
6. In fact, the average degree of RNG is about 2.5 (Hou et al., 2005) while the
average degree of GG is about 3.8 (Huang et al., 2004). The maximum node
degree of each node of RNG can be reduced to 5 if the length of each edge is
made unique. Suppose a node u in RNG has degree greater than 5. There must
exist two neighbors v and w , such that ∠vuw ≤ 60◦. Since |uv| 
= |uw| (suppose
|uv | > |uw |), node w must be inside the forbidden area of uv , contradicting that
uv is in RNG. To make all edges unique, it suffices to consider them as records
with primary, secondary, and ternary keys being (|uv |, min(u ,v ), max (u ,v )).

We will also briefly discuss Delaunay triangulations (DT) as possible planar
graph alternatives to GG. An edge uv is in DT if there exists a circle, whose
chord is uv , which does not contain any other node in its interior. Alternatively,
DT contains all triangles uvw , which satisfy the condition that the circle passing
through u , v , and w does not contain any other node (Figure 4.7b). However,
DT cannot be constructed by localized algorithms. The reason is that neighbor
information of a node alone is not sufficient to determine if any triangle in which
the node is an end point belongs to DT. Node u may not be aware of the existence
of node x if x is inside the circle but outside the u’s communication area. That
is, circle sizes in the definitions are not limited, and localized knowledge, then,
is insufficient.

From the first definition of DT, we can see that GG ⊆ DT. Suppose that an
edge uv belongs to RNG. This means that there is no node w such that |uv | >

|uw | and |uv | > |vw |. Thus w is not inside the circle with diameter uv . That is,
RNG ⊆ GG. Therefore, we have MST ⊆ RNG ⊆ GG ⊆ DT (Hou et al., 2005).

4.5.3 Routing with Gabriel Graph

The GG can serve as a planar graph needed for face routing to work. The main
problem with respect to the performance of face routing is exploring significant
portions of boundaries of faces. Therefore, Bose et al. (1999) proposed a combi-
nation of the face routing algorithm with the distance-based greedy routing. The
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algorithm, which is referred to as GFG (greedy-face-greedy), applies the greedy
algorithm until the packet reaches a node such that all its neighbors are further
from the destination than the node itself. The face routing is applied until the
packet reaches another node that is strictly closer to the destination. The greedy
algorithm is then resumed. The algorithm can switch between greedy and face
mode several times, but guarantees progress and delivery because face routing
is always successful, and loops cannot be created since the algorithm always
advances in greedy mode, and is guaranteed to further advance while in face
mode (that is, it is guaranteed to recover).

The example in Figure 4.9 illustrates how the face routing can route over
the void area. Suppose the greedy algorithm is applied and the packet reaches
node S , which has no neighbors closer to destination D than itself. Face routing
is required for recovery, that is, to find a node that is strictly closer to D than
S . If the right-hand rule is applied, the packet follows the shorter route until it
reaches the first node B , which is closer to D than node S . Similarly, the packet
follows the longer route and reaches node C if the left-hand rule is applied. The
greedy algorithm is then resumed after recovery.

The GFG algorithm is illustrated in Figure 4.10, from source S to destination
D . Bold edges belong to GG and all edges belong to UDG. Since S cannot find
any neighbor which is closer to D than itself, face routing is applied first. Suppose
the left-hand rule is used, the packet follows route SYXTPOK until it reaches
the first node K with |KD| < |SD|. The greedy algorithm is then applied and the
packet advances following the route KGHI until it reaches node I , which has no
neighbors closer to D than I . Face routing is applied again and the packet follows
route IHGFECB until it reaches node B with |BD| < |ID|. Note that face routing
considers only edges in GG and edge BE is not selected. The greedy algorithm is
then applied and the packet finally reaches D via the route BAD . If the right-hand
rule is applied, the packet follows the route S → Z → S → Y → X→ W → V
→ W → U → T → R → T → P → Q → P → O → M → N → M → L
→ J → F and reaches the first node F with |FD| < |SD|. The greedy algorithm
is then applied and the packet follows the route FEBAD (edge BE is selected in
the greedy routing) until it reaches the destination D .

S

B
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D

Figure 4.9 Traversing the face until recovery.
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Figure 4.10 Greedy-face-greedy routing from S to D by right-hand and left-hand recoveries.

If the source is disconnected from the destination, GFG will create a loop.
A loop is detected if the first edge in face routing is repeated twice by the
traversal, in the same direction. The first edge can be added to the message, so
that its repetition can be detected. Note that repeating any node on the path is
not sufficient to declare a loop.

The variant of GFG using GG as planar graph is expected to have smaller
average hop count than the variant with RNG in face routing because GG is
denser than RNG (RNG is a subset of GG), and therefore has more edges. More
edges lead to fewer edges on faces and therefore to fewer hops.

The GFG algorithm was further improved by Datta et al. (2002) to reduce
its average hop count. Each forwarding node uses the local two-hop information
available to calculate as many hops as possible and forwards the message to
the last-known hop directly instead of forwarding it to the next hop. The CDSs
technique was further applied and face routing was performed on the dominating
set except possibly the first and the last hops.

The GFG algorithm with added IEEE 802.11 medium access layer was later
implemented as the greedy perimeter stateless routing (GPSR) protocol by Karp
and Kung (2000). The GPSR protocol is a variation of GFG. More precisely,
GPSR uses the before crossing instead of the after crossing variant, and dis-
cusses the RNG as an alternative to the GG. However, these modifications do
not improve the performance of the routing protocol. It was pointed out by Kim
et al. (2005) that GPSR cannot guarantee delivery in arbitrary planar graphs. The
fact was confirmed by Frey and Stojmenovic (2006) and formal proof of delivery
guarantee of GFG in arbitrary planar graphs was further given. This is due to
a difference in the face routing procedure between GFG and GPSR. The GPSR
always switches to the other face whenever the line XD in the algorithm is inter-
sected. However, GFG correctly selected the proper face, which sometimes can
be the very same face before the intersection, as illustrated in Figure 4.6, once
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an intersection point is found. Interestingly, face switch does not occur at all
when GG is used as planar graph, which is the reason why the error in the GPSR
implementation was not identified before it was reported in Frey and Stojmen-
ovic (2006). More detailed difference between GFG and GPSR could be found
in Frey and Stojmenovic (2006). The following theorem shows that under GG,
when recovering from a greedy routing failure, it is always possible to reach
a node that is closer to the destination than the current node. So, the greedy
algorithm can be resumed after traversing only one face with face routing.

Theorem 4.3. (Frey and Stojmenovic, 2006) Let SD be the line between source
node S and destination node D in a Gabriel graph G . For any edge UV in GG
intersecting the line SD , the distance between D and at least one of the edge end
points U or V is smaller than the distance between S and D .

Proof. Since edge UV is in GG, the circle having |UV | as its diameter does
not contain nodes S and D . Thus, both angles ∠USV and ∠UTV are less than
90◦ (Fig. 4.11). Since the angles of the quadrilateral SUDV sum up to 360◦, at
least one of the angles ∠SUD and ∠SVD is greater than 90◦. This makes SD the
longest edges in corresponding triangle. Therefore, at least one of the two nodes
U or V is located closer to D than the node S . �

Therefore, the GFG that uses GG can be implemented by the following
simplified algorithm.

GFG over GG (Frey and Stojmenovic, 2006)
repeat

follow greedy until delivery or failure at node S
if failure at S then

select face f containing the line SD
traverse f until return to greedy is possible

endif
until delivery
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Figure 4.11 Face routing in GG always finds a node closer to the destination (all nondashed
edges belong to GG).
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Kuhn et al. (2003a) proposed an extension of the GFG algorithm which is
referred as greedy other adaptive face routing plus (GOAFR+). It observes that
efficiency of face routing depends on the traversal direction of a face. An improper
traversal direction of a face may result in a long path to the destination. So, the
basic idea of GOAFR+ is to introduce a circle C centered at the destination and
its initial radius is set to include the source. The greedy mode is employed as
long as there is a next hop node closer to the destination, and whenever possible
the radius of C is exponentially decreased as long as the current visited node is
within C . Once the greedy mode reaches a concave node U , a modified version
of face routing is invoked. If the face is traversed completely without hitting
the circle C , the packet is sent to the node visited so far, which is closer to
the destination than U (if no node is closer to the destination than U , routing
failure will be reported.). If C is hit for the first time, the face is traversed in
the opposite direction. If C is hit for the second time and none of the visited
nodes are closer to the destination than U , face traversal continues as if started
at U and the radius of C is exponentially increased. Once face traversal visits
up to a predetermined constant factor with more nodes closer to the destination,
GOAFR+ interrupts face traversal and switches to greedy mode again.

The cost of a path is defined as the sum of costs of all edges in the path,
where the cost of an edge could be any cost metric, which is polynomial in the
Euclidean distance. In Kuhn et al. (2002) it has been shown that the worst case
cost of any geometric routing algorithm is bounded by, at most, the quadratic path
costs (compared to the shortest weighted path), which is denoted as asymptotic
optimality . It was pointed out by Kuhn et al., (2003b) that asymptotic optimality
cannot be achieved if face traversal is switching back to the greedy mode when
the line that connects the concave node and the destination is intersected for
the first time (e.g., GFG is not asymptotically optimal). The combination of
greedy and face routing becomes asymptotically optimal when packets explore
the complete face and switch back to greedy mode at the face edge that is closest
to the destination. It has been proven by Kuhn et al. (2003b) that GOAFR+ is
asymptotic optimal although it does not traverse the complete face in general.

There are significant challenges left in georouting with guaranteed delivery,
and hundreds of papers in literature address them. Imprecise location informa-
tion is a significant challenge for georouting with guaranteed delivery. There is
no localized memoryless algorithm for georouting in 3D that has a guaranteed
delivery property. Unit disk graphs with equal transmission radii and absence
of obstacles are required for GGs to remain connected. An extension for fuzzy
UDGs is given in Barriere et al. (2001). Two nodes are connected if their dis-
tance is smaller than r and are disconnected if the distance is greater than R.
Two nodes are randomly connected or disconnected at the distance between r
and R. The main algorithm works if R/r < 1.41, with certain extensions and
message overheads to maintain GG. For other cost metrics, there is still no real
alternative to GG-based face routing for recovery mode, which prefers close
neighbors. Existing improvements are based on shortcuts, dominating sets, and
shortest weighted paths over face traversed edges.
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One of the challenging problems is also addressing mobility issues for inter-
mediate nodes on routes, while routing is in progress. The algorithm is loop-free
for static networks, but loops can be created by mobile nodes. After entering
a face, two nodes on the same face can move close to each other and divide
the face into two new faces, leaving a message in one of the faces that does
not intersect the imaginary line from source to destination, thus looping forever.
However, this problem can be partially resolved (if mobility is not so high that
required information becomes unreachable) by adding the time-stamp of the last
intersection with the imaginary line SD and ignoring links created afterwards.

4.6 BEACONLESS GEOROUTING

The greedy forwarding algorithms normally need to periodically exchange “hello”
messages (beaconing) with maximum signal strength by each node in order to
broadcast current position information to all one-hop neighbors. The beaconing
process of greedy routing costs additional energy consumption, which occurs
independently of current data traffic.

Heissenbuttel and Braun proposed the beaconless routing (BLR) algorithm in
Heissenbuttel and Braun (2004). Beaconless routing was further integrated with
the IEEE 802.11 medium access control (MAC) layer in the contention-based for-
warding (CBF) by Füßler et al. (2003) and implicit geographic forwarding (IGF)
by Blum et al. (2003). In BLR, node S currently holding the packet destined for
node D will include its own and location of D in the packet, and retransmit
either only the request for forwarding or the full message content. Upon receiv-
ing the packet, the neighboring node, a candidate for forwarding with a progress,
calculates a waiting time-out depending on the relative location coordinates of
itself, S , and D . The node located at the “best” location introduces the shortest
delays and forwards the packet first (or responds first with the offer to retrans-
mit). The (most) remaining nodes then cancel the scheduled transmission of the
same packet.

Beaconless routing is illustrated in Figure 4.12. To ensure that all potential
forwarding nodes detect transmission of S , selection of candidate nodes for the
next forwarding step is limited in a certain forwarding area. The forwarding area
has the property that each node is able to overhear the transmission of any other
node in the area. Heissenbuttel and Braun (2004) showed that the circle with a
diameter equal to the transmission radius, centered at the line SD with S as one
end point (the dotted circle in Fig. 4.12) is a good forwarding area with regard to
progress and successful hops before greedy routing fails. Several delay functions
are investigated, resulting in different forwarding behavior.

A technique called the active selection method was further proposed in Füßler
et al. (2003). A forwarding node sends a control packet instead of the full mes-
sage to all its neighbors. Neighbors respond with information of their forward
progress after a time-out which depends on their distance to the destination. The
forwarding node then sends the full message that indicates which of its neighbors
will forward the message. Zorzi (2004) proposed to avoid duplicate forwarding in
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BLR.

a BLR scheme by employing the request-to-send/clear-to-send (RTS/CTS) MAC
scheme from IEEE 802.11. The current node sends an RTS signal instead of the
message and waits for a CTS signal. If several responses are received, the node
selects the one that appears to be the best for forwarding and then sends the
message to that neighbor directly.

When greedy routing fails, a recovery strategy such as face routing is required
to guarantee delivery. Note that face routing is normally based on a planar sub-
graph that is constructed from neighborhood information, which is not available in
BLR. To solve the problem, Kalosha et al. (2008) proposed beaconless georout-
ing schemes with guaranteed delivery. They proposed two solutions: beaconless
forwarder planarization (BFP) and angular relaying . Beaconless forwarder pla-
narization finds correct edges of a local planar subgraph at the forwarder node
without hearing from all neighbors. The face routing is then applied in the sub-
graph. Angular relaying directly determines the next hop of a face traversal.
Details of both the schemes are presented next.

Beaconless forwarder planarization is a general scheme that is used to con-
struct GG and RNG. It consists of two phases: selection phase and protest phase.
In the selection phase, the forwarder v broadcasts an RTS including its own loca-
tion and sets its timer to tmax. Each neighbor u sets its contention timer by using
following delay function: t (d) = tmax × d/r , where d = |uv |, r is the transmis-
sion radius and tmax is the maximum time-out. That is, the closer neighbors set
smaller waiting times. A node responds with a CTS when its contention timer
expires. If a node w receives the CTS of another node w ’ that lies in the forbid-
den region N (v , w ), w cancels its timer. In the example in Figure 4.13, nodes
set their timers in increasing order w 1, w 2, . . . , w 6 according to their distance
to node v . Node w 1 responds first. When contention timer of w 2 expires, w 2

responds with a CTS including its location to v . Since w 5 overhears the CTS, it
finds w 2 is in the forbidden region N (v , w 5). Thus, w 5 cancels its timer and is
referred to as a hidden node. Since w 6 does not hear the CTS from both w 4 and
w 5, it will respond to a CTS once its contention timer expires. However, edge
vw 6 is the violating edge and should not be included in the GG since w 4 and w 5

are in the forbidden region N (v , w 6).
In the protest phase, hidden nodes protest against violating edges. If the set

of violating nodes is not empty, the hidden node starts its timer by using the
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Figure 4.13 Selecting GG edges in BFP.

same delay function. The violating node could be reported by some other hidden
node. Otherwise, the hidden node sends the protest message. Upon receiving
protests from hidden nodes, the forwarder removes violating edges and finally
obtains a planar graph. In the example in Figure 4.13, timer of hidden node w 4

is smaller than the timer of w 5. When timer of w 4 expires, it sends a protest
to the forwarder v . v removes the violating edge vw 6. Since w 5 overhears the
protest of w 4, it removes w 6 from the set of violating nodes, which then becomes
empty. Thus, w 5 remains silent after its timer expires.

Similar to BFP, the angular relaying algorithm consists of selection and
protest phases. In the selection phase, the forwarder node v that receives a packet
from the previous hop u , sends an RTS including the location of u and itself,
and sets its timer to tmax. Each neighbor, say w , sets its contention timer by
using the following delay function: t (θ) = tmax × θ/(2π), where θ = ∠uvw is
in counterclockwise order. A neighbor responds by an “invalid CTS” if it finds
other nodes in the forbidden region. The purpose is to let other nodes be aware of
its existence. Otherwise they would be hidden and need a chance to protest later.
Once the first candidate w answers with a valid CTS, the forwarder immediately
sends a SELECT message announcing that w is the first selected node. All
candidates with pending CTS answers cancel their timers. The protest phase
starts once the first candidate is selected. The forwarder sets its protest timer that
covers the time when protests can occur (e.g., t (π/2) for GG). No further CTS
is allowed. Each candidate node x sets a new timer t (θ), which determines the
order of protests where θ = ∠uvx − ∠uvw. Only nodes in N (v , w ) are allowed
to protest. Node x that protests automatically becomes the next hop. Afterwards,
only nodes in N (v , x ) are allowed to protest. Finally, the forwarder sends the
data packet to the currently selected candidate after its timer expires.

In the example in Figure 4.14, nodes set their timer in increasing order,
w1, w 2, . . . , w 6. Since w 1 is in region B (the previous hop u is in N (v , w 1)), w 1

sends an invalid CTS. Similarly, w 2 sends an invalid CTS since w 1 is in N (v ,
w 2). After w 3 sends a valid CTS, it is the selected node. However, w 4 protests,
and believes it is the next hop. The protest then is sent by w 5. Finally, w 5 is the
next hop and v sends the data packet to w 5 directly.
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Figure 4.14 Selecting the next hop w5 after invalid CTS from w1, w2, w3, w4 in angular
relaying.

4.7 GEOROUTING WITH VIRTUAL AND TREE
COORDINATES

The accuracy of exact geographic coordinates that is currently available is not
sufficient to support the claimed performance of georouting algorithms. An alter-
native solution is to use virtual coordinates instead of real ones. The typical
approach is to assign hop count distances to a certain set of landmark nodes as
coordinates of sensor nodes, and define the distance between nodes as the sum of
(absolute values of) differences in hop count toward these landmarks (this is also
called Hamming distance). Greedy routing can be applied to these coordinates
(Caruso et al., 2005). The problem, however, is that different nodes can have the
same coordinates. The sensors are not properly sorted in such coordinates, and
greedy routing may lead to a node that is local minima by Hamming distance.
A resolution is proposed in Chavez et al. (2007) by adding tree coordinates to
nodes, rooted from a landmark node. Greedy routing then proceeds by consider-
ing only neighbors that provide progress in tree coordinates. The combined set
of two virtual coordinates then enables routing with guaranteed delivery.

Mitton et al. (2008) consider the problem of designing power efficient rout-
ing with guaranteed delivery for sensor networks with known distances between
neighbors but unknown geographic locations. They proposed HECTOR, a hybrid
energy-efficient tree-based optimized routing protocol, based on two sets of vir-
tual coordinates. One set is based on rooted tree coordinates, and the other is
based on hop distances toward several landmarks. In the algorithm, the node
currently holding the packet will forward it to its neighbor that optimizes the
ratio of power cost over distance progress with landmark coordinates, among
nodes that reduce landmark coordinates and do not increase tree coordinates.
If such a node does not exist then forwarding is made to the neighbor that
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reduces tree-based distance and optimizes power cost over tree distance progress
ratio.

4.8 GEOROUTING IN SENSOR AND ACTUATOR
NETWORKS

Geographic routing by an adaptive targeting (RAT) protocol was studied by Shah
et al. (2007). RAT provides sensor-to-actuator communication and dynamic coor-
dination of actuators in response to emergencies. It focuses on applications in
which time critical data is required to be sent from sensor nodes to actuators.
A sensor node is said to be covered by an actuator if the distance between
them is not greater than R. Sensors report only to a single actuator. Actuators
broadcast subscribe messages to sensors in their covered areas. When they move,
such a message is sent with a frequency based on speed and field dimensions.
Actuator-actuator coordination is by broadcasting, whose details are not given.

Routing by adaptive targeting consists of two components: delay-constrained
geographic-based routing (DC-GEO) and integrated pull/push (IPP) coordination.
In IPP, actuator nodes subscribe to specific events of their interest in the field,
and sensor nodes disseminate the event readings to subscribed actuators for time
periods of subscription life. Sensor nodes push the data as long as there is any
actuator interested for the observed event. Delay-constrained geographic-based
routing employs greedy forwarding such that the delay constraint can be met as
well as energy consumption of forwarding nodes is balanced.

The process of forwarding the data packets toward actuators consists of
two steps. The source node sets the time to live (TTL) field in the packet and
each forwarding node updates the TTL by deducting the traversed hop delay.
Each sensor constructs a delay-constrained forwarding subset (DCFS) from the
neighbors that are closer to the destination, such that the given delay constraint
can be met. The second step of forwarding is to balance the load of nodes in
DCFS by selecting the forwarding node that has the highest energy level. The
proposed routing protocol minimizes energy while meeting delay constraint. The
current node, say i , first constructs DCFS from its neighbors for each actuator a ,
such that the given delay constraint can be met. It applies the criterion TTL/T (j )
> D(i , a)/D(i , j ) on each of its neighbor j , where TTL represents the constraint
of time remaining to reach the destination, T (j ) is the expected delay to relay
a packet from i to j , D(i , a) and D(i , j ) are distances from current node i to
actuator a , and candidate neighbor j , respectively. From DCFS, i selects the next
node that has the highest residual energy. Actuators need to be positioned close
to emergency area to reduce response time.

When no acceptable neighbor exists (there might be greedy neighbors pro-
viding advance but not meeting delay criterion), routing continues in face mode,
by variant of GFG (Bose et al., 1999) that follows both faces. The concave node
relays the packet to one node on the left and one node on the right along the
perimeter of the current face. Then each of these receivers continues with face
routing until the next recovery, where the algorithm can return to greedy mode
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based on delay bounds. Each of future concave nodes on any branch may further
branch in two. Authors claimed that one of the branches may loop and denote the
failure of that branch. However, this does not follow from the GFG algorithm,
which requests a link to be repeated in the same direction, not that merely a
node repeats. The algorithm then overall does not guarantee delivery when one
exists, because such a node may be on the way to recovery. When GFG works,
response time might be improved, but could be also longer because face mode
normally involves short edges, and increased number of hops increases delay.
Further, one slow link in greedy mode may still lead to a route with an overall
acceptable delay. Thus, the algorithm can be revisited.

4.9 LINK QUALITY METRIC IN SENSOR
AND ACTUATOR NETWORKS

A resource-aware and link quality-based (RLQ) routing metric for sensor and
actuator networks was studied by Gungor et al. (2007). Resource-aware and link
quality-based routing metric is a combined link cost metric, which is based on
both energy efficiency and link quality statistics. Energy efficiency is measured
by residual energy and normalized energy cost to transmit and receive a packet.
Since actuator nodes normally have higher energy resources than sensor nodes,
the energy cost of sensor nodes is assigned with a larger weight. Link quality
is measured by the expected number of transmissions, which is calculated from
the packet reception rate. The neighbor with the minimum link cost is selected
in packet forwarding. The RLQ (Gungor et al., 2007) introduced in the previous
section was implemented in the Tmote Sky nodes (http://www.moteiv.com). Two
radio hardware link quality metrics are used to measure the link quality during the
operation of the network. They are link quality indicator (LQI) and received signal
strength indicator (RSSI). Received signal strength indicator is the estimate of the
signal power and is calculated over 8 symbol periods, while LQI can be viewed
as chip error rate and is calculated over 8 bits following the start frame delimiter.
Packet reception rate represents the ratio of the number of successful packets to
the total number of packets transmitted over a certain number of transmissions.
The test-bed experiments show a strong correlation between the average LQI
measurements and packet reception rates. It also shows a good performance of
RLQ in terms of packet reception rate, network throughput, and network lifetime.

Souryal and Moayeri (2005) discuss forwarding that adapts to the time-
varying channel and exploits spatial diversity to mitigate multipath fading. The
routing layer uses long-term measurements of link quality (Signal-to-Noise-
Ratio, SNR) to opportunistically select next hop relays on a hop by hop basis.
They find the formula for packet success probability as a function of average SNR
in quasi-static Raleigh fading. This is multiplied by advance toward destination
for selecting the best neighbor. The routing layer will pass M relay candidates to
the MAC layer. If M >1, the MAC layer pools the M candidate relays for cur-
rent Signal-to-Interference-plus-Noise-Ratio (SINR) and position measurements
and forwards the packet to the relay that maximizes the expected progress for
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small-scale adaptivity. To avoid collisions, the relays reply in the order specified
by the polling message.

4.10 PHYSICAL LAYER ASPECTS AND CASE
STUDIES OF GEOROUTING

Almost all existing literature on geographic routing employs UDG in the commu-
nication model. In UDG, two nodes can communicate with each other if and only
if their distance is not greater than the common transmission radius. However, as
discussed in previous chapters, the UDG model is not realistic since variations of
received signal strengths are not considered. It has been pointed out that impact
of signal strength fluctuations sometimes is more significant than the impact of
node mobility (Stojmenovic et al., 2005). Therefore, reception of a packet is
probabilistic. In addition to distance, the received signal strength also depends
on other factors, such as environment landscape and transmission medium.

Zorzi and Armaroli (2003) considered advancement as a metric to be used
in routing decisions. The advancement provided by a relay node is defined as
the difference between the distance of the transmitting node to the intended
destination, minus the distance between the relay node and the destination, mul-
tiplied by the probability of a successful transmission from the transmitting node
to the relay. This idea has been later rediscovered [without citing (Zorzi and
Armaroli, 2003)] in several articles, including Kuruvila et al. (2005) (conference
version from October 2004), Zuniga Zamalloa et al. (2008) (conference version
in November 2004), and Lee et al. (2005).

Kuruvila et al. (2005, 2006) proposed geographic routing protocols that are
amenable to any realistic physical layer model with fixed and variable packet
lengths. Both cases with and without acknowledgments were considered. To
employ position-based routing, the first step is to find a reasonably accurate
approximation for the bit and packet reception probabilities for the given physi-
cal layer model. The lognormal shadowing model was adopted in Kuruvila et al.
(2005, 2006). It is represented as a function P (q , x ), which has approxima-
tion within 5% accuracy of the actual one, where q depends on the length L
of the considered packet and x is the distance between two nodes. The func-
tion is P(q, x) = 1 − (x/R)qβ/2 for x < R and P(q, x) = (2 − x/R)qβ/2 for
R ≤ x < 2R, and 0 otherwise, where β is the power attenuation factor, which
is normally between 2 and 6, and R is determined so that P (q , x ) = 0.5. Bit
reception probability is P (1, x ) while the packet reception probability for packets
with L = 120 bits long is P (2, x ).

The aEPR-u (expected progress routing) (Kuruvila et al., 2005), nodes send
at most u acknowledgements after receiving routing packets. It is to maximize
the expected progress made by forwarding. In the example in Figure 4.4, C is the
current node, A is a neighbor of C and D is the destination. Let |CD | = c, |AD |
= a , and |CA| = x . If all packets can be received successfully, C will forward
the packet to A such that |c – a| is maximized. In physical layer model, the
probability that A receives the packet from C is p(x ) (definition of p(x ) has been
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introduced in Section 1.5 in Chapter 1). The total expected hop count (number of
packets) between two nodes at distance x is f (u , x ) = 1/[p(x )(1 – (1 – p(x ))u)]
+ u/[(1 – (1 – p(x ))u)] (see Chapter 1). The aEPR-u (expected progress routing
with acknowledgements) selects the neighbor that maximizes (c – a)/f (u , x ).

The localized protocols in Kuruvila et al. (2006) do not assume the hop
by hop acknowledgements. It was pointed out that the packet delivery rate
approaches 1 if a large number of intermediate nodes are placed between the
source and the destination and the distance between adjacent nodes approaches
0. On the basis of the observation, the end-to-end routing (EER) localized rout-
ing simply forwards the packet to neighbor A that maximizes p(x ), that is, the
neighbor closest to C among neighbors that are closer to D than C . The process
continues until the destination is reached or a node cannot find neighbors closer
to the destination than itself. Different from EER, the nEPR (expected progress
routing without acknowledgements) algorithm forwards the packet to a neighbor
that maximizes the expected progress p(x )(c – a). Only the neighbors closer to
the destination than the current node are considered.

The InEPR (iterative expected progress routing) algorithm (Kuruvila et al.,
2006) is an improved variant of nEPR. The algorithm operates as follows.
Similar to nEPR, the current node C first finds a neighbor A that maximizes
p(|CA|)(|CD | – |AD |). For all common neighbors of A and C , C finds the node
B such that p(|CB|) × p(|BA|)>p(|CA|) and p(|CB|) × p(|BA|) is maximized.
Only the neighbors that are closer to the destination than C are considered. The
process repeats iteratively by checking the neighbors one by one until no improve-
ment is possible. Node C finally forwards the packet to the selected neighbor B ,
which will apply the same process for its own forwarding. This algorithm can be
generalized by finding shortest weighted path C , B1, B2, . . . , Bn, A toward A.
To apply Dijkstra’s shortest weighted path algorithm, logarithm of the product
of probabilities is applied: log(p(AB1)p(B1B2) . . . p(BnA)) = log(p(AB1)) + · · ·
+ log(p(BnA)).

Projection progress-based algorithms (Kuruvila et al., 2006) differ from
nEPR schemes in the progress measure only. The progress is measured by the
dot product CD ·CA instead of c – a , where CD ·CA is the dot product of two
vectors. The current node C forwards the packet to a neighbor A, which is
closer to the destination than itself, such that p(|CA|)(CD ·CA) is maximized.
The iterative projection progress scheme (Kuruvila et al., 2006) is the same as
the InEPR except that the projection progress method is employed to find the
first candidate node.

The case of variable packet lengths on each hop and routing with hop by
hop acknowledgments was studied by Stojmenovic et al. (2005). The localized
algorithms use the expected number of transmitted bits (energy consumption)
instead of the expected hop count in terms of packets in aEPR-u and InEPR.
The expected hop count f (u , x ) in aEPR-u and InEPR is replaced by the expected
bit count g(b, k ) for routing with acknowledgments. The case of variable packet
length and routing without hop by hop acknowledgments was also considered in
Stojmenovic et al. (2005).
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The algorithms described so far are physical layer-based solutions for greedy
position-based routing. The recovery procedure of delivery guaranteed routing
(Bose et al., 1999) can be adapted to the physical layer model. Face routing is
based on a planar graph in which edges are normally short. Thus, those edges
in the planar graph have relatively high reception probabilities in physical layer
model. Therefore, the recovery mode for the physical layer impact routing may
proceed in a similar manner as in the UDG model. For each visited node on
the face, the shortest cost path to the node can be calculated based on the cost
metric, which could take packet reception probability into consideration.

It was pointed out (Frey et al., 2005) that BLR can also be adapted to
the physical layer by modifying the criterion for selecting the best forwarding
neighbor and the appropriate time-out. A given node announces the request for
forwarding the packet several times so that the best forwarding neighbor receives
it. Similarly, the best forwarding neighbor responds a few times to make sure the
response is received and it is selected. The number of duplicated packets depends
on the detailed physical layer model.
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Abstract

This chapter reviews the scenarios where a given message is sent from a sin-
gle source to possibly several destinations. These scenarios can be subdivided
into multicasting , geocasting , multiratecasting , and anycasting . In multicasting,
a given message must be routed from one node to a number of destinations
whose locations may be arbitrary and spread over the network. Geocasting des-
tinations are all nodes located in a given geographical area. Multiratecasting is a
generalization of multicasting, where regular messages are sent from a source to
several destinations, possibly at a different rate for each destination. Finally, in
an anycasting scenario, a source must send a message to any node among a given
set of destinations, preferably only one. Each of these scenarios corresponds to
a typical use case in sensor and actuator networks.

5.1 MULTICASTING

In a multicasting task, the same message is routed from one single source node
to a fixed number of destinations whose locations are potentially scattered in the
network. In the context of sensor and actuator networks, this routing scheme is
usually applied by sensors to report their data to several actuators (as illustrated
in Fig. 5.1).
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Figure 5.1 Multicasting from a sensor S to
actuators A1, A2, A3.

More formally, given a graph G = (V, E), a source s ∈ V , and a set of
destinations D ⊆ V , the multicast problem consists in finding a set of relay
nodes R ⊂ V , such that s ∪ F ∪ R is connected in G. The main idea behind
multicast is to try to reduce R as much as possible (share a maximum of the
links to send as few duplicate packets as possible). In most of the algorithms,
this path sharing consists in building an overlay tree whose root is the source and
leaves are destinations (destinations may also act as relay nodes, though). This is
however not always the case, some algorithms rather build a mesh overlay, which
better tolerate the failure of links, thanks to redundancy. Also, when the positions
of destinations are known beforehand, the multicast task can be achieved without
using any overlay structure. In this latter case, the paths may also form trees or
meshes, but these structures are built on the fly and not memorized. The present
section reviews these different solutions.

5.1.1 Nongeographic Multicast

A number of multicast protocols [DVMRP (Deering and Cheriton, 1990), MOSPF
(Moy, 1994), CBT (Ballardie et al., 1993), PIM (Deering et al., 1994)] were first
proposed in the context of the Internet, and more generally IP networks. These
protocols were specifically designed for wired and infrastructured networks and
are not relevant in the context of wireless sensor networks. The main reason is
that they do not make use of the broadcast nature of the wireless medium. Indeed,
in a wireless context, the transmission of a message from one node to any number
of its neighbors can be achieved in one single emission. This property, called the
wireless multicast advantage, implies to modify both the routing strategy and the
metrics used to measure its efficiency: summing the total number of hops (edges)
does not precisely reflect the efficiency of a wireless path, whereas counting the
number of transmissions does it better. Another important concern, which is not
addressed by the aforementioned protocols, is the one of minimizing the energy
consumption. This criterion is not very relevant in an infrastructured network,
but it is of utmost importance in networks where devices are self-powered, such
as sensor and actuator networks.

A number of multicast protocols taking into account the wireless multicast
advantage have been proposed this past decade in the area of mobile ad hoc
networks (MANETs). These protocols are usually classified according to two
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criteria: whether they are proactive or reactive, and whether they rely on trees or
meshes . Proactive protocols compute and maintain routing tables ahead of time,
whereas reactive (also called on-demand ) protocols establish the given route once
explicitly needed, and do not maintain it afterward. The reactive approach gener-
ally performs better than the proactive in dynamic topologies, since maintaining
proactive routing information in this context is expensive. Regarding the shape
of the routing structures, tree-based protocols build a tree from the source to
the destinations, while mesh-based approaches intentionally add redundancy by
considering additional links in order to tolerate topological changes. Meshes are
generally considered more robust than trees, but induce a higher overhead.

Examples of tree-based schemes are AMRIS (Wu and Tay, 1999) (which
proactively builds a shared multicast tree among a set of sources and desti-
nations), multicast ad hoc on-demand distance vector (MAODV) (Royer and
Perkins, 2000) [which extends the well-known ad hoc on-demand distance vec-
tor (AODV) reactive protocol by adding an activable multicast mode on top of
paths built by AODV], and adaptive demand-driven multicast routing (ADMR)
(Jetcheva and Johnson, 2001) (which constructs an overlay multicast tree from
each source to its destinations, with parts of the trees being possibly shared by
different sources). Examples of mesh-based approaches include CAMP (Garcia-
Luna-Aceves and Madruga, 1999) (an extension of the proactive core-based
trees protocol that adds redundant links) or ODMRP (Lee et al., 1999) (a reac-
tive protocol that computes several paths among sources and destinations). Some
protocols, such as AMROUTE (Xie et al., 2002), combine tree- and mesh-based
approaches. Finally, some protocols such as multicast core-extraction distributed
ad hoc routing (MCEDAR) (Sinha et al., 1999) or the one in Jaikaeo and Shen
(2002) rely on a backbone structure.

While using the wireless multicast advantage correctly, these protocols focus
more on finding quick and robust multicast paths than on minimizing the energy
consumption. This is mainly due to the fact that building an energy-efficient multi-
cast tree consumes additional time, which is critical in highly dynamical contexts,
because an energy-efficient tree may no longer exist by the time it is computed.
In near-static scenarios such as sensor and actuator networks, however, taking
the time to build an energy-efficient path is relevant. The problem of finding a
minimum cost multicast tree in a wired network (i.e., without considering the
wireless advantage) is known to be NP-complete, even when every link has the
same cost [this problem is similar to the Steiner tree problem, where the weights
of all edges are equal to 1 (Karp et al., 1972)]. In a wireless network, where the
purpose is to minimize the number of retransmissions instead of the number of
hops, this problem is still NP-complete, as proven in Ruiz and Gomez-Skarmeta
(2005). Some heuristics have been considered, such as in Ruiz et al. (2007).
However, as for the protocols described before, the routing strategy considered
here rely on an overlay structure that covers the whole network. Constructing and
maintaining such structure may be very costly in message overhead and does not
scale well in large networks. When the positions of nodes are known, a better
and more efficient routing can be achieved.
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5.1.2 Geographic Multicasting

The general idea behind geographic routing is to use the positions of nodes to
achieve efficient routing without requiring the construction and maintenance of
global routing structures such as trees and meshes. This comes from the obser-
vation that the very measurements of sensors do not usually have a proper mean-
ing unless associated with the corresponding geographical information. Hence,
assuming the availability of position information on sensors is not so strong a
hypothesis. Geographic unicast has been discussed in Chapter 4 of this book. We
review in this section the protocols that extend geographic routing to multicast
scenarios. First, geographical, but nonlocalized protocols, which are not optimal
in the context of sensor and actuator networks, are briefly mentioned. Subse-
quently, some protocols that are both geographical and localized are reviewed.

One of the first nonlocalized geographical multicast protocol, lightweight
adaptive multicast (LAM) (Ji and Corson, 1998), still makes use of broadcast
messages, and is therefore not practical in large wireless sensor networks. Another
protocol from the same authors, DDM (Ji and Corson, 2001), combines several
unicast data tables to set up multicast data forwarding. The management of these
tables requires additional overhead and makes it limited to small multicast groups.
Finally, a protocol proposed in Mizumoto et al. (2004) uses position informa-
tion to build a geographically aware multicast tree that aims at minimizing the
number of links. However, as discussed before, minimizing the number of edges
(hops) does not exploit the one-to-many nature of the wireless medium (wireless
multicast advantage). Additionally, this protocol builds a global overlay structure,
which is costly to maintain and does not scale in large networks.

The best advantage of geographic routing is certainly to avoid the necessity
of building and maintaining a global routing structure, while enabling the use
of localized and stateless protocols where all the information needed to route a
message is carried inside it and the selection of next relay neighbors is done
on the fly at each hop. Such routing requires that every node knows (i) its own
position using either global positioning system (GPS)-like positioning service,
or virtual coordinates (see Section 4.7, or (Niculescu, 2004)), (ii) the position
of its direct neighbors (using a beaconing scheme), and (iii) the positions of the
destinations (actuators) to report to, by using a location service (topic discussed in
Chapter 8). The multicast protocols reviewed below (GMP, PBM, GMR, HGMR,
and HRPM) are such protocols.

GMP (Wu and Candan, 2006) works as follows: at every hop, the current
forwarding node builds a virtual multicast Steiner tree, rooted in itself, whose
leaves are the real destinations. This tree is obtained by merging the destinations
by pair, creating a virtual node to represent them. The process goes recursively
until no reduction is profitable. On the basis of this tree and the positions of
local neighbors, the destination set is then possibly split into several groups,
and a neighbor is chosen to serve each group at the next hop. To deal with
void areas while forwarding to a subgroup of destinations, the protocol proposes
to use a normal unicast face routing [see Section 4.7 or (Bose et al., 1999)],
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where the destinations of the group are all replaced by a single point, being
the average of their geographic locations. The main disadvantage of GMP lies
in the heuristic it uses to build the Steiner tree. Indeed, it calculates the virtual
nodes by merging only two nodes at a time, which may lead to wrong position
estimations, especially if the destinations are scattered in the network or if they
are surrounding the source node.

Another protocol, PBM (Mauve et al., 2003), was not initially designed for
sensor networks. However, it fulfills the criteria of being localized and using a
limited network overhead. This protocol is a generalization of the greedy-face-
greedy (GFG) principle [see Section 4.5, or (Bose et al., 1999)] to multides-
tination contexts. It relies on a trade off between individual shortest paths for
each destination and overall cost minimization, according to a chosen balance
parameter λ. More precisely, in each step, the current forwarding node evalu-
ates each possible combination C of next forwarding neighbors using a function
f (C) = λN + (1 − λ)D, where N is the ratio of selected nodes among the total
number of neighbors, D is the sum of all remaining distances from these neigh-
bors to destinations (in proportion to the sum of distances from the current node),
and λ is a value between 0 and 1. If the best subset of neighbors is a single node,
then that node is the only relay for all the destinations. If a combination with
several nodes is selected, then each of these nodes will further take care of a
different part of the destinations. When no advance can be provided toward one
or more destinations, a variant of face routing is used for these destinations,
while greedy forwarding continues toward the others. The main problem with
this approach is determining the optimal value for λ, as no single value is the
best for all scenarios. An additional issue in dense networks or for large multicast
groups (large number of destinations) is that the algorithm evaluates all possible
association combination between destinations and neighbors (whose complexity
grows exponentially with the two factors).

GMR (Sanchez et al., 2007) is another adaptation of GFG to multicast sce-
narios. The high-level adaptation of GFG is similar to the one of PBM: when a
forwarding node cannot find any neighbor providing an advance toward some of
the destinations (i.e., a local optimum is reached); those destinations are put in a
list called the multicast face list , and face routing is started for them. If a current
forwarding node, in face routing, happens to be closer than the previous local
optimum for a given destination, then this destination is removed from the face
list and added to the greedy list (greedy routing is resumed for this destination).
Note that the current node may select a same neighbor to serve in the two modes
simultaneously (for different destinations), in which case a single message con-
taining both information is transmitted. While similar to PBM for the high-level
strategy, GMR significantly differs concerning the selection of the forwarding
neighbors.

In order to solve the complexity problem due to evaluating all the possible
combinations, GMR considers an initial default combination, where each desti-
nation is individually served by the most convenient neighbor (i.e., the neighbor
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that provides the highest advance toward it). This leads to a set of destination sub-
sets (or partitioning) P = {M1, M2, . . . , M|P |}, where each subset corresponds
to destinations being served by the same neighbor. An example scenario is given
in Figure 5.2, where a current node c groups together the destinations d1 and d2

(with respect to n1), and d3 and d4 (with respect to n3). Once the initial parti-
tioning is built, GMR optimizes it by merging the subsets, by pairs, as long as
such a merge is possible and profitable. To compare several partitionings, the
protocol evaluates them according to the concept of cost over progress ratio (see
Section 4.3, or (Kuruvila et al., 2005) for general definitions), where cost is the
number of selected nodes, and progress is the overall reduction of remaining
distances to destinations (assuming the more appropriate neighbor for each sub-
set). In the example in Figure 5.2, GMR evaluates the initial partitioning P1,
and the partitioning resulting from the merge, P2. In this scenario, using only n2

gives a slight distance penalty, while reducing the cost by half. As a result, the
merge is profitable and done. In more complex scenarios where several merges
are possible, GMR evaluates all of them, applies only the most profitable, then
evaluates again.

While GMR solves the main drawbacks of PBM, it still has the disadvantage
that the header of every packet contains information about each destination of the
packet. Hence, the encoding overhead in each packet is a function of the number
of destinations, which become unacceptable if this number grows too large.

HRPM (Das et al., 2008) is a recent protocol that tackles this problem by
constructing a hierarchy to serve the destinations. This hierarchy is achieved by
geographically dividing the network into cells, where the destinations register and
unregister as they move in the network. Thanks to a sophisticated management
of these registrations (described later), the source can obtain the list of all the
cells that contain at least one destination, and then send the packet to these cells
without caring about which particular destination is inside which particular cell.
Each cell then forwards the packet to the destinations inside. Actually, a three
or four-level hierarchy can be used, but the authors showed that this two-level
hierarchy is sufficient to support up to 5800 destinations (with respect to keeping
a moderate ratio of header length over data size). The main advantage of this
protocol is to guarantee that the per-packet overhead is never more than a desired
constant ω. To ensure this property, the dimensions of the cells are determined

c

n1

n3

n2

d1

d2

d3

d4

Initial partitioning: P1 = {{d1, d2}, {d3, d4}},
with {d1, d2} to be served by n1 and {d3, d4} by n3.

Results of the merging process: P2 = {{d1, d2, d3, d4}},
with {d1, d2, d3, d4} to be server by n2.

The two subsets have been merged after
comparing cost over progress ratios  of P1 and P2.

Figure 5.2 Example of routing decision by GMR.



5.1. Multicasting 133

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

AP

xRP

Figure 5.3 Geographical division of the network,
as shared by all the nodes of a same multicast group.

according to ω and to the size of the multicast group. As a consequence, each
multicast group defines a particular space partitioning and cell management. We
describe now, how the cell management works.

The protocol assumes that each multicast group has a unique identifier, and
that each potential destination is aware of all the multicast groups it belongs to.
This allows all the destinations of the same group to recreate the same local
representation of the network division. Thanks to a common geographic hashing
function, the identifier of each multicast group can be mapped into a particular
location in the network, called the rendezvous point (RP), and into a particular
location in each cell, called the access point (AP), as illustrated in Figure 5.3.

For the sake of simplicity, we will first consider that both RPs and APs are
real nodes located at the expected locations (this is actually false, but helps the
comprehension). Each time a destination moves, it reports its new location to
the AP of its cell. When the underlying cell changes, the destination unregisters
from one AP, and registers to the other. These memberships are reported by
the APs to the RP. When a node wants to send a packet to a given multicast
group, it first contacts the RP of this group (thanks to the group identifier and
to the geographic hashing function), which sends back the list of cells contain-
ing at least one destination. Upon receiving this list, the sending node builds a
virtual tree exclusively composed of the corresponding APs, except for the root
(itself), and sends the data down the tree (using geographic unicast between each
parent and child in the tree). Once the message reaches an AP, another set of
geographical unicasts is used to reach the final destinations. The role of the RP,
and of each AP, is actually played by the node that is the closest to the corre-
sponding locations, and a special management is locally involved when one of
the closest nodes changes. Keeping the AP and RP virtual locations allows to
consider them as stationary nodes. For both unicast levels (source to APs, and
APs to destinations), the unicast protocol that is used is an adaptation of GFG,
which slightly modifies the face routing mode to deal with virtual destinations
such as the APs or the RP (the modification comes to turn around and select the
closest node).
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HRPM has several advantages. In addition to the limited encoding overhead,
it does not require an external location service, and has a very small group man-
agement cost (mainly due to the fact that RPs and APs are stationary locations).
However, it is suboptimal regarding the communications. Indeed, it uses a set
of unicasts to go down the tree, which may imply at the greedy level to send
several times the same message between the same nodes, and does not consider
the wireless multicast advantage.

HGMR (Koutsonikolas et al., 2007) is an adaptation of HRPM dedicated
to relatively dense and static networks (such as sensor and actuator networks).
The general idea behind HGMR is to integrate the design concepts of GMR
and HRPM, that is to provide both forwarding efficiency and scalability to large
networks. As a recall, transmission of data with HRPM goes from the source to
the APs (down a virtual tree of APs), then from each of these APs to the cor-
responding destinations. GMR has the highest gain when the multicast member
density is large (the benefits of broadcasting is maximized), while in sparse net-
works, its advantage over unicast is mitigated by its encoding overhead (because
all destinations are included in the header). Thus, for the transmission from the
source to the APs, whose density is expected to be low, HGMR still uses unicast.
But within each cell, where destinations are potentially closer from each other,
it uses GMR’s cost over progress ratio multicast algorithm to select the next
relay nodes at each hop. If the number of destinations inside a cell is too large
to include all of them in the header, then the geographical decomposition can
be adjusted consequently. Hence, the use of GMR within each cell instead of
HRPM’s unicast-based forwarding strategy helps to reduce the number of trans-
missions. Another drawback of HRPM was that the hash function could result in
the RP being very far from the source. For this reason, HGMR uses a hash func-
tion that generates positions within a square in the center of the whole region,
which limits the worst cases.

5.2 GEOCASTING WITH GUARANTEED DELIVERY

In a geocasting task, one source node sends a message to all the nodes located in
a given geographic region, as illustrated in Figure 5.4. In the context of sensor
and actuator networks, this operation is usually applied from an actuator node to
all the sensor located in a region of particular sensing interest, this region having
possibly different shapes (circular, oval, rectangular, etc.). This message could
carry for example, a request for immediate data from any sensor in the region,
or inform the sensors about a new location to regularly report to, or give any
other instruction that relates to the given region. Geocasting could be used, for
example, to monitor the pollution at given locations around a factory (e.g., near
the river), or successively requesting the sensors along a moving object trajectory
(e.g., tracking the progression of an animal in a forest). Note that geocasting in
these cases represents only the request leg, and does not concern the way the
data are reported in the reverse direction.
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Figure 5.4 Example of
geocasting.

As for the other routing principles (e.g., broadcasting, multicasting, or any-
casting), a geocasting task can be greatly improved by preliminary putting in
sleep mode all the sensor nodes that are not useful to the task, that is, not used to
connect the target region, nor to cover it. Such preliminary steps have been dis-
cussed in Chapter 3. We present below a review of geocasting protocols that are
applicable to wireless sensor and actuator networks. These protocols generally
assume that nodes know their own positions and the positions of their neighbors.

5.2.1 Geocasting without Guaranteeing Delivery

For most of the protocols, the task of geocasting consists in two major stages:
the first is to reach one node in the targeted geographic region, and the second to
inform the other nodes in the region, starting from this node. A simple solution
is to route the message from the source to any node in the region using a greedy
geographic protocol, and then to use blind flooding (each node inside the region
retransmits exactly once) to reach the other nodes, as illustrated Figure 5.5.

Several localized protocols were proposed on this basis (a review of them
is available in Stojmenovic and Wu (2006)). Regarding the first stage, all these
algorithms are based on a greedy advance, which is restricted to a virtual area
delimitation between the source (or current node) and the target region, as illus-
trated by dashed lines in Figure 5.6. Examples of such restricted areas include
the space between tangents from the current node to the target region boundaries
(limit 1 ), the rectangle containing the source and the target region (limit 2 ), or
simply the area offering any physical progression to the target (limit 3 ).

N

S

Figure 5.5 Geocasting seen
as the combination of
unicasting and flooding.
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Limit 1

Limit 2

Limit 3

Figure 5.6 Disconnected geocasting region is an obstacle to guarantee the delivery.

These methods inherently do not guarantee the delivery to the region when
no route exist within the restricted area. For example, if the dotted nodes in
Figure 5.6 were absent from the topology, then no route would be found despite
the fact that there exist another one going round above. This problem can be
solved by using the greedy-face-greedy (GFG) principle to reach the region (see
Section 4.5 or Bose et al., 1999). A simple geocasting protocol, proposed in
Stojmenovic et al. (1999), makes use of GFG to route toward the region, and once
inside, performed a flooding within the region. While this algorithm guarantees
the delivery to at least one node in the region [under the assumption of an
ideal medium access control (MAC) layer], it does not guarantee that all the
nodes inside the region will get the message (second stage). Indeed, as shown in
Figure 5.6, the sensors that cover a given geocast region may not necessarily be
connected inside it, even if the coverage is complete (due to possibly different
sensing and communication radii, or obstacles). They can be connected by nodes
outside the region, though. The next paragraphs review three geocasting solutions
that guarantee the delivery to all the nodes inside the region (provided they are
indirectly connected to the source).

5.2.2 Geocasting Based on Traversing Faces that
Intersect Boundary

We call internal (respectively external) border node a node that is inside (resp.
outside) the region and has at least one neighbor outside (resp. inside) the region
in the considered planar subgraph. In Seada and Helmy (2004) an algorithm was
proposed that uses the GFG algorithm to forward the packet toward the region,
and then activates a perimeter mechanism to guarantee delivery to all nodes inside
the region. However, as shown in Stojmenovic and Wu (2006), this mechanism
does not actually guarantee delivery, although it is very similar to the following
algorithm, that does.
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During the first stage, the source node sends the message toward the geocast-
ing region using GFG, which guarantees that the region is reached if connected
to the source. Once at the region, three different behaviors are defined for nodes
upon reception, depending on which node receives and which node sends.

1. If the receptor node is inside the region, then it retransmits the message
in a broadcast fashion. This is done only the first time it receives this
message (further copies are ignored). If this node is an internal border
node, then it includes in the message an instruction for its external border
neighbors, asking them to initiate right-hand face traversals (see case 2
below).

2. If the receptor node is an external border node that receives the message
from one of its internal border neighbors, then it initiates a right-hand
face traversal to explore the external continuation of each edge that is
shared with an internal border neighbor. Further messages coming from
any of its internal border neighbors are then ignored.

3. Contrary to the protocol in Seada and Helmy (2004), if the receptor is an
external border node and the emitter is a node outside the region, then it
does not ignore the message (even if it has already performed the step in
case 2), and forwards the message along the same face as received. This
latter step is necessary to guarantee the delivery in some particular cases.

All these operations are illustrated by the scenario in Figure 5.7. To start, source
node S uses GFG to reach the region, which is done at N . According to case 1 ,
N initiates a flooding inside the region, and node M initiates a right-hand face
traversal along the external continuation of edge NM (note that in the particular
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Figure 5.7 Traversing faces that intersect boundaries.
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case where the external node gets the message before the internal node, it is not
necessary to wait for an instruction in order to start the face traversals). This face
traversal reaches I , which ignores the message because it already received it from
the inside. Meanwhile, node K initiates the right-hand face traversal continuing
IK . This traversal travels around the region (via node H ) until coming back at
J . Node O initiates a face traversal continuing the edge JO, which closes the
loop at N . In the meantime, the first flooding from N has reached node W , which
gave an instruction to A to start a face traversal continuing WA. This traversal
ends up at node C (which retransmits). Node B starts the face traversal with
respect to CB, reaching F (which ignores if already received from C, retransmits
otherwise). Finally E starts a face traversal going back to A. At this point, the
algorithm from Seada and Helmy (2004) would terminate. Case 3 is applied by
A to continue the face traversal and reach node D. A last face traversal closes the
loop at W , which ignores the message. In some cases, guaranteeing the delivery
implies to visit the whole network. This would have been the case if the dotted
round edge between H and G did not map to a real set of connected nodes.
Then, the face traversal would have turned around the other side of the network
(the reader can imagine the face traversal turning around node H , reaching back
M , then passing by the source S, reaching M back again, then traveling until G,
turning around it, and finally reaching J ).

5.2.3 Geocasting Based on Depth-First Search
Traversal of Face Tree

Another geocasting algorithm that guarantees delivery to all the nodes in the
region was proposed in Bose et al. (2001). Similar to the previous protocol, it
does not require any memory to be left at nodes, and needs only to carry some
small amount of information with the messages. The protocol consists in applying
GFG to route toward a node inside the region, and then to explore all the faces
being located inside, or intersecting the region. This exploration, detailed later,
is based on the fact that the set of edges that compose any face can be totally
ordered by the edges’ relative positions to a given reference point in the plane.
On the basis of this ordering relation, faces can be associated with one another to
form a face tree whose root is the face containing the reference point. Then, the
region can be entirely visited by performing a depth-first search among this tree
of faces. The whole process must be applied on a planar subset of the network
(e.g., the Gabriel graph, see Section 4.5).

Given a face f and a point p located outside of the face, the set of edges of
f can be totally ordered according to their distance to p (actually the distance
of the closest point to p in the edge). In case of ties, this total order can be
turned strict by considering additional comparison keys based on geometrical
properties. On the basis of the ordering, each face (except the one containing
p) can be associated with one of its own edge, called entry(f, p), being the
closest to p. Now, if we consider that each entry edge is on the boundary of
two different faces, then these edges define a hierarchy of faces (and thereby an
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Figure 5.8 Face tree traversal.

implicit tree of faces) such that for each face f except the one containing p,
parent (f, p) is the face f ′ 
= f having entry(f, p) among its edges.

The algorithm works as follows: once the region is reached at one node N

by the GFG protocol, this node selects a nearby geographical point p located
inside any adjacent faces (which by definition are in the region, or intersect it).
This face becomes the root of the face tree. The face tree is then constructed
during the geocasting operation, it is in fact the geocasting operation. Starting
from the face containing p, at N , the algorithm will visit the entire face, but,
before passing each edge, it checks if this edge is an entry edge for the opposite
face (the method for this checking is discussed in the next paragraph). If this
is the case, then the current face traversal is interrupted in order to visit the
child face. This process goes recursively until no child face is found, at which
point the traversal of the parent face resumes (at the other end point of the entry
edge). In order to limit the visit to the geocasting region, entry edges are defined
only for faces that are located in the region, or intersect it. The algorithm is
illustrated in Figure 5.8. In this figure, the thick path arriving at N from the
outside stands for the first routing stage (e.g., GFG protocol), the continuous
dashed line corresponds to the depth-first traversal of the face tree through the
whole region, starting at N , and ending at N . The faces are numbered in the
sequential order of their visit. Finally, entry edges are represented by dashed
black edges, while the corresponding parent/child relations are coded by gray
dotted arrows.

Since the algorithm visits all the faces of the face tree (which is composed of
all the faces intersecting the region, or being inside), it must necessarily visit all
the nodes in these faces, and consequently all the nodes in the region. However,
the algorithm suffers a hidden cost: in order to know whether a given edge is an
entry edge for the opposite face, that face must be visited. This gives the algorithm
a considerable message overhead. One possibility to mitigate this problem would
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be to determine entry edges only once for all the networks, at the beginning,
and memorize them on their end point nodes (assuming no topological changes
afterwards). This implies that a common reference point p is agreed at the time
of deployment, and that the algorithm is modified to deal with geocasting regions
that possibly do not contain p. Let us assume a first step where the message is
routed from the geocasting source to any node inside the region (if the source is
not already inside it); let s′ be this node. If p is inside the region, then geocasting
may proceed by backtracking from s′ to p using parent links, and then running the
normal depth-first search algorithm from p. If p is outside the region, then the
algorithm can backtrack from s ′ toward p, but stops as soon as a node outside
the region is reached, say p′. From p′, a face traversal is made along the edges
outside the region, which corresponds in Figure 5.8 to the external parts of the
dashed ride. Along this perimeter, at each entry edge (they are known) begins
a separate depth-first search traversal, which together visits every face in the
region.

As with the original version, this algorithm works only if the geocasting
region is convex. Assume for example, a crescent ‘C’ shape with p located near
one of the two ends of the shape. The faces at the other end may have parent
faces that are outside the region, and thereby may not be visited. This problem
could be solved by a similar perimeter traversal, where all entry edges will be
detected and induce a separate depth-first search.

Another general optimization for this algorithm could be to work on a well
chosen subset of the nodes, namely, a connected dominating set (CDS, see
Chapter 2 for details). More precisely, we could first find a CDS among the
nodes in the region, and then reduce the face tree traversal to these nodes only.
By definition, every non-CDS node is at a distance 1 from a CDS node. As a
consequence, it is sufficient that only the CDS nodes retransmit in order to reach
all the nodes. A face traversal scheme based on CDSs was proposed in Datta
et al. (2002) to optimize the face mode of GFG. However, such optimization
has never been proposed in the context of geocasting and face tree traversal. For
illustration purposes, Figure 5.9 shows the same topological scenario depicted in
5.8, with the only difference that face tree traversal is performed on a CDS of
the nodes inside the region. Here, the face tree is composed of two faces only:
the root, containing p, and one child face. The light gray color depicts non-CDS
nodes (and their edges), while normal colors depict the CDS nodes (and the edges
between them).

5.2.4 Geocasting Based on Multicasting
to the Region Entrance Points

Another strategy to guarantee delivery was proposed in Stojmenovic (2004),
and is based on the concept of entrance points. An entrance point (also called
external border node in the previous subsection) is a node that is located outside
the target region but has at least one of its neighbors inside it. The strategy
consists in reducing the geocasting problem to the problem of reaching every
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Figure 5.9 CDS-based face tree traversal.

such entrance point, from which intelligent flooding can be initiated to reach the
connected nodes inside the region.

Let R be the transmission radius, assumed identical for every node. It can be
observed that any entrance point is necessarily (by definition) at a distance ≤ R

from the region border. It is then possible to reach all entrance points by using
geographic multicasting to well chosen areas around the region. These locations,
called entrance zones , must be determined such that:

1. Any entrance point necessarily belongs to an entrance zone, which implies
that the union of all entrance zones must surround the region with a width
larger than R.

2. If a node inside any zone retransmits a message, then any other node
inside the same zone must receive it. This property ensures the possibility
to reach all potential entry points in a zone from any of the nodes in it.
The associated requirement is that entrance zones must have a diameter
smaller than R.

As illustrated in Figure 5.10, these two constraints cannot be respected together if
a single layer of zones is considered (both measures in Fig. 5.10a are incompat-
ible). The exact construction of entrance zones to satisfy these criteria actually
depends on the shape of the geocasting region. If the geocasting region is a
rectangle, for example, then the entrance zones may be composed of two layers
of squares of length R/2, or better, composed of rectangles where one dimen-
sion (the one perpendicular to the region) is R/2 and the other dimension is as
large as possible, provided the zone’s diameter does not exceed R (as illustrated
in Fig. 5.10b). Another example that considers a circular geocasting region is
provided in Stojmenovic and Wu (2006).

Once all entrance zones are determined by the source, a geographical mul-
ticast task is initiated from the source toward the “centers” of all zones using a
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Figure 5.10 Layering of the entrance zones. (a) One-layer entrance zone. (b) Two-layer
entrance zone.

protocol such as GMR (see Section 5.1). Note that what is called center here can
actually be any point inside the zone. Once the multicast is started, the routing
paths can split to serve the destinations optimally. For each destination, the pro-
cess stops when any node inside the corresponding zone is reached, or if a loop
in recovery mode is observed (which means that the destination zone is empty or
disconnected from the rest of the network). In the case where a node is reached,
this node retransmits once in order to reach all the potential entry points located
in the same zone, and then these points, if any, initiate an intelligent flooding
within the target region.

Some ideas of optimizations for this protocol are proposed in Stojmenovic
(2004). For example, several nodes on a path can collectively conclude that a zone
(or a set of zones) is empty, and thereby prevent full loops in recovery mode.
Another possible optimization is to force nodes to wait for a while between
reception and retransmission, during the multicast task, in order to merge the
potential routing assignment received by different neighbors. Also, the fact that
several flooding operations of the region can be triggered by different entrance
zones at different times, requires to adjust time-outs and traffic memorization to
somewhat larger values than in regular flooding tasks, in order to ensure that
amessage received already, will be recognized and not retransmitted. Note that
this time delay may be important due to the possible use of the recovery mode
by the multicast protocol.

The main problem of this protocol is, obviously, the overhead induced by
empty zones. Indeed, if we do not consider the optimizations discussed above,
then each empty zone may trigger a possibly large face traversal within the net-
work, and even if part of the loops can be avoided, the protocol is still expected
to incur a large communication overhead in sparse networks. In dense networks,
however, this protocol is expected to perform well. Moreover, it has the inter-
esting property of being based on two existing schemes (multicast and flooding),
which may reduce the overall memory consumption of routing software on the
sensors, if a real world deployment is considered.

In Khan et al. (2008), the authors assume scenarios where the geocasting
region is always the same. On the basis of this assumption, entrance points to the
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region can be durably elected (one real node elected to serve each connected com-
ponent inside the region). The election results are reported to a location server.
When a node wants to geocast to the region, it requests the location server, which
sends back information about the closest entrance point from the source. Uni-
cast is performed to this closest entrance point, which in turn reaches the others.
Every entrance point floods its assigned connected component inside the region.

5.3 RATE-BASED MULTICASTING

Rate-based multicast, or multiratecasting , is a generalization of multicasting in
which the data sent from a source to the destinations is possibly sent at a different
rate for each destination. Let us consider the example of backup base stations in
which the sensed data is stored for further analyzes. To ensure fault tolerance,
several base stations can be deployed hierarchically, each one collecting the data
at a different rate (the highest rate for the primary, a slightly inferior rate for
the secondary, etc.). If the primary base station fails, then the secondary base
station takes over, and a specific protocol is run to shift the rate requirements
among base stations (from the n-ary to the n + 1-ary) and to inform the nodes
about this change. Finally, the normal report mechanism can be resumed. Other
examples may include overlapping sensing area, where the actuators collect data
from sensors at a rate inversely proportional to their relative distance. Obviously,
these protocols do not generate optimal multiratecast routing paths (which is
an NP-complete problem, as generalizing the optimal multicast tree problem in
wireless networks has been proven NP-complete in Ruiz and Gomez-Skarmeta
(2005)).

The problem of rate-based multicast is very recent. A rate-adaptive multicast
protocol has been proposed for mobile ad hoc networks in Nguyen et al. (2006).
This protocol adapts the rate of communication to the quality of the links in order
to reduce the overall networking consumption. However, it does not consider the
rate as a required parameter, and is therefore not relevant for the problem we
are considering. To the best of our knowledge, the only work [prior to Liu et al.
(2009)] that tackled this problem is in Singh et al. (2004). This protocol builds
a rate-aware multicast tree by flooding Explore messages from the source to the
destinations. Once reached, the destinations send back Ack messages contain-
ing their required rates, which build the multicast path on their way back to
the source. Some localized techniques are used during this process to optimize
the tree. However, the very fact that the protocol uses broadcast and builds a
global overlay structure makes it costly and vulnerable to topological changes,
thus not well-adapted to the context of sensor and actuator networks. The article
by Singh et al. (2004) tackled the multiple rate problem, but proposed a nonlo-
calized protocol that requires a global tree structure to be built. Additionally, the
construction of the tree is guided by independent costs for edges, which does not
consider the wireless advantage or take into account the rate for the calculation of
a path cost.
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5.3.1 Rate-Based Metric

As discussed in Liu et al. (2009), the hop count and retransmission number
metrics do not reflect the real efficiency of a path in a multiple rate context,
as the transmission rate can differ from one relay node to another. This idea is
illustrated in Figure 5.11, where two different paths are proposed to serve a given
set of destinations (with given rate requirements). Here the shorter path is the
most expensive if we consider the number of messages to be effectively sent,
that is the cumulative rate of retransmissions. Therefore, in order to measure
this efficiency, the better choice is to use the sum of the (output) rates at each
relay node, which is directly proportional to the number of messages to be sent.
More formally, for a given set of relay nodes R = {r1, r2, . . . , r|R|} comprising
a multicast path, the overall path cost is defined as

∑|R|
i=1 rate(ri).

5.3.2 Geographical Rate-Based Multicast

Liu et al. (2009) proposed two localized geographical multiratecast protocols:
maximum rate multicast (MRM) and optimal rate cost multicast (ORCM). These
two protocols are similar to PBM and GMR (described in Section 5.1) in the sense
where they both extend the GFG principle (Bose et al., 1999 or Section 4.5) to
the multicast context, and take into account the wireless multicast advantage. The
major difference is that they consider the different rates while making decisions,
and aim at minimizing the rate-based metric described in the previous paragraph.
Regarding assumptions, the protocols assume an ideal MAC layer without loss
and that each node is individually capable of forwarding data at the maximum
rate among destinations. The routing choices are solely made by looking at local
neighbor positions with respect to destination positions; there is no routing table
or global overlay structure needed to be built. Finally, the network topology can
change between two consecutive routing tasks without other cost than updating
the new positions of destinations or the sources, if changed.
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Figure 5.11 Multiratecast to four destinations d1, d2, d3, and d4. Numbers inside circles
indicate the rate at which the corresponding node retransmits. (a) Path A—9 retransmissions, 11
hops, total rate cost: 255. (b) Path B—7 retransmissions, 9 hops, total rate cost: 295.
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Both protocols differ only in their greedy mode. The greedy mode is as fol-
lows: at each hop, a set of next forwarding nodes is selected by the current node.
Each of these nodes is given the responsibility of one or part of the destinations,
and will repeat the same selection afterward, until the destinations are reached.
The only difference between the two proposed protocols lies in their method to
select the right neighbors at each hop. The first protocol, MRM, chooses them lin-
early by prioritizing the more demanding destinations, while the second, ORCM,
evaluates different possible routing choices by combining distance progression
and rate considerations, thereby implementing the more general concept of best
cost over progress ratio (Kuruvila et al., 2005 or Section 4.3).

Note that in order to apply such routing, message headers must include, in
addition to their positions, the required rate of the destinations.

Maximum Rate Multicast (MRM) Protocol

The basic idea behind MRM is to give priority to destinations that have the
highest required rate. More precisely, at each hop, the current node considers the
destination that has the highest rate requirement, and determines which neigh-
bor provides the most advance toward it. This neighbor is selected, and all the
destinations for which it provides any progression are assigned to it. Then the
process is repeated for the remaining destinations, until all of them are assigned.
Finally, the message is sent. This process is illustrated in a simple scenario in
Figure 5.12.

Optimal Rate Cost Multicast (ORCM) Protocol

Following the examples of PBM and GMR (both discussed in Section 5.1.2
above), the idea behind ORCM is to evaluate different routing choices and then
select the best ranked. In order to maintain a moderate calculation complexity,
ORCM adapts its strategy to the number of destinations. If this number is under a
given threshold, it applies the same strategy as PBM by generating and evaluating
all possible combinations (i.e., all possible arrangements of destination subsets,
or partitioning , such that the destinations of each subset are assigned to a same
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The highest rate destination, d1, is assigned to
the neighbor that provides the most advance
toward  it, n1. Then all the destinations for
which n1 provide any advance are assigned to
it (d2 and d3). The process start anew with
the remaining destinations, and d4 is assigned
to n3.

Figure 5.12 Example scenario for MRM.
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neighbor). If the number of destinations is above the threshold, then it applies
the strategy of GMR, which consists in computing an initial default partitioning
(where destinations are grouped according to the most appropriate neighbor to
serve them), and then to iterate a merge process to optimize it. The choice for
the threshold value basically depends on the expected computational power of
the nodes (a threshold of six was considered in Liu et al. (2009)).

Let us consider the simple scenario given in Figure 5.13, where the current
node c wants to select the next forwarding nodes toward d1, d2, d3, and d4 (each
having possibly a different rate requirement), and has the choice between using
only n1, only n2, or both for different destinations. We illustrate here, the two
high-level strategies, depending on whether the number of destinations (four) is
under, or above the threshold.

Strategy 1: evaluation of all set partitions.
There are 14 possible ways of partitioning the destinations:

P1 = {{d1, d2, d3, d4}} P6 = {{d1, d2}, {d3, d4}} P11 = {{d2}, {d3}, {d1, d4}}
P2 = {{d1}, {d2, d3, d4}} P7 = {{d1, d3}, {d2, d4}} P12 = {{d2}, {d4}, {d1, d3}}
P3 = {{d2}, {d1, d3, d4}} P8 = {{d1, d4}, {d2, d3}} P13 = {{d3}, {d4}, {d1, d2}}
P4 = {{d3}, {d1, d2, d4}} P9 = {{d1}, {d2}, {d3, d4}} P14 = {{d1}, {d2}, {d3}, {d4}}
P5 = {{d4}, {d1, d2, d3}} P10 = {{d1}, {d3}, {d2, d4}}

Since there are only two neighbors considered here, the partitions from P9 to
P14 do not make sense and can be discarded. ORCM will then evaluate every
partitioning from P1 to P8, and select the best ranked. On the basis of this best
partitioning, each subset will be assigned to a given neighbor (the one minimizing
the sum of remaining distances toward the corresponding destinations).

Strategy 2: initial partitioning and merge process. As with GMR, an initial
partitioning is generated, where each subset represents the destinations for which
the best neighbor is the same, which leads to P ′ = {{d1, d2}, {d3, d4}}, where n1

serves {d1, d2} and n2 serves {d3, d4}. Then the merge process leads to P ′′ =
{{d1, d2, d3, d4}}, because it has a better evaluation than P ′. All the destinations
are then assigned to the same neighbor (the one minimizing the sum of remaining
distances toward these destinations).

For the evaluation of a given partitioning, ORCM implements, as GMR,
the the concept of cost over progress ratio. However, here, the ratio formula is
elaborated with the aim of minimizing the new rate-based metric. Three possible

c

n1

n2

d1 (r1)

d2 (r2)

d3 (r3)

d4 (r4)
Figure 5.13 Example scenario for
ORCM.
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methods were proposed in Liu et al. (2009) to calculate the cost over progress
ratio of a given partitioning, but one of them always outperformed the other two;
therefore, we limit the presentation to this one. In order to simplify the formula,
the following notations can be introduced:

• Given a set of destinations D = {d1, d2, . . . , d|D|}, the notation rate(D) =
max(rate(d) : d ∈ D), refers to the highest rate among these destinations.

• Given a current node c, one of its neighbors n, and a destination d , the
notation progress(c, n, d) = dist (c, d) − dist (n, d), stands for the pro-
gression that n offers from c to d .

• Given a current node c, one of its neighbors n, and a set of des-
tinations D = {d1, d2, . . . , d|D|}, the notation progress(c, n, D) =∑|D|

i=1 progress(c, n, di), represents the cumulative progress that n offers
from c toward these destinations.

• Finally, N(c) stands for the set of neighbors of a node c.

The cost over progress ratio of a given partitioning P = {M1, M2, . . . ,M|P |},
where each Mi is one of the subsets, is defined as the sum of all subset rates,
divided by the sum of all maximum subset distance progress. The intuitive idea
behind this method is to choose, for each individual subset, the forwarding neigh-
bor that will best profit the whole destination set:

ratio(P ) =
∑|P |

i=1 rate(Mi)∑|P |
i=1 max(progress(c, n,Mi) : n ∈ N(c))

.

Note that if max(progress(c, n, Mi : n ∈ N(c)) is negative for any of the
subsets, then the corresponding partitioning is discarded.

In terms of the new rate-based metric, simulations showed a slight advantage
for ORCM over MRM when a small number of destinations are considered (i.e.,
when ORCM evaluates all possible combinations), and a stronger advantage
for MRM otherwise. MRM has also the advantage of a very lower computa-
tional cost, even when ORCM does not consider all the destination set partitions.
Regarding the absolute efficiency of these protocols, simulations have been run
to compare them with a sum of unicast, and have shown an important overall
cost advantage for them. Note that as the variance of rate distribution increases,
the sum of unicast becomes more efficient than a nonrate-based multicast (which
sends the message to all the nodes at the highest rate). An interesting ques-
tion could be how these protocols behave comparatively to the optimal solution.
Answering this question requires designing good approximation algorithms for
this NP-complete problem, now.

5.4 ANYCASTING WITH GUARANTEED DELIVERY

In the anycasting problem, a source node wants to send a message to any node
that belongs to a given set of destinations. In the context of IP networks, this
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problem was first formulated in the RFC 1546 as follows: “the host transmits a
datagram to an anycast address and the Internetwork is responsible for providing
best-effort delivery of the datagram to at least one, and preferably only one”
(this was later reformulated in RFC 2373, in the context of IPv6). However,
a number of articles refer to the anycasting problem while solving a different
problem. For example, in Chen et al. (2004) and Jeon and Kesidis, (2007), the
term anycasting corresponds to the first stage of some geocasting protocols (see
Section 5.2), which consists in reaching any node inside a given geographical
region.

In the present section, we consider that anycasting typically occurs when
a sensor wants to report its data to an actuator, but does not care about which
one of them will effectively receive the report. Such a protocol should try to
reach the actuator closest to the reported event in order to minimize the energy
consumption induced by the report. Finally, actuators must be considered by the
protocol as possibly scattered all over the network.

While a number of anycasting protocols were designed for wired networks
(Wu et al., 2007), only a few have been designed for wireless networks, and most
of them are adaptations of an anycast routing for wired networks (Awerbuch et al.,
2003), which rely on flooding techniques. Among other anycasting protocols
for wireless sensor networks, in Hu et al. (2005), a shortest path anycast tree
rooted at each source is constructed for each event source. Sinks are the only
leaves of the tree and can dynamically join/leave the tree, which is updated
accordingly. Data is delivered to the nearest sink on the tree. The algorithm thus
simultaneously maintains paths to all sinks, and requires memorization of routing
steps. Algorithms that rely on flooding turn very costly in large networks, and
those relying on global structures, such as trees, are very costly to build and
maintain as the network becomes larger or dynamic. For these reasons, localized
and position-based (geographic) protocols are preferred in the context of sensor
and actuator networks, although they require that the positions of actuators are
known by the sensor nodes.

Let us introduce a few notations here. They will be used in the following
paragraphs. Given two nodes u and v, we denote by |uv| the distance between
them. Given a distance d , we denote by power(d) the amount of energy required
to transfer a message over this distance. This power is roughly proportional to
dα + c, where α represents the signal strength attenuation factor and c is a
constant factor representing the minimal energy consumption induced by the
transfer (see Chapter 1 for more details on energy models). Finally, given a
sensor node s, we denote by A(s) the actuator that is the closest to s.

The first position-based anycasting protocol was proposed in Melodia et al.
(2005). This protocol attempts to minimize the energy consumption as follows. In
the startup phase, each sensor node s selects one of its neighbor to act as its next
hop toward an actuator. This selection is done by choosing the neighbor n that
minimizes power(|sn|) + power(|nA(n)|). Despite the claim of the authors, this
localized anycasting algorithm does not really optimize the power consumption
because the neighbor selection is based on very long edges |nA(n)|, which are not
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power optimal. Further, the protocol does not guarantee the delivery in presence
of void areas.

In Mitton et al. (2009), three localized and position-based protocols were
proposed. These protocols are three different adaptations of the GFG principle
to the context of anycasting, and consequently guarantee the delivery to the
destination (i.e., to any actuator). The first protocol, GFGA, attempts to minimize
the number of hops , while the second, COPA, and the third, EEGDA, focus on
minimizing the energy consumption. The next paragraph briefly describes the
three selection methods.

1. GFGA selects the neighbor n for which |nA(n)| is minimized (|sA(s)| −
|nA(n)| is maximized), in other words it selects the neighbor that provides
the highest advance toward any actuator. Note that in this formula A(s)

and A(n) can be different, which reflects the key concept of anycasting.

2. COPA relies on the cost over progress ratio (Kuruvila et al., 2005,
or Section 4.3), where cost is the estimated energy consumption for
the next hop, and progress is the distance progression toward any
actuator. More precisely, for a sensor s, the neighbor n minimizing
power(|sn|)/|sA(s)| − |nA(n)| is chosen (two more sophisticated
variants are also proposed, but have very similar performance).

3. EEGA is an enhancement of COPA that is inspired from the protocol EtE
(Elhafsi et al., 2008). The solution is more energy-efficient than COPA
but has a higher computing complexity. The idea behind it is that once
a neighbor n is selected as next hop (according to any energy-related
cost formula), it may be sometimes more energy-efficient to use one or
several additional neighbors to reach n (especially if the signal strength
attenuation factor α is high). This is done by calculating the energy-
weighted shortest path (ESP) from the current node to each neighbor
(which can be done locally since nodes are aware of the positions of their
neighbors), and then forwarding the message to the first node on the ESP
to n.

Regarding the anycasting aspects, the essence of all these solutions is that the
destination can be changed during the routing process, to select another actuator
if desirable. Such a scenario is illustrated in Figure 5.14, where a sensor node
S wants to initiate a report. According to the relative distances of actuators, S

selects A1 as destination, and starts a greedy advance toward it. Once at B, there
is no neighbor closer to any actuator than B to A1. The protocol thus switches to
recovery mode (here a right-hand face traversal is started). If the unicast version
of GFG were used here, the recovery mode would continue until reaching node D,
from which greedy advance would be resumed toward A1. Here however, node
C notices that actuator A2 is closer to itself than A1 was to B. A2 is thus chosen
as the new destination, and greedy mode is resumed toward it. Finally, upon
receiving the message, node E performs a last modification without breaking the
greedy procedure, by switching the destination to A3, now closer than A2.
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Figure 5.14 Geographic anycasting based on an adaptation of GFG.
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Sink Mobility in Wireless
Sensor Networks

Xu Li, Amiya Nayak, and Ivan Stojmenovic
School of Information Technology and Engineering, University of Ottawa,
Ottawa, Canada K1N6N5

Abstract

Data gathering is a fundamental task of wireless sensor networks (WSNs). It
aims to collect sensor readings from sensory fields at predefined sinks (with-
out aggregating at intermediate nodes) for analysis and processing. Research has
shown that sensors near a data sink deplete their battery power faster than those
far apart due to their heavy overhead of relaying messages. Nonuniform energy
consumption causes degraded network performance and shortens network life-
time. Recently, sink mobility has been exploited to reduce and balance energy
expenditure among sensors. The effectiveness has been demonstrated both by
theoretical analysis and by experimental study. In this chapter, we investigate
the theoretical aspects of the uneven energy depletion phenomenon around a
sink, and address the problem of energy-efficient data gathering by mobile sinks.
We present a taxonomy and a comprehensive survey of state of the art on the
topic.

6.1 INTRODUCTION

Sinks are capable machines with rich (often considered unlimited) resources.
Sensors that are generating data are called sources . They transmit their data to
one or more sinks for analysis and processing. In this chapter, we consider data
gathering from sensors, where sensor data are not aggregated on the way to the
sink. That is, each sensor measurement arrives at the sink without any changes.
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Data transmission could take place either in a push mode or in a pull mode. In the
push mode, sources actively send data to sinks; in the pull mode, they transmit
only upon sinks’ request. The main source-to-sink communication pattern is a
multihop message relay, as sinks are out of the transmission ranges of most
of sources. The communication paths from reporting sources to a sink form a
reverse multicast tree rooted at the sink. Figure 6.1 shows three source-to-sink
paths. It is noticed (Ingelrest et al., 2004; Luo and Hubaux, 2005; Olariu and
Stojmenovic, 2006; Vincze et al., 2007) that, the closer a sensor is to a sink, the
faster its battery exhausts. According to Wadaa et al. (2005), Lian et al. (2006),
and Olariu and Stojmenovic (2006), by the time the one-hop neighboring sensors
of a sink deplete their battery power, those farther away may still have more than
90% of their initial energy.

The reason for this phenomenon is intuitively simple: compared with sensors
far apart from a sink, sensors that are nearby, are shared by more sensor-to-sink
paths, have heavier message relay load, and therefore consume more energy.
Researchers have built energy models (Luo and Hubaux, 2005; Lian et al., 2006;
Olariu and Stojmenovic, 2006; Banerjee et al., 2009) to provide a formal explana-
tion. Uneven energy depletion causes energy holes and leads to degraded network
performance. If sensors around a sink all run out of energy, the sink will be iso-
lated from the network; if all sinks are isolated, then the entire network fails. Since
manual replacement/recharge of sensor batteries is often infeasible due to opera-
tional factors, it is desired to minimize and balance energy usage among sensors.

Power-aware routing (Singh et al., 1998; Stojmenovic and Lin, 2001;
Buragohain et al., 2005) has been studied to avoid energy-scarce sensors and
achieve longer network lifetime. As indicated in Stojmenovic and Lin (2001), Li
and Hou (2004), and Olariu and Stojmenovic (2006), proper use of multilevel
transmission radii can balance energy consumption. It was also suggested to
use nonuniform node distribution (i.e., the closer to a sink an area is, the
higher the node density) to mitigate message relay load and increase network
lifetime (Stojmenovic et al., 2005; Lian et al., 2006; Wu et al., 2008). The first

A5 A4 A3 A2 A1

R

Figure 6.1 Annulus division and sensor-to-sink
routing.
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two approaches have limited effectiveness since nodes around a sink are very
likely to be critical to sink connectivity and cannot be skipped, while the third
approach reduces network sensing coverage, which is the functional basis of
any sensor network.

Recently, it has been shown (Akkaya et al., 2005; Luo and Hubaux, 2005;
Vincze et al., 2007; Banerjee et al., 2009; Basagni et al., 2008; Hashish and Kar-
mouch, 2009; Friedmann and Boukhatem, 2009) that sink mobility can effectively
improve network lifetime without bringing above-mentioned negative impacts on
the network. The reason is evident: as sinks move, the role of the “hot spot” (i.e.,
heavily loaded nodes around sinks) rotates among sensors, resulting in balanced
energy consumption. In this chapter, we draw attention to the emerging and
promising sink mobility problem. We investigate the energy hole problem from
the theoretical point of view in Section 6.2. Then, we present a taxonomy of
sink mobility approaches for energy-efficient data gathering in Section 6.3. We
review existing solutions in Sections 6.4 and 6.5.

6.2 ENERGY HOLE PROBLEM

A wireless sensor network (WSN) with multiple sinks can be divided into sub-
networks, each of which is composed of a single sink, data sources reporting
to the sink, and sensors relaying messages for the sources. Sensors that appear
in more than one such subnetwork will consume energy for all their participat-
ing subnetworks. Hence, without loss of generality, we investigate theoretical
aspects of the energy hole problem, that is, the uneven energy depletion phe-
nomenon, in single-sink WSNs. We will establish power consumption models
for sensor-to-sink communication.

Because exact energy usage prediction is not possible due to network diver-
sity, uncertainty, and dynamics, the models to be presented below are obtained
through reasonable approximation. We first present network models and assump-
tions; then we establish the energy consumption models in two different network
scenarios, where sensors have fixed or variable transmission radius respectively.
For these two scenarios, we also show how to balance energy usage by applying
nonuniform sensor distribution or adjustable transmission radii. The content of
this section is based on Olariu and Stojmenovic (2006).

6.2.1 Network Model and Assumptions

Denote by Et(d) the amount of energy consumed by the sender for transmitting
one data bit to distance d , and by Er the amount of energy spent by receiver in
receiving one data bit. The total cost of transmitting one data bit between sender
and receiver in one hop is Ec(d) = Et(d) + Er . We adopt the following general
power consumption model (Rodoplu and Meng, 1999): Et(d) = adα + b and
Er = b, where a > 0 is a constant standing for the transmitter amplifier, b > 0
is a constant representing energy for running electronic circuit, and 2 ≤ α ≤ 6.
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Then we have Ec(d) = adα + 2b. After normalization, the energy consumption
is proportional to

Ec(d) = dα + c, (6.1)

where 2 ≤ α ≤ 6 and c > 0 are constants. For simplicity of analysis, it is assumed
that the whole energy consumption is charged to sender node.

Define node density as number of nodes per unit area. Sensors are uniformly
distributed with density ρ in a circular area of radius R, where a sink is located
at the center. Each sensor has a maximum transmission radius rc that is much
smaller than R. There are T sources uniformly scattered in the network and
transmitting data to the sink at constant rate λ.

For analysis purpose, we divide the network area into annuli by q concentric
circles Ci (0 ≤ i ≤ q) centered at the sink. Denote by Ri the radius of Ci . We
define R0 = 0 and Rq = R. Thus, C0 represents the sink node, while Cq stands
for the entire network area. Two adjacent circles Ci and Ci−1 define the ith
annulus for 1 ≤ i ≤ q. There are q annuli in total. Denote by Ai the area of
the ith annulus and by wi the width of Ai . We have Ai = π(R2

i − R2
i−1) and

wi = Ri − Ri−1. Figure 6.1 illustrates this division method.
We assume that each source is associated with a unique source-to-sink path,

which contains exactly one node from each annulus. Further, we assume that
each sensor in annulus Ai is equally likely to serve as the next hop for a path
that involves a node in Ai+1. For simplicity, we assume that the transmission
radius needed to send messages between Ai and Ai−1 is wi .

6.2.2 Energy Consumption Models

In this section, we are going to establish energy consumption models based on
above network model and assumptions. Let n denote the total number of nodes
in the network and A = πR2 the area of the network field (i.e., the area of Cq ).
We have

n = ρA = ρπR2. (6.2)

The expected number ni of nodes in Ai (1 ≤ i ≤ q) is

ni = ρAi = ρπ(R2
i − R2

i−1). (6.3)

For uniform distribution of sources, the expected number Ti of sources in Ai is

Ti = T
Ai

A
= T

R2
i − R2

i−1

R2
. (6.4)

Because source-to-sink paths associated with sources in annuli Aj (j > i) all have
the sink as the destination; sensors in Ai collectively participate in all these paths
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as message forwarders. The expected number mfw(i) of such paths per node in
Ai is

mfw(i) = 1

ni

∑
i<j≤q

Tj = T

ni

∑
i≤j≤q

R2
j − R2

j−1

R2
= T

ni

R2 − R2
i

R2
. (6.5)

The expected number mog(i) of paths originated per node in Ai is

mog(i) = Ti

ni

. (6.6)

Hence, the energy consumption E(i) of each sensor in Ai is

E(i) = (mfw(i) + mog(i))Ec(wi).

According to Eqs 6.1–6.6, we have

E(i) = λT

ρπR2

wα
i + c

R2
i − R2

i−1

(R2 − R2
i−1). (6.7)

Equation 6.7 is a general formula describing sensor energy consumption behavior.
From this equation, it is not difficult to find that E(i) is proportional to λ and
T and reverse proportional to ρ and R2. When every sensor is a source, that
is, when T = n = ρπR2, E(i) becomes independent from T and ρ. When fixed
parameters λ, T , R, and ρ are ignored, Eq. 6.7 becomes:

E(i) = wα
i + c

R2
i − R2

i−1

(R2 − R2
i−1). (6.8)

Let us now determine the optimal wi that minimizes E(i) for 1 ≤ i ≤ q. Note that
wi must not be larger than rc, because otherwise, the network may be partitioned.
We will examine the case that sensors have fixed transmission radius and the case
that sensors have adjustable transmission radii, respectively.

Fixed Transmission Radius

When sensors have a fixed communication radius rc, a node in Ai always has the
same power consumption for transmission. In this case, wi can be replaced with
rc in Eq. 6.7. The optimal w1 can be determined by examining E(1) = rα

c +c

R2
1

R2.

We observe that, to minimize E(1), R1 (i.e., w1) needs to be set to the largest
value, rc. Using this result, we can recursively determine that, to minimize E(i),
we should have Ri = irc and wi = rc. Then R = Rq = qrc. From Eq. 6.8 we
have the following normalized optimal energy consumption Eopt(i) per node
in Ai :

Eopt(i) = rα
c + c

2i − 1
(q2 − (i − 1)2). (6.9)
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It is seen from Eq. 6.9 that uneven energy depletion occurs around the sink: the
closer a sensor is to the data sink, the larger its energy consumption rate is, and
thus the faster it depletes its battery power.

Balancing Energy Usage by Nonuniform Node Distribution We will
discuss how to balance energy consumption by properly applying different node
density in different annuli. Let us denote node density in annulus Ai by ρi . It
is intuitively clear that in order to balance energy usage an annulus close to the
sink should contain more nodes for sharing message relay load than a relatively
distant one, namely, ρq < ρq−1 < · · · < ρ1. Our objective is to determine ρi as
a function of ρq such that Eopt(i) = Eopt(q) for 1 ≤ i ≤ q and q = R/rc.

Replace ρ with ρi in Eq. 6.7. Note that Erate(i) now also depends on ρi . By
a similar discussion, we obtain normalized optimal energy consumption Eopt(i)

per node in Ai :

Eopt(i) = 1

ρi

rα
c + c

2i − 1
(q2 − (i − 1)2). (6.10)

From Eopt(i) = Eopt(q), we have

1

ρi

rα
c + c

2i − 1
(q2 − (i − 1)2) = 1

ρq

rα
c + c

2q − 1
(q2 − (q − 1)2).

Applying simple calculus to above equation, we obtain ρi as a function of ρq :

ρi = ρq

q2 − (i − 1)2

2i − 1
. (6.11)

Variable Transmission Radius

Now let us assume each sensor is able to adjust its transmission radius up to rc.
Assume that ideally sensors are able to forward along a straight line from source
to sink, with transmission radii corresponding to annuli widths. Hence the energy
consumption of the route will be

Epath(i) =
i∑

j=1

(wα
j + c) =

i∑
j=1

wα
j + ic. (6.12)

By the above equation, Epath(i) is minimized whenever
∑i

j=1 wα
j is minimi-

zed. Define aj = w
α
2
j for 1 ≤ j ≤ i. Then

∑i
j=1 a2

j = ∑i
j=1 wα

j . By Lagrange’s

identity,
∑

1≤p≤m≤i (ap − am)2 = i
∑i

j=1 a2
j − (

∑i
j=1 aj )

2. Therefore,

i∑
j=1

wα
j = 1

i

∑
1≤p≤m≤i

(ap − am)2 + 1

i

⎛
⎝ i∑

j=1

aj

⎞
⎠

2

.
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We will show that
∑i

j=1 wα
j can be minimized by considering each of the

expressions on the right side separately, by observing that they are both mini-
mal for the same values.

∑
1≤p≤m≤i (ap − am)2 = 0 is an obvious minimal value,

which occurs iff aq = aq−1 = . . . = a1, that is, wq = wq−1 = . . . = w1 = R1. It

is well known that the power mean function M(x) =
(∑i

j=1 wx
i

n

)1/x

is a non-

decreasing function. Apply it for specific values x = α/2 and x = 1. The value
for x = 1 is constant (since the sum of annuli widths is fixed), while the value for
x = α/2 can be equal to that constant for w1 = w2 = · · · = wq . Note that the
proof originally presented in Olariu and Stojmenovic (2006) did not minimize
both sums and thus remained incomplete. Hence,

Ri = iR1.

We see that the key is to determine R1. By Eq. 6.8, E(1) = Rα
1 +c

R2
1

R2. When

α = 2, E(1) is minimized for R1 = rc. Now examine the case of α > 2. Given
α and c, the value of R1 = ( 2c

α−2 )1/α minimizes E(1) (it is the value for which
the derivative of this function is equal to 0). Because sensors’ transmission radii
are bounded by rc, we have

R1 =

⎧⎪⎨
⎪⎩

rc for α = 2

min

{
rc,

(
2c

α − 2

)1/α
}

for α > 2.
(6.13)

Note that the optimal choice for R1 does not depend on R, the radius of the
network area.

Substituting iR1 for Ri in Eq. 6.8, we obtain the normalized energy con-
sumption per route for a node in Ai as follows:

Eopt(i) = Rα
1 + c

2i − 1
(q2 − (i − 1)2). (6.14)

This is the same expression as Eq. 6.9. Minimizing energy consumption per
path leads to higher energy depletion around the sink.

Balancing Energy Usage by Adjusting Transmission Radius We will
show how to enable sensors to have the same energy consumption rate (thus
balanced energy usage) across the entire disk of radius R by tailoring the annuli
widths. It is intuitively clear that, for sensors to have a uniform energy consump-
tion rate, an annulus close to the sink (where message relay load is heavier) must
have a smaller width for reducing the sensors’ energy usage on cross-annulus
transmission than a relatively distant one, namely, the inequality w1 < w2 <

· · · < wq must hold. Our objective is to determine optimal w1 (i.e., R1) and then
compute wi as a function of w1 such that E(i) = E(1).
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The optimal value R1 is determined in Eq. 6.14. From E(i) = E(1), we
have

wα
i + c

R2
i − R2

i−1

(R2 − R2
i−1) = Rα

1 + c

R2
1

R2.

Through simple manipulation, the above equation can be written as

wα
i + c

wi(wi + 2Ri−1)
= Rα

1 + c

R2
1

R2

R2 − R2
i−1

= ai−1. (6.15)

We obtain the following equation

wα
i − ai−1w

2
i − 2ai−1Ri−1wi + c = 0. (6.16)

Notice that ai−1 depends solely on Ri−1. Thus, once Ri−1 is known, we
can compute wi by Eq. 6.16. As Ri−1 can be determined immediately from
Ri−1 = wi−1 + Ri−2, it turns out that wi can be computed iteratively. That is,
we compute w2 first, and then w3, and afterwards w4, and so on. The resulting
wi is a function of R1. We also have

∑
1≤i≤q wi = R. Hence, the value of q is

also determined during the iteration when total width R is reached.
Balanced energy usage (E(1) = E(2) = · · · = E(q)) is not achievable for

α = 2, regardless of values R, rc, and c. Details about the derivation of this
negative result can be found in Olariu and Stojmenovic (2006).

Note that energy balancing with adjusted transmission radii here assumed that
each hop has the length equal to corresponding annuli width wi . Such routing
corresponds to routing along a straight line with sensors being available at desired
locations. Naturally, high density of sensors are necessary to make use of this
assumption, but even that may not be sufficient for energy balancing. Olariu
and Stojmenovic (2006) were unable to actually design a data gathering scheme
that will reasonably balance energy based on theoretical findings. Therefore this
remains an open problem.

6.3 ENERGY EFFICIENCY BY SINK MOBILITY

This section briefly discusses how to achieve energy efficiency by exploiting sink
mobility. Sink mobility may be classified as uncontrollable or controllable, in
general. The former is obtained by attaching a sink node on a certain mobile
entity such as an animal or a shuttle bus, which already exists in the deployment
environment and is out of control of the network. The latter is achieved by
intentionally adding a mobile entity for example, a mobile robot or an unmanned
aerial vehicle, into the network to carry the sink node. In this case, the mobile
entity is an integral part of the network itself and thus can be fully controlled.
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6.3.1 Delay-Tolerant Scenarios

In a delay-tolerant WSN, for applications such as habitat monitoring and water
quality monitoring, energy usage optimization embraces a lot of options. To
maximize energy savings for sensors, direct contact data collection is the best
option. That is, sinks visit (possibly at slow speed) all data sources and obtain
data directly from them (Shah et al., 2003; Gu et al., 2005; Nesamony et al.,
2007; Sugihara and Gupta, 2008). This method completely eliminates the mes-
sage relay overhead of sensors, and thus optimizes their energy savings. However,
it has a large data collection latency for slow moving sinks. To reduce time
delay, sinks may visit only a few selected rendezvous points (RPs) (Kansal
et al., 2004; Xing et al., 2008, 2007), where sensor readings of all data sources
are buffered and possibly aggregated, avoiding long travel distances at energy
cost of multihop data communication. Both direct-contact data collection and
rendezvous-based data collection can be supported by uncontrollable or control-
lable sink mobility.

Figure 6.2a depicts a taxonomy of existing approaches for energy-efficient
data collection by mobile sinks in delay-tolerant WSNs. At the top level of the
taxonomy are the two classes of collection methods, that is, direct-contact and

Sink tours RP selection methods

Data gathering in delay-tolerant WSN

Direct-contact
data collection

Stochastic TSP Label-covering Tree-based ClusteringFixed track

Rendezvous-based
data collection

Data gathering in real-time WSN

Sink relocation
strategies

Data dissemination
to mobile sinks

Cluster-based Event-driven Periphery Tree-based Request zone

Learning-basedMILPBrute force

(a)

(b)

Figure 6.2 A taxonomy of energy-efficient data gathering by mobile sinks. (a) Delay-tolerant
WSN. (b) Real-time WSN.
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rendezvous-based. Each is further divided into three subclasses according to their
employed techniques.

6.3.2 Real-Time Scenarios

In real-time WSNs, for applications like battlefield surveillance and forest fire
detection, sensor readings ought to be collected in a timely manner by sinks.
With effective mobile sink-based data dissemination (i.e., source-to-sink routing)
methods, network lifetime can be prolonged by adaptively relocating sink nodes
to positions with the largest energy gain as the network evolves. For example,
Banerjee et al. (2009) suggested that sinks move toward data sources, or energy-
intense areas, or the combination thereof; Luo and Hubaux (2005) concluded that
the optimal sink mobility strategy is to move along the periphery of the network
when the network has a circular shape and shortest path routing is used. Intelligent
sink relocation requires controllable sink mobility. Uncontrollable (e.g., random
or fixed track) sink movement may also balance energy consumption since the
role of the “hot spot” rotates among sensors. But, it has a relatively inferior
performance (Basagni et al., 2008).

Figure 6.2b shows a taxonomy of existing approaches for energy-efficient
data gathering in real-time WSNs. At the top level of the taxonomy are the
two research subproblems, that is, sink relocation and data dissemination, each
followed by representative solutions at the lowest level.

6.4 SINK MOBILITY IN DELAY-TOLERANT
NETWORKS

In this section, we review the literature on energy-efficient data collection by
mobile sinks in delay-tolerant WSNs. We examine direct-contact data collection
methods first and study rendezvous-based data collection methods afterwards.

6.4.1 Direct-Contact Data Collection

In direct-contact data collection, a mobile sink collects data directly from data
sources by one-hop communication. Sinks may retransmit data or, if needed,
physically carry the data to a fixed base station. This approach minimizes energy
consumption among sensors for communication, since sensors do not need to
forward messages for each other. In this scenario, the main concern is the com-
putation of the best sink trajectory that covers all data sources and minimizes
data collection delay.

Stochastic Data Collection Trajectory

Shah et al. (2003) considered stochastic sink mobility and proposed a simple
data collection algorithm. In their proposal, sensors buffered their measurements
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locally and wait for the arrival of a mobile sink. Multisink scenario is also con-
sidered. Each sink moves randomly and collects data from encountered sensors in
its communication range. Collected data are then carried by the sink to a wireless
access point (e.g., a fixed base station).

In the case of stochastic sink mobility, energy consumption at sensor side
is only due to sink discovery and subsequent data transfer. Assume each sink
broadcasts a beacon message while moving. A straightforward way of sink dis-
covery is to monitor the wireless communication channel. Whenever a sensor
hears the beacon message it concludes that a sink arrives. However, constant
channel monitoring is very expensive in energy. Chakrabarti et al. (2003) show
that, if sinks (e.g., mounted on shuttle buses) move along the regular path, then
sensors can predict their arrival after being allowed a learning curve for their
movement pattern.

After discovering a sink, data transfer should also start in an intelligent
way. If a sensor simply transmits as soon as it discovers the sink, data may
not be successfully delivered or may be delivered with many retrials, wasting
energy. According to Anastasi et al. (2007a), message loss probability drops
with decreased sensor-sink distance. Suppose the sink passes by sensors along
straight line. To minimize energy consumption, data transfer should take place in
the time interval with minimum message loss probability, which is exactly around
the minimum sensor-sink distance point. From this consideration, Anastasi et al.
(2007b) proposed an adaptive data transfer protocol. In Anastasi et al. (2007b),
the contact time f̂ (n + 1) for the (n + 1)th passage is estimated by the function
f̂ (n + 1) = αf (n) + (1 − α)f̂ (n), where f (n) and α (0 < α < 1) represent the
time elapsed since the previous (the nth passage) contact, the duration of contact,
or the time between contact and data transfer, or other relevant measure (different
measure has different function and its parameter). According to the estimation,
sensors start data transfer properly in time and transmit a predefined number of
bits. If contact time is large enough for sensors to perform a sleep–wake-up cycle
before transmitting, they will do so to save energy.

TSP Tour for Data Collection

When sink mobility is a controllable factor, we can reduce data collection delay
by properly selecting sink trajectory. It is not difficult to conclude that direct-
contact data collection is generally equivalent to the NP-complete traveling sales-
man problem (TSP) (Lawler et al., 1985). Informally, the TSP problem is: given a
number of cities (i.e., sensors), find the shortest tour that visits each city (sensor)
exactly once and returns to the starting city.

Nesamony et al. (2006, 2007) formulated the sink traveling problem as a
variant of TSP, known as traveling salesman with neighborhood (TSPN), where
a sink needs to visit the neighborhood of each sensor exactly once. The intuition
is that it is sufficient for the sink to be within the communication range (mod-
eled as disk) of a sensor in order to retrieve data from that sensor. Figure 6.3a
comparatively shows the TSP tour (dashed thick lines) and the TSPN tour (thick
lines) of four sensors for a mobile sink.
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Figure 6.3 TSPN. (a) TSP with neighborhood. (b) Point set computation.

In Nesamony et al. (2007), the authors presented an algorithm for finding the
best possible sink tour. This algorithm requires that the locations of all sensors
are known. It first determines the visiting order of the disks. In this process,
some ordering constraints may apply. For instance, the disks whose corresponding
sensors are about to deplete their battery power have to be visited first in order to
prevent data loss. If there are no constraints, then the most intuitive way is to order
the disks based on the TSP order of their representative points. The representative
point of a disk could be selected in different ways. For example, it could be a
random point, the center point, or the closest point on the circumference to the
starting point.

Once the visiting order is determined, the algorithm computes the optimal
set of points accordingly. The initial set is composed of the starting point a0 and
the representative points a0

i of the ith disk, Ci . Then a0
1 is updated to a1

1 with
respect to a0, a0

2 , and disk C1 as follows: if line a0a
0
2 intersects C1 then a1

1 is
any point between intersections; otherwise, a1

1 is a point on the circumference
of C1 such that |a0a

1
1 | + |a1

1a
0
2 | is minimized. In the latter case, the search space

is reduced from the entire circumference of C1 to the arc between the two lines
from a0 and a0

2 to the center of C1, and a binary search is used to find a1
1 . After

a1
1 is computed, a0

2 is updated to a1
2 with respect to a1

1 and a0
3, and so on. Finally,

a0
n is updated to a1

n with respect to a1
n−1 and a0 and Cn. The sink tour defined by

the new point set will have smaller length than the old one. The iterative update
is repeated with the new point set as input until the length of the tour stabilizes.
Figure 6.3b illustrates this process.

Sensors have limited storage space. They can only buffer a finite amount of
data. Assume sensors have different data generation rate λ. Some sensors need to
be visited more frequently (with respect to their buffer overflow time o = b

λ
where

b is buffer size) than others so as to avoid data loss. Gu et al. (2005) addressed
the impact of buffer limitation on the TSP for sink mobility and presented a
partitioning-based scheduling (PBS) algorithm for sink mobility. In PBS, the loca-
tions of all sensors are known a priori . Sensors are partitioned into groups, called
bins , such that sensors in the same bin Bi have their buffer overflow times in the
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same range, and the range of overflow times for Bi+1 is twice that of Bi . Each
bin is further partitioned into sub-bins according to sensor locations such that the
sensors in the same sub-bin are geographically close to each other. This partition
is realized by the k-dimensional tree (KD-tree) algorithm (Bentley, 1975).

The sink starts from the sensor with minimum buffer overflow time in a
sub-bin of B1. It travels along a so-called supercycle composed of a number
of visit cycles of the bins. Each visit cycle contains exactly one sub-bin from
each bin Bi in order. In each visit cycle, a sub-bin in Bi is followed by a
geographically closest sub-bin in Bi+1. Because there are twice more sub-bins
in Bi+1 than in Bi , each sub-bin in Bi is followed by exactly two sub-bins from
Bi+1 in the supercycle. Figure 6.4 shows a supercycle of 4 visit cycles, where
B

j

i is a sub-bin of Bi and each B
j

i contains only one node.
The sink traveling problem is reduced to the TSP in each sub-bin. Prim’s

algorithm (Prim, 1957) is used to compute the minimum spanning tree (MST)
of sub-bins, and the order of visits is then determined by a preorder tree walk.
Note that after the last sub-bin is visited, the sink moves to the closest sensor in
the next sub-bin instead of returning to the first visited sensor in current sub-bin.
Once the path is constructed, the minimum sink speed for lossless data collection
can be determined by Lmax

omin
, where Lmax is the length of longest path between two

consecutive visits to a sensor, and omin is the minimum buffer overflow time.
Gu et al. (2006) studied sink mobility scheduling for the differentiated mes-

sage delivery problem, where periodically generated regular messages are deliv-
ered without sensor buffer overflow and aperiodically generated urgent messages
delivered within a deadline �. The PBS algorithm (Gu et al., 2005) produces a
schedule, where the intervisit duration of a sink to every sensor ni is not larger
than the effective overflow time eot (oi) associated with the sensor’s buffer over-
flow time oi , that is, the minimum overflow time of the bin where ni resides.
However, if eot (oi) >�, the PBS solution does not guarantee urgent messages
to be delivered in time. Gu et al. (2006) suggested to deliberately reduce the eot

of some sensors and allow multihop message relay to handle this situation. It is
realized by a new algorithm, multihop route to mobile element (MRME) with
PBS (Gu et al., 2005) as a subroutine.
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Figure 6.4 A supercycle composed of four visit cycles. (a) View of bins. (b) View of nodes.
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Urgent message delivery deadline can be satisfied at covered sensors, that
is, sensors where eot ≤ �. In MRME, urgent messages generated at uncovered
sensors do not have to wait for on-site pickup; they are relayed to nearby sensors
within dmax (a predetermined value) hops (from their originators) that are visited
more frequently by the sink. Let ttr be the transmission delay per hop. If an urgent
message generated at sensor nj is sent to a d-hop (d ≤ dmax) neighbor ni , then
for lossless scheduling, the intervisit duration of the sink to ni should be at most
eot (oi) ≤ � − d × ttr. For ni to cover its nj , it should be visited by the sink at
least at frequency 1

�−d×ttr
.

For sensor nj , buffer overflow time reduction will cause increase of its sink-
visit frequency fj = 1

eot (oj )
. Define the relative increase as Fj = fnew(j)−fold(j)

fold(j)
=

eotold(oj )−eotnew(oj )

eotnew(oj )
. Denote by C(ni, d) the set of uncovered d-hop neighbors of

ni . The gain at ni due to overflow time reduction within its d-hop neighborhood
Ni,d is defined as Gain(i, d) = ∑

nj ∈C(ni ,d) Fj − β × Fi , where β is a system
parameter used to adjust the behavior of the algorithm. Further define the worst
case delay Di for urgent messages generated at node nj as Di = mind≤dmax{d ×
ttr + minj∈Ni,d

{eot (oj )}}. With the above notations, the skeleton of algorithm
MRME is described below.

The execution of algorithm MRME has three phases. In the first phase,
sensors are partitioned into sub-bins as in PBS, and uncovered nodes ni are
identified by checking the satisfaction of inequality Di >�; in the second phase
the buffer overflow times of some nodes are iteratively reduced until no uncovered
sensor exists; in the third phase, PBS is run with modified overflow times to
produce a sink mobility schedule. In each iteration of the second phase, the
maximum Gain(i, d0) for n ≤ dmax is found, and the buffer overflow time of ni

is reduced to � − d0 × ttr ; then the uncovered node set is recomputed, and the
minimum overflow time omin in the network is updated.

Label-Covering Tour for Data Collection

Sugihara and Gupta (2007, 2008) addressed sink path selection for data collection
delay minimization. They waived the requirement for exact one-time visit of the
sink to each sensor’s neighborhood. The intuition is that the sink’s travel time
could be long if the length of the intersection of the its path and the communica-
tion range of each sensor is short, because, in that case, the sink has to slow down
to collect all the data. Exact one-time visit may not always be a winning strategy.
Multivisits together with proper speed control may yield a better solution.

The authors simplified the path selection problem by reducing search space
to a complete geographic graph, where there are vertices at sensors’ locations and
the sink’s initial location. The sink is assumed to move in this graph along edges
from vertex to vertex. Each edge is associated with a cost and a set of labels.
Cost is defined as Euclidean length of the edge; the label set represents the set of
sensors whose communication ranges intersect with this edge, that is, the sensors
that the sink can collect data from while traveling along this edge. Figure 6.5
shows such a complete graph constructed over a network of six sensors. In this
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Figure 6.5 Complete graph of sensors
and the sink node.

figure, sensor communication ranges are marked by dashed circles, and label sets
associated with the links incident to node 5 are displayed.

The objective is to find a minimum-cost tour along which the sink can collect
data from all the nodes. In other words, a shortest tour whose associated label set
covers all sensors. In this setting, the sink does not necessarily visit all vertices.
The authors proved that the shortest label-covering tour problem is NP-hard, and
presented an approximation algorithm to solve it. The algorithm first finds a TSP
tour T by any TSP solver. Then, by dynamic programming, it finds the shortest
label-covering tour that can be obtained by applying shortcutting to T . Using the
speed control algorithms and the job scheduling algorithm presented in Sugihara
and Gupta (2007), the authors experimentally validated the effectiveness of the
algorithm and showed that it has better performance than TSP-like algorithms
when sensors have large communication ranges.

6.4.2 Rendezvous-Based Data Collection

Direct-contact data collection has great advantage for energy savings. However,
it significantly increases data collection latency because of the sinks’ low mov-
ing speed. Rendezvous-based data collection is proposed to achieve trade-off of
energy consumption and time delay. Sensors send their measurement to a subset
of sensors called rendezvous points (RPs) by multihop communication; a sink
moves around in the network and retrieves data from encountered RPs. The use
of RPs enables the sink to collect a large volume of data at a time without trav-
eling a long distance and thus greatly decreases data collection delay. Relevant
research focuses mainly on RP selection. Note that, since RPs are static, data
dissemination to RPs is equivalent to data dissemination to static sinks, which
has been intensively studied in traditional static WSN.

RP Selection by Fixed Track

Kansal et al. (2004) proposed to use a straight line sink path for data collection.
At an initialization phase, the sink broadcasts a beacon message while moving
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along a straight line. The message has a hop count field indicating the number of
hops it has traveled. Every receiver node rebroadcasts the message if and only
if the message has a smaller hop count than that in memory. It increments the
hop count field before rebroadcasting. It also remembers the node from which
it receives the message. After the initialization phase, a number of trees are
constructed, each rooted at a node along the sink path, and each node belongs to
exactly one such tree.

The root of every tree is taken as an RP. Sensors subsequently send their
measurement along the upward path to the root of their residing tree. As the sink
moves, RPs send their own data together with the data received from their tree
members to the sink. Two motion control algorithms were presented to adjust
sink speed to increase the amount of collected data. In the stop to collect data
(SCD) algorithm, the sink stops for a while at locations where sensors are found
waiting with data. In the other algorithm, the sink moves slower in regions where
the data delivery success rate is moderately poor and temporarily stops in regions
where data loss is severe.

Multisink scenarios were considered in Jea et al. (2005). The sensory field
is divided into equal-sized areas, each having a sink. Then, the single-sink algo-
rithm is run in each area. Randomized sensor distribution may cause unbalanced
load (i.e., sensor assignment) among sink paths. A load balancing algorithm is
presented to ensure that each sink path is assigned the same number of sensors.
This algorithm is executed by an elected sink under the assumption that sinks
can always communicate with each other and thus can exchange their sensor
assignment information.

Xing et al. (2008) considered the case that the sink is allowed to move
only along a fixed track. They assumed that sensors have the same transmission
range and are densely deployed. In such a network, the total energy consumption
for message transmission along a multihop path is proportional to the Euclidean
distance between sender and receiver. Further, data aggregation is applied at each
sensor node. The objective is to select RPs along the sink track such that the
total length of edges that connect sources to RPs is minimized.

An MST-based algorithm rendezvous design for fixed tracks (RD-FT) was
presented. In this algorithm, an optimal set MSTsT of MSTs that connect all
sources to the sink track (sT ), in the Euclidean domain. Each individual MST in
the set does not necessarily span all data sources. The set is optimal in that the
length sum of its member MSTs is minimal. Each MST in MSTsT satisfies the
following two conditions: (i) it is rooted either at the sink starting point, an end
point, or a turning point of, or at the projection point of a data source on, sT ;
(ii) for any of its contained data sources, the length of the tree path to the root is
smaller than the distance to any other point on sT . Figure 6.6 shows seven data
sources and an sT (the zigzag line) between points X and Y . In this example,
MSTζ contains 5 MSTs, respectively rooted at points A,B,C, D, E on the sT .
Note that node 6 is linked to node 7 rather than to the closest point E on the
sT because link 6–7 is shorter than link 6–E (and therefore this local MST is
shorter that way).
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Figure 6.6 Rendezvous design for fixed
tracks.

Set MSTsT are approximations of the optimal reporting trees in practice for
data gathering. Thus algorithm RD-FT takes the roots of these trees as RPs. It
adopts the Kruskal’s algorithm (Kruskal, 1956) (with minor modifications) to find
MSTsT . After MSTsT is constructed, the RPs are found. Then the actuator (sink)
tour can be reduced only to the portion of the track that covers these points. For
example, in Figure 6.6, the sink will travel only between A and E.

RP Selection by Reporting Tree

Xing et al. (2007, 2008) studied reporting tree-based RP selection subject to the
data collection deadline D. Rendezvous points must be properly selected from
a data reporting tree such that the sink tour of the RPs is not longer than the
maximum distance L that the sink can travel within the time D.

In Xing et al. (2007), the authors considered a predefined reporting tree
rooted at a static base station BS. In this tree, nodes shared by multiple data
reporting paths are called junction nodes . Suppose that the locations of source
nodes and junction nodes are known and that nodes are densely deployed. Then
the reporting tree can be approximated by a geometric tree TR rooted at BS
and composed of source nodes and junction nodes. Any point on an edge of TR
can serve as RP. Both constrained and unconstrained sink mobility are studied.
A greedy algorithm rendezvous planning with constrained path (RP-CP) was
presented for sink mobility constrained on TR. Each edge of TR is assigned a
weight, equal to the number of sources in the subtree rooted at its upper end (the
end toward the root). Sort the tree edges in the decreasing order of their weights.
Rendezvous planning with constrained path greedily adds edges of maximum
weight to an edge set W (which is initially empty), without creating cycles, such
that the total edge length of W is not larger than L/2. Part of the next unchosen
edge may be included in W to ensure its edge length sum is exactly L/2. The
final W is a connected subtree, and the nodes in W are RPs. The sink traverses W

in preorder, resulting in a tour of length exactly L. It is proven that the preoder
walk of W is an optimal tour when sink path is constrained on TR.

A greedy heuristic algorithm RP-UG (rendezvous planning with utility-based
greedy heuristic) was presented for free sink mobility. RP-UG adds virtual nodes
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to TR such that every tree edge is not longer than a predefined value L0. It
operates in iterations. In each iteration, a node in TR with the greatest utility is
included in a RP list (which, initially contains only BS). The utility of an RP is
defined as the ratio of the network energy saved by adding it on the sink tour to
the length increase of the tour. The length of the tour of RPs is computed using
a TSP algorithm. The addition will cause utility change of the RPs in the list.
All the RPs whose utilities become zero are immediately removed from the list.
If the maximum tour length is reached, or if all source nodes are included in the
list, RP-UG terminates; otherwise, a new iteration is started to find more RPs.
By adjusting L0, one can achieve desirable trade-off between solution quality
and computational complexity.

A Steiner minimum tree (SMT) (Hwang et al., 1992) is a tree of shortest
length connecting a given set of points. It differs from a MST in that it may
contain extra intermediate points, called Steiner points , in order to reduce the
length of the tree. For the Euclidean Steiner problem, each Steiner point must
have three incident edges of mutual angle 2π/3. Figure 6.7 shows a SMT. In
this tree, circular nodes are given points, and square nodes are Steiner points.
Generally speaking, SMT construction is an NP-complete problem, and heuristics
are used in practice. As SMT has minimum total length, it leads to optimal total
energy consumption for data dissemination to sinks when used as reporting tree,
and it also serves as lower bound of the optimal TSP tour of data sources.

From the above consideration, the authors presented a SMT-based algorithm
rendezvous design for variable tracks (RD-VT) in Xing et al. (2008), under the
assumptions of dense node distribution, known source locations, and free sink
mobility. The rational of RD-VT is to use SMT as a reporting tree and restrict
RPs to nodes of the SMT, such that the RPs form a subtree and they can be
visited by a sink tour no longer than L while the total edge length of the rest
of the SMT is minimized. In RD-VT, an SMT of sources is constructed with an
arbitrary source as root. It is walked in preorder up to distance L/2, and visited
tree nodes are taken as RPs. Tree walk is recursively extended on the next tree
edge by a length of half of the difference between the TSP tour length and L,
until the TSP tour of selected RPs is sufficiently close to L. The preorder tree

Sink trajectory

Figure 6.7 Steiner minimum tree
(SMT).
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walk on the final subtree defines sink tour; sources send data along the SMT to
RPs. Figure 6.7 shows that the sink tour computed by RD-VT. In this figure,
white circles represent sources; the black circle is the root of the SMT.

RP Selection by Clustering

Rao and Biswas (2008) presented a generic framework for mobile sink-based
data gathering by integrating several existing algorithms. In this framework, a
minimum k-hop dominating set is constructed. All nodes in the dominating set
are called navigation agents (NAs). Two adjacent NAs are at least k + 1 and at
most 2k + 1 hops away from each other. By tuning the parameter k, the frame-
work migrates from direct-contact data collection, through rendezvous-based data
collection, to traditional static sink-based data gathering.

Each NA constructs a minimum hop tree rooted at itself and spanning up to
a depth of 2k + 1 hops. During tree construction, it identifies adjacent NAs and
meanwhile constructs shortest paths to them. The nodes along such a shortest path
are called intermediate navigators (INs). They are used to navigate the mobile
sink to move between RPs. The NA-rooted trees will be used for subsequent
data dissemination. Rendezvous points and INs together constitute a connected
overlay graph. A distributed ant colony optimization-TSP algorithm (Bonabeau
et al., 1999) is adopted to find a TSP tour of NAs for the sink over the overlay
graph. After the TSP tour is found, NAs know their next NAs in the tour.

Every NA transmits a hello message periodically. The sink starts to move
from an arbitrary location and attempts to discover a local NA by listening to the
hello message. Once the first NA is discovered, it moves toward the NA according
to the received signal’s direction of arrival (DOA). Afterwards, it starts to travel
along the TSP tour of NAs bypassing INs similarly by following the DOA of
those nodes’ signals. The use of DOA enables the scheme to work in the absence
of any location information.

The one-hop neighbors of a NA are called designated gateways (DGs).
Sources that are not adjacent to the sink tour send their data toward the root
using their residing NA-rooted tree constructed during IN node identification
process. Data stops at the closest DG on its way toward the root, and is buffered
at that DG. In this sense, DGs are actually RPs. The benefit of buffering data
at a DG rather than at a NA is twofold. It saves message transmission and thus
energy consumption by reducing data communication path by one hop; it avoids
the huge aggregated storage load at NAs. Along its TSP tour, the sink retrieves
data from encounter NAs and their DGs.

From the above description, we can see that by adjusting the value of k, a
desired balance of data collection delay and energy expenditure can be achieved.
When k = 1, the sink visits every node’s communication range, and thus the
framework turns into a direct-contact data collection scheme. When k = kmax

(an obvious value for kmax is network size n), there is only one NA in the
network, which is dominating all the other network nodes. In this case, once the
sink reaches the only NA, it stops moving, resulting in static sink scenario.
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6.5 SINK MOBILITY IN REAL-TIME NETWORKS

In this section, we study sink mobility for energy efficiency in real-time networks.
We consider controllable sink mobility only. We first introduce representative sink
mobility strategies and then review some specialized routing algorithms for data
dissemination to mobile sinks.

6.5.1 Sink Relocation

According to the energy models introduced in Section 6.2, a sink should move
toward data sources so as to shorten path length and thus reduce and balance
energy consumption. During relocation, the sink may keep receiving data. It
will bring extra load to the nodes in its visited areas and increase their energy
consumption. So it is desirable that the sink goes through energy-intense area
rather than energy-sparse areas. On the basis of this consideration, Bi et al. (2007)
suggested that the sink temporarily changes its moving direction by a certain
policy before entering an energy-sparse area and later turns back toward the
relocation destination.

Optimal multisink placement is a NP-complete problem, as it is equiva-
lent to the NP-complete dominating set problem on unit disk graphs (Bogdanov
et al., 2004). In the following sections we will introduce some representative sink
relocation strategies presented in the literature.

Cluster-Based Approach

Banerjee et al. (2009) studied sink relocation in a WSN clustered with multiple
mobile sinks. They assumed that each sensor joins one and only one nearest
cluster and sends data to the corresponding sink (clusterhead). Sinks form a
connected overlay network for further data fusion to a stationary base station.
Sinks are assumed to be initially well dispersed such that each cluster covers
roughly the same area of the network without large overlapping, and that the
entire network is fully covered. Clusters remain unchanged once constructed.

Sinks move only within their own clusters. While moving, they repeat route
discovery in the overlay network so as to preserve a route to the base station.
If no route can be discovered, they move back to their previous location. This
connectivity preservation method can be enhanced by making use of one- or two-
hop neighborhood information. The authors analyzed energy consumption in the
network when sinks move independently and randomly by slightly modifying
the energy model introduced in Section 6.2. They presented three controlled sink
mobility strategies.

In a residual energy-based strategy, a sink always moves toward the residual
energy center of its cluster to balance energy consumption. The residual energy
center is the average of the positions of cluster members (sensors) weighted by
their residual energy. Each cluster member sends its remaining energy level and
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locally estimated (based on history) energy dissipation to the sink, which then
predicts the sensor’s energy accordingly if necessary. The residual energy center
could however be far away from the current location of events, causing increased
distance of data transmission, and thus increased total energy consumption.

In an event-based strategy, a sink always moves toward the event region,
that is, the region with maximum data flow, in its cluster. The objective is to
shorten data transmission path, reduce sensors’ overhead of relaying messages,
and eventually increase network lifetime. However, after the sink reaches the
event center, it will stop there. In this case, the set of relaying nodes will remain
unchanged and further energy balancing is prevented.

Because of limitations of these two strategies, the authors further suggested
to combine them to obtain a hybrid strategy. A sink first moves toward the event
center then toward the energy center. When a sink moves away from an event
center, while another moves close to it, the sensors sensing the event will report
to the sink that yields larger energy gain.

Event-Driven Approach

Vincze et al. (2007) addressed single-sink relocation problem in an event-driven
WSN, where sensors have the same sensing radius and become data sources only
when they detect events. Data sources send their readings to the sink through
message relay using shortest paths; other sensors do not transmit. An event is
modeled as intruder moving at a fixed speed and in a random direction. It is
assumed that the sensory field is a circular region, and that sensors are distributed
uniformly and densely enough such that each source-to-sink path approximates
a straight line and consists of hops of equal length.

Through approximation, the authors show that the average transit load (the
load of forwarding messages) LP of a node P for an event is proportional to
the distance between P and the event and reversely proportional to the distance
between P and the sink. They also show that LP is maximized when P is only
half a hop away from the sink. Then, from the sink’s view, the most heavily
loaded sensor is in the direction toward the farthest event.

On the basis of the above results, they concluded that, to achieve lowest total
energy consumption, the sum of event distances needs to be minimized by relo-
cating the sink. This is equivalent to the well-known “facility location” problem.
They further indicated that, to have a balanced energy consumption among nodes,
the maximum sensor load should be minimized. That is, to minimize maximum
event distance from the sink. This is equivalent to the “minimal enclosing circle”
problem in the case of straight line routing.

The authors suggested that the sink may predict the future location of current
events based on historical event data and make relocation decisions in advance.
Once the target position is computed, the sink moves there. As events are chang-
ing their positions over time, the sink will keep adjusting its location according
to the evolution of current events.
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Brute Force Approach

Friedmann and Boukhatem (2009) presented a centralized brute force algorithm
for multisink relocation. The algorithm is run periodically to check if sinks should
be relocated. Sink relocation takes place if and only if the new sink positions
leads to a reduced total energy cost. Sinks are assumed to have a global view of
the network, and thus are able to run a centralized algorithm.

Each edge in the underlaying network graph is assigned a weight for each of
the two transmission directions. The weight is subject to the sum of two factors,
the inverse of remaining energy of the receiver node and the energy consumed by
message transmission along the edge, balanced with their respective coefficients.
As node remaining energy keeps decreasing, edge weight changes over time.
A centralized source routing approach (e.g., Dijkstra algorithm) is used to find
shortest path (i.e., the path with minimum weighted sum) from each sensor to
its nearest sink. Such a path attempts to avoid using energy-scarce nodes and
reduces total energy consumption along the path for message transmission.

In order to minimize total energy consumption in the network, sinks should
be placed at positions that yield smallest total energy cost, which is measured by
the weighted sum of all the shortest paths. When computing total energy cost, the
weight of paths linking active nodes (i.e., nodes that are sensing and transmitting)
to sinks are intentionally increased, so as to make sinks close to active nodes and
reduce energy consumption for message relaying.

A heuristic approach is used to find best sink positions. In this approach,
relocation is restricted to only a few (1, 2, or 3) sinks in each round, and opti-
mal solutions are found in those cases. To further reduce search space, sinks are
allowed to move only in eight geographic directions: north, south, east, west,
northeast, northwest, southeast, southwest. The authors considered the transi-
tional effect (during relocation, communication cost might temporarily increase).
Instead of moving directly to optimal positions in one step, sinks apply multiple-
step movement, where each step is determined by a constrained local search in
a bounded local area.

MILP-Based Approach

Basagni et al. (2008) addressed single-sink relocation by modeling it as a mixed
integer linear programming (MILP) problem. The sensory field is partitioned
into a two-dimensional grid. The set S of grid points, called sink sites , are the
candidate locations that the sink may visit. The sink moves step by step, each
step to a site within a predefined range dMAX; it has to stay at a site for at least a
predefined tmin number of time units. When the sink is traveling, it is considered
not reachable, and thus sensors hold their data and do not transmit. The holding
time can be tuned by adjusting the granularity of grid division and the value of
dMAX. Network-wide flooding is used by the sink to notify sensors of its location
and reachability.

Sink site set S and maximum step-moving distance dMAX define a graph.
The MILP problem is to determine the initial sink site, sink relocation path, and
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sink sojourn time tk at each site k over this graph so that an objective function∑
k∈S tk is maximized. This objective function describes the effective network

lifetime, namely, the time period when sensors are able to transmit their reports.
It is subject to a number of constraints. For example, the energy spent by a node
for data delivery and routing cannot exceed its initial energy.

Centralized integer linear programming (ILP)-based solutions are not scal-
able. For larger networks, the cost of gathering network information at a single
node, and the computational cost to run an ILP solution, rapidly increases, making
such solutions feasible only for networks with few tens, and not few hundreds of
nodes. In addition to the centralized MILP-based solution, the authors also pre-
sented two localized sink relocation strategies: greedy maximum residual energy
(GMRE) strategy and random movement (RM) strategy. Sink moves to an adja-
cent site where sensors have maximum residual energy; the latter requires the
sink to move to a randomly selected adjacent site.

Periphery Approach

According to Luo and Hubaux (2005), when a WSN has a circular shape, and
when shortest path routing is used, the optimal sink mobility strategy is to move
along the periphery of the network. Following this result, Hashish and Karmouch
(2009) suggested to deploy sinks along the network outer boundary and presented
a simple sink relocation scheme to deal with the sink partition problem caused
by fast energy depletion of nodes around sinks.

In the proposed scheme, the outer boundary of the network is identified at an
initial phase. Sinks divide the boundary into a number of segments. Figure 6.8
shows a circular-shaped network with four sinks S1, . . . , S4, which partition the
outer boundary (boundary nodes are highlighted) into four segments. In each
segment, every boundary node maintains the hop count to the closest sinks in
both directions. A sink is elected to compute the virtual center (v-center) of the
network. Given a predefined parameter h, boundary nodes that are k ∗ h hops
away for k = 1, 2, . . . from their nearest sink send their locations to it. The
reports from all sinks are (in aggregated form) collected at the elected sink. The
elected sink then computes the center of the virtual area defined by these nodes as
v-center and floods the entire network with the location of v-center. In Figure 6.8,
the computed v-center is near the center of the sensory field.

When a sensor detects an event, it sends event data away from the v-center
toward the outer boundary using directional forwarding. After a boundary node
receives sensor data, it forwards the data along network boundary to the closest
sink. By this data dissemination method, two data sources a and b in Figure 6.8,
send data to sinks S1 and S3, respectively. As sinks are located along the bound-
ary, the boundary node will deplete their energy faster than internal nodes, leading
to so-called peeling phenomenon . If a sink finds it is partitioned from the net-
work, or having a low number of one-hop neighbors, or receiving data at low
rate, it moves a distance of its transmission range toward the v-center to maintain
connectivity. For example, in Figure 6.8, because the three neighbors of sink S4

all run out of their power, S4 decides to move to position P .
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Figure 6.8 Sink deployment,
source-to-sink routing, and sink relocation.

The undesired peeling phenomenon causes coverage decrease. To ensure
coverage, the authors suggested that more sensors or a buffer region (the gray
zone in Fig. 6.8) be used along the core coverage area. On the basis of the energy
consumption model introduced in Section 6.2.2, the authors concluded that the
proposed sink relocation scheme leads to a suboptimal energy balancing.

6.5.2 Data Dissemination

Data dissemination deals with sensor-to-sink data communication. Data flows
from a data source to a sink are considered downstream; the reverse are called
upstream . At the core of data dissemination is the problem of routing to sinks.
Many routing protocols were developed for WSNs with static sinks. In the pres-
ence of sink mobility, data dissemination is a combined problem of location
service (see Chapter 8) and routing (see Chapter 4), where nodes share a few
common destinations, that is, sinks.

Recently, Wu and Chen (2007) addressed the offset problem of network-
wide flooding-based sink location update with energy saving from sink mobility,
and presented a dual sink scheme. In this scheme, a mobile sink updates its
location by range-restricted flooding for energy saving; sensors that do not have
the latest location of the mobile sink send data to an alternate known static
sink. This scheme does not solve the actual problem of routing to mobile sinks.
Specifically tailored nonflooding-based solutions exist in the literature. Below,
we will review some representative related works on the topic.

Tree-Based Approach

Kim et al. (2003) presented a scalable energy-efficient asynchronous dissemi-
nation (SEAD) protocol. For each data source, SEAD constructs an SMT like
the data dissemination tree, called d-tree, rooted at the source. Initially, a d-tree
contains its root node only. Each sink chooses a nearest neighboring sensor as an
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access node. When it wants to receive data from a source, it joins the d-tree of
that data source via its access node. In a d-tree, leaves are sink access nodes, and
internal nodes are added Steiner nodes, called replica nodes . Figure 6.9 shows
the d-tree of source B.

When a sink Si wants to join the d-tree of source B, it directly (not through
d-tree) sends B a join query via its access node Ai through the underlaying
routing protocol. This query message contains the location of Ai and the desired
data rate Ri of Si . After B receives the message, it initiates an iterative search
phase to find a gate replica , which is a replica node through which Ai will be
connected to the d-tree. The search starts from B, and proceeds downward along
the d-tree in accordance with the result of an energy saving test conducted at each
visited tree node r . Denote by K(r) the additional cost incurred by connecting Ai

to node r . In the energy test, r calculates F = K(r) − K(h) for every tree child
h. If all the results are less than zero, the energy test is passed, and r becomes
the gate replica; otherwise, it forwards the message to a child that maximizes F .
If no such a satisfying node is found, the search will finally reach a leaf node. In
this case, the leaf node’s parent is taken as a gate replica. Figure 6.9 illustrates
this search phase, which stops at node g.

We now examine how Ai is connected to the discovered gate replica g. There
are two possible connection modes, as shown in Figure 6.9. In a nonreplica mode,
Ai is connected as child to g. In a junction replica mode, a new replica node k

is first created as child of g, and the tree link between g and one of its children
c is removed, and Ai and c are then both connected to the new replica node
k. Through local computation, gate replica g chooses the connection mode that
yields smaller energy cost around itself on the d-tree. When the junction replica
mode is to be used, the computation also determines the child c and the neighbor
r that will together lead to the new replica. In this case, g sends r a message
containing all necessary information for further computation. Upon receiving the
message, node r repeats the above process with respect to c and its own neighbor
set. The node k where the nonreplica mode is selected becomes the new replica
node; then Ai is connected to k, and c becomes its sibling. If necessary, the gate
replica g informs its parent to increase data rate to Ri .

B r

g

Ai Ai

B r

g

k

c

(a) (b)

Figure 6.9 SEAD. (a) Nonreplica mode. (b) Junction Replica Mode.
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As a sink Si moves, if the hop count between Si and its access node Ai

exceeds a threshold value Hi , it replaces its access node with a new one A′
i ,

a currently closest neighbor. If |AiA
′
i | is less than a threshold value Tm, Ai

′ is
simply connected to Ai without changing the structure of the d-tree; otherwise, Si

sends via A′
i its latest position to B, which then triggers the replica search phase

to update the d-tree. We can see that the performance of this algorithm, SEAD
depends very much on the selection of Tm. If Tm is too large, the optimality of
the data dissemination path degrades; if Tm is too small, the maintenance cost of
d-tree will be will be high. In the case of unpredictable or random sink mobility,
it is difficult to chose a proper value for Tm in advance.

Learning-Enforced Approach

Baruah et al. (2004) presented a hybrid learning-enforced time domain routing
(HLETDR) algorithm for data dissemination to a mobile sink. The sink moves
following a certain fixed pattern. A sink tour is defined as the smallest time
duration after which the sink’s movement pattern repeats itself. Each node divides
the sink tour evenly into a predefined number of time domains and assigns a
weight to all its neighbors for each domain. The weight indicates at a certain
time, what is the best way to forward a packet to the sink. Initially, the neighbors
have equal weight, implying that they are equally good for data dissemination.
The goal is to find the best routing path from each sensor to the sink in different
time domains. It is accomplished by properly adjusting a sensor’s neighbors’
weight through a learning process, explained below.

The nodes whose vicinity is periodically visited by the sink are called moles .
Figure 6.10 shows three moles along the sink path. Each data source sponta-
neously pushes data to the sink through multihop message relay. A data packet
is forwarded by each intermediate node to the neighbors with the highest weight.
Multiple copies of the packet may be transmitted simultaneously in the network.
All these copies will finally reach, and are buffered at a mole. When the sink
visits a mole, it obtains data from the mole. For example, in Figure 6.10, where
the sink moves from north to south along the indicated track, three copies of a
data packet are transmitted from data source S along three paths toward the sink
at certain time domain, and they respectively reach moles X, Y , and Z.

Each mole learns the sink’s movement pattern over time, and statistically
characterize sink arrival time within a sink tour as a Gaussian distribution func-
tion. Thus it is able to estimate the likelihood that the sink is in its vicinity
in any time domain, and evaluate the goodness G of a data transmission path
when it receives the data at certain time. The value of G is high if data arrival
time is close to the mean of sink arrival time, or low otherwise. For example,
in Figure 6.10, the G values computed by the three moles X, Y , and Z are rel-
atively low, high, and medium to each other. Note that if a mole does not have
enough storage space to hold the expected amount of traffic, or the variance in
the mobility pattern is very high, or certain time constraint for delivery needs to
be satisfied, mole-to-mole data propagation along sink path is performed until a
RP with a sink is reached.
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Figure 6.10 HLETDR.

After computing the goodness value G for a data transmission path, a mole
sends value G to the data source along the reverse path. In the path, every inter-
mediate node w updates the weight for its next hop (i.e., downstream neighbor
toward the sink) n, based on value G and two predefined threshold values a and
b. If 0 < G < a, the weight of n is decreased, which is called negative rein-
forcement , meaning that m is not a good next hop to the sink in the current
time domain. If a ≤ G ≤ b, n’s weight remains unchanged, that is, no reinforce-
ment . If b < G < 1, the weight of n is increased, which is referred to as positive
reinforcement , meaning that n is on a good path to the sink in the current time
domain. In Figure 6.10, moles X, Y , and Z respectively initiate negative rein-
forcement, positive reinforcement, and no reinforcement processes for the current
time domain. By these means, node w is able to locally select best path with
respect to time domains for timely data delivery in the future.

Request Zone Approach

Ammari and Das (2005) presented a Weighted Entropy DAta diSsemination
(WEDAS) scheme. This scheme is a variant of request zone location service
(refer to Chapter 8). It implicitly assumes that sensors have bounded adjustable
transmission radii, and uses additional energy-aware next hop selection for rout-
ing to a mobile sink. The novelty stems from the quantification of the uncertainty
of nodal remaining energy. Below, we will elaborate on this scheme and discuss
a possible improvement.

Suppose the sink S is currently located at position a1 and will relocate to
position a2. The relative mobility zone Zm(D) of S is defined as the circular area
of diameter D = |a1a2|. Before leaving a1, S advertises Zm(D) by flooding entire
network with the two positions a1 and a2; during the course of its relocation, S

does not do the advertisement any more.
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Each sensor si computes Zm(D) from the received sink advertisement and
identifies a subset CNS(si) of neighbors, called coordinator node set. CNS con-
sists of nodes that exist in the area (i.e., request zone in request zone location
service) defined by its communication range and the two line segments sia1 and
sia2. Nodes in this set are all neighboring si in the direction of the mobile sink.
When sending messages to S, si routes the messages toward the center c of
Zm(D) through a node form this set.

Sensor si maintains two vectors for every node sj in CNS(si). One contains
the accurate remaining energy of sj at k different time instants, which were
advertised by sj ; the other includes the estimated remaining energy of sj at those
time instants. The relative energetic distance between the two vectors is the
average of the absolute value of the distance between all corresponding pairs of
vector elements. The estimated remaining energy of sj at time tk+1 is its accurate
remaining energy at time tk minus the relative energetic distance.

The probability p(sj , tk+1) that sensor node sj will be selected by si as
routing next hop toward S is defined as the ratio of the estimated remaining
energy of sj to the summation of the estimated remaining energy of all the nodes
in CNS(si). Define the triangular distance between si and sj with respect to S

as |sisj | + |sj s
P
j | where sP

j is the perpendicular projection of sj on segment sic,
as shown in Figure 6.11. sj is assigned a weight ω(sj , tk+1) which is the ratio
of the triangular distance of sj to the summation of the triangular distance of all
nodes in CNS(si).

The weighted entropy of sj is defined as H(sj , si, tk+1) = −ω(sj , tk+1) ×
p(sj , tk+1) × log p(sj , tk+1). It is used to measure the uncertainty of the remain-
ing energy of sj . The next hop for si routing message to S will be an sj with
minimum weighted entropy. In other words, the protocol favors sj that is closer
to si and meanwhile closer to the straight line sic (thus it is a variant of directional
routing). Minimizing |sisj | would reduce the transmission energy consumption of
si ; on the other hand, minimizing the distance |sj s

P
j | would minimize the length

of the routing path.

Si

Sj

Sj

P

a1

a2

c

Figure 6.11 WEDAS.



References 181

WEDAS has two main drawbacks. While using energetic nodes, it aims at
straight line routing with maximized number of hops. This is valid in terms of
energy efficiency only under the assumption of c = 0 in formula 6.1, which is
however not possible in practice. In addition, it has high routing inaccuracy.
The reason is twofold. First of all, the routing destination is not the expected
sink position, but always the center of the relative mobility zone. Secondly, hop
selection is from the CNS restricted by a narrowly defined geographic region.
This set may however be empty in the presence of void areas and thus causes
routing failures.

Li and Stojmenovic (2008) proposed a localized data dissemination algorithm
that improves WEDAS in the above-mentioned two aspects. In this algorithm,
the sink distributes its moving speed to all sensors while advertising its relative
mobility zone. Using this additional speed information, each sensor is able to
estimate the position of the sink at a given time instant, and thus routes mes-
sages to the sink. To increase success rate, greedy routing rather than directional
routing is used, and the candidate coordinator set is expanded to include those
nodes which may be best choices for a possible position of the sink. More specif-
ically, the version of request zone routing presented in Stojmenovic et al. (2003)
is adopted for source-to-sink data dissemination. This version of request zone
routing is discussed in detail in Chapter 8. The concept of weighted entropy is
adopted for energy-efficient hop selection. Instead of using energetic distance,
entropy is weighted by the inverse of cost to progress ratio (Stojmenovic, 2006).
That is, for node sj at time tk+1, ω(sj , tk+1) = (|siSk+1| − |sjSk+1|)/|sisj |, where
si is current sensor, and Sk+1 is the estimated sink position at time tk+1. With this
new definition of weighted entropy, the algorithm favors an energetic node in hop
selection that leads to large progress to the sink and small transmission distance.
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Abstract

The efficiency of many sensor network algorithms depends on characteristics of
the underlying connectivity, such as the length and density of links. It is therefore
a common practice to control the number and nature of links that are to be used
among all potentially available links. Such topology control can be achieved
by modifying the transmission radii, selecting a given subset of the links, or
moving some nodes (if such functionality is available). This chapter reviews
some of these problems, and related solutions applicable to the context of sensor
and actuator networks. Spanning structures and minimum weight connectivity
are first discussed, and some applications for power-efficient and delay-bounded
data aggregation are described. The issue of detecting critical nodes and links to
build a biconnected topology is also investigated, with the aim of providing fault
tolerance to the applications, and some recent and prospective works considering
biconnectivity of mobile sensors/actuators and related deployment of sensors,
augmentation, area and point coverage are discussed.

7.1 INTRODUCTION

Unless indicated otherwise, all the solutions presented in this chapter assume that
every node is able to know its own position and the positions of its neighbors

Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication.
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using exchanges of hello messages. These solutions also assume that no obsta-
cles are present and that the network can thus be represented by a unit disk graph
(UDG), that is, a graph where two vertices are joined by an edge (and called
neighbors) if and only if the distance between the two corresponding nodes is
under a given threshold R. The chosen value for R corresponds to the trans-
mission radius, which is generally assumed to be the same for all nodes. Some
variations of this model can however be considered to represent obstacles or
different transmission radii among nodes, in which case the edges are consid-
ered either as directed (arcs), or used only if both communication directions are
available. The min-power graph is an example of such a nonsymmetrical UDG
that represents the cases where each node has the smallest possible transmis-
sion radius with respect to the network connectivity. Depending on the scenarios
considered, the transmission power can be decided once at the starting time, or
adjusted for each message.

The chapter starts with a discussion on the main general approaches used to
control the connectivity in static sensor networks. The emphasis is put in partic-
ular on the problem of finding minimum transmission radii so that the network
is connected (i.e., there exists a path between any two nodes in the network).
This problem is actually closely related to the problem of finding a minimum
spanning tree (MST), since the longest edge of such structure corresponds to the
minimal common radius achieving the connectivity. We thus discuss the problem
of approximating this structure in a distributed and localized manner. A few appli-
cations of the MST in the context of data aggregation are then presented, with a
couple of example protocols that exploit the localized approximation discussed
before. Finally, we discuss the problem of maintaining a distributed spanning for-
est over a uncontrolled sensor and actuator topology so that each sensor belongs
to the same tree as at least one actuator.

The second part of the chapter (starting at Section 7.5) is concerned with
problems related to biconnectivity. The question of detecting local critical nodes
and links in a distributed fashion is first covered. We then discuss several scenar-
ios involving biconnectivity of mobile robots (which may correspond to sensors
or actuators, depending on the cases). The first two scenarios address the prob-
lem of deploying biconnected sensors around a given point of interest (POI),
whereas the two last scenarios address the problem of biconnecting a network
that is initially 1-connected.

7.2 GENERAL APPROACHES IN STATIC SENSOR
NETWORKS

When the nodes are static, controlling the topology amounts to selecting only a
subset of the possible links for effective use according to some desired criteria
(distance between nodes, remaining level of energy, avoidance or favoring of
cycles, etc.). There are essentially three ways of proceeding:

1. Selecting particular neighbors based on other criteria than the sole dis-
tance between them. We refer to Blough et al. (2006) as an example of
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such selection, where the criterion is to minimize the number of symmet-
ric links so that interferences are bounded. The topology is designed by
maintaining the number of neighbors of each node below a value k while
guaranteeing the overall connectivity with high probability. The proposed
protocol consists of two message exchanges. First, all nodes transmit their
ID using the maximal emission power. Upon reception, each node i builds
a list Li containing its k nearest neighbors. Then each node transmits its
list using again, the maximum power. A link between two nodes is then
kept if and only if it belongs to the k closest neighbors of each other.
While the value k needed for connectivity with high probability is log-
arithmic, their experiments showed that k = 6 was the “magic” number
above which the network is always connected in practice.

2. Using an adjusted transmission range, possibly being different for each
node, and then using all neighbors within that range. While being very
energy efficient, the problem of this approach is that medium access con-
trol (MAC ) protocols become complicated, and a vast majority of the
existing ones, which assume symmetric and same transmission powers,
does not work well in this context.

3. Using an adjusted transmission range, but with the same value for every
node. This option is often preferred over the previous one, and can also
serve as a prior step to further selection. The main question here is to
find the minimal value that still guarantees the network connectivity.

We now discuss the construction of a MST, that one can see as being closely
related to the first and the third approaches.

7.3 THE MINIMUM SPANNING TREE

MSTs are emblematic example of topological structures commonly used in com-
munication networks. In a graph G = (V, E), an MST is a connected subset of
the graph that contains all the vertices and minimizes the overall sum of its edge
lengths (or more generally their weight). A well-known centralized algorithm to
build such a structure is the Kruskal’s algorithm, which mainly works as follows.
All edges of E are sorted in the increasing weight order, and a new empty set
E′ is created. For each edge e in the ordered set E, e is added to E′ if it does
not create a loop in G′ = (V, E′). The resulting graph G′ is an MST of G.

The Figure 7.1 gives an example of MST that has been built over a random
UDG. As usual, in wireless networks, the length of the edges was used as their
weight. Note that if several edges have the same length, then several equivalent
MSTs may exist, but this nondeterminism can be easily broken based on additional
parameters (such as a comparison between nodes IDs).

An interesting fact about the MST is that its longest edge also corresponds to
the optimal common transmission radius (i.e., the minimal radius such that net-
work connectivity is preserved). This follows directly from Kruskal’s algorithm,
this edge being the last added edge in E′.
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Figure 7.1 A minimum spanning tree
on top of a random unit graph.

Considering a few related results, Penrose (1999) proved that the “furthest
nearest” neighbor of a node in the network, and the longest MST edge, have
asymptotically (when n approaches +∞) the same value. The probability of
connectedness exhibits a very sharp transition from 0 to 1 just before the critical
value (Bettstetter, 2002). Another interesting fact is that an important amount of
energy can be saved if lesser connectivity is required. Santi and Blough (2003)
showed for example that, in two and three dimensions, halving the critical trans-
mission range of the nodes still keeps 90% of them connected within a same
component.

While the problem of building an MST and finding the optimal transmission
range are closely related, both of them require to consider global knowledge such
as the size and density, or the spacial distribution of nodes. The problem is then
to approximate these optima in a distributed fashion. We present below a few
approaches for doing so, based on a localized approximation of the MST.

7.3.1 Localized Approximation of the Minimum
Spanning Tree (LMST)

Localized minimal spanning trees (LMSTs), introduced in Li et al. (2003) and
already discussed in Chapter 2, are distributed structures that approximate the
MST using only local information. More precisely, each node u is assumed to
collect position information of its 1-hop neighbors, then to compute the local
MST that covers itself and its one-hop neighbors (including edges between these
neighbors, possibly deduced from their positions). Then, an edge (uv) belongs
to the LMST if and only if is belongs to the local MST of both u and v.
For illustration purpose, we provide in Figure 7.2 the results obtained using this
algorithm, as opposed to the optimal solution given in Figure 7.1. As one can see,
just a few cycles (3) were created. Considering that only one-hop information
was used, the approximation can be qualified as good.

On the basis of the observation of Penrose that the longest edge of the
MST corresponds to the optimal transmission range value, Ovalle-Martinez et al.
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Figure 7.2 Localized minimum
spanning tree.

(2005) proposed to use the LMST algorithm to find this value. More precisely, the
basic idea was to find the longest LMST edge (that approximate this value) using a
wave propagation within. However, it was observed in this paper that even a very
small number of additional edges (such as those creating a cycle in Figure 7.2,)
representing less than 3% in their experiments (on networks with up to 500 nodes)
may extend the range value by about 33%. In turn, this 33% of range value may
represent an increase of 50% or more in energy consumption, depending on
the power attenuation factor that is considered. A quasi-localized scheme is thus
proposed in the paper to remove additional edges of the LMST , using, in average,
less than seven messages per node. This procedure is a loop breakage procedure,
which iteratively follows dangling edges from leaves to loops. The loops are
then broken by eliminating their longest edge. These procedures continue until
they all end up at a same node, considered as a de facto leader, which can learn
the value of the longest edge in the process, and broadcast it back to the other
nodes. This procedure operates only in two dimensions, since it is based on a
face routing scheme (see Chapter 4 for details on face routing).

7.4 DATA AGGREGATION

A common scenario of sensor networks involves the deployment of hundreds or
thousands of low-cost, low-power sensor nodes in a region from where infor-
mation will be collected periodically. Sensor nodes must sense their nearby
environment and send the information to a sink or actuator, from which the
collected information can be further processed or made available to the user. In
the most basic reporting schemes, each sensor independently sends its data to
the associated actuator using routing operations that generates a lot of redun-
dant traffic if the data is geographically or temporally correlated for example,
if two neighboring, or successive, measure values are expected to be close to
one another). Data aggregation arises from the observation that most of this
redundancy could be avoided if the data were partially processed locally to the
sensors, for example, by averaging it over time or space before forwarding it.



190 Chapter 7 Topology Control in Sensor, Actuator, and Mobile Robot Networks

This is what data aggregation does, by applying fusion/consolidation functions
to the data along its way to the sink. Example of such functions include aver-
age, maximum, minimum, sum, count , or deviation , that can be applied either
periodically or on-demand.

Once these functions are chosen and combined, the main problem of data
aggregation is to build the overlay structure along which data will be effec-
tively aggregated. This structure must be as efficient as possible to allow a
fast aggregation while maximizing the lifetime of the network (i.e., the number
of aggregation cycles or rounds , before energy depletion).

A very common type of structure in this context is the tree, which represents
a natural hierarchical organization where parent nodes collect and aggregate the
data coming from their children, before forwarding their own data in turn. At
the top of the tree is the sink (or actuator). Figure 7.3 gives an example scenario
where sensors are reporting toward four actuators. Here the trees are set up in
such a way that the sum of edge lengths between sensors and actuators are
minimized. Other criteria such as minimizing the number of hops or favoring the
nodes with more remaining energy could be used instead.

In order to be realistic and efficient in the context of sensor and actuator
networks, an algorithm to build such a structure should have some important
properties. First, the algorithm should be distributed since it is extremely energy
consuming to calculate the optimum paths in a dynamic network and inform oth-
ers about the computed paths in a centralized manner. The algorithm must scale
well with increasing number of nodes. Another desirable property is robustness,
which means that the routing scheme should be resilient to node and link failures.
The scheme should also support new node additions to the network, since not
all nodes fail at the same time, and some nodes may need to be replaced. In
other words, the routing scheme should be self-healing. The final and possibly
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Figure 7.3 Data aggregation trees based on the cumulative distance to the sink.
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the most important requirement for a data aggregation scheme for wireless sensor
networks is being energy efficient.

One common approach to build an aggregation tree is to flood a packet from
the sink (or actuator) so that every node can select a parent among the nodes
from which it received the packet. The data is then aggregated along this so-
constructed hierarchy. The problem with flooding techniques (some of which are
detailed in Chapter 2) is that this may generate a lot of redundant messages,
be problematic with respect to possible interferences, and more generally, cost
a significant amount of energy, since several retransmissions happen uselessly.
In Tan et al. (2007), the idea to build and maintain an underlying LMST was
proposed, which is considered as the topology during the flooding operation, so
that the overhead of messages is much reduced (the same principle may also
work with other structures such as the relative neighborhood graph , as pointed
out by the authors).

A set of three protocols, called localized power-efficient data aggregation
protocols (L-PEDAPs), are proposed. Their variations correspond to different
strategies of parent selection. According to the decisions made during this flood-
ing process, the tree is yielded. The three methods are: (i) choosing the first node
from which the flooded packet is received, (ii) choosing the node that minimizes
the number of hops to the sink, and (iii) choose the node that minimizes the
total energy consumed over the path to the sink. Note that the first and second
methods are nearly equivalent in sensor networks, since the processing time of
messages overcomes their physical transmission time over the air, making the
transmission time quasi-proportional to the number of hops.

Since the underlying structure (here, the LMST ) can be locally maintained,
this solution accommodates new node arrivals and departures of existing nodes.
The authors also propose power-aware versions of these protocols that con-
sider the energy level of nodes while constructing the underlying structure.
Finally, the paper derives a theoretical upper bound for the lifetime in terms
of the first node failure, and simulation results show that the protocols achieve
up to 90% of this upper bound.

7.4.1 Delay-Bounded and Power-Efficient Data
Aggregation

While the purpose of the LMST is to build an energy-efficient structure by select-
ing the shortest edges, it is not optimal with respect to delay considerations. In
Xu et al. (2009), the authors propose a data aggregation protocol where a LMST
is first considered, then modified at reporting time in order to match additional
delay constraints. As with most existing solutions for delay-bounded data aggre-
gation, the metric used here to approximate the delay of a communication is the
number of hops. Indeed, among the delays experienced by a packet at each hop,
the distance traveled over the air is negligible compared to the time required to
process it at the nodes, which can be considered equal for each node when all
packets are of the same size. The delay experienced by a packet is thus directly
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proportional to the number of hops it travels. The proposed algorithm, called
desired hop progress (DHP), allows to respect given delay bounds while using
significantly less energy than the known competitor in Melodia et al. (2005) (from
25 to 75% less energy consumption and up to 123% network lifetime depending
on the configurations). We detail it now.

As with the previous algorithm (L-PEDAP), a tree is built on LMST edges
when an actuator (they can be several) floods the network with a request. Thanks
to a specific retransmission mechanism, every node computes and memorizes
several parameters during this process, the main of which is the hop distance to
the sink. Two kinds of distances are actually memorized: the localized minimal
spanning tree-based distance (LD), which represents the number of hops to the
actuator using only the LMST edges, and the unit disk graph-based distance
(UD), which is the number of hops to the actuator if any edge could be used.
These different distances are illustrated in Figure 7.4, where thick edges represent
the LMST-based tree, and all edges together, the UDG. The aggregation process
then starts from the leaves to the actuator as explained below.

Every request (packet flooded) contains information about the delay that
must be respected during this aggregation. If this delay is achievable using only
LMST edges (that is, if for every node, LD is equal to, or lower than the desired
delay), then the aggregation occurs as with L-PEDAP using only these edges.
Otherwise, the reporting nodes try to find shortcuts outside of the LMST, using
the UDG distance. More precisely, before sending the aggregated packet to its
parent, every node calculates a particular ratio to decide whether using LMST
edges is sufficient or a shortcut is necessary. This ratio, called dhp, is defined as:

dhp =
⌈

LD

Delay − MED

⌉
, (7.1)
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Figure 7.4 Example topology for the DHP protocol.
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where MED (most experienced delay) is the number of hops already done by
the children. The meaning of this ratio is actually to represent the LD distance
that should be gained at every next hop so that the delay is finally matched. If
this value is higher than 1, then it determines which level of shortcut should be
ideally used. Considering the scenario given in Figure 7.4 with a delay limit of
3, this leads to the following execution.

Since node 8 has a UD equal to the required delay, it cannot accept any child
(because the delay could not be respected whatever the shortcuts). Node 9 will
therefore not be considered for the aggregation. Since nodes 3 and 6 have both a
dhp value of 2 (� 6

3−0�), they try to apply a shortcut to gain two LMST hops, and
thus select node 2 as parent. Nodes 4, 5, and 8 compute their dhp (also equal
to 2), and thus select node 1 (shortcutting node 2). Node 2 then computes dhp
(also equal to 2), and takes node 7 as parent. For the same reasons again, node
1 decides that node 0 is its parent. In turn, node 7 finds that its report has to be
sent directly to the actuator, as a single last hop is allowed (Delay − MED = 1).
Finally, node 0 naturally determines the actuator to be its parent. While almost
no LMST edges were used in this example, the point of this protocol is that such
edges are always used when the delay constraint allows it, which tends to offer
both delay-bounded and power-efficient aggregation at the same time.

Two variations of the DHP protocol were also proposed in the same paper
(DHPA and DHPAC), to integrate it with sensor activity scheduling and connected
dominating set (CDS), respectively. Detailed discussion on CDS can be found in
Chapter 1. The two variants require fewer sensors to report and thus have reduced
bandwidth usage and improved energy efficiency. The first variant, DHPA, adopts
a localized area coverage algorithm (Gallais et al., 2006) for selecting an active
node set. Active nodes monitor the environment and generate reports, whereas the
others switch to sleep mode for energy saving. The DHP protocol is therefore run
only on active nodes. In this area coverage algorithm, each node sets a time-out
t to start coverage evaluation and schedule its activity. Considering that nodes
with shorter t will have a higher chance to stay active, they define t = c/Erest

(c is a constant, and Erest is remaining nodal energy). This definition favors
energetic nodes. That is, the more residual energy a node has, the more chance
the node gets to work. The second variant, DHPAC, is a combination of DHPA
and the localized CDS algorithm from Carle and Simplot-Ryl (2004). In this
combination, the CDS algorithm is run on active nodes determined by the area
coverage algorithm. Since each active node either belongs to the CDS or has a
direct neighbor in it; non-CDS nodes will report to their closest CDS neighbor,
while CDS nodes will run the DHP protocol to organize data aggregation within
the CDS.

7.5 SPANNING TREES IN UNCONTROLLED
DYNAMIC TOPOLOGIES

The discussion below addresses the scenarios where sensors are to move in an
uncontrolled fashion, which is for example the case when they are carried by some
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physical actors of the considered scene (e.g., animals, vehicles, virtual insects,
or robots whose movements are to be determined by external parameters). The
problem of maintaining distributed spanning trees over dynamic topologies has
been extensively studied these past few decades, especially in the two research
areas of dynamic graphs and mobile ad hoc networks. To the best of our knowl-
edge, a vast majority of approaches, if not all of them, considered the problem of
building a single spanning tree to cover the whole network. Generally, tackled
from the angle of self-stabilization , these approaches consider topological events
as faults that induce a nonlegal state, which the algorithm must correct. The
correction is then achieved when the whole network is covered by a single tree,
which is the legal state. To give a few references on this family of approaches,
one can cite the distributed graph algorithm in Awerbuch et al. (1993), which
exhibits the shortest construction time “from scratch” [recently adapted to the
message passing model in Burman and Kutten (2007)], and Gaertner (2003) that
describes a number of comparable approaches.

While most proposed algorithms engage a complete reconstruction of the tree
after each topological failure, some other more realistic approaches [e.g., (Baala
et al., 2003), (Abbas et al., 2006)] attempt to correct only the local discrepan-
cies resulting from the link failures. However, these algorithms still require some
stabilization time during which the separate subtrees are unavailable and incon-
sistent. An important consequence is that they simply cannot deal with topologies
that change quicker than the stabilization time.

Up to now we discussed scenarios where the connectivity of the whole
network was required. This might not always be the case, however. Most appli-
cations for sensor and actuator networks do not actually require that a path exists
between a sensor and all of the actuators, the point being that sensor must only
be able to report information to, or communicate with, at least one actuator (or
perhaps a few, for fault tolerance). On the other hand, is it of utmost importance
that such communication is always achievable, that is, the underlying supporting
structure is always available.

A novel approach addressing highly dynamical topologies was proposed in
a recent paper (Casteigts et al., 2009). The basic idea behind this approach is to
renounce building a single tree covering the whole network, and instead consider
maintaining a forest of several trees that grow opportunistically and recover a
consistent state in one single operation after any topological failure in such a
way that the two parts of a given broken tree remain transparently usable. The
key point to achieve such property is that both mergings and splittings of the
trees are purely localized events that do not generate any wave propagation. The
algorithm relies on the circulation of tokens whose number is strictly maintained
at one per tree. The difference with other token-based approaches is that the
walk of each token is limited to the edges of its tree, which offers some very
specific properties. The primary property is that every node knows at anytime,
which one of its local edges leads to the token, this edge being simply the one
through which the token went out after its previous visit. The consequence is
that when an edge of a tree is broken, one of the two end point nodes knows
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Figure 7.5 The spanning forest algorithm.

that its remaining part of the tree is token free, and that it is now the “highest”
node on the route that led to the lost token. As a consequence, it can locally
regenerate a new token and resume the circulation transparently for the other
nodes.

The principle of this algorithm can be detailed by a small set of localized
modification patterns, depicted in Figure 7.5. Initially, every vertex is a one-
vertex tree that has its own token (label T). When two tokens are located on
neighboring vertices, they are merged and the corresponding edge is marked as a
tree edge (rule r3). This marking use a different value on each side (1 and 2) to
reflect the orientation induced by the remaining token. If no merging is locally
achievable, the token is transmitted to any neighbor in the tree (rule r4), and
the orientation mark is updated consequently. For any given node, if the local
edge leading to the token is broken, then a new token is regenerated locally (rule
r1). The other side of the broken edge does not perform any particular operation
(rule r2).

An interesting question in the context of sensor and actuator networks is
whether the expected size of the trees is large enough to guarantee that each
sensor has at least one actuator in its tree at anytime. In other words, one might
want to answer the following question: “given a number of sensors, their density
and the expected rate of topological changes, how many actuators are needed
so that the probability, to have at anytime at least one actuator in each tree,
is above a given threshold?”. In Casteigts et al. (2009), the authors provided
a first element of answer by characterizing the expected merging time of two
given trees, as a function of their size and the number of links available between
them. The road between these first results and the complete answer may still be
important, though.

7.6 DETECTION OF CRITICAL NODES AND LINKS

In sensor and actuator networks, the failure of some nodes or links, if generating
several partitions of the network, may be fatal for collecting data from the field
or performing certain actions on sensors. It is expected, however, that the net-
work exhibits some critical connectivity before partitioning. Recognizing such
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properties in a timely manner could allow to perform some data or service repli-
cation, so that the network can continue to function after the partition occurred.
This kind of detection may also be used at deployment time (e.g., while deciding
a common communication radius) to ensure that no such critical node or link
exists, that is, the network is biconnected . Both approaches may be considered
to add fault tolerance to the network. We discuss below some ideas for detecting
critical links and nodes.

Algorithms for detecting critical nodes and links based on global knowledge
are well known. However, their use in sensor networks is limited since this
requires the entire topology to be known by a single entity, which is not scalable
and implies a delay between topological changes and the system reactions. It
appears therefore preferable to try to detect critical links and/or nodes in a local
and distributed manner, even if making possibly a few appreciation mistakes that
imply a more “pessimistic view” of the connectivity (an element seen as critical
while not being so).

In a global context, a node or link is said to be critical, if its removal discon-
nects the network, that is, if this partitions it into several connected components.
The definitions of what critical nodes and links are must be slightly modified in
a localized context. As introduced in Jorgic et al. (2004), a node can be said to
be locally critical if its removal disconnects the subgraph of its p-hop neigh-
bors. In the case of links, several definitions can be considered, and three were
proposed in the same paper, based on the method used to look at the local con-
nectivity. These methods are illustrated in Figure 7.6. The first method consists
of looking at the p-hop neighbors of both end points and see if some are in
common (Fig. 7.6a). The second one is to initiate a face traversal on both sides
of the tested link in order to see if the other end point is reached before two
hops (Fig. 7.6b). Finally, the link can also be decided critical if its end points
are critical themselves, and this information is already available (Fig. 7.6c).

Depending on whether position information is available to the nodes, a
variation of each definition can be considered, as discussed in Jorgic et al. (2004).
Let us consider the simple example given in Figure 7.7, where nodes A and B

must determine if their common link is critical, based on a one-hop neighboring

A B

Nk (A) Nk (B)

A B

loop1

loop2

A B
? ?

(a) (b) (c)

Figure 7.6 Localized detection of a critical link (here (AB)). For each method, the link is
decided critical if the caption formula is true.
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Figure 7.7 Impact of the availability of position information
on the detection of criticality.

information. If the respective positions of C and D are known, then the fact
whether a link exists between them or not can be established without additional
information, while this is not possible using only topological information. Obvi-
ously, such position-based deduction assumes the UDG model without obstacle.
These two variations are denoted as k-top- and k-pos-criticality by the authors.

Experiments using random UDGs showed a high correlation between global
and local decisions. The only difference is when alternative routes exist, but are
relatively long. The point is that really critical elements will be detected as such,
and any wrong appreciation is only generated by excess of caution (in case of
reactive replications) or a slight excess of connectivity (in case of link selection).

These notions can be generalized to the case of critical k-connectivity of the
network, as proposed in Jorgic et al. (2007). In the first protocol of this paper,
each node makes a criticality decision by verifying whether or not each of its
p-hop neighbors has a degree (number of neighbors) of at least k. The second
protocol tests also whether the subgraph of the p-hop neighbors of a given nodes
is k-connected. The third protocol also verifies whether this subgraph contains
any critical nodes.

7.7 BICONNECTED ROBOT TEAM MOVEMENT
FOR SENSOR DEPLOYMENT

We consider here, the problem of deploying static sensors around a POI using
a fleet of mobile robots able to carry them. We describe the solution proposed
in Li (2009). Here, the number of mobile robots is considered arbitrary (and
limited), and each one is initially supplied with an arbitrary number of sensors.
The problem is then to deploy collaboratively the sensors so that their topology
forms a triangle tessellation around the POI. The choice of a triangle tessellation
is motivated by its interesting geometrical properties that create a near-optimal
coverage by the sensors while making them biconnected as a by-product. The
main concern is to ensure that the robot network also remains biconnected during
the deployment, while minimizing the sum of their moves.

The principal steps of the proposed protocol are as follows. At the begin-
ning, the robots are randomly scattered in the region. They first run an auxiliary
protocol such as greedy-rotation-greedy (see Li et al., 2007 or Chapter 10) to
gather around the POI in several concentric hexagonal layers that form a trian-
gle tessellation at the local scale. Let us first assume that the number of robots



198 Chapter 7 Topology Control in Sensor, Actuator, and Mobile Robot Networks

is such that the outermost layer is complete (as with the seven-robots hexagon
depicted in the middle of Fig. 7.8). Each robot starts by dropping one sensor
at its position; then the whole group of robots shifts in one direction, and starts
a circular (or more precisely, a hexagonal) course around the already deployed
sensors, dropping new sensors along their way. This process repeats until all
sensors have been deployed. Note that each circumvolution can deploy several
layers, depending on the group diameter.

Let us call frontier robots the robots that are located in the front/head of
the group with respect to the current direction (i.e., robots 2, 1, and 6 on the
hexagon representing the group after the initial shift). Frontier robots are those
in charge of dropping their sensors when they encounter an empty virtual vertex
of the tessellation. Whenever the group arrives at a corner of the hexagon, the
frontier nodes change according to the new direction (in the same example, the
new frontier robots after the first corner has been reached will be robots 1, 6,
and 5). If the frontier robots run out of sensors at some point, the second layer
of robots (e.g., 5, 0, and 3 between Corner 0 and Corner 1) will take over the
task. It is however expected that a reorganization of the robots within the group
may be required in some situations, especially if the initial supply in sensor is
not uniform among robots.

The problem becomes more complex when the number of robots does not
correspond to a perfect hexagon. Some sketches of solutions given in Li (2009)
are depicted on Figures 7.9a and 7.9b. The first picture corresponds to the case
where the outermost layer contains only one robot. It is suggested that robots in
the inner hexagons behave as previously, while the robot in the outermost layer
rotates around the group when a corner is encountered (this robot is expected
to be relatively quickly depleted in sensors, thereby forcing more frequent reor-
ganizations of the group). The second picture corresponds to cases where the
outermost hexagon contains more than one robot. In this case, the robot team is
to move using a different pattern. Here the team is a hexagon with two robots on
the sides of the frontier. The other extra robots can be placed around the core, for
example, at the positions marked by empty circles. As for the previous case, the
outer robots will have to move within the group when a corner is encountered.

7.8 AUGMENTATION ALGORITHM FOR ROBOT
SELF DEPLOYMENT

In the same vein as the previously discussed scenario, the deployment of a bicon-
nected network of sensors around a POI is addressed in Falcon et al. (2009). The
major difference is that sensors are themselves endowed with movement capa-
bilities, and are therefore capable of self-deploying around the POI. Here, the
sensors are released one at a time from potentially different remote places.

The main idea of the proposed protocol is to incrementally build a perfect
triangle tessellation around the POI (this tessellation structure is chosen here for
the same geometrical reasons as previously discussed), while minimizing the sum
of sensors moves. This protocol roughly works as follows: the first sensor moves
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Figure 7.9 Robot team behavior. (a) One robot in the outmost layer. (b) Several robots in the
outmost layer.

directly to the exact position of the POI. Then, when a new sensor is released, it
moves toward the POI until entering the range of a sensor that already belongs to
the tessellation. At this point, the already deployed sensor is in charge of finding
an appropriate tessellation position to ask the new node to move at.

The main objective here is to minimize the sum of robots’ movements while
keeping the tessellation centered around the POI. The kind of choice resulting
from these constraints is illustrated in Figure 7.10, where an empty tessellation
vertex is available at the opposite of a newly arriving node (node N ). Here, we
should prefer to shift every node in the diagonal instead of asking the new node
to turn around the tessellation (because this latter movement represents a much
larger overall distance). However, such decision implies that a tessellation node
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N
A Figure 7.10 Minimizing the sum of

movement to place a new node.

can be aware of, or inquire for, an empty remote position in the tessellation. As
forcing all nodes to memorize (and synchronize) a global view of the tessellation
is not reasonable, the challenge will be to design a distributed protocol where
nodes can collaboratively decide what destination can be assigned to a new node.
Note that the question of how uniformly the movements are distributed among
robots may arise as a second step, since here the already deployed nodes can be
asked to move again afterward. Another interesting result could be to characterize
an upper bound on the deploying time of one sensor, in order to determine how
frequently they can be initially released (this time might increase with the number
of sensors previously deployed).

7.9 BICONNECTIVITY FROM CONNECTIVITY
WITHOUT ADDITIONAL CONSTRAINTS

We now discuss some scenarios where mobile robots were already randomly
deployed but still assumed one-connected. From this initial connected network,
the objective is to turn the network biconnected using only localized movement
decisions and minimizing the total movements of robots. The solution presented
in this section comes from Das et al. (2009).

From a global point of view, a biconnected network is a network that does
not contain any critical nodes nor critical links, that is, that remains connected
if any node or link is individually removed. Since a link is critical only if at least
one of its end point nodes is critical, making the network biconnected comes to
turn every critical node into noncritical. By looking at the Figure 7.11, it appears
intuitively clear that the global criticality of a node (e.g., N ) cannot be locally
decided, since it depends on some remote edges (e.g., AB), whose existence is
locally unknown.

The algorithm is based on the concept of p-hop criticality , already discussed
in 7.6. More practically, each node is assumed to collect information about its
p-hop neighbors through exchanging and relaying hello messages over multiple
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Figure 7.12 Simple scenario for the algorithm from citation for Das et al . (2009). (a) Initial
network. (b) Resulting network.

hops. If the p-hop neighborhood of a node n appears to n as disconnected without
itself, then n locally decides that it is p-hop critical (we will simply say critical
in the following text). In the example depicted in Figure 7.11, N will decide that
it is critical (unless p ≥ 5).

By definition, the movement of any critical node is susceptible of discon-
necting the network. The basic idea of this protocol is thus to use only noncritical
nodes to create biconnectivity, while keeping the critical nodes static (until they
become in turn noncritical and able to move). The algorithm is thus based on a
small set of predetermined actions that critical nodes trigger on their noncritical
neighbors according to the situation. In particular, the fact that a critical node
has, or has not, other critical neighbors will generate different actions. Let us
define a few more concepts before detailing these actions.

A critical node is called available if it has at least one noncritical neighbor,
in other words if it has a neighbor that can move. This notion of availability can
be used to decide which one among some critical neighbors is to pilot the local
actions. More precisely, the pilot node in this case (also called critical head ) must
be available and have a larger ID than any of its available critical neighbors (in
case of tie). Considering the example in Figure 7.12a, nodes 2, 4 and 5 are all
critical. Since 4 is larger than 2 and node 4 is available, node 2 is not a critical
head. Since 5 is larger than 4 and 5 is available, node 4 is not a critical head
neither. Node 5, here, is the only critical head. Note that if node 2 had a larger
ID than node 4, there would have been two critical heads here instead of one
(nodes 2 and 5).
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The algorithm works as follows. At the initialization stage, each node
checks whether it is a p-hop critical node, and will continue to check it
after every hello message exchanged. Whenever a node detects that it is
p-hop critical, it broadcasts a critical announcement packet to all its direct
neighbors, including the information about its availability . Two cases are then
possible:

1. If the node has no critical neighbor, then it selects two of its neighbors
n1 and n2 that belong to separate “biconnected components” and asks
them to move toward each other. If the distance between n1 and n2

is d , then each node should move a distance of (d − r)/2, where r is
the communication range. In case of several possible choices, the pair
minimizing d is chosen.

2. If the node has one or several other critical neighbors, then it figures out
whether it is a critical head or not, and if so, it asks a noncritical neigh-
bor to move toward one of the other critical neighbors. Here, the selected
neighbor should move a distance of d − r . As in the previous case, the
pair is selected so that both nodes belong to separate “biconnected com-
ponents” with the distance d being as small as possible.

If a node receives a request of movement while being already in the pro-
cess of moving, it simply ignores it; if it receives several requests at the same
time from different neighbors, it considers the request coming from the one
with the largest ID. Note that the resulting movements may thus not create a
new link at every expected place, which is the case for example, when a node
moves toward another, which finally moves elsewhere (in case 1). However,
since the algorithm is incremental, this situation is likely to be solved at a later
iteration.

Considering again the network given on Figure 7.12, we will describe the
execution sequence transforming the initial topology (Fig. 7.12a) into a bicon-
nected topology (Fig. 7.12b). As explained above, nodes 2, 4, and 5 are initially
critical, but only node 5 is a critical head. It is thus the first node to act by
asking node 6 to move toward node 4. Then node 5 becomes noncritical and
node 4, which has become a critical head, asks node 5 to move toward node
2. Finally, node 2 remains the only critical node, and applies the first case by
asking nodes 1 and 3 to move toward each other, after the network is bicon-
nected.

This algorithm was experimentally compared to the centralized algorithm
(Basu and Redi, 2004). Simulation results showed that the total distance of
movement of robots is significantly lower with the localized algorithm (about
2.5 times for networks with density 10). However, this algorithm does not totally
guarantee biconnectivity, and may even disconnect the network in some particular
cases (e.g., when two noncritical nodes happen to be in-between some separate
components, and they are both asked to move simultaneously away from each
other).
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7.10 BICONNECTIVITY FROM CONNECTIVITY WITH
ADDITIONAL CONSTRAINTS

We are interested here, in the same problem as in the previous section, that is, to
achieve biconnectivity of mobile robots starting from a random (but connected)
topology. Here however, the objective is also to maximize the overall coverage
and minimize the network diameter at the same time. Every robot n is assumed
to have a communication range, and a coverage range. The first, denoted c(n),
indicates up to which distance other nodes can receive messages from c(n). The
second, denoted s(n), is the radius defining the area where the robot is to serve.
For example, if n is a sensor, then s(n) corresponds to its sensing range. If
n is an actuator, then s(n) may correspond to the area in which sensors are
monitored by n. The ratio between these ranges is usually considered to satisfy
cr(n) > 2 × sr(n). The overall coverage of the network is defined as the union
of the coverage areas of all the robots. One can intuitively see that the closer the
robots, the smaller the overall coverage due to potential overlappings.

The diameter of a network is defined as the “largest” shortest path between
any two nodes. More formally, if d(u, v) is the length of the shortest path between
two vertices u and v, then the diameter of a graph G = (V, E) is defined as
max(d(u, v) : u, v ∈ V ). Because the diameter bounds the number of hops of
transmissions, making it small is crucial for most real-time applications. It can
be intuitively seen that the closer the robots, the smaller the diameter of the
network. Hence, the concepts of diameter and overall coverage appear somehow
antinomic and may present contradictory objectives for an algorithm.

The Figure 7.13 illustrates this point with a topology of four biconnected
robots. In Figure 7.13, the diameter has been reduced in the extreme (1), which
generates a substantial overlap of the coverage areas. If we take the same network
and move the nodes away from each other until their coverage areas do not
overlap (Fig. 7.13b), then the diameter of the network increases (here to 2).
However, as depicted in Figure 7.13c, some geometrical organizations such as
the triangle tessellation seems to offer an interesting trade-off between diameter
and coverage.

Hence, it appears a good option to consider this pattern of organization.
However, since we consider here, a scenario where the nodes are initially already

(a) (b) (c)

Figure 7.13 Three configuration examples. (a) Maximum diameter. (b) Maximum coverage.
(c) Triangle tessellation.
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deployed, we do not want to build such a perfect topology over the whole network
(but rather use it to determine local organization of neighboring nodes). Let us
nonetheless continue with some ideas illustrated on a whole tessellation. Using
such structure, regulating the trade-off between coverage and diameter can be
done my merely tuning the distance between neighboring nodes without changing
the organization geometry (the smaller distance, the higher priority for a small
diameter). This is illustrated in Figure 7.14, where the Figure 7.14a illustrates the
choice to favor coverage (with a diameter of 3), and Figure 7.14b one the choice
of reducing the diameter to 2 (but with overlapping coverages). Because the only
difference between favoring coverage and diameter lies in the distance between
nodes without modification of the topology geometry, this suggests that part of
the trade-off can be achieved using only localized operations (e.g., determining
the local distance to direct neighbors).

The algorithm presented in the previous section (Das et al., 2009) can be
adopted so that the resulting network tends to have a smaller diameter and/or
a higher coverage depending on a given trade-off parameter. This adaptation
could also apply localized triangle tessellation pattern that helps improving both
criteria at the same time.

As a by-product, the original algorithm already reduces the diameter of the
network by moving the robot closer to one another. This aspect could however
be further improved by changing the way the nodes move. For example, instead
of simply asking two nodes to move half the distance toward one another to get
connected, one could first check if one of them has no additional neighbor, and
then ask only this one to move. More generally, making the nodes with lower
degrees move more than the others could help decrease the network diameter
(although it could also raise some new problems at the same time).

Once the network becomes biconnected, a kind of localized triangle tessel-
lation could be achieved by using repulsive forces, pushing the nodes away from
one another equally, and therefore increasing the coverage. Here, the range of
the force would serve as the trade-off parameter between coverage and diame-
ter. The Figure 7.15 shows a simple scenario where such forces were applied
after the original algorithm. These forces may be applied once the first algorithm
terminates, or they could be merged with it.

The process of applying repulsive forces should however carefully avoid to
bi -disconnect the network. Note that the use of virtual forces, introduced in Zou

(a) (b)

Figure 7.14 Different choices of
trade-off. (a) Favoring the coverage.
(b) Favoring the diameter.
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(a) (b) (c)

Figure 7.15 Mixing biconnectivity and repulsion forces. (a) Initial topology. (b) After DLNS.
(c) After repulsion.

and Chakrabarty (2003) in the context of mobile sensor networks, was recently
used to maximize the overall coverage of a robot network.

In Guang et al. (2008), the authors consider an initial network that is not nec-
essarily connected and propose an algorithm to make it connected. It is assumed
that all the nodes know a common location (e.g., the base station) toward which
they can move. Each robot that arrives at this location (e.g., in range with the
base station) floods a packet so that every node that receives the packet is thus
aware of being connected with the others. Once all nodes are connected, virtual
forces are applied to maximize the coverage of the network.

In Liu et al. (2009), a localized protocol is proposed to biconnect a network
of robots from an initially nonconnected topology. The objective is to minimize
total moving distance of robots while maximizing sensing coverage of the net-
work. It assumes that robots have a common communication range and a sensing
range. Each robot is aware of locations of one-hop neighbors and the boundary
of the sensing region. As with the previous solution, all robots are supposed to
move toward a common position and maximize their sensing coverage. Here,
however, nodes move by following only two kinds of virtual forces. The first is
an attraction force that always draws every robot toward the common POI, and
the second is a repulsive force that is applied between every pair of neighboring
nodes. The simultaneous application of both forces (illustrated on one node in
Figure 7.16 ends up in a biconnected triangle tessellation centered on the POI
(such as the one on Fig. 7.17, which results from effective simulations). This is
due to the fact that each node is located on a loop which surrounds the POI when

POI

Figure 7.16 Neighboring repulsion and POI attraction.
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Figure 7.17 Topology resulting from 50
randomly deployed nodes.

the nodes come into equilibrium. Each node definitively stops moving when a
certain number of changes in directions for obtuse angles, called oscillations , are
detected. The final topology was proved to be biconnected if the network is stable,
and the proposed protocol was shown to be highly scalable. Another advantage
of this solution is that no communication is ever required beyond one hop.
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Abstract

In location service problem, mobile actuators send location update messages,
whereas stationary sensors send search messages to learn latest position of actu-
ators. The task is to minimize combined update and search message cost, while
maximizing success rate of finding target actuator and subsequently routing to it.
In the literature, many location service algorithms have been proposed for mobile
ad hoc networks, and they can be directly applied to sensor and mobile actuator
networks. This chapter reviews research efforts on this topic.

8.1 INTRODUCTION

In sensor and mobile actuator networks, actuators operate autonomously with
no fixed infrastructure or centralized control. They determine their own location
by the use of global positioning system (GPS) or some other type of position-
ing system, and register with location service. Location service tracks actuators’
location and enables sensors to discover actuators so that geographic routing or
other position-based algorithms can be applied. As an active subject, location
service has been studied for over a decade in wireless ad hoc networks. Existing
solutions can be directly applied to emerging sensor and actuator networks.

Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication.
By Amiya Nayak and Ivan Stojmenovic. Copyright © 2010 John Wiley & Sons, Inc.

209
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Location service has two ingredients: location update and actuator search.
After an actuator leaves its current position, it needs to update its location in
the network so that others can find it and keep routing packets to it. There
exist two basic approaches for routing toward an actuator. In the first approach,
when a sensor wants to route a packet by a geographic routing protocol such as
Greedy-Face-Greedy (GFG) (Bose et al., 1999) to an actuator, it first searches
for that actuator’s latest location. In most cases, the search ends up at destination
location, followed by report from destination back to the source, containing the
exact position of destination. Since the position of the source can be included in
the search message, this report can be carried by a georouting task. Alternatively,
the source may use currently available and inaccurate information on the location
of destination and route immediately toward that location, in the hope that the
position information would become more accurate as the message approaches
region containing destination.

As any other wireless ad hoc networking protocol, a location service algo-
rithm is expected to be efficient in bandwidth and energy usage, robust against
node mobility and node failure, and scalable to large-sized networks. Considering
its unique goal, it is also required to have the following properties:

• Discovery Guarantee:It guarantees success of actuator search in arbitrary
networks, as long as designated actuator is available.

• Load Balancing:It generates balanced load among network nodes with no
storage or communication hotspot.

• Locality Awareness:It ensures successful actuator search within distance
proportional to the distance from source to actuator.

In Section 8.2, we present a classification of existing location service algorithms.
In Section 8.3, location update policies are discussed. Sections 8.4, 8.5, and 8.6
review some typical location services that cover a range of design choices.

8.2 CLASSIFICATION OF LOCATION SERVICES

Several classification methods have been proposed for existing location service
algorithms in Stojmenovic (2002b), Camp et al. (2002), and Das et al. (2007).
Here, in this chapter, we shall present a classification as a modification of Das
et al. (2007). As depicted in Figure 8.1, at its top level are three classes, flooding-
based , quorum-based , and home-based , each with two subclasses at the second
level.

8.2.1 Flooding-Based Approach

This approach relies on flooding, which usually involves all or large portion of
nodes in the network, for location update and actuator search. It can be further
divided into two subclasses: proactive and reactive.
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Location service

Flooding-based Quorum-based Home-based

Hierarchical HierarchicalFlat FlatReactiveProactive

Figure 8.1 Classification of location services.

In proactive scheme, each actuator updates its location by flooding the net-
work periodically or when desirable. If flooding is restricted only within some
areas, actuator search will be directed to those areas, and it is sufficient that first
receiver nodes in the areas respond. If the flooding area, however, covers entire
network, then no actuator search is needed, as every node maintains the most
recent locations of actuators simply by listening to their flooding messages.

In reactive scheme, if a sensor cannot find fresh location of a target actuator,
it floods the network with a search message; currently recorded location and
mobility information of the actuator can be used to narrow the scope of flooding.
This approach normally does not have location update process.

8.2.2 Quorum-Based Approach

In this approach, location update and actuator search are directed to two different
subsets of network nodes. The two subsets are respectively called update quorum
and search quorum . They are carefully selected such that their intersection is
not empty. As common (rendezvous) nodes of update and search quorums can
provide the location information to the querying node as desired, success of
actuator search is guaranteed.

Compared with flooding-based approach, quorum-based location service has
less communication overhead as no potentially network-wide flooding is used.
The challenge is how to select appropriate members for matching quorums to pro-
duce rendezvous with smallest cost. Depending on whether a recursively defined
hierarchical structure is used for quorum formation, a quorum-based location
service can be further classified as flat or hierarchical .

8.2.3 Home-Based Approach

In this approach, each actuator selects a home region that is known to others, and
proactively sends location updates to nodes located in or closest to that region.
In order to locate target actuator, sensors send search messages toward home
region of the actuator, and the messages may possibly be redirected from there
to current location of the actuator.
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Home region could be a geographic area or point, determined by actuator
initial location or a hash function of actuator ID. Multiple home regions may be
used to reduce search cost, increase locality awareness, and improve robustness,
at the cost of location update messages. This approach can be viewed as a special
case of quorum-based approach, where update quorum and search quorum are
the same, and similarly divided into two subclasses: flat and hierarchical .

8.3 LOCATION UPDATE POLICIES

Almost all types of location service involve location update. The purpose of
location update is to propagate latest information of actuator location. There are
different location update policies, for example, distance-based , movement-based ,
time-based , and connectivity-based , which may result in different performance
in message cost.

In distance-based update, an actuator updates its locations whenever its dis-
tance to last reported position is long enough, for example, beyond a threshold
value. Considering distance effect (Basagni et al., 1998) (i.e., the larger the dis-
tance between two nodes, the slower they appear to move with respect to each
other), the actuator need update locations to nearby sensors more frequently than
to those farther away. This can be implemented by associating with each loca-
tion update message an “age” indicating how far from the message can travel its
sender, as suggested in Basagni et al. (1998).

In movement-based update, an actuator updates its location whenever it com-
pletes a predefined total “mileage” for mobility since last location update; in
time-based update, it updates its location at some time intervals. In connectivity-
based update, an actuator updates its location when its local network topology
changes to some extent since the last update; such change can be decided accord-
ing to geographic position information, as proposed in Stojmenovic et al. (2000)
and Su et al. (2000). Topology changes can be discovered from changes in
neighborhood in periodic beacons heard from neighbors. Changes can even be
predicted using estimated speeds and directions of movement of nodes.

Karumanchi et al. (1999) discussed when to update. They argued that
distance- and movement-based updates have limited usefulness in ad hoc
network and can induce unnecessary messages, for example, when nodes move
jointly in the same direction, or move within a small circle. They experimentally
concluded that the best strategy is connectivity-based update, whenever a certain
prespecified number of incident links have been established or broken since the
last update.

8.4 FLOODING-BASED ALGORITHMS

In this section, five representative flooding-based location service algorithms
have been reviewed: doubling circle update (Amouris et al., 1999), direction-
based update (Friedman and Korland, 2005), localized update (Yang et al., 2009),
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request zone search (Stojmenovic et al., 2003, 2006), and expanding ring search
(Kasemann et al., 2002). The first three schemes belong to proactive category,
while the last two belong to reactive category.

8.4.1 Doubling Circle Update

Amouris et al. (1999) presented a doubling circle location update scheme. In this
scheme, each actuator propagates its location information within circles C(i) of
increasing radii 2iR for i = 1, 2, 3, . . . Each of these circles is associated with a
refreshment timer. Whenever the timer expires (time-based policy), the actuator
broadcasts a location update message within the corresponding circle. In addition,
whenever the actuator moves outside a circle C(t) for some t (distance-based
policy), it broadcasts its location to all the nodes located within a circle of radius
2t+1R centered at its current position.

Actuator search (or direct routing to it) then follows these circles of last
updates. Sensors (source or intermediate sensors) forward a search message
toward the last reported position of target actuator, which since the last report
may have moved within the circle of some radius. As the message moves closer
to target actuator, its position information becomes more precise, and sensors are
able to direct the message toward center of circles with twice smaller radius than
previously, until target actuator is eventually reached. For instance, as illustrated
in Fig. 8.2, sensor S sends a message toward the last known position D of a
target actuator; on its way, the message is redirected to more recent position D′
and finally to exact position D′′.

Doubling circle update scheme is proactive flooding-based location service.
As a large update circle may contain all the network nodes, location update may
possibly convert to flooding, leading to large amount of message overhead and
limited scalability. A similar algorithm, using squares rather than circles, and
additional sophisticated techniques, is proposed in Li et al. (2000).

S

D

D′

D″

Figure 8.2 Doubling circle search and
update.
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8.4.2 Direction-Based Update

Friedman and Korland (2005) presented a direction-based location update
scheme. The network area is divided into a two-dimensional grid. Each actuator
floods entire network with its location at initiation. Then, each sensor maintains
the relative direction (Right , Up, Left , or Down) for routing a message to
every actuator along the grid. Location update obeys distance-based policy. Two
variants LS1 and LS2 were proposed.

Consider grid cell T in which an actuator is located. In LS1, all cells for
which T is on their right side and not above them are marked Right (the mark is
stored by nodes located in those cells); all those for which T is above and not to
their left are marked Up; and so on, as shown in Figure 8.3(a). In LS2, all cells
for which T is on their right side and below them are assigned two marks Right
and Down; all those for which T is on their right and above them are assigned
Left and Up; and so on, as shown in Figure 8.3(c).

For ease of description, define array DS = {Lef t, Down, Right, Up}.
Assume an actuator moves from its current cell to a neighboring cell in direc-
tion DS[i]. In LS1, the actuator updates after its movement the cells in direction
DS[(i + 1)mod4] along part of its old residing cell array orthogonal to direc-
tion DS[i], and those in direction DS[(i + 3)mod4] along part of its new
residing cell array orthogonal to direction DS[i], as shown in Figure 8.3b. In

(a)

(c)

(b)

(d)

Figure 8.3 Direction-based update: (a) LS1—before movement; (b) LS1—after movement;
(c) LS1—before movement; (d) LS2—after movement.
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LS2, it updates its entire old residing cell array and its entire new residing cell
array, as shown in Figure 8.3d.

To find a target actuator, a sensor sends a search message simply following
those locally recorded relative directions of the actuator in grid cells. After receiv-
ing the search message, the actuator replies the sensor with its current location.
This algorithm restricts location (precisely speaking, direction) updates within
bounded areas and thus has reduced message overhead. However, the presence
of empty cells requires modifications to the algorithm similar to those discussed
here for the quorum-based approach.

8.4.3 Geographic-Routing-Based Update

Yang et al. (2009) presented a localized location update scheme for routing to
a mobile actuator (e.g., data sink). The objective is to enable every sensor node
to maintain a routing next hop to the actuator for data dissemination. Routing
next hop is determined by geographic routing protocol GFG (Bose et al., 1999).
In this scheme, the actuator has the same transmission radius rc as sensors. It
broadcasts its location to every node in the network at initiation (once); then, it
starts to move around in the network and periodically exchanges hello messages
with neighboring sensors. When necessary, the actuator sends location update
messages, which are selectively forwarded by receiver nodes. Both controllable
mobility and uncontrollable mobility are considered. With controllable mobility,
the actuator knows where it goes and at what speed; with uncontrollable mobility,
it has no such knowledge. Two versions of the scheme were presented for the
two mobility models, respectively.

In the version for uncontrollable mobility, the actuator monitors the radio
connection to its neighbors by listening to their periodical hello messages. It
considers a neighboring node lost neighbor if the node is being removed from
its two-hop neighborhood, or semi-lost neighbor if the node is being removed
from its one-hop neighborhood but remains within its two-hop neighborhood. A
current neighbor that covers a semi-lost neighbor is called recovery neighbor .
The actuator is able to classify neighbors because it collects their position.

Whenever a link breakage or a link creation occurs, the actuator sends a
long location update message to its neighboring sensors. The message contains
the actuator’s latest location and a recovery neighbor list (which could be empty).
The recovery neighbor list does not necessarily contain all the recovery neighbors;
it is sufficient as long as all semi-lost neighbors are covered by listed nodes.
Meanwhile, the actuator sends to lost neighbors (if any) a short location update
message, which carries an empty recovery neighbor list, by routing protocol GFG.
Once receiving a location update message, a sensor checks if its next hop to the
new actuator position is different from that to the old one, and it also checks
if it itself is among the recovery neighbor list. If either of the two answers is
positive, it transmits by locally broadcasting the location update message (once);
otherwise, it does not. A node always forwards a short location update message
to the next hop toward the destination.
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Figure 8.4 Geographic-routing-based update: (a) uncontrollable mobility and (b) controllable
mobility.

Figure 8.4a illustrates how this scheme works with uncontrollable actuator
mobility. The actuator moves from a1 to a2. At a2, it recognizes lost neighbor
B and semi-lost neighbor A. Then it sends a long location update message to its
current neighbors C and D, and a short location update message to B along the
path indicated by arrowed line. C retransmits the location update message because
its next hop changes; D retransmits because it is a recovery neighbor (covering the
actuator’s semi-lost neighbor A). Node E receives the location update message
from D, and retransmits the message because its next hop changes. Node A

receives the update message from D and decides to retransmit it. Node F receives
the message forwarded by E, but it does not retransmit the message because its
next hop to the sink remains unchanged. The propagation of the long location
update message finally stops at F . In the above process, each node receives
and drops duplicated location update messages. While the short location update
message travels along the path, it may be retransmitted by each intermediate
node according to the same policy (those retransmissions are not shown in the
figure).

In the version for controlled mobility, the actuator knows which (and when)
of its incident links will be broken. Before link breakage, it sends the corre-
sponding neighbors a location update message informing them its destination
and moving speed. It sends such a location update message also to newly dis-
covered neighbors. When a sensor receives the location update message for the
first time, it checks whether its current next hop to the actuator and the next hop
to the actuator destination are the same. If they are not identical, it retransmits
the message. It then also estimates the actuator’s arrival time and buffers data
packets locally before delivery to the actuator’s new position.

Data dissemination delay occurs due to local data buffering. To reduce the
delay (and also the requirement for local storage space), the actuator is suggested
to break a long trip into short segments and update its location for those inter-
mediate destinations. During the course of relocation, the actuator may suddenly
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decide to move to another location possibly at a different speed. In this case, it
sends its moving speed and the new destination toward the old destination using
GFG. The node closest to the actuator’s old location is guaranteed to receive the
information. This node is called anchor node. It will later receive from sensors
data routed to this old actuator destination and then redirect the data to the actu-
ator’s new destination. Anchor nodes form a routing backbone and ensure data
delivery in the case of frequent unexpected actuator destination change.

Figure 8.4b illustrates how this scheme works with controllable actuator
mobility. The actuator first moves from location a1 toward location a2. At location
b1 (where direct connection to node A would be lost), it sends to A its destination
a2 and moving speed. At location b2, it changes its destination to a3 and routes
this change to anchor node B that is closest to the old destination a2. Later,
sensor A sends data toward a2; the data is received by B and redirected to a3.

Geographic-routing-based update scheme is proactive flooding-based loca-
tion service. Its location update relies on flooding restricted only within necessary
area, where nodes experience changes in routing to the actuator. Flooding area
is not determined by the actuator but defined distributively by nodes’ local deci-
sion on retransmission. This scheme is a localized approach. We believe it is a
promising solution that leads to both message efficiency and scalability.

8.4.4 Request Zone Search

Ko and Vaidya (1998) and Basagni et al. (1998) independently described a request
zone search scheme. Source or any intermediate sensor computes, according to
the last reported location and mobility information of target actuator, a circular
expected zone that covers the potential current locations of target actuator. Then,
it sends a search message to all neighbors in an angular request zone determined
by its tangents to the expected zone. But, as the request zone may not contain
any node toward target actuator, it is possible that actuator search fails frequently
especially in a network with a lot of void areas. In case of failure, the algorithm
triggers network-wide flooding to recover, which may, however, induce increased
message overhead.

LOTAR (Wu and Harms, 2000) and GRID (Liao et al., 2001) are two simple
variants of this request zone search scheme. In Wu and Harms (2000), more accu-
rate expect zone could be calculated as any two neighboring sensors periodically
exchange their location tables (containing location of all sensors in the network).
In Liao et al. (2001), grid-based coordination instead of geographic coordination
is used for routing.

Stojmenovic et al. (2003, 2006) modified the definition of request zone (Ko
and Vaidya, 1998, Basagni et al., 1998) to provide uniform framework with
the corresponding notions in GEDIR (Stojmenovic and Lin, 2001) and MFR
(Takagi and Kleinrock, 1984) routing methods. They presented V-GEDIR and
CH-MFR methods, in which actuator search message is forwarded to exactly
those neighbors that may be best choices for a possible position of target actuator.
The request zone may include several neighbors that are outside the angular range,
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because they have the closest direction for the tangents to the expected zone. In
V-GEDIR, these neighbors are determined by intersecting the Voronoi diagram
of neighbors with the expected zone of target actuator, while the portion of the
convex hull of neighboring sensors is analogously used in CH-MFR. Experiments
show that these algorithms have higher success rate, and lower hop count and
flooding rate than that of Ko and Vaidya (1998) and Basagni et al. (1998).

Observe Figure 8.5, where shaded area represents the transmission range
of sensor S, and thick circle indicates the expected zone of actuator D. The
neighbors A, B,C,K , and L of S are closer to the last known position of D

than S itself. In V-GEDIR, the Voronoi diagram (marked by thick dashed lines)
of these neighbors is constructed locally by S. Consider a bisector, for example,
the one for B and C. S may determine that the expected zone of D is completely
on one side of the bisector, and thus C is closer than B for any possible location
of D. B is out of consideration, and forwarding sensors for S are therefore
A and C. In CH-MFR, the convex hull (marked by thick solid lines) of these
neighbors is used. Find the two neighbors whose projections on tangent lines
from S are closest to the common points of these tangent lines with the request
zone. Forwarding sensors for S are all neighbors that are located on the convex
hull between these two neighbors (inclusive). In Figure 8.5, they are A and C.

8.4.5 Expanding Ring Search

Kasemann et al. (2002) presented a reactive location service (RLS) that employs
an expanding ring search scheme for actuators. A similar location service that
has the same name and can be viewed as a subset of RLS (Kasemann et al.,
2002) was independently suggested in Camp et al. (2002).

In RLS (Kasemann et al., 2002), source floods in rounds a region of increas-
ing radius d (in hop count), until target actuator is found or the maximum value
of d is reached. The increment of d may be linear, exponential, or binary. Every
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Figure 8.5 Formalized request zone search.
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sensor monitors network traffic, and retrieves and catches embedded location
information about actuators. Under this circumstance, actuator search may be
answered early by some sensor before reaching the target actuator. Location
catching reduces both search delay and message overhead (as subsequent flood-
ing is no longer needed once a reply is received). Backoff time is used for each
involved rebroadcast operation for the purpose of congestion control and fast
expansion of flooding. It is determined in such a way that the farther away a sen-
sor is from last message forwarder, the sooner it will rebroadcast the message.
A combined distance-/counter-based rebroadcast suppression scheme is proposed
to solve broadcast storm problem (Ni et al., 1999).

8.5 QUORUM-BASED ALGORITHMS

Quorum-based location service has been widely used in fixed networks and cel-
lular networks (Prakash and Singhal, 1996; Prakash et al., 1997; Krishnamurthy
et al., 1998). Its adaptation for wireless ad hoc networks is suggested in Stoj-
menovic (1999), Liu et al. (2006), and Stojmenovic et al. (2008). So far, several
different variants (e.g., Abraham et al., 2004; Li et al., 2008; Liu et al., 2009) of
the quorum technique have been proposed for location service. In this section,
we review these existing work in detail.

8.5.1 Strip Quorum

Stojmenovic (1999), Liu et al. (2006), and Stojmenovic et al. (2008) proposed a
localized strip quorum technique for wireless ad hoc networks with connectivity-
based location update policy. Each actuator monitors the state of its incident links.
Whenever a link breakage/creation occurs (possibly due to its own movement),
it reports its current position to its neighbors. After a certain number of link
changes, it forwards its current position to all the nodes located in a “column.”
That is, it sends its location in both north and south direction to reach the north
and south boundaries through GFG routing protocol (Bose et al., 1999). The
nodes along this column form an update quorum. Note that GFG will route the
location update message along the outer boundary of the network, which is thus
included in the update quorum.

A source sensor queries its q-hop neighborhood for target actuator’s
location. If the answer is negative, or if its obtained information is not fresh
enough, the search continues in the east and the west direction. These searches
are performed independently. The traces of the eastbound search and the
westbound search form a “row”, that is, a search quorum, which intersects the
update quorum of every actuator.

As the search message travels along the search quorum, it picks the latest
location information about target actuator. After reaching the end (westmost
node or eastmost node) of the quorum, it is forwarded to target actuator, which
then replies source directly with correct location. Alternatively, the intersection
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sensors of the search quorum of source and the update quorum of target actuator
may reply immediately if their stored information about target actuator is
sufficiently fresh.

Figure 8.6 illustrates a variant, called CR+CR in Stojmenovic (1999), Liu
et al. (2006), and Stojmenovic et al. (2008), of the strip quorum technique. In this
variant, actuator D sends location updates in four geographic directions to form
two update quorums. Sensor S sends search messages for D in four directions to
construct two search quorums. The two search quorums intersect the two update
quorums; nodes at the intersection points can provide S with D’s location. Note
that this figure shows update quorums of only actuator D. In the case of multiple
actuators, every actuator will have similar update quorums as D, and all update
quorums together will form a mesh structure.

This quorum technique has obvious advantages. Every sensor can discover
every actuator without network-wide querying. Because location update and
actuator search are restricted within two strips, that is, a column and a row,
communication overhead is greatly reduced. No particular node is designated to
store a certain actuator’s location, and thus no bottleneck is created in the net-
work. If target actuator is nearby, source will get answers quickly since update
quorum and search quorum intersect earlier than in the case that target actuator
is far apart. However, this scheme also has nonnegligible weaknesses. Loca-
tion update and actuator search have to cross the entire network; to guarantee
row–column intersection, network outer boundary has to be included into every
quorum, adding large storage load on boundary nodes and making their battery
power drain out fast.

Considering the fact that sensors are static, Yu et al. (2009) proposed to
avoid overloading all boundary nodes by sacrificing only extreme sensors in the
four directions. The idea is to replace update-/search-triggered outer boundary
traversal with a preprocessing step. In this step, boundary nodes are detected by an
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Figure 8.6 Strip quorum (CR+CR variant).
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existing boundary detection algorithm; then, extreme nodes in all four directions
in the whole network are identified by face traversal starting from a predefined
initiator node. After this step, location updates are directed to northernmost and
southernmost nodes, while searches are routed to extreme nodes in west and east
directions. These two routes (quorums) are guaranteed to intersect; the sensor at
intersection answering the location query.

In dense networks, the strip quorum scheme has degraded performance
because too many nodes become involved in processing search messages. This
problem is addressed in Melamed et al. (2007), and Zhang et al. (2007) by
proposing the network division into equal size grids, and selecting one leader
sensor in each grid to construct a backbone. Backbone sensors are connected
through other sensors, and strip quorum then continues mainly on the backbone
nodes. The advantages and disadvantages of grid-based quorum are discussed
in Liu et al. (2007), where the authors also introduced a superior improvement
based on localized connected dominating set (CDS) by restricting location update
and actuator search only among sensors from CDS.

8.5.2 Mesh Quorum

Li et al. (2008, 2009) presented a localized mesh quorum technique, called iMesh ,
for nearby actuator discovery. The term nearby implies that discovered actuator
is at most twice as far as closest one. This quorum scheme is based on a novel
planar structure information mesh created by the use of a formalized blocking
rule (Tchakarov and Vaidya, 2004) in quorum-based mesh construction.

In iMesh, actuators send location update messages to four geographic direc-
tions, that is, north, west, south, and east, by routing protocol GFG (Bose et al.,
1999). During their propagation, these messages collinearly or orthogonally block
each other according to a local blocking rule: node receiving location update
messages from multiple actuators forwards only the message of the closest one.

In the presence of asynchrony, the blocking rule may be violated. But, never-
theless, wrong transmission can be locally identified and fixed by nodes at which
the blocking rule is supposed to be applied. These nodes send revocation mes-
sage following the forward path of those wrongly forwarded location updates to
erase inconsistent information. The proper propagation paths of location updates
form an information mesh , as shown in Fig. 8.7. Note that the outer boundary of
the network is included in the mesh structure according to the property of GFG
(Bose et al., 1999).

To discover the location of a nearby actuator, source S simply conducts a
cross lookup process within its residing mesh cells. That is, they send actuator
search messages in four geographic directions and the messages are guaranteed
to reach the premier of its home mesh cell, as illustrated in Figure 8.7. Then, the
rendezvous nodes reply to the source with the information of its recorded closest
actuator.

The blocking rule reduces the possibility of an actuator being discovered,
while restricting message transmission and reducing communication overhead.
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Figure 8.7 Mesh quorum.

Li et al. (2008, 2009) characterized the cases where nearby/closest actuator selec-
tion is violated, and proposed an extension rule: a node W , where information
from E orthogonally blocks information from D, transmits E’s information along
the backward transmission path of D’s information for a limited distance, as
shown in Figure 8.7. The extension rule does not change the structure of infor-
mation mesh. But, it effectively decreases the occurrence possibility of undesired
remote actuator selection.

Through analytical study, the authors show that iMesh has significantly lower
message complexity than strip quorum method (Stojmenovic, 1999; Liu et al.,
2006; Stojmenovic et al., 2008) and that it generates constant per node storage
load, which is a unique property that no other quorum-like algorithm possesses.
Extensive simulation shows that iMesh guarantees nearby (closest) service selec-
tion with probability >99% (resp. 95%).

The authors indicated how to deal with node mobility: before an actuator
starts to move, it initiates a revocation process to remove its own information
from information mesh, and after it becomes stabilized, it acts as a newcomer to
update its location.

8.5.3 Hierarchical Spiral Quorum

Abraham et al. (2004) presented a locality-aware location service using hierar-
chical spiral quorums. Each actuator is hashed to a point in the network area
according to its ID. For each actuator, the network area is recursively parti-
tioned, with its hash point as origin (note that this is the only use of nodal hash
point in the algorithm), into a square hierarchy. At the lowest level (level 0),
each square has predefined size; four neighboring level-k (k ≥ 0) squares form
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a square at level k + 1; the highest level square covers entire network area. This
square hierarchy is locally computable to each actuator.

Consider an arbitrary actuator A. It has a residence square, the one where
it is located, at each level in its own square hierarchy. The corner points of all
these residence squares form a virtual spiral that surrounds A and exponentially
increases in distance, as shown in Fig. 8.8 where H is the hash point of A. When
necessary, A updates its location along this spiral. A sensor computes the square
hierarchy of actuator A using actuator ID, and performs actuator search along a
similar spiral around itself in the hierarchy. The two spirals must intersect because
the points in both spirals are computed using the same hierarchical squares; the
location of A is found at the intersection points that do not necessarily include A’s
hash point H . Spiral-like message transmission is supported by a combination of
geographic routing and iterated bounded flooding.

At each level of its square hierarchy, an actuator publishes location not only
to the four corners of its residence square but also to the corners of the eight
surrounding squares. Location update is then performed only when the actuator
moves out of the nine squares boundary. To reduce cost, actuator location is
stored only at level 0; at level k > 0 stored pointers point to the level-k − 1
squares where actuator may be located. This enables lazy updates; that is, an
actuator does not update its level-k location pointers unless it moves a total of a
certain distance proportional to 2k−1.

Because actuators have different hash points, their square hierarchies and thus
location update spirals are different. This difference leads to balanced store load
among nodes. It is proven that actuator search has desired message complexity

A

H

Figure 8.8 Hierarchical spiral
quorum.
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O(d) in the average case, but undesired large message complexity O(d2) in the
worst case. Here d is the minimal path length between source sensor and target
actuator. If an actuator moves distance d , the average cost of location update is
O(d log d).

8.5.4 Hierarchical Ring Quorum

Liu et al. (2008) proposed a hierarchical ring quorum scheme. In this scheme,
every actuator constructs and maintains a hierarchy of rings for itself. These rings
have doubly increased radii, that is, the radius of order-k ring is twice as large
as order-(k − 1) ring; they are all centered at the actuator at initiation, and may
no long have a common center as the actuator moves.

Order-0 ring is also called core ring . Each actuator reconstructs its core
ring with its current location as it moves (so that the ring is always centered
at its immediate location), and proactively updates location to all sensors in
the new ring by flooding. When an actuator leaves its order-k (k > 0) ring, it
reconstructs the ring with its current location as center, and sends location update
to sensors only along the new ring. Location update is time-stamped so that
location freshness can be measured. Figure 8.9 shows how an actuator D performs
location update. The actuator moves along the trajectory P0, P1, . . . , P5. Broken
circles are the rings it constructed in the course of its movement; its current
hierarchical rings R0

D, R1
D, . . . , R3

D are shown by continuous circles.
Sensors also maintain hierarchical rings for themselves. These rings are used

for actuator search. Actuator search consists of two phases. In the first phase,
source sensor S firsts searches location of target actuator D along its core ring;
if the search is not successful, it will search along order-1 ring, and so on. The
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Figure 8.9 Hierarchical ring quorum: (a) perimeter-based search and (b) direct search.
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search goes up higher in the ring hierarchy and eventually reaches a ring that is
large enough to intersect a ring of D. Then, the second phase begins.

The second phase can be carried out by two different ways, which are
here referred to as perimeter-based method and direct method, respectively.
In perimeter-based method, actuator search switches between rings of D at their
intersection points and always follows a fresher ring in clockwise direction. If
the search makes a full circle on certain ring, then it is directed to the best known
location of D. On its way, perimeter search resumes when yet fresher ring of D

is found. Finally, the search reaches D, and D replies S with its latest location.
This method suffers from long spiral-like search paths.

In direct method, actuator search is always directed to the last reported
location of D. As the search message gets closer to D, it hits all the lower-
order rings of D, and is redirected toward more and more accurate location of
D. When it enters the core ring of D, it is redirected by the first receiver sensor to
D, which then replies S with its latest location. The two actuator search methods
are illustrated in Figure 8.9, where actuator D is located at position P5 and search
paths are highlighted and marked by arrows. Obviously, direct method has better
locality awareness than perimeter-based method.

If source sensor and target actuator are geographically close to each other,
their ring hierarchy will intersect at a low level, and, therefore, actuator search
will be directed to target actuator soon without expanding far from source. Large
ring at high level of the hierarchy will be traversed only when source and target
actuator are far apart from each other. This hierarchical algorithm achieves good
locality awareness while avoiding large-extent flooding, and thus has less overall
communication cost.

8.6 HOME-BASED APPROACHES

Stojmenovic (2002a), and Blazevic et al. (2001), and Woo and Singh (2001) inde-
pendently suggested flat home-based location service approaches that are similar
to Mobile IP and cellular phone network. Hierarchical home-based location ser-
vice was first proposed by Li et al. (2000). A number of home-based location
service, for example, Xue et al. (2001), Viana et al. (2005), Chen et al. (2006),
and Kieb et al. (2004), have been proposed so far, by adopting different home
region definition methods. They show close analogy to the above pioneer work
in design. In this case, below we will cover only the representative Stojmenovic
(2002a) and Li et al. (2000) in detail.

8.6.1 Flat Home Region

Stojmenovic (2002a) presented a home-agent-based location service. In this algo-
rithm, an actuator’s home agent is a circular area of radius R centered at the
actuator’s initial position. Here, R is a predefined value proportional to the actua-
tor communication radius. The location of home agent is flooded to the network.



226 Chapter 8 Location Service in Sensor and Mobile Actuator Networks

Alternatively, hash function is used to find location of home region (Blazevic
et al., 2001; Woo and Singh, 2001).

Each actuator sends location update messages toward the center of its home
agent by a geographic routing such as GFG (Bose et al., 1999). Once an update
message enters its originator’s home agent base, it is forwarded in a strictly
greedy manner. If greedy next hop cannot be found, current sensor will transmit
the message to all the nodes within radius R, by flooding, or intelligent broadcast-
ing (Stojmenovic et al., 2002), or using larger transmission radius (if applicable).
Each actuator, when transmitting anything, also uses the opportunity to broad-
cast its own new location. Sensors monitor network traffic and cache-embedded
location information about actuators.

Sensor S issues two search messages for target actuator D. One is sent to
D using currently known location of D by geographic routing. On the way, it is
updated with more recent location of D by intermediate nodes. The other mes-
sage is sent to the home agent of D in the same way as a location update
message. Let W be the sensor (if any) in D’s home agent that stops the search
message because it is the local minimum. W will send a request to all the sensors
within a circle, centered at itself, of radius R. This request message contains the
most recent location information collected on the way of the search message to
W . All sensors inside the circle with yet more recent location information will
reply. Then, W uses the freshest location of D obtained from reply messages to
redirect the search message to D. Upon receiving the search message for the first
time, destination D replies S with its exact location.

Figure 8.10 illustrates this home-agent-based location service. The original
location of destination d is at D1, and its home agent base is the circular area

Location update path

Destination search path

Data path
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s

D1

D2D3

Figure 8.10 Home-agent-based location service.
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centered at D1. Later, d moves to D2 and sends location update back to its home
agent from there. Node v is the node closest to D1. After it receives d’s location
update message, it broadcasts the message within the circular area centered at
itself. Source S sends a destination search message to the home agent based on
d . Node p receives this message and redirects the message toward D3. When
node q receives the message, it finds that destination d already moved to location
D3, it then redirects the message to D3. After d gets the message, it replies S

with its current location and meanwhile builds a route.
This algorithm has weakness in locality awareness. Even if target actuator

is currently close to source, source may still have to access the remote home
agent of target actuator for its location, thus increasing both message overhead
and search delay. In addition, success of actuator search relies on the occupancy
of home agent. Search fails when home agent nodes all move out of the home
agent base. In Blazevic et al. 2001, it is suggested to vary home region radius so
as to keep an approximately constant number of internal nodes. But, this method
requires centralized computation for node density inside home region.

In a recent variant (Viana et al., 2005), Hilbert curve is used to define locally
expandable home region and thus achieve increased success rate of actuator
search. Every node is associated with a vertex in a Hilbert curve filling the
network area, and assigned a control region , which is the region filled by the
segment between the node’s predecessor and successor on the Hilbert curve.
Each node maps its ID to a Hilbert vertex by a public hash function, and takes
the corresponding Hilbert region as home region. When the only occupant of a
subsquare leaves, its control region will be taken over by one of its predecessors
and its successors that have a smaller control region.

In Xue et al. (2001), multiple home regions are used to improve locality
awareness and tolerate empty home regions; different home regions may contain
location information of different levels of accuracy, and only a small set of home
regions need to be updated when the node moves. However, no matter how many
home regions are used, movement of all nodes makes all home regions empty
and unreachable. This is in fact the inherent weakness of home-based location
service (whether flat or hierarchical). In this aspect, quorum-based approach is
more flexible and advantageous as it uses dynamically selected network nodes
for location update and actuator search.

8.6.2 Hierarchical Home Region

Li et al. (2000) presented a grid location service (GLS). The network area is
evenly partitioned into a number of order-1 squares. Four neighboring order-
k (k ≥ 1) squares form an order-(k + 1) square; an order-k square is part of
only one order-(k + 1) square. By this means, a quad-tree is established over
the squares of different sizes, and, in the hierarchy, each node is located in
exactly one square of each size. This partition serves as the base of GLS and
is global knowledge. Actuators and sensors are assigned identifiers in a uniform
and distinct way. Location update obeys distance-based policy.
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A node (whether sensor or actuator) T selects as location server three nodes
for each level of the hierarchy, one from each of its adjacent three squares.
Specifically, it sends a location update message to a selected order-k square
using geographic forwarding. The first receiver node W in the square starts an
update process: it forwards within the square the message to a node whose ID
is closest to (i.e., the least greater in a circular ID space than) T ’s, which in
turn forwards the message in the same way. The process terminates when the
message reaches a node square-wide closest to T in terms of ID, and this node
becomes location server of T in the square.

The reason this update process works is that the nodes in an order-1 square
are required to immediately exchange their location information at start-up, and
that all the nodes in order-k square have distributed their location throughout the
square in previous processes intended for lower-order squares.

Destination (whether sensor or actuator) search is performed in a similar way
as location update. Source node S sends a search message, carrying its current
location, to a node whose ID is closest to destination D, for which it currently has
location information. Each intermediate node forwards the message in the same
way. Eventually, the message will reach a location server of D. By geographic
forwarding, this location server forward the message to D, which then directly
replies S with its current location. To tolerate mobility, before a node moves
to another order-1 square, it leaves a “forwarding pointer” in its current order-1
square. This pointer can be used to locate that node if search intended for the
node arrives.

Figure 8.11, where node IDs are presented and used to denote nodes, illus-
trates GLS. In this example, node B, whose ID is 17, chooses its location servers,
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whose IDs are circled, in the grid hierarchy; two destination searches for node
B are originated, respectively, from nodes 76 and 90, and their search trails are
highlighted by arrows.

Grid location service has good scalability because of its hierarchical design.
A node’s location servers are relatively dense near the node, and sparse farther
away from the node. This ensures improved locality awareness as sources near
destination can use a nearby location server to find the location of destination.
Grid location service may cause large message overhead in highly mobile net-
works where location update is frequent, because each node has to send location
updates to its network-wide distributed location servers. Zigzag-line message
transmission also contributes to increased message overhead and search latency.
If all nodes in an order-1 square move out, nobody will store forwarding pointer
for them, causing search failure.

Many similar algorithms, for example, DLSP (Chen et al., 2006), HLS (Kieb
et al., 2004), and MLS (Flury and Wattenhofer, 2006), to name a few, have been
proposed on the basis of hierarchical division. In DLSP (Chen et al., 2006), each
actuator selects by a common hash function eight location servers in the eight
neighboring squares in each level of a grid hierarchy. Location servers at different
levels are updated at different rates. Actuator search starts at lowest level and
across the hierarchy until satisfied. If search fails, a new round of search starts
from the failure point.

In HLS (Kieb et al., 2004), each actuator selects by a common hash function
one minimum partition cell in every cell at each level in the partition hierarchy to
construct a personalized tree. Location (pointer) update is along the downward
path from the root to a leaf. Actuator search is done in the same tree from a
leaf upward to the root. It may be satisfied early if the search path intersects the
update path before the root. MLS (Flury and Wattenhofer, 2006) is very similar
to HLS in location update. However, it does not use upward path traversal but
expanding ring search for target actuator.
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Abstract

This chapter surveys the existing representative work in both sensor-actuator
and actuator-actuator coordination. Sensor-actuator coordination deals with estab-
lishing data paths between sensors and actuators, and can be used for sensor
deployment. Actuator-actuator coordination includes robot coordination for sen-
sor placement, dynamic task allocation, selecting best robot to respond to reported
event, robot dispersion, boundary coverage, and fault-tolerant response. In the
coordinated actuator movement problem, actuators are moved to desired locations
to save energy in long-term communication tasks where the traffic is sufficiently
regular and large in volume to warrant nodes expending energy for moving.
A recent study on coordination among flying robots is introduced in the end.

9.1 SENSOR-ACTUATOR COORDINATION

The collaborative operation of sensors enables the distributed sensing of a physi-
cal phenomenon. In wireless sensor networks (WSNs), the sink (base station) per-
forms the functions of data collection, processing, and coordination. In wireless
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sensor actuator networks (WSANs), both sensor-actuator and actuator-actuator
coordination are required. After sensors detect an event that has occurred in the
environment, the event data is processed (e.g., aggregated with reports from
nearby sensors) and transmitted to the actuators, which gather, process, and
eventually reconstruct the characteristics of the event. The process of establish-
ing data paths between sensors and actuators is referred to as sensor-actuator
coordination (Melodia et al., 2007). Sensor-actuator coordination provides the
transmission of event features from sensors to actuators. Sensors and actuators
coordinate also for some other tasks, such as sensor placement or improving
connectivity.

Akyildiz and Kasimoglu (2004) did the first comprehensive analysis on both
sensor-actuator and sensor-sensor coordination. There are few main requirements
on the communications in sensor-actuator coordination (Akyildiz and Kasimoglu,
2004). The communications between sensors and actuators in WSANs require
energy efficiency to prolong the lifetime of the network. In some real-time
applications, for example, detection of fire, the communication traffic is typi-
cally delay sensitive. Therefore, sensor-actuator communication should support
real-time traffic in these applications. The sensor-actuator communication is also
required to ensure ordering of event data reported to the actuators. For example,
suppose there are two sensors reporting two different events to a common actu-
ator. These two events may need to be delivered in the sequence in which the
events are detected so that the appropriate corresponding actions on the envi-
ronment are taken. Synchronization among sensors is desirable when different
sensors report an event to a common actuator, such that the actuator acts once
in the entire event region. Sensors are required to track the event and use this
information to determine the set of actuators to report the sensed phenomena.

If there are multiple actuators in the network, a natural question in sensor-
actuator coordination is which actuators the sensed phenomena will be reported
to? The problem is to select actuators to which the sensors will send their data. In
an event-driven partition, only sensors located inside the event area are reporting.
In Figure 9.1, the event area is a circle. Sensors are partitioned according to the
actuator they report to, with actuators serving as roots of the corresponding data
reporting trees. Data-delivery trees are created to provide the required reliability
with minimal resource consumption (Melodia et al., 2007). These clusters may
be formed in such a way that the event reporting time from the sensors to the
clusterhead (CH) is minimized, the sensors report data to the CH via the minimum
energy paths, or the action region of the actuators can cover the entire event area
(Akyildiz and Kasimoglu, 2004).

Suppose B is the maximum allowed time delay between detecting an event
by the sensors and receiving the event reports by actuators. A data packet is said
to be “unreliable” if it does not meet the latency bound B when it is received by
an actuator. The data packet is said to be “reliable” otherwise. Let r denote the
ratio of reliable data packets over all the packets generated in a decision interval.
The sensor-actuator coordination problem discussed in Melodia et al. (2007) is
to establish data paths from each sensor to the actuator, such that the reliability
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Figure 9.1 Reporting trees from sensors to multiple actuators.

ratio r is above the required threshold r th, and the energy consumption associated
with data-delivery paths is minimized.

Event-driven partitioning is a twofold problem: (i) select the optimal subset
of actuators to which sensors will report data and (ii) construct the minimum
energy data-delivery trees toward those selected actuators to meet the required
threshold of reliability ratio. The union of all trees rooted at the actuators implic-
itly partitions the set of sensors in the event area (Fig. 9.1). The problem was
formulated as an integer linear programming (ILP), which can be solved with
moderate size (up to 100 nodes) (Melodia et al., 2007).

A distributed algorithm was further proposed in Melodia et al. (2007) assum-
ing that each sensor is aware of its position and the positions of its neighbors and
a number of candidate actuators, and that the network is synchronized. Sensors
are idle if there is no reporting (lack of events). When an event is detected, they
enter the start-up phase of determining the actuator for reporting (and therefore
sensor partitioning and creation of initial data reporting trees), and finding an ini-
tial path to one of actuators. Sensors on the created paths also move to start-up
phase if they were in idle state. The initial task is equivalent to the anycast-
ing problem, which was discussed in Chapter 5 (including the solution proposed
in Melodia et al. (2007)). Sensors do not change the actuator they report to,
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but may change their initially created data reporting paths to achieve the desired
level of reliability while minimizing the energy cost for that level. The basic idea
for the modification of data reporting trees (Melodia et al., 2007) is to increase
the delay and reduce the energy consumption when the reliability ratio is high
and reduce the delay at the expense of energy consumption when the reliabil-
ity ratio is low. In each decision interval, each actuator computes the reliability
ratio r of reliable data packets over all the packets and periodically broadcasts
its value. Upon receiving feedback messages from the actuators, a sensor in the
start-up state may enter speed-up or aggregation states, to either reduce delay
(by sending the packets to the neighbor that is closest to the destination but
within the transmission range) or increase delay but reduce energy consumption
by sending the packets to the closest neighbor, which is in the same data-delivery
tree. An improved algorithm for constructing delay bounded energy optimal data
reporting trees, when data are aggregated on the way to actuator, is described in
Chapter 7. It assumes that the delay for reporting is proportional to the number
of hops on the path to the actuator. It is based on the estimate that the time for
gathering reports from children nodes and aggregating them, and transmitting to
the parent node is similar for each node. A different model is treated in Li et al.
(2007), which assumes that the delay at each node is proportional to the number
of children (plus one to also account for communicating with the parent node).
This is justified by the delay in gathering the information from each child, which
needs to be done sequentially, since collisions must be avoided.

A real-time communication framework for WSAN was proposed to support
event detection, reporting, and actuator coordination in Ngai et al. (2006). Upon
detecting an event, sensors report the event to other sensors nearby (sensor-to-
sensor) in up to k hops. Replies with data aggregation (mean of known values)
are received to verify the event. A report is then sent to the nearest actuator,
which informs other actuators nearby, to select the closest one that should have
the priority to respond. After the actuator that responds leaves for action, sensors
that were closest to it will search for a new closest actuator by flooding requests
until it reaches the sensors assigned to the neighboring actuators. The details of
sensor-actuator and actuator-actuator communication are not given.

9.2 TASK ASSIGNMENT IN MULTIROBOT SYSTEMS

Multirobot systems (MRS) are well studied in literature and several survey papers,
taxonomies, and book chapters exist on the subject (e.g., Dudek et al., 2002;
Farinelli et al., 2004; Parker et al., 2008). The focal point of the majority of
MRS-related papers is on general communication, coordination, and cooperation.
Networked robotics is an extension of MRS where communication between enti-
ties is fundamental to both cooperation and coordination, and hence the central
role of the network (Bekey and Yuh, 2008; Kumar et al., 2008). Applications of
networked robots include coupling to perform locomotion and manipulation tasks,
and coordinating to perform exploration, mapping, search and reconnaissance



9.2. Task Assignment in Multirobot Systems 237

R 1

R 2

R 3

R 4

e1 e2

Figure 9.2 Monitored area with two concurrent events and two possible assignments.

tasks, or gaming (e.g., robot soccer). They can also perform independent tasks
that need to be coordinated (e.g., hole drilling or welding).

We also use the term wireless sensor and robot network (WSRN). It addresses
the special case when robots are used as mobile actors within sensor networks. An
illustration is given in Figure 9.2, showing sensors, four robots, and two events.
Wireless sensor and robot networks are characterized by real-time response
constraints and sensor-sensor, sensor-robot, and robot-robot coordination. Sensor-
robot coordination provides information about the event by means of transmitting
data from sensors to robots. Mobile robots pose significantly harder challenges
because sensors cannot easily maintain the position of nearest robot to report.
In the absence of such information, sensors need to flood their event informa-
tion, which drains energy by a lot of wasted communication. To reduce that,
robots need to proactively maintain their location information by sending peri-
odic messages to certain areas or directions (see Chapter 8), so that sensors may
report efficiently when event occurs. This is a very difficult task. In Selvaradjou
et al. (2006), the problem is resolved by assuming that area is partitioned into
grids, with at least one actor in each (thus large number of them is available and
is nearby any possible event), and sensor grid leaders (“agents”) being further
organized into clusters.

A WSAN operates in the loop of event sensing, data communications and
actuator actions. Mobile self-controlled actuators are often referred to as robots .
In WSANs, once the event has been detected and reported from sensors to the
actuators (robots), the actuators coordinate to reconstruct it, to estimate its char-
acteristics, and to make a collaborative decision on the action to follow and how
to perform it. This overall process is an example of actuator-actuator coordina-
tion (Akyildiz and Kasimoglu, 2004). After reaching an agreement on the actions
needed, a fundamental problem in the actuator-actuator coordination is to decide
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which actuators should execute which actions, such that the overall performance
of the actuators is maximized. The problem is referred to as the Task Assignment
problem (Melodia et al., 2007) in WSANs.

Each event in WSANs is assumed to be reported to one of robots. In case of
multiple (possibly concurrent) events, several tasks are to be distributed among
robot team members. For example, in fire monitoring scenario, sensors detecting
fire route information to robots that need to decide which of them should act to
exhaust the fire. Sometimes tasks need more than one robot to be successfully
accomplished (e.g., larger fire). In the case of multiple events (e.g., fire on multi-
ple locations, or multiple sensors deployment), concurrency and time constraints
could decide the action. If there are no time limits then all multiple event prob-
lems can be treated as iterated version of single event problem. The difference
then is whether or not these events are known in advance, or unpredictable. In
the former case, a single robot could be assigned to handle multiple events in
the sequence. For example, in Figure 9.2 robot R4 could respond to event e2
followed by event e1. Alternatively, it could only handle event e2 while robot
R3 responds to event e1. In summary, there are single/multiple task requiring
single/multiple robots with/without strict time constraints for the execution.

These general problem statements allow for considering many specific
instances. There are few generic approaches to solve the corresponding problems.
Depending on decision making process, the task assignment solutions can be
classified as centralized , localized , and market-based solutions. In centralized
solutions, decisions are made at a single robot or the sink (base station) after
gathering all the necessary information. In localized solutions, decisions of each
robot are based on the information available in its direct neighborhood and
incoming request. Compared with centralized solutions, localized solutions have
low computation and communication cost, good scalability, fault tolerance, and
are fast. However, it is hard to find optimal decisions in localized solutions due to
limited information. In distributed market-based solutions, robots communicate
with certain number of other robots in the smaller or larger vicinity in order
to negotiate to resolve lack or excess of actions in locally made decisions.
The objective is to achieve better response efficiency of individual robots and
robot network as a whole. In market-based solution, robots are working as
free agents to maximize their individual profit. They can negotiate and bid for
tasks by means of auctions , which is the main tool to make decisions. The
communication involved in the auction process may exceed strict neighborhood
information, and be compromised toward a semilocalized behavior.

9.3 SELECTING BEST ROBOT(S) WHEN
COMMUNICATION COST IS NEGLIGIBLE

Most existing solutions referring to multirobot coordination for single or multiple
events, single or multiple robot, single or multiple task to each robot and so on,
are centralized. One of robots, or a central entity, gathers all the information from
other robots and makes a decision. Communication cost for gathering information
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in case of multihop robot networks is rarely considered. The decision maker can
theoretically make an optimal decision by gathering necessary information with
little cost because communication cost is assumed negligible. Indirectly (since
no details of communication protocols used are given), a complete graph (where
each robot is within communication distance to any other robot) is assumed. Cen-
tralized solutions usually define coordination problem as an ILP problem. Main
advantage of a centralized solution is that, theoretically, optimal solution can be
found. However, centralized solution features high computation and communica-
tion overhead, bad scalability and slow responsiveness. Moreover, the actual cost
for communicating is ignored, especially for large robot networks. It is further
not clear how robots communicate if the graph is not complete one. Centralized
solution also has low fault tolerance if leader is malfunctioning in any way.

For static actors, Melodia et al. (2007) stated a mixed integer nonlinear pro-
gram (MINLP) formulation to maximize average remaining energy of (multi)
robots selected to perform a task, under the constraint of meeting action comple-
tion bound. Shah and Meng (2007) assumed the presence of a global unit, which
receives updates on the work status of each robot for each task (beginning, com-
pleting, in-trouble or time-out). When a robot needs help for the task allocated,
global unit is able to select one or more for assistance. The selection is based
on an auction-based method that considers the capability, distance from current
task location, robot availability, and number of tasks in local queue of robot. The
article by Selvaradjou et al. (2006) showed that finding the optimal assignment
of (single) robots toward the events with the objective of minimizing the overall
movement of robots, with deadline and energy constraints, is NP-complete. They
formulate MINLP. Such a formulation assumes a priori knowledge of events and
tasks, and finds a tour for visiting events for each robot. They also propose inter
and intrazone-based localized heuristics for finding the near optimal schedule of
the robots to the appropriate events. In intrazone scheduling, agent sensor nodes
compute optimal schedule for robots within their zones. In interzone scheduling,
CHs (of clusters of agents) find optimal schedules for all robots within their
clusters. The proposed heuristic is to assign the task with the earliest deadline to
the nearest robot that can perform task within the specified deadline, and having
enough energy.

There are no multiple robots assigned to a single event, and no multiple
assignments are given to a single robot. The problem is recognized as an instance
of optimal assignment problem and is covered in detail in Gerkey and Mataric
(2004). It discusses centralized solutions where task and robot information are
all gathered at a single place, and the number of tasks does not exceed the
number of robots. If the number of robots equals the number of tasks, this
scenario is an instance of classical assignment problem (also known as linear
sum assignment problem). If robot energy is limited, the goal is to find such an
assignment that minimizes overall energy spent on mobility (for all robots moving
to their corresponding events), assuming that mobility energy is proportional to
distance traveled. The energy needed to perform tasks is not in the optimization
function, but could be added. The problem can be expanded to an instance of the
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assignment problem with side constraints , if total spent energy must be within
the energy budget for every robot. For tasks with real-time constraints, time-
bound requirements (time needed to arrive to an area plus the time to perform
the task) could be added. If the number of tasks exceeds the number of robots,
the algorithm can be repeated in rounds by applying them on tasks sorted by their
deadlines and assigning one to each robot in each round. Alternative approaches
may include assigning several tasks to a single robot at once, with sequential
access to them and tour-like visits from event to event. Finally, a greedy algorithm
may even assign tasks in sequence, choosing one robot (among available ones)
for one task.

The problem formulations considered so far in literature did not include
network degradation issues due to possible energy depletion of some robots.
The best robot for a given task may minimize energy needs to the robot team,
but could also lead to its own inability to perform any other task, which may
also impact the ability of the team to provide support to sensors. Therefore,
some load balancing mechanisms may be needed to address the issue. The best
robot can be determined by negotiation among robots, with modified goals, to
maximize the time the first robot looses all its energy. Alternate definitions are
possible, such as the time the robot network becomes partitioned, or the portion of
monitored area or reaction time by the team becomes unacceptable. One possible
load balancing strategy is to modify the cost function for any robot, to include
the remaining energy. Upon receiving an action request to serve an event, each
robot B calculates d/E , where d is distance of robot B from the event, and E its
current remaining energy (alternatively, energy after performing the task may be
considered). One that meets real-time constraints and minimizes this ratio will
take over the task.

9.4 SELECTING BEST ROBOT(S) WITH
NONNEGLIGIBLE COMMUNICATION COSTS

If the robot network is disconnected then sensor nodes may be used to connect
some robots. Sensors and robots may both participate in the same flooding proto-
col, with different transmission ranges being available to them. Robots may apply
smaller backoff waiting times for retransmissions, so that they get a priority over
sensors for retransmitting. If the transmission region (the set of its neighbors) of
a particular sensor or robot is not covered by all received transmissions before
the time runs out, the node retransmits the message. For simplicity, we assume
here that the robot network is connected, and discuss further only robot-robot
communication.

Solutions for robot-robot coordination described in this section do not depend
on the particular environment served by networked robots. One such environment
of interest to us are wireless sensor and robot networks (WSRNs), as an extension
of MRS. Wireless sensor and robot networks consist of sensors and robots linked
by wireless medium to perform distributed sensing of the physical world, process-
ing of sensed data, making decisions, and acting upon sensed events (Fig. 9.3).
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Figure 9.3 Reporting events from a sensor to nonnearest actuators due to void area.

We will illustrate our problem statement using this scenario. In many cases, the
robot that receives the report may itself be the best candidate for responding.
However, a remote robot could receive the report. Upon event occurrence (e.g.,
a fire, or the failure of a sensor), sensors detect events and route information to
any robot in the vicinity. However, it may not be the closest one.

In Figure 9.3, R1 consults R4 and R2, and learns from R4 about the closest
robot R3 to the event. In the example in Figure 9.3, R3 received report because
there is a sensor void area between the event and closest robot R1. R1 is able to
act but sensors were not able to report the event directly to it. R3 initiates the
bidding process and discovers the nearest robot R1, which is then assigned to
the task.

Localized and distributed solutions utilize spreading all decision making and
planning responsibility among robots. We consider here, the multihop unit disk
graph (UDG) scenarios, where the communication graph is not complete. Robots
use only locally available information to make their decision. Good scalability
and fault tolerance are the main advantages. Proposed solutions are normally close
to the optimal one. However, decisions made based on the local information can
be sometimes highly suboptimal.

The article by Melodia et al. (2007) described a localized solution for actor-
actor coordination (for single robot single task assignment scenario), based on
simple auction protocol (SAP). The auctioneer robot floods event information
to all other robots, and each actor (robot) reports back to the originating actor
(by a separate routing task) the offer to provide service and the cost of doing it.
Bids are sent from robots that are able to serve the given area. If blind flooding
is used, each robot retransmits the request upon receiving it for the first time,
and ignores it afterwards. In an intelligent flooding (see Chapter 2), only nodes
from a backbone are transmitting, and only if they have neighbors in need of
a message. For large robot networks, this protocol incurs unacceptable delay in
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selecting the best robot, while the best responding robot is expected to be near
the event.

Robot selection can be limited to certain local neighborhoods, even for SAP
(Mezei et al., submitted for publication). A localized solution, based on mar-
ket paradigm, called auction aggregation protocol is further proposed (Mezei
et al., submitted for publication). The bidding process spreads to neighboring
robots until no improvement can be envisioned within the k -hop neighborhood
of a robot, which analyzes if any other remote robot could provide better ser-
vice than the best service it is aware of. If not, it stops search process and
responds back to its “parent” robot with best possible recommendation it has.
Instead of using separate routing tasks, the constructed tree can be used for
reporting back. The protocol has tree “expansion” and tree “contraction” phases.
Tree expansion starts from collecting robot R0 by creating a tree rooted at R0
(Fig. 9.4). Retransmissions create a response tree. Each node, with retransmis-
sion, includes the ID of its parent robot in the message, so that robots can
locally decide whether or not they are leaves in the created tree. Note that each
node selects only one parent, in case of multiple received bids (e.g., R8 joins
only R9 and R4 joins only R2). They become leaves if they do not retrans-
mit the bid or do not hear any other robot listing them as their parent. Leaf
nodes start responding back to robots, with the best cost they are aware of.
This is in fact auction aggregation and thus reduces the number of messages
in the bidding phase. Each intermediate node waits to hear from all neighbors,
which declared it as a parent thus becoming a local collector. After hearing,
they select the best cost and report further toward the collector. The collec-
tor at the end decides which robot is the best to perform the required action,
and routes the decision to that robot. In the example in Figure 9.4, robots R3,
R5, R6, R7, and R8 are leaves in the created tree, and return their bids to
their parent nodes. R9 returns to its parent R0, its own bid 2 as the best it
is aware of. Similarly, R4 returns its own bid 7 to R2, which returns its own
bid 5 to R0. R1 returns R7 as the best bidder to its parent R0. The root node
(R0) then selects the best bid (in this case from R7) from four received offers,

R9
R8

R7

R1
R2

R3
R0

R4

R5

R6

e

Distances from event to robots:
[e,R0 ] = 1
[e,R1 ] = 2
[e,R2 ] = 5
[e,R3 ] = 4.8
[e,R4 ] = 7

[e,R5 ] = 9
[e,R6 ] = 4.5
[e,R7 ] = 0.5
[e,R8 ] = 3
[e,R9 ] = 2

Figure 9.4 Auction aggregation protocol for selecting the best robot.
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from R1, R2, R3, and R9 respectively, and delivers the task to R7 along the
created path R0-R1-R7. This version of auction aggregation protocol will be
designated as simple auction aggregation protocol (SAAP ). In case of limited
flooding (only up to k -hop neighbors from the collector), it is called k-SAAP
(Mezei et al., submitted for publication). The difference between k-SAAP and
k-SAP (and similarly between SAP and SAAP ) is that individual bids are aggre-
gated at intermediate nodes, instead of routing all of them back to the collector
robot.

The algorithm can be further refined by providing autonomy in retransmitting
decisions to individual robots. In k-SAAP , the receiving robot will retransmit only
if it is at distance of <k hops from the bidding robot. The k-hop auction aggrega-
tion protocol (k-AAP ) protocol (Mezei et al., submitted for publication) applies
k -hop neighborhood around current robot. Each robot is assumed to already know
the position, cost, and availability of all its neighboring robots up to k hops away.
One simple way is periodic diffusion of its local information [including the status
of its (k – 1)-hop neighbors] to its neighbors (“hello” message), or piggyback-
ing it to data messages. In k-AAP (Mezei et al., submitted for publication), the
robot that received the bid (and the best learned cost C associated with previous
senders on the path from the bidding robot to it) will compare C and the cost of
providing service by its k -hop neighbors. It will retransmit the message only if at
least one of its own k -hop neighbors has cost <C . Otherwise it will not retrans-
mit, and will perform auction aggregation by returning a response message to its
parent node on the search path. In the simplest version, 0-AAP protocol (for k
= 0), the receiving robot declares itself as the selected one, corresponding to the
use of 0-hop knowledge (no knowledge at all). In the 1-AAP protocol, collecting
robot R0 will retransmit if any of its neighbors has a lower cost. In the example
in Figure 9.4, this still results in no transmission from R0. In the k -AAP , R0 will
retransmit if any of its k -hop neighbors has a lower cost. In Figure 9.4, R7 is
2-hop neighbor of R0 with a lower cost, and R0 then retransmits in the 2-AAP
version. After receiving the bid from R0, R2, R3, and R9 will not retransmit,
while R1 will because R7 is its 1-hop neighbor. Every retransmitting node will
include with the message the lowest cost it is aware of.

In the special case when cost metrics equals distance (from given robot to the
event), another specialized algorithm may be used. We formalize it as Routing
Toward the event with Face traversal encircling the event (RFTTF ) algorithm
(routing toward the event with face traversal encircling the event). It is in fact
algorithmically equivalent to the face traversal algorithm described in Chapter
4. In the example in Figure 9.5, e is the event location. The RTF algorithm
starts after the collecting robot V receives the task. RTF routes from V , using
robot networks, toward event location e. Routing will end by traversing a face
containing e. In Figure 9.5, face is V –> A –> B –> C –> D –> F –> G –>

A. Face traversal makes a loop, which can be locally detected. The first node in
the loop (A in Fig. 9.5) decides the best (closest) robot (B in this example). Face
traversal requires planar graphs, for example, the Gabriel graph of UDG, which
is introduced in Chapter 4.
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Figure 9.5 Face traversal algorithm over Gabriel graph of UDG.

9.5 DYNAMIC TASK ASSIGNMENT

In some applications, the dynamic assignment of tasks among robots is required.
For instance, in a search-and-rescue mission of 40 robots, a preferred task assign-
ment might be 30 robots to explore the environment, 2 to mark resources, and 8
to maintain a communications network (Ogren et al., 2002). In general, assume
that pi robots need to be assigned to i th task, and that each robot can be assigned
to only one task.

Four distributed algorithms were proposed by McLurkin and Yamins (2005)
to assign swarms of homogenous robots to subgroups, each of which performs a
different task to meet a specified global task distribution. In the simple Random-
Choice algorithms, each robot chooses a given task with a probability propor-
tional to the relative size of that task subgroup in the target distribution. In the
above example, each node chooses tasks with probabilities 3/4, 1/20, 1/5, respec-
tively. The Random-Choice algorithm does not require communication among
robots and completes immediately. However, there is a high probability that it
will fail to achieve acceptable target distribution if the size of swarms is small.

The next, the Extreme-Comm algorithm is another extreme for the communi-
cation overhead involved. In short, robots flood necessary information, including
their IDs and task demands, until all robots learn all the information needed to
make the same decision as a centralized algorithm. The tasks can be assigned
in sorted order of robot IDs. More precisely, each robot broadcasts a message
containing its ID and relays messages received from its neighbors. These mes-
sages propagate from each robot throughout the network. Thus, each robot is
able to build a complete list of all other robots in the swarm. Suppose the given
target distribution vector is {p1, p2, . . . , pm} and the total number of robots
is n . Each robot determines its relative position X in the ID list and selects
a task pi , such that p1 + · · · + pi−1 ≤ X < p1 + · · · + pi . The algorithm
runs fast and outputs accurate solutions since IDs of all robots are available
to each robot. However, the algorithm requires a large amount of interrobot
communications.
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The third, the Card-Dealer algorithm breaks task assignment into a series
of stages. Wave propagation is used to learn task leader (select the robot for the
next task) in each round. In a given round, the selected robot is the one with the
smallest ID that did not determine its task yet. To learn that robot, each robot
(only robots that are not yet assigned tasks “compete”) broadcasts its ID to its
neighbors repeatedly until it receives a similar broadcast message that originated
from a robot with a smaller ID. It switches to retransmitting this smaller ID
instead. Robots that do not compete for the next task will only retransmit the
received message with the smallest ID. The procedure continues until the smallest
ID in the network is the only remaining one, and all robots are aware of it.

Finally, in the Tree-Recolor algorithm, wave propagation is applied to learn
one leader only (in one round), creating a spanning tree rooted at the leader, who
decides the roles of each robot and communicates it to them. More precisely, in
one round of wave propagation, the node with the smallest ID becomes the leader.
It initiates a flooding (where each receiving robot will retransmit the message
exactly ones) to construct a spanning tree of the network with itself as the root.
Flooding is covered in Chapter 2. Each robot establishes a pointer to the parent
robot, the one from which the first copy of flooded message is received. In this
way, all robots are joined in a single tree with the leader as the root. The root
(leader) learns all the tasks, makes decisions, and communicates roles (tasks) for
each robot using communication over the constructed tree. For proper allocation,
the internal nodes of the tree should store the number of their descendent nodes
(robots). This can be found by reverse broadcasting that starts from leaves and
continues toward the root. Leaves (level 1 robots) send messages to level 2
robots, which learn the number of their children, and forward the information to
their parents. Each internal node calculates the sum of children node counts to
find its own count of number of nodes in its own subtree. Using these counters,
and the list of tasks to be allocated, the root can start distribution by delivering
the appropriate number of tasks to each of its subtrees. This process continues
recursively from each child node, starting with the corresponding allocated list of
tasks. The allocation messages spread along the spanning tree from the source to
all robots in the network. Communications overhead is lower than in the previous
two solutions.

9.6 DEPLOYING SENSORS TO IMPROVE
CONNECTIVITY

The algorithm in Seah et al . (2006) builds a system of networked wireless sen-
sors, and actuators carried on mobile robots that are able to operate in all kinds
of terrain. Robots (actuators) move to fill the communication gaps to enhance
connectivity while some nodes serve as landmark nodes to help robots search the
targets. The algorithm is motivated by a scenario of a large indoor environment
with rooms. Sensors are scattered in the area but doors and windows prevent con-
nectivity and sufficient coverage. After applying the localization algorithm (Wong
et al., 2005), every sensor node keeps an n-tuple of its hop count distances from
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all the n landmarks. Each sensor periodically broadcasts beacon messages, which
carry this n-tuple, to its neighbors, and to nearby actuators. The newly deployed
sensors will broadcast a localization packet to update the n-tuple hop counts of
sensors around the region. If a mobile actuator receives largely different hop
counts (toward landmarks) from sensors around it, it identifies the area as a crit-
ical one, and tries to find a suitable spot to bridge the gap by deploying a new
sensor.

A swarm-like model for movement direction of robots was proposed (SEAH
et al., 2006) to cooperatively search for communication gaps and targets in the
environment. Each robot (actuator) periodically broadcasts its ID and heading
to its neighbors. Each robot will adjust its heading only if its neighbors’ IDs
are higher than itself. The new heading is the heading of the neighbor with the
closest higher ID plus 90◦ in the clockwise direction. The process is illustrated
in Figure 9.6. The initial movement directions of four neighboring nodes are
shown in Figure 9.6a. Suppose nodes make decisions in the order of 4, 3, 2,
and 1. Since node 4 has the highest ID among its neighbors, it does not change
its heading. The new heading of node 3 is the heading of node 4 plus 90◦ in
the clockwise direction (Fig. 9.6b). Similarly, nodes 2 and 1 adjust their heading
based on heading of nodes 3 and 2, respectively. The final orientations of nodes
are shown in Figure 9.6d.
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Figure 9.6 Selecting movement directions by actuators. (a) Initial movement directions.
(b) Node 3 changes its heading. (c) Node 2 changes its heading. (d) Final movement directions.
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In this problem statement, robots coordinate for sensor placement in the
field. Chapter 10 describes a number of other techniques for sensor placement
by robots, with or without robot coordination.

9.7 FAULT-TOLERANT SEMIPASSIVE
COORDINATION AMONG ACTUATORS

A multiactuator/multisensor model was studied in Ozaki et al. (2007) to provide
fault tolerance for WSANs. Each sensor node sends a sensed value to multiple
actuators and each actuator receives sensed values from multiple sensor nodes.
Such reporting model provides fault tolerance if any sensor or any actuator are
faulty. A semipassive coordination protocol was proposed in Ozaki et al. (2007).

One actuator plays a role of a coordinator, called primary actuator, while
other actuators are backup actuators in an event area. The protocol (Ozaki et al.,
2007) consists of three phases: broadcast phase, decision phase, and update phase.
In the broadcast phase, if an event occurs, a sensor node sends a measured value
to multiple actuators in the area. Due to collision and noise in wireless chan-
nels, some actuators may not receive the value correctly. Each receiving backup
actuator sends a message with the sensed value and the ID of the correspond-
ing sensor node to the primary actuator. Once the primary actuator receives a
certain number of messages (greater than a predetermined threshold), it makes
a decision on the measured value from the value set. It can be a majority value
from a discrete set, or, in the case of continuous values, a function filter could be
used to remove extreme values and compute the average of the remaining ones.
The estimated value and other updates are then broadcasted to all the backup
actuators. Upon receiving this message, each backup actuator stores the received
update values and acknowledges the receipt to the primary actuator. The primary
actuator (or one of primary actuators in case there are several of them) then
makes a decision on possible action, including a confirmed update value. In this
way, a backup actuator can obtain the value from the decision message even if it
misses the previous message containing the original updates. Upon receiving the
decision and updates, each backup actuator updates the state by using the value
stored in the local storage. Finally, the primary actuator acts on the decision
made by sending a message to an actuation device, which acts based on received
instruction.

If the primary actuator is faulty, for example, the update messages are
delayed, the backup actuators suspect the primary actuator to be faulty due to
time-out and send a negative acknowledgement message to the primary actuator.
Then, one of the backup actuators, for example, the backup actuator with the
smallest ID, will take over the role of the primary actuator. The new primary
actuator computes an interval value from the received sensed values and sends
an update message to the backup actuators, exactly as the faulty primary actuator
was supposed to do. The system will be recovered. No specific protocols were
described in Ozaki et al. (2007) for flooding tasks involved in the algorithm.
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9.8 DISPERSION OF AUTONOMOUS MOBILE
ROBOTS

McLurkin and Smith (2004) studied dispersion of autonomous mobile robots.
The problem is to disperse a large swarm of robots into a space of interest to
increase their area coverage while maintaining their network connectivity. The
main ideas of their algorithms are as follows. Robots move opposite to vector
sum of their forces toward neighbors. Frontier robots move forward. To prevent
disconnections and oscillations, and preserve connectivity with two children, leaf
robots also preserve coverage of initial area and keep the near robots stationary
while the frontier moves.

Two dispersion algorithms, called disperseUniformly and frontierGuidedDis-
persion, were proposed in McLurkin and Smith (2004). These algorithms are run
alternately on the swarm of robots. The disperseUniformly is to spread robots
evenly, while the frontierGuidedDispersion algorithm is to direct robots toward
unexplored areas. In the disperseUniformly algorithm, the basic idea is to direct
robots using boundary conditions to limit the dispersion. Physical walls and a
maximum dispersion distance between any two robots, r safe, are used as bound-
ary conditions to help prevent the swarm from spreading too thin and fracturing
into multiple disconnected components. Each robot is directed away from the
vector sum of the relative positions {p1, . . . , pc} of its c closest neighbors. The
magnitude of the velocity vector is:

v = − vmax

c × rsafe

c∑
i=1

piIi,

where I i is an indicator function Ii =
{

1 if |pi | ≤ rsafe

0 otherwise
and v max is the max-

imum allowable velocity. The vector acts as virtual force and directs the robot
away from its c closest neighbors. The experiment results have shown that using
two closest neighbors (c = 2), works best in practice.

The frontierGuidedDispersion algorithm uses robots on the frontiers of the
explored space to guide the swarm into unoccupied areas. The system goal can
be achieved if all the frontier robots move along their optimal path and “pull” the
rest of the swarm into their final positions. Each robot is supposed to have three
statuses: wall , frontier , and interior . Wall robots are those robots that detect an
obstacle. They create virtual neighbors at a symmetric position with respect to
the wall, which serves as a virtual force against continuing forward movement.
Frontier robots are those that have no neighbors and no walls in an angular range
over 180◦. That is, frontier robots are on the edge of an open space. Interior
robots are those that are neither wall robots nor frontier robots. In the example
in Figure 9.7, W denotes the wall robots, F the frontier robots, I the interior
robots. The five circles denote the virtual neighbors created by the robots, which
detect nearby walls.
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Figure 9.7 Wall, frontier, and interior
robots.

Frontier robots guide the swarm into unexplored areas by propagating a
gradient that forms a tree rooted at them. All robots then move away from their
children in this tree. Leaves of the tree do not move to provide a route to the
chargers or to mark previously explored areas. “Frontier trees” guide the swarm
toward the frontier robots. Frontier robots “pull” the rest of the swarm behind
them. However, any algorithm that is based on pulling robots over multiple
hops can cause newly discovered frontiers to pull robots away from previously
explored areas. This causes a frontier to reappear at the old location and pull
the swarm back, creating oscillations, or fracturing the swarm and disconnecting
robots from the initial positions (which could be places needed to charge robots).
Instead, robots move away only from children in the frontier tree. To build a
reliable (biconnected) network for fault-tolerant applications, robots should only
move if they are in contact with at least two children in the frontier tree. This
increases the min-cut of the network to two while the robots are dispersing, and
helps deal with voids created by corners or robots heading home for charging.

9.9 DISTRIBUTED BOUNDARY COVERAGE
BY ROBOTS

The distributed boundary coverage was studied by Correll et al. (2006) and
Correll and Martinoli (2007a). They described self-organized embedded sen-
sor/actuator networks for “smart” turbines. Robots are utilized to cover every
point on the boundaries of all objects in an environment. The work is motivated
by the inspection of the blades in the compressor section of a jet turbine. The
process is currently performed by using borescopes, which is time consuming
and costly. The narrow structure of the turbine motivates the use of extremely
miniaturized robots. A swarm of miniature robots performs boundary coverage
of blades in a jet turbine mock-up. The robots exploit the regularity of the envi-
ronment and construct a spanning tree with the blades as vertices (Fig. 9.8). Edge
traversal is achieved by a combination of dead-reckoning and navigation along
way-points on a blade’s boundary. Way-points can be determined by on-board
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(0, 0)

Figure 9.8 A 5 × 5 blade environment.

sensors, which are able to detect a blade’s tips and to measure the curvature of
the blade.

The spanning tree is explored by using depth first search (DFS) from the
specified root. Edges are randomly selected from the unexplored candidates. An
edge is said to be explored if two end points have been visited. If all edges of
a node are explored, DFS returns to the parent of this node (backtracking). The
algorithm terminates when the exploration packet returns back to the root. Note
that DFS explores all possible edges, including nonnavigable ones ending at a
wall. Figure 9.8 illustrates a possible spanning tree explored by the DFS, with a
single robot traversing the blades. The central point (0, 0) is the root and white
circles are nonnavigable vertices. Each edge is visited twice, once for exploration
and once for backtracking. Since the sensor and actuator noise exists, a robot may
miss a blade and continue exploration until the algorithm finds an unexpected
reading, for example, a wall instead of a blade. Each robot is therefore assigned
a portion of blades to apply DFS of the spanning tree of these blades. However,
the division of search boundary among robots is not explained in Correll et al.
(2006); Correll and Martinoli, (2007a).

9.10 CLUSTERING ROBOT SWARMS

A self-organized robot aggregation model was studied in Correll and Martinoli
(2007b). The study is inspired by swarms of German cockroaches. Cockroaches
move randomly through the arena and eventually stop and aggregate into
clusters of different sizes. In each cluster, a cockroach can sense the presence of
at least one other cockroach. Those clusters are not persistent and cockroaches
might resume moving and leave the cluster. The average time for a cockroach
to rest within a cluster increases while the size of the cluster increases (Jeanson
et al., 2004).

Let p leave(j ) and p join(j ) denote the probability a cockroach/robot leaves and
joins a cluster of size j , respectively. These values are observed in Jeanson et al.
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(2004). Let pc denote the probability that a robot encounters another one at
every time step of length T . pc is estimated as follows: pc = (1/Atotal)v rw dT ,
where Atotal is the area of the arena, v r the average speed of an individual,
w d the individual’s detection width, that is, communication range of the robot.
Therefore, the behavior of robots can be modeled as the Markov process. The
average number of robots N j (k + 1) in an aggregation of size j at time k + 1,
is as follows:

Nj(k + 1) = Nj(k) + pcNj−1(k + 1)Ns(k)pjoin(j − 1)j + pleave(j + 1)

Nj+1(k)j − pcNj(k)Ns(k)pjoin(j)j − pleave(j)Nj (k)j.

The first term N j (k ) is the average number of robots in an aggregation of
size j at time k . The second term indicates that a searching robot encounters one
of the robots in a cluster of size j – 1, and joins this cluster to form a cluster
of size j . The number of searching robots is denoted by N s(k ). The probability
that a searching robot encounters one of robots in a cluster of size j – 1 is
pcN j−1(k ). The probability that this searching robot joins this cluster is p join

(j – 1). Similarly, the third term represents a robot leaving clusters of size j +
1. The fourth term represents a searching robot joining clusters of size j , and the
last term represents a robot leaving cluster of size j .

9.11 ROBOT TEAMS FOR EXPLORATION
AND MAPPING

Howard et al. (2006) studied and experimented with a heterogeneous mobile
robot team for exploration, mapping, deployment, and detection. The robot
team, consisting of approximately 80 robots, has two classes of nodes: the
mapper/leader robots and sensor mini-robots. All robots are equipped with
802.11b WiFi. The mission consists of two phases: exploration and mapping,
and deployment and detection. In the exploration and mapping phase, the
mapping subteam explores the environment and generates an occupancy grid
map. In the deployment and detection phase, the occupancy grid map is used to
compute a set of deployment locations, and simple sensor robots are deployed
to these locations following guidelines from more capable robots.

Each mapping robot is equipped with a scanning laser range-finder, a color
camera, and a unique coded fiducial, such that they can determine the identity,
range, and bearing of nearby robots (Howard et al., 2006). A pair of robots
can determine their full relative pose, including range, bearing, and orienta-
tion, by exchanging such observations. Each mutual observation is transmitted
to the remote operator console where the observation is added to the set of
global constraints. A decentralized frontier-based approach (Yamauchi, 1997)
was employed for exploration in Howard et al. (2006). The algorithm operates
as follows. First, construct a local occupancy grid map using laser range data
and local pose estimates. Then extract a list of discrete frontiers, that is, the
boundaries between known and unknown regions of the occupancy grid. Discard
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frontiers that are unreachable. If the currently selected frontier has disappeared
or becomes unreachable due to obstruction by another robot, randomly select a
new frontier.

At the beginning of a deployment, the leader robot leads the sensor-limited
robots in a chain formation to the vicinity of the goal destination of the first
simple robot. During the navigation mode, the simple robots use a crude camera
and a color blob tracking algorithm to follow the robot ahead of it, which is
outfitted with a rectangular red blob. Each robot in the chain follows the robot
directly in front of it at an average deployment speed of approximately 0.5 m/s.
If the blob is lost, the simple robot tries to reacquire the blob by continuing its
previous action or by panning itself from side to side. The blob tracking results
in a follow-the-leader chaining behavior if multiple robots are front-to-back with
each other. Once the leader reaches the vicinity of the sensor net position, it
autonomously navigates the first simple robot into deployment position by using
the camera mounted on the leader. The leader maintains the chain and proceeds
to the next deployment position to provide the similar navigational assistance
for deployment. Therefore, the leader visits all deployment positions in turn and
deploys single sensor robots one by one.

To enable the leader robot to determine the position of any simple robot, a
visual fiducial is mounted on each simple robot. Each visual fiducial consists of a
start/end block, a 7-bit ID block, and an orientation block. Once the simple robots
are in position, they switch state to their primary role of forming a distributed
acoustic sensor network for intruder detection. They are utilized to detect acoustic
targets that are moving through the environment.

9.12 COORDINATED ACTUATOR MOVEMENT
FOR ENERGY-EFFICIENT SENSOR REPORTING

Mobility of robots is utilized to save energy in long-term communication tasks
(e.g., video monitoring) in Liu et al. (2007). In such long-term communication
tasks, the traffic will be regular and large enough in volume to warrant nodes
expending energy moving in order to forward traffic in a more energy-efficient
manner. Given a communication request between a source-destination pair, the
problem is to find an initial route between them if possible (using current robot
locations), and move each node on the route to its desired final location (while
maintaining the route if possible). The objective is to minimize the total trans-
mission power of nodes for this long-term communication, while keeping low
movement distances from the initial to the final positions of intermediate nodes
(robots).

Suppose a source S needs to find a route to a destination D . According to
Goldenberg et al. (2004), the optimal locations of relay nodes must lie evenly on
the line between S and D . Theorem 9.1 shows the optimal number of hops and
optimal distance of adjacent nodes on the line. Assume that the energy needed
for transmitting and receiving between two nodes at distance d is proportional
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to dα + c for some constant α (between 2 and 6) and c > 0. Let d (S , D) be the
Euclidean distance between S and D .

Theorem 9.1. Stojmenovic and Lin (2001) Total transmission power of route
from S to D is minimal when the optimal number of hops on the route is integer k ,
such that |k − d(S, D) × ((α − 1)/c)1/α | is minimized, and the optimal distance
of adjacent nodes is d(S, D)/k.

Proof. Suppose that an arbitrary path is initially established, with k hops. Its
total length is no less than |SD|. Therefore, nodes on the path can be moved
along the line SD without increasing the length of any hop, therefore reducing
energy consumption on each hop. Consider now, two consecutive hops with total
length t , with hop lengths t – x and x , respectively. The total energy for these
two hops is (t − x)α + c + xα + c. The first derivative of this function has zero
at x = t/2 . This means that the energy is minimal when retransmitting nodes are
at equal distances to the previous and the next nodes on the path. Therefore, all
relay nodes must be evenly spaced along the line, for minimal overall energy
consumption of the route. The distance of adjacent nodes is then d(S, D)/k . So
the total transmission power of nodes on the line is then k × ((d(S, D)/k)α + c).
Let x = d(S, D)/k denote the distance of adjacent nodes on the line. Then the
total energy is d(S, D) × (xα + c)/x. The first derivative of this function has
zero at the value of x that minimizes the total transmission power of nodes
on the line. Therefore d(S, D) × (α − 1)xα−2 − d(S, D) × c × x−2 = 0. Thus,
we get x = (c/(α − 1))1/α . The optimal number of hops, k , can be computed
by rounding d(S, D) × ((α − 1)/c)1/α to the nearest integer. The optimal space
between adjacent nodes on the line is then d(S, D)/k , which is a rounded value
of (c/(α − 1))1/α . �

On the basis of Theorem 9.1, two routing algorithms were proposed in Liu
et al. (2007) to find an initial path from the source to the destination. The first
algorithm is referred to as optimal hop count routing (OHCR). The current node
selects a neighbor such that the neighbor is closest to the location that makes
optimal progress toward the destination. Only neighbors closer to the destination
than the current node are considered. Route failure will be reported to the source
from the current node if no advance is possible. Source S rounds d(S, D) × ((α −
1)/c)1/α to the nearest integer k , and computes the optimal distance of adjacent
nodes d (S , D)/k . If k ≤ 1 and d (S , D) ≤ r , S transmits directly to D . Otherwise,
S starts a route discovery process. Each current node u on the route reports Route
Failure to S if there is no neighbor closer to the destination than u . Otherwise,
u selects an advancing neighbor v such that |d (v , D) – |d (u , D) – d (S , D)/k ||
is minimized. The route progresses hop by hop until destination D is reached or
route failure is found. The detailed algorithm is formally presented as follows.

Optimal Hop Count Routing (OHCR) (Liu et al ., 2007)
Input: locations of S and D , transmission range r .
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Output: a route from S to D .
Begin
round d(S, D)/min((c/(α − 1))1/α, r) to the nearest integer k ;
compute optimal distance of adjacent nodes d (S ,D)/k ;
if k ≤ 0 and d (S ,D) ≤ r then

S transmits directly to D else u=S;
while D is not reached && Route Failure is not found do {

// for current node u (u 
= D).
if {v | d (u ,v )≤r , d (v ,D)≤d (u ,D)}= then

u reports Route Failure to S
else {

u selects neighbor v such that |d (v ,D)–|d (u ,D)–d (S ,D)/k ||
is minimized;

u transmits to v a Route Discovery packet attached with d (S ,D)/k; u=v
} }

End

Once D is reached, an initial route from S to D is found. All nodes on the
route are required to be moved to their optimal locations. Two moving strate-
gies, called move in rounds and move directly were studied in Liu et al. (2007).
Move in rounds strategy is used in algorithms proposed in Goldenberg et al.
(2004). In each round, each node (except for S and D) moves to the midpoint
of its upstream node and downstream node on the route. It requires synchronous
rounds by all nodes to preserve connectivity while moving. If connectivity is
not required during the movement, or could be guaranteed while moving by
the topology, the unnecessary zigzag movement of nodes on the route could
be replaced by the move directly strategy, where nodes move directly to their
optimal locations.

Routing to D may contain different number of hops instead of the planned
number k , and intermediate nodes need to learn the exact number so that they
can move toward their proper final positions. D computes the actual distance of
adjacent nodes on the path, and attaches the information to a Route Confirma-
tion packet that is routed backwards to all nodes on the route. Upon receiving a
Route Confirmation packet (except for S and D), each node computes its desir-
able location according to the attached actual hop count. The same packet also
synchronizes nodes so that then can start moving toward their final positions at
the same time.

A variant of OHCR, referred to as dynamic optimal progress routing (DOPR)
(Falcon et al., 2009), is to adjust optimal progress toward destination on the basis
of the actual progress already made and the remaining number of nodes in future
optimal route. The algorithm is as follows.

Dynamic Optimal Progress Routing (DOPR) (Falcon et al ., 2009)
Input: locations of S and D , transmission range r .
Output: a route from S to D .
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Begin
round d(S, D)/min((c/(α − 1))1/α, r) to the nearest integer k ;
p = 0; u=S;
while D is not reached && Route Failure is not reported do {
// for current node u (u 
= D).

if {v | d (u ,v )≤r , d (v ,D)≤d (u ,D)}=

u reports Route Failure to S ;
else if p≥k

u selects neighbor v which is closest to D ;
u ← v;

else // (p<k )
DoP = d (u ,D)/(k–p); // ideal distance for remaining nodes on the path
u selects neighbor v such that |dist(v , D)–|dist(u , D)–DoP| | is minimized;
p=p+1 ; u ← v; }

End

Here, p is the number of relay nodes already in the route while k – p stands
for the optimal number of remaining nodes to be added to the path. Hence, DoP
is the dynamic optimal progress. When p ≥ k , DOPR behaves as the greedy
routing to attain the greatest progress to destination.

The minimum power over progress routing (MPoPR) (Liu et al., 2007) is to
minimize transmission power of unit progress in selecting a forwarding neighbor.
The algorithm has the same structure as the previous two, and the main differ-
ence is the criterion used to select the best forwarding neighbor. Here, u selects
neighbor node v , such that (d(u, v)α + c)/(d(u, D) − d(v, D)) is minimized.
Note that d(u, v)α + c is the transmission power for selecting v as a forwarding
neighbor, and d (u , D) – d (v , D) is the distance progress by node v . The metric
denotes transmission power per unit progress. It is one of the cost over progress
paradigms from Stojmenovic (2006).

In previous algorithms, only neighbors closer to the destination than the
current nodes are considered. If such neighbors do not exist, route failure will
be reported. The algorithms are therefore practical only for dense networks. In
sparse networks, an initial route may not be found even if there exists such a
route. To deal with sparse networks, recovery schemes are integrated into routing
in Falcon et al. (2009). The aim is to employ DFS (Vukojevic et al., 2008) as
the built-in failure recovery mechanism for routing protocols (see also Chapter
4). The general idea is as follows.

In DFS-based routing, each node memorizes if it has already been visited
by the DFS traversal, and the sender from where the message was received for
the first time. It also overhears transmissions from neighbors to learn about their
possible visiting status. The node that is currently holding the routing message
will sort all its unvisited neighbors by using OHCR criterion. The first node in
the list is selected to forward the message. If a node has no unvisited neighbors
to proceed, it returns the message to the sender , which will forward the message
to the next unvisited neighbor in the list. Eventually, the message either reaches
the destination, or returns back to the source, which has no unvisited/unexplored
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neighbors. In the former case, a route from the source to the destination is found.
The latter case indicates that the source and the destination are disconnected. The
OHCR-DFS that integrates OHCR with DFS operates as follows.

Optimal Hop Count Routing with Depth First Search (OHCR-DFS) (Fal-
con et al ., 2009)
Input: locations of S and D , transmission radius r .
Output: a route from S to D .
Begin
S is marked as visited ; disconnected_ flag=0;
A=S ; // A is the node that currently holds the message.
while D is not reached && disconnected_ flag=0 do {

if A=S && S has no unvisited neighbors
disconnected_ flag=1; // S and D are disconnected.

if A 
= S && A has no unvisited neighbors
return the message to its sender ; A= sender to A;
if A has unvisited neighbors
A sorts all unvisited neighbors using OHCR criterion;
A sends the message to the first neighbor B in the list;
B memorizes A as the sender ;
B is marked as visited ;
A=B ; }

if disconnected_ flag=1
report Route Failure; //disconnected topology.

else
output the route from S to D ;

End

In a similar manner, DOPR can be extended to DOPR-DFS. Note that OHCR-
DFS and DOPR-DFS output the same routes as OHCR and DOPR if OHCR and
DOPR succeed. However, OHCR-DFS and DOPR-DFS can cope with sparse net-
works and are guaranteed to find routes as long as the source and the destination
are connected.

In the example in Figure 9.9, S initiates routing to D . First, S marks itself as
visited, and sorts neighbors A and F according to OHCR criteria. Suppose A is the
first node in the list, that is, |d (A, D) – |d (S , D) – d (S , D)/k || < |d (F , D) – |d (S ,
D) – d (S , D)/k ||, where k is the optimal hop count, in terms of energy efficiency.
S forwards the message to A, which then forwards to B . B sorts neighbors C
and E in a similar way as S does, and forwards the message to C . C then
forwards to E . Until this step, OHCR-DFS operates exactly the same as OHCR
does. Since E has no unvisited neighbors, OHCR will report Route Failure and
routing terminates here. In OHCR-DFS, however, E returns the message to its
sender, that is, C , which then returns to B . Note that B overhears the visited
status of E when E returns the message to C via broadcasting. Thus, B forwards
the message to its only unvisited neighbor G . The message eventually reaches
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Figure 9.9 Routing of OHCR-DFS.

D via H and I . Therefore, the trajectory of routing message is SABCECBGHID
and the route from S to D is SABGHID .

Collect K neighbors routing (CKNR) was further proposed in Falcon et al.
(2009) to deal with the networks where the source and the destination may even
be disconnected. Once the optimal hop count k , is computed, one can simply
run DFS over the entire graph until it finds exactly k nodes. All k nodes are
afterwards moved directly to their ideal locations. Note that it could be possible
that the destination is reached before k nodes are collected. In this case, the
routing algorithm terminates.

Depending on the criterion used in selecting neighbors, we have CKNR-
OHCR and CKNR-DOPR. In CKNR-OHCR, a forwarding node is selected as
in OHCR-DFS. The only difference is the termination condition. CKNR-OHCR
terminates once k nodes are collected or the destination is reached while OHCR-
DFS terminates when the destination is reached. Therefore, even if the source and
the destination are disconnected, CKNR-OHCR can find k nodes, which move
to their desired locations to construct a feasible route. Note that CKNR-OHCR
may select nodes that have no sequential neighboring relationship. Each node
is assigned with a sequential number (counter), which indicates the place of the
node in the final route after movement.

In the example in Figure 9.10, suppose the optimal hop count is k = 6. S
first marks itself visited and is assigned 1. S sorts neighbors A and F accord-
ing to OHCR criterion, and forwards the message to A, which is assigned 2.
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Figure 9.10 Routing of CKNR-OHCR.
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A forwards the message to B , which is assigned 3. B sorts neighbors C and E ,
and forwards the message to C . C then forwards to E . C and E are assigned 4
and 5, respectively. Since E has no unvisited neighbors, E returns the message
to its sender, that is, C , which then returns to B . The counter does not increase
until B forwards the message to its only unvisited neighbor G , which is assigned
6. The routing algorithm terminates, as six nodes have been collected. After G
replies an ACK message to S along the path, each node knows the actual number
of nodes in the route. Each node computes its desired location according to its
sequential number and moves directly to the location. The final route from S to
D is SA′B ′C ′E ′G ′D in Figure 9.10.

9.13 FLYING ROBOTS

The team from the Berlin Technical University is working on miniaturized robot
helicopters with advanced intelligence (Dumiak, 2009). The project is called
Autonomous Flying Robot MARVIN (multipurpose aerial robot vehicles with
intelligent navigation) (MARVIN). Unlike other robocopters studied by several
groups around the world, these flying robots (MARVIN) are able to coordinate
with each other to complete required tasks. The main applications include (i)
load transport with multiple helicopters; (ii) deployment of sensor networks using
small scale aerial robots; and (iii) monitoring and observation. Robocopters can
be expected for use to distribute sensors that would help coordinate firefighting
efforts or search flood zones, to track or find people and vehicles, or to record
movies and cover sports events (Dumiak, 2009). Hoisting communications gear,
they can even provide services of WiFi or mobile phone traffic if infrastructure
has been destroyed by an earthquake or some other natural disaster.

There are three main types of robots in the MARVIN project: helicopters,
quad-rotors, and planes. The specification of above three robots is listed in
Table 9.1.

The autonomous navigation of these flying robots (MARVIN) is performed
by a modular control system. The control system can be used to operate different
types of flying robots. The modular control system is composed of hardware
for autonomous navigation, real-time software for control and communication as
well as of mission software. The control system can be configured for different
types of actuators and sensors, for example, low-cost and high-end navigation

Table 9.1 Specification of Robocopters (MARVIN).

Size (m) Weight (kg)

Helicopters H-3 Rotor diameter 2 12–16
Quad-rotor H-Q1 Edge length 1 15
Plane H-P1 Wingspan 2.5 15
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sensors. The copters’ control systems allow small craft to work together in lifting
loads and scouting environments. For instance, suppose there are three or four
copters each of which shares the load while tethered by a rope to a single object.
Such operation causes many contrary forces for the copters. If those copters are
manually controlled, it is not easy to make a stable operation. However, the
autonomous robocopters are able to make instant and coordinated adjustments
and keep the equilibrium. Each robot accounts for the location of the other heli-
copters, the forces coming from them, and the load on the rope, to jointly lift an
object. The robocopters’ coordination system integrates four software modules for
stabilizing the copter: navigation; exploration; obstacle avoidance; and process-
ing orientation, horizon, and position. The robocopters can also be used for more
efficient scouting because they automatically divide an area among themselves
(Dumiak, 2009). Robocopters are also used to deploy distributed communica-
tions networks by dropping off a batch of tiny sensor nodes. Each sensor node
is equipped with a data processor, a radio, a battery, and sensors, which could
detect and measure temperature, light, radiation, location, and chemical values.
The sensor’s transmission range is about 25 m. Thousands of these sensor nodes
could be distributed by robocopters to build a self-organized network, which is
used to survey a forest fire or flood zone for rescue efforts. An ongoing plan of the
MARVIN project is to use these robocopters to deploy a sensor network to track
mobile objects and people, follow movement inside and outside of buildings, and
monitor with high-end airborne cameras.
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Abstract

Coverage is a functional basis of any sensor network. The impact on cover-
age from stochastic node dropping and inevitable node failure, coupling with
controlled node mobility, gives rise to the problem of movement-assisted sensor
placement in wireless sensor and actuator networks (WSAN). One or more actu-
ators may carry sensors, and drop them at proper position, while moving around,
in the region of interest (ROI) to construct desired coverage. Mobile sensors may
change their original placement so as to improve existing coverage. Emerging
coverage holes are to be covered by idle sensors. Actuator may place spare sen-
sors according to certain energy optimality criteria. If sensors are mobile, they
can relocate themselves to fill holes. In this chapter existing solutions to the
sensor placement problem in WSAN are comprehensively reviewed.

10.1 INTRODUCTION

Sensor networks aim at monitoring their surroundings for event detection and/or
object tracking (Akyildiz et al., 2002; Martincic et al., 2005). Because of this
surveillance goal, coverage is a functional basis of any sensor network. In order
to best fulfill its designated surveillance tasks, a sensor network must maximally
or fully cover the right region, where interesting events occur, without internal
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sensing holes. Sometimes, additional requirements such as node degree (Poduri
et al., 2009), node density (Garetto et al., 2007), or coverage focus (Garetto
et al., 2007; Li et al., 2008a) may apply.

However, it cannot be expected that sensors are placed in a desired way at
initiation as they are often randomly dropped due to operational factors. Further-
more, sensors could fail at runtime for various reasons such as power depletion,
hardware defects, and damaging events, degrading already poor coverage. In
WSAN, the impact on coverage from stochastic node dropping and unpredictable
node failure, coupling with controlled node mobility, brings about the problem of
movement-assisted sensor placement for coverage formation and improvement.

There are different ways to place sensors by exploiting node mobility in
WSAN. Sensors can be placed by mobile actuators. If sensors have locomotion,
then they can place themselves by intelligently changing their geographic location
without others’ help. Because physical movement (including starting motors) con-
sumes a large amount of energy, a movement-assisted sensor placement scheme
is expected to yield a small number of moves and small total moving distance.
As sensors are often dropped in an unknown environment, terrain and boundary
information of the sensory field may not be known a priori, and the algorithm is
expected to enable mobile sensors/actuators to avoid physical obstacles on the fly.

So far, a number of movement-assisted sensor placement algorithms have
been proposed. But, nevertheless, no systematic study on these algorithms
has yet been presented. This chapter will fill this gap. Section 10.2 intro-
duces four subtopics of the movement-assisted sensor placement problem.
Section 10.3 presents basic technique for sensor migration between two points.
Sections 10.4–10.7 survey the major research efforts on these topics in detail.
We will denote by rs sensing radius and by rc communication radius.

10.2 MOVEMENT-ASSISTED SENSOR PLACEMENT

Four subproblems of movement-assisted sensor placement have been investigated
for coverage improvement in the literature. This section gives these problems a
general definition. A comprehensive survey of existing solutions can be found,
respectively, in the following sections.

10.2.1 Sensor Placement by Actuators

Actuators may serve as network installers for sensor deployment. They carry
sensors as payload and move around in the ROI. While traveling, they deploy
sensors at desired positions (e.g., vertices of certain geographic graph) to “install”
a connected sensor network with desired coverage.

If ROI is bounded, and there are sufficient sensors, the key problem is how
to guide actuators to explore entire ROI. Otherwise, the challenge will be how
to ensure a coverage of good compactness . Compactness can be measured by
the radius of the maximum hole-free disk in the final network. It reflects the
omni-sensibility of the network.
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10.2.2 Coverage Maintenance by Actuators

After initial sensor deployment, actuators can be used as network maintainer to
improve existing coverage by planting sensors at designated location. Specifically,
upon request, they will move to reported sensing holes (e.g., due to improper
initial node distribution or runtime node failure) and drop new sensors there to
fill the holes with minimum delay. If actuators have no sensors in hand, then
they have to first fetch spare sensors in the network. The delay from the moment
when an actuator received a request to the moment when it filled the reported
hole ought to be minimized.

Consider a single actuator case with a redundant sensor at any point in
covered areas and every sensing hole is small enough to be patched by a single
sensor. In this hand-made special scenario, the actuator’s only task is to find a
shortest tour that visits every sensing hole exactly once, which is actually the
NP-complete traveling salesman problem. Hence, the actuator-based coverage
maintenance problem is NP-hard.

10.2.3 Sensor Self-Deployment

Sensor self-deployment takes place immediately after initial sensor dropping. It
aims at achieving desired coverage through network-wide autonomous sensor
reorganization. To perform self-deployment, each sensor node needs to have
locomotion.

Sensor self-deployment was first introduced by Howard et al. (2002a). It
is closely related to robot exploration and mapping problem (Lopez-Sanchez
et al., 1998; Yamaguchi et al., 1998; Burgard et al., 2000) and pattern formation
problem (Sugihara and Suzuki, 1996; Scheider et al., (2000); Fredslund and
Mataric, 2001) in the field of mobile robots. But, it differs from these problems
in model definition: mobile sensors have “hearing”, while mobile robots have
“vision”.

10.2.4 Sensor Relocation

Sensor relocation deals with failure nodes within a sensor network, that is, how
to replace emerging failed sensors with redundant ones through nodal geographic
migration, without topological change. To perform sensor relocation, each sen-
sor node is required to have locomotion. Sensor relocation involves two tasks:
replacement discovery , that is, finding a redundant sensor as the replacement of
a failed node, and replacement migration , that is, migrating the replacement to
the failed sensor’s position.

10.3 MOBILE SENSOR MIGRATION

After a mobile sensor makes its decision for self-deployment or relocation, it will
migrate from its current position to the target position. Mobile sensor migration
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Figure 10.1 Shifted migration method.

can be accomplished in a direct way or in a shifted manner. In direct migration,
the sensor simply moves all the way to the target location. Owing to the poten-
tially long moving distance, this method can cause long migration delay and large
energy consumption on the migrating sensor. In shifted migration , a multi-hop
migration path is built from the sensor to the target location. As illustrated in
Figure 10.1, every sensor along this path shifts its position by one-hop toward
the target location. The last sensor in the path moves to the target location.

Compared with direct migration, shifted migration may generate longer total
moving distance and a larger number of moves, because migration path is usually
not short and often composed of multiple nodes. However, instead of punishing
only one node, this method distributes energy consumption among all the nodes
along the path, prolonging network lifetime as a whole. In addition, it renders
migration latency proportional to the longest hop (not longer than the communi-
cation radius rc) rather than the Euclidean distance between the target location
and the sensor. In these cases, shifted migration is more desirable than direct
migration. The key to shifted migration is energy-efficient migration path dis-
covery, which is in fact a routing problem (described in Chapter 4). In order not
to jeopardize the execution of other network protocols, every shifting node must
transfer all its local data to the replacement node at its original position after the
shifted migration process.

10.4 SENSOR PLACEMENT BY ACTUATORS

Till the time of this writing, only a few algorithms (Batalin and Sukhatme, 2005;
Chang et al., 2007; Fletcher et al ., 2009) were proposed to address how to deploy
sensors by actuators. In this section these algorithms are reviewed in detail.

10.4.1 Least Recently Visited Approach

Batalin and Sukhatme (2005) presented a single-actuator-based sensor place-
ment algorithm LRV (least recently visited), which assumes equal sensing and
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communication radii and guides actuator movement according to the suggestion
of previously deployed sensors. The algorithm starts with an empty environment.
At initiation, the actuator (robot) deploys a node at its current position. Each
deployed sensor maintains a set of directions along which the robot can move
away from it. Directions could follow a graph structure (e.g., tree) or could be
predefined (e.g., four geographical directions). It also assigns a weight, initially
equal to 0, to each direction, indicating the number of times that direction was
traversed by the actuator.

Every sensor recommends its locally LRV direction to the actuator by mes-
sage when the actuator is in its communication range. Directions are preordered
so that a single direction is recommended in case of a tie. The actuator travels a
predefined distance in recommended direction. If, however, the chosen direction
is obstructed, it will inform the recommender and ask for a new suggested direc-
tion. Whenever the actuator departs or arrives, its current sensor increases the
weight of its going direction (respectively, coming direction). This can be done
by the sensor upon the actuator’s notification. The actuator remains at a location
for a predefined short period before its next movement. During this period, if it
receives no sensor message, it will drop a new sensor in the environment.

Figure 10.2 is an illustration of the LRV approach. A robot starts from
location A and travels in four geographic directions ordered as south, east, north,
and west. In the figure, the thick arrow indicates robot trajectory; numbers around
a node imply local weight of the four directions. Crosses are used to mark
directions that are locally known (from robot’s information) to be obstructed. The
robot drops at location A a sensor, which then suggests it to move to the south.
Following the suggestion, the robot moves to location B, drops a new sensor
there, and takes it as the current sensor. The current sensor first recommends
direction south (which is found by the robot obstructed) and then the east to
the robot. The robot proceeds this way and reaches location C, as shown in
Figure 10.2a. Then, it has to travel to its incoming direction, north, because all
the other directions are obstructed. It keeps traveling according to the previously
deployed sensors’ recommendation dropping sensors at proper positions, and
finally returns to the starting point A, as shown in Figure 10.2b.
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Figure 10.2 Least recently visited approach: (a) Snapshot1 and (b) Snapshot2.
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LRV is a purely localized algorithm and thus message efficient and fault
tolerant. Although the authors proved that the exploration time of LRV on a
finite graph is finite, it is not clear under what conditions the algorithm terminates.
Because the robot has no global view about the coverage and always receives a
recommended direction from its current sensor, it will not stop moving unless it
has no sensor left in hand. However, the exhaustive movement enables the robot
to visit and fill (by dropping new sensors) emerging sensing holes caused by
runtime node failure (with low path efficiency for discovering such search due
to random nature of recommendations in areas far from holes).

10.4.2 Snake-Like Deployment Approach

Chang et al. (2007) presented a snake-like sensor placement approach, referred
here to as SLD (snake-like deployment). SLD uses a single mobile actuator
to deploy static sensors at vertices of an equilateral triangle tessellation (TT)
constructed over a bounded rectilinear ROI. The single actuator moves like a
snake, starting from the upper-left corner of the ROI. It moves to the right along
a horizontal line and drops sensors at separation

√
3rs until it hits the boundary

of the ROI or an obstacle. Then it moves a distance of
√

3
2 rs down to the next

horizontal line, changes its moving direction to the left, and proceeds similarly.
The algorithm also attempts to avoid sensing holes hidden behind physical

obstacles by allowing the actuator to break its regular movement pattern. Specif-
ically, the actuator checks, before its next movement step, whether there is any
sensing hole in its vicinity in its coming direction. If the answer is positive, it
will change its moving direction toward that hole. By this means, the actuator can
move up and down, left and right, along different lines, reducing the occurrence
possibility of sensing holes. It also allows the actuator to start not only from a
corner of, but also from the middle of, the ROI.

However, this algorithm remains incomplete. It is not clear how the algorithm
terminates, that is, under what conditions the robot stops moving. There are even
unexplainable actuator behaviors in the examples used in Chang et al. (2007).
Unlike what the authors claimed, the algorithm in fact does not guarantee full
coverage according to their current algorithm description. A simple counterex-
ample scenario is that a wall partially divides the ROI with one end attaching the
border of the field, as shown in Figure 10.3. In such a situation, once the robot
enters one side of the wall, it will not be able to enter the other side.

10.4.3 Back-Tracking-Deployment Approach

Fletcher et al . (2009) presented a localized backtracking-based sensor deployment
(BTD) approach for a bounded ROI. Actuators carry sensors and are randomly
scattered in the ROI. They know about their own location, and are able to detect
physical obstacles, ROI boundaries, and early-deployed sensors. Four geographic
directions, that is, north, west, south, and east, are assigned distinct ranks. Each



10.4. Sensor Placement by Actuators 269

Figure 10.3 Incomplete coverage by SLD.

actuator moves independently and asynchronously toward local open direction
with highest rank; if obstructed (by an obstacle, boundary of ROI, or a sensor),
it chooses to move toward the direction of next highest rank. While traveling, it
drops sensors at proper positions (subject to desired network topology such as
square grid or TT). Unlike LRV (Batalin and Sukhatme, 2005) and SLD approach
(Chang et al., 2007), BTD terminates within finite time and yields full coverage
over the ROI. Its details are explored below.

An empty spot is a geographic point where a sensor is supposed to be
dropped. A sensor is said to be adjacent to an empty spot if it is so in the
desired network topology. Each sensor is dynamically assigned a color accord-
ing to its neighborhood status by the following rule: it is colored “white” if there
exists an adjacent empty spot, otherwise “black”. The successor (or predecessor)
of a sensor is the sensor that is dropped immediately after (respectively, before)
it by the same actuator. Each sensor stores a forward pointer and a back pointer .
The former points to the location of the sensor’s successor. The later points to the
location of the sensor’s predecessor if the predecessor is white, or to the location
that its predecessor’s back pointer points to otherwise. In other words, it points to
the first white sensor along the backward path of its dropping actuator. If a sensor
does not have a successor (or predecessor), then its forward (respectively, back)
pointer is set to nil . Forward- and back pointers together serve as navigation tool
and allow actuators to backtrack each other’s trajectory.

Actuators have distinct IDs. They inform each of their dropped sensors
about their IDs and meanwhile associate it with an increasing sequence number.
Sensors dropped by the same actuator have distinct sequence number, whereas
those dropped by different actors may not. By a periodic HELLO message, sen-
sors exchange with their neighbors local information such as position, dropping
actuator ID, sequence number, color, and back pointer. Hence, coloring and for-
ward/back pointer setup are both locally defined. Figure 10.4 shows the resulting
configuration of these behaviors at four moments during the execution of BTD
in an ROI. In this example, two actuators a and b start from different locations
A and B for sensor placement with square grid topology. They move following
the order of preference west > east > north > south. Their current locations are
marked by small triangles; their moving destinations are indicated by thick arrow
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Figure 10.4 Dead ends and backtracking in BTD.

lines. Sensors’ forward- and back pointers are indicated by thin straight arrow
lines and curly arrow lines, respectively.

The sensor located at the current location of an actuator is called current
sensor of the actuator. An actuator reaches a dead end if all the four moving
directions are obstructed. In this case, the actuator backtracks along the back
pointer chain starting from its current sensor to revisit previous white sensors,
find their adjacent empty spots (entrances to uncovered areas), and resume ROI
exploration and sensor dropping from there. If the actuator cannot find a non-nil
back pointer on its current sensor, it will check whether there is one stored back
pointer in its neighborhood. If the result is negative, it will terminate; otherwise,
it moves along the back pointer stored at a neighboring sensor with maximum
sequence number. In case of a tie, a random choice is made.

When an actuator is backtracking for a white sensor, we say the actuator
is serving that sensor. If the number of serving actuator of a white sensor is
equal to the number of its adjacent empty spots, then the sensor is considered
fully served . Before an actuator starts to serve a white sensor, it sends a request
message to that sensor. It takes actual serving action only after the request is
granted, or if no reply is received after a number of retrials. The sensor-dropping
action of an actuator can change color of a nearby white sensor; the color change
will trigger the change of back pointers along the forward point chain from the
sensor to its dropping actuator. Owing to network asynchrony and information
propagation delay, an actuator might move to a black sensor from a dead end.
In this case, the actuator will reach another dead end.
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Figure 10.4 shows the four dead-end situations. In Figure 10.4a, actuator
b reaches a dead end and decides to backtrack along the back pointer of its
current sensor to a white sensor. As shown in Figure 10.4b, after it reaches
the destination, the white sensor turns black because its only adjacent empty
spot is filled by a sensor dropped by actuator a. Both actuators are in a dead-end
situation, and they decide to move backward along their paths to the first previous
white sensor. Later, actuator b reaches another dead end in Figure 10.4c. Because
it cannot find a non-nil back pointer on its current sensor, it backtracks along the
back pointer stored on a neighboring sensor dropped by actuator a. Afterwards,
actuator a also reaches a dead end in Figure 10.4d and performs backtracking.

Single node failure in a back pointer chain does not affect algorithm exe-
cution. It is because an actuator will be led to the failure sensor’s position and
replace it with a new one, and the actuator will then recover the back pointer
stored on the failure node from its predecessor. If multiple adjacent sensors fail
together, a sensing hole occurs. Likewise, an actuator will be led into the hole
region. It will treat the hole as uncovered area and drop sensors there. Any white
sensor outside the hole region can be identified through the back pointers stored
along the boundary of the hole, and the actuator will then place sensor following
those pointers after the hole is patched.

10.5 COVERAGE MAINTENANCE BY ACTUATORS

It has not yet been well studied how to repair/maintain coverage using actuators.
Existing solutions (Mei et al., 2007) are straightforward application of clustering
and flooding with huge message overhead. They work under the assumption that
actuators are carrying sufficient spare sensors. However, with this assumption,
we can obtain a more efficient solution by combining face routing (Bose et al.,
1999) and anycasting (Mitton et al., 2009). Below, we first introduce the previous
work (Mei et al., 2007) and then describe the new solution.

10.5.1 Cluster-Based Approach

Mei et al. (2007) addressed how to replace failed sensors in WSAN by presenting
three straightforward actuator coordination protocols. In a proposed centralized
protocol, an actuator is appointed central manager and responsible for handling
node failure reports. The central controller broadcasts its location to all sensors
and other actuators. It maintains the latest position of each actuator by listening
to actuator location updates. Sensors monitor each other and report detected node
failures to the central manager, which then dispatches closest actuators to replace
failed sensors with their carried spare ones. An actuator receiving multiple orders
will handle them on a first-come-first-serve basis. As an actuator moves to its
assigned failure location, it keeps updating the central manager with its latest
position.

In a proposed distributed protocol, the sensory field is partitioned into equal-
sized subregions. Each actuator is assigned one and only one subregion and
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required to handle regional node failure reports as manager; it is also respon-
sible for sensor replacement in its own subregion. The centralized algorithm is
then run within each subregion. In a proposed dynamic protocol, the sensory
field is dynamically partitioned according to the current position of each robot.
Specifically, each robot broadcasts its current location; sensors receiving mes-
sages from multiple robots rebroadcast only the one from closest robot. Finally,
a Voronoi digram (to be described later in Section 10.5.2) is constructed based
on hop count. Nodes report detected sensor failures to the creating actuators of
their home Voronoi cells, which then move to replace the failed sensor with
their carried spare ones. While moving, actuators broadcast their latest location
to update the Voronoi diagram.

These three protocols are all based heavily on frequent network-wide
flooding and thus very expensive in message and in energy requirements.
The centralized protocol creates communication bottleneck and easily induces
single-point failure. Apparently, none of these protocols is a practical candidate
for large-scale sensor networks.

10.5.2 Perimeter-Based Approach

Below we propose a localized perimeter-based scheme for actuator-assisted cov-
erage maintenance by combining anycasting and face routing. In this solution,
actuators are required to form a connected network. To obtain such a network,
actuators can be densely dropped in a small region first and then spread by a
vector-based self-deployment approach (Section 10.5.1). Actuators locally con-
struct a Gabriel graph (described in 4) over the actuator network.

When a sensor detects a sensing hole, which is represented by a geographic
point, it sends a report to any one of the actuators by anycasting (Mitton et al.,
2009).

The actuator receiving the report, which is not necessarily the closest one to
the reporting sensor, routes a message toward the sensing hole through greedy-
face-greedy (GFG) routing protocol (Bose et al., 1999) over the actuator network.
A detailed description of GFG and anycasting can be found in Chapter 4. Because
the routing process will fail in case of lack of destination, the message will make
a cycle around that sensing hole on Gabriel graph and stop at the actuator closest
to it. This actuator will take the responsibility to fill the reported sensing hole.

This scheme has obvious advantage over the algorithms in Mei et al. (2007)
in message overhead, because it involves no flooding operation at all. The
perimeter-based idea of finding a node to act on some task has been used to
solve a different problem, data centric storage (Ratnasamy et al., 2002).

10.6 SENSOR SELF-DEPLOYMENT

Sensor self-deployment is an active research subject that is continuously drawing
large amount of attention. In the literature, it has been modeled and solved using
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different techniques. At the time of this writing, there exist eight different self-
deployment approaches as listed below:

• Virtual Force (Vector-Based) Approach. Sensors move according to a
movement vector computed using the relative position of their neighbors.

• Voronoi-Based Approach. Sensors adjust their location to reduce uncovered
local area in its Voronoi polygon possibly in multiple rounds.

• Load Balancing Approach. The number of sensors in the regions of a
partitioned sensor field is balanced through multiple rounds of scans.

• Stochastic Approach. Sensors spread out through random walk.
• Point-Coverage Approach. The area coverage problem is converted to a

point-coverage problem over certain geographic graph.
• Incremental Approach. Sensors are deployed incrementally, that is, one

at a time, based on the information gathered from previously deployed
sensors.

• Maximum-Flow Approach. Sensors deployment is modeled as minimum-
cost, maximum-flow problem from source regions to whole regions in ROI.

• Genetic-Algorithm Approach. Sensor movement plan is generated by mul-
tiround selection and reproduction simulating genes and nature selection.

In the above list, the first five are distributed or localized approaches. The rest
are centralized approaches with requirement for a global view of the network.
Their output is a motion plan for every sensor node satisfying certain optimization
criteria. In the rest of this section, representative algorithms for each of the above
sensor self-deployment approaches have been reviewed.

10.6.1 Virtual Force Approach

The best known sensor self-deployment approach is probably the virtual force
(vector-based) approach introduced by Howard et al. (2002a). Thus far, many
different implementations of this technique have been proposed. Although these
implementations claim that they are inspired by different physical models such
as potential field (Howard et al., 2002a), molecules (Heo and Varshney, 2005),
and electromagnetic particles (Wang et al., 2004a), they really share the common
philosophy at their core. That is, each node i computes virtual force (move-
ment vectors) V

j

i due to its neighbor j using nodal relative position and moves
according to the total force (vector summation) Vi ; after a number of rounds of
movement, the network reaches an equilibrium status, which gives a near uniform
node distribution and thus a near optimal coverage.

Figure 10.5 illustrates how this basic idea works in a network of three sensors.
Initially, the sensing ranges of nodes overlap (Fig. 10.5a), and virtual forces are
all repulsive, leading them to move apart for coverage maximization. As the
nodes move, the sensing ranges of nodes 2 and 3 tend to separate (Fig. 10.5b),
and the virtual force between them turns into attractive and drives them to move
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Figure 10.5 Vector-based approach: (a) initial distribution; (b) transient distribution; and
(c) final distribution.

toward each other to avoid creating sensing hole. Finally, nodal sensing ranges
touch each other without overlapping (Fig. 10.5c); hence, no virtual force is
generated, and nodes do not move.

Existing virtual-force-based sensor self-deployment algorithms extend this
basic idea by adding different terminating mechanisms or additional constraints.
For example, in Howard et al. (2002a), virtual friction force, which is proportional
to nodal velocity and always against nodal moving direction, is used to stop nodal
movement so that a static equilibrium can be eventually reached. In Wang et al.
(2004a), Voronoi diagram is used to judge nodes’ coverage effectiveness and
help them decide to stop moving. In Heo and Varshney (2005), node density is
brought into consideration during virtual force computation for energy saving. In
Ma and Yang (2007), each node receives virtual force from at most six neighbors
such that the resulting network has a TT layout. Two most recent variants of this
approach are described in detail below.

Poduri et al. (2009) studied control of positions of nodes for desired lev-
els of network connectivity and sensing coverage. The problem is to determine
positions of nodes such that the sensing coverage is maximized while satisfying
the connectivity constraint. It is assumed that mobile nodes (robots) are densely
deployed in the ROI. The authors proposed the neighbor-every-theta (NET) graph
where each node has at least one neighbor in every θ angle sector of its com-
munication range. That is, the angle between any two neighbors in sorted order
(measured from given node) is ≤ θ . NET graphs are proven guaranteed to have,
when θ < π , an edge-connectivity of at least � 2π

θ
� even with the assumption of

irregular communication range (Poduri et al., 2009). A graph is said to be k-(edge)
connected iff there are at least k node-disjoint paths between any two nodes in
the graph. The graphs can achieve coverage-connectivity trade-offs based on a
single parameter θ . If the communication range equals to the sensing range, then
sensing coverage is maximized when k ≥ 3 nodes are placed at the edges of k

disjoint 2π
θ

sectors of boundary of communication range (Poduri et al., 2009).
In the proposed deployment algorithm (Poduri et al., 2009), repelling and

attracting forces between mobile nodes are used. These forces have inverse square
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law profiles. Repelling force tends to be infinity when distance between nodes
reaches zero, while attracting force tends to be infinity when the distance increases
to Rc (an upper bounder of edge length). Since all mobile nodes are assumed to be
initially densely deployed, the network is well connected and the NET condition
can be satisfied. Each node repels its neighbors to increase the sensing coverage.
During this process, some neighbors become unreachable if they move farther
than CR to the node. Once the number of neighbors is close to the desired number
of NET condition, a node assigns priorities to each of their neighbors based on
their contribution toward satisfying the NET condition. A node assigns higher
priority to the neighbor that contributes to a larger sector angle, and decides
for each whether or not to apply repelling/attracting or both forces. Algorithm
remains incomplete despite clear hints on its behavior.

Garetto et al. (2007) proposed a localized event-driven self-deployment algo-
rithm. In this algorithm, a node receives virtual forces including exchange force
from neighbors, potential force from detected events, and friction force subject
to its velocity. All these forces are vectors, and together drive the node to move.
A node k exerts exchange force on another node i if and only if k is neighboring
i, |ki| 
= 2rs, and there is no other node k′ making |k′i| < |ki| ∧ ∠kik′ < π/6.
This condition limits the number of neighbors acting on node i to maximally
six and forces the final network to have a TT layout. Exchange force is repul-
sive if nodal separation is less than 2rs, or attractive otherwise. Potential force
can also be attractive or repulsive depending on a node’s detected event inten-
sity. This force pulls distant nodes toward the event location and pushes nearby
nodes away. By adjusting event intensity threshold, different node density can be
achieved around the event location. Friction force, which is always against nodal
moving direction, is used to stop nodal movement so that a static equilibrium
status can be eventually reached.

The strength of vector-based sensor self-deployment approach is that it
enables nodes to make their deployment decision using solely their local knowl-
edge. Some add-on techniques, for example, Voronoi-based termination technique
(Wang et al., 2004a) that requires global computation, may, however, offset this
strength. This approach has many weaknesses in nature. Sensors cannot pass
through closely placed obstacles due to their generated repulsive vector, result-
ing in sensing holes and coverage waste. Because node disappearance may break
the equilibrium and trigger a chain of node movement (possibly network-wide)
to recover, frequent topology change (possibly network-wide) may occur when
node failure is a common phenomenon.

10.6.2 Voronoi-Based Approach

Use of Voronoi diagram for sensor self-deployment has been considered in the
literature (Heo and Varshney, 2005; Wang et al., 2004a; Cortes et al., 2004).
Voronoi diagram (Aurenhammer and Klein, XXXX) is a computational geometry
structure widely employed in different fields. It partitions a plane using n given
nodes p1, . . . , pn into n Voronoi regions, each containing exactly one node as
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generating node. The Voronoi region, Vi , of node pi is the region of points
that are closer to pi than to any other. Namely, Vi = {q ∈ Q| ||q − pi || ≤ ||q −
pj ||,∀j 
= i}, where Q represents the entire plane. Three Voronoi diagrams are
shown in Figure 10.6.

The idea of Voronoi-based self-deployment is simple: sensors move to
minimize their local uncovered areas (equivalently speaking, to maximize their
sensing-effective areas) by aligning their sensing range with their Voronoi
regions as much as possible. Usually, this approach involves multiple rounds
of alignment and terminates when no more gain (e.g., utility gain in Heo and
Varshney (2005) and coverage gain in Wang et al. (2004a)) can be achieved.
Existing Voronoi-based algorithms differ merely in their node alignment
methods. In Heo and Varshney (2005), a node moves to the point that maximizes
a utility metric, which is defined as the product of the node’s effective area and
the node’s estimated lifetime. In Wang et al. (2004a), a node moves half of
the communication range toward the furthest Voronoi vertex, or to a so-called
minimax point. In Cortes et al. (2004), a node moves to the weighted centroid
of its Voronoi polygon. Below, we elaborate on the work presented in Cortes
et al. (2004).

Cortes et al. (2004) studied coverage control in robot networks. Coverage
ability of a robot is defined by a function of its location and the desired utility.
For simplicity, consider the case of covering a source, and maximizing total team
coverage for the source. Area coverage remains important, as utility function
represents robot network’s ability to cover events near the source. Each robot
is assumed to know its own and its Voronoi neighbors’ locations. It is also
responsible for measurements within its Voronoi region. The goal is to control
movement of robots to maximize detection probability. For example, detection
probability of an event may decrease with squared distance to the event.

Robots move from their initial to final positions that optimize their col-
lective monitoring ability. The proposed algorithm (Cortes et al., 2004) runs
in iterative fashion. While moving, robots update their Voronoi polygons. Cen-
troids of Voronoi polygons are computed based on the Gaussian density function,
representing reduced monitoring ability for a position further from the source.
Therefore, these weighted centroids in each Voronoi polygon tend to be closer to

(a) (b) (c)

Figure 10.6 Voronoi-based approach: (a) initial distribution; (b) transient distribution; and
(c) final distribution.
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the source than the geometric center of Voronoi polygon (which is at the current
robot position). Their locations also depend on the position of neighboring robots.
Robots move toward the centroids of their corresponding Voronoi polygons. They
are expected to converge toward the final position. In the example in Figure 10.6,
the source is marked by black star. Initial positions and final positions of robots
are shown in Figure 10.6a and 10.6c, respectively; a transient node distribution
is given in 10.6b.

In Voronoi-based approach, Voronoi diagram needs to be repeatedly con-
structed to reflect nodal movement. Since Voronoi diagram construction requires
global computation, this approach has large message overhead. To avoid oscilla-
tions (i.e., moving back and forth between several points), in these algorithms,
nodes may stop their movement early according to certain policies. Early stop
may, however, bring coverage redundancy and hole presence.

10.6.3 Load Balancing Approach

Yang et al. (2007) presented a distributed load balancing algorithm for sensor
self-deployment. This algorithm partitions the target field into a 2D mesh, and
treats nodes as load. The objective is to balance the load, that is, the number of
nodes, in each mesh cell. Figure 10.7a shows load (also called weight) of each
cell of a 6 × 6 mesh partition. By this algorithm, nodes in each mesh cell form
a cluster covering the cell and are managed by an elected clusterhead.

During a preprocessing phase, a recursive doubling expansion is performed
first along mesh columns and then along mesh rows. The objective of this phase
is to fill empty clusters. Expansion on different columns (or rows) can proceed in
parallel. Specifically, the maximum sequence of nonempty clusters in a column
or a row expands toward one direction by planting a seed (i.e., a node) in its
neighboring empty clusters in iterations. The initial span of expansion is subject
to the weight (i.e., number of nodes) of the sequence; in each iteration, it doubles
the span of its previous expansion. This expansion stops when the last cluster is
covered or when there are no spare nodes left. An expansion toward the opposite
direction may start afterwards, if applicable.
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Observe Figure 10.7b that shows the doubling expansion of column 4 of
the mesh in Figure 10.7a. The first two clusters (cells), marked by thick line
in Figure 10.7a, constitute the initial maximum sequence of nonempty clusters.
This sequence would to expand to fill the empty clusters below it. The doubling
expansion reaches column end and terminates after two iterations; it is shown
by the growth of the thick line. In the first iteration, the sequence grows by two
clusters. In the second iteration, it attempts to grow by four clusters, but the
expansion stops halfway because the end is reached. In the two iterations, a seed
is planted in the third cluster and the fifth cluster, respectively. Afterwards, the
doubling expansion terminates, and no empty cluster exists.

After the preprocess phase, a scan phase starts for load balancing. This phase
is executed in two rounds. Every mesh row is scanned and load balanced in the
first round; every mesh column is processed during the second round. In a scan
round, load balancing along different rows (or columns) can proceed in parallel.
For simplicity, let us consider a 1D array that maps to either a mesh row or a
mesh column.

During a scan round, the algorithm first scans the array from one end to
the other. In this scan, each cluster i (actually its clusterhead), whose weight
is denoted by wi , computes prefix weight sum vi = vi−1 + wi of its previous
clusters and passes vi to the next cluster; the last cluster will compute the
total weight of the array, and trigger another scan by sending the array weight
back to the origin. In this scan, each cluster i computes the average cluster
weight w and its prefix weight vi = iw in balanced status, and then determines
its status (overloaded or underloaded) and the number of nodes (load) to send
to/take from each direction along the array. If wi >w, it is overloaded, and the
numbers of nodes it needs to give to the right and the left are, respectively,
w→

i = min{wi − w, max{vi − vi, 0}} and ←wi = (wi − w) − w→
i . If wi < w,

it is underloaded, and the numbers of nodes it needs to take from the left
and the right are, respectively, →wi = min{w − wi, max{vi−1 − vi−1, 0}} and
w←

i = (w − wi) −→ wi .
Figure 10.7c shows the results of the scan phase of row 4 of the mesh given

in Figure 10.7a. Focus on the fourth cluster in this row, that is, the case of i = 4.
After the first scan, it (in fact, its clusterhead) knows v3 = (1 + 7) + 2 = 10 and
thus its prefix weight sum v4 = 10 + 1 = 11. In the second scan, when it receives
the array weight 18 from right, it calculates w = 18/6 = 3 and v4 = 4 ∗ 3 = 12.
By comparing its own weight w4 and the average weight w, it realizes that it
itself is underloaded. Then it computes →wi = min{3 − 1, max{10 − 3 ∗ 3, 0}} =
min{2, max{1, 0}} = 1 and w←

i = (3 − 1) − 1 = 1. From the results, it knows
that it should take one node from each direction when nodes flow through it.

This approach requires the network to be dense enough so that load balancing
can be proceeded in the entire sensory field. As the authors admitted, it may
generate huge message overhead when the network is very dense due to the
increased number of rounds of scans.
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10.6.4 Stochastic Approach

Mousavi et al. (2006) proposed a localized stochastic deployment algorithm,
stanastic deployment routine (SDR). In this algorithm, sensors are dropped in a
X × Y field, and they move from dense area to sparse area according to their
local knowledge through restricted random walk. The execution of SDR is inde-
pendent of network connectivity. Because of its stochastic nature, SDR provides
no guarantee on coverage maximization, hole elimination, or connectivity in the
final network.

In SDR, time is divided into successive epochs of same size. A sensor node
moves at local epoch t toward a location randomly and uniformly picked within
a moving rectangle (MRt ). The position of MRt changes as the node moves,
and its size exponentially decreases as t increases. For t ≥ 0, the east-to-west
width of MRt is X · p0 · pt , while its north-to-south width is Y · p0 · pt , where
0 < p0 < 1 and 0 < p < 1 are predefined constants. Notice that the size of MRt

depends on time t only. Restricted by the ever-shrinking moving rectangle, the
maximum moving distance of a sensor for a time unit exponentially decreases
over time, which guarantees algorithm termination. The key is determination of
the position of MRt for each node at every epoch t . As we shall see below, this
is accomplished locally by each node on the fly.

Suppose, at local epoch t , that a node has N neighbors (k-hop neighbors
for a constant k) in total. Let Nw and Ne be the number of neighbors that are
located, respectively, on the west and the east of the north-south line through the
node; Nn and Ns are defined as the number of neighbors located, respectively,
on the north and the south of the east-west line through the node. Then, N =
Nw + Ne = Nn + Ns. For example, in Figure 10.8, when the solid node is at
position a, N = 19, Nw = 10, Ne = 9, Nn = 13, and Ns = 6. Further, let dw, dn,
de and ds denote the distance from the node, respectively, to the west-, the north-,
the east-, and the south border of its MRt . As each node is always expected to
move to sparse area from dense area, the MRt should be positioned in such a way
that it covers a small part of the local dense area of the node. Hence, it is defined
that dw

de
= Ne

Nw
, and, in this case, dw

de+dw
= Ne

Nw+Ne
, and therefore dw = Ne

N
MRt ·x ,

where MRt ·x represents the width of the MRt . Likewise, dn = Ns
N

MRt ·y .
At every local epoch t , each node is able to compute the size of the MRt

and its relative position within MRt , that is, dw, dn, de, and ds, and therefore
it is also able to compute the exact position of MRt given its own geographic
location. After MRt is computed, the node picks a target location within its size-
reduced MRt probabilistically with uniform distribution and move all the way
to that location. Then at local epoch t + 1, the node repeats the computation and
movement with respect to its new k-hop neighborhood information. Figure 10.8
shows the movement steps and the MRt of a node for t = 0, 1, 2. Note, if the
node finds that the number of neighbors is equal to 0 (or less than a specific
number), then it will cancel its movement (respectively, reduce the range of its
movement). Two neighboring sensors may exchange their target location if they
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Figure 10.8 MR-based stochastic movement.

find that doing so will reduce their moving distance and thus energy consumption.
Finally, every node stops moving when the size of its moving rectangle becomes
too small, for example smaller than a threshold value.

10.6.5 Point-Coverage Approach

Tree-Based Point Assignment

Mousavi et al. (2006) presented a distributed one-step deployment (OSD) algo-
rithm under the assumption of rc ≥ √

2rs. This algorithm partitions the ROI
evenly into two-dimensional square grids, each with edge length

√
2rs, and

instructs sensors to occupy all the grid points. The intuition is that if every
grid point is occupied by a sensor, then the entire ROI is fully covered, and
meanwhile the sensors form a connected network.

In OSD, a breath-first tree rooted at an elected node is established first, and
a converge process is then initiated by leaf nodes. In the converge process, after
receiving a message containing the size of the corresponding subtree from all its
children, a node computes the size of the subtree rooted at itself and sends the
information to its parent. After the converge process, each node knows the size
of each of its subtree. Thereafter, a recursive vertex assignment process starts.
Specifically, the root chooses grid point (0,0) as its own deployment destination
and assigns each of its subtrees a subarea with a matching number of grid points.
The root of each subtree does the assignment in the same way. This recursive
assignment stops when leaf nodes are reached. Finally, each node knows about
its designated deployment point and moves there by one step to construct a full
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coverage. This algorithm saves energy by one-step movement strategy. However,
it requires connectivity of all mobile sensors at the beginning, root election, and
tree construction overhead.

Snap and Spread

Bartolini et al. (2008a) presented a snap and spread self-deployment algorithm,
under the implicit assumptions that the ROI is bounded (boundary information is
not known a priori though) and that there are sufficient sensors to cover the entire
ROI. This algorithm arranges sensors at hexagon centers of a hexagonal grid,
where hexagon edge length is equal to rs. Spontaneously, mobile sensor starts
to construct a hexagonal tiling over the ROI by choosing its current position as
the center of the first hexagon of the tiling, changing its status to snapped and
assigning itself order 0.

A snapped sensor learns the status of its neighbors through local communi-
cation and establishes a slave set containing unsnapped neighbors in its hexagon.
It pushes its slaves to the center of adjacent empty hexagons. Those slaves then
become snapped and are assigned an order larger than their master’s by 1. This
snap activity is illustrated in Figure 10.9a, where node 1 snaps its slaves, that is,
nodes 2–9, to neighboring hexagon centers.

After the snap activity, if there are still spare sensors in its hexagon, the
sensor starts a spread process, where it pushes these slaves to the adjacent
hexagons with less sensors and a higher order, as shown in Figure 10.9b. If
multiple such hexagons exit, closest one is selected. By this means, redundant
sensors are always pushed to expand the boundary of the hexagonal tiling. A

Order 1

Order 1

Order 1

Order 1

Order 1

Order 1

Order 1

1

9

8
6

5

7

2

3

4

(a) (b)

Order 1

Order 1

Order 1

Order 1

Order 0

Order 1

Order 1
1

2
3

4
5

6
7

8

9

Figure 10.9 (a) Snap and (b) spread approach.



282 Chapter 10 Sensor Placement in Sensor and Actuator Networks

snapped sensor with adjacent empty hexagon(s) starts a pull process which is
in essence expanding ring search and attract unsnapped sensors from remote
hexagons.

As multiple sensors start the algorithm independently, multiple tiling portions
may exist. These tiling portions may not align with each other because they start
from arbitrary points. When two tiling portions meet, the one that started earlier
absorbs the other. The position of snapped sensors in the absorbed tiling portion
is adjusted. The adjustment starts at the frontier where the two portions meet and
propagate to the entire tiling portion.

Compared with already snapped sensors, unsnapped ones consume relatively
larger amount of energy on communication and movements for finding proper
deployment positions. To balance energy consumption among sensors, they may
exchange their role from time to time. Density control can be accomplished by
forbidding snap and spread activities when the node density in target hexagon is
lower than a density threshold.

The algorithm is not purely localized because, according to the implemen-
tation presented in Bartolini et al. (2008b), in a pull process for filling adjacent
empty hexagons, a snapped sensor has to visit (by sending a message) every
other hexagon in the worst case before finding an unsnapped sensor.

Combined Greedy-Rotation

Li et al. (2008a, 2009) introduced focused coverage problem. The sensor area
coverage with a focus on covering a given point of interest (POI) is called focused
converge. It is measured by coverage radius , that is, the minimum distance from
the POI to uncovered areas. Optimal focused coverage has maximized coverage
radius. The authors presented two purely localized sensor self-deployment algo-
rithms abbtextgreedy advance (abbGAD) and greedy-rotation-greedy (GRG) for
focused coverage formation.

Suppose that sensor nodes are randomly deployed in the coverage region and
may possibly be disconnected at the beginning. Assume that rc ≥ √

3rs and that
sensors know their own geographic locations. The problem is to move sensor
nodes to build a connected network surrounding the POI, denoted by P , with an
equilateral TT layout (Fig. 10.10). The reason for employing TT layout is that
this layout maximizes the coverage area of a given number of nodes without
any sensing hole when nodes are placed on the vertices of the layout while
guaranteeing connectivity of the network (Bai et al., 2006; Ma and Yang, 2007;
Zhang and Hou, 2005).

The basic idea of GA is to greedily move nodes along TT edges toward P .
Each node located at a vertex of TT moves to another vertex which is closer (in
graph distance) to P than its current location. There are at most two directions for
movement of nodes based on the current location of nodes. The node located at a
corner vertex has only one possible moving direction. Three rules were proposed
for movement control. The first rule is to determine priority for simultaneous
movement from two vertices to the same vertex. In Figure 10.10a, if two nodes are
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Figure 10.10 Equilateral triangle tessellation and focused coverage formation: (a) GA and
(b) GRG.

moving to k respectively from x and y (or y and z), higher priority will be given
to the node from y (respectively, z). However, to avoid potential simultaneous
movement of nodes from x to z, the movement of a node from z to k is forbidden
by the second rule. The third rule allows any node that is located on the hexagon
adjacent to P to move to P as long as P is not occupied. Figure 10.10, where
node trajectories are marked by arrow lines, illustrates how GA works. Note that,
in this example, node 3 stops at the initial position of node 5. It does not move
to vertex g even though g is empty because of the second rule.

GRG consists of the greedy advance movement and a new type of
movement—rotation. Rotation is applied in a node when the node’s greedy
advance movement is blocked. It is to move the node to a predetermined
direction, e.g. counterclockwise, at the same layer. Since the proposed algorithms
do not require time synchronization at sensor nodes, rotation movement of
nodes in a layer may block the greedy advance movement of nodes in the higher
layer (further to P ). Thus, a suspension rule is introduced to cancel rotation
movement of a node when it detects there is a neighbor rotating at higher layer.
In the case that a greedy advance movement and a rotation movement target at
the same vertex, a competition rule is applied to give higher priority to greedy
advance movement. Three more rules are proposed to cope up with movement
of the nodes at special locations, such as corner nodes and gateway nodes.

The execution of GRG is illustrated in Figure 10.10b. Let us focus on nodes
2, 4, and 6. Node 2 moves to its final position, P , by a single greedy advance
step, whereas nodes 4 and 6 travel a curly long path. Node 4, after reaching a by
greedy advance, finds that d is occupied by node 7, and that its further greedy
advance to b is forbidden. So it rotates around P along its residence hexagon.
When node 4 rotates to c, node 6 arrives at b. At that moment, d becomes
unoccupied as node 7 leaves, and so P would be taken by node 4. Then, node 2
decides to greedily proceed to d and node 6 decides to rotate to d , resulting in a
collision at d . The rotating node 6 has higher priority to take the next deployment
step and continues its rotation, while node 2 has to wait. Finally, node 6 rotates
to its final position f , passing through e; node 2 rotates to e after node 6 leaves
e for f .
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It is proven that both GA and GRG terminate in finite time and yield a
connected network with maximized hole-free coverage (Li et al., 2009). In fact,
they are the first localized sensor self-deployment algorithms that provide such
guarantee. Simulation results show that GA has shorter convergence time and
consumes less energy than GRG algorithm. In Li et al. (2009a), an optimized
version of GRG, called OGRG , is presented by the same authors. OGRG uses
deployment polygons best approximating circles rather than hexagons for rota-
tion and thus yield guaranteed circular coverage radius maximization. In Li et
al. (2009b), an improved version of GRG, referred to as GRG with Obstacle
Penetration (GRG/OP), is presented. GRG/OP is equipped with a novel obstacle
avoidance capability and shown to be able to solve not only focused coverage
but also traditional area coverage.

10.6.6 Incremental Approach

Howard et al. (2002b) presented an incremental deployment algorithm for homo-
geneous mobile sensors with the ability to “see” their surroundings. The objective
is to generate a connected network with maximized total area visible to the net-
work while maintaining a line of sight among sensors. At initiation, all the nodes
but one are considered to be undeployed, and the only deployed node serves as
starting point. The algorithm runs on a central controller in iterations. In each
iteration, the central controller deploys only one sensor to push the frontier line of
the network forward toward unknown area. Below, let us examine an algorithm
iteration.

In an algorithm iteration, the central controller gathers the information of
previously deployed sensors and constructs an occupancy grid over the target
field. In the occupancy grid, a cell is considered free if it contains no obstacle,
or occupied if it contains obstacles, or unknown otherwise (i.e., if no knowledge
whether this cell is available or if contradictory evidence about the cell’s occu-
pancy state exists). Figure 10.11a shows an occupancy grid constructed according
to the information from the first node a deployed in an environment. In this figure,
the only node’s vision capability is marked by closed lines representing a circle;
black cells are occupied, white cells are free, and the rests are unknown.

The central controller converts the occupancy grid to a configuration grid,
where a cell is free if and only if all nearby (within certain predefined distance,
e.g., cell size) cells are free, or occupied if at least one nearby cell is occupied,
or unknown otherwise. Figure 10.11b shows the configuration grid corresponding
to the occupancy grid in Figure 10.11a. In this figure, white cells are free cells,
black cells are occupied cells, and the others are unknown cells.

The configuration grid is further transformed to a reachability grid. In this
process, a free cell in the configuration grid is marked as reachable if there is
some chain of free cells between this cell and the location of certain deployed
node, or unreachable otherwise; any other cell is marked as unreachable.
Figure 10.11c, where reachable cells are represented by white cells, shows the
reachability grid obtained from the configuration grid in Figure 10.11b. Notice
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Figure 10.11 Incremental approach: (a) occupancy grid (1 node); (b) configuration grid
(1 node); (c) reachability grid (1 node); (d) occupancy grid (2 nodes); (e) configuration grid
(2 nodes); (f) reachability grid(2 nodes).

that the white cell above the black cells in Figure 10.11b are marked unreachable
in Figure 10.11c because there is no free-cell path linking it to the node.

After the reachability grid is built, a node can be placed conservatively to a
location between free and unknown space to minimize the overlapping of sensory
field, or optimistically to a location where they can reduce maximally unknown
space. In this process, candidate cells may not be unique. Different policies can
be applied to guide the selection of reachable cells, yielding different network
topologies at the end.

Once the target location is determined, a shortest path through previously
deployed nodes between the entry point (the point from which nodes enter the
environment) and the target location is discovered. A sequential or a concur-
rent shifted movement (Section 10.3) process is performed along the path. This
method solves sensors’ interblocking during their movement and balances energy
consumption. Look at Figure 10.11c. Suppose the target location is the dotted
point. Then, node a will move to that point while a new node b is dropped
at a’s position (the entry point). Figure 10.11d–f show the occupancy grid,
the configuration grid, and the reachability grid after node b is added into the
environment.

10.6.7 Maximum-Flow Approach

Chellappan et al. (2007) presented a centralized minimum-cost, maximum-flow
based motion planning algorithm for hopping sensors randomly dropped in a
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rectangular field. Sensors are able to move at most once up to distance F = k ∗ d

for some constant k, where d is basic distance unit. The target field is divided
evenly into an R × R grid, where R is a predefined region size. The goal is
to maximize the number of covered regions using a minimal number of sensor
moves. Consider regions with at least one sensor as source and empty regions as
holes . The algorithm builds a virtual directed graph that records for each region
the information of its hosted sensors and parameterizes interregion paths based
on the desired objective and mobility constraints; it aims to maximize the flow
of sensors from source regions to hole regions with minimized cost and without
violating the path constraints in between. As there exist many maximum-flow and
minimum-cost problem statements and solution approaches, it focuses on virtual
directed graph construction. Graph construction is discussed in different cases.

10.6.8 Genetic-Algorithm Approach

Ramadan et al. (2007) modeled sensor placement as combinatorial optimization
problem. They considered a set S of sensors for a target field composed of a
number of zones A for a time horizon T . For every time interval t ∈ T , each
sensor s ∈ S is associated with a predefined time-evolving reliability Rt

s , and each
zone i ∈ A is assigned a time-varying weight function wi

t defining the importance
of the observations in the zone over T . The objective is to maximize coverage,
that is, to ensure all the zones with highest weight to be monitored, and sensors
with high reliability to be assigned to high weight zones. Alternatively, coverage
is also considered maximized when the number of monitored zones is maximized,
and each zone is monitored by exactly one sensor at any time.

The authors presented a heuristic motion planning algorithm based on genetic
algorithm (GA). A GA algorithm simulates genes and nature selection. In gen-
eral, it generates, usually at random, a preliminary set of chromosomes at an
initialization step, and then executes the following steps in iterations until certain
stopping criteria are met: (1) Selection: evaluate the fitness of each individual
chromosome in current chromosome set and select the best ranked ones. (2)
Reproduction: generate a new chromosome set by applying crossover and/or
mutation operations on selected chromosomes to generate offsprings and using
the offsprings to replace worst ranked chromosomes in current chromosome set.

A chromosome contains |A| · |T | · |S| genes, each of which is assigned a
truth value implying a deployment plan for a sensor s at certain time interval t

in certain zone i. The initial chromosome set has predefined size n. It is gener-
ated either randomly or by certain given rules. Two crossover operations, time
exchange (TE) and best chromosome (BC), are defined. They both exchange the
sensor deployment patterns in the same time interval in two different chromo-
somes. TE uses two randomly selected chromosome; BC uses two fittest ones. The
fitness of each chromosome x is measured by function: F(x) = ∑

t

∑
i

∑
s wt

iR
t
s .

Mutation operations, where some chromosome genes are randomly flipped, are
performed after crossover operations to prevent searching dead end and chromo-
some repetition. A new chromosome is accepted iff it passes a feasibility check
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respecting the capability constraints of each sensor. The algorithm stops after a
fixed number of iterations or if improvement does not seem possible.

A simple single-chromosome-per-iteration mechanism can be alternatively
used. In this case, a chromosome set contains only one element, and TE opera-
tion is for exchanging the sensor deployment pattern in two randomly selected
time intervals in the only chromosome. Since BC is no longer applicable, a
new crossover operation sensor exchange (SE) is employed instead. By SE, the
deployment pattern of two randomly selected sensors over the entire horizon T

is exchanged.

10.7 SENSOR RELOCATION

To minimize energy consumption and response time, a replacement node should
be a redundant sensor geographically closest to the failed node. Thus, replacement
discovery is a distance-sensitive service discovery problem, where redundant
sensors as service provider offer replacement service to failed sensors. After
replacement discovery, discovered replacement will be migrated to the position
of failed sensor. Replacement migration can be accomplished in a direct way or
in a shifted manner (Section 10.3).

Many service discovery algorithms (Gao et al., 2006; Mian et al., 2006) have
been proposed for wireless ad hoc networks. They can certainly be used to fulfill
the replacement discovery problem. Some techniques such as location service
(Chapter 8) and data centric storage (Li et al., 2008c) can also be adopted.
By location service, redundant sensors update the network with their location
and are searched when needed. By data centric storage, the location data of
redundant sensors are stored somewhere in the network and retrieved by others.
But, considering the resource constraints of sensors, a good solution should have
low message overhead and constant per node storage load.

There exist a few sensor relocation algorithms in the literature. In the follow-
ing sections, we group these algorithms according to their employed replacement
discovery methods and review them in detail.

10.7.1 Broadcast-Based Approach

Wang et al. (2004b) proposed a proxy-based sensor relocation protocol for net-
works composed of both static sensors and mobile sensors. Every mobile sensor
periodically advertises itself by broadcasting within a predefined radius its cur-
rent location and its base price, which, initially set to zero, reflects how much
coverage contribution it is currently making. Static sensors construct a Voronoi
diagram and listen to mobile sensors’ advertisements. After receiving an adver-
tisement, a static node records the embedded information and maintains a mobile
sensor list. Once a static sensor detects a sensing hole in its Voronoi polygon,
it estimates the hole size and computes a bid accordingly; then, it chooses from
its mobile sensor list a closest one with lowest base price, which is smaller than
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the bid, and sends a bidding message to that sensor. In the case that a mobile
sensor receives more than one bidding message from different static sensors, it
chooses the highest bid and sends a delegate message to the corresponding bid-
der. After receiving the delegate message, the bidder becomes the proxy of the
mobile sensor and executes the relocation protocol on its behalf as if the mobile
sensor had migrated to the sensing hole.

Mobile sensors having proxies cease to execute the protocol and wait for a
movement notification from their proxies. As the protocol executes, the proxy
of a mobile sensor may change from one for a small sensing hole to one for
a large sensing hole, rendering the mobile sensor logically migrating from one
location to another. When a proxy node fails in finding larger sensing holes with
respect to the base price of its delegated sensor, it will consider that the cur-
rent logical location is the final location, and informs the delegated sensor to
physically move to that location. To reduce moving distance, proxy nodes may
exchange their delegated sensors. When a proxy node finds that its delegated sen-
sor has to move a distance longer than a predefined threshold value, it searches its
mobile sensor list for such a proxy node that the moving distance of their delega-
ted sensors will be shorter than the threshold value if they exchange their dele-
gated sensors. Then, it will send an exchange message to that node (if any) and
wait for a confirmation message. In the exchange message, the moving distance
without delegated sensor exchange is specified so that the receiver is able to
make its decision on the proposal.

When different static sensors detect the same sensing hole, they bid mobile
sensors independently and possibly cause multiple mobile sensors moving to the
same location. To avoid such collision, a proxy node tries to re-detect the sensing
hole that its delegated sensor is going to heal. If the hole still exists, it will simply
consider that there is no collision. Otherwise, the proxy node will further check
if the moving distance of its delegated sensor is the shortest among those of other
mobile sensors for the same hole. If so, it waits for others to give up; otherwise,
it cancels the movement, sets the base price of its delegated sensor to zero, and
re-advertises the new price in the next round.

Figure 10.12, where square nodes and round nodes, respectively, repre-
sent static sensors and mobile sensors, illustrates how the algorithm works. The
Voronoi diagram created using static nodes is also drawn in the figure. Nodes 6,
7, and 8 are located within the advertisement range (indicated by dashed circle)
of node 1. Node 8 bids node 1 for its local sensing hole at position A, compet-
ing with nodes 6 and 7. It wins the competition, becomes the proxy of 1, and
advertises on its behalf. Node 9 receives the advertisement from node 8 and then
successfully bids node 1 for its local sensing hole at position B. After that, it
becomes the new proxy of node 1. Similarly, node 10 takes over node 1 from
node 9 for its local sensing hole at C. Then it finds that C is the final location
for node 1 and informs it to move. After receiving the notification from node 10,
node 1 moves directly to C in one step.

This protocol consumes a large amount of bandwidth for periodic broadcast-
based advertising. It does not guarantee sensing hole filling, as it is always
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Figure 10.12 Broadcast-based approach.

possible that some static sensor with local sensing holes does not discover mobile
sensors, unless the advertisement range covers the entire network.

10.7.2 Quorum-Based Approach

Wang et al. (2005) presented a grid-quorum-based relocation protocol. In this
protocol, the sensory field is evenly partitioned into grids. In each grid, one node
is elected as grid head and takes the responsibility to collect the information of
all the grid members; based on grid members’ location, a grid head determines
redundant sensors and detects sensing holes. The grid heads in a row form a
supply quorum. The grid heads in a column form a demand quorum. A grid
head publishes the information about the redundant nodes inside its grid along
its residing supply quorum. When any grid needs more sensors for hole healing,
the grid head searches along its residing demand quorum to discover the clos-
est redundant node. To reduce message complexity, information about already
discovered closest redundant node is piggybacked on the search message and
used to restrict the distance that the message may travel further. This protocol
uses shifted replacement migration method. Migration path is constructed by a
flooding process confined within an elliptic zone covering both the sensing hole
and the redundant node.

The protocol does not address how to ensure replacement discovery in the
presence of void areas (e.g., empty grids appearing in demand quorum and block-
ing search messages). It is hard to predetermine the size of the elliptic search
zone so as to guarantee success of migration path discovery. On the other hand,
setting the zone to the entire network can provide the guarantee, but induces
increased message overhead.

Li and Santoro (2006) presented a zone-based sensor relocation protocol
(ZONER) on the basis of the quorum technique. In ZONER, each predetermined
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redundant node publishes its location within a vertical registration zone across
the network. After a nonredundant node fails, its west-most and east-most neigh-
bor take as reference the closest redundant nodes they know, and request in
bounded horizontal request zones, respectively, toward the west and the east, for
a yet closer redundant node. In this request process, the nodes in the intersection
area of a request zone and a registration zone can reply as recommender with
requested information. Then the two requesters exchange their discovery results
through underlying routing protocol to determine the replacement. Both node reg-
istration and node request are performed by a zone flooding technique, which is
a combination of simple range-restricted flooding and face routing, and featured
with the void-area-penetration ability. ZONER uses shifted migration method to
relocate the replacement to the failure node’s position along a natural migration
path with an extra discovery process. The migration path is the aggregation of
the registration path of the replacement to the recommender and the request path
of the discoverer to the recommender.

Although ZONER (Li and Santoro, 2006) and the protocol presented in
Wang et al. (2005) have similarity in their node discovery and node migration
methods, they differ in that ZONER requires no preknowledge of the sensor field
and guarantees replacement discovery (by resorting to face routing) and node
replacement.

10.7.3 Mesh-Based Approach

Li et al. (2007) proposed a mesh-based sensor relocation protocol (MSRP) on
the basis of a localized distance-sensitive service discovery protocol iMesh (Li
et al., 2009c) (described in Chapter 8). In MSRP, each redundant node (R-node)
spontaneously takes a nearest active node (A-node) as proxy, by sending it a del-
egation request. Proxy nodes execute iMesh to construct an information mesh.
While being awake, an R-node monitors the aliveness of its proxy; once it finds
that its proxy fails, it moves to replace the proxy node directly. Upon an ordinary
(i.e., nonproxy) A-node failure, the A-nodes neighboring the failed A-node coop-
erate to discover a replacement, which is defined as the nearest delegated R-node
of the target proxy (referred to as replacement proxy) of the failed A-node, by
iMesh. During a replacement discovery process, the north-most, the south-most,
the east-most and the west-most neighbor of a failed A-node, as server , send a
query message, respectively, to the north-, the south-, the east-, and the west-
direction. After getting replies, they exchange their discovery results through
underlaying routing protocol to find the replacement proxy.

The server closest to the replacement proxy is considered replacement dis-
coverer . It issues a migration request to the replacement proxy, which then grants
the request by an ACK message. After receiving the ACK, the replacement dis-
coverer (or discoverer for short) starts a shifted migration process by sending an
action message to the replacement proxy. During this process, the action message
is transmitted by GFG (Bose et al., 1999), coupling with the concept of cost over
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progress ratio (Stojmenovic, 2006), to establish a migration path from the dis-
coverer to the replacement proxy, and, meanwhile, the intermediate nodes along
this path shift their position toward the failed A-node. More specifically, after
sending the action message, the discoverer moves to the failure node’s position,
while intermediate nodes move to the position of their prior hop after forwarding
the action message. After receiving the action message, the replacement proxy
first informs the replacement node to fill its current position and then itself moves
toward the location of its prior hop.

10.7.4 Hierarchical-Structure-Based Approach

Jiang and Wu (2008) presented a hierarchical Hamilton cycle–based sensor relo-
cation protocol. It is actually a variant of the hierarchical home-region-based
location service (described in Chapter 8). In this algorithm, sensors have the
same communication radius rc and sensing radius rs (rs = rc), and the sensory
field is partitioned evenly into a number of r × r grids where r = 1√

5
rc (this r

enables each node to communicate with nodes in neighboring grids directly). By
this partition, both network connectivity and full coverage are preserved as long
as there exists one node in each grid.

In a unit grid, one node is elected as grid head, while the others are grid
members and considered redundant. Four neighboring unit grids form a level-
1-directed Hamilton cycle in counterclockwise direction, and one of them is
elected as the “eye” of the Hamilton cycle. The head of the eye grid collects the
information on the existence of redundant nodes in the four unit grids along the
cycle. The eyes of four neighboring level-1 Hamilton cycle further form a level-
2-directed Hamilton cycle and share information. This Hamilton cycle formation
is performed recursively until a level-k cycle covering the entire sensory field is
built on four level-(k − 1) eyes. Any change of redundant nodes in a unit grid
is monitored by the head of the unit grid, and will be collected by the grid head
and then updated upward in the hierarchical Hamilton cycle structure.

When a grid head u finds that the neighboring grid in the direction of its
residing level-1-directed Hamilton cycle is empty, it starts an intralevel repair
process to fix the detected vacancy. It selects a redundant node in its grid to move
to the empty grid. If no local redundant node is available, u itself will move to the
empty grid; before moving, it sends a notification to the head v of its preceding
grid in its residing level-1 Hamilton cycle. Upon notification, v repeats the above
process for the grid of u, leading to shifted node migration. If the head w of
the eye of the residing level-1 Hamilton cycle of u finds the lack of redundant
nodes for a requested local hole repair in its dominated area (after receiving the
notification), it will start an interlevel repair process.

In the interlevel repair process, w searches for a redundant node along its
residing level-2 Hamilton cycle, and then continues until a redundant node is
found at a level-i eye (i ≤ k). Then, a localization process for the redundant
node would start at level-i eye. It will proceed along the corresponding level-i
cycle and reach a level-(i − 1) eye that has at least one redundant node in its
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dominated area. This process continues going down until reaching a unit grid.
Then, from that unit grid, a redundant node is migrated in shifted way, along the
path that is constructed in the above interlevel search and downward localization
process, to fill in the detected empty grid.
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