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Preface

With an ever increasing demand of new wireless sensing applications, energy
has been the primary concern for wireless sensor networks. In particular, energy
conservation has been studied extensively to extend network lifetime. A variety of
approaches have been proposed in literature that can elongate network lifetime to
some extent. However, with limited energy storage, sensor’s battery would deplete
eventually and replacing those batteries requires tremendous human efforts.

In this book, we describe a new approach to replenishing sensor’s battery via
wireless charging without wires or plugs. We start with a detailed overview of
the recent developments in wireless charging technologies and their applications
in wireless sensor networks to highlight the advantages and disadvantages. We then
provide a new hierarchical network architecture that adopts a mobile vehicle for
wireless charging. We name such networks Wireless Rechargeable Sensor Networks
(WRSNs). Based on this network architecture, we discuss several principles from
theoretical aspects, and design communication protocols and recharge schedul-
ing algorithms to maintain perpetual network operations. We also give network
performance evaluation results in various criteria such as nonfunctional node
percentage, network latency, and energy overhead. The state-of-the-art wireless
charging technology covered in this book would help readers understand existing
challenges and inspire future research to improve energy efficiency and network
lifetime for wireless sensor networks.

Stony Brook, NY, USA Yuanyuan Yang
February 2015 Cong Wang
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Chapter 1
Introduction

1.1 Introduction and Background

The next generation wireless networks rely on sensors to identify and extract useful
information from the environment. With the option to mount various types of
detectors ranging from temperature, magnetic, pressure, acoustic sensors to more
complex gyroscope, imaging, infrared, video sensors, wireless sensor networks
(WSNs) provide an easy way to access information in the physical world [1, 2].
It begins to find an increasing number of applications from our daily life to many
mission-critical tasks. Typical examples in our daily life include temperature and
humidity sensors deployed indoors that can automatically control the climate. In
mission-critical tasks such as volcano or forest fire monitoring [3, 4], sensors also
play an irreplaceable role to provide accurate readings on time. For example,
the traditional forest fire monitoring system depends on the analysis of satellite
images. However, the accuracy of these systems is usually limited by image quality
and weather conditions. Sensors equipped with thermal imaging and temperature
detectors can be deployed and transmit real-time data in a designated area [4].

The increasing demand for more complex sensors leads to higher energy
consumption on sensor nodes. To this end, energy conservation has been one
of the primary focuses in WSN research in the past decade. Since replacing
sensor’s battery is infeasible or risky in many applications [3, 4], most of the
research aims to maximize network lifetime. For a single node, duty cycling is
one of the most effective methods to save energy [10]. It puts radio transceivers
in sleep mode whenever there is no communication. To adopt this method in a
network, wakeup/sleep scheduling of sensors is required to guarantee end-to-end
communications [11, 12]. In addition, battery-aware routing and scheduling based
on battery recovery property have been studied to extend sensor node lifetime
[13–15]. At the network level, researchers have considered maximizing network
lifetime by optimizing either flow routing [16] or sensor missions [17, 18]. Besides,
how data is collected also determines network lifetime. Traditional approach to

© The Author(s) 2015
Y. Yang, C. Wang, Wireless Rechargeable Sensor Networks, SpringerBriefs
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2 1 Introduction

aggregating sensed data through a static data sink is known to be less energy efficient
since nodes close to the sink consume more energy to relay packets. These nodes
usually form a bottleneck around the sink and put an upper limit on the network
lifetime while other nodes may still have energy. This is regarded as the infamous
“energy hole problem” [19]. A solution is to introduce a mobile data sink for data
gathering [20–26]. It has been shown [25] that by carefully planning trajectory of
the mobile sink, energy consumptions on sensor nodes can be balanced and network
lifetime can be extended significantly.

Although these methods can prolong network lifetime to some extent, sensor’s
battery would deplete eventually and cause service interruptions. A promising
technique is to renew sensor’s battery by harvesting environmental energy such as
solar and wind [5–7]. For example, solar harvesting can provide energy from solar
panels of similar size to sensor nodes [8]. It is also shown that multiple ambient
energy sources can be utilized to power sensor nodes in [9]. However, an inevitable
drawback of environmental energy harvesting is due to the inherent dynamics of
energy sources. When energy sources are not available, sensor nodes may stop
working and it can lead to long data latency or data loss in the network.

Recently, finding an easy and reliable way to replenish sensor’s battery begins
to attract more attentions in the sensor network research community. Fortunately,
breakthroughs in wireless charging technology have opened up a new dimension to
power sensor nodes in distance without any wires or plugs. Pioneered by Nikola
Tesla [27] a century ago, it is only recently wireless charging enjoys so much
popularity after the experimental realization by Kurs et al. [28]. It has been shown
in [28] that a total of 60 W energy can be transferred between two magnetically
coupled coils over an air gap of 2 m with 40 % efficiency. The experimental
prototype is soon extended to power multiple devices in [29]. In the meanwhile, fast
development of mobile devices and stagnant battery technology deliver the impetus
to drive wireless charging technology into commercialization and many products
are now available. For example, charging pad called “Powermat c�” can recharge
multiple cell phones and PDAs simultaneously by simply putting them on the
pad [30]. Powercast c� systems realize wireless charging for sensing devices up to
several meters away [31]. This technology has demonstrated not only the strengths
to power small portable devices, but also the potentials to recharge Electrical
Vehicles (EVs). With the ability to deliver 100 W of energy at high efficiency,
wireless charging systems can be launched at power stations, parking lots or even
beneath road surface to recharge EVs without any physical contact [32].

The main focus of this book is to examine how to employ wireless charging
in traditional battery-powered wireless sensor networks and we call such networks
Wireless Rechargeable Sensor Networks (WRSNs) henceforth. We start with a
detailed overview of the recent developments in wireless charging technologies and
their applications in WSNs to highlight the advantages and disadvantages. We then
introduce controlled mobility to a hierarchical network in order to provide efficiency
and scalability. Based on the new network architecture, we discuss several important
principles from theoretical aspects. We also provide a distributed communication
protocol for gathering node status information in real-time, followed by recharge
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scheduling algorithms that aim to maintain perpetual network operations. Finally,
we give network performance evaluation results in various criteria such as nonfunc-
tional node percentage, network latency, energy overhead, etc.

1.2 Wireless Charging Technology

In this section, we introduce two major techniques of wireless charging: electromag-
netic radiation and magnetic resonant coupling, and their applications in WSNs.

1.2.1 Electromagnetic Radiation

Electromagnetic waves have been used for communications since the last century.
Recently, upon discovering the energy resides in the electromagnetic waves can
be captured to power ultra-low power devices, a great amount of research efforts
have been devoted to scavenge energy in the ubiquitous electromagnetic waves.
There are plenty of such energy sources such as TV towers, cellular stations or even
local Wi-Fi access points. However, due to the nature of isotropic wave propagation,
received signal strength decreases dramatically with transmission distance. Thus
only a very small fraction of energy can be effectively captured from the air.
Figure 1.1a shows a sketch of an electromagnetic radiation based wireless charging
system.

Transmit Antenna
Receive Antenna

voltage

input load

a

b

Transmitter Circuit Receiver Circuit

Coupling

Fig. 1.1 Wireless charging systems. (a) Electromagnetic radiation. (b) Magnetic resonant
coupling
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A popular commercial product currently on the market is the Powercast c�
wireless charging system [31]. It consists of a wireless energy transmitter operating
at 850–950 MHz and a few receivers. There has been some work on applying such
systems in WRSNs. In [33], the impact of wireless charging on current routing and
node deployment schemes in WSNs is studied. In [34], the problems of how to place
and mobilize wireless chargers to sustain network operations are studied. First, a
point provisioning problem is proposed to ensure any position of the network can
receive enough energy. Then a path provisioning problem is studied to further reduce
the number of wireless chargers. The problem is extended in [35] to minimize
charging delay by optimally planning the moving trajectory of mobile chargers.
In [36], an O.k2kŠ/ (where k is the number of nodes in the network) algorithm is
designed to schedule recharge activities such that network lifetime is maximized.
In [37], a joint routing and wireless charging scheme is proposed by guiding
routing and recharge activities. In addition, problems in WRSNs other than recharge
scheduling are studied in [38, 39]. In [38], an important safety issue of using
electromagnetic radiation based wireless charging is studied. Since absorption of
overdosed electromagnetic radiation poses great risks to human body, a placement
problem on how to place wireless chargers to sustain network operations while the
radiation level of all positions is below a threshold is studied in [38]. Other than the
safety issue, in [39], it is shown that traditional localization strategies in WSNs can
be further improved by measuring the wireless charging time of sensors.

As pointed out in [38], a limitation of electromagnetic radiation based wireless
charging is due to health concerns. Although it is desired to increase the emitted
energy at the power source, the Federal Communication Commission’s (FCC)
has a regulation of maximum effective isotropic radiated power (EIRP) at 4 W
[40]. In addition, the isotropic nature of omni-directional antenna emits energy
that attenuates quickly over distance. Therefore, this technique usually has very
low efficiencies and only supports low-power sensing applications such as simple
temperature, humidity monitoring, etc.

1.2.2 Magnetic Resonant Coupling

In contrast to the low-efficiency in electromagnetic radiation based wireless charg-
ing techniques, magnetic resonant coupling can transfer a large amount of energy
over an air gap at high efficiency [28, 29]. Figure 1.1b shows a wireless charging
system with magnetic resonant coupling. To guarantee high charging efficiencies, a
mobile vehicle with high-density battery packs is usually adopted to get to sensors
in close distance. A transmitter coil is mounted on the vehicle to transport energy
from its battery to sensors. While approaching sensors, the vehicle first converts
direct current (DC) output from the battery to alternating current (AC) through a
DC/AC converter to induce an oscillating magnetic field around the transmitting
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coil. On the sensor side, the receiving coil is tuned to resonate at the same frequency.
An alternating current is generated at the sensor’s output circuit. The AC is then
converted back to DC to recharge sensor’s battery.

The potentials of using magnetic resonant coupling in WRSNs is studied in
[41–45]. In [42], an optimization problem to maximize the ratio between charging
vehicle idling and working time is studied. A Hamiltonian cycle through all the
sensor nodes is proved to be the shortest recharge path. Instead of recharging
all the nodes, in [41], only a number of nodes request for recharge are serviced,
and this number is upper bounded by a tour length threshold to guarantee data
latency. During recharge, the charging vehicle simultaneously gathers data from
the neighborhood in multi-hops and uploads all collected data to the base station
after a recharging cycle is completed. A system-wide optimization is performed
to maximize network utility by selecting optimal data rates and flow routing. In
[44], optimal allocation of vehicle’s stopping time to recharge sensors at different
locations is studied. Upon realizing the dynamics in sensors’ energy consumptions,
to provide more accurate recharge decisions, a recharge framework is proposed in
[45]. An NP-hard problem to minimize the movement cost of charging vehicles is
studied and several heuristic algorithms are proposed. In sum, magnetic resonant
coupling is a promising technology ready to support many energy-demanding
multimedia applications with enormous data communication and sensing activities.
Therefore, in this book, we focus on applying this technology in WSNs.

1.3 Summary

In this chapter, we have presented a brief introduction to wireless charging
technology and its application in WSNs. We discuss its latest advances and describe
two typical techniques to perform wireless charging followed by a literature review
of the most recent works in wireless sensor research community. The subsequent
chapters provide a detailed coverage of several important issues in WRSNs includ-
ing the basic network architecture, components, principles, a distributed node status
reporting protocol, recharge scheduling algorithms and performance evaluations.
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Chapter 2
Network Architecture and Principles

2.1 Network Components

Assume that sensor nodes are uniformly and randomly distributed in the network,
and nodes are stationary and each node knows its deployed location. For scalable
performance, the network is divided into several areas and each area is further
divided to generate some new sub-areas. A new level is generated in each division.
The divisions are based on geographical coordinates of the sensing field. An
example of a 2-level WRSN network is shown in Fig. 2.1. The two areas represented
by solid lines are generated at the first level. Then each area is further split into
two sub-areas represented by dashed lines on the second level. Several key network
components are explained below.

• Charging Vehicles: A charging vehicle has positioning systems (GPS) and knows
its location. The sensor locations are pre-processed during network initialization
and known to the charging vehicles. The vehicles are equipped with high density
battery packs and charging coils. They also have communication capability by
launching powerful antennas. In this way, they can not only query the network
for node status information but also communicate among themselves or to the
base station via long range communication technologies (e.g., cellular, WiMax).

• Base Station: The base station is used for collecting sensing data and performing
network management. The charging vehicles can be commanded remotely by
the network administrator via the base station. It also has computing capabilities
to perform the tasks of calculating recharge sequences and dispatching charging
vehicles. When a charging vehicle almost depletes its own energy, it returns to
the base station for a quick battery replacement.

• Head Nodes: A head node is a sensor node that aggregates node’s status
information in its subordinate area. When requested by a charging vehicle or
the head node of its superior level, it aggregates node status information from the
subordinate sub-areas at the lower levels and sends to the requester.
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Fig. 2.1 Network architecture

• Proxy Nodes: An emergency occurs when a node’s battery energy falls below
a threshold (e.g., 10 %). It needs to be handled by the charging vehicles
immediately. The head nodes on the top-level are selected as proxies so they
can aggregate emergency information from sensor nodes directly without propa-
gating through the network hierarchy.

• Normal Nodes: A sensor node not selected as a head is a normal node. It reports
its status information to its superior head node, or sends emergency information
directly to its proxy when the battery energy drops below the recharge threshold.

Let N denote the total number of sensor nodes in the network and L denote
the side length of the square sensing field. Then the node density is � D N

L2 .
For event-driven sensing applications with events occurring at each location with
equal probability, spatially and temporally independent of each other, the data
generation process can be modeled as a Poisson process with average rate � [1].
All sensors transmit at the same power level with fixed transmission range r . The
energy consumed for transmitting/receiving a packet is et and er , respectively. To
obtain their values with respect to packet length l , we can utilize the model in [2].
The base station is placed at the center of the field to collect sensed data in multi-
hops. When receiving a status request, a sensor node transmits its status information
including energy level and lifetime to the head node in the sub-area. If its energy
drops below the emergency threshold, it sends out an emergency recharge request
to the proxy node.

The network has m charging vehicles. Once the recharging voltage at the sensor’s
output circuit is enough to provide a charge, the recharge time is governed by battery
characteristics. The typical recharge time required to bring battery energy from zero
to full capacity Cs is Tr time (e.g., for a Panasonic Ni-MH AAA battery [3] of
battery capacity Cs D 780 mAh, Tr D 78 min). All charging vehicles are equipped
with high-density batteries of Ch.Ch � Cs/ and consume at ec J=m while moving
at speed v m=s.
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2.2 Principles in Wireless Rechargeable Sensor Networks

In this section, we introduce several principles in WRSNs from the theoretical
aspects. These include energy neutrality, number of charging vehicles, node lifetime
and adaptive recharge threshold.

2.2.1 Energy Neutrality

For a WRSN, the principle of energy neutrality must hold. That is,

E.T / � R.T / C E0 (2.1)

where T is the time duration, E.T / is the total energy consumption of the network
in T , R.T / is the total energy replenished into the network by the charging vehicles
in T and E0 is the initial energy of all the nodes. In other words, the energy neutral
condition states that the energy consumption of all the sensor nodes must be less
than or equal to the total energy available in a long time perspective. Otherwise,
nodes in the network would deplete energy eventually.

We can obtain the number of charging vehicles needed to satisfy Eq. (2.1). First,
let us estimate R.T /. Since recharge time depends on the specific battery charac-
teristics, the maximum energy a charging vehicle can put back into the network in
Tr time is at most Cs . The maximum charging capacity occurs when the vehicle
recharges nodes one after another without any idling time in between. The average
moving time between two consecutive sensor locations can be estimated through
the average distance between two random locations in the square field of length

L. From [5], we obtain the average distance d D 2
p

2C10 ln.
p

2C1/C4

30
L � 0:52L.

For charging vehicles moving at constant speed v m/minute, the amount of energy
replenished into the network is,

R.T / D mCsT

0:52L=v C Tr

: (2.2)

E.T / on the left hand side of Eq. (2.1) is a random variable since the packet

generation process is Poisson. The network with length L has at most h D d
p

2L
2r

e
hops to the boundaries. As studied in [4], it can be closely approximated by h

concentric rings and each inner ring carries traffic from all outer rings. Since nodes
are uniformly and randomly distributed, the number of nodes in the i -th corona,
is Ni D .2i � 1/r2�� for 0 < i � h. We start with the estimation of energy
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consumption in each ring. The average energy consumption for the i -th ring is
(0 < i � h),

�i D Ni �Tet C
hX

jDiC1

Nj �T .et C er /

D r2���T
�
.h2 � i 2/.et C er / C .2i � 1/et

�
(2.3)

By summing Eq. (2.3) from 1 to h, we obtain the total network energy consumption

E.T / D
"

hX

iD1

.h2 � i 2/.et C er / C .2i � 1/er

#
r2���T

D
��

2

3
h3 � 1

2
h2 � 1

6
h

�
.et C er / C h2et

�
r2���T (2.4)

Note that the derivation of total energy consumption is based on the fact that nodes
generate packets independently and randomly following a Poisson process and the
sum of Poisson random variables are still Poisson with mean equal to the sum of
their average rates.

We can now plug R.T / and E.T / into Eq. (2.1). We have the following theorem.

Theorem 1. The probability for the energy neutral condition to hold is

Pop D ˚

0

B@
R.T / C E0 � E.T /

q
E.T /

1

CA (2.5)

where R.T / and E.T / are obtained in Eqs. (2.2) and (2.4), respectively. ˚.�/
denotes the Cumulative Distribution Function of the Normal distribution.

Proof. Energy consumption in the network is taken by the sum of independent
Poisson variables over T . When T is observed over a long time period, we can
use the Central Limit Theorem to approximate Poisson distribution by a Normal
distribution N .E.T /; E.T // (note that the mean and variance of a Poisson
distribution is the same) [6].

From Theorem 1, we immediately have the following Proposition.

Proposition 1. The minimum number of charging vehicles required to maintain
perpetual operation is

m D

2

6666

.˚�1.�/

q
E.T / C E.T / � E0/.0:52L=v C Tr/

CsT

3

7777
(2.6)
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where ˚�1.�/ is the inverse Cumulative Distribution Function of Normal distribu-
tion and � is a value very close to 1.

Proof. Since ˚�1.1/ ! 1, we consider the network achieves perpetual oper-
ation with a very high probability approaching 1 but not equal to 1, e.g., � D
0:99; ˚�1.0:99/ � 2:33. From Eq. (2.5), we have

mCsT
0:52L=vCTr

C E0 � E.T /
q

E.T /

� ˚�1.�/:

After some manipulations, the minimum number of charging vehicles, m, needed
to satisfy the energy neutral condition can be obtained. This result can be used to
calculate the number charging vehicles needed in the network planning stage.

2.2.2 Estimation of Node Lifetime

In this subsection, we introduce a method to estimate how long a sensor node
can survive given its current energy level. This information can help us construct
effective recharge schedules. Since a node’s energy consumption rate is a random
variable and depends on traffic patterns, it is important for each node to know its
traffic amount which is generally determined by the number of hops from the base
station. This information can be obtained by message propagation from the base
station using a typical routing protocol and adjusted accordingly during the network
operation.

From Eq. (2.3), the average traffic rate of a node in the j -th ring (1 � j � h) can
be easily calculated: �j D �.1 C .h2 � j 2/=.2j � 1//. Given current battery energy
E, the maximum number of packets the node can transmit is n D b E

.etCer /
c.

Theorem 2. Given a node with energy E at the j -th ring waiting to be recharged,
it will survive time t with probability

P.Lj > t/ D 1 � �.n; �j t/

� .n/
; (2.7)

where n D b E
.etCer /

c, �.�; �/ and � .�/ are the respective lower incomplete gamma
function and complete gamma function [6].

Proof. The summation of interarrival times of packets until the sensor node can
no longer transmit packets is the lifetime of the sensor node. Since the data
generation process is Poisson with rate �j , the interarrival time of packets is



14 2 Network Architecture and Principles

exponentially distributed. It is known that the sum of independently identically
distributed exponential variables results in a Gamma distribution with probability
density function

fLj .x/ D �j e��j x .�j x/n�1

.n � 1/Š
; x � 0 (2.8)

and the Cumulative Distribution Function of Gamma distribution is

P.x < t/ D
Z t

0

�j e��j x .�j x/n�1

.n � 1/Š
dx D �.n; �j t/

� .n/
(2.9)

Proposition 2. Let Tl denote the estimated lifetime of a node in a WSRN. For a
recharge sequence of N nodes, if a node at the j -th ring has probability �.n;�j Tl /

� .n/
�

0, Tl D .N � 1/.Tr C p
2L=v/, no matter where the node is placed in the recharge

sequence, it will not deplete battery energy before its recharging starts.

Proof. The worst case occurs when the node is placed at the end of the recharge
sequence. The longest waiting time to get recharged is Tl D .N � 1/.Tr C p

2L=v/

since there are N � 1 nodes ahead with
p

2L=v maximum traveling time between
two sensor nodes and

p
2L is the diagonal of the square field. Once �.n;�j Tl /

� .n/
� 0,

P.Lj > Tl/ approaches 1 so it is guaranteed to recharge the node before it depletes
battery energy.

Based on Proposition 2, given a recharge sequence, the probability that a node can
survive the entire recharging process can be calculated. The recharge scheduling
algorithm in the following chapters takes this result as an input.

2.2.3 Adaptive Recharge Threshold

In this subsection, we consider the case that nodes with different traffic amount
have different recharge thresholds. The difference of energy consumption between
nodes at different locations is caused by different traffic load. That is, a node lies
in the inner rings closer to the base station would relay more packets, so it is
reasonable to have a higher recharge threshold than the nodes in the outer rings.
On the other hand, if all the nodes follow a universal recharge threshold, nodes
close to the base station would deplete energy very fast and request recharge more
often. This would also make the charging vehicles frequently visit these nodes and
lead to unnecessary moving. To this end, the recharge thresholds should be set
proportionally (adaptively) to energy consumption rates.
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Let 	i .0 < 	j < 1/ denote the recharge thresholds for nodes at the j -th ring. We
let the ratio of recharge thresholds of ring i and ring j equal the ratio of their energy
consumption for data transmission. Suppose the recharge threshold of the first ring
is 	1. Then the thresholds for other rings are

	i D .h2 � i 2/.et C er / C et .2i � 1/

.h2 � 1/.et C er / C et

	1 � 2h2 � .i � 1/2 � i 2

2h2 � 1
; (2.10)

where 0 < i � h. The approximation is taken under the assumption that et � er .
To illustrate Eq. (2.10), e.g., h D 5, after 	1 is set, we obtain 	2 D 45

49
	1, 	3 D 37

49
	1,

	4 D 25
49

	1 and 	5 D 9
49

	1.

2.3 Summary

We have described basic network components and network model in this chapter.
Several important theoretical aspects in Wireless Rechargeable Sensor Networks
have been discussed. These include the energy neutral conditions, number of
charging vehicles to maintain perpetual operation, estimation of node lifetime and
adaptive recharge thresholds. The theoretical results and analysis will be used in the
designs of recharge scheduling algorithms later in this book.
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Chapter 3
Distributed Node Status Reporting Protocol

3.1 Overview

To perform effective recharge and maintain network operations, charging vehicles
should obtain global node status information of sensors. This information includes
residual battery energy, node lifetime, identification, location, etc. Since sensors
do not keep track of charging vehicle’s locations during operations, a trivial way
is to flood the network with status packets periodically. However, for a network
with N nodes, O.N 3/ packet transmissions might be needed in the worst case.
This is because that the number of edges in a completely connected graph is
N.N�1/

2
and there are N status packets from different nodes on all the edges.

Apparently, the cost becomes prohibitive for any network contains more than a
few hundreds of nodes. Indeed, for each recharge maneuver, the charging vehicle
only picks a small subset of nodes with immediate energy demands for recharge,
status information from other regions could be regarded as useless. If the useless
information can be filtered out before reported to the charging vehicles, a great
amount of communication overhead can be avoided. Therefore, we introduce a real-
time communication protocol for node status gathering in the network.

The charging vehicles obtain the real-time node status information before making
any recharge decisions. Node status information is aggregated on head nodes at
different levels. For robustness, the head node is usually elected with the maximum
battery energy in its subordinate area. The head election process is initiated in the
network startup phase through propagation of head election packets. During the
operation, when a head node is low on energy, it will appoint another node with
high energy in its area, and send out a head notification packet to notify the new
head node. The details will be discussed in the next subsection.

To start the information gathering process, charging vehicles send out status
request packets to poll the head nodes on the top-level first. Once the head nodes
receive such packets, they generate new status request packets for the lower level
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head nodes in respective subordinate areas. This process repeats down the network
hierarchy until the bottom-level status request packets reach all the nodes in the
bottom-level subareas.

Once a sensor node receives a bottom-level status request, it responds by
sending out a status packet that contains its current energy level, estimated lifetime,
identification and position, etc. When the bottom-level head nodes receive such
status packets, they select sensor nodes with energy level below their corresponding
recharge thresholds, and forward their status information in a combined status
packet to their superior head nodes. This process repeats from the bottom up
along the hierarchy until the top-level head nodes successfully aggregate all the
status information from designated areas. This information is then sent to the
requested charging vehicle. In the case that there are more than one charging
vehicles send out such request simultaneously, the top-level head nodes send the
aggregated node status information to the vehicle with fewer communication hops.
For overhead reduction, the head nodes take partial responsibilities to pre-select
nodes for recharge. On the bottom level, the head nodes only report those nodes
with energy level below the threshold.

Once a node’s energy falls below an emergency threshold (e.g., 10 % of
full capacity), without waiting for the charging vehicles to send out request, it
preemptively transmits an emergency packet to the proxy node that manages its area.
The route from each node to its proxy is established by head election messages from
the proxy and updated during the operation accordingly. Once a charging vehicle
finishes recharging a node, it sends out an emergency request packet to see whether
there is emergency. These packets are directed to the proxy nodes where updated
emergency lists are stored and they respond by sending back identifications, lifetime
estimations and energy levels to the charging vehicle. The charging vehicle receives
this packet and adopts an appropriate recharge scheduling algorithm to decide the
recharge sequence.

The mechanism in the head election protocol shares some similarities with [1, 2].
In the following, we describe the new protocols for communication between head
nodes on different levels.

3.2 Protocol Design

We describe the protocol design in this section for a network with l levels.

3.2.1 Head Election

At the initialization phase, the network performs head election starting from the
bottom l-th level and this process is propagated up to the top level. Each node
generates a random number x and compares it with a pre-determined threshold K.
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If x > K, it floods a head election packet in its subarea at the l-th level. The packet
contains the random number x and its identification. Then the node sets it as its
maximum random number at its local record xmax D x. Otherwise, if x � K, the
node waits for receiving packets from other nodes.

Upon receiving a head election packet, a node first compares the random number
field in the packet with its local record xmax. If its local record is larger, the packet is
discarded. Otherwise, the sensor updates xmax to that in the packet accordingly and
records the identifier in the packet. Then it sends out the packet to all its neighbors
except the one where packet is received from. This process can be regarded as a
distributed fashion to elect the node with the maximum x in each subarea on the
bottom level.

On the .l � 1/-th level, the newly elected head nodes compete for the heads on
this level following a similar manner. They flood new head election packets in their
subareas on the .l � 1/-th level. Nodes follow the same procedure to compare the
received random number x and finally the head nodes are elected. This process is
repeated until the heads on all the levels are elected.

To build intermediate routing information from each node to its head, the head
election packets that do not succeed in the comparison are not discarded except for
the bottom level. Instead, they are propagated throughout the respective subarea.
This ensures the intermediate nodes to know the routes to the head nodes. Once an
upper level head node wants to communicate with its subordinate head nodes, these
entries in the routing tables on each intermediate node can be utilized.

3.2.2 Status Request

The hierarchical head structure is constructed to facilitate the propagation of status
request packets. These packets collect the current status from nodes to offer charging
vehicles a global view of the network. The status information is gathered on demand.
That is, it can be either sent out after a charging vehicle finishes recharging every
node or once in a while to reduce communication overhead in the network.

After the head hierarchy is constructed, the charging vehicles send status
request packets to query nodes that need recharge. Upon receiving such packets,
intermediate nodes use the routing tables established during head election process
to forward the packets to all top-level head nodes. At the same time, an intermediate
node also leaves an entry in its routing table pointing to the neighbor from which the
status request packet is received. This entry is used to guide status packets back to
the charging vehicles. In Fig. 3.1, the propagation status request of a network with
two levels is illustrated. After a status request is sent by a charging vehicle, status
information is converged from the bottom level to the top level and finally delivered
to the charging vehicle.

After receiving a status request packet, a top-level head generates a new status
request packet and transmits it to its child-heads. These packets use the routing
entries set up during the head election process to find the lower-level head nodes.
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Fig. 3.1 Illustrating propagation of different types of packets

Similarly, nodes also set up routing entries where these packets are coming from
so that later status packets can be aggregated at the upper level heads. This process
repeats down the head hierarchy until the bottom level heads are reached. Those
heads then flood the status request packets in their respective subareas.

It could be the case that two or more charging vehicles are requesting node status
simultaneously. To avoid receiving duplicated information, we direct the status
packets towards the charging vehicle with fewer hop counts. The status request
packet carries a field to count the hops from the charging vehicle, i.e., the field grows
by one at each intermediate node. Once multiple status request packets are received
by a head node, an intermediate node updates its routing entries by recording only
the neighbor with the smallest hop count. In this way, status information from a
head node follows the route to reach the charging vehicle with the smallest hop
count. Since the charging vehicles are moving during the operation, these routing
entries are updated for each status request.

3.2.3 Status Report and Recharge

Once a node receives a bottom level status request packet, it responds with
information including its current energy level, estimated lifetime, identification and
position. These packets are easily routed back to the bottom level heads based on the
routing entries set up earlier. The head nodes quickly check if the reported energy
level of a node is less than the node’s recharge threshold. If so, the identification
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of the node is added to a local recharge list at the head node, and the energy
demand is also added to a cumulative summation counter. Once the head finishes
collecting status packets in its subarea, it sends out an aggregated status packet to its
upper level head node. The aggregated status packet contains the information from
nodes with energy below their recharge thresholds. Note that a method to compute
recharge threshold adaptively is introduced in Sect. 2.2.3.

Upon receiving aggregated status packets from the lower level head node, a head
node always selects the one with the largest cumulative energy demand and forwards
it upwards the head hierarchy. Finally, the charging vehicle close to a head on the
top level receives which subarea has the largest energy demand and proceeds to
recharge the nodes based on the recharge algorithms discussed later.

By entitling the head node some responsibilities to filter out some sub-areas,
communication overhead can be minimized during the process of gathering node
status. This is important since node status information is gathered every once in
a while, redundant information would not only enlarge the packet length but also
increase the computation complexity of recharge schedules.

Figure 3.1 gives a pictorial illustration of a network with two levels. The charging
vehicle sends out a status request to poll all the node status information from area 1.
The energy request packet is relayed towards the head node in area 1 by nodes in
areas 2 and 4. Upon receiving the energy request, the head node in area 1 aggregates
node status in its area and reports to the charging vehicle. The packet is routed back
following the same route taken by the status request packet.

3.2.4 Emergency Report and Recharge

Emergency occurs when a node’s energy falls below the emergency energy thresh-
old. These nodes should be taken care immediately to prevent them from depleting
battery energy. Once an emergency is detected, the node immediately sends out an
emergency packet with its identification and energy level to the proxy node in its
area. The proxy nodes are top level head nodes so the emergency packets do not
need to propagate through the head hierarchy. The routing information established
earlier during the head election process can be used to direct these packets towards
the proxy nodes.

The charging vehicle should frequently check whether there is emergency situa-
tion by polling the proxy nodes through emergency request packets. In principle, to
avoid any missing emergency, the charging vehicles should send out such packets
after finishing recharging the current node. Once an intermediate node receives an
emergency request packet, it updates the local routing entries to record where this
packet is coming from. This entry is used to route the emergency report packets
from the proxy nodes back to the charging vehicles. Since there could be multiple
emergency nodes reported while there are also other normal recharge requests, a
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charging vehicle needs to handle all the emergency situations within a specified
time (e.g., the expected time before next emergency occurs). We introduce several
recharge scheduling strategies in the next chapter.

Figure 3.1 also shows an example with a node having emergency in area 3. The
node immediately reports to the proxy node and the packet is further forwarded to
the charging vehicle upon an emergency request.

3.2.5 Head Hierarchy Maintenance

A head node may run out of energy since it usually engages in more activities than
other nodes. In this situation, head re-election is needed. In fact, only the head
nodes on the bottom levels compete with each other for the head node on an upper
level. Since a head node receives status report from all the nodes in its bottom level
subarea, it knows the updated node status in its subarea. To reduce overhead, it
can easily appoint the node with the highest energy as the new head node. A head
notification packet is then flooded in the bottom level subarea to notify all the nodes
of the new head node.

The generation of the new head triggers a new head election process up the head
hierarchy. It floods a new head election packet in its subarea. Instead of a random
number, the packet carries the current energy level of the participating head node.
Following the same procedure, nodes in the subarea compare the energy level in the
incoming packet and only store the information with the maximum energy. Then
the head node with the highest energy level is elected. If this is the same head node,
the process stops to avoid unnecessary overhead. Otherwise, the new head triggers
a sequence of head election in the upper level and this process repeats until a new
head node is elected on the top level.

3.3 Summary

In this chapter, we introduce a distributed communication protocol that can gather
node status information in real-time. The protocol uses different types of packets for
communication. Initially, the network is divided hierarchically into different levels
and a head node in each area is selected for aggregating node status. A charging
vehicle first sends out a status request packet to collect node status from designated
areas. The packet propagates along the head hierarchy until the bottom level areas
are reached. The node status information is gathered at the head nodes and reported
all the way up through the hierarchy until the charging vehicle is reached. In case
a node is in emergent status, it preemptively sends out an emergency report to
the proxy node on the top level. Upon receiving an emergency request packet, the
proxy reports all the emergency nodes to the charging vehicle. This structure enables
efficient node status collection and ensures scalability.
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Chapter 4
Recharge Scheduling

4.1 Emergency Recharge Scheduling Problem

First, we discuss the optimal recharge policy to handle multiple emergencies.
According to Sect. 3.2.4, a node that is on the verge to deplete its battery energy will
send an emergency recharge request to the proxy node on the top level. In addition,
when the charging vehicle is idle, it polls the proxy node to obtain an emergent
recharge node list if there is any. Here, we consider the scenario where there are
n emergent nodes to be recharged in Te time. Te is defined as the average inter-
arrival time of emergencies during operations. The value of Te can be measured
and updated iteratively through the operation by charging vehicles. We assume that
the sum of their energy demands is much less than the recharging capacity of the
vehicle.

Since the charging vehicle may not finish recharging all n nodes within Te time,
our objective is to maximize the amount of energy refilled into the network in Te .
The problem can be formulated as a classic Orienteering Problem (OP) [1]. OP
involves a set of points in the field with different rewards to be visited by a player
before time expiration. The objective is to maximize the rewards collected before
the time expires. To model OP into our problem, the charging vehicle visits sensor
nodes for maximizing energy replenishment (reward) within inter-arrival period of
emergency Te . We consider a graph G D .V; E/ where vertex Vi represents the
emergent sensor locations. The charging vehicle starts from the original location V0.
E is the edges among sensor nodes. The recharging reward ri of sensor i is defined
as the amount of energy replenished from the current energy level to full capacity.
The edge cost is defined to be the traveling time tij between i and j plus the
recharge time of node i (denoted as ti ). In order to be consistent with the original OP
formulation, we virtually make the charging vehicle return to the starting location
after Te by adding an edge of zero weight, i.e., the traveling time is ti0 D 0.
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A decision variable xij for edge eij is introduced. xij D 1 if the edge Eij is visited,
otherwise, it is 0. Variable ui is defined as the position of vertex i in the recharging
path. The emergency recharge scheduling problem is formulated as follows.

P1 W max
nX

iD1

nX

jD1

ri xij; (4.1)

Subject to

nX

iD1

x0i D
nX

iD1

xi0 D 1; (4.2)

nX

iD1

xik D
nX

jD1

xkj � 1; 8k D 1; 2; : : : ; n (4.3)

nX

iD1

nX

jD1

.tij C ti /xij � Te; (4.4)

xij 2 f0; 1g; 8i; j D 1; 2; : : : ; n; (4.5)

1 � ui � n; 8i D 2; 3; : : : ; n; (4.6)

ui � uj C 1 � n.1 � xij/; 8i; j D 2; 3; : : : ; n: (4.7)

Constraint (4.2) guarantees that the recharging path starts from starting position 0
and ends at starting position 0. Constraint (4.3) ensures the connectivity of the path
and that every node is visited at most once. Constraint (4.4) makes sure that the
time threshold Te is not exceeded. Constraint (4.5) imposes decision variable xij to
be 0–1 valued. Constraints (4.6) and (4.7) eliminate subtours in the planned route.
These subtour elimination constraints are formulated according to [2, 9].

If time Te is set to infinity, OP is reduced to the classic Traveling Salesmen
Problem with Profit which is known to be an NP-hard problem [3]. Therefore,
adopting heuristic algorithms can achieve a balance between performance and
computation complexity. A few algorithms have been proposed in [4–7] and a
survey of the problem is available in [1]. Tsiligirides [4] has developed a stochastic
Monte Carlo technique to generate a large number of routes and used the divide-
and-conquer method to select the best among them. A center-of-gravity heuristic
algorithm is proposed in [5]. Another algorithm consisting of five steps is proposed
in [6]. Optimal solutions to the OP using the brand-and-cut method is introduced
in [7]. However, these algorithms are quite complex in terms of efficiency and
computational time. Given energy restrictions in the network and the urgency to
resolve the emergent nodes, a fast and efficient algorithm is more desirable in the
context of our problem.

Next, we show OP can be approximated into a Knapsack problem [8] in our
problem. The Knapsack problem aims to maximize the value of items into a
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knapsack with limited size. Each item is associated with a known size. In fact, the
recharge time of a node i is much more than the traveling time from vehicle’s current
location k to i (i.e., ti � tki). For example, replenishing a node to full capacity
usually takes around an hour, the traveling time only takes a few minutes at most.
Therefore, to maximize the amount of energy replenished within Te , we can focus
on the recharge time of node i . Thus, Constraint (4.4) in the original OP formulation

can be rewritten as
nX

iD1

ti yi � Te . Here, recharge time ti corresponds to the item size

and recharge reward ri is the item value in the Knapsack problem respectively. With
this reduction, we have a much simpler formulation.

P2 W max
nX

iD1

ri yi ; (4.8)

Subject to

nX

iD1

ti yi � Te: (4.9)

Although Knapsack problem is known to be NP-complete [8], we can solve it in
polynomial time using dynamic programming techniques. Dynamic programming
is a strategy to break down a problem into many recurring small subproblems and
solve them in a recursive manner. We define a table R with entry R.i; t/ to represent
the maximum recharging reward attained with total time duration less than t where
1 � i � n and 1 � t � Te . Our goal is to compute every entry in the table towards
the maximum value of R.n; Te/. We set all the entries R.0; t/ for 1 � t � Te to zero
initially. For all the i and t in the table, if picking a new node for recharge exceeds
Te , the reward remains unchanged R.i; t/ D R.i � 1; t/; otherwise, R.i; t/ D
max.R.i �1; t/; ri CR.i �1; t � ti //. The pseudo-code of the algorithm is shown in
Table 4.1. As there are two loops of size n and Te , the complexity of the algorithm is
O.nTe/, which is much lower than directly implementing those algorithms designed
for OP.

Finally, it is important to examine the accuracy of such approximation. To see
how accurate this approximation achieves in our problem, we use brute force to
calculate the optimal solution to OP thereby providing a baseline for comparison.
Due to exponentially increasing combinations of larger datasets, we manage to test

several cases for n varies from 3 to 12. We define the accuracy as 1�
ˇ̌
ˇ Rk�Rop

Rop

ˇ̌
ˇ, where

Rk is the solution by Knapsack approximation and Rop is the optimal solution by
brute force. Table 4.2 shows that the accuracy is over 99 % for different Te .
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Table 4.1 Algorithm to approximate orienteering problem

Input: Te , recharge time ti , table R with entry R.i; t/, 1 � i � n and 1 � t � Te

Output: maximum recharge reward and recharging nodes

Initialize R.0; t/ D 0, 1 � t � Te

For i from 1 to n

For t from 1 to Te

If ti � t , R.i; t/ D max.R.i � 1; t/; ri CR.i � 1; t � ti //

Else R.i; t/ D R.i � 1; t/

End If
End For

End For

Table 4.2 Accuracy of Knapsack approximations to optimal solutions

# Emergencies n 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 (%) 12 (%)

Te D 300 min 100 100 100 100 100 100 100 100 100 100

Te D 400 min 100 100 100 100 100 99.7 99.6 99.9 99.8 99.7

Te D 500 min 100 100 100 100 100 100 100 99.6 100 100

4.2 Normal Recharge Scheduling

Next, we discuss how to schedule multiple charging vehicles for normal battery
recharge. In the process of normal recharge, it is also necessary to prevent nodes in
the recharge sequence from depleting battery energy. The objective is to minimize
the overall moving cost of charging vehicles while maintaining the perpetual
network operation and satisfying a few constraints. The first constraint comes
from charging vehicle’s limited capacity whereas most of the previous works have
ignored the moving energy of the vehicle and the limit of its recharge capacity
[11, 12]. These simplifications may cause the charging vehicle to deplete energy
en route, become stranded and unable to return to the base station. The second
constraint is to meet sensors’ dynamic battery deadlines. This would require the
vehicle to recharge some nodes earlier than others. For example, depending on the
size of recharge sequences, some nodes may need prioritized recharge to avoid
depleting battery energy. How to place these nodes in the recharge sequence to
guarantee optimal and feasible solution is an interesting, yet difficult problem. We
formalize it into an optimization problem with these constraints and provide two
algorithms to tackle the problem.

By using the method introduced in Sect. 2.2, we are able to estimate the number
of charging vehicles, m, needed based on energy balance in the network. After
each time the node status information is reported to the charging vehicles, a
recharge scheduling problem is formed as follows. We denote the set of charging
vehicles as S D f1; 2; : : : ; mg and the set of nodes requesting for recharge as
N D f1; 2; : : : ; ng. Consider a graph G D .V; E/, where vertex Vi (i 2 N )
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is the location of node i requests for recharge, and E is the set of edges. During
the operation, the vehicles could have different starting positions. We introduce an
virtual vertex V a

0 as the starting position of vehicle a. The weight of each edge Eij

is associated with the moving energy cost cij, which is proportional to the distance
between nodes i and j . ca

0i represents the cost from initial position V a
0 of vehicle

a to node i . Since different charging vehicles might have different energy during
the run, we denote the battery energy of charging vehicle a as Ca (Ca � Ch). The
value of Ca determines the number of nodes it can recharge before it goes back
to the base station for its own battery replacement. The energy demand for node i

is denoted as di (demand equals a node’s total battery capacity minus its residual
energy). Each sensor node i has lifetime Li and Ai is the arrival time of a vehicle
at node i . We further introduce two decision variables xa

ij for edge Eij and yia for
vertex Vi . The decision variable xa

ij is 1 if an edge is visited by vehicle a, otherwise,
it is 0. The decision variable yia is 1 if and only if node i is served by vehicle a,
otherwise, it is 0. ui is the position of vertex i in the recharge tour. The objective is
to minimize the total moving cost of the charging vehicles while guaranteeing that
the recharge capacities of charging vehicles are not exceeded and no sensor node
depletes battery energy.

P1 W max
� mX

aD1

nX

iD1

nX

jD1

cijx
a
ij C

mX

aD1

nX

iD1

ca
0i x

a
0i

	
(4.10)

Subject to

nX

jD1

xa
0j D 1; a 2 S ; (4.11)

nX

iD1

xik D
nX

jD1

xkj D 1; k 2 N ; (4.12)

nX

iD1

di yia C
nX

iD1

nX

jD1

cijx
a
ij C

nX

iD1

ca
0i x

a
0i � Ca; a 2 S (4.13)

mX

aD1

yia D 1; i 2 N ; (4.14)

Ai � Li ; i 2 N ; (4.15)

xa
ij 2 f0; 1g; i; j 2 N ; a 2 S ; (4.16)

yia 2 f0; 1g; i 2 N ; a 2 S ; (4.17)

1 � ui � n; i 2 N ; (4.18)

ui � uj C .n � m/xij � n � m � 1; i; j 2 N ; i ¤ j: (4.19)
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In the above formulation, Constraint (4.11) states that the recharge path for each
charging vehicle starts at an initial position 0. Constraint (4.12) ensures the
connectivity of the path and every vertex is visited at most once. Constraints (4.13)
and (4.14) guarantee the vehicle’s battery energy is not depleted and each sensor is
recharged by only one charging vehicle. Constraint (4.15) guarantees arrival time
of a charging vehicle is within each sensor’s lifetime. Constraints (4.16) and (4.17)
impose xij and yia to be 0–1 valued. Constraints (4.18) and (4.19) eliminate the
subtour in the planned routes, which is formulated according to [9]. The problem
can be reduced to the classic Traveling Salesmen Problem (TSP) with unlimited
recharge capacity and unspecified node’s battery deadline. Clearly, since TSP is a
well known NP-hard problem [8], the recharge scheduling problem is also NP-hard.

A direct solution to the recharge scheduling problem that accounts for both
vehicle’s capacity and node’s deadline is rare in existing literature due to its
hardness. Therefore, we first review some literatures that have partially solved the
problem. A similar problem to TSP is the Vehicle Routing Problem (VRP) [10].
In VRP, a fleet of vehicles start from the same depot and visit client locations to
deliver goods. The difference between VRP and TSP is that the salesmen in TSP
are allowed to start from different locations whereas vehicles usually start from
the same location. In addition, the number of vehicles could be undetermined in
VRP and more vehicles can be added in order to meet the demands from clients.
The Capacitated Vehicle Routing Problem (CVRP) is studied in [13–15]. In [13],
a method is proposed to decompose the problem into a convex combination of
TSP tours and the tours are examined if the capacity constraint is violated. In [14],
tree-based CVRP is studied and a 2-approximation algorithm is proposed. In [15],
exact solutions of CVRP are explored by a combination of branch-and-cut and
Lagrangian relaxation methods. Time constraint is also important in many VRPs.
For example, a store may only accept goods delivery from 9:00AM to 5:00PM
during regular business hours. How to schedule the fleet of vehicles to make the
deliveries within clients’ specified time windows is called Vehicle Routing Problem
with Time Windows (VRPTW). The problem is studied in [16–19]. In [16], a local
search algorithm is proposed to reduce the computation of checking the feasibility
of the time constraint. In [17], a theoretical approach of 3 log n-approximation
algorithm is sought based on established subroutines (where n is the number of
nodes). In [18, 19], a relaxed time constraint that allows late arrivals is considered.

Most of these works adopt standard optimization techniques that are effective
for datasets with small size and static inputs. Therefore, the optimization can be
done offline by computers with strong computing power. In contrast, the wireless
sensing environment is statistical in nature. That is, the inputs of energy request
would change for each run and the size of such request could be large. Besides,
the charging vehicle’s energy declines while moving and recharging sensors. The
existing solutions cannot handle these dynamic situations. Further, due to limited
computing power on the vehicles, it is not cost-effective and efficient to implement
algorithms with high complexity. To this end, our objective is to design algorithms
that are suitable to the dynamic nature of the recharge scheduling problem.
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There are several challenges to solve this complex problem. The first challenge
is that the charging vehicles’ energy constantly decreases due to moving and
recharging sensor nodes. Thus, the recharge route should be built with caution
to reflect the vehicle’s current energy level and traveling costs to node locations.
The second challenge comes from the dynamics of energy consumption due to
data transmissions. Some nodes consume energy at higher rates and have shorter
lifetime than others. These nodes usually lie on the main routing path and should be
taken care of more frequently than others to maintain the operation of the network.
The optimal solution to this problem is between achieving conflicting goals. On
one hand, to keep all the nodes running, we need to push the charging vehicles to
recharge as many nodes as possible. On the other hand, the desire to reduce overall
cost needs to minimize the moving distance of charging vehicles. At the same time,
the recharge decisions should account for node’s lifetime and vehicle’s own battery
energy as well. We can see that an ideal solution should achieve a good balance
between the two objectives without sacrificing either. In the next subsections, we
present two such algorithms.

4.2.1 Weighted-Sum Algorithm

First, we present a fast algorithm that leverages the weighted sum of node’s lifetime
and vehicle’s traveling time. Given a charging vehicle’s current location at k and
two nodes i and j , there are important metrics to affect their orders in the recharge
sequence: the traveling time between k to i , j (tki; tkj), and their lifetime li , lj . If
node j is bound to deplete its battery while node i can still last for a while, the
vehicle should recharge j first even if j is located further away than i . Therefore,
we can see that to maintain perpetual operations, a trade-off has to be made between
meeting sensor’s battery deadlines and minimizing vehicle’s traveling cost. We
introduce a weighted sum wij below

wij D ˛tij C .1 � ˛/lj : (4.20)

For a charging vehicle residing at node i , wij is used to decide which node j

to recharge next. A node with a smaller weighted value is more desirable and
should be visited with higher priority. The weight parameter ˛ affects the choice of
recharging schedules. When ˛ D 1, the algorithm reduces to the nearest neighbor
algorithm that the vehicle always recharges the closest node first regardless of
battery deadlines; when ˛ D 0, it picks the node with the earliest battery deadline
first regardless of the traveling time. When the vehicle detects its own battery is
about to deplete, it returns to the base station for battery replacement.

Figure 4.1 shows an example of a charging vehicle with three sensor nodes.
The lifetime and the traveling time on each edge are shown in the figure. For
demonstration purpose, we vary ˛ from 0, 0.5 to 1 and assume the recharge takes
3,600 s (seconds) to finish. At time 0 s, the vehicle calculates the weight for sensor
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Fig. 4.1 An example of weighted sum algorithm with one charging vehicle and three sensor nodes

nodes 1, 2 and 3. The minimum weights are circled. When ˛ D 1, node 3 has the
minimum weight of 200 (purely traveling time); when ˛ D 0:5, node 1 has
the minimum weight of 1,050; when ˛ D 0, node 1 also has the minimum weight
of 1,800. At this point, if node 3 is visited next, node 1 would have depleted its
energy after finishing recharge node 3. Therefore, the choice of ˛ D 1 is infeasible
in this example and node 1 is visited first. After node 1 has been recharged, choosing
node 3 results in the minimum weight for both ˛ D 0:5 and ˛ D 0. Therefore, the
recharge schedule follows 0 � 1 � 3 � 2 in this example.

We can see that the weight parameter ˛ also affects the feasibility of the solution.
Since the total distance is not simply inversely proportional to ˛, we cannot use a
binary search method to locate the best ˛ value. To this end, we find ˛ by searching
through a list of candidate ˛ values, A. For example, ˛ D 0; 0:05; 0:1; 0:15; : : : ; 1:0,
where jAj D 21. In this way, a desirable trade-off is achieved between optimality
and complexity.

While there are multiple charging vehicles calculating the recharge sequence
together, they exchange their location information via long range radio communica-
tions. Current technologies such as cellular communications and WiMax can easily
realize such coordinations. At the beginning of recharge scheduling, an updated
recharge node list is synchronized on all the vehicles. We label the vehicles in orders
so they begin the calculation of the next node sequentially. After a vehicle selects a
node for recharge, it broadcasts its decision so other vehicles can remove this node in
their recharge node list at this point. This operation avoids possible conflicts where
multiple charging vehicles select the same node for recharge. Table 4.3 shows the
pseudo-code of the entire algorithm.

4.2.2 Adaptive Recharge Scheduling Algorithm

In this subsection, we further provide an adaptive recharge scheduling algorithm.
Since energy requests can come from any location in the network, directing the
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Table 4.3 Recharge scheduling—weighted sum algorithm

Input: Weight parameter ˛ 2 Œ0; 1
 in stepsize 1=.A� 1/, current position of vehicle at node k,

set of energy requests N , traveling time from i to j , tij, lifetime li ;8i; j 2M .

Output: Recharge sequence Q.

Initialize minDistD1, obtain updated recharge node list N , set Qt D ;.

For ˛ D 0; : : : ; 1 in an increment of 1=.A� 1/

While N ¤ ;
8j 2 N Compute wkj  ˛tkj C .1� ˛/lj .

Find j  arg min
j

wkj. Broadcast node j has been selected to other vehicles.

Update its local N  N � j , add j to the end of Qt , move to position j for recharge.

Update lifetime of the rest nodes 8i 2 N , li  li � tkj � tj .

If li � 0,

Declare infeasible and inform base station.

End If
End While
If solution is feasible,

Compute total cost dist(Qt ).

End If
If dist(Qt ) < minDist,

minDist dist(Qt ), Q Qt .

End If
End For
If the vehicle’s battery is about to deplete, it returns to the base station for battery replacement.

charging vehicles to move back and forth in the field for long distance would incur
extra moving cost. To this end, we first partition the network adaptively given the
energy request. By partitioning the network, the charging vehicles are confined in
their own regions so that long distance moving can be avoided. Then to capture
vehicle’s recharge capacity, we generate Capacitated Minimum Spanning Trees
(CMST) on the nodes. The trees preselect which subset of sensor nodes the charging
vehicle should recharge to minimize traveling cost and ensure that the total weight
of the tree is within the capacity threshold. Finally, we perform route improvements
on the nodes in CMST by capturing node’s dynamic battery deadlines.

4.2.2.1 Adaptive Network Partitioning

In the first step, based on node status information gathered, the base station can
help charging vehicles partition the network into m regions adaptively and assign a
working region for each vehicle. The result is then disseminated to vehicles via
long range radio. We utilize the well-known K-means algorithm to perform the
partition [20]. The K-means algorithm is a method to partition the network into
different regions with the square sum of distance minimized with respect to the
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region’s centroid. In this way, the vehicle would move in a confined scope with less
moving distance.

The objective in the K-means algorithm is to minimize the intra-region square
sum of distances between sensor nodes,

S D
mX

jD1

nX

iD1

kn
.j /
i � �.j /k2 (4.21)

where kn
.j /
i � �.j /k2 is the square distance between a recharge node ni of region

j to the region’s centroid �.j / (computed by taking the mean of x; y coordinates).
The K-means algorithm operates in a recursive fashion.

First, for m charging vehicles, m sensor nodes are selected as the initial centroid
of m regions. We can randomly pick m nodes from N . Then we assign each node
to the centroid closest to its location. After all the nodes have been assigned to a
centroid, we calculate the coordinates of a new centroid again by summing all x and
y coordinates and then taking the average. This step is repeated until the centroids
no longer change. The resultant centroid is a virtual position that has the minimal
sum of distances to all the nodes in the region and the charging vehicle can use it as
a starting position to recharge those nodes.

Figure 4.2 shows a snapshot taken during the operation of 70 recharge requests.
Four charging vehicles need to cooperate to resolve these energy requests. In the first
step, as shown in Fig. 4.3, the network is partitioned into four regions adaptively
according to the recharge requests using the K-means algorithm. Each charging
vehicle is assigned a region that is close to its current location.

Fig. 4.2 A snapshot of
recharge request from sensor
nodes
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Fig. 4.3 Adaptive network
partition according to energy
request
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4.2.2.2 Generating Capacitated Minimum Spanning Tree

In the second step, after a number of m regions are generated, the vehicles select
the closest region from its current location through coordinations. To decide a
recharge tour, we need to ensure each charging vehicle’s recharge capacity is not
exceeded (Eq. (4.13)) and at the same time, we also want to minimize their moving
energy cost. To achieve this, we first find the Capacitated Minimum Spanning Tree
(CMST) [21] on the energy request. CMST guarantees the sum of energy demands
is within charging vehicle’s capacity and the minimum moving cost can be found
by constructing the minimum spanning tree. In this way, we can ensure sensor
nodes close to each other are placed on the same tree and later covered by the same
recharge route.

Finding the optimal solution of CMST on a set of nodes is not easy. It requires to
search over all possible trees and pick the one with the lowest cost, which involves
exponential computations. An efficient algorithm proposed by Esau-Williams (EW)
can find a suboptimal solution very close to the optimal solution in polynomial
time [21]. The main idea of EW algorithm is to merge any two subtrees when there
is a “saving” in the total cost.

The original EW algorithm might have some limitations to apply directly to
our problem. First, only the energy demands from nodes are considered while
two subtrees are merging whereas the traveling cost on the tree edges is not.
Second, multiple CMSTs could be generated for a charging vehicle with limited
capacity. Which tree should the charging vehicle select in order to maximize
energy efficiency? Here, we introduce an extended EW algorithm in the context
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of our problem. For the first problem, given the number of nodes in a CMST, a
deterministic upper bound on the shortest tour length is derived as

p
2.n � 2/ab C

2.a C b/ for a rectangle of side lengths a and b and n nodes in [22]. Thus, once
we know the number of nodes in the tree, we can estimate the vehicle’s maximum
moving cost. For the square sensing field with L side length and a subtree with nb

nodes, we develop a loose upper bound on moving cost, .
p

2.nb � 2/ C 2/Lec ,
where ec is the moving energy cost (J/m). Second, since each time the vehicle
only recharges one CMST, in the case that multiple such trees are generated, the
vehicle has to make a selection that maximizes the energy efficiency. Here, the ratio
between the total energy demand to the total edge weights of the tree is calculated
and compared. The vehicle would select the tree with the maximum ratio. In this
way, we can distribute limited energy resources from the charging vehicles into the
network and improve the overall energy efficiency of the network.

We now describe the extended EW algorithm in detail. To compute CMST,
each charging vehicle updates a distance matrix containing the edge costs of the
tree nodes. Let Na with na nodes denote the recharge set for a charging vehicle
(
Sm

aD1 Na D N ). A trade-off function fi is defined for each node fi D min.cij/ �
c0i and j 2 Pi . Pi is the set of neighbors of i . Function min.cij/ finds the minimum
cost from node i to its neighbor j in Pi . Function c0i is the cost from node i to the
vehicle’s starting position (i.e., the root of the tree). To reduce intra-region moving
cost, the centroid of the region from network partition is set as the root of the tree.
The trade-off function evaluates whether there is a saving of the total cost to merge
subtrees of nodes i and j . If fi > 0, it means merging the two subtrees would incur
extra cost so it is preferred for the charging vehicle to directly travel from the root
to each subtree. If fi < 0, it means merging the two subtrees would have a saving
of the total energy cost and the most negative fi results in the most saving.

Therefore, in each iteration, we compute the trade-off function fi for each subtree
and search through all the values to look for the most negative fi (i.e., the minimum
value). We denote the minimum value by fk and find node j as k’s minimum cost
neighbor. If the sum of total demands from the subtrees of k and j plus upper
bound of their traveling cost is less than the recharge capacity (which means we can
cover the subtrees of k and j under the current recharge capacity), we merge the
subtrees of k and j . This step successfully captures the charging vehicle’s capacity
constraint in Eq. (4.13). Since merging subtrees of k and j results in lower total
cost to k, moving from the root directly to k is no longer minimum and should be
avoided. The algorithm removes the edge from k to the root by setting the entry c0k

in the distance matrix to 1.
After two subtrees have been successfully merged, the minimum cost from all

those tree nodes to the root should be updated. This is achieved by updating the
minimum cost in the distance matrix from the tree nodes to the root by setting the
value to min.c0i /, where i are all nodes in the newly merged tree.

On the other hand, if merging subtrees of k and j causes a violation to exceed
vehicle’s capacity, any further actions to merge k to j should be restricted because
these two subtrees cannot be covered by the charging vehicle in a single run. Then
we recompute the trade-off function to look for the next neighboring node that
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Table 4.4 Extended Esau-Williams algorithm for charging vehicle a

Input: Recharging node set Na, distance matrix D, recharge capacity Ca, energy demand

di , i 2 Na.

Output: CMST with the maximum ratio between energy demands and sum of edge costs.

Initialize trade-off function f < 0, weight of each tree, Ci D 0.

While (all fi < 0)

Find neighbor mi of i results min cost, min
mi

D.i; mi /.

Compute trade-off value list fi D D.i; mi /�D.1; i/, 8i 2 Na.

Find k and j resulting most negative trade-off value, k min
i

.f /; j  mk:

Do
Add new nodes Nnew  k C j if not exist in current trees

If weight of merging subtree of Nnew < Ca

Add Nnew to tree i , update cumulative weight of i , Ci ,

Declare Nnew is accepted.

Else
Update D.k; j / 1, search for the next min cost neighbor for k.

mk  min
mk

D.k; mk/, recompute trade-off for k, fk D D.k; mk/�D.1; k/,

Declare Nnew is rejected.

End If
Until (Nnew is accepted) or (all fi � 0)

End While
Select a tree results maximum ratio between energy demands and sum of edge costs.

results in minimum trade-off until the next valid neighboring node j is found and
merged to the existing trees. The iteration continues until all the trade-offs become
nonnegative, in other words, no more saving can be made.

If multiple CMST are generated, the charging vehicle selects a tree with the
maximal ratio of energy demand to the sum of tree’s edge cost. Later, nodes in this
tree are recharged first by forming a recharge route using the route improvement
algorithm introduced next. After the charging vehicle finishes recharging all the
nodes in a tree, it checks whether its energy falls below a threshold. If so, it returns
to the base station for battery replacement. Table 4.4 shows the pseudo-code of the
extended EW algorithm.

Figure 4.4 constructs the CMST on the energy request. Note that the CMST is
constructed in a parallel fashion so that each vehicle only works on a subset of the
total recharging node set.

4.2.2.3 Insertion Algorithm for Recharge Route Improvement

After the CMST is computed, the next step is to find a recharge sequence such that
no sensor node would deplete its battery energy during the recharging process. For
a CMST, let Nc denote the node set for charging vehicle a (Nc � Na). From the
theoretical principles discussed earlier, we know that if a node’s lifetime satisfies
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Fig. 4.4 Each vehicle
constructs CMST in its
designated region
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conditions Theorem 2, the node can be placed anywhere in the recharge sequence
without depleting its energy. These nodes form a feasible node set Nf . Otherwise, a
node needs to be prioritized in the recharge sequence according to its lifetime. Note
that nodes report emergency during normal recharging process would most likely
need the prioritized recharge. These nodes form a prioritized set denoted by Np and
Nf [ Np D Nc .

First, since the particular recharging order of feasible nodes does not matter,
we first find the shortest path among them using a TSP algorithm (e.g., O.n2/

nearest neighbor heuristic algorithm [23], where n is the number of nodes). The
result from the TSP solution serves as the initial sequence from the feasible node
set and the recharge sequence of the shortest path is denoted by � . The next step is
very important. The algorithm needs to insert each node from the prioritized set Np

into � and makes sure each insertion does not violate the overall time feasibility
imposed by nodes’ battery deadlines (Eq. (4.15)). Nodes in Np are first sorted in a
descending order regarding their lifetimes and the sorted sequence is denoted as ˝.
Starting from the first node in ˝, nodes are inserted one after another into � . Let
Ai denote the arrival time of the charging vehicle at the i -th node in the shortest
path � , i D f1; 2; : : : ; nf g. To insert the j -th node ˝j from ˝ into � , we first
find a location mt in � such that Amt � l˝j and AmtC1 > l˝j where l˝j is ˝j ’s
lifetime. We call mt the tentative maximum position to insert ˝j . It indicates the
maximum number of nodes in � that can be served before node ˝j depletes its
battery. Since it is possible that all the remaining j˝j � j nodes in ˝ could be
inserted before ˝j , the sum of their recharge time would elongate the service time
of ˝j and might make ˝j to deplete battery energy prematurely. Therefore, the
maximum position for ˝j should accommodate the recharge time from all later
insertions. Based on mt , we further look for the maximum position m such that
Am � Amt � Pnp

iDjC1 ti and AmC1 > Amt � Pnp

iDjC1 ti , where ti is the recharge
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Table 4.5 Route improvement insertion subalgorithm

Input: CMST Nc , lifetime li and recharge time ti , i 2 Nc ,

distance matrix D, feasible set Nf satisfying Proposition 2 in Section 2.2.2.

Output: Recharge sequence � .

Compute the shortest path of the feasible set, �  TSP(Nf ), Sort Np in a descending

order regarding lifetime as ˝, initialize i  1, node position k 1 in the last step.

While ˝ ¤ ;
Find tentative max position mt in � such that Amt � l˝i and Amt C1 > l˝i

Further find the max insertion position m such that

Am � Amt �
Pnp

kDiC1 tk and AmC1 > Amt �
Pnp

kDiC1 tk .

If Cannot find m � 0.

Break, return infeasible and report.

End If
Set minimum cost cmin  1:

For x from 0 to m

Insert ˝i into � , get temporary sequence �t , calculate cost c Pj�t j�1
j D1 D.j; j C 1/:

If c < cmin, �  �t , cmin  c, k x. End If
End For
i  i C 1, update ˝  ˝ � i

End While
Return recharge sequence � , minimum cost cmin.

time of ˝j . At this point, node ˝j can be inserted into � with the maximum
position m. Among these positions, the one with minimum cost is selected as the
final insertion position. A new sequence � is obtained after the insertion and ˝j

is removed from ˝. The iteration continues until ˝ is exhausted or an infeasible
solution is encountered. Table 4.5 shows the pseudo-code of the route improvement
insertion algorithm.

Figure 4.5 illustrates how the insertion algorithm works. We consider the
prioritized set with two nodes ˝1 and ˝2 with lifetime 80 and 65 min, respectively.
They need to be inserted into the feasible recharge sequence. We first find that
the tentative maximum position k0 to insert ˝1 is between nodes 5 and 6 since
A5 < l˝1 < A6. To accommodate the insertion of ˝2 later, the maximum position
k that ˝1 can be inserted is between nodes 4 and 5 (since A3 < A5 � t˝2 < A4).
Then we search all the four possible locations (before nodes 1, 2, 3 and 4) and find
that the position after node 2 and before node 3 minimizes the moving cost. Thus
˝1 is inserted between nodes 2 and 3. We repeat the procedure for ˝2. Since it is
the only node left in the sorted list, we can directly calculate the maximum position
k and find the minimum cost insertion position.

For the CMST in Figs. 4.4 and 4.6 shows the results of improved recharging
routes on the selected trees.
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Fig. 4.5 Illustration of insertion algorithm for recharge route improvement
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4.2.2.4 Computation Complexity

The time complexity of the two algorithms can be analyzed as follows. The worst
case occurs when there is only one charging vehicle available to recharge all N

nodes. In the weighted sum algorithm, node selection takes O.N 2/ time and there
are a total number of A tests needed. Therefore, the time complexity of the weighted
sum algorithm is O.AN2/.

For the adaptive recharge scheduling algorithm, the extended EW algorithm
requires .N 2 C 2N / iterations to find the minimum trade-off value at the outer
loop. In the inner loop, the worst case is that for a node with the minimum trade-
off value, all its neighbors are rejected due to capacity violations. So N iterations
are required. Thus, the extended EW algorithm has time complexity O.N 3/. For
the route improvement algorithm, running a TSP algorithm requires O.N 2/ time.
Sorting nodes’ lifetimes requires O.N log N / time and insertion requires O.N 2/

time. Hence, time complexity of the route improvement algorithm is O.N 2/ and the
adaptive recharge scheduling algorithm takes O.N 3/ time. When A is less than N ,
weighted sum algorithm is faster than the adaptive algorithm.

4.3 Summary

In this chapter, we have discussed several recharge scheduling algorithms for
different scenarios. In case of emergency recharge, a charging vehicle needs to
resolve multiple emergencies at different locations. The problem is formulated
into the classic Orienteering Problem that aims to maximize the total amount of
recharged energy in a given time period. Based on the fact that recharging time
is much larger than traveling time, the problem can be simplified into a Knapsack
problem solved by dynamic programming with high accuracy.

In the meanwhile, normal recharge operations requires the charging vehicle to
account for its own recharge capacity and different sensor’s battery deadlines. It
is formulated into a Capacitated Vehicle Routing Problem with Battery Deadlines
and two algorithms are provided. The first algorithm leverages a weighted sum of
sensor’s lifetime and vehicle’s traveling time and tries to minimize the weighted
value at each recharge. The second algorithm adaptively partitions the network,
constructs Capacitated Minimum Spanning Trees and improves the recharge route
finally.
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Chapter 5
Performance Evaluations

5.1 Parameter Settings

In the evaluation, 500 sensor nodes are uniformly and randomly deployed over a
square sensing field with 200 m side length. The transmission distance is set to
15 m. Nodes use Dijsktra’s shortest path algorithm [2] to route data packets to the
base station at an average rate of � D 3 pkt/min following the Poisson process.
Time is equally slotted and each time slot is 1 min. Following the relationship
described in Sect. 2.2.3, nodes have adaptive recharge thresholds regarding their hop
counts to the base station. Nodes are equipped with CC2430 communication module
that draws 27 mA at 3 V while in operative mode [4]. The packets have the same
length of 30 bytes and transmission bit rate is 1 Kbps so the energy consumption for
transmitting and receiving is 2 mJ.

Once the charging voltage at sensor’s reception circuit is enough to provide an
effective charge, the recharge time depends on the specific battery characteristics.
An off-the-shelf Panasonic AAA battery model is used. The recharge curves can be
obtained from [1] with a maximum recharge time at 78 min. Using curve fitting in
MATLAB, we obtain a very close approximation of battery recharge time shown in
Fig. 5.1.

The charging vehicle carries high density battery packs, e.g., standard 12A, 5 V
battery, and consumes at a rate of 5 J/m energy while moving at a constant speed of
1 m/s (calculated in [3]). To see how the performance is affected by the number of
charging vehicles, m is varied from 1 to 5 and the simulations are run for 4 months.
In the weighted sum algorithm, the weighted parameter ˛ changes from 0 to 1 in an
increment of 0:01 so A D 101.

© The Author(s) 2015
Y. Yang, C. Wang, Wireless Rechargeable Sensor Networks, SpringerBriefs
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Fig. 5.1 Modeling the
function of battery recharge
time
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5.2 Comparison of Recharge Scheduling Algorithms

We first examine the performance of the recharge scheduling algorithms in minimiz-
ing the moving cost of charging vehicles and compare it with the optimal solution.
Due to NP-hardness of the recharge scheduling problem, acquiring optimal solution
requires exponentially increasing computational efforts with respect to the number
of recharge requests. It becomes prohibitive for more than 10 requests. To this
end, the optimal results for some small-size networks are obtained as baselines
for comparison purpose. The recharge requests are set to emerge uniformly and
randomly from any location in the sensing field and the results are averaged over
100 simulation runs. Figure 5.2 shows the sum of moving energy consumption on
the charging vehicles for the optimal solution and the results from the weighted sum
and adaptive algorithms. The adaptive algorithm provides an average of 1.05 ratio
to the optimal solution whereas the weighted sum algorithm consumes an additional
10 % more energy. Thus, although the adaptive algorithm is a little more complex
than the weighted algorithm, it is able to achieve very close approximation to the
optimal solution.

5.3 Node Nonfunctionality

When a sensor node depletes battery energy, it is not functional anymore until
the next recharge. Nonfunctional nodes may lead to loss of connectivity, network
congestion and disruption so they should be avoided during the operation. Figure 5.3
compares the percentage of nonfunctional nodes between the weighted sum and
adaptive recharge scheduling algorithms. For the weighted sum algorithm, when
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m D 1–3, there is a surge of nonfunctional nodes to over 20 % around 20 days
until the network stabilizes after 40 days. The spike is due to a majority of sensors
request for recharge around the same period of time so the recharge capacities of
the charging vehicles are temporarily exceeded. In contrast, the adaptive algorithm
provides better performance. For m D 2; 3, the spikes disappear and the percentage
of nonfunctional nodes is contained within 10 % at network equilibrium. The
improvement is because that, although the weighted sum algorithm takes node
lifetime as a factor to compute the recharge sequence, it may not select the optimal
node for recharge due to the choice of weighted parameter ˛. That is, the charging
vehicles only serve the node with the least weight value each time but this choice
only reflects a compromise between traveling cost and lifetime priority, which
could be far from optimal for the entire recharge sequence. The adaptive algorithm
has taken battery deadline into consideration by inserting nodes that need priority
recharge into an established node sequence and guaranteed that each insertion
does not violate the time feasibility constraint. It is worth pointing out that when
m D 5, the adaptive algorithm can maintain the perpetual operation for all the
nodes (keeping nonfunctional nodes at zero).

5.4 Energy Evolution

The trace of energy status in the network is demonstrated in Fig. 5.4. Due to
the similarity of curve shapes, we have plotted evolution of energy consumption
and recharge for the adaptive algorithm in Fig. 5.4a and their cumulative value in
Fig. 5.4b. When m D 1, it is not sufficient to sustain network operations so nodes
deplete energy and become nonfunctional. This corresponds to the drop on the
energy consumption curve during the first 10 days for m D 1 in Fig. 5.4a. The
recharge capacity from only one charging vehicle can barely suffice all the energy
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Fig. 5.3 Comparison of
nonfunctional nodes. (a)
Weighted-sum algorithm. (b)
Adaptive algorithm
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demands so it puts an upper limit on the total energy consumptions in the network
and the two curves reach an equilibrium at about 40 days. For m D 5, around 5
times energy is recharged into the network and each drop of energy consumption
(indicating when there are nonfunctional nodes) corresponds to a surge in energy
recharge. This represents m D 5 can resolve nonfunctional nodes more effectively.

The cumulative energy status in the network for m D 1 and 5 is shown in
Fig. 5.4b. To visualize the gaps between curves, the curves in the first 30 days are
plotted. If the energy consumption curve is above the recharging curve, more energy
has been consumed by the nodes than that has been refilled into the network, and
vice versa. For m D 1, the energy consumption curve is above the recharge curve.
A much wider gap is observed during the first 10 days and as soon as nodes begin
to deplete their battery energy, the gap becomes smaller. For m D 5, the recharging
curve always stays above the energy consumption curve.
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Fig. 5.4 Energy evolution in
the network when the number
of charging vehicle is
m D 1; 5. (a) Trace of energy
evolution. (b) Trace of
cumulative energy status (first
30 days)
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5.5 Duration of Nonfunctional Status

In this section, we consider the percentage of duration that nodes are nonfunctional
to the entire simulation time. The results for both algorithms when there are five
charging vehicles are plotted in Fig. 5.5 with respect to nodes’ locations. First,
we can see under adaptive algorithm, nodes have a maximum of 0.6 % time
in nonfunctional status. However, the weighted sum algorithm has resulted in a
maximum of 3.28 % time in nonfunctional status (5 times more). Further, the shape
of the curves indicates that the adaptive algorithm can spread nonfunctional nodes
more evenly. A high concentration of nonfunctional nodes near the base station is
observed in the weighted sum algorithm. They would easily cause congestions and
unavailability of the routing paths to the base station.
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Fig. 5.5 Evaluation of percentage time that nodes are nonfunctional. (a) Weighted-sum algorithm.
(b) Adaptive algorithm

5.6 Data Collection Latency

Data collection latency depends on whether a routing path is available. To success-
fully transmit all sensed data to the base station timely, all the nodes on the routing
paths should be functional. If a node depletes battery energy and no alternate route
is available, the packets will be buffered at sensors until the path is restored by
the charging vehicle. Shortest path trees are formed using the Dijsktra’s algorithm
rooted at the base station. Figure 5.6 shows the average data collection delay over
the entire simulation time. Since the adaptive algorithm has higher capability of
handling nonfunctional nodes than the weighted sum algorithm, 45 % less data delay
is achieved with the adaptive algorithm.
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Fig. 5.6 Evaluation of data
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5.7 Overhead of Node Status Collection Protocol

The communication overhead represents the energy consumed for transmitting
all types of control packets, e.g., head selection, status request/report, emergency
request/report and head notification packets. Figure 5.7 shows the evolution of
communication energy overhead during 4 months simulation time. First, compared
to the energy cost for transmitting sensed data, the overhead in the communication
protocol is not significant. Its energy consumption is around 10 mJ/day compared
to at least 8.64 J/day for transmitting sensed data packets. Second, there is a certain
amount of overhead during the network setup phase (around 40–60 mJ/day per node)
due to the head selection process. During the operation, when a head node is low
on energy, it sends out a head notification packet to appoint a new head node. The
head selection would then propagate up through the hierarchy. This process also
contributes to the overhead from 20 to 120 days time. Further, for different number
of charging vehicles, more communication overhead is observed when the number
of charging vehicles is not enough (m D 1; 2). In this case, recharge requests and
head re-selection are performed more often than m D 3–4 so higher communication
overhead is expected for fewer charging vehicles.

5.8 Charging Vehicle’s Moving Energy Cost

We now examine the moving energy cost on the charging vehicles. Since the
vehicles also consume energy while moving, one of the goals is to design recharge
scheduling algorithms that can provide extra savings in the charging vehicle’s
moving cost. Figure 5.8 shows the average energy cost per vehicle for the weighted
sum and adaptive algorithms. It is interesting to see that when m D 1–3, the
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Fig. 5.7 Evaluation of
energy overhead of node
status reporting protocol

0 20 40 60 80 100 120
0

20

40

60

80
Energy Overhead from Node Status Reporting

Simulation Time (day)

E
ne

rg
y 

O
ve

rh
ea

d 
(m

J)

m=1

m=2

m=3

m=4

Fig. 5.8 Evaluation of
charging vehicle’s moving
cost for weighted sum and
adaptive algorithms

1 2 3 4 5
0

200

400

600

800

1000

1200
Evaluation of moving energy cost

Number of Charging Vehicles m

M
ov

in
g 

E
ne

rg
y 

C
os

t (
K

J)

Weighted−sum Algorithm

Adaptive Algorithm

weighted sum algorithm is more energy efficient than the adaptive algorithm. This
is because that when the number of vehicles is not enough (m D 1–3) to support
perpetual operation, there are always energy requests so the weighted sum algorithm
selects the nearest node with the least lifetime. When m D 4–5, the energy
request becomes sporadic during operations. The weighted sum algorithm that only
recharges the node with the least weighted value might make the vehicle move
long distance. In contrast, the adaptive algorithm partitions the network into smaller
regions so the vehicles have much shorter moving distance in each recharge. This
reduces the moving cost significantly.



5.9 Comparison with Static Optimization Approach 51

5.9 Comparison with Static Optimization Approach

Finally, we compare the performance of the two algorithms with the static opti-
mization approach used in [5]. In the static approach, a charging vehicle selects
nodes with energy less than the normal recharge threshold and calculates the
shortest recharging tour among the selected nodes. We first compare the percentage
of nonfunctional nodes shown in Fig. 5.9. The number of nonfunctional nodes is
much higher for the static approach. For m D 1, there are 60 % nonfunctional
nodes whereas the weighted-sum and adaptive algorithms result in less than 30 %
nonfunctional nodes. This is because the static approach does not consider node
lifetime and only follows a pre-computed sequence to recharge nodes.

Next, we look at the emergency response time which is the duration from a node
reports emergency until it is recharged. Shorter response time means the charging
vehicle can respond rapidly to emergencies. Figure 5.10 shows the average response
time to emergencies when the number of nodes varies from 250 to 500. We can
see while the adaptive algorithm takes around 4 and 14 h (for N D 250 and 500,
respectively), the static approach takes much longer time (around 24 and 45 h). The
reason of such improvement is that we have differentiated emergency and normal
recharging operations. However, in [5], nodes are treated regardless of their lifetime.
This would incur extended recharge delay for some emergent nodes and cause
battery depletion. As a result, the static approach degrades fast as the network size
increases.

Fig. 5.9 Comparing the
percentage of nonfunctional
nodes between different
schemes
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Fig. 5.10 Comparing
emergency response time
between different schemes
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5.10 Summary

This chapter provides the performance evaluation results of some important perfor-
mance metrics in WRSNs. From comparisons between the presented algorithms
and optimal solution, we can see that the adaptive algorithm can achieve very
close approximation to the optimal solution and provide an additional 10 % cost
saving over the weighted sum algorithm. With more sophisticated algorithm design,
the adaptive algorithm provides much better performance than the weighted sum
algorithm in reducing the number of nonfunctional nodes, data collection delay and
moving cost. The communication overhead of the node status reporting protocol is
also examined. It indicates that the energy overhead is negligible compared to the
energy consumed for transmitting data packets. These results can offer insights for
designing real WRSNs.
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Chapter 6
Conclusions

In this book, we discuss how to apply the novel wireless charging technology
to traditional wireless sensor networks to provide perpetual network operation.
First, we provide a comprehensive literature review on the state-of-the-art wireless
charging techniques and their impacts. Then we introduce the network architecture
for wireless rechargeable sensor networks by describing the functionality of network
components and their features. We analyze several important theoretical aspects and
derive important principles for the perpetual operation condition to hold.

We provide a distributed communication protocol for collecting node status
in a scalable manner. We further examine the recharge scheduling problem for
emergency and normal node recharge. To recharge multiple emergent nodes, we
show how to formulate the problem into an Orienteering problem and describe
a solution based on dynamic programming. For normal recharge, we give two
scheduling algorithms. The first algorithm uses a weighted value to account for
moving cost and node’s lifetime. The second algorithm partitions the network
adaptively, forms Capacitated Minimum Spanning Trees for each charging vehicle,
and finally improves the recharge route. We also present extensive simulation results
to compare the performance between the two algorithms in different criteria.

With this book, we hope to shed some light on the current research status
of wireless rechargeable sensor networks, and those characterizations of various
designs in the book could inspire future research. Another aim of this book is to
provide a solution to tackle the energy issues in many distributed systems. We expect
readers to find this book useful and supportive when facing many challenges in
designing future wireless sensor networks and distributed systems.
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