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Preface

This volume contains the papers presented at ASMTA 2017: the 24th International
Conference on Analytical and Stochastic Modelling Techniques and Applications held
during July 10–11, 2017, in Newcastle upon Tyne, UK.

Owing to the number of concurrent calls for papers in the field, the number of
submissions was considerably smaller than previous years. There were 27 submissions.
Each submission was reviewed by, on average, 3.4 Program Committee members. The
committee decided to accept 14 papers.

This was the 24th year of ASMTA, which shows a considerable durability in a
rapidly evolving field. Over the years ASMTA has been the forum for many important
papers investigating the key topics of the day in the area of analytical and stochastic
modelling. In this volume we are delighted to have contributions employing a diverse
range of analysis techniques, including queueing theoretical results, stochastic Petri
nets, proxel-based simulation, stochastic bounds, and reversible Markov chains. The
range of topics within a small number of papers is impressive and demonstrates the
power of stochastic analysis to tackle challenging problems in complex computer and
communication systems.

We would like to take this opportunity to thank those who helped put ASMTA 2017
together, in particular Khalid Al-Begain, without whom ASMTA would not exist.
Dieter Fiems was extremely helpful in passing on his experience and in managing the
conference website. We would also like to thank our colleagues in Newcastle, Jen
Wood and Claire Smith, who helped with practical arrangements and bookings, and our
PhD students, who acted as a local support team during the conference. Finally we
would like to acknowledge the continued support of Springer in publishing the pro-
ceedings and the team at EasyChair for providing comprehensive conference support
with no charge.

May 2017 Nigel Thomas
Matthew Forshaw
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Stochastic Bounds for Switched Bernoulli Batch
Arrivals Observed Through Measurements

Farah Aı̈t-Salaht1, Hind Castel-Taleb2, Jean-Michel Fourneau3,
and Nihal Pekergin4(B)

1 LIP6, Ensai, Rennes, France
2 SAMOVAR, UMR 5157, Télécom Sud Paris, Evry, France

3 DAVID, UVSQ, Univ. Paris Saclay, Versailles, France
4 LACL, Univ. Paris Est, Créteil, France

nihal.pekergin@u-pec.fr

Abstract. We generalise to non stationary traffics an approach that
we have previously proposed to derive performance bounds of a queue
under histogram-based input traffics. We use strong stochastic order-
ing to derive stochastic bounds on the queue length and the output
traffic. These bounds are valid for transient distributions of these mea-
sures and also for the steady-state distributions when they exist. We pro-
vide some numerical techniques under arrivals modelled by a Switched
Batch Bernoulli Process (SBBP). Unlike approximate methods, these
bounds can be used to check if the Quality of Service constraints are
satisfied or not. Our approach provides a tradeoff between the accuracy
of results and the computational complexity and it is much faster than
the histogram-based simulation proposed in the literature.

1 Introduction

Measurements and traces are now much more frequent and we advocate that
we can use them to make the performance analysis of networking elements more
precise and more realistic. Typically, the traces are used as an input for a fitting
algorithm which finds the best approximation inside a class of well-known sto-
chastic processes (see, for instance, [11]). When this process can be associated
to a Markov process or chain, the whole system can be modelled by a so-called
structured Markov chain (see [12] for an example) and many algorithms have
been derived to solve the steady-state distribution for this type of models.

In [1,2], we have proposed a different approach for stationary arrivals: we
model the system in discrete time and we use directly the measurements to
obtain a discrete distribution of arrivals during a time slot. Thus, we avoid the
fitting procedure and the approximations it may add in the model. Such an
approximation due to the fitting of the processes may lead to incorrect results
(see [5] for such a problem for service time distributions).

Such an idea has already been proposed and is known as the histogram
based models for more than 20 years (see for instance, the work by Skelly et al.
[15] in the area of network calculus to model the video sources and to predict
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 1–15, 2017.
DOI: 10.1007/978-3-319-61428-1 1
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buffer occupancy distributions). Recently, Hernàndez et al. [8–10] have intro-
duced an approach called HBSP (Histogram Based Stochastic Process) to obtain
histograms of buffer occupancy. They use histograms as inputs and some specific
operators in discrete time to represent a finite capacity buffer with a constant
service under the First Come First Served (FCFS) discipline. The model is solved
numerically and as usual, the curse of dimensionality appears. When the number
of bins in the histograms is too large, the computation times become extremely
high and the authors present an approximation of the histograms of traffic which
leads to a smaller complexity and a faster resolution. Unfortunately the accuracy
of the approximation cannot be checked.

We propose a more accurate method to deal with histograms having a large
number of bins. First in [3] we prove that the system is stochastically monotone.
This allows to obtain bounds on the queue size and the output process when
we consider bounds on the input process. Second, in [1] we provide several algo-
rithms to derive stochastic bounds of the arrival process with a smaller complex-
ity. As we build lower and upper bounds, our approach provides an estimation of
the approximations. The complexity in the numerical computations in basically
dependent of the number of bins in the histogram or the number of atoms in the
discrete distribution. The main assumption of the approach is the stationarity
of the input process.

Here, we do not assume that the traffic is stationary. Typical Internet services
such as web surfing and high speed streaming services (Video On Demand (VOD)
and video conferencing), tend to generate sporadic traffic, and hence it would be
realistic to consider bursty packet arrivals for today’s telecommunication traffic.
There are some interesting queueing models and analytical results considering
bursty sources and discrete time queueing systems.

In [18], they consider finite capacity queue in discrete time with constant
service time of arbitrary length, and bursty on/off source with geometric dis-
tributed lengths of the phase. Closed form are derived for the loss ratio of cells.
In [19] an infinite capacity discrete-time queue with Bernoulli bursty source
and batch arrivals is analysed using the generating function technique. A closed
form expressions of some performance measures as average buffer length, and
average delays are obtained. Markov modulated arrivals have been quite often
considered in the literature to represent traffic arrivals [4,14]. In [14], they define
an MMPP (Markov Modulated Poisson Process) traffic model that accurately
approximates the characteristics of Internet traffic traces. Results prove that the
queuing behaviour of the traffic generated by the MMPP model is coherent with
the one produced by real traces. Some important results on MMPP traffic and
queues with MMPP input are described in [4].

In this paper, we propose to apply stochastic bounds on the input traffic
to derive stochastic bounds on the queue length and the departure flow. We
propose a numerical technique to compute the bounds in an efficient way. We
show how our approach which has been developed for stationary arrivals can be
generalised to Switched Bernoulli Batch Process (SBBP in the following).

The technical part of the paper is as follows. We introduce briefly bounds for
the ≤st ordering in the next section for the sake of completeness. We advocate
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that monotonicity of the evolution equation as well as stochastic bounds may
help to solve such a queueing model when the arrival process is not stationary.
We first considered the stationarity assumption to derive some results, theorems
and algorithms in Sect. 3 which will be then generalised for non stationary arrival
processes in Sect. 4.

2 A Brief Presentation of Stochastic Comparison

We refer to [13] for theoretical issues of the stochastic comparison method. We
consider state space G = {1, 2, . . . , n} endowed with a total order denoted as
≤. Let X and Y be two discrete random variables taking values on G, with
cumulative probability distributions FX and FY , and probability mass functions
(pmf) d2 and d1. The ith index of pmf vectors denotes the probability that
the underlying random value takes value i: d2(i) = Prob(X = i), and d1(i) =
Prob(Y = i), for i = 1, 2, . . . , n. The stochastic comparison of two random
variables in the sense of the strong stochastic order, ≤st can be defined as follows.

Definition 1. The following definitions are equivalent.

– generic definition:

X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ),

for all increasing (non decreasing) functions f : G → R+ whenever expecta-
tions exist.

– cumulative probability distributions:

X ≤st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ G.

– probability mass functions:

X ≤st Y ⇔ ∀i, 1 ≤ i ≤ n,

n∑

k=i

d2(k) ≤
n∑

k=i

d1(k) (1)

Notice that we use interchangeably X ≤st Y and d2 ≤st d1.

Property 1. If X ≤st Y , then for any increasing function f ,

f(X) ≤st f(Y )

The ≤st ordering is closed under mixture (Theorem 1.2.15 in p. 6 of [13]):

Theorem 1. If X,Y and Θ are random variables such that [X | Θ = θ] ≤st

[Y | Θ = θ] for all θ in the support of Θ, then X ≤st Y .

The following definition is used to compare Markov chains.

Definition 2. Let {X(n), n ≥ 0} (resp. {Y (n), n ≥ 0}) be a DTMC. We say
{X(n), n ≥ 0} ≤st {Y (n), n ≥ 0}, if X(n) ≤st Y (n), ∀n ≥ 0.
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Let P and Q be the probability transition matrix of {X(n), n ≥ 0} and
{Y (n), n ≥ 0} respectively. If the chains are ergodic, let πP and πQ denote
the corresponding steady state distributions, then πP ≤st πQ. The following
theorem provides sufficient conditions to establish the comparison of DTMCs.

Theorem 2. Let P (resp. Q) be the probability transition matrix of the time-
homogeneous Markov chain {X(n), n ≥ 0} (resp. {Y (n), n ≥ 0}). The compar-
ison of Markov chains is established {X(n), n ≥ 0} ≤st {Y (n), n ≥ 0}, if the
following conditions are satisfied

• X(0) ≤st Y (0),
• at least one of the probability transition matrices is monotone, that is, either

P or Q (say P) is ≤st monotone, if for all probability vectors p and q,

p ≤st q =⇒ pP ≤st qP

which is equivalent to

1 ≤ i ≤ n − 1, P[i, ∗] ≤st P[i + 1, ∗]

where P[i, ∗] denotes the row of matrix P for state i.
• the transition matrices are comparable in the sense of the ≤st order:

P ≤st Q ⇔ 1 ≤ i ≤ n, P[i, ∗] ≤st Q[i, ∗]

3 Bounding Performance Measures Under Stationary
Traffic

We present in this section the method we have developed in various publications
[1–3].

3.1 Queue Model and Evolution Equations

Let us begin with some notation. The number of transmission units produced by
the traffic source during the kth slot is denoted by A(k), and Q(k) and D(k) are
respectively the buffer length and the output (departure) traffic (flow) during the
kth slot. The buffer size is noted by B and the service capacity during a slot by
S. The input parameter A(k) is specified by a discrete distribution (histogram),
and the output parameters are also derived as histograms (Fig. 1).

The admission per packet is done with Tail Drop policy. Thus an arrival
packet is accepted if there is a place in the buffer, otherwise it is rejected. The
timing of events during a slot is as follows: arrivals occur first and they are
followed immediately by services. The evolution equations for the buffer length
(Q(k)) and the departure traffic (D(k)) can be given as follows:

Q(k) = min(B, (Q(k − 1) + A(k) − S)+), k ≥ 1, (2)
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Fig. 1. Input and output parameters of a queueing model

where operator (X)+ = max(X, 0).

D(k) = min(S, Q(k − 1) + A(k)), k ≥ 1. (3)

The model of the queue is a time-inhomogeneous Discrete Time Markov Chains
(DTMC), if the input arrivals are independent of the current queue state and
the past of the arrival process. Under the stationary arrival assumptions, the
underlying DTMC is time-homogenous.

The monotonicity of these equations under the ≤st order has been proved in
[1,2]. Intuitively speaking, the monotonicity property states that if we consider
two models under different arrival processes but comparable in the sense of the
≤st order, then the corresponding output parameters are also comparable in the
sense of the ≤st order.

Let consider two queues. The first one is under arrival process A(k), k ≥ 0,
and the output parameters (queue length, and departure traffic) noted by Q(k)
and D(k), k ≥ 0. The second one is under arrival process Ã(k), with output
parameters: Q̃(k), D̃(k)). At the beginning, Q(0) ≤st Q̃(0) and D(0) ≤st D̃(0).
Without loss of generality, we assume that the queues are idle at k = 0, thus the
queue lengths and the departure processes are empty, thus Q(0) =st Q̃(0) and
D(0) =st D̃(0).

Theorem 3. If A(k) ≤st Ã(k), ∀k > 0, then

Q(k) ≤st Q̃(k), and D(k) ≤st D̃(k), ∀k > 0.

The monotonicity results follow from the fact that the ≤st order is associated
to increasing functions and the underlying measures are defined by increasing
functions of input parameters.

This theorem lets us to construct bounding systems. For instance, for a given
system, let say the one under the arrival process A(k), it is possible to construct
bounding performance measures, Q̃(k), D̃(k) by considering the bounding arrival
process Ã(k). Obviously, this approach is meaningful if the analysis under arrival
Ã(k) is more efficient to do. Notice that these are transient bounds thus the
comparisons are satisfied at each instant k, and also for the steady state if it
exists.
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If a stationary bounding process Ã exists such that A(k) ≤st Ã, ∀k > 0,
it has been proved that the stationary bounding performance measures can be
derived by considering the system under the stationary bounding process Ã [2].
Clearly if both the real traffic (A(k)) and the (upper) bounding traffic (Ã(k)),
are stationary, we have the following corollary:

Corollary 1. Let A (resp. Ã) be the stationary exact (resp. upper bounding)
input histogram (distribution) such that A ≤st Ã, and Q, D (resp. Q̃, D̃) be the
stationary buffer length, departure flow under the exact A, (resp. upper bounding
Ã) input arrival. If Q(0) ≤st Q̃(0), and D(0) ≤st D̃(0), then we have:

Q ≤st Q̃ and D ≤st D̃.

The lower bounding case can be similarly derived.

3.2 Bounding Histogram Construction

The complexity of the numerical analysis of performance measures (Eqs. 2 and 3)
depends on the arrival distributions whatever the used method is. We advocate
that, as the queue we model is stochastically monotone, it is possible to aggregate
the input distribution (to reduce the number of atoms) for deriving in an easier
way stochastic bounds on the performance measures. For a discrete distribution
of probability, the complexity parameter is the number of atoms. Therefore we
propose to apply the bounding approach to make the number of atoms smaller.
The main advantage of this approach is the computation of bounds rather than
approximations. Unlike approximations, the bounds allow us to have guarantees
and check if QoS are satisfied or not.

Let the input arrival process is specified by a probability mass function (dis-
crete distribution) d defined on N atoms. In [3], we have proposed an algorithm
to build an upper and a lower bounding distribution, d1 and d2 with n << N
atoms. Moreover, d1 and d2 are the optimal bounds with respect to a given pos-
itive, increasing reward function, r . Formally, for a given distribution d defined
on H (|H| = N), we compute bounding distributions d1 and d2 defined respec-
tively on Hu, Hl (|Hu| = n, |Hl| = n) such that:

1. d2 ≤st d ≤st d1,
2.

∑
i∈H r(i)d(i) − ∑

i∈Hl r(i)d2(i) is minimal among the set of distributions
on n atoms that are stochastically lower than d ,

3.
∑

i∈Hu r(i)d1(i) − ∑
i∈H r(i)d(i) is minimal among the set of distributions

on n atoms that are stochastically upper than d .

Notice that ∀ i ∈ H and i /∈ Hu (resp. ∀ i ∈ H and i /∈ Hl), d1 (i) = 0 (resp.
d2 (i) = 0) to establish the stochastic comparisons. Thus d1 and d2 denote the
optimal bounding distributions on n atoms with respect to reward r .

The proposed algorithm is based on dynamic programming and has a com-
plexity of O(N2 n). Some heuristics with a smaller complexity which let to
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construct stochastic bounds with the required number of atoms but which are
not in general optimal can be found in the same reference.

The number of atoms provide a trade-off between the accuracy of the bounds
and the computation time. It can be determined in an incremental manner:
one begins with a reduced number of atoms, if the accuracy of bounds is not
satisfactory, the number of atoms can be incremented. The iteration can be
stopped, if the required accuracy is reached and/or the computation time of
bounds exceeds a fixed threshold.

Example. Let d = [0.1, 0.4, 0.05, 0.15, 0.1, 0.2] be a discrete distribution defined
on a support H = {1, 2, 3, 4, 5, 6} (N = 6). For reward function r sets to
r(i) = ai, ∀ ai ∈ H, the expected reward of d is R[d ] =

∑
ai∈H r(i) d(i) = 3.35.

The computation of the optimal stochastic upper bound d1 (resp. lower
bound d2) of d with only 3 states (atoms) consists in exploring all 3 single
hops paths from the largest (resp. smallest) atom and select the path for which
R[d1] − R[d ] (R[d ] − R[d2]) is the minimal.

Fig. 2. Probability mass (left) and cumulative distribution functions (right).

We illustrate in Fig. 2, the probability mass functions and the cumulative
distribution functions of the exact and the computed optimal bounding distri-
butions (d2 ≤st d ≤st d1). The expected reward of the bounding distributions
are: R[d2] = 3.1 and R[d1] = 3.8.

3.3 Performance Measure Bounds Under Stationary Arrivals

We are indeed interested in the performance analysis of the queue under real
traffic traces. We present here an example given in [2] under stationary traffic
assumption of real traces. In Fig. 3, a real traffic trace extracted from the MAWI
traffic traces [16] is illustrated. Precisely, it corresponds to an IP traffic trace
during one hour for a 150 Mbps transpacific line (samplepoint-F) for the 9th of
January 2007 between 12:00 and 13:00. This traffic trace has an average rate
of 109 Mbps. Using a sampling interval of T = 40 ms (25 samples per second),
the resulting traffic trace has 90,000 frames (periods), an average of 4.37 Mb per
frame and 80511 distinct values (atoms).
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Fig. 3. MAWI traffic trace.

We present in Fig. 4, the lower and upper bounding histograms with n = 10
atoms for this trace, and the exact histogram without size reduction. The reward
considered in the histogram size reduction algorithm is the identity function in
order to construct optimal ≤st bounds with respect to the expectation. The
expectation of the original histogram (noted as exact) is 4.3757 × 106 bits while
the expectation of the upper bound is 4.5843 × 106 bits, and that of the lower
bound is 4.1644 × 106 bits.

Fig. 4. Cumulative probability distributions (cdf) for the MAWI traffic.

In Fig. 5, the bounds on the blocking probability and the mean buffer length
under MAWI traffic versus different values of reduction (atoms varying from 10
to 200) are given. In each figure, we give the results computed under: (1) the
exact MAWI histogram (without reduction 80511 atoms), (2) lower bounding
histogram and (3) upper bounding histogram. It can be seen that the bounds
become tighter when the bounding histogram size increases. Thus a tradeoff
between the accuracy of results and computation complexity can be found.
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Fig. 5. Accuracy versus the number of atoms: QoS parameters using the MAWI traffic

4 SBBP Input Traffic

We now consider that the traffic is modelled by a Switched Batch Bernoulli
Process (SBBP) [7], and we show that our method can also be applied in this
case. The SBBP process is an arrival process modulated by a Markov chain.
This model is useful to characterise phase-dependent arrivals, i.e. the arrival
processes during different phases have different characteristics. If there are p
arrival phases, the phase evolution is controlled by a time-homogeneous DTMC
defined on state space P = {1, . . . , p}. Let F be the probability transition matrix
for phase changes, then F(i, j) is the probability of the transition from phase i
to phase j.

The state of the system at time k can be denoted by QP (k) = (Q(k), φ(k)).
The first component Q(k) is the number of entities in the buffer and φ(k) is
the arrival phase during slot k. In each arrival phase i ∈ P, the arrival process
Ai is assumed to be stationary and independently, identically distributed. The
underlying system {QP (k), k ≥ 0} is a time-homogeneous DTMC. During time
k, the arrival phase is φ(k), and the evolution of Q(k) is the same as in the
stationary arrival case, but under arrival Aφ(k) instead of A. Thus, Q(k) takes
values in the set N = {0 · · · B}, and evolves as follows:

Q(k + 1) = min
(
B, (Q(k) + Aφ(k) − S)+

)
.

The evolution of the second component, φ(k) is controlled by a Markov chain.
The state space of {QP (k), k ≥ 0} is the product space S = N × P.

4.1 Bounds Under SBBP Input Traffic

We construct the bounding models by fixing the arrival phase, and the compar-
isons are established arrival phase by arrival phase. The partial order � on S to
compare any two states x, y ∈ S is defined as following:
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Definition 3. Let x = (xq, xφ), y = (yq, yφ) ∈ S, where the first components
correspond to the buffer lengths (Q) and the second components correspond to
the arrival phases (φ).

x � y iff xq ≤ yq and xφ = yφ.

In the bounding system denoted by Q̃P (k), the arrival processes in each phase
(Ãi) are the upper bounds of the real traffic (Ai) and they are constructed as
explained in Subsect. 3.2. Formally,

∀i ∈ P, Ai ≤st Ãi. (4)

The second component of both models are controlled by the same DTMC inde-
pendently of the first component. We assume that at the beginning, k = 0,

(Q(0), φ(0)) =st (Q̃(0), φ̃(0)).

Thus, if we start with the same initial states in both models, the evolution of
the second component will be the same at each time k.

Corollary 2. Let Q, D be the steady-state marginal distributions of the buffer
length and the departure flow under arrival distributions Ai, while Q̃ and D̃
denote the corresponding distributions under the upper bounding arrival distrib-
utions Ãi.

If Ai ≤st Ãi, ∀i ∈ P, then

Q ≤st Q̃ and D ≤st D̃.

Proof. By fixing the arrival phase, we derive bounds on conditional distributions.
At each time k, for all arrival phases i ∈ P, we have:

[Q(k) | φ = i] ≤st [Q̃(k) | φ = i] and [D(k) | φ = i] ≤st [D̃(k) | φ = i].

As the ≤st ordering is closed under mixtures (Theorem 1 in Sect. 2), we have the
comparison of the marginal distributions at each time k:

Q(k) ≤st Q̃(k) and D(k) ≤st D̃(k).

By construction, the steady-states exist, then it follows from the convergence in
distribution:

Q ≤st Q̃ and D ≤st D̃.

4.2 Numerical Analysis

Due to the SBBP arrivals, we have a block structured Markov chain.

P =

⎛

⎜⎜⎜⎝

P11 P12 · · · P1p

P21 P22 · · · P2p

...
...

. . .
...

Pp1 Pp2 · · · Ppp

⎞

⎟⎟⎟⎠ .
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Let (xq, xq) and (yq, yp) be two states of the DTMC, and Rφ be the transition
matrix of the system when the arrivals are in phase φ. The transition matrix P
of the Markov chain (QP (k)) is

P((xq, xp), (yq, yp)) = F(xp, yp)Rxp
(xq, yq).

where F is the transition matrix of phase modulation.
Such a structured matrix is denoted as a functional Kronecker product in the

theory of Stochastic Automata Networks [6,17]. It has many important proper-
ties which can be taken into account to obtain efficient numerical techniques.

Property 2. The Markov chain (QP (k)) of the model with SBBP arrival is
lumpable according to the partition defined by the phase of the arrival process.

Let πP (resp. πF) be the steady-state distribution for matrix P (resp. F). We
know that the lumpability implies that there exists p vectors ψj of size B + 1,
denoting the conditional queue length probabilities when the arrival phase is j.
The stationary distribution πP is then computed as follows:

πP(i) =
p∑

j=1

πF(j) ψj(i), ∀ i = 0 · · · B.

To compute the steady-state solution of the model, we use the Iterative Aggrega-
tion Disaggregation (IAD) algorithm specialised for lumpable matrices published
in [6] to obtain successive values of vectors ψi which are denoted ψ

(t)
i at iteration

t. This algorithm is based on the following steps.

1. Initialise ψ
(0)
i , for all i

2. Compute πF, the steady state probability vector of F
3. Compute vectors ψ

(t+1)
i using a Block Gauss Seidel iteration for matrix P in

block form:
(a) Z

(t+1)
i = πF(i) ψ

(t)
i

||ψ(t)
i ||1

, ∀ i = 1 · · · p
(b) ψ

(t+1)
i = ψ

(t)
i Pii +

∑p
j=i+1 Z

(t+1)
j Pji +

∑i−1
j=1 ψ

(t+1)
j Pji, ∀ i = 1 · · · p

4. Normalise vectors ψ
(t+1)
i to be distributions of probability

5. If
∑

i ||ψ(t+1)
i − ψ

(t)
i ||∞ is smaller than a threshold, go to step 6. Otherwise

set t = t + 1 and go to step 3.
6. Compute πP, such that: πP(i) =

∑p
j=1 πF(j) ψ

(t)
j (i), ∀ i = 0 · · · B.

Theoretically, in the first step we can initialise vectors ψ
(0)
i with any distribu-

tion of probability. Taking into account the properties of the arrivals during the
phases as defined in the next paragraph, we have used three phases and the fol-
lowing guess: ψ

(0)
1 = δ0, ψ

(0)
3 = δB, and ψ

(0)
2 equal to the steady state probability

vector of matrix R2 (transition matrix of the system when the arrivals are in
phase 2).
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4.3 Numerical Results

In order to illustrate the results stated in this paper, we propose to compute the
performance measures of a finite single queue under real traffic trace modelled
as SBBP arrival process and constant service. We consider the MAWI trace [16]
which corresponds to a little more than 10 h of an IP traffic on transpacific line
with link capacities of 128 Kbps, carried between the 6th of march 2007 at 18 : 00
and the 7th of march 2007 at 4 : 24 : 27. For a sampling period T = 40 ms, we
obtain the trace shown in Fig. 6 with 922873 frames and 4579 different atoms.
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Fig. 6. MAWI traffic trace (more than 10 h).

We distinguish three phases, phase 1 corresponds to low traffic, phase 2 to
medium traffic, and phase 3 to heavy traffic. We assume that for each slot, the
traffic trace is characterised by its volume per sampling period. If the traffic per
sampling period is less or equal to the minimum threshold (10 Kbps), the arrival
phase is 1, and if it is greater or equal to the maximum threshold (100 Kbps),
the arrival phase is 3. When the traffic is between the thresholds, the arrival
phase is 2. In each phase, the traffic is defined by a stationary arrival process
associated to this phase. The probability transition matrix for phase modulation
is defined as follows:

F(i, j) =
number of transition between phase i and phase j

number of slots in phase i
.

The resulting transition matrix of phases F =

⎛

⎝
0.9982 0.0018 0.0000
0.5563 0.4163 0.0274
0.2706 0.2615 0.4679

⎞

⎠.

The histogram of each phase is defined respectively on 1228 atoms (phase 1),
2568 atoms (phase 2) and 783 atoms (phase 3). They are characterised by the
following statistical descriptions (Table 1):

Let us emphasise here that our goal is not to study how to obtain an accurate
SBBP model for a given trace. We just aim to construct such a model to apply our
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Table 1. Statistical descriptions of the considered MAWI traffic trace

Expected value (bits) Standard deviation (bits) Coefficient of variation

Phase 1 433.56 1.0503 × 103 5.8684

Phase 2 28953 2.13 × 104 0.5413

Phase 3 2.1515 × 105 1.2844 × 105 0.3564

bounding algorithms and explain how our approach works and can be accurate if
the input arrival is a SBBP process. The thresholds have been arbitrarily chosen.
The statistical analysis of traces to derive fitting models is out of the scope of
this paper.

We now apply our numerical bounding approach to this model to obtain two
performance measures (expected buffer length and blocking probability) versus
the buffer size (B) which varies from 100 Kb to 3 Mb. We consider a deterministic
service capacity of 35 Kbps. The bounding histograms (noted by L.b for the lower
bound and by U.b for the upper bound) are constructed on reduced state space
with 100 atoms. The exact results (without reduction) and the bounds of these
performance measures are given in Table 2. The results by assuming stationary
traffic are presented in Table 3. The computation times in seconds are given in
Table 4.

Table 2. Blocking probabilities and expected buffer lengths versus buffer size

B Blocking probabilities Expected buffer length

Exact L.b U.b Exact L.b U.b

105 0.0032218 0.0031552 0.0035345 19297.7 17628.2 19448.6

2 × 105 0.0021574 0.0020811 0.0022456 46352.2 41679.7 46696.1

5 × 105 0.0012534 0.0011796 0.0013074 154693 137686 156254

106 0.0008447 0.0007416 0.0008902 401307 351574 405695

2 × 106 0.0005545 0.0004148 0.0005890 975858 813564 985124

5 × 106 0.0003562 0.0001691 0.0003835 3046090 2205710 3077930

We observe that the computed bounds under SBBP arrivals are relevant,
especially upper bounds are quite tight for this example. Moreover the accuracy
of bounds is not degraded when the histogram sizes increase. In terms of com-
plexity, we remark that the computation times of bounds are significantly less
than the exact one (the computation time is divided approximately by three
when B = 106, by four when B = 2 × 106, and by five for B = 5 × 106).
These results show that this approach provides an interesting tradeoff between
the accuracy of results and the computational complexity to check if some QoS
requirements are satisfied or not under SBBP arrivals.
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Table 3. Performance measuresunder stationary traffic assumption (without
reduction)

B BP E[Q]

105 0.00419 21651.7

2 × 105 0.00238 51641.8

5 × 105 0.00101 147084

106 0.000295 260630

2 × 106 1.75742e−05 304474

5 × 106 1.62373e−10 306020

Table 4. Computation times in second

B SBBP input Stationary input

Exact L.b U.b Exact

105 2.58 2.41 2.29 78.6

2 × 105 5.584 4.45 3.89 554.55

5 × 105 41.94 17.37 17.70 3710.7

106 203.61 74.08 79.57 7564.05

2 × 106 1180.62 359.61 422.9 13736.2

5 × 106 14085 3325 3695 44999.4

Regarding the difference between stationary input traffic and SBBP traffic,
we note that the blocking probabilities and the expected buffer length are much
greater under SBBP traffic especially for the large buffer sizes. This phenomenon
is due to the higher variance for the SBBP arrival process.

5 Conclusion

The stochastic performance bounds of a queue under stationary histogram-based
input traffics is generalised to the Markov modulated arrivals. The traffic is
assumed to be stationary during a phase and the traffic phase transition is con-
trolled by a DTMC. We illustrate the applicability of this approach by giving
some numerical results for a system with arrivals derived from a real traffic trace.
We want to emphasise that despite the bivariate process we can use strong sto-
chastic bounds rather than weak or weak* comparisons (see [13]). The techniques
we develop here and the associated publications [1,2] lead to an algorithmic
analysis of queues based on measurements for the arrival process.
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Abstract. We consider equivalence relations for Fluid Stochastic Petri
Nets (FSPNs). Based on equivalence relations for Stochastic Petri Nets
(SPNs), which are derived from lumpability for Markov Chains, and
from lumpability for certain classes of differential equations, we define an
equivalence relation for FSPNs. Lumpability for the differential equations
is based on a finite discretization approach and permutations of the fluid
part of the FSPN.

As for other modeling formalisms, the availability of an appropriate
equivalence relation allows one to aggregate sets of equivalent states into
single states. This state space reduction can be exploited for a more
efficient analysis of FSPNs using a discretization approach. Lumpable
equivalence relations can be computed from an appropriately discretized
state space of the stochastic process or directly from the FSPN.

Keywords: Fluid Stochastic Petri Nets · Lumpability · Equivalence

1 Introduction

The idea of lumping states in a discrete system has a long history in Markov
chains [1,15] but has also been used in linear systems [6] and for differential
equations [16]. Later it has been applied to specific modeling formalisms like
stochastic process algebras [11] and even stochastic Petri nets [2]. Current devel-
opments can be found for fluid models [13,17]. The central idea of lumpability
is the definition of classes of states with an identical behavior and the substi-
tution of the state classes by single states without altering the behavior of the
system as it is observed. We present this approach for FSPNs in two versions.
First we introduce a discretized version of the system and discuss lumping on the
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discretized model. Next we discuss lumping on the original FSPN. The first app-
roach involves identical behavior on the level ODEs while the latter one presents
identical behavior on the level of PDEs.

New Contribution of the Paper: Lumpability has been applied in the above men-
tioned papers for discrete models or for specific types of continuous models as
they result from kinetic differential equations [16]. The latter approach has then
been used as a basis to define lumpability for a fluid description of stochastic
process algebra terms which result from a large number of identical and symmet-
ric components [13,17]. Our approach combines lumpability for discrete and for
continuous systems and presents, to the best of our knowledge for the first time,
an approach that can be applied to hybrid systems. Additionally, the lumping of
the continuous part goes beyond the approach presented for stochastic process
algebras because lumping does not necessarily imply symmetry in the model.

The rest of the paper is organized as follows. FSPNs and the notation are
introduced in Sect. 2. The analytical description of FSPNs by means of PDEs
and a proposed discretizations approach resulting in an ODE-based analytical
description are provided in Sect. 3. Lumpability of the discretized system is ana-
lyzed in Sect. 4, while in Sect. 5, lumpability is analyzed directly on the system
matrices without the discretization step. The paper is concluded in Sect. 6.

2 Background and Definitions

We consider a class of FSPNs, which is similar to FSPNs, presented in [10,12].
A FSPN is an 7-tuple (P, T, m̄0, A,B, F,R), where

– P is the set of places which is subdivided into the set of discrete places Pd

and the set of continuous places Pc,
– T is the set of (timed) transitions,
– m̄0 = (m0,x0) is the initial marking, where m0 ∈ IN|Pd| is a vector containing

the number of tokens on each discrete place and x0 ∈ IR|Pc| is a vector which
contains for each continuous place the level of fluid at the place. Let Md

be the set of all reachable discrete markings, Mc be the set of reachable
continuous markings and M the set of all markings,

– A is the set of arcs which is subdivided into discrete arcs Ad :
((Pd × T ) ∪ (T × Pd)) → IN (where Ad defines the multiplicity of the arc)
and continuous arcs Ac : (Pc × T ) ∪ (T × Pc) → {0, 1},

– B is the set of capacities of fluid places, i.e., B : Pc → IR>0,
– F the set of transition rates which is a function F : T × M → IR≥0,
– R the set of flow rates which is a function R : Ac × M → IR≥0.

We do not consider immediate transitions here which are commonly available
in FSPNs (e.g., [10,12]), because it is easier to define equivalence relations for
FSPNs with only timed transitions. However, it is possible to extend the app-
roach to FSPNs with immediate transitions. The marking dependent fluid rate is
a very powerful concept. It allows one to model for example inhibitor arcs or place
capacities for discrete places, both are not explicitly part of our class of nets.
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For a transition t ∈ T , we denote the input places by •t = {p ∈ Pd|Ad(p, t) >
0}, similarly the output places by t• = {p ∈ Pd|Ad(t, p) > 0}. For continuous
places the notation ◦t = {p ∈ Pc|Ac(p, t) = 1} and t◦ = {p ∈ Pc|Ac(t, p) = 1} are
applied. The input and output transitions, •p, p•, ◦p and p◦, are defined similarly.

A transition t ∈ T is enabled in marking m̄ = (m,x), if for all p ∈ •t, Ad(p, t) ≤
m(p) and F (t, m̄) > 0. Let ena(m̄) be the set of transitions enabled in marking m̄.
Enabled transitions may modify the discrete and continuous state (i.e., marking)
of the net.

We start with the discrete part of the marking. The discrete part is modified
by firing an enabled transition. Firing times are exponentially distributed with
rate F (t, m̄) for t ∈ ena(m̄). The transition that fires is selected according to
a race condition. Firing transition t in marking m̄ = (m,x) results in the new
marking m̄′ = (m′,x) with m′(p) = m(p) − Ad(p, t) + Ad(t, p) for all p ∈ Pd.
The enabling conditions of transitions assure that all components of m′ are non-
negative. We use the notation m̄

t→ m̄′ if t fires in m̄ and results in marking m̄′.
If only the discrete part is relevant we use the notation m

t→ m′. Observe that
the firing of transitions does not modify the continuous state.

The continuous marking, x, is continuously modified with a finite rate by
enabled transitions, as long as the place capacities are respected. In marking m̄,
the potential flow rate for place p ∈ Pc is given by

r̆p(m̄) =
∑

t∈ena(m̄)∩◦p

R((t, p), m̄) −
∑

t∈ena(m̄)∩p◦
R((p, t), m̄). (1)

The actual flow rate has to take care of the place capacities and is defined as

rp(m̄) =

⎧
⎪⎪⎨

⎪⎪⎩

r̆p(m̄) if 0 < xp < B(p),
r̆p(m̄) if xp = 0 ∧ r̆p(m̄) > 0,
r̆p(m̄) if xp = B(p) ∧ r̆p(m̄) < 0,
0 otherwise,

(2)

where xp is the fluid level at fluid place p. The rate describes the flow rate into
a continuous place, i.e., rp(m̄) = dxp(τ)

dτ , where τ denotes the time, and negative
flow rate represents a decaying fluid level.

The model allows one to define some nasty behaviors, which means that flows
or rates change infinitely often in a finite interval, as for example shown in [5]. We
will exclude these behaviors in the following section and assume that the majority
of the transition rate and flow rate functions are either independent or a piecewise
constant function of the continuous marking x. In principle, simulation can be
applied to analyze FSPNs. We consider here numerical analysis via discretization
where lumping helps to reduce the analysis complexity. To describe our approach
we introduce several restrictions for the allowed class of nets. Some of these
restrictions may be relaxed and still allow one to compute equivalence relations
and analyze the resulting systems numerically, others are essential in the sense
that otherwise a numerical analysis is no longer possible and an equivalence
relation to reduce the state space can no longer be computed. The approach will
be presented in the subsequent sections.
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3 Discretization and Analysis

We consider only FSPNs with a finite set Md otherwise numerical analysis can
only be applied in very specific cases. Generation of the set Md is in general
non-trivial due to the presence of marking dependent transition rates which may
become zero. However, it is easy to compute a super-set of Md by neglecting
all continuous components in the net which means that enabling conditions of
transitions that depend on the filling of fluid places are simply ignored. We
assume in the sequel that Md or an appropriate finite super-set of Md can be
generated using common algorithms for state space generation.

For x ∈ Mc, Q(x) is a |Md| × |Md| matrix including the transitions rates
if the continuous marking is x. Markings from Md are numbered consecutively
from 1 through |Md|. We use the marking mi and its number i interchangeably
and have for the elements of matrix Q(x)

qij(x) =
∑

t∈ena(mi)∧mi
t→mj

F (t, (mi,x)), for i �= j,

qii(x) = −∑
j 
=i qij(x).

(3)

Similarly, we define for each continuous place p ∈ Pc a diagonal matrix Rp(x)
of size |Md| × |Md| with rp((mi,x)) in position (i, i).

FSPNs as we defined them allow for a very complex behavior where the flow
rate and also transition rates depend on the filling of fluid places in an arbitrary
complex way. In full generality, such a behavior can hardly be analyzed. There-
fore we assume that Mc can be decomposed in finitely many disjoint subsets
M1

c , . . . ,MK
c such that for x,y ∈ Mk

c Q(x) = Q(y) and Rp(x) = Rp(y) for all
p ∈ Pc and m ∈ Md. We assume that each subset Mk

c is built from finite inter-
vals (bk−1

p , bk
p) with bk−1

p < bk
p (1 ≤ k < K), b0p = 0, bK

p = B(p) for p ∈ Pc. We
note that probability mass of various dimensions, characterized by appropriate
boundary equations, can develop at set boundaries, if some components of Rp(x)
changes sign, but their discussion we also neglect here. Thus, we assume that at
bk
p the functions in the matrices Q(x) and Rp(x) are left or right continuous or

appropriate boundary conditions can be defined.
The dynamic behavior of FSPNs with more than one continuous place speci-

fies a set of partial differential equations. The derivation for these equations will
be briefly summarized and follows [3,8–10,12]. The transient behavior starting
from m̄0 is considered. Let M(τ), X(τ) be the processes describing the evalua-
tion of the discrete and continuous marking, respectively. The following notations
are used for mi ∈ Md, x ∈ Mc and time τ ≥ 0:

– πi(τ) = Prob (M(τ) = mi) are the discrete state probabilities,
– Hi(τ,x) is the CDF of the fluid level at fluid places when the discrete state

is mi, we have

πi(τ) =
∫ B(p1)

0

. . .

∫ B(p|Pc|)

0

Hi(τ, (dx1, . . . , dx|Pc|)),

– f(τ,x) =
∑

pi∈Pd
hi(τ,x) the fluid density.
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For an x where Hi(τ,x) is continuous hi(τ,x) = ∂
∂x1

. . . ∂
∂x|Pc|

Hi(τ,x) is the
probability density of the fluid places. The densities hi(τ,x) are collected in a
vector h(τ,x) of length |Md|. The dynamic behavior of the system is described
by the following set of partial differential equation [12, Theorem 1]

∂h(τ,x)
∂τ

+
∑

p∈Pc

∂(h(τ,x)Rp(x))
∂xp

= h(τ,x)Q(x). (4)

For an x where Hi(τ,x) is not continuous probability mass develops in various
dimensions. These probability masses (e.g., when p1 ∈ Pc is at its lower bound-
ary, p2 ∈ Pc is at its upper boundary and p3 ∈ Pc is between its boundaries),
whose number is exponentially increasing with the number of fluid places, are
characterized by the boundary equations. Here we avoid the discussion of those
boundary equations by referring to [12, Theorem 1], where multi-dimensional
masses are considered at the lower boundaries of fluid places.

Results are computed in terms of discrete and continuous markings. We define
two functions gd : Md → IR≥0 and gc : Mc → IR≥0 that indicate the gain or
reward with respect to the discrete or continuous state. We assume that the
intervals Mk

c are defined such that for x,y ∈ Mk
c gc(x) = gc(y). The expectation

of the overall gain at time τ,G(τ), is then given by

E (G(τ)) =
∑

mi∈Md

(
πi(τ)gd(mi) +

∫

x1

. . .

∫

x|Pc|
gc(x)Hi(τ, (dx1, . . . , dx|Pc|))

)
.

To analyze the system numerically, a discretization approach is applied. We
introduce a simple first-order scheme following the ideas presented in [3,8,12].
Let Δp the discretization step for place p ∈ Pc. We assume that B(p) is a multiple
of Δp and np = B(p)/Δp. Let Δ =

(
Δ1, . . . ,Δ|Pc|

)
be a discretization scheme.

Discretization defines a finite state space SΔ with nΔ = |Md|
∏

p∈Pc
np states.

Each state is defined by a vector (u0, u1, . . . , u|Pc|) of length 1 + |Pc| where u0 ∈
Md and up ∈ {1, . . . , np} for p ∈ Pc. States in SΔ are ordered lexicographically
according to their vector representation. Depending on the context, we use the
vector representation for states or their number in the state space.

To compute transition rates in the discretized state space different methods
exist. We apply a finite volume method and start with the transition rates of
the discrete part, as follows

qk
ij � q

(k1,...,k|Pc|)
ij =

1∏
p∈Pc

Δp

∫ k1Δ1

(k1−1)Δ1

. . .

∫ k|Pc|Δ|Pc|

(k|Pc|−1)Δ|Pc|
qij(x)dx1, . . . dx|Pc|,

(5)
where k = (k1, . . . , k|Pc|) is ranging from (1, . . . , 1) to (n1, . . . , n|Pc|). Since the
function qij(x) is piecewise constant, the integral can be evaluated as a sum.
Matrix

Q̄ =

⎛

⎜⎝
Q̄1,1 · · · Q̄1,|Md|

...
. . .

...
Q̄|Md|,1 · · · Q̄|Md|,|Md|

⎞

⎟⎠ (6)
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is a nΔ × nΔ generator matrix of a Markov chain, where Q̄ij = diag
(
qk
ij

)
is a

diagonal matrix.
For the discretized flow rates define

rp
i,k =

1∏
p∈Pc

Δp

∫ k1Δ1

(k1−1)Δ1

. . .

∫ k|Pc|Δ|Pc|

(k|Pc|−1)Δ|Pc|
rp((mi,x))dx1, . . . dx|Pc| (7)

for mi ∈ Md as the flow rate of place p ∈ Pc when the system is in dis-
crete state (mi,k) ∈ SΔ. Again the integrals can be evaluated as finite
sums since the functions are piecewise constant. For k = (k1, . . . , k|Pc|) let
k ± 1p = (k1, . . . , kp−1, kp ±1, kp+1, . . . , k|Pc|). Observe that k+1p is not defined
if kp = B(p) and k − 1p is not defined for kp = 1. Now define the flow rates

wk,l
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rp
i.k

Δp
if l = k + 1p ∧ rp

i,k > 0,

− rp
i.k

Δp
if l = k − 1p ∧ rp

i,k < 0,

−∑
�

�= kwk,�
i if l = k,

0 otherwise,

(8)

and the matrix

W i =

⎛

⎜⎜⎝

w
(1,...,1),(1,...,1)
i · · · w

(1,...,1),(B(1),...,B(|Pc|))
i

...
. . .

...
w

(B(1),...,B(|Pc|)),(1,...,1)
i · · · w

(B(1),...,P (|Pc|)),(B(1),...,B(|Pc|))
i

⎞

⎟⎟⎠ . (9)

Then

Q̂ = Q + W where W =

⎛

⎜⎝
W 1

. . .
W |Md|

⎞

⎟⎠ (10)

is the infinitesimal generator matrix of the discretized process such that

du(τ)
dτ

= u(τ)Q̂ (11)

is the system of ordinary differential equations describing the evolution of the
discretized process. Let u(τ) be the solution of (11) at time τ starting from u(0),
which is the discretized version of m̄0.

To approximate E(G(τ)), we first define the discretized gain vector for con-
tinuous places.

gk
c =

∫ k1Δ1

(k1−1)Δ1

. . .

∫ k|Pc|Δ|Pc|

(k|Pc|−1)Δ|Pc|
gc(x)dx1, . . . dx|Pc|. (12)

Then
E(G(τ)) ≈

∑

mi∈Md

∑

k

u(i,k)(τ)
(
gd(mi) + gk

c

)
, (13)
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where ≈ indicates the inaccuracy by discretization. For later use we define col-
umn vectors gc, gd of length nΔ such that E(G(τ)) ≈ Ĝ(τ) � u(τ) (gc + gd).

We denote a discretization Δ as consistent for p ∈ Pc, if (bk
p − bk−1

p )/Δp ∈ IN
for all intervals. In this case the integrals in (5), (7), (12) can be substituted
by sums. A discretization Δ is consistent if it is consistent for all p ∈ Pc.
A refinement of a discretization for place p ∈ Pc means to substitute Δp by
Δp/i for i ∈ IN. The number of intervals is increased by a factor i. Δ/2 means
that every Δp is substituted by Δp/2. The number of states is of the discrete
process is in this case increased by factor 2|Pc|. If Δ is consistent, then every
refinement is also consistent.

4 Lumping of the Discrete Process

In this section we consider the lumpability of the discretized system developed
above. Let ∼ be an equivalence relation on SΔ, S̃Δ the set of equivalence classes
and [m,k] the equivalence class to which (m,k) ∈ S̃Δ belongs. ∼ is lumpable
relation, iff ∀s̃, s̃′ ∈ S̃Δ,∀(mi,k), (mj , l) ∈ [s̃]:

gk
c = gl

c, gd(mi) = gd(mj),∑
(mz,y)∈[s̃′]

Q̂((mi,k), (mz,y)) =
∑

(mz,y)∈[s̃′]
Q̂((mj , l), (mz,y)) (14)

The union of lumpable relations is again a lumpable relation. The lumpable
relation with the least number of equivalence classes exists and can be defined
as the transitive closure of the union of lumpable partitions. In the sequel we
denote this relation by ∼. It can be computed using partition refinement. Effi-
cient algorithms have been proposed in the past [7,18] and can also be used in
our setting.

Let nΔ be the number of states and ñΔ the number of equivalence classes
of ∼. The equivalence relation can be represented by a so-called collector matrix
[1] which is a nΔ × ñΔ matrix V with V (j, i) = 1 if j ∈ [i] and 0 if j /∈ [i].
Matrix V contains one element equal to 1 in each row and at least one element
equal to 1 in each column. A distributor matrix is defined as an ñΔ ×nΔ matrix
W = (V )T where the overline means that the rows of the transposed matrix V

are normalized to 1. Then Q̃ = WQ̂V is the ñΔ × ñΔ matrix of the lumped
system. It is easy to show [1,15] that the relation Q̂V = V Q̃ holds in this
case. Furthermore, define g̃T

c = gT
c V and g̃T

d = gT
d V which implies, due to the

lumpability conditions, gc = V g̃c and gd = V g̃d. Then

∂ũ(τ)
∂τ

= ũ(τ)Q̃ (15)

are the ordinary differential equations for the lumped system. The initial con-
dition is ũ(0) = u(0)V . E(G(τ)) ≈ G̃(τ) = ũ(τ) (g̃c + g̃d) is the result of the
lumped system.
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Theorem 1. If the lumped system has been generated according to some
lumpable equivalence relation ∼, then G̃(τ) = Ĝ(τ).

Proof. We show here that the forward Euler method with time step δ applied
to (11) and (15) yields the same results. Since the Euler method converges for
δ → 0 towards the exact solution, both sets of ordinary differential equations
converge towards the same solution. Let uk = u(k · δ) and ũk = ũ(k · δ), then
ũ0 = u0V . We show by induction that the relation holds for all k = 0, 1, . . ..

Assume that ũk = ukV , then the (k+1)th vector is computed by the forward
Euler scheme as

ũk+1 = ũk + δũkQ̃ = ukV + δukV Q̃ =
(
uk + δukQ̂

)
V = uk+1V

and

G̃(k · δ) = ũk (g̃c + g̃d) = ukV (g̃c + g̃d) = uk (gc + gd) = Ĝ(k · δ),

which completes the proof. �
We now consider refinements of consistent partitions. Let Δ be a partition

which is consistent for p ∈ Pc and let Δ′ be a partition that results from Δ by
substituting Δp by Δp/2, then each state (m,k) ∈ SΔ is represented by two
states (m,k−), (m,k+) ∈ SΔ′ where k− = (k1, . . . , kp−1, 2kp−1, kp+1. . . . , k|Pc|)
and k+ = (k1, . . . , kp−1, 2kp, kp+1. . . . , k|Pc|). The non-diagonal elements of
matrix Q̂Δ′ can be derived from the elements of Q̂Δ as follows:

̂QΔ′((m,k+), (m′,k+)) = ̂QΔ′((m,k−), (m′,k−)) = ̂QΔ((m,k), (m′,k))
̂QΔ′((m,k+), (m, l+)) = ̂QΔ′((m,k−), (m, l−)) = ̂QΔ((m,k), (m, l))

̂QΔ′((m,k+), (m,k−)) = −min(r
p
m.k

,0)

2Δp

̂QΔ′((m,k−), (m,k+)) =
max(r

p
m.k

,0)

2Δp

̂QΔ′((m,k+), (m, (k+ + 1p)) =
max(r

p
m.k

,0)

2Δp

̂QΔ′((m,k−), (m, (k− − 1p)) = −min(r
p
m.k

,0)

2Δp

(16)
for m �= m′ and l �= k and l �= k±1P . All remaining non-diagonal matrix entries
are 0. The diagonal elements Q̂Δ′((m,k+), (m,k+)), Q̂Δ′((m,k−), (m,k−))
are chosen to yield row sum 0 in each row. For the lumped system let [m, l] be
the equivalence class to which state (m, l) belongs. Each equivalence class [m,k]
is split into two classes [m,k−], [m,k+]. Matrix Q̃Δ′ is defined by (16) where
Q̂Δ′((m,k), (m′,k′) is substituted by Q̃Δ′((m,k), (m′,k′)).

Theorem 2. Let Δ′ be a refinement of Δ. If Q̃Δ results from Q̂Δ by a
lumpable equivalence relation ∼, then Q̃Δ′ results from Q̂Δ′ by a lumpable
equivalence relation ∼′ where (m,k) ∼ (m′, l) ⇒ ((m,k−) ∼′ (m′, l−)) ∧
((m,k+) ∼′ (m′, l+)).
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Proof. Consider a pair of states (m,k+) ∼′ (m′, l+). Then it holds that
(m,k) ∼ (m′, l). We have to show that the sum of rates into the state from
each equivalence class [m′′,y±] is identical for both states. All rates out of
(m,k+) ((m′, l+), resp.) that do not result from a flow into or out of place p are
identical to the corresponding rates out of state (m,k) ((m′, l), resp.). Thus,
the rates in the first two cases of (16) are identical, which means that we only
have to consider the remaining cases.

Since the discretization is consistent, rp
m,k = rp

m′,l has to hold which implies

that
rp
m,k

2Δ′ =
rp

m′,l
2Δ′ and lumpability is transferred from ∼ to ∼′.

The proof for the other case, (m,k−) ∼′ (m′, l−) uses similar arguments.
�

If rp
m,k = 0 for all p ∈ Pc, then ∼′ can be extended by joining the equivalence

classes [m,k−] and [m′,k+]. This can be seen by noticing that the flow between
(m,k+) and (m,k−) is 0 in this case.

The results presented in this section suggest the following lumping approach:

1. Find the coarsest consistent discretization Δ.
2. Build matrix Q̂Δ.
3. Compute the largest lumpable equivalence relation using partition refinement.
4. Refine the discretization and generate the lumped matrices using (16) such

that the discretization error remains small enough. The discretization error
for the finite volume method, that is applied, can be estimated using standard
methods for the numerical solution of partial differential equations [14].

5. Compute the results by solving the set of ordinary differential equations (11)
resulting from the lumped system.

The refinement described here refines Δp for all fluid places in the same way.
It is, of course, possible to restrict the refinement to some fluid places only.

The whole approach works well, if the transition and flow rates are defined in
such a way that a coarse consistent discretization exists. Otherwise the lumpable
partition has to be computed for the fine discretization that is used for analysis.
Such an approach is only useful for large time horizons τ , for which the solution
should be computed.

Example 1. We consider the simple net shown in Fig. 1(a). It describes a source
and a sink which have Nd operational modes. In mode i ∈ {0, . . . , Nd}, indicated
by i tokens on place p2 or p3, fluid is produced respectively consumed. Production
of fluid is described by the transitions t2, t3, consumption by the transitions
t4, t5. In mode 0 the consumer or producer are switched off, which means that
the transitions are not enabled. The net contains two fluid buffers modeled by
the fluid places p5 and p6. Both buffers have the same capacity B but buffer p6 is
always filled and emptied first. This implies that the behavior is non-symmetric,
the fluid densities differ for both fluid places.

The system becomes lumpable if the input transition t2 and t3 as well as
the output transitions t3 and t4 of the buffers have identical parameters which
depend only on the sum of fluid in fluid places and not on the individual fluid
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Fig. 1. Example FSPNs.

levels x5 and x6. For the firing rates this means that t2 is enabled if m2 > 0,
x5 < B and x6 = B. The firing rate is then given by F (t2, (m, x5, x6)) =
λ(m, x5 + x6). Transition t3 is enabled if m2 > 0 and x6 < B. The firing rate
equals F (t3, (m, x5, x6)) = λ(m, x5+x6). Similarly, t4 is enabled with firing rate
F (t4, (m, x5, x6)) = μ(m, x5+x6) if m3 > 0, x5 > 0 and x6 = 0 and t5 is enabled
with rate F (t5, (m, x5 + x6)) = μ(m, x5 + x6) if m3 > 0 and x6 > 0. λ(.) and
μ(.) are positive functions. The flow rates underlie similar restrictions. We have
R((t2, p5), (m, x5, x6)) = ν(m, x5 +x6), R((t3, p6), (m, x5, x6)) = ν(m, x5 +x6),
R((t4, p5), (m, x5, x6)) = ξ(m, x5 + x6) and R((t5, p6), (m, x5, x6)) = ξ(m, x5 +
x6). ν(.) and ξ(.) are in our setting piecewise constant positive functions. Lump-
ing additionally requires that all results are only based on the discrete marking
and the sum of the content of the fluid places, x5 + x6.

If the system is lumpable, in some situations only the sum of fluid of the
fluid places and not the individual fluid levels have to be considered in the state
space. This results in a significant state space reduction. Table 1 shows some
state space sizes for the detailed and lumped system of equations. Parameter
Nd describes the number of tokens in the places p1 and p4 in the initial marking
and Nc is the number of discretization intervals for the fluid places.

Table 1. State space sizes for the first example net.

Nd Nc Original Lumped Nd Nc Original Lumped

1 6 140 40 2 6 318 93

1 11 480 80 2 11 1083 183

1 21 1760 160 2 21 3963 363

1 51 10400 400 2 51 23403 903

1 101 40800 800 2 101 91803 1803
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5 Lumping of the FSPN Matrices

Lumping, as presented in the previous section, is done at the state space of
the discrete process. Alternatively several approaches have been proposed to
perform lumping compositionally [2,11] or based on symmetries at the net level
[4]. In principle similar approaches can be developed for FSPNs after defining
compositional or colored nets. However, here we consider an intermediate step by
defining and computing lumpable partitions at the levels of the matrices Q(x)
and Rp(x) (p ∈ Pc), defined at the beginning of Sect. 3.

In Theorem 3, we define an equivalence relation ∼ that relates states m̄ =
(m,x) and m̄′ = (m′,x′). We can restrict the equivalence relation to the discrete
and continuous parts of the state description. Thus, if (m,x) ∼ (m′,x′), then
m ∼d m′ and x ∼c x′. However, in general, the discrete and continuous parts of
the relation are not independent. I.e., (m,x) ∼ (m′,x′) ⇒ m ∼d m′ ∧ x ∼c x′

but the other direction ⇐ usually will not hold. We furthermore assume that
∼c defines equivalence classes on the set of continuous places. This is a restric-
tion because we consider only continuous states as equivalent which are identical
up to the ordering of components in the state vector. Therefore we define per-
mutations perm that permute the indices of continuous places. With a slight
misuse of notation we may use perm on the state vector of the continuous part,
e.g. perm(x) describes the renumbering of the positions in the vector according
to perm. If x ∼c x′, then there exists some permutation perm of continuous
places, such that x′ = perm(x). Thus, ∼c induces an equivalence relation on
Pc and x ∼c x′ implies that x′ results from x by reordering equivalent places.
We denote by Pc the set of permutations that permute equivalent continuous
places. Since ∼p is an equivalence relation if perm ∈ Pc, then perm−1 ∈ Pc

and if perm, perm′ ∈ Pc, then perm ◦ perm′ ∈ Pc where perm ◦ perm′ is the
concatenation of permutations perm and perm′.

Theorem 3. An equivalence relation ∼ defines a lumpable partition on the
state space of a FSPN, if for all equivalence classes [m,x], [m′,x′] and for all
(mi,xi), (mj ,xj) ∈ [m,x] the following relations hold:

∃ a set of permutations Pc on Pc such that xi = perm(xj) for some perm ∈ Pc,
∑

(mk,xi)∈[m′,x′]
qik(xi) =

∑

(mk,xj)∈[m′,x′]
qjk(xj), gd(mi) = gd(mj), gc(xi) = gc(xj),

∀p ∈ Pc : rp(mi,xi) = rperm(p)(mj ,xj), B(p) = B(perm(p)) for xj = perm(xi).

(17)

Proof. We have to prove that (14) holds for arbitrary discretizations Δ where
Δp = Δp′ if p = perm(p′) for some perm ∈ P∼.

Now let Δ be some discretization of the above form and Q̂ the corresponding
rate matrix. ∼ induces an equivalence relation ∼̇ on the discrete state space such
that (m,k)∼̇(m,k′) iff m ∼ m′ and k = perm(k′) for some perm ∈ P∼.

We first consider equivalence of the rewards. For the continuous and discrete
reward we have by definition of ∼ that gd(mi) = gd(mj) and gc(xi) = gc(xj)
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holds for mi ∼ mj and xi ∼ xj . For continuous places this implies that also the
integrals in (12) are identical for k and k′ which implies gk

c = gk′
c .

Now consider the lumpability condition on the sums of rates, namely
∑

(n′,l′)∈[(n,l)] Q̂((m,k), (n′, l′)) =
∑

(n′,l′)∈[(n,l)] Q̂((m′,k′), (n′, l′))

for some equivalence class [(n, l)] of ∼ and (m,k) ∼ (m′,k′). The rates can
result from a change of the discrete marking by firing a transition (collected in
Q) or from the discretized continuous flow (collected in W ). In the former case
the rate for (m,k) /∈ [n, l] is given by

∑
(n′,l′)∈[(n,k)] Q̂((m,k), (n′, l′)) =

∑
(n′,l′)∈[(n,l)]

∫ k1Δ1

(k1−1)Δ1
. . .

∫ k|Pc|Δ|Pc|
(k|Pc|−1)Δ|Pc|

qm,n′(x)dx1, . . . dx|Pc| =
∫ k1Δ1

(k1−1)Δ1
. . .

∫ k|Pc|Δ|Pc|
(k|Pc|−1)Δ|Pc|

∑
(n′,l′)∈[(n,l)] qm,n′(x)dx1, . . . dx|Pc| =

∑
(n′,l′)∈[(n,l)]

∫ k1Δ1

(k1−1)Δ1
. . .

∫ k|Pc|Δ|Pc|
(k|Pc|−1)Δ|Pc|

qm′,n′(perm(x))dx1, . . . dx|Pc| =
∑

(n′,l′)∈[(n,l)] Q̂((m′,k′), (n′, l′))

Observe that the continuous part is not modified by firing the discrete transition
but discretized vectors may differ due to a permutation of equivalent continuous
places. Sum and integrals can be interchanged due to Fubini’s theorem. If the
identity holds for all equivalence classes [n, l] �= [m,k] then it also holds for
[m,k] because Q has zero row sums.

If the state changes due to the discretized continuous flow, the discrete
remains and we have for the flow according to place p ∈ Pc.

∑

(n′,k)∈[(n,k)]

̂Q((m,k), (n′,k ± 1p)) =

∣

∣

∣

∣

∣

1
Δp
∏

p′∈Pc
Δp′

∑

(n′,l′)∈[(n,k±1p)]

k1Δ1
∫

(k1−1)Δ1

. . .
k|Pc|Δ|Pc|
∫

(k|Pc|−1)Δ|Pc|
rp((m,x))dx1, . . . dx|Pc|

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
Δp
∏

p′∈Pc
Δp′

k1Δ1
∫

(k1−1)Δ1

. . .
k|Pc|Δ|Pc|
∫

(k|Pc|−1)Δ|Pc|

∑

(n′,l′)∈[(n,k±1p)]

rp((m,x))dx1, . . . dx|Pc|

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
Δp
∏

p′∈Pc
Δp′

∑

(n′,l′)∈[(n,k±1p)]

k1Δ1
∫

(k1−1)Δ1

. . .
k|Pc|Δ|Pc|
∫

(k|Pc|−1)Δ|Pc|
rperm(p)((m

′, perm(x)))dx1, . . . dx|Pc|

∣

∣

∣

∣

∣

=

∑

(n′,k)∈[(n,k)]

̂Q((m′,k′), (n′,k′ ± 1perm(p)))

± equals + if the resulting value is positive, otherwise it equals −.
Thus, the lumpability conditions hold for any discretization Δ which com-

pletes the proof. �
Partition ∼ can be computed by partition refinement. The corresponding algo-
rithm will be briefly outlined in the following steps.
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1. Generate the discrete state space Md (by assumption this can be done by
neglecting continuous places) and set k = 0.

2. Define an initial equivalence relation ∼0
d on Md by m ∼0

d m′ for m,m′ ∈
Md, iff gd(m) = gd(m′).

3. Define an initial equivalence relation ∼0
c by p ∼0

c p′ for p, p′ ∈ Pc and for
all x ∈ Mc, iff B(p) = B(p′) and gc(x) = gc(xp↔p′) where xp↔p′ results
from x by exchanging the positions for p and p′. Let Perm0 be the set of all
permutations that permute the indices of equivalent places from Pc.

4. Partition refinement of ∼k
d: for all equivalence classes [m] split [m] into

new equivalence classes [m1], . . . , [mL] until
∑

mk∈[m′]
qi,k(x) =

∑
mk∈[m′]

qj,k

(perm(x)) holds for all mi,mj ∈ [ml] (l = 1, . . . , L), for all [m′] ∈∼k
d, for all

x ∈ Mc and some perm ∈ Permk, add equivalence classes [m1], . . . , [mL] to
∼k+1

d .
5. Partition refinement of ∼k

c : for all equivalence classes [q] of ∼k
c split [q] into

equivalence classes [q1], . . . , [qK ] until for all p, p′ ∈ [qk] (k = 1, . . . , K),
all equivalence classes [m] of ∼k+1

d , exist mi,mj ∈ [m] rp(mi,x) =
rp′(mj , perm(x)) for all x where perm is the permutation that assures in
step 4 that mi and mj are equivalent add equivalence classes [q1], . . . , [qK ]
to ∼k+1

c .
6. If ∼k

d≡∼k−1
d and ∼k

c≡∼k−1
c , then stop (a lumpable partition has been found),

else set k = k + 1 and continue with step 4.

Some remarks should be given for the outlined algorithm. The algorithm
eventually terminates because in each iteration at least one new equivalence class
is generated for the states in Md or the places in Pc and the finest equivalence
relation is the identity relation where each equivalence class contains a single
discrete state or continuous place, respectively. Since the number of places and
the number of discrete markings are finite by assumption, the algorithm will
stop. Knowledge of ∼d and ∼c is not sufficient to define the lumpable relation,
additionally we need the relation between equivalent discrete states and the
corresponding permutation of equivalent continuous places (see step 4 of the
algorithm). The partition refinement in step 4 requires that the rates are identical
for all x = (x1, . . . , x|Pc|) where xp ∈ [0, B(p)]. To check this algorithmically an
appropriate specification of the rates qik(x) is necessary which is also required
for the specification of rates depending on the filling of fluid places.

It should be noted that the lumpability conditions for the discrete and con-
tinuous part are not symmetric. For the discrete part we define lumping at the
state level of the stochastic process, whereas for the continuous part lumping is
defined for symmetric places which is more restrictive. Consequently, a coarser
lumpable partition may exist which cannot be found by the outlined algorithm
above but can be computed by partition refinement of an adequately discretized
process (see e.g. Example 1).

Example 2. The second example is a symmetric FSPN which is shown in
Fig. 1(b) in a version with two components. Places with names pki belong to
component k. Each component models a switched source that produces fluid for
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a continuous place pk3. A single consumer exists which is idle if a token resides
on place p0. If transition tk4 fires, the consumer changes its state to a state
where fluid from place pk3 is consumed. If transition tk3 fires, the consumer
goes back to the idle state. The model can be defined for >2 components in
exactly the same way.

To allow state space reduction by lumpability, the components and the con-
sumer have to show a symmetric behavior. We define the corresponding condi-
tions for the case of K components. Let PK be the set of all permutations of
the numbers 1 through K. We use the notation perm(m) and perm(x) to indi-
cate the application of permutation perm on the vector which means that the
vector components belonging to the corresponding places are exchanged. I.e., if
perm(k) = l, then pki becomes pli and tki becomes tli. Observe that discrete
places are mapped on discrete places and continuous places on continuous places.
The following equalities have to hold for all k, l ∈ {1, . . . , K}, all perm ∈ PK

where perm(k) = l, all transitions tki and all places pki to assure lumpability.

F (tki, (m,x)) = F (tli, (perm(m,x)), rpki(m,x) = rpli(perm(m,x)),
gx

c = g
perm(x)
c and gd(m) = gd(perm(m)).

Additionally, the bounds for the continuous places have to be identical and the
same discretization has to be applied for all continuous places. Observe that due
to an appropriate definition of marking dependent transition rates, the firing of
transitions may depend on the filling of continuous places. For example tk4 may
only have a non-zero rate if pk3 includes enough fluid and the rate of tk3 may
grow if pk3 becomes empty. Let nc be the number of discrete intervals resulting
from the discretization of the continuous state of each continuous place. Then
SΔ contains (2K + 1)(2nc)K states.

A lumpable equivalence relation ∼ can be generated by defining two states as
equivalent if one can be transformed into the other by a permutation perm ∈ PK .
Thus, (m,x) ∼ (m′,x′) if perm(m,x) = (m′,x′) for some perm ∈ PK . For the
reduced state space, we do not have to distinguish the identity of a component,
we only have to consider the number of equivalent components which are in a
specific state. This is well known from symmetry exploitation in SPNs [4]. For
our example this means that if a token resides at place p0, then all components
are identical and the number of states is reduced from (2nc)K to

(
2nc+K−1

K

)
. If

a token resides at some place pk4, then the identity of the place is not relevant
and the remaining components are identical such that the number of states is
reduced from K(2nc)K to 2nc ∗ (

2nc+K−2
K−1

)
. Overall the lumped state space S̃Δ

includes
(
2nc+K−1

K

)
+2nc∗(

2nc+K−2
K−1

)
states. For larger values of K the reduction

becomes significant but the state space still remains large if nc is large.

6 Conclusions

Lumping proved to be an efficient tool in the analysis of discrete state systems
such as CTMCs and SPNs. In this work we extended the concept of lumping
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to FSPNs which are hybrid (discrete and continuous state) systems. The funda-
mental approach behind this extension is to map the hybrid system to a discrete
state one and apply the available lumping relations for the discrete system.

To pursue this approach we presented a discretization of FSPNs and elab-
orated on the refinement of the discretization step. We showed that the refine-
ment maintains the lumping relation, which is important for utilizing the fact
that asymptotic behavior of the discrete system tends to the hybrid one as the
discretization step tends to zero. Additionally we presented an approach where
the lumping of the continuous part is based on the symmetry among continuous
places which is less general but may be proved by generating only the discrete
state space without building the discretized continuous part.
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Abstract. To analyze discrete stochastic models, Virtual Stochastic
Sensors were developed at the Otto-von-Guericke-University Magdeburg.
This procedure makes it possible to reconstruct the behavior of a broader
class of hidden models, like Conversive Hidden non-Markovian Models,
in a very efficient way. One assumption of this approach is that the dis-
tribution functions, which describe the state changes of the system, are
time-homogeneous. However, this assumption is not always true when it
comes to real world problems.

To overcome this limitation, the paper presents an algorithm where
the concept of Virtual Stochastic Sensors was extended with statistical
tests to continuously evaluate the parameters of a Conversive Hidden
non-Markovian Model and the current results. If needed, the tests stop
the execution of the behavior reconstruction and reevaluate the model
based on the current knowledge about the system.

The project showed that detecting the change and adjusting the model
is possible during the behavior reconstruction, improving reconstruction
accuracy. The method was tested using four types of distribution func-
tions, three of which showed very good results. By using this new algo-
rithm, one is able to construct adaptive models for behavior reconstruc-
tion without additional conceptual effort. In this way, loss of modeling
accuracy due to abstractions in the modeling process can be balanced.
Another possible application appears in the case of long time investiga-
tions. The change detection method can be invoked after a given period
to reevaluate the system model and make the relevant adjustments if
needed.

Keywords: Virtual Stochastic Sensor · Conversive Hidden non-
Markovian Model · Drift · Change detection

1 Introduction

Virtual Stochastic Sensor (VSSs) were introduced in [4] and are able to recon-
struct the behavior of partially observable processes in discrete stochastic sys-
tems. In previous research involving VSSs, the model was always based on previ-
ous knowledge about the system, which was considered to be relatively accurate.
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 32–46, 2017.
DOI: 10.1007/978-3-319-61428-1 3
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However, in the case of real world applications or long time analysis of bigger
systems, not all details can be taken into account. Another source of error is,
that processes which require human interaction or intervention cannot be con-
sidered to be time-homogeneous. This can lead to serious inaccuracy over time,
especially in large systems.

To overcome this limitation, the proxel-based solution algorithm of the Con-
versive Hidden non-Markovian Models (CHnMMs) was combined with two sto-
chastic tests, the Kolmogorov-Smirnov test (KS test) [6] and the Wald-Wolfowitz
runs test [12]. These tests are used to monitor the current state of the recon-
structed behavior and evaluate the results. The goal is to detect changes in the
system configuration compared to the model, as well as deviations during the
execution of the reconstruction. The changes which we will try to detect in this
research are parameter shifts in the distribution functions in the hidden part
of the system. The type of the distributions is considered to be not changeable.
Neither is the actual system state space. This paper is a feasibility analysis based
on the master’s thesis [2] of one of the authors. The goal of the analysis is to find
out whether indication and elimination of such non-obvious changes during the
behavior reconstruction are possible or not. It is expected that by using such an
algorithm one is able to construct adaptive models. With this, a more realistic
connection between the model and the real world can be created and maintained
over the lifetime of the model, even with evolving system conditions, without
requiring additional effort during the model parametrization.

2 Related and Previous Work

As we live in the world of the Internet of Things (IoT), there is an increasing
demand for data to be acquired by sensors. However, there are situations when
the required information cannot be measured directly. In these cases, virtual
sensors [13] and sensor fusion are used to try to get accurate data on the given
system. These sensors use mathematical rules to construct their output. A vir-
tual sensor combined with stochastic models results in a VSS [4] which utilizes
stochastic knowledge about a given system. One mathematical model that can
be used to model the stochastic relationship between the input data and the
results of the VSS is a CHnMM. The proxel-based analysis method can then be
used to conduct behavior reconstruction for the VSS in order to acquire infor-
mation in the form of a statistically relevant estimate of non-measurable system
parameters.

In this section, a brief overview will be given of the previous work on VSSs
and the needed statistical tests.

2.1 Proxels-Based Analysis

The proxel method [10] was introduced in [7] and is able to construct and analyze
the state space of discrete stochastic models represented by Stochastic Petri Net
(SPNs) in an efficient and controlled way. A proxel (probability element) is the
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smallest addressable unit of the reachable state space of the stochastic system
at a given moment in time. A proxel is a container which contains all relevant
information about a possible state:

Px = (m, τ , p, t) (1)

The stored information are the marking of the current discrete system state
(m), the transition age variables (τ ), the probability of this discrete state and
age combination (p), the current time of the analysis (t) and any additional
information which might be relevant for the application like the generating path,
utilization of a defined state, etc.

As the analysis runs, the proxel algorithm tracks the possible states and
the necessary information from one time step to another. The computation is
done in discrete time steps. This means that the time of analysis is discretized
with a given granularity and the system is considered to be time homogenous
between two time steps. The probability of a possible state change is defined by
the Hazard Rate Function (HRF) in Eq. (2), where τ is the age of the current
state change. The HRF can be understood as the current rate of the given state
change if it did not happen yet.

HRF(τ) =
PDF(τ)

1 − CDF(τ)
(2)

During the behavior reconstruction, a proxel holds a possible actual system
state with a possible history in the given time step. In the next time step, the
possible states are computed from the current state by computing the HRF
of the active transitions. Impossible or very unlikely states are pruned away
from the proxel tree to dampen state space explosion and maintain acceptable
computation time. Using this iterative method, the reachable state space of an
SPN is generated in discrete time steps, which can then be analyzed to obtain
information such as system performance parameters.

2.2 Conversive Hidden non-Markovian Model

The Hidden Markov Models (HMMs) are well-known statistical models, which
assume independent state changes and can be observed through symbol emis-
sions which occur with a given probability. Krull [8] created the so-called Hidden
non-Markovian Models (HnMMs), where one can use arbitrary continuous distri-
bution functions and concurrent activities to define connection and dependence
between events.

The concept of HnMM in combination with the proxel method can be used
for solving the evaluation and decoding tasks for more general models than
HMMs. In the case of evaluation one tries to compute the probability that a given
observation sequence (trace) was generated by the model. While in the case of
decoding one tries to find the most likely state sequence (path) which generated a
given observation sequence (trace). The proxel algorithm needs to be modified to
not just generate the reachable model state space, but to compare this state space
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to the observed trace. Only the proxels, which could have produced the trace are
retained and analyzed further. The thus modified proxel algorithm results in all
possible system paths, in discrete steps, which could have generated the observed
trace. Therefore, HnMM combined with a proxel-based solution algorithm can
be used for behavior reconstruction of partially observable discrete stochastic
systems [8]. This can be used for example for gesture recognition [5].

To increase the efficiency of VSSs, the concept of CHnMMs was introduced
and analyzed by Buchholz in [3]. The CHnMM is a subclass of the HnMM,
where every state change of the hidden part of the system results in a symbol
emission, making state changes easier to track. By using this subclass of the
HnMMs, one is able to save a lot of computation time and perform more accu-
rate behavior reconstructions by utilizing a continuous time proxel-based solver
algorithm instead of a discrete one. During the feasibility analysis, the project
was restricted to CHnMMs to be able to easily analyze and compare the results.

2.3 Statistical Hypothesis Testing

Statistical hypothesis testing [1,6,12] is a group of mathematical methods to
observe the significance of a statistically relevant statement, commonly referred
as the null hypothesis, by using sample sets and assuming a given certainty that
the result of the test is right. As it is a well-known and commonly used tool it
will not be discussed in details in this paper. The following two statistical tests
were used in the current research.

Kolmogorov-Smirnov Test. The KS test [6] is a well-known non-parametric
test, which is used for comparing probability distributions. In our case, the test
computes the maximal deviation between an Empirical Distribution Function
(EDF) and a theoretical Cumulative Distribution Function(CDF) on a regular
grid. If this maximal deviation between them exceeds a given threshold, then
the test fails and one is able to say that the given sample was not drawn from
the given theoretical distribution function. This test works more accurately if
there is a difference [11] in the mean between the given distribution functions.
However, in the case of deviation in the variance the test can commit a type II
error in rare cases.

Wald-Wolfowitz Runs Test. The Wald-Wolfowitz runs test [12] is another
well-known non-parametric test which can be used for validating the random-
ness of a binary sequence. As it is defined in [12] one can convert a continuous
random sequence into a binary sequence by using the median value of the con-
tinuous variable and defining the values above and below the median as the same
state. In this test, one counts the so-called runs in the binary sequence, which
is the number of subsequences where the system stays in the same state. If the
number of runs differs significantly from the expected number, then the test
fails, indicating that the sequence is not random. This can be used for indicating
changes in the variance of the dataset effectively [11].
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3 Implementation

In a HnMM the states are connected through transitions, which describe the pos-
sible state changes in the system. The firing times of these transitions are char-
acterized with given distribution functions. As already mentioned, the change
detection algorithm focuses on the parameters of these distribution functions
during the behavior reconstruction.

The basic idea behind the change detection algorithm is a sliding window
approach where the already described statistical tests evaluate a given amount
of last firing times for every single transition in the model. If a change is detected
on a transition, then the execution of the behavior reconstruction is stopped and
the new parameters are estimated. After the estimation, the algorithm resets the
time to the last valid state of the results and continues the computation.

3.1 Restrictions to the Transitions Behavior

Before diving into the details of the different experiments and the results, the
limitations of the project need to be discussed. As already mentioned, the project
was limited to the investigation of CHnMMs because of the clearer and easier
analysis. The reason is that CHnMMs produce a symbol emission with every
state change.

The drift recognition was limited to a change in the parameters of the dis-
tribution function because specific machines, processes, and occurrences tend to
have a very specific type of distribution. In this way, the assumption was intro-
duced that the expert, constructing the model, is able to guess the type of the
distribution accurately. However, during the model construction, one tends to
have only a limited amount of information on the system. This knowledge also
tends to be stationary, not taking any kind of change into account. Let us assume
that one gets information about a production line where extreme precision and
high qualification is needed. During the model construction time, a qualified key
worker gets sick and is temporarily replaced by a less qualified one. In many
cases, the data analyst would not notice this change, but the constructed model
and thus the behavior reconstruction might already get inaccurate. Considering
this, the drift correction was limited to small, non-obvious changes in the sys-
tem. Dramatic changes should be easily noticed in most cases during runtime,
such as a machine in the production line stopping for a longer period of time.

The goal of the project is therefore to fine tune the system during execution
time and prevent a constant need of manual adjustment of the system distribu-
tion parameters.

3.2 Change Detection Algorithm

For easier understanding, the change detection algorithm was visualized on the
flowchart shown in the Fig. 1.

To be able to use statistical tests for the validation of the model, firstly,
one should acquire some data about the system. To do this, a sliding window
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Fig. 1. Flowchart of the change detection algorithm

approach is used. An independent window is defined for all system transitions
(state changes) in the model. In these windows, the last n firing times are stored.
When one of the windows is filled, the change detection algorithm is activated for
the given transition, and the statistical tests determine for the given transition
whether a change was detected or not.

The size of this sliding window has a huge impact on the algorithm. If the
size is too small, then there might not be enough information present for the
statistical tests to perform efficiently. While if the size is too large, then one
might get problems with the required memory. Another problem might occur
in the case of larger window sizes because the algorithm does not start as long
as the sliding window is not filled. This can cause more computations to be
performed with the wrong parameters until the algorithm finds the next change.

After the statistical tests are activated, for all active transitions and for
every single proxel, the statistical tests are computed. If one of them fails, then
a change is indicated for the given transition on the proxel in that timestep.
Of course, if every change detected on a single proxel would result in a new
estimation of the model, then the computation would never end. That is why a
threshold is introduced, which can be seen in the Eq. (3). In the equation, nc,k

is the number of proxels where a change was detected in the timestep and nk is
the number of proxels in the timestep. This threshold determines that a change
is only recognized as change if the sum of the probabilities of all proxels where a
change is detected (

∑
pc,i) exceeds half of the probabilities of all proxels (

∑
pl)

in the time step (tj) normalized with the confidence level (1 − α).

nc,k∑

i=0

pc,i(t = tj)

nk∑

l=0

pl(t = tj)

≥ 0.5
1 − α

(3)

If a change is detected, then the algorithm makes a parameter estimation
for every single proxel. The estimated parameters (ρi) are weighted with the
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probability of the given proxel (pi) and normalized. This can be seen in the
Eq. (4). Of course, there are also proxels where no change is detected. For
these proxels, the original distribution parameters are weighted with the proxel
probability.

The algorithm also needs to compute the activation time of the new parame-
ters. The activation time is the time when the detected shift in the distribution
parameters likely took place. The computation is similar to the estimation of
the new distribution parameters. The unique activation time (δi) is assigned to
every proxel, based on the oldest element in the sliding window to the given
transition. These activation times are weighted with the proxel probability and
normalized as it can be seen in the Eq. (5).

ρ =
1

nk∑

l=0

pl

nk∑

i=0

ρipi (4)

δ =
1

nk∑

l=0

pl

nk∑

i=0

δipi (5)

After the new parameters and the activation time is computed, the algorithm
assigns the change to a global array which tracks the activation of these. After
that, a reset signal is sent to stop the execution of the behavior reconstruction,
go back in time before the activation of the new parameters and recompute that
part of the past. To speed up the computation, a ring buffer is implemented
which stores the model states periodically. After a reset, only the last valid state
needs to be restored and the computation can continue.

3.3 Implementation Challenges

During the implementation, two major challenges were discovered. Distribu-
tion functions that only have finite support and a type of aliasing effect, which
occurred because of the sliding window approach, causing virtual distributions
during the execution. In the following, these will be discussed briefly.

Distribution Functions with Finite Support. Distribution functions with
finite support, like a uniform distribution, might cause problems for the change
detection algorithm. In these cases the HRF drops to zero if a transition fires
outside the strictly defined boundaries of the distribution function. In these
cases, the proxel tree would die out and there is no way to continue the
analysis.

To overcome this limitation, these distribution functions are altered in
that way that a small amount of probability is redistributed from them into
newly constructed tails which come from an equivalent normal distribution. The
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probability of the equivalent normal distribution without the tails is the same
as the original finite support distribution without the redistributed probability.

In this way, the HRF will produce small non-zero probabilities outside the
support of the original distribution function. Of course, this results in a larger
number of proxels with very small probability during the behavior reconstruc-
tion, but they are pruned away in the next time step because the probability
difference between a firing inside and outside the borders of these newly defined
distributions is pronounced.

Virtual Distribution Functions. Virtual distributions occur because the slid-
ing window contains data from two different distribution functions at the same
time. Assume that at the beginning of the behavior reconstruction the model is
accurate and the sliding windows are filled with samples of the given distribution
functions. Then a sudden change occurs. This does not immediately result in a
detected change, but when it does, the window still includes samples from the
old distribution but has already some from the new one.

As the type of the distribution is assumed to be the same, the parameter
estimation would result in a distribution somewhere between the old and the
new one with a bit more variance. This is a virtual distribution because it only
occurs due to the transient phase. The occurrence of these virtual distributions
would not be a problem, if they would not cause an endless loop to happen. The
parameters of the virtual distribution cannot fulfill the criteria of the statistical
tests. Therefore, the algorithm is not able to leave this state because it always
tries to reestimate the same parameters without moving forward.

To overcome this limitation, the algorithm is forced to move forward. After
the sliding windows are filled with the required amount of samples, the change
detection algorithm does not get activated for a short time. This can be defined
as a given amount of time or the number of new symbols which needs to be
processed before.

4 Experiments and Results

To make the analysis easy to handle and evaluate, a test scenario was needed.
The quality tester example (Figs. 2 and 3) was introduced by Buchholz in [3]
and was used during the research in the field of CHnMMs and VSSs. In this
example, two independent production lines are merged before a quality tester.
The quality tester should indicate when the error rate increases on one of the
production lines. It was shown in [3] that this can be done. In our case, we
assume that source 0 on the production line is altered in the middle of the
analysis (upgrade, maintenance, etc.) and the question is, whether the behavior
reconstruction is capable of updating the model accurately and reducing the
misclassification error at the same time. The misclassification error denotes the
portion of produced items in a trace whose source is incorrectly reconstructed
in the path.
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Fig. 2. Visualization of quality tester [3] Fig. 3. Model of the quality tester

4.1 Experiment Setup

In the experiments, two parameters needed to be analyzed because of their sig-
nificant impact on the results. These were the size of the sliding window and the
pruning threshold of the proxel-based solution method.

In the case of the size of the sliding window, as it can be seen in the Fig. 4,
a relatively broad range was analyzed between 100 and 250. With small sizes,
the algorithm was not robust enough to withstand noise and the transient phase
produced a type of numerical oscillation. However, the computation took only
1–10 min. With large sizes, the computation took significantly longer. At the
size of 250, it even reached 6 h. In addition, the test set was found to be too
short sometimes. A relatively good trade-off between noise and speed can be
found around 200–210, where the computation takes about 50–65 min. In our
test cases, the amount of 200 timestamps was chosen as window size.

Fig. 4. Relative misclassification error
for different window sizes

Fig. 5. Relative misclassification error
for different pruning thresholds

In our case, we use a relative threshold, meaning that for every time step,
all proxel probabilities are compared to the most probable one. If the proba-
bility is below a given fraction of this maximum probability, then the proxel
is pruned away. This parameter has a huge impact on the computation speed,
the needed storage and the amount of significant information gained from the
behavior reconstruction. The pruning threshold, as it can be seen in the Fig. 5,
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was tested between 30% and 90%. The computational times varied between a
day and 30 s during these experiments. At 40% the algorithm was executed with
an acceptable computation time of about an hour without losing a significant
amount of information so during the tests the pruning threshold was held at
that level, if possible.

4.2 Results

The experiments were done by using multiple types of distributions with a wide
parameter set: Normal, uniform, gamma, and lognormal. Because of the restric-
tions on the length of this paper, only the results of the test with the normal
distributions will be introduced in more detail. For more detailed results on the
other distributions, please refer to [2].

The quality criteria for these tests were the following:

– Reconstruction accuracy in terms of misclassification error.
– Accuracy of the distribution parameters for the transition with change.
– Accuracy of the distribution parameters for the transition without change.

In the following heat maps, light green means that there is no error or no
change compared to the original value, while red indicates an increase in error/-
positive parameter deviation and dark blue a decrease in error/negative para-
meter deviation.

Normal Distribution. The normal distribution is a well-known continuous
distribution function often used for representing randomness in examples. The
parameters are easy to compute and to estimate, the results are exemplary so
that is why it was chosen to represent the results in this paper.

The relative misclassification error needed to be analyzed in two different
ways. The results of the first experiment can be seen in the Fig. 6. In this figure,
one sees the relative change in the overall misclassified symbols with different
distribution parameter changes compared to the case without change detection,
when the change happens in the middle of the time protocol. As one can see,
there is no significant improvement. In addition to that, in the case of the most
dramatic mean change during the analysis, one can notice a decrease in accuracy
of about 2–10%. Here the problem lies in the experiment setup. The behavior
reconstruction did not spend enough time in the stationary phase at the end of
the execution. In this way, there was not enough time to neutralize the effect of
the transient phase on the misclassification error.

To have a better overview of this phenomenon, a second experiment was
performed. This time, another sequence was generated with the new parameters
of the stationary phase and two standard proxel-based solver algorithms were
run without the change detection algorithm. In these two runs, the sequence was
analyzed with the original and the new model of the HnMM. The difference in
the misclassified symbols can be seen in the Fig. 7. The second experiment shows
that the algorithm is able to reduce the misclassification error significantly. The
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Fig. 6. Relative misclassification error
(Color figure online)

Fig. 7. Relative misclassification error
if change happens at the start of the
behavior reconstruction (Color figure
online)

gain in cases with small variance already reaches 10–15%. One can observe an
about 2–3% decrease in accuracy in some cases in the upper right corner. In
these cases, the two normal distribution functions nearly merge, so the results
are nearer to a random guess than to a significant result.

Fig. 8. Error in the mean of the transi-
tion with change (Color figure online)

Fig. 9. Error in the standard deviation
of the transition with change (Color
figure online)

The Figs. 8 and 9 show the error in the distribution parameters at the end of
the change detection algorithm. One can notice an error in the upper left corner
of the mean diagram. This was caused by the experiment setup. The larger drift
in mean with a higher variance had a longer transient phase and some of the
computations did not reach the end distribution until the end of the experiment.
The same effect can be noticed in the case of the standard deviation in the upper
part of the diagram. The red area in the middle of the diagram is an effect of the
two distribution functions merging because of the change. Despite these smaller
deviations, the results can be considered to be accurate if one takes the relatively
short reconstruction time and the drift of the parameters into account. In 75% of
the cases, the algorithm performed very accurately in reaching the mean para-
meter and slight inaccuracies occur only with higher standard deviations. The
same accuracy is achieved for the standard deviation in about 50% of the cases.
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Fig. 10. Error in the mean of the
transition without change (Color figure
online)

Fig. 11. Error in the standard devia-
tion of the transition without change
(Color figure online)

In the Figs. 10 and 11 one can observe the robustness of the algorithm. The
noise created by the transient phase indicated some very small change in the
transition without change but these changes tend to be compensated in the sta-
tionary phase at the end of the behavior reconstruction. The results of the normal
distribution show that there is a significant improvement in the misclassification
error of the HnMM. The distribution parameters were reached accurately and
the transitions are robust enough to withstand the noise of the transient phase
accurately.

Lognormal Distribution. The lognormal distribution was chosen as a possible
experiment because the parameters are still easy to estimate but the distribution
function is not symmetric and some shape change is possible during the change
detection. The results were very similar to the ones with the normal distribution.

Uniform Distribution. The uniform distribution was chosen to be an experi-
ment because the reparametrization of distribution functions with finite support
needed to be tested. A part of the probability in the Probability Density Function
(PDF) was redistributed into the tails as already described. Of course, the HRF
computation of the proxel-based solver algorithm was also modified in the same
way. The results with the newly constructed distribution exceed the results of the
normal distribution when it comes to the accuracy of the parameters. However,
it performed slightly worse in the case of the misclassification error.

Gamma Distribution. The gamma distribution is a continuous distribution
function with a pronounced shape change depending on the parameters. The
gamma distribution also includes the exponential and the chi-squared distrib-
ution functions. In this case, the results became very bad. The change detec-
tion algorithm almost never reached the required parameters. This was caused
by multiple problems. First of all, a more dramatic change in the parameters
resulted in a drastic shift of the mean and the variance, which resulted in a
longer generated input sequence as the mean got lower. There were much more
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changes detected, so the computation became very long. This means that some
of the experiments on the sample grid ran for more than a day.

Unfortunately, in many cases, the change detection algorithm estimated the
parameters for one of the transitions very inaccurately. Sometimes the mean
of the estimated parameter set was so high that it made impossible for the
transition to fill the sliding window before the end of that part of the experiment.
In other cases, the distributions just started to switch places and could not reach
the steady state until the end of the analysis. The gamma distribution can be
considered not to be solvable by the change detection algorithm in the current
stage.

5 Conclusion

5.1 Summary of the Project

The experiments show that the constructed change detection algorithm is able
to track a change in the distribution parameters accurately. During the analysis,
a gain of about 10–15% in the accuracy of the behavior reconstruction was
achieved.

The biggest disadvantage of the algorithm is that it consumes a lot of
resources and in some cases takes very long to compute. The memory, required
for the computation, jumps from about 50–200 MBs for normal behavior recon-
struction to a value of about 2–20 GBs depending on probability difference of the
concurrent possible paths. The reason for this huge difference is the implemented
ring buffer. Of course, reading and writing chained lists into a ring buffer con-
sumes a lot of time. This is the main reason, that the computation time, required
for the algorithm, jumped from a couple of minutes to a value between 10 min
and 6 h. Like the required memory, the execution time is very strongly depending
on the probability difference of the concurrent possible paths. To overcome this
limitation, the change detection algorithm is suggested to be used periodically by
very long term behavior reconstructions combined with a general proxel-based
solver. By a periodic call of the change detection algorithm, the current model
is evaluated and if there is no deviation detected, then the change detection is
disabled until the next call to save resources.

Given the results in this paper, a possible change detection algorithm is pre-
sented for CHnMMs, despite the inaccurate results in the case of the gamma dis-
tribution. By using a more accurate parameter estimator, the algorithm could
be a general solution for evaluating the system model during a proxel-based
solver algorithm. The new algorithm makes it possible to automatically correct
slight inaccuracies in the distribution parameters implemented in the system
model unintentionally. Additionally, the algorithm is able to handle model sim-
plifications in a more accurate way by adjusting the system parameters during
the behavior reconstruction. In this way, one is able to construct more real-
istic behavior reconstruction models by using the introduced change detection
algorithm.
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5.2 Future Research Possibilities

There are multiple possibilities for further development of the algorithm. First of
all, a more general and more accurate estimation algorithm might save additional
computation time and improve the results of the change detection algorithm. In
this feasibility test the project is restricted to CHnMMs. A feasibility test for
general HnMM is still needed, which can be built on the basis of the current
project. Last but not least, a more efficient ring buffer algorithm might solve the
resource shortage. The algorithm should be able to identify key moments during
the reconstruction time and save only the states in the ring buffer which are
needed in the future with a higher probability. Not just memory consumption
can be reduced significantly, but also the computational power of saving and
restoring the proxel tree, which would lead to a more acceptable execution time.

5.3 Potential Real World Applications

The algorithm can be used for evaluating the system model in all CHnMMs
behavior reconstruction analyses which are long enough to be suitable for the
change detection. Of course, this might make the execution time significantly
longer, so that the already suggested periodic call might be an option to con-
sider for these cases. The algorithm can also be used for observing the parameter
changes of the hidden part of the system model over the execution time. In this
way, one should be able to understand the system in a better way and there is a
possibility to identify reasons and causes more accurately. The change detection
algorithm might be a very good tool to use during behavior reconstruction of
production lines and factories like the one in [9]. These processes tend to involve
a large amount of human interaction, and this means that changes might occur
more often than in other processes. As a result, this change detection algorithm
can add a significant gain compared to a standard proxel-based solution algo-
rithm and might help in combination with other information to better under-
stand the processes.

References

1. Bamberg, G., Baur, F., Krapp, M.: Statistik. Oldenbourg Verlag München,
München (2011)

2. Bodnár, D.: Change Detection of Model Transitions in Proxel Based Simulation of
CHnMMs. Otto-von-Guericke-Universität, Magdeburg (2016)

3. Buchholz, R.: Conversive Hidden non-Markovian Models. Otto-von-Guericke-
Universität, Magdeburg (2012)

4. Buchholz, R., Krull, C., Horton, G.: Virtual stochastic sensors: how to gain insight
into partially observable discrete stochastic systems. In: The 30th IASTED Inter-
national Conference on Modelling (2011)

5. Dittmar, T., Krull, C., Horton, G.: A new approach for touch gesture recognition:
Conversive Hidden non-Markovian Models. J. Comput. Sci. 10, 66–76 (2015)

6. Hartung, J., Elpelt, B., Klsener, K.H.: Statistik. Oldenbourg Verlag München,
München (2009)



46 D. Bodnár et al.

7. Horton, G.: A new paradigm for the numerical simulation of stochastic petri nets
with general firing times. In: Proceedings of the European Simulation Symposium,
ESS 2002 (2002)

8. Krull, C., Horton, G.: Hidden non-Markovian Models: formalization and solution
approaches. In: 6th Vienna International Conference on Mathematical Modelling
(2009)

9. Krull, C., Horton, G., Denkena, B., Dengler, B.: Virtual stochastic sensors for
reconstructing job shop production workflows. In: 2013 8th EUROSIM Congress
on Modelling and Simulation (EUROSIM), pp. 276–281 (2013)

10. Lazarova-Molnar, S.: The Proxel-Based Method: Formalisation, Analysis and
Applications. Otto-von-Guericke-Universität, Magdeburg (2005)

11. Magel, R.C., Wibowo, S.H.: Comparing the powers of the Wald-Wolfowitz and
Kolmogorov-Smirnov tests. Biom. J. 39(6), 665–675 (1997)

12. NIST: NIST/SEMATECH e-Handbook of Statistical Methods (2013). http://www.
itl.nist.gov/div898/handbook/index.htm

13. Wilson, E.: Virtual sensor technology for process optimization (1997). Presentation
at the ISSCAC 1997

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/index.htm


Modeling and Analysis of a Relay-Assisted
Cooperative Cognitive Network

Ioannis Dimitriou(B)

Department of Mathematics, University of Patras, 26500 Patras, Greece
idimit@math.upatras.gr

Abstract. We investigate a novel queueing system that can be used to
model relay-assisted cooperative cognitive networks with coupled relay
nodes. Consider a network of two saturated source users that transmit
packets towards a common destination node under the cooperation of two
relay nodes. The destination node forwards packets outside the network,
and each source user forwards its blocked packets to a dedicated relay
node. Moreover, when the transmission of a packet outside the network
fails, either due to path-loss, fading or due to a hardware/software fault
in the transmitter of the destination node, the failed packet is forwarded
to a relay node according to a probabilistic policy. In the latter case a
recovery period is necessary for the destination node in order to return in
an operating mode. Relay nodes have infinite capacity buffers, and are
responsible for the retransmission of the blocked/failed packets. Relay
nodes have cognitive radio capabilities, and there are fully aware about
the state of the other. Taking also into account the wireless interference,
a relay node adjusts its retransmission parameters based on the knowl-
edge of the state of the other. We consider a three-dimensional Markov
process, investigate its stability, and study its steady-state performance
using the theory of boundary value problems. Closed form expressions
for the expected delay are also obtained in the symmetrical model.

Keywords: Cooperative network · Cognitive users · Boundary value
problem · Stability conditions · Performance

1 Introduction

Nowadays wireless communications technologies have seen a remarkably fast evo-
lution. The new generation of wireless devices has brought notable improvements
in terms of communication reliability, data rates, and network connectivity. Fur-
thermore, ad-hoc and sensor networks have emerged with many new applications,
where a source has to rely on the assistance from other nodes to forward or relay
information to a desired destination [14].

Relay-based cooperative wireless networks have been broadly acknowledged
that allows a flexible exchange of data with great benefits on packet delay and
energy consumption [6,16]. Such a system operates as follows: There is a finite
number of source users that transmit packets to a common destination node,
which forwards the received packet outside the network, and a finite number
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 47–62, 2017.
DOI: 10.1007/978-3-319-61428-1 4
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of relay nodes that assist source users by retransmitting their blocked/failed
packets; e.g., [17,18]. In particular, when a direct source user transmission is
blocked, (i.e. the destination node is unavailable), it forwards its blocked packet
at a relay node (i.e., a relay overhear the transmission and stores the blocked
packet). On the other hand, the transmission of a packet outside the network
may also fail for various reasons such as weak radio signals due to distance,
multi-path fading, mobility, or faulty device drivers [3]. In such a scenario, the
failed packet is also forwarded at a relay node, which retransmits it in a later
time instant in order to increase reliability.

Clearly, due to the current trend towards dense wireless networks and the
spatial reuse of resources (which in turn increase the impact of interference),
it is essential to take into account the interaction among transmissions in the
network planning. Moreover, although nowadays there is an increasing demand
for variety of wireless applications, the usable radio spectrum is of limited physi-
cal extend. Recent studies on the spectrum usage have revealed that substantial
portion of the licensed spectrum is underutilized, and thus, there is an impera-
tive need for developing new techniques in order to improve spectrum utilization
[13]. The cognitive radio communication is a promising solution to the spectrum
underutilization problem [15,18].

Cognitive radio includes a wide range of technologies for making wireless sys-
tems “smart”. In the full cognitive radio [15] a wireless node is capable to obtain
knowledge of its operational environment, and to dynamically reconfigure its
operational parameters accordingly. In this direction, we assume that each relay
node is capable to exchange information with the other relay node, and thus, it
is aware about its state. Therefore, in order to achieve full spectrum utilization
of the shared channel, it adjusts its retransmission parameters according to the
state of the other relay node (i.e., coupled relay nodes); see also e.g., [4,5,8].
Moreover, in order to avoid further congestion, the source users stop transmit-
ting new packets when they sense the destination node in a recovery mode after
a fault at its transmitter. Our system is modeled as a three-dimensional Markov
process, and we show that its steady-state performance is expressed in terms of
a solution of a boundary value problem; see e.g., [1,2,7–11,20,21].

Our Contribution. Besides its applicability, our work is also theoretically ori-
ented. We provide for the first time, an exact analysis of a continuous time
unreliable multiple access cooperative system with queue-aware retransmission
control. Our model can be seen as a Markov modulated random walk in the quar-
ter plane (M-RWQP), and its analysis leads to a matrix-form functional equation
(i.e., a RWQP modulated by a three-state Markov process). Due to its special
structure, we can solve this matrix-form functional equation, and reduce it into a
scalar functional equation corresponding to one state of the (modulated) chain.
This scalar functional equation is treated using the theory of boundary value
problems. To our best knowledge there is no other related work that deals with
a detailed analysis of such a system. Ergodicity conditions are also investigated.
For the symmetrical system we obtain explicit expressions for the expected delay
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in each relay node, without solving a boundary value problem. A special case of
the proposed model on the traditional cognitive networks is also studied.

The paper is organized as follows. In Sect. 2 we present the model, and form
the fundamental functional equation. Ergodicity conditions along with a prepara-
tory mathematical analysis are given in Sect. 3. The generating function of the
joint relay queue length distribution for each state of the destination node is
given in Sect. 4 by solving two boundary value problems. In Sect. 5, we obtain
explicit expressions for the expected delay at each relay node for the symmetrical
system. A special case of our model, with potential applications to traditional
cognitive networks is investigated Sect. 6. In Sect. 7 we obtain extensive numer-
ical results that show insights into the system performance.

2 The Mathematical Model

We consider a network with two saturated source users, say Sk, k = 1, 2, two
relay nodes R1, R2 and a common destination node D. User Sk generates packets
towards node D according to a Poisson process with rate λki, k = 1, 21. Node D
can handle at most one packet, which forwards outside the network. The service
time of a packet at node D is exponentially distributed with rate μ.

Moreover, the transmission of a packet outside the network may fail either
due to fading/path loss or due to a hardware/software fault in the transmitter
of node D. Packet failures due to a hardware/software fault occur according
to Poisson process with rate θ. In such a case, node D requires some time to
recover. The recovery time is exponentially distributed with rate ν. When the
recovery time is completed, the node D returns to its operating state. During
recovery time, source users are capable to sense the status of node D (recall that
in a cognitive shared access network the nodes exchange information about their
status), and in order to avoid further congestion they do not generate packets,
i.e., λk = 0, when node D is in the recovery mode.

Cooperation Policy Among Sources and Relays. We assume that relays have
infinite capacity buffers and do not generate packets of their own. More precisely,
if a transmission of a user’s Sk packet to the node D is blocked (i.e., the node D is
busy), Rk stores it in its queue and try to forward it later, i.e. Sk cooperates with
Rk, k = 1, 2 (Rk overhears the transmission, and stores a copy of the blocked
packet in its buffer; see [18,19]).

Cooperation Policy Among Node. D and relays. A node’s D packet transmission
outside the network is successful with probability p (i.e. with probability q = 1−p
the transmission fails)2. In such a case, the node D cooperates with the relays
1 Note that our analysis is not affected in case we considered more than two source

users. However, it cannot be applied when we considered N > 2 relay nodes. How-
ever, some basic performance metrics and some bounds on the stability conditions
can also be obtained; see [9].

2 The packet success probabilities depend on interference, power etc., and they are
commonly determined by the signal to interference plus noise ratio (SINR) threshold
model [17,18].
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by forwarding a copy of the failed packet according to the following policy: The
failed packet is forwarded to Ri with probability ri, i = 1, 2, r1 + r2 = 1. On
the other hand, if a hardware fault occurs at the transmitter of node D, the
packet under transmission is either considered lost with probability t0, or it is
forwarded to the Ri with probability ti, i = 1, 2, where t0 + t1 + t2 = 1.

Retransmission Policy. In a full cognitive radio network, each relay node is
aware of the status of its neighbor, and accordingly, it regulates its retransmission
parameters to allow more concurrent communication. Thus, when both relays are
non-empty, Ri retransmits a blocked packet to the node D after an exponentially
distributed time with rate μi, i = 1, 2. If R1 (respectively R2) empties, then R2

(respectively R1) changes its retransmission rate from μ2 (respectively μ1) to μ∗
2

(respectively μ∗
1).

Let Qk(t) be the number of packets in relay k, k = 1, 2 at time t, and C(t)
the state of the node D, where,

C(t) =

⎧
⎨

⎩

0, if node D is idle at t,
1, if node D is busy at t,
2, if node D is in recovery state at t,

Clearly, (Q1(t), Q2(t), C(t)) constitutes a CTMC with state space E =
{0, 1, . . .}×{0, 1, . . .}×{0, 1, 2}. Define its stationary probabilities for (i, j, n) ∈ E,

pi,j(n) = lim
t→∞ P (Q1(t) = i, Q2(t) = j, C(t) = n) = P (Q1 = i, Q2 = j, C = n).

Then, for λ = λ1 + λ2,

pi,j(0)[λ +
∑2

k=1
μk1{i,j>0} + μ∗

11{i>0,j=0} + μ∗
21{i=0,j>0}]

= μppi,j(1) + νpi,j(2) + μqr1pi−1,j(1)1{i>0} + μqr2pi,j−1(1)1{j>0},
(λ + μ + θ)pi,j(1) = λpi,j(0) + λ1pi−1,j(1)1{i>0} + λ2pi,j−1(1)1{j>0}
+μ1pi+1,j(0)1{j>0} + μ∗

1pi+1,0(0)1{j=0}+μ2pi,j+1(0)1{i>0}+μ∗
2p0,j+1(0)1{i=0},

νpi,j(2) = θ[t0pi,j(1) + t1pi−1,j(1)1{i>0} + t2pi,j−1(1)1{j>0}], (1)

where 1{W} stands for the indicator function of the event W . Let H(n)(x, y) =∑∞
i=0

∑∞
j=0 pi,j(n)xiyj , |x| ≤ 1, |y| ≤ 1, n = 0, 1, 2. Then, using (1), we obtain,

αH(0)(x, y) − (d2 + μ1)H(0)(0, y) − (d1 + μ2)H(0)(x, 0) + (d1 + d2)
×H(0)(0, 0) = μ(1 + q(r1(x − 1) + r2(y − 1)))H(1)(x, y) + νH(2)(x, y),

(2)

where α = λ + μ1 + μ2. For dk = μk − μ∗
k, k = 1, 2,

H(0)(x, y)(λxy + μ1y + μ2x) − xy(λ1(1 − x) + λ2(1 − y)
+μ + θ)H(1)(x, y) = (d2x + μ1y)H(0)(0, y) + (d1y + μ2x)H(0)(x, 0)
−(d1y + d2x)H(0)(0, 0),
H(2)(x, y) = θ[1+t1(x−1)+t2(y−1)]

ν H(1)(x, y).

(3)
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Equations (2) and (3) are rewritten in the following matrix-form functional
equation,

H(x, y)T (x, y) = H(x, 0)T1(x, y) + H(0, y)T2(x, y) + H(0, 0)T3(x, y), (4)

where, H(x, y) = (H(0)(x, y),H(1)(x, y),H(2)(x, y)) and

T (x, y) =

⎛
⎝

α λxy + μ1y + μ2x 0
−f0(x, y) −f1(x, y) f2(x, y)

−ν 0 −ν

⎞
⎠ , T1(x, y)=

⎛
⎝

d1 + μ2 d1y + μ2x 0
0 0 0
0 0 0

⎞
⎠ ,

T2(x, y) =

⎛
⎝

d2 + μ1 d2x + μ1y 0
0 0 0
0 0 0

⎞
⎠ , T3(x, y) =

⎛
⎝
−(d1 + d2) −(d1y + d2x) 0

0 0 0
0 0 0

⎞
⎠ ,

where,
f0(x, y) = μ(1 + q(r1(x − 1) + r2(y − 1))),
f1(x, y) = xy(λ1(1 − x) + λ2(1 − y) + μ + θ),
f2(x, y) = θ(1 + t1(x − 1) + t2(y − 1)).

In general, it is really hard to solve the matrix functional Eq. (4). In the
following, we are going to exploit its special structure, and convert (4) into a
scalar functional equation. Indeed, using (2) and (3), we obtain,

R(x, y)H(0)(x, y) = A(x, y)H(0)(x, 0) + B(x, y)H(0)(0, y) + C(x, y)H(0)(0, 0),
(5)

where,

R(x, y) = xy(λ̃2(y − 1) + λ̃1(x − 1)) + μ1y[(μ(p + qr2)
+θ(t0 + t2))(1 − x) + (θt2 + μqr2)(y − 1)]
+μ2x[(μ(p + qr1) + θ(t0 + t1))(1 − y) + (θt1 + μqr1)(x − 1)],

(6)

A(x, y) = μ2x[(1 − y)(μ(p + qr1) + θ(t0 + t1) − λ2y) + (x − 1)(θt1 + μqr1 + λ1y)]
+d1y[(1 − x)(μ(p + qr2) + θ(t0 + t2) − λ1x) + (y − 1)(θt2 + μqr2 + λ2x)],

B(x, y) = d2x[(1 − y)(μ(p + qr1) + θ(t0 + t1) − λ2y) + (x − 1)(θt1 + μqr1 + λ1y)]
+μ1y[(1 − x)(μ(p + qr2) + θ(t0 + t2) − λ1x) + (y − 1)(θt2 + μqr2 + λ2x)],

C(x, y) = −d1y[(1 − x)(μ(p + qr2) + θ(t0 + t2) − λ1x) + (y − 1)(θt2 + μqr2 + λ2x)]
−d2x[(1 − y)(μ(p + qr1) + θ(t0 + t1) − λ2y) + (x − 1)(θt1 + μqr1 + λ1y)].

where λ̃k = λk(λ+μ1+μ2+θtk +μqrk), k = 1, 2. Thus, our aim in the following
is to solve (5) and obtain H(0)(x, y). Then, by substituting back in (3) we can
obtain H(1)(x, y), H(2)(x, y), and the vector H(x, y) has been fully determined.

Remark: To our best knowledge, there is no other work in the related literature
where such a type of kernel R(x, y) arises.

3 Basic Analysis

In the following, we proceed with the derivation of the ergodicity conditions, and
the investigation of basic properties of the kernel equation R(x, y) = 0.
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3.1 Ergodicity Conditions

Assume in the following that λ + μ + μ1 + μ2 + θ = 13. Then, (5) is rewritten as

R(x, y)π(0)(x, y) = R(x,y)−A(x,y)
y π

(0)
1 (x) + R(x,y)−B(x,y)

x π
(0)
2 (y)

+R(x,y)−C(x,y)−A(x,y)−B(x,y)
xy p0,0(0),

(7)

where for |x| ≤ 1, |y| ≤ 1, π(0)(x, y) :=
∑∞

i=1

∑∞
j=1 pi,j(0)xi−1yj−1, pi

(0)
1 (x) :=

∑∞
i=1 pi,0(0)xi−1, π

(0)
2 (y) :=

∑∞
j=1 p0,j(0)yj−1. Equation (7) is the fundamental

form corresponding to a RWQP whose transition diagram is depicted in Fig. 1.
Its one-step transition probabilities are given by

p̂1,0 = λ̃1, p̂0,1 = λ̃2, p̂−1,0 = μ1(μp + θt0), p̂0,−1 = μ2(μp + θt0),
p̂1,−1 = μ2(μqr1 + θt1), p̂−1,1 = μ1(μqr2 + θt2),
p̂0,0 = 1 − (λ̃ + μ1(μ(p + qr2) + θ(t0 + t2)) + μ2(μ(p + qr1) + θ(t0 + t1))),
p̂
(1)
1,0 = λ1(λ + μ∗

1 + θt1 + μqr1), p̂
(1)
0,1 = λ2(λ + μ∗

1 + θt2 + μqr2),
p̂
(1)
−1,0 = μ∗

1(μp + θt0), p̂
(1)
−1,1 = μ∗

1(μqr2 + θt2), p̂
(1)
0,0=1 − (λ1(λ + μ∗

1 + θt1 + μqr1)
+λ2(λ + μ∗

1 + θt2 + μqr2) + μ∗
1(μ(p + qr2) + θ(t2 + t0)),

p̂
(2)
1,0 = λ1(λ + μ∗

2 + θt1 + μqr1), p̂
(1)
0,1 = λ2(λ + μ∗

2 + θt2 + μqr2),
p̂
(2)
0,−1= μ∗

2(μp + θt0), p̂
(1)
1,−1 = μ∗

2(μqr1 + θt1), p̂
(2)
0,0 = 1 − (λ1(λ + μ∗

2 + θt1 + μqr1)
+λ2(λ + μ∗

2 + θt2 + μqr2) + μ∗
2(μ(p + qr1) + θ(t1 + t0)),

p̂
(0)
1,0 = λ1(λ + θt1 + μqr1), p̂

(0)
0,1 = λ2(λ + θt2 + μqr2),

p̂
(0)
0,0 = 1 − (λ1(λ + θt1 + μqr1) + λ2(λ + θt2 + μqr2).

2Q

1Q

1,1p̂

0,1p̂

1,0p̂0,0p̂

0,1p̂

)2(
1,0p̂

)2(
0,1p̂

)2(
1,1p̂

)2(
1,0p̂

)2(
0,0p̂

1,0p̂

)1(
1,1p̂

)1(
0,1p̂

)1(
1,0p̂

)1(
0,1p̂

)1(
0,0p̂

)0(
0,1p̂

)0(
1,0p̂

)0(
0,0p̂

1,1p̂

Fig. 1. Transition diagram of the RWQP corresponding to the idle states of node D.

Set, M = (Mx,My) = (
∑

i,j ip̂i,j ,
∑

i,j jp̂i,j), (M (1)
x ,M

(1)
y ) =

(
∑

i,j ip̂
(1)
i,j ,

∑
i,j jp̂

(1)
i,j ), (M (2)

x ,M
(2)
y ) = (

∑
i,j ip̂

(2)
i,j ,

∑
i,j jp̂

(2)
i,j ). Then,

Mx = λ̃1 + μ2(μqr1 + θt1) − μ1(μ(p + qr2) + θ(t0 + t2)),
My = λ̃2 + μ1(μqr2 + θt2) − μ2(μ(p + qr1) + θ(t0 + t1)),

M
(1)
x = λ1(λ + μ∗

1 + μqr1 + θt1) − μ∗
1(μ(p + qr2) + θ(t0 + t2)),

M
(1)
y = λ2(λ + μ∗

1 + μqr2 + θt2) + μ∗
1(μqr2 + θt2),

3 A technical assumption to avoid normalizing the one step transition probabilities.



Modeling and Analysis of a Cooperative cognitive Network 53

M
(2)
x = λ1(λ + μ∗

2 + μqr1 + θt1) + μ∗
2(μqr1 + θt1),

M
(2)
y = λ2(λ + μ∗

2 + μqr2 + θt2) − μ∗
2(μ(p + qr1) + θ(t0 + t1)).

Theorem 1 (see [11]). When M �= 0, our system is stable if, and only if, one
of the following conditions holds,

1.

Mx < 0,My < 0,

{
Γ1 = MxM

(1)
y − MyM

(1)
x < 0,

Γ2 = MyM
(2)
x − MxM

(2)
y < 0,

2. Mx < 0, My ≥ 0, Γ2 < 0;
3. Mx ≥ 0, My < 0, Γ1 < 0.

3.2 The Algebraic Curve R(x, y) = 0

Equation (5) includes three unknown functions: H(0)(x, y), and two functions of
one complex variable H(0)(x, 0), H(0)(0, y), which we would like to determine.
By investigating the kernel equation R(x, y) = 0, allows us to come up with a
functional equation involving only H(0)(x, 0), H(0)(0, y). Note that,

R(x, y) = a(x)y2 + b(x)y + c(x) = â(y)x2 + b̂(y)x + ĉ(y),
a(x) = λ̃2x + μ1(θt2 + μqr2), c(x) = μ2x(μp + θt0 + (μqr1 + θt1)x),

b(x) = λ̃1x
2 − x[λ̃ + μ1(μ(p + qr2) + θ(t0 + t2))

+μ2(μ(p + qr1) + θ(t0 + t1))] + μ1(μp + θt0),
â(y) = λ̃1y + μ2(θt1 + μqr1), ĉ(y) = μ1y(μp + θt0 + (μqr2 + θt2)y),

b̂(y) = λ̃2y
2 − y[λ̃ + μ1(μ(p + qr2) + θ(t0 + t2))

+μ2(μ(p + qr1) + θ(t0 + t1))] + μ2(μp + θt0),

where λ̃ = λ̃1+ λ̃2. Denote by X±(y), Y±(x) the roots of R(X(y), y) = 0, x ∈ Cx

and R(x, Y (x)) = 0, y ∈ Cy respectively, where Cx, Cy the complex planes of x,
y, respectively.

To ensure the continuity of Y (x), X(y) let the cut planes, ˜̃Cx = Cx−([x1, x2]∪
[x3, x4], ˜̃Cy = Cy − ([y1, y2] ∪ [y3, y4]. In ˜̃Cx (resp. ˜̃Cy), denote by Y0(x) (resp.
X0(y)) the zero of R(x, Y (x)) = 0 (resp. R(X(y), y) = 0) with the smallest
modulus, such that |Y0(x)| < 1 (resp. |X0(y)| < 1). In order to proceed, we
have to allocate the branch points of Y (x), X(y) (recall that in such points
Y (x), X(y) are not regular functions). Using Lemma 2.3.8, pp. 26–27 in [11],
and the probabilities p̂ij of the jumps in the interior of the quarter plane (see
Subsect. 3.1) we can easily show that Y (x) (resp. X(y)) has four real branch
points, say xi, i = 1, 2, 3, 4 such that 0 < x1 ≤ x2 < 1 < x3 < x4 < ∞ (resp. yi,
i = 1, 2, 3, 4 such that 0 < y1 ≤ y2 < 1 < y3 < y4 < ∞).

Lemma 1

1. X(y), y ∈ [y1, y2] lies on a simple closed contour M defined by

|x|2 = m(Re(x)), m(δ) = μ1ζ(δ)[μp+θt0+(μqr2+θt2)ζ(δ)]

λ̃1ζ(δ)+μ2(θt1+μqr1)
, |x|2 ≤ ĉ(y2)

â(y2)
,
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where ζ(δ) =
̂b−2λ̃1δ−

√
(̂b−2λ̃1δ)2−4λ̃2μ2(2δ(θt1+μqr1)−μp−θt0)

2λ̃2
, b̂ = λ̃ + μ1(μ(p +

qr2) + θ(t0 + t2)) + μ2(μ(p + qr1) + θ(t0 + t1)). Set β1 =
√

ĉ(y2)/â(y2), and
β2 = −√

ĉ(y1)/â(y1), its extreme right and left point respectively.
2. Y (x), x ∈ [x1, x2], lies on a simple closed contour L defined by

|y|2 = k(Re(y)), k(δ) = μ2η(δ)[μp+θt0+(μqr1+θt1)η(δ)]

λ̃2η(δ)+μ1(θt2+μqr2)
, |y|2 ≤ c(x2)

a(x2)
,

where η(δ) =
̂b−2λ̃2δ−

√
(̂b−2λ̃2δ)2−4λ̃1μ1(2δ(θt2+μqr2)−μp−θt0)

2λ̃1
. Let ψ1 =

√
c(x2)/a(x2), ψ2 = −√

c(x1)/a(x1), its extreme right and left point, respec-
tively.

Proof: We focus on 2. (1. is proved similarly). Clearly, Re(Y (x)) = −b(x)
2a(x) .

Solving the previous expression for x with δ = Re(Y (x)), and taking the solution
such that x ∈ [0, 1], we obtain η(δ). Moreover, |Y (x)|2 = |y|2 = c(x)

a(x) = h(x).
Note that h(x) is an increasing function in x. Therefore, |Y (x)| ≤ |Y (x2)| = ψ1,
which is the extreme right point of L. Similarly, we can show that, Y0(x1) = ψ2

is the extreme left point of L. �

4 Solution of the Fundamental Functional Equation

We firstly proceed with the derivation of some useful relations. Let pi,.(n) =∑∞
j=0 pi,j(n), i = 0, 1, . . . , p.,j(n) =

∑∞
i=0 pi,j(n), j = 0, 1, . . ., n = 0, 1, 2.

Lemma 2

H(1)(1, 1) = λ
μp+θ(1+λ

ν )
, H(2)(1, 1) = θ

ν H(1)(1, 1),

H(0)(1, 1) = 1 − H(1)(1, 1)(1 + θ
ν ).

(8)

1. If μ1μ2 �= d1d2, then, for ρ̂k = λ(λk+μk+μrk)
μk(μp+θ(1+λ/ν)) , k = 1, 2,

H(0)(0, 1) =
μ1μ2[1−ρ̂1− d1

μ1
(1−ρ̂2)]+d1μ∗

2H(0)(0,0)

μ1μ2−d1d2
,

H(0)(1, 0) =
μ1μ2[1−ρ̂2− d2

μ2
(1−ρ̂1)]+d2μ∗

1H(0)(0,0)

μ1μ2−d1d2
.

(9)

2. If μ1μ2 = d1d2, then μi = φiμ
∗
i , i = 1, 2, φ1 + φ2 = 1, and H(0)(0, 0) =

1 − (φ1ρ̂1 + φ2ρ̂2) = 1 − ρ∗.

Proof: By considering the cut between {Q1 = i, C = 1} and {Q1 = i + 1,
C = 0},

(λ1 + μqr1)pi,.(1) = μ∗
1pi+1,0(0) + μ1

∑∞
j=1 pi+1,j(0), i ≥ 0.

Summing for all i = 0, 1, . . ., we derive after some algebra,

λ0,1H
(1)(1, 1) = μ1[H(0)(1, 1) − H(0)(0, 1)] − d1[H(0)(1, 0) − H(0)(0, 0)], (10)
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where λ0,j = λj + μqrj , j = 1, 2. Similarly,

λ0,2H
(1)(1, 1) = μ2[H(0)(1, 1) − H(0)(1, 0)] − d2[H(0)(0, 1) − H(0)(0, 0)]. (11)

Note that (10) and (11) are both “conservation of flow” relations. Summing (10)
and (11), and subtracting the sum from (2) we can obtain after some algebra
Eq. (8). Substituting (8) in (10), (11), we obtain

H(0)(0, 1) = 1 − ρ̂1 − d1
μ1

[H(0)(1, 0) − H(0)(0, 0)],
H(0)(1, 0) = 1 − ρ̂2 − d2

μ2
[H(0)(0, 1) − H(0)(0, 0)].

(12)

From (12) and for μ1μ2 �= d1d2 we derive (9). On the other hand, for μ1μ2 = d1d2
(i.e., μk = φkμ∗

k, k = 1, 2, φ1 + φ2 = 1), (12) yields H(0)(0, 0) = 1 − ρ∗. �
Based on Lemma 2, and in particular on the value of μ1μ2 − d1d2 we dis-

criminate the analysis in two cases.

4.1 The General Case

Let μ1μ2 �= d1d2, and denote

H(x) := H(0))(x, 0) + d2μ∗
1

μ1μ2−d1d2
H(0)(0, 0),

G(y) := H(0))(0, y) + d1μ∗
2

μ1μ2−d1d2
H(0)(0, 0).

For a zeropair (X0(y), y) of the kernel where |y| ≤ 1, |X0(y)| ≤ 1, (5) becomes

A(X0(y), y)H(X0(y)) = −B(X0(y), y)G(y). (13)

Using results from Subsect. 3.2 we conclude in,

A(x, Y0(x))H(x) = −B(x, Y0(x))G(Y0(x)), x ∈ M. (14)

From (14), we can easily see that the possible poles of H(x), x ∈ Sx := GM ∩D̄c
x

are necessarily the zeros of A(x, Y0(x)) in Sx, where GU be the interior domain
bounded by U , and D̄c

x = {x : |x| > 1} (using simple algebraic arguments we
can show that under stability conditions H(x) has no poles in Sx. Due to space
constrains the details are omitted). Thus, H(x) is regular in GM, continuous in
M ∪ GM, and U(x) = A(x, Y0(x))/B(x, Y0(x)) is a non-vanishing function on
M. Therefore, (14) yields (following [1], B(x, Y0(x)) �= 0, x ∈ M),

Re[iA(x,Y0(x))
B(x,Y0(x))

H(x)] = 0, x ∈ M, (15)

The problem formulated in (15), must be conformally transformed to the unit
circle C. Let z = f(x) : GM → GC be the conformal mapping and x = f0(z) :
GC → GM its inverse. Upon applying the conformal mapping, our aim is to
find a function F (z) := H(f0(z)), regular in GC , continuous in GC ∪ C such
that, Re[iU(f0(z))F (z)] = 0, z ∈ C. The following lemma is based on [11], and
provides information about the solvability of (15), based on the value of the
index χ of U(x), x ∈ M (see [12]).
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Lemma 3

1. If My < 0, then χ = 0 is equivalent to

dA(x,Y0(x))
dx |x=1 < 0 ⇔ Γ1 < 0, dB(X0(y),y)

dy |y=1 < 0 ⇔ Γ2 < 0.

2. If My ≥ 0, χ = 0 ⇔ dB(X0(y),y)
dy |y=1 < 0 ⇔ Γ2 < 0.

Thus, under ergodicity conditions, χ = 0, and (15) has a unique solution:

H(0)(x, 0) = W exp[ 1
2π1

∫

|t|=1
log{J(t)}
t−f(x) dt] + d2μ∗

1
d1d2−μ1μ2

H(0)(0, 0), (16)

where W is an unknown constant, and J(t) = U(t)
U(t) , U(t) = U(f0(t)). Since

1 ∈ GM, W is found as a function of H(0)(0, 0) using (16) for x = 0. Then,
setting in (16) x = 1, and combining with (9), we obtain H(0)(0, 0). To conclude,

W = μ1μ∗
2

μ1μ2−d1d2
exp[ 1

2πi

∫

|t|=1
log{J(t)}

t dt]H(0)(0, 0),

H(0)(0, 0) =
μ2[1−ρ̂2− d2

μ2
(1−ρ̂1)] exp[

−1
2iπ

∫

|t|=1
log{J(t)}f(1)

t(t−f(1)) dt]

μ∗
2

.
(17)

Similarly, H(0)(0, y) is obtained by solving another Riemann-Hilbert bound-
ary value problem on L. Then, substituting back in (5), (2), (3) we obtain
H(0)(x, y), H(1)(x, y), and H(2)(x, y), respectively.

4.2 The Simple Case

Let, μ1μ2 = d1d2, i.e., μk = φkμ∗
k, k = 1, 2, φ1 + φ2 = 1. Then, B(x, y) =

−φ1
φ2

A(x, y). Following the lines in Subsect. 4.1, and taking a zeropair (x, Y0(x))
of the kernel where |x| ≤ 1, |Y0(x)| ≤ 1, we conclude in the following problem:
Find a function H(0)(x, 0), regular for x ∈ GM, and continuous for x ∈ M∪GM:

Re(iH(0)(x, 0)) = Re(−iC(x,Y0(x))(1−ρ∗)
A(x,Y0(x))

) = w(x), x ∈ M. (18)

The problem defined in (18) is transformed into a Dirichlet problem on the
unit circle C, using the mappings x = f0(z) : GC → GM, z = f(x) : GM → GC .
Then, the condition (18) becomes Re(iG̃(z)) = w(f0(z)), z ∈ C, where G̃(z) =
H(0)(f0(z)) regular in GC , and continuous in C ∪ GC . Its unique solution is

H(0)(x, 0) = −1
2π

∫

|t|=1
w(f0(t))(t+f(x))

t−f(x)
dt
t + N, x ∈ M ∪ GM, (19)

where N some constant, determined by substituting x = 0 ∈ GM in (19),
and having in mind that H(0)(0, 0) = 1 − ρ∗. Using similar arguments, we can
determine H(0)(0, y). Following the lines in Subsect. 4.1, we can finally obtain
H(n)(x, y), n = 0, 1, 2.

In order everything to be well defined we have to compute the conformal
mapping and its inverse; see [2]. Firstly, we parametrize M in polar coordinates,
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i.e., M = {x : x = ρ(φ) exp(iφ), φ ∈ [0, 2π]}. Following [2], ρ(φ) = δ(φ)
cos(φ) , where

δ(φ), is the unique solution of δ − cos(φ)
√

m(δ), φ ∈ [0, 2π]. Then,

f0(z) = z exp[ 1
2π

∫ 2π

0
log{ρ(ψ(ω))} eiω+z

eiω−z dω], |z| < 1,

ψ(φ) = φ − ∫ 2π

0
log{ρ(ψ(ω))} cot(ω−φ

2 )dω, 0 ≤ φ ≤ 2π,
(20)

i.e., ψ(.) is uniquely obtained as the solution of Theodorsen integral equation
with ψ(φ) = 2π − ψ(2π − φ), where f0(0) = 0 and f0(z) = f0(z).

Performance Measures: Denote by H
(n)
1 (x, y), H

(n)
2 (x, y), the derivatives of

H(n)(x, y), n = 0, 1, 2, with respect to x and y, respectively. Then, E(Qk) =
H

(0)
k (1, 1) + H

(1)
k (1, 1) + H

(2)
k (1, 1), k = 1, 2. Due to space constraints we only

focus on the case μ1μ2 �= d1d2 and the derivation of E(Q1). Using (2), (5), (16),

H
(0)
1 (1, 1) = λ1(d1+μ2)+μ2(θt1+μqr1)−d1(μ(p+qr2+θ(t0+t2)))

Mx
H

(0)
1 (1, 0)

+ ]λ1(d1+μ2)+μ2(θt1+μqr1)]H
(0)(1,0)+[λ1(d2+μ1)+d2(θt1+μqr1)]H

(0)(1,0)
Mx

−λ1(d1+d2)H
(0)(0,0)+(λ̃1+μ2(θt1+μqr1))H

(0)(1,1)
Mx

,

H
(1)
1 (1, 1) = αH

(0)
1 (1,1)−(d1+μ2)H

(0)
1 (1,0)−μqr1−θt1

μ+θ ,

H
(2)
1 (1, 1) = θ

ν (H(1)
1 (1, 1) + t1H

(0)(1, 1)),

H
(0)
1 (1, 0) =

μ1μ∗
2(

x∗
x∗−1 )

r1 ( x∗
x∗−1 )

r2

μ1μ2−d1d2
exp[ 1

2iπ

∫

|t|=1
log{J(t)}f(1)

t(t−f(1)) dt]

×{ r1
x∗−1 + r2

x∗−1 + 1
2iπ

∫

|t|=1
log{J(t)}f ′(1)

(t−f(1))2 dt}.

(21)
E(Q1) is obtained using (9), (17), (21). Similarly, we can obtain E(Q2).

5 The Symmetrical System

We now focus on the symmetrical system assuming hereon that λj = λ̄, μj = μ̄,
μ∗

j = μ∗, j = 1, 2, r1 = r2 = 1/2, t1 = t2 = t. Thus, α = 2(λ̄ + μ̄), d1 = d2 :=
d = μ̄ − μ∗, λ̃1 = λ̃2 = λ̃. This model is of a great interest since we are able
to obtain closed form expressions for the expected number of packets stored at
each relay node without solving a boundary value problem.

Note that, H
(0)
1 (1, 1) = H

(0)
2 (1, 1), H(0)(1, 0) = H(0)(0, 1) and H

(0)
1 (1, 0) =

H
(0)
2 (0, 1). Let E(Q(n)

j ) = H
(n)
j (1, 1), j = 1, 2, n = 0, 1, 2. Using (5), (8), (10),

E(Q(0)
1 ) = (2λ̄+θ+μq

2 )[λ̄+μq
2 +λ̄H(0)(1,1)]+H

(0)
1 (1,0)[d(μp+θt0)+μ∗(μq

2 +θt)−λ̄(d+μ̄)]

μ̄(μp+θt0)−λ̃
,

(22)
where μ̄(μp + θt0) > λ̃ (i.e., the stability condition). Setting y = x in (5),

d
dx [H(0)(x, x)]|x=1 = 2λ̄(λ̄+μq

2 )+λ̄(2λ̄+θt+μq
2 )H(0)(1,1)+(d+μ̄)(μp+θt0−2λ̄)H

(0)
1 (1,0)

2(μ̄(μp+θt0)−λ̃)
,

(23)



58 I. Dimitriou

Clearly, due to the symmetry, d
dx [H(0)(x, x)]|x=1 = H

(0)
1 (1, 1) + H

(0)
2 (1, 1) =

2H
(0)
1 (1, 1), and thus after some algebra, we can obtain from (22), (23),

E(Q(0)
1 ) = 1

μ∗(μ+θ)(μ̄(μp+θt0)−λ̃)

{
λ̄(2λ̄ + θt + μq

2 )H(0)(1, 1)[μ̄(μp + θt0)
+μ∗(μq

2 + θt) − λ̄(d + μ̄)] + (λ̄ + μq
2 )[2λ̄μ̄(μ + θ)+(d + μ̄)(μp + θt0)(μq

2 + θt)]
}

.

Using (2), (3), (22) we can easily obtain after simple calculations,

E(Q(1)
1 ) = (μ+θ)[αE(Q

(0)
1 )−(d+μ̄)H

(0)
1 (1,0)]−(2θt+μq)(λ̄+μq

2 +λ̄H(0)(1,1))

(μ+θ)2 ,

E(Q(2)
1 ) = θ

ν E(Q(1)
1 ),

(24)

where H
(0)
1 (1, 0) is found by (22) and λ̃ = λ̄(2λ̄ + 2μ̄ + θt + μ q

2 ). Therefore,
E(Q1) = E(Q2) = E(Q(0)

1 ) + E(Q(1)
1 )(1 + θ

ν ).

6 A Special Case: A Traditional Cognitive Network

Let μi = φiμ
∗
i , i = 1, 2, φ1 + φ2 = 1. In the following we focus on a special case

of the model by giving absolute priority to R1. In such a case φ1 = 1, and thus,
A(x, y) = 0. Thus, when both relay nodes are non-empty, R2 remains silent (i.e.,
R1 is the primary user and is allowed to access the spectrum at any time, and R2

is the secondary user and has to transmit opportunistically by taking advantage
of the idle periods of the primary nodes; [18]). Then, (5) is now written as

R̃(x, y)H(0)(x, y) = B̃(x, y)H(0)(0, y) + C̃(x, y)(1 − ρ∗), (25)

where,

R̃(x, y) = xy(λ̃2(y − 1) + λ̃1(x − 1)) + μ∗
1y[(μ(p + qr2)

+θ(t0 + t2))(1 − x) + (θt2 + μqr2)(y − 1)],

B̃(x, y) = μ∗
2x[(y − 1)(μ(p + qr1) + θ(t0 + t1) − λ2y) + (1 − x)(θt1 + μqr1 + λ1y)]

+μ∗
1y[(1 − x)(μ(p + qr2) + θ(t0 + t2) − λ1x) + (y − 1)(θt2 + μqr2 + λ2x)],

C̃(x, y) = μ∗
2x[(1 − y)(μ(p + qr1) + θ(t0 + t1) − λ2y) + (x − 1)(θt1 + μqr1 + λ1y)].

Using Rouche’s theorem we can easily prove that the kernel R̃(x, y) has a
unique zero, say x = ξ(y), inside the unit circle. For such a x, the right hand
side of (25) vanishes, and we obtain

H(0)(0, y) = −C̃(ξ(y),y)(1−ρ∗)
B̃(ξ(y),y)

,

Substituting back in (25), and using (2), (3), we obtain,

H(0)(x, y) = (1−ρ∗)[C̃(x,y)B̃(ξ(y),y)−C̃(ξ(y),y)B̃(x,y)

B̃(ξ(y),y)R̃(x,y)
,

H(1)(x, y) = (1−ρ∗)
B̃(ξ(y),y)R̃(x,y)T (x,y)

{C̃(ξ(y), y)[R(x, y)(μ∗
1 − μ∗

2)

−(λ + μ∗
1)B̃(x, y)] + B̃(ξ(y), y)[(λ + μ∗

1)C̃(x, y) − μ∗
1R(x, y)]},

H(2)(x, y) = θ[1+t1(x−1)+t2(y−1)]
ν H(1)(x, y),

where, T (x, y) = μ + θ + (θt1 + μqr1)(x − 1) + (θt2 + μqr2)(y − 1).
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7 Numerical Examples

Numerical Example 1: The case μ1μ2 �= d1d2 (Symmetrical model) We focus on
the symmetrical model studied in Sect. 5. Set θ = 0.7, t0 = 0.2, t = 0.4, p = 0.7.
In Fig. 2 we observe how E(Q1)(= E(Q2)) evolves for increasing values of λ̄ and
μ∗. In particular, in Fig. 2 (left) we can observe the effect of the service rate
at node D on E(Q1). As expected, by increasing the packet generation rate λ̄,
E(Q1) increases. That increase becomes more apparent when μ decreases. Sim-
ilar results can be obtained from Fig. 2 (right), where the effect of recovery rate
ν is depicted. In both figures, we have to mention the benefits of retransmission
control, in presence of μ∗ (recall that μ∗ is the retransmission rate of a relay node
when the other is empty). In Fig. 3 we observe E(Q1) as a function of (μ̄, μ∗)
(left, μ = 5), and (μ, μ∗) (right, μ̄ = 4). In the former case, we can observe how
sensitive is E(Q1), as we slightly increase λ̄, and especially when μ∗ takes small
values (“pessimistic” retransmission control).
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Fig. 2. Effect of μ (for ν = 6, left), and ν (for μ = 5, left) on E(Q1).

In the latter case, we can observe the impact of service rate μ on E(Q1).
Clearly, if we slightly increase λ̄ from 1 to 1.2, E(Q1) increases dramatically as
μ decreases. That increase seems to be irreversible even when we increase μ∗.

3
4

5
6

7
8

9

4

6

8

0

2

4

6

μ̄μ

E
Q

λ̄

λ̄

4
5

6
7

8
9

4

6

8

0

10

20

30

μμ

E
Q

λ̄

λ̄
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Numerical Example 2: The case μ1μ2 �= d1d2 (Stability region) Fig. 4 (left)
provides set of arrival rate vectors (λ̂1, λ̂2) for which the system is stable,
for (μ1, μ2) = (4, 5), μ∗

1 = 6. Recall that λ̂j , j = 1, 2, is the rate at which
packets flow into Rj (see Sect. 3). We can observe that when we increase μ∗

1 from
6 (Blue+Red region) to 12 (Blue+Yellow region) the stability region changes sig-
nificantly, since the increase in μ∗

1 allows R1 to retransmits faster. As a result,
R1 can handle more packets, and thus, we can allow larger values for λ̃1.

Numerical Example 3: The case μ1μ2 �= d1d2 (Simulations) In the following we
perform simulations experiments that show that measures Γ1, Γ2 introduced in
Subsect. 3.1 allow to delimit accurate stability/instability regions. More precisely,
we study the dynamics of the relay nodes depending on the values of Γ1, Γ2. Set
λ2 = 4, μ = 10, μ1 = 10, μ2 = 12, μ∗

1 = 15, θ = 3, p = 0.8, r1 = r2 = 0.5,
t0 = 0.4, t1 = t2 = 0.3, ν = 5. Relay node dynamics when λ1 = 3, μ2 = 10 are
presented in Fig. 4 (right).
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Fig. 4. Effect of μ∗
1 on the stability region (left) and relay dynamics for λ1 = 3 (right).

(Color figure online)

There, we observe that the system becomes unstable, since the conditions of
Theorem 1 are violated, i.e., Mx = 76.3 > 0, My = 17.4 > 0, Γ1 > 0, Γ2 > 0. In
Fig. 5 we let λ1 = 2 and in the left hand-side sub-figure we have Mx = −28.4 < 0,
My = 5.4 > 0, and Γ1 < 0, Γ2 < 0. It is easily seen that the system is stable, as
the ergodicity conditions are satisfied.
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In Fig. 5 (right), we observe the impact of the proposed queue-aware (cog-
nitive) protocol. In particular, when we decrease μ∗

2 from 18 to 5, ergodicity
conditions are violated since Γ2 > 0. As a result R2 becomes unstable.
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Abstract. In this work, we consider an asymmetric two-user random
access wireless network with interacting nodes, time-varying links and
multipacket reception capabilities. The users are equipped with infinite
capacity buffers where they store arriving packets that will be trans-
mitted to a destination node. Moreover, each user employs a general
transmission control protocol under which, it adapts its transmission
probability based both on the state of the other user, and on the channel
state information according to a Gilbert-Elliot model. We study a two-
dimensional discrete time Markov chain, investigate its stability condi-
tion, and show that its steady state performance is expressed in terms of
a solution of a Riemann-Hilbert boundary value problem. Moreover, for
the symmetrical system, we provide closed form expressions for the aver-
age delay at each user node. Numerical results are obtained and show
insights in the system performance.

Keywords: Boundary value problem · Random access · Multipacket
reception · Adaptive transmission · Channel aware · Stability region ·
Delay analysis · Gilbert-Elliott channel

1 Introduction

Random access has re-gained attention recently because of the need for massive
uncoordinated access in large networks which will be common in the fifth gen-
eration of mobile networks (5G) era [1,4,28] (not an exhaustive list). Thus, the
study of random access in large networks is of major importance [4]. However,
there are still many unanswered fundamental questions regarding the perfor-
mance of random access even in small networks [14,18].

When the traffic in a network is bursty, a meaningful performance measure is
the stable throughput region i.e. the stability region, which gives the set of arrival
rates such that there exist transmission probabilities under which the system is
stable [24,32,34]. Characterizing the stability region in random access networks
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-61428-1 5
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is a well known difficult problem because of the interaction of the queues. The
stability region is a throughput metric with bounded delay guarantees, but in
most of the works appeared in the past, stability and delay were studied in isola-
tion. The stability region of a two-user random access network with traditional
collision channel has been studied in [32,34,35]. A more detailed treatment of
stable throughput for various cases can be found in [22]. In [21], the stability
region of a cognitive radio system of two source-destination pairs in the presence
of imperfect sensing was studied. For a three-user random access network with
collision channel model the stability region was obtained in [34], while for the
case of more than three users the exact stability region is not known yet except
for some derived bounds given in [24].

Although stable throughput region in random access systems has been stud-
ied for several cases, the delay performance is so far overlooked in the research.
5G was proposed aiming to enhance the networking capabilities of mobile users
[1,28]. Differentiated from 4G, benefits offered by 5G will be much more than
the increased maximum throughput [1]. Thus, the rapid growth on supporting
real-time applications requires delay-based guarantees. However, the character-
ization of delay even in small networks with random access is rather difficult,
even for the traditional collision model [26]. Although the traditional collision
channel model is suitable for wire-line communications, it is not an appropriate
model for probabilistic reception in wireless multiple access scenarios. Moreover,
most of the related works are based on the strong assumption of the absolute
symmetry of the network; e.g., [15,27,33]. More importantly they did not take
into account the impact of time-varying links, e.g., [27,33], as well as the ability
of a node to adapt its transmission probability based on the knowledge of the
status of neighbor nodes, which in turn, leads to self-aware networks. Note that
this feature is very common in cognitive radios [5,6,21,25].

Contribution. In this work, we study an asymmetric two-user random access
wireless network where the user’s transmission probability is adapted based both
on the status of the other user, and on the channel state. We model the state of
the wireless channels as a Gilbert-Elliot model that changes between a “good”
and a “bad” state. Our motivation stems from the fact that the channel con-
ditions may vary, and thus, the success probability of a packet transmission
is affected. Moreover, we take account advances in multiuser detection, which
allow the receiver to employ multipacket reception (MPR) capabilities, and to
correctly receive at most one user packet, even if many users transmit (i.e., the
“capture” effect).

We analyze a system of two queues, we investigate the stable throughput,
and the queueing delay. Finally, we evaluate numerically the derived analytical
results. Our system is modeled as a two-dimensional discrete time Markov chain,
and we show that its steady-state performance is expressed in terms of the solu-
tion of a Riemann-Hilbert problem [19]. For related works on queueing systems
using the theory of boundary value problems see e.g. [2,3,8–13,16,17,26,31,36].
To the best of our knowledge there is no other work in the related literature in
which exact expressions for the stability conditions of a random access system
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where a user adapts its transmission probability based on its “knowledge” about
both the status of the other, and of the channel state. In such a case, we take
into account the wireless interference as well as the complex interdependence
among users’ nodes due to the shared medium. Clearly, such a protocol leads
to substantial performance gains, since each user exploits the idle slots of the
other. More importantly, besides its applicability, our work is also theoretically
oriented, since we provide, for the first time, an exact detailed analysis of an
asymmetric adapted random access wireless system with MPR capabilities, and
obtain the generating function of the stationary joint queue length distribution
with the aid of the theory of boundary value problems.

The rest of the paper is organized as follows. In Sect. 2 we describe the
model in detail, and derive the fundamental functional equation. In Sect. 3 we
obtain some important results for the following analysis, and investigate the
stability conditions. Section 4 is devoted to the formulation and solution of two
boundary value problems, the solution of which provides the generating function
of the joint queue length distribution of user nodes. In Sect. 5 we obtain explicit
expressions for the average delay at each user for the symmetrical system. Finally,
in Sect. 6 we obtain useful numerical examples that show insights in the system
performance.

2 Model Description and the Functional Equation

We consider an asymmetric random access system consisting of N = 2 users com-
municating with a common receiver. Each user has an infinite capacity buffer, in
which stores arriving and backlogged packets. Packets have equal length and the
time is divided into slots corresponding to the transmission time of a packet. At
the beginning of each slot, there is an opportunity for the user node k, k = 1, 2,
to transmit a packet to the receiver.

The channel of a particular link is independent between users, and varies
between slots according to a Gilbert-Elliott model, where it can be in one of two
states at any given time slot: the good state, denoted by “G” and the bad state,
denoted by “B”. The channel state is assumed to be fixed during a slot duration
and varies in an independent and identically distributed (i.i.d.) manner between
slots 1. The long term proportion of time in which user k’s channel is in state i

is denoted by s
(k)
i , i ∈ {B,G}, k ∈ {1, 2}; and can be obtained either through

channel measurements or through a physical model of the channels.
Users have perfect channel knowledge and adjust their transmission proba-

bilities (transmission control) according to the channel state. Due to the interfer-
ence among the stations we consider the following opportunistic policy: If both
stations are non empty, station k, k = 1, 2, transmits a packet according to a
Bernoulli stream with probability qik independently, q̄ik is the probability that
1 This model can capture the case where the wireless channel has strong interference

by another external network or when the channel is in deep fading. In both cases
we can assume that the channel is in the bad state. It is outside of the scope of this
version of the paper to consider detailed physical layer considerations.
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station k does not make a transmission in a slot, given that his channel is in
state i ∈ {B,G}. If station 1 (resp. 2) is the only non-empty, it changes its trans-
mission probability to q∗

ik independently2, q̄∗
ik = 1 − q∗

ik is the probability that
station k does not make a transmission in the given slot. Note that in our case,
a node is aware of the state of the other node. This is a common assumption in
the literature related to cognitive wireless networks [5,6,22,25].

The success of a transmission depends on the underlying channel model.
The MPR channel model used in this paper is a generalized form of the packet
erasure model. In particular we focus on a subclass of MPR model, the “capture”
channels [7,23,37]. In such a case, at most one packet can be successfully received
at the destination if more than one nodes transmit. A common assumption in
wireless networks is that a packet can be decoded correctly by the receiver if
the received SINR (Signal-to-Interference-plus-Noise-Ratio) exceeds a certain
threshold. The set of transmitting nodes in a given timeslot is denoted by T . Let
fik/T the probability that a packet transmitted from node k with channel state
i is successfully decoded at the destination, i.e., fik/T = Pr(γik/T > θ), where
γik/T denotes the SINR of the signal transmitted from node i with channel state
k at the receiver given the channel states of the transmitters and the threshold
for the successful decoding θ, which depends on the modulation scheme, target
bit error rate and the number of bits in the packet. Without loss of generality
we assume that when the channel state is “bad” and transmission fails with
probability 1,3 i.e., fB,k/T = 0, k = 1, 2. Furthermore, let f̃i,k/{i,k} be the success
probability of node k when it is the only non empty (f̃B,k/{B,k} = 0, k = 1, 2).
We consider the following success probabilities for nodes 1 and 2

f̃G,1/{G,1} > fG,1/{G,1} > fG,1/{G,1;B,2} > fG,1/{G,1;G,2},
f̃G,2/{G,2} > fG,2/{G,2} > fG,2/{B,1;G,2} > fG,2/{G,1;G,2}.

Note that the success probability when a packet is transmitted in the presence of
interference cannot exceed the success probability when it is transmitted alone.
Let also denote by f0/{G,1;G,2} = 1 − fG,1/{G,1;G,2} − fG,2/{G,1;G,2}, f0/{G,k} =
1 − fG,k/{G,k}, f̃0/{G,k} = 1 − f̃G,k/{G,k}, the probabilities that no packets will
be successfully transmitted.

In case of unsuccessful transmissions the packets have to be re-transmitted
in a later slot. We assume that the receiver gives an instantaneous (error-free)
feedback of all the packets that were successful in a slot at the end of the slot to
all the nodes. The nodes remove the successfully transmitted packets from their
buffers while unsuccessful packets are retained.

Let {Ak,n}n∈N be a sequence of i.i.d. random variables where Ak,n represents
the number of packets which arrive at buffer k in the interval (n, n + 1], with
E(Ak,n) = ̂λk < ∞. Denote by D(x, y) = limn→∞ E(xA1,nyA2,n), |x| ≤ 1,
2 We consider the general case for q∗

ik, this can handle cases where the node can-
not transmit with probability one even if it is transmitting alone. Such a scenario
may occur when the nodes are subject to energy limitations. The study of energy
harvesting in random access networks has been considered in [5,20,29,30].

3 We assume this mostly for simplicity, however, our work can be extended for the
case that the success probability is not zero when the channel is in the bad state.
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|y| ≤ 1, the generating function of the stationary joint distribution of the number
of arriving packets in any slot. In this work we assume that the arrival processes
at both user nodes are independent and geometrically distributed, i.e.,

D(x, y) = [(1 + ̂λ1(1 − x))(1 + ̂λ2(1 − y))]−1.

Denote by Nk,n the number of packets at user node k at the beginning of the
n-th slot. Then, Yn = (N1,n, N2,n) is a discrete time Markov chain with state
space E = {(i, j) : i, j = 0, 1, 2, . . .}. The users’ queues evolve as

Nk,n+1 = [Nk,n − Dk,n]+ + Ak,n, k = 1, 2, (1)

where Dk,n is the number of departures from user k queue at time slot n. Let
H(x, y) be the generating function of the joint stationary queue process, viz.

H(x, y) = limn→∞ E(xN1,nyN2,n), |x| ≤ 1, |y| ≤ 1.

Then, by exploiting (1) (see Appendix A), we obtain after lengthy calculations,

R(x, y)H(x, y) = A(x, y)H(x, 0) + B(x, y)H(0, y) + C(x, y)H(0, 0), (2)

where,

R(x, y) = D−1(x, y) + s
(1)
G qG1q̂12(1 − 1

x ) + s
(2)
G qG2q̂21(1 − 1

y ),

A(x, y) = s
(2)
G qG2q̂21(1 − 1

y ) + d1,2(1 − 1
x ),

B(x, y) = s
(1)
G qG1q̂12(1 − 1

x ) + d2,1(1 − 1
y ),

C(x, y) = d2,1( 1
y − 1) + d1,2( 1

x − 1),

and,

q̂km = (s(m)
G q̄Gm + s

(m)
B q̄Bm)fG,k/G,k + s

(m)
B qBmfG,k/{G,k;B,m}

+s
(m)
G qGmfG,k/{G,k;G,m}, k,m ∈ {1, 2}, k �= m,

dk,m = s
(k)
G qGk q̂km − s

(k)
G q∗

Gkf̃G,k/G,k, k,m ∈ {1, 2}, k �= m.

Some interesting relations can be obtained directly from the functional Eq. (2).
Taking y = 1, dividing by x − 1 and taking x → 1 in (2), and vice versa, yield
the following “conservation of flow” relations:

̂λ1 = s
(1)
G qG1q̂12(1 − H(0, 1)) − d1,2(H(1, 0) − H(0, 0)),

̂λ2 = s
(2)
G qG2q̂21(1 − H(1, 0)) − d2,1(H(0, 1) − H(0, 0)).

(3)

Using (3), we distinguish the analysis in two cases, which differ both from the
modeling and the technical point of view:

1. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1, Eq. (3) yields

H(0, 0) = 1 −
(

̂λ1

s
(1)
G q∗

G1f̃G,1/G,1
+ ̂λ2

s
(2)
G q∗

G2f̃G,2/G,2

)

= 1 − ρ.
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2. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, Eq. (3) yields

H(1, 0) = d2,1̂λ1+s
(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G2/{G2}−̂λ2)+d2,1s
(1)
G q∗

G1f̃G,1/{G,1}H(0,0)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

,

H(0, 1) = d1,2̂λ2+s
(2)
G qG2q̂21(s

(1)
G q∗

G1f̃G1/{G1}−̂λ1)+d1,2s
(2)
G q∗

G2f̃G,2/{G,2}H(0,0)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

.
(4)

3 Preparatory Analysis

We now focus on the derivation of some preparatory results in view of the res-
olution of the functional Eq. (2). We first investigate the stability criteria, and
then, we focus on the analysis of the kernel equation R(x, y) = 0.

3.1 Stability Region

Based on the concept of stochastic dominant systems [32,34], we derive the
stability region, i.e., the set of vectors (̂λ1, ̂λ2), for which our system is stable.

Lemma 1. The stability region R for a fixed transmission probability vector
q := [qG1, qG2, q

∗
G1, q

∗
G2] is given by

1. In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, R = R1 ∪ R2 where,

R1 = {(̂λ1, ̂λ2) : ̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1} + d1,2
̂λ2

s
(2)
G qG2q̂21

, ̂λ2 < s
(2)
G qG2q̂21},

R2 = {(̂λ1, ̂λ2) : ̂λ2 < s
(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

, ̂λ1 < s
(1)
G qG1q̂12}.

2. In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1, R = {(̂λ1, ̂λ2) : ρ < 1}.

Proof: In order to determine the stability region, we apply the stochastic domi-
nance technique developed in [32,34], which consists of considering hypothetical
auxiliary systems that closely parallel the operation of the original system but
dominate it in a well defined manner. Under this approach, we consider the R1,
and R2 dominant systems. In the Rk dominant system, whenever the queue of
user node k, k = 1, 2 empties, it continues to transmit “dummy” packets.

The dominant system has the following properties [32]: (i) the queue lengths
in the dominant system are no shorter than the queues in the original system.
Thus, if the queues in the dominant system are stable, then, the queues in the
original system are stable as well, (ii) the two systems coincide at saturation, that
is, if the queue of user 1 never empties (that is, if it is saturated or unstable), then
the dominant system, and the original system are indistinguishable; and thus, the
instability of the dominant system implies the instability of the original system.
Clearly, (i) and (ii) imply that the stability condition of the dominant system
is a necessary and sufficient for the stability of the original system and hence,
the stable throughput regions of both systems coincide for fixed transmission
probabilities.
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Thus, in R1, user node 1 never empties, and its service rate depends on
whether user node 2 is empty or not. On the other hand, user node 2 “sees” a
constant service rate. Therefore, in the R1 dominant system, ̂λ2 < s

(2)
G qG2q̂21.

Moreover, the stability condition for the user node 1 is given by,

̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1}

(

1 − ̂λ2

s
(2)
G qG2q̂21

)

+ s
(1)
G qG1q̂12

̂λ2

s
(2)
G qG2q̂21

.

Thus, the sufficient condition for the ergodicity of the R1 dominant system is,

̂λ1 < s
(1)
G q∗

G1f̃G,1/{G,1} + d1,2̂λ2

s
(2)
G qG2q̂21

, and ̂λ2 < s
(2)
G qG2q̂21. (5)

Similarly, the sufficient ergodicity condition of the R2 system is given by,

̂λ1 < s
(1)
G qG1q̂12, and ̂λ2 < s

(2)
G q∗

G2f̃G,2/{G,2} + d2,1̂λ1

s
(1)
G qG1q̂12

. (6)

Combining the sufficient conditions for both the dominant systems (i.e., (5), (6))
yields the sufficiency part of the lemma. The necessary part of the lemma follows
by an “indistinguishability” argument similar to the one used in [32]. �	

Remark: R is a convex polyhedron when qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

≥ 1. When
equality holds, the region is a triangle and coincides with the case of time-
sharing. Convexity is an important property since it corresponds to the case
when parallel concurrent transmissions are preferable to time-sharing.

3.2 Analysis of the Kernel

We now provide some detailed properties of the kernel R(x, y), which are impor-
tant for the formulation and solution of the boundary value problems. Clearly,

R(x, y) = a(x)y2 + b(x)y + c(x) = â(y)x2 +̂b(y)x + ĉ(y),

where, a(x) = ̂λ2x(̂λ1(x − 1) − 1), c(x) = −s
(2)
G qG2q̂21x, b(x) = x(̂λ + ̂λ1

̂λ2 +
s
(1)
G qG1q̂12 + s

(2)
G qG2q̂21) − s

(1)
G qG1q̂12 − ̂λ1(1 + ̂λ2)x2, â(y) = ̂λ1y(̂λ2(y − 1) − 1),

ĉ(y) = −s
(1)
G qG1q̂12y, ̂b(y) = y(̂λ+ ̂λ1

̂λ2 + s
(1)
G qG1q̂12 + s

(2)
G qG2q̂21)− s

(2)
G qG2q̂21 −

̂λ2(1 + ̂λ1)y2. The roots of R(x, y) = 0 are X±(y) = −̂b(y)±
√

Dy(y)

2â(y) , Y±(x) =
−b(x)±

√
Dx(x)

2a(x) , where Dy(y) = ̂b(y)2 − 4â(y)ĉ(y), Dx(x) = b(x)2 − 4a(x)c(x).

Lemma 2. For |y| = 1, y �= 1, the kernel equation R(x, y) = 0 has exactly
one root x = X0(y) such that |X0(y)| < 1. For ̂λ1 < s

(1)
G qG1q̂12, X0(1) = 1.

Similarly, we can prove that R(x, y) = 0 has exactly one root y = Y0(x), such
that |Y0(x)| ≤ 1, for |x| = 1.
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Proof: It is easily seen that R(x, y) = xy−Ψ(x,y)
xyD(x,y) , where Ψ(x, y) = D(x, y)[xy −

y(x − 1)s(1)G qG1q̂12 − x(y − 1)s(2)G qG2q̂21], where for |x| ≤ 1, |y| ≤ 1, Ψ(x, y) is a
generating function of a proper probability distribution. Now, for |y| = 1, y �= 1
and |x| = 1 it is clear that |Ψ(x, y)| < 1 = |xy|. Thus, from Rouché’s theorem,
xy − Ψ(x, y) has exactly one zero inside the unit circle. Therefore, R(x, y) = 0
has exactly one root x = X0(y), such that |x| < 1. For y = 1, R(x, 1) = 0 implies

(x − 1)[̂λ1 − s
(1)
G qG1q̂12

x ] = 0. Therefore, for y = 1, and since ̂λ1 < s
(1)
G qG1q̂12, the

only root of R(x, 1) = 0 for |x| ≤ 1, is x = 1. �	
Lemma 3. The algebraic function Y (x), defined by R(x, Y (x)) = 0, has four
real branch points 0 < x1 < x2 ≤ 1 < x3 < x4 < 1+̂λ1

̂λ1
. Moreover, Dx(x) < 0,

x ∈ (x1, x2)∪(x3, x4) and Dx(x) > 0, x ∈ (−∞, x1)∪(x2, x3)∪(x4,∞). Similarly,
X(y), defined by R(X(y), y) = 0, has four real branch points 0 ≤ y1 < y2 ≤ 1 <

y3 < y4 < 1+̂λ2
̂λ2

, and Dx(y) < 0, y ∈ (y1, y2) ∪ (y3, y4) < and Dx(y) > 0,
y ∈ (−∞, y1) ∪ (y2, y3) ∪ (y4,∞).

Proof: The proof is based on simple algebraic arguments; see also [13]. �	

Consider now the cut planes: ˜̃Cx = Cx − ([x1, x2] ∪ [x3, x4]), ˜̃Cy = Cy −
([y1, y2] ∪ [y3, y4]), where Cx, Cy the complex planes of x, y, respectively. In
˜̃Cx (resp. ˜̃Cy), let Y0(x) (resp. X0(y)) be the zero of R(x, Y (x)) = 0 (resp.
R(X(y), y) = 0) with the smallest modulus.

Lemma 4. 1. For y ∈ [y1, y2], the algebraic function X(y) lies on a closed
contour M, which is symmetric with respect to the real line and defined by

|x|2 = m(Re(x)), m(δ) = s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2ζ(δ))
, |x|2 ≤ s

(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y2)
,

where, k(δ) := ̂λ + ̂λ1
̂λ2 + s

(1)
G qG1q̂12 + s

(2)
G qG2q̂21 − 2̂λ1(1 + ̂λ2)δ and, ζ(δ) =

k(δ)−
√

k2(δ)−4s
(2)
G qG2q̂21̂λ2(1+̂λ1(1−2δ))

2̂λ2(1+̂λ1(1−2δ))
.

Set β0 :=
√

s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y2)
, β1 := −

√

s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y1)
the extreme right and left

point of M, respectively.
2. For x ∈ [x1, x2], the algebraic function Y (x) lies on a closed contour L, which

is symmetric with respect to the real line and defined by

|y|2 = v(Re(y)), v(δ) = s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1θ(δ))
, |y|2 ≤ s

(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x2)
,

where l(δ) := ̂λ + ̂λ1
̂λ2 + s

(1)
G qG1q̂12 + s

(2)
G qG2q̂21 − 2̂λ2(1 + ̂λ1)δ, and θ(δ) =

l(δ)−
√

l2(δ)−4s
(1)
G qG1q̂12̂λ1(1+̂λ2(1−2δ))

2̂λ1(1+̂λ2(1−2δ))
.

Set η0 :=
√

s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x2)
, η1 := −

√

s
(2)
G qG2q̂21

̂λ2(1+̂λ1−̂λ1x1)
the extreme right and left

point of L, respectively.
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Proof: We only focus on the first part. For y ∈ [y1, y2], Dy(y) < 0, so X±(y) are

complex conjugates. Thus, |X(y)|2 = s
(1)
G qG1q̂12

̂λ1(1+̂λ2−̂λ2y)
= g(y). It also follows that

Re(X(y)) = y(̂λ+̂λ1̂λ2+s
(1)
G qG1q̂12+s

(2)
G qG2q̂21)−s

(2)
G qG2q̂21−̂λ2(1+̂λ1)y

2

2̂λ1y(1+̂λ2−̂λ2y)
. (7)

Clearly, g(y) is an increasing function for y ∈ [0, 1] and thus, |X(y)|2 ≤ g(y2) =
β0. Using simple algebraic considerations we can prove that, X0(y1) = β1 is
the extreme left point of M. Finally, ζ(δ) is derived by solving (7) for y with
δ = Re(X(y)), and taking the solution such that y ∈ [0, 1]. �	

4 The Boundary Value Problems

In the following, we distinguish the analysis in two cases, which differ from both
the modeling and the technical point of view.

4.1 A Dirichlet Boundary Value Problem

Assume that qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

= 1. Then, A(x, y) = s
(2)
G qG2q̂21

d2,1
B(x, y).

Therefore, for y ∈ Dy = {y ∈ Cy : |y| ≤ 1, |X0(y)| ≤ 1},

s
(2)
G qG2q̂21H(X0(y), 0) + d2,1H(0, y) + s

(2)
G qG2q̂21C(X0(y),y)

A(X0(y),y)
(1 − ρ) = 0. (8)

For y ∈ Dy − [y1, y2] both H(X0(y), 0), H(0, y) are analytic and the right-hand
side in (8) can be analytically continued up to the slit [y1, y2], or equivalently,
for x ∈ M

s
(2)
G qG2q̂21H(x, 0) + d2,1H(0, Y0(x)) + s

(2)
G qG2q̂21C(x,Y0(x))

A(x,Y0(x))
(1 − ρ) = 0. (9)

Then, by multiplying both sides of (9) by the imaginary complex number i, and
noticing that H(0, Y0(x)) is real for x ∈ M, since Y0(x) ∈ [y1, y2], we have

Re (iH(x, 0)) = Re
(

−iC(x,Y0(x))
A(x,Y0(x))

)

(1 − ρ), x ∈ M. (10)

To proceed, we have to check for possible poles of H(x, 0) in Sx := GM ∩ D̄c
x,

where GU be the interior domain bounded by U , and Dx = {x : |x| < 1},
D̄x = {x : |x| ≤ 1}, D̄c

x = {x : |x| > 1}. These poles, if exist, they coincide
with the zeros of A(x, Y0(x)) in Sx (see Appendix B). In order to solve (10) we
must firstly conformally transform the problem from M to the unit circle C.
Let the conformal mapping z = γ(x) : GM → GC , and its inverse given by
x = γ0(z) : GC → GM. Then, we have the following problem: Find a function
T̃ (z) = H(0)(γ0(z)) regular for z ∈ GC , and continuous for z ∈ C ∪GC such that,
Re(iG̃(z)) = w(γ0(z)), z ∈ C.

In the following, we need a representation of M in polar coordinates, i.e.,
M = {x : x = ρ(φ) exp(iφ), φ ∈ [0, 2π]}. In the following we summarize the basic
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steps; see [8]. Since 0 ∈ GM, for each x ∈ M, a relation between its absolute
value and its real part is given by |x|2 = m(Re(x)) (see Lemma 4). Given the
angle φ of some point on M, the real part of this point, say δ(φ), is the solution
of δ − cos(φ)

√

m(δ), φ ∈ [0, 2π]. Since M is a smooth, egg-shaped contour,
the solution is unique. Clearly, ρ(φ) = δ(φ)

cos(φ) , and the parametrization of M in
polar coordinates is fully specified. Then, the mapping from z ∈ GC to x ∈ GM,
where z = eiφ and x = ρ(ψ(φ))eiψ(φ), satisfying γ0(0) = 0 and γ0(z) = γ0(z̄) is
uniquely determined by (see [8]),

γ0(z) = z exp[ 1
2π

∫ 2π

0
log{ρ(ψ(ω))} eiω+z

eiω−z dω], |z| < 1,

ψ(φ) = φ − ∫ 2π

0
log{ρ(ψ(ω))} cot(ω−φ

2 )dω, 0 ≤ φ ≤ 2π,
(11)

i.e., the angular deformation ψ(.) is uniquely determined as the solution of
Theodorsen integral equation with ψ(φ) = 2π − ψ(2π − φ). If H(x, 0) has no
poles in Sx, the solution of the problem defined in (10) is,

H(x, 0) = − 1−ρ
2π

∫

|t|=1
f(t) t+γ(x)

t−γ(x)
dt
t + S, x ∈ M, (12)

where f(t) = Re
(

−iC(γ0(t),Y0(γ0(t)))
A(γ0(t),Y0(γ0(t)))

)

. S is a constant to be defined by setting
x = 0 ∈ GM in (12), and using the fact that H(0, 0) = 1 − ρ, γ(0) = 0 (In
case H(x, 0) has a pole, i.e. x = x̄, we have still a Dirichlet problem for the
function (x − x̄)H(x, 0); see Appendix B). Following the discussion above, S =
(1 − ρ)(1 + 1

2π

∫

|t|=1
f(t)dt

t ). Setting t = eiφ, γ0(eiφ) = ρ(ψ(φ))eiψ(φ), we arrive
after some algebra in,

f(eiφ) = d1,2s
(2)
G q∗

G2f̃G,1/{G,1} sin(ψ(φ))(1−Y0(γ0(e
iφ))−1)

ρ(ψ(φ)){[s(2)
G qG2q̂21(1−Y −1

0 (γ0(eiφ)))+d1,2(1− cos(ψ(φ))
ρ(ψ(φ)) )]2+(d1,2

sin(ψ(φ))
ρ(ψ(φ)) )2} ,

which is an odd function of φ. Thus, S = 1 − ρ. Substituting back in (12):

H(x, 0) = (1 − ρ){1 + 2γ(x)i
π

∫ π

0
f(eiφ) sin(φ)dφ

1−2γ(x) cos(φ)−γ(x)2 }, x ∈ GM. (13)

Similarly, we can determine H(0, y) by solving another Dirichlet boundary value
problem on the contour L. Then, using (2) we uniquely obtain H(x, y).

4.2 A Homogeneous Riemann-Hilbert Boundary Value Problem

In case qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, consider the following transformation:

G(x) := H(x, 0) + s
(1)
G q∗

G1f̃G,1/{G,1}d2,1H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

,

L(y) := H(0, y) + s
(2)
G q∗

G2f̃G,2/{G,2}d1,2H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

.

Then, for y ∈ Dy,

A(X0(y), y)G(X0(y)) = −B(X0(y), y)L(y). (14)
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For y ∈ Dy − [y1, y2] both G(X0(y)), L(y) are analytic and the right-hand side
in (14) can be analytically continued up to the slit [y1, y2], or equivalently,

A(x, Y0(x))G(x) = −B(x, Y0(x))L(Y0(x)), x ∈ M. (15)

Clearly, G(x) is holomorphic in Dx, and continuous in D̄x. However, G(x) might
have poles in Sx = GM ∩ D̄c

x. These poles (if exist) coincide with the zeros of
A(x, Y0(x)) in Sx; see Appendix B. For y ∈ [y1, y2], let X0(y) = x ∈ M, and
realize that Y0(X0(y)) = y (note that B(x, Y0(x)) �= 0, x ∈ M). Taking into
account the poles of G(x), and noticing that L(Y0(x)) is real for x ∈ M,

Re[iU(x)G̃(x)] = 0, x ∈ M,

U(x) = A(x,Y0(x))
(x−x̄)rB(x,Y0(x))

, G̃(x) = (x − x̄)rG(x),
(16)

where r = 0, 1, whether x̄ is zero or not of A(x, Y0(x)) in Sx (see Appendix B).
Thus, G̃(x) is regular for x ∈ GM, continuous for x ∈ M ∪ GM, and U(x) is a
non-vanishing function on M. As usual, we must firstly conformally transform
the problem (16) from M to the unit circle C. Let the conformal mapping z =
γ(x) : GM → GC , and its inverse given by x = γ0(z) : GC → GM.

Then, the Riemann-Hilbert problem formulated in (16) is reduced to the
following: Find a function F (z) := H̃(γ0(z)), regular in GC , continuous in GC ∪C
such that, Re[iU(γ0(z))F (z)] = 0, z ∈ C.

To proceed with the solution of the boundary value problem we have to
determine its index χ = −1

π [arg{U(x)}]x∈M, where [arg{U(x)}]x∈M, denotes
the variation of the argument of the function U(x) as x moves along M in the
positive direction, provided that U(x) �= 0, x ∈ M. Following [16] we have,

Lemma 5. 1. If ̂λ2 < s
(2)
G qG2q̂21, then χ = 0 is equivalent to

dA(x,Y0(x))
dx |x=1 < 0 ⇔ ̂λ1 < s

(1)
G q∗

G1f̃G,1/{G,1} + d1,2
̂λ2

s
(2)
G qG2q̂21

,

dB(X0(y),y)
dy |y=1 < 0 ⇔ ̂λ2 < s

(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

.

2. If ̂λ2 ≥ s
(2)
G qG2q̂21, χ = 0 is equivalent to dB(X0(y),y)

dy |y=1 < 0 ⇔ ̂λ2 <

s
(2)
G q∗

G2f̃G,2/{G,2} + d2,1
̂λ1

s
(1)
G qG1q̂12

.

Thus, under stability conditions (see Lemma 1), the problem defined in (16) has
a unique solution for x ∈ GM given by,

H(x, 0) = K(x − x̄)re[
1

2iπ

∫

|t|=1
log{J(t)}dt

t−γ(x) ] − s
(1)
G q∗

G1f̃G,1/{G,1}d2,1H(0,0)

d1,2d2,1−s
(1)
G qG1q̂12s

(2)
G qG2q̂21

, (17)

where K is a constant, J(t) = U1(t)
U1(t)

, U1(t) = U(γ0(t)). Setting x = 0 in (17) we
derive a relation among K, H(0, 0). Now set x = 1 ∈ GM in (17), and use the
first in (4) to obtain K, H(0, 0). Substituting back in (17) we finally obtain,
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H(x, 0) =
̂λ1d2,1+s

(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G2/{G2}−̂λ2)

(s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1)(x̄−1)r

((x̄ − x)r

× exp[γ(x)−γ(1)
2πi

∫

|t|=1
log{J(t)}

(t−γ(x))(t−γ(1))dt]

+ q∗
G1f̃G1/{G1}d2,1x̄r

qG1q̂12s
(2)
G q∗

G2f̃G2/{G2}
exp[−γ(1)

2πi

∫

|t|=1
log{J(t)}
t(t−γ(1))dt]

)

, x ∈ GM.

(18)

Similarly, we can determine H(0, y) by solving another Riemann-Hilbert bound-
ary value problem on the closed contour L. Then, using the fundamental func-
tional Eq. (2) we uniquely obtain H(x, y).

Performance Metrics: In the following we derive formulas for the expected num-
ber of packets, and the average delay at each user node in steady state, say Mi

and Di, i = 1, 2, respectively. Denote by H1(x, y), H2(x, y) the derivatives of
H(x, y) with respect to x and y, respectively. Then, Mi = Hi(1, 1), and using
Little’s law Di = Hi(1, 1)/̂λi, i = 1, 2. Using (2), (3) after simple calculations
we have

M1 =
̂λ1+d1,2H1(1,0)

s
(1)
G qG1q̂12

, M2 =
̂λ2+d2,1H2(0,1)

s
(2)
G qG2q̂21

. (19)

We only focus on M1, D1 (similarly we can obtain M2, D2). Note that H1(1, 0)
can be obtained using (18) or (13) depending on the value of qG1q̂12

q∗
G1f̃G,1/G,1

+
qG2q̂21

q∗
G2f̃G,2/G,2

. For qG1q̂12
q∗

G1f̃G,1/G,1
+ qG2q̂21

q∗
G2f̃G,2/G,2

�= 1, and using (18) we obtain,

H1(1, 0) =
̂λ1d2,1+s

(1)
G qG1q̂12(s

(2)
G q∗

G2f̃G1/{G1}−̂λ2)

s
(1)
G qG1q̂12s

(2)
G qG2q̂21−d1,2d2,1

{γ′(1)
2πi

∫

|t|=1
log{J(t)}
(t−γ(1))2 dt

+ r
1−x̄1{r=1}}.

(20)

Substituting in (19) we obtain M1, and dividing with ̂λ1, the average delay D1.
Note that the calculation of (11) requires the evaluation of integrals (11), and
γ(1), γ′(1). For an efficient numerical procedure see [8], Section 4.1.

5 Explicit Expressions for the Symmetrical Model

In this section we consider the symmetrical model and obtain exact expres-
sions for the average delay without computing the generating function of the
stationary joint relay queue length distribution. As a symmetrical, we mean
the model where q∗

Gk = q∗
G, qik = qi, i ∈ {B,G}, λk = λ, fi,k/{i,k} = fi/{i},

fG,k/{G,k;G,m} = fG/{G;G}, fG,k/{G,k;B,m} = fG/{G;B}, f̃G,k/{G,k} = f̃G, s
(k)
i =

si, i ∈ {G,B}, k = 1, 2. Then, q̂12 = q̂21 = q̂ and d1,2 = d2,1 = d.
Due to the symmetry of the model, H1(1, 1) = H2(1, 1), H1(1, 0) = H2(0, 1).

Note that Mj = Hj(1, 1), j = 1, 2. Thus, using (2) we obtain,

M1 =
̂λ+dH1(1,0)

sGqGq̂−̂λ , (21)

where sGqGq̂ > ̂λ, due to the stability condition. Set x = y in (2), differentiate
it with respect to x at x = 1, and use the first in (3) to obtain,
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M1 + M2 = 2M1 = 2̂λ−̂λ2+2H1(1,0)(sGqGq̂+d)

sGqGq̂−̂λ . (22)

Using (21), (22), and applying Little’s law we finally derive,

M1 = M2 =
̂λ[2sGqGq̂+̂λd]

2sGq∗
Gf̃G(sGqGq̂−̂λ) , D1 = D2 = 2sGqGq̂+̂λd

2sGq∗
Gf̃G(sGqGq̂−̂λ) . (23)

6 Numerical Results

Example 1: The symmetrical model. In this example, we focus on the symmet-
rical model and investigate the effect of transmission control on the average
delay. We assume that f̃G = 0.9, fG/{G} = 0.8, fG/{G,B} = 0.7, fG/{G,G} = 0.6,
qB = 0.5. In Figs. 1 and 2 we also assume that q∗

G = 0.9. Recall that q∗
G is the

transmission probability of a station when the other is empty.
In Fig. 1 (left) we observe that the average delay increases for increasing val-

ues of ̂λ by letting qG = 0.7. More importantly, we can identify the advantage
of transmission control regarding delay. Note that when the channel remains in
the good state for longer period (i.e., sG = 0.9), the users adapt their transmis-
sion probability qG to 0.7, and thus, significant performance gains are achieved.
Similar observations can be deduced from Fig. 1 (right), where we can see that
the average delay decreases, as we increase qG. That decrease becomes more
apparent when the channel remains for longer period in the good state.

Figure 2 (left) shows the average delay as a function of (̂λ, qG). We can see
how sensitive is the average delay when ̂λ increases, and especially, when the
portion of time where the channel is in good state decreases. Similarly, when
sG decreases (see Fig. 2 (right)), the average delay increases rapidly, especially
when qG takes small values (this maybe happened when users falsely detect that
the channel is in the bad state). Finally in Fig. 3 (left) we observe that when
the channel is in good state for longer period (e.g., sG = 1), the average delay
decreases, even when q∗

G takes small values, a fact that justifies the importance
of transmission control, from the delay point of view.
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Fig. 1. Effect of transmission control on the average delay for qG = 0.7 (left), and for
̂λ = 0.1 (right).
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Fig. 2. Effect of transmission control on the average delay.
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Fig. 3. Effect of transmission control (sG, q∗
G) on the average delay for qG = 0.7 (left),

and effect of channel state on the stability region (right). (Color figure online)

Example 2: Stability region for the general model. In this example we focus on
the general model, and specifically on the case qG1q̂12

q∗
G1f̃G,1/G,1

+ qG2q̂21
q∗

G2f̃G,2/G,2
�= 1. Our

aim is to investigate the effect of channel state on the stability region. We assume
that s

(1)
G = 0.9, qG1 = 0.6, qG2 = 0.7, qB1 = 0.3, qB2 = 0.4, q∗

G1 = 0.9 = q∗
G2,

and f̃G,k/{G,k} = 0.9, fG,k/{G,k} = 0.8, fG,1/{G,1;B,2} = fG,2/{G,2;B,1} = 0.7,
fG,k/{G,1;G,2} = 0.6, k = 1, 2.

In Fig. 3 (right) we observe the impact of channel state of user 2 on the
stability region. In particular, when we decrease s

(2)
G from 0.8 to 0.4, the stability

region (i.e., the set of arrival vectors (̂λ1, ̂λ2) for which both queues are stable)
apparently decreases. Note, that the adequate arrival rate referring to queue 2 is
greatly reduced due the change of s

(2)
G . This is expected, since when s

(2)
G = 0.4,

the channel remains in the bad state for longer period and user 2 becomes
reluctant to transmit. Thus, in order to ensure stability the ̂λ2 must be reduced.

7 Summary

In this work, we considered the problem of characterizing stability and delay
behavior of an asymmetric adaptive two-user random access wireless network
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with MPR capabilities. Each user node use its knowledge about both the channel
state (characterized according to the Gilbert-Elliot model), and the status of the
other node, and accordingly adjusts its transmission probability. Stability con-
ditions were investigated based on the concept of stochastic dominant systems.
The generating function of the stationary joint queue length distribution was
derived in terms of the solution of a Riemann-Hilbert boundary value problem.
For the symmetrical system we also derived explicit expressions for the average
queueing delay at each user node without solving a boundary value problem.
Extensive numerical results shown insights into the system performance.

A Appendix

Regarding the derivation of (2), the queue evolution in (1) implies,

E(xN1,n+1yN2,n+1) = D(x, y) (P (N1,n = N2,n = 0)
+E(xN1,n1{N1,n>0,N2,n=0})[1 + s

(1)
G q∗

G1f̃G,1/{G,1}( 1
x − 1)]

+E(yN2,n1{N1,n=0,N2,n>0})[1 + s
(2)
G q∗

G2f̃G,2/{G,2}( 1
y − 1)

+E(xN1,nyN2,n1{N1,n>0,N2,n>0})[s
(1)
G qG1(s

(2)
G q̄G2 + s

(2)
B q̄B2)

×(1 + fG,1/{G,1}( 1
x − 1)) + s

(2)
G qG2(s

(1)
G q̄G1 + s

(1)
B q̄B1)(1 + fG,2/{G,2}( 1

y − 1))]

+s
(1)
G qG1s

(2)
G qG2(1 + fG,1/{G,1;G,2}( 1

x − 1) + fG,2/{G,1;G,2}( 1
y − 1))

+s
(1)
G qG1s

(2)
B qB2(1 + fG,1/{G,1;B,2}( 1

x − 1)) + s
(1)
B qB1s

(2)
G qG2

×(1 + fG,2/{B,1;G,2}( 1
y − 1)) + (s(1)G q̄G1 + s

(1)
B q̄B1)(s

(2)
G q̄G2 + s

(2)
B q̄B2)

+s
(1)
B qB1s

(2)
B qB2 + s

(2)
B qB2(s

(1)
G q̄G1 + s

(1)
B qB1) + s

(1)
B q̄B1(s

(2)
G q̄G2 + s

(2)
B q̄B2)

)

,

where 1{A} denotes the indicator function of the event A. Note that

H(x, 0) − H(0, 0) = limn→∞ E(xN1,n1{N1,n>0,N2,n=0}),
H(0, y) − H(0, 0) = limn→∞ E(yN2,n1{N1,n=0,N2,n>0}),

H(x, y) − H(x, 0) − H(0, y) + H(0, 0)=limn→∞E(xN1,nyN2,n1{N1,n>0,N2,n>0}).

B Appendix

In the following, we proceed with the study of the location of the intersection
points of R(x, y) = 0, A(x, y) = 0 (resp. B(x, y)). These points (if exist) are
potential singularities for the functions H(x, 0), H(0, y), and thus, their investi-
gation is crucial regarding the analytic continuation of H(x, 0), H(0, y) outside
the unit disk. We only focus on the intersection points of R(x, y) = 0, A(x, y) = 0.

For x ∈ ˜̃Cx and R(x, y) = 0, y = Y±(x), the resultant in y of the two poly-
nomials R(x, y) and A(x, y) is Resy(R,A;x) = x(x − 1)s(2)G qG2q̂21Z(x), where

Z(x) = −̂λ1(s
(2)
G qG2q̂21 + (1 + ̂λ1)d1,2)x2 + x[(̂λ + ̂λ1

̂λ2)d1,2

+(s(2)G qG2q̂21 + d1,2)s
(1)
G q∗

G1f̃G1/{G1}] − s
(1)
G q∗

G1f̃G1/{G1}d1,2.
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Note also that Z(0) > 0 since d1,2 < 0, and Z(1) > 0, due to the stabil-

ity conditions (see Lemma 1). If q∗
G1 ≤ min{1,

s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

}, then

limx→∞ Z(x) = −∞, and Z(x) = 0 has two roots of opposite sign, say x∗ < 0 <

1 < x∗. If s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

< α∗
1 ≤ 1, then limx→∞ Z(x) = +∞, and

Z(x) = 0 has two positive roots, say 1 < x̃∗ < x3 < x4 < x̃∗ (due to the stability
conditions). In the former case we have to check if x∗ ∈ Sx, while in the latter
case if x̃∗ ∈ Sx. These zeros, if they lie in Sx such that |Y0(x)| ≤ 1, are poles of

A(x, y). Denote from hereon x̄ = x∗, if α∗
1 ≤ min{1,

s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

},

and x̄ = x̃∗, if s
(2)
G qG2q̂21+(1+̂λ2)s

(1)
G qG1q̂12

(1+̂λ2)s
(1)
G f̃G1/{G1}

< α∗
1 ≤ 1.

References

1. Alliance, N.: NGMN 5G white paper. Next generation mobile networks, White
paper (2015)

2. Avrachenkov, K., Nain, P., Yechiali, U.: A retrial system with two input streams
and two orbit queues. Queueing Syst. 77, 1–31 (2014)

3. Boxma, O.: Two symmetric queues with alternating service and switching times.
In: Gelenbe, E. (ed.) Performance 1984, pp. 409–431. North-Holland, Amsterdam
(1984)

4. Chatzikokolakis, K., Kaloxylos, A., Spapis, P., Alonistioti, N., Zhou, C., Eichinger,
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Abstract. We consider in this paper retrial queue with one server that
serves a finite number of customers, each one producing a Poisson flow
of incoming calls. In addition, after some exponentially distributed idle
time the server makes outgoing calls of two types - to the customers in
orbit and to the customers outside it. The outgoing calls of both types
follow the same exponential distribution, different from the exponential
service time distribution of the incoming calls. We derive formulas for
computing the steady state distribution of the system state as well as
formulas expressing the main performance macro characteristics in terms
of the server utilization. Numerical examples are presented.

1 Introduction

Retrial queues of type M /G/1//N in Kendall’s notation are queueing models
with 1 server which serves N customers (clients, calls) each one producing a
Poisson flow of demands. Retrial feature is characterized by the specific behav-
iour of the arriving customers that find the server busy. These customers join
a virtual waiting room, called orbit and repeat the attempt to get service after
some time. The customers in the orbit are also called retrial customers or sources
of retrial calls, while the customers that are not in the orbit or under service are
called sources of primary calls or customers in free state.

Retrial queues arise from various real life situations as well as telecommuni-
cation and network systems (Falin and Templeton 1997; Artalejo and Gómez-
Corral 2008). For example, in a call center a customer who cannot connect with
an operator tries again later (Aguir et al. 2004). Furthermore, in modeling the
mobile cellular systems, retrial feature cannot be ignored (Tran-Gia and Mand-
jes 1997; Van Do et al. 2014). The assumption of a finite number of customers
is of special interest to practice, as in real situations the number of subscribers
is finite. In particular, the described finite single server retrial queues and its
variants are useful in modeling magnetic disk memory systems (Ohmura and
Takahashi 1985), local area networks with nonpersistent CSMA/CD protocol (Li
and Yang 1995), etc. Falin and Artalejo (1998) carried out an extensive analysis
of the single server finite source retrial queue, including the busy period distrib-
ution and the waiting time process. Distribution of the number of retrials, made
by a retrial customer while being in orbit is investigated by Dragieva (2013).
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 81–94, 2017.
DOI: 10.1007/978-3-319-61428-1 6
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Single server finite source retrial queues with two types of breakdowns and repairs
are considered by Wang et al. (2011) and by Zhang and Wang (2013).

There also exist real situations, especially in service systems where customers
who cannot receive service immediately upon arrival register to the system and
go to other places before returning to the system after some time. On the other
hand, the server once becoming idle calls for customers. The former is reflected by
retrials while the latter can be modelled by outgoing calls. These real situations
are the motivation for us to consider finite source retrial models with two-way
communication.

Some of the first results on two-way communication retrial queues are
obtained by Falin (1979), who analyzes a single server queue in which the out-
going and the incoming calls are assumed to follow the same arbitrary service
time distribution. The priority retrial queues with available buffers for the out-
going calls, studied by Falin et al. (1993) and by Choi et al. (1995) could also be
considered as two-way communication models. Artalejo and Phung-Duc (2012)
consider single and multiple servers retrial models with two-way communica-
tion where the service times of incoming and outgoing calls follow the expo-
nential distribution with distinct parameters. The corresponding M/G/1 queue
where the service times of incoming and outgoing calls follow two distinct arbi-
trary distributions is investigated by the same authors Artalejo and Phung-Duc
(2013). Sakurai and Phung-Duc (2015) consider two-way communication retrial
queues with multiple types of outgoing calls. A two-way communication M/M/1
retrial queue with server-orbit interaction is studied by Dragieva and Phung-
Duc (2016). In the model, proposed in this paper it is assumed that after some
exponentially distributed idle time the server makes outgoing calls of two types.
The outgoing calls of type 1 are directed to the customers in orbit, while these
that are of type 2 - to the customers outside the orbit. This assumption reflects
various real-life situations, like call center of a credit card company where the
operator may call to customers for some advertisement, or to the customers who
not yet pay the money. But, at the moment some of these customers may be in
the orbit. The operator is not notified for them, so that he/she may call to a
customer outside the orbit as well as to a customer in orbit. Actually, when the
population of customers is considered infinite, the probability that the server,
calling to an arbitrary individual from this population may choose one from the
orbit, is very small. Thus, in such situations it is more appropriate to model the
system by queues with finite source. This motivated us to start investigation of
finite source retrial models with two-way communication.

The rest of the current paper is organized as follows. In Sect. 2 we describe
the model in detail. The joint distribution of the server state and the orbit size
is studied in Sect. 3.1, while Sect. 3.2 deals with the main performance macro
characteristics. Section 4 is devoted to numerical examples, Sect. 5 concludes the
paper and presents some possible topics for future research.

2 Model Description

As stated in the Introduction we consider a queueing model with one server
which serves N customers. Each of these customers produces a Poisson flow of
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incoming primary calls with mean 1/λ′. Thus, when a source is free at time
moment t (i.e. is not being served and is not waiting for service) it generates a
primary call during an interval (t, t+dt) with probability λ′dt. This means that
if at a time moment t there are n customers in free state (sources of incoming
primary calls), the arrival rate of the primary calls will be nλ′ and consequently
the probability of a primary call arrival during a time interval (t, t+dt) is equal
to nλ′dt.

If an incoming call finds the server busy upon arrival it joins the orbit of
retrial customers (calls), stays in it for an exponentially distributed time with
mean 1/μ, and retries to get service. The incoming retrial (secondary) calls, like
the incoming primary calls, are accepted if the server is idle, otherwise they enter
the orbit again.

The server, in turn, after some exponentially distributed idle time makes
outgoing calls of two types - to a customer in the orbit (an outgoing call of type 1)
or to a customer in free state (an outgoing call of type 2). The parameters of these
exponential distributions are α and α′

0, respectively. Thus, if the server is idle and
there are n incoming retrial customers in the orbit, the server connects with one
of them in an exponentially distributed time with parameter nα, and connects
with one of the customers outside the orbit in an exponentially distributed time
with parameter (N − n) α′

0.
The service times of the incoming calls and the outgoing calls of both types

are exponentially distributed with rate ν1 and ν2, respectively. When the service
is over all customers go to a free state.

We assume that the arrivals of primary incoming calls, retrial intervals of
secondary incoming calls, service times of incoming and outgoing calls, and the
time to make outgoing calls are mutually independent.

We denote the number of customers in orbit, the server state and the number
of busy servers at time t by R(t), S(t) and C(t), respectively,

S(t) =

⎧
⎨

⎩

0, when the server is idle,
1, when an incoming call is in service,
2, when an outgoing call is in service,

C(t) =
{

0, when S(t) = 0,
1, when S(t) = 1, 2.

Obviously, when the server is busy the number of customers in the orbit can’t
be equal to N , i.e. R(t) < N . As stated above after the service both incoming and
outgoing customers go to a free state. This means that when the server is idle,
there will be at least one customer in free state, i.e. again R(t) < N . Thus, the
state space of the process (S(t), R(t)) is the set {0, 1, 2} × {0, 1, 2, . . . , N − 1}.
Because of the finite state space this Markovian process is always stable.

Some particular values of the parameters in the above described model lead
to other models. Namely, in the case

• α = α′
0 = 0 we obtain the classical single server retrial queue, studied by a

number of authors, in a number of papers, some of which are presented in
the Introduction;
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• α′
0 = 0 we have a single server, finite source retrial queue with search of the

customers from orbit;
• μ = λ′ we get a single server, finite source queue with losses and two-way

communication.

Finally, if N → ∞, λ′ → 0 and α′
0 → 0 in such a way that Nλ′ → λ and

Nα′
0 → α0 our model converges to the corresponding model with infinite source,

studied by Dragieva and Phung-Duc (2016).
Further in the paper we discuss some of these particular cases.

3 Stationary System State Distributions

3.1 Joint Distribution of the Server State and Orbit Size

The system of balance equations for the stationary probabilities

πi,j = lim
t→∞ P (S(t) = i, R(t) = j) i = 0, 1, 2, j = 0, 1, . . . , N − 1

is
[(N − j) (λ′ + α′

0) + j(α + μ)] π0,j = ν1π1,j + ν2π2,j , (1)

[(N − j − 1)λ′ + ν1] π1,j = (N −j)λ′π0,j +(j+1)μπ0,j+1+(N −j)λ′π1,j−1, (2)

[(N − j − 1)λ′ + ν2] π2,j = (N −j)α′
0π0,j +(j+1)απ0,j+1+(N −j)λ′π2,j−1, (3)

with π0,N = π1,−1 = π2,−1 = 0.
Because of the finite number of equations we can solve this system using gen-

eral methods like Cramer’s rule. But here we present more convenient recursive
schemes. Firstly, they can save a number of operations, and secondly will be
useful in our future work when investigating the other descriptors of the system
functioning, like the waiting time process, busy period distribution and others.
We first express the probabilities πi,j (i = 1, 2) in terms of the probabilities
π0,j(j = 0, 1, . . . , N − 1). According to Eqs. (2) and (3), if denote

πi,j = A
(i)
j,0π0,0 + A

(i)
j,1π0,1 + . . . + A

(i)
j,j+1π0,j+1, (4)

we have

π1,0 =
Nλ′π0,0

a1,1
+

μπ0,1

a1,1
, π2,0 =

Nα′
0π0,0

a2,1
+

απ0,1

a2,1
,

π1,j =
(N − j)λ′

a1,j+1

j∑

k=0

A
(1)
j−1,kπ0,k +

(N − j)λ′

a1,j+1
π0,j +

(j + 1)μ
a1,j+1

π0,j+1,

π2,j =
(N − j)λ′

a2,j+1

j∑

k=0

A
(2)
j−1,kπ0,k +

(N − j)α′
0

a2,j+1
π0,j +

(j + 1)α
a2,j+1

π0,j+1,
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j = 1, . . . , N − 1, where

ai,j = (N − j)λ′ + νi, πi,N = 0, j = 1, . . . , N, i = 1, 2.

This gives the following recursive formulas for calculation of the coefficients A
(i)
j,k:

A
(1)
j,k =

(N − j)λ′

a1,j+1

(
A

(1)
j−1,k + δk,j

)
, (5)

A
(2)
j,k =

(N − j)
a2,j+1

(
λ′A(2)

j−1,k + δk,jα
′
0

)
, k = 0, . . . , j, (6)

A
(1)
j,j+1 =

(j + 1) μ

a1,j+1
, A

(2)
j,j+1 =

(j + 1) α

a2,j+1
, j = 0, 1, . . . , N − 1, (7)

A
(1)
−1,0 = A

(2)
−1,0 = A

(1)
N−1,N = A

(2)
N−1,N = 0.

Here δk,j is the Kronecker’s symbol, which is equal to 1 if k = j, and is equal to
0 if k �= j.

The explicit expressions, based on these recursive formulas are:

A
(1)
j,k =

(N − k) . . . (N − j) (λ′)j+1−k (a1,k + kμ)
a1,ka1,k+1a1,k+2 . . . a1,j+1

, (8)

A
(2)
j,k =

(N − k) . . . (N − j) (λ′)j−k (a2,kα′
0 + kλ′α)

a2,ka2,k+1a2,k+2 . . . a2,j+1
, (9)

for j = 0, 1, . . . , N − 1, k = 0, . . . , j, a1,0 = a2,0 = 1. The expressions for A
(i)
j,j+1

(i = 1, 2) are given by (7).
Next, in Eq. (1) we substitute πi,j according to formulas (4), ( j =0, . . . , N−2)

and obtain a relation between the probabilities π0,j :
[
ν1A

(1)
j,j+1 + A

(2)
j,j+1ν2

]
π0,j+1 =

[
(N − j) (λ′ + α′

0) + j(α + μ) −
(
ν1A

(1)
j,j + A

(2)
j,j ν2

)]
π0,j−

[(
ν1A

(1)
j,0 + A

(2)
j,0ν2

)
π0,0 + . . . +

(
ν1A

(1)
j,j−1 + A

(2)
j,j−1ν2

)
π0,j−1

]
,

j = 0, 1, . . . , N − 2, A
(1)
0,−1 = A

(2)
0,−1 = 0.

(10)

Following this scheme we can express all probabilities π0,j (j = 1, . . . , N − 1)
in terms of π0,0. Then, from (4) we can express πi,j (i = 1, 2, j = 0, 1, . . . , N −1)
also in terms of π0,0. Finally, from the normalizing condition

2∑

i=0

N−1∑

j=0

πij = 1

we can find π0,0. Thus, we can calculate the stationary system state distribution.
Further, having π0,0 found we can calculate the distribution πi,j not only

using formulas (10) and (4), but also by the recursive formulas, presented in the
next Proposition.
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Proposition 1. The stationary joint distribution πi,j of the server state and
the orbit size satisfies the following recursive formulas:

π0,j =
(N − j)λ′

j (μ + α)
(π1,j−1 + π2,j−1) , j = 1, . . . , N − 1, (11)

π1,j = (N−j)λ′

(N−j−1)λ′(μν1+αν2)+ν1ν2(α+μ) {(N − j − 1)λ′μπ2,j−1+

[ν2 (α + μ) + (N − j − 1)μ (λ′ + α′
0)] π0,j+

[(N − j − 1)λ′μ + ν2 (α + μ)] π1,j−1} ,

(12)

π2,j = (N−j)
(N−j−1)λ′(μν1+αν2)+ν1ν2(α+μ){(N − j − 1) (λ′)2 απ1,j−1+

[(N − j − 1)λ′α (λ′ + α′
0) + α′

0ν1 (α + μ)] π0,j+

λ′ [(N − j − 1)λ′α + ν1 (α + μ)] π2,j−1}.

(13)

Proof. We sum up Eqs. (1)–(3) for j = 0 and obtain formula (11) for j = 1,

(N − 1)λ′ (π1,0 + π2,0) = (μ + α) π0,1. (14)

Then we sum Eqs. (1)–(3) for j = 1,

(μ + α) π0,1 + (N − 2)λ′ (π1,0 + π2,0) =
2 (μ + α) π0,2 + (N − 1)λ′ (π1,0 + π2,0) ,

and add it to (14). Thus we get (11) for j = 2. Further, by induction it is easy to
prove relations (11) for all j = 1, . . . , N − 1. The rest of the recurrent formulas
(11)–(13) follow from the combination of (2)–(3) with (11). Namely, substituting
π0,j+1 from (11) into (2) and (3), after some transformations we get

(N−j−1)λ′α+ν1(α+μ)
μ+α π1,j =

(N − j)λ′π0,j + (N−j−1)λ′μ
μ+α π2,j + (N − j)λ′π1,j−1,

(N−j−1)λ′μ+ν2(α+μ)
μ+α π2,j =

(N − j)α′
0π0,j + (N−j−1)λ′α

μ+α π1,j + (N − j)λ′π2,j−1.

Now we substitute π2,j from the second into the first of these equations, and
π1,j from the first into the second,

(N−j−1)λ′α+ν1(α+μ)
μ+α π1,j =

(N − j)λ′π0,j + (N − j)λ′π1,j−1 + (N−j−1)λ′μ
[(N−j−1)λ′μ+ν2(α+μ)]×

[
(N − j)α′

0π0,j + (N−j−1)λ′α
μ+α π1,j + (N − j)λ′π2,j−1

]
,

(N−j−1)λ′μ+ν2(α+μ)
μ+α π2,j =

(N − j)α′
0π0,j + (N − j)λ′π2,j−1 + (N−j−1)λ′α

(N−j−1)λ′α+ν1(α+μ)×
[
(N − j)λ′π0,j + (N−j−1)λ′μ

μ+α π2,j + (N − j)λ′π1,j−1

]
.

Rearranging the terms, the last two equations give formulas (12) and (13).
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Remark 1. If in formulas (11)–(13) we fix j and take limits as N → ∞, λ′ → 0
and α′

0 → 0 in such a way that Nλ′ → λ, Nα′
0 → α0, we obtain exactly the

recurrent formulas, connecting the stationary system state probabilities for the
corresponding model with infinite source (Proposition 2 in Dragieva and Phung-
Duc (2016)). Similarly, if take α = α′

0 = 0, then formulas (11)–(12) give the
recursive formulas, obtained by Dragieva (2013) for the corresponding finite
source retrial queue without two-way communication.

Remark 2. In fact, we do not need recursions (11)–(13) for the calculation of the
system state distribution because we have the more convenient formulas (10),
(5)–(7) and (4). Exactly these formulas are used in the calculation of numerical
examples, presented in Sect. 4. Recursive formulas (11)–(13) may be useful in the
analysis of the waiting time process, analogously to the corresponding formulas
in the single server, finite source retrial queue without two-way communication
(see Dragieva 2013).

Now we turn attention to the system state distribution at the moments of a
primary incoming call arrival. In the models with finite source this distribution
differs from the corresponding distribution at any arbitrary time moment (which
is discussed in detail for example in Falin and Artalejo (1998) or in Dragieva
(2013)). Thus, if we introduce the event A(t) that at time t a primary call
arrives and denote by πi,j the stationary conditional probabilities

πi,j = lim
t→∞ P {S(t) = i, R(t) = j|A(t)} i = 0, 1, 2, j = 0, 1, . . . , N − 1,

then

πi,j =

{
(N−j)λ′π0,j

D , if i = 0,
(N−j−1)λ′πi,j

D , if i = 1, 2,
(15)

D =
2∑

i=1

N−1∑

n=0

(N − n − 1)λ
′
πi,n +

N−1∑

n=0

(N − n)λ
′
π0,n. (16)

This distribution is important in the investigation of the waiting time process.

3.2 Main Macro Characteristics of the System Performance

In the models with finite state space, if the system state distribution is obtained,
then it is not difficult to calculate any of the basic macro characteristics of
the system performance. Nevertheless, here we derive formulas, expressing these
characteristics in terms of the server utilization (or the idle server probability).

Let’s denote

Pi = lim
t→∞ P {S(t) = i} =

N−1∑

j=0

πi,j ,

Mi,p =
N−1∑

j=0

jpπi,j , p = 0, 1, . . . , i = 0, 1, 2,

Pi = Mi,0.



88 V. Dragieva and T. Phung-Duc

Summing all Eq. (2), then (3) over j = 0, . . . , N − 1, we obtain equations for
the stationary server state distribution Pi (i = 0, 1, 2) and the first partial
moment M0,1,

ν1P1 = Nλ′P0 + (μ − λ′) M0,1, (17)

ν2P2 = Nα′
0P0 + (α − α′

0) M0,1. (18)

As stated in Sect. 2, if μ = λ′ we have no orbit and the model is modified to the
particular case of a finite source queue with losses and two-way communication.
In this case it is reasonable to take α = α′

0, but there are real situations when
we can consider α �= α′

0. For example, in a call center of some company the
operator can record all unsuccessful clients and although they give up their
request (μ = λ′) he/she can call to them for advertising, reminders, or anything
else, with specific intensity (α �= α′

0). In the case μ = λ′ and α = α′
0, from (17),

(18) and the normalizing condition

P0 + P1 + P2 = 1

we obtain formulas for the probabilities Pi (i = 0, 1, 2):

P1 =
Nλ′

ν1
P0, P2 =

Nα

ν2
P0, P0 =

ν1ν2
N (λ′ν2 + αν1) + ν1ν2

.

Further we assume that either μ �= λ′ or α �= α′
0. Equations (17), (18) and

the normalizing condition allow to express Pi (i = 1, 2) and M0,1 in terms of P0:

P1 =
(μ − λ′) ν2 (1 − P0) + N (αλ′ − α′

0μ) P0

(α − α′
0) ν1 + (μ − λ′) ν2

, (19)

P2 =
(α − α′

0) ν1 (1 − P0) − N [αλ′ − α′
0μ] P0

(α − α′
0) ν1 + (μ − λ′) ν2

, (20)

M0,1 =
ν1ν2 (1 − P0) − N (α′

0ν1 + λ′ν2) P0

(α − α′
0) ν1 + (μ − λ′) ν2

. (21)

Further, multiplying Eq. (1) by j (j = 1, . . . , N − 1), then (2) and (3) by
(j + 1) (j = 0, 1, . . . , N − 1) and summing each of these three groups equations
over j we get relations between Mi,0 = Pi, Mi,1, (i = 0, 1, 2), and M0,2,

N (λ′ + α′
0) M0,1 + (α + μ − λ′ − α′

0)M0,2 = ν1M1,1 + ν2M2,1, (22)

(ν1 + λ′) M1,1 + [ν1 − λ′(N − 1)] P1 =
Nλ′P0 + (N − 1)λ′M0,1 + (μ − λ′) M0,2,

(23)

(ν2 + λ′) M2,1 + [ν2 − λ′(N − 1)] P2 =
Nα′

0P0 + (N − 1)α′
0M0,1 + (α − α′

0) M0,2.
(24)

These equations allow to express the partial moments M0,2,M1,1 and M2,1 in
terms of M0,0 = P0. Thus, the mean orbit size also can be expressed in terms
of P0.
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Proposition 2. The mean orbit size, M1 is equal to

M1 = lim
t→∞ E [R(t)] =

2∑

i=0

N−1∑

j=1

jπi,j =

M0,1 + M1,1 + M2,1 = N − 1 + P0+
N[(α+μ)α′

0ν1+αλ′(ν2−ν1)]P0−(μ−λ′+α)ν1ν2(1−P0)

λ′[(α−α′
0)ν1+(μ−λ′)ν2] .

(25)

Proof. From Eq. (22) we express M0,2 in terms of Mi,1 (i = 0, 1, 2)

M0,2 =
ν1M1,1 + ν2M2,1 − N (λ′ + α′

0) M0,1

α + μ − λ′ − α′
0

, α + μ �= λ′ + α′
0,

and substitute it in the Eqs. (23) and (24). After some transformations this leads
to the following system for Mi,1 (i = 1, 2)

(

λ′ +
ν1(α−α′

0)
α+μ−λ′−α′

0

)

M1,1 − (μ−λ′)ν2

α+μ−λ′−α′
0
M2,1 =

Nλ′P0 − [ν1 − λ′(N − 1)] P1 +
(

−λ′ +
N(λ′α−α′

0μ)
α+μ−λ′−α′

0

)

M0,1,

− (α−α′
0)ν1

α+μ−λ′−α′
0
M1,1 +

(

λ′ +
ν2(μ−λ′)

α+μ−λ′−α′
0

)

M2,1 =

Nα′
0P0 − [ν2 − λ′(N − 1)] P2 +

[

−α′
0 +

N(α′
0μ−λ′α)

α+μ−λ′−α′
0

]

M0,1.

Summing up these two equations we get

λ′ (M1,1 + M2,1) = N (λ′ + α′
0) P0−

(λ′ + α′
0) M0,1 − {[ν1 − λ′(N − 1)] P1 + [ν2 − λ′(N − 1)] P2} .

Thus, for the mean orbit size it holds

M1 = M0,1 + M1,1 + M2,1 =
N(λ′+α′

0)P0

λ′ − α′
0

λ′ M0,1−
[ν1−λ′(N−1)]P1+[ν2−λ′(N−1)]P2

λ′ .

Substituting here Pi (i = 1, 2) and M0,1 with the expressions (19)–(21) we obtain
formula (25).

Using formulas (19)–(21) and (25) we can express the other basic performance
measures:

• The blocking probability PB that an arriving primary incoming call will be
blocked in the orbit of retrial customers,

PB =
2∑

i=1

N−1∑

n=0
πi,n =

∑2
i=1
∑N−1

n=0 (N−n−1)λ
′
πi,n

∑2
i=1
∑N−1

n=0 (N−n−1)λ′ πi,n+
∑N−1

n=0 (N−n)λ′ π0,n
=

(N−1)λ
′
(1−P0)−λ

′
(M1,1+M2,1)

Nλ′ −λ′ (1−P0+M1)
= 1 + M0,1−NP0

N−(1−P0+M1)
;
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• Mean rate of generation of primary incoming calls,

Λ = λ′ lim
t→∞ E [N − C(t) − R(t)] = λ′ [N − (P1 + P2) − M1] =

(μ − λ′ + α) ν1ν2 (1 − P0) − N [(α + μ) α′
0ν1 + αλ′ (ν2 − ν1)] P0

(α − α′
0) ν1 + (μ − λ′) ν2

;

• Mean value of the waiting time W (t), that a primary incoming call, arriving
at time moment t will spend in the orbit. Using Little’s formula for this mean
value we have:

lim
t→∞ E[W (t)] = Λ−1 lim

t→∞ E [R(t)] = M1
Λ =

(N−1+P0)[(α−α′
0)ν1+(μ−λ′)ν2]

N[(α+μ)α′
0ν1+αλ′(ν2−ν1)]P0−(μ−λ′+α)ν1ν2(1−P0)

− 1
λ′ ;

• Mean number E [RA(t)] of retrial attempts, that a primary incoming cus-
tomer, arriving at time moment t will make while being in the orbit. If the
intensity of the outgoing calls to the customers in orbit is 0 (α = 0) then the
following relation holds:

lim
t→∞ E [RA(t)] = μ lim

t→∞ E [W (t)] = μ
M1

Λ
.

In the case α > 0 if we want to calculate the mean number of retrials, we
should investigate the stationary distribution of this number, which will be one
of our future work.

Remark 3. For α = α′
0 = 0 all formulas, obtained in this Section coincide with

the formulas derived by Falin and Artalejo (1998) for the corresponding model
without two-way communication.

4 Numerical Examples

In this Section we present numerical examples, illustrating the influence of the
system parameters on the main performance macro characteristics, considered
in previous Section.

Figure 1 shows the dependence of the stationary server state distribution Pi

(i = 0, 1, 2) on the parameters λ′ (left upper corner), α′
0 (right upper corner),

ν1 (left lower corner) and N (right lower corner). We see that the behaviour of
most of the presented functions is intuitively expected:

• The proportion of time P1 that the server is busy with incoming calls ser-
vice increases with the increase of primary intensity λ′ and the mean service
time of incoming calls, 1/ν1. P1 decreases with increase of the intensity α′

0

of the outgoing calls to the customers in free state. Numerical examples, not
presented here show that P1 increases with the increase of the secondary
intensity, μ and decreases with the increase of the mean service time of out-
going calls, 1/ν2 and with the increase of the intensity of outgoing calls to
the orbit, α.
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Fig. 1. Stationary server state distribution Pi = P (S = i) (i = 0, 1, 2) versus system
parameters λ′, α′

0, ν1, N . (μ = 0.2, ν2 = 0.8)

• All presented examples show that when P1 increases, then the proportion of
time P2 that the server is busy with outgoing calls decreases and vice versa.

It is interesting that for all presented values of the system parameters the
server utilization, P1 + P2 = 1 − P0 is almost equal to 1. The increase of the
number N of all clients of the system has little impact on the server state dis-
tribution, keeping P1 greater than P2 and P0, the last one almost equal to 0.

The dependence of the rest of the macro characteristics (the first partial
moments, Mi,1, (i = 0, 1, 2) and mean orbit size, M1, blocking probability, PB,
mean waiting time, E[W ] = limt→∞ E[W (t)] and mean rate of generation of
primary incoming calls, Λ) on the system parameters follow intuitively expected
behaviour. The only exception is the primary incoming calls intensity λ′, which
influence on the system performance is hard to be intuitively explained. To show
this influence in more detail we present it in two figures - Figs. 2 and 3. On these
figures we can see that for all presented values of the system parameters the
blocking probability confirms the well known property of the finite source retrial
queues to have a point of maximum as a function of λ′ (Falin and Artalejo
1998; Almaási et al. 2005; Wang et al. 2011; Zhang and Wang 2013). The new
comes with the behaviour of the mean waiting time, E[W ] and the mean rate of
generation of primary incoming calls, Λ. We see in Fig. 2 that there exist values
of the system parameters for which, like in the other finite source retrial queues
(Falin and Artalejo 1998; Almaási et al. 2005; Wang et al. 2011; Zhang and Wang
2013), E[W ] has a point of maximum. But, on Fig. 3 we see that for the same
values of these parameters it has and a point of minimum. This property has
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Fig. 2. Basic performance macro characteristics versus primary intensity λ′. (ν1 =
0.1, ν2 = 0.8, N = 10)
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Fig. 3. Basic performance macro characteristics versus primary intensity λ′. (ν1 =
0.1, ν2 = 0.8, N = 10)

not been observed till now in the related literature. We also see on Fig. 3 that it
does not hold for all values of the system parameters. Analogously, we see that
the behaviour of Λ as a function of λ′ also depends on the values of the rest of
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the system parameters - for some of them it is a strictly increasing function, but
for some of them it has a point of maximum. The last property has not been
observed till now. For example, all numerical results, presented by Wang et al.
(2011) for the single server, finite source retrial queue with server breakdowns
and repairs show that Λ follows the intuitively expected behaviour to be strictly
increasing as a function of the primary intensity λ′.

It is interesting to note that for the values of the system parameters, presented
on Fig. 2, the partial moment M2,1 is an increasing function of λ′, but for the
values, presented on Fig. 3 it has a point of maximum.

5 Conclusion and Future Work

In this paper we derive formulas for the joint distribution of the server state and
the orbit size in a finite source retrial queue of M /M /1//N type with two-way
communication. Main performance macro characteristics are expressed in terms
of the server utilization. The influence of the system parameters on these macro
characteristics is studied on the basis of numerical examples. Formulas, obtained
in the present paper allow to extend this investigation by studying the waiting
time process, the busy period distribution and other descriptors of the system
performance like the number of successful and blocked events. We also plan to
consider the corresponding queue of type M /G/1//N.

Acknowledgements. The authors would like to thank anonymous referees for their
constructive comments which improved the presentation of the paper.

References

Aguir, S., Karaesmen, E., Aksin, O., Chauvet, F.: The impact of retrials on call center
performance. OR Spectr. 26, 353–376 (2004)

Almaási, B., Roszik, J., Sztrik, J.: Homogeneous finite-source retrial queues with server
subject to breakdowns and repairs. Math. Comput. Model. 42, 673–682 (2005)
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Abstract. Retrial queueing models with multiple servers and two
classes of customers arise in various practical computer and telecommu-
nication systems. The consideration of retrials (or repeated attempts)
introduces analytical difficulties and most of works consider either mod-
els with preemptive priority or non-preemptive priority in the single
server case. This paper aims to propose a recursive algorithmic app-
roach for the performance analysis of a multiserver retrial queue with
non-preemptive priority and two customers classes: ordinary customers
whose access to the service depends on the number of available servers
and who join the orbit when blocked; and impatient priority customers
who have access to all servers and are lost when no server is available.
In addition, we develop the formula of the main stationary performance
measures. Through numerical examples, we study the effect of the sys-
tem parameters on the blocking probability for ordinary customers and
the loss probability for priority customers.

Keywords: Retrial multiserver queues · Two customers classes · Impa-
tient customers · Non-preemptive priority · Recursive algorithm · Per-
formance measures

1 Introduction

Retrial queueing models are characterized by the feature of retrial phenomenon
that an arriving customer who finds all servers (or resources) occupied, joins
the virtual group of blocked customers, called orbit and retry again for service
after a random amount of time. Models with retrials have been widely used
to analyze several practical problems in computer networks, telecommunication
systems, call centers, cellular mobile networks [1–5] and wireless sensor networks
[6]. Significant references and important surveys on this topic [7–9] reveal the
non-negligible impact of retrials, which arise due to a blocking in a system with
limited capacity resources or due to impatience of customers.
c© Springer International Publishing AG 2017
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In fact, the consideration in the modeling process of the customers behavior,
especially, retrials of customers whose request was rejected because of the lack
of available resources, is crucial to determine the system performances, because
it’s well known that the retrials can negatively affect the system performance,
because they generate more load. However, the consideration of retrial phenom-
enon introduces great analytical complications to obtain most important per-
formance indices. In particular, for multiserver models, no explicit closed-form
solution exist for the performance measures [8,9]. These analytical difficulties are
due to the simultaneous presence of the repeated requests stream from the orbit
and the normal stream of primary requests arrivals. Therefore, lots of attention
have been paid to approximation methods, computational algorithms and tail
asymptotics to estimate the performance measures [9–15].

On the other hand, the heterogeneity of customers from the point of view
of customers characteristics such as the arrivals, the service and/or the retrial
process distributions, is an another important problem in retrial queueing area,
because models with different types of customers arise in various practical sys-
tems. For example, in cellular mobile networks, the base station channels are
used by a class of fresh calls initiated in the same cell and a second class of
handoff calls incoming from adjacent cells. Similarly, in modern call centers,
multiple types of calls arrive at service station over different communication
channels such as telephone, internet, e-mail, mobile device, etc.

However, retrial queues with multiple classes of customers (called also multi-
class retrial queues) have been known to be far more difficult for mathematical
analysis than models with a single class of customers (or homogeneous cus-
tomers). So, explicit results for this subject are limited to some particular cases
[16] and recently, sufficient stability conditions were defined for a multiserver
multiclass retrial queue [17].

For the single server retrial queues with two classes of customers, a number
of analytic results have been obtained [8,9,18–21]. As regards to multiserver case
with two customers classes, as far as we know, there are no explicit formulae and
only a few algorithmic methods are proposed using matrix geometric methods
[22], matrix analytic methods [23] or computational approaches as the one we
have proposed using the Colored Generalized Stochastic Petri nets formalism
[24]. Recently, Kim et al. [25] studied the stability of a two-class two-server
retrial queue.

The objective of this paper is to propose a new recursive algorithmic approach
for the performance analysis of a multiserver retrial queue with two classes of cus-
tomers: ordinary customers whose access to the service depends on the number
of available servers and who join the retrial group with a certain degree of impa-
tience when blocked; and priority customers who have access to all servers and
leave definitively the system when no server is available. Hence, and in order to
minimize the loss probability of priority customers, they should be given a higher
priority over ordinary customers in access to the system resources (or servers).
To this end, we give them the possibility to use all servers, unlike ordinary cus-
tomers whose access to the service depends on a threshold on the number of
available servers. Further, we assume that all servers follow the non-preemptive
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priority rule, which means that if one or more priority customers arrive during
the service time of an ordinary customer, the current service of this non-priority
customer continues and is not stopped.

Some papers considered retrial models with two customers classes and pre-
emptive priority [21,23,26,27] or a non-preemptive priority in the single server
case [28,29]. However, there is no work that deals with multiserver retrial queue-
ing systems with two customers classes and non-preemptive priority. That moti-
vates us to investigate such queueing model in this work.

The layout of the paper is given as follows: After the introduction, a detailed
mathematical description of the model under study is given in Sect. 2. Then,
we present our analysis approach and the details of the recursive algorithm we
propose to calculate the stationary states probabilities in Sect. 3. Next, we give
the formulae of the main performance measures. In Sect. 5, we discuss through
numerical examples, the effect of the dedicated servers number and retrial rate on
the system performances, namely the blocking probability for ordinary customers
and loss probability for priority customers. Finally, we give a conclusion.

2 Mathematical Description of the Model

We consider a retrial multi-server queueing system with two classes of customers;
ordinary and priority ones. The service area consists of C, (C ≥ 1) homogeneous
servers with the same exponential service rate μ. The ordinary (priority) cus-
tomers arrive in the system following a Poisson process with a mean arrival
rate λ1 (λ2 respectively). The global arrival rate is then given by λ = λ1 + λ2.
In order to ensure that priority customers are served prior to ordinary (non-
priority) ones, our strategy consists of reserving a certain number of servers d
(1 ≤ d ≤ C), called Dedicated Servers only for priority class of customers. Thus,
on the arrival of a priority customer, if at least one server of the C servers of
the service station is idle, it will be served immediately, otherwise, it will be lost
definitively, whereas an arriving ordinary customer must find at least (d + 1)
available servers to get service, otherwise, it joins the orbit and retry for the
service later. A blocked customer in the orbit decides to retry with probability
θ or give up and returns to the free state with probability (1− θ). Note that θ is
used to represent the degree of impatience of customers. The retrial time is expo-
nentially distributed with rate α. All involved random variables are independent
and identically distributed.

3 Recursive Analysis Algorithm

From the stochastic behavior of both two classes of customers and the servers
allocation policy, the retrial system described above can be modeled by means
of a two-dimensional Continuous-Time Markov Chain (CTMC) where each
state is described by means of two random variables (X(t), Y (t); t ≥ 0). Let
X(t) be the number of customers being in service (which equals the number
of busy servers), and Y (t) the number of customers waiting in the orbit at
time t. Hence, the steady state probabilities are defined by the probabilities
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Fig. 1. State Transition Diagram

πi,j = Pr {X = i, Y = j} , i = 0, 1, . . . , C j = 0, 1, . . . , . . . of having i customers
in service and j customers in the orbit.
The number of states of this CTMC with S = {0, . . . , C} × Z+ as state space,
is infinite because the population size and the orbit capacity are supposed to
be infinite. In order to obtain a finite CMTC model, we propose the truncation
of the state space to S′ = {0, . . . , C} × {0, . . . , q} with q large enough. In other
terms, the probability of being in states with a number of customers in orbit
greater than q is neglected.

The truncated CTMC state transition diagram is depicted in Fig. 1.
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The balance equation describing the probability flux in and out of state (i, j)
is defined by: T

E(i, j) :
∑

(k,l)∈S′\(i,j)
πi,j .R(i,j),(k,l) =

∑

(k,l)∈S′\(i,j)
πk,l.R(k,l),(i,j)

where R(i,j),(k,l) is the transition rate from state (i, j) to state (k, l).
We put K0 = π0,q, K1 = π0,(q−1), . . . , Kd = π(0,q−d). We first should express

all probabilities as a function of Ki, i = 0, . . . , d.

πi,j = K0.u0(i, j) + K1.u1(i, j) + . . . + Kd.ud(i, j)

Then, we express coefficients Ki, i = 0, . . . , d as a function of K0, and finally,
we use the normalization equation, where the unique unknown is K0,

C∑

i=0

q∑

j=0

πi,j = 1 (1)

to find its value.
We now proceed to explain the details of the algorithm:

Step1. Expressing all probabilities in Ki.

1. Columns q down to q − d.

Starting with column q, it’s obvious that π(0,q) = K0, such as u0(0, q) = 1,
u1(0, q) = 0,. . . , ud(0, q) = 0.

We calculate recursively, for i = 1, . . . , C − (d + 1), πi,q using the balance
equation E(i − 1, q). We get:

π1,q =
q.α + λ

μ
.π0,q

πi+1,q =
q.α + λ + i.μ

(i + 1)μ
πi,q − λ

(i + 1)μ
.πi−1,q

In the same way, we calculate for columns (q − j), j = 1, . . . , d, the value of
π1,q−j using E(0, q − j) first, then πi+1,q−j using E(i, q − j), i = 0, . . . , C −d−1.
We get:

π1,q−j =
(q − j).α + λ

μ
.Kj

πi+1,q−j =
(q − j).α + λ + i.μ

(i + 1)μ
πi,q−j− λ

(i + 1)μ
πi−1,q−j− (q − j + 1)α

(i + 1)μ
πi−1,q−j+1

Then, inside the line (C −d+1), columns from j = (q − d + 1) to j = (q − 1)
can be calculated. Actually, for each probability πC−d+1,j , we use the balance
equation E(C − d, j):

πC−d+1,j .[(C − d+1)μ] = [(C − d)μ+ θλ1 +λ2 + j(1− θ)α].πC−d,j −λ.πC−d−1,j

−[(1 − θ)(j + 1)α].πC−d,j+1 − θλ1.πC−d,j−1 − [(j + 1)α].πC−d−1,j+1
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And for πC−d+1,q, we use E(C − d, q), we have:

πC−d+1,q.[(C − d + 1)μ] =

[(C − d)μ + λ2 + (1 − θ)qα].πC−d,q − λ.πC−d−1,q − θλ1.πC−d,q−1

For the rest of lines, i.e. from i = C − d + 2 to i = C, only columns j =
i+q−C, . . . , q can be deduced for the moment, they are calculated from balance
equations E(i − 1, j):

We have for j = i + q − C to j = q − 1:

πi,j .(i.μ) = [(i − 1).μ + (1 − θ).j.α + λ2 + θ.λ1].π(i−1),j

−λ2.π(i−2),j − (1 − θ).(j + 1).α.π(i−1),(j+1) − θ.λ1.π(i−1),(j−1)

And when j = q:

πi,q.(i.μ) = [(i − 1).μ + (1 − θ).q.α + λ2].π(i−1),q − λ2.π(i−2),q − θ.λ1.π(i−1),(q−1)

From E(C, q), we obtain the value of πC,q−1 as follows:

πC,q−1.θ.λ1 = [C.μ + (1 − θ).q.α].πC,q − λ2.π(C−1),q

Now, in order to have the rest of columns, we proceed like this. For each j = q−2
to q − d, we obtain first πC,j using E(C, j + 1):

πC,j .θ.λ1 = [(1 − θ).(j + 1).α + C.μ + θ.λ1].πC,(j+1)

−(1 − θ).(j + 2).α.πC,(j+2) − λ2.π(C−1),(j+1)

Then, we obtain the other lines i = C − 1 to i = C + 1 + j − q, thanks to
E(i, j + 1):

πi,j .θ.λ1 = [(1 − θ).(j + 1).α + i.μ + θ.λ1 + λ2].πi,(j+1)

−(1 − θ).(j + 2).α.πi,(j+2) − λ2.π(i−1),(j+1) − (i + 1).μ.π(i+1),(j+1)

Up to now, we have expressed all probabilities from column j = q to j = q−d,
in K0, . . . ,Kd.

2. Column (q − d − 1) down to 1.

In a similar way as explained above, by invoking E(i − 1, j), for each πi,j , we
find:

π1,j =
j.α + λ

μ
.π0,j

πi+1,j =
j.α + λ + i.μ

(i + 1)μ
πi,j − λ

(i + 1)μ
πi−1,j − (j + 1)α

(i + 1)μ
πi−1,j+1

In particular, when i = C − d − 1, we can find numbers v0(C − d, j), v1(C −
d, j), . . . , vd+1(C − d, j), such that:
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π(C−d),j = v0(C − d, j).K0 + . . . + vd(C − d, j).Kd + v(d+1)(C − d, j).π0,j (2)

On the other hand, by invoking E(C − d, j + 1), we get:

π(C−d),j .θ.λ1 = [(C−d).μ+θ.λ1 +λ2 +(1−θ).(j +1).α].π(C−d),(j+1)−λ.π(C−d−1),(j+1)

−(j + 2).α.π(C−d−1,j+2) − (1− θ).(j + 2).α.π(C−d),(j+2) − (C − d + 1).μ.π(C−d+1),(j+1)

which implies that we can find explicitly numbers u0(C − d, j), u1(C −
d, j), . . . , ud(C − d, j), such that:

π(C−d),j = u0(C − d, j).K0 + u1(C − d, j).K1 + . . . + ud(C − d, j).Kd (3)

From Eqs. (2) and (3), we can deduce π0,j value,

π0,j =
∑d

k=0[uk(C − d, j) − vk(C − d, j)].Kk

v(d+1)(C − d, j)

Thus, we calculate again πi,j , i = 1, . . . , C − d, in K0,K1, . . . ,Kd only, we
get for k = 0, . . . , d:

uk(i, j) = vk(i, j) +
uk(C − d, j) − vk(C − d, j)

v(d+1)(C − d, j)
.v(d+1)(i, j)

After that, equations for πi,j , such that i = C − d + 1, . . . , C can be easily
derived from E(i, j + 1).

Step2. Expressing coefficients Ki, i = 1, . . . , d in K0.

Let’s consider the balance equation E(C, 0):

πC,0.(C.μ + θ.λ1) = π(C−1),0.λ2 + πC,1.(1 − θ).α

Keeping in mind that both πC,0, π(C−1),0 and πC,1 can be written as a linear
combination of K0, . . . ,Kd, Eq. (3) is equivalent to:

d∑

k=0

uk(C, 0).Kk.(C.μ+θ.λ1) =
d∑

k=0

uk(C−1, 0).Kk.λ2+
d∑

k=0

uk(C, 1).Kk.(1−θ).α

It’s a question of a simple algebra to extract Kd in K(d−1), . . . ,K0. In
the same way, we consider E(i, 0), i = C − 1, . . . , C − d + 1, to have Kx in
Kx−1, . . . ,K0, x = d − 1, . . . , 1.

Step3. Finding K0.

Finally, we solve the normalization Eq. (1), in order to extract the value of K0

which is the unique unknown.
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4 Performance Measures

Once all the stationary probabilities are determined thanks to the above algo-
rithm, several performance measures can be given so as the efficiency of our
system can be judged. The most significant performance indices are as follows:

– Mean number of busy servers:

NBusy =
C∑

i=0

q∑

j=0

i.πi,j

– Mean number of customers in the orbit:

NOrbit =
C∑

i=0

q∑

j=0

j.πi,j

– Mean number of customers in the system:

N = NBusy + NOrbit =
C∑

i=0

q∑

j=0

(i + j).πi,j

– Mean rate of ordinary customers served at the first attempt:

λ̄FS = λ1.

C−(d+1)∑

i=0

q∑

j=0

.πi,j

– Mean rate of blocked ordinary customers:

λ̄FU = λ1.θ.
C∑

i=C−d

q∑

j=0

.πi,j

– Mean rate of blocked ordinary customers leaving the system
without being served:

λ̄FB = λ1.(1 − θ).
C∑

i=C−d

q∑

j=0

πi,j

– Effective mean ordinary customers arrival rate:

λ̄F = λ̄FS + λ̄FU + λ̄FB

– Mean rate of retrials served at the first attempt:

ᾱRS = α.

C−(d+1)∑

i=0

q∑

j=0

j.πi,j
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– Mean rate of blocked retrials:

ᾱRU = α.θ.

C∑

i=C−d

q∑

j=0

j.πi,j

– Mean rate of blocked retrials leaving the system
without being served:

ᾱRB = α.(1 − θ).
C∑

i=C−d

q∑

j=0

j.πi,j

– Effective mean retrial rate:

ᾱ = ᾱRS + ᾱRU + ᾱRB

– Mean rate of priority customers being served:

λ̄HS = λ2.
C−1∑

i=0

q∑

j=0

πi,j

– Mean rate of lost priority customers:

λ̄HB = λ2.

q∑

j=0

πC,j

– Effective mean priority customers arrival rate:

λ̄H = λ̄HS + λ̄HB

– Mean service rate:

μ̄ = μ.

C∑

i=1

q∑

j=0

i.πi,j = μ.NBusy

– Blocking probability of ordinary customers:

PBF =
λ̄FU + λ̄FB

λ̄F

– Blocking probability of retrial customers:

PBR =
ᾱRU + ᾱRB

ᾱ

– Loss probability (of priority customers):

PBH =
λ̄HB

λ̄H
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– Mean number of attempts per customer:

η =
ᾱ + λ̄F

λ̄F
= 1 +

ᾱ

λ̄F

– Availability of at least s servers:

As =
C−s∑

i=0

q∑

j=0

πi,j

– Mean waiting time of an ordinary customer:

W̄F =
NOrbit

λ̄1

5 Numerical Results

In this section, we examine the impact that have some system parameters like
the number of dedicated servers, degree of persistence and the arrival and ser-
vice rates on the system performance, namely the blocking and loss probability.

Table 1. System parameters.

C 1/μ α/μ λ1/λ2

15 120 s 20 24

Fig. 2. Influence of the offered traffic and the degree of persistence on the blocking
probability (with d = 2).
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Fig. 3. Influence of the offered traffic and the degree of persistence on the loss proba-
bility (with d = 2).

Fig. 4. Influence of the offered traffic and the number of dedicated servers on the
blocking probability (with θ = 0.6).

We developed a C# code in order to implement the above algorithm. In that
follows, unless otherwise stated, the parameter set depicted in Table 1 is used
for our experiments. The offered load is defined by ρ = λ/(C.μ).

The effect of the traffic load ρ and the persistence degree θ on the blocking
and the loss probability is shown in Figs. 2 and 3 respectively (with d = 2).
We can note that the increase in parameters ρ and θ affects negatively both
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Fig. 5. Influence of the offered traffic and the number of dedicated servers on the loss
probability (with θ = 0.6).

of the two probabilities, but loss probability is always better than the blocking
one. This is due to the number of servers dedicated for priority customers. The
influence of this latter is the purpose of Figs. 4 and 5. As expected, increasing the
number of dedicated servers can significantly improve the blocking probability of
priority customers. It is just perfect (� 0) when d = 3. We observe the opposite
effect on the blocking probability, when more servers are reserved to priority
customers, more ordinary customers are blocked at their arrival.

6 Conclusion

A multiserver retrial queue with two classes of customers was investigated in this
paper; ordinary impatient customers retry for service when they are blocked, and
priority customers who don’t join the orbit when all servers are occupied. This
is a realistic model as it can be applicable to various situations encountered
in telecommunication networks, call centers, manufacturing systems, etc., which
deal with two types of customers under certain priority rule. In order to minimize
the loss probability of priority customers, they should be given a higher priority
over ordinary customers in access to the system servers. Our proposition was to
reserve some servers to be used only by priority customers. The analysis of the
model was performed using a bi-dimensional Time Continuous Markov chain,
and an efficient recursive algorithm was proposed and implemented in order to
calculate the steady state probability distribution. Moreover, the formulae of
several performance measures were developed. We showed via numerical exam-
ples that dedicated servers technique improves the system performance, mainly
the loss probability, but at the expense of ordinary customers.
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Abstract. Garbage collection is a fundamental component of memory
management in several software frameworks. We present a general two-
dimensional Markovian model of a queue with garbage collection where
the input process is Markov-modulated and the memory consumption
can be modeled with discretisation. We derive important performance
measures (also including garbage collection-related measures like mean
garbage collection cycle length). The model is validated via measure-
ments from a real-life data processing pipeline.

Keywords: Memory management · Garbage collection · Stochastic
modelling · Markovian modelling

1 Introduction

Some of the most popular languages such as Java and C# require efficient mem-
ory management including garbage collection (GC): the automated process of
identifying and recovering the storage space that is occupied by objects that
are no longer required. The physical memory is a limited resource so designing
more sophisticated garbage collectors and providing a theoretical framework are
of particular research interest.

A huge number of different garbage collection techniques have been proposed
throughout the years. For surveys and evaluation of garbage collection algorithms
we refer the reader to [11,22,27]. More recent GC techniques include Garbage
First for multi-processors with large memory [9], Metronome, a real-time GC
integrated with the scheduling system [3], MMTk, a memory management toolkit
for Java [5], the concurrent-copy collector, a real time garbage collector for Java
[23], and FeGC, an efficient GC scheme for flash memory based storage sys-
tems [13]. Virtual machine garbage collection optimization was addressed in [4];
the model shares the main idea with the present paper (discretisation of the
memory), with an overall simpler, essentially 1-dimensional model with focus on
optimising parameters for garbage collection.
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 109–124, 2017.
DOI: 10.1007/978-3-319-61428-1 8
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A more recent tendency has been to consider formal models therefore provide
a rigorous method to characterize GC algorithms and analyze their performance
independently of the programming system. In particular, analytical modelling of
garbage collection algorithms in flash-based solid-state drive (SSD) systems has
received significant research interest [8,15,25,26,28].

The majority of the analytical studies on garbage collection process have
focused on the following specific algorithms: greedy GC, FIFO GC, Windowed
GC, d-choices GC. For more details, see [25,28].

An important issue regarding garbage collection in SSD systems is the so-
called write amplification phenomenon. For more details, see [28].

A number of analytical frameworks have been proposed by the abstraction
of the block state space and the stochastic modelling of the selection process.
In [8] a Markov chain model is provided to characterize the performance of SSD
operation for uniformly distributed random small user writes and considering
the greedy scheme. They find that write amplification increases as the system
occupancy increases as the number of pages per block increases but decreases
as the number of block increases. In [15] a Markov chain model is employed to
capture the dynamics of large-scale SSDs, and mean-field theory is applied to
derive the asymptotic steady state, the performance/durability trade-off of GC
algorithms is analyzed. Yang et al. also apply mean field analysis and show that
the system dynamics can be represented by a system of ordinary differential
equations and the steady state of the write amplification can be predicted for a
class of GC algorithms (including d-choices) [28].

Another modelling approach is providing a theoretical framework of dis-
tributed garbage collection [7,16,21]. The increasing use of distributed systems
implies that distributed garbage collectors should be considered. A formal model
of distributed garbage collection is Surf [7] that can describe a wide range of GCs
and is amenable to rigorous analysis.

In our work, we focus on a Markovian approach that models of the effect of
garbage collection on memory management. We present the model in two steps.
In Sect. 2.1, we present a 2-dimensional Markov-modulated fluid description of
the model. The fluid approach is easy to define but difficult to solve analytically.
Then we present the corresponding Markovian model in Sect. 2.2, which is essen-
tially a discretisation of the memory level. The Markovian model can be solved
efficiently numerically, with the analysis and performance measures derived in
Sect. 3.

Section 4 contains an application to an actual data processing system. The
model of Sect. 2.2 is then validated by comparison to performance measurements
of the actual system.

2 Queue with Garbage Collection

In the model, data arrives at a server and is stored in the memory. When it is
processed, it does not flush (empty) immediately from the memory, but is only
flushed when the memory reaches a certain level.
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Memory level is described by two variables: in-use memory (V ) and junk
memory (U). In-use memory contains all data that has not been processed yet
(that is, the queue), while junk memory contains data that has been processed
since the last GC period. Data processing may generate extra memory usage;
we assume that this extra memory usage is proportional to the size of the data
with multiplicative constant C (that is, processing 1 byte of data creates a total
of C bytes of memory usage in addition to the original 1 byte). We also make
the assumption that the service time of data is proportional to the amount of
data; this assumption means that V is proportional to the service queue length.
These assumptions typically hold for systems with relatively simple processing.

When the total memory U+V reaches a certain level M , GC turns on. During
GC, the junk memory flushes at a fixed rate g, but data may keep arriving (and
stored entirely in in-use memory). For simplicity, we assume that there is no
service during GC. When GC finishes, service is resumed.

We assume that arrivals are Markov-modulated with a finite state space S
and generator Q. The arrival process itself is denoted by X(t). The arrival rate
in state i ∈ S is ri, and the service rate is constant s.

In Sect. 2.1, we present a fluid approach to model the memory level. While
the model definition is relatively straightforward and tidy from the behaviour of
the system, it leads to a 2-dimensional fluid queue with special behaviour on the
boundaries.

2.1 Fluid Description

Fluid modelling approach is an efficient way of describing and analyzing a wide
range of real systems for domains as diverse as job scheduling [19] and battery
life [12]. An overview of the basic concepts of fluid models with the potential
usage in performance analysis can be found in [10].

A fluid description of the queue is obtained when data is assumed to be
continuous; in this case, U (junk memory level) and V (queue) are fluid variables
governed by the arrival process (a continuous time Markov chain) and the switch
between service and GC modes.

The behaviour of the system is governed by the equations

dU(t)/dt = Cs
dV (t)/dt = rX(t) − s

}
if V (t) > 0 during service

dU(t)/dt = Cs
dV (t)/dt = rX(t) − s

}
if V (t) = 0 and rX(t) > s during service

dU(t)/dt = CrX(t)

dV (t)/dt = 0

}
if V (t) = 0 and rX(t) < s during service (1)

dU(t)/dt = −g
dV (t)/dt = rX(t)

}
during GC

and the forced transitions:

– when U(t) + V (t) reaches M during service, we switch to GC mode;
– when U(t) reaches 0 during GC, we switch to service mode.
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In (1), V (t) = 0 corresponds to no queue; if rX(t)<s, all incoming data is
processed immediately, while if rX(t)>s, the queue starts growing. As long as
V (t) > 0, the server is working at a full service rate. During garbage collection,
there is no service, so all incoming data goes in the queue.

The above system is difficult to solve analytically. For 2-dimensional fluid
queues, very few results available. Instead, we present a discretised Markovian
version of the model in Sect. 2.2 where U and V are both discretised; stationary
analysis of the Markovian model is carried out in Sect. 3. A detailed analysis of
the original fluid model is subject to further research.

The Markov model of Sect. 2.2 is applied to a data processing application in
Sect. 4 with the performance measures predicted by the model compared with
measurements from the real system. We note that only some of the measures
derived in Sect. 3 are measured in the application. We nevertheless included these
and other measures as well in Sect. 3, with possible different future applications
in mind.

2.2 Markovian Description

Markovian queuing theory is a well-established topic with diversified domains of
application. For a detailed introduction to queuing theory with computer science
and telecommunication applications we refer the reader to [6,18,24].

In this approach, we replace the fluid queues U and V by a discrete memory
level to obtain a Markovian model with a discrete state space. We note that we
allow U and V to be discretised with different granularity; assume the possible
values of U are divided into NU different sections, while the possible values of V
are divided into NV different sections. The reason to allow a different granularity
lies in the fact that the behaviour of the system depends highly on whether
V = 0 or V > 0: as long as V > 0 (there is a queue), the system will work at
full capacity. Thus it makes sense to select NV relatively high in order to be
able to identify V > 0 more precisely. Since the exact value of U is less relevant
in the behaviour of the system (apart from the total memory reaching M), the
granularity of U may be allowed to be less fine. For simplicity, we assume NV is
an integer multiple of NU .

The maximal possible memory level M corresponds to a full memory, while
the value 0 corresponds to an empty memory that contains no data. In correspon-
dence with this, in the Markovian description U and V refer to the level of junk
memory and in-use memory, respectively, and can only take (non-negative) inte-
ger values such that 0 ≤ U ≤ NU and 0 ≤ V < NV . Note that in applications,
the memory level corresponds to memory used exclusively for the processing of
data; memory usage by other system processes is not included.

Altogether, the following parameters define the system:

– M , the value of the memory cap;
– the state space S, the generator Q and the rate vector {ri : i ∈ S} define the

arrival process;
– s is the service rate;
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Fig. 1. State space (left-hand side: service, right-hand side: GC)

– g is the rate of garbage collection;
– C is the ratio of memory usage generated during processing compared to the

size of the data;
– NU and NV describe the granularity of the memory.

We obtain a finite 4-dimensional state space Ω with

– dimension 1 representing the arrival process, and
– dimension 2 representing the value of V (in-use memory),
– dimension 3 representing the value of U (junk-memory),
– dimension 4 representing GC or service mode.

We assume GC starts immediately when U/NU + V/NV reaches 1 during
service, and service restarts immediately when U reaches 0 during GC. Thus, for
the service states U/NU +V/NV < 1 holds, which can be depicted as a triangular
shaped array. For the GC states, the value of U is essentially higher by 1: 1 ≤
U ≤ NU , and service restarts immediately when U reaches 0. The state space is
depicted in Fig. 1. Dimension 1 is depicted only in small bubbles; dimensions 2
and 3 are represented by the large triangular arrays, and dimension 4 only has
size 2, which is depicted as the two triangles on the left and right. Altogether,

Ω = {(i, j, k, service) : i ∈ S, j ≥ 0, k ≥ 0, j/NV + k/NU < 1} ∪
{(i, j, k,GC) : i ∈ S, j ≥ 1, k ≥ 0, (j − 1)/NV + k/NU < 1} . (2)

In the following notations, i denotes the state of the background process, j
denotes the value of V, k denotes the value of U , and l denotes the service mode
(either service or GC). The type of transitions possible from a state depend
slightly on where the state is situated within the two triangles; three main types
of transitions are present: transitions corresponding to (1) the changes of the
background process, (2) arrivals, and (3) service. Arrivals are suppressed when
memory is full. Service increases the junk memory and decreases the queue
(decreasing is suppressed when the queue is empty). Also, the forced transitions
are present at the diagonal border of the service triangle and the bottom row of
the GC triangle.
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Fig. 2. States grouping

For clarity, we group the states according to Fig. 2. For the service states
(left triangle), TL is the top left corner, L is the left border (except TL). BR is
the bottom right corner. D1 is the rightmost nodes in the diagonal (except BR),
D2 is the rest of the diagonal (the “uppermost” states except D1 and TL). The
remaining states are grouped together in B, the “bulk” of the service states. For
the GC states, D1’ and BR’ are the counterparts of D1 and BR, Z’ is the bottom
row (the states from which service may resume) and B’ is the bulk of the GC
states. We omit a more formal definition of the groups. Note that the groups are
understood within the 3-dimensional subspace of (U, V ) and the service type.

We have the following types of transitions.
The background process may change at any state regardless of memory levels

or service mode:

– for any (i, j, k, l), we may transition from (i, j, k, l) to (i′, j, k, l) according to
the generator Q of the arrival process;

For (j, k, l) ∈ B, that is, the bulk of the service states, we have different
types of transitions depending on whether ri < s or ri > s. If ri < s, we have
the following transitions:

– from (i, j, k, service) to (i, j, k + 1, service) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s − ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1, service) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k, service) with rate NV (ri − s)/M .

The above values ensure that the horizontal and vertical drifts in the Markov-
ian model are in correspondence with the fluid model (1); the factors NU , NV

and 1/M are due to the discretisation.
For (0, k, l) ∈ L, that is, the queue is empty during a service period, the

types of transitions depend on whether ri > s or ri < s. If ri < s, we have the
following transitions:

– from (i, 0, k, service) to (i, 0, k + 1, service) with rate NU · C · ri/M ,

while if ri > s, we have the following transitions:

– from (i, 0, k, service) to (i, 0, k + 1, service) with rate NU · C · s/M ,
– from (i, 0, k, service) to (i, 1, k, service) with rate NV (ri − s)/M ;
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For (j, k, l) ∈ D2, ri > s, we also have some transitions corresponding to the
forced transitions from service to GC. If ri < s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s − ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k, service) with rate NV (ri − s)/M .

(j, k, l) ∈ D1 is similar; if ri < s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j − 1, k, service) with rate NV (s − ri)/M ;

while if ri > s, we have the transitions:

– from (i, j, k, service) to (i, j, k + 1,GC) with rate NU · C · s/M ,
– from (i, j, k, service) to (i, j + 1, k,GC) with rate NV (ri − s)/M (note that

NU ≤ NV ensures that (i, j + 1, k,GC) ∈ Ω).

For (j, k, l) ∈ TL (which contains a single element, (j, k, l) = (0, NU −
1, service)), for ri < s, we have

– from (i, 0, NU − 1, service) to (i, 0, NU ,GC) with rate NU · ri/M ;

and for ri > s, we have

– from (i, 0, NU − 1, service) to (i, 0, NU ,GC) with rate NU · S · s/M ,
– from (i, 0, NU − 1, service) to (i, 1, NU − 1, service) with rate NV (ri − s)/M .

For (j, k, l) ∈ BR (which is again a single element, (j, k, l) = (NV −
1, 0, service)), for ri < s we have

– from (i,NV − 1, 0, service) to (i,NV − 1, 1,GC) with rate NU · C · s/M ,
– from (i,NV − 1, 0, service) to (i,NV − 2, 0, service) with rate NV (s − ri)/M ,

while for ri > s, we have the transitions:

– from (i,NV − 1, 0, service) to (i,NV − 1, 1,GC) with rate NU · C · s/M ,

and the transition increasing V is suppressed (this corresponds to data loss in
the system).

For (j, k, l) ∈ B′, that is, the bulk of the GC states, we have the following
transitions:

– from (i, j, k,GC) to (i, j, k − 1,GC) with rate NU · g/M ,
– from (i, j, k,GC) to (i, j + 1, k,GC) with rate NV · ri/M ;

For (j, k, l) ∈ D′
1, we have the following transitions:

– from (i, j, k,GC) to (i, j, k − 1,GC) with rate NU · g/M ,



116 I. Horváth et al.

and the transition only increasing V is suppressed; this corresponds to data loss
in the system.

For (j, k, l) ∈ Z ′, we have the transitions:

– from (i, j, 1,GC) to (i, j, 0, service) with rate NU · g/M ;
– from (i, j, k,GC) to (i, j + 1, k,GC) with rate NV · ri/M .

For (j, k, l) ∈ BR′, we have the following transitions:

– from (i,NV − 1, 1,GC) to (i,NV − 1, 0, service) with rate NU · g/M

and transitions increasing V are suppressed; these contribute to data loss.
The collection of the above transitions define a CTMC on the state space Ω.

3 Stationary Analysis

From the stationary analysis of such a system, it is possible to derive the following
parameters:

– distribution and mean of memory level (both in-use and junk memory);
– mean period length (of an entire service + GC cycle, or the two separately);
– mean time spent with GC;
– mean utilisation (along with the ratio of CPU usage spent on GC and service);
– effective long-term rate of service;
– mean loss ratio and mean loss rate;
– average response time (in Sect. 3.1).

We calculate them as follows. If vst(i, j, k, l) denotes the stationary distribu-
tion of the system, then the mean memory levels can be calculated as follows:

M̄in-use =
∑
i

∑
j

∑
k

∑
l

kvst(i, j, k, l) M̄junk =
∑
i

∑
j

∑
k

∑
l

jvst(i, j, k, l)

M̄total =
∑
i

∑
j

∑
k

∑
l

(j + k)vst(i, j, k, l) (3)

CPU utilisation rates can be calculated as

ρservice =
∑
i

∑
j≥1

∑
k

vst(i, j, k, service) +
∑
i

∑
k

vst(i, 0, k, service)min(1, ri/s)

ρGC =
∑
i

∑
j

∑
k

vst(i, j, k,GC) ρtotal = ρservice + ρGC

(4)

In order to calculate the mean time of garbage collection intervals, we first
need to calculate the average in-use memory level at the beginning of a garbage
collection period.

M̄in-use at GC start =
∑
i

∑
k

kvst(i,N − k, k,GC)/WGC start, where (5)

WGC start =
∑
i

∑
k

vst(i,N − k, k,GC); (6)
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then the mean time of garbage collection intervals is simply calculated as

T̄GC = M̄in-use at GC start/g (7)

and the mean time of an entire cycle of service plus garbage collection can be
calculated as

T̄total period = T̄GC period/ρGC. (8)

For mean loss rate, we use the formula

L̄ =
∑
i

max((ri − s), 0)vst(i,N − 1, 0, service)+

∑
i

∑
j<N−1

vst(i, j,N − j,GC)max((ri − g), 0)+ (9)

∑
i

max((ri − g), 0)vst(i,N − 1, 1,GC),

and the mean loss ratio is

l̄ = L̄/r̄, (10)

where r̄ is the average rate of arrival.
The effective rate of service is

se =
gs

g + s
. (11)

since each arrival needs to be served with rate s and (after some time) flushed
with rate g.

Analysis of the average response time requires a more involved calculation.

3.1 Analysis of Average Response Time

For analysis of average response time, we assume the system is FIFO. Average
response time is the total time spent in the system (spent with either service or
waiting for service). It will also be referred to as delay.

The main idea is the following: when a tagged unit of data (“job”) arrives
during state (i, j, k, l), it will enter the queue. We consider this job as in position
j within the queue, where each position corresponds to a unit segment within
the queue. As the jobs are served, the tagged job will move ahead in the queue,
eventually reaching position 1 and then being served.

The position of the tagged job within the queue as the system progresses
is not included in the state of the system in the previously defined Markov
chain. Instead, we represent it as the level in a quasi birth-death process (QBD)
(see [14]), where the states are ((i, j, k, l),m), with m denoting the position of
the tagged job within the queue (the level). (We remark that matrix-geometric
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Fig. 3. QBD representation

methods are also a possible alternative to the QBD approach presented, see [20].)
Initially, a job arrives in state ((i, j, k, l), j) with probability

π(i, j, k, l) =
vst(i, j, k, l)ri∑

i,j,k,l vst(i, j, k, l)ri
(12)

since in state (i, j, k, l) jobs arrive with rate ri. π is understood as a row vector
of size |Ω|.

All transitions of the original generator are partitioned into matrices B and
L (of size |Ω|× |Ω|), with B corresponding to transitions that decrease the level,
that is, the transitions corresponding to service. L corresponds to the rest of the
transitions. In order to avoid listing all transitions again, we refer to Sect. 2.2;
from among all transitions listed there, all the transitions where the third coor-
dinate increases go to B, while the rest of the transitions go to L (including
the negative values in the diagonal). The corresponding QBD represents the
progress of the tagged job along with the state of the entire system. See Fig. 3.
The process does not contain actual ‘births’, since the level may only decrease. In
such a system, let T1 denote the (random) time it takes to go down one level to
some state (i′, j′, k′, l′), assuming we started from state (i, j, k, l), and H denotes
its Laplace-transform:

HT1(s)(i,j,k,l),(i′,j′,k′,l′) =

E(e−T1s1(first backwards transition is to state (i′, j′, k′, l′)) (13)
|starting from state (i, j, k, l))

H can be calculated as follows [14]:

HT1(s) = (sI − L)−1B.

The total delay T of the tagged job is equal to the time it takes to cross j
levels from initial distribution π and regardless of the end state (see also Fig. 3),
which has Laplace transform

HT (s) =
∑
i,j,k,l

π(i,j,k,l) · Hj
T1

(s) · 1 (14)
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where 1 denotes the constant 1 column vector of size |Ω|. Thus

E(T ) = − d

ds
HT (s)

∣
∣
∣
∣
s=0

= − d

ds

∑

i,j,k,l

π(i,j,k,l) · Hj
T1

(s)
∣
∣
∣
s=0

· � =

− d

ds

∑

i,j,k,l

π(i,j,k,l) · ((sI − L)−1B)j
∣
∣
∣
s=0

· � =

−
∑

i,j,k,l

π(i,j,k,l) ·
j−1
∑

m=0

((sI − L)−1B)m(sI − L)−2B((sI − L)−1B)j−1−m

∣
∣
∣
∣
∣
s=0

· � =

−
∑

i,j,k,l

π(i,j,k,l) ·
j−1
∑

m=0

((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · �. (15)

Similarly,

E(T 2) =
d2

ds2
HT (s)

∣∣∣∣
s=0

=
∑
i,j,k,l

[
π(i,j,k,l) ·

j−1∑
m=1

m−1∑
l=0

((−L)−1B)l(−L)−2×

× B((−L)−1B)m−1−l(−L)−2B((−L)−1B)j−1−m+
j−1∑
m=0

((−L)−1B)m(−2)(−L)−3B((−L)−1B)j−1−m+

j−2∑
m=0

((−L)−1B)m(−L)−2B

j−2−m∑
l=0

((−L)−1B)l(−L)−2B((−L)−1B)j−2−m−l

]
· 1.

(16)

(15) and (16) are explicit for E(T ) and E(T 2), thus the mean and variance
of the delay can be calculated. However, L and B are sparse matrices of size
|Ω| × |Ω|, which is typically large, so the actual calculations need special care.
In the rest of this section, we sketch an efficient algorithm for the calculation of
the formulas (15) and (16) for large Ω.

The first main point is that for large Ω, we only make calculations with
vectors. To calculate (15), we start with the rightmost vector 1. Then, apart
from summations, only 2 steps are repeated: either multiplication by B, which
is feasible, or multiplication by (−L)−1. The calculation of (−L)−1 is infeasible,
so to calculate (−L)−1v for some v, we solve (−L)x = v instead. L has a special
structure; we show that with a proper reordering of the states, L it will be upper
block diagonal (with small block sizes), which allows (−L)x = v to be solved
block by block.

The ordering is as follows:

– The states for the same values of j, k, l will form blocks of size |Q|. The order
within the block is irrelevant.

– For each value of j, k, the block for l = 1 comes before the block for l = 2.
– Then, for each value of j, the blocks are ordered in an increasing manner

according to k (without changing the order of the blocks belonging to the
same value of k).
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– Then the blocks are ordered in a decreasing manner according to the value
of j (without changing the order of the blocks belonging to the same value
of j).

According to Fig. 1, this means that the last block is the bottom right corner
of the GC triangle, preceded by the bottom right corner of the service triangle.
Then the bottom rows of the two triangle follow from right to left, with blocks
from the GC triangle and blocks from the service triangle alternating. Then the
left of the rows follow from bottom to top.

The first two blocks (corresponding to the bottom right corners of each tri-
angle) are special in the sense that L contains transitions between them in both
directions. However, from all other blocks, L only contains transitions that go
to later blocks (according to the above ordering), so in the above ordering, L is
indeed block-upper-triangular, with a single diagonal block of size 2|Q| and all
other diagonal blocks of size |Q|.

This allows us to solve (−L)x = v for any v efficiently.
Starting from the vector 1, we keep multiplying by B and (−L)−1 until we

obtain the vectors ((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · 1 (from (15)). This
process can be sped up by storing the vectors ((−L)−1B)j ·1 for separate values
of j. Then the final summation can be made more efficient by pre-splitting π
into vectors π =

∑
j πj , where πj only contains the elements of π whose second

coordinate is j (that is, πj corresponds to a single row in the service and GC
triangles). Then

E(T ) =
∑
j

πj ·
j−1∑
m=0

((−L)−1B)m(−L)−2B((−L)−1B)j−1−m · 1. (17)

(16) can be calculated efficiently using similar techniques (albeit with more
steps). We do not go into further details due to lack of space here.

4 Experimental Results

4.1 Calculating Network Performance KPIs

The basis of the experimentation is a storm-based data processing system that
uses reports from a large number of network elements (e.g. base stations) to cal-
culate higher level network performance KPIs (key performance indicators). The
topology of the processing system is a four-stage pipeline. We examine the first
stage, called Parser, which parses the reports and retrieves the measurements
from them.

The experimentation took place in the lab environment of Nokia, Bell Labs,
with status reports stored in an HDFS storage and played back with real traf-
fic timing. The processing software is implemented within the Apache Storm
framework [2]. For monitoring, the Ganglia monitoring system was used [1].
Measurements were registered at intervals of length 500 ms.
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4.2 Application of the Model

We apply the model to the Parser unit. First, the input data stream was approx-
imated by a stationary Markov-modulated fluid model using k-means clustering
to obtain the background Markov process with generator Q. Technically, input
is given in discrete units (files), but the file size is relatively small compared to
the total memory size.

Initial measurements showed that file size of the input data is proportional
to both the amount of memory used during service, and also to the service time
necessary. The corresponding constant factors were measured and are used as
an input to the model. Service rate was also measured.

First, we are interested in the effect of discretisation: we model the same input
process with several different setups of (NU , NV ) pairs. The input parameters
are (r and Q are not included in their entirety; input was clustered to 6 clusters):

s = 14.6MB/s, g = 64440MB/s, C = 40.81,M = 252MB (18)
r̄ = 0.78MB/s, max(r) = 20.9MB/s.

Service rate was measured using an artificially overloaded system, while the
constant C was obtained by comparing the junk memory and the size of the
incoming data. We note that the parameters in (18) reflect a relatively low load
of the system. With a high load, certain processes such as memory swapping
may be initiated which are not included in the model.

Table 1 contains the values of several performance measures obtained from
the stationary analysis of the model for various (NU , NV ) pairs.

Table 1. Effect of discretisation

(4, 8) (10, 20) (20, 40) (10, 50)

Mean period length 7.8282 7.8196 7.8193 7.8195

Utilisation 0.05421 0.05429 0.05429 0.05433

Mean loss ratio 1.17e−6 6.51e−10 1.69e−12 2.87e−13

The mean period length and the utilisation change very little as (NU , NV )
are increased. On the other hand, the mean loss ratio is small and decreases
rapidly as (NU , NV ) increases. For the above input, it should be considered 0.

Analysis showed that the effect of the discretisation is relatively small, in
other words, the model performs well with moderately large values of NU and NV

(at least for utilisation and mean period length); from now on, we set (NU , NV ) =
(10, 20) but with various inputs for actual validation.

From among the performance measures calculated in Sect. 3, we use the mean
period length for validation with real life data. Mean period length is the mean
time of an entire cycle of a service plus garbage collection period. The mean
period length is easy to measure reliably: the real life monitoring system keeps
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count of the number of garbage collections over a sustained period of time.
Several other performance measures are difficult to measure reliably: CPU usage
relates to utilisation but may be distorted by other system processes. Loss ratio
is known to be 0 from the actual monitoring, and this is approximated fairly well
by the model, but relative error does not make sense in this case. Delay and the
length of the queue was not possible to measure with the monitoring system.

The memory cap is slightly different for each run, ranging between 190 MB
and 252 MB. The input process also varies slightly, with the minimal input rate
0, maximal input rate changing between 17 MB/s and 21 MB/s, and average
input rate changing between 0.72 MB/s and 0.78 MB/s (Table 2).

Table 2. Validation of mean period length

Input run 1 2 3 4 5 6 7

From model 7.8196 8.2805 7.6990 7.2829 6.8598 6.6874 6.7157

Monitored 7.6585 8.1437 7.5303 7.1277 6.7030 6.5090 6.5090

Relative error 1.02% 1.02% 1.02% 1.02% 1.02% 1.03% 1.03%

Overall, the relative error is around 1%, with the model consistently overesti-
mating the mean period length according to actual monitored results. The exact
explanation and correction to the model is subject to further research, along with
a more direct validation of the model. We also believe that the model presented
models garbage collection on a realization level (not just stationary behaviour),
but again, this is difficult to validate due to the fact that measurements made
too often will distort the results themselves.

Close results in the literature are due to [4], but differences in the models (for
example, description of the arrival process) make a direct comparison difficult.

5 Conclusion

The model is only applicable for a certain region of parameters. Under certain
conditions, processes like memory swapping may be initiated. These are not
included in the model.

The current model only includes one “type” of memory. However, in many
memory management applications, there are “young” and “old” sections of the
memory to store data for short and long term calculations. Such sections may
be integrated in the model naturally with the expansion of the state space. This
is subject to future work.

The computation of the stationary distribution (and the derived performance
measures of Sect. 3) may be infeasible for very large values of NU and NV .
Possible future work includes the application of dimension-reduction techniques
based on tensor decomposition [17].
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The model is sophisticated enough to allow modelling of a process on a
realization level. This may be explored further.

Another natural option is to examine a transient version of the model; this
would allow the examination of unstable systems as well.

An explicit solution for the original fluid model of Sect. 2.1 is also an inter-
esting challenge.
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Abstract. The weighted fair queueing (WFQ) service discipline pro-
vides a flexible way to share bandwidth among two or more traffic classes.
Some variants of the basic WFQ principle are used in the practice in
computer networks in routers, switches, etc. Unfortunately, the analyti-
cal modeling of the related queues turned out to be notoriously difficult.
This paper presents approximation expressions for the mean response
times in a two-class (ideal) WFQ system with Poisson arrival process
and exponentially distributed service times. The approximation is based
on simulation. The results are very simple, explicit, yet reasonably accu-
rate, ideal to use in self organizing networks where the weights associated
with the different traffic classes need to be recalculated to adapt to the
changing network conditions.

1 Introduction

In computer and telecommunication networks the overall traffic is a mixture of
packet flows having different quality demands. Some packets are urgent, while
some others can tolerate delay better. Most modern communication protocols
have a field in the packet header indicating to which class the packet is belonging
to (like the class of service (CoS) field in the Ethernet frame header and the
DiffServ code point (DSCP) in the IP header). Packet schedulers in the network
devices (switches, routers) need to take this information into account to provide
the necessary quality of service.

A popular multi-class scheduling discipline for this purpose is the weighted
fair queueing (WFQ) service. In such systems the packets belonging to different
traffic classes are stored in separate queues before they get transmitted. The total
service capacity is shared among the classes according to the weights associated
with the queues: The higher the weight of a traffic class is, the higher service
rate it gets. The WFQ schedulers are work conserving, thus the total service
capacity is always distributed among the classes that are currently active. The
weights provide a flexible way to express the importance of the traffic classes.
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 125–137, 2017.
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The fluid-based version of the scheduler, where the customers are infinites-
imally small (considered as fluid drops), is often called generalized processor
sharing (GPS), while the variant with discrete customers, also studied in the
paper, is called weighted fair queueing. According to the ideal weighted fair
queueing (also referred to as the coupled processor model in [3,8,12]) the mul-
tiple traffic classes can be served simultaneously, at the reduced service rate
associated to them. This ideal WFQ is, however, impossible to implement in a
real situation. Several packet-based approximations of the ideal WFQ appeared
in the practice, including the Virtual Clock [14], Self-Clocked Fair Queueing [4],
Deficit Round Robin [10], etc.

Although these WFQ-like schedulers are very popular, there are very few
analytical results available in the literature. In the simplest scenario with
Poisson arrival process and exponentially distributed service times, the Markov
chain representing the number of customers in the system (class-wise) has a sim-
ple, regular structure, still, its stationary solution turned out to be a notoriously
difficult problem. The only exact result we are aware of is [5], where the gen-
erating function was derived (the mathematical apparatus used in that paper
demonstrates how difficult the problem is). Several approximations appeared as
well to provide simpler, more tractable solution of the WFQ system. The result
in [6] is based on the decoupling of the queues, while the QBD structure of the
Markov chain is exploited in [1]. The idea in [9] is to transform the WFQ system
to a priority queue.

In this paper our aim is to provide a very simple, explicit approximation for
the two-class ideal WFQ system, based on simulation results and curve fitting.
Similar approach has been followed many times in the past: the KLB formula [7]
for the approximation of the waiting time in G/G/1 queues and the formulas in
[13] to approximate various properties of the departure process of G/G/1 queues
were both successful and widely used results. Our approach is somewhat similar
to [9], but that paper considers a slightly different system where the service of
packets can not be preempted, and a step of the procedure needs the numerical
solution of an equation. Our formulas are explicit, contain only basic operations,
and can be easily implemented in a network device, making it possible to re-
calculate the weights of the classes if the traffic situation changes.

2 Model Definition

In this paper we consider the two-class weighted fair queueing system. The cus-
tomers are arriving according to a Poisson process with parameters λ1 and λ2,
and are directed to two separate queues according to their class. The service
times are exponentially distributed with (class independent) parameter μ. The
server is shared among the two customer classes, controlled by weights w1 and
w2. According to the ideal weighted fair queueing policy considered in the paper,
both the class 1 and class 2 queues are served in parallel, if both kinds of cus-
tomers are present in the system: class 1 is served with rate μ · w1/(w1 + w2),
while class 2 is served with rate μ · w2/(w1 + w2). If one of the queues is idle
then the total service capacity is given to the other class.
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The amount of work brought by class k customers to the system is ρk = λk/μ.
In this paper we assume that the system is stable, hence for the total utilization
ρ = ρ1 + ρ2 we have that ρ < 1.

The asymmetry of the utilization of the two customer classes can be charac-
terized many ways. We found that the measure

r =
ρ1 − ρ2

ρ
, (1)

r ∈ (−1, 1), turned out to be a good choice, making the forthcoming expressions
simpler (Table 1).

Table 1. Notation and parameters used.

Parameter Definition

μ Service rate

λ1, λ2 Arrival rate of class 1 and class 2 customers

w1, w2 Weight of class 1 and class 2 customers

ρ1, ρ2 Utilization of class 1 and class 2 customers

ρ The total utilization of the system

r The asymmetry of the utilization

E(T1), E(T2) Response time (waiting+service time) of class 1 and class 2 customers

2.1 Analytical Results Used in the Paper

To approximate the mean response time in the WFQ system, we are going to
utilize the results of two closely related two-class queueing systems, that have
exact mean response time results available.

One of these systems is the two-class FCFS queue. In this system there is
no capacity sharing and all demands are served according to the global arrival
order independent on the class. The mean response time is given by [2]

E(TFCFS) =
1

μ − λ1 − λ2
. (2)

The second queueing system necessary to our approximation is the two-class
preemptive priority queue. Observe that the ideal WFQ server investigated in
this paper exhibits a kind of preemptive behavior: when a customer arrives to an
idle queue, the service rate of the other class gets reduced immediately. When
one of the weights, w1 or w2 is zero, then the WFQ behaves like a preemptive
(resume) priority queue. If w1 = 0, class 1 plays the role of the low priority class
with mean response time given by

E(TPrio) = E(TFCFS)
1

1 − ρ2
(3)
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Finally, the conservation law [2]

ρ1E(T1) + ρ2E(T2) = ρE(TFCFS) (4)

allows us to focus on one of the classes only, the mean response time for the
opposing class can be calculated from (4).

2.2 Simulation of the System

Due to the naming confusion and the existence of many variants of the WFQ
system, and since we rely on simulation results heavily in the paper, we briefly
discuss the simulation of the queue studied in this paper. Algorithm 1 provides
the simplified simulation algorithm in a discrete event simulation system1.

Algorithm 1. Discrete event simulation of the WFQ system
Event end of servicei:

collect (current time - arrival time) to response time statistics
remove customer from queuei

if queuei is empty then
call RescheduleServiceTimes

else
select next customer in queuei

service time ← Exp(μ · sharei)
schedule end of servicei to current time + service time

end if
End
Event arrival of classi:

if queuei is empty then
add new customer to queuei

call RescheduleServiceTimes
else

add new customer to queuei

end if
End
procedure RescheduleServiceTimes

for every non-empty queuei do
sharei ← wi/

∑

∀j:queuej
not empty

wj

cancel event end of servicei

service time ← Exp(μ · sharei)
schedule end of servicei to current time + service time

end for
end procedure

In this algorithm there are two kinds of events to handle: arrival and service
events. There are as many service events scheduled at the same time as many
1 Our implementation is based on OmNet++ [11].
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busy queues there are in the system. These events need to be re-scheduled when
the busy state of the queues changes, that can occur in two situations: when
a customer arrives into an empty queue and when a customer leaves its queue
empty. In case of exponentially distributed service times re-scheduling the service
events is simple, the memory-less property can be exploited.

3 The Analysis of the Response Times

3.1 The Concept of the Approximation

Due to the conservation law (4) it is enough to focus on a single customer class,
class 1, the mean response time for the other traffic class can be expressed from
(4). An other feature of the system that we are going to exploit is that the two
weight parameters w1, w2 defining the system are redundant. In the sequel, we
are going to set w2 = 1 and investigate the behavior of the system as the function
of w1.
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Fig. 1. The mean response times as the function of w1 (μ = 0.0012)

Figure 1 depicts the mean response times as the function of w1 in a particular
example (ρ1 = 0.39, ρ2 = 0.55). Observe that if w1 = 0 then the system behaves
like a preemptive priority queue with class 1 being the low priority class, hence
E(T1) = E(TPrio). At the other hand, when w1 → ∞, class 1 has exclusive
access to the service capacity. The point where the curves of class 1 and class 2
meet plays an important role in our approximation. In this point E(T1) = E(T2)
holds, more precisely, (4) implies that E(T1) = E(T2) = E(TFCFS). The weight
belonging to this point is denoted by w∗ in the sequel. Based on this point the
plot of class 1 on the figure can be divided to two rectangular regions (denoted
by dashed lines). Due to the symmetry of the system, we assume that w1 ≤ w∗
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holds (the role of the two classes can be swapped in the opposite case), we
are going to study only this case in the rest of the paper, hence our aim is to
approximate the behavior in the rectangle on the left.

Our approximation for the response times consists of two components:

– The approximation of w∗. This is the only unknown parameter to fully char-
acterize the region marked by dashed lines in Fig. 1. The top left point is
given by w1 = 0, E(T1) = E(Tprio), and the bottom right point is located at
w1 = w∗, E(T1) = E(TFCFS).

– The approximation of the shape of the response time curve. Based on many
simulation experiments we found that w∗ is very close to the inflection point
in most of the cases (except if the utilization is extremely low). Hence, E(T1)
inside the dashed region is typically monotonous. The bend of the curve
(referred to as the “shape parameter” in the sequel) depends on ρ1 and ρ2,
and it is also subject to approximation.

The next two subsections present the approximation of these two parameters.

3.2 Approximating the Weight w∗

We have studied the behavior of w∗ as the function of ρ = ρ1 + ρ2 with different
r parameters (r characterizes the asymmetry, see (1)). We found that at the two
extreme values of ρ the w∗(ρ, r) tends to specific values:

– At ρ → 0 w∗ tends to 1,
– at ρ → 1 w∗ tends to ρ1/ρ2 = 1+r

1−r .

The latter relation can be intuitively justified as follows2: When ρ is almost
one, the system is continuously busy so the class-1 queue is like an M/M/1
queue with arrival rate λ1 and service rate μw1

w1+1 . So, the mean response time
of class-1 customers is E(T1(w1)) = w1+1

w1(μ−λ1)−λ1
. To obtain w∗ one has to solve

E(T1(w1)) = 1
μ−λ1−λ2

, which, after a few calculations leads to w1 = 1−ρ2
ρ2

= ρ1
ρ2

.
To make the visual comparison easier, we scale w∗ to the [0, 1] domain by

introducing ω∗(ρ, r) as

ω∗(ρ, r) =
w∗(ρ, r) − ρ1

ρ2

1 − ρ1
ρ2

=
w∗(ρ, r) − 1+r

1−r

1 − 1+r
1−r

. (5)

Figure 2 depicts the shape of ω∗(ρ, r) as the function of ρ at various settings of
r. According to our simulation experiments, these curves are (almost) symmetric
to the f(x) = x line. We found a family of functions, having the same symmetry,
suitable for the approximation: the f(x) = x−1

c x−1 function. The c parameter of
this function controls the shape: how much the curve bends towards the upper
right corner of the rectangle defined by corners (0, 0) and (1, 1). Shape parameter c

2 We would like to thank the anonymous review for the intuitive explanation presented.
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Fig. 3. The optimal shape parameter c for the approximation of ω∗(ρ, r)

can be negative as well, in this case the curve bends towards the lower left corner
instead.

For each r setting we determined the optimal shape c value leading to the
most accurate approximation. Plotting these parameters as the function of r
leads to a nearly linear function (Fig. 3)

c = 0.71r + 0.29. (6)
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b) r = 0.82

Fig. 4. The accuracy of the approximation of parameter ω∗

Putting together the pieces, the approximation for ω∗(ρ, r) is

ω∗(ρ, r) =
ρ − 1
c ρ − 1

=
ρ − 1

(0.71r + 0.29)ρ − 1
=

ρ − 1
0.71(ρ1 − ρ2) + 0.29ρ − 1

, (7)

finally, the approximation for w∗ is

w∗ = ω∗(ρ, r)(1 − ρ1
ρ2

) +
ρ1
ρ2

=
(

1 − ρ1
ρ2

)
ρ1 + ρ2 − 1

ρ1 − 0.42ρ2 − 1
+

ρ1
ρ2

. (8)

Note that ω∗(ρ, r) (hence w∗) is always non-negative in the stability region since
the minimum value is given at ρ = 1.

Figure 4 demonstrates how accurate this approximation is in two cases, for
r = −0.82 and for r = +0.82, corresponding to ρ1/ρ2 = 0.1 and 10, respectively
(the dashed line is the approximation, the marks indicate the simulation results).

3.3 Approximating the Shape

Having w∗ approximated, the next element of the solution is to approximate
E(T1) when w1 ∈ [0, w∗] (the curve in the upper left dashed rectangle in Fig. 1).
In this region E(T1) takes values between E(TPrio) and E(TFCFS). Let us scale
this region to the [0, 1] domain by defining Ê(T1) as

Ê(T1) =
E(T1) − E(TFCFS)

E(TPrio) − E(TFCFS)
(9)

and investigate its dependence on the parameters of the system. Depending on
the class 1 and class 2 load the curve representing Ê(T1) as the function of
w1/w∗ bends towards the lower left or towards the upper right corner of the
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unit rectangle. The function f(x) = x−1
c x−1 , introduced and used in the previous

section, turned out to be suitable to approximate this curve as well. As before,
the question is how to set the shape parameter c to make the approximation
accurate.

First we studied the symmetric case with ρ1 = ρ2 (r = 0). Investigating the
plot depicting the optimal shape parameter as the function of the total load
ρ = ρ1 + ρ2 we found that it changes between −1 and 1 and that it can be
approximated by c = 2ρ2/3 − 1 very accurately (see Fig. 5).
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Fig. 5. The optimal shape parameter as the function of the total load

Hence, we were looking for the approximation in the non-symmetric (ρ1 �= ρ2)
case in the form of c = 2ρg(r) −1 as well. The empirical analysis of the exponent
revealed that

g(r) = 6 · |r − 0.25|3.2 + 2 (10)

is a relatively accurate approximation of the simulation results with less than
5% error (see Fig. 6), although it gives g(0) = 2.071 instead of 2/3 for r = 0.

Altogether, the mean scaled response time Ê(T1) as the function of the scaled
weight w1/w∗ is approximated by

Ê(T1) =
w1/w∗ − 1

(2ρ6·|r−0.25|3.2+2 − 1)w1/w∗ − 1
. (11)

The complete algorithm including the selection of the role of class 1 and
the approximation of both mean response times is presented in Algorithm 2.
While the resulting formula is explicit, the algorithm brakes down the solution
to multiple steps for simplicity.
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Algorithm 2. The approximation of the mean response time
function E(T1), E(T2) = WFQResponseTime(λ1,λ2,μ)

ρ1 ← λ1/μ, ρ2 ← λ2/μ, ρ ← ρ1 + ρ2

w∗ ←
(
1 − ρ1

ρ2

)
ρ1+ρ2−1

ρ1−0.42ρ2−1
+ ρ1

ρ2

if w1/w2 < w∗ then
r ← (ρ1 − ρ2)/ρ

c ← 2ρ6·|r−0.25|3.2+2 − 1
w ← w1/w2

E(TFCFS) ← 1
μ1−λ1−λ2

E(TPrio) ← E(TFCFS)/(1 − ρ2)
Ê(T1) ← (w/w∗ − 1)/(c · w/w∗ − 1)
E(T1) ← Ê(T1)E(TPrio) + (1 − Ê(T1))E(TFCFS)
E(T2) ← (ρE(TFCFS) − ρ1E(T1))/ρ2

else
r ← (ρ2 − ρ1)/ρ

c ← 2ρ6·|r−0.25|3.2+2 − 1
w∗ ← 1/w∗

w ← w2/w1

E(TFCFS) ← 1
μ1−λ1−λ2

E(TPrio) ← E(TFCFS)/(1 − ρ1)
Ê(T2) ← (w/w∗ − 1)/(c · w/w∗ − 1)
E(T2) ← Ê(T2)E(TPrio) + (1 − Ê(T2))E(TFCFS)
E(T1) ← (ρE(TFCFS) − ρ2E(T2))/ρ1

end if
return E(T1), E(T2)

end function

4 Numerical Results

In this section we demonstrate the behavior of our approximation method and
compare it with the procedure published in [6]. This comparison is not completely
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fair, though, since [6] considers a more general system where the inter-arrival and
service times can be non-exponential as well.

In general, the proposed approximation managed to achieve very accurate
results. In the extreme cases, when the utilization is high and the load is very
asymmetric, the accuracy is worse, while in the more “balanced” cases the accu-
racy is better. Among the scenarios we investigated, the results were the worst
with parameters ρ = 0.95, r = −0.82. The mean response times as the function
of w1 are depicted in Fig. 7. The reason of the sub-optimal performance is that
under such a high load the inflection point of the curve does not coincide with
w∗. However, the results are still much better than the ones obtained by [6].
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Figures 8 and 9 present the typical accuracy of the proposed method. The
weights w∗, where the curves cross each other, are captured almost exactly. The
approximation of the bend of the curve has some error, but it is much more
accurate than the error of [6].

5 Conclusion

In this paper we have presented a simple explicit approximation formula for
the mean response times in the two-class weighted fair queueing system. While
there are some queueing considerations behind the results, the approximation is
mostly based on an algebraic approach. Some decisions on how to approximate
the behavior seem sometimes ad-hoc, the accuracy of the approximation is rea-
sonable, much better than the method found in the literature studying the same
system.
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Abstract. We investigate a queuing model for a signalized intersection
regulated by semi-actuated control in a urban traffic network. Modelling
the queue length and the delay of vehicles for this type of traffic, charac-
terized by variable durations of the green signal, is crucial to evaluate the
performance of traffic intersections. Additionally, determining the size of
the extensions of the green signal is also relevant. The traffic systems
addressed in the paper have the particularity that the server remains
active (green signal) for a period of time that depends on the number of
vehicles waiting at the intersection. This gives rise to an M/D/1 queu-
ing system with a server that occasionally takes vacations (red signal),
for which we compute the long-run mean delay of vehicles, mean queue
length and mean duration of the green signal. We consider a case study
and compare the results obtained from the proposed queueing model
with those obtained by using a microsimulation model. The formulas
derived for the performance measures are of interest for traffic engineers,
since the existing alternative formulas are subject to strong criticism.

1 Introduction

The last decades of research on the theory of signalized traffic intersections put
a lot of emphasis on estimation methods of delays and queue lengths at individ-
ual intersections regulated by actuated control and on the strategies that can
be designed upon the results of such estimation and on the analysis of traf-
fic characteristics. The performance of signalized intersections is indeed usually
measured by the mean queue length and the mean delay (sojourn time in system)
of vehicles.
c© Springer International Publishing AG 2017
N. Thomas and M. Forshaw (Eds.): ASMTA 2017, LNCS 10378, pp. 138–151, 2017.
DOI: 10.1007/978-3-319-61428-1 10
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Different approaches to the estimation problem can be found in the literature.
The approach based on microscopic simulation models, essentially car-following
models (see, e.g., [2,16,20]), presents some important disadvantages since, in
spite of the fact that they mimic quite well the behaviour of traffic in real world,
they need to be fed with a lot of parameters, not easily known or measured in
practice, and require a considerable computational effort. Popular models like
the HCM model [18] and Webster’s model [25] are known to have also some
drawbacks.

As an alternative, this paper explores the use of queueing theory in order
to obtain the performance measures just mentioned above. The main difficulties
involved in such an approach come from the need of a good characterization
of the circulating vehicles and drivers, and from the fact that the cyclic deac-
tivation of the server (the red signal) has to be incorporated in the behaviour
of the queueing system. In the work published in [15] we have addressed pre-
timed control intersections. However actuated or semi-actuated traffic signals
are generally more efficient, since they better accommodate fluctuation of vehi-
cle arrivals as they are able to adapt the green time given to a traffic stream
according to demand, by incorporating the possibility of extending the green
signal (see e.g. [23]).

The paper by Lin et al. [13] explores simple probabilistic arguments to obtain
the mean duration of the green signal in semi-actuated controlled intersections,
but their approach is restricted to small volumes of traffic in the secondary
street, smaller than 500 vehicles per hour. Even in the case of Poisson vehicle
arrivals, models like M/D/1 and M/DX/1 do not correctly describe the deac-
tivation of the server, taking place when the signal changes from green to red.
In fact, queueing systems with server vacations (see [3] for a survey) are a more
convenient way of modelling the stochastic behaviour of the traffic system (see
also previous work in [7,8,24] for the case of pre-timed control).

Signalized traffic intersections have similarities with polling systems (see e.g.
[21] or [22] for an overview on polling systems), where a single server is handling
two queues and switches between them according to some control rule. In the
case of semi-actuated signalized intersections, queues are attended by the server
during given periods of time, which may have random duration – at least for one
of the queues. However, as far as we know, the diversity of polling systems found
in the literature do not encompass the specificity of the semi-actuated signalized
traffic addressed in the paper. Several authors (see e.g. [5,6,11] or [1]) stress
the fact that systems characterized by time limited service disciplines, as it is
the case for semi-actuated signal intersections, should not be expected to have
closed formulas for the expected customer waiting time. The papers just cited
focus on cases of exponential or phase-type service times, which do not apply
to signalized traffic. However, time limited server systems are often used when
in presence of heavy loaded queues that tend to monopolize the server, leaving
lightly loaded queues with a negligible part of the service time.

In this paper, we consider a semi-actuated isolated signalized intersection,
meaning that the mechanism that triggers red times relies on the evolution of
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the traffic demand, leading to green times of random duration. Specifically, the
green time is extended, from a fixed minimum duration, in case there are vehicles
waiting at the intersection at the end of a minimum green time period. Additional
individual extensions of the green time by T seconds are performed if the time
interval between arriving vehicles remains smaller than T seconds, up to the
green time reaching a maximum pre-fixed total duration. For implementing the
green time extension mechanism, a sensor located a couple of meters before the
stop line is responsible for the detection of vehicle at the intersection.

We model the semi-actuated signalized intersection as an M/D/1 queueing
model with server vacations, in which clients (vehicles) are served in a first-in
first-out (FIFO) regime. The server starts a vacation of fixed duration as soon
as a red time initiates. As described in the previous paragraph, server working
periods, corresponding to green times, have random duration. We explore in the
paper the specific nature of the resulting M/D/1 server vacation queue, and in
particular its Markov regenerative structure, to characterize the distributions
of queue length, vehicle delay, and duration of the green signal in the long-run
regime. Our approach is different from that of [12], which relies on the derivation
of a functional equation for the system behavior and its solution by means of
a numerical technique based on Laguerre-function approximations. We compare
the results obtained for the derived long-run measures with those obtained by
applying a microscopic simulation model (see [19]). Our main contribution lies
in providing expressions for the means of waiting time of drivers, length of queue
at the intersection, and total duration of the green signal, which are of interest
for traffic engineers.

The paper is organized as follows. The assumptions made and the Markov
chain model that is used in the paper for investigating semi-actuated signalized
traffic intersections are introduced in Sect. 2. The main results on long-run per-
formance measures for semi-actuated signalized traffic intersections are included
in Sect. 3, and a case study that is used to validate the results obtained from
the proposed model is presented in Sect. 4. The paper ends with some brief
conclusions drawn in Sect. 5.

2 The Signalized Intersection Traffic Model

A signalized intersection regulated by semi-actuated control is assumed to be a
traffic server system for which each vehicle arriving at the intersection during a
green (light) period has to wait if there are vehicles in front of it, or if arriving
during a red (light) period. In a detailed way, we consider a model for a signalized
intersection having the following specifications, with time in seconds:

• Vehicles arrive at the intersection according to an homogeneous Poisson
process with rate λ, and are served one by one in order of arrival.

• The intersection possesses infinite vehicle waiting capacity, and the light alter-
nates between green and red periods.

• The service time of a vehicle is constant and equal to T , and services are
initiated during green periods at instants that are integer multiples of T .
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• Red periods have constant duration of value RT , and green periods have
random durations, taking values on the set

{MT, (M + 1)T, . . . , GT}

such that: starting from an initial interval of duration MT for a green period,
successive extensions of length T of the green period occur if there are vehicles
to be served at the intersection at the end of the interval, with extensions
being allowed only up to the point when the length of the green period reaches
the corresponding maximum duration of GT .

Note that T is an arbitrary positive constant that denotes the time that a
vehicle spends to move through the intersection, i.e., its service time, R and M
are positive integers, and G − M is a nonnegative integer number denoting the
maximum number of extensions of T seconds that are allowed to be performed in
green periods. Our assumptions imply that signal cycles have maximum duration
(G + R)T , and are divided in a server working period of minimum length MT
and maximum length GT , corresponding to a green period, followed by a server
vacation period of fixed length RT , corresponding to a red period.

We should stress that the approach that will be followed in the paper could be
adapted with small effort to accommodate: vehicles arriving at the intersection
according to a non-homogeneous compound-Poisson process; the intersection
having finite vehicle waiting capacity, and group service of vehicles – with a
maximum size group being allowed, as considered in [8]. The time discretization,
with time step T , which is implicit in the Markov chain that we will use to analyze
the system, represents a reasonable approximation of the real world traffic; and
the use of a constant service time to represent the time spent by a vehicle driving
across the intersection is also a fair approximation of the real world behaviour
of drivers.

For t ≥ 0, let (L(t), ξ(t)) denote the state of the system at instant t, with L(t)
representing the number of vehicles in the system (in brief, the queue length) at
instant t and ξ(t) the state of the signal (in brief, the phase) at the same instant,
with the set of phases being {1, 2, . . . , G + 1}, such that: phases 1, 2, . . . , M
correspond to the initial M time intervals of duration T of a green period, phases
M + 1,M + 2, . . . , G correspond to the successive time intervals of duration T
associated with extensions of a green period, and phase G+1 corresponds to the
red periods of duration RT . In addition, let τn denote the instant (of time) of
occurrence of the n-th change of state in the phase process (ξ(t)), with τ0 = 0.

A careful analysis of the traffic process {(L(t), ξ(t))} leads to the conclusion
that it is a Markov regenerative process with state space N × {1, 2, . . . , G + 1};
see, e.g., [9] for details on Markov regenerative processes. Moreover, by observ-
ing the process {(L(t), ξ(t))} at times τn, we obtain the embedded Markov chain
{Xn}, with Xn = (L(τn), ξ(τn)), n ∈ N, denoting the state of the system imme-
diately after the n-th phase change, being an M/G/1 type Markov chain, a type
of chain that was investigated in detail in [14].
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The Markov chain {Xn} has state space N× {1, 2, . . . , G + 1} and transition
probability matrix

Q =

⎡
⎢⎢⎢⎣

B′
0 A1 A2 · · ·

A′
0 A1 A2 · · ·

0 A0 A1 · · ·
...

. . . . . . . . .

⎤
⎥⎥⎥⎦ , (1)

where the Ak, A′
0, and B0 are (G+1)×(G+1) nonnegative matrices. The entries

of the matrices Ak are given by

(Ak)ij =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−λT (λT )k

k!
, i = 1, 2, . . . , G, j = i + 1

e−λRT (λRT )k−1

(k − 1)!
, i = G + 1, j = 1, k ≥ 1

0, otherwise,

The two matrices A′
0 and B′

0 have similar forms but must be treated separately;
in detail,

(B′
0)ij =

⎧
⎪⎪⎨
⎪⎪⎩

e−λT , i = 1, 2, . . . ,M − 1, j = i + 1
e−λT , i = M,M + 1, . . . , G, j = G + 1
e−λRT , i = G + 1, j = 1
0, otherwise,

and (A′
0)i,i+1 = (B′

0)i,i+1 for i = 1, 2, . . . ,M − 1, (A′
0)i,G+1 = (B′

0)i,G+1 for
i = M,M + 1, . . . , G + 1, and all remaining entries of A′

0 are 0.
Note that, for k ≥ 1: (Ak)i i+1, 1 ≤ i ≤ G, denotes the probability that

k vehicles arrive in a time interval, of duration T , elapsing from a transition
to phase i to the next subsequent phase transition, to phase i + 1; conversely,
(Ak)G+1 1 denotes the probability that k − 1 vehicles arrive in a time interval
elapsing from a transition to phase G + 1, starting a red signal, to the subse-
quent phase transition, to phase 1 and starting a green signal. The particular
shape of Q is intuitive; in particular, the need for the introduction of the blocks
A′

0 and B′
0 in the first column of Q arises from the fact that the decision on

whether an extension of the green signal will occur is exclusively determined by
having vehicles waiting in line or not at the moment at which a decision on such
extension needs to be made.

From the structure of the matrix Q in (1), it follows that the Markov chain
{Xn} is of M/G/1 type, and the invariant probability vector associated with
the stochastic matrix Q can be computed using a procedure similar to the one
described in [15] in case the stationarity condition λ(G + R) < G is satisfied, as
assumed in the rest of the paper.

To end the section, we let u = [u(0) u(1) u(2) . . .] denote the invariant proba-
bility vector associated with the stochastic matrix Q, an infinite row vector such
that u(k) = [uk1 uk2 . . . uk G+1], k ≥ 0, is an (G + 1)-dimension row vector and
uQ = u, u1 = 1, with 1 denoting a column vector of ones. Solving this equation
for u involves using a recursive matrix formula that is nicely described in [17].
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The element uki denotes the stationary probability that, at the beginning of a
period in a phase, there are k vehicles in the system and the system is in phase
i. As such, the stationary probability of the number of vehicles in the system at
the beginning of a phase being equal to k is given by

uk• =
G+1∑
i=1

uki, k ≥ 0.

Then, if we let r = [r1 r2 . . . rG+1] denote the stationary probability vector of
the embedded phase process {ξ(τn)}, we have ri =

∑∞
j=0 uji since we may also

view uki as the long-run fraction of phase transitions that lead to phase i with
k vehicles staying in the system immediately after the phase transition, and ri

as the long-run fraction of phase transitions that lead to phase i.

3 Long-Run Properties of the Traffic Process

In this section we characterize the long-run properties of the Markov regenerative
traffic process {(L(t), ξ(t))}. We first derive the long-run distribution of the
number of vehicles in the system, in Theorem 1, and obtain an expression for
the long-run mean number of vehicles in the system, in Theorem 2. After that, we
give an expression for the long-run mean sojourn time of vehicles in the system.
Finally, we present the long-run distribution of the number of extensions of the
green period, along with its mean.

We first note that the long-run fraction of phase i intervals that are initiated
with k vehicles in the system, denoted by πki, satisfies

πki =
uki∑∞

j=0 uji
=

uki

ri
. (2)

Of particular relevance are the long-run (and stationary) distributions of the
number of vehicles in the system at the beginning of green light periods,
{πk1}k≥0, and at the beginning of red light periods {πk,G+1}k≥0. For later use,
we let E[Li] denote the long-run mean number of vehicles in the system imme-
diately after a transition to phase i, i.e.,

E[Li] =
∞∑

k=0

k πki. (3)

We now address the long-run properties of the phase process {ξ(t)}. This is
a semi-Markov process with embedded Markov chain at phase transition epochs
{ξn}, such that the amount of time the process remains in phase i in each visit
to the phase is the constant

Ti =
{

T, i �= G + 1
RT, i = G + 1 .
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Resorting to the theory of semi-Markov processes (see, e.g., [4], Theorem 4.6) we
conclude that the long-run fraction of time the traffic process spends in phase i,

p•i = lim
t→∞

[
1
t

∫ t

0

1{ξ(s)=i} ds

]
,

can be written as p•i = riTi/
∑G+1

j=1 rjTj , which reduces to

p•i =

{ ri∑G
j=1 rj+R rG+1

, i �= G + 1
R rG+1∑G

j=1 rj+R rG+1
, i = G + 1.

(4)

We next address the computation of the long-run distribution of the number
of vehicles in the system, L. For that, we let pki denote the long-run fraction of
time there are k vehicles in the system with the system being in phase i, i.e.,

pki = lim
t→∞

[
1
t

∫ t

0

1{L(s)=k,ξ(s)=i} ds

]
,

implying that p•i =
∑∞

k=0 pki, for i = 1, 2, . . . , G + 1. The following theorem
expresses how the {pki} may be computed from the {uki}.

Theorem 1. For k ∈ N and i ∈ {1, 2, . . . , G + 1},

pki =

∑k
j=0 uji μk−j(i)

(
∑G

j=1 rj + R rG+1)T
, (5)

where μl(i), l ∈ N, is given by

μl(i) =

⎧
⎪⎨
⎪⎩

1
λ

[
1 − e−λT

∑l
m=0

(λT )m

m!

]
, i �= G + 1

1
λ

[
1 − e−λRT

∑l
m=0

(λRT )m

m!

]
, i = G + 1

. (6)

Proof. From the theory of Markov regenerative processes (see, e.g., [4], Theorem
4.7), the definition of pki and the structure of the traffic process {L(t), ξ(t)}, it
follows that

pki =

∑k
j=0 uji θji(k)
∑G+1

l=1 rlTl

,

with θji(k) denoting the expected amount of time there are k vehicles in the sys-
tem during an interval of time in phase i initiated with j vehicles in the system.
From (2) and since

∑G+1
l=1 rlTl = (

∑G
j=1 rj + RrG+1)T , in order to prove the

theorem it remains to show that the quantities θji(k) are equal to the quantities
μk−j(i) defined in (6). This follows, for i ∈ {1, 2, . . . , G + 1} and 0 ≤ j ≤ k, from
the following set of equalities:
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θji(k) = E

[∫ Tj

0

1{L(t)=k|L(0)=j,ξ(0)=i} dt

]

=
∫ Tj

0

P (L(t) = k|L(0) = j, ξ(0) = i) dt

=

⎧
⎪⎪⎨
⎪⎪⎩

∫ T

0

e−λt (λt)k−j

(k − j)!
dt , i �= G + 1

∫ RT

0

e−λt (λt)k−j

(k − j)!
dt , i = G + 1

=

⎧
⎨
⎩

1
λ

[
1 − e−λT

∑k−j
m=0

(λT )m

m!

]
, i �= G + 1

1
λ

[
1 − e−λRT

∑k−j
m=0

(λRT )m

m!

]
, i = G + 1

,

where the last equality may be obtained using induction on k − j (see [10]). ��
Let pk• denote the long-run fraction of time there are k vehicles in the system,

pk• = lim
t→∞

[
1
t

∫ t

0

1{L(s)=k}ds

]
.

Then, as pk• =
∑G+1

i=1 pki, we conclude from Theorem 1 that for k ∈ N,

pk• =

∑G+1
i=1

∑k
j=0 uji μk−j(i)(∑G

j=1,j �=G+1 rj + R rG+1

)
T

, (7)

with μk−j(i) given in (6).
The following theorem provides a formula for the long-run mean number of

vehicles in the system.

Theorem 2. The long-run mean number of vehicles in the system is given by

E[L] =

G+1∑
i=1

riE[Li]Ti

⎛
⎝

G∑
j=1

rj + RrG+1

⎞
⎠ T

+
λT

2

G∑
j=1

rj + R2rG+1

G∑
j=1

rj + RrG+1

. (8)

Proof. From the structure of the traffic process {L(t), ξ(t)} and the fact that

E[L] = lim
t→∞

[
1
t

∫ t

0

∞∑
k=0

k 1{L(s)=k} ds

]
,

it follows from the theory of Markov regenerative processes (see, e.g., [4],
Theorem 4.7) that

E[L] =
∑G+1

i=1

∑∞
k=0 uki δki∑G+1

l=1 rlTl

(9)
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with

δki = E

[∫ Ti

0

∞∑
l=0

(k + l)1{L(t)=(k+l)|L(0)=k,ξ(0)=i} dt

]
.

This equality can also be written as

δki =
∫ Ti

0

∞∑
l=0

(k + l)P (L(t) = (k + l)|L(0) = k, ξ(0) = i) dt

=
∫ Ti

0

∞∑
l=0

(k + l)e−λt (λt)l

l!
dt

= kTi +
λT 2

i

2
.

From (9), taking into account (2) and the fact that
∑G+1

l=1 rlT
2
l = (

∑G
j=1 rj +

R2rG+1)T 2, we have

E[L] =
∑G+1

i=1 ri

∑∞
k=0 kπkiTi

(
∑G

j=1 rj + RrG+1)T
+

λ

2

(∑G
j=1 rj + R2rG+1

)
T 2

(
∑G

j=1 rj + RrG+1)T
.

The expression (8) for E[L] now follows since
∑∞

k=0 kπki = E[Li]. ��
When assessing traffic systems, delay of vehicles is a major concern. The

long-run distribution of the sojourn time of a vehicle in the system is complex,
but can be derived following a procedure similar to the one used in Sect. 4 of
[15], with the necessary adaptations. One immediate contribution can be put in
terms of the computation of the long-run mean sojourn time of a vehicle in the
system, E[W ]. According to our model, it can be derived from Little’s formula
(cf. for instance [9]) applied to expression (8), giving:

E[W ] =
E[L]
λ

=

G+1∑
i=1

riE[Li]Ti

λT

⎛
⎝

G∑
j=1

rj + RrG+1

⎞
⎠

+
T

2

G∑
j=1

rj + R2rG+1

G∑
j=1

rj + RrG+1

. (10)

The setting considered in this paper allows extensions of the green signal,
which occur when there are cars waiting to be served at the end of the minimum
duration of a green period. An important measure is the long-run mean number
of extensions (or equivalently the time of extension) of a green period, which is
clearly not constant as it is the case in a non-actuated signalized intersection.

Let us consider a random variable NG whose distribution is the long-run
distribution of the number of extensions of the green period. By establishing
that P (NG > k − 1) = rM+k

rM
, for k = 1, 2, . . . , G − M , one can conclude that the

long run fraction of green periods with k extensions is
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P (NG = k) =

⎧
⎪⎨
⎪⎩

rM+k − rM+k+1

rM
, k = 0, 1, . . . , G − M − 1

rG

rM
, k = G − M

(11)

and the long-run mean number of extensions of the green period is

E[NG] =
G−M∑
k=1

rM+k

rM
. (12)

4 Case Study

In order to illustrate the applicability of the formulation that we propose, we
consider an intersection with 3 traffic streams having a primary phase and a sec-
ondary phase as illustrated in Fig. 1. The primary phase, associated to the two
main traffic streams, is not actuated. A sensor is placed two meters before the
stop line on the secondary street and the control of the secondary phase, associ-
ated to this street, is actuated by means of the information provided by the sensor
(inter-arrival times). The time plan is the following: M = 4, G = 15, R = 15. We
consider T = 2s. With this time plan, the maximum duration of extended green
is T (G−M) = 22 s. The vehicle arrival rate on the main street is assumed to be
800 veh/hour for each stream. The performance measures that we present corre-
spond only to the actuated stream. Note that, in this situation, the vehicle arrival
rates on the main street do not influence the measures on the secondary street.

Fig. 1. Scheme of the intersection, indicating the two phases. (Color figure online)

Regarding the microsimulator, the following set up was used (see [19] for
details):

– vehicle’s characteristics: desired speed - Gaussian (13.9m/s, 0.2m/s); max-
imum acceleration - Gaussian (1.7m/s2, 0.3m/s2); length of a vehicle -
Gaussian (4.0m, 0.3m);

– number of replications: between 100 and 1000, depending on arrival rate,
controlling for the standard deviation of the Monte-Carlo error to be smaller
than 1;
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Fig. 2. Comparison between estimates provided by the Markov chain based model and
by the microsimulation model: long-run mean delay of drivers (top); and long-run mean
queue length (bottom).

– warm up time: 600 s;
– run time: 2 h/replica.

Vehicle’s characteristics have been set on the basis of information collected
concerning the real operations of traffic in urban areas (see [19]). In the simulator,
vehicles move according to a car-following model, that is, essentially drivers
adapt the speed of their vehicles to that of the vehicle in front of them, so that
their heading is kept above a minimum value which corresponds to the drivers
perception of safety (see, e.g. [16] for a review of car-following models). This
level of detail in the description of the behaviour of vehicles, which is typical of
micro-simulation models, is not possible in the Markov model that we propose.

Figure 2 shows estimates of the long-run mean waiting time of drivers and the
long-run mean duration of the green signal obtained by the model presented in
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Fig. 3. Estimates of the long-run mean queue length provided by the Markov chain
based model: long-run mean queue length; long-run mean queue length at the start of
the green signal; long-run mean queue length at the start of the red signal (overflow
queue).

the previous sections together with the results obtained by using the simulation
model described in [19], considering different vehicle arrival rates on the sec-
ondary street. We use the word “Markov” in the figures to refer to the proposed
model.

The long-run mean queue length in depicted in Fig. 3, along with the long-
run mean queue length at two different time points that are of interest in the
signal cycle, namely at the start of the green signal and at the start of the red
signal.

We can see the exponential increase of the mean waiting time when the vehi-
cle arrival rate increases, as expected. The results suggest that, from moderate
values of the vehicle arrival rate to considerable higher values (but away from
the saturation level) the estimates of the mean delay of drivers given by the
Markov based model through expressions (8)–(10) are quite close to the simula-
tion results. Unfortunately the approximation is not so good when we consider
very large vehicle arrival rates (i.e. close to the saturation level). This fact may
be explained by the diversity of reactions that are typical of drivers’ behaviour
and of interactions between vehicles which is mimicked in the simulation model
quite closely (cf. [19]) but is hardly taken into account in a Markov or renewal
type process modelling. For instance, drivers may decelerate promptly when
approaching a slowing vehicle or queue. Interactions between vehicles have a
major impact when system parameters are close to the boundary of the station-
arity region of the traffic system. We can also observe the exponential increase of
the queues when the vehicle arrival rate increases, as expected, and an increasing
mean duration of the green period due to the occurrence of several extensions
of the green period becoming common.
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5 Conclusions and Future Work

A detailed probabilistic description of the delay of vehicles in semi-actuated
signalized traffic intersections, as well as of the length of queues and the duration
of the green signal can be obtained by considering an M/D/1 queue with server
vacations and using, for its investigation, a Markov-regenerative process that
keeps track of the number of vehicles at the intersection along the phase of the
signal cycle over time.

When compared to simulation results, the expressions that we give in the
paper provide realistic estimates of the relevant performance measures investi-
gated. However, for large traffic flows (congestion scenarios) the queue length
and delay measures obtained from the proposed model tend to be larger than
the estimates returned by the numerical simulator.

Future work will address the extension of the analysis for the case of semi-
actuated control in which extensions are also allowed for the red signal.
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Abstract. The theory of time-reversibility has been widely used to
derive the expressions of the invariant measures and, consequently, of
the equilibrium distributions for a large class of Markov chains which
found applications in optimisation problems, computer science, physics,
and bioinformatics. One of the key-properties of reversible models is that
the truncation of a reversible Markov chain is still reversible. In this work
we consider a more general notion of reversibility, i.e., the reversibility
modulo state renaming, called ρ-reversibility, and show that some of the
properties of reversible chains cannot be straightforwardly extended to
ρ-reversible ones. Among these properties, we show that in general the
truncation of the state space of a ρ-reversible chain is not ρ-reversible.
Hence, we derive further conditions that allow the formulation of the
well-known properties of reversible chains for ρ-reversible Markov chains.
Finally, we study the properties of the state aggregation in ρ-reversible
chains and prove that there always exists a state aggregation that asso-
ciates a ρ-reversible process with a reversible one.

1 Introduction

Reversibility of Markov chains at discrete or continuous time has been exten-
sively studied in [13,25]. Given a stationary Markov chain X(t) we say that it
is reversible if for all t1, t2, . . . , tn, τ , (X(t1), . . . , X(tn)) has the same equilib-
rium distribution as (ρ(X)(τ − t1), . . . , ρ(X)(τ − tn)) where t1, . . . , tn, τ belongs
to the time domain, i.e., Z for discrete time Markov chains (DTMCs) and R

for continuous time Markov chains (CTMCs). Reversibility is a key-property for
studying the stationary behaviour of Markov chains and there are several exam-
ples of models with underlying reversible processes such as the loss networks
[14] which found applications for studying telecommunication systems, models
of wireless networks [5] just to mention a non exhaustive list of applications. In
many practical cases, reversibility allows for the derivation of an exact analysis of
the stationary behaviour of the model without resorting to simulation, approxi-
mate decompositions (see e.g., [3,6]) or limit-based analysis (see e.g., [4,7]).

However, the largest application field of reversible Markov chains is in queue-
ing theory. Queueing theory is the foundation of many works in operation
research (see, e.g., [8,16,23] just to mention some recent works) and some of
them are based on reversible models or their variation [1,2,12,13,24].
c© Springer International Publishing AG 2017
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Markov chain reversibility is a special case of a more general notion of
reversibility that we call ρ-reversibility. A ρ-reversible chain X(t) is stochastically
indistinguishable from X(τ − t) modulo a state renaming which is a bijective
function ρ from the chain’s state space S to itself. An example of such a chain
is shown in Fig. 1 where we can easily see that the forward CTMC (Fig. 1-(a))
is not reversible since a simple necessary structural condition for reversibility
is that whenever there is a transition from state s to state s′ there is also its
inverse from s′ to s. Figure 1-(b) shows the transition diagrams of X(τ − t) and
we can observe that it is stochastically indistinguishable from X(t) modulo the
renaming of states ρ(1) = 2, ρ(2) = 1, ρ(3) = 4 and ρ(4) = 3.

(a)
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α
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Fig. 1. A simple ρ-reversible CTMC: (a) Forward process, (b) Reversed process.

In this case function ρ is an involution. In the literature of stochastic processes
when ρ is an involution the notion of ρ-reversibility is known as dynamic
reversibility and has been studied in [13,25]. It is worth of notice that the con-
cept of ρ-reversibility is more general than that of dynamic reversibility, i.e.,
there exist Markov processes which are ρ-reversible but there does not exist any
involution for which they are also dynamically reversible [18,21].

Reversible Markov chains enjoy some important properties that can be read-
ily formulated also for ρ-reversible chains. Specifically, in both cases one may
decide if a chain is reversible/ρ-reversible by inspection of a base of minimal
cycles of the chain and the computation of a non-trivial invariant measure can
be done by performing only multiplications and using the detailed balance equa-
tions [13,19,21,25]. However, other important properties that hold for reversible
Markov chains do not straightforwardly hold for the ρ-reversible ones. Specifi-
cally, if S is the state space of a reversible CTMC, A ⊂ S and if the graph of
A is irreducible, then also the chain whose state space is A and the transitions
are only those of the original one for the states in A is reversible. We say in
this case that the resulting process is truncated to the set A. A similar result
holds if the transition rates from set S � A to A are changed by the same mul-
tiplicative factor. In this paper we prove that, in general, these results do not
hold for ρ-reversible and dynamically reversible chains, but they require some
further conditions that are trivially satisfied in the case of reversible chains. It
is worth to observe that, to the best of our knowledge, this is the first work that
studies the truncation properties for Markov chains that are reversible modulo
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state renaming, including those that are know to be dynamically reversible. In
fact, in [13,25] the authors consider only the truncation of reversible processes.
We also investigate the definition of the aggregated process for reversible and
ρ-reversible chains and prove that they also are reversible or ρ-reversible.

The paper is structured as follows. Section 2 illustrates the preliminary
notions and the notation which are necessary to keep the paper self-contained.
In Sects. 3 and 4 we prove the new results about process aggregation and trun-
cation, respectively. Finally, Sect. 5 concludes the paper.

2 Preliminaries

Let us consider a Markov chain X(t) defined on the state space S. For the sake of
brevity we study the continuous time case, i.e., t ∈ R. Given a stationary CTMC
X(t) the process X(τ − t), denoted by XR(t), is still a stationary CTMC [13]
and the equilibrium state probability π for X(t) is the same of that of XR(t).

In [19] the notion of reversibility for CTMC has been generalized to a notion
of reversibility under state renaming named ρ-reversibility.

Formally, a renaming ρ over the state space of a Markov chain is a bijection
from S to itself. For a Markov chain X(t) with state space S we denote by
ρ(X)(t) the same process where the state names are changed according to ρ.

The notion of ρ-reversibility is defined as follows.

Definition 1 (ρ-reversibility) [19,21]. Let X(t) be a stationary CTMC with
state space S and ρ be a renaming on S. X(t) is said to be ρ-reversible if for all
t1, t2, . . . , tn, τ ∈ R, (X(t1), . . . , X(tn)) has the same equilibrium distribution as
(ρ(X)(τ − t1), . . . , ρ(X)(τ − tn)). Moreover, if ρ is the identity we say that X(t)
is reversible whereas if ρ is a non-trivial involution, i.e., ∀s ∈ S ρ(ρ(s)) = s but
ρ is not the identity, then X(t) is said to be dynamically reversible [13].

Notice that from Definition 1 and the fact that X(t) and XR(t) have the same
equilibrium state distribution, it follows that:

π(s) = π(ρ(s)) for all s ∈ S.

It is important to observe that a CTMC may be ρ1-reversible and ρ2-reversible
for some ρ1 �= ρ2. In [18] we prove that the extension of dynamic reversibility
to ρ-reversibility is non-trivial since there exist CTMCs such that they have a
function ρ for which they are ρ-reversible but there does not exist any involution
that makes them dynamically reversible.

The following proposition, proved in [19], gives necessary and sufficient con-
ditions for a CTMC to be ρ-reversible given a certain ρ.

Proposition 1 (ρ-detailed balance equations). Let X(t) be an ergodic CTMC
with state space S and infinitesimal generator matrix Q. Let ρ be a renaming on
S. X(t) is ρ-reversible if and only if there exists a collection of positive numbers
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π(s), s ∈ S, summing to unity that satisfy the following system of ρ-detailed
balance equations:

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)) for all s, s′ ∈ S, (1)

where q(s, s′) denotes the transition rate from state s to s′, with s �= s′. If such a
solution π exists then it is the equilibrium distribution of both X(t) and ρ(XR)(t)
and π(s) = π(ρ(s)) for all s ∈ S.

If the equilibrium distribution of X(t) is known, the following corollary gives
a straightforward way to decide if X(t) is ρ-reversible given a certain ρ.

Corollary 1. Let X(t) be an ergodic CTMC with state space S, infinitesimal
generator matrix Q and equilibrium distribution π. Let ρ be a renaming on
the state space S. If the transition rates of X(t) satisfy the following system of
equations:

π(s)q(s, s′) = π(s′)q(ρ(s′), ρ(s)) for all s, s′ ∈ S
then X(t) is ρ-reversible.

The previous methods to decide the property of ρ reversibility are based on
the computation or the knowledge of the equilibrium distribution. In contrast,
Kolmogorov’s critera are purely structural, i.e., they depend only on the struc-
ture of the underlying transition graph and on the transition rates and do not
require the solution of a linear system of equations.

Proposition 2. Let X(t) be an ergodic CTMC with state space S and infini-
tesimal generator matrix Q, and ρ be a renaming on S. X(t) is ρ-reversible if
and only if for every finite sequence s1, s2, . . . sn ∈ S,

q(s1, s2) · · · q(sn−1, sn) q(sn, s1) =
q(ρ(s1), ρ(sn)) q(ρ(sn), ρ(sn−1)) · · · q(ρ(s2), ρ(s1))

and q(s) = q(ρ(s)) for every state s ∈ S.
The equilibrium distribution of a ρ-reversible CTMC can be computed as

stated in Proposition 3. Notice that Proposition 3 gives a numerically stable
method to compute a non-trivial invariant measure of the process since for each
state it requires the computation only of products.

Proposition 3. Let X(t) be an ergodic CTMC with state space S and infini-
tesimal generator matrix Q, ρ be a renaming on S, and s0, s1, s2, . . . sn = s ∈ S
be a finite sequence of states. If X(t) is ρ-reversible then for all s ∈ S,

π(s) = Cs0

n∏

k=1

q(ρ(sk−1), ρ(sk))
q(sk, sk−1)

(2)

where s0 ∈ S is an arbitrary reference state and Cs0 ∈ R
+.
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Fig. 2. A ρ-reversible CTMC.

Recall that a permutation ρ on a set S admits a unique decomposition into
cycles of different states:

(s, ρ(s), ρ(ρ(s)), . . . , ρn(s) ≡ s).

The set of states in a cycle form an orbit. Then, every permutation can be
decomposed into a collection of cycles on disjoint orbits.

Example 1. If we consider the CTMC depicted in Fig. 2 we can prove that it is
ρ-reversible where ρ is described by the following orbits: (1, 2, 3, 4); (5, 6, 7, 8);
(9); (10); (11).

Now, we review an aggregation technique for CTMCs that preserve the equi-
librium distribution, i.e., the equilibrium probability of the macro state is given
by the sum of the equilibrium probability of its elements in the original, non
aggregated, process. More formally, let ∼ be an equivalence relation over the
state space S of a CTMC X(t). In general, the process obtained by the observa-
tion of the macro state jump process is not a Markov process (for instance the
residence time in an aggregated state is not exponentially distributed) unless we
have a lumping [15]. However, we can still define CTMC X̃(t) corresponding to
a certain aggregation ∼ as follows: the state space is the set of the equivalence
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classes S/∼ and its infinitesimal generator matrix Q̃ can be derived from the
following general aggregation equation for any Si, Sj ∈ S/∼,

q̃(Si, Sj) =

∑
s′∈Si

π(s′)
∑

s∈Sj
q(s′, s)

∑
s′∈Si

π(s′)
(3)

The following proposition shows that the equilibrium distribution of the
aggregated process is such that the equilibrium probability of each macro-state
is the sum of the equilibrium probabilities of the states in the original process
forming it.

Proposition 4. Let X(t) be an ergodic CTMC with state space S and ∼ be an
equivalence relation over S. Let X̃(t) be the aggregated process with respect to
∼. Let π and π̃ be the equilibrium distributions of X(t) and X̃(t), respectively.
Then for all S ∈ S/∼,

π̃(S) =
∑

s∈S

π(s).

3 Aggregation of ρ-reversible Processes

Aggregation is a technique for reducing the state space of a model and hence for
deriving some quantitative measures more efficiently. Unfortunately, for general
processes, an aggregation of states that respects the equilibrium distributions
(i.e., the equilibrium probability of a macro state is given by the sum of the equi-
librium probabilities of the states that it aggregates) is as hard to compute as the
computation of the model equilibrium distribution as shown by Eq. (3). Strong
lumping [15] is a structural approach to state aggregation, i.e., the definition of
the aggregated chain does not require the knowledge of its equilibrium distri-
bution. In this section we will show that also the class of ρ-reversible CTMCs
can be aggregated in a process whose transition rates can be obtained without
the knowledge of the equilibrium distribution and hence can be performed effi-
ciently. Before stating the results on the aggregation in ρ-reversible (and hence
also reversible) CTMCs, we need to introduce a definition of compatibility of an
aggregation with a renaming ρ. Intuitively, we say that an aggregation ∼ respects
renaming ρ if its equivalence classes are either singletons or if they contain more
states then they must cluster together all the states of the corresponding orbits.

Definition 2. An aggregation ∼ respects a renaming ρ on S if for each S ∈ S/∼
at least one of the following conditions is satisfied:

– |S| = 1, or
– s ∈ S implies ρ(s) ∈ S.

We stress on the fact that Definition 2 does not require that the state partitions
correspond to the orbits of ρ, but it states that if we aggregate two states, then
all the states in their orbits must belong to the same partition. However, states
that are not aggregated do not need to satisfy this conditions.
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Example 2. Consider the CTMC with states space S = {s1, . . . s8} and let the
orbit of ρ be (s1, s2), (s3, s4), (s5, . . . , s8), then the following partitions of states
respects ρ:

– S1 = {s1, s2}, S2 = {s3, . . . , s8}
– S1 = {s1}, S2 = {s2}, S3 = {s3, s4}, S4 = {s5, . . . , s8}
– Si = {si} (the trivial partition)

Theorem 1 states that an aggregation ∼ of a ρ-reversible chain X(t) is ρ̃-
reversible for a certain renaming ρ̃ if ∼ respects ρ.

Theorem 1. Let X(t) be a ρ-reversible CTMC and let ∼ be an aggregation that
respects ρ according to Definition 2. Then, Markov chain X̃(t) is ρ̃-reversible
where ρ̃ is defined as follows:

ρ̃(Si) =

{
Sj if Si = {s} ∧ Sj = {ρ(s)},

Si if |Si| > 1.
(4)

Let us analyse some consequences of Theorem 1. Let X(t) be a ρ-reversible
CTMC with state space S and ∼ be the equivalence relation over S such that
s1 ∼ s2 if and only if s1 and s2 belongs to the same orbit with respect to the
permutation ρ. Then clearly ∼ respects ρ according to Definition 2, ρ̃ is the
identity on S/∼ and S/∼ denotes the set of all orbits induced by ρ in S. In this
case we say that ∼ is the equivalence relation induced by ρ in S.

Corollary 2. Let X(t) be a ρ-reversible CTMC with state space S and infini-
tesimal generator matrix Q. Let ∼ be the equivalence relation over S induced by
ρ. Then X̃(t) is reversible.

Proof. The proof follows from Theorem 1 and the observation that ρ̃ is the iden-
tity (see Definition 1).

For this type of aggregation the transition rates of the aggregated process can
be calculated without the computation of the equilibrium state distribution π.

Proposition 5. Let X(t) be a ρ-reversible CTMC with state space S and infin-
itesimal generator matrix Q. Let ∼ be the equivalence relation over S induced
by ρ. Then, the infinitesimal generator matrix Q̃ of X̃(t) is defined as:

q̃(Si, Sj) =

∑
s′∈Si

∑
s∈Sj

q(s′, s)

|Si| (5)

where |Si| denotes the cardinality of the orbit Si.

The next corollary follows immediately from Theorem1 and states that any
aggregation of a reversible chain is still reversible.

Corollary 3. Let X(t) be a reversible CTMC, then for any aggregation ∼ on
its state space S we have that X̃(t) is still reversible.
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Proof. Observe that if X(t) is reversible then ρ is the identity and hence any
aggregation ∼ respects ρ. The proof follows by observing that by definition also
ρ̃ is the identity and hence X̃(t) is reversible. 	

Example 3. Let us aggregate the ρ-reversible process of Fig. 2 with respect to
relation ∼ induced by the orbits of the CTMC. Then, by Proposition 5 we can
straightforwardly derive the aggregated process of Fig. 3. It is easy to observe
that the resulting CTMC is reversible.
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Fig. 3. Aggregation according to the orbits of the CTMC shown in Fig. 2.

4 Truncation of ρ-reversible Processes

The truncation of a reversible CTMC is a very useful technique to study mod-
els in which some agents compete for a set of resources. For instance, consider
a reversible chain that models N agents performing a set of operations some
of which require a certain resource whose availability is M < N . In order to
study the equilibrium properties of the model, we may assume that the resource
is always available for all the agents and prove the reversibility of the under-
lying process, then we have to exclude the transitions that would take the
model to states in which more than M resources are used simultaneously. In
[13, Lemma 1.9, Corollary 1.10] the author proves that if the original process is
reversible then also the truncated one is reversible.

In this section we study the same problem with ρ-reversible processes. The
main result that we derive is that, in general, the truncation of a ρ-reversible
process is not ρ-reversible. In fact, in order to prove the analogue result of Lemma
1.9 and Corollary 1.10 of [13] we require that the truncation respects the orbits
of ρ, i.e., each orbit is either entirely truncated or kept.

A reversible CTMC may be altered by changing the transition rates in such
a way that the equilibrium distribution is not changed. As observed in [13] if a
reversible CTMC X(t) has transition rate q(s, u) > 0 and q(u, s) > 0, then also
the CTMC X ′(t) whose transition rates are the same of X(t) with the exception
of q′(s, u) = cq(s, u) and q′(u, s) = cq(u, s) for c > 0 is still reversible. The
result follows immediately from Proposition 1 assuming ρ to be the identity. We
notice that this result is in general not applicable to ρ-reversible CTMCs since
the modification of q(s, u) to cq(s, u) changes the residence time of state i and
the definition of ρ-reversibility requires that all the states in the orbit of s must
have the same residence time.



160 A. Marin and S. Rossi

Example 4. Let us consider the model of Fig. 1-(a) and let us write the ρ-detailed
balance equation associated with the transition from state 1 to state 2:

π(1)q(1, 2) = π(ρ(2))q(ρ(2), ρ(1)).

Notice that, since ρ(1) = 2 and ρ(2) = 1 we have that q(1, 2) = q(ρ(2), ρ(1)),
hence the detailed balance equation is satisfied even if we set q′(1, 2) = cα, for
c > 0 and c �= 1. Nevertheless, the CTMC X ′(t) is not ρ-reversible since the
residence time in state 1 has mean (cα)−1 while in state 2 has mean α−1.

The following Lemma is the version of Lemma 1.9 in [13] for ρ-reversible CTMCs.

Lemma 1. Let X(t) be a ρ-reversible CTMC with state space S and let ∼ be an
equivalence relation that induces only two non-empty equivalence classes A ⊂ S
and S � A. Then, if ∼ respects ρ we have that for any positive constant c ∈ R

the chain X ′(t) whose transition rates q′(s, u) are defined as follows:

q′(s, u) =

{
cq(s, u) if s ∈ A ∧ u ∈ S � A
q(s, u) otherwise

is still ρ-reversible if the residence time of the states in X ′(t) are identically
distributed for all the states belonging to the same orbit. Moreover, if X ′(t) is
ρ-reversible, then the equilibrium distribution π′(s) for X ′(t) is:

π′(s) =

{
Bπ(s) if s ∈ A
Bcπ(s) if s ∈ S � A ,

where B is a normalising constant.

The following corollary follows from Lemma 1 where c = 0 and is the analogue
of Corollary 1.10 in [13].

Corollary 4. Let X(t) be a ρ-reversible CTMC with state space S and let ∼
be an equivalence relation that induces only two non-empty equivalence classes
A ⊂ S and S �A. Let ∼ respect ρ, and define the chain X ′(t) on the state space
A with transition rates:

q′(s, u) =

{
q(s, u) if s, u ∈ A
0 otherwise

.

Then if X ′(t) is irreducible and the residence time of every state s ∈ A is the
same of every other state u in the same orbit of s, we have that X ′(t) is ρ-
reversible. In this case the equilibrium probabilities of s ∈ A are:

π(s) =
π(s)∑

u∈S π(u)
.

Proof. The proof follows straightforwardly from Lemma1. 	
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Example 5. Let us consider a manufacturing system where K independent
machines produce parts of a product that will be assembled once all the K
components are available. Let us assume that the time required to produce one
component from a machine is modelled by an independent and exponentially
distributed random variable with rate μ. The components wait for being assem-
bled in K join queues. This is usually reffered as a kitting process. In [17,20]
the authors proved that join queue lengths tend to grow infinitely due to the
variance of the component production time. Moreover, assuming that the assem-
bly operation is instantaneous, the underlying CTMC X(t) can be studied by
means of a dynamically reversible process. It is sufficient to encode the state as
a vector n = (n1, . . . , nK) of integer components that represent the difference in
the number of pieces produced by the k-th machine and its neighbour k+ where

k+ =

{
k + 1 if k < K

1 if k = K.

The state space of the model is S = {n :
∑K

k=1 nk = 0 ∧ nk ∈ Z}. The expected
queue length becomes finite [20] if we can modulate the rates of the component
production machines as follows:

μ(nk) =

{
μ

nk+1 if nk ≥ 0
μ otherwise.

Such a CTMC is dynamically reversible and hence ρ-reversible according to the
following renaming function:

ρ(n) = ρ(n1, . . . , nK) = (nK , . . . , n1) = nR,

and the equilibrium distribution is given by the expression [20]:

π(n) =
1

GK

1
∏K

i=1(niδni>0)!
, (6)

where δni>0 = 1 if ni is positive, 0 otherwise and GK is a normalising constant.
Let us assume that we want to change the model such that we impose that

the difference between the number of components given by production like k and
k+ is smaller or equal to T , i.e. nk ≤ T for all k = 1, . . . , K. The machine that
saturates its join queue according to this condition is stopped and will restart
working when its neighbour will complete a job. This means that under the
immediate assembly time assumption, the maximum join-queue length that we
can observe is (K −1) ·T . Clearly, the CTMC X ′(t) underlying such a model is a
truncation of the original one, where A = {n ∈ S, nk ≤ T for all k = 1, . . . , K}.
To prove that X ′(t) is still ρ-reversible, we use Corollary 4 and we have to show
that:

– The partition respects ρ,
– The residence time of n ∈ A and nR have the same mean in X ′(t).
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The first point is easy to prove since if n ∈ A then also nR ∈ A and vice versa.
The second one is trivial since the sum of the arrival rates of the components in
n and nR are the same. Therefore, Eq. (6) is an invariant measure for X ′(t).

5 Conclusion

In this paper we have studied the aggregation and truncation properties of
Markov chains which are reversible modulo a renaming of states. In physics
(see e.g., [9–11]) and computer science (e.g., [20,22]) we can find numerous
applications of this theory in the formulation known as dynamic reversibility.
By the notion of ρ-reversibility, we generalised this definition to arbitrary state
renaming functions and showed that the extension is non-trivial, i.e., there are
Markov chains which are not dynamically reversible but are ρ-reversible for some
ρ which is not an involution. In this paper we have established an important
link between ρ-reversibility and the well-known notion of Kelly’s reversibility by
showing that a certain aggregation of a ρ-reversible chain originates a reversible
chain. Although this aggregation is not a strong lumping in the sense of Kemeny
and Snell work [15], we still have that the aggregated process can be constructed
without the computation of the equilibrium distribution of the original chain.
Finally, we have revised the well-know results about the truncation of reversible
processes in the context of ρ-reversibility and have shown some results that
generalise them. Specifically, while the truncation of a reversible chain is always
reversible (provided that the irreducibility of the transition graph is maintained)
we need some further conditions in order to prove that the truncation of a ρ-
reversible chain is also ρ-reversible. These conditions are always trivially satisfied
for reversible chains.

A Proofs of the Results

Proof of Theorem1

Proof. By Proposition 1 and Definition 1, to prove that X̃(t) is ρ̃-reversible it is
sufficient to show that for all Si, Sj ∈ S/∼ with i �= j,

π̃(Si)q̃(Si, Sj) = π̃(ρ̃(Sj))q̃(ρ̃(Sj), ρ̃(Si)).

By Eq. (3) and Proposition 4, this is equivalent to:

(∑
s∈Si

π(s)
) ∑

s∈Si
π(s)

∑
s′∈Sj

q(s, s′)
∑

s∈Si
π(s)

=

(∑
s′∈ρ̃(Sj)

π(s′)
) ∑

s′∈ρ̃(Sj)
π(s′)

∑
s∈ρ̃(Si)

q(s′, s)
∑

s′∈ρ̃(Sj)
π(s′)

,

which can be written as:
∑

s∈Si

∑

s′∈Sj

π(s)q(s, s′) =
∑

s′∈ρ̃(Sj)

∑

s∈ρ̃(Si)

π(s′)q(s′, s). (7)
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We now proceed by considering four cases.

1. Assume that Si = {s} and Sj = {s′}, then Eq. (7) becomes:

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)),

where we have used the definition of ρ̃ for singletons. This is true since
by hypothesis X(t) is ρ-reversible and hence satisfies the ρ-detailed balance
equation.

2. Assume Si = {s} and |Sj | > 1, and recall that ρ̃(Sj) = Sj by definition. Then
Eq. (7) can be rewritten as:

∑

s′∈Sj

π(s)q(s, s′) =
∑

s′∈Sj

π(s′)q(s′, ρ(s)).

Since ∼ respects ρ we have that ρ restricted to the elements of Sj is still a
bijection and hence we can write:

∑

s′∈Sj

π(s)q(s, s′) =
∑

s′∈Sj

π(ρ(s′))q(ρ(s′), ρ(s)),

which is true by the hypothesis of ρ-reversibility of X(t).
3. Assume |Si| > 1 and hence ρ̃(Si) = Si and Sj = {s′}, then Eq. (7) can be

written as: ∑

s∈Si

π(s)q(s, s′) =
∑

s∈Si

π(ρ(s′))q(ρ(s′), s).

Since ρ restricted to the elements of Si is a bijection, then we have:
∑

s∈Si

π(s)q(s, s′) =
∑

s∈Si

π(ρ(s′))q(ρ(s′), ρ(s)),

which is an identity.
4. Assume |Si| > 1 and |Sj | > 1, and hence ρ̃(Si) = Si and ρ̃(Sj) = Sj . Then

we can rewrite Eq. (7) as:
∑

s∈Si

∑

s′∈Sj

π(s)q(s, s′) =
∑

s∈Si

∑

s′∈Sj

π(s′)q(s′, s).

Since ρ restricted to Si and to Sj is still a bijection because ∼ respects ρ, we
can rewrite the previous equation as:

∑

s∈Si

∑

s′∈Sj

π(s)q(s, s′) =
∑

s∈Si

∑

s′∈Sj

π(ρ(s′))q(ρ(s′), ρ(s)).

which is true by hypothesis. 	
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Proof or Proposition 5

Proof. By the general aggregation Eq. (3), for any Si, Sj ∈ S/∼,

q̃(Si, Sj) =

∑
s′∈Si

π(s′)
∑

s∈Sj
q(s′, s)

∑
s′∈Si

π(s′)
, (8)

Since X(t) is ρ-reversible and each Si ∈ S/∼ is an orbit for ρ, it holds that
π(s) = π(s′) for all s, s′ ∈ Si. Let us denote by π(Si) the equilibrium probability
of each s belonging to the orbit Si. Hence,

∑
s′∈Si

π(s′) = |Si|π(Si) and Eq. (8)
can be written

q̃(Si, Sj) = π(Si)

∑
s′∈Si

∑
s∈Sj

q(s′, s)

|Si|π(Si)
(9)

proving the statement. 	


Proof of Lemma1

Proof. To prove the lemma we use Proposition 1. In fact, let us consider
two states s, u ∈ A, then the corresponding ρ-detailed balance equation is
Bπ(s)q(s, u) = Bπ(ρ(u))q(ρ(u), ρ(s)) since we have by assumption that the par-
tition respects ρ and hence also ρ(t), ρ(s) ∈ A. This equation is satisfied because
X(t) is ρ-reversible. If s, u ∈ S � A the corresponding detailed balance equa-
tion is Bcπ(s)q(s, u) = Bcπ(ρ(u))q(ρ(u), ρ(s)) that is also satisfied for the same
reasons. Let us consider s ∈ A and u ∈ S � A, then we have that the tran-
sition rates are modified and hence Bπ(s) (cq(s, u)) = Bcπ(ρ(u))q(ρ(u), ρ(s))
which is an identity since ∼ respects ρ. Finally, we have to consider the case
of s ∈ S � A and u ∈ A. The corresponding detailed balance equation is
Bcπ(s)q(s, u) = Bπ(ρ(u)) (cq(ρ(u), ρ(s))) which is satisfied by hypothesis. The
fact that the residence times in the states belonging to the same orbits of ρ in
X ′(t) are identically distributed is an assumption of the lemma. 	
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Abstract. The volume of data, one of the five “V” characteristics of Big
Data, grows at a rate that is much higher than the increase of ability
of the existing systems to manage it within an acceptable time. Several
technologies have been developed to approach this scalability issue. For
instance, MapReduce has been introduced to cope with the problem of
processing a huge amount of data, by splitting the computation into a set
of tasks that are concurrently executed. The savings of even a marginal
time in the processing of all the tasks of a set can bring valuable ben-
efits to the execution of the whole application and to the management
costs of the entire data center. To this end, we propose a technique to
minimize the global processing time of a set of tasks, having different
service requirements, concurrently executed on two or more heteroge-
neous systems. The validity of the proposed technique is demonstrated
using a multiformalism model that consists of a combination of Queue-
ing Networks and Petri Nets. Application of this technique to an Apache
Hive case-study shows that the described allocation policy can lead to
performance gains on both total execution time and energy consumption.

Keywords: Pool depletion systems · MapReduce · Schedulers · Energy
efficiency · Performance evaluation · Queueing networks · Petri nets ·
Multiformalism models

1 Introduction

The pervasiveness of Big Data applications in organizations is occurring at a
surprising high speed. Successful companies must adopt these new technologies
in order to keep their advantage over competitors.

One of the most important characteristics of this new paradigm is the large
size of data that must be processed in a reasonable amount of time. To address
the resulting performance problem that is created, the Hadoop MapReduce tech-
nology has been proposed [9,14] originally by Google. Its operational concept is
based on distributed computing and parallelism. Initially, the input data is split
into blocks that are processed in parallel by a high number of tasks generated by
each job in the Map. In the following Reduce phase, newly created tasks process
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in parallel the intermediate results of the Map phase producing the final output
of the job. The execution of a job may require one or more cycles of Map and
Reduce phases. Typically, each phase can take hours, or even days, to complete
due to the significantly large data sizes and the consequent high number of tasks
to be executed in parallel.

In [20] it is described an example of an Apache Hive application (see Fig. 5)
regarding a query that retrieves the Facebook status according to users’ gender
and school. Its structure is based on three MapReduce jobs. The two Maps in
MapReduce1 generate a high number of tasks that, as a function of the query,
have different resource consumption, i.e., they belong to two classes of tasks.
The tasks are then assigned to Virtual Machines and executed in parallel on the
same, or more likely, on different physical systems.

The analysis of resource consumption behavior during the execution of a
MapReduce job shows a pattern that is repeated in each phase: generation of a
large number of tasks, followed by their parallel execution. Typically, the number
of parallel tasks is much higher in the Map phase with respect to the Reduce
one.

The execution time of the parallel tasks is deeply influenced by two factors
that are related to the characteristics of both the job and the architecture of the
computing infrastructure. The first factor concerns the resource requirements of
the tasks, since each phase of a job may saturate different resources, i.e., it can
have a different bottleneck. The second factor regards the characteristics of the
physical systems that are used. Indeed, in cloud infrastructures, the computers
that are dynamically allocated to the tasks of a job may be heterogeneous and
have different computational power and storage capacity (see e.g., [6]). Further-
more, these physical machines typically have a limitation on the number of tasks
to be executed. This constraint, continuously reached in MapReduce jobs due
to the high number of tasks, is required for performance control on response
times. As a function of the mix of tasks in a single computer (referred to as
subsystem), the time required by their parallel execution may be in some cases
extremely inflated due to the bottlenecks that may migrate dynamically among
the resources. The variability introduced in the execution time of the Map tasks
may have a large impact on the execution time of a job. To cope with this
problem, the tasks admission policy in each subsystem plays a fundamental role.

In order to analyze the performance of Big Data applications we study the
Pool depletion systems [7,8]. A Pool depletion system is a framework composed
by a pool of tasks and by several subsystems. We assume that the tasks are cre-
ated in the pool at the same instant of time and then are sent to several parallel
subsystems for their execution. The important parameter is the time required by
the execution of all the tasks, referred to as depletion time. We may consider a
pool as a container for the Map tasks, all of which must be completely executed
before starting the following Reduce phase. In this paper, we describe a schedul-
ing policy that minimizes the depletion time of a pool of tasks by appropriately
allocating them on heterogeneous systems with limited capacity as a function
of the different resource requirements. In particular, our technique increases the



168 R. Pinciroli et al.

efficiency of the global system allowing the resources to operate simultaneously
at their optimal conditions. Several scheduling strategies have been described in
literature to deal with systems that serve a large number of tasks. The objec-
tives of the proposed policies are: (i) to minimize the execution time of each
task; (ii) to optimize the system utilization exploiting the jobs allocation on
each resource, (iii) to minimize the execution time of a single job that is served
by all the resources of the system, as may happen in scientific applications. Case
i has been deeply analyzed in literature. FIFO, JSQ, MaxWeight and Com-
pletely Fair Scheduler strategies are some examples of scheduling policies used
in that case. Unfortunately, in the problem that we consider, minimizing the
task execution time does not necessarily minimize the job execution. Also case ii
has been studied in depth. For example, Fair and Capacity scheduler algorithms
[18] may be adopted by Hadoop to allocate resources in order to improve system
utilization when executing jobs possibly from multiple tenants. The objective
of our problem is described by case iii. The Optimal population mix [19] policy
introduced in [8].

In our case, each subsystem is composed by two resources, e.g., CPU and
storage. We consider a multi-class workload, with two classes of jobs. From [19]
we know that, for a system with two resources and two classes of customers, a
mix of classes in execution that maximizes the utilization of all the resources
exists, and it is referred to as optimal population mix. Furthermore, we can
analytically derive the optimal population mix for one-subsystem Pool deple-
tion systems [8]. When the system operates with that mix, the pool can be
depleted with the shortest time. Two main configurations for multi-subsystem
Pool depletion systems are analyzed: the homogeneous and the heterogeneous
subsystems configurations. In the former case, all the available subsystems are
identical, and their corresponding resources have the same characteristics (i.e.,
service demands). In the latter case, each subsystem may be different from all
the others, thus the resources have different service demands. In particular, the
heterogeneous configuration may be used for modeling a cluster with servers hav-
ing different capacity. To compute the results, we model the applications with a
multiformalism model composed by queuing network and Petri nets. We simu-
lated a variable number of subsystems and different internal population mixes,
while the pool population mix is set to a constant value corresponding to the
considered application.

The remainder of this paper is structured as follows. In Sect. 2 prior work
on Pool depletion systems is discussed. Section 3 extends Pool depletion sys-
tems with multi-subsystem and presents the multiformalism model used for the
extension. The results for homogeneous and heterogeneous multi-subsystem are
shown in Sect. 4. An exploitation of this kind of framework is shown in Sect. 5
for the analysis of an Apache Hive case-study. Section 6 concludes the paper.

2 Background

The main applications we want to study through Pool depletion systems are
the ones used in Big Data environments. Although the key feature of these
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applications is the parallel execution of a high number of processes, for sake
of simplicity the Pool depletion systems have been analyzed so far [7,8] with
only one-subsystem configuration. In [7] Pool depletion systems are described,
and a Continuous time Markov chain (CTMC) is proposed to investigate multi-
class cases. In particular, trade-off between energy consumption and system per-
formance has been evaluated using some of the most common metrics, such
as: the product of energy consumption and response time, or Energy-Response
time product (ERP) [11,16,17]; their sum, or Energy-Response time weighted
sum (ERWS) [1,2,15]; the average energy consumed per job, or Energy per job
(EJ) [5,13]. Two-class Pool depletion systems are analytically investigated in [8],
and closed-form equations for the derivation of the optimal population mixes of
pool and subsystem are provided. For this purpose, the definitions [19] of equi-
utilization point (i.e., the population mix of a system for which all its resources
are equi-utilized) and equi-load point (i.e., the population mix for which all the
resources of a system are equally loaded) are used. In particular, the optimal
population mix of a subsystem, β∗, corresponds to the equi-utilization point of
the subsystem itself, and for a subsystem with two resources and two classes it
is derived as follows:

β∗ =

(
β∗
A =

log D2B
D1B

log D1AD2B
D1BD2A

, β∗
B = 1 − β∗

A

)
(1)

where Drc is the service demand of a class c job at resource r. The pool optimal
population mix, α∗, corresponds to the equi-load point of a closed system, and
may be computed as:

α∗ =
(

α∗
A =

XA(β∗)
XA(β∗) + XB(β∗)

, α∗
B = 1 − α∗

A

)
(2)

where, Xc(β∗) is the throughput of class c jobs when the subsystem population
mix is the optimal one. It has also been proved that depletion time (i.e., the time
needed to completely execute all the requests initially in the pool) is minimized
when the Pool depletion system works with its optimal population mixes. Note
that, while subsystem population mix is a feature of the system and β∗ may
be exploited by a smart scheduler to make the whole system work with better
performance, pool population mix depends on the type of application we are
considering and can change only if the application changes.

In this paper we focus on multi-subsystem Pool depletion systems, where the
requests in the pool are executed by several parallel subsystems. The consid-
ered subsystems are heterogeneous and have constraints on the number of tasks
executed simultaneously. A similar approach was adopted in [5]. In that case,
differently from this paper, a multi-class open network was taken into consider-
ation. A smart scheduler was implemented to decrease the energy consumption
of the global system. In particular, it forwarded each incoming job to one of its
subsystems, depending on their current population mix.
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3 The Model

The considered Pool depletion system is described using the model consisting
of a Coloured Petri Net (CPN) and a multi-class fork-and-join queuing network
shown in Fig. 1. The workload of the model consists of two type of customers:
the tokens, representing the colours of the Petri nets, and the jobs, representing
the requests to be executed by the queueing networks. Each type of workload
comprises two different classes of customers. CPN tokens are used to control
the access to resources by the tasks, while queuing networks primitives are used
to describe the service demands of the tasks. According to [12], the use of sev-
eral formalisms allows exploiting the most appropriate modelling primitives to
express the corresponding concepts in the most efficient and natural way.

...

MaxTasks1

Res21Res11Enter1 Leave1Rel1

Subsystem1

MaxTasksn

ResBnResAnEntern LeavenReln

Subsystemn

Subsystem2...
Wait

Fork

Jobs

Join

<C>

<C,C’> <C,C’>

<C,C’>

<C>

<C,C’> <C,C’>

<C,C’>

<C>

<C>

Fig. 1. The multiformailsm model of the considered scenario

The jobs are created in the delay station Jobs: in this work we will focus,
without loss of generality, on a single job that is continuously executed, and we
set the “think time” (service time of the Jobs station) to Z = 0. The job enters
the Fork node and it is splitted into NA tasks of class A and NB tasks of class
B, with N = NA + NB . Tasks waiting to be executed are represented as tokens
into place Wait: in this case, colour class <C> is used to remember the task
class as an attribute of the token. Table 1 summarises the colour classes used in
the model; in Fig. 1 colour classes are represented, in angled brackets, as labels
associated to places and, with a slight abuse of notation, to queuing stations.

The place MaxTasks represents the considered scheduling assignment and
contains tokens belonging to the <C> colour class, initialised to KA and KB

tokens for the corresponding task classes. Its marking represents the chosen
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Table 1. Colour-sets.

Colour-set Description

<C> Task class C = {A,B}.
<C,C′> Task class C, original class C′/

configuration that allows a total of K = KA + KB tasks simultaneously in a
subsystem. The execution of a task starts with a firing of transition Enter,
which can occur in one of the four following modes. When the subsystem is in
normal operation, transition can fire in mode 1 or 2 removing respectively one
token of class A or B from its input place, and creating customers of class (A,A)
or (B,B) in the queue Res1, that represents the first resource of the subsystem.
When there are no more tokens of either class B or A in place Wait, transition
Enter fires in mode 3 or 4 allowing a task of class A or B to enter instead of the
one that has already been completed. Queuing stations Res1 and Res2 represent
the two resources of the subsystem. Even if the task classes generated by the
CPN transition are (A,A), (A,B), (B,B) and (B,A), only the first component of
each couple is used to determine the service requirements of one task. The second
component is instead used in place Rel to allow transition Leave forwarding the
correct task type to the Join node, and to return the acquired task token into
place MaxTasks. This is accomplished by the firing of transition Leave according
to four modes, as summarised in Table 2.

Table 2. Transitions firing modes.

Transition Mode In1 In2 Out1 Out2 Description

Enter Wait MaxTasks Res1

1 A A (A,A) Class A task

2 B B (B,B) Class B task

3 A B with Wait.B = 0 (A,B) Class A task, depletion

4 B A with Wait.A = 0 (B,A) Class B task, depletion

Leave Rel MaxTasks Join

1 (A,A) A A Class A task

2 (B,B) B B Class B task

3 (A,B) B A Class A task, depletion

4 (B,A) A B Class B task, depletion

Each subsystem has a similar structure, and the same sub-model is repeated n
times as shown in Fig. 1. Each subsystem can be characterised by different service
demand for its resources, and different tasks allowances KA and KB . When all
tasks have been completed, the Join primitive can fire, returning the customer
to the reference station, and allowing the next job to start. To characterise the
configuration of the system, we will denote with:
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α =
(

αA =
NA

NA + NB
, αB = 1 − αA

)

β =
(

βA =
KA

KA + KB
, βB = 1 − βA

)

the pool population mix and the subsystem population mix, respectively, as
described in Eqs. (1) and (2).

4 Results

In this section, the results obtained analyzing multi-class applications on distrib-
uted environments are shown. In [8], we showed that analytical equations – to
identify the optimal point for a single-machine system – exist. Eqs. (1) and (2)
show the results for subsystem and pool of a Pool depletion system, respectively.
While considering distributed environments does not affect Eq. (1) since it refers
to each single subsystem, it influences the optimal population mix of the pool in
Eq. (2). In fact, as said in Sect. 2, optimal population mix of the pool is related
to the equi-load point of the system and it varies when we take into account
several different subsystems. In particular, we expand α∗

A as follows:

α∗
A =

XA(β∗)
XA(β∗) + XB(β∗)

=
∑n

s=1 Xs
A(βs∗)∑n

s=1 Xs
A(βs∗) +

∑n
s=1 Xs

B(βs∗)
(3)

where n is the total number of subsystems, and Xs
c (βs∗) is the throughput for

class c jobs at subsystem s, when the population mix of that subsystem is its
optimal population mix, βs∗.

Two main system configurations are considered. First of all, the effects of
homogeneous distributed systems – where all the subsystems are identical – are
taken into account. Then, we consider heterogeneous distributed environments,
assuming that each subsystem may have different characteristics with respect
to the other ones. The analyses are performed using JSIMgraph, the JMT [4]
simulation tool, and simulating the model described in Sect. 3. All the metrics
are computed with 99% confidence interval and a 3% maximum relative error.

4.1 Homogeneous

The main advantage introduced by homogeneous distributed systems is the par-
allelization of jobs execution. Since all the subsystems are the same, their optimal
population mix, βs∗, are identical. Due to that, the throughput of each subsys-
tem does not change and Eq. (3), after some algebraic manipulation, becomes
equal to Eq. (2).

In Fig. 2 three performance metrics for a homogeneous distributed system
are depicted against the number n of subsystems, and their population mix,
β. The pool size of the considered system is N = 1008 and the capacity of
each subsystem is K = 108/n. In the simulations we consider n = {1, 2, 3, 4, 6}
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and the following service demand matrix for each two-resource and two-class
subsystem:

Drc =
[

0.75 0.64
0.48 1.25

]
(4)

The optimal population mix of these subsystems is computed through Eq. (1)
and it is β∗ = (0.6, 0.4). Their equi-load point is α∗ = (0.693, 0.307). Since
all the subsystems are identical, we assume they are all set to work with the
same population mix. For sake of simplicity, we only consider an application
with NA = 724, NB = 284 and α =

(
724
1008 , 284

1008

)
.

(a) (b)

(c)

Fig. 2. Energy consumption (a), depletion time (b) and Time · Energy (c) of a homo-
geneous distributed system for α =

(
724
1008

, 284
1008

)
, as a function of total number of

subsystems and their population mix.

Figure 2a represents the energy consumed to serve all the tasks initially in
the pool when P 1

idle = 315W, P 1
busy = 630W, P 2

idle = 250W and P 2
busy = 500W.

P r
idle and P r

busy are the power consumption of a resource r when it is idle and
fully utilized, respectively. The energy consumed by a Pool depletion system is
defined as the product between depletion time and power, E = T · P , and the
power consumption is computed with equation

P (U) = Pidle + (Pbusy − Pidle) · U (5)

proposed by Fan et al. in [10]. In our case, the minimum value of energy consump-
tion is observed when the system is working with only one subsystem. However,
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it is interesting to note that working with six subsystems and with the opti-
mal population mix, β∗, lets the service provider save more energy than work-
ing with only one subsystem and with a suboptimal population mix. Figure 2b
shows the depletion time of the system (i.e., the time needed by the system
to complete all the tasks initially in the pool). In this case, providing a large
number of subsystems allows the service provider to parallelize the work, and
with six subsystems the depletion time is four times lower than with only one
subsystem. In order to take into consideration both the measures (i.e., energy
consumption and depletion time), we compute their product and the results are
shown in Fig. 2c. Since the saved amount of time working with six subsystems
is definitely greater than the energy the system consumes working with only
one machine, the configuration with the larger amount of subsystems is the one
with the best global performance, assuming that energy is as important as the
depletion time for service provider. Furthermore, for the considered application,
i.e., α =

(
724
1008 , 284

1008

)
, all the three analyzed metrics have their minimum point

when all the available subsystems work with their optimal population mix, β∗.

4.2 Heterogeneous

The analysis of heterogeneous distributed environements is interesting since it
lets us consider more general systems. For example, they can be used to model
a datacenter with different types of servers (e.g., new vs. old, fast vs. slow, etc.).
In order to study this kind of environments, we focus on the two-subsystem case.
Since they must have different features, the first subsystem is defined through
service demand matrix in Eq. (4), whereas the following matrix is considered for
the second subsystem:

Drc =
[

0.86 0.65
0.3 1.02

]
(6)

The optimal population mix of the subsystem defined in Eq. (6) is β2∗ =
(0.3, 0.7) and its equi-load point is α2∗ = (0.409, 0.693). They have been derived
through Eqs. (1) and (2), respectively. As previously said, the optimal popula-
tion mix of the pool must be computed with Eq. (3) if the system has heteroge-
neous subsystems, and in this case it is α∗ � (0.55, 0.45). This result highlights
another important gain of a heterogeneous distributed environment, besides the
parallelization of the workload: indeed, differently from the homogeneous case,
the implementation of inhomogeneous subsystems lets the service provider exe-
cute different applications with better performance. This is shown in Fig. 3 that
depicts the depletion times of two different applications (i.e., pool population
mixes) served by a homogeneous system and a heterogeneous one. The popula-
tion mixes of the two subsystems is still assumed to be the same for both of them.
As said, it is interesting to note that the heterogeneous configuration provides a
shorter depletion time than the homogeneous one when it is serving application
α = (0.55, 0.45) � α∗

heter. On the contrary, if application α = (0.70, 0.30) is
considered, the homogeneous environment performs better than the heteroge-
neous one, since the new application is closer to the homogeneous optimal pool
population mix, α∗

homo.
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Fig. 3. Comparison of depletion time of homogenenous and heterogeneous systems for
two different applications: α = (0.55, 0.45) (a) and α = (0.70, 0.30) (b).

Energy consumption, depletion time and their product are depicted in Fig. 4.
Each metric is analyzed against the population mix of each subsystem (i.e., β1

and β2). For all the three metrics, the minimum values are registered when each
subsystem s works with its optimal population mix, βs∗. Also in this case, the
amount of time saved to complete all the tasks initially in the pool is definitely
larger than the energy saved, thus depletion time affects the system performance
more than energy consumption when both the metrics have the same weight on
the service provider’s decisions.

5 Exploitation: Apache Hive

In this section we apply the results obtained in Sect. 4 to a real Big Data appli-
cation. Simulations have been performed for both FIFO and Optimal population
mix admission policies. Although Pool depletion systems can model many differ-
ent Big Data applications, the case-study we consider in this paper is an Apache
Hive [20] based application. Apache Hive is an open source data warehouse sys-
tem and is used on top of Apache Hadoop. It has been extensively adopted by
many organizations (e.g., Facebook, Netflix, Spotify) since it makes easier the
management of large data and their queries. Hive was introduced by Facebook
in [20]. It can be run on different Hadoop’s framework (e.g., MapReduce, YARN,
Spark, Tez) and provides a SQL-like query language that is called HiveQL. A
query to retrieve most popular Facebook status based on users’ gender and school
is used as an example in [20]. Its simplified query plan is shown in Fig. 5, where
three MapReduce jobs are represented.

In order to study the performance of the Optimal population mix strategy
shown in Sect. 4, we compare the time this strategy needs to complete a MapRe-
duce job with the time required by the FIFO strategy for the same kind of job.
We focus on the join function of a Hive query, that is represented by MapRe-
duce1 in Fig. 5. In that case, both Map and Reduce have multi-class workloads.
Indeed, Map phase gets its data from two different tables, whereas the Reduce
one returns two temporary tables. Assuming that two tables must be joint, we
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(a) (b)

(c)

Fig. 4. Energy consumption (a), depletion time (b) and Time · Energy (c) of a het-
erogeneous distributed system for α = (0.55, 0.45), as a function of population mix of
each subsystem.

want to identify the best way to execute all the tasks of a MapReduce job in
order to decrease the total time needed to complete the join clause and get the
expected results. The Map and Reduce phases, are modeled by two different
heterogeneous two-subsystem environments, that have been characterized start-
ing from [21] and [3]. The former provides some data about MapReduce jobs
executed on Facebook’s clusters, whereas the latter refers to a public Hadoop
repository1. Thus, the Map system is defined by the following service demands
matrices (in seconds):

D1,Map
rc =

[
25 21
16 39

]
D2,Map

rc =
[

55 39
28 82

]
(7)

whereas the Reduce one has the following service demands (still in seconds):

D1,Reduce
rc =

[
60 46
17 70

]
D1,Reduce

rc =
[

29 22
10 34

]
(8)

We assume the MapReduce job is splitted into NMap = 1000 and NRed = 200
tasks before Map and Reduce phases, respectively. The number of tasks that is
1 Available at http://ftp.pdl.cmu.edu/pub/datasets/hla/. Please, include http at the

beginning of the URL to make it work.

http://ftp.pdl.cmu.edu/pub/datasets/hla/
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Fig. 5. Query plan of three MapReduce jobs analyzed in [20].

concurrently executed during the two phases is KMap = 100 for Map and KRed =
50 for Reduce. Using Eq. (1) on all the service demand matrices, we derive the
optimal population mixes of each subsystem, i.e., β1∗

Map = (0.58, 0.42) ,β2∗
Map =

(0.29, 0.71) ,β1∗
Red = (0.52, 0.48) and β2∗

Red = (0.26, 0.74). Finally, we take into
account an application whose αMap = (0.53, 0.47) for Map phase and αRed =
(0.49, 0.51) for the Reduce one. For both Map and Reduce, α � α∗ has been
computed through Eq. (3).

The results of the simulations have been computed with 99% confidence inter-
val, and they are shown in Fig. 6. Besides the Optimal population mix strategy,
we analyze two FIFO policies: we consider completion of all class A tasks before
starting executing class B ones, and viceversa.

In Fig. 6 the time to complete all the Map and Reduce tasks into the system
are compared based on the scheduling policy adopted by the scheduler. The
total time to complete a MapReduce job is also depicted. Due to the large
number of tasks we assume to be into the system during the Map, this phase
is affecting the global performance of the system more than the Reduce one.
When the subsystems work with their optimal population mixes, the service
provider complete all the tasks (i.e., the MapReduce job) in a shorter time than
using a FIFO strategy. The system requires the longest time to complete all the
tasks when it serves class B tasks after completing all the class A ones. For sake
of simplicity, we assume Reduce tasks are served after the Map ones, and no
parallelism between tasks belonging to different phases is admitted (i.e., Total
length =Map phase length +Reduce phase length). Based on the observed results,
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Fig. 6. Time to complete the MapReduce jobs adopting different scheduling strategies.

Optimal population mix strategy lets the system save up to 15% on the total
time, with respect to the FIFO strategies. This result is even more interesting
when several MapReduce jobs are concurrently executed and a larger amount of
time can be saved just adopting a different scheduling policy.

6 Conclusion

In this paper we investigated the performance gain introduced by the adoption
of an Optimal population mix scheduling strategy in the execution of Big Data
applications. In order to do that, Pool depletion systems have been extended
with the implementation of two or more subsystems. This extension of Pool
depletion systems was necessary since parallel tasks execution is the key feature
of the Big Data applications. We identified two main system configurations:
the homogeneous and the heterogeneous ones. In the former, all the subsystems
are identical and the only advantage with respect to the single-subsystem Pool
depletion systems is the possibility to parallelize the execution of the tasks. In
the latter case, instead, the subsystems may have different characteristics (i.e.,
service demands). The service provider may exploit this other feature in order
to process some applications (defined by the number of the Class A and Class
B tasks from which they are composed) with better performance.

The analysis of multi-subsystems Pool depletion systems provided in this
paper highlights that depletion time (i.e., the time needed to complete all the
tasks initially in the pool) affects the global performance of these systems more
than the energy consumed to run a larger number of subsystems.

Finally, the Optimal population mix scheduling strategy is compared with
the default FIFO policy. The comparison is performed considering a specific
MapReduce job: Facebook’s Apache Hive query. From the simulation of the
case-study and the anlysis of its results, the implementation of the Optimal
population mix policy lets the service provider save up to the 15% on the total
amount of time needed to complete the MapReduce job.
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15. Hyytiä, E., Righter, R., Aalto, S.: Task assignment in a heterogeneous server farm
with switching delays and general energy-aware cost structure. Perform. Eval. 75,
17–35 (2014)

http://dx.doi.org/10.1007/978-3-319-43904-4_5
http://dx.doi.org/10.1007/978-3-319-31559-1_4
http://dx.doi.org/10.1007/978-3-319-31559-1_4


180 R. Pinciroli et al.

16. Kang, C.W., Abbaspour, S., Pedram, M.: Buffer sizing for minimum energy-delay
product by using an approximating polynomial. In: Proceedings of the 13th ACM
Great Lakes Symposium on VLSI, pp. 112–115. ACM (2003)

17. Kaxiras, S., Martonosi, M.: Computer architecture techniques for power-efficiency.
Synth. Lect. Comput. Archit. 3(1), 1–207 (2008)

18. Kulkarni, A.P., Khandewal, M.: Survey on hadoop and introduction to YARN. Int.
J. Emerg. Technol. Adv. Eng. 4(5), 82–87 (2014)

19. Rosti, E., Schiavoni, F., Serazzi, G.: Queueing network models with two classes of
customers. In: Proceedings Fifth International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, MASCOTS 1997,
pp. 229–234. IEEE (1997)

20. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

21. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.: Job
scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-2009-
55, EECS Department, University of California, Berkeley (2009)



A New Modelling Approach to Represent
the DCF Mechanism of the CSMA/CA Protocol

Marco Scarpa(B) and Salvatore Serrano

Department of Engineering, University of Messina,
Contrada di Dio, 98166 S. Agata, Messina, Italy

{mscarpa,sserrano}@unime.it

Abstract. In this paper, a Markovian agent model is used to represent
the behavior of wireless nodes based on CSMA/CA access method. This
kind of network was usually modeled by means of bidimensional Markov
Chains and more recently using semi-Markov process based models. Both
these approaches are based on the assumptions of both full load network
and independence of collision probability with respect to retransmission
count of each packet. Our model inherently releases the latter hypothesis
since it is not necessary to establish a constant collision probability at
steady state.

Here, we investigate the correctness of our approach analyzing the
throughput of a network based on two IEEE 802.11g nodes when the
amount of traffic sent by each one varies. Results have been compared
with Omnet++ simulations and show the validity of the proposed model.

1 Introduction

In this paper, we propose a new model for the study of multi-hop Carrier
Sense Multiple Access with collision avoidance (CSMA/CA)-based networks.
The CSMA/CA protocol is used in a great number of wireless networks to
access the medium at MAC layer level. For example the IEEE 802.11 employs a
CSMA/CA mechanism with binary exponential backoff (BEB) rules, called Dis-
tributed Coordination Function (DCF). DCF defines a basic access method, and
an optional four-way handshaking technique, known as request-to-send/clear-to-
send (RTS/CTS) method [1]. Even if in this paper we address the basic access
mechanism, the approach here presented is promising to be extended in order
to take into account the RTS/CTS mechanism. We provide a powerful model
based on Markovian agents that accounts for all the exponential backoff protocol
details, and allows us to compute throughput performance of DCF for the basic
access mechanisms. A more realistic modeling of the mechanism is possible by
means of Markovian agents because the relative load condition and retransmis-
sion status of each wireless node in the network is taken into account. Practically,
using our approach, it is possible to release the key approximation assumed in
[2], and subsequent works [3–5] related to the assumption of constant and inde-
pendent collision probability of a transmitted packet regardless of the number

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-61428-1 13
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of already done retransmissions. In other words, our model will be capable to
intrinsically analyze saturated and unsaturated traffic cases [6,7].

The rest of the paper is organized as follows: Sect. 2 presents a summary
of the most important papers dealing with modeling of the DCF mechanism;
Sect. 3 summarizes the basic access method of DCF; Sect. 4 briefly summarizes
the MA theory and introduces the MA model of a wireless node implementing
the DCF mechanism; Sect. 5 presents the reference scenario, and the simulation
environment we used to validate the MA model; moreover numerical results
from both simulation and analytical solution of a MA based scenario are shown.
Finally Sect. 6 reports conclusions.

2 Related Work

A great number of different models are introduced for the CSMA-based pro-
tocols, most of them, after Bianchi’s seminal paper [2], are based on two-
dimensional Markov models.

The problem is solved by Bianchi in two distinct steps. In the first step, by
means of a Markov model, the behavior of a single wireless node, also called
station1, is studied. This model allows to obtain the probability that a station
transmits a packet in a generic time slot. In the second step, the throughput
is expressed as function of the probability evaluated in the previous step by
analyzing the events that can occur within a generic time slot. Two indepen-
dent processes are considered to model the BEB mechanism: b(t) (the stochas-
tic process representing the backoff time counter for a given station) and s(t)
(the stochastic process representing the backoff stage of the station at time t).
A restrictive hypothesis is to consider the collision probability p constant regard-
less of the number of retransmissions that each packet suffers. Assuming the
independence of this probability with respect to the number of retransmissions,
it is possible to assume a constant value for the same probability p and to model
the entire process by means of a bidimensional discrete-time Markov chain.

Recently, a novel Semi-Markov Process (SMP) based model for the single-
hop IEEE 802.11 has been proposed to mitigate the complexity of the Bianchi’s
based model [3]. An SMP is a generalization of Markov chain. It includes a
state holding-time that permits to increase the specification of the process. The
holding-time of a state i is the amount of time spent before leaving state i.
Differently by a traditional Markov process, the future state of a SMP depends
not only on the current state but also on its state holding-time. The authors
of [3] design the model in three different steps: (1) They build a (m + 1)-state
Markov Chain. The state i in this chain represents the ith backoff stage of the
BEB mechanism. An unsuccessful transmission is modeled by a transition from
a lower state i to a higher state (i + 1). A successful transmission is modeled
by a transition from any state i to state 0. Loopback transitions are possible
only for states 0 and m. (2) The Markov chain defined in step (1) is transformed
into an embedded Markov chain. An embedded Markov chain is characterized
1 From this point on, we use the terms station and wireless node interchangeably.
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by transition probability Pii = 0, ∀i. The state holding-times of a discrete-
time Markov chain are equal to a unit time and are independent of the next
state transition. It is possible to consider the sample paths of a SMPs as timed
sequences of state transitions. If one watches the process at the times of state
transitions, the sample paths of the SMP are identical to those of a Markov
chain. Such a process is known as embedded Markov chain. (3) The embedded
Markov chain is transformed to an SMP in which the state holding-time for state
i will be a random value uniformly selected within the range (0, 2i · CWmin),
for 0 ≤ i ≤ m. Once the model is obtained, the authors use the stationary
probability distribution of the SMP and the state holding-times to compute the
packet transmission probability τ and the saturation throughput in the network.
Indeed, the state holding-time for state i in the embedded Markov chain models
the backoff interval of backoff stage i and the stationary probability Πs

i of a
SMP represents the fraction of time spent by a wireless node in backoff stage i.
The proposed SMP model achieves accurate results with less complexity and
computational time with respect to Bianchi’s model. An advanced SMP model
was proposed in [4]. It calculates the network parameters of single-hop WLANs
more accurately. Some other studies also deal with the modeling of CSMA-based
protocols in multi-hop scenarios [5,8]. In [9], the authors apply SMP modeling
to linear multi-hop networks. The key assumption in all these models is that
the probability p that a transmitted packet suffers a collision is the probability
that at least one of the N − 1 remaining stations transmit in the same time
slot. Moreover, if each station transmits a packet with probability τ and it is
also assumed the independence of collisions and retransmissions, it is possible
to prove that, at steady state, p = 1 − (1 − τ)N−1. In [6], an extension of
the model proposed by Bianchi is presented with the aim to evaluate network
load in saturation condition taking into account the channel state during the
backoff countdown process. Moreover, the authors extend the model to unsatu-
rated traffic cases through an iterative approach which allows to obtain accurate
performance metric estimations for a wide range of parameters. Instead in [7],
the authors derive analytical expressions for unsaturated network throughput of
the IEEE 802.11 DCF using three different schemes: the physical-layer network
coding, the traditional nonphysical-layer network-coding, and without network-
coding. As mentioned above, in this work we introduce a model that releases
all these assumptions and consequently allows to evaluate the behavior of a sat-
urated and an unsaturated network, also considering different traffic loads for
each node of the network.

3 The Distributed Coordination Function
(Basic Access Method)

In this section, for the sake of completeness, we briefly explain the operation
of the basic access method using the DCF mechanism in a IEEE 802.11g WiFi
network. In a IEEE802.11g network, when the basic access mechanism is used, a
station with packets to transmit monitors the channel activities until it observes
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the channel is busy. If an idle period equals to a distributed inter-frame space
(DIFS) is detected, the station starts the random access mechanism implemented
by the backoff period. This latter period is slotted so it is possible to express its
length in terms of an integer number of elementary backoff slots. After sensing
an idle DIFS, the station initializes a backoff counter. This counter will be decre-
mented by one whenever a time slot expires while the channel is sensed idle. The
counter will be stopped when the channel becomes busy due to a transmission
of another station and reactivated when the channel will be sensed idle again for
more than a DIFS. The station will begin the transmission of the packet when
the backoff counter will reach zero. In this manner each station will wait for a
random backoff period for an additional deferral time before transmission. If at
least two stations decide to start transmission in the same time slot, a collision
occurs. When the backoff mechanism starts, the backoff counter is uniformly cho-
sen in the range [0, CW ], where CW is the current backoff contention window
size. At the first attempt of each packet transmission, CW is set equal to the
minimum contention window size CWmin. After each unsuccessful transmission
(i.e. when a collision occurs), CW is doubled so the next backoff period could
be chosen longer. The window will be doubled until the maximum contention
window size CWmax will be reached. If the window size reaches CWmax and
other collisions occur, CW shall remain at the value CWmax. The backoff con-
tention window size will be reset to CWmin value either if a successful attempt to
transmit occurs or if the retransmission counter reaches a predefined retry limit
(the maximum retransmission number). When the retry limit is reached, the
present packet is dropped. If the a packet transmission attempt is successful and
the destination station successfully receives the packet, this one responds with
an acknowledgment (ACK). The ACK will be followed by a short inter-frame
space (SIFS) time during which the channel will be idle. If the transmitting sta-
tion does not receive the ACK within a specified ACK Timeout, or it detects
the transmission of a different packet on the channel, it decides for collision
and reschedules the packet transmission. Furthermore, after the reception of an
error packet, a station shall be wait an extended inter-frame space (EIFS) before
starting the transmission of a new packet.

In the literature, there have been considerable researches aiming at analyzing
the performance of the DCF mechanism.

4 Markovian Agent to Model a DCF Node

In recent years, a new versatile analytical technique [10,11] has emerged whose
main idea is to model a distributed system by means of interacting agents. This
technique defines each agent through its local properties, but also introduces a
mechanism in order to modify its own behavior according to the influence of
the interactions with other agents. In this way, the analysis of each agent alone
incorporates the effect of the inter-dependencies.

In this section, we briefly recall the basics on Markovian Agents Models and
then we describe our proposal for representing the behavior of two interacting
wireless stations.
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4.1 Markovian Agents

Markovian Agent Models (MAMs) represent systems as a collection of agents
scattered over a geographical space, and described by a continuous-time Markov
chain (CTMC) where two types of transitions may occur: local transitions and
induced transitions. The former models the internal features of the MA, whereas
the latter accounts for interaction with other MAs. When a local transition
occurs, an MA can send a message to other MAs. The propagation of messages
is regulated by the perception function u(·). Depending on the agent position in
the space, on the message routing policy, and on the transmittance properties
of the medium, this function allows the receiving MA to be aware of the state
from which the message was issued, and to use this information to choose an
appropriate action. MAs can be scattered over a geographical area V. Agents
can be grouped in classes and can share different types of messages.

Fig. 1. Graphical representation of MAs

We represent a Markovian agent by exploiting the graphical notation like
in Fig. 1. Given an MA of class c, a local transition from state i to state j is
drawn as usual with a solid arc and, eventually, the associated rate qc

ij . When a
transition happens a message m could be sent with probability gc

ij(m); this event
is graphically drawn as a dotted line starting from the transition whose firing
sends the message and it is labeled with S(m) to make evident which message
is sent. An MA is also able to send a message during the sojourn in a particular
state: self-loops are used to this aim; in fact, a self-loop in state i could be used
to send a message m at a given rate λc

i similarly to what happens during a state
transition. It is worth to note that self-loops do not influence local behavior of
MAs, like in the usual theory of CTMCs, due to the memoryless property of the
exponential distribution; instead they have a role in the evolution of a remote
MA receiving the sent message. An example of MA is depicted in Fig. 1, where
message m1 is sent at the occurrence of transition from i to j, and a self-loop is
associated with state i emitting message m2 at rate λc

i . Induced transition due
to reception of a message is graphically represented with a dashed arc between
involved states; in this case the arc is labeled with M(m). As an example, in
Fig. 1, a transition from state i to state k, is due to the reception of message m3.
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Formally a Multiple Agent Class, Multiple Message Type Markovian Agents
Model (MAM) is defined by the tuple:

MAM = {C,M,V,U ,R}, (1)

where C = {1 . . . C} is the set of agent classes, and M = {1 . . . M} is the set of
message types. V is the finite space over which Markovian Agents are spread, and
U = {u1(·) . . . uM (·)} is a set of M perception functions (one for each message
type). The density of the agents is regulated by functions R = {ξ1(·) . . . ξC(·)},
where each component ξc(v), with c ∈ C, counts the number of class c agents
deployed in position v ∈ V. Since in this work the space is considered discrete,
each position could be identified by a cell numbered with an integer with respect
to some reference system.

Each agent MAc of class c is defined by the tuple:

Ac = {Qc,Λc,Gc(m),Ac(m),πc
0}. (2)

Here, Qc = [qc
ij ] is the nc × nc infinitesimal generator matrix of the CTMC that

describes the local behavior of a class c agent, and its element qc
ij represents the

transition rate from state i to state j (and qc
ii = −∑

j �=i qc
ij). Λc = [λc

i ], is a
vector of size nc whose components represent the rates at which the Markov chain
reenters the same state: this can be used to send messages with an assigned rate
without leaving a state. Gc(m) = [gc

ij(m)] and Ac(m) = [ac
ij(m)] are nc × nc

matrices that represent respectively the probability that an agent of class c
generates a message of type m during a jump from state i to state j, and the
probability that an agent of class c accepts a message of type m in state i
and immediately jumps to state j. πc

0, is a probability vector of size nc which
represents the initial state distribution.

The perception function of a MAM is formally defined as um : V×C×IN×V×
C × IN → IR+. The values of um(v, c, i,v′, c′, i′) represent the probability that an
agent of class c, in position v, and in state i, perceives a message m generated by
an agent of class c′ in position v′ in state i′. Thanks to perception functions, a dif-
ferent instances of agents deployed over the space can interact sending messages
one each others. Interactions are technically implemented through the matrix
Γc(t,v,m), a diagonal matrix collecting the total rate of received messages m
by an agent of class c in position v (element γii stores the value for state i).
Matrix Γc(t,v,m) is used to compute the infinitesimal generator matrix of class
c agent at position v at time t: Kc(t,v) = Qc +

∑
m Γc(t,v,m) [Ac(m) − I].

The overall Markovian agent model thus evolves according the set of coupled
differential equations

dρc(t,v)
dt

= ρc(t,v)Kc(t,v) (3)

under the initial condition ρc(0,v) = ξc(v)πc
0, ∀v ∈ V, ∀c ∈ C.

As deeply described in [10,11], the main advantage of Markovian agent is
that state space complexity is maintained low because dependencies between
two agents are modeled through messages instead defining the cross product of
their state spaces. Solution method to solve Eq. (3) uses discretization techniques
for both time and space and fixed point based algorithms.
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4.2 MA Classes in the Model

In the context of DCF, we use two classes of MAs to represent each wireless
node: the Buffer and the Backoff classes. The two classes are depicted in Figs.
2 and 3 respectively.

Fig. 2. Buffer class

The Buffer class models the behavior of wireless node with respect to the
transmission of stored frames. It is constituted by N + 1 blocks, being N the
buffer dimension of the wireless node. A generic block i in the class represents
the wireless node buffer containing i frames. When some frames are buffered
(i > 0), the wireless node tries to transmit one of them at the expiration of the
backoff counter. To model this mechanism, we used five states. State i identifies
the wireless node with i frames in the buffer waiting for the counter expiration;
at the expiration, signaled by the message Bend sent by the Backoff class agent,
the state changes into i∗. Since each MA of Buffer class sends a TXs message
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Fig. 3. Backoff class

when it is in a state attempting for frame transmission, all the others in the same
condition can detect the collision transiting to state i∗∗ induced by a perceived
TXs message. The states i∗ and i∗∗ allow us to discriminate whether the message
transmission after the time slot expiration will result in a failure or not. When
the transition happens from the former state (to state iOK), the transmission
will succeed otherwise (to state ifail) it will fail due to a collision. The rate
λτ = 1

τ reflects the duration of the time slot τ . In order to correctly signal to
other MAs its own state, a Buffer class MA sends TXs messages through self-
loops in states i∗ and i∗∗. The state i − 1 is reached from iOK , decreasing the
number of buffered frames; instead, MA comes back to state i when a collision
occurs. The sojourn time in iOK and ifail is the time tmess to send a frame,
thus we set the corresponding state transitions to λmess = 1

tmess
. Messages fail

and sent are used to notify to the Backoff class MA the outcome of transmission
attempt. Of course, irrespective of the state, a new packet to be transmitted
could arrive from higher layer; to model this event, we connected each state in
block i, with 0 < i ≤ N − 1, with the equivalent in block i + 1. We denote the
frame arrival rate with λloc.

Block 0 has a different structure since it represents the empty buffer thus
no transmission attempts are done and one state only (the state 0) completely
represent the system. The message sent in 0 is used to trigger the start of Backoff
class MA in the case of countdown expiration.

Based on this description, matrices storing transition rates and self-loop rates
can be easily built. The Buffer class initial probability vector set to 1.0 the
probability to be in state 0. Generating matrices and acceptance matrices are
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set in such a way the described messages are sent and received with probability
1.0. We do not write their complete structure for lack of space.

The Backoff class (Fig. 3) has the task of regulating the starting of transmis-
sions of Buffer class agents by sending the Bend message. This is implemented
with three states denoted in the following as mi, m′

i and ms
i . State mi represents

the system waiting for the backoff counter expiration in the contention window
CWi; when the contention timeout expires the MA transits to m′

i. The transi-
tion rate from mi to m′

i is computed taking into consideration the contention
windows at i-th attempt as follows:

λCWi
=

{ 1
2i−1CWmin

2i−1CWmin < CWmax
1

CWmax
otherwise

(4)

A Bend message is emitted in the states m′
i signaling to the perceiving MAs that

the contention timeout expired.
All the other transitions in this class are induced by other MAs. In partic-

ular, when a Backoff class MA is in m′
i it can transit in either mi+1 or m1 if

the corresponding Buffer MA failed in transmitting the frame or not, respec-
tively. These events are considered by perceiving the messages fail and sent
emitted by the MA modeling the frame transmission. In presence of more Buffer
class MAs, only the messages generated by the MA in the same location of the
Backoff MA are perceived. Instead transitions back and forth to ms

i are due to
messages emitted by Backoff class MAs in different locations of the receiving
Buffer class MA. In fact a TXs message has to be perceived if emitted by some
transmitting stations, different by the actually considered, because it acquired
the channel; thus the countdown is stopped (transition to ms

i ) and it will be
resumed (transition back to mi) at the reception of sent message.

A slightly different behavior is implemented in the state m′
R, where a recep-

tion of fail message reset the backoff algorithm to m1 because the maximum
number of retries has been reached.

As in the previous case, based on this description, matrices storing transition
rates and self-loop rates can be easily built. The Backoff class initial probability
vector set to 1.0 the probability to be in state m1. Generating matrices and
acceptance matrices are set in such a way the described messages are sent and
received with probability 1.0. We do not write their complete structure for lack
of space.

4.3 The Implemented MAM

In order to define the complete model we have to define all the quantities in (1).
In the case considered in this paper, the space V is a very little rectangular

area composed of two cells. This choice is due to the fact that, in this work,
we focus on correctly modeling the interaction mechanism and thus only two
transmitting stations are considered. Due to this reason, the space V is simply
defined by two positions and we have V = {0, 1}.
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The set C is defined by the two class introduced in Sect. 4.2: for the sake
of simplicity, we will denote with “u” and “a” the Buffer and Backoff class
respectively. Thus C = {u, a}, whereas M = {TXs, Bend, fail, sent}.

Since each wireless node is modeled by a couple of MAs (one Buffer MA
and one Backoff MA) and we considered two wireless nodes in the space, four
interacting MAs are in the model. From these considerations, the set R easily
derives being ξu(0) = ξa(0) = ξu(1) = ξa(1) = 1.

Perception functions um(·), with m ∈ M, are specified in Table 1 where only
the non null values are written. In this paper, we assumed that when a message
is sent to a given target destination it is perceived, thus all the values of um(·)
in the table are equal to 1.0. Perception functions reflect the interaction among
MA classes as described in Sect. 4.2.

Table 1. MAM perception functions

Perceiving MA Receiving MA

Message v Class State v′ Class State

Bend 0 u i, 1 ≤ i ≤ N 0 a m′
j , 1 ≤ j ≤ R

Bend 1 u i, 1 ≤ i ≤ N 1 a m′
j , 1 ≤ j ≤ R

TXs 0 u i∗, 1 ≤ i ≤ N 1 u i∗, 1 ≤ i ≤ N

TXs 0 u i∗, 1 ≤ i ≤ N 1 u i∗∗, 1 ≤ i ≤ N

TXs 0 a mj , 1 ≤ j ≤ R 1 u i∗, 1 ≤ i ≤ N

TXs 0 a mj , 1 ≤ j ≤ R 1 u i∗∗, 1 ≤ i ≤ N

TXs 1 u i∗, 1 ≤ i ≤ N 0 u i∗, 1 ≤ i ≤ N

TXs 1 u i∗, 1 ≤ i ≤ N 0 u i∗∗, 1 ≤ i ≤ N

TXs 1 a mj , 1 ≤ j ≤ R 0 u i∗, 1 ≤ i ≤ N

TXs 1 a mj , 1 ≤ j ≤ R 0 u i∗∗, 1 ≤ i ≤ N

fail 0 a m′
j , 1 ≤ j ≤ R 0 u ifail, 1 ≤ i ≤ N

fail 1 a m′
j , 1 ≤ j ≤ R 1 u ifail, 1 ≤ i ≤ N

sent 0 a m′
j , 1 ≤ j ≤ R 0 u i, 0 ≤ i ≤ N

sent 0 a ms
j , 1 ≤ j ≤ R 1 u i, 0 ≤ i ≤ N

sent 1 a m′
j , 1 ≤ j ≤ R 1 u i, 0 ≤ i ≤ N

sent 1 a ms
j , 1 ≤ j ≤ R 0 u i, 0 ≤ i ≤ N

We note that the use of MAs makes simple the extension to a more complex
scenario with N nodes: it is enough to deploy a Buffer MA and a Backoff MA for
each wireless node and appropriately define the perception functions for each pair
of deployed MAs. Since the purpose of this paper is to show the usefulness and
the advantages of Mobile Agent modeling paradigm in representing interacting
wireless stations, we consider only a two wireless nodes scenario leaving the study
of more complex scenarios as future research.
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5 Model Validation and Results

In this preliminary work, we referred to a simple IEEE 802.11g wireless network
to evaluate the accuracy of our DSF model; we take into account the network
throughput by varying the network load from a lightweight to a saturated one.
The IEEE 802.11g operates in the 2.4 GHz ISM band and provides a maximum
raw data throughput of 54 Mbps, although this translates to a real maximum
throughput of 24 Mbps. In this simple scenario, we set two wireless nodes trans-
mitting an UDP flow one each other. We did not consider any kind of noise or
signal interference neither signal attenuation. The flows are characterized by an
exponentially distributed UDP payload size. We evaluated model results using
both an average value of 100 bytes and an average value of 1000 bytes for the
UDP payload size. Moreover, we considered an exponentially distributed gener-
ation of information units at the application level.

According to the bidirectional traffic flow in each node, it is possible to
evaluate the mean load of the network R, expressed in bps, by using the following
relation

R =
2 · L

g
(5)

where L is the average frame length expressed in bits (L = C · tmess, with
C = 54 Mbps the maximum raw data rate) and g is the average value of the
intrapacket gap (IPG) (g = 1

λloc
). To validate our model, we also simulated the

two interacting wireless nodes. We used “Omnet++” as a network simulator.
For simulation purpose, we put a 802.11 g access point and a 802.11 g wireless
host in a predefined squared area and we imposed a “stationary mobility type”.
Each device has been equipped with a NIC having a MAC and PHY using the
parameters showed in Table 2. Accordingly, the simulator never uses the Request
To Send/Clear To Send (RTS/CTS) mechanism because we imposed the maxi-
mum length of each packet to 1500 bytes, i.e. the Ethernet Maximum Transfer
Unit (MTU). Moreover, considering the PHY parameters and the distance of
the nodes, each transmitted packet will be received without errors due to the
strictly high SNR. In this conditions only collisions can disrupt the reception
of a packet. Finally, the UDP IPG (g) has been assumed to be an exponen-
tially distributed random variable with mean value set accordingly to the desired
load of the network. We performed 50 simulation runs for each evaluated point

Table 2. MAC & PHY parameters

Control bit rate 54 Mbps Basic bit rate 54 Mbps

Max queue size 14 packets RTS threshold 3000 bytes

Contention window (min size) 31 time slots Retry limit 7 times

Contention window (max size) 255 time slots Tx Power 20 mW

Receiver sensitivity –85 dBm Noise power –192 dBm

Distance 10 m
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(a specified network load) each lasting 12 s. Confidence intervals obtained is very
narrow, thus we did not show them in the related graphs.

Derivation of network throughput from the MAM model is obtained consider-
ing the probability a transmission successfully complete. This is easily evaluated
considering the states iOK of the Buffer class MAs as follows:

Thf =
N∑

i=1

(P [Mu(0) = iOK ] + P [Mu(1) = iOK ]) λmess (6)

where Mu(0) (Mu(1)) denotes the Buffer class MA in position 0 (1). Thf gives
the network throughput in terms of frame/s, from which we computed the
equivalent UDP Throughput expressed in Mbps according to the frame size
considered in the experiments.

Figure 4 shows the throughput obtained using simulation and agent model
as a function of the UDP network load when the packet size has an average size
of 100 bytes. For network load greater then 2 Mbps the model gives a constant
throughput of 2.21 Mbps while the results of the simulations are slightly higher
than this value for load in the range between 2 Mbps and 16 Mbps, they become
essentially identical in the range between 16 Mpbs and 20 Mbps and slightly lower
for higher load. We have almost the same results for a UDP load of 1.6 Mbps
obtaining a throughput of 1.595 Mbps using the simulator and of 1.584 Mbps
using the MA model (the percentage absolute error is equal to 0.68%). The
maximum value of percentage absolute error (17.19%) was obtained with a load
of 32 Mbps when the analytical model gives a throughput higher than about
0.32 Mbps with respect to that obtained by simulator.
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Fig. 4. UDP Throughput vs UDP Load using packets of average size equal to 100 bytes.
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Fig. 5. UDP Throughput vs UDP Load using packets of average size equal to
1000 bytes.

Figure 5 shows the throughput obtained using simulation and MA model
as a function of the UDP network load when packets have an average size of
1000 bytes. In this latter case, we obtained more accurate results. For load slower
than 10 Mbps, the throughput derived from the MA model is essentially equal to
that obtained with simulation (the maximum value of the percentage absolute
error was 1.66%). When the load grows up over 20 Mbps the throughput satu-
rate at 14.45 Mbps for the MA model and slightly oscillate around 14.22 Mbps
for the simulations. In this latter condition the maximum value of the percentage
absolute error is 5.53%. In the range between 10 Mbps and 20 Mbps the through-
put obtained by the MA model presents the maximum deviation with respect
to the results obtained by the simulation growing up to a percentage absolute
error approximately equal to 14%.

The percentage absolute error has been computed as follows:

|E%| =
|Thmodel − Thsimulator|

Thsimulator
· 100 (7)

and we obtained corresponding value for comparison using linear interpolation
(the actual load of the simulations is always different from the theoretical load
used to obtain the throughput using the model).

It is worth to note that in the Figs. 4 and 5 we do not show the confidence
intervals because they were very small: the larger confidence interval we obtained
is 0.08 Mbps using a confidence of 99%; thus we do not show confidence intervals
in the graphs because they are very narrow and difficult to read.
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6 Conclusions and Future Work

In this paper, we introduced a new performance model of CSMA/CA based
networks. Specifically Markovian agents were used to model the behavior of the
protocol. In this preliminary work, we focused on a simple network scenario
with 2 nodes. In the model, we neglected the presence of interference and noise
and, accordingly, we set a very high SNR at the receiver in our simulations.
Results obtained in terms of throughput of UDP traffic varying the network
load confirmed the goodness of the approach. The results were compared with
that obtained by Omnet++ simulations and using both small and large packets,
experiencing very small differences.

One of the most important strengths of this proposal is the possibility to
release the hypothesis of “loaded network” used in the Bianchi’s based model
where the collision probability is assumed constant and independent of the num-
ber of suffered retransmission. Using the proposed approach, it is instead possible
to load each wireless node of the network with a different quantity of traffic and,
anyway, it inherently permits to link the collision probability with the retrans-
mission count for each wireless node without imposing a constant value.

In the future, we intend to extend this work considering a more complex
scenario taking into account a greater number of wireless nodes (in order to
verify model scalability), the presence of interference and/or noise (it will be
possible by tuning the perception function of the messages accordingly to the
distance and/or signal to noise ratio), and a multi hop (chained) scenario in
which each wireless node generates its own traffic but also route traffic coming
from its neighbors.

Finally, it is noteworthy to consider that the introduced Markovian agent can
also be used to model wireless network using the DCF approach but different of
the IEEE 802.11g. A possible candidate we intend to analyze in the future is a
wireless sensor network based on the IEEE 802.15.4 protocol.
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Abstract. The statement of the mean field approximation theorem in
the mean field theory of Markov processes particularly targets the behav-
iour of population processes with an unbounded number of agents. How-
ever, in most real-world engineering applications one faces the prob-
lem of analysing middle-sized systems in which the number of agents
is bounded. In this paper we build on previous work in this area and
introduce the mean drift. We present the concept of population processes
and the conditions under which the approximation theorems apply, and
then show how the mean drift can be linked to observations which follow
from the propagation of chaos. We then use the mean drift to construct
a new set of ordinary differential equations which address the analysis of
population processes with an arbitrary size.

Keywords: Markov chains · Population processes · Mean field approx-
imation · Propagation of chaos

1 Introduction

Population processes are stochastic models of systems which consist of a num-
ber of similar agents (or particles) [1]. When the impact of each agent on the
behaviour of the system is similar to other agents, it is said that the population
process is a mean field interaction model (or is symmetric) [2]. Mean field approx-
imation refers to the continuous, deterministic approximations of the stochastic
behaviour of such processes, when the number of agents grows very large. These
approximations were first proposed for several concrete cases in various areas of
study e.g., from as early as the 18th century in population biology, where models
such as the SIR equations are used to describe the dynamics of epidemics [3].
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Since then, general theorems have been proven which show the convergence
of the behaviour of population processes to solutions of differential equations.
The proofs follow roughly the same steps which generally rely on Grönwall’s
lemma and martingale inequalities [4]. One of the first generalized approximation
theorems was given by Kurtz [5]. The theory gives conditions which define a
family of such models called density-dependent population processes, and finds
their deterministic approximations by a theorem which is generally called the
law of large numbers for standard Poisson processes [6].

The mean field theory of Markov processes is increasingly being applied in
the fields of computer science and communication engineering. In the field of
communication engineering and starting with Bianchi’s analysis of the IEEE
802.11 DCF protocol [7], much research has focused on discussing the validity of
the so-called decoupling assumption in this analysis. Several general frameworks
have also been proposed which target the analysis of computer and commu-
nication systems [2,8]. In the field of computer science the initial application
of the approximations was intuitively motivated by methods such as fluid and
diffusion approximations of queueing networks [9]. These have resulted in the
development of methods and tools to automate the analysis of mean field mod-
els, with extensive progress in the context of the stochastic process algebra PEPA
[10,11]. However, still a large family of models are deemed unsuitable for this
fluid approximation analysis, since they often lead to demonstrably inaccurate
approximations [10,12]. This calls for revisiting the fundamental roots of the
theory. Such an approach has been taken in [13] where the authors use a set of
extended diffusion approximations to derive precise approximations of stochastic
Petri Net models.

We identify the current challenge as the problem of analysing middle-sized
systems: systems which are so large that they suffer from state space explosion,
but not large enough such that they can be accurately analysed by common
approximation methods. In this paper we focus on the evaluation of these middle-
sized systems, and the most important contribution is the introduction of Poisson
mean of intensities (Eq. (11)), and the way they relate to the approximation
theorem based on the idea of propagation of chaos.

Through Eq. (11) we express the idea that occupancy measures can be seen
as Poisson arrival rates. Based on this observation we propose employing the
concept of the Poisson mean of the drift to build the set of ordinary differential
equations in (12) when dealing with bounded systems. To provide further proof
for the consistency of our observation with respect to already established results
in the mean field theory, we show that the drift and the mean drift are equivalent
in the limit (Theorem 2).

Besides explaining the idea of the mean drift, we also take a slightly different
approach in performing the frequent time and probability scalings in building
population processes, by systematically removing the dependency of scaling fac-
tors on the size of the system.

The rest of this text is organized as follows. Section 2 describes the family of
mean field interaction models. In Sect. 3 we introduce the drift of a population
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process and the derivation of their deterministic approximations, which provide
the basis for stating the main results of this work. Finally, in Sect. 4 we present
the idea of propagation of chaos and define the concept of mean drift.

2 Population Processes and the Mean Field Model

In this section, we present the stochastic model of a system and introduce mean
field interactions models. For the most part our notation agrees with [2]. The
list of objects appearing in this paper are given in Table 1.

Table 1. Table of objects and their short description.

T = N Points corresponding to local time-slots

TG ⊆ Q≥0 Points on the real line corresponding to global time-slots

D ∈ N≥1 Time resolution = number of global time-slots in a unit interval

ε = 1
D

Length of a global time-slot

N ∈ N≥1 System size = number of agents

S = {1, . . . , I} State space of agents, with I ∈ N states{
X

(N)
i (t) : t ∈ T

}
Process corresponding to agent i, with i ∈ {1, . . . , N}

Ki Transition map of X
(N)
i (t){

X̂
(N)
i (t) : t ∈ TG

}
Modified process corresponding to agent i

K̂i Transition map of X̂
(N)
i (t){

Y (N)(t) : t ∈ TG

}
Process for the system of N agents, on SN

K(N) Transition map of Y (N)(t)

Δ Set of occupancy measures{
M(N)(t) : t ∈ TG

}
Normalised population process on Δ(N) ⊂ Δ

P
(N)
1 Transition map of the agent model

{(
X̂

(N)
1 , M(N)(t)

)
: t ∈ TG

}

P
(N)
s,s′ Agent transition map, with s, s′ ∈ S

Q
(N)
s,s′ Infinitesimal agent transition map, with s, s′ ∈ S{
M̄(N)(t) : t ∈ R≥0

}
Normalised population process with continuous paths{

W (N)(t) : t ∈ TG

}
Object (agent) state-change frequency in interval (t − ε, t]

F̂ (N) Expected instantaneous change in system state

F (N) Drift of the normalized population process

Φ ⊆ {g : R≥0 → Δ} Set of deterministic approximations

F ∗ The limit of the sequence of drifts
{
F (N)

}

ρN The probability measure induced by Y (N)(t)

F̃
(N)
s,s′ The Poisson mean of intensity from s to s′ with s, s′ ∈ S

F̃ (N) The mean drift of the normalised population process

2.1 Agent Processes and the Clock Independence Assumption

Let the set T = N be discrete and let parameter N ∈ N≥1 be the system
size. The elements of T are called time-slots. Let S = {1, . . . , I} be a finite set
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of states. For i ∈ {1, . . . , N}, let
{

X
(N)
i (t) : t ∈ T

}
be S-valued discrete-time

time-homogeneous Markov chains (DTMCs). Each stochastic process X
(N)
i (t)

describes the behaviour of agent i in the system with N agents.
Take each process X

(N)
i (t) to be described by a transition map Ki : SN ×S →

[0, 1]. In each time-slot (indexed by members of T ), the process chooses the next
state s ∈ S with probability Ki(v, s), where the vector of states v ∈ SN is the
state of the entire system (including agent i’s current state).

We assume that processes have independent time-slots, which occur at
the same rate over sufficiently long intervals of time. This clock independence
assumption allows us to embed the discrete-time description of agents’ behav-
iours in a continuous-time setting. For a discussion on the approximation of
systems with simultaneous update (or synchronous DTMCs [11]) refer to [8,11].

Formally, the independence of time-slots can be stated as follows. For two
processes i and i′ where i �= i′, if process i does a transition in an instant of time
then process i′ almost never does a transition simultaneously. Technically, the
clock independence assumption is realized as follows. Let D ∈ N

+ be the time
resolution, and let ε ∈ Q≥0 be a positive rational number (a probability) defined
as ε = 1

D . Let TG ⊆ Q≥0 be the countable set: TG = {0, ε, 2ε, . . .}. We call the
set TG the system or global time, as opposed to the agent or local time T .

Let the probability of an agent doing a transition in a time-slot be ε. In this
new setting, for 1 ≤ i ≤ N define stochastic processes

{
X̂

(N)
i (t) : t ∈ TG

}
, each

with transition maps K̂i : SN × S → [0, 1], such that for all v ∈ SN and s ∈ S:

K̂i(v, s) =

{
εKi(v, s) if s �= vi,

(1 − ε) + εKi(v, s) if s = vi.

In the new setting, let E be the event that agent i does a transition in
a time-slot, and E′ be the event that agent i′ �= i does a transition exactly
in the same time-slot in TG. Then by independence of agent transition maps:
P{E′|E} = P{E′} = ε. Observe that the clock independence assumption is
satisfied as D → ∞ (i.e., ε → 0). A similar approach can be taken to relate
the behaviour of agents specified using CTMCs as well, which results in an
approximation theorem which closely resembles ours (see [14]).

Let Y (N)(t) =
(
X̂

(N)
1 (t), . . . , X̂(N)

N (t)
)

be a stochastic process. The process

Y (N)(t) represents the behaviour of the entire system, and is also a time-
homogeneous discrete-time Markov process with transition map K(N) : SN ×
SN → [0, 1] in which for v,v ′ ∈ SN :

K(N)(v,v ′) =
N∏

i=1

K̂i(v,v ′
i).
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2.2 Mean Field Interaction Models and Population Processes

We now introduce mean field interaction models [2], which comprise the class of
processes Y (N)(t) for which we find the mean field approximations.

Let π : {1, . . . , N} → {1, . . . , N} be a permutation over the set {1, . . . , N}.
For a vector v =

(
s1, . . . , sN

)
define π(v) as:

π(v) =
(
sπ(1), . . . , sπ(N)

)
.

Definition 1 (Mean Field Interaction Models [2]). Let Y (N)(t) be the process
defined earlier, and let π be any permutation over the set {1, . . . , N}. If for all
v,v ′ ∈ SN ,

K(N)(v,v ′) = K(N)(π(v), π(v ′))

holds, Y (N)(t) is called a mean field interaction model with N objects.

It follows from the above definition that entries in K(N) may depend on the
number of agents in each state, but not on the state of a certain agent. Let
Δ =

{
m ∈ R

I :
∑

s∈S ms = 1 ∧ ∀s.ms ≥ 0
}

be a set of vectors, which we
call the set of occupancy measures. For a system of size N , take the countable
subset Δ(N) =

{
m ∈ R

I :
∑

s∈S ms = 1 ∧ ∀s.Nms ∈ N
}
. The set Δ(N) ⊂ Δ

is an alternative representation of the state space of the system, in which for
m ∈ Δ(N) and i ∈ S the value mi expresses the proportion of agents that are in
state i. For a mean field interaction model we define the normalized population
process

{
M (N)(t) : t ∈ TG

}
on Δ(N) such that for s ∈ S:

M (N)
s (t) =

1
N

∑
1≤n≤N

1
(
X̂(N)

n (t) = s
)

, (1)

where 1 is an indicator function. Using the fact that Y (N)(t) is a mean field inter-
action model, it is possible to move back and forth between processes Y (N)(t)
and M (N)(t).

We define the behaviour of an agent in the context of a population by the
process

{(
X̂

(N)
1 (t),M (N)(t)

)
: t ∈ TG

}
, called the agent model with the tran-

sition map P
(N)
1 : S × Δ × S × Δ → [0, 1]. Then for s, s′ ∈ S, the marginal

transition probability that an agent moves from state s to state s′ in the context
m ∈ Δ(N) is defined as:

P
(N)
s,s′ (m) =

∑
m ′∈Δ

P
(N)
1 (s,m, s′,m′).

For each s, s′ ∈ S where s �= s′, the expected proportion of the agents that
are in state s at time t and move to state s′ over a unit time interval [t, t + 1)
is D P

(N)
s,s′ (m). By taking the clock independence assumption into account, for

s �= s′ define the functions Q
(N)
s,s′ : Δ(N) → R≥0 which for m ∈ Δ(N) satisfy:

Q
(N)
s,s′ (m) = lim

D→∞
D P

(N)
s,s′ (m).
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Note that due to the construction of the probabilities P
(N)
s,s′ (m), for s �= s′ the

limit always exists. The mapping Q(N) is called the infinitesimal agent transition
map, which can be interpreted as a transition rate matrix, meaning that for an
agent in state s the time until it moves to state s′ converges to an exponentially
distributed random variable with mean: 1

Q
(N)
s,s′

.

Despite the fact that time instants in the set TG are discrete, we deem
it necessary to observe the population process

{
M (N)(t) : t ∈ TG

}
at contin-

uous times t ∈ R≥0. Based on M (N)(t) we define a new stochastic process{
M̄ (N)(t) : t ∈ R≥0

}
with new sample paths which are right-continuous func-

tions with left limits (càdlàgs). For t ∈ R≥0 the process M̄ (N)(t) satisfies:

M̄ (N)(t) = M (N) (ε �Dt) .

In this and the following sections we use a running example inspired by radio
communication networks, to illustrate how one derives the mean field approx-
imation of a system. In the example of this section we start from an informal
specification of the network behaviour, and derive the transition map of the
corresponding normalized population process.

Example 1. Consider a network of N nodes (agents) operating on a single shared
channel. The network is saturated, meaning that all the nodes always have mes-
sages to transmit. A node can be in one of the states S = {1, 2}. In state 1
a node is waiting, and with probability p1 decides to transmit a message. All
communications start with the transmission of a message, and a successful com-
munication is then marked by the receipt of an acknowledgement, whereas a
failed communication ends in a timeout. Both cases occur in the space of a sin-
gle time-slot. If the communication succeeds, the node will remain in state 1
and wait to transmit the next message and if it fails, the node moves to state 2
in which it tries retransmitting the message. A node in state 2 retransmits the
message with probability p2. The node then essentially behaves in the same way
as in state 1.

The probability of success depends on the number of nodes currently using
the channel, as follows. If n ∈ N nodes are using the channel, then the success
probability of each participating communication is:

ps(n) = 2−n, (2)

Fig. 1. The behaviour of a node in Example 1. The number of transmitting nodes is n.
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that is, the channel degrades in quality exponentially as the number of active
nodes increases. A diagram representing the behaviour of each node is given in
Fig. 1.

Let v ∈ SN be the state of the network, with n1 nodes in state 1 and
n2 = N − n1 nodes in state 2. Let tr1(v) be the total number of nodes that
are in state 1 which decide to transmit a message in system state v, then tr1(v)
is a binomial random variable with distribution B(n1, p1). In a similar fashion
tr2(v), the total number of nodes in state 2 which decide to transmit a message
in system state v is B(n2, p2) distributed. Then a communication in state v will
succeed with probability ps (tr1(v) + tr2(v)).

Let s ∈ S be the next state of a node i (1 ≤ i ≤ N), based on the description
above the transition matrix for this node is:

Ki(v, s) =
(

1 − p1 + p1ps (tr1(v) + tr2(v)) p1 − p1ps (tr1(v) + tr2(v))
p2ps (tr1(v) + tr2(v)) 1 − p2ps (tr1(v) + tr2(v))

)

where the row is determined by the element vi (current state) and the column
by s.

We use the clock independence assumption to compose the population
process. To extend this assumption to the description of our radio network,
we implicitly assume that the duration of message transmission is exponentially
distributed, i.e., since the transitions are memoryless, the sojourn time of indi-
viduals in states is exponentially distributed. The modified transition matrix for
node i is:

K̂i(v, s) =
(

1 − p1ε (1 − ps (tr1(v) + tr2(v))) p1ε (1 − ps (tr1(v) + tr2(v)))
p2ε ps (tr1(v) + tr2(v)) 1 − p2ε ps (tr1(v) + tr2(v))

)

In which the probability of success and failure have been scaled by a factor ε. The
composed system is a mean field interaction model. This is due to the definition
of functions tr1 and tr2, which do not depend on states of specific nodes, but
rather on the aggregate number of nodes in states 1 and 2.

Consider the normalized population model with occupancy measures Δ ={
m ∈ R

2 :
∑

i mi = 1 ∧ ∀i.mi ≥ 0
}

and the corresponding subset Δ(N). Let
m ∈ Δ(N); then using (1) when the system is in state m the total number of com-
municating agents is X1 + X2 where X1 ∼ B(Nm1, p1) and X2 ∼ B(Nm2, p2).
For an agent in state s the rate of moving to an state s′ �= s is given by:

{
Q

(N)
1,2 (m) = E [p1(1 − ps(X1 + X2))] ,

Q
(N)
2,1 (m) = E [p2ps(X1 + X2)] .

(3)

In the sections that follow, we use the map Q(N) to derive the mean field
approximations of population processes.

3 Drift and the Time Evolution of Population Processes

In this section we define the drift as a way to characterize the behaviour of
the population process M̄ (N)(t) in its first moment. This provides the basis for
defining the mean drift, which is given in Sect. 4.
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Define W
(N)
s,s′ (t) as the random number of objects which do a transition from

state s to state s′ in the system at time t ∈ TG, i.e.,

W
(N)
s,s′ (t + ε) =

N∑
k=1

1
{

X̂
(N)
k (t) = s, X̂

(N)
k (t + ε) = s′

}
.

The instantaneous changes of the system M (N)(t) can be tracked by the following
random process:

M (N)(t + ε) − M (N)(t) =
∑

s,s′∈S,s 	=s′

W
(N)
s,s′ (t + ε)

N
(es′ − es), (4)

where es is a unit vector of dimension I with value 1 in position s. Then the
expected value of the instantaneous change is the function F̂ (N) : Δ(N) → R

I

where:

F̂ (N)(m)=E

[
M(N)(t + ε) − M(N)(t) | M(N)(t) = m

]
=
∑

s,s′∈S
msP

(N)
s,s′ (m)(es′ − es). (5)

The drift is the function F (N) : Δ(N) → R
I defined as:

F (N)(m) = lim
D→∞

DF̂ (N)(m) =
∑

s,s′∈S,s 	=s′
msQ

(N)
s,s′ (m)(es′ − es).

In the above formula, we may use F
(N)
s,s′ (m) to represent the summands

ms Q
(N)
s,s′ (m), which we call the intensity of transitions from s to s′. Essentially,

the drift extends the vector representing the expected instantaneous changes
into the unit time interval.

In the following sections we assume that the drifts of the systems we consider
in our approximations satisfy the following assumptions.

Smoothness: For all N ≥ 1, there exist Lipschitz continuous functions F̄ (N) :
Δ → R

I which for all m ∈ Δ(N) satisfy: F̄ (N)(m) = F (N)(m).

Boundedness: For all N ≥ 1, F (N) are bounded on Δ(N).

Limit existence: Assuming smoothness, the sequence of drifts {F (N)} con-
verges uniformly to a bounded function F ∗ : Δ → R

I .
In the literature, the single term density dependence is often used to refer to

boundedness and limit existence [15].

Remark 1. In the contexts where it is clear that smoothness holds, we overload
the name F (N) to refer to the function F̄ (N) instead.

Using drift, one can express how the expected value E[M̄ (N)(t)] will evolve
over time, a fact which we formally express through the following proposition.
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Proposition 1. For the process M̄ (N)(t), and its drift F (N) the following equa-
tion holds:

E

[
M̄ (N)(t) | M̄ (N)(0)

]
− M̄ (N)(0) =

∫ t

0

E

[
F (N)(M̄ (N)(s)) | M̄N (0)

]
ds.

Proof. A sketch of the proof follows [16]. For the identity function f : Δ → Δ the
pair (f, F (N)) belongs to the set A of infinitesimal generators of M̄ (N)(t). This
then implies that the pair satisfies Dynkin’s formula, as given in the equation
above. ��

In its differential form, the equation above suggests that the expected tra-
jectory of the process M̄ (N)(t) is a solution of the following system of ordinary
differential equations:

d

dt
E

[
M̄ (N)(t)

]
= E

[
F (N)(M̄ (N)(t))

]
, (6)

with the initial value M̄ (N)(0). In practice the term E
[
F (N)(M̄ (N)(t))

]
is difficult

to describe. In Sect. 4 we propose a way to approximate the right hand side of
Eq. (6) by expressing it in terms of E

[
M̄ (N)(t)

]
, without explicitly giving the

error bounds.
In the following example, we continue towards a mean field approximation

for the system defined in example 1.

Example 2. We use the maps Q
(N)
s,s′ given by (3) to derive the drift of the system

described in Example 1. A simple substitution gives the following sequence of
drifts:

F (N)(m) =
(−m1E [p1(1 − ps(X1 + X2))] + m2E [p2ps(X1 + X2)]

−m2E [p2ps(X1 + X2)] + m1E [p1(1 − ps(X1 + X2))]

)
(7)

in which X1 ∼ B(Nm1, p1) and X2 ∼ B(Nm2, p2). This simplifies to:

F (N)(m) =

(−m1p1(1 − (1 − p1
2
)Nm1 (1 − p2

2
)Nm2 ) +m2p2(1 − p1

2
)Nm1 (1 − p2

2
)Nm2

m1p1(1 − (1 − p1
2
)Nm1 (1 − p2

2
)Nm2 ) − m2p2(1 − p1

2
)Nm1 (1 − p2

2
)Nm2

)

It can be shown that the inequality below is always satisfied for m,m′ ∈ Δ:
∣∣∣F (N)(m′) − F (N)(m)

∣∣∣ ≤
√

2 |m′ − m| ,

which proves that F (N) are Lipschitz continuous on Δ. In the same manner, it
can be shown that for all m ∈ Δ, |F (N)(m)| ≤ √

2.
Therefore it is safe to assume that F (N) satisfies both smoothness and

boundedness. Moreover, for any p1, p2 > 0 and m ∈ Δ we have:

F ∗(m) = lim
N→∞

F (N)(m) =
(−p1m1

p1m1

)
(8)

which shows that limit existence is also satisfied.
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Approximations of Mean Field Interaction Models

In this part, we explain how the drift satisfying all the discussed conditions
(smoothness, boundedness and limit existence) can be used to derive a
deterministic approximation of the behaviour of the population process.

For N ≥ 1, let F (N) be a drift satisfying smoothness, and consider the
following system of ordinary differential equations (ODEs):

d

dt
φ(N)(t) = F (N)(φ(N)(t)).

Take φ(0) = φ0 as the initial condition of the above system of ODEs. Then based
on the Picard-Lindelöf theorem since F (N) is Lipschitz continuous, a unique
solution to the above system of ODEs exists. The unique function φ(N)(t) which
satisfies φ(N)(0) = φ0 is henceforth called the deterministic approximation.

Assuming that limit existence holds, define the limit system of ODEs as:
φ′(t) = F ∗(φ(t)) with initial condition φ0. The solution φ(t) satisfies the follow-
ing theorem.

Theorem 1 (Mean Field Approximation, cf. [2], Theorem 1). For N ≥ 1, let{
M̄ (N)(t)

}
be a sequence of normalised population processes. Let

{
F (N)

}
be

the corresponding drifts which satisfy smoothness, boundedness and limit
existence. Let φ(t) be the solution to the corresponding limit system of ODE
and assume limN→∞

∣∣M̄ (N)(0) − φ(0)
∣∣2 = 0. Then for any finite time horizon

T < ∞:

lim
N→∞

E

[
sup

0≤t≤T

∣∣∣M̄ (N)(t) − φ(t)
∣∣∣
2
]

= 0.

Proof. This is the sketch of the proof in [16], which itself is an excerpt from a
proof in [1]. Using a number of earlier results, it can be shown that the time evo-
lution of the population process can be captured by a summation of unit Poisson
processes, dependent on the drift. This is called the Poisson representation of
the population process.

Next, these unit Poisson processes are decomposed into a summation of
their expectation and compensated unit Poisson processes. Compensated Pois-
son processes are martingales with expectation 0. In this case, using Doob’s
inequality and boundedness, the maximum of the noise generated by these
processes is shown to be bounded by a term of O

(
T
N

)
.

Finally, by using smoothness and applying Gröwall’s inequality, it can be
shown that for T < ∞ and at time t ≤ T , as N → ∞ the error in the approxi-
mation of M̄ (N)(t) by φ(t) almost surely tends to 0. ��

In the following example, we derive the limit system of ODEs for the system
discussed in Example 2 and describe its solutions.

Example 3. Consider the drift given in (8). The limit system of ODEs for the
system described in Example 1 is:

d

dt
φ1(t) = −p1φ1(t),

d

dt
φ2(t) = p1φ1(t).
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which together with the initial condition φ(0) has the following general solution:

φ1(t) = φ1(0) e−p1t, φ2(t) = −φ1(0) e−p1t + 1.

Obviously the solution heavily depends on the initial values φ(0), but the system
has a global attractor at (0, 1).

4 Propagation of Chaos and the Mean Drift

Theorem 1 justifies the use of drift for finding the approximation in cases where
the number of agents N is unboundedly large. However, the bounds of error for
the approximation (see [16]) barely justifies its use in the analysis of middle-sized
systems. In this section we explore the possibility of using the alternative ODEs
in (6). We explain the notion of propagation of chaos, and show how it relates
to what we call the mean drift.

For a set E let M(E) denote the set of probability measures on E. Let the
set S be defined as in Sect. 2.1, and for s, s′ ∈ S define the distance between
s and s′ as the function d(s, s′) which has value 2 if s �= s′ and 0 otherwise.
This makes the pair (S, d) a metric space, with the implication that SN is also
metrizable, an important condition which allows the definition that follows.

Definition 2 (ρ-chaotic Sequence). Let ρ ∈ M(S) be a probability measure. For
N ≥ 1, the sequence

{
ρN

}
of measures, each in M(SN ), is ρ-chaotic iff for any

fixed natural number k and bounded functions f1, . . . , fk : S → R,

lim
N→∞

∫

SN

f1(v1)f2(v2) . . . fk(vk)ρN (dv) =
k∏

i=1

∫

S
fi(s) ρ(ds).

In short, a chaotic sequence maintains a form of independence in the obser-
vations of separate agents in the limit. This independence is often called the
propagation of chaos in literature, and decoupling assumption in the context of
Bianchi’s analysis.

In the following discussion, consider the instant in time t ∈ R≥0 and its
close rational counterpart τ ∈ TG with τ = ε �Dt. Recall the non-normalized
mean field interaction model at time τ , Y (N)(τ) =

(
X̂1(τ), . . . , X̂N (τ)

)
, which

is a random element in SN . For N ≥ 1, let ρN ∈ M(SN ) be laws (probability
distributions) of Y (N)(τ). The following result shows that propagation of chaos
occurs in the sequence of distributions of mean field interaction models Y (N)(τ).

Corollary 1. Let φ(t) satisfy Theorem 1. Let μ ∈ M(S) be a measure which for
all points i ∈ S satisfies μ(i) = φi(t), then the sequence

{
ρN

}
of distributions of

Y (N)(τ) is μ-chaotic.

Proof. Based on Theorem 1, it can be shown that the distribution of occupancy
measures M̄

(N)
i (t) converge to a Dirac measure centred at φ(t) [16]. Following a

result by Sznitman (see [17], Proposition 2.2) this then shows that the sequence{
ρN

}
is μ-chaotic. ��
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Let the measure μ be defined as in Corollary 1. We show how the above
result can be used by considering an example. The probability of agent 1 being
in state i and agent 2 not being in state i in Y (N)(τ), is as follows:

P

{
X

(N)
1 (t) = i ∧ X

(N)
2 (t) �= i

}
=

∫

SN

1(v1 = i)1(v2 �= i)ρN (dv).

Since {ρN} is a μ-chaotic sequence, based on Definition 2:

lim
N→∞

P

{
X

(N)
1 (t) = i ∧ X

(N)
2 (t) �= i

}
= φi(t)(1 − φi(t)),

which means that the probability of finding the agents in the above configuration
is asymptotically independent.

Next, for k ∈ {0, . . . , N}, we are interested in finding the probability:

P

{
NM̄

(N)
i (t) = k

}
,

given that the distributions of
{
Y (N)(τ)

}
form a μ-chaotic sequence. Using the

fact that Y N (τ) is a mean field interaction model (is symmetric [17]), we have:

P

{
NM̄

(N)
i (t) = k

}
=
(N

k

)∫

SN
1(v1 = i) . . .1(vk = i)1(vk+1 �= i) . . .1(vN �= i) ρN (dv).

It is worth noting that as N → ∞, the number of functions considered on
the right hand side tends to become infinite, and thus Definition 2 cannot be
directly applied. However, this inspires us to propose the following approxima-
tion by assuming that all the agents in such a system become asymptotically
independent:

P

{
NM̄

(N)
i (t) = k

}
≈

(
N

k

) (
φ
(N)
i (t)

)k (
1 − φ

(N)
i (t)

)N−k

,

or the following, which is often more easy to use:

P

{
NM̄

(N)
i (t) = k

}
≈ e−Nφ

(N)
i (t)

(
Nφ

(N)
i (t)

)k

k!
. (9)

In the context of Bianchi’s analysis, see [18] for an implicit application of a
similar approximation.

Let fPoisson(k;λ) denote the probability density function of a Poisson ran-
dom variable with rate λ. Let f : Δ → R be a function which acts on the random
variable M̄ (N)(t). A major convenience in using the above terms is their asymp-
totic mutual independence, which at time t ∈ R≥0 allows the approximation of
the expected value of f(M̄ (N)(t)) as:

E

[
f(M̄

(N)
(t))
]

≈
∞∑

k1=0

. . .
∞∑

kI=0

f

(
k1

N
, . . . ,

kI

N

)
fPoisson

(
k1;Nφ

(N)
1 (t)

)
. . . fPoisson

(
kI ;Nφ

(N)
I (t)

)
.

(10)
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The Mean Drift

In this part, we explain the approximation of the ODEs in formula (6), using
result (10). For the occupancy measure m ∈ Δ, the Poisson mean of the intensity
F

(N)
s,s′ is the function F̃

(N)
s,s′ : Δ → R, where:

F̃
(N)
s,s′ (m)=

∞∑
k1=0

. . .

∞∑
kI=0

F
(N)
s,s′

(
k1

N
, . . . ,

kI

N

)
fPoisson(k1;Nm1) . . . fPoisson(kI ;NmI). (11)

Subsequently, the mean drift F̃ (N) : Δ → R
I is defined as:

F̃ (N)(m) =
∑

s,s′∈S
F̃

(N)
s,s′ (m)(es′ − es).

The Poisson mean of intensities and the mean drift have the following prop-
erties:

– If F
(N)
s,s′ (m) = msα, for α a constant or a term mj for some j ∈ S, then

F̃
(N)
s,s′ (m) = F

(N)
s,s′ (m).

– F̃ (N)(m) is defined for all m ∈ Δ.
– Given smoothness and boundedness of the drift, F̃ (N) is both Lipschitz

continuous and bounded on Δ.

Based on the derivation of probabilities (9), it is easy to see that at time
t < ∞, we have E

[
F (N)(M̄N (t))

] ≈ F̃ (N)
(
φ(N)(t)

)
and E

[
M̄N (t)

] ≈ φ(N)(t),
according to which the following system of differential equations can be derived
from (6):

d

dt
φ(N)(t) = F̃ (N)

(
φ(N)(t)

)
(12)

with the initial condition φ(N)(0) = M̄ (N)(0).
Our construction which is inspired by the notion of propagation of chaos,

means that the differential equations (12) give better approximations as the
system size N grows. This fact is demonstrated by the following theorem.

Theorem 2. For N ≥ 1, let
{
F (N)

}
be the sequence of drifts, and

{
F̃ (N)

}

be the corresponding sequence of mean drifts. Assume that the drifts satisfy
smoothness, boundedness. Then for all m ∈ Δ,

lim
N→∞

F̃ (N)(m) = F ∗(m),

almost surely.

Proof. The following is a sketch of the proof given in [16]. Let m ∈ Δ be an
occupancy measure. The application of the law of large numbers to the Poisson
mean of intensities in F̃ (N)(m) suggests that the probability mass of the product
of the Poisson terms concentrates in an arbitrarily small neighbourhood of m in
Δ, as N → ∞. Since F (N) are Lipschitz continuous in Δ, this then implies that
the sequence

{
F̃ (N)(m)

}
almost surely converges to F ∗(m). ��
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Fig. 2. Comparison between the proportion of nodes in the back-off state at time
t = 1000 (φ

(N)
2 (1000)) for different network sizes N , based on a transient analysis of

the Markov models (the solutions of the Chapman-Kolmogorov equations) and a mean
field analysis by the ODEs incorporating the mean-drift.

The following is the final step in building an approximation using the mean
drift for the system in Example 1, with the aim to partially demonstrate the
accuracy of the proposed method of approximation.

Example 4. For the system described in Example 1 we find the mean drift, using
the drift F (N) described in (7). The mean drift takes the relatively simple shape
which follows:

F̃ (N)(m) =

⎛
⎝

p1m1+p2m2
2 exp

{
−p1Nm1+p2Nm2

2

}
− p1m1

−p1m1+p2m2
2 exp

{
−p1Nm1+p2Nm2

2

}
+ p1m1

⎞
⎠

This can be used to construct the following system of ODEs:

d

dt
φ
(N)
1 =

p1φ
(N)
1 (t) + p2φ

(N)
2 (t)

2
exp

{
−p1Nφ

(N)
1 (t) + p2Nφ

(N)
2 (t)

2

}
− p1φ

(N)
1 (t)

d

dt
φ
(N)
2 = −p1φ

(N)
1 (t) + p2φ

(N)
2 (t)

2
exp

{
−p1Nφ

(N)
1 (t) + p2Nφ

(N)
2 (t)

2

}
+ p1φ

(N)
1 (t)

Let p1 = 0.008 and p2 = 0.05 and let the initial condition be φ0 = (1, 0),
i.e., all the nodes are initially in state 1. In Fig. 2 the results of solving the
ODEs for the drift and the mean drift for different values of N are given, and
are compared with results from the explicit transient analysis of Markov models
with simultaneous updates. Observe that regardless of the size of the system,
the approximations derived by the mean drift closely match the results of the
transient analysis.
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5 Conclusion and Future Work

In [19] the authors apply a version of the superposition principle called the
Poisson averaging of the drift while deriving ODEs for wireless sensor networks.
The method is used to cope with the ambiguous meaning of fractions which
appear in arguments given to functions originally defined on discrete domains,
and essentially interpolates the value of the function by interpreting occupancy
measures as Poisson arrivals. In this paper we explain this practice more in detail
by showing how they relate to other concepts in the mean field theory of Markov
processes.

The result is the introduction of the mean drift, a concept that supports the
analysis of bounded systems given that the mean field approximation applies. We
maintain that within our formal framework the approximation theorems hold for
systems with an infinite number of agents. We bridge the gap between the ODEs
derived by using the mean drift and the ODEs describing the behaviour of the
system in the limit by proving Theorem2, which states that under a familiar set
of conditions (smoothness and boundedness of the drift), the sequence of mean
drifts converges to the limit of the sequence of drifts due to the law of large
numbers.

We expect that for middle-sized systems, deriving ODEs using the mean drift
gives far better approximations for their behaviour. As such, the current work
provides a stepping stone for future efforts to apply the mean field analysis to
the design and performance evaluation of distributed systems.

A natural next step to this work would be to provide bounds on the errors in
the approximations found using the mean drift. That would then allow a more
clear definition of middle-sized systems, and the type of behaviours which are
better modelled by using this approach.

Acknowledgments. The research from DEWI project (www.dewi-project.eu) leading
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