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Introduction

I.1. Purpose

A measuring system is a coordinated ensemble of different devices

allowing a measurement operation through their interaction.

Thanks to its intrinsic flexibility, electronics is a powerful tool

available to measurement science. This book is therefore dedicated to

the exploration of several recurrent problems in this context, for what

concerns the analog part of the measurement chain. We try to follow

the usual analog signal path through a general acquisition chain and we

describe the elements most frequently found there, with a level of

generality sufficient to be useful in different domains (physics,

biology. . . ).

Figure I.1 shows the most traditional and general organization of a

complete acquisition system from the sensor to the data storage

system. Every measurement operation starts with a goal, which is the

determination of a quantity (temperature, gas pressure, electric signals

from heart beating, etc.). This quantity is called the measurand.

The sensor has the role of translating the measurand into an electrical

quantity. If needed, the latter is in turn transformed into a voltage by a

signal conditioning system. Chapter 1 describes the most used classes

of sensors along with some classic conditioning strategies.
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Figure I.1. Functional organization of a very general
acquisition system. Shaded elements are treated in this book,

in the chapters indicated

The output voltage is then amplified and filtered to obtain

amplitudes that are easy to manipulate and reduce as much as possible

the noise, which is inevitably present along with the useful signal.

Amplifiers (especially differential ones) and filters are, respectively,

described in Chapters 2 and 3. In fact, filtering the analog signal has a

paramount importance in those situations where a risk of signal

aliasing appears. Filters employed in this context usually have a

low-pass response and are called anti-aliasing filters. The overall

quality of a measurement chain depends (even critically in some cases)

on the quality of such a filter.

Digital electronics offers a huge range of very advanced

signal-processing capabilities. It is very easy, today, to acquire a signal

with an analog to digital converter in order to further process it or for

storage purposes. The interface between analog and digital worlds is

assured by a sample and hold circuit, working in tandem with an

analog to digital converter. Those two devices can be shared among
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different separate acquisition channels because of a multiplexer. This is

described in Chapter 4.

Noise is the companion of every analog circuit and the main

performance limiting factor. Understanding its origins and behavior is,

therefore, a key factor to design high-performance systems. We briefly

introduce noise analysis in low-frequency circuits in Chapter 5.

Finally, a control system monitors every element of the measurement

system, and usually a computer manipulates acquired data for storage

or visualization. We will not discuss these elements in this book.

In this book, we discuss the analog elements described above to a

certain degree of detail: sensors, amplifiers and filters, for

low-frequency acquisition systems. We insist that the overall quality of

measurements is determined individually by each element through its

interaction in the chain. For this reason, when possible, we present

some examples, inspired by application notes and literature.

I.2. Prerequisites

This book is addressed to readers with a background in electronic

circuits who want to begin to have an idea of the usual problems that

arise when designing low-frequency analog circuits that treat the signal

coming from a sensor. To limit the overall size of the book, we decided

to concentrate on solutions based on discrete devices and integrated

circuits (i.e. the specific problems associated with the design of analog

integrated circuits will not be addressed). The main prerequisites are:

– AC and DC analysis of circuits, transfer functions and basics of

operational amplifiers;

– concepts of power, calculation and interpretation of the root mean

square value of a voltage of a current;

– being able to subdivide a complex circuit in more elementary

blocks;

– know the most frequently used electronics devices and understand

data sheets and technical literature dedicated to real devices;
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– basic concepts of signal processing (Fourier transform, sampling

Nyquist–Shannon theorem, filtering);

– basic probability and statistical tools (probability density

functions, expected values, statistical independence, etc.).

Those prerequisites are addressed in undergraduate electronics

courses in most engineering faculties as well as books [MAL 15].

I.3. Scope of the book

When writing a book about engineering, it is somewhat difficult to

find the good trade-off between abstraction and practical craftsmanship

that together constitute the core of a field such as electronics. We choose

to employ maths when necessary (for example while discussing filter

synthesis in Chapter 3 or for the noise analysis in Chapter 5), yet we

tried to keep the mathematical developments close to the engineering

problems and the real-world intuition.

On the other hand, when possible, we present extract from data

sheets and technical literature. It should be clear, however, that we do

not want to endorse a particular producer or a particular model. We just

selected those components that, for a reason or another, may appear to

be rather significative of a certain class of devices.

The relation between electric circuits and measurement techniques

started very early in the 19th Century and still continues today. This

means that:

– an incredibly huge number of solutions are already known for the

most disparate measurement situations;

– ready-made low-cost integrated circuits and modules are available,

accomplishing wonderfully complex measurement tasks.

Having said that, reading a small book about electronic

measurement techniques may seem a futile exercise. Something has to

be considered though. First of all, knowing how things work helps

when a ready-made solution fails to accomplish its duty. In fact, a
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culture about analog electronic circuits is useful today more than ever,

and culture is no black magic.

Moreover, after all, someone has to do the hard stuff since ready-

made solutions do not build themselves alone.

Of course, we live in a society where access to information is

widespread and inexpensive. There are of course excellent textbooks in

public libraries, but it is also easy and very convenient to browse for

technical information on the Internet. However, one must know what to

search for and must already have a solid background to critically select

the most relevant and meaningful search results from the “noise floor”.

Some application notes from the semiconductor industry are

wonderfully written and incredibly informative. For example, it is a

sheer pleasure to read Jim William’s application notes from Linear

Technology. They are crystal clear, full of analog wisdom,

intellectually honest, informative and fun. In one word, they are

terrific. Some of them are explicitly cited among the references. Other

resources are simply not worth reading and contain errors or obscure

and uninformative descriptions. Particularly dull are those that, instead

of producing real original content, just copy/paste information found

elsewhere, with minor cosmetic changes.

This book may constitute an useful starting point for deeper

investigations.

I.4. Conventions for schematics and voltages

NOTE.– Color versions of the figures in this book (where applicable)

have been made available at www.iste.co.uk/bucci/analog.zip.

Figures in this book have been drawn with FidoCadJ, an open

source multiplatform program. The symbols employed in this book

are the classical symbols for components employed in electronic

engineering and should not be ambiguous.

However, a risk of confusion exists for a specific point: we indicate

voltages in the figures by means of arrows, whose heads point toward

www.iste.co.uk/bucci/analog.zip
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the conventional positive terminal. This is the traditional convention

followed, for example, in Italian and French engineering faculties.

However, in other places, the opposite convention is followed: be

careful if you are not used to this notation.

Finally, when we talk in general of “the voltage of a node of a

circuit”, the conventional negative term is implicitly supposed to be the

reference node. We employ p for the Laplace variable, except when,

during filter synthesis, we normalize the frequency. In this case, we

indicate it with s.

I.5. Acknowledgments

This book originates from a collection of handouts written for a

course in analog electronics and taught to biomedical engineering

undergraduate students in GrenobleINP-Phelma. I would have never

tried to transform my crude course handouts into this book without the

constant encouragement of Dr. Mireille Mouis (IMEP-LAHC), whom I

would like to thank very warmly. Those early handouts contained

countless issues and errors, which have been pointed out by students,

who also had a number of useful suggestions. My colleagues Pr.

Laurent Aubard (Grenoble INP-Phelma), Pr. Franco Maddaleno and

Dr. Massimo Ortolano (both from Politecnico di Torino) then spotted a

lot of errors and suggested highly valuable improvements and

corrections on obscure or imprecise points. I am also deeply thankful

to Prs. Quentin Rafhay and Irina Ionica (both from GrenobleINP-

Phelma/IMEP-LAHC) who carefully read the manuscript and provided

a number of precious suggestions. I am also profoundly indebted to

Dr. Marc Arques (CEA DTBS Grenoble) for the time he took from his

activities to discuss noise and theory of stochastic signals and for

providing interesting insights. I would like to thank Sophie Cornu

(Grenoble INP-Phelma) who gave a hand, quite literally, for the

photographs shown in Figure 1.6.

I tried my best to contact all the copyright owners for the pictures

and graphs I reproduced from component datasheets. I would like to

thank all those who kindly replied. However, in some cases, my
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messages were probably never read. If you own the copyright of one of

those pictures reproduced here and you are not happy about that, please

contact me (or my publisher) and we will collaborate to remove the

offending content.

I hope that, thanks to all those who helped me, you now have a

document in your hands that has improved from the first versions.

Perfection is not of this world, it is quite certain that typos as well more

embarrassing errors still linger. The responsibility being solely mine, I
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1

Fundamentals of Sensing
and Signal Conditioning

1.1. Introduction

The first element in a classic electronic measuring system is the

sensor. Its role is to translate the physical quantity to be measured

(called measurand) in an electrical quantity of some kind. Clearly, the

goal is to obtain knowledge about the physical quantity: this translation

should be done in a well-known and reliable way. Sensors are based on

a wide range of principles and (our point of view being from the

electronics side) we follow the classification proposed in [ASC 03].

In other words, in this chapter we will categorize sensors depending

on the electrical quantity at their output: voltage, current, charge,

resistance and reactance. This categorization is not the only applicable

one, but it allows us to treat signal conditioning at the same time as

sensors.

1.2. Voltage generating sensors

1.2.1. General description

Several physical phenomena involve the presence of a voltage

between two conductors in a specific piece of equipment. That voltage

can be related to a particular physical variable. They can thus be

Analog Electronics for Measuring Systems, First Edition. Davide Bucci.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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exploited to build sensors that can be seen as voltage sources and

whose voltage depends on the measurand m. Very often, the electrical

representation of a sensor might be a Thévenin-type equivalent circuit

including a series impedance, as shown in Figure 1.1.

Zc

Vs

Is

e(m)

Figure 1.1. Thévenin representation of a voltage generating sensor

The open-circuit voltage given by the sensor is e(m) and its relation

with m, the measurand, must be known and must not change

considerably in time. The internal impedance of the sensor is

represented by Zc and determines the voltage drop between e(m) and

Vs when a load is attached, if the current Is is negligible.

We will proceed by detailing some examples of such sensors, that

we judge are the most representative.

1.2.2. Examples

1.2.2.1. Thermocouples

A thermocouple is a temperature sensor based on the Seebeck

effect. This principle, shown in Figure 1.2, is when two junctions

between different metallic conductors are kept at different

temperatures and a voltage difference can be measured [ASH 76]. This

voltage is approximatively proportional to the temperature difference

between the two junctions. This effect is a consequence of heat

transport in conductors and the Seebeck coefficient is the volume

property of each one. The Seebeck voltage, thus, is not generated in the
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junctions themselves, but on the whole length of the conductor: it is

always present, even in a homogeneous circuit, but it only is

observable with different conductors spliced together.

e.m.f.

Tx T0

Hot junction Cold junction

B B

A

Figure 1.2. The Seebeck effect in two junctions of
different conductors (A and B)

In the thermocouple’s case, we conventionally call “hot junction”

and “cold junction” the connections between the two conductors and

the temperature measurement is intrinsically differential. If one needs

an absolute measurement, the cold junction should be kept at a constant

and controlled temperature (for example employing water/ice for 0
O
C),

or a cold junction compensation circuit may be used.

From a practical point of view, buckets containing ice and water

have long ago been replaced by compensation circuits, which are more

compact, much easier to run and less expensive. The idea is to measure

the temperature of the cold junction with a physical principle different

from the Seebeck effect and subtract its influence from the signal

delivered by the thermocouple. The advantage of this method is that the

cold junction is much less subjected to extreme temperatures or harsh

conditions than the hot junction so the measurement is easy. Among

the available strategies, a common solution is to make this subtraction

directly to the voltage delivered by the thermocouple. Figure 1.3 shows

how it can be done by means of a simple analog circuit.
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Tx

Cu

Cu

T0

E(Tx, T0)

Cu

Cu

T0Tx

E(Tx, 0
O
C)

comp.

Vcomp(T0)
B

B

A

A

Figure 1.3. A cold junction compensation of a thermocouple
measurement system. Temperature T0 of the cold joint is measured and
translated into a voltage Vcom(T0), substracted from the thermocouple

output

The need of a cold junction compensation circuit entails an increase

in complexity of the measurement system. Moreover, the generated

voltages are quite small (the sensitivity is around 41μV/OC for a

K-type thermocouple at an ambient temperature) and an amplifier is

always necessary. However, thermocouples are used in industry very

often since they are extremely rugged. They can also work reliably in a

wide range of temperatures (from cryogenic temperatures to beyond

1,700
O
C).

For this reason, compact integrated solutions exist and are sold by

microelectronic industries. For example, we cite the AD8494-7 family,

an extract of their data sheet is visible in Figure 1.4. Those integrated

circuits are able to amplify thermocouple signals while doing an internal

compensation of the cold junction. The chip is able to measure its own
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temperature in order to do the compensation. Of course, this only works

if the real cold junction is located very close to the integrated circuit.

FUNCTIONAL BLOCK DIAGRAM 

0
8
5
2
9
-0
0
1

 

Figure 1.4. An extract of the data sheet of Analog Devices AD8494-7 family.
This device amplifies the thermocouple signal, compensating the cold junction
temperature at the same time. ESD and OVP are the electrostatic discharge
and over voltage protections for input pins (source: Analog Devices)

1.2.2.2. Thermocouple families

Various kinds of thermocouples are available on the market and are

identified by a one letter code. The most frequently used families of

thermocouples [ASC 03] are as follows:

– K chromel (nickel-chrome)/alumel (aluminum–nickel);

– E chromel (nickel-chrome)/constantan (copper–nickel);

– J iron/constantan (copper–nickel);

– N nicrosil (nickel–chrome–silicon)/nisil (nickel–silicon);

– T copper/constantan (copper–nickel);

– S platinum–rhodium (10% Rh and 90% Pt, by weight)/platinum;

– R platinum–rhodium (13% Rh and 87% Pt, by weight)/platinum;

– B platinum–rhodium (30% Rh and 70% Pt, by weight )/platinum–

rhodium (6% Rh and 94% Pt, by weight).
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In reality, as well as a certain chemical composition, this letter

indicates a well-specified relation between temperature and voltage.

The relation should conform to the ideal one within a known tolerance.

The definition of the models and the tolerances is usually given by

institutes of standards.

Typical thermocouple behaviors are shown in Figure 1.5. Some

thermocouples families (such as E or J) deliver a higher output voltage

but are affected by a stronger nonlinearity or they can only be used in a

smaller range of temperatures. Other thermocouples (such as S, R and

B) deliver a smaller signal but are renowned for their long-term

stability and capability of measuring very high temperatures.
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R

B

N
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T

T

Figure 1.5. Relation between temperature and output voltage
for some common thermocouple types. The cold junction is kept

at 0 OC. Data from [NIS 90]

In order to take into account the nonlinearities in a wide temperature

range, the law E(Tx, 0
OC) is very often written as a polynomial equation
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to which some exponential terms are added for certain thermocouple

families:

E(Tx, 0
O
C) =

N∑
i=0

ciT
i
x + a0e

a1(Tx−a2)2 [1.1]

The National Institute of Standards and Technology in the United

States publishes a catalog of tables of coefficients to be adopted for

the thermocouples mentioned above [NIS 90]. For instance, Table 1.1

shows the coefficients useful for the K-type thermocouple in several

temperature ranges.

range: −270 to 0 OC range: 0 to 1,372 OC

c0 0. 000000000000× 10+0 −0. 176004136860× 10−1

c1 0. 394501280250× 10−1 0. 389212049750× 10−1

c2 0. 236223735980× 10−4 0. 185587700320× 10−4

c3 −0. 328589067840× 10−6 −0. 994575928740× 10−7

c4 −0. 499048287770× 10−8 0. 318409457190× 10−9

c5 −0. 675090591730× 10−10 −0. 560728448890× 10−12

c6 −0. 574103274280× 10−12 0. 560750590590× 10−15

c7 −0. 310888728940× 10−14 −0. 320207200030× 10−18

c8 −0. 104516093650× 10−16 0. 971511471520× 10−22

c9 −0. 198892668780× 10−19 −0. 121047212750× 10−25

c10 −0. 163226974860× 10−22

Exponential

a0 0. 118597600000× 10+0

a1 −0. 118343200000× 10−3

a2 0. 126968600000× 10+3

Table 1.1. Table of coefficients to be used in equation [1.1] to calculate
the output voltage of a K-type thermocouple. Measurement units of the

coefficients are such that the output voltage is in millivolt and the
temperature is in degrees Celsius. Data published by [NIS 90]

Very often, for small temperature ranges (or when high accuracy is

not sought), only the first linear term is taken into account in the

calculations. This term is called sensitivity for short. For a K-type

thermocouple, in the temperature range caught between 0 and 100 OC,
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an approximation yielding an accuracy of a few degrees Celsius

employs only a linear term S ≈ 41μV/OC.

1.2.2.3. pH measurement

Determining the pH of a solution is one of the most frequent

characterizations useful with chemicals. It consists of measuring the

acidity or basicity and it can be done using litmus paper, which dipped

in a solution changes its color depending on the pH.

Another technique is based on the use of glass electrodes

specifically built for this function. They contain buffer solutions that

exchange H+ ions with the solution being tested via a semipermeable

glass membrane. Figure 1.6 shows photographs of a typical pH

electrode of this kind (Sentek P14/S7). Due to the electrochemical

reactions, the sensor behaves like a battery and a DC voltage is

obtained, proportional to the pH to be measured. The proportionality

constant depends on the exact configuration of the electrode, but a

typical sensitivity is around −60mV for pH unit.

Figure 1.6. Photographs of the Sentek P14/S7 electrode for pH
measurements

One of the difficulties of measuring pH is that the series impedance

of the glass electrode (called Zc in the equivalent circuit in Figure 1.1)
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is often very high, of the order of a few megaohms. For this reason,

such probes may be equipped with an onboard amplifier very close to

the measurement electrodes.

A second difficulty is the strong temperature effect on the

proportionality between the pH and the output voltage. Often, an

automatic compensation must be done by measuring the temperature of

the solution at the same time as the pH measurement. For example, in

the Campbell Scientific CSIM-11 probe, the sensitivity changes by

−0.2mV/pH/
O
C. This means that at 20

O
C the slope is around

−58mV/pH, while it is equal to −59mV/pH at 25 OC, then reaching

−60mV/pH at 30 OC. For precise measurements, a calibration is

required at regular intervals using well-known buffered solutions.

1.3. Current generating sensors

1.3.1. General description

When a physical action induces the generation of charge carriers in

a material, this phenomenon may result in a variation of the current

flowing in the device. The electrical output of a sensor exploiting this

principle is thus a current. Some examples are as follows:

– radiation-induced ionization effects;

– carriers generation by photoelectrical effect.

As the information on the measurand is carried by a current, it is

natural to adopt an equivalent circuit representation that is a Norton

equivalent, as represented in Figure 1.7. The measurand m is translated

to a certain current i(m), which flows through the terminals of the

generator. The internal admittance of the sensor is given by Yc. Of

course, the model shown in Figure 1.7 is greatly simplified and might

not be able to represent the real behavior of the sensor when Vs

exceeds particular limits: nonlinearity often lurks around the corner. In

the following section, we will discuss some examples of sensors of this

kind.
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1.3.2. Examples

1.3.2.1. Photomultipliers

When a photon impinges on a conductor and if the energy carried is

high enough, it can extract an electron that becomes a free carrier. This

effect is called external photoelectrical effect and it has been

discovered in the 19th Century and studied by A. Einstein in one of his

seminal papers [EIN 05] published in his Annus Mirabilis. By

exploiting this principle, a light sensor can be built by applying an

electrical field to move the carriers, while monitoring the current

circulating in the system. The current will be in fact proportional to the

flux of photons in the unit of time related to the light intensity. An

important condition is, however, that the energy of the photons is high

enough to enable the photoelectrical effect.

Yc
Vs

Is

i(m)

Figure 1.7. Norton equivalent circuit of a current generating sensor

Figure 1.8 shows a schematic view of a device that can be used to

measure light via the photoelectric effect. An important value

quantifying the overall quality of the device is called the quantum
efficiency η, i.e. the ratio between the number of generated electrons

and the impinging photons. A second parameter (related to Y ) is the

sensitivity R, the ratio between the generated current Iph and the

impinging light power P . The measurement unit of this parameter is

thus A/W.

In practice, generated currents are often quite small and handling

them might become tricky. The presence of a current amplification

internal to the sensor itself might simplify the task of detecting very
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low optical intensities. This is done in photomultipliers by adding a

number of intermediate electrodes (dynodes) to multiply the number of

electrons by exploiting the secondary emission of electrons. A single

photon thus results in a significant number of electrons because of the

amplification process. This principle is represented in Figure 1.9.

Dynodes are often biased by a resistive network from the

photomultiplier power supply rails.

AnodeCathode

photocathode

Impinging photon hν

Electron

Figure 1.8. Working principle of a sensor based
on the photoelectrical effect

An extract of the data sheet of a multiplier tube can be found in

Figure 1.10. It detects light in the visible range of wavelengths and it is

thus sensitive between 300 and 850 nm. The photocathode is followed

by 10 gain stages, and the electron gain depends exponentially on the

bias voltage, adjusting the sensitivity of the sensor.

Photomultipliers are able to generate an event for just one photon

impinging, but not all photons will trigger it. They are relatively bulky,

fragile and they need high voltages, yet photomultipliers are still in use

today especially when a very high sensitivity and low noise are not an

option.
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1.3.2.2. Photodiodes

A semiconductor is characterized by the presence of energy bands

where carriers move reacting to an electric field. Electrons in the valence

band might be brought in the conduction band following the absorption

of a photon having enough energy E = hν. This only happens if E >
Eg, where Eg is the energy gap of the semiconductor. This is called

internal photoelectric effect in a similar way to what is described in

section 1.3.2.1. An absorbed photon involves the generation of a pair of

carriers, an electron in the conduction band and a hole in the valence

band.

Anode (≈ 0V)

Cathode

photocathode

dynodes

to dynodes

DC bias ≈ −1500V

Photon hν

Electrons

Figure 1.9. Working principle of a photomultiplier

In a PN junction, the internal field allows the separation of the

electron/hole pair which results in a certain current. This current is

proportional to the number of generated carriers per unit of time. That

is in turn proportional to the number of absorbed photon flux in the

junction, hence the absorbed optical power. The proportionality

constant R is called responsivity or sensitivity and it is defined exactly

as in photomultipliers:

R =
Iph
P

, [1.2]
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where Iph is the photocurrent and P the optical power impinging on

the device. The electrical symbol of a photodiode is shown in

Figure 1.11. The figure also shows how the current/voltage

characteristics of the diode is vertically translated when the junction

receives a certain flux of photons and a photocurrent appears.

PHOTOMULTIPLIER TUBE R1878

Figure 1: Typical Spectral Response

TPMHB0547EB

Figure 2: Typical Gain Characteristics

TPMHB0549EA
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Figure 1.10. Extract of the data sheet of an R1878 photomultiplier tube.
On the left, the quantum efficiency as well as the responsivity of the

photocathode is represented versus the wavelength. On the right, the
gain versus the bias voltage is represented. Courtesy of Hamamatsu

Photonics K.K

Hugely different applications exist, ranging from light power

measurements to colorimetry, detection of telecom signals in optical

fibers and so on.

Figure 1.12 shows an extract of the data sheet of a silicon

photodiode. The silicon band gap is Eg = 1.12 eV and this means that

photons having a wavelength longer than 1, 100 nm are practically not

absorbed since they do not have enough energy to generate an

electron/hole pair. The sensitivity is thus dramatically reduced when

the impinging light has a longer wavelength. Nonlinear effects still

exist above that limit, involving the simultaneous absorption of two or

three photons but only play a role for a very intense light.
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In the equivalent circuit shown in Figure 1.11 there are two current

generators. The first one Iph is associated with the photocurrent

obtained by the internal photo-electric effect. The second generator Is
represents the dark current due to the minority carriers drift across the

junction when it is reversely biased. We then have the internal

resistance (ranging from several megaohms to a few gigaohms) as well

as the junction capacitance. In some applications, the capacitance Cd

might become a limiting factor for the detection speed or the stability

of the conditioning circuit.

Vak
ID

ID

Vak

Is

Dark current

Vs

Is

Rd

Cd

IphIs

Iph
Light ON

Photocurrent

Light OFF

Figure 1.11. Electrical symbol of a photodiode, its typical I/V
characteristics in obscurity and with light impinging as well as its

equivalent circuit
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Figure 1.12. Sensitivity versus the wavelength of the SFH2400 silicon
photodiode. Courtesy of Osram-OS

A particular class of devices are the avalanche photodiodes. In this

case, the carriers generated in the junction by a photon absorption are

multiplied because of an avalanche effect in a strongly reversely biased

device. Like photomultipliers, there is thus an internal gain of the

photodiode, which is useful for the detection of very low light

intensities.

1.3.3. Conditioning circuits

A conditioning circuit converts the electrical signal at the output of

the sensor into a voltage. Therefore, in this section we deal with

current to voltage converters. Several solutions exist, here we discuss

the simplest and most current ones.

1.3.3.1. One resistance

Sometimes, just one resistance in a strategic place of the circuit can

do the job. This solution is often used with photomultipliers and an



16 Analog Electronics for Measuring Systems

example can be seen in Figure 1.13, where the voltage signal e(t) is

obtained via the resistance R.

A problem that might appear is that the voltage at the output of the

circuit affects the biasing of the sensor, thus producing some nonlinear

effects if it is large enough. In fact, this solution is also sometimes used

with photodiodes, as shown in Figure 1.14; however, a nonlinearity

appears when the voltage e(t) at the circuit’s output is close to the

threshold voltage of the diode. In this condition, the photodiode

becomes directly biased; the total current in the device is therefore the

algebraic sum of the photocurrent and the forward current. Therefore,

the voltage at the terminals of the resistance is no longer in a linear

relation with the power of light impinging on the device. The method

is, however, quite simple and employed in radio frequency

applications, where 50Ω is used, eventually by superposing a reverse

bias in order to reduce nonlinearity with strong light intensities.

Cathode

to dynodes

DC bias ≈ −1500V

R

e(t)

t

Photon hν

Electrons

Figure 1.13. Conditioning of the current signal coming from a
photomultiplier via the resistance R

1.3.3.2. Transresistance amplifier

In section 1.3.3.1, we saw that one of the problems associated with

signal conditioning using a simple resistance is that the sensor itself is

subjected to the same voltage obtained at the output of the conditioning

circuit. In some cases, the biasing of the sensor might be distributed,

giving rise to nonlinear effects. It would be better to make sure that Vs
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is always close to zero, and the current Is gives rise to a proportional

voltage elsewhere in the circuit, on nodes different from the terminals

of the sensor.

R

e(t)

Figure 1.14. Conditioning of the current signal coming from a
photodiode via the resistance R

A classical solution is the transresistance circuit shown in

Figure 1.15, often called “current to voltage converter”. An advantage

of the circuit is that, because of the properties of the operational

amplifier, the voltage across the sensor is very close to zero, thus

reducing the influence of the Yc admittance in the equivalent circuit

shown in Figure 1.7. In fact, in the circuit the feedback is provided by

the resistance R and, by supposing that the operational amplifier is

ideal, it can be shown that the output voltage of the circuit is:

Ve = −RIe [1.3]

If the goal is to obtain a very high transresistance, for example to

detect very small currents, R should be very high. Values of resistance

up to several gigaohms can be found in catalog, but they tend to be

very expensive and have to be handled with care. The circuit shown in

Figure 1.16 represents a classical workaround, avoiding extreme values

of a single resistance. Circuit analysis leads to:

Ve = −R1R2 +R2R3 +R1R3

R3
Ie [1.4]

The proportionality term might thus be seen as equivalent to a very

high value resistance. There are, however, some problems associated
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with this circuit, namely the greatly increased noise if compared to the

single resistance, as well as an increase in the offset (which can be

interpreted as a sort of “noise in DC”).

R

Ve

Ie

C

Figure 1.15. Classical circuit of a transresistance amplifier
built around an operational amplifier

R1

Ve

Ie

R3

R2

Figure 1.16. Use of a T-bridge feedback circuit
in the current to voltage converter

In the circuits shown in Figures 1.15 and 1.16, some key points

should be taken into account:

– Stability: sensors may possess a relatively large output

capacitance, as we have seen for photodiodes (the Cd capacitor

in the equivalent circuit). In this case, real-world operational amplifiers
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might experience instability in the circuits proposed above. This is very

well known and it is discussed in application notes [WAN 05] or books

[FRA 15] on the subject. A common solution is to place an appropriate

capacitor C, in parallel with the resistance R shown in Figure 1.15.

– If small currents should be detected, the bias currents of

operational amplifiers have to be very small too. MOS-based devices

are available on the market with astonishingly low bias currents. For

example, the LMC6001 declares in the data sheets a bias current of

25 fA at 25 OC. As a second example, we cite the LMP7721, with

the guaranteed maximum of 20 fA at 25 OC, with a typical value of

3 fA. This is rather breathtaking if we observe that 1 fA represents

something like 6000 electrons per second. Application note from Burr-

Brown/Texas Instruments [BUR 94], discusses some specific caveats of

low current measurements with their OPA128.

– In a circuit, when currents of less of a nanoampere are to be treated,

moist and dirt on the printed circuit board (PCB) play a role, which is

no longer negligible. Specific techniques must be adopted in the most

delicate parts of the circuits (guard rings, shielding, teflon sockets or

insulators, etc.). Prepare yourself to wear gloves to handle the most

delicate components and work as cleanly as possible.

1.4. Charge generating sensors

1.4.1. General description

Some sensors are based on the change in dielectric polarization on a

dielectric in response to external stimuli. For example:

– In piezoelectric materials such as quartz crystals or specific

ceramics and polymers, a mechanical deformation due to an applied

force leads to the appearance of an electric field. Therefore, if the sensor

is inserted in a circuit, charges move to counterbalance the field.

– Small-scale rearrangements of the structure of some dielectrics

occur when the temperature changes, giving rise to an electric field.

This effect is called pyroelectricity. Examples include triglycine sulfate

crystals and tourmaline.
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In those situations, the measurand is translated into a certain charge

unbalance from the equilibrium condition (so the charge is not actually
generated inside the sensor). Figure 1.17 represents two different ways

of modeling this family of sensors. The first circuit on the left is a

Thévenin equivalent, which is completed sometimes by a resistance in

parallel with the C0 capacitor, to take into account internal sensor

losses. The second equivalent circuit on the right is a Norton

equivalence. The choice of the former or the latter equivalent circuit is

often a matter of convenience, but both reflect the impossibility of

performing DC measurements.

C0

C0

i = dQ(m)
dte = Q(m)

C0

Figure 1.17. Equivalent circuits for modeling
charge generating sensors

1.4.2. Examples

1.4.2.1. Pyroelectric sensors for infrared sensing

Probably the most widespread use of pyroelectric sensors is for

thermal infrared detection. Motion detectors inside buildings are often

based on the detection of sources of heat by a pyroelectric sensor. They

are often used to switch on the light when a person enters a certain area

or to signal an intrusion. Figure 1.18 shows a typical sensor able to

detect infrared radiation whose wavelengths are caught between 5 and

12μm (in the thermal range).
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Figure 1.18. Extracts from the data sheet of a IRA-S210ST01
pyroelectric sensor. Courtesy of Murata
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It is interesting to note the presence of a field effect transistor inside

the sensor’s package to amplify signals coming from the sensor. A

complete motion detector system usually couples the pyroelectric

sensor with an amplifier/threshold circuit, a plastic Fresnel lens and

often a timer.

1.4.2.2. Piezoelectric sensors

The application of a force on a piezoelectric material leads to a

change in its polarization. If the material is applied between two

electrodes in an arrangement similar to a capacitor, a voltage appears

between the two terminals of the sensor. This is due to a non-

equilibrium charge proportional to the applied mechanical constraint.

This principle is reversible and a wide variety of sensors and actuators

based on this phenomenon are of everyday use.

Here are some examples: microphones, accelerometers,

displacement sensors, etc. We can also cite an interesting musical

application: the percussion sensor in the pads of electronic drums is

often piezoelectric.

1.4.3. Conditioning

A variety of techniques exists for the conditioning of electrical

signals coming from charge-based sensors (see, for example,

[KAR 00] for a discussion specific to piezoelectric sensors).

A useful idea is that if a capacitor is storing a certain charge, there is

a resulting voltage on its terminals and vice versa. This can be exploited

at the sensor itself via a very high impedance amplifier. By using the

Thévenin equivalent circuit shown in Figure 1.17, it can be seen that

the internal capacitor C0 is charged by a certain voltage, which can be

measured if some care is taken not to discharge the capacitor too much

during measurements.

The second possibility is to use the circuit shown in Figure 1.19,

where an operational amplifier is used as an integrator for the current

provided by the sensor, yielding a voltage proportional to the charge.
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Some circuit analysis done by assuming an ideal operational

amplifier leads to the observation that no current is circulating in

capacitors C0 (sensor capacitance) and Cc (cable/connection

capacitance), since in this case, the sensor is connected to a virtual

ground. In the same way, the resistance Rc representing the losses

plays no role. All the provided charge is stored in the C capacitor, in

the feedback loop around the operational amplifier. If the capacitor is

fully discharged at the beginning of the measurement, the voltage at

the output of the circuit will thus be:

Vo = −Q(m)

C
[1.5]

i = dQ(m)
dt C0 Cc

Rc

C

S
or: R

Vo

CableSensor

Figure 1.19. Conditioning circuit useful for charge-based sensors. Cc

and Rc are the total capacitance and parasitic shunt resistance of the
connection cables

Something that must be taken into account in this circuit is that there

is no DC feedback path (i.e. in the absence of S and R in Figure 1.19).

Once the circuit is switched on, the C capacitor will slowly charge itself

with the bias currents of the operational amplifier. This means that an

error source is present and, after a while, Vo becomes close to the power

supply rails of the amplifier, which then saturates.



24 Analog Electronics for Measuring Systems

A first strategy to avoid this phenomenon is to place a switch (more

realistically, a field effect transistor operating as a switch in response

to a control signal) in parallel with the C capacitor. The purpose of the

switch is to discharge it at the beginning of each measurement.

A second solution is to put a resistance R in parallel with C. A

Laplace domain analysis yields:

Vo(p) = −Q(p)

C

pRC

1 + pRC
, [1.6]

which is after all quite similar to equation [1.5], where we have a term

that has a high-pass behavior, with a −3 dB cutoff frequency:

fc =
1

2πRC
. [1.7]

As long as R and C are chosen in such a way that the unattenuated

band is compatible with the useful signal, this circuit will be reliable.

1.5. Resistive sensors

A lot of physical phenomena are closely related to the electrical

resistance of a conductor or a semiconductor. In fact, every times

something modifies the following characteristics, there is a change in

the measured resistance:

– carrier mobility (temperature, constraint, magnetic field);

– carrier density (temperature, light absorption);

– geometrical dimensions (constraint, cursor displacement).

A wide class of sensors exploits those effects. Their equivalent

circuit is shown in Figure 1.20. We thus present some examples in the

following sections.
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R(m) Vs

Is

Figure 1.20. Equivalent circuit of a resistive sensor:
a resistance whose value depends on measurand m

1.5.1. Examples

1.5.1.1. Light-dependent resistors

If we consider a generic semiconductor, resistivity strongly depends

on the carrier concentration (electrons and holes) participating in the

conduction. In an intrinsic semiconductor, carrier density is quite low,

and the resistivity is comparatively high. If the semiconductor is subject

to a photon flux, if their energy is sufficient to generate electron/hole

pairs, a significant reduction of the resistance can be observed.

It is thus possible to obtain a device whose resistance strongly

depends on the light intensity to which it is subjected, also called a

photo-resistance or light-dependent resistors (LDR). Devices based on

cadmium sulfide (CdS cells) are widely used for a lot of applications

involving visible light since they are simple to make, low in cost and

rugged. Figure 1.21 shows the resistance versus light intensity plot of a

Luna Optoelectronics NORPS-12 LDR. It can be noted that the device

might be used on quite a large dynamic range, such as 4 decades, its

resistance in complete darkness being of a few megaohms1

1 The light intensity is measured in old foot-candles units; the correct unit in the SI

standards is the lux. The conversion factor is 1 foot-candle = 10.764 lux. The multipliers

are also non-standard.
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Figure 1.21. An extract of the data sheet of the NORPS-12 LDR built
by Luna Optoelectronics (source: Luna Oploelectronics)

1.5.1.2. Platinum temperature probe “Pt100”
A “Pt100” probe is formed by a given length of platinum wire on

a glass or ceramic insulating support. Its resistance R is R0 = 100Ω
at a temperature of tx = 0

O
C and the temperature dependence is well

represented by the following equation:

R(tx) = R0(1 + αtx) [1.8]

where α = 3.85 × 10−3/
O
C−1, the average nominal temperature

coefficient in the range between 0 to 100
O
C. The linear model of

equation [1.8] allows us to obtain an error of less than 0.5
O
C in that



Fundamentals of Sensing and Signal Conditioning 27

interval of temperatures. As we saw about thermocouples in

section 1.2.2.2, more complex models can be employed. The IEC

60751 norm (from 2008, previously called IEC 751) specifies the

relation between temperature and electrical resistance and defines two

tolerance classes (A and B) depending on the desired precision.

A similar principle is used on variants such as the Pt500 or Pt1000,

the only notable difference being that in equation [1.8] R0 is,

respectively, 500 and 1,000Ω.

Figure 1.22 shows an extract of a data sheet common to several

temperature probes from Omega engineering, including Pt100 probes

as well as thermocouples.

1.5.1.3. Strain gages

Strain gages are based on the observation that a conductor subjected

to a mechanical constraint varies its electrical resistance. For example,

we observe that a homogeneous conductor wire pulled with a certain

force F will increase its length l while reducing slightly its section S.

The strain is defined as the relative change in length of the conductor

due to the applied force: Δl
l . This phenomenon is reversible, at least if

the force F does not exceed the limits for the elastic deformation of

the wire. The electrical resistance of the wire can be calculated via the

well-known equation:

R = ρ
l

S
, [1.9]

where ρ is the resistivity of the material employed, which also depends

on the strain applied (piezoresistive effect). In any case, for small

variations, the change in R is usually represented as follows2:

ΔR

R
= K

Δl

l
[1.10]

2 The length l is not the only parameter that plays a role in equation [1.9]. Therefore,

K includes all the effects related to the change in resistivity and the section of the

conductor.
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where the proportionality coefficient K is called gauge factor and might

vary between 2 and 5 for most metals and 50 and 200 (in module) for

semiconductors. In most cases, it is the variation of the resistivity ρ
that yields the most important contribution to the resistance change in

equation [1.9], and not the change in the geometrical dimensions.

www.omega.co.uk +44 (0)161 777 6611       

Pt100 RTD Probes & 
Thermocouples
for Industrial Applications

AVAILABLE VERSIONS:

� Pt100 in class A, 1/3 DIN and
1/10 DIN available

� Thermocouples J, K, T, E & L
with accuracy to IEC class 1
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1.5.2. Caveats

When one needs to measure a resistance, several factors should be

carefully analyzed:

– resistance is always associated with heat generated by the Joule

effect. The electrical power employed for the measurement must

therefore be controlled to avoid self-heating which might induce an

error on the measurements;

– the lead wires do not always have a negligible resistance;

– sensors in an industrial environment might operate close to

electrically noisy machines, giving rise to electromagnetic compatibility

issues;

– electrical insulation might be a delicate issue when dealing with

harsh environments (high temperatures, aggressive chemicals, high

voltages, radioactivity, etc.)

1.5.3. Signal conditioning: measuring the total resistance

Two different situations must be considered:

– information about the measurement is carried by the total

resistance R(m);

– information is carried by a variation of the resistance around a

certain mean value R0, so that: R = R0 +ΔR(m).

While they are not mutually exclusive, the two cases address

different problems and therefore we treat them separately. In this

section, we discuss the first situation, where the information about the

measurand m is translated by the sensor in a resistance value R(m) to

be determined. For example, it is the case for the platinum sensor

described in section 1.5.1.2. A simple solution might be to excite the

sensor with a known current Ia: the voltage Vm obtained at the output

is hence related to the excitation current by Ohm’s law:

Va = R(m)Im [1.11]
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In reality, the sensor might be placed quite far from the

conditioning circuit and the lead wire resistances Rf might play a

non-negligible role in the measurement, as shown in Figure 1.23 on the

left. What can be accessed in this configuration is just the resistance

R(m) + 2Rf . In fact, Rf might be difficult to keep stable and depends

on a lot of factors (ageing, temperature, nature of the conductors,

splices, connectors, etc.). This kind of measurement is called “two wire

measurement” to be distinguished from the more complex “four-wire

measurement”, which we are about to describe and that is depicted in

Figure 1.23 on the right. Most of the cases, the voltmeter resistance Ri

might be sufficiently high to be considered infinite. With electronic

voltmeters, it is not uncommon for Ri to range well above 10MΩ.

R(m) Ri

Rf

Ia R(m)

Rf

Rf

Ia

Rf

Rf

Rf Ri

VmVm

Reading circuit Reading circuit

Figure 1.23. Conditioning strategies for a resistive sensor, measure of the
total resistance R(m). On the left: 2-wire measurement. On the right: 4-wire
(Kelvin) measurement. Rf is due to cables and connections, Ri is the internal
resistance of the voltmeter. For a color version of this figure, see ww.iste.co.uk/
bucci/analog.zip

The idea at the background of the 4-wire technique (also called

“Kelvin contact”) is that the wires used to measure voltage carry

almost no current, whereas the wires carrying the excitation current Im
are not involved in the voltage measurement. The measured voltage Vm

thus becomes virtually independent from Rf , allowing to determine

R(m) very precisely.

A less expensive variant of this technique involving only three wires,

as shown in Figure 1.24, is widely employed in industrial applications.

In fact, as long as the lead wire resistance remains approximatively the

same for each of the three connections (which can be done if the three

wires are kept together in the same cable), it is possible to estimate it at
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each measurement and compensate it fairly accurately. The resistance

between terminals 1 and 3 is:

R1−3 = 2Rf +R(m), [1.12]

whereas resistance R1−2, measured between terminals 1 and 2, is

simply twice Rf . Therefore:

R1−3 −R1−2 = 2Rf +R(m)− 2Rf = R(m) [1.13]

which is the resistance we want to measure.

R(m)

Rf

Rf

Rf

1

2

3

Figure 1.24. Three-wire conditioning technique
for compensating lead wire resistance

1.5.4. Measuring a resistance variation: the Wheatstone
bridge

When the goal is to measure a resistance variation around an

equilibrium point (this is often the case when dealing with strain gages

discussed in section 1.5.1.3), a classic circuit is the Wheatstone bridge,

as shown in Figure 1.25. It traces its origins in the first half of the 19th

Century and was originally employed to measure an unknown

resistance by carefully adjusting other (known) resistances. The

principle is to measure the voltage difference between nodes A and B

in the bridge circuit. The voltage VAB is equal to zero only for a

perfectly balanced bridge, condition that corresponds to the following

equation:

R3R2 = R1R4. [1.14]
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In order to check whether or not this condition is satisfied, we must

measure VAB with precision, as long as we are able to detect a zero.

That was technically feasible even at the time when the bridge

was invented: precisely measuring a voltage was a real challenge.

Nowadays, however, we have wonderfully linear instruments and it is

usually far more convenient to measure VAB and to explain its relation

with the values of the resistances. This is the path we will follow in the

rest of this section.

Two kinds of excitation are usually adopted:

– constant voltage excitation, where the bridge is connected to a

voltage source E. The current flowing in the bridge varies during the

measure because the total bridge resistance changes. The output voltage

VAB is:

VAB =
R2R3 −R1R4

(R1 +R2)(R3 +R4)
E [1.15]

– constant current excitation, where the current flowing in the bridge

is kept stable to a certain value Ia. The output voltage is as follows:

VAB =
R2R3 −R1R4

R1 +R2 +R3 +R4
Ia. [1.16]

R2

R3 R4

VAB
A B

R1 R2

R3 R4

VAB
A B

Constant voltage excitation Constant current excitation

R1

E Ia

Figure 1.25. Wheatstone bridges, constant voltage
and current excitations

Despite (or thanks to) its simplicity, the Wheatstone bridge, and its

close relatives, is one of the most elegant solutions to a surprisingly
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wide range of problems [WIL 90]. In practical measurement situations,

different variants are exploited, depending on the number of sensing

elements in the bridge. Bridge variants exist for 3 or 4 wire connections

of the sensing resistance (Kelvin double bridge, also known as Thomson

bridge). In the following sections, however, we will only discuss the

simplest configurations.

1.5.4.1. A single variable element

In the bridge shown in Figure 1.25, just one of the four resistances is

a variable, for example R2. We may write:{
R2 = R0 +ΔR2(m)

R1 = R3 = R4 = R0

. [1.17]

With a constant voltage excitation, by exploiting equation [1.15], we

find:

VAB =
ΔR2(m)

R0
× 1

1 + ΔR2(m)
2R0

× E

4
. [1.18]

It can be noted that VAB voltage is nonlinearly dependent from

ΔR2(m) and this might be a disadvantage in some situations.

However, if ΔR2(m) is small enough, the following simplification can

be carried out:

VAB ≈ ΔR2(m)

R0
× E

4
. [1.19]

For a constant current excitation of the bridge, we obtain:

VAB = ΔR2(m)× 1

1 + ΔR2(m)
4R0

× Ia
4

≈ ΔR2
Ia
4
, [1.20]

which once again reflects a nonlinear relation between VAB and ΔR2

and the linearization is allowable when the bridge unbalance is small.

For the constant current excitation, however, the nonlinear term is twice

as small than for a constant voltage excitation.
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1.5.4.2. Two variable elements

We insert two variable elements in the bridge as follows:⎧⎪⎨
⎪⎩
R1 = R0 +ΔR1(m)

R2 = R0 +ΔR2(m)

R3 = R4 = R0

[1.21]

The non-null voltage VAB can thus be calculated:

– constant voltage excitation:

VAB =
ΔR2(m)−ΔR1(m)

R0
× 1

1 + ΔR2(m)+ΔR1(m)
2R0

× E

4
[1.22]

– constant current excitation:

VAB = [ΔR2(m)−ΔR1(m)]× 1

1 + ΔR2(m)+ΔR1(m)
4R0

× Ia
4

[1.23]

We can see that both expressions obtained above might be simplified

if a certain symmetry is respected. In fact, it ΔR2 = −ΔR1 = ΔR(m)
(the so-called “push-pull” configuration), we obtain:

– constant voltage:

VAB =
ΔR(m)

R0
× E

2
[1.24]

– constant current:

VAB = ΔR(m)
Ia
2
. [1.25]

An interesting point is that now the latter expressions are perfectly

linear and the sensitivity is twice the case where one sensing element is

present in the bridge. Very often, this configuration is adopted in cases

where symmetrical resistance variations are due to a carefully tailored

mechanical symmetrical arrangement.
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1.5.4.3. Four variable elements

We consider a symmetric situation similar to the “push pull” strategy

seen in the previous section, but extending the same concept to four

variable resistances:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1 = R0 −ΔR(m)

R2 = R0 +ΔR(m)

R3 = R0 +ΔR(m)

R4 = R0 −ΔR(m)

. [1.26]

The unbalance voltage VAB is as follows:

– constant voltage excitation:

VAB =
ΔR

R0
E, [1.27]

– constant current excitation:

VAB = ΔRIa. [1.28]

Because of the symmetry, the expressions are linear.

1.5.4.4. Example: strain gages and Wheatstone bridge

The Wheatstone bridge configuration with four variable resistances

is a widespread solution with strain gages. In Figure 1.26, we show a

photograph of a sensor built with a strain gage glued to a spring (a

“load cell”). Similar devices often constitute the heart of small

weighing scales. It is very convenient to employ four gauges exploiting

the compressive and tensile strains on the spring so that they work in a

push–pull configuration as in equation [1.26].

The “sensitivity” parameter is usually specified in data sheets and

indicates the ratio between the differential output voltage of the

Wheatstone bridge contained in the device and the constant voltage

excitation, when the full-scale weight (maximum capacity) is

measured. For example, with a sensitivity of 1.8mV/V, if one excites

the sensor with 3.3V, the full-scale differential output VAB is 5.94mV
for a model with a maximum capacity of 1 kg such as the one shown in

Figure 1.26.
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Figure 1.26. Photograph of the load cell DF2SR-3 from HBM. The
strain gages are glued to a spring, whose deformation is translated into

a differential voltage

1.6. Reactive sensors

A vast family of reactive sensors exist. Those devices translate the

measurand into a variation of capacity or inductance. For example, a

coil embedded in the floor may detect a car at the entrance of a car park

Another important application of an inductive linear displacement

sensor is the linear variable differential transformer. It is a transformer,

where the core can be moved to change the coupling between

windings. The input coil is fed with a constant-amplitude AC voltage.

Two output coils (connected with a 180◦ phase) deliver an output AC

voltage whose amplitude depends on the position of the core with

respect to the coils. Conversely, there is a vast range of proximity or

position sensors working on a capacitive principle.

We will not describe this class of sensors in much detail. We will just

present some points that may be considered:

– measurement of a reactance involves employing AC signals, not

always sinusoidal, but in any case always varying in time;

– if the reactance is put in an oscillator, its changes may be detected

through the output frequency variation, easily measurable with digital

counters;

– many variants of the Wheatstone bridge exist, adapted to reactive

elements and working in AC (Maxwell bridge, De Sauty bridge, etc. . . ).
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1.7. Conclusion

In this chapter, several families of different electrical sensors have

been described. Our descriptions were oriented toward their

representation in an electronics circuit. We have, therefore, focused

rather on the electrical characteristics than on working principles.

Thus, we have treated at the same time the conditioning circuits

adopted for each kind of sensor. We tried to follow a practical approach

and several examples from data sheets have been discussed.
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Amplification and Amplifiers

2.1. Introduction

In Chapter 1, we described a certain number of sensors, as well as

the conditioning circuit used to obtain a voltage as an electrical

representation of the measurand. Now, this voltage should be somehow

treated: in most cases, it should be amplified, and often filtered. This

chapter is devoted to the amplification of low-frequency signals and it

is particularly focused on circuits based on operational amplifiers. We

will therefore begin by briefly describing the working principles of

operational amplifiers: in particular, we will focus on some parameters

specified in the data sheets quantifying their limits and non-idealities.

We will describe here the so-called voltage-feedback operational

amplifier (often just called operational amplifier), frequently adopted

in low-frequency circuits. A different element, the current-feedback

operational amplifier, bears some resemblance to it, but as its use is

more specific, it will not be described here. We will then give an

overview of differential amplifiers, in particular the instrumentation

amplifiers. The name of those circuits reflects their widespread use in

instrumentation. . . The end of the chapter will be devoted to insulation

amplifiers, which are very useful when security or electromagnetic

compatibility issues are of primary importance.

There are a lot of very good textbooks that develop the matter

presented here in detail. One of them is, of course [ASC 03], also cited

Analog Electronics for Measuring Systems, First Edition. Davide Bucci.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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in the previous chapters. We also recommend [FRA 15], which is very

comprehensive and presents some advanced matters.

2.2. Introduction to operational amplifiers

2.2.1. The operational amplifier as a differential amplifier

First of all, an operational amplifier is an electronic circuit with two

inputs and one output. It aims to be as close as possible to a differential
amplifier with a very high gain. Figure 2.1 shows an idealized circuit

representation of what we expect from an operational amplifier: it takes

the voltage difference ε measured between the non-inverting “+” and

the inverting “-” inputs, it amplifies it and the amplified output voltage

Vo is now referred to the reference node:

Vo = Adε [2.1]

The input is differential and the output is single ended. In practice,

the differential gain Ad is very high, but in real circuits its exact value

strongly depends on the frequency and a variety of other factors.

ε

Vi1 Vi2
Vo = Adε

Figure 2.1. An operational amplifier as a differential amplifier

Usually, an operational amplifier is drawn as shown in Figure 2.1,

where the two inputs and the output are represented1.

1 While the situation shown in Figure 2.1 is quite common in textbooks, it is evidently

a strongly idealized one, or in any case it cannot be complete. In fact, how can the
operational refer its output to the reference node if it does not have any other connection
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Voε

VCC

VEE

Vo

ε

Ad

ΔVsat+Vsat+

VCC

ΔVsat− VEE

Vsat−

Figure 2.2. On the left: an operational amplifier with explicit representation of
the power supply rails. On the right, a graphical representation of the (idealized)
output characteristics

There is, of course, an important point that has been left out: the

power supply rails VCC and VEE, as shown in Figure 2.2 on the left.

The same picture depicts a more realistic model of the operational

amplifier, by taking into account the saturation: no signal can (at least

in ordinary cases) exceed the power supply rails in an operational

amplifier circuit. Note that in the picture we represented the power

supply rails are symmetrical with respect to the reference potential.

With Ad usually ranging between 105 and 106 (100–120 dB) at DC, if

one wants to exploit the linear part of the characteristics, the only way

is to use negative feedback. In other words, one must provide a link

between the output and the input so that the output can be adjusted by

the amplifier to ensure that the differential voltage ε at the inputs is

always in the linear range of the amplifier.

2.2.2. Modeling ideal operational amplifiers

Since the differential gain Ad is so high and moreover related to a

lot of factors, we can say that an operational amplifier is a circuit (often

to it? This means that something must have been left out in the drawing and, for

example, a lot of SPICE models for commercial operational amplifiers contain an

artificial internal connection to the reference node. Be careful with SPICE simulations:

believing that a result is accurate only because it comes from a computer is usually a

good way to seek for catastrophes.



42 Analog Electronics for Measuring Systems

quite complex) optimized to be used as a linear block, by means of a
feedback network. This feedback network is employed to obtain from

the circuit performances that do not depend too much on the gain Ad,

as long as it is large enough. A very useful model allows us to simplify

the calculations on the circuits by following two rules:

– R1: The amplifier is able to measure a differential voltage without

perturbing the circuit: no current flows in the inputs.

– R2: The differential gain Ad is considered infinite. Therefore,

the only admissible situation where Vo is limited is ε = 0. We may

formulate that by saying that the amplifier does whatever it can with its

output, so that its inputs remain at the same voltage.

We note that this way of seeing things requires the presence of a

negative feedback: otherwise, the output cannot affect the inputs. We

also remark that this simple model does not distinguish between the

inverting and non-inverting inputs, while we know that they cannot be

exchanged in a real circuit: saturation inevitably occurs if they are

confused.

The rules associated with ideal operational amplifiers allow us to

understand the basic behaviors of a circuit. However, many key

characteristics may only be deduced by taking into account more

realistic models. In the following sections, we will therefore briefly

describe some of the most relevant limitations of real operational

amplifiers. Knowledge of their influence in a circuit allows us to

understand the data sheets and select the best product in the huge

catalogs proposed by the semiconductor companies.

2.3. Limitations of real operational amplifiers

2.3.1. Saturation and rail-to-rail operational amplifiers

In Figure 2.2, we note that the output voltage of the amplifier is

bounded inside a range defined by Vsat+ and Vsat−. One significant

figure of merit of the amplifier is the difference between the saturation

voltages and the power supply rails (ΔVsat+ and ΔVsat−), reflecting
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the capability of the circuit to work close to VCC and VEE. In classic

integrated operational amplifiers, ΔVsat+ and ΔVsat− were between 1

and 2 V. Today, we are faced with the widespread use of wireless

devices containing batteries, as well as the general trend in digital

circuits of reducing power supply voltage. Such a margin would

represent a huge reduction of the available dynamic range. In fact, it is

not uncommon to seek high-performance analog circuits with a single

VCC − VEE = 3.3V supply or even less. For this reason, a class of

operational amplifiers (called rail to rail) has been optimized to make

sure that ΔVsat± do not exceed 100 mV in the operating conditions.

What we described above relates particularly to the output section

of the operational amplifier, but something similar also happens at the

inputs: most amplifiers do not work well if the voltages at their inputs

are too close to VCC and VEE. Some of the modern rail-to-rail amplifiers,

however, tolerate both inputs being slightly above VCC or below VEE,

adding flexibility with low voltage supplies.

2.3.2. Input offset

For several reasons (mainly some small asymmetries in the

fabrication process), when the voltage applied to the two inputs of a

real operational amplifier is equal, the output voltage is not zero as

predicted by equation [2.1]. In fact, the very high value of the

differential DC gain Ad will probably make sure that the asymmetry is

exaggerated such that output is saturated, either at Vsat+ or Vsat−. A

small DC voltage, called the offset voltage, should therefore be applied

between the inputs in order that the output is no longer in this

condition. The offset voltage can range from a few microvolts in

precision operational amplifiers to several millivolts. This effect being

static, it is only relevant to those circuits whose bandwidth includes

DC. For ultralow offsets (below 50μV), a square wave modulation/

synchronous demodulation technique is employed in the so-called

auto-zero (or chopper stabilized) amplifiers.

When feedback is present, the presence of offset changes Rule 2 in

such a way that the difference between input voltages is no longer null,
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but equal to the offset voltage. External nulling can often be performed

via an external adjustable resistive network.

2.3.3. Common mode rejection ratio

In an ideal differential amplifier, the output voltage depends only

on the voltage difference between the two inputs, that we called ε in

Figure 2.1. In a real device, this is not completely true and the average

of the two inputs voltages (Vi1 and Vi2) plays a small role. In other

words, by supposing that only this error term is present, equation [2.1]

should be corrected as follows:

Vo = Adε+AcmVcm [2.2]

where Vcm is the so-called common mode, i.e. the arithmetic average of

the voltages at the two inputs of the amplifier, each one referred to the

reference node. To summarize:{
ε = Vi1 − Vi2

Vcm = Vi1+Vi2
2

[2.3]

A new term of gain, namely Acm, the common mode gain, appears.

A good differential amplifier (and thus a good operational amplifier)

should make sure that Ad is much greater than Acm. To quantify this, the

data sheets report the common mode rejection ratio (CMRR) in decibels,

defined as follows:

CMRR = 20 log
Ad

Acm
[2.4]

where the logarithm is base 10. Typical figures range between 80 and

120 dB.

2.3.4. Bias currents

In section 2.2.2, the first rule states that no current flows in the inputs

of an ideal operational amplifier. In real circuits, things are different:

some current must flow to in the inputs, as the input transistors (usually



Amplification and Amplifiers 45

a differential pair) have to be biased correctly. It is desirable to keep it as

small as possible and operational amplifiers have been vastly optimized

in this regard: currents in the picoamper range are not uncommon in

modern devices. We have already anticipated this issue while discussing

conditioning circuits in section 1.3.3.

2.3.5. Stability and frequency response

In our context, we call a circuit stable when the output to a bounded

input is bounded. Other different definitions of stability exist. This

definition is usually denoted by the acronym BIBO, from Bounded In

Bounded Out. It is often mandatory that a circuit remains stable. In

low-power applications, such as operational amplifier circuits, the lack

of stability will show up with nonlinearity, saturations, parasitic

oscillations and head-scratching problems. In high-power applications,

lack of stability may yield expensive repairs, safety hazards, fires,

explosions and nuclear meltdowns. . . If a circuit is unstable, most of

the time it is practically useless2. In modern voltage-feedback

operational amplifiers, there is an internal compensation network that

tries to sort out a trade-off between overall speed and stability. The

need for stability makes sure that the small signal bandwidth of the

operational amplifier is often limited by introducing a low-frequency

dominant pole in the differential gain Ad. In most cases, the quest for

stability requires the small signal bandwidth of the operational

amplifier to be artificially limited. The most widespread technique

consists of introducing a low-frequency dominant pole in the open loop

differential gain Ad. When a feedback network is tailored so that the

closed-loop gain of the circuit is G, then the same circuit has a −3 dB
bandwidth equal to fp. The gain-bandwith product G × fp is

approximately equal to a constant fBW, an important characteristic

always specified in datasheets of operational amplifiers. In other

words, increasing the gain by acting on the feedback around the same

operational amplifier entails a reduction of the frequency band

treatable by the circuit. There is, however, a notable case in which the

2 With the notable exception of oscillators, where a certain degree of instability is

sought and kept under close control in order to initiate and sustain the oscillation.
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designer needs to take special care: most operational amplifiers do not

appreciate high capacitive loads at their inputs and output (capacitors,

long cables, etc.).

If the limitation of the bandwidth is an effect associated with the

small signal behavior of the circuits, a large signal (nonlinear) effect

is also evident: there is a limitation to the slope of the variation of the

output voltage versus the time (the so-called slew rate).

LMP7721

www.ti.com SNOSAW6D –JANUARY 2008–REVISED MARCH 2013

2.5V Electrical Characteristics (continued)
Unless otherwise specified, all limits are specified for TA = 25°C, V

+ = 2.5V, V = 0V, VCM = (V
+ + V )/2. Boldface limits apply

at the temperature extremes.

Symbol Parameter Conditions Min Typ Max Units
(1) (2) (1)

IBIAS Input Bias Current VCM = 1V 25°C ±3 ±20
fA(4) (5)

40°C to 85°C ±900

40°C to 125°C ±5 pA

IOS Input Offset Current VCM = 1V 6 40 fA
(5)

CMRR Common Mode Rejection Ratio 0V VCM 1.4V 83 100 dB80

PSRR Power Supply Rejection Ratio 1.8V V+ 5.5V 84 92 dBV = 0V, VCM = 0 80

CMVR Input Common-Mode Voltage CMRR 80 dB 0.3 1.5 VRange CMRR 78 dB –0.3 1.5

AVOL Large Signal Voltage Gain VO = 0.15V to 2.2V 88 107
RL = 2 k to V+/2 82

dB
VO = 0.15V to 2.2V 92 120
RL = 10 k to V+/2 88

VO Output Swing High RL = 2 k to V+/2 70 25
77 mV

from V+RL = 10 k to V+/2 60 20
66

Output Swing Low RL = 2 k to V+/2 30 70
73

mV
RL = 10 k to V+/2 15 60

62

IO Output Short Circuit Current Sourcing to V 36 46
VIN = 200 mV

(6) 30
mA

Sinking to V+ 7.5 15
VIN = 200 mV (6) 5.0

IS Supply Current 1.1 1.5 mA1.75

SR Slew Rate AV = +1, Rising (10% to 90%) 9.3
V/ s

AV = +1, Falling (90% to 10%) 10.8

GBW Gain Bandwidth Product 15 MHz

en Input-Referred Voltage Noise f = 400 Hz 8
nV/

f = 1 kHz 7

in Input-Referred Current Noise f = 1 kHz 0.01 pA/

THD+N Total Harmonic Distortion + Noise f = 1 kHz, AV = 2, RL = 100 k 0.003
VO = 0.9 VPP

%
f = 1 kHz, AV = 2, RL = 600 0.003
VO = 0.9 VPP

(4) Positive current corresponds to current flowing into the device.
(5) This parameter is specified by design and/or characterization and is not tested in production.
(6) The short circuit test is a momentary open loop test.

Figure 2.3. Some of the characteristics of the LMP7721 operational
amplifier. Courtesy of Texas Instruments

2.3.6. Examples

Figure 2.3 shows an extract of the data sheet of an operational

amplifier optimized for low bias current. Note the typical bias current

www.ti.com
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value of 3 fA at a temperature of 25OC, which rises with the temperature

(5 pA at 125OC is a good achievement). Note also how the output

saturation voltages are clearly specified: this is a rail-to-rail operational

amplifier and this stuff matters. Its performances in terms of noise, gain-

bandwidth product and slew rate are also quite sound. Figure 2.3 does

not show the input offset voltage, specified elsewhere to be typically

±50μV at 25
O
C and less than ±480μV over an extended temperature

range. This is a very decent offset performance, even if is clear that the

device is not optimized toward this direction. As an exercise, compare

this device with those in the following list (search for the data sheet by

yourself):

– the venerable general purpose bipolar μA741, designed in 1968 but

still produced today. Compare it with the 1967 vintage LM101. Why has

the μA741 been so successful and the LM 101 almost forgotten?

– the JFET-input TL081;

– the first precision bipolar operational amplifier OP07.

Do not forget to search those amplifiers in the online catalog of your

favorite electronics dealer. Compare their costs.

2.4. Instrumentation amplifiers

2.4.1. Introduction

In Chapter 1, we saw how the output of a sensor conditioning

circuit is a voltage, which most of the time needs to be amplified.

Moreover, in some situations, the voltage signal carrying information

is not single ended (i.e., referred to the reference node) but differential.

A classical example is the Wheatstone bridge with resistive sensors:

the output signal is a voltage difference between two nodes, as shown

in Figure 1.25.

We thus need a circuit able to extract the differential voltage signal

without perturbing it. We would also like to be able to easily adjust

the differential gain of the circuit in a reasonable range by changing

only one component of the circuit. The ability to extract the differential
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voltage regardless of the common mode voltage is quantified by the

common mode rejection ratio parameter, which is ideally very high. In

the following sections, we will describe a selection of classical circuits,

all based on operational amplifiers.

2.4.2. Differential amplifier with one operational amplifier

Figure 2.4 shows the classical differential amplifier made with one

operational amplifier. The idea is to apply some amount of feedback

in order to tame the differential gain of the operational amplifier (as

you remember from section 2.2.1: it is very high, but it is variable, as

affected by the frequency, power supply voltage, operating temperature,

etc.).

R2

R1

R3

R4

Vo

Vi1

Vi2

Figure 2.4. Differential amplifier built using one operational amplifier

A little bit of circuit analysis, applying the rules given in

section 2.2.2, allows us to write down the relationship between

voltages at the inputs Vi1 and Vi2 and the output Vo:

Vo =
R1 +R2

R1
× R4

R3 +R4
Vi1 − R2

R1
Vi2. [2.5]

To understand how this circuit can be exploited as a differential

amplifier, we rewrite this expression by representing the electrical state

of the inputs using the differential and common mode voltages. Thus,
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we apply the following relations, which can be seen as some sort of a

coordinates change:{
Vd = Vi1 − Vi2

Vcm = Vi1+Vi2
2

[2.6]

where Vd is the differential mode (the signal carrying the information to

be extracted) and Vcm is the common mode. By inverting the relations,

we obtain:{
Vi1 = Vcm + Vd

2

Vi2 = Vcm − Vd
2

. [2.7]

This yields expressions of Vi1 and Vi2 to be inserted in equation [2.5]

to obtain equation [2.8]. It relates the output voltage (single ended) to

the input differential and common modes of the voltages:

Vo =
R1R4 −R2R3

R1(R3 +R4)
Vcm

+
R1 +R2

2R1

(
R4

R3 +R4
+

R2

R1 +R2

)
Vd. [2.8]

In the expression [2.8], we recognize the contribution of the

differential gain as well as the common mode gain:

Acm =
R1R4 −R2R3

R1(R3 +R4)
, [2.9]

Ad =
R1 +R2

2R1

(
R4

R3 +R4
+

R2

R1 +R2

)
. [2.10]

If a perfect differential amplifier has to be built, resistances R1. . .

R4 should be chosen in such a way that the common mode gain is equal

to zero. This can be achieved by nulling the numerator of the expression

[2.9], thus giving:

R4

R3
=

R2

R1
[2.11]
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leading to a simple expression for the differential gain:

Ad =
R2

R1
. [2.12]

In practice, very often R1 = R3 and R2 = R4, yet perfectly

achieving this condition is not possible, because of the inevitable

tolerance of the resistances (this takes into account the effect of ageing

and thermal drift). In practice, we know that every resistance has a

certain relative error from its nominal value. We suppose that the

following conditions are verified (worst-case scenario):

– the relative shift of the value of each resistance is equal to the

tolerance r;

– the shifts are distributed in such a way that the common mode gain

Acm is maximized:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1 = R1n(1 + r)

R3 = R1n(1− r)

R2 = R2n(1− r)

R4 = R2n(1 + r)

[2.13]

where R1n and R2n are the nominal values matching condition

equation [2.11].

We obtain that the common mode gain is not zero, and it is

proportional to the tolerance r:

Acm =
4rR2n

R1n +R2n
. [2.14]

To calculate the common mode rejection ratio, we suppose that the

differential gain has not changed very much if r is small, yielding:

Cmrr = 20 log10
Ad

Amc
≈ 20 log10

R1n +R2n

4rR1n
. [2.15]

In the worst-case scenario, this means that by adopting r = 0.1%
tolerance for the resistances and by choosing a gain Ad = 100, we

might expect that the common mode rejection ratio is about 88 dB.
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This circuit has some defects:

– the input impedances are proportional to the values of the

resistances. Very high resistance values are, however, associated with

noise and the resulting low currents might be sensitive to stray

capacitances and couplings;

– the gain can be modified, but the relation [2.11] should always

be respected. At least two matched resistances should be varied at the

same time to vary the differential gain without disrupting the differential

behavior.

To solve the first problem, a second operational amplifier can be

added, as discussed in the next section. However, monolithically

integrated versions of the circuit are available such as the AD8205.

They are very useful for dealing with relatively high common mode

voltages that may exceed the supply rails.

2.4.3. Differential amplifier with two operational amplifiers

A useful way to vastly increase input impedances is to exploit the

excellent input characteristics of operational amplifiers. The circuit

shown in Figure 2.5 solves the first issue seen at the end of

section 2.4.2, namely the low input impedances. In the circuit, the two

inputs are directly connected to the inputs of the operational amplifiers.

For this reason, once the correct biasing of the operational amplifiers is

assured, inputs are extremely high impedance.

R4R3R2R1

Vi2 Vi1

Vo

Figure 2.5. Differential amplifier built using two operational amplifiers
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Analyzing the circuit using the method described in section 2.4.2,

we calculate the differential gain, as well as the common mode gain:⎧⎪⎨
⎪⎩
Ad = 1

2

[
1 + R4

R3

(
2 + R2

R1

)]

Acm =
[
R4+R3

R3
− R4

R3

(
1 + R2

R1

)]
.

[2.16]

Nulling the latter, we obtain the balance condition of resistances

R1. . . R4 to be respected:

R1

R2
=

R4

R3
[2.17]

thus yielding a simplified expression for the differential gain when the

amplifier is purely differential:

Ad = 1 +
R1

R2
. [2.18]

R4

Rg

R2R1

Vi2 Vi1

Vo

R3

Figure 2.6. Differential amplifier with variable gain

At a first sight, it might seem that this circuit is unable to solve the

second problem described in the previous section, i.e. the fact that it

might not be easy to change the gain by modifying two matched

resistances at the same time. In reality, a solution exists connecting an

adjustable fifth resistor Rg, which allows us to trim the gain without

bothering with two matched devices, as shown in Figure 2.6. In this
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case, the ratio described by equation [2.17] must be respected, but the

differential gain can be written as follows:

Ad = 1 + 2
R1

Rg
+

R1

R2
[2.19]

If the two issues of the differential amplifier discussed in

section 2.4.2 have been successfully addressed, this circuit still has a

more subtle flaw. In fact, the signal paths are not symmetrical: the

signal entering from Vi1 passes through two operational amplifiers,

whereas the signal entering from Vi1 passes through one. When the

limitations of the operational amplifiers begin to play an important role

(for example when the frequency is relatively high), the asymmetry

decreases performances and in particular the common mode rejection

ratio of the circuit.

2.4.4. Differential amplifier with three operational amplifiers

The circuit shown in Figure 2.7 is a more complex differential

amplifier. It is quite commonly used in measuring systems and for this

reason, when people say “instrumentation amplifier”, they are often

referring to this particular circuit. To understand its behavior, we split it

into two subcircuits:

– an input stage, which has a differential input and a differential

output, meant to boost the differential mode, while leaving the common

mode untouched;

– a differential amplifier to provide a single ended output related to

the input differential mode.

The second stage is in fact the circuit discussed in section 2.4.2, so

we now analyze the input stage as shown in Figure 2.8, which is

perfectly symmetrical if R1 = R′
1. If we suppose that the operational

amplifiers are ideal, rule 2, seen in section 2.2.2, states that the voltages

at the nodes A and B are equal, respectively, to Vi2 and Vi1. By
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supposing for a moment that Vo1 and Vo2 are known, we apply the

Millman theorem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

node A:

Vo2
R1

+
Vi1
Rg

1
R1

+ 1
Rg

= Vi2

node B:

Vi2
Rg

+
Vo1
R′
1

1
Rg

+ 1
R′
1

= Vi1

[2.20]

R2 R3

R3

R2

Rg

R1

R′
1

Vo

Vi2

Vi1

Vo2

Vo1

Input stage Output stage

Figure 2.7. Differential amplifier with three operational amplifier: the
instrumentation amplifier by antonomasia

By rearranging terms, we get:⎧⎪⎨
⎪⎩
Vo1 =

Rg+R′
1

Rg
Vi1 − R′

1
Rg

Vi2

Vo2 =
Rg+R1

Rg
Vi2 − R1

Rg
Vi1

. [2.21]

Similarly to what is done for the input signals with equations [2.6]

and [2.7], we define differential and common mode voltages for the two

outputs Vo1 and Vo2:⎧⎪⎨
⎪⎩
V ′
d = Vo1 − Vo2

V ′
cm = Vo1+Vo2

2

. [2.22]



Amplification and Amplifiers 55

Rg

R1

R′
1

Vi2

Vi1

Vi2

Vi1

Vo2

Vo1

B

A

Input stage

Figure 2.8. The symmetrical input stage of the instrumentation
amplifier shown in Figure 2.7

However, inevitable tolerances make sure that R1 and R′
1 are not

identical. We consider the worst-case scenario, as follows:{
R1 = R1n(1 + r)

R′
1 = R1n(1− r)

[2.23]

where r is the tolerance of the resistances, whose nominal value is R1n.

In those conditions, we relate the output common mode with the input

common and differential modes. After some algebra, we obtain:

V ′
cm = Vcm +

R1n

Rg
rVd [2.24]

as well as the output differential mode:

V ′
d =

(
1 +

2R1n

Rg

)
Vd. [2.25]

We note that:

– if Rg is much smaller than R1n, the input differential mode is

greatly amplified;
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– the input common mode is mostly not amplified nor attenuated by

the first part of the circuit. This first term is very often the most relevant

one;

– the output common mode is also affected by the input differential

voltage, in a factor which is dependent on the R1n/Rg ratio (the same

affecting the differential gain) as well as the tolerance r of the matching

between R1 and R′
1. This second term is often negligible.

To summarize, the first circuit has differential and common mode

gains A′
d and A′

cm as follows:{
A′

d = 1 + 2R1n
Rg

A′
cm ≈ 1

. [2.26]

Section 2.4.2 presented the analysis of the second half of the circuit

in Figure 2.7:{
A′′

mc =
4rR3n

R2n+R3n

A′′
d = R3n

R2n

, [2.27]

where, as usual, r represents the tolerance of the resistances and the “n”

subscript indicates their nominal values.

Putting together all of these equations (and neglecting some cross

terms) yields the differential and common mode gain of the complete

amplifier:⎧⎪⎨
⎪⎩
Amc = A′

mcA
′′
mc ≈ 4rR3n

R2n+R3n

Ad = A′
dA

′′
d = R3n

R2n

(
1 + 2R1n

Rg

) . [2.28]

Futhermore, those equations might be simplified when R3n = R2n,

which is a frequent choice:{
Amc ≈ 2r

Ad = A′
dA

′′
d = 1 + 2R1n

Rg

. [2.29]

In fact, the instrumentation amplifier built around three operational

amplifiers is both flexible and very convenient to integrate (for example,
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the INA101, the AD623 and the INA333, among others). In fact, in

microelectronics it is difficult to precisely control the absolute value of

a passive device, but symmetries such as those required in this circuit

can be achieved quite easily. In fact, the end user just needs to choose the

gain via the resistance Rg, which is normally to be connected outside of

the integrated circuit. This provides outstanding performance, ease of

use, as well as flexibility. For example, have a look in Figure 2.9, where

the AD623 is described. Compare the expression given for the gain with

equation [2.29].

Data Sheet AD623
 

THEORY OF OPERATION 
The AD623 is an instrumentation amplifier based on a modified 

classic 3-op-amp approach, to assure single- or dual-supply 

operation even at common-mode voltages at the negative supply 

rail. Low voltage offsets, input and output, as well as absolute 

gain accuracy, and one external resistor to set the gain, make 

the AD623 one of the most versatile instrumentation amplifiers 

in its class. 

The input signal is applied to PNP transistors acting as voltage 

buffers and providing a common-mode signal to the input 

amplifiers (see Figure 41). An absolute value 50 kΩ resistor in 

each amplifier feedback assures gain programmability. 

The differential output is 

C
G

O V
R

V
kΩ100

1  

The differential voltage is then converted to a single-ended 

voltage using the output amplifier, which also rejects any 

common-mode signal at the output of the input amplifiers. 

Because the amplifiers can swing to either supply rail, as well as 

have their common-mode range extended to below the negative 

supply rail, the range over which the AD623 can operate is further 

enhanced (see Figure 20 and Figure 21). 

The output voltage at Pin 6 is measured with respect to the 

potential at Pin 5. The impedance of the reference pin is 100 kΩ; 

therefore, in applications requiring voltage conversion, a small 

resistor between Pin 5 and Pin 6 is all that is needed. 

00
77
8-
04
1

 
Figure 41. Simplified Schematic 

Because of the voltage feedback topology of the internal op 

amps, the bandwidth of the in-amp decreases with increasing 

gain. At unity gain, the output amplifier limits the bandwidth. 

Figure 2.9. A paragraph extracted from the data sheet of AD623.
Analog Devices describes it as an integrated version of the classic
instrumentation amplifier built with 3 operational amplifiers (source:

Analog Devices)

2.5. Isolation amplifiers

Isolation amplifiers are able to effectively decouple two parts of a

circuit that must exchange a signal, without having a direct galvanic

connection between them. Figure 2.10 shows a schematic view of the

way they are done: the signal ei is transferred through an insulation

barrier. Usually, the transfer is done by an optical link (optocouplers),

magnetically (transformers) or capacitively. Isolation amplifiers can be
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required for safety reasons and for protection of equipment, such as

when high voltages are involved. In this case, they are effective at

eliminating very high common mode voltages Vm between the

decoupled sections. This is made explicit in Figure 2.10 by the choice

of two different symbols for the reference nodes, once the isolation

barrier is crossed. A second important reason is to avoid ground loops,

yielding severe electromagnetic compatibility issues (see section 5.8).

ei

VM

A1

Isolation barrier

A2

Vo

Reference 1 Reference 2

coupling

Figure 2.10. A schematic view of the principles of an isolation amplifier. The
presence of an isolation barrier makes sure that the two reference nodes can
be subjected to a voltage VM without any current flowing and with no risk for
the signal integrity as long as VM remains below a certain limit, specified in the
data sheet

Isolation amplifiers might be rated to guarantee several thousand

volts of isolation. Examples include the classic ISO120 integrated

isolation amplifier, whose internal structure is shown in Figure 2.11.

The isolation barrier is capacitive, and the input signal is used to

modulate a carrier around 400 kHz. Note how a feedback loop is used

on one side of the isolation barrier to achieve good linearity: this trick

is effective when it is possible to obtain almost identical circuits on the

two sides of the isolation barrier. Figure 2.12 contains the description

of the working principle, and the effect of sampling is visible in the

oscillograms.
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1pF

1pF

1pF

1pF

S/H 
G = 1

S/H 
G = 6

Sense

VOUT

Signal 
Com 2

Gnd 2 –VS2+VS2Gnd 1 –VS1+VS1
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Com 1
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C1H C1L

C1
(1)

200kΩ 150pF

A1

100μA

Sense

200μA

X

100μA

Sense

200μA

200kΩ150pF

C2L C2H

C2
(1)

X

A2

Isolation Barrier

NOTE: (1) Optional. See text.

30kΩ 16kΩ
Ext 

Osc

16kΩ 50pF

Figure 2.11. Block diagram of the internal structure of ISO120, a
classic isolation amplifier. Courtesy of Texas Instruments

An example of a low-cost modern device proposed by Texas

Instruments is the AMC1100, once again with a capacitive coupling.

On the other side, the Analog Devices AD202 features a complete

amplifier module, transformer-coupled, with an onboard-isolated

power supply converter and a cost, which is aligned with the

performance.

2.6. Conclusion

In this chapter, we rapidly covered the main characteristics of

operational amplifiers. We then discussed the desirable characteristics

of instrumentation amplifiers and described three variants, often

employed in practical situations. We concluded our discussion by

presenting isolation amplifiers.
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TYPICAL PERFORMANCE CURVES (CONT)
TA = +25°C; VS1 = VS2 = ±15V; and RL = 2kΩ, unless otherwise noted.

THEORY OF OPERATION
The ISO120 and ISO121 isolation amplifiers comprise input
and output sections galvanically isolated by matched 1pF
capacitors built into the ceramic barrier. The input is duty-
cycle modulated and transmitted digitally across the barrier.
The output section receives the modulated signal, converts it
back to an analog voltage and removes the ripple component
inherent in the demodulation. The input and output sections
are laser-trimmed for exceptional matching of circuitry com-
mon to both input and output sections.

FREE-RUNNING MODE

An input amplifier (A1, Figure1) integrates the difference
between the input current (VIN/200kΩ) and a switched
±100μA current source. This current source is implemented
by a switchable 200μA source and a fixed 100μA current
sink. To understand the basic operation of the input section,
assume that V

IN
 = 0. The integrator will ramp in one

direction until the comparator threshold is exceeded. The
comparator and sense amp will force the current source to
switch; the resultant signal is a triangular waveform with a
50% duty cycle. If V

IN
 changes, the duty cycle of the

integrator will change to keep the average DC value at the
output of A1 near zero volts. This action converts the input
voltage to a duty-cycle modulated triangular waveform at
the output of A1 near zero volts. This action converts the
input voltage to a duty-cycle modulated triangular wave-
form at the output of A1 with a frequency determined by the
internal 150pF capacitor. The comparator generates a fast
rise time square wave that is simultaneously fed back to keep
A1 in charge balance and also across the barrier to a
differential sense amplifier with high common-mode rejec-
tion characteristics. The sense amplifier drives a switched
current source surrounding A2. The output stage balances
the duty-cycle modulated current against the feedback cur-
rent through the 200kΩ feedback resistor, resulting in an
average value at the Sense pin equal to V

IN
. The sample and

hold amplifiers in the output feedback loop serve to remove
undesired ripple voltages inherent in the demodulation process.

SYNCHRONIZED MODE

A unique feature of the ISO120 and ISO121 is the ability to
synchronize the modulator to an external signal source. This
capability is useful in eliminating trouble-some beat fre-
quencies in multi-channel systems and in rejecting AC
signals and their harmonics. To use this feature, external
capacitors are connected at C1 and C2 (Figure 1) to change
the free-running carrier frequency. An external signal is
applied to the Ext Osc pin. This signal forces the current
source to switch at the frequency of the external signal. If
V

IN
 is zero, and the external source has a 50% duty cycle,

operation proceeds as described above, except that the switch-
ing frequency is that of the external source. If the external
signal has a duty cycle other than 50%, its average value is
not zero. At start-up, the current source does not switch until
the integrator establishes an output equal to the average DC
value of the external signal. At this point, the external signal
is able to trigger the current source, producing a triangular
waveform, symmetrical about the new DC value, at the
output of A1. For V

IN
 = 0, this waveform has a 50% duty

cycle. As V
IN

 varies, the waveform retains its DC offset, but
varies in duty cycle to maintain charge balance around A1.
Operation of the demodulator is the same as outlined above.

Synchronizing to a Sine
or Triangle Wave External Clock

The ideal external clock signal for the ISO120/121 is a ±4V
sine wave or ±4V, 50% duty-cycle triangle wave. The ext osc
pin of the ISO120/121 can be driven directly with a ±3V to
±5V sine or 25% to 75% duty-cycle triangle wave and the ISO
amp's internal modulator/demodulator circuitry will synchro-
nize to the signal.

Synchronizing to signals below 400kHz requires the addition
of two external capacitors to the ISO120/121. Connect one
capacitor in parallel with the internal modulator capacitor and
connect the other capacitor in parallel with the internal de-
modulator capacitor as shown in Figure 1.

Figure 2.12. Another extract of ISO120 data sheet. Here is Ti’s
description of how the device works. Courtesy of Texas Instruments
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Elements of Active Filter Synthesis

3.1. Introduction

One of the most convenient operations in signals is linear filtering.

In fact, useful information is conveyed on a certain spectral band and

everything outside that band can be considered noise. Filtering it out

is a good way to increase overall measurement quality. Furthermore,

modern measurement systems often involve a sample and hold circuit,

coupled with an analog to digital converter. As sampling is subjected to

the aliasing phenomenon, this means that an analog anti-aliasing filter

must always be present. In some low-performance applications, the

natural low-pass behavior of sensors and amplifiers might be sufficient,

but to achieve high performances, a dedicated filtering block becomes

mandatory.

Filter design is a huge domain whose surface is barely scratched by

this chapter. We want to provide an understanding of the problems and

the terminology, as well as a design method for simple active filters.

Figure 3.1 shows the classic design flow for filter design. The first

operation is called approximation. It consists of writing down a transfer

function H(p) of a two-port network (in the Laplace domain):

H(p) =
n(p)

g(p)
, [3.1]

Analog Electronics for Measuring Systems, First Edition. Davide Bucci.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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where n(p) and g(p) are polynomials (with real coefficients of p, the

Laplace variable), such that the response |H(j2πf)| of the filter

matches some constraints. Usually, attenuation in some frequency

bands is requested, whereas other spectral components must be left

untouched. Alternatively, constraints may involve the pulse response,

for which damped oscillations may be allowed or not, or may involve

achieving a group delay that is as constant as possible.

Contraints H(p)
Passive LC

Active filters

Active filters
(type 1)

(type 2)H(p) = H1(p)×H2(p)× · · ·

Fig. 3.2

Chebyshev
Butterworth

Bessel

Passive two-port synthesis

Direct synthesis

...

Approximation Synthesis

Figure 3.1. Classical design flow of analog filters

Once the transfer function is written, a first possibility is to

synthesize a passive two-port network (usually composed only of

capacitors and inductors), obtaining a circuit similar to the one shown

in Figure 3.2. This is the most classical filter approach and there is a

difficulty here because, in general, an arbitrary transfer function cannot

always be synthesized using only passive lumped devices. Moreover,

each component affects the overall filter response. Therefore, in the

synthesis itself, one must deal with practical constraints for writing
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down an acceptable H(p). Many different cases have been tackled

successfully and very complete catalogs exist, such as the classic

Zverev book. This first class of filters will not be treated here (have a

look at the tables of [ZVE 67] for more details). Those filters usually

show interesting properties such as minimum sensitivity to component

tolerances (Orchard’s theorem [ORC 66]) and interesting noise

properties.

C1

L4L2

C3 C5

C2 C4

RL

Rg

vg

Input Output

Figure 3.2. Example of an LC passive filter: each capacitor and
inductor affects the overall behavior of the filter, which makes its design
quite complex. Moreover, the filter must be calculated for precise values

of source and load impedances, respectively, Rg and RL

The use of inductors is often inconvenient, especially for

low-frequency circuits, and therefore a first class of active filters

(arbitrarily called “type 1” in Figure 3.1) is obtained by emulating

passive inductors via active circuits such as gyrators or general

impedance converters (also known as GICs).

The second possible strategy, which will be described later in this

chapter, relies on the direct synthesis of the transfer function by means

of cascaded active cells. They have the remarkable property that they

can be fabricated such that cascading two or more cells does not

change their individual behavior. The idea is, therefore, to split the

transfer function into a product of low-order terms, each one being

synthesized separately by a cell.
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In this chapter, we present some elements of synthesis strategy as

well as some tables of filter coefficients useful for active filters (“type

2” in Figure 3.1). We focus on all-pole low-pass filters, and we briefly

see how other kinds of filters can be traced back to an equivalent low-

pass filter calculation.

3.2. Low-pass filter approximation

3.2.1. Aliasing in sampled systems and anti-aliasing filters

In the vast majority of cases, a measurement system will involve

analog to digital converters, which sample an analog voltage resulting

from the measurement. Often1, this is done at a constant rate with a

sampling frequency FE. The well-known Nyquist–Shannon sampling

theorem states that the maximum frequency that can be reconstructed

in this case from the obtained samples is equal to FE/2. Without

giving all the mathematical details, which can be found in signal

processing textbooks, one can intuitively expect that some interesting

situations may arise when one tries to sample a signal whose frequency

is higher than FE/2. In fact, a phenomenon called aliasing manifests

itself when the Nyquist–Shannon theorem is not respected and some

spurious signals appear: their frequencies are translated inside the band

comprised between 0 and FE/2 and may superimpose with the useful

signal, entailing a loss of information.

One example can help visualize the effect of aliasing: you have

certainly seen a car accelerating watching a movie or a YouTube video.

You may probably have noticed that the car’s wheels at first move in

the “correct” direction when the car moves slowly, but they may begin

to spin the other way round when the car’s speed passes a certain

threshold. What happens here is that the camera is sampling the image

of the real car and the Nyquist–Shannon theorem is not respected

anymore after the wheels spin past a certain speed, given the frame rate

of the camera (i.e. the sampling frequency FE). So the aliasing effect

on some details (the rims) manifests itself by scrambling the frequency

1 Yet not necessarily!
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at which they appear to be moving and you get the “apparent” incorrect

backwards movement.

Aliasing is not a bad thing by itself and in some cases it may be

employed creatively (this technique is called undersampling). However,

to avoid it, signals have to be filtered in such a way that we ensure

the Nyquist–Shannon theorem is respected. The filter must be applied

before the signals are sampled and therefore an anti-aliasing filter is

always an analog low-pass filter.

3.2.2. Definitions

Figure 3.3 shows a typical request for a low-pass filter: the gain

response should lie in the unshaded area of the diagram.

|H(j2πf)|in dB

f
fc fs

H0
H0 − αM

H0 − αm

Transition band
Stop band

Pass-band

Figure 3.3. Attenuation behavior requested from a low-pass filter: the
filter response should not lie in the shaded area. A possible filter
approximation is shown, which has some ripple in the stopband
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For a low-pass filter, we define the following parameters:

– αM is the maximum allowed attenuation (in dB) in the passband.

This term, therefore, gives the limit of the so-called attenuation ripple

allowed in the passband;

– fc is the maximum frequency of the passband (cutoff frequency);

– fs is the frequency at which the stopband begins;

– αm is the minimum guaranteed attenuation (in dB) in the stopband.

The choice of those parameters (as well as the type of

approximation, described below) constitutes an important and difficult

step in the filter design, especially when considerable freedom is

possible. In fact, it appears that writing the transfer function [3.1] is an

indeterminate problem and therefore is remarkably difficult. In fact,

how can we choose the degree of the numerator n(p) and denominator

g(p) polynomials? If higher degrees imply higher complexity in circuit

realization, how can we obtain acceptable performances with a circuit

with a reasonable number of lumped components? How can we choose

the coefficients of the polynomials yielding a circuit which can be

synthesized? Therefore, filter approximation and synthesis are more

like a constrained optimization problem than a procedure to be

followed blindly.

3.2.3. All-pole filters: normalization and factorization

First of all, we restrict our analysis to all-pole filters, i.e. those having

a transfer function, which can be written as follows:

H(p) =
M

g(p)
, [3.2]

where g(p) is a polynomial of degree n and M is a constant. Polynomial

coefficients must be real numbers (if not, we cannot expect to build

a circuit having H(p) as a transfer function) and g(p) must have the

following property:

max
ω

(
1

|g(jω)|
)

= 1. [3.3]
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Furthermore, we normalize all frequencies by dividing them by a

normalization factor, often related to fc (except as we will see later for

Bessel–Thompson filters, where it is related to the group delay τg). We

will be more precise about that later. For the moment, it is enough to

know that a normalization can be done and to use s and p to indicate,

respectively, the Laplace normalized and non-normalized variable. Of

course g(p) being a polynomial with real coefficients with a n degree,

we expect it to have exactly n ∈ N solutions, with Γ them being real

(r ∈ N, r ≤ n). If complex solutions exist, they must come in c ∈ N

couples (complex-conjugate) and n = r+2c. Therefore, the normalized

transfer function Hn(s) can be factored as follows:

Hn(s) =
M

g(s)
=

M∏
i≤r(s− sr,i)

∏
j≤c(

1
ω2
s,j
s2 + 1

qs,jωs,j
s+ 1)

= M
∏
i≤r

Ki(s)
∏
j≤c

Tj(s). [3.4]

Each first-order term (real root) is as follows:

Ki(s) =
1

s− sr,i
. [3.5]

Each second-order (complex conjugate roots, low-pass) term can be

written as follows:

Tj(s) =
ω2
s,j

s2 +
ωs,j

qs,j
s+ ω2

s,j

=
1

1
ω2
s,j
s2 + 1

qs,jωs,j
s+ 1

. [3.6]

To obtain a real-coefficient polynomial, such poles of Hn(s) should

be complex conjugate pairs (we omit the j-index for simplicity): s1,2 =
a± jb. The pole frequency is as follows:

ωs =
√

a2 + b2, [3.7]

and the quality factor is given by:

qs = −ωs

2a
. [3.8]
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The damping factor ζ = 1/(2qs) = −a/ωs is also often employed.

We note that the approximation problem is completely solved once

we know the position of the poles of Hn(s) in the complex plane, i.e.

sr,i for i ≤ r as well as ωs,j and qs,j for j ≤ c.

Three classical approximations are described in this document:

– Butterworth filters, where the optimization seeks for a maximally

flat behavior in passband.

– Chebyshev filters, where a certain amount of attenuation ripple is

tolerated in the passband, but the attenuation rises sharply outside the

passband.

– Bessel–Thompson filters, where the group delay is the best

possible approximation for a constant τ in the band-pass.

The characteristics and the coefficients of the different

approximations will be discussed in the detail in following sections.

However, Figures 3.4 and 3.5 compare their typical sixth-degree

normalized response. It is visible how achieving a “sharp” cutoff in the

attenuation is clearly not the goal of a Bessel–Thompson optimization,

whereas it is comparatively easy to obtain selective filters with

Chebyshev’s criterion2.

The situation changes when observing the group delay, where

Chebyshev filters show a highly variable behavior, resulting in a

certain degree of ringing that may become evident when processing

impulsive signals. Only focusing on attenuation is a common mistake,
giving an incomplete picture of the filter behavior.

2 The slope of the attenuation versus frequency behavior is in reality different only for

frequencies close to the cutoff: this is practically relevant, since here is usually where

the transition band is. At much higher frequencies, the slope becomes only dependant

on the order of the filter.
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Figure 3.4. Gain and group-delay responses for sixth-order Butterworth,
Chebyshev 1 dB and Bessel–Thompson filters. The group delay τg for Bessel
filters has been adjusted such that a −3 dB gain is reached at the normalized
frequency 1

3.2.4. Butterworth approximation

The transfer function in Butterworth filters is optimized to achieve

a maximally flat frequency response in the passband. The goal being

the flatness, they tend not to be very selective, i.e. given a certain order,

once the signal frequency is greater than the cutoff frequency fc, the

attenuation increases, but not very rapidly. The frequency fc is almost

always defined as the frequency at which the attenuation is equal to 3 dB
and for the normalization:

s =
p

2πfc
. [3.9]
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Figure 3.5. Gain for Butterworth, Chebyshev 1 dB and Bessel–Thompson filters
in the band-pass. Zoom of the gain behavior of filters shown in Figure 3.4;
for Chebyshev filters, the −3 dB frequency is not the end of the passband.
Application of equation [3.20] gives 1.023442, a value confirmed graphically

We define:

ε =
√
10αM/10 − 1, [3.10]

the minimum order n to satisfy to the guaranteed attenuation in the

stopband criterion is as follows:

n =

⎡
⎢⎢⎢
log

√
10αm/10−1

ε

log(fs/fc)

⎤
⎥⎥⎥ . [3.11]
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The g(s) polynomial can be generated as follows:

g(s) = ε

n∏
k=1

(s− sk), [3.12]

where the roots sk are given by the following expression:

sk = ε−1/n

[
− sin

(2k − 1)π

2n
+ j cos

(2k − 1)π

2n

]
. [3.13]

Table 3.1 shows normalized roots for Butterworth approximation, up

to the eighth order.

3.2.5. Chebyshev approximation

This type of approximation tries to increase selectivity by tolerating

a certain amount of ripple in the band-pass for the module of the

transfer function3. The tolerated ripple is quantified by αM and

different filters can be built for different values of αM. Usually, αM is

equal or below 1 dB and the cutoff frequency fc is defined as the

frequency at which the attenuation is equal to αM. So, practically

always, fc is not the frequency corresponding to 3 dB attenuation, as

visible in Figure 3.5. The normalization is usually done as follows:

s =
p

2πfc
. [3.14]

We define:

ε =
√

10αM/10 − 1, [3.15]

3 The goal is approximating a constant attenuation in the bandpass with the so-called

Minimax approach. Even more selective filters exist, such as inverse Chebyshev, elliptic

(Cauer) filters. . . They are not all-pole filters: both poles and zeros are present in the

transfer function, so this class of filters falls outside the scope of this introductory

document (see, for example, [ZVE 67]).
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the minimum order n to be adopted for a given constraint in the

attenuation is as follows:

n =

⎡
⎢⎢⎢
arcosh

√
10αm/10−1

ε

arcosh(fs/fc)

⎤
⎥⎥⎥ . [3.16]
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Table 3.1. Normalized roots of g(s) for Butterworth
and Chebyshev approximations
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The g(s) polynomial can be generated as follows:

g(s) = 2n−1ε

n∏
k=1

(s− sk), [3.17]

where the roots sk are given by:

sk = − sinhA sin
(2k − 1)π

2n
+ j coshA cos

(2k − 1)π

2n
, [3.18]

where:

A =
1

n
arcsinh(ε−1). [3.19]

If one wants to calculate the −3 dB frequency f−3 dB for the filter

response, the following equation can be used:

f−3 dB = cosh

[
1

n
arcosh(ε−1)

]
. [3.20]

An example of numerical calculations is visible in Figure 3.5, for a

particular 1 dB Chebyshev-type response normalized with respect to fc.
Table 3.1 shows normalised roots for Chebyshev approximations, up to

the eighth order.

3.2.6. Bessel–Thompson approximation

A filter transfer function H(p) is a meromorphic4 complex function

in the Laplace domain. Therefore, a module |H(p)| and a phase

Arg[H(p)] can be determined for each frequency p = jω = j2πf .

Chebyshev and Butterworth approximations deal with the behavior of

the module of the transfer function. Bessel–Thompson approximation

is oriented toward the group delay τg, closely related to the phase of

H(s):

τg(ω) = −dArg[H(jω)]

dω
. [3.21]

4 Meaning it is analytic (differentiable) everywhere in the complex plane, except in a

finite and discrete set of points which are poles.
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This class of filter tries to achieve the best possible approximation of

a constant τ for the group delay τg(ω) in the passband. Therefore, the

normalization is done on the group delay τ :

s = τp. [3.22]

Bessel–Thompson filters are precious when filtering must be done on

a signal whose phase must not be distorted, for example in a pulse-code

modulation. The polynomial expression is as follows:

g(s) =
Bk(s)

Bk(0)
, [3.23]

where Bk represents reverse Bessel polynomials, as shown in Table 3.2.

Degree Polynomial
0 B0(s) = 1
1 B1(s) = s+ 1
2 B2(s) = s2 + 3s+ 3
3 B3(s) = s3 + 6s+ 15s+ 15
4 B4(s) = s4 + 10s3 + 45s2 + 105s+ 105
5 B5(s) = s5 + 15s4 + 105s3 + 420s2 + 945s+ 945
6 B6(s) = s6 + 21s5 + 210s4 + 1260s3 + 4725s2 + 10395s+ 10395

Degree Roots
1 −1

2 −1.500000± j0.866025

3 −2.322185
−1.838907± j1.754381

4 −2.896211± j0.867234
−2.103789± j2.657418

5 −3.646739
−3.351956± j1.742661
−2.324674± j3.571023

6 −4.248359± j0.867509
−3.735708± j2.626272
−2.515932± j4.492673

Table 3.2. Normalized reverse Bessel polynomials and their roots
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3.2.7. Examples

3.2.7.1. Fourth-order 1 kHz Butterworth low-pass approximation

This section gives an example of a filter approximation (i.e. how

to write down the transfer function H(p)) using the Butterworth low-

pass model, aiming for a cutoff frequency fc = 1kHz. The first step is

to write down the normalized low-pass transfer function. From tables,

normalized poles of the transfer function are:

Poles Pole frequency q-factor
s1,2 = −0.38291± j0.92443 ωs,1,2 = 1.0006 qs,1,2 = 1.3058

s3,4 = −0.92443± j0.38291 ωs,3,4 = 1.0006 qs,3,4 = 0.54087

In our case, ωs,1,2 = ωs,3,4 is 1.0006 and not 1 because of the

truncation to five figures of results in the tables. So we might safely use

1 for both pole frequencies in the following calculations. It is a general
property of Butterworth filters that all poles of the normalized transfer
function lies in the unitary circle on the complex plane.

The normalized transfer function is composed of two second-order

terms. From equation [3.6], therefore Hn(s) is as follows:

Hn(s) =
1

s2 + 1
1.3058s+ 1

× 1

s2 + 1
0.54087s+ 1

. [3.24]

The last thing that remains to be done is to denormalize the transfer

function by applying the following transformation:

s =
p

2πfc
=

p

2π × 1 kHz
, [3.25]

therefore obtaining:

H(p) =
1(

p
2π×1 kHz

)2
+ 1

1.3058 × p
2π×1 kHz + 1

×

1(
p

2π×1 kHz

)2
+ 1

0.54087 × p
2π×1 kHz + 1

,

[3.26]



76 Analog Electronics for Measuring Systems

which can be further developed as follows:

H(p) =
1

2.5330× 10−8 s2 p2 + 1.2188× 10−4 s p+ 1
×

1

2.5330× 10−8 s2 p2 + 2.9426× 10−4 s p+ 1
.

[3.27]

Some may find employing measurement units in equations strange,

as we did in equations [3.26] and [3.27], yet we like to do things in

this way as dimensional analysis becomes more straightforward. The

presence of measurement units, for example, shows at first glance that

we are in the non-normalized case. Note that one should not confuse

italic “s” in equation [3.24], which is the normalized Laplace variable,

with roman “s”, which is a measurement unit and stands for seconds in

equation [3.27]. Employing a coherent typesetting for equations is not

an option here5.

3.2.7.2. Fourth-order 10 kHz Butterworth low-pass approximation

The advantage of normalization is that we do not need to redo all

the calculations in section 3.2.7.1, but only the denormalization. For

example, if we choose fc = 10 kHz, the following equations are

obtained:

s =
p

2π × 10 kHz
, [3.28]

H(p) =
1(

p
2π×10 kHz

)2
+ 1

1.3058
p

2π×10 kHz + 1
×

1(
p

2π×10 kHz

)2
+ 1

0.54087
p

2π×10 kHz + 1

. [3.29]

3.3. Active filter synthesis by means of standard cells

Once the transfer function H(p) has been written, we can factor it in

the form of equation [3.4] and proceed to the synthesis of the different

5 Standards for that exist, such as ISO 80000-2.
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terms. We are dealing with low-pass filters, so all circuits presented in

this section will have the required low-pass behavior. For an all-pole

filter, we therefore need some circuits (cells) able to synthesize:

– a couple of complex-conjugate poles;

– a real negative pole.

Dozens of solutions based on different technologies have been

studied for this purpose. Here, we tackle only some basic examples

using cells built around operational amplifiers.

3.3.1. Low-pass Sallen-Key cell: a pair of complex conjugate
poles

For a couple of complex-conjugate poles, a widespread solution is

the Sallen–Key filter cell6, as shown in Figure 3.6. This circuit is part

of a class of circuits called EPF from Enhanced Positive Feedback and

indeed two feedback loops are present: one via R3 and R4 as well as

via C1, the latter being responsible for a certain amount of positive

feedback.

Circuit analysis techniques allow to write down the transfer function

of the circuit:

H(p) =
K

1 + [R2C2 + (1−K)R1C1 +R1C2]p+R1R2C1C2p2
,

[3.30]

where K is the DC gain of the circuit:

K = 1 +
R3

R4
. [3.31]

6 Hans Camezind (1934–2012), the designer of the ubiquitous NE555 timer, once

wrote: “Analog designers don’t get Nobel prizes, they get a circuit named after them”

[CAM 05].
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R1 R2

C2

C1

R3
R4

Figure 3.6. A Sallen–Key second-order low-pass cell.
Be sure that the bias current of the non-inverting input

of the operational amplifier is provided

It is, therefore, a sort of double RC filter with an amplifier having

a gain K, so certain authors call it a KRC filter [FRA 15]. Sallen–Key

cells have a relatively low output impedance (equal to zero for an ideal

operational amplifier), so cascaded cells do not change their individual

response. Each couple of poles can therefore be synthesized separately,

which greatly simplifies the calculations. In comparison, circuits such

as the one shown in Figure 3.2 are considerably harder to calculate.

As seen in section 3.2.3, each couple of complex conjugate poles is

uniquely identified by two parameters: ωs and qs. The circuit in

Figure 3.6 contains six passive components. So the problem is

indeterminate and additional conditions should be taken into account.

Moreover, the presence of a positive feedback loop indicates that

stability constraints exist and the designer should be careful with the

choice of the gain K, since K > 3 yields instability. K = 1 is a popular

choice (so R4 → ∞) in order to optimize the gain-bandwidth product

of the circuit. Sometimes, C1 = C2 or alternatively R1 = R2 can be

taken. Such choices allow the calculation of the remaining components

by matching the coefficients of p in [3.30].
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Solutions different from Sallen–Key exist (multiple feedback,

biquad, Rauch and many others). They offer different trade-offs

between sensitivity to device tolerances, bandwidth, number of

components, etc.

3.3.2. Low-pass active RC cell: a real negative pole

To synthesize a real pole in the transfer function H(p), several

different cells exist. Simple ones are depicted in Figure 3.7. Circuit

analysis shows that the first one is an inverting cell with a first-order

low-pass behavior:

H(p) =
−1

1 + pRC
. [3.32]

R

C

R

R

C

Figure 3.7. First-order low-pass cells (inverting and non-inverting)

Values of R and C can be adjusted to obtain the real pole as needed.

The two resistors do not need to be identical (the circuit remains a first-

order one), introducing a certain amount of gain or attenuation in the

band-pass.

The second circuit is instead a simple buffered RC low-pass filter:

H(p) =
1

1 + pRC
[3.33]

Once again, a degree of freedom is left to the designer, as the same

value of the pole can be obtained with different choices of R and C.
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3.3.3. Cell order

Figure 3.8 shows an example of a sixth-order all-pole filter

synthesized with three Sallen–Key low-pass cells. By adjusting the

values of the passive components, the three responses in Figure 3.4

(Butterworth, Bessel–Thompson, Chebyshev) can be obtained with

exactly the same circuit topology.

R1 R2 U1

C2

C1

R3R4

In R5 R6 U2

C4

C3

R7R8

R9 R10 U3

C6

C5

R11R12

Out

H2(p)H1(p)

H3(p)

Figure 3.8. A sixth-order all-pole filter. The overall response is calculated as the
product of the transfer functions of the three Sallen–Key cells: H(p) = H1(p)×
H2(p)×H3(p), at least if each cell operates inside its linearity range

We discuss, for example, a sixth-order Chebyshev-like 1 dB
response (one of those represented in Figures 3.4 and 3.5). As we have

seen, and as summarized in Table 3.3, we have three

complex-conjugate couples of complex poles. By using equation [3.6]
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for each second-order term, the complete (normalized) Chebyshev

transfer function is as follows:

Hn(s) =
1

1.1220
× 1

1
0.995352

s2 + 1
0.99535×8.0038s+ 1

×

1
1

0.746812
s2 + 1

0.74681×2.1981s+ 1
×

1
1

0.353132
s2 + 1

0.35313×0.76086s+ 1
.

[3.34]

Their individual response of each factor is shown in Figure 3.9, as

well as the overall transfer function [3.34]. We note that, due to a high

value qs, the couple of poles named “A” in Table 3.3 and Figure 3.9

exhibits a considerable peaking (≈ 18 dB) of the response.

Name Pole ss ωs qs Associate to

A
−0.06218 + j0.99341

0.99535 8.0038 H3(p)−0.06218− j0.99341

B
−0.16988 + j0.72723

0.74681 2.1981 H2(p)−0.16988− j0.72723

C
−0.23206 + j0.26618

0.35313 0.76086 H1(p)−0.23206− j0.26618

Table 3.3. Poles (normalized frequency) of a
1 dB Chebyshev approximation

There is a degree of freedom concerning the order with which the

couples of poles should be distributed. If the first cell synthesizing

H1(p) in the circuit in Figure 3.8 is calculated to obtain a “type A”

response, peaking might result in a saturation of the output stages of

the operational amplifier U1. This situation is tricky, since the other

cells smooth the signal, so that clipping may not be evident by

inspecting only the output of U3. This phenomenon can reduce the

overall dynamical range, and therefore a practical rule can be followed:

arrange cells in ascending order of qs. So, in our example, couple C is

attributed to H1(p), B to H2(p) and A to H3(p).

This rule should not be followed when signal amplitude is very

small and the main concern is noise and not clipping, but this seldom
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happens, given the usual position of the filter (i.e. after the amplifier) in

the measuring system.
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Figure 3.9. Decomposition of a sixth-order 1 dB Chebyshev response
into those of individual second-order cells (see Table 3.3)

3.4. Frequency transform techniques

Up to now, we have exclusively treated low-pass filters. You might

wonder if the same theory might be developed for other kinds of filter

responses such as high-pass, band-pass and notch. The answer is of

course affirmative, but a shortcut exists and consists of reusing all

results seen above with low-pass filters, by exploiting frequency

transforms. In practice, as we will see in the following sections, every

kind of response can be reduced to a standard, equivalent, low-pass

behavior by applying an appropriate nonlinear frequency transform.
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3.4.1. High-pass filters

Figure 3.10 shows a typical request for a high-pass filter. Note how

the frequency axis is mirrored if compared with Figure 3.3.

|H(j2πf)|in dB

f
fs fc

H0
H0 − αM

H0 − αm

Transition band Pass-band

Stop band

Figure 3.10. Attenuation behavior requested from a high-pass filter

Following this observation, the frequency transform to be applied is:

sb =
1

s
. [3.35]

The complex variables s and sb are to be interpreted as follows:

– s is the normalized complex Laplace variable for the high-pass

response;

– sb is the normalized complex Laplace variable for the equivalent

low-pass response.

Note that since both variables are normalized, measurement units do

not appear in equation [3.35], which is therefore perfectly legal.
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3.4.2. Band-pass filters

Typical attenuation constraints concerning band-pass filters are

shown in Figure 3.11. A particularity of band-pass filters is that there

are two rejected bands, and therefore two corners identified by fs1, fs2
and αm1 and αm2. The band-pass has two limits: fc1 and fc2. The

frequency transform is therefore a combination of a low-pass and a

high-pass filter response. We define two auxiliary quantities:

f0 =
√

fc1fc2 [3.36]

Q0 =
f0

fc2 − fc1
, [3.37]

where f0 is a sort of “barycentric” frequency, the geometric average of

fc1 and fc2, and it is used for the normalization:

s =
p

2πf0
. [3.38]

|H(j2πf)|in dB

f
fs1 fc1

H0
H0 − αM

H0 − αm1

fs2fc2

H0 − αm2

Pass-band

Stop band 1

Stop band 2

Figure 3.11. Attenuation behavior requested from a band-pass filter
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On the other hand, the Q0 factor is a measure of the filter selectivity.

High values of Q0 yield to selective filters.

The complete frequency transform is as follows. Note that a nice

symmetric form is obtained when the normalization condition [3.38] is

included in the transform:

sb = Q0

(
s+

1

s

)
= Q0

(
p

2πf0
+

2πf0
p

)
. [3.39]

The constraints coming from the two stop bands are transformed into

their low pass equivalents. The filter must be calculated by considering

the most restrictive one.

3.4.3. Band-reject (notch) filters

A notch filter response is visible in Figure 3.12. Typically, this kind

of filters are extremely useful when an unwanted noise is predictable in

a certain spectral band that does not contain useful information for the

signal.

|H(j2πf)|in dB

f
fc1 fs1

H0
H0 − αM

H0 − αm

fc2fs2

Pass-band 2

Stop band

Pass-band 1

Figure 3.12. Attenuation behavior for a notch filter
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The frequency transform is symmetric to the one seen in

section 3.4.2. We therefore begin to define similar quantities Q0 and

f0:

f0 =
√

fc1fc2, [3.40]

Q0 =
f0

fc2 − fc1
. [3.41]

The frequency transform is as follows:

sb =
1

Q0

(
s+ 1

s

) =
1

Q0

(
p

2πf0
+ 2πf0

p

) . [3.42]

3.4.4. High-pass and band-pass cells

Frequency transforms yield to approximation of functions having

behaviors different from low-pass. In this case, different kinds of cells

must be employed for the synthesis of the circuit. Figure 3.13 shows an

example of a standard cell that can be employed for the synthesis of a

second-order high-pass response.

R1

R2

C2C1

R3
R4

Figure 3.13. A high-pass Sallen–Key second-order cell
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Low-pass and high-pass responses can be combined in a single

second-order cell to achieve a band-pass behavior. This is the case of

the Sallen–Key variant shown in Figure 3.14. An example of a simple

first-order cell implementing a high-pass response is visible in

Figure 3.15.

R1

R5C2

C1

R3
R4

R1

Figure 3.14. A band-pass second-order cell

RC

R

Figure 3.15. A simple first-order inverting high-pass cell

As an exercise, the transfer functions of those circuits may be

deduced.
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3.5. Conclusion

In this chapter, we have introduced the main terminology adopted in

filter design and we have briefly described the approximation strategies

useful for all-pole filters (Chebyshev, Butterworth and Bessel–

Thompson). We saw how the direct synthesis of a passive filter is

difficult, but using active cells allows to tackle it via a decomposition

in simple low-order terms. What has been seen is by no means a

detailed description of the huge domain of filter synthesis. Our goal

has mainly been to familiarize with the most frequent problems.



4

Analog to Digital Converters

4.1. Digital to analog converters and analog to digital
converters: an introduction

Computers and digital systems are wonderfully powerful when

number-crunching tasks are required. Astonishingly, complex

operations can be performed in the blink of an eye by cheap

microcontrollers. A kid playing with a modern smartphone exploits a

computing power and memory far greater than supercomputers

employed for Apollo missions to the moon. Digital storage is cheap

and compression algorithms have reached a tremendous efficiency. In

other words, there is a clear convenience associated with the digital

processing of signals.

ADC

Vin

Analog input Digital output

N bits

Vref

DAC

Vout

Analog outputDigital input

N bits

Vref

S/H

VS/H

Figure 4.1. Block diagram representation of analog to digital converter
(ADC) and digital to analog converters (DAC)

Converters represent the link between the analog and digital worlds.

An analog to digital converter (ADC) samples an input signal (i.e. takes

Analog Electronics for Measuring Systems, First Edition. Davide Bucci.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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snapshots of the voltage) and delivers a code on N bits, which digitally

represents the sample. A digital to analog converter (DAC) performs the

opposite function and converts a code into an analog voltage. Figure 4.1

shows the block diagram symbols, which are usually employed for an

ADC and a DAC. In the case of an ADC, it has to perform the following

activities:

– the sampling, which consists of extracting a sample at a specific

moment t0 yielding an analog voltage that is held. The circuit that

performs this function is called a sample and track or sample and hold
circuit (S/H for short), as shown in Figure 4.1. The sampling operation

may be repeated at a regular pace at a sampling frequency Fe, thus

transforming a continuously varying analog signal into a discrete set

of analog voltages. If the Nyquist–Shannon theorem is respected, no

information is lost at this stage (see section 3.2.1 for a discussion of

aliasing effects)1;

– the quantization, which consists of transforming a sampled voltage

into a digital code represented in N bits. The number of codes being

a finite number, this operation introduces a quantization error and a

possible loss of information;

– the digital code on N bits must be sent to an external digital unit (a

microcontroller, a Field Programmable Gate Array (FPGA), a digital

bus of some kind. . . ) by means of an appropriate protocol. For the

simplest converters with a parallel interface, a certain number of wires

are employed for the N bits, as well as control and handshaking lines.

More recently, serial interfaces such as Inter-Integrated Circuit (I2C),

Serial Peripheral Interface (SPA) or more complex protocols can be

employed to minimize the number of pins in the packaging;

– the control of the converter: to configure it and precisely trigger

the instant when a conversion has to be done.

1 Undersampling techniques (i.e. deliberately not following the Nyquist–Shannon

condition by choosing a comparatively low Fe) can be employed for the acquisition

of a narrowband signal, as long as loss of information due to spectral superposition is

accurately avoided. The sampling operation, which cannot be perfectly instantaneous,

must still remain fast enough, even if the sampling itself is done at a relatively slow

pace.
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In the following sections, we will describe some classic strategies

to implement the first two functions. The digital communication and

control of the converter are however digital interfacing applications and

therefore fall outside of the scope of this book.

The main goal of the chapter is to briefly describe the challenges

that exist in ADC structures from the point of view of someone who

has to choose the right integrated circuit for a particular application.

Since ADCs are rather complicated structures, in the past

high-performance solutions were expensive hybrid modules. It is

indeed an astonishing achievement for the art of crafting modern

monolithic analog circuits that converters with impressive

characteristics are now available at a very convenient cost. Therefore,

we will present the conversion strategies by showing block diagrams,

without going into too much detail, which can be found in resources

such as [KES 05]. On the other hand, we will spend a certain amount

of time discussing the conversion errors introduced by converters and

we will present some examples of performances of real devices as they

may be found in data sheets.

At the end of the chapter, we will briefly describe the conversion

errors that exist and have to be taken into account during the choice of

the right conversion strategy.

4.2. Notations and digital circuits

Here we would like to introduce the digital blocks that we will

employ in this chapter. Although this is by no means a complete

survey, we will employ mixed-signal circuit elements, as shown in

Figure 4.2, which deserve to be presented briefly:

– a digital line, which is just a single wire. The voltage with respect

to the reference node represents a “logic zero” or a “logic one”2 if it

lies inside intervals defined by the employed logic family (more or less

advanced CMOS circuits, the old TTL, etc. . . );

2 In some cases, it may be useful to differentiate between a “high” logic level and a

“one” as well between a “low” and a “zero”, but we will not discuss those details here.



92 Analog Electronics for Measuring Systems

N
Digital bus (N bits)

A
B

C

control

Analog switch

in out

LatchD Q

clock

reset

clock
N

N -bit counter

Digital line

1

0

Figure 4.2. Basic digital or mixed-signal elements used in this chapter

– a N -bit parallel bus, which is simply made by routing N digital

lines along the same path. A connection between a digital line and a

bus is shown by means of a little triangle with an indication as to which

bit of the bus the connection has to be made with. Of course, with N
lines we have N bits and we may represent 2N different values (from

0 to 2N − 1) with the standard binary representation. An alternative

representation exists and it is sometimes employed in converters. It is

based on the observation that in the binary codes, we need, in certain

situations, to flip several bits to move from a value to the successive

one. For example, the binary equivalent of (7)10 (base 10) is (0111)2
(base 2) where (8)10 is (1000)2 so we need to flip the values of all

four bits. In some applications, this is not a good thing and instead of

adopting the classic binary coding for the digital values, the Gray code

is employed. Giving all the details is out of the scope of this introductory

book, however the most important property is that in the Gray code, it

is sufficient to change one bit to move from a code to the following one.
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In the example seen above, 7 (base 10) is represented with 0100 (Gray)

where (8)10 is 1100 (Gray), only the first bit is changed;

– an analog switch, which connects the analog input A to B when

the control line has a digital zero and A to C when the control line has a

digital one. Different techniques exist, ranging from diode-based gates

or bridges to field effect transistors. Modern CMOS-integrated devices

usually advantageously exploit the ohmic region of MOSFETs, which

can be switched on and off by modulating the voltage applied to the

gate;

– a latch, which is a memory element. Every time there is a clock

“tick”, the logic level in the D input is transferred to the Q output;

– a counter, which starts from zero at each reset and then increments

the number on the output N -bit bus, literally counting the number of

cycles of the signal clock.

In general, the clock is quite an important signal in digital

electronics, as it represents a synchronization signal that may be used

to control circuits. A clock “tick” is a transition, which may be a rising

or falling edge in the clock signal.

To represent negative integer values with N bits, several techniques

exist but the most commonly employed is the two’s complement.

Negative numbers are represented with the quantity that should be

added to the one to be represented to reach 2N . For example, on four

bits we can represent numbers from −8 to 7 with the two’s

complement technique. Codes (0000)2 to (0111)2 represent positive

numbers with the ordinary binary notation, code (1111)2 represents

−1, since if we add (0001)2 to (1111)2 we get (1 0000)2, which is 2N ,

which is of course not representable with only four bits. Code (1110)2
represents −2 and so on.

In the following sections, we will first describe sample and hold

circuits followed by different strategies of ADCs. These structures

employ the building blocks described here.
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4.3. Sample and hold circuits

As we will see in the rest of the chapter, analog to digital

conversion requires a certain amount of time during which the voltage

to convert is kept as constant as possible. Therefore, a sampling

operation is required to “freeze” the signal at a constant value for the

appropriate time interval. This is the role of the “sample and hold” (or

“sample and track”) circuit, which ideally transforms a continuously

varying signal Vin into a signal VS/H. The latter is equal to Vin(k/Fe)
in each time interval k/Fe ≤ t < (k+1)/Fe, where Fe is the sampling

frequency, as shown in Figure 4.3. Of course, this is what happens in a

particular situation when the signal is sampled at a constant frequency

Fe, but in reality the sample and hold circuit only needs to keep the

voltage VS/H constant for the time needed for the converter to do its

job3. In practice, the sampling cannot be done instantaneously, but the

sample and hold circuit will make a sort of average of the input signal

around the sampling time at a time interval τ (being as short as

possible). Moreover, a random error in the sampling time (called jitter)

can be an important source of conversion noise since it is translated

into an amplitude error4.

Given the need to keep a voltage constant for a given interval,

sample and hold circuits are based on an analog memory. This is

usually accomplished by means of a capacitor, and the performances of

the sample and hold circuit depend on the capacitor itself as well as the

capability of charging and discharging it very rapidly when needed.

Therefore, a switch and at least two followers are present in the circuit,

as shown in the two very simple structures visible in Figure 4.4. In

both of them, the storage capacitor is charged by means of the input

signal passing through the sampling switch. The output voltage is

3 This is the most frequent application. However, in principle, sampling does not

automatically mean that a digital conversion must be done. For example, sampling

analog oscilloscopes were used in the past for HF applications. The Tektronix 1S1

sampling head (1GHz) from 1965 was an exquisite example of such an application

based on the undersampling of a narrowband signal.

4 Jitter and τ are usually the factors limiting the applicability of undersampling.
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present at the output of an operational amplifier, which avoids the

capacitor discharging, apart with the inevitable bias currents.

Amplitude

Timek/Fe

VS/H

Vin(k/Fe)
Vin

Figure 4.3. Ideal function of a sample and hold circuit: it samples the
input signal Vin and keeps it constant until a new sample is required.

Circles represent signals at the sampling moments

The structure at the top is the simplest to understand and the storage

capacitor C is charged by means of the input buffer during the

sampling time, when the switch S is closed. Apart from simplicity, this

strategy offers limited advantages with respect to the topology shown

at the bottom, an integrating closed-loop sample and hold. In this

circuit, when the switch S is closed, the capacitor C is charged so that

the output matches the input. It is possible to employ a high-precision

operational amplifier for the input buffer and an operational amplifier

with very low bias currents for the integrator.

While the principle of the circuit seems simple, given the circuit

constraints and many practical difficulties, designing high-performance

sample and hold circuits is a very difficult task. However, in the context

of modern ADCs, sample and hold circuits are now almost invariably

integrated along the ADCs and the difficulties have been tackled in the

design stage of the chip. Imperfections of sample and hold circuits may

include gain errors, linearity issues, offsets and jitter in the sampling

time. The sampling cannot be instantaneous and one must consider the

acquisition time (limited by the amplifiers’ slew rate) and the delay
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time required for the output voltage to stabilize within a given

tolerance.

CVin

VS/H

Vin
VS/H

C

S

Control

S

Control

Figure 4.4. Simple sample/hold structures: (top) open loop,
(bottom) closed loop, integrating

4.4. Converter structures

4.4.1. General features

With respect to the operations described in section 4.1, several

parameters qualify the behavior of the converters and deserve to be

discussed. For example, one of the most important points to consider is

the resolution, and how the values are represented at the output of the

ADC (or at the input of a DAC). If we employ N bits, a discrete set of

2N different codes is available. The number of bits therefore gives

important information on the resolution of the converter. In fact, for

example, a hypothetical 4-bit converter employs 16 different codes to

represent the analog signal and Figure 4.5 shows a possible way that

this is done.
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VS/H
q
2

Vref

Digital code

q

1111

1011

1001

1101
1100

1110

0011
0010

0001
0000

0111
0110

0101
0100

1010

1000

Figure 4.5. Correspondence between analog values and its digital
representation in a 4-bit analog to digital converter with thresholds centered, so
that the quantization error is minimized. The configuration shown represents
an unipolar converter with full scale at Vref

In the same context, several other things can be noted. First of all,

the full-scale value of the analog voltage is called Vref , which is an

analog reference voltage that is required by the converter. Often, Vref is

obtained by means of an appropriate circuit: when high accuracy is

mandatory, constraints become very stringent on drift, ageing and

stability of Vref . In some cases, especially for less delicate applications,

Vref is obtained by means of voltage reference integrated with the

converter itself or even from the power supply. A second important

choice is the position of the thresholds (i.e. the position of the vertical

lines in the “steps” in Figure 4.5). In this case, the first threshold is

placed at a voltage q/2, where q (quantum) is the width of the intervals

associated with a change in the last significative bit:

q =
Vref

2N
. [4.1]

In this way, the quantization error due to the finite number of digital

values is always (in module) less or equal to q/2 when VS/H ranges from

0 to Vref − q/2.
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The graph in Figure 4.5 represents the ideal behavior of a so-called

“unipolar” converter, where analog voltages are always positive and

binary codes are unsigned. Other possibilities exist: for example, there

are the “bipolar” converters allowing the analog voltage to be positive

or negative and therefore employing digital codes with sign. Moreover,

the relation between the reference voltage and the full scale may be

different from the one shown in Figure 4.5. For example, unipolar

converters exist where the full-scale voltage is 2Vref while bipolar

converters can have a positive full-scale voltage of Vref and a negative

full-scale voltage of −Vref .

To select the best converter for our application, the first page of the

data sheet usually summarizes some important characteristics.

Relevant information about the number of bits employed, maximum

conversion speed, the unipolar/bipolar operation, digital coding and

interface is usually given there. Yet, be very very careful: data there

may be affected by a certain degree of advertisement hype! Typical

values give some orders of magnitude, yet good designs yield circuits

able to cope with the most restrictive operating conditions, and

therefore are based on minimum or maximum guaranteed
characteristics (and not the typical ones).

Therefore, one must dig deeper in the data sheets to determine the

conversion principle and the exact conditions in which the

characteristics have been measured. For example, when the number of

bits is high (more than 16), one should be aware that the device noise

floor may limit the number of bits, which is extremely important.

Usually, in this case the number of “noise free bits” is specified in the

data sheet, it may be non-integer and usually strongly depends on the

conversion conditions.

4.4.2. Flash ADCs

A flash converter is probably the simplest ADC structure to

understand. Let us start our description from a single comparator,

which can be seen as a 1-bit ADC, as shown in Figure 4.6.
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Vin
Vref

Vout

Figure 4.6. A simple comparator. This is not an operational
amplifier even if the symbol is the same

Don’t be fooled by the fact that the symbol of a comparator is the

same as the one of an operational amplifier (see, for example,

Figure 2.1). An operational amplifier is expected to work in its linear

region with a negative feedback circuit; a comparator is made to work

without it or with a positive one. It is a nonlinear component, which

provides an output voltage corresponding to a “1” logic level if

VS/H > Vref and one corresponding to a “0” otherwise. If we want to

increase the number of bits, the straightforward strategy may be to

adopt a certain number of comparators and a resistance ladder to

provide the appropriate thresholds. The outputs of the comparators

form a digital code often called the “thermometer code”. Figure 4.7

shows the circuit of a 3-bit flash converter and Table 4.1 shows the

coding matrix, which must be implemented to have an output

represented as a binary number b2b1b0. It is easy to detect an over scale

error or a faulty situation.

A flash converter can be very fast (hence its name), since the

conversion speed is limited by the reaction time of a single comparator,

as all of them operate in parallel. However, the number of bits available

is clearly limited by the maximum number of comparators and

resistances that can be employed, as they grow exponentially with the

number of bits N . Such structures are usually integrated on a single

silicon chip and passive devices tend to occupy a lot of surface, so in

practice, quite often, most of the chip area is occupied by the resistance

ladder. On the other hand, it is relatively easy to achieve a good match

between integrated resistances. The logic circuitry needed to
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implement the decoding function is usually relatively inexpensive and

does not constitute a limiting factor for the performances. A second

problem is instead that the VS/H voltage is applied at the same time to

all comparator inputs, which tied together may represent a hard to

drive load (usually mainly capacitive), thus requiring a robust amount

of buffering.

R RR/2 R R R R R R/2
Vref

VS/H

o

a6 a5 a4 a3 a2 a1 a0

b0
b1
b2

Coding matrix

Figure 4.7. A 3-bit flash converter, thus requiring 23 = 8 comparators
and 23 + 1 = 9 resistances

a0 a1 a2 a3 a4 a5 a6 o b2 b1 b0 Note

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 1 0 0

1 1 1 1 1 0 0 0 1 0 1

1 1 1 1 1 1 0 0 1 1 0

1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 Over scale error!

All others combinations x x x Error or fault!

Table 4.1. Coding matrix for the three-bit flash
converter shown in Figure 4.7

To summarize, flash converters are generally very fast but limited to

a low number of bits and therefore relatively inaccurate. A solution

based on the divide and conquer strategy is possible and it is only
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marginally slower: it is called the “half flash converter”, but we need

first to discuss at least one structure of a DAC since we will need it.

4.4.3. A simple DAC: R2R ladder

We give here a description of a simple DAC. Of course, different

strategies exist but we have chose to describe the classic solution shown

in Figure 4.8 based on a ladder formed by resistances whose value is

R or 2R (hence the name R-2R or R2R). First of all, a certain number

of analog switches are configured following the bits of the binary code,

which has to be converted.

R R R 2R

2R 2R 2R 2R

Vref

op amp

1111

R

Vout

0 0 0 0

1 0 0
LSB

0
MSB

I3
V3I4V4

V1 I1I2
V2

Figure 4.8. An R2R ladder analog to digital converter. Switches are
configured so that the converted binary number is (0100)2. An

operational amplifier is employed as a current to voltage converter

To understand how the circuit works, we note that the negative

feedback around the operational amplifier forces the voltage to zero on

its inverting input, which is thus a virtual ground. Consequently, the

currents I1 - I4 are unaffected by the position of the switches, as the

voltage on the reference node is the same as the one on the inverting

input of the operational amplifier. The switches, thus, enable the

selection of which currents given by the R2R ladder have to be diverted

and summed up on the zero-impedance node. The operational

amplifier, wired as a current to voltage converter (or trans-resistance:
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see Figure 1.15), transforms the sum of currents into a voltage Vout

(negative if Vref > 0).

Let us calculate the values of the currents I1 - I4 with respect to the

value of the resistances R and the reference voltage Vref . We start from

I1 by supposing that V1 is known:

I1 =
V1

2R
. [4.2]

Then, we calculate V1 from V2 by means of a voltage divider rule.

As mentioned, the position of the switch does not affect anything on the

ladder, therefore:

V1 = V2
2R//2R

R+ 2R//2R
= V2

R

R+R
=

1

2
V2. [4.3]

When we try to calculate V2, we note that the resistances combine in

the same way by obtaining:

V2 = V3
R

R+R
=

1

2
V3. [4.4]

This relation can be easily generalized and we note that the currents

in the switches follow a power-of-2 law. Therefore, if the switches are

controlled by the bits of the binary code to convert, we get a voltage

Vout that is proportional to its value.

The conversion speed is limited by the commutation time of the

switches, as well as the bandwidth and the settling time of the

operational amplifier.

4.4.4. Half-flash and pipeline ADCs

If we come back to the flash ADC discussed in section 4.4.2, we may

be able to imagine splitting the problem in half. Let us suppose that we

need a 8-bit converter. In this case, a flash solution would require 256

comparators and a voltage divider composed of 257 resistances. The

idea is to employ a first flash converter for the identification of the most

significative four bits (16 comparators and 17 resistances), then refine
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the conversion a second time by adding a second flash converter for the

least significative four bits. The block diagram of a half-flash converter

is shown in Figure 4.9. The input voltage VS/H is first roughly converted

by the upper ADC, giving the four most significative bits of the code.

Then, a DAC is employed to obtain the analog voltage corresponding

to that first rough conversion. The difference between the output of the

DAC and the input voltage is the quantization error of the first converter,

which is employed to obtain the least four significative bits by a second

ADC.

VS/H

+

LSBs

MSBs
4

4

Vref

Vref/2
4

flash

4 bits

b7
b6
b5
b4

DAC

4 bits

flash

ADC

4 bits

ADC

b0
b1
b2
b3

Figure 4.9. Block diagram of the principle of a
half-flash analog to digital converter

The half-flash ADCs may represent a good trade-off between the

complexity of the circuit (much simpler than that of a flash converter)

and the maximum sampling speed, which is of course marginally

reduced. We can split the number of bits into three or four groups and

employ the same idea, obtaining the so-called pipelined converters.

The pipeline concept may also be convenient to reduce the conversion

time as we do not need every converter to work at the same time, as

long as we can afford a certain latency in the output data. Pipelined
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structures reign over the realm of high-speed and high-accuracy

converters.

4.4.5. Successive approximation converters

Let us again consider the half-flash converter described in

section 4.4.4. The idea was to split the number N of bits in smaller

sets. Pipeline converters operate in a “parallel” way by employing

several converters active at the same time, each one converting a bunch

of bits. We may develop a more drastic version of this idea if we take

N single-bit ADCs. We have already employed a simple comparator

such as the one shown in Figure 4.6 as a 1-bit ADC5. To simplify the

circuit, instead of wiring together a pipeline of N comparators with N
DACs, we adopt a single comparator and a single DAC by means of a

“serial” operation. The leading role here is played by the special N -bit

register called the successive approximation register (SAR for short)

where the approximation of the converted value is constructed step by

step. A block diagram of the converter is shown in Figure 4.10. We

may describe the conversion algorithm by means of the following

C-style pseudo-code:

SAR=0; // Set all bits of SAR to zero
m=N-1; // Start from MSB of SAR
while (m>=0) { // Continue for all bits of SAR

SAR[m]=1; // Set the m-th bit to one.
wait(ADC_READY);
if (V_DAC>V_in) // Compare SAR results to Vin

SAR(m)=0; // Too much!
m--; // next bit.

}
// End of the conversion. SAR contains the result to latch.

With the notation SAR[m], we access the mth bit of the SAR, with

the convention that SAR[N − 1] is the most significative bit, whereas

5 Quoting Jim Williams: Strictly speaking, this viewpoint is correct. It is also wastefully
constrictive in its outlook. Comparators don’t “just compare” in the same way that op
amps don’t “just amplify” [WIL 85].
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SAR[0] is the least significative bit. We indicated with

wait(ADC_READY); a pause needed for the DAC to complete the

conversion, usually an appropriate number of cycles of the clock signal

controlling the circuit.

SAR

DAC

VDAC
VS/H

N

VDAC > VS/H

MSB LSB

Conversion ready

Latch

N

Clock

Result

Vref

Figure 4.10. Block diagram of the principle of a successive
approximation analog to digital converter

Most books and descriptions employ the term “successive

approximation register” to indicate both the SAR itself, along with the

control logic described in the pseudo-code given above. We do not

need a particularly complex logic to implement the flow. A simple state

machine will be more than enough.

Since the result of the conversion is constructed step by step and is

changing, when the conversion is ready, a latch allows it to “freeze” the

result for the outside world.
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4.4.6. Single- and double-ramp converters

If there is something that is easy to do in digital electronics, it is

counting to measure time intervals. Therefore, if we can transform the

input voltage into such an interval, we may measure it to obtain the

conversion result. This is the idea behind single- and double-ramp

converters. It is easy to see that if the time interval we are measuring is

not very short, one can easily obtain a very high measurement

resolution. Therefore, this conversion strategy is very efficient for those

cases where the counter employs a high number of bits and a low

conversion speed is required. Long occupying first place in the pool of

solutions available in this context, they are now progressively being

replaced by sigma-delta converters, as described below.

A very simple single-ramp acquisition system is shown in

Figure 4.11. The reference voltage Vref is fed to an integrator

composed of an operational amplifier, the resistance R and the

capacitor C, which charges linearly with a slope equal to:

dVr

dt
= −Vref

RC
. [4.5]

Therefore, the time between the moment when switch S is opened

and the moment when Vr becomes equal to VS/H is proportional to VS/H

itself:

τ =
RC

−Vref
VS/H [4.6]

and measuring that time digitally by means of a counter yields the

conversion result.

This method, called single-ramp analog to digital conversion (using a

Wilkinson converter, from Sir Denys Haigh Wilkinson), works well but

is affected by a potential error coming from drifts in the values of R and

C. However, this type of converter can easily be extended to multiple

channels by sharing the same ramp generator and counter, as shown in

Figure 4.12. If we do not want to see the output buses continuously

changing during the conversion because of the counters operation, of

course, they must be latched appropriately.
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Comparator

Integrator

R

S
counter
N bits

Clock

VS/H

Vref

Strobe

reset
and latch

N

Time

start counting stop counting

and reset C

τ

C

Vr

Vr

Vin

Figure 4.11. Block diagram of the principle of a single-ramp (Wilkinson)
analog to digital converter. A positive slope such as the one shown is

obtained with this circuit by means of a negative Vref

An alternative strategy ensuring that the result does not depend

on passive components such as R and C is called double-ramp

conversion. A possible implementation is shown in Figure 4.13. Here,

the conversion is done in two steps:

– at first, S1 is closed and S2 is open. The capacitor C is, therefore,

charged with a current VS/H/R and the slope of Vr is:

dVr

dt
= −VS/H

RC
. [4.7]

The duration of this phase (controlled by the glue logic) is constant

and corresponds to the time needed for the N-bit counter to count from
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0 to 2N − 1. Then, the voltage reached is thus:

Vp1 = 2NT
dVr

dt
= −2NT

VS/H

RC
. [4.8]

where T is the period corresponding to one clock cycle:

Comparator 1

Integrator

S
counter
N bits

Clock

VS/H,1

Vref

reset

Out 1

N

Comparator 2

Comparator 3

Comparator 4

Out 2

Out 3

Out 4

Latch

Latch

Latch

Latch

VS/H,2

VS/H,3

VS/H,3

N

N

N

N

Reset

R

C

Vr

Figure 4.12. Block diagram of the principle of a
multiple channel single-ramp converter
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– in the second phase, S1 is open and S2 is closed. The capacitor C
is, therefore, discharged with a current Vref/R. The slope is thus:

dVr

dt
= −Vref

RC
. [4.9]

Comparator

Integrator

S1

N bits
counter

Clock

VS/H

Vref

Start conversion

N

Time

Start counting

S2

Glue logic

τ1 τ2

R

C

Step 1

Vr

Vp1

Step 2
Vr

Figure 4.13. Block diagram and timing diagram
of a double-ramp converter

The duration of this phase is not constant, and it is thus proportional

to the voltage reached at the end of the first phase:

τ2 = Vp1

(
dVr

dt

)−1

= −Vp1
RC

Vref
= 2NT

VS/H

Vref
. [4.10]

Therefore, if the counter counts during this phase, as long as

|VS/H| < |Vref | it will not overflow and will reach a value proportional

to: VS/H/Vref , yielding the result of the conversion.

The main advantage of the double-ramp converter is that there is

not a direct dependence on values of passive devices such as R and C.

Long-term variations on these components will be cancelled out

because of the self-calibrating nature of the converter.
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4.4.7. Sigma-delta converters

As we saw previously, it is easy and convenient to employ

comparators as crude yet fast 1-bit ADCs, so let us also explore the

opposite operation. A 1-bit DAC is just a controlled switch that puts

0V at its output to convert a logic zero and Vref to convert a logic one.

The sigma-delta (or delta-sigma) converter principle consists of

employing such simple elements in a system with feedback, where the

difference between the input value and the result of a 1-bit conversion

is integrated, as shown in Figure 4.14. Successively, the bit flow is

digitally filtered and decimated (i.e. the sampling frequency is

reduced).

∫
(·)dt

Comparator

1-bit DAC

control

Vref

VS/H

+

Digital
Filter

Decimation

Clock

latch
NNVs

Result

1

0

Figure 4.14. The basic block diagram of a sigma-delta analog to digital
converter. The block with the integral sign is an integrator

To understand how the strategy works, let us put things in the

following way. At first, the circuit shown in Figure 4.14 converts VS/H

caught between 0V and Vref . Let us suppose that the output of the

DAC is zero), a positive voltage VS/H is integrated, until the output of

the integrator becomes positive and thus the comparator outputs a one.

At the next clock tick, the 1-bit DAC therefore connects its output to

Vref . At the input of the integrator, we thus will have a negative voltage

VS/H − Vref which, once integrated, will tend to decrease the voltage at

the input of the comparator. If VS/H is large, the output of the

integrator becomes rapidly positive and large and we have to integrate

several clock ticks in the negative VS/H − Vref voltage to change the

polarity of Vs. We thus have a one followed by several zeros at the
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output. Vice versa, if VS/H is close to 0V, we obtain sequences of a

single one followed by a lot of zeros.

We obtain a regular flow of ones and zeros and we may measure

their frequency. The number of ones in the total number of bits will be

proportional to VS/H, whereas the number of zeros will be proportional

to Vref − VS/H. Since the sum of the two is equal to the total number of

bits, we may calculate the proportion of ones in an explicit way:

P1 =
VS/H

VS/H + Vref − VS/H
=

VS/H

Vref
[4.11]

To summarize, we obtain a very crude 1-bit representation of the

signal indicating that the signal has increased or decreased, but we

can also count the number of bits in a certain time interval (or

implement a moving average mechanism), integrating these changes

and increment the resolution of the conversion. This latter kind of

operation is a filtering operation that can be implemented digitally. The

result of the filtering is a stream of converted codes represented with N
bits but at a greatly reduced pace with respect to the clock frequency.

The operation of reducing the sampling frequency is called decimation.

There is no risk of aliasing in this operation, since it is done after the

digital filter has been applied. The most important property of the

sigma-delta converters is without doubt its noise shaping properties. In

fact, oversampling is made extremely convenient by the structure of the

converter, which spectrally shifts the conversion noise out of the

bandwidth of the useful signal.

The example described above is the so-called first-order

sigma-delta converter and certain blocks such as the summing node

and integrator are practically implemented by means of a switched

capacitor technique. More complicated higher order structures exist

which allow us to obtain even better performances, in particular for

what concerns noise shaping characteristics.

Sigma-delta converters can be implemented by means of very

simple and efficient circuits. Digital filters are easy to implement and

decimation is also convenient. However, the implicit 1-bit operation is
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based on oversampling, and therefore the final sampling frequency

cannot be extremely high. On the other hand, the oversampling means

that the requirements for the analog anti-aliasing filter (see Chapter 3)

are greatly relaxed, and that is a definite advantage of this very

interesting converter topology. Sigma-delta converters are now so

convenient that they are employed for the vast majority of applications

where high accuracy and low speed is required. More about this can be

found in [KES 09], which also includes a historical perspective on such

converters.

4.5. No silver bullet: choosing the best trade-off

4.5.1. Conversion errors and artifacts

ADCs introduce errors in the measurement chain. Some are

inevitable, such as the quantization errors. Some, on the other hand,

depend on the device and structure chosen and are specified in the data

sheet. We describe the most important ones in Figure 4.15:

– Figure 4.15(a): Offsets introduced during the conversion: static

errors that shift the curve shown in Figure 4.5 horizontally. The error

is therefore the same for all digital codes in the plot.

– Figure 4.15(b): The differential linearity error, which is associated

with a change in the length of certain “steps” in the conversion staircase.

In some cases, a large linearity error may even render the conversion

curve not monotonic or produce missing codes.

– Figure 4.15(c): The integral linearity error, which is the result of

an accumulation of differential linearity errors, concurring together in

distorting the line connecting the centers of the steps of the staircase.

– Figure 4.15(d): Gain errors for which the overall conversion gain

of the converter is not the one expected.

Linearity errors are static errors, yet they affect dynamic

measurements. For example, if very pure sine waves are acquired,

nonlinearities introduce harmonics and intermodulation products in the

digital signal. By means of a discrete Fourier transform, parameters
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such as the total harmonic distortion and the spurious free dynamic

range can be measured. The measurement challenges can be

impressive in this regard, especially with high resolution converters

(see, for example, [WIL 11]).

VS/H

Code

q

ε VS/H

Code

> q < q

Code

VS/H

a) Offset b) Differential nonlinearity

c) Integral nonlinearity d) Gain error

VS/H

Code

Nominal gain
Actual gain

Figure 4.15. Graphical representation of analog
to digital converter errors

The offsets and gain errors can be corrected by means of a

calibration. However, temperature drifts remain and their effects may

affect the result in high-resolution converters. It is also important to

take into account the errors and the drifts present in the reference

voltage provided to the converter as we saw that every converter needs

a reference. Precise integrated reference sources (bandgap or buried

zener) exist and are often available along with the converter itself but

have a certain degree of error and thermal drifts. For this reason, some

high-performance converters include a temperature measurement

system: temperature drifts can thus be corrected digitally.
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4.5.2. Performances of typical converters

Figure 4.16 shows the first page of a family of simple low-cost

ADCs, ADC121C02x. We learn straight away that they are based on a

successive approximation strategy (thus something similar to that

described in section 4.4.5) on 10 or 12 bits. The communication on the

digital side of the converter (i.e. the control commands as well as the

result of the conversion) is done by means of a bidirectional

synchronous serial protocol, which is called I2C. This protocol requires

only one line for the clock (SCL) and one line for the data (SDA).

Once the converter is instructed to launch a conversion (specific codes

exist for that), the 10 or 12 bits are sent serially one by one on the SDA

line. Therefore, the package can be very compact and convenient and

the so-called TSOT (standing for Thin Small Outline Transistor

package) is indeed very small, yet still something we can solder

manually.

We know that approximation converters are not particularly fast;

however, the maximum sampling frequency is 188.9 kSPS (kilo

samples per seconds), which is more than enough for audio

applications. Each sample (10 or 12 bits) is packed in 2 bytes, sent

through the I2C port, therefore this performance is probably limited

more by the maximum speed of the serial bus in the high-speed mode

(3.4MHz) than by the performance of the converter itself. In fact, this

is confirmed by the 1μs time needed for the conversion which suggests

that the converter itself could run marginally faster with a higher-speed

digital interface. Note how the data sheet proudly states that there are

“no missing codes”. These converters employ the power supply rail as

the reference voltage.

Figure 4.17 shows a radically different beast. The LTC2209 is a

very fast 16-bit converter employing a pipeline converting principle.

The declared sampling frequency is 160MSPS and the overall

performances are quite impressive. In this case, the converted data are

made available in a parallel bus to sustain the massive data throughput

at full speed. The analog input is differential, which among other

things helps to reduce noise and harmonic distortion.
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ADC121C021/ADC121C027
I2C-Compatible, 12-Bit Analog-to-Digital Converter (ADC)
with Alert Function
General Description
The ADC121C021 is a low-power, monolithic, 12-bit, analog-
to-digital converter(ADC) that operates from a +2.7 to 5.5V
supply. The converter is based on a successive approxima-
tion register architecture with an internal track-and-hold circuit
that can handle input frequencies up to 11MHz. The
ADC121C021 operates from a single supply which also
serves as the reference. The device features an
I2C-compatible serial interface that operates in all three speed
modes, including high speed mode (3.4MHz).
The ADC's Alert feature provides an interrupt that is activated
when the analog input violates a programmable upper or low-
er limit value. The device features an automatic conversion
mode, which frees up the controller and I2C interface. In this
mode, the ADC continuously monitors the analog input for an
"out-of-range" condition and provides an interrupt if the mea-
sured voltage goes out-of-range.
The ADC121C021 comes in a small TSOT-6 package with an
alert output. The ADC121C027 comes in a small TSOT-6
package with an address selection input. The ADC121C027
provides three pin-selectable addresses. Pin-compatible al-
ternatives are available with additional address options.
Normal power consumption using a +3V or +5V supply is
0.26mW or 0.78mW, respectively. The automatic power-
down feature reduces the power consumption to less than
1μW while not converting. Operation over the industrial tem-
perature range of −40°C to +105°C is guaranteed. Their low
power consumption and small packages make this family of
ADCs an excellent choice for use in battery operated equip-
ment.
The ADC121C021 and ADC121C027 are part of a family of
pin-compatible ADCs that also provide 8 and 10 bit resolution.
For 8-bit ADCs see the ADC081C021 and ADC081C027. For
10-bit ADCs see the ADC101C021 and ADC101C027.

Features
I2C-Compatible 2-wire Interface which supports standard
(100kHz), fast (400kHz), and high speed (3.4MHz) modes
Extended power supply range (+2.7V to +5.5V)

Up to four pin-selectable chip addresses

Out-of-range Alert Function

Automatic Power-down mode while not converting

Very small 6-pin TSOT packages

±8kV HBM ESD protection (SDA, SCL)

Key Specifications
Resolution 12 bits; no missing codes
Conversion Time 1μs (typ)
INL & DNL ±1 LSB (max) (up to 22kSPS)
Throughput Rate 188.9kSPS (max)
Power Consumption (at 22kSPS)

3V Supply 0.26 mW (typ)
5V Supply 0.78 mW (typ)

Applications
System Monitoring

Peak Detection

Portable Instruments

Medical Instruments

Test Equipment

Pin-Compatible Alternatives
All devices are fully pin and function compatible.

Resolution ALERT Output ADDR Input

12-bit ADC121C021 ADC121C027

10-bit ADC101C021 ADC101C027

8-bit ADC081C021 ADC081C027

Connection Diagrams

30020901 30020902

I2C® is a registered trademark of Phillips Corporation.

© 2008 National Semiconductor Corporation 300209 www.national.com
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converters. Courtesy of Texas Instruments
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LTC2209

2209fb

16-Bit, 160Msps ADC

The LTC®2209 is a 160Msps 16-bit A/D converter designed 
for digitizing high frequency, wide dynamic range signals 
with input frequencies up to 700MHz. The input range of 
the ADC can be optimized with the PGA front end.

The LTC2209 is perfect for demanding communications 
applications, with AC performance that includes 77.3dBFS 
Noise Floor and 100dB spurious free dynamic range 
(SFDR). Ultra low jitter of 70fsRMS allows undersampling 
of high input frequencies with excellent noise performance. 
Maximum DC specs include ±5.5LSB INL, ±1LSB DNL (no 
missing codes). 

The digital output can be either differential LVDS or 
single-ended CMOS. There are two format options for 
the CMOS outputs: a single bus running at the full data 
rate or demultiplexed busses running at half data rate. A 
separate output power supply allows the CMOS output 
swing to range from 0.5V to 3.6V. 

The ENC+ and ENC– inputs may be driven differentially 
or single-ended with a sine wave, PECL, LVDS, TTL or 
CMOS inputs. An optional clock duty cycle stabilizer al-
lows high performance at full speed with a wide range of 
clock duty cycles.

n Telecommunications
n Receivers
n Cellular Base Stations
n Spectrum Analysis
n Imaging Systems
n ATE

n Sample Rate: 160Msps
n 77.3dBFS Noise Floor
n 100dB SFDR
n SFDR >84dB at 250MHz (1.5VP-P Input Range)
n PGA Front End (2.25VP-P or 1.5VP-P Input Range)
n 700MHz Full Power Bandwidth S/H
n Optional Internal Dither
n Optional Data Output Randomizer
n LVDS or CMOS Outputs
n Single 3.3V Supply
n Power Dissipation: 1.53W
n Clock Duty Cycle Stabilizer
n Pin-Compatible Family: 
  130Msps: LTC2208 (16-Bit), LTC2208-14 (14-Bit)
  105Msps: LTC2217 (16-Bit)
n 64-Pin (9mm  9mm) QFN Package

64k Point FFT, fIN = 15.1MHz, 
–1dBFS, PGA = 0

FEATURES

APPLICATIONS

DESCRIPTION

TYPICAL APPLICATION

L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.
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Figure 4.17. An extract from the data sheet of LTC2209 converter.
Courtesy of Linear Technology
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32-Bit, 10 kSPS, Sigma-Delta ADC with 100 μs 
Settling and True Rail-to-Rail Buffers 

Data Sheet AD7177-2 
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FEATURES 
32-bit data output 

Fast and flexible output rate: 5 SPS to 10 kSPS 

Channel scan data rate of 10 kSPS/channel (100 μs settling)  

Performance specifications 

19.1 noise free bits at 10 kSPS 

20.2 noise free bits at 2.5 kSPS 

24.6 noise free bits at 5 SPS 

INL: ±1 ppm of FSR  

85 dB filter rejection of 50 Hz and 60 Hz with 50 ms settling  

User configurable input channels 

2 fully differential channels or 4 single-ended channels 

Crosspoint multiplexer 

On-chip 2.5 V reference (±2 ppm/°C drift)  

True rail-to-rail analog and reference input buffers 

Internal or external clock 

Power supply: AVDD1 − AVSS = 5 V, AVDD2 = IOVDD = 2.5 V 

to 5 V  

Split supply with AVDD1/AVSS at ±2.5 V  

ADC current: 8.4 mA 

Temperature range: −40°C to +105°C 

3- or 4-wire serial digital interface (Schmitt trigger on SCLK) 

Serial port interface (SPI), QSPI, MICROWIRE, and DSP 

compatible 

APPLICATIONS 
Process control: PLC/DCS modules 

Temperature and pressure measurement 

Medical and scientific multichannel instrumentation 

Chromatography  

GENERAL DESCRIPTION 

The AD7177-2 is a 32-bit low noise, fast settling, multiplexed, 

2-/4-channel (fully/pseudo differential) Σ-Δ analog-to-digital 

converter (ADC) for low bandwidth inputs. It has a maximum 

channel scan rate of 10 kSPS (100 μs) for fully settled data. The 

output data rates range from 5 SPS to 10 kSPS. 

The AD7177-2 integrates key analog and digital signal condition-

ing blocks to allow users to configure an individual setup for 

each analog input channel in use. Each feature can be user selected 

on a per channel basis. Integrated true rail-to-rail buffers on the 

analog inputs and external reference inputs provide easy to drive 

high impedance inputs. The precision 2.5 V low drift (2 ppm/°C) 

band gap internal reference (with output reference buffer) adds 

embedded functionality to reduce external component count. 

The digital filter allows simultaneous 50 Hz and 60 Hz rejection 

at a 27.27 SPS output data rate. The user can switch between 

different filter options according to the demands of each 

channel in the application. The ADC automatically switches 

through each selected channel. Further digital processing 

functions include offset and gain calibration registers, 

configurable on a per channel basis. 

The device operates with a 5 V AVDD1 supply, or with ±2.5 V 

AVDD1/AVSS, and 2 V to 5 V AVDD2 and IOVDD supplies. 

The specified operating temperature range is −40°C to +105°C. 

The AD7177-2 is available in a 24-lead TSSOP package. 

FUNCTIONAL BLOCK DIAGRAM 
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Figure 1. 

Figure 4.18. The first page of the AD7177-2 converter
data sheet (source: Analog Devices)

www.analog.com
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A look at the first page of the AD7177-2 sigma-delta converter

shown in Figure 4.18 is not for the feint of heart. However, as always

in these cases, there are trade-offs and physical constraints to consider.

As we saw in section 4.4.1, even if it is a “32-bit” converter, the data

sheet states that the number of “noise free bits” is less than 32 and

depends on the sampling speed, which has been adopted. This is rather

typical of high-resolution converters and means that the output code

fluctuates slightly. In this region of ultrahigh resolution, 1 ppm
represents roughly 12 LSBs if the samples are represented on 24 bits.

Temperature drifts, gain and linearity errors may easily introduce

errors decreasing the number of significative bits in a practical,

real-world situation. It is not strange, in this context, that the device

includes a temperature sensor: thermal effect can be compensated

digitally in a calibration phase. In general, achieving more than 20 bits

of absolute accuracy would be the reward of extremely careful

temperature and drift compensation. Extreme care should be dedicated

to providing clean, well decoupled, power supply voltages to the

different parts of the chip (AVDD1, AVDD2 for the analog parts and

IOVDD for the digital part) and keeping the analog and digital

reference pins separate (AVSS and DGND).

4.6. Conclusion

In this chapter, we briefly described some of the classical problems

associated with analog to digital conversion. We tried to give an overall

description useful for those who have to choose a converter for a

specific application. At first, we briefly described the challenges of the

sampling and hold circuits, the first element in the signal path. Then,

we detailed some converting structures. As usual in engineering6,

trade-offs must be applied. A converter may be very fast (flash, half

flash or pipelined) or very accurate (double ramp or sigma-delta), but

both characteristics are very hard (and expensive) to achieve at the

same time. Trade-offs exists such as the successive approximation

converter. When power consumption becomes an issue, such as for

6 And in real-life problems. . .
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battery-operated applications, it is also important to choose a frugal

converter. We have not discussed DACs very much apart from the R2R

converter, since it is often used in the structures of ADC we presented.

We briefly discussed conversion errors and we presented several

examples of typical converters.



5

Introduction to Noise Analysis
in Low Frequency Circuits

Be not afeard; the isle is full of noises,
Sounds and sweet airs, that give delight and hurt not.

Sometimes a thousand twangling instruments
Will hum about mine ears, and sometime voices

That, if I then had waked after long sleep,
Will make me sleep again: and then, in dreaming,

The clouds methought would open and show riches
Ready to drop upon me that, when I waked,

I cried to dream again.

William SHAKESPEARE, The Tempest

5.1. What is noise?

It is not easy to give a unique answer to that simple question. In

fact, depending on the context, noise can be studied from a number of

quite different points of view. However, the presence of noise constitutes

one of the most important limitations for the performances of an analog

circuit. No analysis on a measurement chain is therefore complete if

it does not consider how noise affects performances. We will therefore

adopt here a very pragmatic point of view, which will be enough for the

purposes of an introductory book.

Analog Electronics for Measuring Systems, First Edition. Davide Bucci.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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In the previous chapters, we followed the signal path from the

sensor to the analog to digital converter. In our description, the signal

was carrying useful information. However, along the processing chain,

the signal might be distorted and some unwanted perturbations are

inevitably added. It turns out that, at least in our cruel world, it is

impossible to fabricate a circuit in which the signal is processed but not

perturbed in any measurable way. A certain degree of information is

therefore lost in the process. We call noise everything that is present
along the signal without carrying useful or exploitable information.

Therefore, noise tends to mask the useful signal and entails a loss of

information. For this reason, the signal-to-noise ratio (SNR) plays an

important role and it is often expressed in dB:

SNR|dB = 10 log

(
Psignal

Pnoise

)
, [5.1]

where Psignal is the average power of the signal (i.e. what carries useful

information) and Pnoise is the average power of the noise present.

An electronic circuit treats signals in a certain dynamic range, whose

lower limit is determined by the minimum acceptable value of the SNR

and whose upper limit by linearity issues (such as clipping), for high-

amplitude signals. Most noise calculations require to understand how

the result of equation [5.1] is affected by a particular circuit. We can

roughly distinguish between two different kinds of noise:

– noise coming from the measurement chain itself, even operated

alone. This is the case of stochastic noise generated inside the chain.

– noise coming from circuits placed externally to the measurement

chain itself, perturbing it in some way. This is an electromagnetic

compatibility (EMC) issue, dealing with unwanted coupling.

The distinction is often quite questionable, for example when there

are internal couplings inside the measurement chain itself. For

instance, the large amplitude signal at the output of the amplifier might

perturb the input. However, the distinction helps us, at least in an initial

approach to the problem. However, there is no such thing as an infinite
SNR. Signal and noise are always present together, given the physical

and technological constraints and the environment of the circuit. We
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may more appropriately ask for each situation what is the tolerable

amount of SNR.

Noise is often represented with stochastic models; this chapter

begins with concepts and definitions useful for handling stochastic

finite-power signals. Of course, far from being a complete course in

signal processing (see, for example, [GAR 90] for the detailed

mathematical treatment of random processes), only some basic

concepts are given. We then describe several kinds of noises, which are

present in analog circuits, as well as low-frequency noise models for

operational amplifiers. At the end of the chapter, we will provide a very

short introduction of the issues related to EMC.

5.2. Stochastic modeling of a noise

5.2.1. Some definitions

5.2.1.1. Stochastic processes as a family of statistical samples

A stochastic noise is a signal that can be represented by means of a

stochastic process, which is a probabilistic model of a set of
waveforms. Let us imagine, for instance, to acquire three times the hiss

noise B(t) coming from a FM radio out of tune by means of a

recording oscilloscope. We would obtain three different results, as

shown in Figure 5.1. The three different experiences in the picture are

indicated by the different tags s1, s2, s3. Of course, we do not expect to

have the same result every time, yet we would like to define a certain

number of parameters that allow us to say something about the

statistical properties of such a signal. For example, if we consider a

time instant t0 measured with respect to the instant we begin recording

each sequence, we obtain three different samples B(t0, s1), B(t0, s2),
B(t0, s3) for the three times we repeat the experience. We may raise

questions such as what is the probability that, if we repeat the
experience a fourth time, the sample B(t0, s4) will lie inside a given
interval? Or what can we say about frequency contents of the signal?
We give some definitions and try to give enough mathematical

instruments and tools to answer these questions.
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B(t, s1)

time

B(t, s2)

time

B(t, s3)

time

t0

B(t0, s3)

B(t0, s2)

B(t0, s1)

Figure 5.1. Three different statistical samples of a single stochastic
continuous-time process: noise B(t)

5.2.1.2. Probability density distribution and power spectral
density

Given what was said in the previous section, we may first observe

in Figure 5.1 “vertically” by choosing a particular time t0. The process

B(t0, s) thus is a stochastic variable. We can employ a probability

density distribution pB(b) yielding, at a given time t0, to the integral:

Pb1,b2 =

∫ b2

b1

pB(b)db [5.2]

which gives the probability that, if we do the experience and we take

a sample at a time t0, it is caught between b1 and b2. Moreover, the
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probability density distribution is usually normalized, such that:

P−∞,+∞ =

∫ +∞

−∞
pB(b)db = 1 [5.3]

In our description, we will always suppose that our processes are

stationary in the wide sense, stating that their average calculated with

equation [5.4] does not depend on the instant t0:

μt0 =

∫ +∞

−∞
bpB(b)db = E{B(t0)} = μ, [5.4]

where the notation E{B(t0)} is a shortcut for the probability integral,

the expected value of B(t0). That definition of stationarity also requires

that the autocovariance function depends only on the difference between

the two instants t1 and t2 chosen for the calculation:

CB(t1, t2) = E{(B(t1)− μt1)(B(t2)− μt2)} = CB(τ, 0), [5.5]

where τ = t1 − t2. The wide-sense stationarity is a reasonable

hypothesis if the stochastic process is employed to modelize a physical

system whose properties does not change in time. We are, moreover,

interested in signals whose average μ is equal to zero.

The second important observation is related to a “horizontal”

analysis of what happens, as shown in Figure 5.1, by trying to quantify

the “rate of change” of signal variations. To be more precise, we need

to quantify precisely in which portions of the spectrum power is

carried. This tool1 is the power spectral density ΓB(f). Given a certain

frequency range f1 − f2, the power carried by the signal in the range is

proportional to the variance, calculated by the integral:

σ2
f1,f2 =

∫ f2

f1

ΓB(f)df [5.6]

1 We will not give the details here. As we will see later, it will be enough to know that

ΓB(f) is the Fourier transfer of the autocorrelation function γB(τ), which is calculated

in the time domain (this requires the wide-sense stationarity).
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If we calculate the variance by integrating on the whole spectrum,

we obtain the square of the root mean square (RMS) amplitude of the

signal:

b2RMS = σ2 =

∫ +∞

−∞
ΓB(f)df [5.7]

5.2.1.3. Ergodicity

Another important definition is the ergodicity, a property of certain

signals that allows to determine their statistical parameters from a time

analysis, or, equivalently, from a statistical point of view. For example,

the average μ can be calculated from the probability density function as

done in equation [5.4]. We can also calculate a time average (the upper

bar is a shortcut for the time integral) on, let us say, B(t, s1):

μ = B(t, s1) = lim
T→+∞

1

T

∫ T/2

−T/2
B(t, s1)dt. [5.8]

In an ergodic signal, the two calculations give exactly the same

results. In other words, on an ergodic signal, we can calculate the same

properties by means of a specific observation in the time domain or by

choosing an instant t0 in time and calculating statistical parameters:

reading Figure 5.1 horizontally or vertically yields exactly the same

results.

For what concerns the RMS amplitude of B(t), it can be calculated

from, let us say, B(t, s2):

bRMS =

√
B2(t, s2) =

√
lim

T→+∞
1

T

∫ T/2

−T/2
B2(t, s2)dt, [5.9]

or from the probability density:

bRMS =
√

E{B2} =

√∫ +∞

−∞
B2pB(b)db. [5.10]

With an ergodic process, the two approaches yield the same results,

which is also the same obtained with equation [5.7]. We will consider
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that all stochastic noise processes discussed in the following sections

are ergodic. If we want a classic example of a signal that is not ergodic,

think about a Gaussian noise that is sampled at an instant ts and held

constant. A simple observation for t > ts would lead to a constant value,

which will give no information about the statistical properties of the

sample noise. Yet, the stochastic nature of the signal is still present since

each time we repeat the experience, the sampled value will be different.

5.2.2. Measurement units for pB(b) and ΓB(f)

In the context of signal processing, most signals are normalized

to simplify dealing with measurement units. The definitions we gave

in section 5.2.1 remain coherent with those seen in signal processing

courses and books, but we will always deal with signals that are not
normalized and we must deal correctly with measurement units:

– if B(t) is a voltage signal2, the measurement unit of a sample taken

at a time t0, i.e. B(t0) will be a voltage, therefore measured in volt.

From equation [5.2], we determine that the measurement unit of pB(b)
is V−1;

– if B(t) is a current signal, the measurement unit of a sample taken

at a time t0, i.e. B(t0) will be a current, therefore measured in ampere.

From equation [5.2], measurement unit of pB(b) is A−1.

For what concerns ΓB(f), we deduce from equation [5.6] that

[ΓB(f)] = [B]2/Hz where the notation [...] indicates the operator

“measurement unit of”. However, in practice:

– if B(t) is a voltage signal, the instantaneous power P (t) dissipated

on a load resistance R is P (t) = B2(t)/R. Therefore:

B(t) ∝
√
RP (t) [5.11]

– if B(t) is a current signal, the instantaneous power dissipated on a

load resistance R is P (t) = RB2(t), so:

B(t) ∝
√
P (p)/R [5.12]

2 A signal where the information is directly carried by (i.e. is analogous to) the voltage.
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Therefore, when the load resistance R is unknown, for voltage

signals the square root of the spectral density is specified, measured in

V/
√
Hz. Conversely, for current signals, from equation [5.12] we

obtain the square root of the spectral density, measured in A/
√
Hz.

Those are not real spectral densities, but their square has a real
physical meaning. In equation [5.6], the proportionality constant

between σ2
f1,f2

and the power in the same band is 1/R or R if the

signal is, respectively, a voltage or a current signal.

5.2.3. Negative and positive frequencies

It is well known from signal processing that the Fourier

representation of a signal contains positive as well as negative

frequencies. In our case, the power spectral density ΓB(f) is the

Fourier transform of γB(τ), the autocorrelation function of, for

example, B(t, s1):

γB(τ) = lim
T→+∞

1

T

∫ T/2

−T/2
B(t, s1)B

∗(t− τ, s1)dt [5.13]

ΓB(f) =

∫ +∞

−∞
γB(τ) exp(−j2πfτ)dτ [5.14]

In practice, the result of a Fourier transform is a complex signal

ΓB(f) that features negative as well as positive frequencies. However,

when B(t, s1) is a real signal (that can be observed with an

oscilloscope), it can be shown that its autocorrelation function γB(τ) is

real and symmetric γB(τ) = γB(−τ). The Fourier transform of a real

and symmetric signal has the good taste of being real and symmetric at

its turn. Therefore, knowing and manipulating only positive frequencies
is enough to know and manipulate all the information we need3.

3 We sometimes read that negative frequencies are only a mathematical trick. I

personally do not see that in this way: they are of course intrinsically associated to the

Fourier transform, but they represent a generalization of the concept of frequency. They

might not play a determinant role here, but there are cases where they are indispensable.
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Figure 5.2 provides an example of this trick: it is a representation of

the calculation of an integral on the complete power spectral density

Γ(f), which is done on the frequency range (f1, f2), as well as on the

symmetric interval (−f2,−f1). This frequency range is what is

obtained, for example, by applying a real bandpass filter on the original

signal. Because of the symmetries, we can forget about the negative

frequencies, employ only the positive ones and make calculations on

2u(f)Γ(f) (where u(f) is the Heaviside step function) without having

to mess with the symmetric interval (−f2,−f1). This approach is so

useful and widespread (this is what in practice we did in every example

of Chapter 3) that the 2u(f) term is often silently left out from the

power spectral density.

Γ(f)

Frequency axis

2u(f)Γ(f)

−f2 −f1 f2f1 f1 f2

same area

Figure 5.2. Power calculation on a symmetric power spectral density,
originating from a real signal. The two approaches give the same area,

but the one at the right deals only with positive frequencies

5.3. Different kinds of stochastic noises

We call “stochastic noise” a kind of noise that can be mathematically

modeled employing a stochastic process. In the following sections, we

will review different kinds of noise, giving some information about their

physical origin.

If a wheel spins in one direction, we might count the number of revolutions per second

in one direction and represent it with a number which is a positive frequency. It makes

a lot of sense to use a negative frequency to represent the revolutions per minute in the

opposite direction.
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5.3.1. Thermal noise (Johnson–Nyquist)

Thermal noise is due to the thermal agitation of carriers (electron or

holes) in a conductor or semiconductor. It is a white noise contribution

(its power spectral density is constant) and it is present every time there

is a power dissipation in an electronic device. For this reason, as an

important term of noise in resistors, and it cannot be avoided, being

intrinsically related to the Joule effect. Thermal noise is also called

Johnson noise, or Nyquist noise, from the name of John Bertrand

Johnson (1887–1970) and Harry Nyquist (1886–1976) who studied it

at the Bell labs around 1926. Thermal noise is a Gaussian process,

which means that the probability distribution is as follows:

p(b) =
1

σ
√
2π

exp

[
(b− μ)2

2σ2

]
, [5.15]

where μ is the mean value (zero, if only the noise contribution is

considered) and σ is the RMS amplitude, or the standard deviation of

the noise.

R

R

noiseless

noiseless

R

*

*

*

Thévenin representation

Norton representation

en

in

Figure 5.3. Thévenin and Norton equivalent noise
models for a real resistance. Asterisks indicate explicitly which

devices are generating noise
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In a resistor R, given the linear relation between voltage and current

(the well-known Ohm’s law), the noise can be expressed in a perfectly

equivalent way as the RMS value of the current or the voltage. For that

reason, Figure 5.3 shows the two noise equivalent circuits (Thévenin

and Norton) by representing the noise contributions as external sources.

Given a frequency range caught between f1 and f2 > f1, the square of

the RMS value of the two generators can be calculated as follows:

e2n =

∫ f2

f1

4kBTRdf = 4kBTR(f2 − f1) [5.16]

i2n =

∫ f2

f1

4kBT

R
df =

4kBT

R
(f2 − f1), [5.17]

where kB = 1.38 × 10−23J/K is the Boltzmann constant, T is the

temperature in kelvin and R is the resistance. The spectral densities

being constant, the thermal noise is a white noise. To have an order of

magnitude in mind, the voltage noise contribution of a 1 kΩ resistance

at 300K is approximatively 4 nV/
√
Hz and the corresponding current

noise is 4 pA/
√
Hz.

As in equations [5.16] and [5.17], a high value of resistance

generates a relatively high voltage noise and a low current noise for the

same temperature. Conversely, a low value of resistance gives a low

voltage noise and high current noise. The value of the resistance can

hence be designed to minimize the thermal noise contribution, if the

most detrimental contribution in the circuit is recognized.

Another possibility to reduce the thermal noise is to decrease the

temperature T , but this is the last resort after a skillful and

comprehensive analysis has been done.

5.3.2. Flicker or 1/f noise

This noise contribution is characterized by a power spectral density

that has a 1/f dependence. It is therefore a “pink” noise that can be quite
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relevant for low-frequency and very low frequency circuits. Depending

on the cases, its RMS value can be expressed as a voltage or a current

contribution:

e2n =

∫ f2

f1

K2
e

f
df [5.18]

i2n =

∫ f2

f1

K2
i

f
df, [5.19]

where Ke and Ki are constant. Flicker noise tends to sneak into a

surprisingly vast amount of disciplines [PRE 78].

This noise contribution is usually found in active devices. In some

cases, especially with very old carbon composition types, even resistors

tend to exhibit a certain degree of flicker noise. In this context, this noise

contribution is often referred to as “excess noise”, as something that

adds up to the intrinsic thermal noise discussed in section 5.3.1. Modern

good quality metal-film resistors tend to exhibit very low excess noise.

5.3.3. Avalanche or breakdown noise

When a reversely biased PN junction in a diode or in a transistor

is put in avalanche, there is a noise that is originated by the random

collision of carriers during the avalanche process. It is a noise term that

needs to be taken into account in some cases with Zener diodes, but

also with avalanche photodiodes (where the avalanche phenomenon is

exploited to amplify carriers), as well as photomultipliers.

5.3.4. Burst or “popcorn” or random telegraph signal noise

At the output of some active devices (such as an operational

amplifier), some very fast shifts of the average level might appear

randomly, producing a sound of small explosions when amplified and

heard through a loudspeaker. Also called “popcorn noise,” or “random

telegraph signal noise”, for this reason, it is related to fabrication
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defects, especially during clean room processes. Observed with the

oscilloscope, the popcorn noise shows a distinct signature. Modern

discrete operational amplifiers sold nowadays are practically exempt

from this noise contribution, but modern transistors built with

advanced submicron processed are still affected by it, as shown in

Figure 5.4.

Figure 5.4. Artifacts of the random telegraph noise on the base current
of a submicron heterojunction SiGe/Si bipolar transistor. Courtesy of

Mireille Mouis

5.3.5. Shot noise or Poisson noise

A Poisson statistical process corresponds to the following

conditions:

– we are counting discrete events occurring in a certain amount of

time;

– the events are statistically independent.

Noise with those properties is also called shot noise and its

probability law is, unsurprinsingly, a Poisson distribution:

P(Nt = k) = exp(−λt)
(λt)k

k!
, [5.20]



134 Analog Electronics for Measuring Systems

where P(Nt = k) is the probability that we obtain k events in our

count. A current is a flow of carriers. In an ordinary conductor, they are

electrons bearing a negative charge. In a semiconductor, they might be

electrons or holes (positive charges), depending on the doping.

Therefore, each time we measure a current we are in practice counting

the number of carriers transiting in the unit of time: each pass is a

discrete event, hence the presence of noise with a Poisson distribution.

One of the most classical examples of Poisson noise appears to be

noise in photodiodes. In fact, when carriers have to pass through a

potential barrier (such a PN junction), and we may just be in the case

corresponding to the previous definition. Its power spectral density is

approximatively constant and depends from the average current iD
flowing in the barrier. Therefore, considering a band caught between

frequencies f1 and f2 > f1, the square of the RMS value of the noise

contribution can be calculated as follows:

i2n(t) = [i(t)− iD]2 =

∫ f2

f1

2qiDdf = 2qiD(f2 − f1) [5.21]

where i(t) is the instantaneous value of the current, q is the charge of

the carriers and the notation i2n(t) indicates the time average of i2n(t):

i2n(t) = lim
T→+∞

1

T

∫ T/2

−T/2
i2n(t)dt [5.22]

In practice, in equation [5.21] we are integrating a constant power

spectral density (applying the trick seen in section 5.2.3). The shot noise

is therefore a white noise.

5.4. Limits of modeling

In the previous section, we have adopted some simple models for

noise modeling. These present some important convergence problems

and, albeit useful, must be handled with care. For example, calculating

the power of white noise implies taking into account all the frequency

axis, yielding to an integral that does not converge. The white noise

model is, therefore, simplified and valid only for frequencies below than

a certain limit (around 1012Hz for most conductors).
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Regarding pink noise, it is obvious that expressions [5.18] and [5.19]

do not converge if f1 → 0. In other words, the 1/f model does not work

down to DC. For most situations, working around this problem involves

separately specifying in the data sheet the noise of a device as a peak-

to-peak value for frequencies up to 10Hz, and this is done very often

for operational amplifiers.

For more demanding applications, such as the long-term

determination of the accuracy of reference clocks in metrology

applications, more advanced mathematical tools have been developed,

such as the Allan variance [ALL 65], but an accurate description is

well beyond the scope of this document.

5.5. Contributions from stochastically independent noise
sources

Combining contributions of different voltage and current sources is

an easy task when dealing with a linear circuit. In fact, the linearity

ensures that the superposition term can be applied. When we have

different noise sources in a circuit, we are most of the time interested

in calculating the statistical properties (such as RMS amplitude) of

noise in different nodes of the circuit. If the circuit is linear, the

superposition theorem can be applied with all the noise sources.

However, certain statistical properties of voltages and currents (and in

particular their RMS value) can be easily deduced if the different

sources are statistically independent.

Let us consider the circuit shown in Figure 5.5, composed of two

resistances in series, at the same absolute temperature T . The

instantaneous total noise voltage that can be measured at the output of

the circuit is given by the sum of the two instantaneous noise

contributions (superposition theorem):

et(t) = en1(t) + en2(t). [5.23]
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R1

*

*

R2

noiseless
*

R1

noiseless

R2

*

et

et

en1 en2

Figure 5.5. Summing up statistically independent noise contributions:
an example with two resistances at the same temperature T

However, often we can not predict the instantaneous value of the

contributions, but only the square of their RMS amplitude as seen in

section 5.3.1:

e21,RMS = e21(t) = 4kBTR1B [5.24]

e22,RMS = e22(t) = 4kBTR2B [5.25]

where B is the bandwidth of the circuit used for measuring the voltage

noise given by the two resistances. It makes sense to see whether we can

calculate the RMS value of et(t), and indeed this is possible:

et(t)2 = [en1(t) + en2(t)]2 = en1(t)2 + en2(t)2 + 2en1(t)en2(t)

= en1(t)2 + en2(t)2, [5.26]

where the last passage is made possible by the fact that the two noise

sources are statistically independent and have a zero average. This

equation is often written with RMS amplitudes:

et,RMS =
√

e21,RMS + e22,RMS. [5.27]
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So the RMS amplitude of the resulting noise contribution is equal to

square root of the sum of the square of RMS amplitudes of the two

contributions taken separately. It is worth stressing once again that this

results is a direct consequence of the linearity and the superposition

theorem, and is easily generalizable to any number of statistically

independent sources. It should not be used when the noise sources have

a certain degree of correlation or when the nonlinearity of the circuit

makes sort that the superposition theorem cannot be applied.

5.6. Noise equivalent bandwidth and noise factor

The expressions that we have adopted to calculate RMS amplitudes

in the previous sections are quite often related to the integration of the

power spectral density (or a quantity proportional to it) over a certain

frequency range. Let us consider the situation shown in Figure 5.6,

where a white noise is filtered by an ideal low-pass filter. In this case, it

is particularly easy to calculate the overall power, which is carried by

the signal after the filtering process:

Pideal,B =

∫ B

0
H2

0Adf = H2
0AB. [5.28]

In practice, as we have seen in Chapter 3, an ideal filter cannot be

built. Therefore, the filtering process requires the calculation of an

indefinite integral, as shown graphically in Figure 5.6:

Preal =

∫ +∞

0
|H(f)|2Adf. [5.29]

A useful concept is the equivalent noise band, which is the band Beq

of an ideal filter, whose output power is exactly the same as the output
power of the real filter when the same white noise is fed at the input of
the two filters. Combining equations [5.28] and [5.29], we obtain:

Beq =

∫ +∞

0

|H(f)|2
H2

0

df. [5.30]

The input signal being a white noise, this is a way to characterize the

filter and simplify calculations.
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Pideal = H2
0AB

Preal =
∫ +∞
0 |H(f)|2Adf
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Γb

f
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Figure 5.6. Graphical representation of the total average power at the
output of an ideal and a real filter, fed by the same white noise

As an example, let us take a transfer function of a first-order low pass

filter and calculate its equivalent noise bandwidth:

H(f) =
1

1 + jf/f0
. [5.31]

Recalling the definition given above:

Beq =

∫ +∞

0

∣∣∣∣ 1

1 + jf/f0

∣∣∣∣
2

df

=

∫ +∞

0

1

1 + (f/f0)2
df = f0

π

2
≈ 1.57f0. [5.32]

Another concept that is often employed for a two-port network (for

example an amplifier) is the noise figure. It quantifies the degradation of
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the quality of the signal by accounting for the loss in the SNR implied

in the process.

F =
SNR,input

SNR,output

∣∣∣∣
lin

=
SI/NI

GSI/[G(NI +NA)]
= 1 +

NA

NI
[5.33]

where SI is the power of the input signal, Ni is the power of the input

noise andNA is the additional noise introduced by the network as well

as G, the power gain (which can be less than 1 if the network

attenuates the signal). We are working here with the powers of signal

and noise, which are summed together. Thus, we are supposing that

they are statistically independent, as seen in section 5.5. Very often, the

noise figure is expressed in dB:

NF = 10 log10(F ) = 10 log10

(
1 +

NA

NI

)
[5.34]

Of course, dealing with powers, G in this context is the power gain

that is not to be confused with the voltage gains we used so often in

Chapter 2. When the impedance at the input and output of the amplifiers

is the same, the power gain is just the square of the voltage gain, so the

conversion is not really a big deal.

Equation [5.33] tells that the noise figure of a two-port network

depends both on the noise introduced by the amplifier itself, and on the

noise normally present on the input signal in the best possible

conditions.

5.7. Amplifiers and noise

5.7.1. Noise models of operational amplifiers

A problem that arises frequently in low noise circuit design is to

model the noise contribution of all circuit elements, so as to evaluate

the overall noise level at the output of the circuit. The insight gained

by this operation allows us to understand what might be changed or

optimized in the circuit so that the performances can be increased. We

discussed about the thermal noise issued by resistors in section 5.3.1.

Ideal inductors and capacitors do not generate noise (but the parasitic
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resistance of real ones might give its contribution). We see now which

models can be adopted for operational amplifiers.

In fact, operational amplifiers are quite complex devices and the

detailed description of the noise origin inside them is outside the scope

of this introductory document. However, when an operational amplifier

is used in a discrete circuit, the designer does not need to know all the

intricate internal working details. In the same spirit, a simplified noise

model for operational amplifiers is very often specified in the data

sheets, as shown in Figure 5.7.

Noisy OA

eniii

Noiseless OA

ini

*

*

*

Figure 5.7. Noise model of an operational amplifier. Three statistically
independent noise generators represent the input-referred noise

contributions generated by the whole amplifier

Three statistically independent noise contributions are usually

considered:

– en is the input voltage noise;

– ini the input current noise, for the non-inverting input;
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– iii the input current noise, for the inverting input.
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Figure 5.8. Noise “voltage” and “current” power spectral densities (in
the sense of what seen in section 5.2.2), and a recording of several

seconds of the output noise voltage. From the data sheet of the
OPA227 operational amplifier. Courtesy of Texas Instruments

The en noise generator can be alternatively placed on the inverting

input without changing anything on the results (its phase does not

matter for any RMS amplitude). Very often, characteristics of ini and

iii are extremely similar, so that most data sheets only refer to a generic

“input-referred current noise” to indicate both of them. Typically, a

graph such as the one shown in Figure 5.8 is given, where the spectral

densities of en and ini, iii are shown at a certain frequency range. As it

usually happens, the behavior of the plot shows a flicker noise 1/f
contribution until a certain corner frequency, where flicker noise

becomes negligible against thermal noise. It is interesting to remark

that the frequency at which this happens is not the same for the voltage

noise (around 10Hz) and the current noise (around 1 kHz). It is also

worth noticing that chopper-stabilized amplifiers (see section 2.3.2) are

virtually immune from this flicker noise contribution. Note the

measurement units employed, which follow the conventions seen in

section 5.2.2. A recording of several seconds of the output voltage is

often shown in the data sheet: this is usually done to show that the

popcorn noise does not appear (compare with Figure 5.4). It is also

useful to give an idea on the noise amplitude for very low frequencies,

where reasoning on the power spectral density would be meaningless

because of the limitations of the models discussed in section 5.4. In
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fact, the data sheet of the OPA227 also gives an indication of 90 pV for

the typical peak-to-peak input voltage noise in the band 0.1− 10Hz.

5.7.2. Example: noise factor of a non-inverting amplifier

Let us consider the situation shown in Figure 5.9 on the left, where

a non-inverting amplifier is employed to amplify signals coming from

a dynamic microphone. We will employ the OPA227 operational

amplifier, whose characteristics are shown in Figure 5.8 (a similar

analysis is done in [KAR 03] with different devices). The voltage gain

of the amplifier is given by:

H0 = −RF

RG
[5.35]

which corresponds to a power gain:

G =
R2

F

R2
G

[5.36]

A very important question to treat, especially if the microphone is

expected to sense very delicate sounds, concerns the noise

performances of such a system. We show here how a parameter such as

the noise factor can be calculated in such a situation. Figure 5.9 on the

right shows the noise models of the components employed here: the

operational amplifier with its current and voltage noise sources as well

as the resistances with their thermal noise. Resistances RG and RF

determine the input resistance as well as the voltage gain. Resistance

RT is there to follow the old rule of thumb that “an operational

amplifier should see the more or less the same resistance from each one

of its inputs” to minimize the offsets. We will see if that is justified

here.

The determination of the noise factor in such a situation starts with

an evaluation of the noise associated with the source, in our case the

microphone. Even in a perfectly silent environment, the microphone

delivers a noise due at least to the ohmic resistance of its coil, which is

represented by means of the es voltage source. The square of the RMS

voltage of the noise generated by the microphone is thus:

e2s = 4kBTRsB [5.37]
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where T = 300K is the temperature of the microphone, Rs = 250Ω is

the coil resistance and B is the equivalent bandwidth to consider, from

20Hz to 20 kHz in our case. However, the total noise voltage present at

the input of the amplifier will be lower than es, since we have to consider

the loading effect of the input impedance of the amplifier (which is equal

to RG). Therefore, at the input of the amplifier, the noise contribution

becomes:

e2I =

(
RG

RG +Rs

)2

e2s [5.38]

To calculate the noise figure of the amplifier, we have to sum up all

the contributions of the noise sources shown in Figure 5.9 to calculate

a single term of equivalent input noise. This means the total amount of

noise injected at the input of a noiseless amplifier, which would produce

exactly the same output noise power obtained in our amplifier.

OPA227

RG

1 kΩ

RF

22 kΩ

RT

1 kΩ

out

RG
*

eG

RF

*

eF

RT

*eT

*

en

Noiseless
R’s and op-amp

*
iii

* iniSource

Amplifier

es *

Rs

Microphone
coil resistance: 250Ω

Figure 5.9. On the left, a non-inverting amplifier amplifying the signal
produced by a dynamic microphone. On the right, the same circuit

where all the noise sources have been explicitly indicated (therefore,
all the components are noiseless)

Since all noise sources shown in Figure 5.9 are uncorrelated,

applying what was described in section 5.5, we expect that the

equivalent input noise voltage would be given by a sum of the square
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of the RMS amplitude of all noise sources with appropriate

coefficients, therefore something like:

e2A = c1e2n + c2i2ni + c3i2ii + c4e2T + c5e2G + c6e2F [5.39]

where c2 and c3 have the dimension of a resistance squared and where

other constants are dimensionless. The circuit being linear, each source

can be considered separately.

RG

RF

RT

* ini

vs

Source

Amplifier

Rs

Figure 5.10. Calculating the c2 coefficient by switching
off all the noise sources except ini

As an example, let us calculate c2, which represents the influence of

the current source associated with the non-inverting input. Probably,

the most straightforward way to proceed is to calculate the output noise

voltage and then divide it by the voltage gain of the circuit to calculate

the equivalent input noise contribution. Therefore, we consider the

circuit shown in Figure 5.10 where only the noise source ini is kept

active. Note that we keep in place the resistance Rs, which represents

the microphone, even if the associated noise source is switched off.

With a little effort of circuit analysis, it is not difficult to calculate the

instantaneous voltage vs at the output of the circuit by supposing to

know the value of the current ini:

vs = iniRT

(
1 +

RF

Rs +Rg

)
[5.40]
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and finally divide that for the voltage gain calculated in equation [5.35]

to obtain the equivalent input noise contribution. Since in equation

[5.39] what matters is the square of the RMS voltage, we obtain the

equivalent noise contribution associated with the current noise of the

non-inverting input of the op-amp:

c2i2ni =

(
RG

RF

)2

R2
T

(
1 +

RF

Rs +Rg

)2

i2ni [5.41]

Note how the choice of the sign of the source ini done in the model

shown in Figure 5.9 does not affect the final result and it is therefore

purely conventional. This is true for all noise sources.

Term Coefficient Source Sp. density Contribution

c1
(

RG
RF

+ RG
Rs+RG

)2

eni 3 nV/
√
Hz (0.36μV)2

c2
(

RG
RF

)2

R2
T

(
1 + RF

Rs+Rg

)2

ini < 1.5 pA/
√
Hz (0.18μV)2

c3 R2
G iii < 1.5 pA/

√
Hz (0.21μV)2

c4
(

RG
FF

+ RG
RG+Rs

)2

eT 4 nV/
√
Hz (0.49μV)

c5
(

RG
RG+Rs

)2

eG 4 nV/
√
Hz (0.46μV)2

c6
(

RG
RF

)2

eF 19 nV/
√
Hz (0.12μV)2

Grand total eA (0.82μV)2

Input noise
(

RG
RG+Rs

)2

es 2 nV/
√
Hz (0.23μV)2

Noise figure 11.3 dB

Table 5.1. Terms in equation [5.39] for the various noise sources,
integrated in the band B between 20Hz and 20 kHz with an ambient

temperature T = 300K

Similar calculations can be repeated for all coefficients and the

results are summarized in Table 5.1. We calculated there the noise

spectral density for each source and, in the last column the total

contribution to the terms of equation [5.39], integrated in the audio

band. The noise figure is then calculated by means of equation [5.34].
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Such a breakdown analysis is interesting since it tells us the following

things:

– the most relevant term in equation [5.39] comes from resistance

RT, which creates a lot of noise. Given the low values of RG and RF,

the tiny offset generated by the bias currents of the operational amplifier

will be probably a negligible nuisance, if compared with the benefits

of removing that source of noise. Putting RT = 0 also eliminates

the c2 coefficient, therefore further reducing the noise produced by the

amplifier, yielding a noise figure of 9.3 dB;

– the component that taken alone produces the highest spectral

density of noise is by far resistance RF. However, its contribution to

the noise produced by the amplifier is the smallest, due to the place

which occupies in the circuit;

– the current noise is estimated in a very pessimistic way since

1.5 pA/
√
Hz is the spectral density at a frequency of 20Hz, where

the 1/f noise greatly affects the performances. However, the terms

associated with current noise are already relatively small in the table

so that they do not deserve a more detailed analysis at least at this

step. When needed, one may combine a model such as the integrand

of equation [5.18] with a white noise model to represent the graph

in Figure 5.8 with the appropriate coefficients and then integrate the

resulting expression.

Overall, a noise figure of 11.3 dB, which can be reduced to 9.3 dB
by shorting RT, is a pretty decent result in this situation, since a real

microphone will probably deliver a noise voltage larger than the

thermal contribution of its coil (after all, there is an acoustic noise level

which will be recorded). However, we notice that the most relevant

contribution will be given by the resistances and not by the operational

amplifier. Unfortunately, the data sheet of the OP227 only specifies the

typical noise performances and not the maximum ones. Therefore, the

noise figure calculated here will be “typical” as well: this automatically

rules out the choice of the OP227 in those situations where noise

performances must be guaranteed.
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5.7.3. Noise models of instrumentation amplifiers

As we saw in Chapter 2, different structures of instrumentation

amplifiers exist. Therefore, there are slightly different noise models

that can be applied for them. For the most classical structure of

instrumentation amplifier discussed in section 2.4.4, the usual noise

model is shown in Figure 5.11. Similarly to the operational amplifier,

we have three noise sources eni, iii and ini representing the noise

contributions referred to the input, exactly as we saw for operational

amplifiers in section 5.7.1. On the one hand, there is also (usually) the

contribution of a fourth voltage noise source eno referred to the output.

When the gain is relatively low, the output noise of the device tends to

dominate. On the other hand, when the gain is high, it is the

input-referred noise that plays an important role. The origin of the

input and output noise terms are easy to understand by studying the

structure of the instrumentation amplifier shown in Figure 2.7. In fact,

the instrumentation amplifier is divided into a differential input stage,

which provides the buffering and most part of the differential gain, and

an output stage, which is a differential amplifier with a fixed gain. This

is also reflected by the noise contributions. Resistance Rg also

introduces an additional noise term (not shown in the circuit), whose

influence depends on the exact internal structure of the amplifier.

NoisyRg

out

ref.

ini *

iii *

eni

*

NoiselessRg

out

ref.

eno
*

Figure 5.11. Typical noise model of a 3 op-amps
instrumentation amplifier
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5.8. Noise from “outer space”: electromagnetic
compatibility

When deploying an electronic circuit in a real-world situation, we

sometimes must face quite bad surprises. It often happens that two

circuits separately working perfectly on the bench of a laboratory cease

to work when put in close proximity. Often, a real-life environment is

quite noisy from the electromagnetic point of view, from perturbations

coming from mains frequency, Radio Frequency (RF) devices and so

on [CHA 06]. Problems like those are related to the interaction of a

circuit with its “external” environment. In the case of a sensitive

measuring device, great care is to be devoted to avoid that external

noise sources perturb its most delicate sections. Potentially noisy

appliances should be screened in an efficient way to avoid perturbing

devices put in their proximity.

All this and much more constitute a realm called Electromagnetic

Compatability (EMC). Suspicions of black magic are sometimes raised

against experts of this domain, probably because EMC contains

elements of low-frequency electronics, but also wave propagation and

RF design. Many issues arise from coupling between separate circuits

in which unwanted or uncontrolled emission perturbs in some extent a

victim circuit. A distinction can be done between short-range

low-frequency coupling, where it is possible to identify and separate

contributions from electric and magnetic fields, or high-frequency

coupling, where the two are indissociable. The distinction in this

context is related to the size of the circuit (represented by a

characteristic length l) and the wavelength λ of the perturbing signal. If

λ is smaller or comparable to l, then we are in a high-frequency

framework. If λ is much greater than l, we are in the low-frequency

case.

Table 5.2 shows some of the most frequent causes of problems

and suggests how to possibly fix them. If the causes are clear in the

schematics in the real-world situations where they can sneak in some

quite subtle ways. Here, a small list is as follows:
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– (A) Common impedance coupling: It is a cause of conductive

coupling due to the fact that there is no such thing as a zero impedance.

So if the source and the victim circuits share a common conductor,

the voltage drop on its impedance Z due to the current is is different

from zero and adds up to the sensor voltage. This arises very often

with reference or ground connections, hence the classical suggestion of

keeping separate references of different circuits, putting them together

in a single point (star connection).

– (B) Inductive coupling: At low frequency, a variable magnetic field

due to currents loops in the source circuit induces a voltage in the victim

source. The field and the voltage being proportional to the total area of

the loops, a first solution is to try to reduce them as much as possible.

Twisted cables are also employed so that magnetic couplings tend to

cancel out due to the twisting. This solution is employed for Ethernet

and telephone cables. When twisting is not possible, screening can be

effective with high-permeability materials (mu-metal).

– (C) Capacitive coupling: At low frequency, parasitic capacitive

effects due to the electric field between two conductors can perturb a

low-level signal. A first solution is to adopt an electrostatic shield or

guard. A second possibility is to employ a differential signal where

the information is conveyed by the voltage difference between two

conductors that are kept as physically close as possible. If the same

perturbation is therefore coupled in both of them in the same amount,

a differential amplifier will be able to cancel out almost completely its

influence, thus retrieving the signal of interest.

– (D) Radiative coupling: At high frequency, the source leaks

(or emits on purpose) a certain RF power that is absorbed by the

victim circuit. Injection of sufficient RF power in an unprotected low-

frequency circuit is a guaranteed way to make it behave in a strange

way. Everyone has probably heard the funny sounds emitted by an audio

power amplifier when a cellular phone rings nearby. The RF waves

emitted by the telephone enter the audio circuits by connection cables as

antennas. The high-frequency RF signal then drives the input stages of

the audio amplifier to saturation and the resulting nonlinearities perform

a sort of envelope detection. The result is that an unpleasant audible

signal in the audio range is processed by subsequent stages and sent to
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the loudspeakers. Solutions are not always easy to be identified but tend

to reduce the unwanted RF power emitted (norms exist for that), or filter

for RF each signal at the input of a potentially sensitive circuit.
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Victim conductor
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Table 5.2. Examples of low-frequency coupling between circuits with
possible solutions

Of course, in practice, several EMC issues can arise at the same time

and interpreting the physical coupling mechanisms correctly requires
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a certain degree of experience (here is where all that black magic

stuff comes into the picture). The first idea involves trying to make

sure that low-frequency and RF emissions are below limits fixed by

specific norms. Nowadays, all electronic devices put in the market must

be thoroughly tested to prove that international norms are respected.

The second idea is to make sure that delicate circuits are adequately

screened. Since a certain degree of communication with the external

world is always necessary, a screening cannot be complete, for example

a sheet of metal can have a hole so that a cable can pass. The problem is

that a hole of the wrong size in the wrong position might completely

remove the effectiveness of an RF screening. From a very practical

point of view, here are some suggestions useful when working with low-

frequency analog circuits:

– beware of the power supply noise: good operational amplifiers

reject quite well a 50Hz or 60Hz ripple on their power supply, but

not always a 50 kHz noise from a switching power supply, let alone

10MHz. So, keep analog power supply rails as clean as possible;

– beware of the magnetic coupling at 50Hz or 60Hz from mains

transformers. Standard ones (with E-I cores) tend to have a certain

leak of magnetic flux that can do nasty things. The orientation of the

transformer matters and toroidal-core ones tend to be less subject to this

problem;

– beware of digital circuits. Fast voltage transitions at the output of

logic gates can result in a considerable amount of noise on a wide RF

bandwidth. Keep physically separated analog and digital front-ends. In

delicate cases, optocouplers, insulation amplifiers and insulated power

supply converters can be helpful;

– filter for RF any input of a circuit potentially exposed to RF. Since

everyone has a portable phone or a wireless device, this translates to:

always filter for RF any input of an analog circuit;

– beware of long cables or PCB tracks; we are constantly subjected

to magnetic and electric fields at mains frequency. Shield if necessary.

Employing differential signals is also an effective option;

– the voltage reference node of our circuit may (or not) be connected

to the chassis ground or (if it is metallic) to the box containing the
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instrument. At its turn, often for safety reasons, the chassis is tied to

the Earth connection of power plugs. It is worth remembering that the

reference, the chassis and the Earth are three different things. They may

or not be at the same potential and if they are tied together there may

be some contact resistance to consider. An unwise ground connection is

also a classic source of ground loops.

5.9. Conclusion

In this chapter, we briefly discussed the noise sources that can

perturb the analog front end of an electronic measurement system. Far

from being comprehensive, we have just introduced a brief overview of

the principles of stochastic signal modeling and dealt with some types

of noise classically found in real-world circuits. We ended with a very

concise introduction to the issues of EMC.
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