
Contributors:
AmberPoint

BearingPoint
Composite Software

MomentumSI
Progress Software

Editor:
Jim Green

GETTING IT RIGHT

Service
Oriented
Architecture

Contributing Authors:

David Besemer
Paul Butterworth
Luc Clément
Jim Green
Hemant Ramachandra
Jeff Schneider
Hub Vandervoort

Editor:

Jim Green

GETTING IT RIGHT

An Implementor’s Guide to Service Oriented Architecture
Getting It Right

www.SOAguidebook.com

Copyright © 2007-2008 by Amberpoint Inc., BearingPoint Inc., Composite
Software, Inc., MomentumSI, Progress Software Corporation, and Luc Clem-
ent (“the Contributors”). All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, as amended,
no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

ISBN-13: 978-0-9799304-0-9
ISBN-10: 0-9799304-0-5

First Edition
Printed April 2008

Printed and designed by Westminster Promotions.

Information has been obtained by the Contributors from sources believed
to be reliable. However, because of the possibility of human or mechanical
error by our sources, one or more members of the Contributors, the Con-
tributors do not guarantee the accuracy, adequacy, or completeness of any
information and are not responsible for any errors or omissions or the results
obtained from the use of such information.

Chapter 1: Getting It Right.. 1

1.1 Purpose Of The Book... 1

1.2 How We Put The Book Together.. 1

1.3 How To Study The Book... 2

1.4 A Few Comments On SOAs.. 3

1.5 The Organization Of The Book... 3

1.6 What’s Not In The Book... 6

1.7 Conclusion... 7

Chapter 2: Designing Services..................................... 9

2.1 Services Introduction.. 9

2.2 Data Services... 11

2.3 Transaction Services.. 16

2.4 Service Interface Design... 18

2.5 Security Considerations... 23

2.6 Conclusion... 26

Chapter 3: Registries and Repositories................. 29

3.1 The SOA System Of Record.. 30

3.2 Buy Versus Build.. 32

3.3 Getting Started... 34

3.4 SOA & The Software Development Lifecycle........................... 36

3.5 Conclusion... 38

Chapter 4: Enterprise Service Buses........................ 41

4.1 Introduction to ESBs.. 42

4.2 When To Use An ESB.. 44

4.3 Selecting An ESB Product.. 47

TABLE OF CONTENTS

TABLE OF CONTENTS

4.4 Applications Of An ESB.. 48

4.5 Mediation and ESBs... 53

4.6 Conclusion... 59

Chapter 5: Runtime Management............................. 61

5.1 Understanding Topologies... 62

5.2 Managing Operational Health... 63

5.3 Detecting And Diagnosing Exceptions.................................... 65

5.4 Security.. 66

5.5 Ensuring Operational Integrity.. 69

5.6 Conclusion... 70

Chapter 6: Organizing For Success........................... 73

6.1 Key SOA Success Factors... 74

6.2 The SOA Maturity Model to Facilitate Business

 and IT Alignment... 75

6.3 Laying The Organizational Groundwork.................................. 76

6.4 Establishing Basic Organizational Structures.......................... 78

6.5 Implementing The Proper Service Discovery Model............... 79

6.6 Creating A SOA Roadmap.. 81

6.7 Aligning Project Development Processes................................ 83

6.8 Conclusion... 84

Chapter 7: Capability Development......................... 87

7.1 Getting Started... 87

7.2 Role Based Training... 88

7.3 Tailoring The Training Curriculum To Your Environment.......... 93

7.4 Change Management.. 94

7.5 Conclusion... 95

TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter 8: Pulling It Together...................................... 95

8.1 Where To Start... 95

8.2 Scope Of Implementation... 95

8.3 How To Measure Success... 96

8.4 Summary Of Recommendations.. 96

About The Authors.. 101

Chapter 1:

Getting It Right

1.1 Purpose Of The Book

The title of this book includes the word ’implementors’. That single word
describes the focus of our work here. This book is a treatment of the
practical issues an implementor would face when implementing a SOA. There
are other very fine books on standards and basic education about SOA and
web services. In fact, if you are not familiar with the web service standards,
you might find some of this other material very useful as preparatory reading
prior to digging into the implementation issues described herein.

It has frequently been observed that you can have an understanding of the
philosophy of a SOA and the specifics of web service standards and still not
know how to implement a SOA system that will provide lasting value to your
enterprise. This book is an expedition through the considerations above the
standards that come from practical experience in implementing a SOA. It is
a practical book for the practitioner. The goal is to make the implementation
of a SOA simpler and to encourage more people to deploy their own SOA.
After all, today a SOA is considered the best way to create an integrated
system that implements a consistent architecture on a large scale, providing
flexibility and agility across applications and data for long lasting value.

As with other complex topics, those who have the right background,
work on the issues daily, and study the topic in depth, will achieve an
understanding more comprehensive than others. There are a handful of
true experts in the industry that have achieved insights over time from their
singular focus on the topics at hand. A main purpose of this book is to
capture hard gained knowledge and make it available to a wide audience.
Leveraging this expertise, in a way that we can all benefit from, has from
the beginning been the primary goal of our endeavors. Hopefully we have
achieved our goal.

1.2 How We Put The Book Together

Since the SOA agenda covers a variety of different topics, no single person
is authoritative across this wide spectrum. The approach, therefore, was

1

CHAPTER 1

Key RECOMMENDATIONS:

Don’t let anyone overwhelm •	
you by trying to teach you
everything at once.

Do as much as you can •	
digest, learn from it, and
then add to it.

Regardless of the distance •	
you travel, have confidence
that you are on the right
path.

SOA is the only good •	
alternative for building large
scale systems.

1GETTING IT RIGHT

CHAPTER 1

Jim Green
Chairman and CEO

Composite Software

to maximize the contributions of the book by leveraging the experience of
different experts in each specific topic. Also, we went beyond those who
create the basic standards and assembled a group of writers who understand
the standards, the theory behind the leading technologies and products, and
the issues with implementations. As a result, the book is stronger than if any
one person were to author it.

Given the importance of the writers and their busy schedules, we did not
attempt a group writing effort. Instead, we put together a ’compendium’
of information, with each chapter standing alone. As such, there are minor
differences of opinion that can be found in the book. Hopefully, this makes
the book richer, and doesn’t introduce confusion. You will find that in many
areas there is no absolute answer to the questions. The different perspectives
and focuses contained within are very much in alignment, but on some
topics we felt that the reader is better served by exposure to differing points
of view. In the final analysis, the more complex the issue, the more the reader
will have to interpret and adapt the input here to their specific situation.
There is no such thing as an ’SOA cookbook‘.

1.3 How To Study The Book

Each chapter deals with a major topic that is important to your SOA
implementation. Some effort has been expended to introduce topics in the
general order that you need to understand them. However, each chapter is
independent, so you can use the book as a general reference, and read each
chapter as your interest turns to that topic. Therefore, the book is not a novel
with a continuous story line that runs between the chapters. It is more of a
reference guide. The many recommendations in the book are put forward for
your consideration.

Much more is learned by actually ‘doing’ than by reading books (including
this one). One of our biggest challenges therefore was to keep the book
short. There’s a lot more that could be said. But practicality was a top goal,
so brevity was prioritized. In fact, even if you don’t read the book, take a
look at the key recommendations on the first page of each chapter, which
are also summarized in the conclusion. Every attempt has been made to get
to the most important points as soon as possible.

The contents of this book are the result of years of experience by experts.
To achieve the goal of being succinct, much of the background has been
omitted. As you gain your own experience with SOAs you will better
understand the recommendations herein. It is hoped that this book can be a
frequent reference, as well as an initial tutorial.

2 Chapter 1:

1.4 A Few Comments On SOAs

A SOA creates a flexible architecture, which allows for ’reconfiguring’ over
time. In fact, ‘agility’ has been identified as the largest single driver for a
SOA. This attribute has more value when the target is a larger system that
may change (following the simple assumption that larger systems are more
difficult to modify than smaller ones). As you become more comfortable with
a SOA approach you will find that this style of computing is not targeted
toward being a better ‘application architecture’, but is more of an ‘IT system
architecture’. This perspective is important to understand as the reader
moves through the material in the book.

As with all systems that are partitioned with strongly defined interfaces, SOA
doesn’t necessarily create the highest performing system. Just as assembly
code can produce a faster application than a higher level language (at the
cost of higher maintenance), breaking the principles of a SOA can increase
performance. With the ever increasing performance of processors and
networks, a SOA approach assumes that the business benefits of lower
maintenance and increased flexibility are more than offset any inefficiencies
by the use of standards, components, and modularity. This, however, may
not be universally true. Web services standards may not be the correct
approach for all situations, including very high performant applications. (This
is the first example of practical advice in this book.)

However, in large scale systems, such as an enterprise IT architecture, there
is no attractive alternative. Avoiding ‘spaghetti code’ at this level can not
only result in reduced costs during development due to reuse, increased
compatibility between heterogeneous systems due to the use of standards,
lower maintenance costs due to a well structured architecture, but most
importantly, it can retain an organization’s ability to change as needed, and
respond to changing business conditions. It is well worth the effort, and
that’s why we created this book—to help.

1.5 The Organization Of The Book

Chapter 2: Designing Services
Services are the fundamental building blocks of a SOA. The business
functionality and the corporate data are contained within the services
themselves. It is fairly straightforward to create a service, but also very
possible to follow all of the standards the industry has worked so hard to
create, yet not achieve the philosophy of a SOA and the benefits of reuse.

It is important to realize that web services standards (like SOAP, WSDL, HTTP,
XML, UDDI, etc.) are specific and rigorously documented. SOA, on the other
hand, is a methodology. Use of the standards while not adhering to the
principles of the SOA ’philosophy’ yields very little. Much of this issue is dealt
with in the design of the individual service interfaces.

3GETTING IT RIGHT

As indicated above, there are a number of implementation issues ‘above’ the
standards. In this chapter, several of these are discussed, including topics like
designing for reuse and error handling. You may or may not elect to follow
the recommendations, but the issues discussed are important and should
receive careful attention.

If you are an application developer or a service author, this is the most
important chapter for you.

Chapter 3: Registries and Repositories
As your enterprise creates more services than can easily be remembered, you
will need to put something in place to keep them organized. The industry
standard for this is called UDDI. A UDDI registry has become a required part
of all large scale SOA systems and serves as the ‘SOA System of Record’.

Beyond the basics of providing the authoritative record of the service
definitions, revisions, and description, the service registry has over time taken
on an additional responsibility. The registry can make a major contribution
toward the governance of the services through their lifecycle. Topics such
as visibility (how does one discover a service), trust (what is the SLA for
a service), and control (how does the organization control change) are
discussed, along with numerous recommendations.

If you are a development manager and will be leveraging the ‘reuse’
capabilities of SOA, this chapter is required reading for you.

Chapter 4: Enterprise Service Buses
The simplest communication protocol for SOA is HTTP. However the
request/reply model of this Internet protocol does not address all of the
communication patterns that are of interest. Upgrading from the simple
HTTP protocol to a richer infrastructure represented by an enterprise service
bus (ESB) can add richness to your system. One example is the ability to
implement publish/subscribe protocol capabilities.

An ESB is all about instantiating some mediation between the participants
in the system. Once this is done, the mediating ESB can add value in a
variety of ways, including protocol conversion, observation of system-wide
performance, data transformation between systems, and intelligent routing.

The capabilities listed above are indeed impressive. However, the addition
of an ESB also adds complexity, and numerous implementation trade-offs
will be required. In addition, there are different ’types’ of ESBs, and it is
important to understand as much as possible prior to product selection and
implementation.

If you are responsible for establishing the infrastructure for your SOA that
will support all of the services this chapter is a must read.

4 Chapter 1:

Chapter 5: Runtime Management
Even with the right organization (Chapter 6), who are well trained (Chapter
7), well designed services (Chapter 2), the right infrastructure (Chapter 4),
the right development practices and system of record (Chapter 3), things
can/will still go wrong. In fact, if you do things well, you will create a system
that is too sophisticated for you to easily observe it. To achieve the desired
business objectives, the system must be appropriately monitored and
governed at runtime.

This aspect of a SOA is fascinating in that the better things work, the
less you see. After achieving success with automation and transparency,
you then need to institute observe-ability to provide the proper runtime
governance, trouble-shooting, and control. Issues include practical topics
such as understanding what the current topology is and what is happening,
assessing the current health of the overall system, and ensuring the
continuing integrity of the system as it evolves—in other words, keeping it
running and under control.

If you are responsible for the overall SOA system design, you must
incorporate management into your plans. If you are responsible for the
operation of the SOA system this is your most important chapter.

Chapter 6: Organizing For Success
As you move from large applications to modular components, there are more
interactions between the software components, and between the providers
and consumers of the components. Assuming that components are smaller
than applications, there will be more of them. And assuming that different
components/services will be created by different people, then there is an
organizational impact generated by a SOA.

Many times, the communication required to work things out actually
improves design and avoids problems later. Contrary to what some say, your
existing personnel are probably fine, but they may need to think differently,
assume somewhat different roles, and learn a little, but they can do this.

If you’re an organization manager and only read one chapter, this is the one.

Chapter 7: Capability Development
The system you build will be a reflection of the skill and dedication of the
people who put it together. One of the first steps, then, is to prepare and
educate your team. When approaching a SOA project proper training cannot
be overemphasized.

It is critical to understand that you should not view SOA as the objective. The
objective is to build a system that supports your organizational goals. SOA
is only an ‘approach’ to putting that system in place. From this perspective,
it is clear that the system should be put together by those who know your
business best. It will be easier to train your own staff (who know your
business) on SOAs than to train outside SOA experts on your business.

5GETTING IT RIGHT

If you are charged with the creation of the SOA implementation team this
chapter is required reading for you.

Chapter 8: Pulling IT Together
SOA provides value when it is implemented, regardless of the scope. So it
is important to get started on the journey, regardless of where you start.
Measuring progress is important as success begets more success, and failure
begets improvement. Leveraging the hard earned knowledge of experts
will help you accelerate your journey. So use the recommendations as your
implementor’s guide.

If your mission is to drive successful SOA implementations, you will want to
leverage the key recommendations summarized in this chapter.

1.6 What’s Not In The Book

A book such as this needs to be tightly focused and not too long. As such,
there are topics that are beyond the reach of our efforts here. We have
oriented our writing toward those that are starting their SOA efforts to help
them overcome the initial learning curve. There is not enough space to deal
with several of the advanced topics. If you move beyond the level of this
book and become frustrated by its incompleteness, while frustrating to you,
it would signify success of a sort for the authors. Should you find yourself in
such a state, you now know where to find us to get more help.

As you build your SOA system, it will enable and support a wide variety
of uses and application types. As tempting as it is, we have avoided
expanding into the ‘application arena’. You may, for example, be interested
in providing readable information to users through portals, collating and
calculating information in a business intelligence (BI) report, propagating and
synchronizing information between systems through application integration
(EAI), or automating a set of business tasks through business process
management (BPM). All of these areas (and others) will find your SOA
infrastructure enormously enabling. Unfortunately, dealing with these topics
alone would constitute a complete book in its own right. We have therefore
had to set aside these topics for another time and place.

Despite its limitations, this book not only provides a significant amount of
factual information, but conveys principals and methodology. If you maintain
the discipline described herein, you can go far beyond what we have written
and create your own chapters as extensions to ours.

6 Chapter 1:

1.7 Conclusion

No one thinks it all through at once. No one puts all of the pieces in place
perfectly. But once on the right path, it is more straightforward than it
first seems, and additional pieces fall into place logically. Don’t let anyone
overwhelm you by trying to teach you everything at once. Do as much as
you can digest, learn from it, and then add to it. Regardless of the distance
you travel, you will have accomplished a lot. Mostly though, you will have
instantiated a system that others can extend. The days of calcified IT systems
are numbered.

Whether you are planning a major overhaul of your large scale IT system, or
you want to create a few services using the new standards, a couple of hours
of study and preparation may help avoid common pitfalls and propel you
toward success. If so, then our efforts here will be rewarded.

Good luck with your endeavors.

7GETTING IT RIGHT

8 Chapter 2:

Designing Services

2.1 Services Introduction

In a service oriented architecture, services provide the basis for
communications between systems and technologies. Services are well-
defined units of functionality that are accessible over the network via
standard protocols. They are invoked by software, and are not accessed by a
human user. In other words, services are more like a remote procedure calls.
The system that implements a service is called a provider, while the system
that uses the service is called a consumer.

Services can be built in a variety of ways, but standards and guidelines exist
to promote interoperability and reuse in an enterprise-class service oriented
architecture. The central standards relevant to service implementation
and deployment are XML, SOAP, WSDL, and UDDI (refer to the following
illustration), and services that conform to these standards are called web
services. A web service is actually a collection of individual service operations,
each of which can be thought of as an individual procedure.

9DESIGNING SERVICES

CHAPTER 2

Service Invocation

Consumer

CLIENT
APPLICATION

Provider

SERVER

Network

SOAP REQUEST

SOAP REPLY

SERVICE
CALL

SERVICE
RESPONSE

(HTTP, JMS, SMTP)

Key RECOMMENDATIONS:

Base your services on vendor •	
independent industry
standards to ensure the best
reuse and interoperability.

Create and deploy your •	
services in an appropriate
and best-of-breed
infrastructure to ensure
operational efficiencies (e.g.
an information server for
data services; an application
server for transaction
services.)

Design service interfaces that •	
are simple, consistent, well-
documented, and motivated
by business requirements to
ensure adoption, reusability,
and expandability.

Employ security policies to •	
meet the business needs of
your enterprise.

David Besemer
Chief Technology Officer

Composite Software

Figure 2.1: Service Invocation

Unfortunately standards alone are not enough to ensure service
interoperability. Additional guidelines have been created by an organization
called the Web Services Interoperability Organization (WS-I). WS-I’s Basic
Profile defines best practices within the Web service standards and promotes
the highest possibility for reuse and platform independence. Organizations
can benefit greatly from following recommendations of the WS-I Basic Profile
for their service development and deployment.

Services generally either provide data to the consumer, or they create or
modify data in an underlying system. The former are called data services,
and the later are called transaction services. An example of a data service
might be retrieveOrdersForCustomer, which might take a customer
number as an input parameter. An example of a transaction service might
be updateOrderShippingStatus, which might take an order number and
the updated shipping status as input parameters. These services present
separate challenges to the service provider and they are generally created
and deployed using different infrastructures. Data services are created and
deployed in an information server, while transaction services are created and
deployed in an application server. These different types of services and their
associated infrastructures are described in detail later in this chapter.

Getting started with service development and deployment in your enterprise
does not have to be difficult or expensive. Rather than following a ’boil
the ocean‘ approach that seeks to define all enterprise-wide services needs
in advance, it is commonly recommended to take an incremental, organic
approach to service development and deployment. Choose a project that
will benefit from a service-oriented approach and begin creating a collection
of services needed for that specific project. Once the first project is in
production, select another project can reuse some of the services from the
first project. You will more than likely need to create new services for your
second project, but you will probably be able to reuse one or more of the
services created for the first project. When reusing services, you may discover
that the services you created for the first project require modification or
augmentation to facilitate reuse, which is perfectly normal. Because the
collection of consumers is limited at this point, you will usually be able to
modify them with little effort. More important, you will have learned what
it takes to create reusable and scalable services for your enterprise. This
pragmatic, incremental methodology allows you to show value quickly and
to refine your strategy as your service usage grows.

Securing service calls can be a complex topic, but the good news is that there
are relatively straightforward approaches to security that can be implemented
easily. As with services standards, there are both standards and best practices
that can be combined to prescribe an approach that we will explore later in
this chapter.

Individual Service Operation

An individual service operation is
invoked using a SOAP call, which
encapsulates the service request
message (and subsequently, a response
message) for transport over the network
– you can think of it as the envelope
that contains a letter. The SOAP call can
be transported between consumer and
provider over a variety of mechanisms
such as HTTP, SMTP, or a message bus.
Because of the wide availability of HTTP
infrastructures within enterprises, most
web service calls today are transported
via HTTP. Recently, however, the use
of message buses (ESBs) has been
increasing for transporting web service
calls.

Service Request and Messages

The service request and response
messages themselves are written in
XML. The SOAP standard defines two
possible XML message formats, RPC
and document, and two encodings,
SOAP and literal. Most experts
agree that the best way to ensure
interoperability is to use the document
format with literal encoding.

Web Service Specification
Language Document

The complete specification of a web
service (i.e., the location of the service
on the network, the specific operations
available, and the request and response
message formats, etc.) is embodied
in a WSDL document, which service
consumers consult to figure out how
to use the service. The WSDL can be
considered the API definition for a
web service, and as such, it defines
the contract between provider and
consumer.

UDDI Directory

WSDLs are often catalogued in a UDDI
directory that consumers consult to
discover services and their providers.

10 Chapter 2:

2.2 Data Services

An estimated two thirds of all services will be data services, making them the
most prevalent form of services in an enterprise. Data services provide data to
a consumer in a form that addresses current and ongoing business demands.
The focus of data services is to make it easy for consumers to access and
use enterprise data in support of their business processes. However, in many
cases this requested form of the data does not match how the data is stored
in legacy systems, so the data must be transformed, aggregated, combined,
or otherwise modified to support current business needs. This is the primary
role of a data service: To virtualize (abstract) data from its native form for
use (and reuse) in the modern enterprise, while hiding (encapsulating) the
complex work of getting the data into a form for consumption. However,
providing data to a service consumer in an appropriate form can be
challenging for a variety of reasons, including:

Data required to satisfy demand may be distributed amongst two or more •	
systems. For example, the bulk of information about an order might be
stored in the ERP system (e.g., SAP), but customer interactions regarding
the order might be stored in a CRM system (e.g., SalesForce.com).

Protocols for getting data out of the underlying systems are vendor specific •	
and highly varied. You may be able to retrieve customer data directly from
your customer master using SQL, but you might have to use a web service
call—or worse—a vendor-specific API to get the order information from
the ERP system.

The format of the data from the underlying systems is probably not XML, •	
and as a result, will require transformation prior to supporting a web
service call. The native format possibilities for the underlying data are
numerous (e.g. relational, delimited, proprietary, hierarchical, etc.) and
manually mapping these to XML is not practical.

Legacy semantics of the data will not necessarily match current use cases. •	
For example, prior to the dot-com era, an internal data source might have
been created to hold information about a customer. At that time, it was
reasonable to establish fields regarding ’marketing opportunities’, In the
current usage, however, that same data might be presented to a customer
in a self-service portal as ’privacy preferences’.

Approximately ten percent of enterprise data is replicated in data •	
warehouses and data marts, while the remaining ninety percent is in
operational systems. It is important to maintain high levels of performance
in these operational systems. Data services need to optimize data access
performance as well as utilize intelligent caching and other advanced
techniques.

11DESIGNING SERVICES

2.2.1 Data Services Levels

Transforming data from its native ‘physical’ environment to its required
‘virtual‘ form can comprise a complex and difficult set of operations. One
recommended approach to address these data transformation challenges is
to break the problem into smaller pieces (see Figure 2.2), which manifests
itself as layered services of varied granularity, including:

Physical Services.•	 Physical services lie just above the data source and
they transform the data into a form that is easily consumed by higher-level
services. For a well-designed database, these services may be unnecessary
because the data can be understood and used as is. However, many
packaged applications store their data in a form that is designed for
optimal use within that application, and that form of the data does not
lend itself well to direct and transparent access. For this kind of data, it is
very useful to layer a collection of light transformation services just above
the physical layer. These services can change element names, cast data
types, and augment record contents. The output of these services can still
be considered relatively raw, physical data, but it has been put into a form
that is cleaner and more useful.

Business Services.•	 Business services embody the bulk of the
transformation logic that converts data from its physical form into its
required business form. These services should be thought of as a provider
of the canonical data representations for your business (e.g., customer,
supplier, product, order, shipment, etc.). There may be several ’layers‘ of
business services—especially if intermediate transformations are useful
as business services in their own right. For example, if your company sells
cellular and residential phone service, you may have a ‘customer’ business
service, and above it you might also have a ‘cellularCustomer’ business
service (which leverages but refines the ‘customer’ service). Business
services can be seen as providing master data and transaction data to the
rest of your processes.

Application Services.•	 Application services leverage business services to
provide data optimally to the consuming applications. Application services
are lightweight wrappers that match the business services with their actual
usage in the application layer. If the application layer is a modern BPM
environment, no transformation may be necessary – that is, it may be
possible to use the business services directly via SOAP invocations. On the
other hand, if the application layer is a business intelligence platform, it
probably needs to access the data as if it were stored in a database. So an
application service that looks like a virtual database table will be necessary.
As application services are created and used, discipline should be applied
to avoid business logic creeping into this layer. If data is transformed with
business logic, that logic should reside in the business services layer.

The elimination of duplicated enterprise data and increased opportunities for
reuse are the main advantages of establishing logical layers within the pool

12 Chapter 2:

of data services. With these logical levels of service granularity in use, you
will find that the business services can be reused throughout the enterprise
with few additional transformations required.

2.2.2 Data Services Infrastructure

The challenges associated with providing data services, beyond the usual
scalability and high-availability production needs, dictate the need for an
environment designed specifically to easily create, deploy, and maintain data
services. This infrastructure environment is called an ‘information server’
and several vendors offer products in this category. An information server is
distinctly different from an application server (which will be discussed in the

CUSTOMERS
BY GEOGRAPHY

DELINQUENT
CUSTOMERS

ACCOUNTS
RECEIVABLE
AGING

INACTIVE
CUSTOMERS

SUPPORT
CASE
DETAIL

ACTIVE
CUSTOMERSPAYMENTS

FINANCE ERP CDI HUB CRM SYSTEM

INVOICE
DETAIL

CUSTOMER

Application
Services

Business
Services

Physical
Services

CUSTOMER
REGISTRY

SUPPORT
CASES

CASE
ACTIVITY

INVOICES

INVOICE
LINES PAYMENTS

SALES
POSTAL

COLLECTIONS
WORK BENCH

13DESIGNING SERVICES

Figure 2.2: Data Services Levels

next section on transaction services). Most mature SOA infrastructures will
have both an information server and an application server. (see Figure 2.3)

When selecting information server infrastructure software on which to build
your data services layer, there are many things to consider, including:

Adherence to Standards.•	 The key tenets of a service oriented
architecture are loose coupling and reusability. It is impossible to achieve
either of these if your services do not conform to standards and best
practices.

Performance and Scalability.•	 The run-time execution of individual data
services must be intelligent and efficient, and the overall infrastructure
must provide massive scalability. Advanced query planning and
optimization are the keys to intelligent execution – it’s not enough to
simply throw more processing power at the problem.

Ease-of-Use.•	 One reason to use an infrastructure that focuses specifically
on data services is to eliminate work that would otherwise be done
elsewhere. If the environment is not easy for developers to use and
maintain, adoption will be slow and efficiencies will be lost.

Data Caching.•	 In addition to being a virtualization layer, the data services
infrastructure is also an insulation/buffering layer. This cannot be effectively
accomplished without providing a caching mechanism. There should be
both implicit and explicit caching opportunities, and it should be possible
to cache both query results and procedure calls.

Access to Data Sources.•	 An enterprise’s data services layer must provide
access to all structured enterprise data. This includes relational databases,

Data Services
Information Server

Transaction Services
Application Server

Key Features

Container for Data Services Container for Transaction
Services

Data Access Standards J2EE Standards

Data Federation Session Management

Data Retrieval Performance Memory/Thread Management

Data Transformation Concurrency

Data Caching Security

Data Security

14 Chapter 2:

Figure 2.3: Comparing Information and Application Servers

third-party data services, packaged applications (e.g., SAP, Siebel), files
(e.g., Excel), directories (e.g., LDAP), and legacy mainframes (e.g., VSAM).
It should also provide the capability to expand its reach through custom
development, allowing even the most obscure data source to participate in
the data services layer.

Data Quality Management.•	 A significant amount of enterprise data
is dirty and incomplete. Some of the messiness can be addressed with
straightforward transformation capabilities, but some of it must be
attacked with robust data cleansing functionality.

Strong and Flexible Security Mechanisms.•	 Exactly what your enterprise
needs will be determined by your industry and business requirements, but
the infrastructure software should provide general purpose mechanisms to
implement a variety of security measures.

Vision and Focus.•	 The challenges associated with the data services
infrastructure comprise a discipline that is unique. The vendor you choose
to provide this capability to your enterprise should be clearly focused on
this problem, and have a vision for advancing the state of the art. Several
vendors claim data services functionality as part of their broad offerings,
but that slice of the platform will never get the focus it needs to be
effective. We recommend that you select a vendor that offers best-of-
breed in data services technology.

2.2.3 Enterprise-wide Data Services Layer

As the collection of reusable data services in your enterprise grows and the
production requirements of the service consumers become more demanding,
the information server will expand to form an enterprise-wide data services
layer. This clustered and highly available infrastructure establishes a
virtualization layer between enterprise systems that store data and enterprise
applications that use data. The presence of this data services layer in an
enterprise provides several long-term benefits, including:

Consumers of a particular type of data will get that data from the same •	
shared service, ensuring consistency of data across the enterprise.

New business application requirements are less daunting since the IT •	
organization can now provide the application developer with the exact
data they need to be most effective—regardless of how the data exists
in the underlying systems. This sort of data access agility is unheard of in
today’s enterprise IT environment.

Data consumers will be decoupled from the underlying physical systems, •	
allowing legacy systems to be changed, migrated, or retired without
affecting the consuming applications. Only the data services layer will need
to be modified to accommodate the underlying physical changes.

15DESIGNING SERVICES

As data capacity requirements grow, the data services layer can be scaled •	
to accommodate increasing demand. And because caching is available in
this layer, it may not be necessary to add corresponding capacity to the
underlying physical data source.

System consolidation will require data to be grafted from only one of the •	
affected systems into the data services layer without affecting the high-
level business applications. This efficiency overcomes the consolidation
chaos commonly resulting from mergers and acquisitions.

2.3 Transaction Services

Transaction services implement individual business operations that are
executed as part of a larger business process. The effect of invoking a
transaction service is the creation or modification of data in an underlying
data repository. The logic encapsulated in a transaction service represents
your enterprise’s definition of what it means to, for example, create a
customer or update an inventory level.

Some transaction services will be provided inherently as part of a packaged
application (e.g., SAP), and a user indirectly invokes them when a user
employs the application’s user interface. Although many packaged
application vendors do not yet provide their functionality as standard services
for use outside their user interface, most are moving in this direction.

Other transaction services will need to be developed to implement specific,
unique business logic. These services are generally built by IT developers in
a software development environment like an application server (e.g., IBM
WebSphere). These environments offer powerful development tools and
efficient deployment environments. They also provide standard security and
transaction frameworks.

Transaction services generally modify data in a single underlying data source,
and they are therefore generally connected directly to that data source
(rather than relying on the data services layer as an abstraction). This tight
coupling is acceptable because a collection of transaction services normally
’owns‘ the data source it is modifying. However, transaction services also
often need access to data to carry out their business logic. For this data they
should invoke the same data services that everybody else uses (through the
data services infrastructure).

As the names imply, transaction services implement the logical equivalent
of a business transaction (e.g., place an order). As such, an important
characteristic of a transaction service is that it either completely succeeds
or completely fails, leaving no artifacts or incorrect data behind. This is not
difficult if the transaction service is modifying a single relational database
that implements transaction semantics, but it can be more challenging if it
is working with a set of underlying (finer grained) transaction services that
are inherently stateless, or if its transaction data is split among more than

16 Chapter 2:

one data source. The application server environment usually provides strong
transactional models that will assist the developer with this challenge, but
the developer needs to use them.

Just as important as the transactional integrity of the service, it is critical
to define the scope of the service at the appropriate granularity: Your
transaction services should provide business-level granularity so the consumer
is not required to think about the interplay between fine-grained physical
data components. For example, if you wanted to provide a service for
updating the on-hand inventory level for a product, the service should simply
take the increment or decrement amount as input, and then internally
handle the possibilities for concurrency. As another example, if you wanted
to provide a service that deletes a customer, the service should also delete
the customer’s associated orders, payments, service calls, etc. In other words,
the consumer of the service should not have to know the business rules
associated with deleting a customer; the service should simply encapsulate
the rules and offer the comprehensive service to the consumer.

A transaction is not a substitute for application integration which would
be accomplished with an ESB layer or a similar system with traditional EAI
capability. That is, it should not be the responsibility of the transaction
service to update the same data in multiple underlying sources. The
transaction service should modify its system(s) of record only. Any required
propagation of new or modified data to other systems should be done after
the transaction is completed, and it should be performed by an appropriate
infrastructure that is designed for this kind of pattern.

2.3.1 Transaction Services Infrastructure

Important considerations when choosing a transaction server development
environment are a superset of the those when choosing an application server
environment. In most cases, an enterprise will already have at least one
in-house application server environment which IT is familiar with, and that
same environment can probably be effectively used to create and deploy
transaction services. Since application servers are well understood by most
IT departments, the following list comprises only additional considerations
that should influence the selection of an application server for building
transaction services.

Service Standards Support.•	 The transaction environment should offer
built-in support for XML manipulation, SOAP semantics, and automatic
WSDL creation. In addition, it should be easy to implement services that
conform to the WS-I Basic Profile for web services.

Vendor Neutrality.•	 Make sure the services that are created in the
environment do not require software from the same vendor on the
consumer side of the interaction. This is a key point in guaranteeing truly
reusable and loosely coupled services.

17DESIGNING SERVICES

Robust Transaction Semantics.•	 The environment should support
various transaction implementation models, from two-phase commit to
compensation models, and it should be easy for the software developer to
wrap his work in a reliable transaction scope.

Easy and Efficient Service Invocation.•	 Transaction service developers
will need to access data from the data services infrastructure, so it is
important that service invocation be easy and efficient for the developer
to accomplish. Otherwise, the developer will be tempted to access data
directly, thereby compromising the abstraction provided by the data
services layer.

Strong and Flexible Security Mechanisms.•	 Exactly what your enterprise
needs will be determined by your requirements, but the software vendor
should provide general purpose mechanisms to implement a variety of
security measures. Later in this chapter there is a section that describes
service security.

2.4 Service Interface Design

The web service standards and recommendations leave service creators with
broad latitude for designing service interfaces. From one viewpoint, this is
a very positive situation: You can design service interfaces that exactly meet
the needs of your enterprise. From another viewpoint, however, this broad
latitude creates a problem because it will be easy to inadvertently create
service interfaces that have no relationship with one another, are difficult to
use, and the resulting services will embody no unified design vision. In other
words, it will be a mess.

You may be able to take service design guidance from the dominant
packaged application vendor in your enterprise. Some of the application
vendors have made significant progress in providing service-based APIs. SAP
currently provides the most complete treatment, although it requires their
installed base to upgrade to take full advantage of their offering. Other
vendors have not made significant public commitments to service-based APIs,
so it’s not clear what direction they will take. If you are a customer of one of
these vendors you should demand to see their plans so that you can begin
your own planning. When you learn more about the APIs that your vendors
provide, you can consider modeling your own APIs along the same lines,
or wrap those APIs in your own to extend or elevate their interfaces. The
guidelines below will help you determine whether the vendor-provided APIs
are appropriate for your needs.

You should think of your service interfaces as the public API into your
enterprise data. As such, care should be taken to make them useful, easy to
learn, well documented, consistent, supportable, and extendable. If you have
ever been on the consumer side of a poorly designed API, you can appreciate
the need for simplicity and elegance – it should all hang together and make
sense to the consumer.

18 Chapter 2:

Fortunately, we can learn something about how to do this from another
software development paradigm: Object oriented programming. In this
paradigm, a developer creates a class for a specific type of data, and the class
implements methods (procedures) for manipulating that data. Related classes
that work with each other to accomplish something broader are usually
grouped into packages, and multiple packages that form a comprehensive
framework are packaged and distributed together.

An analogous paradigm can be used as a guideline for developing your
services.

Categorize Your Data.•	 Design a collection of services for manipulating
a particular category of data. For example, customer. Services should be
provided for creating, updating, deleting, and retrieving customers. There
may be several services for each of these activities. For example, you might
provide multiple ways to retrieve customers.

Group Services by Category.•	 Create these sets of services for each
category of data in your enterprise. The categories of data will either be
master data (e.g., employee, customer, and product) or operational data
(e.g., order, PO, shipment). The collection of services might be slightly
different for these two categories of data, but the differences should be
motivated by requirements of your service consumers.

Judiciously Provide Cross-Category Services.•	 Where necessary, create
services that operate on multiple categories of data, but leverage the
service interfaces you designed for the individual data types. For example,
you might need to provide a service that retrieves a customer and all
of their orders. Make sure the input parameter to specify the customer
matches the input parameter for specifying a customer in the collection
of customer-specific services. Furthermore, make sure the schema of the
returned data (customer and orders) match the schemas for customer and
order data returned in the data-specific services.

Package Related Services Together.•	 Finally, group related services
together in a single WSDL to provide consumers access to the whole
framework at once.

The important thing is to avoid designing individual service interfaces in
isolation. If consumers are familiar with your services for manipulating an
employee, it should be natural and easy for them to begin using your services
that manipulate a customer. It sounds like common sense, but it will make a
huge difference in the adoption rate of your shared services.

2.4.1 Individual Service Design

With this service framework in mind, we can turn our attention to the design
of the individual services, beginning with some guidelines, including:

19DESIGNING SERVICES

Keep interfaces as simple as possible. Service consumers do not want a •	
comprehensive service that does everything possible on a particular kind
of data, but requires an overly complex service call simply to, for example,
change a phone number of a customer. Service consumers want it to be
easy and obvious how to accomplish their task.

A service that modifies data should either completely succeed or cleanly •	
fail: Without leaving corrupted or incomplete data behind. Exactly how
the service accomplishes this will depend on the implementation, but the
consistency contract with the customer should not be compromised.

Try not to provide services to consumers that would allow them to •	
unwittingly do harm to enterprise data. For example, if you provide a
service that sets the inventory level of a product, a service consumer
could retrieve the existing inventory level, add some recently received
product to the count, and then update the inventory to the new count.
Unfortunately, if two different consumers perform this sequence at roughly
the same time, it would be possible to lose inventory because one of the
consumers can overwrite the other consumer’s change. It is preferable to
provide a service that increments or decrements inventory, and the service’s
implementation should employ a locking strategy to ensure correct and
consistent behavior.

Establish and use a standard error reporting scheme for all services (refer to •	
the following section for more details).

2.4.2 Error Handling

Reporting errors that occur during service invocation should be done in a
way that allows the client to handle errors in a consistent way. There are four
kinds of errors that can occur during service invocation, including:

Communication Errors.•	 These happen when the service infrastructure is
unavailable to complete the invocation (e.g., the network is down). These
errors will usually manifest as something outside the SOAP standard (e.g.,
an HTTP connect error). As a service implementer, you don’t have control
over how to report them. You should, however, perform internal testing
with your own infrastructure to see how errors will be reported to your
consumers. This will enable you to provide direction for handling errors
effectively in the service orchestration environment.

System Errors.•	 These occur inside the execution of the service, but
they are related to the system rather than to the application logic. For
example, temporary disk space for assembling results might become full,
or a required data source is currently unavailable. These errors are usually
not correctable by the caller. This class of errors should be reported to the
caller as a fault in the SOAP invocation, with the standard fault code of
soap:Server. SOAP faults are like exceptions, and they are returned to the
caller instead of the return message. The caller can catch the SOAP fault
and process it accordingly.

20 Chapter 2:

Application Errors.•	 These are errors in processing business logic that
defines the service. For example, when a user attempts to set a phone
number to an invalid string. Application errors should also be reported
using SOAP faults, but with the standard fault code of soap:Client, which
distinguishes them from system errors. It is useful to establish a convention
for reporting additional information in the detail element of the fault.
The WS-I Basic Profile for interoperability allows arbitrary sub-elements
underneath the detail element so a schema snippet can be created
and included in every SOAP fault. This will result in offering additional
information that will be useful to the client (e.g., an application error
code).

Application Warnings. •	 These are non-fatal errors that are discovered
during the processing of the business logic. They are not severe enough to
cause the request to fail, but you might like to tell the caller about them.
For example, there might be a service that updates a customer’s address,
and the service caller might provide a zip code that does not match the
city and state in the address. While it may be reasonable to allow this
service to succeed (your own business rules will determine this), it will be
useful to issue a warning that the customer’s address data is not internally
consistent. If you plan to issue warnings with your services you should
create a standard part of the document schema for reporting them. All
return messages should include the warning component as an optional
part of the return message. The caller can choose to ignore it, but the
information is available if they want to process the error.

2.4.3 Example

With these guidelines in mind, designing specific service interfaces required
for a type of data can be straightforward. Here is a typical set of services you
might create.

Design an XML representation (schema) for the data.•	
Design CRUD (Create, Retrieve, Update, Delete) service operations for the •	
data (leveraging the XML schema).
Design supplemental services to further manipulate the data, as required •	
by the business.

To make these service development activities clearer, let’s apply them to an
example of customer data:

Design a XML representation (schema) for the type of data that the •	
services will work with. A customer represented in XML might begin
something like this:

<customer>
	 <id>123456</id>
	 <creationTimestamp>2007-01-13 14:35:22.345</
	 <creationTimestamp>
	 <modificationTimestamp>2007-02-09 08:30:55.127</
	 <modificationTimestamp>

21DESIGNING SERVICES

	 <firstName>John</firstName>
	 <lastName>Smith</lastName>
	 <gender>M</gender>
	 <birthDate>1962-07-10</birthDate>
	 …
</customer>

Create a service for creating a new customer.•	 The input document
should be the schema designed above. The service should confirm that
all required data elements have been provided. It is possible to specify
required and optional elements in the XML schema, but different uses
of the same schema will have different requirements, so it is better
to embody this business logic in the service itself. The service should
automatically create some of the fields for the consumer (e.g., the
customer id should be uniquely generated, and the timestamps should be
handled automatically). The service should return the complete customer
(as created) using the same schema.

Create a service for easily modifying an existing customer. •	 The input
document should be the customer schema designed above. The id element
specifies which customer is to be updated and the other elements will be
used to update (overwrite) the customer’s data.

Provide a service for easily deleting a customer.•	 The input document
for this service should simply contain the customer’s id—no other data
should be required. The service itself should implement all business logic
required to delete a customer from the enterprise. For example, it may be
desirable to remove a customer’s orders, payments, and service calls as
well. Whatever the business logic is, it should be performed in a manner
that can guarantee integrity of the underlying data.

Provide a service for easily retrieving (querying) customers.•	 The
input document should be the customer schema, and then only the
provided fields will be used to match existing customers. For example,
if an id is provided, a single customer will be matched. If a last name is
provided, multiple customers may be matched. The service should return a
list of customers that match the input values.

Provide additional services for retrieving customers in other useful •	
ways, as dictated by the requirements of the consumers. The input
document should be designed to accommodate the necessary input data.
The service should return a list of customers (using the same schema as
all the other services). For example, somebody may want a service that
retrieves all customers who placed orders since a given date (or between
two dates).

Provide additional services for operating on customers, as dictated •	
by the requirements of the consumers. Again, the input document
should be designed to accommodate the necessary input data. In this case,
the output document should be designed to accommodate the service
requirements. For example, somebody may want a service that counts

22 Chapter 2:

customers by geography, returning a list of countries, states, or zip codes,
and the corresponding customer count for each geography. The important
thing about designing these services is to wait until they are needed.
Designing these services in the absence of real business requirements is
usually time wasted.

This methodology can be applied repeatedly to all the data in your enterprise.
It is not recommended that you do it all at once, however, because when
consumers begin to use services you have provided, you will learn lessons
that can be applied to future efforts. Expanding your service collection
incrementally, as needed by the consumer community, is the most efficient
way to proceed.

2.5 Security Considerations

Security of enterprise data is always a priority, and introducing services as
an access and manipulation paradigm adds new challenges. Since each
enterprise has its own philosophies on security, the best approach to service
security is to extend your enterprise’s current security strategies to these new
paradigms. In keeping with that idea, this section is not a service security
cookbook, but is provided to help educate the readers about the available
security alternatives.

There are three areas of security to be considered when deploying services:

User Authentication•	
Access Authorization•	
Message Privacy•	

Several standards exist that contribute to service security implementation
(HTTP Authorization, WS-Security, SSL, SAML, etc). However, as with
other web services standards, there is quite a bit of latitude, and therefore
broad variability, as to how security is actually implemented. The WS-I has
formulated the WS-I Basic Security Profile in an attempt to narrow the range,
and increase both security and interoperability, and we urge readers to
consult this recommendation to assist with security questions.

2.5.1 User Authentication

Services are essentially executable modules, available to other consumers
over the network. But who gets to execute them? It is possible to provide
services that are open to anyone, but this is not the usual situation in an
enterprise. Rather, access to a service usually requires a user to be identified
and authenticated so that authorization can be performed. With web
services, this can be done in a number of ways:

HTTP Basic Authentication.•	 If your services are accessed over HTTP, your
server can use HTTP basic authentication to require a user to provide a

23DESIGNING SERVICES

username and password to essentially ’log in‘ to invoke the service. This is
a simple but effective mechanism for authentication that is widely used.
When combined with a wire-level encryption (i.e., SSL), it is quite secure.
This kind of authentication mechanism is roughly equivalent to a normal
client login to a database today.

SAML.•	 This is a standard XML-based authentication mechanism modeled
on the presentation of a secured token. SAML is considered the future of
web service authentication but it is not yet widely used. It is recommended
that you use a service infrastructure provider that plans to support SAML
within a year. The SAML model is similar to Kerberos, so if you currently
use something similar to Kerberos for your enterprise authentication,
you will be interested in learning about SAML for use with your service
implementations.

Custom Login Service.•	 You can provide a custom service that accepts
a user’s login credentials and returns an identity token. The identity
token is then presented as part of the input to each subsequent service
invocation. This mechanism is widely used today, but it does not promote
interoperability of services, and it requires all services to accommodate
the mechanism. Combined with a wire-level encryption, however, it is
quite secure. You can think of this approach as being equivalent to a login
box on a web page portal where the web protocol is probably encrypted
(HTTPS), but the actual authentication is processed by the application
(which is probably running in an application server).

2.5.2 Access Authorization

Once a user is authenticated to the service infrastructure, there are two types
of authorization to consider:

Does the user have permission to invoke the service?•	
Does the user have permission to access all of the data returned by the •	
service?

The WS-I Basic Security Profile addresses both of these in detail, so we will
not duplicate that effort in this book. However, some general considerations
can be offered, including:

Your service infrastructure should provide general purpose enforcement •	
mechanisms for these. It should not be necessary to build authorization
logic into the service implementation itself.

If a user does not have permission to invoke a service, the simplest way to •	
indicate this is to immediately return a SOAP fault.

A service may return a rich XML document containing a significant amount •	
of data, but the current user may be authorized to see only portion of the
data. In this case, only the sections of the document for which the user

24 Chapter 2:

is authorized will be populated. Again, your service infrastructure should
provide general purpose enforcement mechanisms for this type of security.

2.5.3 Message Privacy

Services operate using request and response messages, the contents of
which are generally XML documents. When transported over an unsecured
network, these request and response messages are potentially vulnerable to
snooping, which dictates the need for message privacy strategies. There are
two main mechanisms used to accomplish this today, SSL for HTTP and WS-
Security.

SSL for HTTP
Most services today are accessed via HTTP. SSL can be used to provide a
secure (encrypted) point-to-point communication channel between the
consumer and the provider (HTTPS). This is the same mechanism used by
your web browser when you submit your credit card information during a
purchase. The advantage of this mechanism is that it’s easy to implement and
easy to use. Most secure web service calls are protected by this mechanism
today. There are, however, two main disadvantages of this privacy
mechanism:

Proxy Protection.•	 If the service call goes through a proxy, the secure
communications channel does not extend through the proxy, potentially
leaving the communications vulnerable. It is not always clear to the
provider or the consumer exactly where proxies exist in the call chain, so
care should be taken.

In-transit Protection.•	 The encryption exists only on the point-to-point
communication channel, and does not secure the message itself. If the
SOA architecture includes mechanisms for service mediation (e.g., store-
and-forward), the message is unprotected when not being transported.
Similarly, if messages are logged to a disk or database, the message is not
secured.

WS-Security
This is a collection of security standards designed to secure web services. Its
scope is actually broader than transport privacy (it can also be used to assist
with authentication), but it is primarily aligned with message security. The
WS-Security standards are not currently in wide use, but it is expected that
they will be as SOA implementations proliferate. A comprehensive discussion
of WS-Security is beyond the scope of this chapter, but the following is a
summary of what it provides:

Element-level Message Encryption•	 . Specific sections of a service
message (i.e., the XML document) can be encrypted for privacy. This
encryption is within the message, so it persists for the life of the
message—regardless of how or where the message travels.

25DESIGNING SERVICES

Message Integrity•	 . Allows the consumer of the message to reliably
determine whether the message has been modified since being created.

Message Authentication•	 . Reliably identifies and guarantees the sender/
creator of the message.

Your service infrastructure vendor should provide support for WS-Security—it
should be an important part of your vendor selection criteria.

Security is a broad and deep topic, and we have only scratched the surface
in this section. The important point is that you can extend your current
enterprise security strategies to embrace services as well. We recommend
you formulate your enterprise’s service security requirements, and then work
with the service infrastructure vendors to put software in place that meets
those requirements.

2.6 Conclusion

The collection of services you create will form the foundation for your service
oriented architecture efforts. Your foundation’s strength and longevity will be
enhanced if you follow the suggestions outlined in this chapter.

You can begin creating services today. You do not need to wait until you
have a comprehensive set of requirements, and you can get started with
limited staff and investment. Select a project with specific well-known needs,
and build the services needed to address those requirements.

26 Chapter 2:

27DESIGNING SERVICES

28 Chapter 3:

Registries And Repositories

Service-oriented architectures (SOAs) enable IT to remain agile and deliver
the capabilities to the business. However, this flexibility is typically created
through an increased number of smaller reusable components interacting
with each other rather than larger enterprise applications. This interaction
creates interdependencies which can reduce reliability and uptime if not
carefully managed. Understanding these interdependencies is required to
ensure that the business services you create can be adapted when faced with
a need to make a change.

Success depends on the ability to coordinate activities as business services
are implemented and deployed. Application architects, functional analysts,
project managers, and test and operations teams can be geographically
or organizationally distributed, different services can be in varied states of
their lifecycle at any given time, and the potential for confusion is high.
Organizations therefore need effective management and controls to cope
with the business services lifecycle.

As services multiply, the problem is compounded. An uncontrolled, broad
adoption of a SOA can lead to uncertainty and failure to achieving benefits—
and can potentially engender more problems.

Even if reuse is not your primary concern, you need to understand
dependencies and interrelationships to determine the impact of change.
Reliable and maintainable systems can only be built if there is a way to
understand these impacts. The ability to catalog and categorize your
enterprise’s growing portfolio of services through inception, implementation,
deployment, and operation make services easier to leverage and manage.
By registering services, associated artifacts, and their relationships and
dependencies, you can manage the impact of change when it is necessary to
version a service. A SOA System of Record (SoR) is a key enabler for this.

You can only effectively achieve the planning, collaboration, management,
and governance functions necessary to support successful SOA adoption
by having complete visibility into the service portfolio. The infrastructure
required to support these functions are SOA Service Registries and
Repositories. This chapter explores how SOA Registries and Repositories act
as the necessary building blocks for a successful SOA initiative.

29REGISTRIES AND REPOSITORIES

CHAPTER 3

Key RECOMMENDATIONS:

Recognize the importance •	
of documenting and
maintaining a formal
System of Record (SoR) of
your services, their revisions,
and their service level
agreements (SLA’s).

Understand the difference •	
between a Service Registry
and a Service Repository.

Put a SoR in place for •	
control and visibility before
you need it.

Reconcile your use of a •	
SOA SoR with your existing
Software Development
Lifecycle Control (SDLC)
system.

Go further than just •	
acquiring a Registry and
Repository system. Plan how
you are going to use and
maintain it.

Luc Clément
Co-Chairman

OASIS UDDI Specification
Technical Committee

3.1 The SOA System Of Record

SOA Service Registries and Repositories combined provide your organization
with a SOA SoR. A SOA SoR helps to manage, promote usage, and prevent
duplication. It is the essential discovery capability that organizes services
and related artifacts for use throughout the design or runtime phases of a
service’s lifecycle.

It is critical to effectively coordinate service developers, consumers, and
stakeholders—including line of business analysts; those responsible for
manufacturing and delivery activities such as application architects, testers
and developers; and those responsible for operations. Most important,
providing stakeholders with an integrated set of tools, each focused on their
specific needs, helps organizations collaborate more effectively.

The goal of a SOA service-centric SoR is to help the enterprise (i.e., enterprise
architects, service providers, and consumers) gain visibility into the SOA
service portfolio. A SOA SoR enables an organization to determine what
business services are available; identify which services the organization can
use; and assess the impact business requirement changes have on existing
processes. In other words, a SOA SoR helps organizations achieve agility.

A SOA SoR has two complementary components: A SOA Service Registry and
a SOA Repository.

The SOA Service Registry
The SOA Service Registry is an index of deployed services. It holds references
to service information, including the description of the service’s interface,
behavioral policies, and the means to inform a consuming application (which
in turn may be a service) of an update to registry information, etc. It also
specifies the location of the point of access for a service within a deployment
environment. Specifically, the SOA Service Registry contains the following
data:

Descriptive metadata that might describe the operational status of the •	
service.
Deployment configuration information such as whether there is a service •	
proxy.
Authoritative descriptions of the service’s configuration that enable •	
applications, administrators, or deployment staff to understand
deployment characteristics.

The SOA ecosystem components use the Service Registry to understand
and interact with services. A service registry should be co-located with each
environment you deploy, such as internal (company only) environments
and/or shared environments that expose available services to third parties.
In order to be registered in an SOA Service Registry, the service must be
deployed, whether it is in a development environment, a component
integration or system integration environment, or a pre-production or
production environment.

30 Chapter 3:

Some vendors claim that their SOA Registry/Repository play a dual role of
carrying out registry functions and storing data (i.e., the repository function)
that relates to the description and design of the service rather than strictly
describing a deployment. Combining design and deployment within a single
registry/repository makes it difficult to manage service information across
multiple deployment environments. More importantly, that approach leads
to a situation where a developer can inadvertently make a change to a
production environment. It is necessary to separate design from deployment
to prevent the development team from making a change to a production
system. Look to a SOA Repository to support your design needs.

The SOA Repository
Supporting the many tools that manage the lifecycle of a service, the
SOA Repository provides a definitive and complete view of the service for
stakeholders, including service providers, and consumers. It represents a SoR
for the design and definition of your SOA. Using the SOA Repository, you
can control and manage data and metadata associated with the service,
including changes to either. It also offers services for transitioning between
lifecycle stages.

The SOA Repository is the place where you find information about a service
and pointers to where you can find additional information. Within the SOA
Repository, you can expect to find the actual service interface description (the
WSDL document and XML Schema documents) as well as documentation
describing important information including:

Functional and design specifications of a service•	
Terms of use•	
Sample messages•	
Test plans and results•	
Performance reports•	

Also, look for information relating to the organization responsible for the
operations of the service, points of contact, and key stakeholders. You
will also find metadata such as the service lifecycle state, functional and
architectural metadata, the location of instances in various environments
(by virtue of being integrated with SOA Service Registries), and the policies
(and the content of the policies) that constrain or describe the behavior of a
service.

A SOA Repository helps you organize and understand service relationships,
dependencies, deployments, and descriptions across design and runtime
environments. It includes application specific configurations, shared services,
and the SOA service infrastructure. This helps you govern the set of business
policies and processes that enable consistency and quality of operation
for the systems that compose the SOA framework and its services. Using
a SOA Repository puts you in a better position to manage the lifecycle
of SOA services and the associated SOA. It reduces costs associated with
duplication and errors in building these services. It also simplifies the process
of deploying and maintaining systems.

31REGISTRIES AND REPOSITORIES

In summary, the SOA Service Registry helps you understand the deployment
and description of your service within a given environment. When extended
by a repository, the registry turns your SOA into a well documented and
governed ecosystem of services and consumers.

3.2 Buy Versus Build

Many who have embarked on a service-orientation project have wondered
whether they should buy or build an SOA System of Record. To be successful
with a SOA, an organization must achieve agility through the use of reusable
service assets. Success depends on your ability to coordinate business services
that are implemented and deployed. This is not a task for the faint of heart.

Some organizations start to create their SOA SoR using a spreadsheet. But
this quickly becomes unmanageable. Others extend their LDAP identity
management system, only to have their dream of directory enabled
computing disappear when identity management take priority over
application concerns. Some gravitate to platform discovery specifications
such as DISCO and WSIL. Others embrace SDA Libraries, CMDBs or registry/
repository standards. And some build their own registry, repository, or
combination of the two.

Whatever you consider, you must focus on providing an infrastructure that is
inclusive of both your stakeholders and their tools—that implies complying
with standards. Remember, you are not in the business of developing tools,
but rather enabling business capability.

SOA Service Registries
The following standards will enable you to avoid lock-in and gain flexibility.
To describe your deployed services using a Service Registry, you need a
standard method for the following activities.

Enabling, publishing, and discovering service consumers, providers, and •	
connection contracts.
Classifying, relating, and storing business, technical, and policy •	
information.
Communicating and accessing services across heterogeneous, loosely-•	
coupled systems.

The undisputed standard for a SOA Service Registry is Universal Description,
Discovery, and Integration (UDDI). UDDI defines a set of services that support
the description and discovery of the following:

Businesses, organizations, and other Web services providers•	
Web services•	
Technical interfaces used to access those services•	

Based on a common set of industry standards, including HTTP, XML,
XML Schema, and SOAP, UDDI provides an interoperable, foundational

32 Chapter 3:

infrastructure based on a Web services software environment for both
internal and public services.

SOA Repositories
Your SOA Repository is the catalyst that brings your stakeholders together
and promotes collaboration. First, ensure that the SOA Repository you
choose is entirely integrated with your UDDI service registries to provide a
view of operational, deployment, and integration capabilities. In addition
to carrying out the functions described in the previous section, your SOA
Repository should also support the following:

Organization and an understanding of your SOA service relationships, •	
dependencies, deployments, and descriptions across the service’s
lifecycle. It should also manage the service’s lifecycle and integrate
the activities of your stakeholders with the goal to help you adapt to
inevitable change.

Employment of governance functions that help you manage policies •	
that drive interoperability and reuse, as well as promote agility – though
this is not entirely necessary to get started.

Development of advanced reports to help you understand the state •	
of affairs such as levels of compliance by producers and usage by
consumers.

Service level management functions that help coordinate consumer and •	
provider service level expectations and ensure that service levels are met
through integration with your management platform.

Control and management of change of service definitions to ensure the •	
best quality of data and information to all that depend on it.

Best of Breed Versus Vendor Specific
There are a number of robust, best-of-breed registry and repository products
on the market today. As this functionality becomes better understood in
the overall software community, parts of it are being incorporated into a
wider set of products as a complementary capability. An example would be a
software development system that is provided by an ERP application provider
for developing extensions to their base application. As a result, many
organizations are coming to terms with the inevitability of having more than
one registry and repository. Thus the need to support standards becomes
increasingly important.

In considering the use of these products, the following issues should be
taken into account:

Using multiple SoR systems increases the difficulty of finding information •	
on a specific service since the location of the information may not be
clear.

33REGISTRIES AND REPOSITORIES

Differing SoR systems may have different features, making life more •	
difficult for the developer who needs access to both.

Many SoR systems that come with larger packaged applications are •	
designed to be used only for the services associated with that specific
product. For example, they sometimes require the use of specific
software development tools for that environment.

The federation of SoR systems with automatic sharing or synchronization •	
of information cannot be taken for granted, even if they both support
the same version of the standards.

In general, a vendor who specializes on a topic, including this one, will
push the state of the art forward more aggressively than one who pursues
a broader agenda. On the other hand, a vendor who incorporates a
SoR system into their larger development environment will build more
automation between the different components of their specific environment.

3.3 Getting Started

Your SOA visibility and control initiative can be successful if the fundamentals
receive the right attention. Remember, the goal is to bring together as many
stakeholders as possible—including service developers and consumers, those
with upcoming projects, and those that build, evolve, maintain, and operate
the services and the supporting infrastructure. With this perspective, keep in
mind that you are developing a methodology that will serve multiple projects,
and that will maintain an accurate SoR of the combined work over time. You
will find that a disciplined methodology is well worth the extra effort.

The following is an example set of steps that will start you on the right path:

Step 1: Establish a shared vision.
Identify the scope, value, and business cases behind your initial •	
implementation.
Bring stakeholders together so they can understand the proposed •	
services, their interrelationships, and the goal of the entire system.

Step 2: Design your services.
Define a set of services that meet the needs of your business. Consider the
following steps:

Identify appropriate services: Focus on coarse-grained and business •	
oriented services as your early target.
Capture the target design and its artifacts in your SOA SoR. Define the •	
relationships between the services to support your initiative and create
your taxonomies to organize this information.
Provide team members with comprehensive interactive access to all •	
artifacts.

34 Chapter 3:

Leverage your SOA SoR as early as possible to get all stakeholders in •	
agreement.

Step 3: Take inventory.
Once you achieve a shared vision and identify the required services, •	
review your ‘as is’ service portfolio and identify any reuse opportunities
from previous work.
Analyze and classify the existing services and related artifacts. Determine •	
if they can be used ‘as is’ or whether modification is required.

Step 4: Plan stages that lead to your target implementation.
You won’t get there all at once. Consider the following stages:

Identify early opportunities to deliver value with coarse-grained and •	
business-oriented services.
Identify and prioritize risks (both technological and organizational) in •	
transforming the existing system to your target implementation.
Balance the delivery of value with reduction of risk in the early stages.•	
Specify objective completion criteria for each stage of your project—•	
identify risks, mitigate risks, and focus on delivering value.
Establish policies and workflows that will govern the implementation of •	
each stage.
Provide team members with comprehensive, interactive access to all •	
milestones, status, and artifacts.

Step 5: Manage the implementation of each stage.
Implement planned services and applications, complying with policies, •	
workflows, and contracts.
Measure usage and seek feedback from stakeholders.•	
Control change.•	
Exploit knowledge gained by frequently updating your target •	
architecture, service definitions, service interactions, expected results,
and risk factors.
Continue to provide team members with comprehensive, interactive •	
access to all implementation information and artifacts.

Step 6: Ensure and promote service utilization.
Identify techniques and incentives that ensure and promote service
utilization. Consider the following actions:

Predict, measure, and compensate providers and consumers for •	
operational costs such as hosting and maintenance.
Foster confidence among providers and consumers by establishing a •	
contract, discoverable policies, workflows, and visibility metrics.
Establish team incentives by establishing metrics-driven recognition and •	
awards.

At every step, focus on leveraging your SOA SoR to support the needs of
your stakeholders and your initiatives.

35REGISTRIES AND REPOSITORIES

3.4 SOA And The Software Development Lifecycle

SOA is a new form of software development, but many of the traditional
issues relating to the software development process still apply. However,
services have somewhat different characteristics than ‘application oriented’
development. Registries and repositories can provide significant benefits in
supporting a software development lifecycle (SDLC) framework for services.
This section explains how.

Those who successfully implement an SOA realize that key ingredients
include visibility, collaboration, trust, and control of the business services that
they build, operate, and maintain. For example:

Visibility.•	 If prospective service consumers can’t easily discover business
service assets and identify their attributes, such as their operational
characteristics, the promise of SOA is largely lost.

Collaboration.•	 Service orientation drives significantly increased need for
collaboration between service providers and consumers, operations teams,
as well as the business analysts, architects, and development teams that
define and evolve the services. Organizations can adopt SOA techniques
and products to build and deploy a service infrastructure, but their efforts
will flounder without controls for ensuring consistency and interoperability.

Trust•	 . If there is a lack of trust between organizations there will be
hesitancy to use a service that others control. A key goal in your SOA
journey is to find ways to promote trust between stakeholders and
increase confidence by providing control and visibility of the service. You
need to enable providers to analyze the effect of change and maintain
a balance between the costs and benefits of a change and its impact on
consumers.

Control•	 . You will also need to equip yourself and your enterprise
architects with control capabilities. You’ll want to enforce guidelines
that facilitate interoperability and consistency without creating manually
intensive processes that slow SOA adoption. You’ll also want to implement
management capabilities that drive compliance with policies for service
implementation, operational policies, and best practices.

As you move towards service orientation, keep in mind that your goal is
to drive collaboration. Development and test teams that have adopted
software development lifecycle methodologies need to ensure that everyone
understands the service in the same way to facilitate increased reuse, better
failure recovery, and easier evolution of the service.

3.4.1 Example Service Development Lifecycle

The following is an example of creating a service that will provide your
organization with visibility and control. For the sake of brevity, we do not

36 Chapter 3:

include the consumer’s view of the lifecycle activities relating to discovering a
service; due-diligence activities relating to the decision to use the service; and
the requisite service-level activities. Note that few organizations in the real
world fully adopt all of these activities in the disciplined way as listed below.

Step 1: Identify need for a new business service.
A business analyst identifies the need for a new business service. The
analyst then creates a placeholder in his SOA System of Record to inform
prospective consumers that a new business service is in early stages of
definition and implementation.

Step 2: Create a new project.
A project manager generates a request for the creation of a new project
using a project and portfolio management tool to create the project
definition, allocate resources, and manage the project.

Step 3: Employ a software development asset libarary.
Once the service production project is approved, funded, and staffed,
the development team uses tools such as a software development asset
(SDA) library or team Wiki. The development team uses these tools to
manage the software development lifecycle (SDLC) of the service, better
collaborate, and to implement for example checkpoints in the process to
control the SDLC.

Step 4: Begin service development.
Service development begins. The developer uses an IDE of choice to
implement the service, and the SOA Repository to search for services he
needs to consume and their associated artifacts. The developer uses the
SOA Repository to register consumption of these services in order to alert
the service provider of new dependencies.

Step 5: Track and report development efforts.
The activities executed by the development team are reported into the
project and portfolio tool. At appropriate points during manufacturing, the
SOA Repository is updated with lifecycle information relating to the state
of the service under development.

Step 6: Store artifacts in a SCMS.
Service implementation artifacts are stored in the organization’s source
control management system (SCMS). A source code management system
manages physical artifacts such as WSDLs, Java files, and DLLs.

Step 7: Track and manage implantation and testing.
During the implementation and testing of the service, SDLC tools of choice
are used (e.g., requirements management, quality management, and
defect tracking).

Step 8: Submit service approval and deployment.
As part of the SDLC process, the development team submits the service
for approval; conformance to design-time policies is reviewed; test and
quality metrics are reviewed; and upon successful test and certification, a

37REGISTRIES AND REPOSITORIES

community of consumers approves the service for deployment and use.
The service and information regarding the set of associated proxies (e.g.,
service management and security appliances) are then registered in the
SOA Service Registry.

Step 9: Deploy service for consumption.
Consumption and service-level management activities begin. These support
the enablement and provisioning of consumption, the establishment and
enablement of service levels, and capacity planning.

As a result of this process, artifacts and relationships were created between
the service, its stakeholders, and their tools. Now you need to consider how
you will support prospective consumers in their decision to use a service.
You also need to know where to turn when a problem occurs to gain
an understanding of the relationships between the service definition, its
components, and deployment information. The toolset you turn to is a SOA
SoR.

3.5 Conclusion

Service orientation is a journey. Success requires transformation. In particular,
you must provide visibility into the environment you’re developing,
encourage trust between developers and consumers of services, and
empower your organization to control the evolution of a service-oriented
infrastructure and architecture.

Don’t try to boil the ocean. Start small and focus on developing
methodologies along with visibility and control operations that will help
stakeholders collaborate better. Be inclusive—seek out your stakeholders.
Get them to participate in building and helping you sustain a SOA SoR and
impress upon them that everyone has a stake in it.

38 Chapter 3:

39REGISTRIES AND REPOSITORIES

40 Chapter 4:

Enterprise Service Buses

The chain of logic supporting the value of a service-oriented architecture
(SOA) begins with the principal objective to accelerate time-to-value of
IT assets (see Figure 4.1). A SOA accomplishes this by better aligning the
functions (or services) performed by IT with their driving business objectives.
A SOA enables stronger alignment through greater agility. It enables flexibility
of IT supported business processes and rapid reuse of IT resources across
a broader number of business functions. Further down this chain of logic,
a SOA should support agile reuse by facilitating easier, faster and broader
integration derived from IT standards that promote higher levels of native
interoperability between services.

This logic presumes that by employing interoperability standards everything
would be intrinsically integrated and not require additional integration
to make them work together. However, this assumption predicates
that the standards are fully comprehensive to address all dimensions of
interoperability and that uniform standards are employed across all the inter-
working elements—both of which are often questionable assumptions in any
large scale SOA environment.

41ENTERPRISE SERVICE BUSES

CHAPTER 4

Accelerated
Time-to-Value
from IT Assets

Stronger
Alignment of

Business and IT

Improved Reuse
of IT Resources

Broader Integration
of IT Services

Native Interoperability
Through IT Standards

Greater Agility of
IT Supported

Business Processes

Key RECOMMENDATIONS:

Develop a solid •	
understanding of the
capabilities and limitations
of the basic web services
request/reply protocols
versus the enhanced
capabilities of an ESB.

Analyze your interoperability •	
issues and determine
whether you will need
an ESB to reconcile
incompatibilities.

Understand the different •	
kinds of ESB’s and which
would be best for you.

Think through what “role” •	
you want an ESB to play in
your system.

Decide what forms of •	
“mediation” you want from
your ESB.

Hub Vandervoort
Chief Technology Officer

Progress Software

Figure 4.1: SOA Value Chain

This is where an Enterprise Service Bus (ESB) comes in. An ESB is an
infrastructure platform that fills critical interoperability gaps left open in
state-of-the-art standards. More importantly, it enables interoperability across
dissimilar standards which often exist in modern computing environments.
Along the way, it brings a higher level of robustness to the infrastructure
necessary to meet the mission-critical performance, reliability and scalability
needed by contemporary enterprises.

4.1 Introduction To ESBs

A Closer Look At Interoperability
In the SOA logic chain, interoperability is the predicate to agility and reuse.
However, ‘true’ interoperability must be assessed on multiple dimensions, all
of which must be in alignment between services if genuine interoperability
is to occur. These dimensions of alignment fall into four broad categories:
Functional, Structural, Behavioral and Performance.

For a consumer service to use a particular provider service, it must be aligned
on the functional requirements. The provider must do what the consumer
wants, whether it’s computing a price, looking up a customer, updating and
order or responding to an event of interest. While the functionality is up to
the service, there are other considerations which may or may not be handled
by the service itself.

Structural•	 . Structural or systemic, alignment might be thought of as
aligning the ‘pin-outs’ of an interface. If the pins between a printer and
the PC don’t match, the printer won’t print, even if your PC is perfectly
capable of driving a serial printer. In SOA, this type of alignment is
manifest in the protocols and formats employed by the consumer and
provider services. They must align precisely or interoperability will not
occur, even if the provider delivers the correct function.

Behavioral. •	 Behavorial alignment extends to more intangible notions such
as semantics and interaction. With respect to semantics, a consumer
service may request a ‘customer’ business object, but the provider service
produces business objects called ‘party’ and types the object with an
attribute enumerated as customer, vendor, partner, supplier, etc. While the
provider is capable of producing the desired information, and the ‘pins are
in alignment’, the interpretation of the produced result may or may not be
natively intelligible by the consumer because the semantics are different.
Similarly, with respect to interaction, there may be a consumer that wants
to ‘inquire’ for customers when needed, while there may be a provider
service that wants to ‘publish’ customer business objects each time one
is created or updated. Although all other aspects of interoperability may
be in alignment, if one wants to ask for customers and another wants to
broadcast them on particular events, there still won’t be interoperability
because the behavior of dialog is out of alignment.

42 Chapter 4:

Performance. •	 Performance encompasses issues beyond direct
interoperability; these are considerations having to do with Quality-of-
Service (QoS) and Quality-of-Protection (QoP), or simply the entire realm
of service-level and security-policy. Alignment here is equally critical.
If a provider service was built to handle 2 requests per second with 1
second response time, consumers must be aligned with that service-level
expectation or realistic production interoperability cannot be achieved.
Likewise, if a provider service was deployed with the expectation that it
would only be consumed by internal services, and was then inadvertently
exposed for consumption by a public audience, it would be out of
alignment with expected security policy.

The point to all of this is that real-world interoperability is only possible
when all aspects of alignment are achieved. However, the choice of where
to implement the last three of these categorical considerations is critical to
the question of reuse. While the functional aspects of interoperability indeed
rest entirely with the services themselves, if the services also take on the
responsibility for structural, behavioral and performance related concerns,
reuse erodes rapidly and the chain of logic supporting SOA unravels.

If services were left to ‘fend for themselves’ on all these points they would
either come up short on support for requirements essential to certain
contexts or they would become increasingly bulky . Moreover, the services
would be more costly to develop, operate and maintain and would lead to
duplication of those capabilities across multiple services with inconsistencies
between them.

On the other hand, services that indeed delegate all these considerations
entirely to common infrastructure, become inherently more reusable across
more contexts and thus become more agile and manageable at scale—
preserving the SOA chain of logic. ESB is this common infrastructure onto
which a service can delegate mediation of these concerns. Simply put, ESB
is a mediation layer for enterprise SOA whose express purpose is to mediate
differences in structural, behavioral and performance characteristics between
services.

ESB extends the basic idea of abstraction between participants (providers
and consumers) to enterprise scale. ESB permits services (consumers and
providers) to interact in a loosely-coupled manner; more so than if they were
simply connected point-to-point using the most contemporary loose-coupled
standard protocols, like WebServices or Java Message Service, alone. This
enables services, and the processes that use them, to change over time, at a
faster rate and to a much greater degree, without affecting other services or
processes around them.

This is the foundation for agility.

43ENTERPRISE SERVICE BUSES

The Paradigm Shift
The ESB architecture approaches the problem based on several core
principles:

Declarative, Meta-data, Policy or Configuration –Driven. •	
As opposed to integration within the services themselves, an ESB does
not usually require one to ‘program’ integration. Rather, interoperability
is configured, most of the time through standards, permitting
integrations to be changed in-place, without having to return to the
developer to ‘version’ the application (and repeat the design, code, test
and deploy life-cycle for the change). The net effect is that change is
more agile.

Light-weight Deployment and Execution Models •	
This principle, if adhered to correctly, actually manifests in the
technology as discrete separable elements that consume less resource in
aggregate. Functions are not repeated within each service and required
functions are installed when and where needed.

Distributed/Federated Life-cycle Support. •	
A robust ESB will always manage as one logical entity despite being
deployed across many machines in diverse locations. One can debug
processes, perform configuration updates and deploy new services and
functionality, as well as apply policies and take measurements across
the entire network of participating elements, with nearly all of the
convenience and control one expects from a monolithic stack on a single
machine—only in this case, potentially spread across the globe.

Taken together, these characteristics position ESB as a key foundational ele-
ment of a large-scale SOA—it becomes a mechanism for not only technical
loose-coupling but also enables notions of ‘organizational loose coupling’—
permitting agility without a loss of governance or control. An ESB can sup-
port federation—where independent domains can interoperate without sacri-
ficing their independence while also achieving interoperation and visibility.

4.2 When To Use An ESB

In terms of SOA adoption, one might ask, when does ESB become
important? This can be summarized in three simple rules of thumb:

Rule 1: When the number of interdependencies between Services,
Processes and Schemas, becomes more than twice the aggregate
number of those elements.

Practically speaking, this is when the inventory of processes, services and
schemas approaches 50. Mediating interrelationships between SOA elements
is the critical focus—arguably the most critical success factor: Managing
‘N-square complexity’.

44 Chapter 4:

SOA operates at a much finer granularity than integration of traditional
monolithic applications. Simply put, there will be more services than there
were applications. As a result, interdependencies accumulate much faster
then before. If these are not managed early, they get out of control very
quickly and raise the cost of operating and maintaining the SOA, eventually
eclipsing the cost of the approach you were trying to replace.

Services are related by the transport they use, the processes they participate
in, the semantics and interaction model they share and so on. If each of
these is established in a point-to-point manner, the number of mediations
grows exponentially to the number of services, process and schemas.
Alternatively, if each of the processes, schemas and services has only one
set of relationships to consider—the ones it has to the ESB—the number of
mediations always remains proportionate and grows linearly in relation to the
number of services (see Figure 4.2).

The benefits of SOA begin to appear through reuse of common services and
schemas across processes. Using an ESB to mediate the structural, behavioral,
and performance interoperability dimensions will result in ‘units’ of beneficial
work growing at a faster rate than ‘units’ of management overhead
associated with new mediations. Time to value will accelerate.

Rule 2: When the process objectives of the SOA begin to span multiple
geographically distributed locations and/or federated organizational
boundaries.
This generally becomes essential between 5 and 10 locations, although
federation drivers will become acute sooner than distribution (i.e., as few
as three federated parties). This stems from the fact that technologically,
both are hard to manage and neither problem is satisfied entirely by a single
product.

Mediations
without ESB

“Units”
of

Management
Overhead

Mediations
with ESB

“Units”
of

Beneficial
Work

From Reuse

 10% 50% 90%

Degree of Reuse in Projects

Loss of Agility
from Complexity

Accelerating
time-to-value

45ENTERPRISE SERVICE BUSES

Figure 4.2: Service Reuse Linearity

Distribution conjures up system considerations that are not evident when
integration scope is confined to a LAN in one location. Encryption, tunneling,
firewall and proxy traversal, as well as questions of latency, availability and
routing introduce substantial infrastructure into the equation. Without an
ESB in place to hide this, the complexity of managing quality of service across
all the additional components ripples back into the services and processes
themselves.

Federation exacerbates complexity. It is reasonable to expect federation
to follow distribution—the more distributed an enterprise becomes the
more likely it is to be federated organizationally. The situation now involves
crossing security domains, as well as realms of autonomous process, service
and data ownership, at least to some degree. This introduces still more
heterogeneous infrastructure to allow cross-domain users to share and
manage assets as a group, without compromising sovereignty over their own
domain.

To appreciate this completely, compare the alternatives. Clearly, the simplest
technical solution would be to collapse all the participating member domains
into a single operational/security domain and obviate the federation
issue altogether. Unfortunately, this is rarely possible in political terms.
Alternatively, one could employ classic B2B techniques and allow domains
to interoperate through exchange patterns. While B2B does support
interoperability through exchange messages, it does not offer any support
for cross-domain change management and deployment coordination, nor
does it provide control or measurement over spanning processes—aspects
that are essential to effective enterprise function like global financial roll-up,
integrated purchasing, sharing of common data, uniform application of
policy, and so on.

Certain ESBs meet these two perspectives in the middle by permitting
the notion of ‘multi-segmented operations’, which enables independent
governance domains to coexist in relationships that are more transparent
that B2B provides, without obviating the autonomy of independent
operating areas.

Rule 3: When you need to integrate services using disparate
interaction models.
This essentially points out that services will be constructed to ‘speak’ in a
particular interaction style that must be reconciled if dissimilar ones are going
to communicate freely. Jon Udell, InfoWorld chief analyst, has an expression:
“Request-driven software speaks when spoken to; event-driven software
speaks when it has something to say”. The difference would keep the two
(request-driven and event-driven software) from interacting if something
didn’t provide a translation in the middle.

In ESB terms, mediating interaction model means that whether a service
speaks through request-reply, publish-subscribe, store-and-forward, or batch
files, they can be enabled to interact, despite the ‘impedance mismatch’. This
is an incredibly powerful concept as it relates to technical reuse.

46 Chapter 4:

4.3 Selecting An ESB Product

There are two prevailing implementation architectures, or embodiments,
for ESB. Most conform to either a proxy/gateway or broker-oriented model,
which more-or-less reflects the choice for where ESB execution components
reside.

Proxy/Gateway-oriented Or Broker-oriented ESB Architectures
Roughly half the ESB products choose a standard container environment as a
host (i.e., J2EE, Servlet, .NET, etc.). ESB components conform to the container
paradigm and either co-resides with services in the same container or is
positioned in a separate instance of a like container. Services interact with
the ESB in a consistent component architecture and the general deployment
pattern resembles a proxy or gateway.

The other half of the market chooses a stand-alone execution environment
for the ESB. While these certainly make accommodations for standard
containers (to varying degree and depth), they do not depend on them,
and thus, tend to exhibit greater neutrality among containers types rather
than having implicit affinity to only one type of container. The pattern of
deployment in this case most resembles a broker. Services interact with the
ESB directly through open service interfaces.

Stemming from the choice of host environment, ESB products exhibit certain
styles that associate with this implementation difference.

Application-centric Versus Integration-centric Styles
The first of these is application-centric vs. integration-centric. In any ESB,
two sub-systems stand prominent: the Service Container and the Messaging/
Communication sub-system. Vendors tend to weight the importance of
these differently—some placing greater emphasis on messaging, others on
the service container. While none take the bias to an extreme, the market is
decidedly split.

The application-centric group bases its ESB architectures around a specific
standard container. The attractive quality in this orientation is its high degree
of alignment between the ESB and a particular service or application design
methodology and tooling, and is thus most often selected by application
teams.

The integration-oriented group is clustered among those using a broker-
oriented model that disassociates from any particular container architecture.
The design center bias toward the messaging aspects of the platform is
mostly favored by integration teams with responsibility for SOA across
heterogeneous application and service platforms. While offering generally
less intimate integration with any one application design platform, its
neutrality, as well as generally superior support for distribution, federation
and events, makes it attractive for solving ‘cross-anything’ challenges.

47ENTERPRISE SERVICE BUSES

Service Orchestration Paradigm
The other distinguishing ESB style has to do with the ‘control-of-flow’
semantics employed for sequencing, decision making and error-recovery logic
—its service orchestration paradigm.

Some ESBs favor a central coordinator that sequences service invocations
as request/reply interactions. This command-and-control oriented behavior
provides for straight forward composition that resembles traditional top-
down, block-oriented programming.

The contrasting approach formulates process sequence through event-
passing. This alternative organizes services to ‘listen’ to particular event
channels across which events are emitted as publish/subscribe, one-way
or store-and-forward interactions. This approach to process composition
shifts more of the decision logic out to the services but offers a broader
range of modeling options. Event-based processes can be visually rendered
as block-oriented, event-exchange, or complex correlation patterns—more
sophisticated models for process that are valuable in cross-organization
integration and high-speed event-driven architecture (EDA) style applications
(e.g. Program Trading, Power/Plant Management, RFID, BAM, etc.)

Since neither approach is comprehensive, both prove to be useful and are
thus supported to one extent or another by all types of ESB. However, vendor
implementations decidedly favor one approach over the other.

ESB Form Factors
A range of ESB packaging options have evolved, each with unique strengths
and weaknesses (see Figure 4.3)

4.4 Applications Of An ESB

While an ESB can be applied in countless ways, the simplest organization
for thinking about this is around the roles it can play. This follows one of
four specific patterns, none of which are mutually exclusive. Each pattern
notionally establishes a type of ‘channel’. These channels serve a particular
purpose or role in the enterprise SOA. Channels are characterized by the
nature of the messages they carry and the interaction models they employ.
The four patterns, or channel types, are:

Interaction Channel•	
Process Channel•	
Information Channel•	
Event Channel•	

48 Chapter 4:

49ENTERPRISE SERVICE BUSES

ESB Type Description Strength Weakness

Ad Hoc
(roll-your-own)

An assemblage of licensed or home-
grown subsystems comprising an ESB,
namely support for: MOM, Web Services,
Transformation and Intelligent Routing
capabilities, along side some container
architecture

•	Potential Initial Savings

•	Fit to Requirement

•	Potential Performance
Advantage in unique
applications

•	Must architect/build:
security, management,
development tools and
deployment support.

•	Potentially higher overall
TCO

Packaged/
Commercial
(licensed software)

Complete (or semi-complete) Out-of-Box
platforms that usually include the principal
components of an ESB but may not provide
complete Management Life-cycle and security
capability. Some commercial ESBs also
separate out support for MOM, depending on
other vendor or third-party products for this
capability.

•	Generally more mature /
proven offerings

•	Unique vendor advantages

•	More complete enterprise
support

•	Larger developer/ISV
ecosystem

•	Potentially Higher initial
cost (but likely lower
lifetime TCO)

•	Concerns over vendor
lock-in and/or future
direction/viability

•	Vendor alignment with
specific industry or use-
case requirements

Open Source
(licensed software)

Similar to Commercial ESBs but developed
in an Open Source or Community-Edition
model. The latter however is often a free
‘introductory-version’ to a commercially
licensed upgrade, that is intended to seed
community development for the commercial
offering and thus should not be confused with
true open source licensing models.

•	Open Source community
and ecosystem advantages

•	Lower initial cost (potentially
lower TCO)

•	Greatest Standards
Conformity/Openness

•	Potentially lower risk of
technology ‘lock-in’

•	Generally less mature/
proven

•	Questionable enterprise
support policies and/or
technical capabilities (i.e.
performance, scalability,
reliability)

Hardware/
 Appliance

Specialized hardware device that is hardened
and optimized for discrete lower-level ESB
operations, especially transport mediation and
XML parsing (i.e. XML transformation, simple
content-based routing, WSDL validations, SLA
management, Security, etc.)

•	Potentially higher
performance and scalability
on specialized functions

•	Generally simpler
management (i.e.,
operations & network-
engineer friendly)

•	Potentially higher cost

•	Lacks advanced ESB
capabilities (e.g.
semantics, service
orchestration, etc.)

•	Disjointed management
(e.g. separate from the
process or application
environment)

ESB as a Service

Utility/ Software-
as-a-Service (SaaS)

ESB functionality offered by a third-party,
network-based provider. Most often
offered in a SaaS, Managed Hosting or
Outsource model by a Systems Integrator,
ISP or Telecommunications Carrier. Examples
include:

•	EDS, AirSOA, an ESB for the Airline Industry
sold as an outsourced, managed-service

•	British Telecom, BT iBus, an ESB marketed
as a telecom service (dial-tone), which is
provisioned through specialized customer-
premises hardware and billed as a
subscription (monthly) service.

•	Low/Zero initial capital
expense; potentially lower
TCO

•	Faster initial implementation

•	Minimal internal
requirements (e.g. training,
hardware, related systems,
etc.)

•	Potentially better support
for B2B and industry-specific
applications/use-cases

•	Less Mature as a business
model (although
generally based on similar
technology)

•	Potentially narrower
range of support
capabilities (i.e., little
customization of
packaged services)

•	Potential security risks

Figure 4.3: ESB Form Factors

Figure 4.4: ESB Industry Use Cases

50 Chapter 4:

Pattern: Interaction Channel | Usage Scenario: Remote Information Access

INDUSTRY USE-CASES

Insurance Agency store-front portals, self-service enrollment/claims inquiry

Financial Services Remote Trader Workstations, Portfolio management portals

Telecommunications Customer Provisioning/Self-Service, Call Centers

Manufacturing Supplier Portals, ERP Portals, Product Catalogs

Retail Multi-Channel Marketing, Supplier (VMI) Portals

Transportation Package Tracking, Reservations Portals

Government Citizens Services Portal, Cross-Agency Portals (e.g. Justice, HS, DMV)

Pattern: Process Channel | Usage Scenario: Continuous Pipeline Processing

Insurance Claims processing, underwriting

Financial Services Front-/Mid-office Straight through processing—STP (T+1, T+0)

Telecommunications Operational Support Services (OSS),

Manufacturing ERP, Supply-Chain/Procurement Management

Retail Supply Chain Replenishment, Custom pack/assembly operations

Transportation Inventory and Supply Chain/Procurement Management,

Government Enrollment, Licensing, Justice, Human Services, Defense Logistics

Pattern: Information Channel | Usage Scenario: Remote Information Distribution

INDUSTRY USE-CASES

Insurance Policy Master distribution (e.g. claims centers and branch offices)

Financial Services Securities Master distribution (e.g. to trading desks)

Telecommunications Circuit Inventory and Customer Master data distribution

Manufacturing Product & Inventory Master Distribution

Retail Price Master and Customer Master Distribution

Transportation Flight Operations and Inventory Status distribution

Government Citizen Master, Tax/Property records, OFAC/Patriot Act data distribution

Pattern: Event Channel | Usage Scenario: Real-time Response to Business Events

Insurance Claims alerting, New customer alerts, emergency monitoring

Financial Services Real-time Market Data, Fraud Surveillance, Compliance monitoring

Telecommunications NMS Alert, MPLS call detail and Point-of-presence notifications

Manufacturing RFID/Auto-ID Track & Trace, Shop Floor control and monitoring (BAM)

Retail RFID/Auto-ID Track & Trace, supply chain monitoring (BAM)

Transportation Baggage/Cargo tracking, Airport/Flight-line operations, Emergency

Government Emergency Services, Public Transit/Railway Monitoring, Admissions

Figure 4.4 summarizes Industry specific ESB use-case examples that are
representative of each of these four channel types.

Interaction Channel
As an interaction channel, ESB is positioned to participate in the flow of
interaction by mediating exchanges between ‘front-end’ consumer services,
through to back-end process- and data-oriented provider services. Gartner
refers to this as Interactive or Uniform SOA and associates it with services
operating in portals or controlling rich-client, mobility and alternate user
interfaces channel (ATMs, Kiosks, IVRs, etc.)

From a usage scenario point of view, this pattern can be thought of
as ‘Remote Information Access’ where a composite application begins
to need real-time access to multiple back-end systems. ESB indicators
strengthen when back-ends are heterogeneous, distributed and federated
organizationally and/or there is the need for multi-channel user interface
support (i.e., more than just browsers).

This pattern tends to favor the application centric and command-control
oriented ESB styles for its close affinity with application servers on which
portals and user interface logic are usually hosted. However, care should be
taken to avoid solving short-term problems by aligning the ESB architecture
too closely to the portal host —for quick initial delivery—only to discover that
the environment evolves to become considerably more distributed and/or
federated, which would favor a message oriented ESB.

Process Channel
In this role, the ESB behaves in an orchestration-centric manner, where its
purpose is to mediate services along a business process pipeline. While BPM
often sits above this type of SOA-level orchestration (to mediate human
interaction and long-running processes) ESB service orchestration performs
fine-grain service sequencing for machine-to-machine interactions. Gartner
refers to this role as Integration or Composite SOA.

This usage scenario might be thought of as ‘Continuous Pipeline Processing’,
where processes are enabled to flow ‘hands-free’. This scenario is intended
to improve automation of a process pipeline, reduce latency between steps,
improving information accuracy and integrity across stages, and increase
agility in handling variable process decision routes. This scenario can be
adeptly handled by either Application- or Message-centric ESBs, the patterns
will be better served by message centric architectures in highly distributed
landscapes.

Information Channel
As an Information Channel, the ESB role can be described as information-
centric, where function is geared toward provider-side services. In this case,
mediation is on behalf of back-end provider services exposed for data access
and transactional purposes. ESB provides access to data services, where they
would most likely be invoked by user-facing and process-control oriented

51ENTERPRISE SERVICE BUSES

consumer services elsewhere on the bus. ESB functions provide aggregation
of federated back-end data and coordination of process-oriented business
logic across data services.

This usage scenario is best described as ‘Remote Information Distribution’,
where the motivation is distribution of master reference data (MRD) across
remote services requiring a near-real-time ‘single-version-of-the-truth’.
This does not replace data warehouses and MRD applications; rather it
compliments them by enabling distribution of master data to remote
locations. This pattern introduces scalability by extending data onto the ESB
virtually regardless of location. The pattern frequently replaces FTP, batch
transfer techniques commonly employed to distribute MRD in order to
improve the timeliness of remote updates. While either style of ESB could
in theory support this usage, the message-centric class of ESB generally fits
better given its superior distribution as well as pub/sub, store-and-forward,
and event-processing support.

Event Channel
The event channel role is, as the name suggests, event-centric and oriented
around the notion of syndication. Gartner refers to this as Event-Driven
Architecture (EDA) or Notification-based SOA. The ESB purpose is to support
a distributed fabric of event channels, distributed using publish and subscribe
model of communication. Producer services publish messages (events) of
relative interest into this namespace and the bus mediates these events over
to syndicated consumer services that subscribe to and act upon them. Typical
usage scenarios are where organizations have many functions that need to
‘Respond to Business Events in Real-time’—specifically when one type of
event may be of interest to many different functional roles.

For example: When a plane lands at an airport, a number of interested
parties must be alerted to take action—the tower must record it in a log;
baggage handlers, fueling trucks and ground crews must all move into
position; terminal displays must all be updated, and so on. If information
had to be explicitly routed to each of the interested parties, there would be
precipitous process maintenance required each time a new interested party
joined the network. Using event-driven, publish/subscribe architectures,
generators of events remain immune from changes in the set of syndicating
parties. New consumers simply subscribe to channels of interest to receive
real-time notification. Thus, the motivations for this pattern is when a large
population of event-sources and event-sinks exist. As the name of this usage
style suggests, this pattern clearly favors the event-centric ESB architecture.

Common Theme Applicable To All Channel Types
One interesting point to note is that, irrespective of the channel architecture,
in roughly one-third of the ESB usage scenarios, the catalyst for ESB
implementation is ‘batch-to-real-time migration’. In the context of legacy
systems modernization, a common model of integration, yester-year,
was batch-oriented file transfer and extract-transform-load (ETL). While
improvements to those technologies continue to come to market, the agility
of loosely-coupled systems cannot be realized through set-oriented, batch

52 Chapter 4:

processing—no matter how much you optimize the batch process. However,
abrupt, flash-cut-over to event-oriented paradigms is usually not feasible
for reasons of scale, scope, risk, cost and a myriad of other constraints. The
journey from batch to real-time can only be accomplished in incremental
steps. ESB therefore becomes the ideal assistant in that journey as its
support for interaction model mediation permits a gradual shift to real-time
SOA without the disruption or risk. As such, certain ESBs accentuate this
application by either bundling or offering companion ETL capability to assist
in the orchestration of file oriented process (like ETL), while at the same time
providing means to parse data sets into individual transactions, or document-
level granularity, for discrete handling on process flows.

4.5 Mediation And ESBs

It’s All About Mediation
In the context of enterprise integration architecture, there are several
mediations an ESB can provide. ESB mediates by acting as a third party
intermediary that resolves differences between services in order to bring
about agreement—which creates interoperability.

Comparable forms of mediation appear in the telephone network and
public internet. The carrier network mediates the signaling protocols used
by different phones and switches such that the differences are transparent
to one another. Similarly, the Internet DNS service provides another form
of mediation, ‘location transparency’, that allows abstract use of a domain
name that is transparently mapped to a specific location (an IP address) on
the Internet.

We can use these examples as metaphors to describe the types of mediation
an ESB performs in an enterprise SOA. Specifically, the ESB provides seven
types of mediation, labeled as follows: Transport, Destination, Semantic,
Sequence (e.g. Service Orchestration), Error recovery, QoS/QoP, and
Interaction model.

The importance of these mediations as a group has to do with a key link in
the SOA logic chain—Reuse. In order to achieve optimal reuse, two things
need to occur, technically:

Services must be developed with the right level of functional granularity. •	
Services must delegate mediation responsibility to infrastructure (i.e., •	
not take on structural, behavioral and performance interoperability
requirements itself).

When a service can depend on infrastructure to manage all the points of
mediation, it has the greatest likelihood of reusability. ESB enables critical
mediations to occur inside the infrastructure such that services can be written
in a way that disregards any consideration of these meditations. Services
maintain only one set of relationships—those it has with the bus—and the

53ENTERPRISE SERVICE BUSES

bus mediates these concerns to adapt to the specific variations that might be
employed by another service.

First point of mediation: Transport
Generally any enterprise will have many different transports in use. While
HTTP/SOAP-based WebServices may be an idealized end-state goal to
normalize toward, two realities are true: First, for years to come, there
will be many protocols in use that predated HTTP/SOAP; and second, by
the time HTTP/SOAP would reach ubiquity, new protocols will have been
invented that will optimize further on current state-of-the-art. Also, the
WS-SOAP standards support countless variations in implementation leading
to incompatible ‘flavors’. While the WSI Basic Profile attempts to establish
concrete interoperability around a least common denominator, the likelihood
of widespread variations will undoubtedly exist in many cases. The enterprise
SOA protocol set under consideration would likely include (HTTP/REST, WS-
SOAP, RMI, JMS, CORBA, etc.)

In order to support integration at enterprise scale, one cannot predicate that
a service supports interoperability among all the protocols in use on its own.
Rather it should simply be able to ‘on-ramp’ to the enterprise using whatever
transport it chooses to do so with, and rely on infrastructure to mediate it to
other protocols. An ESB satisfies this objective by providing multiple levels of
transport on- and off-ramps that support interoperability across all types of
common protocols.

Second point of mediation: Destination
As noted earlier, the Internet provides location transparency and mediation.
So why then does the ESB need to provide this capability again? In the
case of the Internet, location transparency extends to only one single static
address, usually associated with one physical machine or cluster—the domain
address usually resolves to one single IP address. However, in enterprise
SOA, the notion of location needs to become more robust, abstract and
virtualized. At any given moment, a service may need to come up or down
and be relocated on-the-fly, or exist in several places at once, yet it must
exist logically under only one service name. Examples include load-balancing,
distribution of instances of a given service to remote locations (e.g. stores,
branches, trading desks, plants, warehouses, etc.) where they can execute
closer to the business function being supported, and implementation of two
services, one in a primary data center, another in a disaster recovery location.
The most evolved example of this idea occurs in the case of so called ‘follow
the sun operations’. Here, services may become operational or taken off-
line as workload shifts around the globe—as in trading operations of an
investment bank. Here, a ‘risk management’ or ‘compliance’ service may
be operational in London and New York when markets are open in those
regions but as London closes for the day, the Tokyo service comes on line.
Meanwhile, any process that uses the ‘compliance service’ simply references
it by its logical name and the ESB infrastructure provides a routing to the
most appropriate instance in the moment.

54 Chapter 4:

Third point of mediation: Semantics
Returning to the telephony metaphor, imagine if you will a situation where
I spoke English but the person I wanted to call only spoke Chinese. In
enterprise SOA, it would mean that every service would need to be fluent in
all the languages spoken by every service it would be likely to interact with.
This is a form of point-to-point integration that can kill a SOA agility and
manageability quickly.

This is resolved by using the ESB infrastructure as a ‘universal semantic
translator’. Every service speaks to the ESB in whatever its own native
(semantic) language might be and then the infrastructure maps that to a
global/common (canonical) language, which only the infrastructure knows
completely. Then, upon delivery to the other end, it maps the conversation
once more to the appropriate dialect for the receiving party. Importantly,
the common vocabulary is simply the intersection of the vocabularies of
the interacting services, not the union of the service’s entire grammar. The
service can then be created without consideration for the language of its
counterparty and thus can be reused in any context, irrespective of the
language employed at the other end.

Fourth point of mediation: Sequencing
Too often, services are written with far too great an awareness of the
processes they will be used in. In other words, services are frequently created
with certain expectations of pre- and post-conditions that stipulate their
order of execution relative to other services. It is not uncommon to see
services even calling dependent services directly. Likewise, services frequently
embody error-recovery logic that really belongs at the process level, not
tucked inside the service itself.

As a design goal, it’s not that services should always be prohibited from
calling other services directly, whether for service orchestration or error
recovery purposes. It is however a point of caution to make very judicious use
of direct service invocations.

Once a service is ‘hard-wired’ to call another service, whether that call is
conditional or not, it binds them together in such a way that they can no
longer be used outside the context of both being employed together. While
it might be determined that it is more efficient to have one service directly
call the another than if it were to pass through a brokered intermediary
like an ESB, it carries the consequence of limiting reuse of the first service
because now it can only be employed when the second is also desired. At
the end of the day, reuse value usually outweighs the value of any marginal
performance gain achieved at the expense of reuse.

Sequencing is a form of Service Orchestration, or the ability to compose a
sequence of multiple services into a composite service—whether for business
process or error-recovery purposes. Thus, in order for services to be able to
delegate these mediations to infrastructure, the infrastructure must provide
mechanisms for composition and Service Orchestration. Most ESBs will
provide a process composition framework. Most often, contemporary ESBs

55ENTERPRISE SERVICE BUSES

will offer support for WS-BPEL (WebServices—Business Process Execution
Language), a standard grammar for process composition. However, it is
important to also recognize that there is a distinct difference between BPM
and Service-Orchestration, where architecturally speaking, they should not be
used interchangeably.

BPEL would have been more aply named: SOL—Service-Orchestration
Language. BPM is about people. BPEL is about Services

Fifth point of mediation: Error-Recovery
If each process failure in effect requires a ‘recovery process’ to deal with
the anomaly, the problems of poor reuse will be exacerbated multiple times
over if services also attempted to deal with error-recovery issues on it’s own.
Here is an example that illustrates how services attempting to take on error
recovery themselves become contextually constrained to a point that reuse
becomes severely compromised, making it difficult to fully visualize, manage
and optimize.

A service tries to update a database with a service request that has been
made against its interface. However, there is a network problem which
prevents the service from connecting to the database. If the service were to
incorporate its own error recovery logic, say to perform a retry some number
of times, it hijacks the opportunity for the infrastructure to provide more
advanced remediation; for example rerouting to another service that has
a functional database connection. If the service were to take on the entire
burden of understanding alternative strategies and being aware of all the
possible retry locations in the network, it not only becomes contextually
bound to that understanding of recovery but also becomes less location
independent as well. Here, service orchestration, placed in the infrastructure
and outside the service context, could be used to perform a wide range of
recoveries.

Individual service errors can sometimes be handled by the service
infrastructure (for example Try/Catch blocks of EJBs delegating transactional
roll-back to their J2EE container or data service results provided by the
information server cache when the source data is unavailable). An ESB
operates at a scope that may encompass many heterogeneous services and
containers across vast geographies.

Sixth point of mediation: QoS/QoP (Quality-of-Service and Quality-of-
Protection)
Mediation of QoS/QoP covers a number of related topics all falling
under the heading of performance oriented concerns. Taken together,
these considerations, dealt with inside the ESB, enable service scaling,
response time and availability objectives to be met, along with security
and audit requirements, allowing the establishment of SLA (Service- and
Security-Level Agreement) to be expressed and enforced in a completely
policy- or configuration-driven manner. Absent an ESB, all these complex
considerations fall back to the service itself or to point solutions that only
deal with one or two of these concerns at a time and do so outside the

56 Chapter 4:

context of a global management architecture and framework.

QoS specifically breaks down into 5 distinct but highly interrelated issues:
High availability•	
Load distribution•	
Routing optimization•	
Queuing (asynchronous delivery)•	
Publish-and-Subscribe (1:N distribution cardinality, or syndication)•	

The ESB infrastructure should, and usually does, support some degree of
HA architecture that ensures continuity of communications and integrity of
message flow between service end-points. The most robust incarnations of
these models provide five-nines, ‘continuous-availability’ of the infrastructure
through sophisticated state-full replication between ESB elements, such
that any failure of an infrastructure element remains entirely transparent to
attached services (i.e., no loss of connection, logon or transaction state). In
conjunction with the next two aspects of QoS, this also extends degrees of
fault-tolerance and HA to the services themselves.

Regarding route optimization, one can also then consider the earlier example
where service developers might be motivated to directly connect two services
for pipeline speed between them. If two services needed to be deployed in
a way that reduced the message passing latency between services in order
to make the entire service orchestration run faster, the optimal architecture
would be to place all the services in the same execution container and pass
the messages between the services as objects that are not dependent upon
the network between each service step. However, if the services needed to
be deployed to support maximum scale, handling potentially thousands of
simultaneous requests, one might be more inclined to deploy the services
across many containers to horizontally scale the application platform. If
service designers were forced to decide these options one-way-or-another,
and optimize the implementation of the service for either, the service would
not be in a position to readily adapt and be reused in the alternate context. If
an ESB was used, this decision could be deferred to deployment time, where
an operations engineer could determine the appropriate scale and latency for
the situation and make policy-driven deployment decisions to support either
or both simultaneously.

Over and above speed, scale and latency considerations, quality of service
also extends further to include message integrity and durability concerns
as well. At its core this amounts to the ESB’s ability to provide reliable
queuing. Additionally it introduces support for synchronous to asynchronous
interaction mediation. For example, if someone wants to ask you a question
over the phone in real-time (synchronously) but you are unavailable so they
leave you a voice-mail, ‘queued’ in the persistent storage of your voicemail
box which (asynchronously) ‘brokers’ the question for you. This is a form of
‘guaranteed’ delivery that mediates sync to async interaction and enables a
level of loose coupling (of both time and dialog mode), while still assuring
proper delivery, that forms one of the principal drivers for an ESB.

57ENTERPRISE SERVICE BUSES

This notion extends one level further when one considers that such
interactions are not always one-to-one. Sometimes these capabilities are
necessary in multi-party or one-to-N communications. Fundamentally,
this is known publish-and-subscribe communications where services can
syndicate around information (topics) of interest and receive notifications,
as a broadcast, when events occur. One could argue that 1:N cardinality of
communications is the most significant driver for ESB usage.

Again however, what makes these notions of particular interest in an ESB
is that these performance selections are completely abstracted away from
service implementation such that decisions on the level of availability,
topological virtualization, load distribution, pipelining, queue reliability
(persistence) and cardinality are no longer placed in the service designer’s
view. With respect to Quality-of-Protection, it is possible, in certain cases,
to look at an ESB as a common security assertion, control and enforcement
layer for all interactions across the enterprise—a fortress wall that one rings
around their service environment to protect it in all interaction circumstances.
These security considerations extend to authentication, authorization, audit,
encryption, and other related concerns, and purports to enable all these
things to be dealt with in a policy-driven, declarative manner as well. In
doing so, it establishes one common enforcement point, across firewall,
DMZ and domain borders, where all services can be relieved of these
considerations and the enterprise can trust that all QoP assertions can be
uniformly implemented across all services now, and as new services appear in
the future.

Another point of view is that security can only be viewed as a multi-layer
problem extending downward from the ESB all the way into the hardware
level, and above the ESB all the way up to the application or service
layers themselves—in this model the ESB is simply a participant in security
contributing some enforcement and surveillance capability but not necessarily
addressing the entirety of enterprise security concerns.

Seventh point of mediation: Interaction Model
The final point of mediation has to do with Interaction Model. Services will
communicate using one of four possible interaction models: Request/Reply,
Pub/Sub, Store-and-Forward (a.k.a. Fire-and-Forget), and Batch Files. Even
if there were a day in the future when everything was 100% Web Service
compliant, it is still possible that services may not be able to interact. For
example, one service chooses WS-ReliableMessaging (the one that supports
the store-and-forward and request-reply variants) and another speaks WS-
Eventing (a pub/sub variant). Even though both are fully standards compliant,
the two would still never interact. This is because one wants to publish
events when information changes and the other wants to ask questions
when it needs information. Once again, it is impractical to consider that all
services can be normalized to interact in one common model. ESBs enable
interaction model differences to be delegated to the infrastructure for
mediation without writing custom logic. Thus it becomes possible to get two
services interacting, despite differences in dialog making the services reusable
over a larger range of contexts and more agile to respond to new situations.

58 Chapter 4:

Interrelationships Between The Seven Points Of Mediation
Having now reviewed the seven points of mediation individually, it is worth
noting one key observation that you may have made along the way: that
there is a strong interrelationship between the various points of mediation
just described. In each of the examples used to illustrate the discrete points
of mediation, there was an implied dependency on one or more of the other
forms of mediation. Look for an ESB that encompasses all seven points
of mediation in a comprehensive manner and enables all of them to be
managed in a coordinated way across all service interactions.

Mediating Toward The Pure Service
The ESB provides a mechanism through which ‘pure’ services can be
created. In other words, services that are created with the correct functional
granularity (i.e., not ‘over-composited’ into a single service, and not so state-
full across interactions as to become components) and also delegate fully
the seven points of mediation to infrastructure, become reusable across the
widest range of circumstances, thereby preserving and reinforcing the SOA
logic chain toward agility, Business-IT alignment and faster realization of
value from IT investments.

4.6 Conclusion

Interoperability is probably the primary driver for an ESB initiative—
establishing a platform to implement and govern a broad range of mediation
types in order to bring about interoperability, scalability and manageability of
SOA in ways that transcend what standards alone can offer. SOA is first and
foremost about heterogeneity—be prepared for it at every level of the SOA.
Build a philosophy around Interchangeable, best-of-breed parts. ESB enables
that interchangeability so that heterogeneity can be leveraged for best-of-
breed capabilities without compromising manageability, reuse or agility.

Over and above the interoperability provided by standards, ESB fills gaps
not yet satisfied by state-of-the-art and even enables mediation across
incompatible standards. ESB binds the links of the ‘SOA-chain of logic’
together to ensure that your SOA initiative fully achieves the reuse, agility
and business value objectives you seek.

59ENTERPRISE SERVICE BUSES

60 Chapter 5:

Runtime Management

Successful implementation of a SOA initiative includes the creation of a
service network consisting of applications and services constructed using an
SOA approach. Developers now have several years of experience successfully
building such service networks and are reaping the benefits promised by
SOA, including decreased development costs and increased agility. However,
these experienced developers have also seen that these benefits can be
quickly offset by increased operational costs for these complex service
networks. To help minimize operational costs while increasing the agility and
overall cost-effectiveness of the resulting service network organizations are
embracing SOA runtime governance.

You will find SOA runtime governance is most effective if these tasks
are addressed in an automated fashion and if its capabilities span a
heterogeneous infrastructure on which the service network resides. Coding
runtime governance into application components result in constant recoding
as the system grows and evolves. For this reason, it is recommended to
create an abstracted runtime governance layer, one that accommodates
change and thereby fosters system agility.

In this chapter we will address some of the practical issues that arise in the
course of performing runtime governance tasks, describe the best practices
for addressing issues, and show how runtime governance solutions, when
implemented properly, can lead to increased agility and decreased costs.

We will address important considerations, including:

Understanding service network topology•	
Ensuring the operational health of the Service network•	

Managing performance and availability��
Delivering appropriate service levels��

Detecting and diagnosing exceptions in the behavior of the •	
service network
Securing the Service network•	
Ensuring the integrity of the Service network as it evolves•	

61RUNTIME MANAGEMENT

CHAPTER 5

Key RECOMMENDATIONS:

There are three overarching
runtime governance
requirements for SOA.
Address these and you will
ensure greater operational
effectiveness and system
agility. Try to do business with
SOA systems without having
addressed them and you won’t
get far. These requirements
include:

Understanding the •	
composition and behavior of
your service network

Controlling your service •	
network as well as detecting,
diagnosing and, ultimately,
preventing problems that
arise during the operation of
the service network

Ensuring the correctness of •	
your operational system as it
evolves over time

Paul Butterworth
Chief Technology Officer

AmberPoint

5.1 Understanding Topologies

Service networks can and should be dynamic to allow services to be added,
updated or removed at any time. In such a shifting environment, it can be a
challenge to understand what is actually installed and running—the ‘as-built’
structure of the service network as opposed to the intended structure of the
service network. We have all been victim to situations where the topology of
a system is explained to us by the system’s ‘authority.’ Of course, it’s at the
worst possible time that we come to find that the system’s actual topology
is different from what was described. After investigation, we might find
the culprit to be a service that nobody knew was part of the system. This
problem is common in the SOA world where any service may be added
to the topology simply by calling it while there may be no record of the
existence of this call.

In this instance you would rely on runtime governance, which solves this
problem by dynamically discovering the topology of the service network. It
observes the actual components that are installed in the environment—no
matter if it exists in a development, staging or production environment—
and records their existence. Since these are SOA-based environments
and the service interfaces can be accessed dynamically, details of the
discovered service’s interface can also be recorded. As an added benefit,
the runtime governance system can record the discovery information in a
registry or repository, making the information available to the architecture,
development, and operational teams. We’ve seen that the most successful
IT shops instrument all their service environments used in development, QA
and operations. They can then use the information on discovered services as
the basis for the overall SOA governance by recording which services exist,
their current state, and the rate at which the services are being promoted
from one lifecycle stage to another. This information, along with usage
information described below, is used to prepare reports for corporate
management detailing the effectiveness of their SOA initiatives.

Let’s consider another example. In the spring of 2007, daylight savings
time changed in the US about a month earlier than usual. The time change
required that every service was checked to make sure that appropriate
patches had been applied to the systems on which they were hosted. By
automatically discovering the services in the environment, the runtime
governance system gives us a guarantee that all service environments have
been properly updated. If we depend on only design-time information, we’d
likely miss services incorporated into the application in the later stages of
development or substituted during subsequent maintenance activities or
just simply not recorded from the start. One user reported it took only five
minutes to discover all affected services and issue change requests to the
operation staff to check their environments. The daylight savings change
went off without a hitch!

In a similar vein, you will certainly need to know the effects of a component
failure, the potential impact of a change to a component or who is using a
particular component. In order to answer these questions you first need to

62 Chapter 5:

know the interdependencies among your application components—another
capability you’ll derive from your SOA runtime governance system.

A runtime governance solution observes a service’s inbound and outbound
message traffic to identify other services to which they are connected. As it
observes more and more services it constructs a picture of the actual service
components that comprise the system and their interconnections. Runtime
governance tracks this information across the service network, producing an
accurate network connectivity topology based on actual traffic. This results in
an authoritative record of the dependencies among services.

This information forms the basis for impact analysis. You can see which
components of the service network are likely to be impacted by a change
to a service. Generally, impacted components will be in the set of callers of
the changed service and/or the set of services the changed service calls. The
set of callers should be computed transitively to gain visibility into ‘indirect’
callers of a service. Given this information, we can determine who will be
impacted and can give all interested parties (i.e., the callers) advance warning
of the change so they can prepare. Using your runtime governance system
you can even take this a step further by recording the set of end users of a
particular service. For instance, you can use this information to notify users of
outages caused by the failure of a particular service. This is another example
of a SOA best practice enabled by runtime governance—taking a proactive
approach to work with the user community.

You should be able to leverage this dependency tracking to help document
the effectiveness of the SOA program. By recording all uses of the services—
both by other services and end users—you can gain a clear picture of actual
reuse and the rate of change in reuse throughout the organization. Such
information illustrates the effectiveness of the SOA program, highlights the
most effective services, and serves as an early warning of reuse problems
that might surface. For example, a service may have been built with the
expectation of significant reuse. Should we discover that the service is not
actually being reused we can initiate further investigation to determine if
applications that were expected to reuse the service have instead created
independent solutions. This is a good example of something that’s usually
checked during the early phases of the software development lifecycle,
rather than discovering the problem in the operational environment after
the application has been deployed. This is another reason for enabling the
runtime governance system throughout all lifecycle phases.

5.2 Managing Operational Health

It is essential to manage the operational health of your service network.
At its most basic, this requirement boils down to understanding the
performance and availability of your service network. You need to know
about the performance of both the services and the composite applications
that comprise your service network. Once you have control of these basic
characteristics of your service network, you can advance to managing the
specific service levels provided to the clients.

63RUNTIME MANAGEMENT

IT professionals familiar with the operation of traditional systems are familiar
with performance and availability management as well as service level
management. However, the service network throws a few wrinkles into the
problem—issues that must be considered both by the runtime governance
system and the IT organization responsible for the service network.

For example, services are reused. That means the load on the services
themselves may change independently of applications that use those
services. Thus, the performance of each service (component) must be
tracked over time and correlated against the known reuse of the service to
determine if new uses of the service will prevent it from properly supporting
existing applications. To reuse a service it must indicate how long it will
take to produce a response. This represents its expected service level. Under
unexpectedly heavy loads the service might not meet this constraint. The
trick then is to keep the service from overloading. To do this, you need a
way to keep the set of clients of a service from demanding more capacity
than the service can offer. Alternatively, you would need a way to increase
the capacity of the service. Use runtime governance to solve this problem
by tracking and limiting service requests to maintain the request load below
that required to meet service level agreements or by adding capacity in
conjunction with other infrastructure management systems. There are several
strategies to consider, including:

Configure the service such that all users, at their maximum load, can •	
be serviced
Use historical statistics to determine a reasonable peak load•	
Dynamically adjust the limits for each user to reflect the current load•	

This problem is a bit insidious when you consider the services that prove to
be most reusable are the first to experience a problem. To stay ahead of this
issue, track changes in reuse rates to determine which services should be
monitored most closely.

The runtime governance system also reports detailed information to make
the most of service level agreement monitoring and enforcement. You might
need to check this information on a per-end-user or per-transaction-type
basis or based on even more detailed information about the request being
processed, such as the size of the order. The runtime governance system can
slice and dice the data in various dimensions, allowing you to inspect the
performance statistics from the most useful vantage point.

There is no point in monitoring the performance of a system or setting
system service levels if it is delivered in such a state that it cannot meet its
stated requirements. Unfortunately, many services are deployed in just such
a state because the principles of runtime governance are not applied to the
service during development and quality assurance. We strongly recommend
applying runtime governance to SOA systems when they are under
development. It is certainly not very difficult to instrument them when they
are being tested. Applying runtime governance early in the lifecycle will not
only focus your teams on performance issues earlier in the cycle, but it will
also give you hard data that can be used to measure the system when it is

64 Chapter 5:

first staged in a pre-production environment.

5.3 Detecting And Diagnosing Exceptions

Discovery is the first step to visibility. Once we know the topology of the
service network we need to understand its dynamic behavior. Is it up and
running? Is it properly processing business transactions? Is it performing as
we expect? Runtime governance should be able to answer, or at least aid in
answering, these questions for the technical operations team.

Let’s consider a classic problem that’s addressed by SOA runtime
governance—the ’all green‘ status indicator scenario. Though these status
lights indicate that every component of the system is up and running,
end users are complaining that their requests are not being processed or
processed incorrectly. This usually occurs when some element of the system
is down but its role in the application has yet to be discovered, or perhaps an
element is running but is processing requests incorrectly.

A good example is a service that accesses a database. The database has
been damaged in some way so the service is returning incorrect answers,
causing other components of the system to fail or produce incorrect answers.
Although the components are still up and responding, their responses are
incorrect.

A related problem is one where the user does not receive an answer or
the system is not processing requests. The macro level impact is known
but the reason for the failure and the location of the failure is not. In such
cases, figuring out what went wrong and where can be a very difficult task.
A classic approach for diagnosing these errors is to have each service log
capture information about what it sends and receives, as well as some of
its internal activities. The technicians responsible for each service then get
together and manually trace their way through logs, correlating messages
and looking for anomalies. One organization reported they spent more than
14 hours looking for such a problem that impacted only one customer’s
transactions—all other customer’s transactions were processed correctly.
After significant effort, they realized that one service had been updated in a
minor way but that change had a deleterious effect on transactions whose
serial numbers were encoded in a specific format used by only one customer.
This would have been much easier to find if correlated log information from
all the participating services was readily available to the diagnostic team.

Using runtime governance, you can take much of the labor out of this task.
Messages can be recorded and correlated automatically. Standard patterns
can be detected automatically and queries and inspections can be applied
to the correlated messages in an effort to find anomalous behavior. Once a
problem is found, the exact location of the problem is known and corrective
action can be taken. If the problem is chronic, perhaps due to some physical
failure or some recurring logical inconsistency, the runtime governance
system can automatically detect failures and initiate corrective actions.

65RUNTIME MANAGEMENT

A great example of the benefits of this runtime governance technology is
illustrated in its application to various order fallout or transaction failure
problems in integrated systems. That’s because the behavior of integrated
legacy systems are difficult to predict in all possible situations and under all
possible stimuli. Automatically correlating messages and using the resulting
log information for diagnostic purposes is essential to the proper operation
of the system. As each problem is diagnosed, further rules can be added
to the exception system to detect similar problems in the future, thereby
making the system even more responsive.

5.4 Security

Traditional applications are typically ’tightly-coupled’ and secured at the
application level. That is, the user signs in to the application using his or
her username and password. Once the user has been authenticated, the
application itself authorizes the use of its various features

In a service network, this one-to-one model no longer holds. A SOA
application consists of an aggregated set of discrete services, each of which
is an independent entity that can be reused across multiple applications.
Thus, SOA services cannot depend on a single application to implement
authentication and authorization policies—each service must be able to
perform a range of security processing independently—authentication,
authorization, and so on. In the service network each service is responsible
for authenticating the identity of requesters and authorizing the use of
various capabilities offered by the service.

A service may not be aware of who the ultimate consumer of the service
is, and, at the same time each service must share data that may be used in
unpredictable ways by other applications involved in the transaction. An
intermediary in one transaction may act as a service consumer in another
transaction. Those other applications may dynamically ’plug in‘ to an existing
transaction, or may suddenly be accessed by a foreign partner, where the
previous week all access was confined to users within the enterprise walls.

Security processing must be placed within every SOA application. However,
implementing security processing in every application would obliterate the
core value proposition associated with SOA—agility. The response to this
seeming conundrum is a runtime governance system that simultaneously
offloads security processing and policy enforcement from the applications
themselves, while enabling embedded security processing on their behalf.

The best practice response to this challenge is to implement authentication
and authorization at the service interface. This offloads security programming
and configuration from application developers and places responsibility
for security in the hands of security administrators. The role of a runtime
governance solution is to provide a mechanism for offloading security
processing from the services themselves, while decoupling the definition of
security policies from their execution in the system. A key challenge is policy

66 Chapter 5:

enforcement at the service endpoint. This is conventionally known as ‘last-
mile security.’

If security processing does not occur locally on the machine where the service
is running, inevitably all requests will have to traverse the network for one
final hop after security processing has taken place. The effect of this is that
when an SOA message is at its most vulnerable, an inferior—or even worse
— proprietary security mechanism is employed. Therefore, the best practice
is to deploy a solution that enables embedded last-mile security—policy
enforcement at the service endpoint.

This may be implemented as a collaborative effort among the runtime
infrastructure components supporting the service network, including
runtime governance. Specific security needs that can be met by the runtime
governance system working in conjunction with the application infrastructure
include:

Populating messages with user credentials•	
Authenticating requesters•	
Determining if an authenticated requester is authorized to make a •	
specific request
Managing privacy and integrity•	
Propagating identity information across multiple service invocations•	

Authentication
Authentication is the process of verifying the identity claimed by a service
requester. In an SOA, best practice is for the requester to supply credentials
in a WS-Security header that can be authenticated by the service. Two types
of credentials are most common in current systems.

Username/Password Pairs•	
X.509 Certificates•	

Another common approach is to rely on the message traffic being
transported over HTTP and using its basic authentication rather than
incorporating the credentials into the message. This works as long as the
link terminates at the service that processes the request, but if there are
intermediate hops in the processing chain the credentials will not reach
the ultimate target service. This forces the intermediate processors of the
message to either figure out how to propagate HTTP basic credentials from
an inbound to an outbound message or to attach their own credentials to
the outbound message. However, this creates a traceability problem as we
then don’t know the identity of the original requestor. The WS-Security
model is simpler to use since the credentials can be easily forwarded with
subsequent messages.

Authorization
Authentication determines the identity of the service requester. Authorization
determines what an authenticated user is allowed to do. Flexible
authorization is a critical component of an SOA due to the potential for

67RUNTIME MANAGEMENT

unintended reuse of services. For example, you may release a service to
support your internal administrative users, only to find later that the service
is to be included in a composite application exposed to your overseas
subsidiary. For example, it may be necessary for regulatory reasons to
restrict the operations accessible to users in the subsidiary. Rather than
modifying the business logic of the service to account for these new users,
the enterprise should rely on a runtime governance system for providing and
enforcing flexible access control (authorization) policies to inbound service
requests. ‘Coarse-grained’ authorization policies determine whether the user
can access a service holistically. ‘Fine-grained’ authorization policies specify
exact features or ‘operations’ accessible by a user.

In response to the challenge of unforeseen reuse, it is recommended that
fine-grained access control should always be used for SOA services to ensure
that users are not capable of exploiting specific features of a service due to
broad general policies. Authorization policies usually leverage role-based
access control. That is, an authenticated user is associated with one or more
roles. This is typically accomplished by verifying user credentials against a
user store, which may be a simple LDAP-compliant directory or be a full-
featured Identity Management System (IMS.) The user store returns a set of
roles associated with the authenticated user. For example, user jdoe@abc.
com may be in the role ‘BusinessUser’. It is then the job of the runtime
governance system to enforce the mapping of the user’s role to the features
of the service available to users in that role. The runtime governance system
should delegate all user and role management to a dedicated IMS solution.
The governance system should in turn provide the functionality necessary
to leverage the IMS and to perform fine-grained authorization at the service
endpoint.

Privacy and Integrity
Privacy and integrity are critical features in SOA, given that SOA services are
designed to reflect business processes, which in turn may be covered by a
range of regulatory controls—two well-known examples are Sarbanes-Oxley,
and the Payment Card Industry Data Security Standard (PCI DSS.)

Privacy means that only authorized users can see the content of the
message—this is usually enforced through encryption schemes or content
filtering mechanisms. Integrity means that the content of the message has
not been tampered with—this is usually enforced by including a digital
signature in the message.

Runtime governance supports privacy and integrity requirements by
implementing XML Signature, XML Encryption and WS-Security.

Encryption is a computationally expensive operation, so privacy is
implemented only on the specific elements of the message body—such as
social security or credit card numbers—that are sensitive or regulated. The
remainder of the message usually remains clear text. For messages transiting
public portions of the Internet, SSL is used to ensure the privacy of the
overall message. It should be noted that encryption of sensitive elements of

68 Chapter 5:

the message are still required since SSL is a link-based protocol. Once the
message has been received by the SSL endpoint the message reverts to its
clear text form.

SOA services are often responsible for transmitting sensitive or regulated
data across the network. As an SOA evolves, more and more consumers may
come to rely on that data. However, from a governance standpoint, access
to that data must be controlled in a way that reflects corporate policy as it
relates to the various regulations around data sharing. Censorship policy,
or content filtering, ensures that unless a consumer has the appropriate
entitlements, sensitive or regulated data never leave the container where the
service is running.

5.5 Ensuring Operational Integrity

A key to maintaining the operational integrity of the service network is
effectively managing change. One of the great challenges to success with
SOA is validating the correct operation of the service network when a
change is introduced. The operational integrity problem is amplified in the
SOA environment due to the nature of the service network and can have a
significant impact in several areas including:

Shared Services•	 . Since services are shared among applications a change to
a service may impact many applications. It can be challenging to ensure
that all applications that use a service continue to operate correctly after a
change.

Dynamically Changing Services•	 . Services may change dynamically since
a change to a service is ’effective’ as soon as the updated service is
installed and message traffic is delivered. Since a service in the operational
environment may require a change to support a new or existing
application, all applications that use the service may be impacted by the
change.

Federated Services•	 . A service might not be owned by a consumer of that
service. This means the service may change without notice. It also means
a test version of the service may not be available for validating changes
to the application. In such an environment, it is difficult to ensure the
operational correctness of the application in the face of changes and to
develop and test application updates without impacting the operation of
the production service.

Federated Service Consumers•	 . The consumers of a service may be
federated. Thus, the owners of a service may not have access to the
consumers of the service to validate changes made to the service. When
the consumers are out of our control it becomes very difficult to ensure the
modified service continues to provide proper support.

69RUNTIME MANAGEMENT

Runtime governance has introduced facilities for supporting a new discipline
– operational validation –developed specifically to address the problem of
validating the service network in the face of:

Continuous and Dynamic Change•	
Federated Services and Service Consumers•	

SOA operational validation facilities are designed to address the unique
characteristics of the service network that make validation such a challenge.
The validation facilities capture traffic flowing through production
environments for use in service validation. They then validate an application
(or a system) by submitting captured request messages to the application’s
services and comparing the results with captured responses to determine
whether the application is operating correctly.

Use the runtime governance system for validating both the functional and
performance characteristics of the application:

By capturing interleaved traffic from all consumers of a service the system •	
validates changed services by presenting them with a realistic sampling
of the traffic they have to support. This also solves a common problem of
the service support team not having access to federated consumers of the
service for testing purposes.

The captured traffic is presented periodically to validate federated services •	
that may change without notification. Thus, the operations team has
increased assurance that the services they consume continue to behave as
expected.

The captured traffic is presented each time a service is known to change. •	
Thus, dynamic changes in the operational environment can be validated.

The captured traffic also forms the basis of service simulators used for •	
testing new applications against federated services for which native test
facilities have not been made available.

5.6 Conclusion

Runtime governance plays a vital role in any SOA system. Not only does
it reduce costs and increase operational effectiveness, it ensures that
applications perform as expected and withstand changes as the service
network evolves.

It’s important to remember that there’s more to runtime governance than
simply monitoring the service network. You must be able to control the
system and its components as well. Monitoring without control is like a
police force that watch crimes take place but do nothing about them. To
bring reliability to SOA applications, runtime governance must not only

70 Chapter 5:

detect issues, it must also resolve them before these problems can affect the
business.

Due to the number of moving parts in a SOA environment, it’s not a scalable
solution to rely on manual effort to handle runtime governance tasks.
Wherever possible, automate your runtime governance to achieve greater
effectiveness and minimize the chances of human error. Your runtime
governance solution must span a heterogeneous infrastructure on which
the service network resides, so it is important to look for a solution that’s
well integrated with leading application servers, enterprise service buses and
other SOA infrastructure. Close vendor partnerships in this industry can take
some of the bumps out of your SOA adoption path.

With a runtime governance system that provides visibility into and automated
control of your complete services network, you’ll be better prepared to reap
the benefits of SOA.

71RUNTIME MANAGEMENT

72 Chapter 6:

Organizing For Success

In the early 2000s, a large multinational electronics manufacturer began
building Web services as part of a strategic enterprise-wide commitment
to SOA. In many ways, the initiative was successful: Multiple divisions
throughout the company together created hundreds of robust services that
addressed very real business needs. However, although the SOA mandate
came from the top of the organization, there was no attempt to set up
a central governance mechanism to monitor, control, and coordinate the
proliferation of services throughout the company. As a result, although many
of the services met the functional requirements of individual divisions, they
were too narrowly focused to be easily discovered and reused by others.
Developers from different businesses developed overlapping or redundant
services. And even when a service was shared across divisions, each one
would alter it to solve its particular needs, thus making it difficult to reuse
elsewhere. Despite the promise of SOA, the hoped-for return on investment
(ROI) has not yet materialized.

This firm is not alone in struggling organizationally with SOA despite
commendable technical achievements. Indeed, the challenges it faces are
common to most companies who have moved past initial pilot projects
that experiment with Web services to more ambitious company-wide SOA
initiatives.

SOA has unique organizational challenges when compared to other strategic
IT or business initiatives. It requires a rather schizophrenic mindset: After all,
the ability to set and implement business and technical initiatives that span
multiple organizational boundaries has long been—and should be—the
purview of senior management. Yet for SOA to provide sustainable value,
individual lines of businesses, departments, or even workgroups must be
empowered to create services that have the potential to impact the entire
enterprise without getting higher-ups involved.

Your ability to reconcile these seemingly contradictory organizational
mandates—in which a highly structured vision of your company’s business
and technological future facilitates a decentralized explosion of creative
development activities—will determine the success of your SOA strategy.

73ORGANIZING FOR SUCCESS

CHAPTER 6

Key RECOMMENDATIONS:

Establish and enforce •	
architectural standards and
guidelines.

Set up and empower •	
centralized groups to enforce
governance and evolve them
as needed.

Recruit and/or train •	
personnel with the
appropriate skill sets.

Leverage an effective •	
capacity-planning
mechanism.

Create an appropriate •	
funding model.

Draw up well-defined •	
guidelines for identifying,
modeling, implementing,
discovering, consuming, and
deploying services.

Implement a portfolio •	
of service-management
capabilities.

Align your software •	
development lifecycle (SDLC)
processes with your SOA
efforts.

Hemant Ramachandra
Managing Director,

Business Systems Integration
BearingPoint

6.1 Key SOA Success Factors

Indeed, whether your SOA initiatives fly or fail depend on your ability
to institute a robust governance function that maintains control over all
SOA-related activities throughout the enterprise. Among other things, a
centralized approach to governance will allow you to:

Establish and enforce architectural standards and guidelines.•	 A successful
SOA strategy requires strict adherence to a reference architecture that has
been planned, designed, and documented with cross-organizational reuse
of services in mind.

Set up and empower centralized groups to enforce governance and evolve •	
them as needed. New organizational structures are needed to keep
different lines of business, departments, or workgroups in compliance
with mandated architectural and business process standards. But these
structures must be flexible enough to grow and change as your business
does.

Recruit and/or train personnel with the appropriate skill sets.•	 One of the
chief challenges facing companies wishing to implement SOA is finding
business and technical professionals capable of implementing the SOA
vision. One common solution is to hire outside consultants who possess
the necessary expertise; however, it’s critical to institute a process for
transferring key skills and knowledge to internal workers from Day One.

Leverage an effective capacity-planning mechanism.•	 Once you begin
developing services, you might be surprised how quickly they proliferate.
Such services can easily eat up systems as well as personnel resources, and
you must be constantly monitoring their use and growth so as to allocate
sufficient resources to the right people and projects.

Create an appropriate funding model.•	 It actually costs more initially to
develop a service that can be reused across an organization than to build
one that meets a particular business need. Organizations must provide
funding that supplements SOA development efforts by individual groups—
or finds some way to share costs across them—so as not to overburden
any one stakeholder with the cost of developing services that will be used
throughout the enterprise.

Draw up well-defined guidelines for identifying, modeling, implementing, •	
discovering, consuming, and deploying services. Without having this
mandated by a centralized authority, there will be no consistency about
how services developed by various internal groups are conceived of,
developed, and implemented, and the opportunity for reuse—and
therefore ROI—will be greatly diminished.

Implement a portfolio of service-management capabilities.•	 This includes
service registration, publishing and provisioning; service versioning; service
monitoring; service auditing; service publishing; and service security.

74 Chapter 6:

Align your software development lifecycle (SDLC) processes with your SOA •	
efforts. Again, this is best done by a centralized authority that can facilitate
consistency across all organizational units.

6.2 Using A SOA Maturity Model To Facilitate
Business And IT Alignment

SOA initiatives have a greater chance of achieving expectations when the
focus is on business outcomes rather than technology. Yet making this shift
in perspective is often the most difficult part of implementing SOA.

A business-focused SOA approach isolates the technology portion of a
service from the business portion and engineers it so that the technology
is available to all business processes no matter where they exist in the
enterprise. This modular approach to defining business services results in an
IT infrastructure that’s much more flexible and better aligned with business
priorities. And because each SOA project is tied to a business outcome, it’s
easier to measure success.

Organizationally, this means that you must be careful to put safeguards in
place that prevent wasted time and effort. After all, the point is not to create
hundreds or even thousands of services and hope that some of them are
relevant to and reusable within your business. Rather, the goal is to identify
your company’s key business processes, detach them from their existing
technology implementations, and build independent modules that are
immediately—even urgently—relevant to your organization as a whole.

SOA governance is a critical aspect at each stage in the SOA maturity
module.

Level 1: Initial Services.•	 When embarking on SOA, companies need to
establish IT architectural leadership. They also must begin institutionalizing
the use of SOA concepts for developing or modifying enterprise
applications. Organizations that establish a clear overall vision are taking
their first step toward achieving business benefits.

Level 2: Architected Services.•	 At this level, you begin to create partnerships
between business and technology stakeholders for SOA governance.
IT also needs to extend SOA processes to business units to facilitate
collaboration on improving business processes. You should be able to
begin calculating the ROI derived from business-related activities at this
point.

Level 3: Business and Collaborative Services.•	 Once SOA-architected services
have been implemented, you must continue deepening the partnerships
between business and technology units in order to meet governance
mandates. Additionally, you should begin to support full business
processes via SOA, and should be able to prove significant ROI from

75ORGANIZING FOR SUCCESS

your ability to both reuse services and rapidly respond to changes in the
business environment.

Level 4: Measured Business Services.•	 At this stage, you can finally effect a
transformation from reactive to real-time business processes. By defining
and meeting business-oriented performance metrics, you can measure ROI
based on SOA’s positive impact on the business.

Level 5: Continuously Improving Business Services.•	 Finally, when you reach
this level you must implement enterprise-wide leadership processes that
align business initiatives with the SOA strategy. At this point, ROI will
depend on your ability to support continuous improvement while meeting
the organization’s overall strategic goals.

6.3 Laying The Organizational Groundwork

One of the biggest myths of SOA is that you should start small and create it
on the fly. Start small, yes. But without a strategic vision, you could end up
like the firm with the hundreds of individual services and no ROI in sight.

Here are three ‘due diligence’ steps you should take in preparation for
beginning your SOA endeavor:

Step One: Create a strong statement of SOA vision
This overarching statement must answer the question: “Why SOA?” from
the point of view of the various constituencies to facilitate buy in at the
executive level, by the various business units, and by IT professionals.

This statement should include details of how SOA projects will be funded,
and what sort of processes will be put into place so that services have a good
chance of being discovered and reused throughout the organization.

The vision should also include a description of the reference architecture
that draws from existing technical components available in the legacy
environment.

The vision statement should also provide the basic framework for governance
and begin laying the groundwork for an enterprisewide SOA center of
excellence.

You should also think of your vision statement as the foundation for your
SOA evangelism activities that you should jump start fairly early in the SOA
process. Some starting points to make as you prepare to ‘sell’ your vision
include:

Executive leadership.•	 Senior managers are most interested in the
organizational agility and competitive advantages promised by SOA.

76 Chapter 6:

Business users.•	 You will get their attention by emphasizing the reduced
costs, decreased time to market, and enhanced quality of service that SOA
can deliver.

IT management.•	 In addition to the above-mentioned benefits that accrue
to business users, IT managers will be most interested in hearing how
SOA has the potential for transforming the current monolithic and rigid
IT model to one that is modular, flexible, and which can quickly adopt to
meet the changing needs of the business.

Development/data architects.•	 By introducing them to the new
standards-based technologies that result in a ‘cleaner’ architecture that
facilitates easier integration, they’ll get on board more quickly.

Operations/Support.•	 These professionals will be interested in how SOA
provides consistency in the way applications are built and deployed that
will make them easier to manage, maintain, and monitor.

Step Two: Customize the vision
Next, you need to hone in further to understand the specific needs of
each group of stakeholders as it relates to the current state of the systems
infrastructure.

This statement should include an explanation of your firm’s change-
management strategy and how it will be implemented, as well as identify
the constraints—both technical and organizational—that stand in the way of
SOA adoption. It’s important to keep in mind that few organizations readily
embrace wholesale change, and your SOA vision must take this into account.
The pace of adoption you set must be realistic, and the steps small and
discrete enough to increase the probability that you will succeed.

Step Three: Identify potential early adopters
By closely partnering with internal groups that understand the concept of
service orientation, you will more quickly deliver results that act as proofs-of-
concept that will convince other groups of the validity of your SOA strategy.
You can do this in a variety of ways. Often organizations already have
‘liaison’ or solutions groups within IT whose job it is to identify opportunities
for using technology to reduce costs, enhance operational efficiency or even
generate additional revenues. Certain business groups can be identified as
good candidates for initial SOA projects because robust industry standards
have already been established—as in financial services—and it’s easy to begin
thinking about standardizing both data and processes at various levels in the
technology stack.

Other ways to identify potential early adopters include

Identifying business units at higher maturity levels (assuming SOA •	
assessment is done already)
Identifying the business units that will benefit the most from SOA•	
Identifying less complex business units for SOA enablement to restrict •	
scope and demonstrate early successes

77ORGANIZING FOR SUCCESS

6.4 Establishing Basic Organizational Structures

After performing your preliminary due diligence, you should begin designing
and building the necessary governance structures that will make it possible to
empower decentralized development of services while helping guard against
‘rogue’ initiatives by individual groups. Depending on what governance
structures you already have in place—for example, you may already have a
strong IT project management office—you may decide to leverage existing
organizations rather than set up new ones.

There are various benefits and challenges to setting up these structures,
however. For example, many organizations set up a common services
group to develop, deploy and manage common reusable services across
the enterprise. Although this is a good practice, some companies don’t
understand the skill set required for such a group—which includes business
savvy and top-notch communications abilities in addition to technical
prowess—thus making them bottlenecks rather than successful facilitators of
SOA. And it’s essential that all of the governance bodies should be headed by
director-level managers to ensure the right degree of commitment to create
the needed processes as well as systems within required timeframes.

The Project Management Office (PMO)
This group should enforce rigorous governance over financial budgets
as well as delivery timeframes. By being very specific about the required
SDLC, compliance metrics, and exception processes that SOA projects
must conform to, the PMO becomes the central controlling mechanism for
completing SOA projects on time and within budget. Among other things,
the PMO should be responsible for determining exactly where in the delivery
lifecycle the architecture review board should take action, and should report
directly to the CIO.

Staffing a PMO for SOA requires somewhat different skill sets than a
traditional IT PMO.

Center of Excellence
Also known as the enterprise architecture (EA) Group, this organization
should enforce technology compliance against a well-documented
organizational blueprint and set of architectural principles. The center
of excellence should report directly to the CTO and has responsibility for
achieving strict compliance, service reuse, and budgetary goals as well
as for establishing key architectural standards, guidelines, principles, and
recommendations. And if the center of excellence is not involved early in the
SOA process, you might not effectively mitigate all the technological and
financial risks.

In addition to evangelizing the SOA vision, the center of excellence defines
how standards will be adopted throughout the enterprise. It defines and
publishes the architecture principles of the SOA reference architecture as
well as details on how those should be implemented, and often provides the

78 Chapter 6:

technical subject matter expertise. Indeed, the center frequently acts as an
internal consulting organization so that experience and knowledge gained by
one development effort is shared across the enterprise.

Certainly this center must be staffed with technical experts. But those people
must also have a process-centric viewpoint, possess the ability to understand
business requirements, and understand how to translate complex technical
concepts into language non-technologists can readily understand.

The Change Control Board (CCB)
This should be environment- or function- specific and should confirm proper
procedures have been followed prior to release of any software into the
production environment

The professionals on this board must understand enough about the business
needs as well as culture of individual departments or divisions to establish
realistic guidelines for discovering and modifying services. By controlling
changes to either the data or the services, this prevents individual users from
making alterations that preclude others within the organization from using
the services or data.

6.5 Implementing The Proper Service Discovery
Model

For your SOA center of excellence to be effective, it must meet three key
requirements. First, it must have a good understanding of the requirements
of multiple internal customers. Next, it must possess a strong sense of how
much you will need to invest up front in a service to make it universally
reusable. Finally, it must establish an effective governance structure to
manage the reuse of any services created.

To succeed at all this, the SOA center of excellence must implement a ‘service
discovery model’ that provides a layered view of technology assets to support
the business, and which provides a visual depiction of your ability to reuse
services across various lines of business (see Figure 6.1).

Business Capabilities View. •	 Your SOA center of excellence must first create
a view that establishes high-level requirements that are aligned with your
organizations overarching strategic vision.

Business Services View. •	 Then, your center of excellence must be able to
identify process commonalities across businesses and begin to define
services that can support those processes across organizational boundaries.

Technical Component View. •	 After that, the center of excellence lays out the
technical components that support the business service view.

79ORGANIZING FOR SUCCESS

BU
SI

N
ES

S
CA

PA
B

IL
IT

Y
BU

SI
N

ES
S

SE
RV

IC
E

LE
VE

L
TE

CH
N

IC
AL

 C
O

M
PO

N
EN

T
LE

VE
L

TE
CH

N
IC

AL
 S

ER
VI

CE
 L

EV
EL

Business Services Model Definition
To establish common view of technology services your enterprise must first ratify business
services model along with its linkage to high level business capabilities of the business

BUSINESS CAPABILITY LEVEL
• Business Capability Level describes high

level strategic requirements that are directly
linked to the banks overarching vision and
objectives.

• Each Business Capability is supported by
multiple business services.

BUSINESS SERVICE LEVEL
• Business services provide a conceptual

definition of business functions that play a
key role in the enablement of one or more
business capability.

• Each business service is a cohesive set of
business activities that are supported by
appropriate information systems, processes,
organizational structure and performance
measures

• Functional scopes of the individual business
services do not overlap and therefore prevent
inefficiencies associated with processing
redundancies.

TECHNICAL COMPONENT LEVEL
• Each business service is supported by a set
of specialized technical components that are
optimized for the functions of the business
service.

• Technical components can be standardized
across multiple business services to provide a
greater leverage for the reuse of
organizational skill sets, standards and
defined leading practices (e.g. rules engines
for implementation of decisioning functions
etc.)

SERVICE LEVEL
• Technical service level enables information

exchange with the business component.
• Technical services are defined in terms of a

specific protocol (e.g. request/response,
batch, XML etc.) and in most cases have a
set of associated service level agreements.

Enable Customer Centric
Relationship Management

Get
Pricing
Options

Approve
Pricing
Change

Approve
Fee
Waiver

Workflow Tool
to Manage
Approval
for Pricing
Adjustments

Decisioning
Engine for
Product Pricing
Business Rules

Repository for
Pricing Models
& Rate Cards

Relationship
Pricing

Credit
Risk

Management

Customer
Information

File

Contact
History

Tracking
Enhancement

80 Chapter 6:

Figure 6.1: Business Services Model Definition

Technical Service View. •	 Finally, you specify how the technical services and
associated technology assets will support both the enterprise business view
and business service view.

By progressively drilling down in the views, you are able to identify
opportunities for reuse across high-level business needs. By leveraging your
SOA center of excellence to do this, you end up with a number of candidates
for services that have a high probability of being reused—and therefore
increase your chance of recouping your investment.

Once the initial set of projects has been identified, the SOA center of
excellence group takes responsibility for refining them further based on
detailed analyses of additional factors including your organization’s ability
to reuse the services in question; the complexity of the services in terms of
implementation, governance, deployment, monitoring, and management;
and balancing the tactical versus strategic business and technical objectives

6.6 Creating A SOA Roadmap

An executable SOA roadmap has two principle attributes: It actively manages
the risks associated with the success and growth of the program; and it
clearly delineates the financial value to each of the constituents.

Organizationally, a SOA roadmap has both an enterprise dimension and an
LOB dimension. The LOB determines the build out and the sequencing and
the pace of adoption while the enterprise manages the risks associated with
the development of common services.

Financially, funding support should be provided by both the enterprise and
the LOB. Although the LOB will bear some of the expenses for developing a
service, the corporate entity must take a portfolio approach to keep different
projects in sync and make sure that there will be sufficient ROI.

Organizationally, it’s critical that each of the phases of the roadmap
(see Figure 6.2) involves close collaboration between the SOA center of
excellence, the business unit sponsoring development of the service, and the
actual project team building the service.

A SOA roadmap is executable when each of the stages provide quantifiable
value to all constituents. To achieve that result, the roadmap is driven both
by business opportunity and technology dependencies. The structures,
processes, and procedures are incrementally added as the aggregate number
of manageable services grows. Typically at the second or third logical phase
of the roadmap is where you begin to see significant business value begin
to accrue, because although building a service that is meant to be reusable
is more costly, the next time that service is used will generally start accruing
some value. As with CMM, few companies venture to the fourth or fifth
phase entirely, but instead selectively implement characteristics of each one.

81ORGANIZING FOR SUCCESS

Phase Description Exit

Phase 1 1. Establish the governance to enforce the
SOA vision (define the vision itself, its
principles, and heuristics)

2. Create a staffing/training plan

3. Begin SOA campaign to evangelize SOA
throughout the organization

4. Determine funding model

5. Define SOA selection criteria

1. Established governance body

2. Staffing plan

3. SOA communication plan

4. Working funding model

5. Selection criteria

Phase 2 1. Instrument the governance process and
tighten metrics

2. Define, use, and monitor ROI methods

3. Begin implementation of enterprise
SOA components (security, continuity,
integration)

4. Begin construction of initial services

5. Expansion of effort to include multiple
LOBs

1. Governance body executing against
metrics

2. ROI models and instances of achieved
ROI

3. Infrastructure planning and procurement

4. 3-5 Reusable services

5. Multiple LOB involvement

Phase 3 1. Introduce governance tools which
enforce and monitor standards at the
development level

2. Begin metadata management

3. Begin service lifecycle management

4. Introduce business process modeling

5. Begin business domain object
construction

6. Begin the design of the data
infrastructure

1. Automation of tactical governance

2. Meta data and lifecycle management

3. Business process management (BPM)
introduction and service usage strategy

4. 4 well defined canonical objects

5. Data infrastructure design and impact
analysis

Phase 4 1. Introduction and usage of BPM and rules
support

2. Construction of dashboards to monitor
KPIs

3. Overlay messaging, eventing, and
complex event management within the
SOA framework

1. Definition and usage of key performance
indicators (KPIs)

2. Instrumentation of advanced operational
environment

3.	 Design and implementation of complex
event handling

phase 5 1.	 Complete lifecycle control

2.	 Complete metadata management

3.	 Focus on continued and measured reuse

4.	 Complete versioning strategy

5.	 Full operational control

Continuous improvement phase

82 Chapter 6:

Figure 6.2: SOA Roadmap

You need to consider the following organizational dimensions when
constructing the roadmap:

Business vision and strategy.•	 This is the high-level business vision that
articulates how your organization plans to improve its current business
processes to meet the evolving consumer and market demand.

Business value vision.•	 This is a blended score of opportunities to increase
revenues and reduce both costs and overall organizational risk.

Technology vision. •	 This encompasses the set of tools, frameworks,
products, and development capabilities that are needed to realize the
business vision.

Technical viability.•	 This is the sequence and ability to construct the
services which support the business value.

Tactical and strategic initiatives.•	 These are initiatives that need to be
completed due to specific needs of the organization. For example, you
would typically define compliance-related initiatives at this point.

Program progress.•	 This is the heuristic requirement for building common
infrastructure or processes based on the size of the program.

By leveraging the project selection methodology described earlier to identify
a candidate list of SOA projects, you should have the organizational structure
in place to prioritize the list and perform the following tasks.

Assess SOA maturity within the organization. •	
Determine business risk of implementing SOA. •	
Put governance structures in place to address SOA initiatives. •	
Determine the business capabilities that need to be delivered to address •	
business requirements.
Ascertain the level of effort associated with delivering the project. •	
Calculate the impacts to existing systems within the enterprise. •	
Identify the dependencies associated with the delivery of the projects. •	
Put the tools and technologies in place to enable an effective roll-out. •	
Determine whether you have the right skill set of IT, business, and •	
operations personnel to build, deploy, manage, and monitor the projects.
Identify those areas of exception that need to be addressed for compliance •	
reasons.

6.7 Aligning Project Development Processes

Finally, you need to make sure that the organizational framework is in place
to monitor and manage the actual development of projects. In particular, this
means adjusting your application development methodology to account for
SOA-specific skills, responsibilities, and structures.

83ORGANIZING FOR SUCCESS

Requirements
Business service definition and gap analysis•	
Harvesting existing functionality that can be exposed as services•	
Non-functional requirements (i.e., performance, scalability, maintainability, •	
manageability)
Specify service policies, service security and compliance requirements•	

Dependencies
For emerging standards, principles, and structure•	
Business domain teams to satisfy business goals•	

Design
Design of services that comply with client standards•	
Review and Sign-Off•	

Build and Test
Construction of services in an iterative manner•	
Management of the core development to be done in the product•	
Unit, system, integration, and performance testing•	
Support of ‘end-to-end’ testing and test automation•	

Deploy
Deploy the services in production•	
Register the services for enterprise-wide discoverability•	

Operate
Monitor services for continuous operation within SLA limits•	
Monitor and manage services for policy and compliance•	

6.8 Conclusion

In summary, your SOA initiative should organizationally be viewed as an
enterprise initiative with a significantly broader audience than a departmental
one would warrant. This requires putting robust structures in place. Although
SOA might seem conceptually simple from an organizational perspective—
and its value reasonably self-evident—the implementation challenges can be
quite difficult if not planned and executed carefully from an organizational
perspective. By putting the framework in place to implement SOA in an
evolutionary manner through incremental development and deployment
of business applications and reuse of business components, you have a
much better chance of building the right architecture and adopting the best
practices needed to achieve a shared services vision that facilitates both
short- and long-term SOA success.

84 Chapter 6:

85ORGANIZING FOR SUCCESS

86 Chapter 7:

Capability Development

SOA has the ability to transform Information Technology into a more business
driven organization. However, change doesn’t come easy. In addition to
organizational design, process instilment, governance and technology
changes, SOA requires a modification in skills and habits.

Service Orientation cuts through virtually all aspects of IT affecting how
individuals to do their own job, as well as how they interact with others.
Industry analysts such as Gartner have been quick to point out that SOA is
less about the technology and more about the change in work processes.
Workforces require more than just new tools; they need practical guidance
on how their jobs will change on a daily basis. This requires a commitment
to training and mentoring to enable the shift. SOA Capability Development
and the associated Change Management are fundamental to transforming
an organization.

7.1 Getting Started

There is no one right way to implement SOA. Many have already traveled
the paths before you and have both hit and removed obstacles. The most
successful organizations used a structured framework for educating their
workforce. (see Figure 7.1)

Skills Assessment
Where are you at today? IT departments vary significantly in their
understanding of SOA. The first step to planning the journey is to know
where you are starting from. A skills assessment is an easy way to survey the
IT organization on their knowledge of general SOA concepts, as well as more
in-depth topics related to their specialty area.

Skills
Assessment

Capability
Roadmap

Classroom
Training

Hands-On
Workshop

Change
Management

Key RECOMMENDATIONS:

Start with a skills assessment •	
of where you are today.

Develop a training roadmap •	
that integrates with your
SOA strategy.

Tailor training by role to •	
maximize individual and
organizational effectiveness.

Tailor the training to your •	
environment.

Leverage training providers •	
to accelerate adoption.

Complement training with •	
change management to
ensure new skills are utilized.

87CAPABILITY DEVELOPMENT

CHAPTER 7

Figure 7.1: Capability Development Framework

Jeff Schneider
Chief Executive Officer

MomentumSI

Most SOA Training providers, will have a method for quickly determining the
level of skills maturity in an organization. This typically involves a select few
interviews with individuals in various roles, asking questions related to core
SOA concepts and techniques.

There are two primary objectives related to the Skills Assessment. First, the
assessment determines group strengths and weaknesses so that the training
material can be customized to best meet the needs of the class. Second,
the assessment is often used as a baseline for measuring the growth of the
organization. In this scenario, skills of sample students are tested at both the
beginning and end of the program to identify the level of knowledge that
has been gained. Additionally, gaps that may remain can be identified.

The Capability Development Roadmap
Where do you want to go? The Capability Development Roadmap is the
action plan that enables an organization to move from an ‘as-is’ to a ‘to-be’
skills state. The roadmap acts as a constant reminder that SOA isn’t just
about ‘buying a registry’ or ‘implementing Web Services’, but rather a holistic
change in how individuals approach their job.

As IT organizations put together their SOA Strategy and Roadmap
documents, they define the fundamental reasons why they are doing SOA,
as well as the steps that are necessary to achieve their goals. The Capability
Development Roadmap is an essential element of the ‘SOA Strategy &
Roadmap’ and should align accordingly.

Most SOA Roadmaps call out several parallel activities, including:
Organizational Redesign, Infrastructure Enhancements, SOA Governance,
Service Lifecycle Enablement and Capability Development. As these items
may run in parallel, it is important to note that capability development, or
skills transfer, is usually a prerequisite to performing tasks in the other parallel
work-streams. Thus, it is essential to plan training in advance of the other
activities.

7.2 Role Based Training

The majority of organizations who have ventured down the SOA path have
chosen to perform ‘role based’ training for their staff. This allows individuals
with similar jobs to experience the same training and advice about how
to improve their job function. And although no two organizations are
alike, a set of job titles has emerged as being core to instilling SOA in an
organization. This set includes, but is not limited to CIOs, IT Executives,
Business / IT Liaisons, IT Application Owners / Managers, Enterprise
Architects, Data Architects, Solutions Architects, Project Managers, Business /
Process Analysts, Software Developers, Quality Assurance Professionals, SOA
Infrastructure Specialists and Operations Specialists.

88 Chapter 7:

CIO / IT Executive
IT leaders have been bombarded with the vendor’s view of SOA. While
analysts and the press have attempted to clarify the situation, many IT
leaders have been given erroneous information. Executive education should
focus on the benefits, strategy, costs, risks and timeline. Demonstrations
of new technologies or advanced architectures may help bring light to the
topic, but should not be a focal point. The primary emphasis should be
placed on aligning their understanding of what SOA is, with the rest of the
organization. Brief workshops directed at a specific aspect of SOA are an
excellent method to accomplish this objective. Virtually all CIO’s are time
constrained and are unable or unwilling to attend a traditional classroom
setting. Consider complementing the workshops with one-on-one sessions
between the CIO and the local SOA champion(s). Remember – getting the IT
executive leadership educated and on-board with the program is an essential
step!

IT Manager
As the IT Executive Leadership becomes more educated on SOA, they will
request more information from their staff. Line managers must have a broad
understanding of SOA. It should incorporate a deep understanding of how
their staff will be applying SOA concepts as well as how activities will change
within their peer organizations. IT Managers are encouraged to attend
training along with their staff in their domain (architecture, analysis, QA,
etc.). In addition, they are encouraged to take training that provides a more
in-depth view of SOA. Consider this more of a ‘survey course’, enabling them
to understand the big picture.

Enterprise Architect
IT analysts, such as the Burton Group, have been quick to point out that
SOA is first and foremost, an enterprise architecture discipline. Service
oriented practitioners agree that the ‘service’ is the new unit of planning
and management in an EA framework. The same practitioners will also note
that SOA reference architectures, policies and guidance are essential to a
successful program. This said, it is strongly recommend that EA’s focus in
two areas. The first is related to the overarching infrastructure changes are
required to take place. This includes education on modern SOA registries,
intermediaries, repositories, orchestration engines, etc. Related to this, the
EA should begin to grow their knowledge in how these elements work
together to create a united SOA reference architecture. The second area
is related to managing groups of services within a domain (Customer
Domain, Product Domain, etc.) A new key activity played by the EA is that of
‘Enterprise Service Architect’. Here, the individual is taught how to think of
the organization as a ‘set of services’ (not just organizations or functions) and
how to identify, and plan the actual realization of these services.

Solution / Application Architect
To date, most solution architects have been taught to think in terms of their
solution only. Some might say that today’s solution architecture most closely
resembles ‘Silo Oriented Architecture’. Solution architects must be retrained

89CAPABILITY DEVELOPMENT

to view their systems as a set of reusable assets, rather than a stand-alone
system. Modern systems are being redesigned into a more loosely coupled
structure, where distributed services are the new unit of work. Recombining
these services into a ‘composite application’ rests on the shoulders of the
solution architect. Their training should focus on both the decomposition of
a system into reusable assets, along with the re-composition of assets into
fully functional integrated systems. This involves training in ‘Service Design’
as well as ‘Composite Application Development’.

Data Architect
Data Architects and Information Engineers are perhaps some of the most
well equipped people to understand the value and impact of a SOA program.
These individuals have experience in many of the areas that others lack such
as creating shared services, governing changes to shared services, managing
metadata and operating mission critical operational environments. However,
these people are most likely not aware of how their canonical models and
metadata systems need to be shared with other IT organizations. Their
systems and methods will need to be upgraded to adhere to new corporate
SOA standards for data delivery, security, transactional integrity and a host of
other issues. In addition, more emphasis will be placed on their organizations
to deliver a single-source of truth (MDM, CDI, etc.) and to deliver more
sophisticated real time access to distributed data sets as a service (EII,
federated data queries, etc.) Training for data architects should include
modern techniques for data quality, integration and distribution.

Business & Process Analyst
Business and Process Analysts will be the core link between the needs of
the business and the IT delivery units. Core to successful Service Oriented
Analysis is the decomposition of the business as a set of processes and
discrete activities. Modern SOA methodologies require process diagrams as
input to identifying and describing services. Failure to perform this analysis
may lead to more silo-oriented solutions. It has been said that “silo oriented
requirements generate silo oriented solutions.” Analysts must be trained to
think in terms of shared services, and to actively identify those services in
the analysis process. Training sessions should focus on ‘Process Modeling for
SOA’ and should also include lessons on the companies ‘Service Oriented
Analysis’ method.

Software Developer
Many Software Developers think that SOA = Web Services. The first item
that needs to be addressed with this group is to reeducate them on what
SOA is and is not. They must be shown that the organization is moving to
a model where assets are planned, shared and evolved. It is often difficult
for software engineers to adjust to the concept of ‘building a piece of the
solution’ rather than ‘building the whole solution’. In fact, some software
developers may never make the transition. The second item of attention
is teaching them how to go about building the services. Most developers
specialize in a platform or language like Java or .Net. These platforms have
special API’s to provide Web Services or RESTful interactions. The developer

90 Chapter 7:

must also grow a strong understanding of XML, service interfaces and
mapping service interfaces back to objects. Last but not least, the developer
must understand new techniques for unit testing their system as well as
building and deploying their systems along service boundaries.

QA Professional
Quality Assurance professionals will inherit a new breed of systems to
validate and verify. These individuals will immediately be challenged by two
fundamental changes. First, services are designed to meet the needs of
unintended users. That is to say, they are designed to be abstract enough
for new consumers to use them with no changes. This presents a challenge
to QA groups who are often used to testing systems for very specific use
cases. Secondly, the systems which are delivered will be loosely coupled,
distributed and potentially built on heterogeneous platforms. Many QA
professionals only recently mastered the task of GUI testing and server side
load testing. Composite applications and the services that they use present
a similar challenge but will take the complexity to a new level. Training
should focus on testing individual services (load, functional, security, etc.) as
well as on testing the new distributed Composite Applications (integration,
performance, etc.)

New SOA Specific Roles
In addition to the roles previously mentioned, many organizations have
created new roles that are specific to service orientation. Two that are
commonly found are the SOA Infrastructure Specialist and SOA Governance
Manager.

SOA Infrastructure Specialist
The SOA Infrastructure Specialist is a technical individual who acts as
the primary point of contact for issues relating to the SOA infrastructure
(registries, intermediaries, monitors, etc.) This function typically requires
deep knowledge in each of the infrastructure areas as well as an ability to
integrate disparate areas. Training for this person is a combination of SOA
Architecture as well as deep-dive training on each of the products in the
environment. It is likely that this person will also provide consulting and
informal training to other members of the IT community.

SOA Governance Manager
The SOA Governance Manager is a master planner, manager and negotiator.
Their role is multifaceted, requiring a solid understanding of the business
and IT In many ways they act as a human intermediary – bringing together
services and consumers. They must bridge the gap between service projects
and consuming applications. They must also work with enterprise architects
to understand the pipeline of new services that are going to be created
and the standards, policies and guidelines needed to ensure consistency
across the enterprise. The SOA Governance Manager must have fairly deep
knowledge in all aspects of SOA and will often training sessions across each
area.

91CAPABILITY DEVELOPMENT

7.3 Tailoring The Curriculum To Your Environment

I have created extensive SOA training programs for the enterprise. However,
each enterprise has slightly different requirements. It is often necessary to lay
the SOA training foundation leveraging a specialist provider for the first 90%
and to tailor the last 10% toward your unique environment.

Tailored content typically focuses on decisions that you have made internally
that you want to communicate to the department. This might include specific
policies for designing services, the use of one protocol over another or how
to use internal templates for service analysis. It is often useful to deliver
‘bonus material’ on your specific environment either during training sessions
or as a post-training supplement. As an example, some organizations will
train their staff on the general concepts of a SOA registry, taxonomy, etc.
Then, they will go to a Web browser and pull up their specific instance of the
registry showing the user’s important things like how to access it, how to get
an account, who to call if they have issues, etc.

Computer Based Training
Many SOA consultancies and training providers now have the more basic
courses available as on-demand computer based training (CBT) modules.
Although these sessions aren’t usually as fulfilling as having a live instructor,
they are good in a pinch when remote students can’t make the journey or
when new employees are on-boarded and need to be brought up to speed.

Interactive Workshops
Often training isn’t enough. Workshops are a great way to have a more
collaborative exchange of ideas with coworkers. People who have attended
classroom training may have grasped the concepts but have a hard time
applying it to their job. Workshop sessions are most successful when
they are pre-planned, facilitated and have a structured set of exercises
for the attendees to work through. Sessions that are popular include
“Understanding SOA Governance”, “Building a SOA Roadmap” and “Service
Investigation and Planning”. The duration of these sessions is typically
anywhere from a half day to two full days.

Workshops can also be useful when stall-outs occur. This is when a group
of people go back to their old habits. Remember, instilling service oriented
concepts takes time and effort. SOA program leaders have to be on the
lookout for this. It is recommended that you don’t chastise those who fall on
old habits, but rather work with them to remember the new way of doing
things. Often, the people aren’t intentionally doing it incorrectly, they just
forgot about the new way.

92 Chapter 7:

7.4 Change Management

You can lead a horse to water… but you can’t make him drink. SOA program
leaders have the responsibility to empower the workforce with tools,
processes and skills. However, some people will continue to resist any kind
of change. As mentioned earlier, it is encouraged that you to work with
troubled groups or individuals to understand the importance of this effort
and what is expected out of them.

In addition to training, some organizations have created internal SOA forums
for discussion, portals of SOA community knowledge and have even created
SOA user groups. All of these efforts are often necessary to demonstrate a
commitment to the program so that individual contributors don’t feel like it’s
just another passing fad of management.

A growing number of organizations have chosen to use a change
management framework to increase the chances of success in their program.
The Harvard Business Review recently introduced the ‘DICE’ method
(Duration, Integrity, Commitment, Effort) as a template framework. From
a ‘Duration’ perspective, they noted that a long project that is reviewed
frequently is more likely to succeed than a short project that is reviewed
infrequently. Capability development goes hand-in-hand with on the job
training. Efforts must be planned for active learning session. From an
‘Integrity’ perspective, organizations look at leaders to ensure that they are
providing the resources and runway necessary to succeed. It ensures they are
not just getting lip-service. This leads to ‘Commitment’. Are the leaders truly
backing the initiative? Are they regularly expressing the importance of the
effort? Is the message convincing? And finally, ‘Effort’ – it has been noted
that if you add workload to an individual’s plate but fail to take anything off,
there is a high likelihood that the new item will fall off. Even a slight (10%)
increase in work beyond existing responsibilities can drastically reduce the
chances of the initiative succeeding.

7.5 Conclusion

The benefits that can be achieved by adopting service oriented concepts and
principles are abundant. The primary obstacles will most likely be humans.
Organizations must commit to training the teams in the new tools, processes
and concepts. They must also acknowledge that this is a large transition
and some of the staff will be resistant to any kind of change. However,
commitment to a change management program, on-going education,
workshops and community efforts all increase the chances of success.

93CAPABILITY DEVELOPMENT

94 Chapter 8:

Pulling It Together

8.1 Where To Start

Now that you know a lot about SOA, one of the most frequently asked
questions is “Where do I start?” The reason this question is not definitively
answered by now is that there is no single answer. Some focus on the
development environment, others on the registry or the ESB, or on the
organization and processes. Each person will attack the issues from a
different perspective, and put different priorities in different areas. Since
there is no “cookbook” where the ingredients have to be mixed in a certain
order, don’t worry too much about the sequence of activities while you learn.

As has been repeatedly pointed out in the book, small implementations can
be achieved without many of the technologies and infrastructure products
described herein. Get to work and do some things on your own. When
you run into limitations, you will then know what to look for in planning
larger implementations, product selection, and infrastructure capabilities.
Unfortunately, you can’t become an expert by reading a book, including this
one, so ‘go get your hands dirty’.

8.2 Scope Of Implementation

Implementing a SOA system can be as simple as putting together a couple
of services to promote interoperability, or as complex as revamping your
entire IT system to replace proprietary technology with an extensible
reusable standards. The extent of your efforts is entirely dependent upon
your objectives and ambitions. There is no ‘minimum threshold’ and you
are free to implement all or part of this book in the manner that best suits
your needs. We have provided a lot of information in these pages. But a
common theme across the various chapters is: “Think long term. Start small.
Implement incrementally.” So use what you want and need now and don’t
hesitate to implement some now and return to the book later for more.

95PULLING IT TOGETHER

CHAPTER 8

Key RECOMMENDATIONS:

Start anywhere, but start •	
nonetheless.

Learn and measure as you •	
go.

Come back to this book •	
whenever you seek a
refresher on core principles
and key considerations.

Jim Green
Chairman and CEO

Composite Software

8.3 How To Measure Success

Remember, the objective of all enterprise computing is to support a
business need. Success is therefore measured by your ability to serve your
organization’s goals. Too frequently, however, focus is placed on short term
objectives, such as the time to completion of an individual project. By now
you will have recognized that the SOA model is focused on making future
work more efficient, beyond the initial project. Therefore, measure success
over time. If done correctly, agility, reuse, interoperability, and flexibility will
enable ongoing work to be done much faster than re-inventing everything
for every project. The long term benefits could be far greater than those
garnered from any single endeavor. Your pursuit of SOA could yield long
term transformational benefits to your organization. It is a worthy cause.
We wish you the best of success.

8.4 Summary Of Recommendations

In our attempts to help, many suggestions and recommendations have been
made throughout the book. As a final reminder, the key ones have been
collected together for your convenience, as follows:

Chapter 1: Getting It Right
Don’t let anyone overwhelm you by trying to teach you everything at once. •	
Do as much as you can digest, learn from it, and then add to it. •	
Regardless of the distance you travel, have confidence that you are on the •	
right path.
SOA is the only good alternative for building large scale systems.•	

Chapter 2: Designing Services
Base your services on vendor independent industry standards to ensure the •	
best reuse and interoperability.
Create and deploy your services in an appropriate and best-of-breed •	
infrastructure to ensure operational efficiencies (e.g. an information server
for data services; an application server for transaction services.)
Design service interfaces that are simple, consistent, well documented, and •	
motivated by business requirements to ensure adoption, reusability, and
expandability.
Employ security policies to meet the business needs of your enterprise.•	

Chapter 3: Registries and Repositories
Recognize the importance of documenting and maintaining a formal •	
System of Record (SoR) of your services, their revisions, and their service
level agreements (SLA).
Understand the difference between a Service Registry and a Service •	
Repository.
Put a SoR in place for control and visibility before you need it.•	

96 Chapter 8:

Reconcile your use of a SOA SoR with your existing Software Development •	
Lifecycle Control (SDLC) system.
Go further than just acquiring a Registry and Repository system. Plan how •	
you are going to use and maintain it.

Chapter 4: Enterprise Service Buses
Develop a solid understanding of the capabilities and limitations of the •	
basic web services request/reply protocols versus the enhanced capabilities
of an ESB.
Analyze your interoperability issues and determine whether you will need •	
an ESB to reconcile incompatibilities.
Understand the different kinds of ESBs and which would be best for you. •	
Think through what “role” you want an ESB to play in your system. •	
Decide what forms of “mediation” you want from your ESB. •	

Chapter 5: Runtime Management
Understand the composition and behavior of your service network.•	
Control your service network as well as detecting, diagnosing and, •	
ultimately, preventing problems that arise during the operation of the
service network.
Ensure the correctness of your operational system as it evolves over time. •	

Chapter 6: Organizing for Success
Establish and enforce architectural standards and guidelines.•	
Set up and empower centralized groups to enforce governance and evolve •	
them as needed.
Recruit and/or train personnel with the appropriate skill sets.•	
Leverage an effective capacity-planning mechanism.•	
Create an appropriate funding model.•	
Draw up well-defined guidelines for identifying, modeling, implementing, •	
discovering, consuming, and deploying services.
Implement a portfolio of service-management capabilities.•	
Align your software development lifecycle (SDLC) processes with your SOA •	
efforts.

Chapter 7: Capability Development

Start with a skills assessment of where you are today.•	
Develop a training roadmap that integrates with your SOA strategy.•	
Tailor training by role to maximize individual and organizational •	
effectiveness.
Tailor the training to your environment.•	
Leverage training providers to accelerate adoption. •	
Complement training with change management to ensure new skills are •	
utilized.

97PULLING IT TOGETHER

Chapter 8: Pulling It Together
Start anywhere, but start nonetheless.•	
Learn and measure as you go.•	
Come back to this book whenever you seek a refresher on core principles •	
and key considerations.

98 Chapter _:

99DRAFT COPY

100 ABOUT THE AUTHORS

David Besemer
Chief Technology Officer
Composite Software

David joined Composite in 2002 as VP of Engineering and then transitioned
to the CTO role in January 2006. At Composite David pioneered industry-
first information server products for high performance query optimization
and SOA data services. He joined Composite from his freelance CTO
consulting practice where he provided software technology intelligence
to venture capital firms. Previously, David served as CTO of eStyle, ran a
successful enterprise software consulting practice, headed software product
marketing at NeXT Computer, built program trading systems on Wall Street,
and researched natural language processing systems at GE’s Corporate R&D
center. David holds a BS in Computer Science from Michigan State University
and a MS in Computer Science from Rensselaer Polytechnic Institute.

Paul Butterworth
Chief Technology Officer
AmberPoint

Paul is the Chief Technology Officer for AmberPoint, the leading provider
of SOA management solutions. In recognition for his work at AmberPoint,
Paul was named one of InfoWorld’s Top 25 CTOs for 2007. Prior to founding
AmberPoint, Paul was the CTO for Forte Tools at Sun where he was
voted a Distinguished Engineer by his peers and was responsible for the
technical strategy for the Sun developer tools products. As a co-founder of
Forte Software, Paul was the Chief Architect and Senior Vice President of
Engineering and Customer Services. Before founding Forte, Paul served as
Chief Architect and Director of Product Engineering at Ingres Corporation.
He holds both a BS and a MS in Information and Computer Science from
University of California at Irvine.

101ABOUT THE AUTHORS

ABOUT THE AUTHORS

Luc Clément
Co-Chairman
OASIS UDDI Specification Technical Committee

Luc, an industry expert in UDDI standards, served as Co-Chair of OASIS
UDDI Specification Technical Committee from 2003 to 2007. In this role, he
oversaw development of all UDDI registry-related specifications, personally
editing and co-authoring the OASIS UDDI Version 2 and 3 specifications
and Technical Notes, which have been a major catalyst for broad enterprise
adoption of SOA. Luc currently serves as the Senior Director of Product
Management at Active Endpoints. At Systinet and HP from 2004 through
2007, Luc was actively involved in the development and marketing of the
Systinet Registry and SOA Governance products. Before that Luc established
Microsoft’s UDDI Services and the UDDI Business Registry offerings. A
graduate of the Royal Military College of Canada, Luc was an Officer in the
Canadian Forces for over 13 years.

Jim Green
Chairman and CEO
Composite Software

Jim, a noted enterprise computing technology visionary and roll-up-the-
sleeves entrepreneur, guides Composite Software strategy and operations.
Prior to Composite, Jim served as webMethods’ CTO, Executive Vice
President of Product Development, and Board of Directors member. Jim was
CEO and co-founder of Active Software, where he grew the company from
a start-up to an industry leader in Enterprise Application Integration (EAI)
software. During his seven year tenure at Sun Microsystems, Jim led the
development of the Common Object Request Broker Architecture (CORBA)
specification, the industry standard for distributed objects. In previous
companies, he achieved several industry firsts by developing networking
and distributed computing products. Jim holds both a MS in Industrial
Engineering and a MS in Computer Science.

Hemant Ramachandra
Managing Director, Business Systems Integration
BearingPoint

Hemant is a Managing Director at BearingPoint and a senior leader
responsible for strategy, sales, development and delivery of Technology
Integration solutions. He has more than 17 years experience and has led
several information systems strategy, architecture and integration projects
in a variety of industries ranging from life sciences to the communication
and media sector. Hemant specializes in service oriented architecture,
business process management and enterprise search. His technology focus

102 ABOUT THE AUTHORS

has included SAP NetWeaver Process Integration, Information Builders, and
Search technologies. Hemant holds a BS in Computer Science from New
Jersey Institute of Technology. He is a frequent speaker and has authored
several articles on technology integration, service oriented architecture and
the impact of technology on the enterprise.

Jeff Schneider
Chief Executive Officer
MomentumSI

Jeff founded MomentumSI, a leading enterprise SOA consulting firm, in
1997, and serves as its CEO and Chairman. As CEO, Jeff aligns the strategic
goals of the company with those of the customers. A hands-on CEO, Jeff
spends significant time working directly with clients and keeps a close eye
on disruptive technologies and paradigms. Prior to founding MomentumSI,
Jeff started his career at 3M working on supply chain and manufacturing
systems. In 1996, he wrote the first book on Enterprise Java and continues
to write for leading technology publications. A frequent speaker related
to emerging technologies, Jeff’s concepts of service networks, enterprise
vocabularies and the “service oriented enterprise” serve as a blueprint for
companies to upgrade not only their enterprise architecture, but also their
people and processes.

Hub Vandervoort
Chief Technology Officer
Progress Software

Hub is Chief Technology Officer of Progress Software. As CTO, Hub is
responsible for incorporating market and customer requirements into the
industry leading Progress® Sonic ESB® Product Family and evangelizing
Progress’ leading-edge developments in the ESB and service-oriented
architecture (SOA) infrastructure market. Hub previously held the position
of vice president of strategic services for the Sonic division. Over the last
four years, he has built up a highly successful technical services group
to enable Progress customers and partners to achieve rapid results
with Progress technology. Hub has over twenty years experience as an
entrepreneur, consultant and senior technology executive in the networking,
communications software and Internet industries. Prior to joining Progress,
Hub co-founded and managed several successful start-up ventures.

103ABOUT THE AUTHORS

