
Progress in IS

Christoph Schmidt

Agile Software 
Development 
Teams
The Impact of Agile Development on 
Team Performance



Progress in IS



More information about this series at http://www.springer.com/series/10440

http://www.springer.com/series/10440


Christoph Schmidt

Agile Software Development
Teams
The Impact of Agile Development on Team
Performance

123



Christoph Schmidt
MRunchen, Germany

This book is based on a doctoral thesis successfully defended at the Business School of the
University of Mannheim.

ISSN 2196-8705 ISSN 2196-8713 (electronic)
Progress in IS
ISBN 978-3-319-26055-6 ISBN 978-3-319-26057-0 (eBook)
DOI 10.1007/978-3-319-26057-0

Library of Congress Control Number: 2015958810

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com


Acknowledgments

Conducting research and writing my dissertation have been an endeavor. This
project would not have been possible without numerous mentors, colleagues,
friends, and my family who have supported, encouraged, and helped me in many
ways. I would like to express my great appreciation and thanks for their contribution
and support. This dissertation is the product of a fruitful cooperation between the
research group of Prof. Dr. Armin Heinzl at the Institute of Enterprise Systems,
University of Mannheim, Germany, and SAP SE, Walldorf, Germany.

First and foremost, I would like to thank my academic supervisor Prof. Dr.
Armin Heinzl. He has been a mentor and role model giving me the extraordinary
opportunity and research environment for this thesis. I thoroughly thank him for
the trust and confidence allowing me to develop my research ideas while guiding
and supporting me whenever needed. Moreover, he encouraged me to present my
work at international conferences and to develop my work during two research
stays abroad. At the same time, I deeply appreciated the continuous support from
Dr. Thomas Kude, who has become a close friend to me over the time of my
research. Developing, discussing, and challenging my research ideas have always
been fruitful, encouraging, insightful, and a lot of fun in our research team with
Kai Spohrer. Finally, I would like to thank Prof. Dr. Torsten Biemann for his
commitment and for serving as a reviewer for my thesis.

The dissertation project would not have been possible without the great support
I received from various colleagues at SAP SE. Through countless discussions,
workshops, and experience reports, I had the unique opportunity to learn about
agile software engineering from the experts in the field. My special thanks go to
Dr. Juergen Heymann. He has always been a supportive and encouraging mentor
stimulating me to combine scientific rigor with the usefulness of my research results.
Dr. Tobias Hildebrand, Jürgen Staader, Martin Fassunge, Dr. Joachim Schnitter, and
Michael Römer introduced me to the software development process at SAP SE.
Their support enabled me to make this collaborative research project a successful
reality. Moreover, I would like to thank my former colleagues at SAP SE Herbert
Illgner, Dr. Kilian-Kehr, Dr. Knut Manske, Günter Pecht-Seibert, and Dr. Dirk
Völz for their support. Finally, the empirical study would not have been possible

v



vi Acknowledgments

without the support of the around 40 SAP managers who trusted and supported
me to conduct the survey. I am well aware of the fact that many of the 500+
study participants have taken the time to fill out the questionnaire on top of their
challenging daily work. It is impossible to list them all. On behalf of many, I would
like to mention Peter Neumeyer, Alan Southall, and Parmar Yoginder.

I am also very grateful to have had the outstanding opportunity to collaborate
with Prof. Dr. John Tripp and Prof. Dr. Dorothy Leidner from the University
of Waco, TX, USA, as well as Prof. Dr. Sunil Mithas from the University of
Maryland, MD, USA. All three have invited me to a research stay at their university,
an unforgettable experience, both from a scientific and a personal point of view.
Discussing my research topic with these incredible personalities helped me not only
to conceptualize, analyze, and finish my dissertation but also to grow personally.

While working on my dissertation, I worked in a great team of fellow Ph.D.
students who have become dear friends to me. The continuous exchange of ideas
during various research and teaching projects was always great fun and a unique
learning experience. My very special thanks go to Saskia Bick, Jens Förderer, Dr.
Erik Hemmer, Dr. Lars Klimpke, Tommi Kramer, Dr. Miroslav Lazic, Tillmann
Neben, Dr. Marko Nöhren, Alexander Scheerer, Dr. Sven Scheibmayr, Dr. Kai
Spohrer, and Dr. Sebastian Stuckenberg, as well as Behnaz Gholami, Philipp Hess,
Dr. Markus Schief, and Sarah Träutlein at SAP SE. In addition, I thank my
student assistants Celina Friemel and Fabienne Schneider for their great support
in transcribing over 600 questionnaires. Without their support, the thesis could not
have been finished. I also would like to thank the chair’s assistants Luise Bühler
and Ingrid Distelrath as well as the student assistants Olga Oster, Lea Offenberg,
Alexandra Lang, and Stefan Eckhardt.

Finally, I would like to thank my family for bearing with me throughout this time.
My deepest gratitude goes to my brother Johannes for the enriching discussions,
among others, about the essence of research from a natural and social scientist’s
point of view, his impressive patience and accuracy while proofreading my thesis,
and his personal support through challenging times. Last but not least, I thank my
parents for their unconditional support in all aspects of my life.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of the Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Study Organization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Agile Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Software Development Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Software Development Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Agile Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Agile Values and Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Agile Methods and Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Literature Review on Agile Software Development . . . . . . . . . . . . . . . . . . 19
2.3.1 Information Systems Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Software Engineering Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Discussion of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Theoretical and Conceptual Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Team Effectiveness Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Theory Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Team Adaptation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Team Confidence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Software Development Team Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Team Performance, Team Effectiveness,

and Project Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Review of Existing Team Performance Concepts . . . . . . . . . . . . 47

3.3 Research Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Model Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Effects on Team Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Effects on Team Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



viii Contents

3.3.4 Effects on Team Affection .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.5 Integrated Research Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Organizational Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Participatory Research Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Survey Field Study .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Questionnaire Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Data Collection Procedure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Construct Operationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Adoption of Agile Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Teamwork and Contextual Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Team Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 Instrument Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Regression Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Structural Equation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Selecting an Appropriate Analysis Technique .. . . . . . . . . . . . . . . 86

5 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1 Sample Overview .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Survey Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.2 Sample Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.3 Extent of Agile Practices Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Assessment of Team Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Hypotheses: Test and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Effects on Team Potency and Team Performance . . . . . . . . . . . . 102
5.3.3 Effects on Shared Mental Models, Backup

Behavior, and Team Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Integrated Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Summary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 Summary of the Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Limitations of the Study and Future Research . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.1 Agile Information Systems Development: Literature Review. . . . . . . . 127
A.2 Team Performance Interviews: Interview Guideline .. . . . . . . . . . . . . . . . . 132



Contents ix

A.3 Survey: Data Collection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 Survey: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5 Survey: Developer Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.6 Survey: Scrum Master Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.7 Survey: Area Product Owner Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.8 Survey: Team Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171





List of Figures

Fig. 1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Fig. 1.2 Research organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Fig. 2.1 Trends in Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Fig. 2.2 Scrum development framework .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Fig. 2.3 Publications on agile ISD between 2002 and 2013 in

the IS research community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Fig. 2.4 Research foci on agile software development in the IS

Community.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Fig. 2.5 Publications on Agile Software Development between

2001 and 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fig. 3.1 Research framework .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Fig. 3.2 Team Adaptation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Fig. 3.3 Team confidence, team potency, and team efficacy . . . . . . . . . . . . . . . . . 44
Fig. 3.4 Antecedents and consequences of team confidence .. . . . . . . . . . . . . . . . 45
Fig. 3.5 Team performance, team effectiveness, and project success. . . . . . . . 46
Fig. 3.6 Team effectiveness dimensions in previous studies . . . . . . . . . . . . . . . . . 48
Fig. 3.7 IMO Model in Team Effectiveness Research. . . . . . . . . . . . . . . . . . . . . . . . 50
Fig. 3.8 Research model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 4.1 Number plates for developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Fig. 4.2 Questionnaire design for shared mental models

and backup behavior .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Fig. 4.3 Theoretical and empirical planes in research . . . . . . . . . . . . . . . . . . . . . . . . 74
Fig. 4.4 Extracted team performance dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Fig. 4.5 Exemplary SEM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Fig. 4.6 Modeling moderation in SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Fig. 5.1 Sample overview.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Fig. 5.2 Response rate per team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Fig. 5.3 Developer experience and team affiliation. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Fig. 5.4 Developers’ time dedicated to software development tasks . . . . . . . . 89

xi



xii List of Figures

Fig. 5.5 Agile practices use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Fig. 5.6 Team performance dimensions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Fig. 5.7 Team performance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Fig. 5.8 Aggregation of multi-level research data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Fig. 5.9 Technological uncertainty moderation effect . . . . . . . . . . . . . . . . . . . . . . . . 106
Fig. 5.10 Estimation of the integrated prediction model . . . . . . . . . . . . . . . . . . . . . . 111

Fig. 6.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



List of Tables

Table 2.1 Number of articles found in the reviewed IS research outlets . . . . 20
Table 2.2 Agile software development as a behavior . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 2.3 Agile software development as a capability . . . . . . . . . . . . . . . . . . . . . . . 24
Table 2.4 Special issues on agile software development in IS

and SE outlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 2.5 Publications on agile software development in SE outlets . . . . . . . . 31

Table 3.1 Performance concepts in software development research .. . . . . . . . 49
Table 3.2 Research propositions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 3.3 Overview of the constructs in the research model . . . . . . . . . . . . . . . . . 63

Table 4.1 Overview of the role-specific questionnaires . . . . . . . . . . . . . . . . . . . . . . 70
Table 4.2 Questions to assess agile practices use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 4.3 Questions to assess shared mental models and backup

behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 4.4 Questions to assess team potency and technological

uncertainty .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4.5 Questions to assess team performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 5.1 Data sample: team characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 5.2 Agile practices use: descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 5.3 Team performance: descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 5.4 Team performance: correlations and average

variance extracted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 5.5 Measurement level, raters, items, and aggregation method . . . . . . . 99
Table 5.6 AGILE: correlation matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 5.7 POTENCY: descriptive statistics and correlation

matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 5.8 BACKUP and SHARED: descriptive statistics

and correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 5.9 UNCERTAIN and PERF: descriptive statistics

and correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiii



xiv List of Tables

Table 5.10 Research variables: descriptive statistics
and correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 5.11 Measurement model: factor loadings and reliabilities. . . . . . . . . . . . . 103
Table 5.12 Estimated parameters for models 5.1 and 5.2. . . . . . . . . . . . . . . . . . . . . . 104
Table 5.13 Estimated parameters for models 5.3–5.5.. . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 5.14 Integrated model: indicator reliability of the reflective

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 5.15 Integrated model: composite reliability, ave, and correlations .. . . 109
Table 5.16 Effects of using agile practices on team performance .. . . . . . . . . . . . 112
Table 5.17 Effect sizes of all predictor variables on team performance . . . . . . 112
Table 5.18 Stone-Geisser criterion the predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table A.1 Publications on agile software development in IS research .. . . . . . 128



Chapter 1
Introduction

1.1 Problem Statement

The last decade has seen a tremendous increase in business and consumer software
products and services. From cars to smart phone apps to complex business applica-
tions, today software is present in almost all areas of life. Gartner Inc.1 estimates
the worldwide revenue of the software industry at $407.3 billion in 2013 with an
annual growth rate of 4.8 %.2 Software not only expands into growth markets, but
also reaches more and more into established markets. Google, Amazon, Airbnb, or
Uber are just a few examples of software service providers which have taken market
shares from traditional consumer market incumbents. Market experts even claim
that software is “upending entire industries, and will do so at an increasingly larger
and more rapid rate.”3

This trend is driven by technological opportunities and economic potential.
From a technical perspective, Moore’s law has proven to be correct for more
than half a century (Moore 1965). Year by year, more and more powerful—and
at the same time smaller—computer chips are available, opening up new fields
of application for software. For instance, the widespread availability of mobile
devices provides the technical basis for software applications at the finger tip.
Hence, the general public is using more and more software products on a daily
basis. At the same time, an increasing number of computer systems are permanently
connected to the global computer network. Computing power is therefore no
scarce resource anymore and intensive calculations can be outsourced to powerful
computer centers. Mobile applications can access centralized data and conveniently

1Gartner Inc. is a global information technology research and advisory company.
2http://www.gartner.com/newsroom/id/2696317.
3http://bits.blogs.nytimes.com/2013/01/10/ben-horowitz-on-the-impact-of-software-
everywhere/.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_1

1

http://www.gartner.com/newsroom/id/2696317
http://bits.blogs.nytimes.com/2013/01/10/ben-horowitz-on-the-impact-of-software-everywhere/
http://bits.blogs.nytimes.com/2013/01/10/ben-horowitz-on-the-impact-of-software-everywhere/


2 1 Introduction

provide useful information whenever and wherever needed. These technological
capabilities provide software developers with a degree of freedom to innovate not
seen before leading to a constant stream of new software products and services.

Taking an economic perspective, the software industry today leverages unprece-
dented economies of scale compared to traditional industries providing physical
goods. One reason is that virtualization of computer servers and cloud computing
leads to decreasing hardware costs. As a consequence, software companies scale
their offerings at minimal marginal costs. Many software companies provide their
software products globally resulting in exceptional market opportunities.

The combined economical and technological potential attracts many companies.
Thus, competition amongst software providers is tough and innovation cycles are
short. Only companies with the capabilities to quickly adapt to changing market
conditions to exploit emerging technologies stay in the market. Not all companies
have developed the required adaptability. The market capitalization of BlackBerry
Limited, a Canadian provider of telecommunication devices, for instance, dropped
from about $35 billion in 2010 to about $5 billion within 3 years only as emerging
technologies were not adopted. In other words, being agile is essential to thrive in
the information technology industry.

Software development processes are a key success factor. Traditionally, many
companies have started their software development projects by detailing software
specifications upfront and accurately planning the course of the project in advance.
Project managers and software developers subsequently implemented these plans.
The software was only released once fully implemented at the end of the software
development project (Boehm 2006). The software was mainly tested after the
implementation phase during a dedicated testing phase. Consequently, problems
mostly occurred only late in the development process. Many projects ran over time
or budget. Moreover, it was difficult to flexibly react to changing project conditions.
Many projects even failed entirely (Standish 2014).

Since the beginnings of the 2000s, many companies adapted their rigid develop-
ment processes and transformed to agile development companies.4 Agile software
development has fundamentally influenced how companies develop software and
developers’ daily work routines (Dybå and Dingsøyr 2008; Highsmith 2000). It is an
iterative development approach emphasizing close customer collaboration to receive
fast customer feedback (Cockburn 2001; Highsmith 2000). Agile software develop-
ment projects foresee frequent deliveries of incremental software functionality to
their customer, instead of a one-time release of the finalized software package at
the project end. This development approach forces developers to regularly integrate
newly developed software and continuously invest time into quality assurance in
order to guarantee that quality requirements are met at all times throughout the
development process. Even many software development companies have shifted
to an agile software development approach (VersionOne 2012) - or have at least

4For example, see Microsoft: http://arstechnica.com/information-technology/2014/08/how-
microsoft-dragged-its-development-practices-into-the-21st-century.

http://arstechnica.com/information-technology/2014/08/how-microsoft-dragged-its-development-practices-into-the-21st-century
http://arstechnica.com/information-technology/2014/08/how-microsoft-dragged-its-development-practices-into-the-21st-century


1.2 Research Objectives 3

adopted key ideas of this development paradigm, there is still a lack of theoretical
understanding how and why the agile development approach works (Dingsøyr et al.
2012; Dybå and Dingsøyr 2008).

Agile systems development was not derived from managerial principles or
academic efforts. Instead, it “evolved from the personal experiences and collective
wisdom of consultants” (Dingsøyr et al. 2012) . Over the last 10 years, however,
scholars have started to conduct first theory-based studies to evaluate and bet-
ter understand the development paradigm (Abrahamsson et al. 2002; Dybå and
Dingsøyr 2008; Erickson et al. 2005; Maruping et al. 2009a). Nevertheless, a
satisfying understanding in what circumstances agile development should be used
and reasons for its effectiveness are still missing. This is reflected in the repeated
calls for more theory-based investigations and more rigorous industrial studies on
agile software development (Abrahamsson et al. 2009; Dingsøyr et al. 2012; Dybå
and Dingsøyr 2008).

The agile approach follows the general trend in new product development with
teams as the core building block of the development organization (Kozlowski and
Bell 2003). Collaborative development work in teams promises greater adaptability,
productivity, and creativeness as compared to individuals (Gladstein 1984). More-
over, it provides better solutions to organizational problems (Sundstrom et al. 2000).
Nevertheless, there are only few theory-based studies drawing on the extensive
knowledge of team effectiveness research to better understand the effectiveness
of agile software development teams. Only recently, Dingsøyr et al. (2012) called
for “better theories and models of software team effectiveness” in agile software
development teams. This study intends to address this theoretical and practical
research gap.

1.2 Research Objectives

The objective of this study is to provide a theoretical explanation for the influence
of agile software development on the performance of software development teams.
The study sets out to answer three separate research questions (RQ1 to RQ3, see
Fig. 1.1).

Theory building denotes the rationally justified postulation and empirical testing
of causal relationships between theoretical constructs (Bhattacherjee 2012). These

Agile Software 
Development

Team 
Performance

Teamwork
Mechanisms

Software Development Team

RQ1

RQ2

Q3RQ3

Fig. 1.1 Research objectives



4 1 Introduction

constructs need not only to be clearly defined, but accurate measurement instru-
ments are required to test the postulated theoretical relationships with empirical
studies. For this study, agile software development, team performance, and yet
to be introduced teamwork mechanisms are the central constructs (see Fig. 1.1).
While previous researchers have already suggested different conceptualizations of
agile software development on a team level, the team performance concept is still
not clearly defined for software development teams. Moreover, no standardized
instrument for performance assessment exists. The missing conceptual clarity leads
to the first challenge of this study and directs to the first research question:

RQ1: What is the performance of a software development team?

The main proposition of this study is that the repeatedly suggested performance
effect of agile software development is based on a mediated effect through various
hidden teamwork mechanisms. The study deducts these teamwork mechanisms
from team effectiveness literature and combines them with insights described in
previous work on agile software development. This approach helps the author raise
the second research question:

RQ2: What are the latent teamwork mechanisms affected by agile software development in
software development teams?

At the core of the study is a theoretical model explaining the performance
effect of agile software development through affective, behavioral, and cognitive
teamwork mechanisms in software development teams. The model will be derived
from the conceptual and theoretical foundations found while answering RQ1 and
RQ2. The proposed research model is an answer to the third research question:

RQ3: How does agile software development influence the performance of software develop-
ment teams?

The study findings are expected to be of interest for the academic community as
well as for decision makers in industry: First, this study is amongst the first to
elucidate effects of the agile development approach on the performance of software
development teams. By taking a teamwork perspective, it provides a new perspective
for understanding the complex, hidden mechanisms causing this performance effect.
The results contribute to the still nascent, theory-based literature stream on agile
software development teams (Abrahamsson et al. 2002; Dingsøyr et al. 2012; Dybå
and Dingsøyr 2008). Moreover, the study is one of the rare large-scale, industrial
studies on software development. Second, the results are an empirical contribution
to team effectiveness literature. The study provides an empirical test of central
aspects of team adaptation theory and team confidence in the software development
domain. Third, the results contribute to the definition of the performance concept
in software development teams. The study integrates existing performance concepts
and combines them with exploratory interview findings of 15 project managers.
The suggested measurement instrument is a methodological contribution which may
be relevant for researchers as well as practitioners who are interested in assessing
or comparing the performance of agile software development teams. Finally, a



1.3 Overview of the Research Methodology 5

better understanding of the underlying teamwork mechanisms is expected to help
decision makers to better understand the impact of agile development on their teams.
Hence, the study results will help practitioners decide when to best use the agile
development approach.

1.3 Overview of the Research Methodology

This study takes a positivist, epistemological perspective assuming that a social
reality exists independent of human consciousness and cognition (Orlikowski and
Baroudi 1991). Hence, the study is based on three main assumptions: (1) unilateral
causal relationships between latent teamwork mechanisms in software development
teams, (2) deduction of these causal relationships from universal laws or principles,
and (3) testing of causal relationships with empirical data based on falsification logic
(Popper 1935).

The objective of the thesis is to provide a theoretical explanation for the impact of
agile software development’s influence on the performance of software development
teams. Hence, the level of analysis is the software development team. A theoretical
research model is derived from teamwork theories combined with knowledge about
agile software development and finally tested with empirical data from professional
software development teams. The overall structure of the thesis is illustrated in
Fig. 1.2.

The research design comprises three stages. In a first step, the latent variables
in the research model are defined. A structured review of the literature showed
no agreement amongst scholars about a definition of the performance concept of
software development teams. To specify the abstract performance concept in the
given research context, the author conducted interviews with 15 project leaders. The
interviews were analyzed following a grounded theory approach (Strauss 1987). In
parallel, existing software development studies were reviewed to analyze scholastic
definitions and measurements of the performance concept for software development

Inductive Approach
• Team Performance interviews
• Analysis of Agile SD in the field

Deductive Approach
• Review Team Effectiveness literature
• Review Agile SD literature

Empirical Theory Test
Confirmatory approach to falsify the research model: 

Empirical test with professional software development teams

Stage 1
Literature Review 
Interviews 

Stage 2
Research Model

Stage 3
Empirical Test

Theoretical Research Model
Development of generalizable research propositions explaining the 

impact of agile SD on the performance of SD teams

Fig. 1.2 Research organization



6 1 Introduction

teams. Finally, the interview and literature findings were combined. In addition,
various teamwork mechanisms relevant for answering the three research questions
were derived from previous teamwork studies. Hence, the first research stage is
both, deductive and inductive in nature (see Fig. 1.2).

The main contribution of this study, however, is deductive theory building and
testing. In the second research stage, a theoretical research model is derived from
teamwork reference models and theories. It proposes a positive impact of agile
software development on the performance of software development teams. The
study concludes with an empirical test of the research model in the third research
stage. Hence, the core of the study follows a confirmatory research design.

1.4 Study Organization

The study is divided into seven chapters. Following this introductory chapter,
Chap. 2 introduces the agile software development paradigm and outlines the con-
ceptual framework provided by researchers and experienced consultants. Chapter 3
then lays the theoretical and conceptual foundation of the study. It first introduces
key concepts of team effectiveness research and team adaptation theory. The
chapter further derives the research model which provides a theoretical explanation
answering the research questions RQ2 and RQ3. Chapter 4 describes the research
context, outlines the overall study design, and specifies the latent variables in
the research model including the operationalization and measurement models.
Finally, the chapter introduces the statistical methods applied for data analysis
and proposition testing. In Chap. 5, the study sample is described in detail. The
chapter further introduces a new measurement instrument to assess the performance
of software development teams. All research propositions are tested independently
and finally integrated into a coherent team performance prediction model. Chapter 6
discusses the study results and explains the theoretical and practical contributions of
the study in the context of previous studies. Moreover, limitations of the study are
described and promising avenues for future research are discussed. Finally, Chap. 7
summarizes the study and concludes the thesis.



Chapter 2
Agile Software Development

Software is nowadays omnipresent in many consumer and business products. From
cars to complex business software over simple smart phone apps, many people
regularly use software-based products or services at home or at work. With more
than two billion people using broadband internet today, new markets emerge for
software companies challenging established market incumbents with software-
based services and products. Software brings life to various types of computer
systems which have steadily become cheaper, more powerful, more compact, and
more energy efficient over the last decades.1 Consequently, these systems can be
integrated into various traditional products to provide diversifying functionality
(MacCormack et al. 2001). Andreessen (2011) summarized the trend succinctly:
“Software is eating the world”.

From a technical point of view, software is a “set of programs, procedures, and
routines which are associated with the operation of a computer system”.2 Since the
first days of programmable machines, both the computer systems and development
processes have evolved dramatically. The first software programs were written by
electrical engineers and mathematicians in laboratories for military applications in
the 1940s. Software development was a very experimental work, with no supporting
tools or experience existing. The developed software provided customized function-
ality for specific purposes. As the hardware and the development process was very
expensive, only few applications justified the high expenditure.

Today, the software industry is a global industry with an estimated revenue
of more than $400 billion per year.3 More than half of the revenue is generated
by the top ten software vendors, such as Microsoft, Oracle, IBM, or SAP. But

1Computing power doubled every 2 years (Moore’s Law), while energy efficiency double every
1.8 years (Koomey’s law) (Koomey et al. 2011; Moore 1965).
2http://www.merriam-webster.com/dictionary/software.
3http://www.gartner.com/newsroom/id/2696317.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_2

7

http://www.merriam-webster.com/dictionary/software
http://www.gartner.com/newsroom/id/2696317


8 2 Agile Software Development

there are more and more small companies providing complementary software
products as entry barriers to the software market are ever decreasing (Kude et al.
2012). Small start-up companies can develop and offer software products to large
markets at limited costs due to the ubiquitous availability of computers, standardized
programming languages, interfaces, as well as reusable software packages with
free development tools and supportive development communities. Even amateurs
contribute to large-scale software development projects as everybody can develop
code for open source communities and participate in the development process (Setia
et al. 2012).

The software engineering discipline offers solutions to the practical problems
of developing software (Sommerville 2004). Today, software engineering is an
independent profession and an engineering discipline embedded in computer
science and traditional engineering disciplines. It deals with all activities required
to economically solve real world problems with reliable software programs. It helps
developers with “the application of a systematic, disciplined, quantifiable approach
to the development, operation and maintenance of software” (IEEE 1990) and
encompasses the application of various theories, methods, processes and tools for
the development and maintenance of software within financial and organizational
constraints of software development projects.

This chapter first discusses the complex nature of software development projects,
to then describe different software development approaches suggested by the soft-
ware engineering discipline. Three different generations of software development
processes are briefly introduced and discussed. Agile software development has
gained much popularity over the last 10 years motivating this study. The chapter
concludes with a brief overview of the practitioner and research literature on agile
software development.

2.1 Software Development

Software development is a complex process and many software development
projects end in delayed projects results, failure to meet the original project goals,
or are even entire project cancellations (Standish 2014). This high failure rate is
surprising given the history of more than 60 years of software development projects
and numerous best-practices books, studies about project failures, and countless
development tools, methods, and processes.

There is a long list of failed project failures. In 2004, for example, one of Britain’s
biggest retailer, Sainsbury, had to cancel a $525 million IT project intended to
automate the supply chain of the company. In the end, the failed system caused the
company to hire an additional 3000 people to manually record all its stock items.4

4http://www.computerweekly.com/news/2240058411/Sainsburys-writes-off-260m-as-supply-
chain-IT-trouble-hits-profit.

http://www.computerweekly.com/news/2240058411/Sainsburys-writes-off-260m-as-supply-chain-IT-trouble-hits-profit
http://www.computerweekly.com/news/2240058411/Sainsburys-writes-off-260m-as-supply-chain-IT-trouble-hits-profit


2.1 Software Development 9

In 2013, the United States government started the website healthcare.org intended
to process thousands of users simultaneously. The IT project had been outsourced
to several contractors for more than $300 million (Brill 2014). When launched, the
information system was not able to adequately process the incoming requests. As a
consequence, the project meant a tremendous disaster for the government as it was
at the center of a media debate for several weeks.

Project failure is common in numerous industries. However, these are just two
examples of a long list of failed software development projects (Charette 2005) and
it is particular to software development projects that much money can be spent for
no result. The periodical reports of the Standish Group Inc., which examined more
than 50,000 IT projects, shows that about a third of IT development projects are
canceled before completion. Moreover, about half of the projects will cost almost
twice as initially projected. Royce et al. (2009) concluded, there is hardly another
field in engineering where such a poor success rate is considered normal, much less
tolerated. The economic damage, however, is significant (Standish 2014) which is
why analyzing these project failures is not purely an academic exercise. Instead,
there is a strong incentive for organizations to understand the reasons for failure and
determinants of success.

Despite a history of IT project failures, research on success factors of software
development projects remains limited. Sambamurthy and Kirsch (2000) concluded
in their literature review article that “deficiencies exist in the knowledge about the
effective management of complex systems development processes”. Until today,
there are no final answers on the successful management of software development
projects.

2.1.1 Software Development Complexity

There are several sources of complexity which may explain the high failure rates
of software development projects. Reasons include the fundamental characteristics
of software, the contexts in which software is used, the complexity of the software
development tasks, and the general nature of software development projects. The
following sections elaborate on these aspects.

Software Complexity

Software is an intangible good which consist of small functional, closely interlinked
modules or components. As these components grow in numbers, it becomes
increasingly difficult to keep track and see how they work together, even for the
most talented programmers. Most software components can have different possible
inputs, outputs, states or dependencies. It is therefore nearly impossible to test
all combinations. As testing software comes at a cost, it is often impossible to
consider all interactions of a program, even for small programs. Moreover, software



10 2 Agile Software Development

inconsistencies may be detrimental as changing one part of the program might have
consequences for the functionality of the entire software program. For these reasons,
it can be extremely difficult to find errors, measure the quality of a software program,
or to properly assess its full functional spectrum. This makes software development
so difficult.

The technological progress has provided software developers with almost unlim-
ited computational power, memory, and storage capacity, and a global connectivity
of devices. Therefore, software is hardly constrained by physical laws, but only
limited to human creativity (Lee 1999). On the one hand, this gives developers a
considerable freedom of design. On the other hand, it may add to the complexity of
today’s software programs.

In addition, the size of the software packages has constantly grown during the
last decades. Existing software libraries and standardized software packages from
third party providers are integrated into new product development (Spinellis and
Giannikas 2012) as software functionality can be reused. This leads to an increasing
size of the developed software packages quickly exceeding the cognitive capabilities
of developers. For instance, the first operating systems of personal computers, still
one of the largest software applications, included between 4–5 million lines of code
in the beginning of the 1990s. The latest operating systems are implemented with
about 50 million lines of code (Maraia 2006). A modern car is estimated to run with
about 100 million lines of code (Charette 2009).

The reuse of software functionality adds to the complexity, as the usage of
existing software functionality in unintended environments may cause unpredicted
side effects. Brooks (1995) even stated “software entities are more complex for their
size than any other human construct” as software is invisible, unvisualizable, and
subject to continuous change.

Software Development Task Complexity

Literature has identified three dimensions of task characteristics that constitute
task complexity (Wood 1986): component, coordinative, and dynamic complexity
(Campbell 1988). All three have been found to be inherent in software development
tasks.

Software development includes various subtasks such as programming, testing,
project management, documentation, requirements specification, installation of
development tools, and communication with colleagues or other project stakehold-
ers (Begel and Simon 2010). To succeed, developers need to combine organiza-
tional, technical, as well as social skills. Before writing the first line of code, analysis
of the software requirements is one of the most critical activities (Hickey and Davis
2004). It requires a solid understanding of the application problem domain and
technical expertise. For most projects, this knowledge is dispersed amongst different
stakeholders. Mostly, requirements are neither clearly documented nor concisely
specified by the users who often only know what they expect upon seeing the final
product. Even if requirements can be fully specified, software development remains



2.1 Software Development 11

a non-deterministic activity with no single identifiable path on how to implement a
program (Sommerville 2004).

Component complexity is high when a task requires several acts and various
information cues to be accomplished. Every software development task involves
several sub-tasks to be composed. Moreover, as software is highly modularized,
software developers need to consider different components and their interdepen-
dence. Both aspects lead to high task complexity. Second, software development has
a high coordinative complexity. Coordinative complexity is low if a linear function
of task inputs leads to the task product. In software development, there are many
ways to implement requirements. The inputs of software development tasks are
intangible ideas that need to be interpreted. Mostly, there is no single correct way but
several options to write a software program. Finally, dynamic complexity is caused
by changes of the task environments. Software development tasks are often subject
to change, e.g. the used technology may change during the development process.
Oftentimes, the software requirements change as they are either not clearly defined,
misunderstood, or need to be redefined. Overall, software development is a highly
complex task with component, coordinative, and dynamic complexity. All three are
a central sources of complexity in software development projects.

Software Development Project Complexity

Software development projects are described as inherently complex as they must
deal with both technological and organizational factors, often outside the control
of the project team. Organizational complexity increases with the number of
specialized units as well as the number of relationships between them (Baccarini
1996). Moreover, uncertain environments due to unpredictable markets, changing
customer requirements, pressure to shorter time-to-market cycles, and rapidly
changing information technologies (Baskerville et al. 2001) can add to it. Many
software systems are very large and thus beyond the ability of a single software
developer to build, leading to the division of labor amongst different contributors.
Many projects include actors from diverse geographic, organizational, and social
backgrounds (Dibbern et al. 2004) which increases organizational complexity in
software development projects (Kraut and Streeter 1995).

Besides organizational complexity, software development projects mostly face
technological complexity (Schmidt et al. 2001). Technological complexity refers to
the number of and relationship between inputs, outputs, tasks, and technologies.
The previously discussed characteristics of software contribute to technological
complexity of a software development project.

Rapid evolution of technology and new product opportunities lead to change and
uncertainty as an inherent characteristic of software development projects (Madsen
2007). Uncertainty is broadly defined as the absence of complete information about
an organizational phenomenon being studied (Argote 1982). It leads to an inability
to accurately predict the project progress (Dönmez and Grote 2013). For software
development projects, two fundamental types of uncertainty have been discussed:



12 2 Agile Software Development

requirements and technological uncertainty (Nidumolu 1995). Mellis et al. (2010)
find that customers often have difficulties formulating specifications when following
a sequential development process as many users and software developers do not
have a clear understanding about all software details at the beginning of a project.
Consequently, the team has to learn over time what to develop (Lyytinen and
Rose 2006). Technological uncertainty is the second critical driver of software
development complexity. As technology evolves over time and new technologies
are being used, development teams often lack the necessary skills to work with new
technology. However, the learning process is often unpredictable as developers have
to learn while developing software (MacCormack and Verganti 2003).

Both, technological and requirements uncertainty are major influencing factors
of software development projects complexity. To manage this complexity, software
development teams either try to minimize project uncertainties by controlling
impediments or to flexibly cope with them (Dönmez and Grote 2013). As the
sources of uncertainty are often outside of control of the team, flexibility and the
ability to adapt to new situations is an important determinant of successful software
development teams. The software engineering discipline has proposed different
software development processes to cope with uncertainty and project complexity.
These processes specify general frameworks about structure and organization of
software development projects.

2.1.2 Software Development Processes

Software development processes define “a set of activities that lead to the production
of a software product” (Sommerville 2004, p. 64). As the development of different
software systems may require different processes, the software engineering disci-
pline has developed very different processes during the last decades. Nevertheless,
there are several tasks that every development projects must include such as
definition tasks for requirements specification, implementation tasks for software
design, coding, and testing, and evolution tasks for modification, adaptations, and
corrections. The different software development processes vary in terms of how
strictly and in which sequences these tasks are addressed. Overall, three generations
of software engineering development processes can be distinguished: craftsmanship,
early software engineering, and modern software engineering.

Craftsmanship

Software development in the 1950s can be best described as ad hoc development
with no standardized processes, technologies, or development methods. Products
were customized for a particular purpose and deployed on mainframe computers.
This led to various quality and maintenance issues (Austin and Devin 2009).
Software development organizations used simple customized tools, processes, and



2.1 Software Development 13

technologies to program machines with primitive languages. Later, the approach
was an unformalized “code-and-fix” approach (Boehm 2006). While the first
programmers mostly had an engineering background, more and more people from
other disciplines started to develop software.

In the 1970s, the development process was formalized leading to the popular
sequential “Waterfall” software development process (Royce 1970). It was a
systematic engineering approach that adheres to specific process steps moving
software through a series of representations from requirements to finished software
(Boehm 2006). This approach assumes software development problems to be
fully specifiable and optimal solutions to be predictable and planable in advance.
Extensive plans were devised, processes were strictly followed in order to make
development an efficient and predictable activity. The waterfall model was later
interpreted and implemented as a sequential process with project-gates between
clearly defined project phases. Design did not start before definition of a clear set of
requirements and coding was not started before completion of the software design.
The main idea was to shift from craft to industrial software production imitating
manufacturing processes. Therefore, more and more components were built for
reuse and process steps were standardized.

Early Software Engineering

In the 1980s, reuse of software functionality increased, new development tools
were introduced, and new high-level object-oriented programming languages were
developed improving developer productivity. In addition, software organizations
used standardized processes to increase productivity. The industry had matured and
was transforming into an engineering discipline.

In the 1990s, object-oriented methods were strengthened using design patterns.
Modeling languages were introduced and quickly spread with the expansion of
the Internet and the emergence of the World Wide Web. Organizations used more
and more commercialized software such as operating systems, database systems, or
graphical user interfaces and programmed most of the functionality in higher-level
programming languages.

Modern Software Engineering

The importance of software as a discriminator of traditional products as well as
internet-based software products required faster time-to-market times in the 2000s.
In addition, the importance of user-interactive products made fast user feedback
important which rendered the formal processes as too rigid. As a consequence,
iterative development processes obtained more attention (MacCormack et al. 2001).
Today, most of the software is built using standard tools and existing software
functionality from commercial products or open source libraries. Typically, only



14 2 Agile Software Development

Craftsmanship
1960s – 1970s

Early SE
1980s – 1990s

Modern SE
2000 and on

Software complexity

U
ni

t c
os

ts

Ad Hoc ›› Waterfall Process Improvement Agile Development

Scope 0% component based;
100% customized

30% component based; 
70% customized

70% component based; 
30% customized

Process Unformalized ››  
Formalized Repeatable Iterative

Tools Mostly
Proprietary

Proprietary/
Commercial

Commercial and
integrated

Team Predominantly
untrained

Trained and 
untrained

Predominantly
trained

Fig. 2.1 Trends in software engineering (based on Royce et al. 2009)

about 30 % of the components need to be custom built (Royce et al. 2009) allowing
more flexible processes.

Figure 2.1 illustrates the three generations of software engineering. The diagram
on top of the figure schematically depicts the ability of each particular generation
to handle software complexity in terms of cost per unit (Royce et al. 2009). As the
complexity of software development projects has constantly risen over time, new
approaches were introduced which better suited the given project contexts.

The software industry evolved from a “code-and-fix” paradigm to a professional
industry. Many of these changes were incremental. But the late 1990s saw the
emergence of a number of agile methods which meant a shift in software develop-
ment processes and how many software development projects are organized today
(Boehm 2006). This study is motivated by the agile software development paradigm.
The underlying principles, agile methods, and agile practices are introduced in the
following section.

2.2 Agile Software Development

The beginning of the 2000s saw a constant stream of change in the software
industry. New technologies emerged and quickly adopted as a consequence of the
exchange of ideas among developers through the global connectivity provided by
the World Wide Web. The technological potential led to heavy investment into
the IT industry. The software industry saw numerous mergers and acquisitions of
existing as well as the rise of many new start-up companies. As a consequence,
many software development projects faced tremendous organizational changes.
In addition, more and more software applications were now developed for the



2.2 Agile Software Development 15

consumer market requiring user-friendly interfaces. For that, user feedback had to
be quickly integrated into the development process leading to unpredictable and
changing requirements. Overall, rapid change was becoming increasingly inherent
to the software industry (MacCormack et al. 2001). Hence, speed-to-market and the
ability to change to new requirements or react to customer feedback was essential to
succeed in an environment of uncertainty (Baskerville et al. 2003). These challenges
could only be met with shorter product life-cycles. As a consequence, the so-called
lightweight methods evolved in the 1990s (Larman and Basili 2003) and represented
an opposite pole to the heavy-weight plan-driven development processes which
were soon considered as too rigid to successfully develop software in such volatile
project conditions (Highsmith and Cockburn 2001)

2.2.1 Agile Values and Principles

In 2001, a group of 17 advocates of lightweight software engineering methods
gathered to discuss their common grounds to coin the term “agile methods” in the
so-called Agile Manifesto.5 It proposes a set of four core values for agile software
development organizations. These agile values were derived from previous light-
weight methods introduced by these agilists in the 1990s and early 2000s.6 The four
values constitute the essence of agile software development:

Individuals and interactions over processes and tools7

Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

Instead of formalizing the development process with detailed specification of
software requirements, agile software development meant a distinct move towards
continuous, informal, and close customer collaboration (Highsmith 2000). Unnec-
essary documentation was avoided as much as possible emphasizing a “lean”
mentality adopted from lean manufacturing (Poppendieck and Poppendieck 2007).
Agile developers would rather spend their time progressing the final software
product instead of working on detailed project plans or extensive documentation
of their software. Furthermore, people changed their perception seeing uncertainty

5See http://agilemanifesto.org/.
6Light-weight development methods proceeding agile software development: Adaptive Soft-
ware Development (Highsmith 2000), Feature Driven Development (Palmer and Felsing 2002),
Dynamic Systems Development Methods (Stapleton 1999), Scrum (Schwaber and Beedle 2002),
Extreme Programming (XP) (Beck 2000), Lean Development (Poppendieck and Poppendieck
2007).
7Fowler (2002) explained that both sides of these statements are valued, but agile software
engineering prefers the first over the second.

http://agilemanifesto.org/


16 2 Agile Software Development

as an inherent part of software development as opposed to an unforeseeable
contingency to be controlled through detailed upfront planning and compliance with
strict processes (Dingsøyr et al. 2012).

2.2.2 Agile Methods and Practices

In the late 1990s and early 2000s, various software engineering methods were
introduced. These methods are based on the idea of an incremental, iterative,
and evolutionary software development process. As they encompass on the four
aforementioned core values of agile software engineering, these methods were later
called agile methods. Amongst them, Scrum and Extreme Programming are not
only the most influential, but also the most popular today (Maruping et al. 2009a;
VersionOne 2012).8 In the following, both are briefly introduced as they are at the
core of this study.

Scrum

Schwaber and Sutherland (2011) define Scrum as a “framework within which people
can address complex adaptive problems, while [. . . ] delivering products”. Scrum is
very popular amongst professional software development teams (VersionOne 2012).
It is often referred to as a software development method, but strictly speaking,
it is a project management framework. Scrum specifies (1) certain roles in the
development team, establishes an (2) iterative work mode which centers around
development Sprints, and defines different (3) artifacts that the developers use to
coordinate their work. While first being published by Sutherland (1995) and later
illustrated by Schwaber and Beedle (2002), the core concepts of Scrum are based on
the ideas of Takeuchi and Nonaka (1986). All key elements of Scrum are illustrated
in Fig. 2.2.

1. The project framework defines the Scrum team as a group of about ten people.
There are two specific roles in the Scrum team: the Scrum Master and the Product
Owner. The Scrum Master (SM) takes the role of a facilitator responsible to
maintain the Scrum processes and eliminate impediments that might hinder the
team from working efficiently. The Product Owner (PO) represent the customer
within the team and voices customer requirements. Product owners define the
team’s development targets in the coming Sprint and bear the responsibility
to generate value for the customer. In their daily work, POs define customer

8Other agile methods are, for instance, Adaptive Software Development (Highsmith 2000), Feature
Driven Development (Palmer and Felsing 2002), Crystal Clear (Cockburn 2005), or Kanban
(Anderson 2004).



2.2 Agile Software Development 17

1

2

3

4
5

4
3

2
1

Product
backlog

Sprint
backlog

Sprint
(2-4 weeks)

Daily
Scrum

Sprint
Planning

Sprint
Review

Software
increments

Product
Owner

Scrum
Master

Developers

Retro-
spective

Scrum Team

Fig. 2.2 Scrum development framework

requirements, define a list of prioritized development tasks for the team, and
review work increments after each Sprint.

All other team members belong to the development team and do the actual
software development work. They analyze requirements and design, develop,
and validate the software. Scrum development teams are cross-functional, i.e.
all team members are expected to have the necessary skill set to accomplish
all of these software development tasks. Consequently, there are no additional
roles in the development team such as user interface developers, testers, or other
specialists.

2. Scrum teams pursue an iterative work mode and split the development project
into short development cycles, so-called development Sprints. These Sprints
have a specific length of 1–4 weeks, after which the team delivers new soft-
ware features to the customer. This approach contrasts the traditional project
with sequential phases for planning, development, validation, integration, and
software release activities.

Every Sprint starts with a Sprint planning meeting during which the team
decides on the features to be implemented. Subsequently, the team members
specify sub-tasks and assign them to individual developers. All team members
meet daily for about 15 min to synchronize their work and bring transparency to
the work progress within the team. All developers inform the team about their
accomplishments, describe the current work, and raise issues to be addressed
by the team. Every Sprint ends with a Sprint review meeting during which the
team presents its progress to the product owner or directly to the customer. In
addition, the Scrum Master organizes a Retrospective meeting for the team to
discuss possible improvement to teamwork processes in the future.

3. The team organizes its development tasks using a product backlog. The backlog
contains a list of prioritized tasks defined by the product owner. The development
team breaks this backlog into sprint backlog items and tracks its progress
during each Sprint in a so-called burndown chart. This chart shows the ratio



18 2 Agile Software Development

of accomplished versus committed backlog items for that particular development
Sprint.

Extreme Programming (XP)

XP is originally described by the authors as a lightweight method for small to
medium-sized teams developing software in the face of vague or rapidly-changing
requirements. Beck (2000) developed a set of programming practices while working
on a project with Chrysler Group LLC in 1995. The key ideas are based on a set of
values, principles, and practices developers should use to improve software quality
and responsiveness to change. Developers constantly review system scenarios of
the highest priority to business and quickly deliver the functionality (Fruhling and
Vreede 2006). Amongst them, frequent releases of new software functionality to
the customer and a constant focus on software quality is key. The general idea
behind Extreme Programming is to take beneficial ideas and concepts of software
engineering to “extreme” levels.

Extreme Programming received significant attention because of its emphasis on
communication, simplicity, and testing, its sustainable developer-oriented practices,
as well as its interesting name (Larman and Basili 2003). Extreme programmers
advocate a strong focus on software code rather than plans or documentation. Fur-
thermore, software quality is the main focus and the quality of the software should
be permanently checked with automated tests. Unit tests check whether a particular
piece of software works as intended, acceptance tests verify the satisfaction of
user requirements, and integration tests validate coherent functionality of different
modules of a software. Furthermore, extreme programmers keep the design simple
and avoid overmanning features.

Extreme Programming proposes a set of software development practices. These
include:

• Pair programming, two developers share a single workstation and collabora-
tively develop software side-by-side. One is actively writing code, the other
observes, supports, and challenges the chosen approach in order to find better
work results.

• Code review, the finalized software code is reviewed by at least one colleague
prior to task finalization to obtain feedback and ensure high quality.

• Test-driven development, an iterative development practice where developers
first write a test case for the wanted software functionality to verify if the software
program includes the desired functionality. Only then, developers write software
code to pass that test case.

• Refactoring, is a development practice including the restructuring of existing
software code to improve its internal software quality, i.e. its readability or its
structuredness, without changing its functionality. The objective is to increase
the long-term maintainability and the extensibility of the software.



2.3 Literature Review on Agile Software Development 19

• Continuous integration, a software development practice where every devel-
oper working on a particular code base continuously integrates newly developed
or changed software code to prevent integration problems. Mostly, integration
tools are used that support the integration process.

• Coding standards, a set of rules or conventions of the developers in software
development team or community. They include a common programming style
which improve readability and the maintainability of a software code.

• Collective code ownership, a convention according to which everybody in a
team or community owns the code, i.e. everybody is allowed to change any
piece of code in a software. Simultaneously, every team member is responsible
to ensure its quality.

• Automated testing, the use of special software to test the functionality of a
software. Test cases check for expected outcomes of the tested software delivered
given a set of inputs. These tests are executed for continuous feedback on
the software functionality and different abstraction levels, for instance, unit,
integration, or user interface tests.

2.3 Literature Review on Agile Software Development

Agile software development has been gaining popularity since the publication of the
Agile Manifesto in 2001. Large software providers, such as Microsoft (Begel and
Nagappan 2007), SAP (Schmidt et al. 2014; Schnitter and Mackert 2011), Adobe
(Green 2011), and many others (VersionOne 2012) have adopted agile methods
during the last years. As a consequence, agile software development can today
be seen as a mainstream development methodology (West et al. 2010) with an
increasing interest among professional software developers in rigorous validations
of the effectiveness of the development approach.

During the last decade, researchers have been paying more and more attention
to the phenomenon and studied diverse aspects of the agile software development
paradigm. Most of these studies were either conducted by researchers in the software
engineering (SE) or in the information systems development (ISD) community
(Dingsøyr et al. 2012). Trends and findings of both research streams are described
and discussed in the following paragraphs.

2.3.1 Information Systems Research

In contrast to the SE literature, there are no review articles about publications on
agile software development in the Information Systems (IS) discipline. Therefore,
a structured literature search was conducted to provide a comprehensive overview
of existing publications. The results help to cluster main areas of interest and to
analyze the research results. Beginning with the key words found in the software



20 2 Agile Software Development

Table 2.1 Number of articles found in the reviewed IS research outlets

Journals Conferences

European Journal of IS 10 American Conference on IS 14

Information Systems Journal 8 European Conference on IS 16

Information Systems Research 7 International Conference on IS 8

Journal of the Association for IS 1 Pacific Asia Conference on IS 3

Journal of Information Technology 1

Journal of Management IS 3

Journal of Strategic IS 0

MIS Quarterly 2

†32 †40

engineering literature (see Table 2.5 on page 31), a list of search terms was
defined:

A {agile, agility}

B {software, information system, information systems, IS}

C {engineering, development}

D {team, teams, method, methods, methodology, methodologies, project}

These search terms were combined as follows: {A1 OR A2} AND {B1 OR B2
. . . } AND {C1 OR C2} AND {D1 OR D2 . . . } to structurally search the top IS
journals9 and conference proceedings for articles published between 200010 and
2014. The resulting list of publications was complemented by articles found through
a forward and backward search starting from the list of citations of the most relevant
publications in the field. Appendix A.1 presents the full list of 72 papers which could
be extracted from these outlets. A brief overview is provided in Table 2.1.

The increasing number of publications over the last years (see Fig. 2.3) shows
a great interest in the topic amongst researchers in the international Information
Systems community. Moreover, two special issues of the two leading IS journals
within the last years (Abrahamsson et al. 2009; Ågerfalk et al. 2009) emphasize
its importance (see Table 2.4). Nevertheless, the majority of publications on agile
software development can be found in the software engineering outlets.

The extracted publications were analyzed for their research methodology, theo-
retical foundations, research context, and research focus. The findings are discussed
subsequently.

Research Methodology Research on agile information systems development has
a clear tendency towards qualitative research methods. About half of the reviewed
studies were based on interview-based case studies. The conceptual papers (28 %)

9IS Basket of Eight: http://aisnet.org/?SeniorScholarBasket.
10The Agile Manifesto was published in 2001.

http://aisnet.org/?SeniorScholarBasket


2.3 Literature Review on Agile Software Development 21

0

4

8

12

16

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Pu
bl

ic
at

io
ns

Conferences
Journals

Special issues in 
ISR and EJIS

Fig. 2.3 Publications on agile ISD between 2002 and 2013 in the IS research community

are mainly concerned with the definition of agility or discuss the necessity for
tools. Only 11 % of these papers report survey results (see e.g. Lee and Xia 2010;
Maruping et al. 2009a). Overall, confirmatory research to test the explored results
of the qualitative studies are mostly missing. The knowledge of the field is thus
primarily derived from single teams working in very different project contexts.

Theoretical Foundations 44 out of 72 paper mention an underlying theory to
guide the study. Overall, 29 different theories were found that were applied to
understand the agile development approach. This demonstrates the clear response of
the research community to the frequent calls for more theory-based studies on agile
software development (Dingsøyr et al. 2012; Dybå and Dingsøyr 2008; Ågerfalk
et al. 2009). The most frequently applied theoretical lenses were the Theory of
Complex Adaptive Systems (Ralph and Narros 2013; Vidgen and Wang 2009; Wang
and Conboy 2009) (7x), Theory of Innovation Diffusion (Mangalaraj et al. 2009;
Schlauderer and Overhage 2013) (6x), Control Theory (Cram and Brohman 2013;
Goh et al. 2013; Harris et al. 2009; Maruping et al. 2009a) (4x), and Theory of
Coordination (Li and Maedche 2012; Strode et al. 2011)(3x). Furthermore, different
theories and models from team effectiveness research have been used such as Team
Adaptation Theory (Schmidt et al. 2013), Group Think Theory (McAvoy and Butler
2009), or Leadership Theory (Yang et al. 2009).

Research Contexts Most articles reported results from small, co-located teams,
which develop new software products. Other studies researched agile software
development aspects in distributed, large-scale, or maintenance project settings.

Research Foci The refined list of publications can be clustered into four main
research topics (see Fig. 2.4). First, several articles were concerned with the concep-
tualization and definition of the software development agility concept. Second, other
studies investigated the adoption and adaptation of agile methods in the field. Third,
few studies examined the impact and role of standard project management topics,
such as funding, leadership, or control of agile software development projects.
Finally, different teamwork factors were examined in detail. Authors were interested



22 2 Agile Software Development

Co-located vs.
Distributed

Small vs.
Large-scale

New development
vs. maintenance

Agility Concept

Method Adoption and Adaptation

C
om

m
un

ic
at

io
n

C
on

tro
l

C
oo

rd
in

at
io

n

Le
ad

er
sh

ip

C
og

ni
tio

n

Team
Work

Bu
dg

et
in

g

Project 
Management

Fig. 2.4 Research foci on agile software development in the IS Community

in the influence of agile software development on specific teamwork factors and,
in turn, the influence of these factors on the performance of agile teams. The
following paragraphs provide an overview of the most influential publications for
each category and summarize the main findings.

Agility Concept

Every good concept needs a strong underlying logic serving as a “theoretical glue”
(Whetten 1989). In ISD research, however, it seems that “almost every piece of
research adopts a unique interpretation of agility” (Abrahamsson et al. 2009). This
conclusion was confirmed by Hummel (2014) who found 17 different definitions of
the term after reviewing agile studies in the main outlets of software engineering in
information systems research streams.

Among practitioners, the situation is not much different as the following
developer quote, found in an internal collaboration forum of SAP SE, illustrates:

Agility is [in my company] the hyper buzzword these days. Everybody uses it, but nobody
tells what is her/his understanding of it. I get goosebumps when I hear it. Some use it as a
justification for a chaotic working mode. Some more for agile software engineering. Some
see Scrum as part of it. Some not. Who knows. Actually I don’t know what people - including
[the Chief Technology Officer] - mean when they use that word.

Until 2009, little if any research has focused on the conceptual development of
agility in ISD (Conboy 2009). One reason was that agile software development
was motivated by the Agile Manifesto, which does not provide a clear definition
of the concept. Instead, the four agile core principles are a non-formal definition
of agility concept with general guidelines for software developers. In recent years,
different perspectives on ISD agility have been provided by researchers without a
compromise on definition and conceptualization of software development agility
(van Oosterhout et al. 2006).



2.3 Literature Review on Agile Software Development 23

Table 2.2 Agile software development as a behavior

Abrahamsson et al. (2002) Agility is defined in respect to the adoption of agile methods.
Agile development methods are incremental, cooperative,
straightforward, and adaptive

Conboy (2009) Agility is defined in terms of the adoption of agile methods.
Agility [of a method] is the continuous readiness to rapidly or
inherently create change, proactively or reactively embrace
change, and learn from change while contributing to perceived
customer value

Maruping et al. (2009a) “We use the term agile software development teams’ to refer to
teams that are using an agile methodology”

Qumer and Henderson-Sellers
(2008)

“Agility is a persistent behavior or ability of an entity that
exhibits flexibility to accommodate expected or unexpected
changes rapidly; agility can be evaluated by flexibility, speed,
leanness, learning, and responsiveness”

Schmidt et al. (2013) A team’s behavior to iteratively and collaboratively accomplish
its software development tasks including (1) software
specification, (2) software design and implementation,
(3) software validation, and (4) software release

The term agility was first used in the field of manufacturing research (Meredith
and Francis 2000) and supply chain research. Within the IS discipline, it was
first adopted by Overby et al. (2006) to describe the “sensing and responding
capabilities” of a firm. Three years later, agility was adopted in the ISD context
(Conboy 2009). Subsequently, several authors have provided their perspectives on
software development agility since its initial introduction to the software devel-
opment domain by the group of experienced practitioners in the Agile Manifesto.
Researchers generally agree about the multi-dimensionality of the concept including
a sensing and a responding dimension (Sarker and Sarker 2009). However, the
meaning of agility itself in software development is yet to be fully understood
(Börjesson and Mathiassen 2005). Three distinct conceptualizations of agility can be
distinguished: Agility as a behavior, agility as a capability, and agility as an attitude.

Agility as a Behavior Several authors conceptualized the agility of a software
development team by a team’s adoption intensity of agile development methods
or development practices (see Table 2.2). Different approaches exist distinguishing
agile and non-agile methods. Abrahamsson et al. (2002) suggested to describe
incremental (small software releases), cooperative (close communication with the
customer), straightforward (the methods are easy to learn and to modify), and
adaptive (able to make last moment changes) software development methods as
agile. Another, often-cited definition was developed by Conboy (2009), based on a
thorough investigation of the agility concept in other research disciplines. Following
his perspective, agility comprises two concepts, i.e. flexibility and leanness. Agility
does not only incorporate the flexibility to change, but also the team’s ability to
quickly respond to change. In addition, leanness is the contribution to perceived
customer value through economy, quality, and simplicity. Taking this perspective,



24 2 Agile Software Development

software development teams are agile teams when adopting software development
methods which lead to flexibility and leanness of the software development process.

Schmidt et al. (2013) proposed another perspective. They suggested to con-
ceptualize agility of an software development team by its organization of central
development task, such as specification, design, implementation, and software vali-
dation. Iterativeness and collaborativeness were suggested as the central behavioral
markers of agile teams. Agile teams iterate the aforementioned tasks frequently
while involving several team members in the process. In addition, agile teams plan,
design, implement, and validate the software in small steps involving the entire team
in all steps.

At a higher level of abstraction, Zheng et al. (2011) conceptualize agility as a
“collective behavior, instantiated in improvisational behaviour of individuals and
groups in their social interactions”. They further specify agility as “social actors [...]
when engaging with uncertainty and complexity”.

Agility as a Capability The second perspective conceptualizes agility as a team
capability (see Table 2.3). Agile teams are considered to possess the capability to
effectively and efficiently react to change in the project context (Henderson-Sellers
and Serour 2005) or, in a narrower sense, to react to changing customer requirements
(Lee and Xia 2010). Other authors have specified particular team capabilities such
as responsiveness, speed, competency, flexibility, and sustainability (Sharifi and
Zhang 1999) or nimbleness, suppleness, quickness, dexterity, liveliness, or alertness

Table 2.3 Agile software development as a capability

Lee and Xia (2010) “Software development agility is a team’s capability to efficiently
and effectively respond to and incorporate user requirement
changes during the project lifecycle”

Sarker and Sarker (2009) “Agility in a distributed ISD setting is the capability of a
distributed team to speedily accomplish ISD tasks and to adapt and
reconfigure itself to changing conditions in a rapid manner”

Erickson et al. (2005) “Agility is associated with such related concepts as nimbleness,
suppleness, quickness, dexterity, liveliness, or alertness”

Henderson-Sellers and
Serour (2005)

“Agility refers to readiness for action or change; it has two
dimensions: (1) the ability to adapt to various changes and (2) the
ability to fine-tune and re-engineer software development processes
when needed”

Lyytinen and Rose
(2006)

“Agility is defined as the ability to sense and respond swiftly to
technical changes and new business opportunities; it is enacted by
exploration-based learning and exploitation-based learning”

Vidgen and Wang (2009) “Agile teams can be recognized by their ability to work with
customers to coevolve business value, work sustainably with
rhythm, be collectively mindful, create team learning, adapt and
improve the development process, and to create product
innovations”

Dingsør and Dybå (2012) Team aspects of agility: “capability, talent, skill, and expertise to
foster flexible anticipatory and reactive practices in response to
changes in the state environment”



2.3 Literature Review on Agile Software Development 25

(Erickson et al. 2005) which can be assigned to agile teams. Lyytinen and Rose
(2006) describe agility as an organizational capability to learn, explore, and exploit
knowledge.

Sarker and Sarker (2009) combine a behavioral and ability perspective in their
definition of agility for distributed ISD teams. On the one hand, they consider the
capability of a distributed team to “speedily accomplish ISD tasks and to adapt and
reconfigure itself to changing conditions in a rapid manner” as a key characteristic
of agile teams. On the other hand, they define distinct behaviors of agile teams such
as the right resources, the adoption of agile methods, and forging and maintaining
of linkages across communicative and cultural barriers among distributed team
members.

Agility as an Attitude Moreover, agility can be conceptualized in regards to
the attitude of the members of software development teams. Change can either
be perceived as a threat or an opportunity. Following this perspective, agile
teams “embrace change as an opportunity and harness it for the organization’s
competitive advantage” (Sharifi and Zhang 1999). Accordingly, agile teams expect
and leverage change in the project context rather than assuming predictability. This
perspective was not found in ISD literature, but in the manufacturing research stream
only. Future research, however, might take this approach to study agile software
development teams.

Given this conceptual diversity, Abrahamsson et al. (2009) concluded a need for
every organization to appropriately define the agility concept specific to a given
context. The same holds true for future research. A single interpretation may not be
sufficient to advance research in the field. Nevertheless, a “solid platform on which
to build a cohesive body of knowledge” is necessary for future cumulative research
(Abrahamsson et al. 2009). This study follows the behavioral perspective and
conceptualizes software development teams as agile when using agile development
practices (see Sect. 4.3).

Agile Method Adoption and Adaptation

Several studies analyzed the adoption and adaptation of agile development methods
and practices. Most studies assume that software development is restricted to small,
co-located teams developing non-critical software. Few studies, however, investi-
gate the reasons for developers’ deployment of agile methods in other contexts or
their combination with the traditional, plan-driven development approach.

Method Adoption Mangalaraj et al. (2009) provide insights into individual, team,
technological, task, and environmental factors that determine the acceptance of
Extreme Programming practices. They identify individuals’ attitude and knowledge
about the practices as essential determinants. In addition, development tools as well
as the characteristics of the development task can support the adoption intensity.
Finally, environmental factors such as time or budget constraints may influence
how intensively the development practices are used. McAvoy and Butler (2009)



26 2 Agile Software Development

provide a decision support tool based on a “critical adoption factors matrix” to
assess the suitability of agile methods in software development projects. The tool
is based on insights from workshops with practitioners. Overhage and Schlauderer
(2012) examine the long-term acceptance of Scrum, providing a list of acceptance
factors evaluated in a single case study. Wang et al. (2012) conducted an exploratory
study about the use of agile development practices. They take an ‘innovation
assimilation perspective’ and describe four teams using agile methods during the
acceptance, routinization, and infusion phases. Berger and Beynon-Davies (2009)
investigate the usage of agile methods in large-scale software development teams.
They assume the agile software development approach as primarily adopted by
small development teams for short-term projects. In their case study, the authors
demonstrate that agile software development can also be applied in the context
of hierarchical decision-making, long-term projects, and high complexity. Austin
and Devin (2009) provide a basic contingency framework based on the benefit/cost
economics to discuss when to use an agile or plan-driven development approach.
While most studies focus on new product development, Edberg et al. (2012) explore
how information technology professionals define and select a methodology to
maintain existing software using grounded theory. They provide a factor model
to describe the decision process of software development teams between different
components of standard methodologies. Lastly, Balijepally et al. (2009) focus on
pair programming. In an experiment, they investigate reasons why and under which
circumstances developers use pair programming. They find pair programmers to
perform better than the second best programmer independent of the task complexity.
Two developers, however, cannot exceed the performance of the best member
working individually. In addition, the programmers show higher levels of confidence
and satisfaction compared to the second best programmer, but not to the best
programmer.

Method Adaptation Other studies examine the adaptation of agile methods
to specific work contexts or their combination with the traditional, plan-driven
software development approach. Cao et al. (2009) develop a framework for adapting
agile development methods proposing a need for Extreme Programming practices to
be adapted to different contexts. Based on adaptive structuration theory, the authors
explain specific adaptations to address challenges of agile development teams. In
a case study, Fitzgerald et al. (2006) exemplify this with Scrum and Extreme
Programming at Intel. They propose these methods may complement each others’
incompleteness. Port and Bui (2009) run a simulation to better understand the
benefits of combining the plan-driven and agile software development approaches
for requirements prioritization. Mixed strategies, so they conclude, are likely
to yield better results than pure agile or plan-based approaches. Karlsson and
Ågerfalk (2009) discuss a formal and methodological approach to tailoring agile
software development methods while emphasizing agile values and principles.
Finally, Tanner and Wallace (2012) discuss how ISD teams adapt agile methods
in distributed work contexts.



2.3 Literature Review on Agile Software Development 27

Agile Project Management

Different authors investigated project management factors in agile software devel-
opment teams. These include control, leadership, and budgeting of agile teams.

Project Control Several authors apply control theory to study agile software
development projects. Maruping et al. (2009a) examined the project conditions
when agile methods are most helpful. Based on a survey with 110 software
development teams, the authors find a beneficial use of agile methods in situation of
frequent requirement changes and in control mode allowing teams to autonomously
decide about the development activities. Goh et al. (2013) conducted a multiple
case study. The publication includes a framework proposing project uncertainty
and project urgency to be best addressed by an agile team using an interplay
of team capabilities and trust-mediated organizational control mechanisms. Harris
et al. (2009) studied when to provide teams with the flexibility to modify their
directions and team external control of flexibility. The results demonstrate a need
for flexibility in situations of uncertain starting conditions and the benefits of
combining the traditional control mode with a newly proposed control mode to
effectively manage such situations. Emergent outcome control was found to be
specific to agile teams and different to behavioral and outcome control. It includes
(1) scope boundaries constraining the solution space without specifying the solution
and (2) ongoing feedback which is only provided when correction is needed. The
studied agile methods were found to implement this control mode. Persson et al.
(2012) studied the implementation of project control in a distributed software
development team. Formal control practices were found to be enacted through
communication media while clan control was predominantly exerted in informal
roles and relationships. Cram and Brohman (2013) studied the influence of different
development approaches on the control mode of software development projects.
They provide a typology of ISD control modes differentiating between preventive
and detective or corrective control practices, on the one hand, as well as product
and process control objectives, on the other hand. The authors propose that agile
projects tend to primarily utilize detective and corrective practices and combine
them with process control mechanisms. A similar model was provided by Gregory
et al. (2013).

Project Leadership Yang et al. (2009) compare leadership in agile and traditional
software development teams to find managers of agile teams in higher need of
a transformational leadership style to achieve success. Transformational leaders
develop their followers focusing on motivation, morale, and job performance.
Transactional leaders, on the other hand, provide rewards for accomplishments and
make sure followers comply with defined standards.

Project Budgeting Cao et al. (2013) emphasize that a “just enough planning”
mentality in agile project may aggravate funding decisions of project managers.
The authors present a framework to explain how organizations’ adaptation to the
funding approach to accommodate the characteristics of agile projects. According to



28 2 Agile Software Development

their results, funding decisions should be based on continuous feedback from project
team members and negotiations based on changing customer values. These decision
may be implemented through contracts with fixed prices or negotiated scope or pay-
as-you go models. Keaveney and Conboy (2006) propose a cost estimate model
for agile projects. Essential for the success is expert knowledge and analogy to
past projects. Moreover, the authors find fixed price budgets in agile projects to
be beneficial for developers and customers.

Agile Teamwork

Most information systems are too large to be developed by a single person.
Hence, several developers collaborate in a single or multiple software development
teams. During the last 60 years, team effectiveness research has provided extensive
knowledge about work teams. The research resulted in many different teamwork
models and theories about work team effectiveness (Cohen and Bailey 1997). In
recent years, several researchers have built on this knowledge by opening the black-
box of agile software development teams and examining the effect on different
teamwork aspects. The most popular topics are communication, coordination, and
cognition in agile teams. Most of these studies were published in conference outlets
indicating opportunities to further development of theses studies. To date, several
studies are still at a research-in-progress stage or first steps to an evolving research
field.

Team Communication Rosenkranz et al. (2013) assume the ability to communi-
cate and to reach a shared understanding between the software customer or users
and developers at the heard of requirements development. The authors propose
the quality of language as a suitable means for “the emergence of coherent and
meaningful requirements”. The authors provide research propositions and suggest
to analyze language use and communication in requirements development in
future studies. Hummel and Rosenkranz (2013) propose “social agile practices” to
positively influence the communication behavior of an ISD team which, in turn,
may lead to higher mutual understanding and better relationship in the team leading
to project success. The authors develop a set of research proposition and provided a
measurement model for empirical tests, left for future research.

Team Coordination Xu and Cao (2006) investigate coordination mechanisms in
agile software development teams. They distinguish between vertical and horizontal
coordination mechanisms, both proposed to determine the performance of agile
teams. Vertical coordination involves formal coordination by supervisors while
horizontal coordination involves peer-to-peer coordination between team members.
Strode et al. (2011) define the concept of “coordination effectiveness” in agile
development teams as the “state of coordination wherein the entire agile software
development team has a comprehensive understanding of the project goal, the
project priorities, what is going on and when, what they as individuals need to do
and when, who is doing what, and how each individuals work fits in with other team



2.3 Literature Review on Agile Software Development 29

members work”. Li and Maedche (2012) build on this idea and study coordination
effectiveness in distributed agile development projects.

Team Cognition Different studies focused on knowledge distribution and knowl-
edge sharing in software development teams. Maruping et al. (2009b) conducted a
survey study with more than 500 developers working in 56 teams and found that
the two agile practices collective ownership and coding standards moderate the
relationship between expertise coordination and software project technical quality.
Moreover, collective ownership thereby attenuates the relationship and coding
standards strengthen the relationship. The underlying theoretical propositions of
the study were derive from transactive memory systems literature. Other studies
found “collective mindfulness” to be important in agile ISD teams. According to
McAvoy et al. (2013), mindfulness promotes a focus on “continuous attention to
detail” and “vigilance to minimize errors and respond effectively to unexpected
events”. As a consequence, the new perspective allows to study agility in terms
of “being agile” rather than “doing agile”. Finally, Spohrer et al. (2013) study the
influence of pair programming and peer code review on the creation of knowledge
in software development teams.

2.3.2 Software Engineering Research

The interest of the software engineering research community in agile software
development is primarily evident from the growing number of scientific publications
since 2001. Figure 2.5 illustrates the number of publications either published in
conference proceedings or scientific journals (Dingsøyr et al. 2012). The most
popular conference outlets are the International Conference on Agile Software
Development (“XP”), the International Conference of Product Focused Software
Development and Process Improvement (“PROFES”), and the International Confer-

0

50

100

150

200

250

300

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Pu
bl

ic
at

io
ns

Conferences
Journals

Fig. 2.5 Publications on agile software development between 2001 and 2010 in the SE research
community (source Dingsøyr et al. 2012)



30 2 Agile Software Development

Table 2.4 Special issues on agile software development in IS and SE outlets

Outlet Introductory article Field

IEEE Computer Williams and Cockburn (2003) SE

Journal of Database Management Siau (2005) SE

Software Practices and Experience Greer and Hamon (2011) SE

Journal of Information and Software
Technology

Dybå (2011) SE

Journal of Systems and Software Dingsøyr et al. (2012) SE

Information Systems Research Ågerfalk et al. (2009) IS

European Journal of IS Abrahamsson et al. (2009) IS

SE - software engineering outlets, IS - information systems outlets

ence on Software Engineering (“ICSE”). The major scientific journals publishing on
agile software development include IEEE Software, Journal of Systems and Soft-
ware, Information and Systems Technology, and Empirical Software Engineering.
In addition, several special issues addressed the topic indicating a keen interest in
the field of software engineering (see Table 2.4).

The findings of these articles were comprehensively summarized by various
review articles during the last decade. Table 2.5 on page 31 provides an overview of
these review articles and briefly summarizes their conclusions.

Authors from several countries and diverse background have contributed sci-
entific studies for a better understanding of agile software development (Chuang
et al. 2014). Moreover, several special issues in leading SE journals have addressed
the topic and there are periodical conferences on the topic, e.g. International
Conference on Agile Software Development. While the first studies were mainly
best-practice reports or success stories (Abrahamsson et al. 2002), more and more
studies are published with scientific rigor and relevance (Sfetsos and Stamelos
2010). Nonetheless, “most [of the studies] are inspired by practices emerging in
industry” (Dingsøyr et al. 2012).

Chuang et al. (2014) classified about 70 % of the studies as case studies, design
simulations, or experiments. Of note, many of theses case studies were either
conducted with student teams or with new teams; only few studies investigated
mature teams (Dybå and Dingsøyr 2008). The advantage of case study research
is an analysis of a specific phenomenon at the potential cost of generalizability of
the results.

The first studies addressed questions about the adoption of agile methods. In a
second phase, the impact on the software development process was investigated.
Some studies found positive effects on team learning, knowledge exchange, and
improved software code quality due to the use of agile practices such as pair
programming. However, pair programming was also found to be “extremely
inefficient”, “very exhausting‘”, and “a waste of time” (Tessem 2003). Various
studies found effects on better collaboration in the team, an improved “faith in
their own abilities”, respect and trust in software development teams (Robinson and
Sharp 2005). Some studies investigate the role of personality of software developers



2.3 Literature Review on Agile Software Development 31

Table 2.5 Publications on agile software development in SE outlets

Review Period Scope Findings/Conclusions

Abrahamsson
et al. (2002)

� 2002 Experience
reports

– Only a limited number of empirically validated
studies found

– Studies are mainly with anecdotal evidence
from “success stories”

– Agile methods are “effective and suitable for
many situations”

– More empirical studies to evaluate effectiveness
needed

Cohen et al.
(2004)

� 2004 Experience
reports,
research
studies

– Insights from workshops, experiments, surveys,
and seven case studies

– Adoption and first experience with Extreme
Programming and Scrum

– Agile will not replace the traditional
development approach

– Both paradigms will find their areas of
applications

Erickson et al.
(2005)

� 2005 Experience
report,
research
studies

– Mainly case studies about Extreme
Programming

– Most case studies promote the success of
Extreme Programming

– Need for more structured research in
comparison to other approaches

– “hard, empirically-based economic evidence is
lacking”

Dybå and
Dingsøyr
(2008)

� 2005 Research
studies

– Thirty three studies found with acceptable rigor
– Four streams:

(a) introduction and adoption,
(b) human and social factors,
(c) customer and developer perception,
(d) comparative studies

– Focus on human and social factors suggested for
future studies

– Lack of theoretical and methodological rigor
– Need for a research agenda to increase quality

and quantity of studies

Sfetsos and
Stamelos
(2010)

� 2009 Research
studies

– Forty six empirical studies with “acceptable
rigor, credibility, and relevance”

– Three streams: studies on (a) test driven
development, (b) pair programming, (c) XP
practices

– Test automation: better software quality as key
benefit

– Pair programming: better code quality and
improved teamwork

(continued)



32 2 Agile Software Development

Table 2.5 (continued)

Review Period Scope Findings/Conclusions

Jalali and
Wohlin
(2012)

1999–2009 Experience
report,
research
studies

– Studies in distributed settings with globally
distributed teams

– Reviewed studies are mostly industry
experience reports

– Most studies focus on a particular Extreme
Programming practice

– Comprehensive framework to understand agile
SE is needed

Dingsøyr
et al. (2012)

2001–2010 Research
studies

– Research community shows growing interest in
agile SE

– Limited number of studies with theoretical
support

– (a) knowledge management, (b) personality
theories, or (c) learning theories

– However: “general perception that agile
research tends to be a-theoretical”

– “Urge to embrace a more theory-based approach
in the future when inquiring agile development”

Chuang et al.
(2014)

2001–2012 Research
studies

– Review of the key outlets and contributions to
agile ISD literature

– About half of the studies are case studies; only
7 % are surveys

– Only 2 % pursue theory development
– “Research on agile development methods

remains at the infancy stage”
– Call for more industrial and scholarly research

studies

Hummel et al.
(2013b)

� 2013 Research
studies
(IS & SE)

– Review about the role of communication in
agile IS development

– Communication process within agile ISD is still
not well understood

– Theories of communication, collaboration,
cognition, and sense-making for future research

(Young et al. 2005). Other studies investigated developers’ perception and found
95 % of the employees using XP would like their company to continue using agile
methods (Mannaro et al. 2004). Finally, several studies compare the productivity
of the agile versus the traditional software development showing positive to neutral
impact (Ilieva et al. 2004; Wellington et al. 2005) while most studies found a positive
impact on software quality (Layman et al. 2004; Wellington et al. 2005).

Critical studies on agile software development question the novelty of agile
software development, criticize a lack of focus on long-term architecture, claim that
it would only fit to small software development teams, and predict that Extreme
Programming may lead to inefficient teamwork (Dybå and Dingsøyr 2008; McAvoy
and Butler 2009).



2.4 Discussion of the Literature 33

Most of the studies in the software engineering outlets are neither concerned
with theory development nor do they refer to existing theories from other fields to
explain the effectiveness of agile software development. Instead, they are mainly
descriptive with a lack of theoretical and conceptual foundation in the research
stream (Abrahamsson et al. 2009). Only recently, few articles were published in
a special issue of the Journal of Systems and Software exploring the “theoretical
underpinnings of agile development” (Dingsøyr et al. 2012). The focus was on
coordination, decision making, and social factors in agile software development.
In conclusion, four key results can be found in the software engineering literature:

• The software engineering research community shows great interest in the topic
• Studies are mostly case studies
• Studies are mainly descriptive with no or limited theory-based explanations
• Many studies find evidence for a positive impact on software quality and

teamwork factors, but there is a lack of integrated or cumulative research

2.4 Discussion of the Literature

In recent years, many software development organizations have shifted their
development processes to agile software development (VersionOne 2012). As a
consequence, agile software development can be described as mainstream today
(West et al. 2010). At the same time, research on agile software development
has matured from “practitioners’ success-stories” (Abrahamsson et al. 2002) to a
covered domain in the software engineering as well as the information systems
research community. Both communities have shown particular interest in the topic
as the extensive list of publications (see Figs. 2.3 and 2.5) and various special issues
on agile software development indicate (see Table 2.4).

In 2008, Dybå and Dingsøyr (2008) reviewed the research body of knowledge
on agile software development. They found a number of research studies, but also
identified the need for more rigorous studies to advance the evolving field. In the
meantime, several researchers have responded to this call resulting in an increasing
number of publications on agile software development. Many of these studies are
exploratory in nature and draw their insights from single or multiple case studies
(see Appendix A.1). In addition, most of them explore small, co-located software
development teams or projects while only few studies researched distributed or
large-scale development settings. The exploratory character of the field allows
researchers to better understand the implementation of agile software development.
Against this background, this study aims to provide generalizable research findings
to advance the research field.

Agile software development is a phenomenon primarily driven by experienced
practitioners and consultants in the software industry (Boehm 2006). Hence, several
researchers have first discussed how and why software development organizations
use and adapt agile methods (see section “Agile Method Adoption and Adaptation”).



34 2 Agile Software Development

Moreover, they evaluated how customers’, developers’, or students’ perception of
the agile development approach. Other studies assessed the development approach
in terms of productivity, software quality, and job satisfaction (Dybå and Dingsøyr
2008). Many of these studies were primarily descriptive in nature.

Until today, the research community is still far away from fully understanding
why, how, or in which project contexts agile software development works. In other
words, there is still a long way for researchers to develop a theoretical understanding
of agile software development. Such a theoretical perspective could not only explain
the success of agile software development, but also guide professionals when and
how to use the agile development approach.

A structured search of studies in the IS field revealed that more than 60 % of
the publications build on a theoretical model or framework (see Appendix A.1).
This shows that more and more studies seek to contribute to theory development in
this field of research. This study intends to contribute to this literature stream and
advance the theory-based understanding of agile software development.

As with every evolving research field, key concepts need to be discussed to
ensure a common understanding in the research community for cumulative research
success. The last years have seen valuable contributions to this discussion (see
section “Agility Concept”). Various perspectives have been provided and there
is agreement of agility being a multifaceted construct (Sarker and Sarker 2009).
However, there is no agreement what agility is or how it should be conceptualized.
This is one reasons why research on agile software development is still fragmented,
as the boundaries and key concepts are not aligned. Another reason may be a
lack of a clear definition of the dependent variable of many studies. While some
studies are interested in the impact on software quality, delivered scope, in-time or
in-budget delivery, other are curious to understand the impact on communication,
coordination, or knowledge structures in software development projects or teams.

Overall, researchers have studied very diverse aspects of agile software develop-
ment. Missing boundaries as well as a missing understanding about the definition
of software development agility complicates the integration of the research stream.
Therefore, this study intends to clearly define how it conceptualizes the multifaceted
concept of agile software development as well as how it defines software develop-
ment team performance (see Sect. 3.3.1).

In conclusion, agile software development is a software development approach
with growing popularity since the early 2000s. Research on agile software devel-
opment has advanced from best-practice success stories to more rigorous research
studies with a predominantly descriptive character. The extant knowledge of team-
work research may provide a promising theoretical lens for this research direction.
Due to the relevance for software development organizations, such a model should
not only be generalizable but also validated with data from professional software
developers. Since research on agile software development is very fragmented, every
study needs to clearly define the conceptualization of agility and the dependent
variable. Only then, follow-up studies can build on the study’s results to advance the
field towards an integrated research prospect. Dingsør and Dybå (2012) summarized
the field of research in a call for future studies. They demanded (a) a better



2.4 Discussion of the Literature 35

measurement of teamwork aspects in software development, (b) more rigorous
industrial cases, (c) better understanding of dynamic configurations, (d) increased
emphasis on team cognition, and (e) a better understanding of multicultural context
of software development teams to advance the understanding of agile software
development teams. This study seeks to contribute to the reviewed literature streams
addresses these research challenges.

The author agrees to these conclusions seeing both an interest among researchers
and a need for further research on agile software development. First, the results of
the extensive literature review indicate an imbalance of applied research methods
skewed towards qualitative research with only a limited number of quantitative
studies. Second, theory-guided research on agile software development remains
limited and many studies are still based on experience lacking theoretical support.
Despite the strong focus on teamwork and collaboration in agile software devel-
opment teams, only few studies draw on the extensive body of knowledge about
the effectiveness of work teams to better understand agile software development.
Finally, there is still no agreement among researchers about the definition of agility.
As a consequence, study results are not comparable leading to a lack of cumulative
studies and knowledge about agile software development. Overall, there is a need
for more rigorous, theory-supported studies with insights from professional software
developers.



Chapter 3
Theoretical and Conceptual Foundations

This chapter provides the theoretical and conceptual foundations of the study by
introducing a theoretical research model with five empirically testable research
propositions. The theoretical basis of the study was developed with insights from
team effectiveness research and literature on agile software development. The
central proposition of this study is that agile software development not only directly
influences the performance of a software development team, but that it also triggers
affective, behavioral, and cognitive teamwork mechanisms. Insights into these hid-
den effects within agile teams are expected to advance the theoretical understanding
and evaluation of agile software development by integrating previously separated
literature streams.

This chapter first introduces the related teamwork concepts. In particular,
Sect. 3.1 categorizes Scrum teams as work teams and introduces the selected
teamwork theories. Then, team adaptation theory and the impact of a work team’s
level of confidence on team effectiveness are discussed. A combination of both
concepts lays the theoretical basis of the research model. Section 3.2 provides
an overview of previous approaches to conceptualize software development team
performance, i.e. the dependent variable of the research model. This leads to
Sect. 3.3, which develops the research propositions to explain the impact of using
agile practices on the performance of software development teams.

3.1 Team Effectiveness Research

Many failures of software development projects relate to a missing recognition
of software development as a largely social process (Hirschheim et al. 1996).
In many agile software organizations, these social processes are embedded in
work team structures characterized by the Scrum framework (VersionOne 2012).

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_3

37



38 3 Theoretical and Conceptual Foundations

Scrum suggests to develop software in stable, cross-functional teams of about ten
developers (Schwaber and Beedle 2002). Regular Scrum team meetings foster the
interactive and collaborative work mode in line with the agile development paradigm
(see Sect. 2.2.1). Scrum not only directs the social processes but also reinforces
team-based structures in software development projects. Hence, a fundamental
understanding of the widely studied teamwork mechanisms may provide valuable
insights for this study on agile software development.

A work team is defined as “a collection of individuals who are independent in
their tasks, who share responsibility for their outcomes, who see themselves and are
seen by others as an intact social entity embedded in one or more larger social
contexts, and who manage their relationships across organizational boundaries”
(Sundstrom et al. 2000). A wide variety of different types of teams have been
discussed in the literature. As conclusions for one type of team may not apply to
other team contexts or tasks, it is important to categorize software development
teams. According to Kozlowski and Ilgen (2006), work teams are “composed
of two or more individuals who (a) exist to perform organizationally relevant
tasks, (b) share one or more common goals, (c) interact socially, (d) exhibit task
interdependencies (i.e., work flow, goals, outcomes), (e) maintain and manage
boundaries, and (f) are embedded in an organizational context that sets boundaries,
constrains the team, and influences exchanges with other units in the broader entity”.
Given the characteristics of Scrum teams (see Sect. 2.2) and the aforementioned
definition of a work team, this study classifies Scrum teams as work teams and
subsequently borrows from work team effectiveness research.

3.1.1 Theory Selection

In the last decades, substantial knowledge about work teams has accumulated with
hundreds of primary studies, several meta-analyses, and review articles in the fields
of social psychology, organizational psychology, and management research (i.a.
Bettenhausen 1991; Ilgen et al. 2005; Kozlowski and Ilgen 2006; Salas et al. 2005;
Sundstrom et al. 2000). Scholars have developed several teamwork theories focusing
on specific mechanisms in work teams forming the conceptual and theoretical
foundation of this study (see i.a. Bettenhausen 1991; Cohen and Bailey 1997;
Mathieu et al. 2008). Team effectiveness research distinguishes between three
fundamental domains: affective, behavioral, and cognitive mechanisms evolving in
and characterizing work teams. This study proposes agile software development to
affect all three domains (see Fig. 3.1).

Team Affection Agile software development emphasizes on collaboration among
software developers. Besides, many agile methods embrace social aspects in the
software development process (see Sect. 2.2.2). This intensified level of interaction



3.1 Team Effectiveness Research 39

Agile Software 
Development

Team 
Performance

Team Affection

Team Behavior

Team Cognition

Control Variables

Fig. 3.1 Research framework

among developers may impact team affection. Various scholars have suggested that
a team’s belief in its own capabilities (team confidence) is a reliable determinant
of team performance (Bandura 1977; Gully et al. 2002). First studies have also
confirmed the effect in software development teams (Akgün et al. 2007). To the
author’s best knowledge, however, no previous study has investigated agile software
development’s influence on the level of confidence of a development team. This
study proposes a positive relationship between using agile development practices
and the level of confidence of a development team (see Sect. 3.3).

Team Behavior and Team Cognition Agile software development was originally
the response of software engineers to rapidly changing project conditions (see
Sect. 2.2). At its core, agile development promises to help software development
teams work more effectively in highly uncertain environments (Beck 2000; High-
smith 2000) and to increase software development teams’ ability to adapt to
new situations. The adaptation aspect has not been studied so far despite team
effectiveness’ theory on team adaption which exactly explains how teams adapt.
This gap in the literature has also been identified by Dingsøyr et al. (2012).

Team adaptability theory (Burke et al. 2006b; Rosen et al. 2011) describes the
interplay of a team’s behavior and its cognitive emergent states. Emergent states are
“cognitive, motivational, and affective properties of teams that are typically dynamic
in nature and vary as function of team context, inputs, processes, and outcomes”
(Marks et al. 2001). For instance, team members may develop a feeling of trust
or conflict (affection), a shared belief in their own capabilities (motivational), or a
shared understanding (cognitive) when working together over time. Emergent states
are considered to act both as team inputs and proximal outcomes of work teams.
According to the theory, provision of feedback and help among team members
(backup behavior) and a common understanding in the team (shared mental models)
are the central markers for adaptive team performance. This study argues a positive
influence of agile software development on aspects of team adaptation mediating
the overall performance effect of agile software development on team performance
(see Sect. 3.3). Team adaptation theory provides the theoretical background for this
effect, the following paragraphs will introduce the theory (see Sect. 3.1.2).



40 3 Theoretical and Conceptual Foundations

3.1.2 Team Adaptation Theory

There are various sources of uncertainty inherent to software development projects.
As a consequence, dynamic working conditions are an ever present reality for
software development teams (see Sect. 2.2). Frequently, development teams face
poorly specified and consequently changing tasks, technological disruption, or team
instability (Kude et al. 2014). Contingency plans, waiting until conditions clear up,
or having enough resources to handle unpredictable events are possible approaches
to handle project uncertainty (Klein and Pierce 2001). In many situations, however,
the only option is to adapt to the new situation which is why this study assumes a
software development team’s ability to adapt to be a key determinant of its success.
To better understand the adaptation of work teams, the study relates to team adaption
theory (Burke et al. 2006b; Rosen et al. 2011).

Team adaptability is defined as the “ability to adjust strategies based on
information gathered from the environment through the use of backup behavior and
reallocation of intra-team resources. Altering a course of action or team repertoire in
response to changing conditions” (Salas et al. 2005). A related, but different concept
is team adaptation. Team adaptation refers to a team behavior, i.e. a “change in
team performance, in response to a salient cue, that leads to functional outcomes
for the entire team” (Burke et al. 2006b). Team adaptation theory postulates team
adaptation to be the result of adaptive team performance (Burke et al. 2006b).
Team adaptation is manifested in the innovation of new or modification of existing
structures, capacities, and/or behavioral or cognitive goal-directed actions. Adaptive
team performance, in turn, is the result of a team’s ability to iterate through adaptive
cycles. These cycles are described as a sequence of four team processes and their
interplay with a team’s cognitive emergent states (see Fig. 3.2). Teams with a
better adaptive team performance, i.e. teams better iterating the adaptive cycle, are
expected to possess a superior ability to adapt to new situations.

Situation assessment

Plan formulation

Plan execution

Team learning

Team 
members’
Knowledge, 

Attitude, 
Abilities &

Traits Team 
Adaptation

Feedback

SMM

TSA

Adaptive Team Performance

Adaptive Cycles
Emergent States

TPS

SMM Shared Mental Models
TSA Team Situational Awareness
TPS Team Psychological Safety

Cue

Fig. 3.2 Team adaptation model (simplified, based on Burke et al. 2006b)



3.1 Team Effectiveness Research 41

Adaptive Cycles

The theory takes a procedural perspective assuming that adaptive team performance
is not a consequence or a result of action, but an action itself. This collective
action evolves over time while a team progresses through recursive adaptive
cycles. The characteristics of these cycles, both, influence and are influenced by
a team’s cognitive and behavioral structure. According to the theory, adaptive teams
successfully manage to

1. assess a new situation and build a coherent understanding of a new situation,
2. adjust their plans accordingly,
3. coordinate their work to fit the new situation,
4. and learn by evaluating the effectiveness of their performance.

During the first phase of the adaptive cycle (situation assessment), the environment
is scanned by the team members for potential cues. A cue is any kind of non-
routine event, whether previously known or unknown, with the potential to disturb
or affect the current process (Louis and Sutton 1991). After the cue has been
recognized and identified as a source of disruption for the ongoing process, the
respective team member recognizing the cue ascribes a certain meaning to the raw
data based on previous experience. Following the interpretation of the situation, it
is communicated to the rest of the team (Burke et al. 2006b; Rosen et al. 2011).
During the second phase, the plan formulation phase, the team works on a plan
to address the identified cue in order to meet the original goal. This includes
mission analysis, creation of a contingency plan (Marks et al. 2001), differentiation
of team member roles, and conflict management. The third phase of the adaptive
cycle, called plan execution, is the actual adaptive performance phase. During this
phase, several processes on the individual and the team level happen dynamically,
recursively, and simultaneously. The central process during the plan execution phase
is coordination. To successfully coordinate, mutual monitoring, back-up behavior,
and systems monitoring are key processes (Marks et al. 2001; Salas et al. 2005). The
last phase of the adaptive cycle is team learning. During this retrospective phase,
the team recapitulates prior actions to build a common understanding of a situation.
Finally, the team formulates lessons learned for similar situations in the future.

Plan Execution

The plan execution phase is at the core of the adaptive cycle. Team adaptation theory
describes various processes that a team conducts simultaneously for the success of
this step. Typically, it involves coordination behavior (mutual monitoring, backup
behavior, communication) and leadership (Burke et al. 2006b).

• Mutual monitoring has been defined as team members’ ability to “keep track
of fellow team members’ work while carrying out their own ... to ensure that
everything is running as expected and ... to ensure that they are following pro-
cedures correctly” (McIntyre and Salas 1995). According to Salas et al. (2005),



42 3 Theoretical and Conceptual Foundations

mutual monitoring affects team performance by identifying errors subsequently
mitigated through backup behavior.

• Team backup behavior is defined as the “discretionary provision of resources and
task-related effort to another ... [when] there is recognition by potential backup
providers that there is a work-load distribution problem in their team ” (Porter
et al. 2003). Marks et al. (2001) identify three means of providing backup:
(a) providing feedback and coaching to improve performance, (b) assisting
teammates in performing a task, and (c) completing a task when overload is
detected. Backup behavior is particularly important for tasks that are difficult
to assess in terms of quality and progress as individuals may not be aware
of their own deficiencies (Salas et al. 2005). To effectively engage in backup
behavior, team members have to be able to detect a need for help (monitoring
capability), but to effectively judge the trade-off between helping other team
members and accomplishing their personal tasks. Consequently, a common
understanding of tasks and team member responsibilities (shared mental models)
fare essential to effectively provide assistance or performance feedback in respect
of team objectives. Only if team members understand their colleagues’ task, they
are capable of (a) assess if the provision of feedback helps the overall team
performance and (b) to provide feedback/help to their fellow team members
(Dickinson and McIntyre 1997). Hence, shared mental models and mutual
monitoring are necessary for teams to provide internal team backup.

• Communication is the “process by which information is clearly and accurately
exchanged between two or more team members in the prescribed manner
with proper terminology; the ability to clarify or acknowledge the receipt of
information” (Cannon-Bowers et al. 1993). It is essential during the adaptive
cycles for updating the shared mental models and effective monitoring behavior.
Moreover, backup can be provided through feedback and communication is
hence a facilitating mechanism.

• The leader of a team is essential for team effectiveness in his or her role as
coordinator, point of contact to other teams or management, and as guide for a
team’s vision (Burke et al. 2006a). According to team adaptation theory, team
leaders can significantly influence the coordination of work within the team in
the face of change. Hence, leaders are facilitators of team adaptation.

Emergent Cognitive States

According to team adaptation theory, adaptive teams develop emergent cognitive
states while iterating the adaptive cycle. These emergent states serve as both,
proximal outcomes of the process steps as well as inputs for the adaptive cycle.
The theory postulates three central cognitive states: shared mental models, team
situational awareness, and psychological safety.

• Shared Mental Models (SMM). Mental models are “dynamic, simplified, cogni-
tive representations of reality that team members use to describe, explain, and



3.1 Team Effectiveness Research 43

predict events” (Burke et al. 2006b). Team member can develop similar mental
models, so-called shared mental models.

• Team Situational Awareness (TSA), a “shared understanding of the current
situation at a given point in time” (Salas et al. 1995).

• Team Psychological Safety (TPS), the degree to which team members have a
shared belief of safety in the team with respect to interpersonal risk taking. It
describes a team climate of interpersonal trust and mutual respect and enables
team members to take appropriate actions to accomplish work (Edmondson
1999).

Team adaptation theory assumes teams to develop a shared perspective during
the situational awareness phase. Shared mental models help team members to
interpret information similarly and develop situational awareness at team level.
Team psychological safety is assumed as a key determinant of a team’s readiness to
react to environmental changes while developing a plan. Hence, TPS is considered
as an input for team adaptation by team adaptability theory. Moreover, teams are
expected to update their shared cognition during the plan formulation phase. Hence,
producing a new plan as part of the adaptive cycles is expected to influence the
shared mental models of teams. Furthermore, the theory predicts shared mental
models themselves to influence the quality of plan execution of a team. Thereby,
shared mental models play a central role for adaptive team performance.

Markers of Adaptive Teams

Team adaptation theory integrates several perspectives from organizational, behav-
ioral, and cognitive sciences; it is a multidisciplinary, multilevel, and multiphasic
model (Rosen et al. 2011). For these reasons, the model is quite complex. To reduce
complexity when studying the theory or parts of it, Rosen et al. (2011) suggested
to reduce the number of constructs and only consider the relevant behavioral or
cognitive markers of team adaptation. There are two main aspects which are at the
core of team adaption on which the study will be focusing (Salas et al. 2005): team
backup behavior and shared mental models, two central mechanisms of adaptive
team performance.

3.1.3 Team Confidence

Previous literature proposed team confidence as an important determinant of team
performance (Gully et al. 2002; Stajkovic et al. 2009). A large number of empirical
studies have confirmed this positive relationship (Gully et al. 2002; Jung and
Sosik 2003; Stajkovic et al. 2009). Originally, Bandura (1977) had introduced the
confidence concept of self-efficacy as the cognitive component in social-cognitive
theory on the individual level. Self-efficacy refers to “people’s judgments of their



44 3 Theoretical and Conceptual Foundations

Team EfficacyTeam Potency

A team's shared belief about its 
capability to produce given level of 
goal attainment for specific tasks

A team's shared belief
about its general ability

to be successful

(Guzzo et al., 1993). (Bandura, 1986; Gibson, 1999)

Team 
Confidence

Fig. 3.3 Team confidence, team potency, and team efficacy

capabilities to organize and execute courses of action required to attain designated
types of performances” (Bandura 1986). Bandura explains that self-efficacy influ-
ences the way how people control and direct their own actions. Individuals with a
higher self-efficacy exert more efforts to attain goals, set more challenging goals,
are more persistent in face of difficulties.

Later, Bandura (1986) suggested to extend the concept to the team level. He
proposed the same antecedents and consequences on both the individual and an the
team level. Various authors build their work on Bandura’s argumentation arguing
that a team’s effectiveness is not only determined by the qualities of the individual
team members (individual level input), but also by team members’ perception of
these qualities (collective emergent state).

Team Confidence Concepts

There are two basic ways to conceptualize a team’s level of confidence: team
potency and team efficacy (Kozlowski and Ilgen 2006). Both presume a shared
collective belief by the team members (see Fig. 3.3). Team potency is a generalized
confidence construct, while team efficacy is task-specific.

• Team potency refers to a team’s shared belief about its ability to be successful
(Guzzo et al. 1993; Jung and Sosik 2003).

• Team-efficacy refers to a team’s belief of its collective capability to organize and
execute courses of action required to produce given level of goal attainment for
specific tasks (Bandura 1986; Gibson 1999).

Antecedents

There are different factors influencing the confidence of a team (Bandura 1977):
(1) Past performance accomplishments are an important influencing factor of a
team’s belief in its capabilities, (2) vicarious experiences can positively influence the



3.2 Software Development Team Performance 45

Team 
Confidence

Performance 
accomplishments

Vicarious 
experience

Verbal 
persuasion

Emotional 
arousal

Goal 
setting

Level of 
effort

Resilience in 
face of difficulties

Team actions

Team 
Performance

+

+

+

+

+ +

Fig. 3.4 Antecedents and consequences of team confidence

level of confidence. They can either be realized directly through one’s own success
or indirectly through the success of someone similar, (3) verbal persuasion may
determine team confidence, and (4) physiological and emotional arousal can affect
the level of confidence.

Consequences

Team confidence was theorized to influence team effectiveness because teams are
expected to change their actions as they become more confident about their own
capabilities (Gully et al. 2002). More confident teams are expected to set higher
goals, exert more effort into achieving these goals, and show greater persistence in
the face of obstacles, challenges, or setbacks. In other words, teams with a ’we can
do it’ attitude perform better as their confident affection influences what a team does
and in which way it chooses to do its tasks (see Fig. 3.4).

Kozlowski and Ilgen (2006) reviewed the literature on team effectiveness
research and concluded that “it is likely that contextual factors such as team task
and culture, may affect the link between team confidence and team effectiveness”.
For instance, Gibson (1999) showed team efficacy to not be related to group
effectiveness when technological uncertainty is high, work is independent, and
collectivism is low. With the opposite situation, the relationship was found to be
positive. In their meta-analysis of 67 empirical studies, Gully et al. (2002) found a
stronger impact of confidence on team performance when the interdependence of a
team’s task was higher (� D 0:45) and less impactful when interdependence was
lower (� D 0:34).

3.2 Software Development Team Performance

The focus of this study is the influence of agile software development on the
performance of software development teams. While the conceptual foundations of
agile software development were already discussed in section “Agility Concept”,



46 3 Theoretical and Conceptual Foundations

the following paragraphs elaborate on the performance concept. First, team per-
formance is delineated from team effectiveness and project success, i.e. separate,
but related success concepts in the software development domain. Then, existing
performance concepts are described and briefly discussed.

3.2.1 Team Performance, Team Effectiveness, and Project
Success

Project Success

A software development project widely considered successful when satisfying the
traditional project management objectives, such as delivery on time, within budget,
meeting quality expectations (Jugdev and Müller 2005). These success indicators
might, as disputed by other, suffice to fully describe software development projects
and their inherent communication, coordination, learning, or negotiating challenges
(Sarker et al. 2009). To resolve this dispute, project success can be conceptualized
in a broader sense comprising of a product perspective, e.g. meeting cost and
on schedule delivery, and a process perspective, e.g. user and project stakeholder
satisfaction how the software is delivered (see Fig. 3.5 and Procaccino et al. 2005).

ISD Team Effectiveness

This study considers software development teams as an integral part of a soft-
ware development project. Therefore, team effectiveness is conceptualized as an
important aspect of project success (see link a in Fig. 3.5) in a multifaceted
construct with three particular dimensions: behavioral outcomes (e.g., absenteeism,

Product 
Perspective

Software Development Project Success

Team Effectiveness

Process
Perspective

Behavioral 
Outcomes

Attitudinal
Outcomes

Team
Performance

• Absenteeism
• Turnover
• Safety

• Satisfaction
• Commitment
• Trust in leaders

• Productivity
• Efficiency
• Product quality

a

b

Ex
am

pl
es

Fig. 3.5 Team performance, team effectiveness, and project success



3.2 Software Development Team Performance 47

turnover, or safety), attitudinal outcomes (e.g., satisfaction, commitment, or trust in
management) and team performance (e.g., productivity, efficiency, product quality)
(Cohen and Bailey 1997; Ilgen et al. 2005; Sundstrom et al. 2000). Among them,
“performance is the most widely studied criterion variable in the organizational
behavior and human resource management literature” (Bommer et al. 1995).
However, there is no agreement how team performance is defined (Ilgen et al. 2005;
Sundstrom et al. 2000).

Team Performance

In line with previous team effectiveness models (i.a. Cohen and Bailey 1997), this
study considers team performance as a sub-dimension of team effectiveness (see
link b in Fig. 3.5).

3.2.2 Review of Existing Team Performance Concepts

A structured review of the literature showed no agreement among scholars on the
definition of the performance of a software development team or on appropri-
ate measurement (Münzing 2012)1. Some authors study performance dimensions
relevant for individual team members or stakeholders, others are interested in
outcomes at the team or the project level. Overall, all scholars have conceptualized
team effectiveness as a multidimensional construct. The dimensions are either task
outcomes, i.e. team assessments based on a team’s work outcomes as well as the
required team effort, or team outcomes, i.e. effects on team members’ attitude and
behavior. Figure 3.6 provides an overview of all performance dimensions found
in the analyzed publications. The numbers at the bottom of the figure indicate the
number of publications considering a particular performance dimension as part of
the dependent performance variable in the study.

Most studies examine software development projects of the traditional “plan
and document” paradigm, i.e. the studied projects have a dedicated planning phase
before the team starts developing software. Consequently, team performance can be
assessed relative to a predefined project plan. Most of these studies are interested
in the delivered scope (Bok and Raman 2000; Stewart and Gosain 2006; Yang and
Tang 2004), quality (Maruping et al. 2009a; Sawyer and Guinan 1998), and in-time
or in-budget delivery (Espinosa et al. 2007; Faraj and Sproull 2000; Henderson and
Lee 1992; Henry and Todd 1999; Huckman et al. 2009; Ryan and O’Connor 2009;

1Münzing (2012) conducted a structured literature review as part of his Master thesis. The review
was initiated and supervised by the author of this study. Overall, 74 publications found in the
Information Systems and New Product Development literature streams were analyzed.



48 3 Theoretical and Conceptual Foundations

Bu
dg

et

Ti
m

e

N
ot

 fr
ut

he
r s

pe
ci

fie
d

D
el

iv
er

ed
 S

co
pe

Ef
fo

rt

N
ot

 fr
ut

he
r s

pe
ci

fie
d

29 38 0 12 5 14
Number of 

publications 
examining the 

particular  
dimension 74

41 25
59 57 14 18

4 1 1 8 8 146 2 5 7 7

67 25

O
th

er
s

14 48 24 11 4 24 20

Tr
us

t

O
th

er
s

C
om

m
un

ic
at

io
n

C
oo

rd
in

at
io

n

Le
ar

ni
ng

Ab
se

nt
ee

is
m

9

Product-
ivity

N
ot

 fu
rth

er
 s

pe
ci

fie
d

C
om

m
itm

en
t

C
us

to
m

er
 s

at
is

fa
ct

io
n

Tu
rn

ov
er

Team Effectiveness
Task Outcomes Team Outcomes

R
ep

ut
at

io
n

N
ot

 fu
rth

er
 s

pe
ci

fie
d

In
no

va
tio

n

Team 
Effectiveness

Team
 Efficiency

N
ot

 fu
rth

er
 s

pe
ci

fie
d

Attitudinal Behavioral

Pr
od

uc
t Q

ua
lit

y

Pr
od

uc
t F

un
ct

io
na

lit
y

Pr
od

uc
t V

al
ue

N
ot

 fu
rth

er
 s

pe
ci

fie
d

Comply 
with a plan

Fig. 3.6 Team effectiveness dimensions in previous studies

Sawyer 2001). Other studies take a more general perspective and examine product
innovation (Guinan et al. 1998) or customer satisfaction.

Moreover, software development studies vary in terms of how they measure
team performance. Most authors ask team stakeholders to subjectively rate different
performance dimensions in retrospective. Münzing (2012) found 54 out of 74
publications to use ratings on agreement scales from survey data. Other studies
quantify team outcomes with direct objective data from firm records, files, or other
archival data. For instance, line-of-code, feature-points or number of error messages
have been previously used as proxy variables for team performance (i.a. Maruping
et al. 2009a). These performance measures, however, can be problematic as the data
might be subject to manipulation, may reflect only specific performance aspects,
or might not be accurately measured (Henderson and Lee 1992). Furthermore, it
might be difficult to compare this data for software development teams working
on different product types, e.g. data-based software vs. software applications, or at
different points of time in the product life-cycle.

In conclusion, scholars provide a heterogeneous view what the performance of a
software development team is and how to measure it. Table 3.1 on page 49 provides
an overview of existing measurement instruments for software development team
performance including three popular measurement instruments to demonstrate the
conceptual diversity. Due to the lack of reliable measurement instruments for agile
software development teams, this study develops a new instrument to assess the
performance of software development teams. This instrument was developed based
on insight from interviews with project managers and the literature mentioned
earlier. Further details are outlined in Chap. 4.



3.3 Research Model 49

Table 3.1 Performance concepts in software development research

Author Definition Adopted by

Henderson
and Lee
(1992)

ISD Team Performance is assessed by non-team
stakeholders in terms of efficiency, effectiveness, and
elapsed time. For each category, different
measurement items were provided and rated by the
assessors on a 7-point Likert scale

Faraj and Sproull (2000);
Guinan et al. (1998);
Kang et al. (2006);
Sawyer (2001); Sawyer
and Guinan (1998); Zhang
et al. (2008)

Nidumolu
(1995)

ISD Project Performance includes process
performance (learning during the project, process
control, and quality of interactions) and product
performance (operational efficiency of software,
responsiveness of software, and flexibility of
software)

Lee and Xia (2010)

Hoegl and
Gemuenden
(2001)

ISD Team Performance includes effectiveness,
efficiency, work satisfaction, and learning as the
central performance dimensions. The technical
quality of the software solution, including the
satisfaction with the software solution from different
perspectives (effectiveness). Another five items were
used for measuring the teams’ adherence to schedule
and budget (efficiency). Team members’ work
satisfaction and learning were assessed separately

Carmeli et al. (2011);
Huang et al. (2008);
Huang and Jiang (2010)

Misra et al.
(2009)

Success of (Agile) Software Development
(Projects) reduces delivery schedules, increases
return on investment (ROI), increases ability to meet
with the current customer requirements, increases
flexibility to meet with the changing customer
requirements, improves business processes

Siau et al.
(2010)

ISD Success refers to the system usage of and
perceived satisfaction with the developed system.
System usage includes system success
(maintainability, agility, and efficiency) information
or data quality (integration, unification, effectiveness,
and efficiency), and system usage. User satisfaction
can include satisfaction with the system quality,
effectiveness, or efficiency

3.3 Research Model

Literature in social and organizational psychology as well as the organization
and management sciences provided numerous models to analyze and explain the
effectiveness of work teams. Researchers distinguish between static and dynamic
team work models.

Dynamic models focus on teams’ evolution or development over time. Conse-
quently, time is as an important model parameter. Various dynamic models assume
that teams go through different phases of formation, maturation, and evolution.
For instance, Tuckman’s classical model describes a team’s maturation through a



50 3 Theoretical and Conceptual Foundations

forming, storming, norming, and performing phase (Tuckman 1965). The dynamic
teamwork model by Marks et al. (2001) describes various process steps which
teams constantly iterate. The model distinguishes transition and action phases which
determine how a team works.

This study takes a static perspective to analyze the effectiveness of agile software
development teams. Static team work models describe mature teams which are
assumed to have reached a stable state that can be described, analyzed, and mea-
sured. Most static models follow an Input-Process-Output (IPO) framework which
has strongly influenced how researchers have been discussing team effectiveness
and its determinants during the last 50 years of research. The IPO perspective
was originally introduced by McGrath (1964), later refined by Gladstein (1984),
and further extended by various other authors (see e.g. Cohen and Bailey 1997;
Hackman 1987; Ilgen et al. 2005; Kozlowski and Bell 2003; Mathieu et al. 2008;
Salas et al. 2005; Sundstrom et al. 2000). It considers input factors at the individual,
team, and organizational level to influence various team processes which, in turn,
mediate the effect of these inputs on team outcomes.

• Inputs are a team’s resources such as knowledge, skills, abilities, personalities,
demographics or external stimuli such as rewards, group structure or organiza-
tional climate.

• Processes are inhibitory or enabling team activities and team members’ interac-
tions while accomplishing team tasks. Team processes combine the “cognitive,
behavioral, and motivation/affective resources” (Kozlowski and Ilgen 2006) of a
team to achieve team outcomes.

• Outcomes are criteria to assess the effectiveness of a team.

It is important to note that the IPO model is not a theory, but an organizational
systems model that helps to structure the research process (Cohen and Bailey
1997). The relationships between the input and output components of this study
are explained in the following paragraphs with the help of existing conceptual and
theoretical assertions.

The research model of this study builds on an extension of the initial IPO model,
the Input-Mediator-Outcomes (IMO) model based on Mathieu et al. (2008), see
Fig. 3.7. This model distinguishes between team processes and emergent states

Organizational Context

Team Context

Team 
Effectiveness

Inputs Mediators Outcomes

Members

Team Processes

Emergent States

Fig. 3.7 IMO model in team effectiveness research (based on Mathieu et al. 2008)



3.3 Research Model 51

that teams developed over time. Emergent states are “cognitive, motivational, and
affective properties of teams that are typically dynamic in nature and vary as a
function of team contexts, inputs, processes, and outcomes” (Marks et al. 2001).

In the subsequent sections, the research constructs are defined and the research
propositions are deducted. The chapter concludes with the integration of the
proposed propositions into a coherent research model.

3.3.1 Model Constructs

Six latent research constructs form the building blocks of the research model, i.e.
the theoretical core of this thesis. These six constructs are briefly introduced in
this section. In addition, definitions for all constructs are provided (see Table 3.3
on page 63). Following the Input-Mediators-Outcomes perspective, agile software
development is considered as an input factor of software development teams and
team performance is modeled as the outcome variable of the research model. The
effect of agile software development on the outcome variable is further explained
through affective, behavioral, and cognitive team processes and emergent states.

Input

Agile Software Development. As outlined in section “Agility Concept”, there
are two fundamental concepts of agile software development. Researchers either
conceptualize agile software development as a capability (e.g. Lee and Xia 2010;
Lyytinen and Rose 2006; Sarker and Sarker 2009) or a behavior of a software
development team (i.e. Abrahamsson et al. 2002; Maruping et al. 2009a). This study
takes a behavioral perspective and conceptualizes agile software development in
terms of a team’s intensity of using agile development practices. More specifically,
agile software development is measured in terms of a team’s intensity of using
pair programming, automated testing, and code review (see Sect. 2.2.2). These three
development practices have been suggested to help teams to adapt to unpredictable
and changing environments (Beck 2000). Furthermore, software development teams
using these development practices instantiate an iterative development approach.
The practices focus on high software quality and running software during the
entire development process. Thus, the core ideas of agile software development
are reflected in the induced team behavior. When using these three development
practices, software developers instantiate the agile development approach. Thus, the
team can be considered as an agile team.



52 3 Theoretical and Conceptual Foundations

Outcome

Team Performance. Until today, there is no consensus among scholars about
the conceptualization of the performance of an software development team (see
discussion in Sect. 3.2). Therefore, the author conducted a pre-study to better
understand the assessment of team performance by project managers in the given
research context (for details see Sect. 5.2). The results show a multifaceted approach
to the topic. The specific dimensions are discussed in Sect. 5.2 and illustrated in
Fig. 5.6. Overall, team performance refers to the stakeholder perception of the
overall success of a software development team as perceived by a team’s project
leader.

Mediators

Affective, behavioral, and cognitive team processes and emergent states. Shared
mental models are a team members’ shared and organized understanding and mental
representation of knowledge about key elements of the relevant environment and
tasks (Klimoski and Mohammed 1994). For this study, they represent the cognitive
emergent state of the model. Backup behavior refers to the discretionary provision
of resources and task-related effort to another member of one’s team intended to
help achieve the goals upon suspected failure (Porter et al. 2003). Finally, a team
confidence level is discussed in terms of team potency, i.e. the collective belief of a
team that it can be effective (Guzzo et al. 1993). It provides the affective perspective
for the research model.

Control Variables

In line with other studies on the effectiveness of work teams, the research model
controls for the number of people in a team (team size) and the diversity of
experience of its team members, and the extent of well-established work procedures
not available to solve the tasks at hand (technological uncertainty).

3.3.2 Effects on Team Cognition

Team adaptation theory (Burke et al. 2006b) holds that shared mental models
are particularly important for teams working in volatile environments. The theory
builds on shared mental model theory and its central tenet that congruency in
team members’ mental models facilitates efficient teamwork leading to higher team
performance (Uitdewilligen et al. 2010). Work teams with more similar mental
models have been shown to communicate more effectively, collaborate better, and
being more willing to work with team members in the future (Rentsch and Klimoski



3.3 Research Model 53

2001) compared to teams with underdeveloped shared mental models. Shared
mental models allow team members to interpret information in a similar way to
anticipate needs and actions in similar ways and thereby ‘implicitly’ coordinate the
joint behavior. This, in turn, results in better communication and coordination within
a team (Burke et al. 2006b; Cannon-Bowers et al. 1993; Klimoski and Mohammed
1994).

Mental models are an explanation of someone’s thought about how something
works in the real world, i.e. a representation of the world or relationship between
parts of the world (Klimoski and Mohammed 1994). They are particularly helpful
to solve abstract tasks, such as software development tasks. For instance, software
engineers develop mental models about the software architecture, their software’s
data or process models, or the application domain and purpose of a software.

Collaborative software development is not only an abstract, but modularizable
task. Software development teams split the overall team task into distinct, but inter-
dependent sub-tasks to be solved by individual developers or sub-teams. This work
style requires a common understanding among the developers to ensure efficient
coordination of the tasks and integration of the final work results. Considering these
task characteristics, this study assumes that a high sharedness of team members’
mental models is particularly important for high performance software development
teams. In the same vein, He et al. (2007) found that a shared understanding of the
team task is a critical element for successful development teams as it helps the team
to form common explanations and coordinate activities efficiently (Levesque et al.
2001).

Klimoski and Mohammed (1994) suggested social interactions, such as frequent
communication, information sharing, participation, or negotiation, to be the pri-
mary mechanism for shared mental models to develop. Moreover, spending time
together on task implementation helps team members to appreciate their peers’
mental models and strongly influences the development of a shared understanding
(Uitdewilligen et al. 2010). Furthermore, role differentiation plays a major role in
the development of shared mental models (Levesque et al. 2001). For teams with
specialists roles, cross-training and adopting other team members’ duties can have
a positive influence on the development of shared mental models (Levesque et al.
2001; Marks et al. 2002). Finally, performance monitoring and self-correction was
found to be positively related to higher mental model congruency (Rasker et al.
2000; Salas et al. 2005).

Developers working in a pair with a programming partner socially interact
over a longer period of time. Both developers discuss how to solve the assigned
development task. Beforehand, both partners need to developed a common under-
standing about the task to be solved. Then, the two programmers jointly implement
the software code, simultaneously monitor each others’ behavior, and provide
instant feedback. Both aspects have been shown as important antecedent for the
development of shared mental models (Rasker et al. 2000). Often, developers with
different skills or expertise pair up to solve complex problems. Some teams use pair
programming for cross-training between experienced and junior developers. The
two developers learn from each other while spending time to jointly solve their task.



54 3 Theoretical and Conceptual Foundations

Overall, the more intensively a team uses pair programming, the more intense are
the social interaction among the individual team members. Due to the intensified
social interaction, pair-programming-based team behavior is expected to lead to
a higher sharedness of the mental models within a team if the programming
partners frequently rotate within the team. Frequent in-depth discussions about
the programming tasks are a consequence of intense pair programming sessions
leading to a better and more shared mental models, for instance, about the software
architecture or the development tasks of the team. Finally, two developers solving a
development task might exchange and build on their ideas to, first, better understand
the development tasks and, second, come up with better solutions compared to
developers working alone. Hence, pair programming may not only lead to more
congruent mental models within the team, but also to better mental models.

Pair programming can be viewed as an extreme form of the agile code review
development practice. Code review means that the implemented software code is
reviewed by a second person in retrospective, i.e. after the implementation task is
finalized by one developer and before the code is integrated into the team’s common
code line. This agile development practices induces the reviewer and the reviewee to
interact, to give feedback, and to discuss the proposed solution or opportunities for
improvement. Hence, code review and pair programming have comparable social
interaction patterns and may therefore both enhance the sharedness and the quality
of team members’ mental models following the same line of reasoning outlined for
pair programming.

Test automation is another central aspect of agile software development. Agile
developers write automated tests to continuously check the correctness of newly
developed or modified software. For that purpose, agile development teams con-
tinuously run all team members’ tests in order to receive instant feedback on the
software’s behavior. In particular, automated test cases check if the software behaves
as expected given a certain set of input conditions. When writing automated test
cases, software developers make their mental model explicit, i.e. the test cases
represent each developer’s expectations how the software should behave for specific
input conditions. Thus, test-based software development induces developers not
only to specify the behavior of the software, but also to explicate their expectations
writing executable test cases. Taking a cognitive perspective, the developers define
and explicate their mental models about the software’s behavior.

Agile development teams share their automated test cases by integrating them
into a so-called ‘test suite’. Test suites contain all test cases developed by all
developers contributing to a software. Test suites can thus be understood as a
technical mean to integrate a team’s mental models to check for compliance of a
team’s software with its mental models. Consequently, the shared development and
usage of a team’s test suite facilitates the sharing and application of all developers’
mental models.

The test-automation based work style requires a team to develop quality norms.
This common understanding of good software quality evolves through continuous
discussion within the team. Hence, the test automation-based software development
approach motivates team members to share and discuss their perspectives about



3.3 Research Model 55

acceptable software quality. All three agile development practices are expected to
improve the sharedness of team members’ mental models. Hence, the following
proposition is put forth:

Proposition 1: The more intensively a team uses agile practices, the more shared are the
mental models of the team members.

3.3.3 Effects on Team Behavior

McIntyre and Salas (1995) have argued that backup behavior is a decisive team
behavior of high performance teams. Team backup behavior can take many forms
such as helping, carrying out a task, or providing feedback to team members. The
intention is to achieve the team goals when potential failure is apparent (Porter
et al. 2003). Marks et al. (2001) identify three means of providing backup including
(a) providing feedback and coaching to improve performance, (b) assisting team-
mates in performing a task, and (c) completing a task when overload has been
detected. Backup behavior is different from helping behavior as it results from the
realization of the necessity of help to ensure team performance and not individual
performance. Thus, team backup behavior can be a way to dynamically adjust a
team’s work load to perform at a level not possible if the team would work according
to plan.

Previous literature suggests mutual monitoring and team orientation as central
antecedents of team backup behavior (Salas et al. 2005). This study suggests
that both are more pronounced in software development teams adopting agile
development practices. The following paragraphs elaborate on this idea.

Mutual performance monitoring relies on a team’s common understanding
about its members’ weaknesses or lapses (McIntyre and Salas 1995). In software
development, small deficiencies, i.e. software bugs, can have a tremendous impact
on the functioning of the entire software. Hence, a team’s ability to monitor its
performance is essential for its performance. During pair programming sessions or
when reviewing each others’ code, team members build up awareness about the
software quality as they scrutinize each others’ work results. Hence, the more code
is reviewed by a second pair of eyes, the higher the likelihood of catching errors.
The increased awareness allows the team to shift priorities, provide feedback, and
help each other fix problems. Due to the more collaborative development approach
and common awareness of problems, developers can immediately address occurring
mistakes and take measures to avoid them in the future. Hence, mutual monitoring
induced by the agile development practices is one reasons for more feedback,
verbally and behaviorally, within agile software development teams.

When programming with a partner or during intensive code review sessions,
developers collaborate intensively. Instead of working by themselves, agile software
development practices, such as pair programming and code review, encourage
developers to engage with each other when implementing their tasks. The personal



56 3 Theoretical and Conceptual Foundations

interaction is expected to raise team members’ orientation and awareness of the
team. Team orientation is the preference of an individual to work in a team (Salas
et al. 2005). As previous research has shown, it is an important antecedent of
team backup behavior (Salas et al. 2005). In combination with the awareness of
performance deficiencies, teams using agile practices are expected to provide more
backup to each other compared to non-agile teams.

When writing automated tests, developers outsource and automate the moni-
toring procedure for future quality checks. When executing these automated tests,
developers are able to monitor the team’s work outcome for potential failure. The
gained transparency allows developers not only to be aware of existing issues, but
also to provide verbal feedback, help each other, and shift workloads if needed.
Hence, agile software development practices support the team in instantiating
backup behavior within the team. Many teams work with continuous integration
servers that automatically execute test cases after integrating new features into the
code base. When a single test fails, the entire team gets noticed. Hence, the team
can decide whether the error can be solved by the original developer or if further
assistance is needed. As such, running automated test cases provides a convenient
way to implement mutual monitoring and feedback on the current status of the
software.

Moreover, automated tests themselves can be considered as backup behavior
themselves. Previous expectations on the software’s behavior are made explicit
with an automated test to be used in the future or by other developers in the team.
Therefore, automated tests can be considered as a backup behavior or as provided
feedback that would otherwise be given, at best, verbally upon manual testing. Also,
automated testing implies constant integration of one’s own code into the team’s
shared code-base, thus increasing the team orientation of individual team members.

In conclusion, agile practices are argued to improve the mutual monitoring
process and improve team members’ orientation towards the team. Both have
been theorized to positively influence backup behavior in the team (Salas et al.
2005). Moreover, the agile development practices instantiate verbal and behavioral
feedback in the team. The following proposition is added to the research model:

Proposition 2a: The more intensively a team uses agile practices, the more intensive is the
provided backup within the team.

Backup behavior is a response to a genuine request for assistance and means
that a team member only provides assistance to a colleague if help is actually
needed (Porter et al. 2003). Consequently, team members first have to assess if
providing assistance is beneficial for the team and simultaneously be able to provide
verbal or behavioral feedback for a particular team member. To judge if a request
is legitimate and whether deviating from an original task distribution within a
team is advantageous for the overall team performance, members must have a
common understanding about their peers’ tasks, team members’ skills, and their
work progress (Porter et al. 2003).



3.3 Research Model 57

In software development teams, backup behavior requires developers to have
a common understanding of each others’ implementation tasks, their colleagues’
approach to solve their tasks, as well as a similar understanding of the technology
and the architecture of the software. Otherwise, the team is not able to effectively
shift work within the team and work, as a collective, more effectively than the
original developer on his or her own.

Software development is knowledge work and interim results often do not
provide visual cues. Therefore, it is oftentimes difficult to assess the progress
and quality of a software feature. While this positive relationship between shared
mental models and the provision of backup may also be true for other work
teams, the abstract characteristics of the software development tasks emphasizes
its significance for software development teams.

Another reason why backup behavior is particularly important for software
development teams is that individual developers are often even not aware of their
own performance deficiencies. Software engineers develop a product used in very
different contexts and at a high level of complexity encapsulated in different
software layers (see Sect. 2.1.1). Therefore, it can be very tedious to find one’s own
mistakes (bug fixing) or finish a task. Team members have to recognize the need for
help and effectively judge the trade-off between providing help or accomplishing
their own task to effectively engage in backup behavior. To make that decision, team
members need a common understanding of other team members’ tasks, skills, and
engineering capabilities as well as of the software architecture to provide backup
(Dickinson and McIntyre 1997). In line with previous assertions in literature (Burke
et al. 2006b; Salas et al. 2005), the following proposition is put forth:

Proposition 2b: The more shared the mental models of the team members, the more
intensive is the provided backup within the team.

The structural contingency perspective provides another useful perspective for
this study. In organization theory, technology has typically been defined as the
processes or tasks involved in transforming inputs into outputs. There is a general
perspective that the most appropriate structure (i.e., the structure that maximizes
organizational performance) is contingent on the uncertainty confronted by the
organization (Fry 1982). Underlying the structural contingency perspective is an
information processing viewpoint of the organization. Performance is determined
by the match between the uncertainty in a unit’s tasks and the ability of the unit’s
structure to process the information required to cope with uncertainty (Tushman and
Nadler 1978). The better the match, the higher the performance. Hence, uncertainty
is considered as a critical contingent factor for the performance of organizations
and, thus, also for team performance.

For software development teams, technological uncertainty was found as a
critical risk factor for project success (Nidumolu 1995). Already in 1981, McFarlan
described the organization’s experience with technology (hardware, operating
systems, databases, application languages) as a key source of uncertainty (McFarlan
1981). Today, technologies develop at ever fasting rates and developers have to learn
and adapt to more and more new technologies to keep pace with their competitors.



58 3 Theoretical and Conceptual Foundations

In addition, previous studies empirically confirmed that technological uncertainty
is inherent in the work of software development teams (c.f. Kude et al. 2014; Lee
and Xia 2005; Nidumolu 1995) and a central risk factor for software development
projects.

Many agile software development consultants claim that agile teams are better
equipped to cope with uncertainty compared to non-agile teams (Beck 2000;
Schwaber and Beedle 2002). Based on this perspective, this study included project
uncertainty into its research focus. While various scholars had already studied
the effect of agile software development on team performance in the face of
requirements uncertainty (see Lee and Xia 2010), this study focuses on tech-
nological uncertainty which was found as another central uncertainty dimension
for software development projects (Nidumolu 1995). Technological uncertainty
refers to uncertainty concerning work practices and procedures needed to convert
requirements into a software system. It requires software development teams to find
new ways, build up new knowledge, and develop new work procedures to solve a
task rather than using preexisting work patterns.

During the last years, software development teams increasingly reuse soft-
ware functionality from existing software packages to improve their development
efficiency. Examples include open source software libraries, underlying software
platforms, or databases. Despite these positive effects of software reuse, it can
lead to external dependencies and unpredictable side-effects for the software
development process, for instance, software package updates can lead to a change of
the interfaces of these packages. Hence, teams have to react to these changes. Thus,
reuse can be a source of technological uncertainty for a software development team.
Another source of technological uncertainty can be changing software development
tools. For instance, test frameworks, development environments, or programming
languages might change during a development project.

When facing technological uncertainty, preexisting work procedures or available
knowledge may not be of help for a software development team. Backup provided
between team members may provide a helpful mechanism to cope with uncertainty
(Marks et al. 2002) as previous research has shown that backup behavior is
particularly important for volatile work environments (Porter et al. 2003). In such
situations, individual team members most likely face workloads surpassing their
capacity. Other team members need to take over to avoid negative impact on the
team performance. To compensate, team members shift workloads within the team
to adapt to novel situations. However, only when underutilized team members
assist their overloaded colleagues, the team can adjust and perform at an otherwise
unachievable level. For routine tasks, however, backup can even be detrimental for
the performance as misplaced backup behavior might lead to redundant rather than
complementary teamwork. In conclusion, the following proposition is formulated:

Proposition 3: In case of high technological uncertainty, the more backup a team’s
members provide to each other, the better is the team performance.



3.3 Research Model 59

3.3.4 Effects on Team Affection

The level of confidence of a team has been theorized (Bandura 1977) and empir-
ically confirmed as a strong determinant of high performing teams (Gully et al.
2002). As discussed in Sect. 3.1.3, scholars distinguish between a team’s general
belief in its success (team potency) and a task specific belief, e.g. that the team is
good in developing software (team efficacy). Based on many years of experience of
various experts in the research context, this study focuses on team potency, i.e. a
team’s common belief that it can be successful in general (Gully et al. 2002).

There are several teamwork factors which increase a team’s confidence level
(see Fig. 3.4 on page 45). These include past performance accomplishments, various
experiences, verbal persuasion, and emotional arousal (Bandura 1977). For software
development teams, Akgün et al. (2007) found that the level of trust and empower-
ment as well as a team’s experience determine the collective belief that the team can
be successful (team potency). This study takes a different perspective and posits the
use of agile development practices to trigger the aforementioned determinants of
team confidence. Therefore, teams using agile development practices are expected
to have a higher level of confidence than non-agile teams. The following paragraphs
elaborate on that idea.

When programming with a partner, developers are more likely to experience
vicarious moments compared to working alone. They directly experience that a
similar working behavior can lead to success. Moreover, the close collaboration
over a longer period of time may cause emotional arousal when both developers
go through challenging and awarding phases during the development process.
Finally, both developers constantly provide feedback to each other. When facing
problems, both developers might push each other towards accomplishing their task.
After successfully finishing their development task, the two developers may be
jointly excited over performance accomplishment. Teams with a high level of pair
programming frequently change their programming partners. The effect is hence
not limited to dyads of developers, but emerges to the team level. Thus, pair
programmers may be more prone to believe in the strengths of their team if they
have opportunities to learn about the skills and experiences of their team members
and share positive interactions (Chen et al. 2002). Not only pair programming,
but also code review sessions may create these collaborative opportunities for
team members. For instance, when providing or receiving feedback from team
members, developers learn about the competencies of others and engage in positive
communication (Prussia and Kinicki 1996).

When writing automated software tests to ensure the successful integration
of code fragments from different developers, individual team members acquire
knowledge about the specifics of the code developed by others. This may strengthen
the collective believe in the team’s skill set. As the entire team is noticed in case
of test case passing or failure the team may gradually develop a higher level of
confidence in case of continuous positive feedback. At the same time, developers
are aware of their colleagues’ success in accomplishing their tasks. While these



60 3 Theoretical and Conceptual Foundations

vicarious experiences and interaction can be particularly effective in fostering team
potency, they can also be difficult to achieve in organizational contexts due to time
pressure. In the context of software development teams, institutionalizing personal
and impersonal quality assurance development practices through using the three
agile development practices may ensure enough time for team members to produce
high-quality work and subsequently facilitating confidence at, both, the individual
and the team level.

Furthermore, previous literature found an important antecedent of a team’s
confidence in group norms (Lee et al. 2002). They lead to a higher level of
confidence because norms imply possibilities for individuals to exert influence on
the group and increase confidence in fellow team members to orient their behavior
towards accepted standards. In the case of software development, team norms often
refer to coding and quality standards. Agile software development practices aim to
develop and enforce such standards (Maruping et al. 2009b). For instance, software
developer working with a programming partner have to agree on common coding
conventions subsequently enforced in pairing situations. Team members’ belief in
the entire team’s adherence to these standards may increase their confidence to
successfully accomplish its software development tasks.

Overall, the three agile development practices trigger different influencing team
factors proposed to increase a team’s level of confidence. While each development
practice may influence the overall team level of confidence via different mecha-
nisms, the global effect is expected to be the same, an increased confidence level of
the entire team. Hence, the following proposition it put forward:

Proposition 4: The more intensively a team uses agile practices, the more confident is the
team.

In team effectiveness research, much effort has been dedicated to study the
impact of a team’s confidence on its effectiveness (Guzzo et al. 1993; Jung and Sosik
2003). Team potency was theorized to have a positive impact on team performance
outcomes through its effect on the team members take, the level of effort, as well
as resilience of team members upon unsatisfactory task performance. There is a
large body of empirical research supporting the positive relationship between team
potency and different forms of team performance outcomes (see e.g. the meta
analysis by Guzzo et al. 1993). Akgün et al. (2005) found a positive relationship
between the level of confidence of a software development team and decreased
development costs, increased speed-to-market, as well as increased market success.

In line with this literature stream, the collective belief of a team to be effective is
proposed to positively influence the performance of a software development team.
Previous literature on team potency suggests a persistence of teams with a high level
of confidence in coordinated task-related efforts, even when faced with setbacks



3.3 Research Model 61

and challenges (Bandura 1986). Also, teams with high confidence were found to
accept ambitious goals more readily (Whitney 1994). Thus, high-potency software
development teams may be more willing to accept and more persistent to reach
the goal of delivering high-quality software in a short period of time. Moreover,
teams with a high level of confidence are more likely to compare themselves and
compete with other teams (Little and Madigan 1997). This may be an incentive for
delivering quickly. Hence, team outcomes can be assumed to be more desirable for
managers and customers. In addition, software projects are often delivered close to
or even after deadlines. Previous studies found team confidence to be particularly
beneficial when approaching deadlines, as high-confidence teams cope better with
entailing pressure (Little and Madigan 1997). These arguments lead to the following
proposition:

Proposition 5: The more confident a team, the better is the performance.

3.3.5 Integrated Research Model

All research propositions are summarized in Table 3.2 and illustrated as an integrated
research model in Fig. 3.8. In addition, the study controls for two context factors expected
to account for variation in the performance of studied software development teams. As
suggested in previous research, the diversity of programming experience is an important
predictor of team performance (Banker et al. 1998). Moreover, team size is a typical control
variable in team studies as an increasing team size has been argued to create coordination
problems, affecting team performance (Table 3.3).

Table 3.2 Research propositions

No. Proposition

P1 The more intensively a team uses agile practices, the more shared are the mental
models of the team members.

P2a The more intensively a team uses agile practices, the more intensive is the provided
backup within the team.

P2b The more shared the mental models of the team members, the more intensive is the
provided backup within the team.

P3 In case of high technological uncertainty, the more backup a team’s members
provide to each other, the better is the team performance.

P4 The more intensively a team uses agile practices, the more confident is the team.

P5 The more confident a team, the better is the team performance.



62 3 Theoretical and Conceptual Foundations

Te
am

 A
ff

ec
tio

n

Te
am

 B
eh

av
io

r

Te
am

 C
og

ni
tio

n

Te
am

 
Pe

rfo
rm

an
ce

P3
(+

)
P2

a(
+)

P2
b(

+)

Te
am

 
Po

te
nc

y

Sh
ar

ed
 

M
en

ta
l 

M
od

el
s

Ba
ck

up
 

Be
ha

vi
or

Ag
ile

 
Pr

ac
tic

es
U

se

Te
ch

n.
 U

nc
er

ta
in

ty
x

Ba
ck

up
 B

eh
av

io
r

C
on

tro
ls

Te
am

 S
iz

e
Ex

pe
rie

nc
e 

D
iv

er
si

ty

F
ig

.3
.8

R
es

ea
rc

h
m

od
el



3.3 Research Model 63

Table 3.3 Overview of the constructs in the research model

Construct Definition Source

Agile
Practices
Use

Use of Pair Programming (PP), Code Review
(CR), and Automated Testing (AT)
PP: Pair programming is an agile software
development technique in which two
programmers work together at one
workstation. The driver writes code while the
navigator reviews each line of code as it is
typed in. The two programmers frequently
switch roles.
CR: Code review is a quality assurance
practice in which new or modified code is
reviewed by at least one colleague.
AT: Test automation is the automated
execution of test cases to compare the actual
and predicted functional outcomes of a piece
of software or parts of it.

Based on
Beck (2000); Maruping
et al. (2009a)

Shared
Mental
Models

Team members’ shared, organized
understanding and mental representation of
knowledge about key elements of the team’s
relevant environment and tasks. Technically,
the degree of similarity among the mental
models of members.

Klimoski and
Mohammed (1994);
Mohammed and
Dumville (2001)

Backup
Behavior

Discretionary provision of resources and
task-related effort to other team members in
order to help obtain the goals as defined by his
or her role when it is apparent that the team
member is failing to reach his or her goals.

McIntyre and Salas
(1995); Porter et al.
(2003)

Team
Potency

Collective belief of the team that it can be
effective.

Akgün et al. (2007);
Guzzo et al. (1993)

Team
Performance

Stakeholders’ perception of the overall success
of a software development team.

Self-developed

Team Size Number of team members in a software
development team.

–

Experience Diversity of experience in professional
software development within the software
development team.

–

Technological
Uncertainty

Extent to which well-established work
practices and procedures cannot be used to
convert requirements into a software system.

Based on
Nidumolu (1995)



Chapter 4
Research Methodology

The previous chapter introduced the theoretical research model of this study to
be tested with data from professional software development teams. This chapter
explains the data collection process and methodology for analysis of the study
results in the following chapters. Section 4.1 introduces the given research context;
Sect. 4.2 describes the survey study design with three role-specific questionnaires
for developers and the teams’ Scrum Masters, and the respective Product Owners.
An overview of the measurement instrument for all latent variables in the research
model is given in Sect. 4.3. Finally, two statistical techniques - both used to analyze
the collected data and to test the research hypotheses - are introduced and briefly
discussed in Sect. 4.4.

4.1 Research Context

The study was conducted at SAP SE, a world leader in enterprise software and
software related services with more than 65,000 employees worldwide.1 The
company was founded in 1972 and is today a global organization with locations
in more than 130 countries (Leimbach 2008). SAP applications and services enable
more than 250,000 customers to efficiently operate and improve their businesses.
The company has a global development organization of more than 15,000 software
developers. The majority works in development locations in Germany, the US,
Canada, Bulgaria, India, and China.

1http://global.sap.com/corporate-en/our-company/history/index.epx.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_4

65

http://global.sap.com/corporate-en/our-company/history/index.epx


66 4 Research Methodology

Over the last decade, SAP has fundamentally changed its software development
methodology. When agile development methods obtained broader public interest
around 2004, the first SAP development teams piloted Scrum and started to
experiment with Extreme Programming2 (Schnitter and Mackert 2011). During the
following years, around 120 projects - more than 10,000 software developers -
shifted to an agile development paradigm (Mackert et al. 2010). The transition of the
entire development organization was completed in 2012. In the new organizational
setup, Scrum teams are the central unit of business as opposed to the former
structure organized around development projects with individual developers and
project managers.

4.1.1 Organizational Context

Large-Scale Scrum

Scrum was originally introduced as a development method for small development
projects (Schwaber and Beedle 2002). Most of SAP’s development projects,
however, have several Scrum teams; some projects even comprise of up to several
hundred software developers. Therefore, SAP has implemented a popular approach
by Larman and Vodde (2009) to scale Scrum for large-scale projects.

SAP’s standard Scrum teams have a dedicated Product Owner (PO) and about
ten developers. In multi-team projects, POs of all project teams meet regularly
in a so-called product team to discuss the project direction (Mackert et al. 2010).
These meetings are headed by an Area Product Owner (APO) defining the strategic
direction of the whole project. APOs interact with the customer and define a product
vision. The product team refines this product vision, defines a project backlog, and
coordinates the assignment of tasks to their development teams.

SAP’s Scrum teams are very heterogeneous in respect to programming languages
(Java, C, and ABAP3) or the software type (database software, on-premises and
cloud-based business applications, development tools, mobile applications, etc.).
This setup provided the required heterogeneity among the study subjects, i.e. the
participating software development teams, even though the study was conducted at
a single company.

Agile Software Engineering Training

Scrum neither helps developers to develop software nor gives it guidance to the team
between the Scrum planning and review meetings. To fill this gap, SAP offered a
specific training program to familiarize developers with agile software development

2Scrum and Extreme Programming were introduced in Sect. 2.2.2.
3ABAP is SAP’s proprietary programming language.



4.1 Research Context 67

practices. The training intended to improve developers’ programming skills and the
teams’ ability to reliably deliver high quality software after each Sprint (Al-Fatish
et al. 2011; Scheerer et al. 2013). The training was established in 2010 as part of
a strategic program focusing on better software quality and more frequent software
releases.

During a week’s class room training, entire development teams were trained
with agile software development practices through hands-on exercises. Afterwards,
experts coached the teams in their usual work environment for three weeks. The
training also covered development practices relevant for this study: automated
testing, code review, and pair programming (see Sect. 2.2.2). In addition, it offered
an update to the agile Scrum framework. The content of the training is not specific
to SAP, but taken from standard agile software development books (see Sect. 2.2).

After 2011, the training program was scaled globally (Heymann 2013; Schmidt
et al. 2014). Up until 2014, more than 5,000 SAP developers participated in the
training and more than 180 development teams were trained in Germany only.
Despite the tremendous investment, the company did not pressure developers to
use the taught development practices after the training program. Instead, the teams
decided themselves about the appropriate adoption intensity.

4.1.2 Participatory Research Setup

The author of this study worked as a research assistant at SAP between 2011 and
2014. During that time, he attended various trainings for software developers and
contributed to ‘continuous improvement workshops’ with participants from differ-
ent development teams and areas. In addition, he conducted specific exploratory
studies at the company. Among them were multi-day observations of four software
development teams, interviews with more than 30 developers from different teams,
informal talks with coaches for agile software engineering, and interviews with
several project managers. Results of these studies are related to this study and
have already been documented elsewhere (see e.g. Kude et al. 2014; Scheerer et al.
2013; Schmidt et al. 2013, 2012; Spohrer et al. 2013). This participatory research
setup provided valuable insights into SAP’s development organization, the software
development processes, and the company-specific terminology to conduct this study.

The embedded research work allowed to pre-test a preliminary version of the
presented research model at SAP in summer 2012 with more than 900 invited
developers. The pre-test results revealed the adoption intensity of the taught
agile development practices after the training as well as the perceived impact on
developers’ work (Schmidt et al. 2014). In particular, the study asked developers’
belief to deliver better software, to have a higher frequency of delivering new
software features, and their perception about improved or worsened teamwork
aspects after participating in the training program.

The pre-test results provided valuable insights in the studied population and
helped to improve the questionnaires for the main study. First of all, the findings
motivated the re-evaluation and extension of the original research model. Second,



68 4 Research Methodology

the low response rate in the pre-test led to a fundamental change in the research
design. While the pre-test was conducted as an online survey, the main study
collected data with a paper-based questionnaire filled in by the developers during
a 30 min meeting. The change bolstered the response rate up to over 70 % per team
compared to about 20 % in the pre-test (see Sect. 5.1). Finally, the pre-test findings
led to significant improvements in the measurement instrument of the main study.
Details are described in the following section.

4.2 Study Design

The following paragraphs explain the selection of a survey-based study design,
describe the three role-specific questionnaires for developers, Scrum Masters, and
Area Product Owners, and finally outline the data collection procedure.

4.2.1 Survey Field Study

Social scientists can select from a broad spectrum of research strategies such as
experimental, cross-sectional, longitudinal or case study research designs (Bryman
and Bell 2011). The research design considerably influences the external4 and
internal validity5 of the research results, i.e. it influences (1) the generalizability of
the results, (2) the control of contextual variables and thus measurement precision,
and (3) the realism of the research context.

This study investigates the results of a paradigm shift in software development.
During the last 10 years, many companies have changed their development pro-
cesses and shifted towards an agile software development approach (see Sect. 2.2).
Consequently, realism and generalizability of the research results were considered
as important factors for the study design decision.

Previous studies mostly focused on in-depths analyses from a limited number
of professional software development teams or derived their findings from student
experiments (see Sect. 2.3). This research project, however, had the unique opportu-
nity to collect data from a large number of professional software development teams.
Leveraging this opportunity, the author conducted a cross-sectional field study with
professional software development teams to test the proposed research model.

4External validity refers to the generalizability of the research results across times, settings and
individuals (Scandura and Williams 2000).
5Internal validity refers to the extent to which a concept, conclusion or measurement is well-
founded and corresponds accurately to the real world (Scandura and Williams 2000).



4.2 Study Design 69

Cross-sectional field studies investigate research questions by collecting data
from representative subjects in natural settings at a single point of time. The study
participants are selected to randomly differ in those variables relevant to the research
question. Statistical analysis methods help determine the differences between these
subjects and extract underlying patterns between the study participants. The cross-
sectional research design does neither controls for independent or contingent
variables nor does it involve manipulations of treatments. Instead, it maximizes the
realism of the context while mindfully accepting potential drawbacks from lower
precision of measurement and control of contextual variables.

The selected research design as well as the applied data analysis techniques
strongly influence the quality of cross-sectional field studies. Hence, Edmondson
and McManus (2007) emphasize a necessary methodological fit for cross-sectional
field studies in management research. In this thesis, the author discusses various
research contexts proposing specific research methods. It draws thereby on a large
body of knowledge from different research streams and develops clear research
hypotheses that can be tested. Furthermore, the study examines the relationship of
clearly defined constructs for which quantitative data can be measured. As such,
the overall purpose of the study is to extend and test an existing theory in a new
research setting. This study follows the advise of Edmondson and McManus (2007)
to structurally “obtain data from field sides that measure the extent or amount
of salient constructs” and to “apply inferential statistical methods for testing the
proposed hypotheses and to ensure methodological fit”.

At the core of this dissertation is a large-scale survey with professional soft-
ware teams from SAP. Survey research primarily uses questionnaires to measure
characteristics, behaviors, affections, or other aspects in cross-section field studies
(Bhattacherjee 2012; Dillman et al. 2009). The following paragraph specifies the
questionnaire that was used for this study.

4.2.2 Questionnaire Design

The survey included three role-specific questionnaires for developers, Scrum Mas-
ters, and Area Product Owners. This design parallelized the data collection process
and simultaneously reduced the cognitive load for the participants. Moreover, the
chosen design implemented a procedural mitigation of common methods bias in the
data (Podsakoff et al. 2003) by collecting crucial variables in the research model
from different sources in the teams.

The paper-based questionnaires comprised of seven pages for the developer, ten
pages for the Scrum Masters, and six pages for the APOs (see Appendices A.5, A.6,
and A.7). The cover page of each questionnaire informed the respondents of the
purpose of the study and the overall study design. The remaining pages contained



70 4 Research Methodology

Table 4.1 Overview of the role-specific questionnaires

Developer
questionnaire

Scrum master
questionnaire

APO
questionnaire

Agile practices use Team context Software quality

Shared mental models Extent of scrum Delivery quality

Backup behavior Development process Task characteristics

Teamwork aspects Teamwork aspects Team performance

Impact of agile practices

the measurement scales for the variables in the research model. Although the
study was conducted in Germany, all questions were asked in English as not all
participants were literate in German. English, however, is the company’s business
language. Table 4.1 and the following list provide an overview of the questionnaires:

• Developer Questionnaire The responding developers indicated in the first part
of their questionnaire the adoption intensity of the studied agile development
practices. In the second part, they rated the similarity of their mental models with
three other colleagues as well as the level of backup amongst each other. Then,
the developers were asked for insights into various teamwork aspects. Finally,
developers rated the perceived impact of agile software engineering on their work
performance. This last section of the questionnaire was not part of the research
study, but of interest to the company only (see Appendix A.5).

• Scrum Master Questionnaire The Scrum Masters were asked to provide
insights into the team setup and its work context, for instance, the team size
or the programming language. Then, the questionnaire covered the adoption
intensity of the Scrum methodology in the team. Further, it asked for various
parameters of the team’s software development process such as release frequency
or customer involvement. Finally, Scrum Masters provided their perspective on
various teamwork aspects (see Appendix A.6).

• Area Product Owner Questionnaire Complementary to the team-internal
perspective given by the developers and the Scrum Masters, the respective APOs
were invited to assess the performance of the participating teams from a team-
external perspective. In the first part of the questionnaire, APOs evaluated the
software quality delivered by the teams. The second part examined the teams’
performance in terms of their ability to reliably deliver new software. The third
section of the questionnaire asked APOs to characterize the tasks their teams
were assigned to. Finally, APOs provide an overall performance score for their
teams (see Appendix A.7).



4.2 Study Design 71

4.2.3 Data Collection Procedure

The data for this study was collected in four SAP locations in Germany between
December 2013 and February 2014. The author approached managers of 120
software development teams for participation in the study. These teams were
randomly selected out of the about 180 teams which had already participated in
the training program at that point in time. All teams developed enterprise software
applications or supporting software technology in SAP’s software stack.

After managerial approval, the author approached the respective Scrum Masters
and asked for their team’s participation in the study, with about 80 teams enrolling in
the study. All members of the volunteering teams were invited to a team meeting to
fill the respective questionnaire. Even if a team had collectively agreed to participate
in the study, each individual team members’ participation was still on a voluntary
basis. This procedure was in agreement with the company’s workers’ council as well
as SAP’s data privacy officer.

The meetings lasted between 30 and 60 minutes and followed a standardized
procedure (see Appendix A.3). After explaining the overall purpose of the study,
the questionnaires were handed out to all team members. On average, it took about
20 min to complete the questionnaires. During the entire meeting, the interviewer
was present in the room to clarify any misunderstandings or upcoming questions.
The APOs were approached separately, only after their teams had participated in
the study. For some teams, the product owner completed the APO questionnaire
instead or in addition to the APOs. All returned questionnaires were independently
and redundantly transcribed by two research assistants for quality assurance.

Different incentives were offered to encourage participation and to express
gratitude for contribution to the study. All teams received a customized team report
that contrasted the team’s answers with the answers of all other participating teams
(see Appendix A.8). Furthermore, each team got a small gift in form of a USB traffic
light (see Appendix A.4). The teams use these devices to display the status of their
automated test suites. Second, all teams participated in a lottery and two teams were
drawn. These winner teams were invited to a go-cart event. Third, all participants
were offered sweets while completing the questionnaires.

This study introduced a new approach to measure shared mental models and team
backup behavior. All developers rated their work relationship with three randomly
selected colleagues. For that purpose, all developers drew a number plate and
positioned it in front of them (see Fig. 4.1). The front side of these number plates
identified each developer with a unique number. The back side told the developers
the numbers of three colleagues in the room for whom they were asked to answer
the respective questions (see Fig. 4.2). A set of different number plates was prepared
for every possible team size and designed for the highest possible coverage of
bidirectional relations in the team.



72 4 Research Methodology

Fig. 4.1 Number plates for developers

4.3 Construct Operationalization

The research model contains various latent variables without the possibility of
direct observation. For instance, the sharedness of team members’ mental models
or the performance of a software development team cannot be directly measured.
Therefore, these latent variables are inferred from a set of observable indicators, the
so-called measurement scale or measurement model (Homburg and Giering 1996),
see Fig. 4.3.

In survey studies, measurement indicators—also referred to as measurement
items—are typically devised through questions in questionnaires (Dillman et al.
2009). The respondents were asked to provide their answers on quantifiable
agreement, frequency, or bipolar scales. Usually, each latent variable is measured
with multiple measurement items for reasons of reliability. The provided answers
are aggregated to a single latent variable score for each sample subject (see
Fig. 4.3). There are two basic approaches to measure latent variables with indicators:
formative or reflective measurement models (Bollen and Lennox 1991; Jarvis et al.
2003).

• Reflective measurement items are caused by the latent variable they measure,
i.e. variation in the construct causes variation in the measurement indicators. The
indicators reflect the latent variable, indicators share a common theme, are highly
correlated, and interchangeable (see Latent Variable A in Fig. 4.3).

• Formative measurement items cause the latent variable. A single indicator
directly influences the latent variable, i.e. variation in a measurement indicator
causes variation in the construct. Hence, formative indicators do not correlate and
dropping a single indicator may change the conceptual domain of the construct
(see Latent Variable B in Fig. 4.3).



4.3 Construct Operationalization 73

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

…
 w

e 
ag

re
e 

ho
w

 w
el

l-c
ra

ft
ed

 c
od

e 
lo

ok
s 

lik
e.

…
 w

e 
ha

ve
 a

 s
im

ila
r 

un
de

rs
ta

nd
in

g 
of

 o
ur

 s
of

tw
ar

e 
ar

ch
it

ec
tu

re
.

...
 w

e 
ag

re
e 

w
ha

t n
ee

ds
 to

 b
e 

do
ne

 b
ef

or
e 

a 
ta

sk
 is

 c
on

si
de

re
d 

'd
on

e'
.

...
 w

e 
ha

ve
 a

 s
im

ila
r 

un
de

rs
ta

nd
in

g 
ab

ou
t t

he
 b

us
in

es
s 

ne
ed

s 
of

 o
ur

 s
of

tw
ar

e'
s 

us
er

s.

...
 w

e 
ha

ve
 a

 s
ha

re
d 

id
ea

ho
w

 o
ur

 s
of

tw
ar

e 
w

ill
 e

vo
lv

e.

…
 w

e 
co

m
pl

et
e

ta
sk

s 
fo

r 
ea

ch
 o

th
er

w
he

ne
ve

r 
ne

ce
ss

ar
y.

…
 w

e 
gi

ve
 e

ac
h 

ot
he

r 
su

gg
es

ti
on

s 
ho

w
 a

 ta
sk

 c
ou

ld
 b

e 
ap

pr
oa

ch
ed

.

...
 w

e 
st

ep
 in

 fo
r 

th
e 

ot
he

r 
pe

rs
on

 if
 h

e/
sh

e 
st

ru
gg

le
s 

to
 fi

ni
sh

 th
e 

cu
rr

en
t w

or
k.

…
 w

e 
as

si
st

 e
ac

h 
ot

he
r 

in
 a

cc
om

pl
is

hi
ng

 o
ur

 ta
sk

s.

C:
__

_

The two of us,

Ba
ck

up
 b

eh
av

io
r

The two of us,

Sh
ar

ed
 m

en
ta

l m
od

el
s

Yo
u 

an
d 

Co
lle

ag
ue

 
A

:_
__

Yo
u 

an
d 

Co
lle

ag
ue

 
B:

__
_

Yo
u 

an
d 

Co
lle

ag
ue

 

O
n 

th
e 

ba
ck

 o
f y

ou
r s

ig
n,

 yo
u

fin
d

nu
m

be
rs

 fo
r t

hr
ee

 co
lle

ag
ue

sA
, B

, C
. 

Pl
ea

se
 in

se
rt

 th
e 

nu
m

be
rs

 fo
r A

,B
, a

nd
 C

 (n
ot

 th
e 

na
m

es
!!

!)
 h

er
e.

Th
en

,p
le

as
e 

in
se

rt
 y

ou
r o

w
n 

nu
m

be
r h

er
e:

_
Pl

ea
se

 r
at

e 
yo

ur
ag

re
em

en
t w

ith
 t

he
fo

llo
w

in
g 

st
at

em
en

ts
 fo

r 
th

e 
   

   
  

re
sp

ec
tiv

e 
pe

rs
on

 a
nd

 y
ou

rs
el

f.

ii ii

ii
i

iv

Yo
i

ii
i

iv

ii

_
Yo

i
_

Yo
i

F
ig

.4
.2

Q
ue

st
io

nn
ai

re
de

si
gn

fo
r

sh
ar

ed
m

en
ta

lm
od

el
s

an
d

ba
ck

up
be

ha
vi

or



74 4 Research Methodology

Empirical Plane

Itema1 Itema2 Itema3

Latent Variable B

Itemb1 Itemb2 Itemb3

Construct A

Theoretical Plane

Construct B

Formative measurement modelReflective measurement model

Latent Variable A
Hypotheses

Proposition

Fig. 4.3 Theoretical and empirical planes in research (based on Bhattacherjee 2012)

The following paragraphs specify the used measurement indicators for all
latent variables in the research model. The study reused measurement indicators
from previous studies whenever possible. For some latent variables, however, new
indicators were developed or previous measurement scales were adapted to the
present research context.

4.3.1 Adoption of Agile Practices

Agile practices use was measured reflectively. The questionnaire quantified devel-
opers’ intensity of using the studied agile development practices. In line with
previous studies (e.g. Maruping et al. 2009a,b; So 2010; Tripp 2012), the developers
were asked to indicate the amount of coding time spent programming with a partner
(pair programming), the amount of code reviewed by at least one other team member
(code review), and the amount of newly developed code for which they wrote
automated test cases (usage of automated tests). The developers had to rate their
personal development style on a 10-point scale ranging from “0–10 %” to “90–
100 %”. The respective questions are listed in Table 4.2.

4.3.2 Teamwork and Contextual Variables

This study focuses on different teamwork aspects. The following paragraphs
describe the approaches used to measure the sharedness of team members’ mental
models, the level of backup behavior, and level of confidence of the studied teams.



4.3 Construct Operationalization 75

Table 4.2 Questions to assess agile practices use

ID Indicator

PP1 How much of your code do you develop with a programming partner?

PP3 With how many of your team members do you pair program regularly?

PP2 How much of your coding time do you work with a programming partner?

TEST1 For how much of your new code do you write automated tests before writing
the productive code?

TEST2 For how much of your new code do you write automated tests at all?

TEST3 For how many of your new tests do you use test isolation
(test double, mocking, etc.)?

TEST4 How much of your new functionality is regularly tested with automated
integration tests?

CR1 How much of your new code is reviewed by at least one colleague?

CR2 How much of your modified code is reviewed by at least one colleague?

CR3 How many of your team members regularly review code you have
developed?

10-point scale ranging from “0–10 %” to “90–100 %” (coded 0.0–0.9)

Shared Mental Models Measuring shared mental models is challenging in team
effectiveness research (DeChurch and Mesmer-Magnus 2010; Wildman et al. 2013)
and existing literature offers no consistent measurement approach. Some studies
defined the construct in terms of accuracy of team member’s mental models,
others in terms of the level of sharedness. The diversity of elicitation techniques
include paired similarity ratings, concept maps, card sorting task or rating scales
(Mohammed et al. 2010; Uitdewilligen et al. 2010).

Moreover, mental models are context sensitive and hardly comparable for teams
working in different environments. Consequently, existing measurement instru-
ments differ considerably. All approaches require not only a profound understanding
of teams’ specific work contexts but are also very time-consuming. Therefore,
primarily qualitative research designs use them to measure shared mental models
of a limited number of teams. This study, however, pursues a quantitative study
design with a large sample size. Therefore, existing approaches were not applicable
and a new measurement instrument had to be developed.

There were three fundamental challenges: (1) diverse background of the studied
teams in software products developed, used technology, and work contexts, (2) a
large number of professional software development teams, and (3) potentially high
costs due to participants sacrificing work time. Therefore, a context-insensitive and
time-efficient measurement was needed.

This study measures the sharedness of team members’ mental models with
a reflective measurement model. In line with previous literature, “sharing” is
interpreted in the sense of “having in common” rather than “dividing up” (Cannon-
Bowers et al. 1993). Hence, developers rate the similarity of their understanding of
four specific knowledge domains with three other colleagues. The domains were
(a) knowledge about the application domain of the software, (b) the underlying



76 4 Research Methodology

Table 4.3 Questions to assess shared mental models and backup behavior

ID Indicator

SMM1 We agree how well-crafted code looks like

SMM2 We have a similar understanding of our software architecture

SMM3 We agree what needs to be done before a task is considered done

SMM4 We have a similar understanding about business needs of our software’s users

SMM5 We have a shared idea how our software will evolve

BB1 We complete tasks for each other whenever necessary

BB2 We give each other suggestions how a task could be approached

BB3 We step in for the other person if he/she struggles to finish the current work

BB4 We assist each other in accomplishing our tasks

7-point Likert scale from “strongly disagree” to “strongly agree” (coded 1–7)

technology, (c) the development procedure, and (d) the overall project vision, as
specified by He et al. (2007). The questionnaire items were developed accordingly.
For instance, each participant evaluated the following statement with respect to three
colleagues on a 7-point Likert agreement scale: “we have a similar understanding
of our software architecture” (see Table 4.3). Subsequently, average values of the
provided answers were calculated for each developer and then aggregated to a single
score for each team.

Backup Behavior To the author’s best knowledge, no previous study has measured
backup behavior of software development teams using a questionnaire. Conse-
quently, a new measurement instrument had to be developed. The used questionnaire
items address central aspects of the construct. These are providing feedback, giving
work suggestions, and finishing other persons’ work. The same measurement
procedure, as described for shared mental models, was applied. Developers were
asked to rate the amount of provided or received feedback, support, and backup
to or from three randomly selected members of their team. For that purpose, three
statements are provided in the questionnaire for which the developers rated their
agreement on a 7-point Likert scale ranging form “strongly disagree” to “strongly
agree”. The team values are then calculated by averaging these answers. The
measurement model is reflective.

Team Potency Measurement instruments for operationalizing team confidence
have been widely discussed and applied in team effectiveness research (Gully et al.
2002; Jung and Sosik 2003). This study adopts the reflective 7-item measurement
model described by Guzzo et al. (1993). The items assess the team’s belief to deliver
high quality software and to solve problems upon hard work. The team potency
items have the team as reference. Thus, aggregation is not necessary for further
analysis on the team level.

Technological Uncertainty This study includes technological uncertainty as a
moderating variable in the research model. The measurement instrument was
borrowed from Nidumolu (1995), see Table 4.4 and reversed for the statistical



4.3 Construct Operationalization 77

Table 4.4 Questions to assess team potency and technological uncertainty

ID Indicator

POT1 Our team has confidence in itself

POT2 Our team believes it can become unusually good by producing high-quality work

POT3 Our team expects to be known as a high-performing team

POT4 Our team feels it can solve any problem it encounters

POT5 Our team believes it can be very productive

POT6 Our team can get a lot done when it works hard

POT7 No task is too tough for our team

TUN1R Concerning the last six months, the team faced tasks for which there was a clearly
known way how to solve them

TUN2R Concerning the last six months, the team faced tasks for which the team’s
preexisting knowledge was of great help to solve them

TUN3R Concerning the last six months, the team faced tasks for which the team’s
preexisting work procedures and practices could be relied upon to solve them

7-point Likert scale from “strongly disagree” to “strongly agree” (coded 1–7)
R - reversed coding

analysis. It comprises of three measurement items adopted with minor adaptations to
ensure fit for the given research context. One item of the original instrument had to
be deleted based on feedback in the pre-test. As the three technological uncertainty
dimensions are disjunct, the measurement model was formative.

4.3.3 Team Performance

As discussed in Sect. 3.2, team performance is a multi-faceted construct and
researchers neither agree on conceptualization nor measurement. Nevertheless, two
popular approaches have been used repeatedly which were originally introduced by
Henderson and Lee (1992) and Hoegl and Gemuenden (2001). Moreover, various
instruments exist for non-software development teams. For several reasons, these
measurement instruments could not be adopted for this study. First, the non-software
specific team performance measurement models were too generic to capture the
marginal performance differences of the studied teams. Second, the software
development specific measurement instruments were used for software development
teams in traditional project contexts with detailed upfront planning. Hence, the
teams were evaluated relatively to this plan. SAP teams, however, follow an agile
development approach. Therefore, they neither have a fixed project duration nor
do they define budgets or feature scope upfront. Consequently, these measurement
scales were not applicable in the given research context either. Previous studies
used objective data to capture the performance of the studied software development
teams. For instance, Maruping et al. (2009a) used objective, quantitative indicators
for bug severity and software complexity as objective measures of project quality.



78 4 Research Methodology

Unfortunately, the research context of this project did not provide access to these
or similar performance indicators. Therefore, a new measurement scale had to be
developed to assess the performance of the studied teams.

Team Performance In previous studies, stakeholders provide reliable performance
ratings in the absence of objective performance indicators (Henderson and Lee
1992; Hoegl and Gemuenden 2001). For the given research context, APOs were
the central stakeholders of the studied teams (see Sect. 4.1.1). They were directly
affected by the output of the teams, in charge of several teams and can therefore
compare the performance of every single team with its peer teams. Hence, APOs
were asked to assess the performance of the studied teams.

The author conducted an exploratory interview study to define the relevant
performance dimensions in the specific research context. In a first step, existing
ISD and software development team studies were reviewed to compare existing
team performance concepts. Thereafter, 15 APOs were interviewed for about 1 h
between May and June 2013 to elicit the essential team performance dimensions.
These APOs were in charge of more than 50 development teams working in
diverse software development projects. All interviews were recorded, transcribed,
and finally analyzed with the NVivo Software Package.

To analyze the data, grounded theory was used (Strauss 1987), i.e. a qualitative
research approach that enables researchers to create structure about what they see
solely from the data at hand, and not from prior assumptions or theories. This
approach is particularly useful when uncertainty about data to be collected and its
importance is high. The process includes three phases. First, the data is scanned for
artifacts that are tagged and labeled (open coding). Second, the detected labels are
related to one another (axial coding). Finally, the labels are organized into a coherent
story which can either build the basis for a theory or a categorization of the labels.
The analysis of the interview data revealed three major performance dimensions
(see Fig. 4.4):

So�ware 
Quality

Innova�on 
Quality

Delivery 
Quality

• Internal software quality
• External software quality

ISO 9126

Progress
Predictability
Transparency

• Foresight
• Proactivity

Process Perspective

Outcome Perspective

•
•

•

Fig. 4.4 Extracted team performance dimensions



4.3 Construct Operationalization 79

1. Software Quality. The quality of the delivered software was mentioned by
all APOs as a distinguishing performance indicator. Following the ISO norm
(ISO/IEC 2001), there are internal and external software quality aspects. Internal
software quality determines the ability of the team to move forward on a project.
It includes aspects such as software maintainability, flexibility, reusability,
readability, testability, or structuredness of the software code. External software
quality aspects are functional correctness, software usability, reliability, accu-
racy, and robustness. External quality determines the fulfillment of stakeholder
requirements, i.e. it covers software quality aspects that are relevant to the
software user while internal quality is relevant for the software developer who
extends, modifies, or maintains the software in the future (Kan 2003).

2. Delivery Quality. The interviewed APOs evaluated their teams in terms of how
they delivered new software. In particular, differences in teams’ progress were
described, i.e. the velocity of the teams to deliver new software features. As
one interviewee concluded “I know how much the team delivers at the end
of the Sprint [...] that is my performance assessment”. Furthermore, the teams
differed in their predictability, i.e. how reliably they delivered the software
in comparison to what they had forecasted before the Sprint (“I can be sure
that high performance teams deliver what they promise”). Finally, the APOs
assess how well the teams report occurring issues or challenging, i.e. their level
of transparency. The interviewees explained that some teams directly report
problems while others rather conceal them. One interviewee stated “I certainly
expect that teams make it transparent if problems come up”.

3. Innovation Quality. Finally, APOs appreciate novel ideas by their teams on
what to develop (“innovation team”) instead of just accomplishing their tasks
(“execution team”). As one APO concluded “a high performance team thinks
outside the box [...] is innovative, works independently, and is proactive”.

Based on these results, a questionnaire was developed with measurement scales
for these performance dimensions (see Table 4.5 on page 80). All performance
dimensions were conceptualized with reflective measurement models. First, four
items for the overall performance of a team were defined (PERF1-PERF4). Second,
several items were specified to measure the quality of the software (QEXT1-
QEXT7, QINT1-QINT5) and finally items for the progress (PROG1-PROG4), the
predictability (PRED1-PRED4), and the transparency (TRANS1-TRANS3) of the
teams. Even though the innovativeness of the team was found as an important team
outcome, it was not hypothesized to be directly influenced by the use of the studied
agile practices. Hence, the study limited the performance perspective to the software
and delivery quality performance dimensions.

The quality items were rated on a 10-point frequency scale while the remaining
items used a 7-point Likert agreement scale. Table 4.5 summarizes the measurement
scales the APOs used to assess the performance of the participating teams. The full
instrument can be found in the Appendix A.7.



80 4 Research Methodology

Table 4.5 Questions to assess team performance

ID Indicator

PERF1 When asked for a high performance team, other SAP teams would reference this
team

PERF2 I consider this team a high performance team

PERF3 Reports on the performance of this team are always favorable

PERF4 Peer teams consider this team a great success

PROG1 This team has a high velocity of delivering new features

PROG2 The progress of the team is always satisfying

PROG3 The team continuously makes excellent progress with new features

PROG4 This team is a high performance team regarding the speed of delivering features

PRED1 I trust the team to deliver at the end of a development cycle what it forecasts
before the cycle

PRED2 The team always meets the objectives that are set at the beginning of a
development cycle

PRED3 When the team promises to do something, I am sure it does so

PRED4 I am confident that the team delivers forecasted features

TRANS1 The team communicates issues to affected stakeholders whenever necessary

TRANS2 Product stakeholders (PO&APO) are always well-informed about problems

TRANS3 Whenever problems occur, the team informs affected stakeholders

7-point Likert scale from “strongly disagree” to “strongly agree” (coded 1–7)

QEXT1 When the team presents new features, the team’s software does what it is
supposed to do

QEXT2 The team’s key stakeholder (in a Scrum context: product owner) is satisfied with
the software quality the team delivers

QEXT3 When the team presents new features, they could fearlessly be shipped to the
customer

QEXT4 The capabilities of the software meet the needs of the team’s customers

QEXT5 Overall, the team’s software contributes to SAP’s reputation as a high quality
software company

QEXT6 The team delivers software that fully covers the requested functionality

QEXT7 The software the team delivers meets technical requirements

QINT1 The team complies with done criteria

QINT2 The software code is reusable

QINT3 The software code is maintainable

QINT4 The software code is easily testable

QINT5 The software code is clean

10-point scale from “Never” to “Always” (coded 1–10)

4.3.4 Instrument Validation

The final measurement instrument comprises of measurement scales for all variables
in the research model. Three pre-tests were conducted to assess its usability in terms
of comprehension, the layout of the questionnaires, as well as the data collection



4.4 Analysis Methods 81

procedure (Fowler 2002, p. 112). Various versions of the instrument were reviewed
by several experts at SAP to check its face and content validity (MacKenzie
et al. 2011). In particular, feedback from three APOs, two coaches of the agile
software engineering training, and various developers from different SAP software
development teams helped to improve the quality. Some questions appeared to be
redundant, i.e. too similar in the wording, and were therefore removed from the
measurement instrument. Other items, that were taken from previous studies, were
also removed as they were too difficult to understand by the German non-native
English speakers. In addition, faculty and postgraduate students at the University
of Mannheim checked the questionnaires for understandability and respondent-
friendliness. Both are generally considered as critical factors to achieve a high
response rate (Dillman et al. 2009).

The final questionnaires were tested with four graduate student teams and
two professional software development teams at SAP. These university teams,
six students each, had participated in the author’s class on software engineering
methods. For a period of three months, they had been working as a small software
development team when the validation test of the measurement instrument took
place. The main purpose of the class was to learn and apply the agile software
development methodology based on a hands-on software development project.
Therefore, all students were able to comprehend the questionnaire despite its
context-specific language.

Finally, the author validated the newly developed measurement scales using a
card-sorting exercise with more than 150 undergraduate and graduate students. The
answers were used to check content and discriminant validity of the measurement
scales based on the results of an exploratory factor analysis (MacKenzie et al. 2011;
Moore and Benbasat 1991).

4.4 Analysis Methods

There are several statistical techniques to analyze survey data. This study uses
multivariate regression analysis (Wooldridge 2013) to test the proposed research
hypotheses and component-based structural equation modeling (Chan 1998) to
develop a performance prediction model for software development teams. Both
techniques are introduced in this part. Furthermore, advantages and disadvantages
of both analysis techniques are briefly discussed.

4.4.1 Regression Analysis

Regression analysis is the most widely used analysis technique for empirical anal-
ysis in economics and social sciences (Wooldridge 2013). In its basic form, simple
regression can be used to study the relationship between two scalar variables. The



82 4 Research Methodology

most common form is linear regression based on a linear relationship between the
explanatory independent variable x and the dependent variable y. The relationship
is modeled as y D ˇ0 C ˇ1x C u with ˇi as the model parameters and u as the
error term in the relationship. Multiple regression models accommodate multiple
explanatory variables and coefficients ˇixi that may help to explain higher variance
in the dependent variable to build better models predicting this variable.

The ordinary-least square (OLS) is the most common approach to estimate the
regression model parameters based on a population sample. The approach mini-
mizes the squares of the residuals, the differences between the actually observed
and the fitted, predicted model value. The OLS approach takes several assumptions:
(1) a linear relationship between the dependent and the independent variable, (2)
independence of the error terms, i.e. the expectation value of the error terms is zero,
(3) constant variance of the error terms (homoscedasticity), and (4) normality of the
error term distribution (Wooldridge 2013).

Dependent and independent variables are random variables that are estimated
based on data from a population sample. The overall object of the linear regression
method is to reject the path-specific null hypotheses of no-effect and to explain
variance (R2) of the dependent variable (Gefen et al. 2000). Hence, the regression
results include confidence intervals for the estimated model parameters. The
linear regression approach can be used for exploratory and confirmatory research
purposes.

The sample was collected from several sources in the team (developers, Scrum
Masters, and Product Owners). Consequently, non-responsiveness of individual
persons lead to structural missing values for several teams (see Fig. 5.1). The OLS
analysis approach allows to test the postulated hypotheses independently. Thus, the
maximal number of data points could be used for testing the research hypotheses
as partially filled out questionnaires could still be used for the analysis. While the
structural equation modeling approach incorporates other advantages it lacks the
ability to consider data sets with missing data.

4.4.2 Structural Equation Modeling

Structural equation modeling (SEM) comprises of a group of multivariate statistical
analyses primarily used to estimate and test relationships between latent variables
in theoretical models (Gefen et al. 2000). Furthermore, they are deployed in
exploratory research designs, prediction models, or in theory building. SEM analysis
combines ideas from econometric modeling for prediction models and psychometric
modeling for measuring latent variables. They are widely used in the IS research
(Ringle et al. 2012) and adjacent social sciences (Reinartz et al. 2009; Shah and
Goldstein 2006; Williams et al. 2004). The popularity is based on a number of
advantages: First, SEM offers a great flexibility to estimate latent variables with
observable indicators “obtained through self-reports, interviews, observations or
other empirical means” (Petter et al. 2007, p. 625). Second, SEM techniques can



4.4 Analysis Methods 83

Structural model 

ξ η

η2

x11

x12

x13

y11

y12

y13

y21

y22

y23

Fo
rm

at
iv

e
Re

fle
ct

iv
e

Re
fle

ct
iv

e

δ1

δ2

δ3

ε1

ε2

ε3

ε4

ε5

ε6

γ11(+)

γ21(+)
β21(+)

λ11

λ21

λ31

λ11

λ21

λ31

λ42

λ52

λ62

ζ1

ζ2

Measurement model (exogenous variables) Measurement model (endogenous variables)

Fig. 4.5 Exemplary SEM model (based on Chin 1998b)

estimate complex models with multiple dependent variables or interaction effects.
Third, SEM incorporates measurement errors for model testing, thus improving the
overall model validity. Fourth, scholars can compare different parameter model
estimation results based on standardized fit statistics. Finally, the simultaneous
estimation of the measurement and the structural model produces better results
compared to linear regression analysis (Chin et al. 2003).
SEM models consist of two major components (see Fig. 4.5):

• The structural model specifies the hypothesized relationships (�ij) between
the latent variables. Exogenous variables (�i) are hypothesized to cause the
endogenous variables (�i) in the model. The structural model mirrors the
theoretical research framework.

• The measurement model defines how the above mentioned latent variables are
measured, i.e. how the collected empirical data manifest the latent variables
of the structural model. In social sciences, most studied variables are not
directly observable. Therefore, subjective measures have to be combined to
operationalize the latent variables of interest (Homburg and Giering 1996). SEM
analysis hereby takes measurement errors, that all empirical data contains to
some extent, into account. The path model adds error terms ıi and �i for every
observed indicator. Moreover, the latent variables are measured as a combination
of several indicators xi or yi to build the measurement model of a latent variable.
In the reflective mode, each indicator represents the latent variable, i.e. the
different items are expected to be redundant to each other. Higher numbers in
the latent variable are reflected in higher numbers of all variable indicators. In
the formative mode, the indicators are independent of each other and capture a
specific aspect of the latent variable they represent. Only upon combination, they
form the entirety of the latent variable.



84 4 Research Methodology

ξ

ξ2

η

(+)

(+)

η

x11

x12

δ1

δ2

x21

x22

δ3

δ4

x11*x21

x11*x22

δ5

δ6

x12*x21

x12*x22

δ7

δ8

(+)

(+)

(+)

Two-way interaction effectModeration effect

ξ

ξ2

ξ ξ2

Fig. 4.6 Modeling moderation in SEM (based on Chin 1998b)

SEM analysis can estimate complex research models with moderation or medi-
ation effects of multidimensional or second-order constructs (Gefen et al. 2011).
This study entails moderation effects. Moderating variables affect the strength or
direction of the influence of an independent variable on a dependent variable.
In other words, the slope of the relationship between the dependent and the
independent variable is affected by a third variable, called the moderator. In case of
continuous variables, moderation is generally modeled as a two-way interaction as
illustrated in Fig. 4.6. The moderator (�2) directly influences the dependent variable
(�1) as does the independent variable (�1). The product term of both variables
(�1 � �2) is an additional predictor available for testing the dependent variable.
The product term is operationalized with the product terms of all indicators of the
independent and the moderator variable. Moderation can be illustrated by plotting
the effect slope between two variables at different levels of the moderating variable.
Aiken and West (1992) recommend to graphically illustrate the slope at the mean as
well as at the mean plus and minus one standard deviation level of the moderator.

The structural and measurement models can be formalized as a system of linear
equations. The endogenous variables �i can be explained as linear combinations
of the exogenous variables �i plus the error terms �i. This equation system can be
written in matrix notation as � D �� C B� C �. B and � contain the regression
parameters while � holds the error terms. The measurement model for the exogenous
x D ƒx� C ı and for the endogenous variables y D ƒy� C " complement the
formalized SEM and allow to estimate the model parameters with the empirical
data x and y.

There are two fundamental approaches to solve this system of linear equations
to estimate the model parameters. They differ in their objective of the analysis, the
statistical assumption, the estimation algorithm, and the corresponding fit statistics:



4.4 Analysis Methods 85

Component-Based SEM6 (Chin 1998b; Wold 1982) has the overall objective to
explain variance of the dependent variables. It seeks to show R2 values as well
as the significance levels of rejecting the null hypotheses of no-effect between
the model variables (Gefen et al. 2000). Hence, the approach is best applied to
predictive applications and theory building. Technically, the algorithm first runs a
principle component analysis to estimate the loadings ƒx and ƒy for the endogenous
and the exogenous variable based on the given empirical data. The calculated
component scores are the estimated values for the latent variables in the structural
model. Based on these scores, the coefficients � of the structural model are then
estimated in an iterative way using path analysis regression. The PLS-approach
seeks to simultaneously minimize the variance of the error terms in the dependent
variables (Chin 1998b) to best reproduce the empirical data with the estimated
model. The estimation approach follows the principle of ordinary least-square
regression analysis. Hence, there are no assumptions about the distribution of
the used empirical data or restrictions to the sample size (Weiber and Mühlhaus
2012). SmartPLS7 or PLS-Graph8 are popular software packages that implement
this algorithm.

Covariance-Based SEM (CBSEM) test for insignificance of the null hypotheses,
i.e. the algorithm tests whether the provided theoretical model is plausible when
constrained by the empirical data (Gefen et al. 2000). The overall objective of
CBSEM is hence theory testing. The approach estimates the parameters of the
structural and the measurement models to fit the covariance matrix implied by the
theoretical model and specified by SEM as closely as possible to the empirical
covariance matrix observed in the data sample. The estimated parameters describe
the accuracy of the proposed model in regards to the fit of the data compared to a
best-fitting covariance structure. The confirmatory factor analysis is the key idea of
this estimation approach. The latent variables are interpreted as factors driving the
indicators in the measurement model. After calculating the empirical correlation
matrix of all indicators, the algorithm estimates the parameters to minimize the
differences between the empirical and the theoretical correlation matrix. The factor
loading between the measurement indicators are then estimated to best reproduce
the empirical correlation matrix. CBSEM assumes the empirical data to be normally
distributed and requires large sample sizes of at least 100 data points (Hair et al.
1995). The algorithm is implemented in different software packages, such as
AMOS,9 LISREL,10 or Stata.11

6The approach is also known as partial-least square (PLS) or variance-based approach.
7http://www.smartpls.de.
8http://www.plsgraph.de.
9http://www-01.ibm.com/software/analytics/spss/products/statistics/amos.
10http://www.ssicentral.com/lisrel.
11http://www.stata.com/stata12/structural-equation-modeling/.

http://www.smartpls.de
http://www.plsgraph.de
http://www-01.ibm.com/software/analytics/spss/products/statistics/amos
http://www.ssicentral.com/lisrel
http://www.stata.com/stata12/structural-equation-modeling/


86 4 Research Methodology

4.4.3 Selecting an Appropriate Analysis Technique

Multiple regression analysis is the most popular and flexible statistical multivariate
analysis method in social sciences (Wooldridge 2013). The first generation regres-
sion techniques find their application for prediction models with a single dependent
variable. SEM analysis allows researchers to systematically and comprehensively
answer a set of interrelated research question (Gefen et al. 2000) consisting of
complex research models with multiple dependent variables. The second generation
analysis techniques simultaneously estimate the measurement and the structural
model. This approach improves the overall assessment and validity power of the
model (Bollen 1989).

PLS and CBSEM are different regarding their analysis objectives, their limitation
to model complexity, and the required sample size in the empirical data:

• Objective of the two SEM methods. PLS focuses on maximizing the explained
variance for all endogenous variables in the model. It is therefore better suited for
early stage research during theory development and for less developed measures
for the model variables. The focus is on prediction. CBSEM seeks to reproduce
the empirical covariance matrix by adjusting the parameters in the SEM. It
focuses on confirming theoretical relationships, i.e. theory testing. The approach
relies on well-established measurement models.

• Model complexity. PLS can deal with an almost unlimited number of reflective
and formative measurement models as it first calculates the latent variable
scores. CBSEM, in contrast, is limited to formative constructs and limited in
the complexity of the models feasible to estimate due to increasing effort of
calculating the covariance matrices.

• Sample size. PLS runs a series of OLS regressions with component scores and
was shown to produce good results for small sample sizes (Reinartz et al. 2009).
For CBSEM with maximum likelihood estimation, a sufficient sample size of at
least 100 data points is required (Hair et al. 1995).

This study aims at explaining the effect of agile software development practices
on the performance of software development teams. The research on agile software
development is still limited. Due to limited research in this field, there is no
consensual theory published. Consequently, to answer the research question of this
study, the study aims at new theory development. The resulting hypotheses provided
in the research model can be tested with the gathered survey data. These research
hypotheses were first tested independently using multiple regression. Thereafter, all
hypotheses were integrated into a single model and estimated as a single predictive
performance model. Due to the limited size as well as the missing normality in the
data, PLS was used for the second analysis step.



Chapter 5
Empirical Validation

This chapter describes the analysis of the collected survey data and testing of the five
hypotheses in the research model. Section 5.1 outlines the study sample providing an
overview of studied population. In Sect. 5.2, the newly developed team performance
measurement instrument and the gathered performance data is discussed. Testing of
the research propositions are described in Sect. 5.3 and the final integration into a
performance prediction model is summarized in Sect. 5.4.

5.1 Sample Overview

5.1.1 Survey Response

In total, 491 developers working in 81 software development teams participated
in the study (see Fig. 5.1). Overall, the response rate is 68 % out of the invited
120 teams. This sample covers 45 % of the German development teams which had
already participated in the training program at the point of time when the study
was conducted.1 On average, 7.1 team members (developers plus Scrum Master)
participated in the voluntary survey. The average team size in the sample was 9.0
(see Fig. 5.2 for details) concluding to an average response rate of 79 % per team.
In general, the response rate is very high compared to other survey studies (Dillman
et al. 2009).

Seventy nine Scrum Masters completed their questionnaires. Furthermore, 36
team product owners and 50 Area Product Owners (APO) of 81 teams participated.
For 17 teams, only the product owner responded. For 32 teams, there are answers
from both, the APO and the PO. For 18 teams, the performance was only assessed
by the teams’ APO (see Fig. 5.1). This adds up to a final sample of 67 teams for

1The company does not allow to disclose the overall number of teams working in Germany.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_5

87



88 5 Empirical Validation

0

10

20

30

40

50

60

70

80

90

Development
Teams

Scrum
Master

Product
Owner

Area
Product
Owner

Product Owner /
Area Product

Owner

Te
am

s

APO only

PO and APO

PO only

Fig. 5.1 Sample overview

0

5

10

15

20

25

30

4 5 6 7 8 9 10 11 12 13 14

Te
am

s

Survey Participants per Team Team Size

Fig. 5.2 Response rate per team

which all three perspectives are available, i.e. returned questionnaires from at least
four developers, the Scrum Master, and the PO or the APO.

All participating teams followed the Scrum development framework, are located
in Germany, and develop standard enterprise software. The products range from
customer relationship management, over banking, and logistics application software
to database technologies. The following paragraphs provide an in-depth analysis of
the study sample.

5.1.2 Sample Characteristics

Individual Characteristics

The first part of the questionnaire asked the developers about their personal
experience in professional software development and their affiliation with the team.



5.1 Sample Overview 89

By and large, the participating software developers are very experienced and loyal
to their teams. The average developer acquired more than 10 years of working
experience, one third even more than 15 years. The studied teams were very stable,
the majority of the developers had worked for more than 2 years in the same
development team (see Fig. 5.3).

The study’s pre-test revealed developers periodically working on tasks not related
to software development. Therefore, the questionnaire specifically asked each
developer for the time attributed to software development tasks, i.e. understanding
requirements, coding, testing, integration, or bug fixing activities that are directly
related to software development. On average, every developer works about 70 %
of their work time on tasks related to software development (see Fig. 5.4). Only
12 % of the respondents indicate to work less than 50 % of their time on software
development tasks.

Team Characteristics

All 81 participating teams are located in Germany disseminated over four different
SAP locations. The average team size was nine, with a maximum of 14 team

0%

20%

40%

60%

<3
months

3-6
months

6-9
months

9-12
months

1-3
years

> 3
years

Team Affiliation

0%

15%

30%

45%

<1
year

1-3
years

4-6
years

7-10
years

11-15
years

> 15
years

R
es

po
nd

en
ts

Development Experience

Fig. 5.3 Developer experience and team affiliation

0

20

40

60

80

100

120

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
es

po
nd

en
ts

Development Time

Fig. 5.4 Developers’ time dedicated to software development tasks



90 5 Empirical Validation

Table 5.1 Data sample: team
characteristics

Team size Project size

<7 Team members 15 % <4 Teams 58 %

7–9 Team members 44 % 4–6 Teams 27 %

10–12 Team members 35 % 7–9 Teams 10 %

>12 Team members 6 % >9 Teams 5 %

Team setup Location

Walldorf 74 %

Same room 16 % Rot 5 %

Same floor 84 % St. Ingbert 9 %

Markdorf 12 %

Programming languagea Software typea

Proprietary language 78 % Software platform 23 %

Java 29 % Software application 76 %

Java Script 43 % Mobile Apps 19 %

C / C++ / C# 5 % Others 9 %
aMultiple selection possible

members. On average, the teams collaborated with three other teams in multi-
team projects. The majority of the studied teams were very stable with only minor
changes in their team setup during the 6 months period prior the study. All teams
were co-located, i.e. all developers worked on the same floor, some teams even
shared a single room. All teams had been following the Scrum framework for
several years. Consequently, each team had a dedicated Scrum Master as well as
a Product Owner and divided their development projects into development sprints.
Approximately half of the teams had 2 week sprints while the other half worked
in sprints of 4 weeks. The teams developed very different types of software and
use various programming languages. The majority of the teams, however, used the
company’s proprietary programming language and developed enterprise software
applications. More details about the participating teams are provided in Table 5.1.

5.1.3 Extent of Agile Practices Use

The use of agile software engineering practices is the central aspect of this study.
Therefore, the first part of the questionnaire asked for the intensity of adoption
of the studied agile practices by the developers in their daily work. At least three
questions ensured reliability of measurement. Figure 5.5 provides an overview of
the results of the three practices. The distributions of the answers are illustrated
based on a representative question for pair programming (PP1), code review (CR1),
and automated testing (TEST2) and summarized in Table 5.2.



5.1 Sample Overview 91

0%

10%

20%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Re
sp

on
de

nt
s

PP1: How much of your time do you develop with a programming partner?

0%

10%

20%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Re
sp

on
de

nt
s

CR1: How much of your code is reviewed by at least one colleague?

0%

10%

20%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Re
sp

on
de

nt
s

Adoption intensity

TEST2: For how much of your new code do you write automated tests at 
all?

Developers Aggregated Answers Per Team

Fig. 5.5 Agile practices use

Pair Programming On average, the respondents used pair programming for about
a quarter of their development time. The adoption intensity, however, varied strongly
between the individual developers as well as amongst the studied teams. High
adopters use the development practice for more than half of their time while the
low adopter almost never program with a partner.

Code Review Code review is used more intensively than pair programming. The
developers get about half of their code reviewed by at least one colleague. Similarly
to pair programming, there is a wide spread between low and high adopters. Some
respondents have almost all of their code reviewed, while low adopters’ is only
rarely reviewed.

Automated Testing On average, developers write automated tests for about 45 %
of their code. The data sample further shows high variance in respect to using
automated tests. Low adopters only write tests for about 20 % of their code whereas
high adopters write tests for almost 80 % of their code. Even within the teams, there
is high variance how intensively the practice is used. The distribution is illustrated



92 5 Empirical Validation

Table 5.2 Agile practices use: descriptive statistics

Individual level Team level

Var. Obs Mean SD Min Max Obs Mean SD Min Max

Pair programming

PP1 444 0.26 0.25 0 0.9 81 0.26 0.19 0.0 0.8

PP2 442 0.25 0.23 0 0.9 81 0.25 0.17 0.0 0.7

PP3 435 0.26 0.23 0 0.9 81 0.26 0.17 0.0 0.7

Automated testing

TEST1 437 0.22 0.28 0 0.9 81 0.21 0.19 0.0 0.8

TEST2 438 0.47 0.32 0 0.9 81 0.47 0.24 0.0 0.9

TEST3 423 0.37 0.33 0 0.9 81 0.37 0.23 0.0 0.9

TEST4 426 0.46 0.32 0 0.9 81 0.45 0.23 0.0 0.9

Code review

CR1 439 0.46 0.32 0 0.9 81 0.46 0.22 0.1 0.9

CR2 435 0.38 0.32 0 0.9 81 0.39 0.23 0.0 0.9

CR3 432 0.24 0.23 0 0.9 81 0.24 0.15 0.0 0.7

Variable names and full text questions are listed in Table 4.2 on page 75

in Fig. 5.5. On the individual level, it shows two distinct clusters of low and high
adopters. When analyzing the distribution on the team level data, i.e. after the
answers within the team are average to the team level, there is only a single peak at
50 % adoption rater.

5.2 Assessment of Team Performance

Measuring the performance of software development teams remains a challenge
due to a lack of standardized measurement instruments. Moreover, existing mea-
surement instruments had proven to be inapplicable to the given research context
for various reasons (see discussion in Sect. 4.3.3). Therefore, a new performance
assessment instrument was developed and deployed to evaluate the performance
of the participating teams in the survey. The instrument comprises of various
performance aspects previously extracted from interview findings with 15 Area
Product Owners at SAP (see Sect. 4.3.3).

The newly developed instrument distinguishes between outcome and process ori-
ented performance components (see Fig. 5.6). On the one hand, internal and external
software quality was evaluated by the participating product owners (outcome-
oriented perspective). On the other hand, the teams’ velocity to deliver new software
features, their transparency of communicating arising problems, and the quality
of the team to correctly predict the scope of newly developed software features
after each sprint were estimated (process-oriented perspective). Complementary,
the product owners provided an overall team performance score for each team (see



5.2 Assessment of Team Performance 93

Internal 
Software 
Quality

Progress Predictability Transparency

Overall
Team Performance

External 
Software 
Quality

Outcome-oriented Process-oriented

Fig. 5.6 Team performance dimensions

Appendix A.7). The final survey data set includes complete performance evaluations
for 67 teams.

First of all, the interdependence of the extracted performance dimensions and
the overall team performance score was analyzed. For that purpose, the prediction
quality of each performance dimension of the overall team performance score was
evaluated. The data was used to test a performance model with the team performance
score as the dependent variable and the performance sub-dimensions as independent
variables (see Fig. 5.6).

There are various statistical analysis techniques to test such a model and to
further provide the strength and confidence levels of each antecedent. This study
uses component-based partial least square (PLS),2 initially introduced for prediction
models in exploratory research contexts (Chin 1998a; Fornell 1989). The PLS
algorithm evaluates the ratio of variance explained in the dependent variable and
finds if the studied performance dimensions can be used as reliable predictors for
the overall performance score. Moreover, PLS can estimate the importance of each
performance dimension for the performance model.

Measurement Model Validation

First, the measurement quality of the team performance model was examined. For
that purpose, convergent validity, individual item reliability, composite reliability,
and discriminant validity were analyzed. Exploratory factor analysis showed no
discrimination of internal and external quality measures. Consequently, all qual-
ity items were henceforth used as measures for a single quality dimension in
the analysis. In addition, the factor analysis revealed the necessity to remove
some quality-related measurement items to comply with the specifications of
standard psychometric measurement requirements. Table 5.3 shows the final list
of measurement items, the descriptive statistics, as well as the loading for each
measurement item. The initially deployed measurement instrument can be found
in the Appendix A.7.

2Details on this analysis technique are described in Sect. 4.4.2.



94 5 Empirical Validation

Table 5.3 Team performance: descriptive statistics

Mean SD Load

Overall team performancea —Cronbach’s Alpha: 0.96; CR: 0.96
When asked for a high performance team, other SAP teams would
reference this team

4:98 1:42 0:95

I consider this team a high performance team 5:11 1:59 0:94

Reports on the performance of this team are always favorable 5:08 1:27 0:90

Peer teams consider this team a great success 5:05 1:21 0:90

Software qualitya—Cronbach’s Alpha: 0.94; CR: 0.94
When the team presents new features, the team’s software does what it
is supposed to do

8:19 1:20 0:87

The team’s key stakeholder is satisfied with the software quality the
team delivers

8:22 1:45 0:76

The capabilities of the software meet the needs of the team’s customers
(SAP internal or external)

7:72 1:52 0:78

When the team presents new features, they could fearlessly be shipped
to the customer

7:70 2:26 0:87

Overall, the team’s software contributes to SAP’s reputation as a high
quality software company

8:34 1:50 0:89

The team delivers software that fully covers the requested functionality 7:62 1:60 0:87

The software the team delivers meets technical requirements 8:40 1:23 0:80

The software code is reusable 7:60 1:76 0:72

The software code is maintainable 8:23 1:48 0:73

Transparencyb—Cronbach’s Alpha: 0.86; CR: 0.92
The team communicates issues to affected stakeholders whenever
necessary

6:09 1:03 0:93

Product stakeholders (PO&APO) are always well-informed about
problems

6:06 1:01 0:90

Whenever problems occur, the team informs affected stakeholders
outside the team

5:70 1:24 0:93

Predictabilityb—Cronbach’s Alpha: 0.93; CR: 0.95
I trust the team to deliver at the end of a development cycle what it
forecasts before the cycle

5:43 1:32 0:88

The team always meets the objectives that are set at the beginning of a
development cycle

5:21 1:37 0:90

When the team promises to do something, I am sure it does so 5:63 1:24 0:93

I am confident that the team delivers forecasted features 5:52 1:28 0:93

Progressb—Cronbach’s Alpha: 0.95; CR: 0.96
This team has a high velocity of delivering new features 4:97 1:67 0:95

The progress of the team is always satisfying 5:01 1:38 0:87

The team continuously makes excellent progress with new features 4:74 1:38 0:92

This team is a high performance team regarding the speed of delivering
features

4:94 1:74 0:88

a10-point scale from “Never” to “Always” (coded 0.0 to 0.9)
b7-point scale from “Strongly disagree” to “Strongly agree” (coded 1 to 7)



5.2 Assessment of Team Performance 95

The factor loadings of these measures were above the recommended threshold
of 0.7 (Chin 1998a). The average variance extracted (AVE) of each latent variable
is greater than 0.5 indicating satisfying convergent validity. Discriminant validity is
also given as the square root of the AVE of each construct exceeds the constructs
correlation with all other constructs (see Table 5.3). Finally, composite reliability
(CR) (Fornell and Larcker 1981) and Cronbach’s alpha (˛) scores show satisfying
values (see Table 5.4).

Analyses and Results

PLS and bootstrapping with 1000 re-samples was used to estimate the performance
model. The estimation results including the standardized coefficients, significance
levels, and the amount of variance explained (R2) are presented in Fig. 5.7. Based
on the significance coefficients, three dimensions are found that help to predict the
overall team performance score. Overall, they account for 76 % of the variance of
all performance measures.

The velocity of a team to deliver new features is the strongest predictor (ˇ D
0:55, p < 0.01) but the quality of the software (ˇ D 0:19, p < 0.05) and the
team transparency (ˇ D 0:27, p < 0.01) also significantly contribute to the quality
of the team performance prediction model. The predictability measures show no
significant effect on the dependent variable (see Fig. 5.7).

Table 5.4 Team performance: correlations and average variance extracted

(1) (2) (3) (4) (5)

(1) Overall team performance 0.86

(2) Predictability 0.63 0.82

(3) Progress 0.81 0.58 0.86

(4) Software quality 0.72 0.69 0.66 0.66

(5) Transparency 0.65 0.66 0.49 0.61 0.79

Average variance extracted (AVE) on the diagonal of the matrix

Software 
Quality Progress Predictability Transparency

Overall
Team Performance

0.19* 0.55*** 0.01 0.27**

R2 = 0.76 

*** at 0.1% p < .001 t= 3.107, 
** at 1% p < .01 t= 2.334,
*  at 5% p < .05 t= 1.684,

Fig. 5.7 Team performance assessment



96 5 Empirical Validation

Discussion of the Results

In general, the participating product owners assess their teams rather in terms of
their delivery quality than how good the quality of their software is. Software
quality constitutes an important factor, but a team’s ability to deliver new features
and to reliably report upcoming problems was considered to be more important for
the participating product owners’ evaluation of the team performance. In line with
previous literature (Ilgen et al. 2005; Mathieu et al. 2008), the data supports the
understanding that team performance is no one-dimensional concept.

Conclusion

This study set out to better understand the influence of agile software development
practices on the performance of software development teams. Instead of focusing
on particular performance aspects, such as the software quality or diverse process
outcomes, an abstract perspective is taken. This is reflected in the conceptualization
of team performance. Hence, the first four items in Table 5.3 are used in all
subsequent models to measure team performance of a software development team.
Nevertheless, these findings improve the understanding of APOs’ perception of their
teams’ performance.

5.3 Hypotheses: Test and Evaluation

This section first discusses the measurement models for the latent variables in the
research model. Then, the research hypotheses are tested using regression analysis.

5.3.1 Measurement Model

As the software development team defines the level of analysis of this study, all
model variables represent team level concepts. For conceptual and methodological
reasons, however, some variables were measured on the individual or dyadic work
relationship level. For instance, all developers of the participating teams rated their
personal intensity of using agile practices and their work relationships with three
colleagues in the team. The provided answers were therefore aggregated to a team
level score before testing the research hypotheses. The following paragraphs discuss
these multilevel aspects and specify the measurement scores for all variables in the
research model.



5.3 Hypotheses: Test and Evaluation 97

Data Aggregation

Phenomena on team level often emerge from lower-level data manifested among
individuals, within team member dyads, or in subgroups of a team. Measuring
higher level phenomena on a lower level provides increased measurement accuracy
compared to assessing higher level indicators only. For instance, aggregating the
ratings from team members’ perception of their level of trust within the team is
expected to be a more reliable rating than the perception of a single informant
only. Multi-level research provides the theoretical and methodological foundation
to discuss these conceptual and methodological aspects (Klein and Kozlowski 2000;
Mathieu and Chen 2011; Morgeson and Hofmann 1999).

Scholars argued that higher level phenomena are either independent from lower
level characteristics, only emerge in case of homogeneity within lower level units,
or occur only in case of lower level heterogeneity (Klein and Kozlowski 2000).
For instance, the behavior, affection, or cognition of a team can either be reflected
or caused by its individual team members. Therefore, multilevel phenomena need
to be carefully conceptualized and measured with appropriate measurement model
to ensure alignment between the theoretical argument (theoretical plane) and the
measured empirical data (empirical plane). Moreover, choosing the corresponding
statistical techniques for data aggregation is essential to accurately interpret higher
level phenomena from lower level data.

Latent variables in multilevel studies are often rated by several respondents
answering several measurement questions. This results in three dimensions in
a multilevel research data set as illustrated in Fig. 5.8. The empirical data set

Rater n
Rater 2

Rater 1

Empirical
Plane

Item1 Item2 Item3

Item1 Item2 Item3

Item1 Item2 Item3

Team

Dyad

Indiv.

(A)
Level of 

measure-
ment

(B)
Multi-item measurement

(C)  
Multi-rater 

measurement

Aggre-
gation
A

Team Level Construct

Theoretical
Plane

Fig. 5.8 Aggregation of multi-level research data



98 5 Empirical Validation

describes a multidimensional data vector. The vector can be further transformed
into the appropriate dimensionality defined by the theoretical level of analysis. The
theoretical level of analysis, in turn, is defined by the research question, i.e. the level
to which generalizations are made (Rousseau 1985).

• The level of measurement (A) is the level at which data are collected to assess a
construct. Team level constructs may be measured at the team level, the dyadic,
or the individual level.

• Multi-item measurement ensures reliability of the latent construct by measuring
several items, so-called multi-item measurement (B).

• Multi-rater measurement describes data collection using single or multiple raters,
so-called multi-rater measurement (C).

Klein and Kozlowski (2000) distinguish between global, shared, and configural
constructs when classifying multilevel concepts:

• Global unit properties originate at the highest level of analysis as single-level
phenomena. They are mostly descriptive, easy to observe characteristics of a
team as a whole without relevance for internal variance. Examples are the size or
age of a team.

In contrast, shared and configural unit properties originate at lower levels but
manifest at higher-levels. They emerge from individual level behavior, experience,
values, cognition or team member characteristics (Klein and Kozlowski 2000).

• Shared units properties are similar across lower level units and represent
composition forms of emergence. They describe common characteristics within
members of the unit and are a composite of within-unit consensus. Team culture
can, for instance, be conceptualized as a shared property of a team.

• Configural unit properties compile from variance at the lower level of anal-
ysis and capture patterns of configurations of lower level unit characteristics.
However, convergence is not required as the lower level units are distinctively
different. For instance, certain team abilities could be conceptualized as configu-
ral properties of work teams.

Only global properties can be directly measured at the respective level of analy-
sis. Configural or shared properties are measured at lower levels and subsequently
aggregated to the higher level of analysis (Chan 1998). In this study, some variables
were directly measured at the team level where the measurement questions had the
team as the referent.3 Other variables, however, were rated by the developers on the
individual4 level, other on a dyadic level.5

Moreover, few variables were evaluated by one single respondent only, e.g.
Scrum Masters evaluated the confidence level of their team, while other variables

3See item PERF2: “I consider this team a high performance team”.
4See item PP1: “How much of your code do you develop with a programming partner?”
5See item SMM1: “The two of us, we agree how well-crafted code looks like.”



5.3 Hypotheses: Test and Evaluation 99

Table 5.5 Measurement level, raters, items, and aggregation method

Construct
Unit-level
type

(A) Level of
measurement

(B)
Items

(C)
Rater Aggregation

Agile practices use Configural Individual 8 Devs Meana

Team potency Configural Team 5 SM Meana

Tech. uncertainty Global Team 3 SM Sum

Shared mental
models

Configural Dyad 5 Devs Meana

Backup behavior Configural Dyad 4 Devs Meana

Team performance Global Team 4 APO Meana

Devs - Developers, SM - Scrum Master, APO - Area Product Owner
aArithmetic mean

were quantified with the combined perceptions of several developers. Table 5.5
provides an overview of all variables illustrating the level of measurement, the
number of items used to measure each latent variables, and the number of raters.
The measurement models for each variable are further discussed in the following
paragraphs.

Measurement Scores

Extent of Agile Practices Use The use of agile practices was conceptualized as
a configural property of the team. The initial studies at SAP had demonstrated
that each and every developer in a team can independently decide how he or she
implements the development task. Consequently, the studied agile development
practices are flexibly and variably used and the use of agile development teams was
considered as a composite of each developer’s behavior. Therefore, each developer’s
intensity of using the studied practices configured the team behavior.

Chan (1998) distinguishes different compositional models in multi-level
research. In additive models, the higher level unit is an aggregation of the lower
level units regardless of the variance among these units. The average is a typical
operational combination process of the lower level scores to the higher level
variable, but there is no requirement for homogeneity at the lower level of analysis.
As the use of agile practices was conceptualized on the team level, the arithmetic
mean was used to aggregate the answers from the responding developers to the team
level.

An exploratory factor analysis showed that the respective items (pair program-
ming, code review, and testing) loaded on a single factor after two items were
removed (TEST1, TEST3). The answers to the remaining eight items were averaged
with equal weights to calculate a team level score labeled AGILE. This index
represents the team’s extent of using agile development practices. The descriptive
statistics can be found in Table 5.2 on page 92, the correlation matrix of these
variables in Table 5.6.



100 5 Empirical Validation

Table 5.6 AGILE: correlation matrix

(1) (2) (3) (4) (5) (6) (7)D (8) (9)D (10)

(1) PP1

(2) PP2 0.94

(3) PP3 0.81 0.80

(4) CR1 0.46 0.41 0.44

(5) CR2 0.44 0.41 0.47 0.91

(6) CR3 0.44 0.45 0.64 0.77 0.78

(7) TEST1D 0.48 0.49 0.49 0.28 0.30 0.43

(8) TEST2 0.53 0.52 0.58 0.42 0.42 0.52 0.70

(9) TEST3D 0.38 0.34 0.42 0.23 0.15 0.30 0.55 0.73

(10) TEST4 0.48 0.48 0.46 0.46 0.48 0.48 0.60 0.84 0.54

AGILE 0.79 0.77 0.80 0.78 0.79 0.79 0.61 0.79 0.50 0.77

D - item deleted as a result of an exploratory factor analysis
All correlation coefficients are significant (p < 0.01)

Table 5.7 POTENCY: descriptive statistics and correlation matrix

Mean S.D. Min Max (1)D (2) (3) (4) (5) (6)D (7)

(1) Pot1D 5.90 1.05 2 7

(2) Pot2 5.69 1.14 2 7 0.50

(3) Pot3 5.60 1.18 2 7 0.61 0.75

(4) Pot4 5.28 1.36 2 7 0.53 0.58 0.62

(5) Pot5 5.78 0.83 3 7 0.51 0.63 0.59 0.58

(6) Pot6D 6.14 0.84 3 7 0.18 0.26 0.33 0.30 0.52

(7) Pot7 4.95 1.52 1 7 0.53 0.36 0.49 0.65 0.50 0.54

POTENCY 5.45 0.98 3 7 0.66 0.79 0.84 0.86 0.78 0.48 0.78

D - item deleted as a result of an exploratory factor analysis
All correlation coefficients are significant (p < 0.01)

Team Potency Team potency was conceptualized as a configural team property.
Scrum Masters were asked to rate the team’s level of confidence by stating their
agreement to seven questionnaire items. Scrum Masters were expected to have a
good overview of the team, by virtue of their role and to reliably estimate the shared
confidence level of the team. The construct was directly measured at the team level,
i.e. the referent of each questionnaire item was the team. Thus, aggregation of the
data was not required. The results of an exploratory factor analysis of the retrieved
answers led to the removal of two measurement items to ensure measurement
validity. The rating of the five remaining items were averaged to a single team level
score, called POTENCY. The descriptive statistics as well as the correlation matrix
of the measurement items are shown in Table 5.7.

Shared Mental Models and Backup Behavior As described in Sect. 4.3.2, shared
mental models and backup behavior were measured on a dyadic level. Both
constructs were conceptualized as a configural property of the team. All developers



5.3 Hypotheses: Test and Evaluation 101

Table 5.8 BACKUP and SHARED: descriptive statistics and correlation matrix

Mean S.D. Min Max (1) (2) (3) (4)

(1) BB1 5.43 0.63 4.07 6.75

(2) BB2 5.64 0.50 4.24 6.58 0.75

(3) BB3 5.62 0.63 4.18 6.64 0.86 0.83

(4) BB4 5.77 0.59 4.33 6.75 0.85 0.84 0.89

BACKUP 5.61 0.55 4.26 6.56 0.93 0.90 0.96 0.95

Mean S.D. Min Max (5) (6) (7) (8) (9)

(5) SMM1 5.40 0.50 4.20 6.54

(6) SMM2 5.40 0.51 3.91 6.33 0.68

(7) SMM3 5.66 0.49 4.40 6.46 0.55 0.50

(8) SMM4 5.50 0.42 4.51 6.4 0.50 0.59 0.58

(9) SMM5 5.17 0.57 3.84 6.64 0.49 0.59 0.48 0.63

SHARED 5.43 0.40 4.48 6.39 0.80 0.84 0.76 0.80 0.81

were asked to rate their personal work relationship with three randomly selected
colleagues in the team. In addition, all developers rated the perceived similarity of
their personal knowledge relative to three randomly selected members in respect to
three essential areas of expertise in software development teams (see He et al. 2007).

Both constructs were calculated as additive models (Chan 1998), i.e. the team
level score is a summation of the dyadic level answers regardless of the natural
variance among these units. To standardize, the arithmetic mean was used with
all data points of each team. The respective items loaded in an exploratory factor
analysis on a single factor. Hence, no item had to be removed. The resulting scores
were labeled BACKUP and SHARED. Table 5.8 show the descriptive statistics and
the correlation matrix of these items.

Team Performance and Technological Uncertainty Technological uncertainty
and team performance were conceptualized as global properties. Product owners
and Scrum Masters were the single informants to evaluate these team variables.
Technological uncertainty was calculated as an additive model. The three items
covered different independent categories of technological uncertainty that software
development teams may face. Already at the team level, the provided answers of the
Scrum Master were added to a final score labeled UNCERTAIN.

The Area Product Owners assessed the performance of the participating teams
based on four measurement items (see Sect. 5.2). Due to high correlation among
them, the four team performance items were averaged with equal weights to a single
team level index labeled PERF. Descriptive statistics and the correlation matrices are
provided in Table 5.9.



102 5 Empirical Validation

Discriminant Validity and Measurement Reliability

Except for task uncertainty, all variables in the research model were measured
reflectively. As required, the measurement indicators show high levels of correlation
(see Tables 5.6, 5.7, 5.8, 5.9, and 5.10) and form a single factor in an exploratory
factor analysis. Table 5.11 shows the results of an exploratory factor analysis with
varimax rotation including all measurement indicators in the model. The final list of
measurements is uni-dimensional and loads onto the respective latent variables. All
cross-loadings are at least 0.2 smaller than the smallest loading on the respective
constructs and thus meet the proposed thresholds (Homburg and Giering 1996).
Finally, measurement reliability for all variables can be concluded as each variable’s
Cronbach’s Alpha value is larger than the expected minimum of 0.7 (Homburg and
Giering 1996).

5.3.2 Effects on Team Potency and Team Performance

In a first step, the hypothesized positive relationship between the extent of using
agile software development practices (AGILE) and team confidence (POTENCY)

Table 5.9 UNCERTAIN and PERF: descriptive statistics and correlation matrix

Mean S.D. Min Max (1) (2) (3)

(1) TUN1R 3.89 1.68 1 7

(2) TUN2R 2.84 1.60 1 7 0.62

(3) TUN3R 2.74 1.43 1 7 0.40 0.67

UNCERTAIN 9.47 3.98 3 21 0.82 0.91 0.80

Mean S.D. Min Max (4) (5) (6) (7)

(4) Perf1 4.98 1.42 2 7

(5) Perf2 5.11 1.59 2 7 0.91

(6) Perf3 5.08 1.27 2 7 0.82 0.86

(7) Perf4 5.05 1.21 2 7 0.84 0.78 0.77

PERF 5.07 1.28 2.25 7 0.96 0.96 0.92 0.90
Rreversed coding

Table 5.10 Research variables: descriptive statistics and correlation matrix

Mean S.D. Min Max ˛ (I) (II) (III) (IV) (V)

AGILE 0.35 0.16 0.04 0:75 0.87

POTENCY 5.45 0.98 3.00 7:00 0.86 0:24�

SHARED 5.43 0.40 4.48 6:39 0.86 0:26�� 0:21�

BACKUP 5.61 0.55 4.26 6:56 0.95 0:3��� 0:08 0:46���

UNCERTAIN 9.47 3.98 3.00 21:00 – �0:03 �0:26� �0:17 0:10

PERF 5.07 1.28 2.25 7:00 0.95 0:02 0:35��� 0:11 �0:07 �0:17

*p < 0.1; **p < 0.05; ***p < 0.01



5.3 Hypotheses: Test and Evaluation 103

Table 5.11 Measurement model: factor loadings and reliabilities

Construct Item AGILE POTENCY SHARED BACKUP PERF ˛

AGILE PP1 0:89 0:04 �0:04 0:21 0:05

PP2 0:88 �0:07 �0:03 0:18 0:03

PP3 0:83 0:12 0:07 0:24 0:04

CR1 0:60 0:40 0:26 0:07 �0:40 0.90

CR2 0:58 0:35 0:33 0:05 �0:44

CR3 0:52 0:38 0:29 0:23 �0:33

Test2 0:68 0:39 0:13 �0:16 0:11

Test4 0:59 0:37 0:35 �0:16 0:11

POTENCY Pot2 0:09 0:81 0:11 �0:04 0:21

Pot3 0:15 0:74 0:00 �0:13 0:29

Pot4 0:21 0:64 0:00 0:35 0:30 0.86

Pot5 0:13 0:76 �0:02 0:14 0:03

Pot7 0:02 0:61 �0:11 0:18 0:36

SHARED SMM1 0:13 0:12 0:66 0:33 �0:09

SMM2 0:01 0:07 0:75 0:32 0:02

SMM3 0:22 0:14 0:60 0:38 0:31 0.86

SMM4 0:14 0:06 0:62 0:32 0:12

SMM5 0:03 �0:08 0:80 0:26 0:09

BACKUP BB1 0:16 0:08 0:19 0:86 �0:10

BB2 0:11 �0:04 0:33 0:77 �0:17

BB3 0:11 0:05 0:16 0:93 �0:06 0.95

BB4 0:11 �0:01 0:16 0:92 0:03

PERF Perf1 0:02 0:11 0:06 �0:08 0:93
Perf2 �0:03 0:13 0:05 �0:05 0:92
Perf3 �0:01 0:05 0:14 �0:05 0:86 0.95

Perf4 0:03 0:24 �0:08 �0:01 0:81

Exploratory factor analysis with varimax rotation method
Technological uncertainty was conceptualized as a formative construct

was tested. Then, the positive relationship between higher team confidence
(POTENCY) and team performance (PERF) was analyzed. Both models control
for the size of the team, a common control variable in team effectiveness research.
The following models were specified:

POTENCY D ˛0 C ˛1AGILE C ˛2TeamSize C �1 (5.1)

PERF D ˇ0 C ˇ1POTENCY C ˇ2TeamSize C �2 (5.2)

The descriptive statistics and regression coefficients of these variables are shown in
Table 5.10. The results (see Table 5.12) indicate that the use of agile development
practices positively influences team potency (beta = 1.65, p < 0.05). The model
predicts 7 % of the variance of team potency. Team potency, in turn, predicts 12 %



104 5 Empirical Validation

Table 5.12 Estimated
parameters for models 5.1
and 5.2

(5.1) (5.2) (5.2)

POTENCY PERF PERF

AGILE 1.65** 0.35

(0.70) (1.10)

TeamSize 0.05 0.06 0.01

(0.05) (0.07) (0.07)

POTENCY 0.46***

(0.16)

Constant 4.43*** 4.45*** 2.50**

(0.54) (0.85) (1.10)

Observations 79 65 63

R-squared 0.07 0.01 0.12

F test 2.94 0.29 4.12

Standard errors in parentheses
*p < 0.1; **p < 0.05; ***p < 0.01

of team performance (beta = 0.46, p < 0.01). There is no significant direct effect
of using agile development practices on team performance. However, there is a
weakly significant, full mediation effect (p < 0.1, Sobel-Test (Baron and Kenny
1986)) of using agile development practices through a higher team potency on team
performance. In summary, the data supports the theorized propositions.

Regression diagnostics. In addition to this test, the standard regression diagnos-
tics were followed. In particular, answers of five teams were identified as potentially
influential data points in the models. Therefore, the effect of removing the answers
of these teams on the overall results was analyzed. This sensitivity analysis,
however, showed no substantial impact on the significance level, the strength of
the estimated coefficients, nor an effect on the explained variance of the dependent
variable. Therefore, results from the full data set are presented as no theoretical or
structural reasons could be found to justify a removal of the answers of those teams.
Furthermore, linearity of the tested relations, homoscedasticity of the residuals, and
multicollinearity of the independent variables were not found to be an issue in the
data.

5.3.3 Effects on Shared Mental Models, Backup Behavior,
and Team Performance

The remaining hypotheses were tested using the same regression analysis approach.
First, the impact of agile software development practices (AGILE) on the sharedness
of team members mental model (SHARED) and the intensity of providing backup
within the team (BACKUP) was tested. Second, the moderated effect of team
backup behavior in case of high technological uncertainty was modeled and tested.
For that purpose, the following equations were specified. In addition to these
variables, the model again controls for the size of the studied teams.



5.3 Hypotheses: Test and Evaluation 105

SHARED D ı0 C ı1TeamSize C ı2AGILE C �3 (5.3)

BACKUP D �0 C �1TeamSize C �2AGILE C �3SHARED C �4 (5.4)

PERF D �0 C �1TeamSize C �2AGILE

C �3.AGILE � UNCERTAIN/ C �5 (5.5)

The results for the parameters are displayed in Table 5.13. They support for the
proposed hypotheses, i.e. the use of agile development practices on the sharedness

Table 5.13 Estimated
parameters for models
5.3–5.5

(5.3) (5.4) (5.4)

SHARED BACKUP BACKUP

AGILE 0.68** 0.93** 0.64*

(0.30) (0.37) (0.36)

SHARED 0.43***

(0.13)

TeamSize �0.00 �0.03 �0.03

(0.02) (0.02) (0.02)

Constant 5.21*** 5.63*** 3.37***

(0.22) (0.27) (0.74)

Observations 81 81 81

R-squared 0.06 0.11 0.22

F test 2.69 4.82 7.18

Standard errors in parentheses

*p < 0.1; **p < 0.05; ***p < 0.01

(5.5)

PERF

BACKUPa �0.16

(0.27)

UNCERTAINa �0.06*

(0.03)

BACKUPa � UNCERTAINa 0.18***

(0.06)

TeamSize 0.02

(0.07)

Constant 4.95***

(0.65)

Observations 62

R-squared 0.09

F test 3.57

Robust standard errors in parentheses
*p < 0.1; **p < 0.05; ***p < 0.01
aValues mean centered



106 5 Empirical Validation

4
4.

5
5

5.
5

6
6.

5

PE
R

FO
R

M
AN

C
E

−1 −.6 −.2 .2 .6 1

BACKUP (mean centered)
UNCERTAIN at (MEAN − 1*SD) UNCERTAIN at (MEAN)
UNCERTAIN at (MEAN + 1*SD)

Fig. 5.9 Technological uncertainty moderation effect

of team members’ mental models (beta = 0.68, p < 0.05). Moreover, it reveals the
effect of team backup behavior (beta = 0.93, p < 0.05).

The second column of Table 5.13 shows that higher levels of team backup
behavior are associated with a higher sharedness of team members’ mental models
(beta = 0.43, p < 0.01) and use of agile practices (beta = 0.64, p < 0.1). In total,
22 % of the variance of team backup behavior can be explained with the model. In a
second step, the indirect effect of using agile practices on backup behavior through
shared mental models was tested. The Sobel test revealed a significant indirect effect
(p < 0.1).

Next, the relationship between team backup behavior and team performance
under varying levels of technological uncertainty was estimated. The analysis does
not indicate any direct effect of backup behavior on team performance at the
mean value of task uncertainty. However, the moderating effect of technological
uncertainty significantly improves the effect of using agile practices. Specifically,
in case of high technological uncertainty the impact of backup behavior on team
performance is positive and significant (beta = 0.19, p < 0.01). In case of low task
uncertainty, backup behavior exerts even a negative effect on team performance (see
Fig. 5.9).

Figure 5.9 displays this interaction effect at the mean and plus/minus one
standard deviation level of technological uncertainty with mean centered values
of technological uncertainty and backup behavior (Aiken and West 1992). The
prediction line is only positive at high levels of technological uncertainty, whereas a
negative effect can be observed in case of average or low technological uncertainty.

Regression diagnostics. The standard regression diagnostics measures did not
reveal any statistical issues. A sensitivity analysis of potentially influential data
points showed no substantial impact on the significance level, the strength of the
estimated coefficients, nor an effect on the explained variance of the dependent
variable. Therefore, results from the full data set are presented here. Linearity of



5.4 Integrated Prediction Model 107

the tested relations, homoscedasticity of the residuals, and multicollinearity of the
independent variables were not found to be of any concern.

5.4 Integrated Prediction Model

Section 4.4.2 introduced component-based structural equation model (SEM-PLS)
as an appropriate statistical technique to estimate theoretical research models using
empirical survey data (Chin 1998b). While the previous chapter estimated the
postulated hypotheses (see Sect. 3.3) independent from each other, PLS allows a
simultaneous estimation. The SmartPLS software package (Version 2.0.M3) was
used for the estimations (Ringle et al. 2005).

The results of the PLS analysis are presented as recommended according to
previous literature on how to report PLS results (Chin 2010; Gefen et al. 2011).
Initially, reliability and validity of the measurement model are discussed. Then,
results of the structural model test are presented. As this model focuses on prediction
of the dependent variable team performance, missing values in the empirical data set
have been replaced with the mean values of the given responses for the particular
measurement item. This procedure increased the sample size from 67 to 81 without
distorting the data set and thus improved the overall quality of the prediction model.

5.4.1 Measurement Model

The previous section reported the descriptive statistics of the model variables
including means and standard deviations (see Tables 5.6, 5.7, 5.8, 5.9, and 5.10).
This section discusses the quality of the measurement model.

The quality of the measurement model can be assessed in terms of measurement
reliability and measurement validity. These measurement attributes examine the
accuracy of the measurement scale compared to the theoretical construct. Churchill
(1979) formalizes this idea for an arbitrary measurement value X0 as follows:
X0 D XT C XS C XR with XT as the true value, XS the systematic and XR the
random error. A measure X0 is considered valid when differences in the observed
scores reflect true differences in the measurement value (X0 D XT ). A measure is
reliable when there is no random measurement error (XR D 0). Hence, reliability
is necessary for validity, but not sufficient. Chin (2010) recommends to assess
both reliability at the indicator and the construct level as well as convergent and
discriminant validity of the measures when reporting PLS results.

• Indicator reliability. Table 5.14 shows the contribution of each measurement item
to the respective latent variables. Literature recommends a threshold bigger than
50 % of their variance with the latent variable, i.e. factor loadings higher than
0.707 (Chin 1998b; Homburg and Giering 1996). Table 5.14 presents the loadings
and the weights of all measures on their variables. With the exception of one



108 5 Empirical Validation

Table 5.14 Integrated
model: indicator reliability of
the reflective variables

Variable Item Loadings Weights

AGILE PP1 0.84 0.17

PP2 0.81 0.15

PP3 0.85 0.21

CR1 0.77 0.12

CR2 0.77 0.15

CR3 0.81 0.20

Test2 0.75 0.12

Test4 0.72 0.15

POTENCY Pot2 0.82 0.27

Pot3 0.86 0.32

Pot4 0.83 0.26

Pot5 0.78 0.19

Pot7 0.69 0.20

SHARED SMM1 0.82 0.25

SMM2 0.89 0.25

SMM3 0.82 0.25

SMM4 0.81 0.23

SMM5 0.81 0.22

BACKUP BB1 0.92 0.31

BB2 0.89 0.25

BB3 0.96 0.27

BB4 0.93 0.25

PERF Perf1 0.96 0.29

Perf2 0.94 0.26

Perf3 0.90 0.24

Perf4 0.91 0.28

All loadings were significant (p < 0.001)

item, all loadings were larger than the recommended value of 0.707 indicating
more than half of the variance to be shared with the latent variable. The loadings
were tested for significance using the bootstrap routine with 1000 samples. All
loadings came out to be significant (p < 0.01). Moreover, the weights of these
reflective measures are equally distributed implying an equal contribution of
variance of indicators to the latent variable. In summary, measurement reliability
at the indicator level can be assumed.

• Construct reliability and construct convergence ensure appropriate representa-
tion of the combined indicators for a latent construct. Three common indicators
were hereby checked (Chin 2010): (1) The average variance extracted (AVE),6

expected to be higher than 0.5, is satisfied by all variables (see Table 5.15). (2)

6AVE D P
	i

2=
� P

	i
2 C P

i var."i/
�
.



5.4 Integrated Prediction Model 109

Table 5.15 Integrated model: composite reliability, ave, and correlations

˛ CR AVE AGILE BACKUP PERF POT SMM

AGILE 0.91 0.93 0.63 0:79
BACKUP 0.95 0.96 0.86 0:33 0:93
PERF 0.94 0.96 0.86 �0:05 �0:03 0.93
POTENCY 0.86 0.90 0.64 0:32 0:13 0.33 0.80
SHARED 0.89 0.92 0.69 0:38 0:42 0.11 0.28 0.83

Diagonal elements display the square root of AVE = Average Variance Extracted
˛ = Cronbach’s alpha, CR = composite reliability

Composite reliability (CR)7 is another indicator for construct reliability. The CR
values satisfy the recommended values (Homburg and Giering 1996). All CR
values are larger than 0.6. Some items had to be deleted after this analysis. The
recalculated values are presented in Table 5.15. (3) The Cronbach’s alpha8 values
are higher than the expected 0.7 indicating convergent validity.

• Discriminant validity assesses the correlation of the respective item to the
construct of interest as opposed to any other construct in the model. For
PLS models, the square root of the AVE is expected to be bigger than the
corresponding correlation values (Fornell and Larcker 1981). Table 5.15 presents
the square root of the AVE values in the matrix diagonal and the respective
correlation values below. The data meets the Fornell-Larcker criterion for all
pairs of variables, suggesting discriminant validity.

Common method bias. The dependent variable was measured from a different
source than the independent variables as the product owners assessed the teams
whereas the team members indicated their intensity of using agile practices and
the mediating variables in the model. This setup was expected to mitigate common
method bias (Podsakoff et al. 2003; Sharma et al. 2009).

Above results prove the collected data to satisfy the common requirements for
measuring latent variables. Therefore, the constructs are assumed to be measured
correctly. Hence, the structural model results are discussed in the following sections.

5.4.2 Structural Model

The next step is the test of the structural model. First, the strength of the model
is described and the validity of the research hypotheses is reported. In particular,
the share of variance explained in the dependent variables (R2), the validity of the
proposed postulated hypotheses (standardized path coefficients, and p-values), the

7CR D � P
	i

�2
=
�
.
P

	i/
2 C P

i var."i/
�
.

8Cronbach’s ˛ D N=.N � 1/ � �
1 � P

i 
2
i =
2

t

�
where N is the number of items, 
i is the variance

of item i, and 
t is the variance of the variable score.



110 5 Empirical Validation

effect sizes (f 2), and the predictive power Q2 are discussed. The PLS algorithm and
the bootstrapping re-sampling method with 81 cases and 1000 re-samples were used
to estimate the structural model.

Model evaluation. The predictive power of the model can be determined using
the ratio of variance explained in the dependent variable compared to its overall
variance. R2, also referred to as coefficient of determination, is a standardized
measure ranging from 0 to 1 indicating the explanatory accuracy of the independent
variables in regard to the dependent variable (Wooldridge 2013). An R2 value of 1 is
hereby defined as explaining 100 % of the variance can be explained. Homburg and
Giering (1996) suggest that the value should be higher than 0.4 while others claim
that no universal threshold can be determined. In this study, 43 % of the variance in
team performance was explained with the proposed model, while team potency and
the moderated effect of backup behavior account for 36 % of the variance and the
control variables add additional 7 % (see Fig. 5.10).

Hypotheses testing. First, the strength of the hypothesized relationships between
the model variables are examined. The path coefficients indicate the extent to which
a marginal increase in the independent variable is reflected in the dependent variable.
The significance level provides confidence about the robustness of these findings.
PLS uses a bootstrapping approach to calculate these significance level based on
1000 sub-samples of the sample. Most of the proposed hypotheses can be explained
by the model (see Fig. 5.10). Table 5.16 summarizes the results providing the t-
values and path coefficients.

The model provides support for the adoption intensity of software development
practices to increases the sharedness of the mental models of team members (H1).
Moreover, shared mental models (H2b) and agile software development (H2a)
enhance the backup within the teams. The path coefficients are significant at a 2.5 %
and 1 % level. Backup behavior does not directly impact team performance (H3a).
Only in case of high technological uncertainty, backup improves team performance
(H3b). This relationship can be reported at a 5 % confidence level.

The adoption of agile development practices exerts a second effect via higher
team confidence. Team potency is positively influenced by the usage of agile soft-
ware development practices (H4). The relationship is significant at a 1 % confidence
level. Furthermore, higher team potency increases the externally assessed team
performance (H5), also at a 1 % significance level.

The strength of each endogenous variable explaining team performance was
further evaluated. f 2I9 is the effective size, a common statistic measure to estimate
the change in R2 upon addition of an endogenous variable to the model (Chin
1998b). The effect size of a latent variable indicates how much R2 changes if
the respective variable is removed from the model. Chin (1998b) recommends the
following thresholds: 0.02 (small), 0.15 (medium), 0.35 (large) effects. Table 5.17
presents the effect sizes for the team performance. The three significant predictor
variables have a small or medium effect on team performance.

9f 2 D �
R2

incl � R2
excl

�
=
�
1 � R2

incl

�
.



5.4 Integrated Prediction Model 111

Te
am

 A
ff

ec
tio

n

Te
am

 B
eh

av
io

r

Te
am

 C
og

ni
tio

n

Te
am

 
Pe

rfo
rm

an
ce

P3
(+

)
P2

a(
+)

C
on

tro
ls

Te
am

 S
iz

e
Ex

pe
rie

nc
e 

D
iv

er
si

ty

P2
b(

+)

Te
am

 
Po

te
nc

y

Sh
ar

ed
 

M
en

ta
l 

M
od

el
s

Ba
ck

up
 

Be
ha

vi
or

Ag
ile

 
Pr

ac
tic

es
U

se

Te
ch

n.
 U

nc
er

ta
in

ty
x

Ba
ck

up
 B

eh
av

io
r

0.
35

**
*

n.
s.

0.
16

*
R2

= 
0.

43
 

**
* 

p<
0.

01
**

 
p<

0.
02

5 
* 

p<
0.

050.
19

**

F
ig

.5
.1

0
E

st
im

at
io

n
of

th
e

in
te

gr
at

ed
pr

ed
ic

ti
on

m
od

el



112 5 Empirical Validation

Table 5.16 Effects of using agile practices on team performance

Hyp. Independent var. Dependent var. Path Sig. t-val. Support

H1 AGILE SHARED 0:38 *** 3:94 YES

H2a AGILE BACKUP 0:33 ** 2:09 YES

H2b SMM BACKUP 0:35 *** 3:37 YES

H3a BACKUP PERFORMANCE �0:05 n.s. 0:60 NO

H3b BACKUP�UNCERTAIN PERFORMANCE 0:16 * 1:66 YES

H4 AGILE POTENCY 0:32 *** 3:79 YES

H5 POTENCY PERFORMANCE 0:37 *** 4:15 YES

***/**/* significant at the 1 % / 2.5 % / 5 % level, n.s. not significant
p < 0.01: t = 2.334; p < 0.025: t = 1.965; p < 0.05: t = 1.648
df = 999 (1000 bootstrap samples)

Table 5.17 Effect sizes of all predictor variables on team performance

Endogeneous variable R2
incl R2

excl Effect size f 2 Assessment

BACKUP�UNCERTAIN 0.43 0.40 0.05 Small

POTENCY 0.43 0.30 0.23 Medium

ExperienceDiversity 0.43 0.36 0.13 Small

Table 5.18 Stone-Geisser criterion the predictor

Endogeneous variable Q2
incl Q2

excl Stone-Geisser Q2 Assessment

BACKUP�UNCERTAIN 0.35 0.35 0.01 Ok

POTENCY 0.35 0.25 0.16 Ok

The predictive relevance of the latent endogenous variables can be further
assessed using the Stone-Geisser Criterion (Geisser 1975; Stone 1974). PLS
deploys this approach in combination with a blindfolding procedure (Chin 1998b).
Blindfolding omits a subset of a data sample during parameter estimation to then
estimate the omitted data sets. This is executed until every data point has been
omitted at least once. For a latent variable �, the Stone-Geisser criterion Q2;10 can
be calculated. The model has predictive relevance if Q2 is larger than zero. In case
of zero, the predicted value is not better than taking the mean value as an estimator.
All predictors of team performance suffice this criterion (see Table 5.18).

Control variables. In addition to these theoretical hypotheses, the model con-
trolled for the team size and the team diversity. The developers’ rating of their
experience in professional software development was utilized to calculate each
team’s experience diversity in the sample as the standard deviation of the team
members’ years of experience as professional software developers. The team size

10Q2 D 1 � � P
E!=

P
O!

�
where E! are the squared errors of the predicted values and O! the

squared error using the mean as prediction value.



5.5 Summary 113

did not have a significant effect on team performance (ˇ D 0:01, t-value: 0.13).
Experience diversity, however, had a significant effect (ˇ D 0:28, t-value: 3.08).

5.5 Summary

This study examines the effect of the adoption of agile software development
practices on team performance. The research model hypothesizes a direct effect on
team potency, team shared mental models, and team backup behavior. Subsequently,
team potency and backup behavior are theorized to directly impact the performance
of the team. Hence, an indirect effect of using agile software development practices
on team performance through various teamwork aspects was studied.

Data from 81 software development teams containing 491 developers, 79 Scrum
Masters, and 67 product owners was collected to empirically test this model. This
chapter provided an overview of the study sample (Sect. 5.1). Then, insights in the
performance ratings of the teams were discussed. Second, the research hypotheses
were tested (see Sect. 5.3) using regression analysis techniques. The last section
of this chapter integrated all research hypotheses into a combined model. The
SEM-PLS approach was used to estimate the parameters of this team performance
prediction model.

In conclusion, the proposed hypotheses are supported by the empirical data. The
strength of the relationship between the model variables is low to medium, the
statistical analyses provide medium to high confidence level for these statements.
The following chapter will discuss and interpret the findings in the context of
previous studies.



Chapter 6
Discussion

In this chapter, the results of this study are discussed and its contributions are
highlighted. Section 6.1 briefly summarizes the study findings followed by the
discussion of the theoretical and practical contributions in Sects. 6.2 and 6.3. The
limitations of this study as well as opportunities for future research are finally
outlined in Sect. 6.4.

6.1 Summary of the Research Findings

This study confirms previous findings that agile software development positively
influences the performance of software development teams (i.a. Lee and Xia 2010;
Maruping et al. 2009a; Ramesh et al. 2012; Sarker et al. 2009). The study further
advances the understanding of agile software development and helps better explain
the performance implications. In the following paragraphs, the three research
questions are recapitulated and their results are summarized (Fig. 6.1).

RQ1: What Is the Performance of a Software Development Team?

The interview and survey results confirm the prevailing opinion of team per-
formance as a multidimensional concept. The study distinguishes between four
performance dimensions, categorized as outcome-oriented and process-oriented.
These are (1) software quality as an outcome-oriented performance dimension as
well as (2) delivery progress, (3) delivery transparency, and (4) delivery predictabil-
ity as process-oriented performance dimensions. In the collected survey data, these
four performance dimensions explain 76 % of the variance in product owners’
overall team performance perceptions. The delivery velocity ratings are the best
predictor for team performance (ˇ D 0:55, p < 0.001), while delivery transparency

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_6

115



116 6 Discussion

Agile Software 
Development

Team 
Performance

Teamwork
Mechanisms

Software Development Team

RQ1

RQ2

Q3RQ3

Fig. 6.1 Research objectives

(ˇ D 0:27, p < 0.01), and software quality ratings (ˇ D 0:19, p < 0.05) are also
significant, but less relevant (see Fig. 5.7 on page 95).

RQ2: What Are the Latent Teamwork Mechanisms Affected by Agile
Software Development in Software Development Teams?

This study postulates a mediated performance effect of agile software development
through affective, behavioral, and cognitive teamwork mechanisms (see Sect. 3.3).
These propositions were derived from team effectiveness theories and tested with
data collected through a survey with professional software development teams at
SAP SE. Overall, the test results confirm the effects on shared mental models (team
cognition, ˇ D 0:38, p < 0.01), backup behavior (team behavior, ˇ D 0:19, p <
0.025), and team confidence (team affection, ˇ D 0:32, p < 0.01). These results are
illustrated in Fig. 5.10 on page 111.

RQ3: How Does Agile Software Development Influence the Performance of
Software Development Teams?

The empirical data confirm the study’s basic assumption that software development
teams work in highly dynamic environments. Team adaptation was found as
an important mechanism determining the performance of software development
teams as the two related markers of team adaptation were more pronounced in
high performance teams. In case of high technological uncertainty, team backup
behavior was positively related with team performance (ˇ D 0:16, p < 0.05).
Shared mental models were found as important antecedents of team backup behavior
(ˇ D 0:35, p < 0.01). The findings further demonstrate team confidence (ˇ D 0:38,
p < 0.01) as an important antecedent of team performance.

Overall, the survey results support the theorized mediation effect of agile
software development on team performance through these teamwork mechanisms.
The integrated performance prediction model explains 43 % of the variance in the
team performance ratings (see Fig. 5.10 on page 111).



6.2 Theoretical Contributions 117

6.2 Theoretical Contributions

The study results outlined above offer a number of theoretical contributions, both
relevant for IS development and team effectiveness research.

Better Understanding of the Impact of Agile Software Development on
Teamwork Mechanisms

Agile software engineering evolved from the knowledge of experienced consultants
and industry best practices (see Sect. 2.2). While the number of scientific publica-
tions demonstrates a clear interest of academic scholars (see Sect. 2.3), theory-based
research on agile software development remains limited (Dingsøyr et al. 2012;
Dybå and Dingsøyr 2008). This study addresses this research gap by grounding
the research in established theories from team effectiveness research (see Chap. 3).
Previous scholars have taken a similar approach and analyzed various teamwork
factors and their performance implications in agile software development teams.
Exemplary studies discussed coordination mechanisms (Li and Maedche 2012;
Strode et al. 2011, 2012; Xu and Cao 2006), control mechanisms (Maruping et al.
2009a), or team autonomy (Lee and Xia 2010), communication (Hummel et al.
2013a; Rosenkranz et al. 2013), social loafing (McAvoy and Butler 2006), control
(Maruping et al. 2009a), or collective mindfulness (McAvoy et al. 2013; Nagle
et al. 2011) (see overview in Table A.1). This study advances the knowledge about
agile development teams with two additional perspectives. The study integrates
theoretical arguments from (a) team adaptation theory and (b) team confidence
theory.

Add (a) The study builds on previous studies which have emphasized the impor-
tance of adaptation in software development teams (Lee and Xia 2010; MacCor-
mack et al. 2001). For instance, Lee et al. (2010) examined software development
teams and their ability to react to changing software requirements. The author agrees
on change being an inherent characteristic of software development projects, while
broadening the perspective. The study assumes software development teams to
not only face volatile requirements, but to be exposed to frequent technological,
task-specific, and/or organizational change throughout the development process.
Consequently, team adaptation is considered an essential teamwork factor deter-
mining the performance of software development teams. Team adaption theory
explains the team mechanisms enabling team adaption. Based on this theory,
the study investigates two decisive mechanisms of team adaptation in software
development teams, namely shared mental models and backup behavior, and links
them to the use of agile development practices. Surprisingly, no previous study
has extended the explanations provided by team adaptation theory to study agile
software development teams before.

In addition to these contributions, the study findings have wider implications.
Solving tasks together with a colleague (pair programming) or reviewing fellow



118 6 Discussion

colleagues’ work (code review) are work practices seamlessly transferable to work
contexts beyond the software development domain. The study results therefore
also contribute to a better understanding of team adaptation in other knowledge-
intensive contexts, such as new product development (Bhattacharya et al. 1998).
Furthermore, the discussed mechanisms of team adaptation help better understand
the development of teams’ dynamic capabilities (Eisenhardt and Martin 2000)
necessary to succeed in dynamic work environments.

Add (b) The study offers a second explanatory perspective on the team perfor-
mance effect of agile software development practices. A team’s level of confidence
was suggested as another influential factor of team performance (Bandura 1986).
Confident teams are expected to set higher goals, to be more determined to achieve
their goals, and show greater persistence in the face of obstacles, challenges, or
setbacks (see Sect. 3.1). The positive impact of agile software development practices
on team confidence provides a novel explanation why agile software development
positively affects the performance of software development teams. While the
literature on team confidence has mostly focused on performance implications,
less attention has been paid to the antecedents of team confidence. Studies on the
emergence of collective confidence beliefs have mostly focused on past performance
or leadership and only rarely examined the behaviors of team members (see the
review article by Gully et al. 2002). Thus, this study also contributes to team
confidence literature showing a positive relationship between the use of agile
development practices and team confidence. The results demonstrate an influence
of individual level behavior on team confidence. No previous study has revealed
such a relationship before.

Better Explanation of Teamwork and the Impact on Team Performance

On the one hand, the positive relationship between team confidence and backup
behavior on team performance is an empirical confirmation of previous studies in
the software development domain. On the other hand, it is a previously unrecognized
explanation why the adoption of agile development practices leads to higher team
performance.

The study further confirms previous findings of uncertainty being an inherent
characteristic of software development projects (Nidumolu 1995). While the use of
agile practices was unconditionally positively related with team backup behavior,
backup was only found to be beneficial in case of high uncertainty. When facing
predictable tasks, the empirical findings even revealed a negative impact of backup
behavior on team performance (see Fig. 5.9 on page 106). With this result, the
study is among the first to provide a reason for the effectiveness of agile software
development in uncertain work contexts. No previous study has demonstrated this
effect so far.

Over the last decades, team effectiveness research has elucidated a wide spectrum
of influencing factors of team performance (i.a. Cohen and Bailey 1997; Mathieu



6.2 Theoretical Contributions 119

et al. 2008). Moreover, there is anecdotal evidence that developers’ expertise with
a technology, developers’ programming skills, and team leadership are the essential
predictors of team performance. Nevertheless, the integrated research model is able
to explain 43 % of the variance of the team performance ratings. Given the multitude
of factors influencing team performance, this outcome is encouraging and sets the
scene for more team-based research projects to advance the knowledge about agile
software development.

Finally, the study underlines the importance of teamwork in software develop-
ment projects. The study provides proof for the benefits of teamwork mechanisms
leading to successful software development. Obviously, developers working alone
neither develop these collective mechanisms nor do they benefit from them. For
instance, developers working outside a team setting can never ask for support or
assistance when needed. Therefore, the study findings corroborate previous work
claiming a superiority of team-based work structures over a group of individual
workers. Thus, the study contributes to the discussion why teams outperform the
same group of software developers working alone.

Development of an Instrument for Measuring Team Performance

Cumulative research on the performance of software development teams requires
clear assessment criteria. A review of previous studies on software development
teams, however, has revealed weaknesses in the current approaches. Apart from
conceptual diversity, reliable measurement instruments to empirically assess the per-
formance of agile software development teams are needed. Unfortunately, many of
the existing approaches are—for various reasons (see discussion in Sect. 3.2)—not
applicable to evaluate development teams in agile software development projects.
This study addresses this gap by providing an overview of existing performance
concepts and, subsequently, develop a new measurement instrument to assess the
performance of agile software development teams.

Research has shown a tenfold difference in quality and productivity between
programmers with the same level of experience. Similar differences are assumed
at the team level (McConnell 2010). The collected data of this study confirm these
findings with significant differences in the performance assessment of the studied
software development teams. Some teams delivered satisfying software only every
other sprint, while the high performance teams almost always delivered to promise.
To better understand reasons for these team performance differences, new team-
based performance measures were required and therefore developed for this study.

Better Understanding of the Team Performance
Construct

The studied agile development practices were originally introduced as quality
assurance techniques (Schwaber and Beedle 2002). Consequently, many studies



120 6 Discussion

examined the effect of agile software development on the quality of the delivered
software (see Fig. 3.6). This study, however, has taken a broader perspective
and analyzed the effect on team performance. For that purpose, the teams’ key
stakeholders provided their subjective performance ratings for all participating
teams. For agile software development teams, Product Owners (POs) are the key
team stakeholder. Hence, the study first analyzed how POs assess the performance
of their teams and derived a new measurement instrument to assess the performance
of agile software development teams.

POs frequently promise new features to their customers and expect their teams to
implement new software functionality. Only if a team delivers to promise, POs can
keep their word to their customers. Hence, delivery reliability and delivery progress
are highly relevant performance dimensions, aside the software quality dimensions.
This study follows this multidimensional perspective of the team performance
construct. Evaluating agile software development in terms of its impact on software
quality only may unnecessarily restrict the evaluation perspective.

The survey results confirm this approach. The analysis of the performance
ratings indicate that the process-oriented performance dimensions (transparency and
delivery progress) are decisive determinants of POs’ team performance perception.
These findings help not only to better understand the performance construct for agile
development teams, but allow a more comprehensive evaluation approach for agile
software development compared to previous studies.

Development of an Instrument for Measuring Shared Mental Models and
Backup Behavior

Team effectiveness research has developed numerous procedures to measure shared
mental models of work teams, while no measurement instrument to quantify team
backup behavior was found at all. The existing measures are very time-consuming
and can—for economical reasons—not be used in large-scale field studies with
professional software developers1 (see Sect. 4.3). Therefore, a new procedures to
quantify backup behavior and shared mental models in software development teams
were developed and successfully deployed.

The new questionnaire-based approach offers an efficient and promising way
to operationalize these latent constructs (see Sect. 4.3). Moreover, the proposed
measurement procedures allow much more detailed insights into teams’ inner
structures compared to previous measurement approaches. For instance, researchers
could analyze configural or shared multi-level constructs and their emergence in
work teams (Klein et al. 1994). This level of detail is particularly interesting to
study in agile software development teams. The agile Scrum methodology, for

1Even with the newly developed measurement instrument, this study went to the limits of what
was economically acceptable by the researched company. The overall work time spent by all
study participation added up to about e36,000 (600 respondents 45 min; conservative estimation
of e80/h per respondent).



6.3 Practical Implications 121

example, suggests to develop software in cross-functional teams, i.e. teams with no
role specialization such as testers or user interface specialists. Such fundamental
decisions may significantly influence the communication or cognitive structure
of teams and thus, their performance. The proposed measurement procedures
provide researchers with the necessary data to analyze the resulting change in inner
team structures to understand the effects on the teams. No previous measurement
approach provided such detailed insights before.

Embedded Research as a Valuable Research Approach for ISD Researchers

The embedded research approach was a central element of this study. The research
setting offered valuable insights into various software development teams and
offered the necessary access to conduct a survey with a large number of comparable
software development teams. Future IS researchers may replicate a similar research
setup in other companies. The gained insights will help the IS research community
close the gap between academia and industry, a necessary step as IS research still
lags behind the advancements in industrial software engineering.

Furthermore, the combined perspective may help researchers to detect emerging
development methods early without neglecting the required rigor for conducting
academic studies. Embedded research not only allows scholars to work on theoret-
ical explanations of existing development methods, but increase their awareness of
emerging trends. Ideally, researchers will position themselves to guide and consult
software development companies with context-specific software development meth-
ods derived from their theoretical understanding. Overall, this study is considered
as an interesting case study for embedded research in the IS domain.

6.3 Practical Implications

The studied agile software development practices were originally introduced as
quality assurance techniques for individual developers (Beck 2000; Schwaber
and Beedle 2002). Consequently, decision makers may assess their usefulness in
respect to the impact on software quality and delivered feature scope of individual
developers. This study, however, adopts a team perspective emphasizing the social
aspects of software development and the importance of teamwork factors. The
results clearly demonstrate the effect of using agile software development practices
on various teamwork mechanisms. Hence, agile development practices should not
be seen as a trade-off between immediate quality benefits and the required effort for
applying the practices. Instead, project leaders and developers are advised to include
long-term effects on emergent teamwork mechanisms into their evaluation.

In contrast to other areas of engineering, software engineers are exposed
to frequent changes in their working environment (Boehm 2006). Therefore,
new development methods, technologies, and management approaches frequently



122 6 Discussion

emerge. This trend is likely to continue in the coming years as the global economy
becomes more information-intensive. Not every new direction is likely to become
mainstream and many of these new developments might just be recycled concepts.
This poses a challenge for managers to understand if and when they should deploy
new software development methods. Many organizations either adopt a trial-and-
error approach or simply follow the herd. This study provides a third approach:
understanding the underlying concepts and mechanisms which drive the newly
proposed software development methods. This approach allows decision makers
to predict the impact and effectiveness of new methods in relevant project contexts.
Applied to the impact of agile software development on shared mental models and
backup behavior, this study presents decision makers with important teamwork
aspects to consider when evaluating the merits of new software development
practices.

The study confirms previous findings of uncertainty as a significant influencing
factor for the performance of software development teams. Even though many
sources of uncertainty are beyond the control of project leaders, they should be
aware of its negative influences on team performance. As a consequence, projects
leaders are advised to maximize their efforts to avoid uncertainty for their develop-
ment teams wherever possible. For projects facing project endogenous technological
uncertainty, agile software development practices are now demonstrated as a helpful
mean to mitigate the negative impact on team performance due to an increased
provision of backup among team members.

SAP SE is one of the largest software development organizations. While agile
software development was originally introduced as an approach for small teams,
the study results confirm the trend of agile software engineering becoming a
mainstream development approach adopted by large-scale global players (West et al.
2010). The introduction of agile software development means a cultural change
to a development organization. Despite the extensive investment into the training
program—overall more than 5000 SAP developers participated—many developers
still do not use the studied agile practices (see Sect. 5.1). The descriptive data of this
study clearly indicate a significant variation of the adoption intensity by the studied
developers and teams. This underpins the notion of necessary long-term efforts to
transform a traditional development organization into an agile one.

6.4 Limitations of the Study and Future Research

The embedded research approach has both advantages and disadvantages. On the
one hand, it provides unique access to software development teams to conduct
such large-scale surveys, to interview numerous people on the same topic, and
observe several teams during their daily work. On the other hand, embedded
researchers may develop a biased perspective on the researched phenomenon as
context-specific characteristics influencing the research phenomena may not be
considered. Furthermore, all study participants are part of the same organization.



6.4 Limitations of the Study and Future Research 123

In this study, all teams were even located in Germany and primarily developed
application software. While the resulting study sample controls for contextual
factors arising from inter-firm differences, the study results may be limited in their
generalizability.

Future researchers are therefore encouraged to replicate this study in other
contexts. In particular, researchers may survey teams developing various types of
software, working in different cultural backgrounds, or in smaller companies. An
extended survey sample would further improve the control over yet unconsidered
contingency factors to capture confounding factors in the model. Especially,
the newly developed measurement approach for shared mental models, backup
behavior, and team performance would benefit from additional validations in
other research contexts. Researcher may test the effect of shared mental models,
backup behavior, and team confidence also in non-agile software development
teams. Comparing results between teams of both development paradigms may
provide valuable insights for the IS field and the evaluation of the agile software
development.

Another limitation of the study is its static perspective for studying team
adaptation, an inherently dynamic phenomenon. The study used static markers of
team adaptation as proxy variables assuming that adaptive teams develop these
markers over time (Rosen et al. 2011). While this approach is an accepted way
to circumvent this challenge in cross-sectional studies, a dynamic perspective may
have provided more detailed insights into team adaption. Future studies are therefore
advised to measure teamwork in agile development teams at different points in
time. The resulting longitudinal data could be used to analyze causal relationships
over time and additionally analyze cyclic or reinforcing effects of agile software
development. Alternatively, the performance of the participating teams could be
measured after an extended waiting period post surveying the team members.

There are certain limitations inherent to the used measurement methods. The
study results are based on subjective ratings. In particular, developers estimated
their level of automated tests on a 10-point Likert scale in retrospective or the
software quality was subjectively rated by the Area Product Owners. Future
studies may complement these subjective measures with objective metrics. Possible
objective metrics may include automatically calculated code coverage of teams’
software code base. Furthermore, some teams have distinct quality indicators,
such as customer satisfaction ratings of the delivered software, software adoption
rates, generated revenue with the developed software, or returning customer error
messages, potentially suited as objective metric. Extraction of such data for all
participating teams was beyond the scope of this study. Future studies may also
include objective performance indicators for the evaluation of the agile development
approach.

On a different note, the study collected data from at least five respondents
per team. This data, however, were aggregated to team scores by calculating the
arithmetic mean for each team, compressing the gathered information. Future work
may apply multilevel analysis techniques to discover intra-team variances for more



124 6 Discussion

accurate research models. Moreover, scholars may analyze the data for nonlinear
relationships and investigate hierarchical effects.

Future research may elaborate on the conceptual and empirical elaboration of the
team performance construct. Aside the conceptual discussion, new measurement
instruments need to be developed and tested. This study provided a new approach
which needs to be discussed and further validated. In addition, researchers should
delineate the differences between the team performance, team effectiveness, and
software development project success concepts. Other researchers may examine
effects of agile software development on individual performance metrics, such as
developers’ level of satisfaction, motivation, or perceived stress at work.

Finally, team effectiveness research provided a broad spectrum of explanations
improving the understanding of the agile development paradigm. So far, there are
only a few studies leveraging this body of knowledge. Future studies may analyze
other teamwork mechanisms and their effect on the performance in agile software
development teams. Combining these findings with the results of this study may
advance the understanding of agile software development even further.



Chapter 7
Conclusion

Many software companies follow an agile development approach today (VersionOne
2012). Originally introduced as a counter-movement from the plan-driven approach,
agile software development is mainstream today (West et al. 2010). The approach
gained its popularity through the postulation of the Agile Manifesto and the
persuasiveness of its four core values in 2001 (Fowler 2002). These agile values are
reflected in numerous development methods and practices which were introduced
by experienced consultants in the end of the 1990s and beginning 2000s and later
labeled as “agile methods”. Scrum (Schwaber and Beedle 2002) and Extreme
Programming (Beck 2000) are the most popular today. Scrum is a team-based
development framework, often combined with Extreme Programming development
practices shaping the daily implementation work of individual developers, such
as pair programming, automated testing, or code review. Despite its popularity,
a theoretical understanding of agile software development is still in its infancy
(Dingsøyr et al. 2012; Dybå and Dingsøyr 2008).

This study addressed this research gap. It examined the impact of agile software
development practices on the performance of development teams. First, the study
examined the team performance concept. Existing performance concepts and
measurement approaches found in previous studies were compared with insights
from 15 project leaders at SAP SE. The findings led to the development of a new
measurement instrument to assess the performance of agile software development
teams. Then, consulting and scholarly literature on agile software development
were analyzed. The gained insights were combined with existing theories, concepts,
and measurement methods provided in team effectiveness research (i.e. Cohen and
Bailey 1997; Kozlowski and Bell 2003; Mathieu et al. 2008). Drawing on team
adaptation theory (Burke et al. 2006b; Rosen et al. 2011) and knowledge on team
confidence (Bandura 1986; Gully et al. 2002), a theoretical research model was
derived. Agile software development was proposed to not only directly influence
the performance of software development teams, but simultaneously improve team
confidence, shared mental models, and backup behavior of software development

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0_7

125



126 7 Conclusion

teams. The positive impact of backup behavior on team performance was suggested
to be more pronounced in teams facing high technological uncertainty.

The research model was tested with data from 81 software development teams
at SAP SE. From all teams, developers, Scrum Masters, and Product Owner were
invited to answer role-specific questionnaires. While developers and Scrum Masters
rated the adoption intensity of agile software development and the studied teamwork
mechanisms, the Product Owners assessed the team performance. The collected data
was analyzed with regression and structural equation modeling techniques. First, the
inner structure of the performance construct was examined. Then, the explanatory
power of shared mental model, backup behavior, and team confidence for team
performance were tested.

The study provides support for the theorized mediation effect on team perfor-
mance through these teamwork mechanisms. First, the use of agile development
practices leads to higher team confidence. This finding is relevant as more confident
teams were shown to be more determined to achieve their goals, set higher goals,
and exert more effort when facing difficulties (Gully et al. 2002). Hence, this study
finds team confidence as a determining factor of team performance in agile software
development teams. Second, the study results show that agile software development
leads to better common understanding in the teams (shared mental models) and
more intense backup behavior among team members. Finally, team backup behavior
was found to be more relevant for team performance in case of high technological
uncertainty.

This study is a response to the frequent calls for more theory-based, industrial
case studies on agile software development (Dingsøyr et al. 2012; Dybå and
Dingsøyr 2008). First, it advances the understanding of the performance concept
of software development teams. Second, it contributes to the still limited theoretical
understanding of agile software development and its impact on team performance.
The demonstrated hidden teamwork mechanisms provide prior unrecognized theo-
retical explanations for the alleged performance effect. These insights are expected
to help decision makers in industry to make more rational decisions about the
use of agile software development practices. In addition, the study introduced new
measurement instruments to assess the performance of software development teams
as well as shared mental models and backup behavior. Future studies should build
on the provided insights and examine further teamwork aspects to advance the
understanding of agile software development.



Appendix A
Appendix

A.1 Agile Information Systems Development: Literature
Review

Section 2.3 provides an overview of existing studies on agile software development
in the software engineering literature (SE) as well as the information systems
research (IS) literature streams. While there are various review articles providing
a comprehensive overview of the SE field (see Table 2.5 on page 31), no review
article exists summarizing the IS research literature. Hence, this study reviewed the
central IS outlets for studies on agile software development published between 2000
and 2014.

Table A.1 provides an overview of 72 articles found as a result of the structured
literature analysis. The table includes the research focus, the research context, the
used research methods, as well as the theoretical foundations of each article. The
list of the reviewed IS outlets are listed at the bottom of the table.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0

127



128 Appendix A

T
ab

le
A

.1
Pu

bl
ic

at
io

ns
on

ag
il

e
so

ft
w

ar
e

de
ve

lo
pm

en
ti

n
IS

re
se

ar
ch

Pu
bl

ic
at

io
n

R
es

ea
rc

h
fo

cu
s

C
on

te
xt

R
es

ea
rc

h
m

et
ho

d
Fo

un
da

ti
on

A
ut

ho
r(

s)
O

ut
le

t

Agility

Adoption

Adaptation

Projectmgmt.

Teamwork

Distributed

Large-scale

Maintenance

Casestudy

Survey

Experiment

Simulation

Lit.review

Conceptual

T
he

or
y

or
m

od
el

B
at

ra
et

al
.(

20
06

)
A

M
C

IS
x

x
x

B
on

ne
r

et
al

.(
20

10
)

A
M

C
IS

x
x

T
he

or
y

of
in

no
va

ti
on

di
ff

us
io

n

B
ro

w
n

et
al

.(
20

04
)

A
M

C
IS

x
x

C
ho

et
al

.(
20

06
)

A
M

C
IS

x
x

x

D
ab

ro
w

sk
i

et
al

.(
20

11
)

A
M

C
IS

x
x

x
x

x

E
lb

an
na

an
d

M
ur

ra
y

(2
00

9)
A

M
C

IS
x

x
T

he
or

y
of

co
ll

ec
tiv

e
m

in
df

ul
ne

ss

G
re

go
ry

et
al

.(
20

13
)

A
M

C
IS

x
x

T
he

or
y

of
or

ga
ni

za
ti

on
al

co
nt

ro
ls

H
um

m
el

an
d

R
os

en
kr

an
z

(2
01

3)
A

M
C

IS
x

x
Te

am
in

pu
t-

pr
oc

es
s-

ou
tp

ut
m

od
el

Ja
in

an
d

M
es

o
(2

00
4)

A
M

C
IS

x
x

T
he

or
y

of
co

m
pl

ex
ad

ap
tiv

e
sy

st
em

s

K
ar

ek
ar

et
al

.(
20

11
)

A
M

C
IS

x
x

R
us

so
et

al
.(

20
13

)
A

M
C

IS
x

x
T

he
or

y
of

in
no

va
ti

on
di

ff
us

io
n

Su
n

an
d

Sc
hm

id
t(

20
13

)
A

M
C

IS
x

x

X
u

an
d

C
ao

(2
00

6)
A

M
C

IS
x

x
T

he
or

y
of

co
or

di
na

ti
on

Y
an

g
et

al
.(

20
09

)
A

M
C

IS
x

x
x

L
ea

de
rs

hi
p

th
eo

ry

B
aj

ec
et

al
.(

20
04

)
E

C
IS

x
x

x
x

H
um

m
el

an
d

R
os

en
kr

an
z

(2
01

3)
E

C
IS

x
x

x
O

rg
an

iz
at

io
na

lc
om

m
un

ic
at

io
n

th
eo

ry
;

m
ed

ia
na

tu
ra

ln
es

s
th

eo
ry

K
ea

ve
ne

y
an

d
C

on
bo

y
(2

00
6)

E
C

IS
x

x



Appendix A 129

K
ud

e
et

al
.(

20
14

)
E

C
IS

x
x

Te
am

ad
ap

ta
ti

on
th

eo
ry

L
aw

re
nc

e
an

d
R

od
ri

gu
ez

(2
01

2)
E

C
IS

x
x

L
as

sw
el

lv
al

ue
fr

am
ew

or
k

M
cA

vo
y

et
al

.(
20

06
)

E
C

IS
x

x
A

ge
nc

y
th

eo
ry

M
cA

vo
y

an
d

B
ut

le
r

(2
00

6)
E

C
IS

x
x

N
ag

le
et

al
.(

20
11

)
E

C
IS

x
x

x
x

T
he

or
y

of
co

ll
ec

tiv
e

m
in

df
ul

ne
ss

O
ve

rh
ag

e
an

d
Sc

hl
au

de
re

r
(2

01
2)

E
C

IS
x

x
x

T
he

or
y

of
in

no
va

ti
on

di
ff

us
io

n

Sp
oh

re
r

et
al

.(
20

13
)

E
C

IS
x

x

Ta
nn

er
an

d
W

al
la

ce
(2

01
2)

E
C

IS
x

x
x

x
T

he
or

y
of

pr
ac

ti
ce

V
id

ge
n

an
d

W
an

g
(2

00
6)

E
C

IS
x

x
x

T
he

or
y

of
co

m
pl

ex
ad

ap
tiv

e
sy

st
em

s

W
an

g
an

d
C

on
bo

y
(2

00
9)

E
C

IS
x

x
x

T
he

or
y

of
co

m
pl

ex
ad

ap
tiv

e
sy

st
em

s

W
an

g
et

al
.(

20
08

)
E

C
IS

x
x

W
an

g
an

d
V

id
ge

n
(2

00
7)

E
C

IS
x

x
T

he
or

y
of

co
m

pl
ex

ad
ap

tiv
e

sy
st

em
s

W
an

g
et

al
.(

20
11

)
E

C
IS

x
x

x

C
ao

et
al

.(
20

13
)

E
JI

S
x

x
x

A
da

pt
iv

e
st

ru
ct

ur
at

io
n

th
eo

ry

C
ao

et
al

.(
20

09
)

E
JI

S
x

x
A

da
pt

iv
e

st
ru

ct
ur

at
io

n
th

eo
ry

Fi
tz

ge
ra

ld
et

al
.(

20
06

)
E

JI
S

x
x

K
ar

ls
so

n
an

d
Å

ge
rf

al
k

(2
00

9)
E

JI
S

x
x

A
ct

iv
it

y
th

eo
ry

Ly
yt

in
en

an
d

R
os

e
(2

00
6)

E
JI

S
x

x
IT

in
no

va
ti

on
an

d
or

g.
le

ar
ni

ng
m

od
el

M
an

ga
la

ra
je

ta
l.

(2
00

9)
E

JI
S

x
x

x
T

he
or

y
of

in
no

va
ti

on
di

ff
us

io
n

M
ar

up
in

g
et

al
.(

20
09

b)
E

JI
S

x
x

x
T

ra
ns

ac
tiv

e
m

em
or

y
sy

st
em

s
th

eo
ry

M
cA

vo
y

an
d

B
ut

le
r

(2
00

9)
E

JI
S

x
x

G
ro

up
th

in
k

th
eo

ry

Po
rt

an
d

B
ui

(2
00

9)
E

JI
S

x
x

H
om

e
gr

ou
nd

th
eo

ry

Sa
rk

er
et

al
.(

20
09

)
E

JI
S

x
x

x

B
er

ge
r

an
d

B
ey

no
n-

D
av

ie
s

(2
00

8)
IC

IS
x

x
T

he
or

y
of

in
no

va
ti

on
di

ff
us

io
n (c

on
ti

nu
ed

)



130 Appendix A

A
.1

(c
on

ti
nu

ed
)

Pu
bl

ic
at

io
n

R
es

ea
rc

h
fo

cu
s

C
on

te
xt

R
es

ea
rc

h
m

et
ho

d
Fo

un
da

ti
on

A
ut

ho
r(

s)
O

ut
le

t

Agility

Adoption

Adaptation

Projectmgmt.

Teamwork

Distributed

Large-scale

Maintenance

Casestudy

Survey

Experiment

Simulation

Lit.review

Conceptual

T
he

or
y

or
m

od
el

L
ee

et
al

.(
20

10
)

IC
IS

x
x

x
O

rg
an

iz
at

io
na

la
m

bi
de

xt
er

it
y

th
eo

ry

L
ia

nd
M

ae
dc

he
(2

01
2)

IC
IS

x
x

x
T

he
or

y
of

co
or

di
na

ti
on

L
oh

an
et

al
.(

20
10

)
IC

IS
x

x
x

B
ey

on
d

bu
dg

et
in

g
m

od
el

Sc
hl

au
de

re
r

an
d

O
ve

rh
ag

e
(2

01
3)

IC
IS

x
x

T
he

or
y

of
in

no
va

ti
on

di
ff

us
io

n

Sc
hm

id
te

ta
l.

(2
01

3)
IC

IS
x

x
Te

am
ad

ap
ta

ti
on

th
eo

ry

Z
he

ng
et

al
.(

20
07

)
IC

IS
x

x
O

rg
an

iz
at

io
na

li
m

pr
ov

is
at

io
n

th
eo

ry

B
as

ke
rv

il
le

an
d

Pr
ie

s-
H

ej
e

(2
00

4)
IS

J
x

x

B
er

ge
r

an
d

B
ey

no
n-

D
av

ie
s

(2
00

9)
IS

J
x

x
x

C
ha

ra
f

et
al

.(
20

13
)

IS
J

x
x

T
he

or
y

of
la

ng
ua

ge

C
ra

m
an

d
B

ro
hm

an
(2

01
3)

IS
J

x
x

x
C

on
tr

ol
th

eo
ry

M
cA

vo
y

et
al

.(
20

13
)

IS
J

x
x

T
he

or
y

of
co

ll
ec

tiv
e

m
in

df
ul

ne
ss

Pe
rs

so
n

et
al

.(
20

12
)

IS
J

x
x

x
C

on
tr

ol
th

eo
ry

W
an

g
et

al
.(

20
12

)
IS

J
x

x
In

no
va

ti
on

as
si

m
il

at
io

n
th

eo
ry

Z
he

ng
et

al
.(

20
11

)
IS

J
x

x
x

x
O

rg
an

iz
at

io
na

li
m

pr
ov

is
at

io
n

th
eo

ry

A
us

ti
n

an
d

D
ev

in
(2

00
9)

IS
R

x
x

x

C
on

bo
y

(2
00

9)
IS

R
x

x

H
ar

ri
s

et
al

.(
20

09
)

IS
R

x
x

C
on

tr
ol

th
eo

ry



Appendix A 131

M
ar

up
in

g
et

al
.(

20
09

a)
IS

R
x

x
C

on
tr

ol
th

eo
ry

R
am

es
h

et
al

.(
20

12
)

IS
R

x
x

x
x

T
he

or
y

of
am

bi
de

xt
er

it
y

Sa
rk

er
an

d
Sa

rk
er

(2
00

9)
IS

R
x

x
x

x

V
id

ge
n

an
d

W
an

g
(2

00
9)

IS
R

x
x

x
T

he
or

y
of

co
m

pl
ex

ad
ap

tiv
e

sy
st

em
s

G
oh

et
al

.(
20

13
)

JA
IS

x
x

x
C

on
tr

ol
th

eo
ry

R
os

en
kr

an
z

et
al

.(
20

13
)

JI
T

x
x

Sp
ee

ch
ac

tt
he

or
y

E
db

er
g

et
al

.(
20

12
)

JM
IS

x
x

x

Fr
uh

li
ng

an
d

V
re

ed
e

(2
00

6)
JM

IS
x

x

K
ei

th
et

al
.(

20
13

)
JM

IS
x

x
T

he
or

y
on

in
te

rd
ep

en
de

nc
e

an
d

co
or

d.

B
al

ij
ep

al
ly

et
al

.(
20

09
)

M
IS

Q
x

x

L
ee

an
d

X
ia

(2
01

0)
M

IS
Q

x
x

x
So

ci
al

id
en

ti
ty

an
d

se
lf

-c
at

eg
or

.t
he

or
y

St
ro

de
et

al
.(

20
11

)
PA

C
IS

x
x

x
T

he
or

y
of

co
or

di
na

ti
on

va
n

de
r

V
yv

er
et

al
.(

20
03

)
PA

C
IS

x
x

T
he

or
y

of
co

m
pl

ex
ad

ap
tiv

e
sy

st
em

s

R
al

ph
an

d
N

ar
ro

s
(2

01
3)

PA
C

IS
x

x
T

he
or

y
of

co
m

pl
ex

ad
ap

tiv
e

sy
st

em
s

To
ta

l2
00

0–
20

14
72

18
18

6
12

18
11

5
1

50
11

2
1

2
28

18
%

18
%

6%
12

%
18

%
11

%
5%

1%
50

%
11

%
2%

1%
2%

28
%

A
M

C
IS

-
A

m
er

ic
an

C
on

fe
re

nc
e

on
In

fo
rm

at
io

n
Sy

st
em

s,
E

C
IS

-
E

ur
op

ea
n

C
on

fe
re

nc
e

on
In

fo
rm

at
io

n
Sy

st
em

s,
E

JI
S

-
E

ur
op

ea
n

Jo
ur

na
l

of
In

fo
rm

at
io

n
Sy

st
em

s,
IC

IS
-

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

In
fo

rm
at

io
n

Sy
st

em
s,

IS
J

-
In

fo
rm

at
io

n
Sy

st
em

s
Jo

ur
na

l,
IS

R
-

In
fo

rm
at

io
n

Sy
st

em
s

R
es

ea
rc

h,
JA

IS
-

Jo
ur

na
l

of
th

e
A

ss
oc

ia
ti

on
fo

r
In

fo
rm

at
io

n
Sy

st
em

s,
JI

T
-

Jo
ur

na
l

of
In

fo
rm

at
io

n
Te

ch
no

lo
gy

,J
M

IS
-

Jo
ur

na
l

of
M

an
ag

em
en

tI
nf

or
m

at
io

n
Sy

st
em

s,
M

IS
Q

-
M

an
ag

em
en

t
In

fo
rm

at
io

n
Sy

st
em

s
Q

ua
rt

er
ly

,P
A

C
IS

-
Pa

ci
fic

A
si

a
C

on
fe

re
nc

e
on

In
fo

rm
at

io
n

Sy
st

em
s



132 Appendix A

A.2 Team Performance Interviews: Interview Guideline

Einführung – Ziel der Studie

(5 min) – Garantie von Anonymität und Vertraulichkeit

– Zustimmung zur Aufzeichnung des Interviews

Hintergrund – Position bei SAP

(5 min) – Anzahl Teams im Verantwortungsbereich

– Produkt und Technologie

Explorativ Allgemein

(25 min) – Sind Unterschiede in der Leistung der Teams feststellbar?

– Woran werden diese festgemacht? (nicht: was beeinflusst diese!)

Teamspezifisch

Beim Vergleich des besten Teams und dem Team mit dem größten
Verbesserungspotential:

– Woran kann man die unterschiedliche Leistung feststellen?

– Was sind die zentralen Leistungsindikatoren?

Gibt es eine Situation, in der ein Team als besonders leistungsstark/-schwach
aufgefallen ist:

– Woran war dies erkennbar?

Über das letzte Jahr hinweg gesehen ...

– Gab es Leistungsunterschiede der Teams?

– Woran konnte man diese festmachen?

Scrum-Einführung

Wenn man die Teams vor/nach der Scrum-Einführung vergleicht:

– Hat sich die Leistungsdefinition verändert? Worin?

– Gab es unterschiedliche Leistungsdimensionen?

– Waren unterschiedliche Aspekte gewichtiger/weniger wichtig?

Methoden zur Leistungsbewertung

– Wird die Leistung der Teams offiziell bewertet?

– Wie läuft dies ab? / Werden Tools eingesetzt?

Konfirma- Es wurden Erfolgsindikatoren aus der Literatur abgeleitet:

torisch – Softwarequalität; Dienstleistungsqualität des Team

(10 min) – Zuverlässigkeit; Innovationsfähigkeit; Mehrwert des Team

– Verhalten; Einstellung; Zufriedenheit des Teams

Wie relevant sind diese bei der Leistungsbestimmung?



Appendix A 133

A.3 Survey: Data Collection Process

1. Vorbereitung der Erhebung

a. Erstkontakt
Telefon/Mail: Anfrage zur Teilnahme

b. Absage oder Zusage
Ansprechpartner und Termin festhalten

2. Datenerhebung: 30 min Meeting mit Team

a. Checkliste

i. Süßigkeiten in Korb; Gewinnspiel-Box; Lose; Ampeln
ii. Schilder (zufällig vorsortiert); Fragebögen; Stifte

b. Team Meeting

1. Ansprache
“Herzlich willkommen, wir freuen uns, dass ihr an der Studie teilnehmt.
Wir führen eine Studie zu agiler Softwareentwicklung mit 80 Teams bei SAP durch. Hierzu
haben wir unterschiedliche Fragebögen für Scrum Master und Entwickler.”

2. Scrum Master
“Wer ist der Scrum Master?”
Scrum Master erhält Schild, Fragebogen und Stift

3. Entwickler
Alle anderen Teammitglieder erhalten einen Entwickler-Fragebogen und Stifte.
“Auf der zweiten Seite gibt es eine Besonderheit zu beachten. Hierzu erhält jeder ein
Schild.
(Schild hochheben, siehe Abb. 4.1 auf Seite 72). Auf diesem findet ihr eure persönliche
Nummer.
Auch auf der Rückseite ist diese nochmals zu sehen. (zeigen)
Außerdem findet ihr für 3 Kollegen A, B und C im Raum jeweils eine Nummer.
Bitte tragt auf der zweiten Seite des Fragebogens (Fragebogen hochhalten) eure Nummer
und die Nummern dieser drei Kollegen ein. Ihr findet einige Fragen zu euch und diesen
Kollegen.
Es wäre super, wenn ihr bitte die Nummern jetzt eintragt, die auf den Schildern stehen.”
Anzahl Entwickler ermitteln; entsprechenden Schildersatz zufällig verteilen
Fragebögen austeilen mit Stiften

4. Süßigkeiten verteilen
5. Beginn Umfrage “Dies ist kein Schultest, es gibt keine richtigen oder falschen Antworten.

Wir freuen uns über ehrlichen Antworten.
Rückfragen bitte direkt stellen.”

6. Team füllt Frabebögen aus
7. Fragebögen einsammeln

a. Check, ob alle Bögen eingesammelt wurden
b. Check, ob alle Nummern eingetragen wurden

8. Scrum Master erhält USB-Ampel mit Installationsanweisung
9. Scrum Master füllt Gewinnspiellos aus und wirft es in die Gewinnspielbox

10. Danksagung an Team für Teilnahme an der Studie



134 Appendix A

3. Nachbereitung

i.. Stifte einsammeln
ii. Fragebögen eineindeutig stempeln zur Zuordnung bei Transkription

iii. Teambogen ausfüllen
iv. Fragebögen abheften in Ordner
v. Doppelte Transkription



Appendix A 135

A.4 Survey: Overview

AgileSE Research Study – Study Overview

In a joint research project between the University of Mannheim and SAP, we conduct a study on the 
impact of agile software engineering (Scrum, pair programming, code reviews, automated testing, iterative development, 
continuous quality assurance, etc.). The study is carried out by Christoph Schmidt. He is a PhD student at the 
Chair of General Management and Information Systems (‚Wirtschaftsinformatik‘) of Prof. Dr. Heinzl. 
Further, he works half time for SAP in the “AgileSE Research Project” led by Dr. Juergen Heymann (PI COO 
Development Methods).

During the last years, many software development teams at SAP have started using Scrum and have 
participated in the agile software engineering training program. In general, SAP has chosen a clear 
direction towards agile software engineering with a strong focus on team work. Our research seeks to 
better understand the underlying drivers of team-centric agile software development.

Study concept

We conduct a team-based study for which we invite (area) product owners, scrum masters and 
developers of about 60-70 SAP development teams. The scrum master and the developers allow an intra-
team perspective, while the area product owner provides an external perspective on a team. During a 30 
minute meeting, we would like to ask developers and the scrum master to fill out a paper-based 
questionnaire which covers aspects from agile software engineering (see below). Our pretests show that 
it takes about 20 min to complete the questionnaire. 

Team
meeting
(30 min)

Developers answer the questionnaire „AgileSE Research Study – questions for developers“. 
Part 1 Adoption intensity of agile development practices

(Pair programming1 /Code review2, automated testing3, …)
Part 2 Mutual assistance4 and common understanding in the team5

Part 3 Team leadership6, Knowledge distribution in the team
Part 4 Perceived impact of agile software engineering

Areas of improvement in the team

Scrum Master answers the questionnaire “AgileSE Research Study – questions for scrum masters”.
Part 1 Adoption intensity of various Scrum aspects7

Part 2 Iterative and collaborative work mode (central for agile SE)
Part 3 Task-specific knowledge in the team
Part 4 Team context8

Area 
Product 
Owner 

Meeting

Area Product Owner answers “AgileSE Research Study – questions for (area) product owners”.
Part 1 Software quality
Part 2 Software delivery process
Part 3 Team task characteristics
Part 4 Overall effectiveness of the team

1 How much of your code do you develop with a programming partner?
2 How much of your new code is reviewed by at least one colleague?
3 For how much of your new code do you write automated tests?
4 We regularly provide feedback to each other on work results. (agreement scale)
5 We agree what needs to be done before a task is considered 'done'. (agreement scale)
6 The product owner is clear and explicit about what he/she wants our team to do. (agreement scale)
7 The team rather reduces the scope than delaying deadlines. (agreement scale)
8 What is the sprint length?

Ex
em

pl
ar

y 
qu

es
tio

ns



136 Appendix A

Results and outcomes

All participating teams receive a team report with the 
aggregated answers of all developers in the team after we will 
have finished the study. In the team report, the team members’
answers are aggregated and reported in comparison to the 
answers of all peer teams participating in the study. The team 
might jointly discuss this report in a retrospective. 

Second, all teams participating in the study will receive a “USB 
traffic light” which can be used to display the status of the 
team’s automated tests on the continuous integration server. 

Third, all teams will participate in a lottery. Two winner teams 
can choose to be either invited for a wine tasting or a go-cart 
team event.

Finally, we will summarize our research findings in study report
which will contain insights from all participating teams. We 
seek to better understand the impact of agile software 
engineering in various work context of software development 
teams.

Data privacy

Participation in the study is obviously voluntary and anonymous.  All answers will be made anonymous. 
The area product owner or the team’s managers will not see the answers of the team. The team will not 
see the answers of the area product owner. In summary, our study report will not allow insights into the 
answers of single teams. 

The study has been approved by the data protection officer of SAP and the German workers’ council. 
Complying with their requirements, we are only allowed to conduct the study with at least four 
developers plus a scrum master of each participating team.

Christoph Schmidt christoph.schmidt01@sap.com
(d056196) christoph.schmidt@uni-mannheim.de 

Lottery

Team Report

Studienreport

It would be great if your team would participate in our study
and thus support our research. Thank you in advance.



Appendix A 137

A.5 Survey: Developer Questionnaire

AgileSE Research Study – questions for Developers

In a joined research project with the University of Mannheim, we are conducting a study on the 
impact of agile software engineering at SAP. The study is conducted by Christoph Schmidt, who is a 
half-time employee at SAP and a PhD student at the University of Mannheim at the Institute for 
Enterprise Systems (Prof. Dr. Heinzl).

We invite your team to participate in the study and kindly ask you to fill out this questionnaire, which 
will take about 20 minutes. For the purpose of this study, we define the development team as 
‘developers & scrum master’.

We would highly appreciate to get your honest opinion on our questions. There are no right or wrong 
answers. Your thoughtful answers will not only help the success of the study, but will also improve 
the AgileSE trainings at SAP. For methodological reasons, some questions seem to cover similar 
aspects from different perspectives.

We offer a team report for your team with the team’s 
aggregated answers compared to all participating teams after 
the study is completed.

Every team will receive a team traffic light. Further, two of the 
participating teams will win a cart race or a wine tasting team 
event as a thank you.

Study disclaimer: The survey has been approved by the German SAP workers’ council and  
SAP’s data protection officer. We will not pass any data to management that would allow 
insights into the answers of a single team. The data is ONLY used for research purposes and 
we guarantee to work confidentially with the data. 

Christoph Schmidt christoph.schmidt01@sap.com & christoph.schmidt@uni-mannheim.de
Prof. Dr. Armin Heinzl heinzl@uni-mannheim.de

PO

Dev. team
Dev

Dev Dev

SM

Dev

Lotteryand
Team Report

no

> 15 years

11-15 years<1 year

I agree that my answers are included in a team report.

7-10 years1-3 years

4-6 yearsHow many years of experience do you have in professional software development in total?
(please do NOT answer if you do not feel ok to do so)

How long have you been working in this team?
(please do NOT answer if you do not feel ok to do so)

How much of your work time is development time?
(understanding requirements, coding, testing, integrating, bug fixing, … activities directly related to software dev.)

yes

9-12 months3-6 months

___________ % 

1-3 years6-9 months

> 3 years

<3 months

In case of less than 6 respondents we are not allowed to provide a 
team report without your explicit permission.  (SAP data privacy policy)



138 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

1
|

6

Pa
rt

 
/4

:
Pl

ea
se

 ra
te

 h
ow

 m
uc

h 
yo

u 
us

e 
th

e 
fo

llo
w

in
g 

ag
ile

 d
ev

el
op

m
en

t p
ra

ct
ic

es
.

H
ow

 m
uc

h 
of

 y
ou

r 
co

de
 d

o 
yo

u 
de

ve
lo

p 
w

it
h 

a 
pr

og
ra

m
m

in
g 

pa
rt

ne
r?

H
ow

 m
uc

h 
of

 y
ou

r 
co

di
ng

ti
m

e 
do

 y
ou

 w
or

k 
w

it
h 

a 
pr

og
ra

m
m

in
g 

pa
rt

ne
r?

W
it

h 
ho

w
 m

an
y 

of
 y

ou
r 

te
am

 m
em

be
rs

 d
o 

yo
u 

pa
ir

 p
ro

gr
am

 re
gu

la
rl

y?

...
 s

im
pl

ify
in

g 
ex

is
ti

ng
 c

od
e 

w
it

ho
ut

 c
ha

ng
in

g 
it

s 
fu

nc
ti

on
al

it
y?

...
 id

en
ti

fy
in

g 
an

d 
el

im
in

at
in

g 
re

du
nd

an
ci

es
 in

 th
e 

so
ft

w
ar

e 
co

de
?

...
 im

pr
ov

in
g 

th
e 

co
de

 q
ua

lit
y?

Au
to

m
at

ed
 a

nd
 m

an
ua

l t
es

tin
g

Fo
r 

ho
w

 m
uc

h 
of

 y
ou

r
ne

w
co

de
 d

o 
yo

u 
w

ri
te

 a
ut

om
at

ed
 te

st
s 

be
fo

re
 w

ri
ti

ng
 t

he
 p

ro
du

ct
iv

e 
co

de
(t

es
t-

dr
iv

en
 d

ev
el

op
m

en
t)

?

Fo
r 

ho
w

 m
uc

h 
of

 y
ou

r
ne

w
co

de
 d

o 
yo

u 
w

ri
te

 a
ut

om
at

ed
 te

st
s 

at
 a

ll 
(b

ef
or

e 
or

 a
ft

er
 w

ri
ti

ng
 th

e 
pr

od
uc

ti
ve

 c
od

e)
?

Fo
r 

ho
w

 m
an

y 
of

 y
ou

r
ne

w
te

st
s 

do
 y

ou
 u

se
 t

es
t 

is
ol

at
io

n 
(t

es
t d

ou
bl

e,
 m

oc
ki

ng
, …

)?

H
ow

 m
uc

h 
of

 y
ou

r
ne

w
fu

nc
ti

on
al

it
y 

is
 r

eg
ul

ar
ly

 te
st

ed
 w

it
h 

au
to

m
at

ed
 in

te
gr

at
io

n 
te

st
s?

H
ow

 m
uc

h 
of

 y
ou

r
ne

w
fu

nc
ti

on
al

it
y 

is
 r

eg
ul

ar
ly

 te
st

ed
 w

it
h 

au
to

m
at

ed
 U

I t
es

ts
(e

.g
. s

el
en

iu
m

 te
st

s)
?

H
ow

 m
uc

h 
of

 y
ou

r
ne

w
fu

nc
ti

on
al

it
y 

is
 r

eg
ul

ar
ly

 te
st

ed
 w

it
h 

m
an

ua
l e

xp
lo

ra
to

ry
 t

es
ts

?

Fo
r 

ho
w

 m
uc

h 
of

 y
ou

r
ne

w
fu

nc
ti

on
al

it
y 

do
 y

ou
 r

un
 a

cc
ep

ta
nc

e 
te

st
s 

(e
.g

. d
ef

in
ed

 b
y 

th
e 

pr
od

uc
t o

w
ne

r)
?

Co
de

 re
vi

ew
H

ow
 m

uc
h 

of
 y

ou
r 

ne
w

 c
od

e 
is

 r
ev

ie
w

ed
 b

y 
at

 le
as

t o
ne

 c
ol

le
ag

ue
?

H
ow

 m
uc

h 
of

 y
ou

r 
m

od
ifi

ed
 c

od
e  

is
 r

ev
ie

w
ed

 b
y 

at
 le

as
t o

ne
 c

ol
le

ag
ue

?

H
ow

 m
an

y
of

 y
ou

r 
te

am
 m

em
be

rs
 r

eg
ul

ar
ly

 r
ev

ie
w

 c
od

e 
yo

u 
ha

ve
 d

ev
el

op
ed

?

Pa
ir 

pr
og

ra
m

m
in

g "
pr

og
ra

m
m

in
g 

wi
th

 a
 p

ar
tn

er
, w

hi
le

 o
ne

 is
 th

e 
co

di
ng

 d
riv

er
 a

nd
 th

e 
ot

he
r i

s 
th

e 
ob

se
rv

er
"

Re
fa

ct
or

in
g

"p
ro

ce
ss

 o
f c

ha
ng

in
g 

a 
so

ftw
ar

e 
sy

st
em

 in
 s

uc
h 

a 
wa

y t
ha

t i
t d

oe
s 

no
t a

lte
r t

he
 e

xt
er

na
l b

eh
av

io
r o

f t
he

 c
od

e 
ye

t i
m

pr
ov

es
 it

s 
in

te
rn

al
 s

tru
ct

ur
e"

H
ow

 m
uc

h 
of

 y
ou

r 
de

ve
lo

pm
en

t 
ti

m
e 

do
 y

ou
 r

ou
gh

ly
 s

pe
nd

 …



Appendix A 139

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

2
|

6

Pa
rt

 2
/4

...
 

?

De
v

De
v

De
v

A:
 1

   
B:

4
C:

7

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neutral

Somewhat agree

Agree

Strongly agree

…
 w

e 
ag

re
e 

ho
w

 w
el

l-c
ra

ft
ed

 c
od

e 
lo

ok
s 

lik
e.

…
 w

e 
ha

ve
 a

 s
im

ila
r 

un
de

rs
ta

nd
in

g 
of

 o
ur

 s
of

tw
ar

e 
ar

ch
it

ec
tu

re
.

...
 w

e 
ag

re
e 

w
ha

t n
ee

ds
 to

 b
e 

do
ne

 b
ef

or
e 

a 
ta

sk
 is

 c
on

si
de

re
d 

'd
on

e'
.

...
 w

e 
ha

ve
 a

 s
im

ila
r 

un
de

rs
ta

nd
in

g 
ab

ou
t t

he
 b

us
in

es
s 

ne
ed

s 
of

 o
ur

 s
of

tw
ar

e'
s 

us
er

s.

...
 w

e 
ha

ve
 a

 s
ha

re
d 

id
ea

ho
w

 o
ur

 s
of

tw
ar

e 
w

ill
 e

vo
lv

e.

…
 w

e 
co

m
pl

et
e

ta
sk

s 
fo

r 
ea

ch
 o

th
er

w
he

ne
ve

r 
ne

ce
ss

ar
y.

…
 w

e 
gi

ve
 e

ac
h 

ot
he

r 
su

gg
es

ti
on

s 
ho

w
 a

 ta
sk

 c
ou

ld
 b

e 
ap

pr
oa

ch
ed

.

...
 w

e 
st

ep
 in

 fo
r 

th
e 

ot
he

r 
pe

rs
on

 if
 h

e/
sh

e 
st

ru
gg

le
s 

to
 fi

ni
sh

 th
e 

cu
rr

en
t w

or
k.

…
 w

e 
as

si
st

 e
ac

h 
ot

he
r 

in
 a

cc
om

pl
is

hi
ng

 o
ur

 ta
sk

s.

…
 w

e 
gi

ve
 e

ac
h 

ot
he

r 
fe

ed
ba

ck
 o

n 
w

or
k

re
su

lt
s.

…
 w

e 
gi

ve
 e

ac
h 

ot
he

r 
fe

ed
ba

ck
 o

n 
ho

w
 to

 s
ol

ve
 a

 ta
sk

.

…
 w

e 
te

ll 
th

e 
ot

he
r 

pe
rs

on
 if

 h
is

/h
er

 w
or

k 
re

su
lt

s 
co

ul
d

be
 im

pr
ov

ed
.

…
 w

e 
te

ll 
th

e 
ot

he
r 

pe
rs

on
 w

he
n 

hi
s/

he
r 

w
ay

 o
f s

ol
vi

ng
 a

 t
as

k 
is

 n
ot

 t
he

 b
es

t.

...
 w

e 
fr

eq
ue

nt
ly

 p
ai

r 
pr

og
ra

m
 to

ge
th

er
.

...
 w

e 
fr

eq
ue

nt
ly

 r
ev

ie
w

 e
ac

h 
ot

he
r'

s 
co

de
.

...
 n

ot
ic

es
 w

he
n 

th
e 

ot
he

r 
pe

rs
on

 m
ak

es
 a

 c
ri

ti
ca

l m
is

ta
ke

.

...
 n

ot
ic

es
 w

he
n 

th
e 

ot
he

r 
pe

rs
on

 h
as

 p
ro

bl
em

s 
w

it
h 

a 
ta

sk
.

...
 k

no
w

s 
ab

ou
t t

he
 o

th
er

 p
er

so
n'

s 
w

or
kl

oa
d.

...
 k

no
w

s 
w

he
n 

th
e 

ot
he

r 
pe

rs
on

 fa
ce

s 
w

or
k-

re
la

te
d 

ch
al

le
ng

es
.

M
ut

ua
l a

w
ar

en
es

s

The two of us,

Yo
u 

an
d 

Co
lle

ag
ue

 
C:

__
_

A
:_

__
Yo

u 
an

d 
Co

lle
ag

ue
 

Yo
u 

an
d 

Co
lle

ag
ue

 
B:

__
_

Co
m

m
on

 u
nd

er
st

an
di

ng

The two of us, The two of us, Each of us,

M
ut

ua
l a

ss
is

ta
nc

e

Fe
ed

ba
ckO
n 

th
e 

ba
ck

 o
f y

ou
r s

ig
n,

 yo
u

fin
d

nu
m

be
rs

 fo
r t

hr
ee

 co
lle

ag
ue

sA
, B

, C
. 

Pl
ea

se
 in

se
rt

 th
e 

nu
m

be
rs

 fo
r A

,B
, a

nd
 C

 (n
ot

 th
e 

na
m

es
!!

!)
 h

er
e.

    
 

Th
en

,p
le

as
e 

in
se

rt
 y

ou
r o

w
n 

nu
m

be
r h

er
e:

_
Pl

ea
se

 r
at

e 
yo

ur
ag

re
em

en
t w

ith
 t

he
fo

llo
w

in
g 

st
at

em
en

ts
 fo

r 
th

e 
   

   
  

re
sp

ec
tiv

e 
pe

rs
on

 a
nd

 y
ou

rs
el

f.

ii ii

ii
i

v
i

i

ii
i

iv v
i

ii

v

i
i



140 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

3
|

6

Pa
rt

 3
/4

:
Pl

ea
se

 ra
te

th
e 

fo
llo

w
in

g 
te

am
 w

or
k

as
pe

ct
s.

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Re
ce

nt
ly

, o
ur

 te
am

 s
ee

m
s 

to
 b

e 
ha

vi
ng

 p
ro

bl
em

s 
in

 it
s 

le
ve

l o
f p

er
fo

rm
an

ce
 a

nd
 a

cc
om

pl
is

hm
en

ts
.

Th
os

e 
w

ho
 r

ec
ei

ve
 o

r u
se

 o
ur

 s
of

tw
ar

e 
of

te
n 

ha
ve

 c
om

pl
ai

nt
s 

ab
ou

t 
ou

r w
or

k.

Th
e 

so
ft

w
ar

e 
qu

al
it

y 
pr

ov
id

ed
 b

y 
ou

r 
te

am
 is

 im
pr

ov
in

g 
ov

er
 t

im
e.

Cr
it

ic
al

 q
ua

lit
y 

er
ro

rs
 o

cc
ur

 fr
eq

ue
nt

ly
 in

 o
ur

 te
am

.

O
th

er
s 

in
 th

e 
co

m
pa

ny
 w

ho
 in

te
ra

ct
 w

it
h 

us
 o

ft
en

 c
om

pl
ai

n 
ab

ou
t h

ow
 o

ur
 t

ea
m

 fu
nc

ti
on

s.

...
 is

 c
le

ar
 a

nd
 e

xp
lic

it
 a

bo
ut

 w
ha

t 
he

/s
he

 w
an

ts
 o

ur
 te

am
 to

 d
o 

(p
ro

du
ct

 vi
sio

n,
 b

ac
kl

og
 sp

ec
ifi

ca
�o

n)
.

...
 k

ee
ps

 a
 w

at
ch

fu
l e

ye
 o

n 
ho

w
 th

e 
te

am
 is

 p
ro

gr
es

si
ng

.

...
 s

ho
w

s 
th

at
 h

e/
sh

e 
ca

re
s 

a 
gr

ea
t d

ea
l a

bo
ut

 u
s 

be
in

g 
a 

go
od

 te
am

.

...
 g

oe
s 

ne
w

 w
ay

s 
by

 a
sk

in
g 

te
am

 m
em

be
rs

 fo
r 

id
ea

s 
an

d 
ad

vi
ce

.

…
 a

le
rt

s 
th

e 
te

am
 w

he
n 

he
/s

he
 n

ot
ic

es
 t

hi
ng

s 
th

at
 c

ou
ld

 b
e 

do
ne

 b
et

te
r.

Te
am

 le
ad

er
sh

ip
  T

he
 te

am
's

 k
ey

 s
ta

ke
ho

ld
er

 (i
n 

a 
Sc

ru
m

 co
nt

ex
t: 

th
e 

pr
od

uc
t o

w
ne

r)
 …

Te
am

 p
er

fo
rm

an
ce



Appendix A 141

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

4
|

6

Co
nt

in
ue

d

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

cl
os

e
di

st
an

t

co
op

er
at

iv
e

co
nf

lic
tu

al

in
te

gr
at

in
g

fr
ag

m
en

ti
ng

te
am

-o
ri

en
te

d
se

lf-
or

ie
nt

ed

Kn
ow

le
dg

e 
in

 t
he

 t
ea

m

Te
am

 c
oh

es
io

n
Pl

ea
se

 in
di

ca
te

 h
ow

 y
ou

 w
ou

ld
 d

es
cr

ib
e 

yo
ur

 te
am

.

I d
o 

no
t 

ha
ve

 m
uc

h 
fa

it
h 

in
 o

th
er

 m
em

be
rs

’ “
ex

pe
rt

is
e"

.

I t
ru

st
 th

at
 o

th
er

 m
em

be
rs

' t
as

k-
re

la
te

d 
kn

ow
le

dg
e 

is
 c

re
di

bl
e.

O
ur

 te
am

 w
or

ks
 to

ge
th

er
 in

 a
 w

el
l-c

oo
rd

in
at

ed
 fa

sh
io

n.

I a
m

 c
om

fo
rt

ab
le

 a
cc

ep
ti

ng
w

or
k 

su
gg

es
ti

on
s 

fr
om

 o
th

er
 te

am
 m

em
be

rs
.

I a
m

 c
on

fid
en

t
re

ly
in

g 
on

 th
e 

in
fo

rm
at

io
n 

th
at

 o
th

er
 t

ea
m

 m
em

be
rs

 b
ri

ng
 in

to
 d

is
cu

ss
io

ns
.

Ea
ch

 m
em

be
r 

of
 m

y 
te

am
 h

as
sp

ec
ia

l e
xp

er
ti

se
.

I k
no

w
w

hi
ch

 te
am

 m
em

be
rs

 h
av

e 
ex

pe
rt

is
e 

in
 s

pe
ci

fi
c 

ar
ea

s.

D
iff

er
en

t t
ea

m
 m

em
be

rs
 a

re
 r

es
po

ns
ib

le
 fo

r e
xp

er
ti

se
 in

 d
if

fe
re

nt
 a

re
as

.

Th
e 

ex
pe

rt
is

e 
of

 s
ev

er
al

 d
if

fe
re

nt
 te

am
 m

em
be

rs
 is

 n
ee

de
d 

to
 c

om
pl

et
e 

ou
r 

de
li

ve
ra

bl
es

.

W
e 

ac
co

m
pl

is
h 

ou
r 

ta
sk

s 
sm

oo
th

ly
 a

nd
 e

ff
ic

ie
nt

ly
.

O
ur

 te
am

 h
as

 v
er

y 
fe

w
 m

is
un

de
rs

ta
nd

in
gs

 a
bo

ut
 w

ha
t t

o 
do

.

Th
er

e 
is

 o
ft

en
 c

on
fu

si
on

 in
 o

ur
 te

am
 a

bo
ut

 h
ow

 w
e 

w
il

l a
cc

om
pl

is
h 

ou
r 

ta
sk

s.

Pl
ea

se
tic

k 
on

e 
bo

x 
pe

r 
lin

e.



142 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

5
|

6

Co
nt

in
ue

d

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Th
e 

te
am

 m
em

be
rs

 h
el

p 
an

d 
su

pp
or

t 
ea

ch
 o

th
er

 a
s 

be
st

 th
ey

 c
an

.

If
 c

on
fli

ct
s 

co
m

e 
up

, t
he

y 
ar

e 
ea

si
ly

 a
nd

 q
ui

ck
ly

 r
es

ol
ve

d.

D
is

cu
ss

io
ns

 a
nd

 c
on

tr
ov

er
si

es
 a

re
 c

on
du

ct
ed

co
ns

tr
uc

ti
ve

ly
.

Su
gg

es
ti

on
s 

an
d 

co
nt

ri
bu

ti
on

s 
of

 te
am

 m
em

be
rs

 a
re

 r
es

pe
ct

ed
.

O
ur

 te
am

 is
 a

bl
e 

to
 r

ea
ch

co
ns

en
su

s 
re

ga
rd

in
g 

im
po

rt
an

t i
ss

ue
s.

Su
gg

es
ti

on
s 

an
d 

co
nt

ri
bu

ti
on

s 
of

 te
am

 m
em

be
rs

 a
re

 d
is

cu
ss

ed
 a

nd
 fu

rt
he

r
de

ve
lo

pe
d.

Te
am

 r
el

at
io

ns
hi

p
Th

e 
pe

op
le

 o
n 

th
is

 te
am

 g
et

 o
n 

m
y 

ne
rv

es
.

Th
er

e 
is

 a
 lo

t o
f u

np
le

as
an

tn
es

s 
am

on
g 

pe
op

le
 o

n 
ou

r 
te

am
.

D
ea

li
ng

 w
it

h 
th

e 
m

em
be

rs
 o

f t
hi

s 
te

am
 o

ft
en

 le
av

es
 m

e 
fe

el
in

g 
ir

ri
ta

te
d 

an
d 

fr
us

tr
at

ed
.

O
ft

en
, I

 a
m

 d
is

ap
po

in
te

d 
w

it
h 

th
e 

ot
he

r 
m

em
be

rs
 o

f t
hi

s 
te

am
.

Ti
m

e 
pr

es
su

re
I h

av
e 

to
o 

m
uc

h 
w

or
k 

an
d 

to
o 

lit
tl

e 
ti

m
e 

to
 d

o 
it

. 

I f
in

d 
th

is
 o

rg
an

iz
at

io
n 

a 
re

la
xe

d 
pl

ac
e 

to
 w

or
k.

I o
ft

en
 h

av
e 

to
 d

ea
l w

it
h 

w
or

k-
re

la
te

d 
pr

ob
le

m
s 

in
 m

y 
of

f h
ou

rs
.

I f
ee

l l
ik

e 
I n

ev
er

 h
av

e 
a 

da
y 

of
f.

M
an

y 
em

pl
oy

ee
s 

at
 m

y 
le

ve
l g

et
 "

bu
rn

ed
 o

ut
" 

by
 th

e 
de

m
an

ds
 o

f t
he

ir
 jo

bs
 in

 th
is

 o
rg

an
iz

at
io

n.

Te
am

 in
te

rn
al

 s
up

po
rt



Appendix A 143

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

6
|

6

Pa
rt

 4
/4

:
Pl

ea
se

 ra
te

 w
hi

ch
 b

en
ef

its
 y

ou
 se

e 
in

 th
e 

co
nt

ex
t o

f A
gi

le
SE

.

Th
an

k 
yo

u 
ve

ry
 m

uc
h 

fo
r y

ou
r c

on
tr

ib
ut

io
n!

Got worse drastically

Got worse

Did not change

Got better

Improved significantly

Be
tt

er
 c

om
m

un
ic

at
io

n 
w

ith
in

 th
e 

te
am

co
m

m
un

ic
at

io
n 

w
ith

 o
ur

 P
O

s
co

m
m

un
ic

at
io

n 
w

ith
 o

ur
 cu

st
om

er
s/

us
er

s
Be

tt
er

 
Be

tt
er

 
Be

tt
er

 c
om

m
un

ic
at

io
n 

w
ith

 o
th

er
 te

am
s

w
or

k 
eq

ui
pm

en
t

de
ve

lo
pm

en
t t

oo
ls

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_

N
um

be
r 

of
 r

ep
or

te
d 

de
fe

ct
s

In
te

rn
al

 s
of

tw
ar

e 
qu

al
it

y
(c

od
e 

re
ad

ab
ili

ty
, u

nd
er

st
an

da
bi

lit
y,

 te
st

ab
ab

ili
ty

, m
ai

nt
ai

na
bi

lit
y)

Ex
te

rn
al

 s
of

tw
ar

e 
qu

al
it

y 
(fu

nc
ti

on
al

it
y,

 u
sa

bi
lit

y,
 re

al
ia

bi
lit

y,
 a

cc
ur

ac
y,

 p
er

fo
rm

an
ce

)

Cu
st

om
er

 s
at

is
fa

ct
io

n 
w

it
h 

th
e 

so
ft

w
ar

e 
qu

al
it

y 
w

e 
de

liv
er

Re
w

or
k 

ef
fo

rt
s

 W
hi

ch
 o

f t
he

 fo
llo

w
in

g 
im

pr
ov

em
en

t 
ar

ea
s 

w
ou

ld
 h

el
p 

yo
ur

 t
ea

m
 t

he
 m

os
t 

to
 p

er
fo

rm
 b

et
te

r?
   

Pl
ea

se
 in

di
ca

te
 th

e 
th

re
e 

to
p 

as
pe

ct
s.

 E
ith

er
 c

ho
os

e 
fr

om
 th

e 
op

tio
ns

 o
r a

dd
 n

ew
 o

ne
s.

D
el

iv
er

ed
 fe

at
ur

e 
sc

op
e 

pe
r 

de
ve

lo
pm

en
t c

yc
le

 (i
n 

a 
Sc

ru
m

 c
on

te
xt

: i
n 

a 
sp

ri
nt

)

pr
og

ra
m

m
in

g 
sk

ill
s i

n 
th

e 
te

am
 B

et
te

r 
 B

et
te

r 
te

st
in

g 
sk

ill
s i

n 
th

e 
te

am
so

ft
w

ar
e 

ar
ch

ite
ct

ur
e

 B
et

te
r 

 B
et

te
r 

at
m

os
ph

er
e 

am
on

g 
te

am
 m

em
be

rs

M
y 

w
or

k 
st

re
ss

 a
t t

he
 e

nd
 o

f t
he

 d
ev

el
op

m
en

t c
yc

le
 (i

n 
a 

Sc
ru

m
 c

on
te

xt
: 

en
d 

of
 a

 sp
ri

nt
)

M
y 

w
or

k 
st

re
ss

 a
t t

he
 e

nd
 o

f t
he

 r
el

ea
se

 (b
ef

or
e 

RT
C)

w
or

k 
en

vi
ro

nm
en

t

Be
tt

er
Be

tt
er

Be
tt

er
M

or
e

m
ot

iv
at

ed
 te

am
 m

em
be

rs

O
nl

y 
if 

yo
u 

ha
ve

 p
ar

tic
ip

at
ed

 in
 th

e 
Ag

ile
SE

 tr
ai

ni
ng

To
 w

ha
t e

xt
en

t h
av

e 
th

e 
fo

ll
ow

in
g 

as
pe

ct
s 

ch
an

ge
d 

si
nc

e 
th

e 
la

st
 re

le
as

e 
th

at
 w

as
 n

ot
 d

ev
el

op
ed

 w
ith

 A
gi

le
SE

? 
(b

ef
or

e 
th

e 
Ag

il
eS

E 
tr

ai
ni

ng
)

 Im
pa

ct
 o

f A
gi

le
SE

  T
o 

w
ha

t e
xt

en
t (

%
) h

av
e 

th
e 

fo
ll

ow
in

g 
as

pe
ct

s 
ch

an
ge

d 
si

nc
e 

th
e 

la
st

 re
le

as
e 

th
at

 w
as

 d
ev

el
op

ed
 w

ith
ou

t A
gi

le
SE

? 
(b

ef
or

e 
th

e 
Ag

ile
SE

 tr
ai

ni
ng

)

__
__

__
__

__
_ 

%

__
__

__
__

__
_ 

%
e.

g.
 +

20
%

 o
r -

50
%

 
(r

ou
gh

 e
st

im
at

es
)



144 Appendix A

A.6 Survey: Scrum Master Questionnaire

AgileSE Research Study – questions for Scrum Masters

In a joined research project with the University of Mannheim, we are conducting a study on the 
impact of agile software engineering at SAP. The study is conducted by Christoph Schmidt, who is a 
half-time employee at SAP and a PhD student at the University of Mannheim at the Institute for 
Enterprise Systems (Prof. Dr. Heinzl).

We invite your team to participate in the study and kindly ask you to fill out this questionnaire, which 
will take about 20 minutes. For the purpose of this study, we define the development team as 
‘developers & scrum master’.

As part of the study, we invite you as the Scrum Master to answer central questions for your team
which do not need to be answered by all members.

We would highly appreciate to get your honest opinion on our questions. There are no right or wrong 
answers. Your thoughtful answers will not only help the success of the study, but will also improve 
the AgileSE trainings at SAP. For methodological reasons, some questions seem to cover similar 
aspects from different perspectives.

We offer a team report for your team with the aggregated 
answers of all developers compared to all participating teams 
after the study is completed. As you are the only person of your 
team answering this Scrum master questionnaire, your answers 
will not be included in to the team report for data privacy.

Every team will receive a team traffic light. Further, two of the 
participating teams will win a cart race or a wine tasting team 
event as a thank you.

Study disclaimer: The survey has been approved by the German SAP workers’ council and 
SAP’s data protection officer. We will not pass any data to management that would allow 
insights into the answers of a single team. The data is ONLY used for research purposes and 
we guarantee to work confidentially with the data. 

Christoph Schmidt christoph.schmidt01@sap.com &  christoph.schmidt@uni-mannheim.de 
Prof. Dr. Armin Heinzl heinzl@uni-mannheim.de

PO

Dev. team
Dev

Dev Dev

SM

Dev

Lotteryand
Team Report



Appendix A 145

AgileSE Research Study

1 | 9

Team background

Team name

How many people work on the team?
(Developers & Scrum master)

Same room Same location

Same floor Same time zone

Same building Different time zones

For how long has the team been working in Scrum 
mode?

We do not use Scrum at all.

What is the sprint length?

How much time has passed since the team has 
participated in the AgileSE training?

We have not participated in 
the training at all.

How often is the team's software released (RTC)?

ABAP Java Script / HTML5

Java ____________________

C / C++ / C# ____________________

Platform Mobile Apps

Applications  __________________ 

____ % Extension of existing functionality

____ % Major redesign of existing functionalities

____ % Small enhancements & mainly bug fixes
Does the team use a peer code review system?

If so , which one?
Yes, we use 'Git Gerrit'. Yes, we use ____________

If the team also does offline code reviews, how many 
reviews are notdocumented in the system at all?

: _______________________
new code exis�ng code

_____ other teams work with us on our product(s).

  ___________  external customers (SAP external organizations)

___________  members have joined the team.

Which programming language(s) does the team mainly 
use?

More than 80% of the team is located in …

What are the main CSS application components the 
team works on?

e.g. BC-XI-CON-ABA-HTTP  or  CA-GTF-PCF-SRV-SAM

What type of software does the team develop?

What is the rough number of customers of the team's 
software?

____________________

____ % Development of completely new functionality

___________  internal customers (other SAP teams)

___________ months 

No, we do not use one.

Yes, we use 'Review board'.

___________  % of our code reviews are offl ine. 

_________________________________________________   

With how many teams does the team currently work 
together on its product(s)?

Our team works alone on its product(s).

___________  weeks 

How much time did the team roughly spend on the 
following activities during the last three months?

How much new code did the team roughly add during the 
last three months (rough estimate, e.g. 1:5 or 1:1000)

_____________________________________________________

_____________________________________________________

___________  months 

How many people have joined or left the team
during the last 12 months?

  ___________  members have left the team.

  ___________  members

___________  years 

_____________________________________________________



146 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

2
|

9

Pa
rt

 1
/4

:
Sc

ru
m

 in
 a

gi
le

 so
�w

ar
e 

de
ve

lo
pm

en
t t

ea
m

s

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

…
 o

ur
 k

ey
 st

ak
eh

ol
de

r (
in

 a
 Sc

ru
m

 co
nt

ex
t: 

ou
r 

pr
od

uc
t o

w
ne

r)
al

w
ay

s 
ex

pl
ai

ns
 n

ew
 u

se
r s

to
rie

s.
…

 w
e 

al
w

ay
s 

cr
ea

te
 a

 li
st

 o
f p

rio
ri�

ze
d 

ta
sk

s 
to

 w
or

k 
on

.

...
 w

e
al

w
ay

s 
es

�m
at

e 
ou

r 
ta

sk
s 

an
d 

m
ak

e 
co

m
m

it
m

en
ts

.

...
 w

e 
al

w
ay

s 
ha

ve
 a

 re
vi

ew
 m

ee
�n

g 
w

it
h 

ou
r 

ke
y 

st
ak

eh
ol

de
r 

(in
 Sc

ru
m

: o
ur

 p
ro

du
ct

 o
w

ne
r)

 to
 d

em
on

st
ra

te
 n

ew
 fe

at
ur

es
.

...
 w

e 
al

w
ay

s 
pr

es
en

t o
ur

 p
ro

gr
es

s 
in

 a
 li

ve
 d

em
o 

(e
.g

. t
o 

th
e p

ro
du

ct
 o

w
ne

r).

Ite
ra

�v
e 

De
ve

lo
pm

en
t

W
e 

im
pl

em
en

t o
ur

 s
of

tw
ar

e 
in

 sh
or

t i
te

ra
�o

ns
.

Th
e 

te
am

 r
at

he
r 

re
du

ce
s t

he
 sc

op
e 

th
an

 d
el

ay
in

g 
de

ad
lin

es
.

W
e 

al
w

ay
s 

st
ar

t d
ev

el
op

m
en

t t
as

ks
 a

cc
or

di
ng

 to
 th

e 
ke

y 
st

ak
eh

ol
de

r'
s 

pr
io

rit
y 

(in
 a

 Sc
ru

m
 co

nt
ex

t: 
ou

r 
pr

od
uc

t o
w

ne
r)

. 

At
 th

e 
en

d 
of

 e
ve

ry
 d

ev
el

op
m

en
t c

yc
le

, o
ur

 c
od

e 
m

ee
ts

 p
ro

du
ct

 q
ua

lit
y 

re
qu

ire
m

en
ts

.
W

e 
ha

ve
 ti

m
e-

bo
xe

d 
da

ily
 st

an
du

p 
m

ee
ti

ng
s 

in
 w

hi
ch

 a
ll 

te
am

 m
em

be
rs

 p
ar

ti
ci

pa
te

.

Re
tro

sp
ec

�v
es

Af
te

r 
ev

er
y 

de
ve

lo
pm

en
t c

yc
le

, w
e 

ha
ve

 re
tr

os
pe

c�
ve

 m
ee

�n
gs

.

W
e 

re
gu

la
rl

y 
re

fle
ct

 o
n 

ho
w

 w
e 

pe
rf

or
m

 o
ur

 ta
sk

s.

W
e 

re
gu

la
rl

y 
co

ns
id

er
 p

ot
en

ti
al

 d
om

ai
ns

 o
f i

m
pr

ov
em

en
ts

.
W

e 
re

gu
la

rl
y 

de
ve

lo
p 

ac
�o

n
pl

an
s t

o 
im

pr
ov

e 
ou

r 
w

or
k.

Ite
ra

�v
e 

M
ee

�n
gs

At
 th

e 
be

gi
nn

in
g 

of
 a

 d
ev

el
op

m
en

t c
yc

le
 (e

.g
. S

pr
in

t)
 …

  A
t t

he
 e

nd
 o

f a
 d

ev
el

op
m

en
t c

yc
le

 (e
.g

. S
pr

in
t) 

...



Appendix A 147

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

3
|

9

Co
n�

nu
ed

:
Sc

ru
m

 in
 a

gi
le

 so
�w

ar
e 

de
ve

lo
pm

en
t t

ea
m

s

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

D
ev

el
op

er
s 

in
te

gr
at

e 
ne

w
 o

r 
m

od
ifi

ed
 c

od
e 

in
to

 o
ur

 e
xi

st
in

g 
co

de
 b

as
e 

on
 a

 d
ai

ly
 b

as
is.

W
e 

co
m

bi
ne

 n
ew

 c
od

e 
w

it
h 

ex
is

ti
ng

 c
od

e
on

 a
 d

ai
ly

 b
as

is.
O

ur
 te

am
 h

as
 d

ed
ica

te
d

"i
nt

eg
ra

�o
n 

ph
as

es
" 

du
ri

ng
 w

hi
ch

 w
e 

in
te

gr
at

e
ne

w
 o

r 
m

od
ifi

ed
 co

de
 o

f d
iff

er
en

t d
ev

el
op

er
s.

Co
di

ng
 St

an
da

rd
s

W
e 

ha
ve

 a
 s

et
 o

f a
gr

ee
d 

up
on

 c
od

in
g

st
an

da
rd

s i
n 

th
is

 te
am

.

M
em

be
rs

 o
f t

hi
s 

te
am

 h
av

e 
a 

sh
ar

ed
un

de
rs

ta
nd

in
g 

of
 h

ow
 co

de
 is

 to
 b

e 
w

ri
tt

en
.

Ev
er

yo
ne

 o
n 

th
is

 te
am

 u
se

s h
is

/h
er

 o
w

n
st

an
da

rd
s f

or
 c

od
in

g.

Co
de

 O
w

ne
rs

hi
p

An
yo

ne
 o

n 
th

is
 te

am
 is

 a
llo

w
ed

 to
ch

an
ge

 a
ny

 p
ar

t o
f e

xi
st

in
g 

co
de

 a
t a

ny
 ti

m
e.

M
em

be
rs

 o
f t

hi
s 

te
am

 fe
el

co
m

fo
rt

ab
le

ch
an

gi
ng

an
y

pa
rt

 o
f t

he
 e

xi
st

in
g 

co
de

 a
t a

ny
 ti

m
e.

If
 a

ny
on

e 
w

an
ts

 to
 c

ha
ng

e 
a 

pi
ec

e 
of

 c
od

e,
 th

ey
 n

ee
d

th
e

pe
rm

iss
io

n 
of

 th
e 

in
di

vi
du

al
(s

) t
ha

t c
od

ed
 it

.

Co
n�

nu
ou

s I
nt

eg
ra

�o
n



148 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

4
|

9

Pa
rt

 2
/4

:
It

er
at

iv
e 

te
am

 w
or

k
of

 a
gi

le
 te

am
s

…
 fr

om
 h

av
in

g 
an

al
yz

ed
 a

 r
eq

ui
re

d 
fe

at
ur

e 
to

 s
ho

w
in

g 
it

 to
 th

e 
te

am
's

 k
ey

 s
ta

ke
ho

ld
er

?
 (i

n 
a 

Sc
ru

m
 c

on
te

xt
: t

o 
th

e 
pr

od
uc

t o
w

ne
r 

du
ri

ng
 th

e 
sp

ri
nt

 a
s w

el
l a

s i
n 

sp
ri

nt
 re

vi
ew

s)
-

__
__

__
__

_ 
  d

ay
s

…
 fr

om
 h

av
in

g 
a 

co
nc

ep
t 

ho
w

 to
 im

pl
em

en
t a

 r
eq

ui
re

d 
fe

at
ur

e
(s

of
tw

ar
e 

de
si

gn
) t

o 
en

su
ri

ng
 fl

aw
le

ss
 in

te
gr

at
io

n 
of

 th
e 

re
sp

ec
ti

ve
 c

od
e?

-
__

__
__

__
_ 

  d
ay

s

…
 fr

om
 h

av
in

g 
im

pl
em

en
te

d 
th

e
co

de
 fo

r 
a 

re
qu

ir
ed

 fe
at

ur
e 

to
 v

al
id

at
in

g 
th

is
 c

od
e 

fo
r 

fu
nc

ti
on

al
 c

or
re

ct
ne

ss
 a

nd
 q

ua
li

ty
?

-
__

__
__

__
_ 

  d
ay

s

...
 a

na
ly

ze
 r

eq
ui

re
m

en
ts

 u
pf

ro
nt

,s
o 

th
at

 d
ev

el
op

er
s k

no
w

 e
xa

ct
ly

 w
ha

t 
fu

nc
ti

on
al

it
y 

ne
ed

s t
o 

be
 d

ev
el

op
ed

 d
ur

in
g 

th
is

 ti
m

e 
pe

ri
od

? 
    

-
__

__
__

__
_ 

  d
ay

s

...
 s

pe
ci

fy
 th

e 
so

ft
w

ar
e 

de
si

gn
up

fr
on

t,
so

 th
at

 d
ev

el
op

er
s h

av
e 

a 
co

nc
ep

t 
ho

w
 to

 im
pl

em
en

t t
he

 so
ft

w
ar

e 
du

ri
ng

 th
is

 ti
m

e 
pe

ri
od

? 
-

__
__

__
__

_ 
  d

ay
s

...
 v

al
id

at
e 

ne
w

 o
r 

m
od

if
ie

d 
co

de
 fo

r 
fu

nc
ti

on
al

 c
or

re
ct

ne
ss

 a
nd

 q
ua

lit
y?

 
-

__
__

__
__

_ 
  d

ay
s

…
 in

te
gr

at
e 

ne
w

 o
r 

m
od

if
ie

d 
co

de
 in

to
 th

e 
ex

is
ti

ng
 c

od
e 

ba
se

? 
-

__
__

__
__

_ 
  d

ay
s

…
 s

ho
w

 n
ew

 o
r 

m
od

if
ie

d 
co

de
 to

 th
e 

te
am

's
 k

ey
 s

ta
ke

ho
ld

er
?

(in
 a

 S
cr

um
 c

on
te

xt
: t

o 
th

e 
pr

od
uc

t o
w

ne
r 

du
ri

ng
 th

e 
sp

ri
nt

 a
s w

el
l a

s i
n 

sp
ri

nt
 re

vi
ew

s)
-

__
__

__
__

_ 
  d

ay
s

De
ve

lo
pm

en
t c

yc
le

 ti
m

es
H

ow
 m

an
y 

w
or

k 
da

ys
 d

oe
s 

yo
ur

 t
ea

m
 t

yp
ic

al
ly

 t
ak

e 
 …

A
ft

er
 h

ow
 m

an
y 

de
ve

lo
pm

en
t 

da
ys

 d
oe

s 
th

e 
te

am
 t

yp
ic

al
ly

 …

Fo
r 

w
hi

ch
 t

im
e 

ho
ri

zo
n 

do
es

 y
ou

r 
te

am
 t

yp
ic

al
ly

 …

a
f

b
e

c
d

a

c
e

c
f

c

b
c c

d

Th
e

m
od

el
 o

n 
th

e 
rig

ht
 s

ho
w

s 
si

x
ac

tiv
iti

es
(a

-f)
 t

ha
t

ev
er

y 
so

ft
w

ar
e 

de
ve

lo
pm

en
t 

te
am

pu
rs

ue
s 

in
de

pe
nd

en
t 

of
 t

he
 u

se
d 

de
ve

lo
pm

en
t m

et
ho

do
lo

gy
.  

Pl
ea

se
 a

ns
w

er
 th

e 
fo

llo
w

in
g 

qu
es

tio
ns

 re
ga

rd
in

g 
th

es
e 

ac
tiv

iti
es

.

e.
g.

 2
0,

 2
, o

r0
.5

(h
al

f a
 w

or
k 

da
y)

Im
pl

em
en

ta
tio

n
W

rit
e 

so
ur

ce
 c

od
e

Va
lid

at
io

n
Re

vi
ew

 c
od

e,
 w

rit
e 

un
it 

te
st

s,
 …

Re
qu

ire
m

en
ts

 a
na

ly
si

s
An

al
yz

e 
ep

ic
s,

 u
se

r s
to

rie
s,

 …

D
el

iv
er

y
Sh

ow
 n

ew
 fe

at
ur

es
 to

 th
e 

pr
od

uc
t o

w
ne

r

So
ft

w
ar

e 
de

si
gn

(R
e)

de
si

gn
 A

PI
s,

 d
at

a 
m

od
el

s,
 

U
M

L 
di

ag
ra

m
s,

 …

In
te

gr
at

io
n

En
su

re
 th

at
 n

ew
 &

 o
ld

 c
od

e 
w

or
k 

to
ge

th
er

: 
m

an
ua

l o
r a

ut
om

at
ed

 in
te

gr
at

io
n 

te
st

in
g

c
d

e

f

b

a



Appendix A 149

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

5
|

9

Co
nt

in
ue

d:
Co

lla
bo

ra
tiv

e 
te

am
 w

or
k

of
 a

gi
le

 te
am

s

H
ow

 m
an

y 
te

am
 m

em
be

rs
 h

av
e 

an
al

yz
ed

 r
eq

ui
re

m
en

ts
 d

ur
in

g 
th

e 
la

st
 s

ix
 m

on
th

s?
(e

.g
., 

an
al

zy
in

g 
ep

ic
s/

us
er

 st
or

ie
s w

it
h 

th
e 

pr
od

uc
t o

w
ne

r t
o 

un
de

rs
ta

nd
 re

qu
ir

em
en

ts
)

__
__

__
__

_ 
  p

er
so

ns

L >
 W

he
n

an
al

yz
in

g 
on

e 
ty

pi
ca

l r
eq

ui
re

m
en

t,
 h

ow
 m

an
y 

te
am

 m
em

be
rs

 u
su

al
ly

 w
or

k 
to

ge
th

er
 to

 m
ak

e 
co

nt
ri

bu
ti

on
s?

__
__

__
__

_ 
  p

er
so

ns

H
ow

 m
an

y 
te

am
 m

em
be

rs
 h

av
e 

sh
ow

n 
fe

at
ur

es
 to

 th
e 

te
am

's
 k

ey
 s

ta
ke

ho
ld

er
 d

ur
in

g 
th

e 
la

st
 s

ix
 m

on
th

s?
(in

 a
 S

cr
um

 c
on

te
xt

: t
o 

th
e 

pr
od

uc
t o

w
ne

r 
du

ri
ng

 th
e 

sp
ri

nt
 a

s w
el

l a
s i

n 
sp

ri
nt

 re
vi

ew
s)

__
__

__
__

_ 
  p

er
so

ns

L >
 W

he
n 

sh
ow

in
g

 o
ne

 t
yp

ic
al

 fe
at

ur
e 

to
 th

e 
te

am
's

 k
ey

 s
ta

ke
ho

ld
er

, h
ow

 m
an

y 
te

am
 m

em
be

rs
 u

su
al

ly
 w

or
k 

to
ge

th
er

 to
 m

ak
e 

co
nt

ri
bu

ti
on

s?
__

__
__

__
_ 

  p
er

so
ns

So
ft

w
ar

e 
(r

e)
de

si
gn

   
   

   
   

   
   

  (
Re

)d
es

ig
n 

AP
Is

, d
at

a 
m

od
el

s,
 U

M
L 

di
ag

ra
m

s,
 …

__
__

__
__

_ 
  p

er
so

ns

So
ur

ce
 c

od
e 

im
pl

em
en

ta
ti

on
   

 W
ri

te
 so

ur
ce

 c
od

e
__

__
__

__
_ 

  p
er

so
ns

So
ur

ce
 c

od
e 

va
lid

at
io

n 
   

   
   

   
  R

ev
ie

w
 c

od
e,

 w
ri

te
 u

ni
t t

es
ts

, …
__

__
__

__
_ 

  p
er

so
ns

So
ur

ce
 c

od
e 

in
te

gr
at

io
n 

   
   

   
   

En
su

re
 th

at
 n

ew
 &

 o
ld

 c
od

e 
w

or
k 

to
ge

th
er

: m
an

ua
l o

r a
ut

om
at

ed
 in

te
gr

at
io

n 
te

st
in

g
__

__
__

__
_ 

  p
er

so
ns

So
ft

w
ar

e 
(r

e)
de

si
gn

   
   

   
   

   
   

  (
Re

)d
es

ig
n 

AP
Is

, d
at

a 
m

od
el

s,
 U

M
L 

di
ag

ra
m

s,
 …

__
__

__
__

__
__

_ 
  %

   
 

So
ur

ce
 c

od
e 

im
pl

em
en

ta
ti

on
   

 W
ri

te
 so

ur
ce

 c
od

e
__

__
__

__
__

__
_ 

  %
   

 

So
ur

ce
 c

od
e 

va
lid

at
io

n 
   

   
   

   
  R

ev
ie

w
 c

od
e,

 w
ri

te
 u

ni
t t

es
ts

, …
__

__
__

__
__

__
_ 

  %
   

 

So
ur

ce
 c

od
e 

in
te

gr
at

io
n 

   
   

   
   

En
su

re
 th

at
 n

ew
 &

 o
ld

 c
od

e 
w

or
k 

to
ge

th
er

: m
an

ua
l o

r a
ut

om
at

ed
 in

te
gr

at
io

n 
te

st
in

g
__

__
__

__
__

__
_ 

  %
   

 

St
ak

eh
ol

de
r i

nt
er

ac
tio

n

Co
lla

bo
ra

tio
n 

 
   

H
ow

 m
an

y 
te

am
 m

em
be

rs
 h

av
e 

do
ne

th
e 

fo
llo

w
in

g 
ac

ti
vi

ti
es

 d
ur

in
g 

th
e 

la
st

 s
ix

 m
on

th
s?

   
H

ow
 m

uc
h 

w
or

k 
of

 th
es

e 
ac

ti
vi

ti
es

 is
 r

eg
ul

ar
ly

 d
on

e 
th

ro
ug

h 
in

te
ns

iv
e 

co
lla

bo
ra

ti
on

 b
y 

at
 le

as
t 

tw
o 

te
am

 m
em

be
rs

(r
at

he
r t

ha
n 

do
ne

 b
y 

in
di

vi
du

al
s w

or
ki

ng
 a

lo
ne

?)

a a f f b c d e b c d e

Im
pl

em
en

ta
tio

n
W

rit
e 

so
ur

ce
 c

od
e

Va
lid

at
io

n
Re

vi
ew

 c
od

e,
 w

rit
e 

un
it 

te
st

s,
 …

Re
qu

ire
m

en
ts

 a
na

ly
si

s
An

al
yz

e 
ep

ic
s,

 u
se

r s
to

rie
s,

 …

D
el

iv
er

y
Sh

ow
 n

ew
 fe

at
ur

es
 to

 th
e 

pr
od

uc
t o

w
ne

r

So
ft

w
ar

e 
de

si
gn

(R
e)

de
si

gn
 A

PI
s,

 d
at

a 
m

od
el

s,
 

U
M

L 
di

ag
ra

m
s,

 …

In
te

gr
at

io
n

En
su

re
 th

at
 n

ew
 &

 o
ld

 c
od

e 
w

or
k 

to
ge

th
er

: 
m

an
ua

l o
r a

ut
om

at
ed

 in
te

gr
at

io
n 

te
st

in
g

c
d

b
e

a
f



150 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

6
|

9

Pa
rt

 3
/4

:  
  E

xp
er

tis
e 

in
 th

e 
te

am

0% - 9%

10%- 19%

20% - 29%

30%- 39%

40%- 49%

50%- 59%

60%- 69%

70% - 79%

80%- 89%

90% - 100%

En
gi

ne
er

in
g 

sk
ill

s 
&

 t
ec

hn
ic

al
 k

no
w

le
dg

e
(c

od
in

g 
an

d 
te

st
in

g 
ex

pe
rt

is
e,

 d
es

ig
n 

pa
tt

er
ns

, p
ro

gr
am

m
in

g 
la

ng
ua

ge
, 

de
ve

lo
pm

en
t t

oo
ls

, e
tc

.)

So
ft

w
ar

e 
ar

ch
it

ec
tu

re
kn

ow
le

dg
e 

of
 th

e 
pr

od
uc

t(
s)

 th
at

 th
e 

te
am

 d
ev

el
op

s

A
pp

lic
at

io
n 

do
m

ai
n

kn
ow

le
dg

e
(k

no
w

le
dg

e 
ab

ou
t c

us
to

m
er

 p
ro

ce
ss

es
 th

at
 th

e 
so

ft
w

ar
e 

su
pp

or
ts

, 
su

pp
or

te
d 

us
er

 a
ct

iv
it

ie
s,

 e
m

bo
di

ed
 b

us
in

es
s r

ul
es

, e
tc

.)

Cu
rr

en
t l

ev
el

 o
f e

xp
er

tis
e 

in
 th

e 
te

am
th

at
 is

 n
ec

es
sa

ry
 to

 a
cc

om
pl

is
h 

th
e 

te
am

 ta
sk

s
Ho

w
 m

uc
h 

of
 th

e 
ex

pe
rt

is
e 

th
at

 is
 n

ec
es

sa
ry

 to
 a

cc
om

pl
is

h 
th

e 
te

am
 ta

sk
s

is
 cu

rr
en

tly
 lo

ca
te

d 
in

si
de

 th
e 

te
am

?



Appendix A 151

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

7
|

9

Pa
rt

 4
/4

: 
Te

am
 c

on
te

xt

…
 u

nd
er

ly
in

g 
so

ft
w

ar
e 

co
m

po
ne

nt
s 

w
e 

bu
il

d 
ou

r 
so

ft
w

ar
e 

on
 (A

PI
s,

 li
br

ar
ie

s,
 p

la
tf

or
m

s,
 e

tc
.)

…
 t

ec
hn

ol
og

y 
w

e 
us

e 
(P

ro
gr

am
m

in
g 

la
ng

ua
ge

, p
er

si
st

en
ce

 te
ch

no
lo

gy
, s

er
ve

rs
, e

tc
.)

…
 s

of
tw

ar
e 

de
ve

lo
pm

en
t 

to
ol

s 
th

at
 th

e 
te

am
 d

ep
en

ds
 o

n 
(ID

Es
, i

nt
eg

ra
ti

on
 to

ol
s,

 te
st

in
g 

la
nd

sc
ap

e,
 b

ui
ld

 to
ol

s,
 e

tc
.)

…
 t

ea
m

 m
em

be
rs

hi
p

(jo
in

in
g 

or
 le

av
in

g 
te

am
 m

em
be

rs
)

…
 te

am
 m

an
ag

er
(s

) o
r 

ke
y 

st
ak

eh
ol

de
r 

(in
 a

 S
cr

um
 c

on
te

xt
: t

o 
th

e 
pr

od
uc

t o
w

ne
r)

Co
m

m
on

 U
nd

er
st

an
di

ng
 in

 th
e 

Te
am

Te
am

 m
em

be
rs

 h
av

e 
a 

co
m

m
on

 u
nd

er
st

an
di

ng
 o

f t
he

 t
ec

hn
ol

og
ie

s
us

ed
 in

 th
e 

de
ve

lo
pm

en
t p

ro
ce

ss
.

Te
am

 m
em

be
rs

 h
av

e 
a 

co
m

m
on

 u
nd

er
st

an
di

ng
 o

f t
he

 d
ev

el
op

m
en

t 
pr

oc
ed

ur
es

.

Te
am

 m
em

be
rs

 h
av

e 
a 

co
m

m
on

 u
nd

er
st

an
di

ng
 o

f t
he

 a
pp

lic
at

io
n 

do
m

ai
n 

th
at

 th
e 

so
ft

w
ar

e 
is

 to
 s

up
po

rt
.

Te
am

 m
em

be
rs

 s
ha

re
 o

ne
vi

si
on

 o
f t

he
 p

ro
du

ct
 th

at
 th

e 
te

am
 d

ev
el

op
s.

Te
am

 T
as

k 
Co

m
pl

ex
it

y

…
 fo

r 
w

hi
ch

 th
er

e 
w

as
 a

 c
le

ar
ly

 k
no

w
n 

w
ay

 h
ow

 to
 s

ol
ve

 th
em

.

…
 fo

r 
w

hi
ch

 th
e 

te
am

's
 p

re
ex

is
ti

ng
 k

no
w

le
dg

e 
w

as
 o

f g
re

at
 h

el
p 

to
 s

ol
ve

 th
em

.

…
 fo

r 
w

hi
ch

 th
e 

te
am

's
 p

re
ex

is
ti

ng
w

or
k 

pr
oc

ed
ur

es
 a

nd
 p

ra
ct

ic
es

 c
ou

ld
 b

e 
re

lie
d 

up
on

 to
 s

ol
ve

 th
em

.

Co
nc

er
ni

ng
 th

e 
la

st
 s

ix
 m

on
th

s,
 th

e 
te

am
 fa

ce
d 

ta
sk

s 
…

Dy
na

m
is

m
 o

f t
he

 E
nv

iro
nm

en
t

Th
e 

fo
ll

ow
in

g 
as

pe
ct

s 
ch

an
ge

d 
a 

lo
t d

ur
in

g 
th

e 
la

st
 s

ix
 m

on
th

s:

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree



152 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

8
|

9

Co
nt

in
ue

d:
   

Te
am

 w
or

k

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

If
 y

ou
 m

ak
e 

a 
m

is
ta

ke
 o

n 
th

is
 te

am
, i

t i
s 

ne
ve

r h
el

d 
ag

ai
ns

t 
yo

u.

M
em

be
rs

 o
f t

hi
s 

te
am

 a
re

 a
bl

e 
to

 b
ri

ng
 u

p 
pr

ob
le

m
s 

an
d 

to
ug

h 
is

su
es

.

Pe
op

le
 o

n 
th

is
 te

am
 s

om
et

im
es

 r
ej

ec
t 

ot
he

rs
 fo

r 
be

in
g 

di
ff

er
en

t.

It
 is

 s
af

e 
to

 ta
ke

 a
 r

is
k 

on
 th

is
 te

am
.

It
 is

 d
iff

ic
ul

t 
to

 a
sk

 o
th

er
 m

em
be

rs
 o

f t
hi

s 
te

am
 fo

r 
he

lp
.

Te
am

 C
on

fid
en

ce
O

ur
 te

am
 h

as
 c

on
fid

en
ce

 in
 it

se
lf.

O
ur

 te
am

 b
el

ie
ve

s 
it

 c
an

 b
ec

om
e 

un
us

ua
lly

 g
oo

d 
by

 p
ro

du
ci

ng
 h

ig
h-

qu
al

it
y 

w
or

k.

O
ur

 te
am

 e
xp

ec
ts

 to
 b

e 
kn

ow
n 

as
 a

 h
ig

h-
pe

rf
or

m
in

g 
te

am
.

O
ur

 te
am

 fe
el

s 
it

 c
an

 s
ol

ve
 a

ny
 p

ro
bl

em
 it

 e
nc

ou
nt

er
s.

O
ur

 te
am

 b
el

ie
ve

s 
it

 c
an

 b
e 

ve
ry

 p
ro

du
ct

iv
e.

O
ur

 te
am

 c
an

 g
et

 a
 lo

t d
on

e 
w

he
n 

it
 w

or
ks

 h
ar

d.

N
o 

ta
sk

 is
 t

oo
 t

ou
gh

 fo
r 

ou
r 

te
am

.

Te
am

 C
ul

tu
re



Appendix A 153

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

9
|

9

Co
nt

in
ue

d:
   

Te
am

 w
or

k

Almost never

Rarely

Sometimes

Often

Almost always

…
 s

ee
 w

ha
t 

ot
he

r 
te

am
 m

em
be

rs
 d

o 
on

 th
e 

jo
b?

…
 n

ot
ic

e 
ho

w
 o

th
er

 te
am

 m
em

be
rs

 b
eh

av
e 

at
 w

or
k?

…
 n

ot
ic

e
w

ha
t 

ot
he

r 
te

am
 m

em
be

rs
 d

o 
at

 w
or

k?

…
 t

ak
e 

ac
ti

on
 if

 a
no

th
er

 te
am

 m
em

be
r 

do
es

 h
is

/h
er

 jo
b 

in
co

rr
ec

tl
y?

…
 c

or
re

ct
 o

th
er

 te
am

 m
em

be
rs

 w
he

n 
th

ey
 m

ak
e 

m
is

ta
ke

s?

…
 le

t 
ot

he
r 

te
am

 m
em

be
rs

 k
no

w
 if

 th
ey

 d
o 

so
m

et
hi

ng
 w

ro
ng

?

…
 t

el
l a

 m
an

ag
er

 if
 a

no
th

er
 te

am
 m

em
be

r 
m

is
be

ha
ve

s?

…
 t

el
l a

 m
an

ag
er

 if
 a

 te
am

 m
em

be
r 

di
sr

eg
ar

ds
 t

ea
m

 ru
le

s?

…
 le

t 
so

m
eo

ne
 k

no
w

 if
 a

no
th

er
 te

am
 m

em
be

r 
is

 d
is

ho
ne

st
?

…
 t

al
k 

ab
ou

t h
ow

 o
th

er
 te

am
 m

em
be

rs
 d

o 
th

ei
r j

ob
?

…
 d

is
cu

ss
ho

w
 e

ve
ry

on
e 

pe
rf

or
m

s 
at

 w
or

k?

…
 le

t 
ot

he
rs

 k
no

w
 th

at
 a

no
th

er
 te

am
 m

em
be

r 
do

es
 g

oo
d 

w
or

k?

…
 c

on
gr

at
ul

at
e 

ot
he

r 
te

am
 m

em
be

rs
 if

 th
ey

 a
re

 r
ec

og
ni

ze
d 

fo
r 

do
in

g 
go

od
 w

or
k?

…
 t

el
lo

th
er

 te
am

 m
em

be
rs

 th
at

 th
ey

 d
id

 a
 g

oo
d 

jo
b?

 

Fo
r m

et
ho

do
lo

gi
ca

l r
ea

so
ns

, s
om

e 
qu

es
tio

ns
 c

ov
er

 s
im

ila
r a

sp
ec

ts
 fr

om
 d

iff
er

en
t p

er
sp

ec
tiv

es
.

Pe
er

 A
w

ar
en

es
s

H
ow

 o
ft

en
 d

o 
m

em
be

rs
 o

f y
ou

r 
te

am
 …

Th
an

k 
yo

u 
ve

ry
 m

uc
h 

fo
r y

ou
r c

on
tr

ib
ut

io
n!



154 Appendix A

A.7 Survey: Area Product Owner Questionnaire

AgileSE Research Study – questions for (Area) Product Owners

In a joined research project with the University of Mannheim, we are conducting a study on the 
impact of agile software engineering at SAP. The study is conducted by Christoph Schmidt, who is a 
half-time employee at SAP and a PhD student at the University of Mannheim at the Institute for 
Enterprise Systems (Prof. Dr. Heinzl).

We have invited your teams to participate in the study. Now, we kindly ask you to fill out this
questionnaire, which will take about 20 minutes. For the purpose of this study, we define the 
development team as ‘developers & scrum master’.

Complementary to the teams’ answers, we invite you to rate your satisfaction with your
development teams. In particular, we ask about the software quality the teams deliver, your 
satisfaction with the software delivery process, i.e., how the teams deliver software, and about the
overall effectiveness of the teams. Additionally, there are questions about the teams’ tasks.

We would highly appreciate to get your honest opinion on our questions. There are no right or wrong 
answers. Your thoughtful answers will not only help the success of the study, but will also improve 
the AgileSE trainings at SAP. For methodological reasons, some questions seem to cover similar 
aspects from different perspectives.

Study disclaimer: The survey has been approved by the German SAP workers’ council and 
SAP’s data protection officer. We will not pass any data to management that would allow 
insights into the answers of a single team or your answers. The data is ONLY used for 
research purposes and we guarantee to work confidentially with the data. The teams will not 
see your answers.

Christoph Schmidt christoph.schmidt01@sap.com &  christoph.schmidt@uni-mannheim.de 
Prof. Dr. Armin Heinzl heinzl@uni-mannheim.de

Overall 
effectiveness

Software quality Software 
delivery process

PO

Dev. team
Dev

Dev Dev

SM

Dev



Appendix A 155

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

1
|

 5
~ 10%  of the occasions

~ 20%  of the occasions

~ 30% of the occasions

~ 40% of the occasions

~ 50% of the occasions

~ 60% of the occasions

~ 70% of the occasions

~ 80% of the occasions

~ 90% of the occasions

~ 100% of the occasions

~ 10%  of the occasions

~ 20%  of the occasions

~ 30% of the occasions

~ 40% of the occasions

~ 50% of the occasions

~ 60% of the occasions

~ 70% of the occasions

~ 80% of the occasions

~ 90% of the occasions

~ 100% of the occasions

Never

Rarely

Here and then

Occasionally

Sometimes

Frequently

Very often

Usually

Almost always

Always

Never

Rarely

Here and then

Occasionally

Sometimes

Frequently

Very often

Usually

Almost always

Always

W
he

n 
th

e 
te

am
 p

re
se

nt
s 

ne
w

 fe
at

ur
es

, t
he

 te
am

's
 s

of
tw

ar
e 

do
es

 w
ha

t 
it

 is
 s

up
po

se
d 

to
 d

o.

Th
e 

te
am

’s
 k

ey
 s

ta
ke

ho
ld

er
 (i

n 
a 

Sc
ru

m
 c

on
te

xt
: 

pr
od

uc
t o

w
ne

r)
 is

 s
at

is
fie

d 
w

it
h 

th
e 

so
ft

w
ar

e 
qu

al
ity

 th
e 

te
am

 d
el

iv
er

s.

W
he

n 
th

e 
te

am
 p

re
se

nt
s 

ne
w

 fe
at

ur
es

, t
he

y 
co

ul
d 

fe
ar

le
ss

ly
 b

e 
sh

ip
pe

d 
to

 th
e 

cu
st

om
er

.

Th
e 

ca
pa

bi
li

ti
es

 o
f t

he
 s

of
tw

ar
e 

m
ee

t 
th

e 
ne

ed
s 

of
 th

e 
te

am
's

 c
us

to
m

er
s 

(S
AP

 in
te

rn
al

 o
r e

xt
er

na
l).

O
ve

ra
ll

, t
he

 te
am

's
 s

of
tw

ar
e 

co
nt

ri
bu

te
s 

to
 S

A
P'

s 
re

pu
ta

ti
on

 a
s 

a 
hi

gh
 q

ua
li

ty
 s

of
tw

ar
e 

co
m

pa
ny

.

Th
e 

te
am

 d
el

iv
er

s 
so

ft
w

ar
e 

th
at

 fu
ll

y 
co

ve
rs

 th
e 

re
qu

es
te

d 
fu

nc
ti

on
al

it
y.

Th
e 

so
ft

w
ar

e 
th

e 
te

am
 d

el
iv

er
s 

m
ee

ts
 t

ec
hn

ic
al

 r
eq

ui
re

m
en

ts
.

In
te

rn
al

 s
of

tw
ar

e 
qu

al
it

y
Th

e 
te

am
 c

om
pl

ie
s 

w
it

h 
do

ne
 c

ri
te

ri
a.

Th
e 

so
ft

w
ar

e 
co

de
 is

 r
eu

sa
bl

e.

Th
e 

so
ft

w
ar

e 
co

de
 is

 m
ai

nt
ai

na
bl

e.

Th
e 

so
ft

w
ar

e 
co

de
 is

 e
as

il
y 

te
st

ab
le

.

Th
e 

so
ft

w
ar

e 
co

de
 is

 c
le

an
(e

.g
., 

na
m

in
g,

 st
ru

ct
ur

e,
 re

ad
ab

ili
ty

, f
or

m
at

ti
ng

).

Pr
oj

ec
t 

pe
rs

pe
ct

iv
e

Th
e 

AP
O

/P
O

 r
ej

ec
ts

 p
re

se
nt

ed
 d

ev
el

op
m

en
t t

as
ks

 (i
n 

a 
Sc

ru
m

 c
on

te
xt

: 
ba

ck
lo

g 
it

em
s)

 o
f t

he
 te

am
 d

ue
 to

 q
ua

li
ty

 is
su

es
.  

   
   

   
   

   
   

   
   

 

Th
e 

te
am

 h
as

 to
 r

ew
or

k 
pr

es
en

te
d 

fe
at

ur
es

 to
 fi

x 
is

su
es

 fr
om

 p
re

vi
ou

s 
de

ve
lo

pm
en

t c
yc

le
s 

(in
 a

 S
cr

um
 c

on
te

xt
: s

pr
in

ts
). 

    
    

    
 

Te
am

 A
Te

am
 B

Ex
te

rn
al

 s
of

tw
ar

e 
qu

al
it

y

Pl
ea

se
 in

se
rt

 th
e 

na
m

es
 o

f t
he

 p
ar

tic
ip

at
in

g t
ea

m
s i

n 
th

e 
bo

xe
s h

er
e.

Th
en

,p
le

as
e 

ra
te

 th
e 

fo
llo

w
in

g s
ta

te
m

en
ts

.

AP
O

 =
 A

re
a 

pr
od

uc
t o

w
ne

r
PO

  =
 P

ro
du

ct
 o

w
ne

r

1 2

1

2

Pa
rt

 
/4

:
So

ft
w

ar
e 

qu
al

ity

O
ve

ra
ll 

te
am

 
ef

fe
ct

iv
en

es
s

So
ft

w
ar

e 
qu

al
ity

So
ft

w
ar

e 
de

liv
er

y 
pr

oc
es

s



156 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

2
|

 5

Pa
rt

 2
/4

:
So

ft
w

ar
e

de
liv

er
y

pr
oc

es
s

Fo
r m

et
ho

do
lo

gi
ca

l r
ea

so
ns

, s
om

e 
qu

es
tio

ns
 c

ov
er

 s
im

ila
r a

sp
ec

ts
 fr

om
 d

iff
er

en
t p

er
sp

ec
tiv

es
.

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Th
is

 te
am

 h
as

 a
 h

ig
h 

ve
lo

ci
ty

 o
f d

el
iv

er
in

g 
ne

w
 fe

at
ur

es
.

Th
e 

pr
og

re
ss

 o
f t

he
 te

am
 is

 a
lw

ay
s 

sa
ti

sf
yi

ng
.

Th
e 

te
am

 c
on

ti
no

us
ly

 m
ak

es
 e

xc
el

le
nt

 p
ro

gr
es

s 
w

it
h 

ne
w

 fe
at

ur
es

.

Th
is

 te
am

 is
 a

 h
ig

h 
pe

rf
or

m
an

ce
 te

am
 r

eg
ar

di
ng

 th
e 

sp
ee

d 
of

 d
el

iv
er

in
g

fe
at

ur
es

.

I t
ru

st
 th

e 
te

am
 to

 d
el

iv
er

 a
t t

he
 e

nd
 o

f a
 d

ev
el

op
m

en
t c

yc
le

 w
ha

t 
it

 fo
re

ca
st

s 
be

fo
re

 th
e 

cy
cl

e.

Th
e 

te
am

 a
lw

ay
s 

m
ee

ts
 th

e 
ob

je
ct

iv
es

 th
at

 a
re

 s
et

 a
t 

th
e 

be
gi

nn
in

g 
of

 a
 d

ev
el

op
m

en
t c

yc
le

.

W
he

n 
th

e 
te

am
 p

ro
m

is
es

 to
 d

o 
so

m
et

hi
ng

, I
 a

m
 s

ur
e 

it
 d

oe
s 

so
.

I a
m

 c
on

fi
de

nt
 th

at
 th

e 
te

am
 d

el
iv

er
s 

fo
re

ca
st

ed
 fe

at
ur

es
.

Th
e 

te
am

 c
om

m
un

ic
at

es
 is

su
es

 to
 a

ff
ec

te
d 

st
ak

eh
ol

de
rs

 w
he

ne
ve

r 
ne

ce
ss

ar
y.

Pr
od

uc
t 

st
ak

eh
ol

de
rs

 (P
O

 &
 A

PO
) 

ar
e 

al
w

ay
s 

w
el

l-i
nf

or
m

ed
 a

bo
ut

 p
ro

bl
em

s.

W
he

ne
ve

r 
pr

ob
le

m
s 

oc
cu

r,
 th

e 
te

am
 in

fo
rm

s 
af

fe
ct

ed
 s

ta
ke

ho
ld

er
s

ou
ts

id
e 

th
e 

te
am

.

Te
am

 p
ro

gr
es

s

Te
am

 B
Te

am
 A

Pr
ed

ic
ta

bi
lit

y

Tr
an

sp
ar

en
cy

O
ve

ra
ll 

te
am

 
ef

fe
ct

iv
en

es
s

So
ft

w
ar

e 
qu

al
ity

So
ft

w
ar

e 
de

liv
er

y 
pr

oc
es

s



Appendix A 157

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

3
|

 5

Pa
rt

 3
/4

:
Te

am
 ta

sk
s

Fo
r m

et
ho

do
lo

gi
ca

l r
ea

so
ns

, s
om

e 
qu

es
tio

ns
 c

ov
er

 s
im

ila
r a

sp
ec

ts
 fr

om
 d

iff
er

en
t p

er
sp

ec
tiv

es
.

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

…
 w

er
e 

ch
an

gi
ng

 q
ui

te
 a

 b
it

 d
ur

in
g 

th
e 

la
st

 th
re

e 
m

on
th

s.

…
 w

ill
 c

ha
ng

e 
qu

it
e 

a 
bi

t 
in

 th
e 

fu
tu

re
.

…
 a

re
 q

ui
te

 d
iff

er
en

t 
fr

om
 th

os
e 

or
ig

in
al

ly
 id

en
ti

fi
ed

.

Te
am

 t
as

k 
di

ve
rs

it
y

Th
e 

 te
am

 w
or

ks
 o

n 
a

br
oa

d 
sp

ec
tr

um
 o

f d
iff

er
en

t 
ta

sk
s(

ne
w

 d
ev

., 
m

ai
nt

en
an

ce
, d

oc
um

en
ta

ti
on

s,
 c

on
su

lt
in

g 
ot

he
rs

).

Th
e 

te
am

 fa
ce

s 
ve

ry
 h

et
er

og
en

eo
us

 re
qu

ir
em

en
ts

.

Th
e 

te
am

 h
as

 to
 b

e 
fa

m
ili

ar
 w

it
h 

de
ta

ils
 fr

om
 m

an
y 

di
ff

er
en

t 
so

ft
w

ar
e 

co
m

po
ne

nt
s 

(e
.g

., 
lib

ra
ri

es
, A

PI
s)

.

Th
e 

te
am

 w
or

ks
 o

n 
va

ri
ou

s 
so

ft
w

ar
e 

la
ye

rs
 in

 th
e 

te
ch

no
lo

gy
 s

ta
ck

 (e
.g

., 
pe

rs
is

te
nc

e,
 a

pp
lic

at
io

n 
lo

gi
c,

 U
I).

A
rc

hi
te

ct
ur

al
 m

od
ul

ar
it

y

Th
e 

te
am

's
 s

of
tw

ar
e 

ha
s 

a 
hi

gh
ly

 m
od

ul
ar

 a
rc

hi
te

ct
ur

e.

Th
e 

te
am

's
 s

of
tw

ar
e 

ca
n 

be
 d

ec
om

po
se

d 
in

to
 s

ep
ar

at
e,

 in
de

pe
nd

en
t f

un
ct

io
na

l s
ub

-u
ni

ts
.

Th
e 

te
am

 c
an

 c
ha

ng
e

ke
y 

co
m

po
ne

nt
(s

) o
f i

ts
 s

of
tw

ar
e 

w
it

ho
ut

 re
de

si
gn

in
g 

ot
he

rs
.

Fr
om

 a
 te

ch
ni

ca
l p

oi
nt

 o
f v

ie
w

, l
ar

ge
 p

ar
ts

 o
f t

he
 te

am
's

 s
of

tw
ar

e 
co

ul
d 

be
 re

us
ed

 in
 o

th
er

 p
ro

du
ct

s.

Te
am

 A
Te

am
 B

Re
qu

ire
m

en
ts

 v
ol

at
ili

ty
Th

e 
so

ft
w

ar
e 

re
qu

ir
em

en
ts

 th
e 

te
am

 w
or

ks
 o

n 
…

H
ow

 w
ou

ld
 y

ou
 d

es
cr

ib
e 

th
e 

so
ft

w
ar

e
th

e 
te

am
 d

ev
el

op
s?



158 Appendix A

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

4
|

 5

Co
nt

in
ue

d:
Re

ac
tio

n
to

ch
an

ge

Fo
r m

et
ho

do
lo

gi
ca

l r
ea

so
ns

, s
om

e 
qu

es
tio

ns
 c

ov
er

 s
im

ila
r a

sp
ec

ts
 fr

om
 d

iff
er

en
t p

er
sp

ec
tiv

es
.

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

Ch
an

gi
ng

 r
eq

ui
re

m
en

ts
(e

.g
. r

ep
ri

or
it

iz
at

io
ns

, n
ew

 re
qu

ir
em

en
ts

)

Ch
an

gi
ng

 t
ec

hn
ol

og
ic

al
 re

so
ur

ce
s

(e
.g

., 
pr

og
ra

m
m

in
g 

la
ng

ua
ge

s,
 A

PI
s,

 p
la

tf
or

m
s,

 se
rv

er
s)

Ch
an

gi
ng

 p
eo

pl
e

(e
.g

. c
ha

ng
in

g 
te

am
 m

em
be

rs
, p

ro
du

ct
 o

w
ne

rs
, m

an
ag

er
s)

Very little effort

Little effort

Minor effort

Moderate effort

Some effort

Much effort

Very much effort

Very little effort

Little effort

Minor effort

Moderate effort

Some effort

Much effort

Very much effort

Ch
an

gi
ng

 r
eq

ui
re

m
en

ts
(e

.g
. r

ep
ri

or
it

iz
at

io
ns

, n
ew

 re
qu

ir
em

en
ts

)

Ch
an

gi
ng

 t
ec

hn
ol

og
ic

al
 re

so
ur

ce
s

(e
.g

., 
pr

og
ra

m
m

in
g 

la
ng

ua
ge

s,
 A

PI
s,

 p
la

tf
or

m
s,

 se
rv

er
s)

Ch
an

gi
ng

 p
eo

pl
e

(e
.g

. c
ha

ng
in

g 
te

am
 m

em
be

rs
, p

ro
du

ct
 o

w
ne

rs
, m

an
ag

er
s)

Te
am

 A
Te

am
 B

  C
on

si
de

ri
ng

 th
e 

la
st

 s
ix

 m
on

th
s,

   
 h

ow
 m

uc
h 

ad
di

ti
on

al
 e

ff
or

t 
w

as
 r

eq
ui

re
d 

by
 th

e 
te

am
 to

 in
co

rp
or

at
e

ch
an

ge
s 

in
 th

e
fo

llo
w

in
g 

ca
te

go
ri

es
?

Re
ac

ti
on

 t
o 

ch
an

ge
W

he
n 

ch
an

ge
s 

oc
cu

r 
in

 th
e 

fo
llo

w
in

g 
ca

te
go

ri
es

, t
he

 te
am

 is
 a

bl
e 

to
 e

ff
ec

ti
ve

ly
 in

co
rp

or
at

e 
th

es
e 

ch
an

ge
s:



Appendix A 159

Ag
ile

SE
 R

es
ea

rc
h 

St
ud

y

5
|

 5

Bottom 5%

Below average

Mid field team

Above average

Top 5%

Bottom 5%

Below average

Mid field team

Above average

Top 5%

5%
20

%
50

%
20

%
5%

5%
20

%
50

%
20

%
5%

O
ve

ra
ll 

so
ft

w
ar

e 
qu

al
it

y 
(th

e o
ve

ra
ll 

qu
al

ity
 o

f t
he

 so
�w

ar
e t

he
 te

am
 d

el
iv

er
s)

 - 
In

te
rn

al
 s

of
tw

ar
e 

qu
al

it
y 

(c
od

e r
ea

da
bi

lit
y,

 u
nd

er
st

an
da

bi
lit

y,
 te

st
ab

ili
ty

, m
ai

nt
ai

na
bi

lit
y,

 fo
rm

a�
ng

)

 - 
Ex

te
rn

al
 s

of
tw

ar
e 

qu
al

it
y 

(fu
nc

�o
na

lit
y,

 u
sa

bi
lit

y,
 re

lia
bi

lit
y,

 a
cc

ur
ac

y,
 p

er
fo

rm
an

ce
)

O
ve

ra
ll 

de
liv

er
y 

qu
al

it
y 

(th
e w

ay
 h

ow
 th

e t
ea

m
 d

el
iv

er
s t

he
 so

�w
ar

e)

 - 
Te

am
 p

ro
gr

es
s,

 i.
e.

 th
e t

ea
m

's 
ve

lo
ci

ty
 o

f d
el

iv
er

in
g 

ne
w

 fe
at

ur
es

.

 - 
Pr

ed
ic

ta
bi

lit
y,

 i.
e.

 th
e t

ea
m

's 
re

lia
bi

lit
y t

o 
de

liv
er

 a
t t

he
 en

d 
of

 th
e d

ev
el

op
m

en
t c

yc
le

 w
ha

t i
t p

ro
m

ise
s a

t t
he

 b
eg

in
ni

ng
.

 - 
Tr

an
sp

ar
en

cy
, i

.e
. t

he
 d

eg
re

e t
o 

w
hi

ch
 th

e t
ea

m
's 

st
ak

eh
ol

de
rs

 a
re

 in
fo

rm
ed

 a
bo

ut
 a

ris
in

g 
pr

ob
le

m
s.

Stronglydisagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Stronglyagree

Strongly disagree 

Disagree

Somewhat disagree

Neither agree or disagree

Somewhat agree

Agree

Strongly agree

W
he

n 
as

ke
d 

fo
r a

 h
ig

h 
pe

rf
or

m
an

ce
 te

am
, o

th
er

 S
AP

 te
am

s  
w

ou
ld

 r
ef

er
en

ce
 th

is
 te

am
.

I c
on

sid
er

 th
is

 te
am

 a
 h

ig
h 

pe
rf

or
m

an
ce

 te
am

.

Re
po

rt
s o

n 
th

e 
pe

rf
or

m
an

ce
 o

f t
hi

s 
te

am
 a

re
 a

lw
ay

s f
av

or
ab

le
.

Pe
er

 te
am

s c
on

si
de

r 
th

is
 te

am
 a

 g
re

at
 su

cc
es

s.

O
ve

ra
ll 

te
am

 e
ffe

c�
ve

ne
ss

Te
am

 A
Te

am
 B

In
 w

hi
ch

 "
le

ag
ue

 d
oe

s 
th

e 
te

am
 p

la
y"

 c
om

pa
re

d 
to

 o
th

er
 S

AP
 te

am
s?

Pa
rt

 4
/4

:
O

ve
ra

ll 
te

am
 e

ff
ec

tiv
en

es
s

O
ve

ra
ll 

te
am

 
ef

fe
ct

iv
en

es
s

So
ft

w
ar

e 
qu

al
ity

So
ft

w
ar

e 
de

liv
er

y 
pr

oc
es

s

Th
an

k 
yo

u 
ve

ry
 m

uc
h 

fo
r y

ou
r c

on
tr

ib
u�

on
!



160 Appendix A

A.8 Survey: Team Report



Appendix A 161



162 Appendix A

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

50

100

150

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts



Appendix A 163

0

50

100

150

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts



164 Appendix A

0

50

100

150

200

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts

0

40

80

120

0% 20% 40% 60% 80% 100%

R
es

po
nd

en
ts



Appendix A 165

1  Strongly
disagree

7  Strongly agree

Internal Support

Mutual
Assistance

Feedback

Mutual
Awareness



166 Appendix A

1  Strongly
disagree

7  Strongly agree

Team Performance

Leadership

Specialized Expertise

Knowledge
Coordination



Appendix A 167

1  Strongly
disagree

7  Strongly agree

Team Relationship

Time
Pressure

Team
Cohesion

Mutual
Credibility

Common
Understanding



168 Appendix A

11 %
15 %
15 %
17 %
21 %
21 %
24 %
31 %
38 %
45 %

Motivation
Communication in the Team

Work Environment
Communication with the PO

Testing Skills
Programming Skills

Software Architecture
Communication with other Teams

Development Tools
Communication with Customers

11 %

22 %

22 %

33 %

33 %

33 %

56 %

Programming Skills

Communication with Customers

Atmosphere

Communication with other Teams

Communication in the Team

Software Architecture

Testing Skills



Appendix A 169



Bibliography

Abrahamsson, P., Conboy, K., & Wang, X. (2009). Lots done, more to do: The current state of agile
systems development research. European Journal of Information Systems, 18(4), 281–284.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development
Methods: Review and Analysis. 2002 (478). Research Report. http://www.vtt.fi/inf/pdf/
publications/2002/P478.pdf.

Aiken, L. S., & West, S. G. (1992). Multiple regression: Testing and interpreting interactions.
Newbury Park, CA: Sage.

Akgün, A. E., Byrne, J., & Keskin, H. (2005). Knowledge networks in new product development
projects: A transactive memory perspective. Information and Management, 42(8), 1105–1120.

Akgün, A. E., Keskin, H., Byrne, J., & Imamoglu, S. Z. (2007). Antecedents and consequences of
team potency in software development projects. Information and Management, 44(7), 646–656.

Al-Fatish, F., Roemer, M., Fassunge, M., Reinstorf, T., & Staader, J. (2011). ASE: Immer besser
mit starken Teams! Agile Software Engineering bei der SAP. Object Spectrum 1, 1–3.

Anderson, D. J. (2004). Agile management for software engineering: Applying the theory of
constraints for business results. The coad series. Upper Saddle River, NJ: Prentice Hall.

Andreessen, M. (2011, August 20). Why software is eating the world. Wall Street Journal.
Argote, L. (1982). Input uncertainty and organizational coordination in hospital emergency units.

Administrative Science Quarterly, 27(3), 420–434.
Austin, R. D., & Devin, L. (2009). Weighing the benefits and costs of flexibility in making

software: Toward a contingency theory of the determinants of development process design.
Information Systems Research, 20(3), 462–477.

Baccarini, D. (1996). The concept of project complexity: A review. International Journal of
Project Management, 14(4), 201–204.

Bajec, M., Krisper, M., & Rupnik, R. (2004). The scenario for constructing flexible, people focused
systems development methodologies. In European Conference on Information Systems.

Balijepally, V. G., Mahapatra, R. K., Nerur, S., & Price, K. H. (2009). Are two heads better than
one for software development? The productivity paradox of pair programming. Management
Information Systems Quarterly, 33(1), 91–118.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological
Review, 84(2), 191–215.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory.
Englewood Cliffs, NJ: Prentice-Hall.

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software development practices, software
complexity, and software maintenance performance: A field study. Management Science, 44(4),
433–450.

© Springer International Publishing Switzerland 2016
C. Schmidt, Agile Software Development Teams, Progress in IS,
DOI 10.1007/978-3-319-26057-0

171

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf


172 Bibliography

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations. Journal of
Personality and Social Psychology, 51(6), 1173–1182.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., & Slaughter, S. (2001). How internet
software companies negotiate quality. Computer, 34(5), 51–57.

Baskerville, R., & Pries-Heje, J. (2004). Short cycle time systems development. Information
Systems Journal, 14(3), 237–264.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003). Is internet-speed
software development different? IEEE Software, 20(6), 70–77.

Batra, D., Sin, T., & Ying, S. (2006). Modified agile practices for outsourced software projects. In
Americas Conference on Information Systems.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-
Wesley.

Begel, A., & Nagappan, N. (2007). Usage and perceptions of agile software development in an
industrial context: An exploratory study. In International Symposium on Empirical Software
Engineering and Measurement (pp. 255–264). Washington, DC: IEEE.

Begel, A., & Simon, B. (Eds.). (2010). Novice professionals: Recent graduates in a first software
engineering job (Chapter 6, pp. 495–516). Sebastopol, CA: O’Reilly Media.

Berger, H., & Beynon-Davies, P. (2008). Knowledge based diffusion: A case study experience. In
International Conference on Information Systems.

Berger, H., & Beynon-Davies, P. (2009). The utility of rapid application development in large-
scale, complex projects. Information Systems Journal, 19(6), 549–570.

Bettenhausen, K. L. (1991). Five years of groups research: What we have learned and what needs
to be addressed. Journal of Management, 17(2), 345–381.

Bhattacharya, S., Krishnan, V., & Mahajan, V. (1998). Managing new product definition in highly
dynamic environments. Management Science, 44(11), 50–64.

Bhattacherjee, A. (2012). Social science reserach: Principles, methods, and practices. Zurich:
Global Text Project.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In International
Conference on Software Engineering (pp. 12–29). New York, NY: ACM.

Bok, H. S., & Raman, K. S. (2000). Software engineering productivity measurement using function
points: A case study. Journal of Information Technology, 15(1), 79–90.

Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation
perspective. Psychological Bulletin, 110(2), 305.

Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Whiley.
Bommer, W. H., Johnson, J. L., Rich, G. A., Podsakoff, P. M., & MacKenzie, S. B. (1995). On

the interchangeability of objective and subjective measures of employee performance: A meta-
analysis. Personnel Psychology, 48(3), 587–605.

Bonner, N. A., Teng, J. T. C., & Nerur, S. (2010). The perceived advantage of agile development
methodologies by software professionals: Testing an innovation-theoretic model. In Americas
Conference on Information Systems.

Brill, S. (2014, March 10). Code red - inside the nightmare launch of healthcare.gov and the team
that figured out how to fix it. Times, 26–36.

Börjesson, A., & Mathiassen, L. (2005). Improving software organizations: Agility challenges and
implications. Information Technology and People, 18(4), 359–382.

Brooks, F. P. (1995). The mythical man-month: Essays on software engineering. Reading, MA:
Addison-Wesley.

Brown, R., Nerur, S., & Slinkman, C. (2004). Philosophical shifts in software development. In
Americas Conference on Information Systems.

Bryman, A., & Bell, E. (2011). Business research methods. New York, NY: Oxford University
Press.

Burke, S., Stagl, K. C., Klein, C., Goodwin, G. F., Salas, E., & Halpin, S. M. (2006). What type
of leadership behaviors are functional in teams? A meta-analysis. The Leadership Quarterly,
17(3), 288–307.



Bibliography 173

Burke, S., Stagl, K. C., Salas, E., Pierce, L., & Kendall, D. (2006). Understanding team adaptation:
A conceptual analysis and model. Journal of Applied Psychology, 91(6), 1189–1207.

Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review,
13(1), 40–52.

Cannon-Bowers, J. A., Salas, E., & Converse, S. (Eds.). (1993). Shared mental models in expert
team decision making (Chapter 12, pp. 221–246). Castellan, NJ: Lawrence Erlbaum Associates.

Cao, L., Mohan, K., Ramesh, B., & Sarkar, S. (2013). Adapting funding processes for agile IT
projects: An empirical investigation. European Journal of Information Systems, 22(2), 191–
205.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile development
methodologies. European Journal of Information Systems, 18(4), 332–343.

Carmeli, A., Gelbard, R., & Goldriech, R. (2011). Linking perceived external prestige and
collective identification to collaborative behaviors in R&D teams. Expert Systems with
Applications, 38(7), 8199–8207.

Chan, D. (1998). Functional relations among constructs in the same content domain at different
levels of analysis: A typology of composition models. Journal of Applied Psychology, 83(2),
234–246.

Charaf, M. C., Rosenkranz, C., & Holten, R. (2013). The emergence of shared understanding:
Applying functional pragmatics to study the requirements development process. Information
Systems Journal, 23(2), 115–135.

Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42(9), 42–49.
Charette, R. N. (2009). This car runs on code. IEEE Spectrum, 46(3), 3–11.
Chen, G., Bliese, P. D., Payne, S. C., Zaccaro, S. J., Webber, S. S., Mathieu, J. E., et al. (2002).

Simultaneous examination of the antecedents and consequences of efficacy beliefs at multiple
levels of analysis. Human Performance, 15(4), 381–409.

Chin, W. W. (1998). Issues and opinion on structural equation modeling. Management Information
Systems Quarterly, 22(1), viii–xvi.

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern
Methods for Business Research, 295(2), 295–336.

[Chin 2010] Chin, W. W. (Ed.). (2010). How to write up and report PLS analyses (Chapter 28,
pp. 655–690). Heidelberg: Springer.

Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable
modeling approach for measuring interaction effects: Results from a Monte Carlo simulation
study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2),
189–217.

Cho, J., Kim, Y., & Olsen, D. (2006). A case study on the applicability and effectiveness of scrum
software development in mission-critical and large-scale projects. In Americas Conference on
Information Systems.

Chuang, S.-W., Luor, T., & Lu, H.-P. (2014). Assessment of institutions, scholars, and contributions
on agile software development. Journal of Systems and Software, 93(7), 84–101.

Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs.
Journal of Marketing Research, 16(1), 64–73.

Cockburn, A. (2001). Agile software development: Software through people. Amsterdam: Addison-
Wesley.

Cockburn, A. (2005). Crystal clear: A human-powered methodology for small teams. The agile
software development series. Boston, MA: Addison-Wesley.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. Advances in
Computers, 62, 1–66.

Cohen, S. G., & Bailey, D. E. (1997). What makes teams work: Group effectiveness research from
the shop floor to the executive suite. Journal of Management, 23(3), 239–290.

Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility in
information systems development. Information Systems Research, 20(3), 329–354.

Cram, W. A., & Brohman, M. K. (2013). Controlling information systems development: A new
typology for an evolving field. Information Systems Journal, 23(2), 137–154.



174 Bibliography

Dabrowski, M., Acton, T., Drury, M., Conboy, K., & Dabrowska, A. (2011). Agile software
development: A case for adequate decision support tools. In Americas Conference on
Information Systems.

DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). Measuring shared team mental models: A
meta-analysis. Group Dynamics: Theory, Research, and Practice, 14(1), 1–14.

Dibbern, J., Goles, T., Hirschheim, R., & Jayatilaka, B. (2004). Information systems outsourcing:
A survey and analysis of the literature. ACM Sigmis Database, 35(4), 6–102.

Dickinson, T. L., & McIntyre, R. M. (Eds.). (1997). A conceptual framework for teamwork
measurement (Chapter 2, pp. 19–43). Mahwah, NJ: Lawrence Erlbaum Associates.

Dillman, D. A., Smyth, J. D., Christian, L. M., & Dillman, D. A. (2009). Internet, mail, and
mixed-mode surveys: The tailored design method. Hoboken, NJ: Wiley.

Dingsøyr, T., & Dybå, T. (2012). Team effectiveness in software development: Human and
cooperative aspects in team effectiveness models and priorities for future studies. In
International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE)
(pp. 27–29).

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile methodologies:
Towards explaining agile software development. Journal of Systems and Software, 85(6), 1213–
1221.

Dönmez, D., & Grote, G. (Eds.). (2013). The practice of not knowing for sure: How agile teams
manage uncertainties. Lecture notes in business information processing (Chapter 5, Vol. 149,
pp. 61–75). Berlin/Heidelberg: Springer.

Dybå, T. (2011). Special section on best papers from Xp2010. Information and Software
Technology, 53(5), 507–508.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9), 833–859.

Edberg, D., Ivanova, P., & Kuechler, W. (2012). Methodology mashups: An exploration of
processes used to maintain software. Journal of Management Information Systems, 28(4), 271–
303.

Edmondson, A. C. (1999). Psychological safety and learning behavior in work teams. Administra-
tive Science Quarterly, 44(2), 350–383.

Edmondson, A. C., & McManus, S. E. (2007). Methodological fit in management field research.
Academy of Management Review, 32(4), 1246–1264.

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic
Management Journal, 21(10–11), 1105–1121.

Elbanna, A., & Murray, D. (2009). Organizing projects for innovation: A collective mindfulness
perspective. In Americas Conference on Information Systems.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and
extreme programming: The state of research. Journal of Database Management, 16(4), 88–100.

Espinosa, J A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Familiarity, complexity, and
team performance in geographically distributed software development. Organization Science,
18(4), 613–630.

Faraj, S., & Sproull, L. (2000). Coordinating expertise in software development teams. Manage-
ment Science, 46(12), 1554–1568.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software practices
at Intel Shannon. European Journal of Information Systems, 15(2), 200–213.

Fornell, C. (Ed.). (1989). The blending of theoretical empirical knowledge in structural equations
with unobservables (Chapter 8, pp. 153–174). Paragon House, NY: Paragon House.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable
variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

Fowler, F. J. (2002). Survey research methods. Singapore: Thousand Oaks.
Fruhling, A., & Vreede, G. D. (2006). Field experiences with extreme programming: Developing

an emergency response system. Journal of Management Information Systems, 22(4), 39–68.
Fry, L. W. (1982). Technology-structure research: Three critical issues. Academy of Management

Journal, 25(3), 532–552.



Bibliography 175

Gefen, D., Rigdon, E. E., & Straub, D. W. (2011). An update and extension to SEM guidelines for
administrative and social science research. Management Information Systems Quarterly, 35(2),
iii–A7.

Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling and regression:
Guidelines for research practice. Communications of the ACM, 4(1), 1–77.

Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61(1), 101–107.
Ågerfalk, P. J., Fitzgerald, B., & Slaughter, S. A. (2009). Flexible and distributed information

systems development: State of the art and research challenges. Information Systems Research,
20(3), 317–328.

Gibson, C. B. (1999). Do they do what they believe they can? Group efficacy and group
effectiveness across tasks and cultures. Academy of Management Journal, 42(2), 138–152.

Gladstein, D. L. (1984). Groups in context: A model of task group effectiveness. Administrative
Science Quarterly, 29(4), 499–517.

Goh, J. C. L., Pan, S. L., & Zuo, M. (2013). Developing the agile IS development practices in large-
scale IT projects: The trust-mediated organizational controls and IT project team capabilities
perspectives. Journal of the Association for Information Systems, 14(12), 722–756.

Green, P. (2011). Measuring the impact of scrum on product development at Adobe Systems. In
Hawaii International Conference on System Sciences.

Greer, D., & Hamon, Y. (2011). Agile software development. Software: Practice and Experience,
41(9), 943–944.

Gregory, T., Mathiassen, L., & Sambhara, C. (2013). Chains of control in agile software
development. In Americas Conference on Information Systems.

Guinan, P. J., Cooprider, J. G., & Faraj, S. (1998). Enabling software development team perfor-
mance during requirements definition: A behavioral versus technical approach. Information
Systems Research, 9(2), 101–125.

Gully, S. M., Incalcaterra, K. A., Joshi, A., & Beaubien, M. (2002). A meta-analysis of team-
efficacy, potency, and performance: Interdependence and level of analysis as moderators of
observed relationships. Journal of Applied Psychology, 87(5), 819.

Guzzo, R. A., Yost, P. R., Campbell, R. J., & Shea, G. P. (1993). Potency in groups: Articulating a
construct. British Journal of Social Psychology, 32(1), 87–106.

Hackman, R. (1987). The design of work teams (Vol. 129, pp. 315–342). New York, NY: Prentice
Hall.

Hair, J. F., Anderson, R. E., & Black, W. C. (1995). Multivariate data analysis: With readings.
Englewood Cliffs, NJ: Prentice Hall.

Harris, M. L., Collins, R. W., & Hevner, A. R. (2009). Control of flexible software development
under uncertainty. Information Systems Research, 20(3), 400–419.

He, J., Butler, B. S., & King, W. R. (2007). Team cognition: Development and evolution in software
project teams. Journal of Management Information Systems, 24(2), 261–292.

Henderson, J. C., & Lee, S. (1992). Managing I/S design teams: A control theories perspective.
Management Science, 38(6), 757–777.

Henderson-Sellers, B., & Serour, M. K. (2005). Creating a dual-agility method: The value of
method engineering. Journal of Database Management, 16(4), 1–24.

Henry, S. M., & Todd, S. K. (1999). Using Belbin’s leadership role to improve team effectiveness:
An empirical investigation. Journal of Systems and Software, 44(3), 241–250.

Heymann, J. (2013). Gekommen, Um Zu Bleiben. Entwickler-Magazin, 2(1), 2–4.
Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements elicitation. Journal of

Management Information Systems, 20(4), 65–84.
Highsmith, J. A. (2000). Adaptive software development: A collaborative approach to managing

complex systems. New York, NY: Dorset House.
Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of innovation.

Computer, 34(9), 120–127.
Hirschheim, R., Klein, H. K., & Lyytinen, K. (1996). Exploring the intellectual structures of

information systems development: A social action theoretic analysis. Accounting, Management
and Information Technologies, 6(1), 1–64.



176 Bibliography

Hoegl, M., & Gemuenden, H. G. (2001). Teamwork quality and the success of innovative projects:
A theoretical concept and empirical evidence. Organization Science, 12(4), 435–449.

Homburg, C., & Giering, A. (1996). Konzeptualisierung und Operationalisierung komplexer
Konstrukte: Ein Leitfaden für die Marketingforschung. Marketing: Zeitschrift für Forschung
und Praxis, 18(1), 3–24.

Huang, C. C., Chu, C. Y., & Jiang, P. C. (2008). An empirical study of psychological safety and
performance in technology R&D teams. In IEEE International Conference on Management of
Innovation and Technology (pp. 1423–1427). Bangkok: IEEE.

Huang, C. C., & Jiang, P. C. (2010). Examining transactive memory systems in R&D teams. In
International Conference on Industrial Engineering and Engineering Management (pp. 885–
890). Macao: IEEE.

Huckman, R. S., Staats, B. R., & Upton, D. M. (2009). Team familiarity, role experience, and
performance: Evidence from Indian software services. Management Science, 55(1), 85–100.

Hummel, M. (2014). State-of-the-art: A systematic literature review on agile information systems
development. In Hawaii International Conference on System Sciences.

Hummel, M., & Rosenkranz, C. (2013). Measuring the impact of communication in agile
development: A research model and pilot test. In Americas Conference on Information Systems.

Hummel, M., Rosenkranz, C., & Holten, R. (2013). Explaining the changing communication
paradigm of agile information systems development: A research model, measurement develop-
ment and pretest. In European Conference on Information Systems.

Hummel, M., Rosenkranz, C., & Holten, R. (2013). The role of communication in agile systems
development. Business & Information Systems Engineering, 5(5), 343–355.

IEEE (1990). IEEE standard glossary of software engineering terminology. In IEEE Std 610.12-
1990 (pp. 1–84).

Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From
input-process-output models to IMOI models. Annual Review of Psychology, 56(1), 517–543.

Ilieva, S., Ivanov, P., & Stefanova, E. (2004). Analyses of an agile methodology implementation.
In Euromicro Conference (pp. 326–333). Washington: IEEE.

ISO/IEC (2001). International Standard Iso/Iec 9126 - Information Technology - Product Quality
- Part1: Qualtity Model / International Standard Organization. Research Report. ISO9126.

Jain, R., & Meso, P. (2004). Theory of complex adaptive systems and agile software development.
In Americas Conference on Information Systems.

Jalali, S., & Wohlin, C. (2012). Global software engineering and agile practices: A systematic
review. Journal of Software: Evolution and Process, 24(6), 643–659.

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators
and measurement model misspecification in marketing and consumer research. Journal of
Consumer Research, 30(2), 199–218.

Jugdev, K., & Müller, R. (2005). A retrospective look at our evolving understanding of project
success. Project Management Journal, 36(4), 19–31.

Jung, D. I., & Sosik, J. J. (2003). Group potency and collective efficacy examining their predictive
validity, level of analysis, and effects of performance feedback on future group performance.
Group & Organization Management, 28(3), 366–391.

Kan, S. H. (2003). Metrics and models in software quality engineering. Boston, MA: Addison-
Wesley.

Kang, H.-R., Yang, H.-D., & Rowley, C. (2006). Factors in team effectiveness: Cognitive and
demographic similarities of software development team members. Human Relations, 59(12),
1681–1710.

Karekar, C., Tarrell, A., & Fruhling, A. (2011). Agile development at ABC: What went wrong? In
Americas Conference on Information Systems.

Karlsson, F., & Ågerfalk, P. (2009). Exploring agile values in method configuration. European
Journal of Information Systems, 18(4), 300–316.

Keaveney, S., & Conboy, K. (2006). Cost estimation in agile development projects. In European
Conference on Information Systems.



Bibliography 177

Keith, M., Demirkan, H., & Goul, M. (2013). Service-oriented methodology for systems
development. Journal of Management Information Systems, 30(1), 227–259.

Klein, G., & Pierce, L. (2001). Adaptive teams. In International Command and Control Research
and Technology Symposium, DTIC Document.

Klein, K. J., Dansereau, F., & Hall, R. J. (1994). Levels issues in theory development, data
collection, and analysis. Academy of Management Review, 19(2), 195–229.

Klein, K. J., & Kozlowski, S. W. (2000). Multilevel theory, research, and methods in organiza-
tions: Foundations, extensions, and new directions. Frontiers of industrial and organizational
psychology. San Francisco, CA: Jossey-Bass.

Klimoski, R., & Mohammed, S. (1994). Team mental model: Construct or metaphor? Journal of
Management, 20(2), 403–437.

Koomey, J. G., Berard, S., Sanchez, M., & Wong, H. (2011). Implications of historical trends in
the electrical efficiency of computing. IEEE Annals of the History of Computing, 33(3), 46–54.

Kozlowski, S. W., & Bell, B. S. (Eds.). (2003). Work groups and teams in organizations (Chapter
17, Vol. 12, pp. 333–375). London: Wiley.

Kozlowski, S. W., & Ilgen, D. R. (2006). Enhancing the effectiveness of work groups and teams.
Psychological Science in the Public Interest, 7(3), 77–124.

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development. Communications of
the ACM, 38(3), 69–81.

Kude, T., Bick, S., Schmidt, C. T., & Heinzl, A. (2014). Adaptation pattern in agile information
systems development teams. In European Conference on Information Systems.

Kude, T., Dibbern, J., & Heinzl, A. (2012). Why do complementors participate? An analysis of
partnership networks in the enterprise software industry. IEEE Transactions on Engineering
Management, 59(2), 250–265.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history.
Computer, 36(6), 47–56.

Larman, C., & Vodde, B. (2009). Scaling lean & agile development: Thinking and organizational
tools for large-scale scrum. Upper Saddle River, NJ: Addison-Wesley.

Lawrence, C., & Rodriguez, P. (2012). The interpretation and legitimization of values in agile’s
organizing vision. In European Conference on Information Systems.

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme programming in context:
An industrial case study. In Agile Development Conference (pp. 32–41). Washington: IEEE.

Lee, A. S. (Ed.). (1999). Researching MIS (Chapter 1, pp. 7–27). Cambridge, MA: Oxford
University Press.

Lee, C., Tinsley, C. H., & Bobko, P. (2002). An investigation of the antecedents and consequences
of group level confidence. Journal of Applied Social Psychology, 32(8), 1628–1652.

Lee, G., DeLone, W. H., Espinosa, & J. A. (2010). The main and interaction effects of process
rigor, process standardization, and process agility on system performance in distributed IS
development: An ambidexterity perspective. In International Conference on Information
Systems.

Lee, G., & Xia, W. (2005). The ability of information systems development project teams to
respond to business and technology changes: A study of flexibility measures. European Journal
of Information Systems, 14(1), 75–92.

Lee, G., & Xia, W. (2010). Toward agile: An integrated analysis of quantitative and qualitative
field data on software development agility. Management Information Systems Quarterly, 34(1),
87–114.

Leimbach, T. (2008). The SAP story: Evolution of SAP within the German software industry.
IEEE Annals of the History of Computing, 30(4), 60–76.

Levesque, L. L., Wilson, J. M., & Wholey, D. R. (2001). Cognitive divergence and shared mental
models in software development project teams. Journal of Organizational Behavior, 22(2),
135–144.

Li, Y., & Maedche, A. (2012). Formulating effective coordination strategies in agile global software
development teams. In International Conference on Information Systems.



178 Bibliography

Little, B. L., & Madigan, R. M. (1997). The relationship between collective efficacy and
performance in manufacturing work teams. Small Group Research, 28(4), 517–534.

Lohan, G., Conboy, K., & Lang, M. (2010). Beyond budgeting and agile software development: A
conceptual framework for the performance management of agile software development teams.
In International Conference on Information Systems.

Louis, M. R., & Sutton, R. I. (1991). Switching cognitive gears: From habits of mind to active
thinking. Human Relations, 44(1), 55–76.

Lyytinen, K., & Rose, G. M. (2006). Information system development agility as organizational
learning. European Journal of Information Systems, 15(2), 183–199.

MacCormack, A., & Verganti, R. (2003). Managing the sources of uncertainty: Matching process
and context in software development. Journal of Product Innovation Management, 20(3), 217–
232.

MacCormack, A., Verganti, R., & Iansiti, M. (2001). Developing products on “internet time”: The
anatomy of a flexible development process. Management Science, 47(1), 133–150.

MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct measurement and
validation procedures in MIS and behavioral research: Integrating new and existing techniques.
Management Information Systems Quarterly, 35(2), 293–334.

Mackert, O., Hildenbrand, T., & Podbicanin, A. (2010). Vom Projekt zum Produkt - SAP’s Weg
zum “Lean Software Product Development”. In Vom Projekt zum Produkt. Fachtagung des
GI-Fachausschusses Management der Anwendungsentwicklung und -wartung im Fachbereich
Wirtschaftsinformatik (WI-MAW), 01-03 Dezember 2010 in Aachen, 2010 (pp. 13–25).
http://subs.emis.de/LNI/Proceedings/Proceedings178/article6206.html.

Madsen, S. (2007). Conceptualising the causes and consequences of uncertainty in IS development
organisations and projects. In European Conference on Information Systems.

Mangalaraj, G., Mahapatra, R., & Nerur, S. (2009). Acceptance of software process innovations:
The case of extreme programming. European Journal of Information Systems, 18(4), 344–354.

Mannaro, K., Melis, M., & Marchesi, M. (Eds.). (2004). Empirical analysis on the satisfaction of
IT employees comparing XP practices with other software development methodologies. Lecture
notes in computer science (Chapter 19, Vol. 3092, pp. 166–174). Berlin/Heidelberg: Springer.

Maraia, V. (2006). The build master: Microsoft’s software configuration management best
practices. The Addison-Wesley Microsoft technology series. Upper Saddle River, NJ: Addison-
Wesley.

Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A Temporally based framework and
taxonomy of team processes. Academy of Management Review, 26(3), 356–376.

Marks, M. A., Sabella, M. J., Burke, S., & Zaccaro, S. J. (2002). The impact of cross-training on
team effectiveness. Journal of Applied Psychology, 87(1), 3–13.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective on agile
methodology use and changing user requirements. Information Systems Research, 20(3), 377–
399.

Maruping, L. M., Zhang, X., & Venkatesh, V. (2009). Role of collective ownership and coding
standards in coordinating expertise in software project teams. European Journal of Information
Systems, 18(4), 355–371.

Mathieu, J. E., & Chen, G. (2011). The etiology of the multilevel paradigm in management
research. Journal of Management, 37(2), 610–641.

Mathieu, J. E., Maynard, T., Rapp, T., & Gilson, L. (2008). Team effectiveness 1997-2007: A
review of recent advancements and a glimpse into the future. Journal of Management, 34(3),
410–476.

McAvoy, J., & Butler, T. (2006). Looking for a place to hide: A study of social loafing in agile
teams. In European Conference on Information Systems.

McAvoy, J., & Butler, T. (2009). The role of project management in ineffective decision making
within agile software development projects. European Journal of Information Systems, 18(4),
372–383.

McAvoy, J., Nagle, T., & Sammon, D. (2013). Using mindfulness to examine ISD agility.
Information Systems Journal, 23(2), 155–172.



Bibliography 179

McAvoy, J., Owens, I., & Sammon, D. (2006). Towards the development of a simple tool to assist
in agile methodology adoption decisions: Agile adoption matrix. In European Conference on
Information Systems.

McConnell, S. (Ed.). (2010). What does 10x mean? Measuring variations in programmer
productivity (Chapter 30, pp. 567–574). Sebastopol, CA: O’Reilly Media.

McFarlan, F. W. (1981). Portfolio approach to information systems. Harvard Business Review,
59(4), 142–150.

McGrath, J. E. (1964). Social psychology, a brief introduction. New York, NY: Holt.
McIntyre, R. M., & Salas, E. (Eds.). (1995). Measuring and managing for team performance:

Emerging principles from complex environments (Chapter 2, Vol. 22, pp. 9–45). San Francisco:
Jossey-Bass.

Mellis, W., Loebbecke, C., & Baskerville, R. (2010). Moderating effects of requirements
uncertainty on flexible software development techniques. In International Research Workshop
on IT Project Management.

Meredith, S., & Francis, D. (2000). Journey towards agility: The agile wheel explored. The TQM
Magazine, 12(2), 137–143.

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in
adopting agile software development practices. Journal of Systems and Software, 82(11), 1869–
1890.

Münzing, M. (2012). Software development team success assessment: Development of a
measurement instrument. Master Thesis, University of Mannheim.

Mohammed, S., & Dumville, B. C. (2001). Team mental models in a team knowledge framework:
Expanding theory and measurement across disciplinary boundaries. Journal of Organizational
Behavior, 22(2), 89–106.

Mohammed, S., Ferzandi, L., & Hamilton, K. (2010). Metaphor no more: A 15-year review of the
team mental model construct. Journal of Management, 36(4), 876–910.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of
adopting an information technology innovation. Information Systems Research, 2(3), 192–222.

Moore, G. E. (1965). Cramming More Components onto Integrated Circuits. Electronics, 114–117.
Morgeson, F. P., & Hofmann, D. A. (1999). The structure and function of collective constructs:

Implications for multilevel research and theory development. Academy of Management Review,
24(2), 249–265.

Nagle, T., McAvoy, J., & Sammon, D. (2011). Utilising mindfulness to analyse agile global
software development. In European Conference on Information Systems.

Nidumolu, S. (1995). The effect of coordination and uncertainty on software project performance:
Residual performance risk as an intervening variable. In Information Systems Research, 6(3),
191–219.

Oosterhout, M., Waarts, E., & Hillegersberg, J. (2006). Change factors requiring agility and
implications for IT. European Journal of Information Systems, 15(2), 132–145.

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations:
Research approaches and assumptions. Information Systems Research, 2(1), 1–28.

Overby, E., Bharadwaj, A., & Sambamurthy, V. (2006). Enterprise agility and the enabling role of
information technology. European Journal of Information Systems, 15(2), 120–131.

Overhage, S., & Schlauderer, S. (2012). How sustainable are agile methodologies? Acceptance
factors and developer perceptions in scrum projects. In European Conference on Information
Systems.

Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature-driven development. Upper
Saddle River, NJ: Prentice Hall.

Persson, J. S., Mathiassen, L., & Aaen, I. (2012). Agile distributed software development: Enacting
control through media and context. Information Systems Journal, 22(6), 411–433.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems
research. Management Information Systems Quarterly, 31(4), 623–656.



180 Bibliography

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases
in behavioral research: A critical review of the literature and recommended remedies. Journal
of Applied Psychology, 88(5), 879–903.

Poppendieck, M., & Poppendieck, T. D. (2007). Implementing lean software development: from
concept to cash. Upper Saddle River, NJ: Addison-Wesley.

Popper, K. R. (1935). Logik der Forschung: Zur Erkenntnistheorie der Modernen Naturwis-
senschaft. Schriften zur Wissenschaftlichen Weltauffassung. Wien: Springer.

Port, D., & Bui, T. (2009). Simulating mixed agile and plan-based requirements prioritization
strategies: Proof-of-concept and practical implications. European Journal of Information
Systems, 18(4), 317–331.

Porter, C. O., Hollenbeck, J. R., Ilgen, D. R., Ellis, A. P., West, B. J., & Moon, H. (2003). Backing
up behaviors in teams: The role of personality and legitimacy of need. Journal of Applied
Psychology, 88(3), 391–403.

Procaccino, D., Verner, J. M., Darter, M. E., & Amadio, W. J. (2005). Toward predicting software
development success from the perspective of practitioners: An exploratory bayesian model.
Journal of Information Technology, 20(3), 187–200.

Prussia, G. E., & Kinicki, A. J. (1996). A motivational investigation of group effectiveness using
social-cognitive theory. Journal of Applied Psychology, 81(2), 187–198.

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation, adoption and
improvement of agile methods in practice. Journal of Systems and Software, 81(11), 1899–
1919.

Ralph, P., & Narros, J. E. (2013). Complexity, process and agility in small development teams: An
exploratory case study. In Pacific Asia Conference on Information Systems.

Ramesh, B., Mohan, K., & Cao, L. (2012). Ambidexterity in agile distributed development: An
empirical investigation. Information Systems Research, 23(2), 323–339.

Rasker, P. C., Post, W. M., & Schraagen, J. M. C. (2000). Effects of two types of intra-team
feedback on developing a shared mental model in command & control teams. Ergonomics,
43(8), 1167–1189.

Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of
covariance-based and variance-based SEM. International Journal of Research in Marketing,
26(4), 332–344.

Rentsch, J. R., & Klimoski, R. J. (2001). Why do “great minds” think alike?: Antecedents of team
member schema agreement. Journal of Organizational Behavior, 22(2), 107–120.

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor’s comments: A critical look at the use
of PLS-SEM in MIS quarterly. Management Information Systems Quarterly, 36(1), iii–xiv.

Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS. Version 2.0.M3. Hamburg: SmartPLS.
Robinson, H., & Sharp, H. (Eds.). (2005). The social side of technical practices. Lecture notes in

computer science (Chapter 12, Vol. 3556, pp. 100–108). Berlin/Heidelberg: Springer.
Rosen, M. A., Bedwell, W. L., Wildman, J. L., Fritzsche, B. A., Salas, E., & Burke, S. (2011).

Managing adaptive performance in teams: guiding principles and behavioral markers for
measurement. Human Resource Management Review, 21(2), 107–122.

Rosenkranz, C., Charaf, M. C., & Holten, R. (2013). Language quality in requirements
development: Tracing communication in the process of information systems development.
Journal of Information Technology, 28(3), 198–223.

Rousseau, D. M. (1985). Issues of level in organizational research: Multi-level and cross-level
perspectives. Research in Organizational Behavior, 7(1), 1–37.

Royce, W., Bittner, K., & Perrow, M. (2009). The economics of iterative software development:
Steering toward better business results. Upper Saddle River, NJ: Addison-Wesley.

Royce, W. W. (1970). Managing the development of large software systems. In Technical
papers of Western Electronic Show and Convention (Vol. 26, pp. 1–9). Los Angeles, CA: IEEE
WESCON.

Russo, N. L., Fitzgerald, G., & Shams, S. (2013). Exploring adoption and use of agile methods: A
comparative case study. In Americas Conference on Information Systems.



Bibliography 181

Ryan, S., & O’Connor, R. V. (2009). Development of a team measure for tacit knowledge in
software development teams. Journal of Systems and Software, 82(2), 229–240.

Salas, E., Prince, C., Baker, D. P., & Shrestha, L. (1995). Situation awareness in team performance:
Implications for measurement and training. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 37(1), 123–136.

Salas, E., Sims, D. E., & Burke, S. (2005). Is there a “big five”İ in teamwork? Small Group
Research, 36(5), 555–599.

Sambamurthy, V., & Kirsch, L. J. (2000). An integrative framework of the information systems
development process. Decision Sciences, 31(2), 391–411.

Sarker, S., Munson, C. L., Sarker, S., & Chakraborty, S. (2009). Assessing the relative contribution
of the facets of agility to distributed systems development success: An analytic hierarchy
process approach. European Journal of Information Systems, 18(4), 285–299.

Sarker, S., & Sarker, S. (2009). Exploring agility in distributed information systems development
teams: An interpretive study in an offshoring context. Information Systems Research, 20(3),
440–461.

Sawyer, S. (2001). Effects of intra-group conflict on packaged software development team
performance. Information Systems Journal, 11(2), 155–178.

Sawyer, S., & Guinan, P. J. (1998). Software development: Processes and performance. IBM
Systems Journal, 37(4), 552–569.

Scandura, T. A., & Williams, E. A. (2000). Research methodology in management: Current
practices, trends, and implications for future research. Academy of Management Journal, 43(6),
1248–1264.

Scheerer, A., Schmidt, C. T., Heinzl, A., Hildenbrand, T., & Voelz, D. (2013). Agile software
engineering techniques: The missing link in large scale lean product development. In
Kowalewski, S. (Ed.), Software engineering 2013: Fachtagung des GI-Fachbereichs Soft-
waretechnik (Vol. 213, pp. 319–330). Hamburg: Gesellschaft für Informatik.

Schlauderer, S., & Overhage, S. (2013). Exploring the customer perspective of agile development:
Acceptance factors and on-site customer perceptions in scrum projects. In International
Conference on Information Systems.

Schmidt, C. T., Kude, T., Tripp, J., Heinzl, A., & Spohrer, K. (2013). Team adaptability in agile
information systems development. In International Conference on Information Systems.

Schmidt, C. T., Spohrer, K., Kude, T., & Heinzl, A. (2012). The impact of peer-based software
reviews on team performance: The role of feedback and transactive memory systems. In
International Conference on Information Systems.

Schmidt, C. T., Srinivasa, G. V., & Heymann, J. (2014). Empirical insights into the perceived
benefits of agile software engineering practices: A case study from SAP. In International
Conference on Software Engineering.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project risks: An
international delphi study. Journal of Management Information Systems, 17(4), 5–36.

Schnitter, J., & Mackert, O. (2011). Large-scale agile software development at SAP AG. Evaluation
of novel approaches to software engineering Heidelberg: Springer.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. Series in agile
software development. Upper Saddle River, NJ: Prentice Hall.

Schwaber, K., & Sutherland, J. (2011). The Scrum Guide. Research Report. https://www.scrum.
org/Portals/0/Documents/Scrum.

Setia, P., Rajagopalan, B., Sambamurthy, V., & Calantone, R. (2012). How peripheral developers
contribute to open-source software development. Information Systems Research, 23(1), 144–
163.

Sfetsos, P., & Stamelos, I. (2010). Empirical studies on quality in agile practices: A systematic
literature review. In Quality of information and communications technology (pp. 44–53).
Washington, DC: IEEE.

Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations
management research: Looking back and forward. Journal of Operations Management, 24(2),
148–169.

https://www.scrum.org/Portals/0/Documents/Scrum
https://www.scrum.org/Portals/0/Documents/Scrum


182 Bibliography

Sharifi, H., & Zhang, Z. (1999). A methodology for achieving agility in manufacturing
organisations: An introduction. International Journal of Production Economics, 62(1), 7–22.

Sharma, R., Yetton, P., & Crawford, J. (2009). Estimating the effect of common method variance:
The method-method pair technique with an illustration from TAM research. Management
Information Systems Quarterly, 33(3), 5.

Siau, K. (2005). A retrospective review of JDM from 2003 to 2005 and a discussion on publication
emphasis of JDM for the next two to three years. Journal of Database Management, 16(1),
1–10.

Siau, K., Long, Y., & Ling, M. (2010). Toward a unified model of information systems development
success. Journal of Database Management, 21(1), 80–101.

So, C. (2010). Making software teams effective: How agile practices lead to project success
through teamwork mechanisms. Frankfurt: Peter Lang GmbH.

Sommerville, I. (2004). Software engineering. Harlow: Addison Wesley.
Spinellis, D., & Giannikas, V. (2012). Organizational adoption of open source software. Journal

of Systems and Software, 85(3), 666–682.
Spohrer, K., Kude, T., Schmidt, C. T., & Heinzl, A. (2013). Knowledge creation in information

systems development teams: The role of pair programming and peer code review. In European
Conference on Information Systems.

Stajkovic, A. D., Lee, D., & Nyberg, A. J. (2009). Collective efficacy, group potency, and group
performance: Meta-analyses of their relationships, and test of a mediation model. Journal of
Applied Psychology, 94(3), 814–828.

Standish, Group I (2014). The Chaos Report / Standish Group Inc. Research Report.
Stapleton, J. (1999). DSDM: Dynamic systems development method. In Proceedings of

Technology of Object-Oriented Languages and Systems (pp. 406–406).
Stewart, K. J., & Gosain, S. (2006). The impact of ideology on effectiveness in open source

software development teams. Management Information Systems Quarterly, 30(2), 291–314.
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the

Royal Statistical Society, 36(2), 111–147.
Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge, MA: Cambridge

University Press.
Strode, D. E., Hope, B. G., Huff, S. L., & Link, S. (2011). Coordination effectiveness in an agile

software development context. In Pacific Asia Conference on Information Systems.
Strode, D. E., Huff, S. L., Hope, B., & Link, S. (2012). Coordination in co-located agile software

development projects. Journal of Systems and Software, 85(6), 1222–1238.
Sun, W. N., & Schmidt, C. (2013). Do software professionals’ job perceptions differ in

organizations adopting different software process models? A survey from the industry. In
Americas Conference on Information Systems.

Sundstrom, E., McIntyre, M., Halfhill, T., & Richards, H. (2000). Work groups: From the
Hawthorne studies to work teams of the 1990s and beyond. Group Dynamics: Theory,
Research, and Practice, 4(1), 44–67.

Sutherland, J. (1995). Business object design and implementation workshop. ACM Sigplan OOPS
Messenger, 6, 170–175.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard Business
Review, 64(1), 137–146.

Tanner, M., & Wallace, C. (2012). Towards an understanding of the contextual influences
on distributed agile software development: A theory of practice perspective. In European
Conference on Information Systems.

Tessem, B. (Ed.). (2003). Experiences in learning XP practices: A qualitative study. Lecture notes
in computer science (Chapter 17, Vol. 2675, pp. 131–137). Berlin/Heidelberg: Springer.

Tripp, J. F. (2012). The impact of agile development methodology use on project success: A
contingency view. Dissertation, Michigan State University.

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6),
384–399.



Bibliography 183

Tushman, M. L., & Nadler, D. A. (1978). Information processing as an integrating concept in
organizational design. Academy of Management Review, 3(3), 613–624.

Uitdewilligen, S., Waller, M. J., & Zijlstra, F. R. (2010). Team cognition and adaptability
in dynamic settings: A review of pertinent work. International Review of Industrial and
Organizational Psychology, 25(2010), 293–353.

VersionOne (2012). 7th Annual State of Agile Development Survey / VersionOne Inc. Research
Report. http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf.

Vidgen, R., & Wang, X. (2006). Organizing for agility: A complex adaptive systems perspective
on agile software development process. In European Conference on Information Systems.

Vidgen, R., & Wang, X. (2009). Coevolving systems and the organization of agile software
development. Information Systems Research, 20(3), 355–376.

Vyver, G., Koronios, A., & Lane, M. (2003). Agile methodologies and the emergence of the agile
organization: A software development approach waiting for its time? In Pacific Asia Conference
on Information Systems.

Wang, X., & Conboy, K. (2009). Understanding agility in software development through a complex
adaptive systems perspective. In European Conference on Information Systems.

Wang, X., Conboy, K., & Pikkarainen, M. (2012). Assimilation of agile practices in use.
Information Systems Journal, 22(6), 435–455.

Wang, X., Lane, M., & Conboy, K. (2011). From agile to lean: The perspectives of the two agile
online communities of interest. In European Conference on Information Systems.

Wang, X., O Conchuir, E., & Vidgen, R. (2008). A paradoxical perspective on contradictions in
agile software development. In European Conference on Information Systems.

Wang, X., & Vidgen, R. (2007). Order and chaos in software development: A comparison of two
software development teams in a major IT company. In European Conference on Information
Systems.

Weiber, R., & Mühlhaus, D. (2012). Strukturgleichungsmodellierung: Eine Anwendungsorientierte
Einführung in Die Kausalanalyse Mit Hilfe Von AMOS, SmartPLS Und SPSS. Heidelberg:
Springer.

Wellington, C. A., Briggs, T., & Girard, C D. (2005). Comparison of student experiences with
plan-driven and agile methodologies. In Annual Conference Frontiers in Education.

West, D., Grant, T., Gerush, M., & D’Silva, D. (2010). Agile Development: Mainstream Adoption
Has Changed Agility. Research Report. https://www.forrester.com/Agile+Development+
Mainstream+Adoption+Has+Changed+Agility/fulltext/-/E-RES56100?objectid=RES56100.

Whetten, D. A. (1989). What constitutes a theoretical contribution? Academy of Management
Review, 14(4), 490–495.

Whitney, K. (1994). Improving group task performance: The role of group goals and group
efficacy. Human Performance, 7(1), 55–78.

Wildman, J. L., Salas, E., & Scott, C. P. (2013). Measuring cognition in teams a cross-domain
review. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2014(53),
911–941.

Williams, L., & Cockburn, A. (2003). Agile software development: It’s about feedback and change.
Computer, 36(6), 39–43.

Williams, L. J., Gavin, M. B., & Hartman, N. S. (2004). Structural equation modeling
methods in strategy research: Applications and issues. Research Methodology in Strategy and
Management, 1(1), 303–346.

Wold, H. (Ed.) (1982). Soft modeling: The basic design and some extensions (Chapter 1, pp. 1–54).
Amsterdam: North-Holland.

Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and
Human Decision Processes, 37(1), 60–82.

Wooldridge, J. M. (2013). Introductory econometrics: A modern approach. Mason, OH: South-
Western Cengage Learning.

Xu, P., & Cao, L. (2006). Coordination in agile software projects. In Americas Conference on
Information Systems.

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
https://www.forrester.com/Agile+Development+ Mainstream+Adoption+Has+Changed+Agility/fulltext/-/E-RES56100?objectid=RES56100
https://www.forrester.com/Agile+Development+ Mainstream+Adoption+Has+Changed+Agility/fulltext/-/E-RES56100?objectid=RES56100


184 Bibliography

Yang, H., Huff, S., & Strode, D. (2009). Leadership in software development: Comparing
perceptions of agile and traditional project managers. In Americas Conference on Information
Systems.

Yang, H.-L., & Tang, J.-H. (2004). Team structure and team performance in IS development: A
social network perspective. Information & Management, 41(3), 335–349.

Young, M. S., Edwards, H. M., McDonald, S., & Thompson, B. (2005). Personality characteristics
in an XP team: A repertory grid study. In Proceedings of the Workshop on Human and Social
Factors of Software Engineering (pp. 1–7).

Zhang, S., Tremaine, M., Egan, R., Milewski, A., Plotnick, L., O’Sullivan, P., et al. (2008).
Occurrence and effects of leader delegation in virtual teams. In Hawaii International
Conference on System Sciences. Big Island, HI: IEEE.

Zheng, Y., Venters, W., & Cornford, T. (2007). Agility, improvisation, or enacted emergence. In
International Conference on Information Systems.

Zheng, Y., Venters, W., & Cornford, T. (2011). Collective agility, paradox and organizational
improvisation: The development of a particle physics grid. Information Systems Journal, 21(4),
303–333.


	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Overview of the Research Methodology
	1.4 Study Organization

	2 Agile Software Development
	2.1 Software Development
	2.1.1 Software Development Complexity
	Software Complexity
	Software Development Task Complexity
	Software Development Project Complexity

	2.1.2 Software Development Processes
	Craftsmanship
	Early Software Engineering
	Modern Software Engineering


	2.2 Agile Software Development
	2.2.1 Agile Values and Principles
	2.2.2 Agile Methods and Practices
	Scrum
	Extreme Programming (XP)


	2.3 Literature Review on Agile Software Development
	2.3.1 Information Systems Research
	Agility Concept
	Agile Method Adoption and Adaptation
	Agile Project Management
	Agile Teamwork

	2.3.2 Software Engineering Research

	2.4 Discussion of the Literature

	3 Theoretical and Conceptual Foundations
	3.1 Team Effectiveness Research
	3.1.1 Theory Selection
	3.1.2 Team Adaptation Theory
	Adaptive Cycles
	Plan Execution
	Emergent Cognitive States
	Markers of Adaptive Teams

	3.1.3 Team Confidence
	Team Confidence Concepts
	Antecedents
	Consequences


	3.2 Software Development Team Performance
	3.2.1 Team Performance, Team Effectiveness, and Project Success
	Project Success
	ISD Team Effectiveness
	Team Performance

	3.2.2 Review of Existing Team Performance Concepts

	3.3 Research Model
	3.3.1 Model Constructs
	Input
	Outcome
	Mediators
	Control Variables

	3.3.2 Effects on Team Cognition
	3.3.3 Effects on Team Behavior
	3.3.4 Effects on Team Affection
	3.3.5 Integrated Research Model


	4 Research Methodology
	4.1 Research Context
	4.1.1 Organizational Context
	Large-Scale Scrum
	Agile Software Engineering Training

	4.1.2 Participatory Research Setup

	4.2 Study Design
	4.2.1 Survey Field Study
	4.2.2 Questionnaire Design
	4.2.3 Data Collection Procedure

	4.3 Construct Operationalization
	4.3.1 Adoption of Agile Practices
	4.3.2 Teamwork and Contextual Variables
	4.3.3 Team Performance
	4.3.4 Instrument Validation

	4.4 Analysis Methods
	4.4.1 Regression Analysis
	4.4.2 Structural Equation Modeling
	4.4.3 Selecting an Appropriate Analysis Technique


	5 Empirical Validation
	5.1 Sample Overview
	5.1.1 Survey Response
	5.1.2 Sample Characteristics
	Individual Characteristics
	Team Characteristics

	5.1.3 Extent of Agile Practices Use

	5.2 Assessment of Team Performance
	Measurement Model Validation
	Analyses and Results
	Discussion of the Results
	Conclusion 

	5.3 Hypotheses: Test and Evaluation
	5.3.1 Measurement Model
	Data Aggregation
	Measurement Scores
	Discriminant Validity and Measurement Reliability

	5.3.2 Effects on Team Potency and Team Performance
	5.3.3 Effects on Shared Mental Models, Backup Behavior, and Team Performance

	5.4 Integrated Prediction Model
	5.4.1 Measurement Model
	5.4.2 Structural Model

	5.5 Summary

	6 Discussion
	6.1 Summary of the Research Findings
	RQ1: What Is the Performance of a Software Development Team?
	RQ2: What Are the Latent Teamwork Mechanisms Affected by Agile Software Development in Software Development Teams?
	RQ3: How Does Agile Software Development Influence the Performance of Software Development Teams?

	6.2 Theoretical Contributions
	Better Understanding of the Impact of Agile Software Development on Teamwork Mechanisms
	Better Explanation of Teamwork and the Impact on Team Performance
	Development of an Instrument for Measuring Team Performance
	Better Understanding of the Team PerformanceConstruct
	Development of an Instrument for Measuring Shared Mental Models and Backup Behavior
	Embedded Research as a Valuable Research Approach for ISD Researchers

	6.3 Practical Implications
	6.4 Limitations of the Study and Future Research

	7 Conclusion
	AppendixA Appendix
	A.1 Agile Information Systems Development: Literature Review
	A.2 Team Performance Interviews: Interview Guideline
	A.3 Survey: Data Collection Process
	A.4 Survey: Overview
	A.5 Survey: Developer Questionnaire
	A.6 Survey: Scrum Master Questionnaire
	A.7 Survey: Area Product Owner Questionnaire
	A.8 Survey: Team Report

	Bibliography



