
123

Tiago Silva da Silva
Bernardo Estácio
Josiane Kroll
Rafaela Mantovani Fontana (Eds.)

7th Brazilian Workshop, WBMA 2016
Curitiba, Brazil, November 7–9, 2016
Revised Selected Papers

Agile Methods

Communications in Computer and Information Science 680

Communications
in Computer and Information Science 680

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Tiago Silva da Silva
Bernardo Estácio • Josiane Kroll
Rafaela Mantovani Fontana (Eds.)

Agile Methods
7th Brazilian Workshop, WBMA 2016
Curitiba, Brazil, November 7–9, 2016
Revised Selected Papers

123

Editors
Tiago Silva da Silva
Universidade Federal de São Paulo
São José dos Campos
Brazil

Bernardo Estácio
Pontifícia Universidade Católica do Rio
Grande do Sul

Porto Alegre
Brazil

Josiane Kroll
Pontifícia Universidade Católica do Rio
Grande do Sul

Porto Alegre
Brazil

Rafaela Mantovani Fontana
Universidade Federal do Paraná
Curitiba
Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-55906-3 ISBN 978-3-319-55907-0 (eBook)
DOI 10.1007/978-3-319-55907-0

Library of Congress Control Number: 2017935845

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 7th Brazilian Workshop on Agile Methods (WBMA 2016) was held during
November 7–9, 2016, in Curitiba, Brazil. The workshop is the research track in the
Agile Brazil conference. WBMA is an academic event that focuses on agile software
development.

This year’s edition comes with a history of success. Our past editions received an
impressive number of both paper submissions and attendees (students, researchers, and
practitioners) from different countries. We repeated the success this year and influenced
even more academic integration in an industrial context. We believe this integration
create ideas, opportunities, and innovations for all involved.

We received 35 submissions (40% of acceptance rate). All the accepted papers were
peer reviewed by three referees and evaluated on the basis of technical quality, rele-
vance, significance, and clarity. The Organizing Committee decided to accept ten full
papers and four short papers. Accepted papers in this edition present empirical results
and literature reviews on: agile implementation in government and distributed envi-
ronments; design thinking and projects inception; testing and technical debt; motivation
and gamification; training, modeling, and project management; maturity models; and
quality assurance. In order to improve the quality of papers and reviews, the Organizing
Committee offered two prizes in this edition: best paper and best reviewer awards.

This CCIS volume comprises peer-reviewed versions of ten full papers and four
short papers.

The organizers thank the Program Committee members for their contributions, and
would especially like to thank all those who submitted papers, even though only a
fraction could be accepted. We also thank Springer for producing these high-quality
proceedings of WBMA 2016.

November 2016 Josiane Kroll
Rafaela Mantovani Fontana

Tiago Silva da Silva
Bernardo Estácio

Organization

WBMA 2016 was organized by the Federal University of Paraná (UFPR), Federal
University of São Paulo (UNIFESP), and Pontifical University Catholic of Rio Grande
do Sul (PUCRS) and it was supported by the Araucaria Foundation and CNPq
(National Council for Scientific and Technological Development) in cooperation with
Springer.

Executive Committee

Conference Chair

Josiane Kroll PUCRS, Brazil
Rafaela Mantovani Fontana UFPR, Brazil

Program Chair

Tiago Silva da Silva UNIFESP, Brazil
Bernardo Estácio PUCRS, Brazil

Program Committee

Conference Chair

Josiane Kroll PUCRS, Brazil
Rafaela Mantovani Fontana UFPR, Brazil

Program Chair

Tiago Silva da Silva UNIFESP, Brazil
Bernardo Estácio PUCRS, Brazil

Additional Reviewers

Adolfo Neto
Alan Santos
Alexandre Vasconcelos
Alfredo Goldman
Bernardo Estácio
Eduardo Guerra
Elder de Macedo

Rodrigues
Fabio Kon
Fábio Levy Siqueira

Filipe Correia
Graziela Tonin
Hugo Sereno Ferreira
Josiane Kroll
Jutta Eckstein
Luciana Zaina
Maarit Laanti
Maria Istela Cagnin
Maurício Aniche
Patrícia Vilain

Paulo Meirelles
Rafael Prikladnicki
Rafaela Mantovani

Fontana
Ricardo Britto
Rodrigo de Toledo
Tiago Silva da Silva
Vinicius Garcia
Viviane Santos
Xiaofeng Wang

Sponsoring Institutions

Araucária Foundation (Fundação Araucária)
CNPq - National Council for Scientific and Technological Development (Conselho
Nacional de Pesquisa e Desenvolvimento Científico e Tecnolgógico)

VIII Organization

Contents

Full Papers

An Empirical Study on the Adoption of Agile Software Development
in Public Organizations . 3

Isaque Vacari and Rafael Prikladnicki

Using Agile Methods in Distributed Software Development Environments . . . 16
Wellington Feitoza Gonçalves, Ivaldir de Farias Junior,
Renata Kalina de Paulo Alves, Pedro Luis Saraiva Barbosa,
Herlon Ribeiro Parente Cortez, Isaac Bezerra de Oliveira,
Marcelo Mendonça Teixeira, and Nelson Leitão Júnior

Gamification Use in Agile Project Management: An Experience Report 28
Igor M. Pereira, Vicente J.P. Amorim, Marcos A. Cota,
and Geovana C. Gonçalves

Application of Scrum Maturity Model in SoftDesign Company. 39
Raone Costa, Raphael Rodrigues,
and Alessandra Costa Smolenaars Dutra

Modeling in Agile Software Development:
A Systematic Literature Review . 50

Fernando Mognon and Paulo C. Stadzisz

Strategies for Reducing Technical Debt in Agile Teams 60
Marcelo M. Bomfim Jr. and Viviane A. Santos

ReTest: Framework for Applying TDD in the Development
of Non-deterministic Algorithms . 72

André A.S. Ivo and Eduardo M. Guerra

Validation Board: Invalidating Ideas and Discovering the Problems
that Must Be Solved . 85

Avelino F. Gomes Filho, Carlos F. Cardoso de Resende,
Patrick S. Gazaneo, Vinicius Bittencourt, Raphael Duarte Paiva,
and Rodrigo de Toledo

IBM Design Thinking Software Development Framework 98
Percival Lucena, Alan Braz, Adilson Chicoria, and Leonardo Tizzei

SimKan: Training Kanban Practices Through Stochastic Simulation 110
Francisco Jose Rego Lopes and Fabio Petrillo

http://dx.doi.org/10.1007/978-3-319-55907-0_1
http://dx.doi.org/10.1007/978-3-319-55907-0_1
http://dx.doi.org/10.1007/978-3-319-55907-0_2
http://dx.doi.org/10.1007/978-3-319-55907-0_3
http://dx.doi.org/10.1007/978-3-319-55907-0_4
http://dx.doi.org/10.1007/978-3-319-55907-0_5
http://dx.doi.org/10.1007/978-3-319-55907-0_5
http://dx.doi.org/10.1007/978-3-319-55907-0_6
http://dx.doi.org/10.1007/978-3-319-55907-0_7
http://dx.doi.org/10.1007/978-3-319-55907-0_7
http://dx.doi.org/10.1007/978-3-319-55907-0_8
http://dx.doi.org/10.1007/978-3-319-55907-0_8
http://dx.doi.org/10.1007/978-3-319-55907-0_9
http://dx.doi.org/10.1007/978-3-319-55907-0_10

Short Papers

Predicting the Unpredictable: Using Monte Carlo Simulation to Predict
Project Completion Date . 125

Lucas Colucci and Raphael Albino

Scrum Hero: Gamifying the Scrum Framework. 131
Jamila Peripolli Souza, André Ricardo Zavan, and Daniela Eloise Flôr

Motivating Factors in Agile and Traditional Software Development
Methods: A Comparative Study . 136

Regina Albuquerque, Rosilene Fernandes, Rafaela Mantovani Fontana,
Sheila Reinehr, and Andreia Malucelli

Quality Assurance in Agile Software Development: A Systematic Review . . . 142
Carlos Alberto Fortunato, Felipe Furtado, Fernando Selleri,
Ivaldir de Farias Junior, and Nelson Leitão Júnior

Author Index . 149

X Contents

http://dx.doi.org/10.1007/978-3-319-55907-0_11
http://dx.doi.org/10.1007/978-3-319-55907-0_11
http://dx.doi.org/10.1007/978-3-319-55907-0_12
http://dx.doi.org/10.1007/978-3-319-55907-0_13
http://dx.doi.org/10.1007/978-3-319-55907-0_13
http://dx.doi.org/10.1007/978-3-319-55907-0_14

Full Papers

An Empirical Study on the Adoption of Agile
Software Development in Public Organizations

Isaque Vacari1(B) and Rafael Prikladnicki2

1 Free Software Laboratory, Embrapa Agricultural Informatics, Campinas, SP, Brazil
isaque.vacari@embrapa.br

2 Computer Science School, Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, RS, Brazil

rafaelp@pucrs.br

Abstract. The government has been adopting agile software develop-
ment in order to improve the results of their IT projects. However, there
is a lack of structured information about its adoption in this context.
Since the public sector have undergone a significant process of modern-
ization to improve the quality of public service, the goal of this study is
to report from an empirical study, provide information that may enhance
the understanding of the implications of adopting agile software devel-
opment within public organizations, proposing a set of recommendations
for its adoption.

Keywords: Empirical software engineering · Agile software develop-
ment · Agile methodologies · Agile methods · Public organizations ·
Public sector · Government

1 Introduction

In the context of software-producing companies, agility and innovation have
become slogans. The point is not just to create new products or to significantly
improve existing products. It is to do this quickly, before competitors take up
space. This reality drives them to be agile and to actively involve their customers
in the software development process. In this direction, agile software development
(ASD) have played a key role in the development of a modern production process
by adding value to the product to the customer in the shortest possible time. In
addition, ASD have become an important research topic [1] arousing the gradual
interest of organizations (public and private) [2,3].

However, despite the increasing number of studies in this area in recent years,
there is a lack of structured information on the adoption of these methods in
the public sector. Thus, since public organizations (POs) are the part of the
economy responsible for providing services to society by improving the quality
of life of its citizens, software has become a vital component for the government
to integrate, in an innovative way, the needs of society to its administrative
capacity, and technique of performing public services [4], it was defined that the
c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-55907-0 1

4 I. Vacari and R. Prikladnicki

general objective of this research as being “to present, from an empirical study,
information that can improve the understanding of the implications of adopting
of ASD from the perspective of public organizations, proposing a set of recom-
mendations for its adoption”. In the sequence, the work motivation is explained,
characterizing the relevance of the theme and the main research challenges, its
relevant results and its contributions, as well as the used methodology in this
research.

2 Background and Related Work

A study of the Standish Group [5] with 3.555 Information Technology (IT)
projects of the United States government in the last 10 years (2003–2012)
revealed that only 6% of them were successful, such as those finalized on
time; within the budget and which included all the features originally speci-
fied. Another 52% were considered challenging, such as those who used a larger-
than-expected budget, finalized late and did not include all the functionality
originally specified. Lastly, 42% have completely failed, such as those canceled
at some point in the software life cycle.

In Brazil, audits carried out in various government agencies and entities
revealed that although the information systems of these organizations effectively
contribute to the activities of the business areas, the high rate of discontent over
time to meet the demands of systems is a concern and indicates that organiza-
tions want greater agility in the delivery of this service [6]. In addition, studies
have reported the lack of clear evidence on the positive impacts of IT in this
sector, since, in many cases, IT systems do not present real benefits, only exag-
gerated and unrealistic expectations [7].

In order to overcome this history of software project failures in the pub-
lic sector, some supervisory bodies from the United States of America (USA),
the United Kingdom (UK) and Brazil issued a favorable opinion on the adop-
tion of agile methods in government IT projects [8–11], supporting an agile cul-
ture throughout the public sector where the development of long-term software
solutions with deliveries only at the end of the project is not allowed without
demonstrating real benefits during their execution.

Even with this favorable opinion, the adoption of agile methods in the public
sector has faced some challenges. Agile methods are incompatible with the hier-
archical and bureaucratic structures common to POs [12]. Many POs, especially
large ones, have spent years modifying their culture so that software develop-
ment processes are defined and followed, and it is difficult to make a change to a
work model in which processes are adaptive and defined by the team itself [13].
Although it is possible to contract agile software development in a way that
guarantees, contractor (government) and contracted (provider), the adoption of
some agile practices; it is to be expected, tough, that they are supplemented
with prescriptive features and as a consequence it can begin to lose some of its
agility [14].

In Brazil, state bureaucracy and the legal and normative framework have
hampered the work of POs to implement governance and management models

An Empirical Study on the Adoption of Agile Software Development 5

that are more agile and compatible with the dynamics of the contemporary
world [15]. Saraiva’s study [15] revealed that the bureaucratic logic of POs is
responsible for a complex dynamic between employees and the organization.
The notion of bureaucracy is so ingrained that it refers to the idea of immobility,
since innovative precepts to carry out the work are ignored or do not go forward,
such as the strength of the current regulatory approaches. In general terms, the
research has shown that POs are faced with the need for modernity, but there
is a widespread fear of the new – distinct from what is established in existing
norms and manuals – which make them give up any transformation remaining
as they are, as well as accentuate the ignorance of employees regarding their own
potential for development and the fear of working in a flexible context without
the presence of the manual that provides and regulates everything.

Overall, even with all these problems and challenges, studies on the adoption
of agile methods in the public sector have shown that they have led POs to
achieve better results than those that would be possible to achieve with tradi-
tional approaches [13]. Thus, since the nuances of adopting agile methods in POs
are not widely known and observe how this is reflected in the scope of govern-
ment, it is a valuable exercise for scientific research to understand and broaden
knowledge in this area.

3 Research Methodology

The elaboration of the set of recommendations for the adoption of agile software
development in POs originated from a research methodology organized in four
phases. The first phase of “theoretical reference” (F1) is based and detailed
mainly in a secondary study of the systematic literature review (LSR) on the
subject, published in the International Conference on Software Engineering and
Knowledge Engineering (SEKE) [16].

The second phase of “empirical study” (F2) is based on a qualitative research
approach, through a case study [17]. Regarding the delimitation of the units
of analysis, four software development teams (totaling eighteen subjects) were
selected and interviewed – two large and medium-sized Brazilian POs, which pro-
vide IT solutions for the Public Administration and the agricultural sector, both
with experience in the application of ASD in government. The data collection
instruments used in the research were: semi-structured interviews and content
analysis. The interviews were recorded electronically in audio (with the consent
of the interviewees) and transcribed for future reference. For the treatment and
analysis of data, the technique of Bardin was used [18].

In phase 3 (F3), we sought to consolidate the results achieved in phases F1
and F2, forming a framework of theoretical and empirical results. The last phase
(F4) consisted of the elaboration and consolidation of the set of recommenda-
tions for adoption of ASD in POs. It is worth noting that a preliminary set of
recommendations has been drawn up. Subsequently, new interviews with spe-
cialists were conducted aiming at some degree of stability in the final set of
recommendations.

6 I. Vacari and R. Prikladnicki

4 Case Studies

Considering that the research undertaken wants to understand how software is
developed within a public organization, it is evidenced that the object of study
is circumscribed within the scope of the human and social sciences and that a
research with this character directs to the use of a qualitative research method,
because what is sought are answers that indicate the real state of the delimited
object unraveling as it occurs from the subjects who exercise it. Among the
various qualitative research alternatives, the case study was chosen because it
is based, as Yin points out [17], in the identification of answers to questions in
which the research problem consists in seeking the “how” and the “why”, as
well as in the focus of complex contemporary events with real life context and
in the effort to maintain the universal characteristics of the studied context.
The government offers a context full of complexities, dramas and ambiguities.
Capturing this combination of elements is the advantage of case studies, whether
for practice knowledge or for the study [19].

4.1 The Selection of Public Organizations

This research began with a differentiated sample, with two POs, covering
Embrapa Agricultural Informatics (CNPTIA) and the Cia. de Processamento
de Dados do Grande do Sul (in Portuguese) (PROCERGS) because different
conditions were assumed to exist in the context of governments that affect soft-
ware development in POs. The choice of these two POs was made, firstly, for
purely organizational reasons, referring to the availability of financial resources,
the time available, the opportunity to access the object of interest (software
projects with agile methods) and the possibility of recruiting subjects for the
study.

4.2 The Selection of Research Subjects

From agile software development projects carried out at POs – as a starting
point for the identification of data collection strategies – the selection of the
subjects that composed the research was carried out in function of two focus
areas defined in this research as analysis dimension. The organizational dimen-
sion is the first one. It raised, along with managers, relevant institutional aspects
about the organizational culture. It is assumed that organizational culture influ-
ences, promotes, facilitates, hampers, favors and/or makes the adoption of agile
methods with greater or lesser acceptability in the organization [12]. While the
project dimension focused on the members’ perception of how they understand
teamwork, alignment with business objectives, and the execution of software
development processes and practices; however, was interested in knowing how
agile software development happens and develops within the projects. Consider-
ing the definition of the chosen dimensions and also the professional experience
of the researchers, we opted for the quantities of subjects per sample size given
in Table 1.

An Empirical Study on the Adoption of Agile Software Development 7

Table 1. Quantitative research subjects by POs and dimension

Public organization Dimension Subjects

CNPTIA Organizational 1 Assessor

Project 1 (CaS01) 2 Developers; 1 Project Manager

Project 2 (CaS02) 1 Project Manager; 1 Developer

Total 6 subjects

PROCERGS Organizational 1 Manager

Project 3 (CaS03) 1 Product Owner; 1 Systems Analyst;

1 Scrum Master/Developer;

1 Quality Assurance; 2 Developers

Project 4 (CaS04) 1 Systems Analyst;

1 Scrum Master/Developer;

2 Developers; 1 Quality Assurance

Total 12 subjects

4.3 The Data Collection Instruments

In the scope of data collection instruments, this research is based on the use
of two techniques: (1) interviews and (2) analysis of documents. It is worth
mentioning that the adoption of observation as a data collection instrument
became unfeasible because the projects of CNPTIA and PROCERGS are in
networks and, often, inter-institutional or interdepartmental, which prevents the
participation of other people as observers. Apart from these facts, the observation
would require an immersion in the environment where the events happen, which
is difficult to accept on the part of the subjects and the selected organizations.

Since software development is performed by people, it was realized that the
question of research would only be understood if it incorporated the experience
of the individuals who inhabit the physical space circumscribed in the analyzed
case studies. This fact alone justifies the option of the interview as an instrument
of data collection. Among the various types of interviews, the individual inter-
view was chosen, following a semi-structured interview protocol. The analysis of
documents was the second instrument of data collection on which this research
was based in order to guarantee the validity of the results. The types of docu-
ments reviewed covered the Company Master Plan, Product Vision Document,
Product Backlog and Project Reports.

4.4 The Treatment and Analysis of Data

The treatment and data analysis of this research was inspired by the proposal of
Bardin [18], which predicts three fundamental phases: (1) pre-analysis, (2) explo-
ration of the material and (3) treatment of results – inference and interpretation.
The Pre-analysis included the conversion of the audio from the interviews into
text in the document “Text of the Interviews”. It also helped to define the topics

8 I. Vacari and R. Prikladnicki

to be addressed, and in some categories information summaries were organized,
including information about the project, the team, the customer and business
relationship, the process and practices, knowledge and experience of subjects.

It is worth mentioning that these categories were derived mainly from the
theoretical reference and a single category was created after the data collection
(the knowledge and experience of the subjects). In addition, although the main
instrument of data collection was the semi-structured interview, the complete
analysis was not limited to the data coming from this single instrument, but
also used internal and external documents to the project, previously mentioned.

4.5 Consolidation of Empirical Results

The four case studies carried out evidenced several aspects of Software Engineer-
ing (SE) and ASD, some of them being presented in the sequence. A common
feature found was the execution time of the projects that takes place over several
years, which can increase the costs for their execution. But with agile methods,
software deliveries happen earlier – weekly or monthly – with deployments in
production in months instead of years. So the benefits of an IT solution can
return to their “investors” as early as possible. In addition, it was found that
the projects were able to experiment and evaluate the practices and technologies
necessary for their development.

In PROCERGS, there was little individual space and more collective space
and everything close to software development, which requires a daily exercise
of the essence of self-organization. On the other hand, CNPTIA found more
individual space and less collective space and distant people, which requires the
help of tools, emails and telephones for communication. The challenge in these
environments, albeit with different approaches, is to learn how to work together,
such as ensuring that people will be available at the time they are asked for.
However, it was found that a great inhibitor of teamwork is the allocation of
people concomitantly in several projects (CaS01) (CaS02).

Knowledge and experience in project management were found to be critical,
which should not be a new discovery. In projects (CaS01) (CaS02), this aspect
of the SE was shared among some people in the team (Product Owner, Systems
Analyst, Quality Analyst and Scrum Master), which illustrates an example of
responsibility shared by the team instead of specific people, complemented with
some organizational skills, including mentoring services and training programs.
While in the projects (CaS03) (CaS04), the specific role of the project manager
is still mandatory in the formulation, approval and execution of the project,
however during its execution a shared commitment was observed in relation to
the accomplishment of the objectives that the team would accept.

With respect to alignment with business objectives, the four projects studied
presented a new business solution rather than just the provision of a software
product. In these cases, the management of the organizational impacts resulting
from the business changes were managed from the beginning of the project. They
have formed committees or groups – made up of clients, user representatives, and

An Empirical Study on the Adoption of Agile Software Development 9

some projects with IT people – to provide guidance and direction to achieve com-
mon goals and not to restrain team initiatives. This project governance strategy
proved to be adequate for effective acceptance of the software product in the
organization. However, it requires committees or groups to actively participate
in the process of developing and solving organizational problems, as well as rep-
resenting the interests of system users.

With regard to the project follow-up, two projects (CaS03) (CaS04) pre-
sented evidence of how a well-done burndown chart offers the real perception
of how much work in progress will be completed by the due date or not. The
strategy adopted in both teams consisted in reestimating the remaining time to
completion of the tasks daily, which made the burndown graph more precise.
These teams reported using visual management tools in the form of a kanban
framework for project tracking as well. They have pointed to daily meetings as
important to assist in the follow-up of the project, such as review meetings with
the client to assess whether the project is headed in the right direction. On the
other hand, project teams (CaS01) (CaS02) found it difficult to establish a rou-
tine of daily meetings with the developers because of their participation in other
projects simultaneously. The monitoring of the project was carried out based on
information contained in electronic spreadsheets (CaS01) and tools to support
the software development process (CaS02).

Regarding software development, the four projects presented evidence of
using the iterative and incremental approach, establishing well-defined feedback
cycles, adjusting the software to create an optimal interpretation of the product.
In addition, three projects (CaS02) (CaS03) (CaS04) preferred to incorporate
aspects of software testing at the beginning and during iterations rather than
leaving them to the end. Two projects (CaS03) (CaS04) stated that they were
practicing the creation of test scenarios based on the Behavior Driven Develop-
ment (BDD) technique with the support of the quality analyst, but evidences
of the writing of unit tests and automation of tests were not found for these
two projects. On the other hand, the project (CaS02) presented evidences in the
creation and execution of automated tests, covering unit tests and functional
tests; In addition, this team presented good knowledge in code integration and
software release in production in an automated way. Lastly, none of the projects
studied presented evidence of the use of Test Driven Development (TDD).

With regard to environments and tools to support software development, all
teams reported the importance of having specific environments for the project,
including development environment, testing, certification, training and produc-
tion. The teams (CaS03) (CaS04) reported difficulties in obtaining real data to
carry out their work, since many of them are confidential and can not be made
available to the team. The teams reported the use of tools to support software
development, preferably open source. The team (CaS01) has adopted a content
management tool to share information with all members of the project, since
they are distributed in various regions of Brazil. The same team pointed out the
importance of using other forms of communication when customers and users
are dispersed geographically, including video conferencing, email and telephone

10 I. Vacari and R. Prikladnicki

equipment. Finally, no personal characteristics of multidisciplinarity were found,
on the contrary, managers, architects, analysts, developers, interface designers
and testers are still a reality.

Regarding the reasons for the adoption of agile methods, CNPTIA was the
protagonist in the adoption of agile methods in government with the use of
Extreme Programming (XP) in an important project in the early 2000s. Its use
was motivated as a response to failure of an earlier project. The success of the
project motivated its protagonists to disseminate the principles and practices of
XP to other people, some of them being adopted in some subsequent projects
with some positive results. However, the adoption of XP and any other method
of software development is not complete and unanimous in the Company. In
PROCERGS, the adoption of agile methods began in 2012, that is, well after its
experimentation and evaluation by the private sector. Although it started later,
the use of agile software development is virtually complete in the Company. Its
use was motivated by a restructuring that aimed to make the Company more
efficient and less bureaucratic. Currently, PROCERGS is a good reference in the
adoption of agile methods in POs, mainly for state companies and public IT
companies.

With respect to the benefits, the four studies show evidence that agile
software development based on short value deliveries contributes to customers
remaining enthusiastic and committed to project results through to the end,
which increases trust and confidence. Satisfaction with the work performed and
with the system developed. In addition, there seems to be a new fact, although
software projects in POs are still of long duration, delivery in increments of
value to the client, as well as the deployment of software in smaller periods of
time creates greater capacity of acceptance of the system in the company, being
more resistant to the eventual administrative and political changes, typical of
government.

Regarding the challenges, according to the information collected, it can be
said that the difficulties of the agile development in CNPTIA are centered in
the allocation of people to work in several projects at the same time, in the dif-
ficulty of the top management in determining its use in an institutional way, in
the difficulty of sharing knowledge and information among people, in the lack of
training allied to coaching in loco and in the different types of existing systems.
Although there are several proposals for applicable solutions to minimize prob-
lems in adopting agile methods in POs, some alternatives have been found in
PROCERGS, including: senior management commitment in contracting training
and specific coaching in product management practices; training teams with full
time dedication to software development preferably with people who know each
other the longest.

With regard to the formation of an agile culture in the organization, according
to the information collected, both companies perceived external opportunities
and absorbed the use of agile methods in pilot projects with people willing to try
the new one, being supported by the top management. From there, its positive
experiences were refined and expanded to other projects within the company.

An Empirical Study on the Adoption of Agile Software Development 11

This means that agile culture was born in these two organizations from the
experimentation of the object of study in subcultures. Thus, it can be inferred
that POs learn and modify themselves.

PROCERGS is seeking to advance in the adoption of ASD practices and
knowledge sharing strategies among teams. On the other hand, CNPTIA has
not been able to establish new advances remaining as it is, including with some
difficulties in the formation of teams and in the sharing of experiences among
the people. For this reason, agile methods are not perceived as a finished process
that is finalized when a particular achievement is achieved. Contrariwise, agile
methods is something that is continuously processed and depends on a set of
factors linked to the people and the environment where it is inserted to achieve
new and better results continuously. This signals to the interactive, continuous
and dynamic character of the agile methods abstracted from the case studies
carried out.

5 Results

As previously mentioned, this research proposes to consolidate the information
found, in theory (through LSR [16]) and in practice (through the case studies),
on the adoption of agile methods in POs in a framework, proposing a set of
recommendations for its adoption in the context of the public sector. One of
the biggest reasons for adopting agile methods is the benefits they can bring to
the POs, which are seen as a response to the history of failures of IT projects in
government. In relation to the benefits achieved in the adoption of agile methods
in POs, the following aspects were identified, according to Table 2.

In some cases, the very optimistic image in the theoretical level of agile meth-
ods can be countered by a practical reality dominated by challenges, difficulties
and concrete problems. With respect to the problems and challenges faced, the
following aspects were identified, as shown in Table 3.

5.1 For Beyond Results ... A Set of Recommendations

The theoretical and empirical studies showed evidence of the adoption of agile
software development in POs. Such methods are known and can be tried and
repeated in the context of government. However, what presents as a challenge
are the issues of change management that emerge from a new way of doing the
work and find a path of small initial successes for its expansion as a development
method commonly accepted and used in POs.

In this sense, the analysis suggests that a good alternative is to start adop-
tion with people willing to change strongly supported by senior management,
working on important pilot projects in a more open and team-friendly environ-
ment. Then the change will depend on the expansion and interaction with other
teams aimed at reaching the great majority of the organization. Throughout the
adoption process, people should form an ecosystem of learning and continuous
improvement not to accommodate themselves with the first achievements and

12 I. Vacari and R. Prikladnicki

Table 2. Benefits achieved in the adoption of agile methods in POs

Perspective Aspect Sources

Humane Improved alignment and collaboration
between IT and business

(LSR) (CaS01) (CaS02)
(CaS03) (CaS04)

Increased team morale and reduced
reliance on contractors

(LSR)

Communication improvement (LSR) (CaS03) (CaS04)

Improvement in teamwork and holistic
vision of the project

(CaS03) (CaS04)

Organizational Earlier delivery of value to the
customer

(LSR) (CaS02) (CaS03)
(CaS04)

Increase in customer satisfaction (LSR) (CaS02) (CaS03)

Improved project visibility (LSR)

Reduction of costs (LSR)

Improved ability to manage changes
and priorities

(LSR) (CaS01) (CaS02)

Technical Improvement in learning new
technologies

(LSR) (CaS02)

Improvement in product quality and
code

(LSR)

Increased productivity of teams (LSR)

the comfort zone, that is, to improve always, not just once. From this reason-
ing, the final set of recommendations proposed was divided into three phases:
(1) Preparation, (2) Implementation and (3) Learning.

(1) Preparation: In the preparation phase, the theoretical and empirical stud-
ies have signaled five recommendations that need to be duly considered before
beginning the adoption of agile methods. First, people need to be considered in
change strategies. Second, there must be people who are receptive to change.
Third, management’s commitment to this effort is extremely important. Fourth,
the criticality and importance of pilot projects need to be carefully considered.
Lastly, there needs to be an appropriate IT environment and infrastructure to
support agile development to facilitate frequent deliveries of quality software.
In summary, these are the five recommendations for this phase: (1) establish
a people-based change management strategy; (2) start with people willing to
change; (3) involve and compromise power holders; (4) start with important
pilot projects; (5) provides the necessary conditions for people to carry out their
work.

(2) Implementation: Since there is a subculture willing and supported by
senior management to work with agile methods, then the next step is to adopt
them in practice in pilot projects. Following are the twelve recommendations
identified as essential for the execution phase of agile methods in software

An Empirical Study on the Adoption of Agile Software Development 13

Table 3. Problems and challenges faced in the adoption of agile methods in POs

Perspective Aspect Sources

Organizational Organizational culture and resistance
to change

(LSR)

Little or no stakeholder involvement (LSR) (CaS01)

The trend of mega information
technology projects

(LSR)

The problem with contracts (LSR)

Compliance with standards and
regulations

(LSR) (CaS01)

Support from top management (LSR)

The problem with delays (LSR) (CaS01) (CaS02)

The pessimism with information
systems

(CaS01)

Technical Lack of knowledge and experience
with agile methods

(LSR) (CaS01) (CaS02)
(CaS03) (CaS04)

The ingrained use of prescriptive
approaches

(LSR)

projects: (1) promote teamwork preferably with small and perennial teams;
(2) involves, engages and satisfies customers and users; (3) ensure the quality
of the code and the product; (4) establish the time of software deliveries prefer-
ably in shorter times; (5) train the team in the method and technologies used
in the actual project; (5) provide tools to support the software development
process; (6) monitor the progress of the project daily and visibly; (7) explore
multiple forms of communication; (8) avoid allocating the same person to sev-
eral concomitant projects; (10) meets the legal requirements of the organization;
(11) establishes expectations of documentation; (12) experience emerging meth-
ods and practices.

(3) Learning: Within the scope of POs, the first adoptions of agile methods are
lacking in theoretical studies. For this reason, the recommendations suggested
in this phase were constructed based only on empirical studies. The last phase
is about learning. It consists of two recommendations: (1) evaluate the adoption
of agile methods and evaluate the product generated by providing feedback to
power holders; (2) encourage the creation of groups or communities of practice.

5.2 Final Remarks

From the methodological point of view, the case study was the most appropriate
option because it complemented the interests of the research and offered oppor-
tunities to see reality by understanding it and apprehending it in its integrality.
It is worth emphasizing that the use of observation as an instrument of data

14 I. Vacari and R. Prikladnicki

collection was not possible because the observation would require an immersion
in the environment where the events happen, which is difficult to accept by the
selected POs.

The main motivation for the development of this study was the lack of struc-
tured information on the adoption of agile methods in POs and, at the same time,
the opportunity to better understand the implications of adopting such meth-
ods in the context of the public sector, labeled as employing a Administration
that is resistant to changes, with excessive formalism, with many redundant and
unnecessary divisions, rules and procedures for its operation [15]. Many people
are interested in innovative approaches to government – including the adop-
tion of agile methods – but they do not know how to get started, so they need
introductory studies.

The set of recommendations is intended to help POs introduce the vision of
agility and modernity proposed by agile methods in order to increase the chances
of succeeding with this approach by improving the quality of systems developed
by the public sector. Not least, this research consolidates the results found in
theory and practice in a results framework, thus forming a theoretical basis on
the subject, making it clearer to researchers and professionals in the field that
the agile software development applied in the framework of the POs has been
supported by scientific studies.

Lastly, the results suggest that adopting agile methods in POs may be more
challenging than in other organizations because people with little experience
need to lead teams and projects to success by demonstrating positive short-term
results, and in some situations they do not Have the organizational support
and the environment necessary to carry out their work, depending on external
experts. Although this situation may change over time, this research has found
clues that in certain POs this process may be slower and more complex because
it requires people to learn new behaviors and adopt new ways of interacting
with others, being the problem Aggravated when the new work dynamics are in
conflict with approaches rooted in the organization, making change difficult. In
addition, some studies have shown that not all work environments have evolved
with the same enthusiasm; The inherent culture of the organization may not
correspond to the agile approach, causing failures in the design and process of
adopting such methods. On the other hand, this study found indications that
agile methods are feasible for POs. When successful, the adoption of agile meth-
ods has provided greater job satisfaction, where developers are more satisfied
with the way in which they perform their work and customers are more content
with the software product being built. In addition to that, the government is
proving increasingly open and favorable to using such methods.

An Empirical Study on the Adoption of Agile Software Development 15

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012). doi:10.1016/j.jss.2012.02.033

2. de Melo, C.O., Santos, V.A., Corbucci, H., Katayama, E., Goldman, A., Kon,
F.: Métodos Ágeis no Brasil: Estado da Práticas em Times e Organizações, 9 p.
Relatório Técnico, Departamento de Ciência da Computação, IME-USP (2012)

3. VersionOne VERSIONONE: 9th Annual State of Agile Development Survey. Ver-
sionOne, 14 p. (2014)

4. da Balbe, R.S.: Uso de tecnologias de informação e comunicação na gestão pública:
exemplos no governo federal. Revista do Serviço Público 61(2), 189–209 (2010)

5. COMPUTERWORLD Healthcare.gov website ‘didn’t have a chance in hell’ (2013)
6. BR TCUa: Fiscalização de Orientação Centralizada (FOC). Governança de TI.

Recomendações. Arquivamento, Tribunal de Contas da União, 71 p. (2014)
7. Goldfinch, S.: Pessimism, computer failure, and information systems development

in the public sector. Publ. Admin. Rev. 67(5), 917–929 (2007)
8. BR TCUb. Levantamento de Auditoria. Conhecimento acerca da utilização de

métodos ágeis nas contratações para desenvolvimento de software pela Adminis-
tração Pública Federal. Arquivamento. Tribunal de Contas da União, 42 p. (2014)

9. HM Treasury: Agile digital and IT projects: clarification of business case guidance
10. UK NAO. Governance for Agile delivery. National Audit Office, 35 p. (2012)
11. US GAO: Effective Practices and Federal Challenges in Applying Agile Methods,

34 p. United States Government Accountability Office
12. Iivari, J., Iivari, N.: Organizational culture and the deployment of agile methods:

the competing values model view. Agile Software Development - Current Research
and Future Directions, pp. 203–222. Springer, Heidelberg (2010)

13. Wernham, B.: Agile Project Management for Government, 371 p. Maitland and
Strong, London (2012)

14. de Franco, C.A.C.: Análise da legislação para a terceirização do desenvolvimento
de software na administração pública brasileira em relação as norte-americana
e britânica, 141 p. Dissertação de Mestrado, Programa de Pós-Graduação em
Informática, UFRJ (2014)

15. Saraiva, L.A.S.: Cultura organizacional em ambiente burocrático. Revista de
Administração Contemporânea 6(1), 187–207 (2002)

16. Vacari, I., Prikladnicki, R.: Adopting agile methods in the public sector: a sys-
tematic literature review. In: International Conference on Software Engineering
And Knowledge Engineering, Proceedings, Pittsburgh, p. 27. Pittsburgh Univer-
sity (2015)

17. Yin, R.K.: Planejamento e Métodos, 4 ed., 248 p. Bookman, Porto Alegre
18. Bardin, L.: Análise de conteúdo, 279 p. Edições 70, São Paulo (2011)
19. Graham, A.: Como escrever e usar estudos de caso para ensino e aprendizagem no

setor público, 212 p. ENAP Escola Nacional de Administração Pública (2010)

http://dx.doi.org/10.1016/j.jss.2012.02.033

Using Agile Methods in Distributed Software
Development Environments

Wellington Feitoza Gonçalves1, Ivaldir de Farias Junior2, Renata Kalina de Paulo Alves1,
Pedro Luis Saraiva Barbosa1, Herlon Ribeiro Parente Cortez1,

Isaac Bezerra de Oliveira1, Marcelo Mendonça Teixeira3,
and Nelson Leitão Júnior4(✉)

1 Leão Sampaio University Center (UNILEÃO), Juazeiro do Norte, CE, Brazil
{wellingtonfeitoza,Kalina,pedroluis,Herlon,

isaacbezerra}@leaosampaio.edu.br
2 Softex Recife, Recife, PE, Brazil

ivaldirjr@gmail.com
3 Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil

marcelo.ufrpe.br@gmail.com
4 CESAR.EDU, Recife, PE, Brazil

leitaojr@outlook.com

Abstract. Management is one of the factors with direct influence on the
successful implementation of a project carried out in Distributed Software Devel‐
opment Environment (DSD), whereas mismanagement can result in schedule
delays, loss of productivity and high costs. This article presents the benefits of
using some of the key agile practices as well as the challenges encountered in
DSD project management. The results were collected in quantitative research with
the application of a survey among thirty-five professionals. These results indicate
a positive contribution of the use of these practices.

Keywords: Distributed software development · Agile methods · Software
engineering

1 Introduction

In search for competitive advantages, software development companies have undergone
through a major evolution in their business, in which the development of software as a
product has been accomplished by the distribution of their processes across cities, states
and even in different countries, aiming to minimize costs, increase productivity and use
geographically distributed resources; in this context, developing software in the same
physical space, has become increasingly costly and less competitive [2].

Distributed Software Development (DSD) has provided several benefits to organi‐
zations that aim to develop projects with specific characteristics such as: productivity
gains, low-cost skilled labor and the possibility of making use of some advantages over
legislation [2]. However, as there are benefits in DSD, this type of work also presents
several difficulties such as: physical distance, temporal separation, regional and

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 16–27, 2017.
DOI: 10.1007/978-3-319-55907-0_2

organizational cultures, languages, infrastructure and others [4]. Therefore, it is not
interesting to handle this type of project as a traditional development project, and as
stated by Oliveira and Lima [12], the adoption of agile methods/frameworks for the
software development process can provide a better project management in DSD envi‐
ronments.

This article presents a set of agile practices to be used in DSD environments, aiming
to minimize management problems in this context. Existing challenges and the critical
success factors for the adoption of these practices in such environments are presented
as well. This research intends to answer the following question: what are the main
difficulties and benefits provided by the adoption of agile practices used in DSD projects?
The article is organized as follows: Sect. 2 presents the usage of agile methods/frame‐
work in DSD environments; Sect. 3 discusses related work; Sect. 4 presents the research
methodology; Sect. 5 discusses the results of the research; Sect. 6 presents a selection
of agile practices most used in DSD environments; Sect. 7 presents the final remarks;
and Sect. 8 presents the research limitations and future work.

2 Agile Methods or Frameworks in DSD Environments

The agile methods have some striking differences compared to traditional methods, and
the agile methods or frameworks that stand out the most is the XP (eXtreme Program‐
ming), which states the use of some practices focused on development [1], and the Scrum
framework, focused on project management [16]. Methods/frameworks have their prin‐
ciples supported in the Agile Manifesto, which is a set of values elaborated in 2001 by
a group of relevant software professionals, among them Martin Fowler, Beck [3].

Agile methods or frameworks are people-oriented, defining that a process works well
for those who use it, and stating that no process can have the ability of a team, therefore,
the role of the process is to support the development team in their work [8]. In agile
software development, the communication becomes faster and easier, in which team
members share face-to-face ideas [11]. But even in distributed teams, the usage of agile
methods/frameworks proved to be ten times more productive than traditional models,
as stated by other authors [14].

DSD inherits all existing features from traditional software development, adding
new challenges that are provided due to the specific context in which it operates, never‐
theless, there are several motivations for adopting DSD, e.g., access to low-cost, yet
specialized labor available in developing countries [4]. Some of these motivations have
attracted more companies to use DSD. It becomes increasingly significant the number
of companies that are carrying out their development process in DSD environments [10].

The use of agile methods/framework can be a positive approach when combined
with DSD, that is, the use of agile principles in DSD environments can minimize the
various challenges arising from this work model [7]. According to Paasivaara et al. [13],
the use of agile principles helps to improve trust among the stakeholders of different
cultures that are part of the process; in addition, the same authors reported that the usage
of Scrum in a distributed development project enabled the increase of motivation of

Using Agile Methods in Distributed Software Development 17

those involved, improved the communication, the software quality and increased the
collaboration frequency.

3 Related Work

There are several researches that address the use of agile methods in DSD environments,
and this paper will use as reference the studies described by: Audy and Prikladnicki [2];
Evaristo and Scudder [5]; Ryan and Sharp [15]; Shrivastava and Date [17].

As stated by Audy and Prikladnicki [2], distributed projects can follow a reference
model. The authors consolidated the reference model (MuNDDos) to be applied in DSD
environments, and their conclusions were based on their research, in which through
some comparisons, it was possible to present the lessons learned that provided the
identification of a category of factors (design, dispersion, stakeholder, organization and
process of development) for the development of projects in DSD environments.

The studies from Evaristo and Scudder [5] focus at solving the challenges of DSD,
however, the authors propose some factors that are important for the accomplishment
of this work, such as: perceived distance, levels of dispersion, types of actors, develop‐
ment process and the existence of procedures and standards that can be used with the
aid of agile practices in DSD environments.

As stated by Ryan and Sharp [15], agile distributed projects must follow some of the
agile practices for success. The authors present in a research the relation on agility, team
structure and virtual distribution to select the best agile practices. Their study was aimed
to the generation of a set of best practices for the configuration of agile teams distributed
globally. In this context, the authors’ contribution was to select eight agile practices to
be adopted in agile teams distributed globally.

Table 1. Comparison of related work

Approaches Agile practices Human factor DSD support tool Organizational
factor

Audy and
Prikladnicki
(2008)

N M M M

Evaristo and
Scudder (2000)

N PM M M

Ryan and Sharp
(2011)

M PM N M

Shrivastava and
Date (2010)

M PM N PM

This paper M PM M PM

M = Meets, PM = Partially Meets, N = No Answer.

The work from Shrivastava and Date [17] explores the intersection of two significant
trends for software development, namely DSD and agility. The authors address the
challenges faced by agile geographically distributed teams and proven practices for this

18 W.F. Gonçalves et al.

type of development. The authors’ research demonstrates some dimensions based on
the literature, which are necessary for organizations to operate with agile practices in
DSD environments. Table 1 presents a summary of the related works. The comparison
criteria were chosen based on the main challenges of DSD.

The analyzed approaches bring significant results to the selection of agile practices
in DSD projects. However, there are still gaps to be addressed, such as the criteria cited
in Table 1. Thus, this work explores the use of agile practices in DSD environments and
their importance in distributed projects by listing practices that improve the project
management process in DSD.

In comparison to the other identified works, this paper focuses on the use of agile
practices in distributed software projects and their benefits to the organization. This
paper presents tools to support the DSD and a set of agile practices that can be used in
distributed software projects to maximize results and improve performance during the
execution of projects in DSD environment.

4 Methodology

This research used a quantitative approach, with the objective of collecting information
from participants who work in the software engineering and participate in projects that
use agile methods/framework in DSD environments.

The analysis and interpretation of the data identified the current performance of the
use of agile methods/framework in distributed projects, the success factors for their
adoption, the main agile practices in usage and the main encountered difficulties.

The plan for the execution of this research was composed by the proposed phases as
follows: Phase 1 (study of the theoretical basis): during this phase, works from the main
authors in the areas of software engineering, agile methods and DSD were researched
and studied; Phase 2 (survey): in this phase, a questionnaire was developed and applied
to professionals in software engineering; Phase 3 (analysis of collected data): in this
phase, it was performed an analysis on the collected data. Challenges, difficulties, bene‐
fits and advantages related to the use of agile practices in DSD environments were
identified at this stage; Phase 4 (agile practices in DSD): a set of agile practices used in
DSD was identified.

The individuals that participated in the survey consisted of thirty-five software engi‐
neering professionals from Brazil and Canada, who work in companies that perform
projects in DSD environments.

It was applied a survey of twenty-three questions for data retrieval. The structure of
the questionnaire was based on the related works that served as basis for the accom‐
plishment of this research. From the analysis of each work, some gaps were identified
regarding the use of agile practices in DSD. Thus, the questions that formed the ques‐
tionnaire emerged from the identification of these gaps in a way that could identify the
dimensions that the agile practices could reach in DSD environments. After analyzing
the collected data, a conversion was performed to a database, in which these data were
studied using the IBM® SPSS® Statistics Base software tool, that enabled a descriptive
analysis of the data and the generation of the tables and graphs in this article.

Using Agile Methods in Distributed Software Development 19

As stated by Wainer [19], the validity of an experiment is directly related to the level
of trust that can be accomplished in the whole research process, that is, to obtain reliable
elements from the theoretical basis adopted until the identified results, including the way
that these are presented. Therefore, as a survey research in which participants respond
to the questionnaire within their own environment, this research is subject to be influ‐
enced by behaviors that could not be controlled.

5 Results

This section presents the results from the analysis of the collected data on the usage of
agile methods/framework in DSD environments. The consistency of the answers
obtained through the utilization of the questionnaire revealed that this measuring instru‐
ment showed high reliability in the space where it was applied. The Cronbach’s alpha
value for this questionnaire was 0.843, considering the preference established by
Streiner [18], which suggests that the coefficient values above 0.80 represents a high
confidence level. Thus, by verifying the results statistics, it is possible to give a greater
relevance and reliability to this research.

5.1 Identification of Participants

In order to identify the level of professional experience in distributed projects, each
participant informed their years of experience with DSD and agile methods/framework
in DSD projects. All the participants of the research have experience with DSD, as shown
in Table 2.

Table 2. Professionals with experience in DSD

Experience with DSD Number of professionals
Frequency Percentage

Up to 1 year 6 17.1%
From 1 to 3 years 10 28.6%
From 3 to 5 years 10 28.6%
From 4 to 7 years 4 11.4%
From 7 to 9 years 1 2.9%
More than 10 years 4 11.4%
Total 35 100,0%

Among the participants (Table 3), 88.6% already used agile practices in their distrib‐
uted projects, 11.4% reported not using agile methods in DSD projects. Concerning the
professionals who already use agile practices in DSD, 2.9% said that they have 7 to 9
years of experience, 11.4% have 4 to 7 years, 17.1% have 3 to 5 years, 31.4% said that
they had 1 to 3 years and 25.7% said that they had up to 1 year of experience. No
participant had agile experience for over 10 years, thus, 4 (11.4%) participants who
reported having experience in DSD alone and had no experience with the use of agile
practices in distributed projects were excluded from the results regarding the use of agile

20 W.F. Gonçalves et al.

practices. The results related to agile practices are only valid to participants who have
experience in agile projects in DSD environments.

Table 3. Professional’s experience with agile practices in DSD

Experience with agile practices in DSD Number of professionals
Frequency Percentage

Up to 1 year Referring to Fig. 25.7%
From 1 to 3 years 11 31.4%
From 3 to 5 years 6 17.1%
From 4 to 7 years 4 11.4%
From 7 to 9 years 1 2.9%
Not using agile methods in DSD 4 11.4%
Total 35 100.0%

5.2 Main Challenges in DSD Environments

To identify the main challenges in performing DSD projects, each participant contrib‐
uted with information about the difficulties encountered in their projects, Fig. 1 shows
that the Communication is the greatest challenge identified by participants, corre‐
sponding to 60.0%. And as stated by [6], communication stands out, as one of the activ‐
ities of great importance among team members, also, Evaristo and Scudder [5] suggest
the creation of communication patterns to minimize difficulties. And representing the
lowest value are the Processes and Tools, with 11.4%.

Fig. 1. Main challenges in DSD

5.3 Critical Factors for the Success of Adopting Agile Practices in DSD

To succeed in adopting agile practices in DSD environments, it is necessary to work
on some critical factors in the team. The survey participants reported that Motivated
Teams (with 71.4% of answers) and Self-Managed Teams (with 60.0%) are the main

Using Agile Methods in Distributed Software Development 21

factors for success in distributed projects. Through the data analysis it was identified
that the individuals with 1 to 3 years of experience with agile methods in DSD believe
that the approach of a self managed team is the main critical factor for success.
Professionals with less than 1 year of experience have the preference of keeping
motivated teams as their main success factor. Among the professionals with experi‐
ence from 5 to 7 years, the highest preference for the factor of success of a distrib‐
uted project is to have an experienced coach and to keep the team motivated. And
with 20.0% of the answers, Specialized Teams were considered as a factor without
much criticality, as shown in Fig. 2.

Fig. 2. Critical factors for successful use of agile practices in DSD

5.4 Most Commonly Used Tools in DSD Environments

For a distributed project to succeed, it is necessary to manage all its parameters as well.
Therefore, the use of tools has provided a better follow-up of the processes that are part
of the distributed project and these tools have become critical to success in DSD.
Respondents stated that the Apache Subversion (40.0%) is the most used software
version control tool and the Microsoft Excel has 31.4% of participants’ preference as a
necessary tool for control and monitoring of distributed projects. Other tools such as
Redmine and Microsoft Project had 20.0% preference among the participants as the main
tool to manage their Projects. Other tools (CA-ChangePoint, Bitbucket, PivotalTracker,
Smartsheet, GoogleDocs, Dropbox, Gmail and Skype) were cited and preferred by 40%
of the participants, as shown in Fig. 3.

5.5 Agile Methods/Frameworks Used in DSD Environments

The “Total” column in Table 4 shows the overall value of participants who stated
that they use agile methods/frameworks in DSD projects. Most of the respondents,
(77.1%) stated they used the Scrum framework to manage their projects. Through the
analysis of the collected data it was possible to realize that Scrum is the most used
approach by professionals with 1 to 3 years of experience in the development of
distributed projects.

22 W.F. Gonçalves et al.

Table 4. Preference of frameworks in agile DSD

Framework
and/or
Agile
method

Experience of the professionals in DSD projects, using agile practices
Up to 1 year From 1 to 3

years
From 3 to 5
years

From 4 to 7
years

From 7 to 9
years

Total

Crystal 100.0% 0.0% 0.0% 0.0% 0.0% 2.9%
FDD 0.0% 0.0% 0.0% 100.0% 0.0% 2.9%
Kanban 12.5% 37.5% 25.0% 25.0% 0.0% 22.9%
Lean 25.0% 0.0% 25.0% 50.0% 0.0% 11.4%
Scrum 25.9% 37.0% 22.2% 14.8% 0.0% 77.1%
XP 16.7% 33.3% 16.7% 25.0% 8.3% 34.3%
Others 33.3% 0.0% 0.0% 33.3% 33.3% 8.6%

Even being the most used approach for project management among the respondents,
Scrum is questioned by some authors about its efficiency in distributed teams, and
according to Gregório et al. [9], has its main weaknesses in the lack of scalability for
large and geographically dispersed teams. However, this view was empirically denied
by Paasivaara et al. [13], who state that Scrum was used successfully in several large
projects whose teams were distributed in several business plants. Other 34.3% of the
respondents reported using XP, 22.9% using Kanbam, 11.4% using Lean, and the lowest
values were found with FDD and Crystal, both with 2.9%. Finally, 8.6% reported using
other methods. It is important to mention that 100.0% of participants who already use
agile practices in DSD projects do not use only a single framework/methodology to
follow their projects.

Fig. 3. Most commonly used tools in DSD environments

Using Agile Methods in Distributed Software Development 23

5.6 Benefits of Agile Practices in DSD

Concerning the advantages and benefits of the use of agile methods/framework in DSD
projects, some questions were applied to retrieve the experience of the participants in
this context. The results are shown in Table 5.

Table 5. Benefits of agile practices in DSD

Benefits from
the adoption
of agile
practices

Experience of professionals in DSD projects using agile practices
Up to 1 year From 1 to 3

years
From 3 to 5
years

From 4 to 7
years

From 7 to 9
years

Total

Accelerate the
Time to
Market

23.1% 38.5% 15.4% 23.1% 0.0% 37,1%

Productivity
increase

33.3% 27.8% 22.2% 11.1% 5.6% 51.4%

Better change
control

6.7% 53.3% 33.3% 6.7% 0.0% 42.9%

Improvement
in self esteem

27.3% 45.5% 18.2% 9.1% 0.0% 31.4%

Improvement
in the system
quality

25.0% 33.3% 33.3% 8.3% 0.0% 34.3%

Reduction of
costs

40.0% 20.0% 20.0% 20.0% 0.0% 14.3%

Processess
simplification

7.1% 50.0% 21.4% 14.3% 7.1% 40.0%

Respondents indicated that the Productivity Increase was the greatest benefit
obtained from agile practices in DSD environments, with 51.4% of answers. As a result
of the data analysis, it was possible to perceive that this benefit had its highest index
among the participants who use Scrum, XP and Lean. The Better change control appears
with 42.9%, followed by 40.0% who reported the Processess simplification. 37.1%
reported that they obtained benefits in Time to market, 34.3% reported that their systems
have obtained a better quality, and 31.4% identified Improvements in self-esteem of the
involved professionals. The Reduction of Costs was the lowest benefit stated, with
14.3%, as shown in Table 5. In this scenario, 94.3% of the participants stated that the
use of agile methods/framework adds positive values to DSD. Among the professionals
with experience with agile methods in DSD, only two of them, with 1 to 3 years of
experience with distributed projects, reported that the usage of agile methods/framework
would not aggregate any value in DSD projects, and these respondents did not justify
their responses. However, participants who stated that agile practices contribute to the
development of distributed projects justified their responses, as stated by respondent A:
“I consider it essential to use agile methods in DSD since they aim to streamline and
organize activities avoiding damages derived from the distance of the stakeholders” and
reaffirmed by respondent B: “There will always be improvements in the adoption of
agile methods in any type of environment or project.”

24 W.F. Gonçalves et al.

6 Selection of Agile Practices Used in DSD

After analyzing the answers from the survey, the main agile practices used in distributed
projects were identified, as shown in Table 6.

Table 6. Identification of agile practices and respondents

Main agile
practices in
DSD

Experience of professionals in DSD projects using agile practices
Up to 1 year From 1 to 3

years
From 3 to 5
years

From 4 to 7
years

From 7 to 9
years

Total

Collective
coding

37.5% 37.5% 25.0% 0.0% 0.0% 22.9%

Clean coding 28,6% 0.0% 42.9% 14.3% 14.3% 20.0%
Requirements
prioritization

27.3% 27.3% 27.3% 13.6% 4.5% 62.9%

Pair
programming

25.0% 12.5% 25.0% 25.0% 12.5% 23.5%

Refactoring 30.0% 30.0% 30.0% 0.0% 10.0% 28,6%
Retrospective
meeting

18.8% 25.0% 37.5% 18.8% 0.0% 45.7%

Daily meeting 24.0% 36.0% 24.0% 16.0% 0.0% 71.4%
Code revision 25.0% 33.3% 33.3% 8.3% 0.0% 34.3%
Others 0.0% 0.0% 100.0% 0.0% 0.0% 2.9%

It is expected that these best practices will help and minimize the possibility of errors
in the realization of projects in DSD environments. It was verified that the professionals
included in the research sample, denoted a more frequent use of three practices, as
follows: Daily Meetings, with 71.4%; Requirements Prioritization, with 62.9%; Retro‐
spective Meeting, with 45, 7%, as shown in Table 6. At the end of this research, it was
possible to verify that the use of some agile practices in distributed teams proved to bring
considerable benefits to the final quality of the product. Therefore, the main result of
this research was the conception of a proposal of the main agile practices used in DSD
environments.

7 Final Remarks

In this research, we analyzed the use of agile methods/frameworks in DSD environments
and we investigated the use of the main agile practices, tools, challenges and critical
factors for success in the adoption of agile practices in this area. This was demonstrated
throughout the study and reinforced with the results of the research, in which 94.3% of
participants stated that the usage of agile practices aggregates value to DSD projects.
Thus, with 60% of the answers, Communication was identified as the main difficulty.
Between the critical factors for the success of agile practices in DSD, the Motivated
Teams factor stood out with 71.4% of the answers, and the greatest benefit elected by
the participants, was the Increase of Productivity, with 51.0% of the answers. It was
possible to conclude that this work contributed to the exploration of the existing gaps
identified in Sect. 3 through the related works. And even by this work not being a

Using Agile Methods in Distributed Software Development 25

definitive solution to the difficulties faced in DSD, it contributes to the management of
distributed projects, providing a list of agile practices and tools most used for companies
that are interested in adopting agile methodologies in DSD environments. The results
showed that the use of the practices provides the optimization of project management
activities. In this way, we conclude that the process of adoption of agile practices in
DSD has contributed significantly to the development of distributed software projects.

8 Research Limitations and Future Work

One of the main limitations of the research is directly related to the number of people
who answered the questionnaire, restricting the generalization of the results collected,
however, it is important to note that the research results were sustained in the studied
theoretical basis and the information extracted from the survey applied to the partici‐
pants, in which each one of them collaborated with their professional experiences in the
DSD area, which allows a good degree of security in the conclusions drawn.

As a suggestion for future work, a deepening in this area of study can be done
applying experiments to validate the use of practices in distributed projects. Elaborate
a research with more participants as well as the elaboration of a specific process model
for the use of agile methodologies in DSD environments and their application in a real
project to verify whether positive values are added during software development.

References

1. Ambler, S.: Agile adoption rate survey (2006). http://www.ambysoft.com/surveys/
agileMarch2006.html

2. Audy, J., Prikladnicki, R.: Distributed Software Development: Software Development with
Distributed Teams. Campus, Rio de Janeiro (2008)

3. Beck, K., et al.: Manifesto for agile software development (2001). http://
agilemanifesto.org/iso/ptbr

4. Enami, L.N.M.: A project management model for a distributed software development
environment. Dissertation (Master in Computer Science) - Department of Informatics. State
University of Maringá (2006)

5. Evaristo, R., Scudder, R.: Geographically distributed project teams: a dimensional analysis.
In: HICSS, Proceedings, Hawaii, USA, 15 p. (2000)

6. Farias, Jr. I.H., Duarte, L., de Oliveira, J.P.N., Dantas, A.R.N., Barbosa, J.F., de Moura, H.P.:
Motivational factors for distributed software development teams. In: Proceedings of the
Eighth IEEE International Conference on Global Software Engineering Workshop, Porto
Alegre, Brazil (2012)

7. Fowler, M.: Using an agile software process with offshore development (2006). http://
www.martinfowler.com/articles/agileOffshore.html

8. Fowler, M.: The New Methodology (2005). http://www.martinfowler.com/articles/
newMethodology.html

9. Gregório, M., et al.: The seven sins in the application of software processes. UNIBRATEC -
Brazilian Association of Institutes of Technology (2007). http://www.unibratec.com.br/
revistacientifica/n2_artigos/n2_gregorio_mla.pdf

26 W.F. Gonçalves et al.

http://www.ambysoft.com/surveys/agileMarch2006.html
http://www.ambysoft.com/surveys/agileMarch2006.html
http://agilemanifesto.org/iso/ptbr
http://agilemanifesto.org/iso/ptbr
http://www.martinfowler.com/articles/agileOffshore.html
http://www.martinfowler.com/articles/agileOffshore.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.unibratec.com.br/revistacientifica/n2_artigos/n2_gregorio_mla.pdf
http://www.unibratec.com.br/revistacientifica/n2_artigos/n2_gregorio_mla.pdf

10. Herbsleb, J.D., et al.: An empirical study of global software development: distance and
speed. In: International Conference on Software Engineering (ICSE), Proceedings,
Toronto, pp. 81–90 (2001)

11. Niinimäki, T., Piri, A., Lassenius, C., Hynninen, P.: Studying communication in agile software
development: a research framework and pilot study. ACM (2009). ISBN: 978-1-60558-694

12. Oliveira, E., Lima, R.: State of the art on the use of scrum in distributed software development
environments. J. Syst. Comput. 1(2), 106–119 (2011)

13. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed agile development: using scrum
in a large project. In: Global Software Engineering, pp. 87–95 (2008)

14. Phalnikar, R., Deshpande, V.S, Joshi, S.D.: Applying agile principles for distributed software
development. In: International Conference on Advanced Computer Control, pp. 535–539.
IEEE (2009)

15. Ryan, S.D., Sharp, J.H.: Best practices for configuring globally distributed agile teams. J. Inf.
Technol. Manage. 22(4), 56 (2011)

16. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
17. Shrivastava, S.V., Date, H.: Distributed agile software development: a review. J. Comput. Sci.

Eng. 1(1), 10–17 (2010)
18. Streiner, D.L.: Being inconsistent about consistency: when coefficient alpha does and does

not matter. J. Pers. Assess. 80(3), 217–222 (2003)
19. Wainer, J.: Quantitative and qualitative research methods for computer science. Update

Comput. 1, 221–262 (2007)

Using Agile Methods in Distributed Software Development 27

Gamification Use in Agile Project Management:
An Experience Report

Igor M. Pereira(✉), Vicente J.P. Amorim, Marcos A. Cota,
and Geovana C. Gonçalves

Computer and Systems Department (DECSI), Federal University of Ouro Preto (UFOP),
Ouro Preto, Minas Gerais, Brazil

igormuzetti@gmail.com, vjpamorim@gmail.com,
ms_cota@yahoo.com.br, geovanacgoncalves@yahoo.com.br

Abstract. This study discusses the gamification in a software agile management
process used by a computer laboratory. Laboratories like this have various details
of organizations active in the industry. According to the events of the agile
management process of the study, elements and mechanical games were used to
improve the commitment and performance of collaborators and encourage
follow-up of events in the process. Use of elements and mechanical gamification
resulted in maintaining the commitment, increased by approximately 30% in the
performance of collaborators and contributed to the improved tracking of agile
management process.

Keywords: Gamification · Agile management · Software projects

1 Introduction

Given the need produced and deliver quality software products, organizations have
invested in the improvement of their process [1]. Fogg study presents a model of human
behavior change (Fogg Behavior Model - FBM) that can be applied in software devel‐
opment contexts [2]. FBM shows that people’s behavior is influenced by three factors:
motivation, ability and triggers. If a software development environment offer incentives
to employees, they can become more motivated and thus improve their skills in the
various tasks of their projects. Ensure employee motivation and engagement through
gamification collaborates to improve software process [3]. According Pedreira et al. [4],
gamification increases the involvement, motivation and performance of the employees
in their tasks, through the incorporation of elements of games in the way conducting
diverse activities of development and improvement software process.

Environments related to computer research laboratories such as other laboratories in
others institutes of teaching and research, micro companies that have trainees, have
different characteristics of medium and large companies. In these first environments
mentioned, a most of the collaborators share time of their projects with other activities
of their courses. Being formed by collaborators in the training phase, in the case the
students, the leaders of these environments need to keep them motivated with their
projects to control high turnover, build good teams, and ensure the quality of their

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 28–38, 2017.
DOI: 10.1007/978-3-319-55907-0_3

products [5]. Often in these environments, a drop in the productivity of students’ teams
is expected due to vacations and exams. Improving the process used in these environ‐
ments needs to be a continuous search, to make it increasingly, easy and stimulating to
be followed [6]. It is worth to mention that fledged companies are also concerned with
the improvement of their process and may have characteristics similar to those of a
laboratory and of new micro-companies.

Computing research laboratory used in this case study, named iMobilis, carries out
innovation and research projects with teachers and undergraduates of the Computing
Engineering and Information Systems courses of Federal University of Ouro Preto.
iMobilis tailored the Scrum framework as its software process focused on project
management. This study shows a tailoring of Scrum used in the iMobilis’ projects and
how the gamification elements were inserted in this process to encourage their follow.
An analysis of the achieved is performed to verify how much gamification was effective.
It is expected that this report can be used as a reference to other related environments
that wish to replicate this study in agile process exactly as Magalhães et al. (2014)
reinforces the need to disseminate case studies in experimental software engineering.

The remainder of this report is organized as proposed for case studies as suggested
by Runeson and Martin [7]. Background is in Sect. 2. Section 3 the study case is
described. In Sect. 4 the results obtained are presented and discussed. Finally, Sect. 5
presents the conclusions and Sect. 6 presents the directions for future works and the
limitations of this study.

2 Background

Recent studies highlight the evaluation of the application of computing in the field of
software development, in the education and in related areas [8, 9]. Good practices were
demonstrated with good results, but in general there is much to be development with
greater empirical validation, showing that there is still much to be explored with gami‐
fication in the area of software development.

Pedreira et al. [4] made a systematic review with the objective of mapping the use
of gamification in the areas of software engineering. They selected 29 papers from digital
libraries and annals conferences which were classified according to the area of the soft‐
ware process in which they focused and the elements of gamification used. Authors
identified that the gamification’s application in the area of software engineering is at an
early stage. They concluded that the studies lack an experimental validation of the impact
of their proposals according to the defined objective. Like most of the works shows a
proposed of gamification, few validated its effectiveness in increasing the motivation
and performance of the participants as often need to compare the results before and after
the implementation of gamification. Studies’ analysis showed that there is no standard
methodology defined for the application of gamification. Most studies don’t follow the
initial stages of applying gamification, such as establishing the objectives, defining the
characteristics of users and bases on this, define the elements that will be applied. Study
showed that the elements most used are points, medals and voting systems. They further
showed that the software implementation, tests and requirements management process

Gamification Use in Agile Project Management 29

are the ones that receive the most gamification proposals. There is still space for empir‐
ical validation in the process of rick management, project management and software
validation. The events of agile project management are the focus of our study.

Cavalcante et al. [3] reports the experience of applying gamification in a technology
solutions development company with the objective of improving adherence to organi‐
zational processes and of employees training. By well-selected metrics with evaluation
of results by projects, teamwork was stimulated, increasing integration among
employees, adherence to organizational processes by 40% and employee training by
214%. This work collaborates to show that the collaboration of the undergraduates
through the gamification also happened and was beneficial.

Hamari et al. [10] analyzed several papers based on empirical methods that use
gamification elements as a source of behavioral change. They analyzed 24 papers from
academic databases and digital libraries. Most of the gamification elements used in these
jobs is points, rankings and medals. Most of the works were in the area of education and
learning and there were four papers referring to the application in organizations.
According to most studies, gamification produces positive results in terms of increased
motivation and engagement, as in performing tasks in a more pleasurable way. Three
of the four studies on organizational systems have shown that gamification has a positive
effect on those involved for only a short time. In general they concluded that the results
of gamification depend on the context being analyzed and on the roles of those involved.
Most studies lack control groups and are based only on users’ opinions. That is, they
describe the results statistically without taking into account the relationships between
the users and effects on the context. Authors also realized that the characteristics and
aptitudes of the participants influence the adaptation of each one to the environment.

Gamification has already been introduced in the academic area for the development
of software artifacts. Dubois and Tamburrelli [11] proposed a methodology that can be
applied at different stages of a software process. Thus, the gamification’s work is divided
into three sets of activities. First is the activity analysis which seeks to choose the best
gamification techniques to be applied at different stages of software development.
Second is the integration of activities that focuses on the development of modules to be
applied in the software in question. Third is the evaluation of activities which consists
in the use of the modules developed and the use of metrics to evaluate the advantages
and disadvantages of the use of gamification compared to traditional techniques. Authors
applied gamification techniques in student’s projects constructing object oriented
systems. As gamification elements, rules were created based on the analysis of the
development code. Using Sonar software, a code analysis tool, was created analysis of
the code according to standard metrics. To evaluate the proposed methodology, two
development groups were created, and one group knew the metrics obtained by the other
group. Competition between groups was stimulated. It was verified the improvement of
some metrics in the group that had the results of the other group as a benchmark,
providing an increase in the quality of the software development.

This study analyzed the agile management process of the iMobilis laboratory,
designed a process of gamification for it, implemented and monitored for four months
the results obtained empirically.

30 I.M. Pereira et al.

3 Methodology

This study was divided into three steps. In the first step the goal was to management
analysis already used. This allowed an understanding of the process and aided in the
identification of the gamification elements that could be applied. In the second step the
gamification design was realized. In the third step, gamification was applied and data
analysis was done to evaluate its impact.

3.1 Step 1

This step occurred during the period from October 2015 to March 2016, which corre‐
sponds to a university term. At the beginning of March 2016, a questionnaire was applied
to the collaborators to know their vision about the way of working in the laboratory and
the idea of gamification. Concept of gamification was discussed with all. At the moment
the laboratory had twelve collaborators and eleven answered the questionnaire. To eval‐
uate the effectiveness of this study, the questionnaire served to validate the students’
willingness to participate in a gamified process.

Approximately 18% of laboratory collaborators said they did not feel recognized or
rewarded enough for their effort in the laboratory. Considering that only 10% felt totally
satisfied with this item, gamification could help increase the degree of undergraduate’s
satisfaction, making their work recognized by the team. Approximately 80% of iMobilis’
collaborators said they expected to be more motivated by introducing gamification into
project management. That is, the majority believed that gamification could motivate
them more to carry out their activities of their respective projects. 54.5% of collaborators
expected to have a greater commitment to their lab activities through gamification. With
gamification, one hoped to increase the degree of motivation and consequently increase
commitment, since those with the best performance would be recognized for their effort.
Questionnaire also showed that all collaborators agreed to participate fully in the gami‐
fication process. According to the answers obtained the feeling of being recognized and
rewarded for their effort was cited as the most expected benefit when deploying gami‐
fication.

In this study some software metrics were used for analysis and comparison effect of
the laboratory collaborators’ performance before and after the implantation of gamifi‐
cation. Spreadsheets and reports for analysis of metrics related to the term in progress
were collected from October 2015 to March 2016. These artefacts were generated at the
end of each week by Scrum Master. The metrics adopted are dedication, velocity and
relative productivity. Relative dedication is the amount of hours worked over the amount
of hours that should be worked over the weeks. Relative velocity is the number of points
held on the number points that should be performed. Relative productivity is the relative
velocity over relative dedication. In all terms, lab activities are divided into four sprints,
with sprints one and three lasting five weeks and sprints two and four weeks. Each week,
each collaborator must comply with at least 15 h per a week, which varies according to
holidays and recess. Before implantation of gamification, the laboratory had an average
relative dedication of 104.5% in the school period (15/2). It was a good performance on
the part of the collaborators, since in all the sprints, the average dedication remained

Gamification Use in Agile Project Management 31

equal to or above 100% of the planned. Relative velocity has remained constant
throughout the term, but at a reasonable level that can be improved. Mean relative
velocity was 60% and the average relative productivity was 64%.

As a result of the analysis, iMobilis had a satisfactory level of dedication on the part
of its collaborators. But it could improve, because with greater dedication on the part of
the collaborators could improve the index of completeness of the tasks of the laboratory.
In general, it was observed that iMobilis has a good working environment, with a friendly
atmosphere among the members of the laboratory, which facilitates the learning and the
development of the activities. And at the moment, it could be an environment conducive
to the application of gamification.

3.2 Step 2

Second step was the development of the gamification project on the agile project
management process used by iMobilis. This step occurred in the month of March and
begins of April 2016. For describe the problem and the context, some students felt that
their effort wasn’t recognized enough at the end of the process. It was perceived that
they hoped for a trigger that would cause them to devote more enthusiasm to the projects.

A laboratory collaborators’ profile can be described. Students are young, with
between 20 and 29 years. iMobilis has 12 collaborators, two female and ten male. They
are focused at this moment on their undergraduate courses, committed to their activities,
so that when they finish their graduation, they achieve a rapid professional ascent. They
like immediate feedback love to get along with others, so they cherish cooperative work
and learn by doing.

Laboratory is an environment of learning, research and software development, where
to develop the proposed activities requires a lot of concentration and dedication on the
part of the collaborators. In turn, it can become a very stressful and frustrating environ‐
ment if the proposed goals are not achieved. Added to this is the accumulation of activ‐
ities from the courses taken by the students, which can increase stress and decrease the
level of commitment of the members of the laboratory.

For each collaborator it is defined at the beginning of the sprint which activities are
desired according to their project. Work is individual, with goal of developing a research
project, software or a monograph, for example. Collaborators are divided by teams
according to project themes. Teams have the purpose of forming teams of work to discuss
topics and to solve doubts. Teams aren’t formed necessarily by the same number of
people, but according to the projects development by collaborators.

To achieve the defined objective, each collaborator must carry a set of activities.
That is, it is expected that each one will follow the planned schedule of activities together
with the Product Owner, obey the rules of the laboratory and participate in the events
and carry out the activities planned in the process of agile project management. It’s on
this set of actions that the implanted gamification system is based.

As a result of the gamification project, it was defined the adoption of a scoring system
and a ranking as the main gamification elements to be implanted in the laboratory. As
complementary elements introduced, but not less important, are the rewards, where we
apply the state and the gifts as primordial elements in our gamifications process.

32 I.M. Pereira et al.

Rewards are critical to the ultimate goal of this study. As noted by the question‐
naire, the feeling of being recognized for the work done to other members of the
group they are part is satisfactory for the collaborators. State provided by being the
sprint winner motivates people. Those who didn’t win at first are encouraged to
improve. And the freebies serve as an extra incentive to collaborators to seek the best
possible score.

Scoring system was done as follows. A spreadsheet with the items that would be
evaluated and the score for each was proposed for all. Then, at a general meeting,
everyone involved helped finish up identifying and assigning the items and points. Thus,
a consensus was reached. Description and scores for each item were recorded in a
rewards policy.

Each collaborator earns points according to the activities performed each week and
in the fulfillment of certain events of the process. Table 1 presents the events to be carried
out weekly by each collaborator and his/her points.

Table 1. Events and scores

Events Scores
Dedicate at least 100% per week 3
Dedicate at or above 75% and less than 100%
week

1

Attend general meetings 1
Attend technical and validation meetings 1
Properly use the project management system 1
Build publishable tutorials on new technologies 3
Collaborate with another member offering
assistance

3

Import the source code of your project into
version control

3

Perform all planned project activities 2

Rewards policy establishes rewards for collaborators with the highest sprint score.
Collaborators with the highest number of points per sprint are considered the winners.
At the end of all sprints, we also had the winners for the whole school term, according
to the accumulation of points obtained and a bigger reward was offered.

There is an item that provides the score to a collaborator who gives assistance to
another. In this case this study treats two other elements of gamification, which are
collaboration and competition. Taking questions with a lab partner through advice and
tips is very common. It was supposed that one can’t discourage contact with another.
Gamification is an instrument of social interaction. The goal is to get as many points as
possible, but that does not mean that you can’t help another member in the lab. Believe
that the exchange of ideas is beneficial to the development of activities and to those who
help receive points for it, and whoever receives must report this fact so that it is recog‐
nized and validated by the other members of the laboratory.

Rewards policy has the mission to value and recognize the collaborators according
to the activities carried out and their contributions to the welfare and development of

Gamification Use in Agile Project Management 33

the activities. Policy was disclosed to all and fixed on the wall of the laboratory as a way
to enable consultation of all collaborators. Table 2 presents the rewards used.

Table 2. Gamification’s rewards

Gamification’s rewards
Recognition of sprint winners before the team at general meetings
Announcement of winners in the group of employees and employees of iMobilis on Facebook
Sprint winner team starts the next with 2 extra points
Winner of the sprint collaborator is exempt from paying the coffee box next sprint
Collaborator who adds more points during the four sprints will be totally exempt from his or her
payment for the laboratory fellowship event

Under the rewards policy, the winner will be the collaborator who adds the most
points during a sprint and there will be a winner at the end of all sprints of the school
term. In case of draw the criterion chosen will be the relative productivity metric. That
is, the collaborator who devote the closest to expected and more validate their proposed
activities.

3.3 Step 3

Starting on 04/14/2016 the implementation of Scrum gamification in the iMobilis marks
the beginning of the third stage of this study. It coincides with the beginning of the
university‘s term (16/1). Scrum Master (student) is responsible for monitoring and eval‐
uating the activities carried out. He/she is also responsible for overseeing all projects,
collecting data and evaluating the progress of activities. In addition, he/she performs the
dissemination of the score obtained from all members of the laboratory. A very important
element in a gamified system is feedback, where everyone involved is aware of their
performance at all times and what they can do to improve. With this, the notion of
progression is felt as the collaborator carries out the activities.

Each week, the partial score with the score obtained by each collaborator is published
through paintings on the wall of the laboratory for everyone to see. Thus, each member
is aware of their performance and their current rank in the ranking. Result is also
communicated via email sent to the lab group, along with the spreadsheet, reports and
minutes of the meeting. At the end of the sprints the winners are announced at the weekly
meeting before the entire team and it is fixed in a visible place, posters with the disclosure
of the winners and the rewards received as recognition of the work done.

4 Results

This section presents the results of gamification at the end of the 16/1 school term, after
gamification, and compares them with the results of the end of the 15/2 period prior to
gamification.

34 I.M. Pereira et al.

4.1 Percentage of Non-conformities

Figure 1 illustrates the percentage of non-conformities observed in iMobilis after
implantation final of gamification. For non-conformities, it is understood that events do
not occur on the total of possible events per sprint.

Fig. 1. Percentage of Non-conformities

In the X-axis we have the events that should be performed by all employees during
the weeks of each sprint. In the Y-axis, we have the percentage of times that each event
did not occur. Mean non-conformities in the four sprints were, respectively, 17.85%,
17.78%, 18.19% and 29.48%. These values were considered good. Intent of gamification
continues to be to further improve these indices. It is worth noting that the average
relative dedication of collaborators in the period 16/1 was 102.50%. That is, it continued
to reach the expected after gamification. Before gamification (mean of the period 15/2),
the relative velocity and productivity were 60% and 64%, respectively. After gamifica‐
tion (mean of the 16/1 period), these values were 82% and 79%, respectively. That is,
an increase of approximately 30% in the average of these values.

As a result of analysis, concludes that gamification indirectly influenced the good
level of productivity of the laboratory. Best scores are those that meet the estimated
workload and are able to deliver their activities within the estimated timeframe. Thus,
it ends up influencing the performance of all collaborators who end up wanting to win
the proposed game. In a positive way, in the period 16/1 with gamification, the laboratory
presented better numbers in terms of velocity and productivity than in the period 15/2
and kept the dedication above the expected 100%.

Table 3 presents the final individual results by sprints. We can see the winners in
each sprint and a view of the performance of other collaborators. Names of all students
were kept confidential.

Gamification Use in Agile Project Management 35

Table 3. Individual final results per sprint

Sprint 1 Sprint 2 Sprint 3 Sprint 4
Position Name Score Name Score Name Score Name Score

1 R1 45 L12 37 S15 39 C6 31
2 B2 39 R1 37 C6 38 M5 30
3 A3 37 M4 35 M4 37 M11 26
4 M4 37 B2 34 M5 37 L13 25
5 M5 36 A3 32 B2 34 M4 24
6 C6 33 C6 31 A3 33 S15 21
7 L7 32 M11 31 L13 33 A3 23
8 A8 31 G9 28 L7 32 M14 21
9 G9 31 M14 28 L10 32 L7 20

10 L10 31 L7 27 R1 32 L10 20
11 M11 29 S15 27 G9 31 L12 19
12 L12 26 L13 26 L12 31 G9 18
13 L13 23 L10 26 M11 29 A16 15
14 M14 19 M5 25 A16 24 – –
15 – – A16 24 M14 9 – –

As Table 3 shows, there was a different winner for each sprint. This meant that the
contributors worked hard to get a better score throughout the sprints, as a number of
contributors alternated at the best positions in each sprint. We can also see a balance in
the score obtained by all collaborators, with a smaller variance around the mean. Only
in the first sprint there was a greater dispersion in the score between the winner and the
last one. Two collaborators left the lab during the 16/1 school year, claiming to be very
tight with other activities of their courses.

At the same time that a good degree of collaboration was observed among the labo‐
ratory members, there was also an increase in their competitiveness. In a general final
meeting, approximately 70% of collaborators, the competitiveness between them
increased after the application of gamification. However, no animosity was observed
between lab members or a bad work climate. Or even some attitude is observed to the
detriment of the item of offering assistance to another colleague of laboratory. This refers
to the issue of winning the points in the race to be the winner of the sprint. Maybe most
noticed that some colleagues were pushing hard to be the winner of the sprint.

5 Conclusion

Application of gamification to the agile project management process of iMobilis had
positive aspects but also had negative points. As mentioned in the related works, the
management of human resources in the midst of the application of gamification lacks
valid experiences and needs a longer time for validation.

Initial idea led us to achieve some of the expected results with gamification as a
maintenance of dedication and an increase in the speed and relative productivity of

36 I.M. Pereira et al.

laboratory members due to the actual delivery of the tasks planned by the collaborators.
The main reason detected for a motivation that can still be improved were the ancillary
rewards to publicize and recognize the winners in each sprint for the work done. This
is a symbolic reward that offers status to the winner. We have, for example, the options
that involve financial costs like gifts or purchases of some materials or books for the
laboratory or the students’ project. It was proposed by the students also in the meetings,
the distribution of scholarships for the participation in courses online.

As for the effect of gamification in the context of the motivation, we place it as a
complementary factor for the complete accomplishment of activities by the collabora‐
tors, because the individual is also motivated with the knowledge acquired and with the
experience obtained in the laboratory. One issue is being motivated with laboratory
activities, another is gamification providing this motivation.

In general, the application of gamification to agile management of iMobilis was
positive and relevant. Collaborators felt recognized for the effort expended in the labo‐
ratory, as explained above. Proposed methodology provided an efficient feedback on the
performance of each one, an indispensable premise for the smooth running of the activ‐
ities of any gamified system. Although the main method of evaluation is punctuation,
which inspires competitiveness by nature, gamification in iMobilis is also notable for
an increased level of collaboration among laboratory members.

6 Limitations and Future Works

Application of gamification in iMobilis is at an early stage and there are many ideas that
can be applied in order to improve their processes. In addition, the construction of inter‐
active software may provide the application of other elements of gamification in other
software engineering processes not applied in this work.

In the gamification we report, individuals are passive in the process of evaluation.
They perform their activities, earn points, But do not interact directly with a game.. For
this, it is proposed the development of a software that allows the integration with the
tools of support to the laboratory processes and immediately provides the scores as the
user is performing and recording the activities in the events of the processes. In addition,
this software could make it possible to consult online the score and activities performed
by each collaborator, as well as providing immediate feedback to the scrum master.

References

1. Chaves, N.L.S, Santos, G., Cerdeiral, C., Cabral M.L., Cabral, R., Schots, M., Nunew, E.,
Rocha, A.R.: Lições Aprendidas em Implementações de Melhoria de Processos em
Organizações com Diferentes Características. In: Workshop Anual do MPS - WAMPS (2011)

2. Fogg, B.J.: A behavior model for persuasive design. In: 4th International Conference on
Persuasive Technology – Claremont. ACM (2009)

3. Cavalcante, N., Amancio, F.D.S., Nogueira, E., Jucá, M.V.R.: Uso de gamificação como
auxílio para melhoria de processos: relato de experiência. Em: Simpósio Brasileiro de
Qualidade de Software (2015)

Gamification Use in Agile Project Management 37

4. Pedreira, O., García, F., Brisaboa, F., Piantinni, M.: Gamification in software engineering –
a systematic mapping. Inf. Softw. Technol. 57, 157–168 (2015)

5. Santos, R.E., da Silva, F.Q., de Magalhães, C.V.: Benefits and limitations of job rotation in
software organizations: a systematic literature review. In: International Conference on
Evaluation and Assessment in Software Engineering (EASE) (2016)

6. Da Silva, Q.B., França, A.C.: Towards understanding the underlying structure of motivational
factors for software engineers to guide the definition of motivational programs. J. Syst. Softw.
85(2), 216–226 (2012)

7. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

8. Ng, P.W.: Software process improvement and gaming using essence: an industrial experience.
J. Ind. Intell. Inf. 2(1), 45–50 (2014)

9. Stokes, Z.: Integration of gamification into the classroom and the reception by students.
Theses, Dissertations and Capstones. Paper 856. Marshall Digital Scholar (2014)

10. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work? – a literature review of empirical
studies on gamification. In: Proceedings of the 47th Hawaii International Conference on
System Sciences (HICSS47) (2014)

11. Dubois, D.J., Tamburrelli, G.: Understanding gamification mechanisms for software
development. In: ESEC/FSE 2013 Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM, New York (2013)

38 I.M. Pereira et al.

Application of Scrum Maturity Model in SoftDesign
Company

Raone Costa, Raphael Rodrigues(✉), and Alessandra Costa Smolenaars Dutra

Faculdade de Informática, Pontifícia Universidade Católica do RS (PUCRS),
Av. Ipiranga, Porto Alegre, RS 6681, Brazil

{raone.costa,raphael.silva.001}@acad.pucrs.br,
alessandra.dutra@pucrs.br

Abstract. This paper describes how the SoftDesign increased adherence of their
agile development projects to Scrum. Several Agile Maturity models have been
studied and, based on a Decision Making Model, the Scrum Maturity model was
selected. Then, we could realize and implement the necessary improvements. The
result of this work was positive for the company, but it generated a reflection
between the compatibility of following a reference model and work with agility.

1 Introduction

Given the growing demand for agile development projects, agile methods are being
adopted by many organizations in order to remain on the market [10].

Classified as Level E under MR-MPS [7], the SoftDesign was having difficulties to
maintaining its adherence to the reference model since adopting Scrum, the process
became more flexible, with a team which each member has autonomy to make decisions
and a documentation less traditional is required. This current and open scope develop‐
ment proposal pleased its clients due to the focus on business value generation in less
time.

Based on this, the main question, which brought the motivation to develop this work:
How could we help the company during this transaction, from traditional to agile? How
could the organization measure the efficiency of the new development processing?

The objective of this work was propose improvements in the SoftDesign software
development processing. Then, the idea of evaluate the company under an agile maturity
model assessment came up with the aim of measure and maximize the maturity of their
agile processes and deploy and maintain in the organization culture, the Scrum agile
practices.

Throughout the paper, just after a brief background, we will explain how the actual
software development processing works. Based on that, we have our process improve‐
ment proposal, followed by the execution of the two improvements cycles, containing
the evaluated projects, evaluation method, assessments, identified improvements and
results. At the end, we will be sharing the feedback related to the work results, provided
by the SoftDesign involved employees. We will also present the final considerations.

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 39–49, 2017.
DOI: 10.1007/978-3-319-55907-0_4

2 Background

2.1 Process Improvement

There is a consistent demand coming from the clients looking for less cost and a better
software quality. Process improvements means understanding the existent processes and
adjust them in order to increase product quality and reduce costs and development time [8].
According to Sommerville [8], two different types of approaches to software improvement
and change are used:

• Process maturity approach: focus on process improvement and project management.
The primary objectives of this approach are the product quality and process predict‐
ability.

• Agile approach: Focus on iterative development and reduction of overhead in the
software processing. The key features of agile methods are the fast functionality
delivery and responsiveness to changing customer requirements.

Regarding process improvement, we have the PDCA cycle. This cycle looks for,
continuously, better methods to improve the processes. According to [2]: The PDCA
cycle, or Deming’s cycle, makes the processes involved in the execution of management
clearer and more agile by dividing it into four main steps, which are: Plan, Do, Check
e Act.

2.2 Maturity Models

Maturity models drives the companies to get software quality and productivity. More‐
over, adopt strategies related to continuous improvement of their processes. In a classic
approach, there are CMMI [6] from United States and MPS.BR [7] from Brazil, as the
most representative ones [3].

With the significant growth of agile approaches in the software development, there
has been a need for maturity models focused on agile methods. There are already several
types of them published [5]. However, it seems that some agile gurus are not satisfied
with their support. Consequently, there are around 40 different agile maturity models [9].

Adopting them, the agile community would be able to avoid anarchy and lack of
organization during the project development. Among them, based on the group analysis,
the most compatibles to this specific work are the Scrum Maturity Model [11] and Agile
Maturity Model [1].

Scrum maturity model: According to Yin [11]: “The Scrum Maturity Model (SMM)
is a maturity model that aim is to evaluate organizations which use Scrum”. The high‐
light is the strong relationship with the clients [11]. “The SMM model creation was
inspired by CMMI area processes and, when possible, a mapping between them and
Scrum practices was done [11].

Agile maturity model: According to the creators, Chetankumar & Ramachandran [1]
“The Agile Maturity Model was created in order to improve the agile software devel‐
opment, looking for boost the agile principles and objectives”. Agile Maturity Model
(AMM) is focused on the management of application development activities. It is based

40 R. Costa et al.

on CMMI and evaluated through five maturity levels. It has a regular relationship with
clients and its focus is general software [1].

3 SoftDesign Development Process

The SoftDesign development process starts by a product vision. This vision describes
the general product objectives, which are the users and about a future vision (roadmap).
From product view, the Product Owner details, together with the users, business needs
that may be handled by the software, generating a list of needs (Product Backlog). Before
to start sprint 0 (zero), we have the pre-game meeting, where the project definition is
presented to the team. At the end of the project, the team does retrospective meeting, in
this ceremony, the team, PO and Scrum Master discuss about facts and artifacts, which
can be used or avoided in future projects.

During the product development, Product Backlog changes constantly. Product
evolution happens in sprints, usually taking two weeks. Before to start a sprint, the client
and PO identify which backlog items are priority. The team identifies how many items
they are able to deliver within the iteration window. This last process is called Sprint
Planning.

After planning, the team starts construction and test phases for each selected item,
ordered by the priority. Whenever sprint duration is over, the client reviews the results
during a Review Meeting and provides feedback about the product for the next sprints.
Based on the feedback received, the team does the retrospective meeting in order to
perform adjusts to its work processing. Doing that, the next iteration tends to be better
than the previous one. At the end of each sprint, the team deploys a product increment.

4 Study Approach

4.1 Maturity Model Choice

We have studied the main maturity models related to agile - Agile Maturity Model.
Scrum Maturity Model, Agile Processing Maturity Model – its concepts and features
allowing us make a more accurate decision about which maturity model use as reference.

Both of them contain five levels of evaluation, they are easy to apply and based on
CMMI. Towards an analysis performed, supported by procedural model of making
decision, the maturity model most adequate to apply was the Scrum Maturity Model,
having as main point, to be exclusively focused on Scrum, which is the methodology
used by SoftDesign (Fig. 1).

The SMM assessment method is composed of equivalent questionnaires to each
maturity level. Applying the questions, we can diagnose the company adherence to the
Scrum and to the model itself [11].

The SMM assessment method, according to Yin [11], has three steps:

1. Pre assessment: SMM structure of levels and their respective objectives are
presented to the team. Furthermore, initial expectations about the assessment are
discussed.

Application of Scrum Maturity Model in SoftDesign Company 41

2. Assessment: In this step, the company, which works with Scrum, is designated to
the Level 1 (Initial). After that, evaluation for Level 2 begins. If the result of the
level 1 is positive, then evaluation for the next level is executed. The team has to
answer the questions related to each maturity level according to its daily work routine
of the project. It is important to say that all questions have to be answered positively
in order to get the level applied.

3. Post assessment: It aims to extract the team feedback about the assessment
processing and feel its satisfaction related to it. Furthermore, we can have a compar‐
ison between the initial expectations acquired in the pre assessment and the assess‐
ment result;

4.2 Initial Process Improvement Proposal

Looking for, continuously, improve the software development process adherence
against the Scrum; this proposal was based on two PDCA cycles [4].

In the first cycle, each step consisted in the following actions points:
Plan: We have studied how to measure the actual development process adherence

against the Scrum framework, how this decision would be made and which would be
the evaluation scope. Do: Based on the planning created in the previous step, we applied
a maturity model assessment on the selected projects. Check: The assessment results
were analyzed and consolidated. Act: Based on the results analysis, improvements along
the process were built and implemented, in order to get a better maturity level in the
next evaluation. Nevertheless, one more PDCA cycle [4] will be required to make sure
that the improvements were effective.

For the second cycle, each step consisted in the following actions points:

Fig. 1. Goals of each scrum maturity model levels

42 R. Costa et al.

Plan: In this step, we planned when and how to validate the improvements imple‐
mented during the Act step of the first cycle. Do: Applied again the maturity model
assessment, so then we can verify whether implemented improvements are being
executed. Check: The second evaluation results were verified and analyzed. Act: It
showed us that the company has evolved against the maturity level achieved in the first
evaluation.

4.3 Evaluated Projects

In the first improvement cycle, we evaluated two projects. The first one, SAS –Audio
Storage System. Its objective is developing a software to audio storage. Seven members
including a Project Manager and Scrum Master composed the SAS’s development team.
SAS worked with Scala; Akka; JavaFX; MongoDB; JUnit; Git; Gerrit; Jira e Jenkins to
its continuous delivery environment.

The second project evaluated was PEXH - Portal of Exams of the Hospital Alemão
Oswaldo Cruz. To DevOps environment, PEXH worked with Java; Grails; Flyway;
Hibernate 4; JUnit; JQuery; Asset Pipeline; Oracle DB; WebLogic 12c; Git; Gerrit; Jira;
Jenkins; Selenium e Cucumber. Five members including a Project Manager and Scrum
Master composed PEXH’s development team.

In the second improvement cycle, we analyzed PDOC project in order to validate
the implemented improvements. Android e iOS mobile project, which developed an
application to facilitate the process called home medical consultation. The project
worked with Java; MongoDB; Akka; JUnit; Git; Gerrit; Jira; Jenkins; Swift e
AndroidSDK, emphasizing that, as well as the two first projects, the PDCO also works
with Scrum and it is composed by the same team of the SAS project.

5 Proposed Improvement Process Execution – Cycle 1

5.1 Project SAS Assessment

Pre assessment: The specialist interviewed was professional A, who is Scrum Master of
the SAS project. Based on an overview presented by us about SMM levels, she thinks
that the company will be designated to Level 3. It is important to emphasize that Scrum
allows adapting the model according to the team, looking for being objective instead of
being precious.

Assessment: In the first Level 2 assessment item, we discussed Product Owner role
and responsibilities, the company, instead of the client, nominates it. Continuing the
assessment, the interviewed answered the remaining questions. As a result, SAS project
was designated to Initial level of the Scrum maturity.

The project was compliance with 33 of the 36 Scrum practices related to the SMM
Managed level. The following practices failed: Existence of Release Burndown artifact,
Update Release Burndown according to the reported and Existence of Release Planning
Meeting.

Post assessment: The results acquired during the assessment phase were presented.
We discussed and clarified the gaps.

Application of Scrum Maturity Model in SoftDesign Company 43

5.2 Project PEXH Assessment

Pre assessment: Initially, we have introduced the SMM model to PEXH’s project
manager, professional B. After the opening, we presented to her the objectives for each
SMM level. Although aware that some practices could be improved, the manager chose
second maturity level.

Assessment: The assessment for Managed level got started. The manager started to
answer the questions and some doubts have arisen, but being clarified during the discus‐
sion. However, some questions to achieve level 2 have failed, what designated the PEXH
project to the Initial level.

The project was compliance with 33 of the 36 Scrum practices related to the SMM
Managed level. In order to be adherent to the second maturity level, the following Scrum
practices were supposed to be active: Existence of Release Planning Meeting, Existence
of Daily Scrum Meeting and Update Release Burndown according to the reported
progress.

Post assessment: Having the assessment concluded and the level achieved, post
assessment got started. The manager was not satisfied with the result but she understood
that there are gaps, which need to be fixed in order to get a higher maturity level, espe‐
cially related to Release Planning that caused two fails.

Another failure was caused by Daily Scrum meeting. PEXH project does not perform
this ceremony. The manager said that she does not think necessary to perform it when
few members compose the team and they work close. In contrast, the discussion allowed
her to think about the benefits that Daily Scrum could bring to the project.

The failure in the Release Planning Meeting allowed her to remember the importance
of having a deliverable date defined with a determined scope. This would facilitate on
the features priority control and would increase the project progress visibility.

6 Identified Improvements

In order to get level 2, Managed, we identified some improvements and they needed to
be implemented: Release Planning Meeting, Release Burndown creation and Daily
Meeting execution.

We had a meeting with a project’s Scrum Master to point out the improvements that
needed to be implemented in the current process. The Scrum Master explained the
procedures which the company works before to start a Project and also showed us prac‐
tices used in previous projects which could have some link with the identified points.

6.1 Release Planning Meeting

During the improvements planning process was realized that organization does Concep‐
tion and pre-design services with their clients. This service is executed along several
days. During the meetings, the company looks for having the vision definition, the
product understanding and minimum product viable prioritization.

In addition to this process and with the Scrum Master support, the company has been
incorporating the Release Planning to the Conception service. This ceremony is intended

44 R. Costa et al.

to define the minimum product viable with clients contribution. The Release Planning
was also included after pre-game meeting and before to start Sprint 0, having as objective
to give opportunities to the whole team understands every product functionalities and
solve possible discrepancies between the roadmap and team commitment.

In Fig. 2, we can see PDOC project’s roadmap containing each release already
planned with the client, followed by their respective deliverable date.

Fig. 2. Jira roadmap SoftDesign

Once this practice is implemented, the team can have a better visibility related to
how much scope would need to deliver until determined deadline. The result of this
practice also works as a tool to follow the releases development progress and, if the
things are not going as expected, an agreement can be made in advance.

6.2 Release Burndown

Based on the work executed in the previous item, and using the minimum product viable
proposal, the company, at the Conception moment, has the initial release deliverable
date. As SoftDesign works with Jira to monitor their tasks and keep the projects on track,
it is possible to use a functionality to generate Release Burndown chart.

6.3 Daily Meeting

During a conversation with the Scrum Master, we could see that in previous projects the
meeting did not occur in the proper frequency due to a lack of culture under the meeting,
since the Scrum Master did not remind the team about the ceremony and because of they
did not have any news to say. However, without the meeting, the team identified that
communication issues and impediments could be mitigated quickly.

Performing Daily meetings, the team has the opportunity to share knowledge about
what they did in the previous day, identify impediments, create action planning to solve
the issues and prioritize the work to be developed in the next day. Meanwhile, the Scrum
Master is able to listen those impediments and give the proper drive to fix them as soon
as possible, thus mitigating any impact in the sprint or release.

Application of Scrum Maturity Model in SoftDesign Company 45

7 Proposed Improvement Process Execution – Cycle 2

In this second cycle, we were not able to evaluate the same two projects evaluated in
the first cycle, because they were concluded. Therefore, the adherence validation against
the improvements has occurred by a second Scrum Maturity assessment under PDOC
project.

Based on this assessment result, we could verify the current maturity level again,
and then measure the proposal improvements effectiveness.

By the first assessment, the SoftDesign company was designated to Initial maturity
level. The group, together with the company, have been worked on developed those
practices which are not implemented. In order to validate this effort, a second assessment
would be necessary to measure the actions effectiveness.

This second Scrum Maturity assessment looks for validating if the implemented
improvements were being part of the Scrum development processing, if they are being
executed correctly and if now, they are part of project development culture.

7.1 Project PDOC Assessment

Pre-assessment: The professional interviewed was once again manager A. Scrum Master
believes that in this second evaluation, the company would be able to not only achieve
a higher level than the initial one, but also, reach Level 3 of maturity.

Assessment: After the pre-assessment, Level 2 (Managed) assessment begun. With
the practices Release Planning Meeting, Release Burndown and Daily Scrum Meeting
implemented in the company daily routine, Managed level was achieved successfully,
in other words, every acceptance criteria for second level were completed properly. It
shows that the company is able to manage the methodology, with all roles and respon‐
sibilities defined and following all framework meetings.

Once level Managed is completed, we applied the evaluation for Level 3, called
Defined. At this point, the main discussion was the concept of tasks versus user stories,
which ended up preventing the company from achieving maturity level 3, failing in 4
questions of 21, to the total.

During the Level 3 test evaluation, the lack of some practices were barriers to the
approval. These are Break Product Backlog items into tasks within a sprint; Estimate
sprint tasks; Update daily the estimates of running tasks and Estimate all items during
Sprint Planning.

Post assessment: The improvements effort that the group performed with the
company, since the results of the first model application until the second evaluation, led
the company to reach Level 2 (Managed) of the Scrum Maturity Model. Unimplemented
practices, that were impediments in the first assessment, were fixed and are now part of
the current software development process and company culture.

Once the evaluation for the Managed level is completed, the test for the Defined level
has started. The organization was disapproved in this last test, having as top offender,
the concept of tasks. Scrum Master explained that the PDOC project does not work with
tasks. The sprint work items are User Stories. Therefore, it is not the tasks that have
estimates, but rather the stories that pass from phase to phase in the Kanban of the project.

46 R. Costa et al.

The fourth and last fault obtained during the evaluation for Level 3 came from the
fact that during Sprint planning there are items which have no estimate. Scrum Master
gave examples such as research, investigations, design, cases known as spikes.

With the result of both assessments in hand, we could notice that the company
maturity level has increased. Professional A did not show disappointment because of
not being able to reach the Defined level of agile maturity, keeping in mind that it is
necessary to evolve gradually. The initial step got started, the company is today, more
adherent to Scrum, than previously, in fact, when the first evaluation of the model was
carried out.

8 Work Result Feedback

An open questions interview was applied to the PDOC’s Scrum Master, addressing the
three improvement points, which were identified during the assessments.

Regarding the practice of Daily Meeting, the Scrum Master responded, “Finding
regularity in the dailies was very positive for the team. Often the team did not do the
daily because they thought the information available on the board was enough and that
there was nothing more relevant to be discussed. On the other hand, when doing the
dailies even on regular days, we noticed that this helps us to communicate decisions
that each person is making, identify risks before they even happen, and give that sense
of agile that Scrum must have”.

Regarding the implementation of Release Planning and Release Burndown, Scrum
Master reported the following statement: “The view of releases was treated in the first
moment with the client, when during the work of ‘Design and design’ we looked for
developing the whole vision. As soon as we could identify the MVP, the long-term vision
was often overlooked, with the team focusing on the MVP. Keeping the release planning
available within the tool and keeping this subject in constant discussion with our client
was very important to support prioritization decisions. During the project, it is common
for the Product Owner to lose awareness of the impact that the decisions made have on
the releases, nevertheless, with the release plan and Release Burndown at hand we can
help the Product Owner make better decisions and not lose the ‘Big Picture’ project.”

Project development team has provided a feedback as well. The team is composed
by three Developers, a Quality Assurance, who is one author of this work, a Product
Owner and a User Experience design. These feedbacks were collected through an open-
ended survey.

Through the feedbacks, we realized that the development team did not have straight
changes in their daily activities. However, they noticed the communication of the team
has evolved adopting Daily Meeting in the PDOC project in comparison to the PEXH.
Although the team is aware about this meeting in the previous project, as developer 3
mentioned in his feedback.

Among those interviewed people, there was consensus about the importance of the
Release Planning ceremony. Now, the team can know more about the items that exist
to be developed and their complexities, helping to maintain the correct pace and design
the system according to future activities.

Application of Scrum Maturity Model in SoftDesign Company 47

Therefore, while there were no significant changes in the routine of each interviewee,
all developers mentioned the changes as benefiting the team as a whole, improving the
way to people communicate, resolving impediments, mitigating risk, planning and
managing their deliverables.

9 Final Considerations

Due to the transition from a traditional development approach to an agile approach using
Scrum, SoftDesign felt the need to measure the effectiveness of the changes made and
whether these were actually adherent to the new methodology implemented.

Taking into account a conversation between the group and one of the company
managers, it was understood that the best option to solve the company problem would
be the application of an agile maturity model, due to the importance of a process adher‐
ence assessment for them, once the organization has an MPS.br level E seal. The group
investigated several models of agile maturity and, through studies, selected the one that
best fit with the company profile, the Scrum Maturity Model.

With the model to measure the Scrum adherence, we applied the first evaluation.
The company was not doing a good job related to the agile methodology, acquiring only
the initial level of the model.

Despite the study carried out before choosing the model, not always a model is fully
compatible with the reality of the organization. A maturity model is created based on a
methodology and processes, and the way that a company works, is a reflection of its
human resources, its clients and the market. Therefore, during the application of the
evaluations, we had discussed several points regarding their relevance, which led the
group to think: Is it valid to expressly follow a model of work and let it be evaluated by
it?

Regardless of the divergences, the next step was the execution of another continuous
improvement cycle so that, the practices, which were not being implemented, were
implemented in the company, in fact. Once the improvements identified by the first
evaluation of the model were defined and implemented, we executed the second eval‐
uation in another project using Scrum, noting that, although it was a project different
from the one initially evaluated, the team members were exactly the same.

The result of this second assessment showed that the company moved from an initial
level in Scrum to the next level, managed, which means that the company has consid‐
erable management of the framework, with well-defined roles and artifacts. Further‐
more, with all meetings taking place in the correct time, with a properly managed Product
Backlog, among other practices, all while respecting the Scrum flow.

10 Research Limitations and Future Work

During this work, we had faced some difficulties and research limitations. One of them
was to reconcile the development of this work with the company’s work demand, since
they had to participate in the meetings with managers and the development team in order

48 R. Costa et al.

to develop solutions and plan how the identified improvements could be coupled in the
process and SoftDesign culture.

Another limitation arose when we applied the model evaluation for the second time,
because between the planning time of the improvements and the second evaluation of
the model, the initial projects were concluded and the company was adhering to other
methodologies, Kanban, for instance. We could notice how fast the market demands a
firm and how fast it needs to adjust to such requirements to stay active.

In conclusion, the growth of the company’s maturity and its adherence to the Scrum
was perceived by this work effort. However, the organization still needs to evolve as it
was identified during the attempt to obtain Scrum Maturity Model level 3 (Defined),
where the practices belonging to this level are not being performed by team members.

Future works can be performed to increase the maturity even more, executing addi‐
tional continuous improvement cycles in order to support SoftDesign reaching levels
higher than the Managed Scrum maturity, which level, the company is currently
assigned. Preferably, focused on obtaining the higher and best level (5 - Optimizing) of
the SMM, and ensure that, the practices implemented in the implemented improvements,
are institutionalized within the organization.

References

1. Chetankumar, P., Ramachandran, M.: Agile Maturity Model (AMM): a software process
improvement framework for agile software development practices (2009). http://ijse.org.eg/
papers/agile-maturity-model-amm-a-software-process-improvement-framework-for-agile-
software-development-practices

2. Daychouw, M.: 40 Ferramentas e Técnicas de Gerenciamento. Brasport, São Paulo (2007)
3. Pressman, R.S.: Engenharia de Software: uma abordagem profissional, 7th edn. AMGH, Porto

Alegre (2011)
4. Quinquiolo, J.M.: Tese: “Avaliação da Eficácia de um Sistema de Gerenciamento para

Melhorias Implantado na Área de Carroceria de uma Linha de Produção Automotiva”.
Universidade de Taubaté, Taubaté (2002)

5. Schweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M.: Agile maturity model:
oxymoron or the next level of understanding. In: Mas, A., Mesquida, A., Rout, T., O’Connor,
R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 289–294. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30439-2_34

6. SEI - CMMI for Development, Version 1.3 (2010). http://www.sei.cmu.edu/reports/
10tr033.pdf

7. Softex.: MPS.BR – Guia Geral MPS de Software (2011). http://www.softex.br/wp-content/
uploads/2013/07/MPS.BR_Guia_Geral_Software_2011-c-ISBN-1.pdf

8. Sommerville, I.: Software Engineering, 9th edn. Pearson Education – BR, São Paulo (2011)
9. Tomas, S., Detlef, V., Morten, K., Risto, N., Miklos, B.: Journal of Software: Evolution and

Process 2013. Agile Maturity Model: Analysing Agile Maturity Characteristics from the
SPICE Perspective (2013)

10. Version One: 10th-Annual-State-of-Agile-Development-Survey (2015). https://
versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf

11. Yin, A.: Scrum Maturity Model. UTL, Lisboa (2011). https://fenix.tecnico.ulisboa.pt/
downloadFile/395143154008/thesis.pdf

Application of Scrum Maturity Model in SoftDesign Company 49

http://ijse.org.eg/papers/agile-maturity-model-amm-a-software-process-improvement-framework-for-agile-software-development-practices
http://ijse.org.eg/papers/agile-maturity-model-amm-a-software-process-improvement-framework-for-agile-software-development-practices
http://ijse.org.eg/papers/agile-maturity-model-amm-a-software-process-improvement-framework-for-agile-software-development-practices
http://dx.doi.org/10.1007/978-3-642-30439-2_34
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.softex.br/wp-content/uploads/2013/07/MPS.BR_Guia_Geral_Software_2011-c-ISBN-1.pdf
http://www.softex.br/wp-content/uploads/2013/07/MPS.BR_Guia_Geral_Software_2011-c-ISBN-1.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/395143154008/thesis.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/395143154008/thesis.pdf

Modeling in Agile Software Development: A Systematic
Literature Review

Fernando Mognon(✉) and Paulo C. Stadzisz

Academic Department of Informatics, Federal University of Technology,
Curitiba, Paraná, Brazil

fmognon@alunos.utfpr.edu.br, stadzisz@utfpr.edu.br

Abstract. Agile methods have been used for over than a decade. However, there
are limitations when using agile methods in complex, large-scale projects and in
distributed teams. Traditional software design techniques, like modeling, could
help overcome these limitations. This paper aims to identify modeling aspects in
agile software development, presenting the state-of-art in this area, by means of
a systematic literature review. The results show the use of modeling practices in
agile methods, throughout the project, especially in the first sprints. The main
modeling languages used are UML, informal diagrams, CRC cards and textual
language. There are attempts of using agile with formal methods and model-
driven development, without consistent results of the effectiveness of these
proposals. Finally, we observed that the literature lacks conclusive experiments
on modeling in projects using agile methods.

Keywords: Modeling · Agile software development · Systematic literature
review

1 Introduction

Agile methods have been increasingly used in software development by companies of
all sizes [1, 2]. One of the main motivations for the creation of the Agile Manifesto was
to oppose the great focus given to processes in traditional approaches. However, this
flexibility in processes does not preclude the use of instruments that can help build better
solutions, such as modeling. Individuals and interactions should be valued more, but
this does not exclude processes and tools as stated as one of the values quoted in the
Agile Manifesto [3].

Modeling assists the process of design, allowing the materialization of abstract and
conceptual ideas during the intellectual and creative activity of inventing or conceiving a
solution to a system. The result of the modeling activity are models that, according to
Ludewig [4], are artifacts that fulfill three criteria: mapping, reduction and utility. A model
maps the original object or phenomenon, omitting details that do not interest in a given
context for simplification (reduction) and have a pragmatic purpose (utility). Therefore,
modeling has an important role to support the development rationale of the project, mainly
in large and complex systems. Models can also help stakeholders communication, espe‐
cially in distributed teams projects [5, 6].

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 50–59, 2017.
DOI: 10.1007/978-3-319-55907-0_5

Agile practitioners see modeling as having little value and utility when done prior
to the beginning of software construction. Although, modeling with much anticipation
can lead to mistaken decisions, when architecture evolves iteratively, decisions of
greater difficulty of change must be taken in the first iterations [7]. There is also the
perception that developers do not like modeling and documenting. Thus, if developers
do not realize the importance of modeling, they will not use it [8].

After great interest from the software industry and some years of usage in practice,
several empirical studies tried to identify the theories behind the agile methodology [2].
One of the main gaps observed in these studies about agile methods is the role of archi‐
tecture on the software solutions [9]. Practitioners also call for more information on how
to apply agile methods in distributed teams and large projects, in which the use of tools
such as modeling can facilitate software creation and communication between team
members [10].

The controversy regarding developers’ motivation and the benefits of using modeling
in agile software development, especially as the usage of agile advances to larger, more
complex projects and distributed teams, justify to investigate the use of software design
tools, like modeling. These techniques could help to improve the quality of solutions,
facilitate systems maintenance and stakeholders communication, additionally to docu‐
menting the reasoning behind design decisions.

This papers aims to identify modeling aspects in agile software development, by
means of a systematic literature review. In the following sections, we present some
concepts about agile methods, the method used in this research, the results found, and
the final considerations of this study.

2 Agile Methods

An agile software development is incremental, cooperative, uncomplicated, and adap‐
tive. Incremental means that software functionalities are delivered periodically, usually
in short cycles. Cooperative indicates that there is open communication among all those
involved in the project, including customer (or its surrogates) and developers. Uncom‐
plicated implies in an easy to learn and use process. Adaptive means responding to
changes, even those coming late in the project [11].

There is a great variety of agile methods, but Scrum and Extreme Programming (XP)
are those which presents more case studies in the literature [1, 2]. Recent studies also
include Lean as one of the most used ones [12].

Scrum is a framework for software project management. It employs an iterative and
incremental approach and it aims to understand customer needs and delivery value to
them in short cycles, prioritizing most valuable features. Scrum is based on empirical
process control, it means, decisions are taken based on what is known. It does not provide
tools for software development, but is rather a framework to employ processes and
techniques [13].

On the other hand, XP emphasizes programming techniques. It focus on communi‐
cation and teamwork. Its main features are short development cycles, embracing

Modeling in Agile Software Development 51

changes, incremental software delivery, test automation, communication and
collaboration [14].

In addition to the existent variety of agile methods, Scott Ambler [15] defined the
concept of Agile Modeling as a practical approach for modeling and documenting in
software development. According to this approach, models are used to understand what
is being built and to help communicate. The main issue Agile Modeling addresses is
how to create models in a more effective and agile way [15].

3 Review Method

This systematic literature review was conducted based on the guidelines proposed by
Kitchenham and Charters [16]. The goal of a systematic literature review is to identify
and analyze relevant papers on a particular question available in the literature.

The conduction of the review followed these stages: planning the review, search
strategy definition and execution, paper selection and analysis. In the planning stage,
the research questions were defined. The research questions that guided this review were:

• RQ1: What software design instruments do agile software development use?
• RQ2: How do agile software development industry and academy see modeling

activity?
• RQ3: What are the modeling languages used in agile software development?
• RQ4: When is modeling in agile software development done?
• RQ5: Which modeling evaluation criteria are used in agile software development?
• RQ6: How is architecture defined and communicated in agile software development?

In the search strategy definition and execution stage, it was defined the databases to
be searched and the search string. The search strategy included IEEE Xplore1, ACM
Digital Library2, and ISI Web of Science3 electronic databases. The following keywords
were defined based on the addressed research questions. The context for this research
was defined as related only to software. The interest was only for papers related to the
agile software development, therefore the population is only for agile. The intervention
in this paper is the modeling activity.

The logical combination of all elements from context, population and intervention
provided the search string. The final string used for the searches was “Software AND
Agile AND Modeling”. The search was done including title, abstract and keywords. The
search string returned a wide range of papers that were selected based on the inclusion
and exclusion criteria.

Only original and not duplicated papers related to Software Engineering were
considered. The paper quality and relation to the research in question were verified
according to the following validation questions. All questions were affirmative for the
paper to be included in the systematic review.

1 http://ieeexplore.ieee.org.
2 http://www.acm.org/dl.
3 http://www.isinet.com/products/citation/wos.

52 F. Mognon and P.C. Stadzisz

http://ieeexplore.ieee.org
http://www.acm.org/dl
http://www.isinet.com/products/citation/wos

• VQ1: Is the paper a scientific research (method is clearly described)?
• VQ2: Is the paper related to agile software development?
• VQ3: Is the paper related to modeling or design process?
• VQ4: Are the paper theme scope and limitations well defined?

The defined systematic review protocol was executed and the results are presented
in the following section.

4 Results

In this section, the results from the search carried out in the databases are presented.
Mendeley4 tool was used to manage the files and references. The first search resulted
3939 papers. After first selection, based on title and abstract, and excluding duplicated
papers 73 papers were selected. In the following selection step, based on the papers
content, method and results 20 papers remained, related to modeling in agile software
development. First author executed all selection steps and lately reviewed by both
authors. Table 1 shows the amount of papers in each step for each database, and the
search date.

Table 1. Search results

Database Search date Results Title/Abstract
selection

Method/Results
selection

IEEE Xplore 07/26/2015 881 25 7
ACM Digital
Library

07/29/2015 2.236 37 9

ISI Web of
Science

07/30/2015 822 11 4

3.939 73 20

After the papers had been read and selected, they were analyzed and classified
according to the following categories: comparative studies and previous reviews about
agile modeling, integration proposals between specific processes and agile modeling,
practical aspects about modeling, architecture and requirements modeling in agile soft‐
ware development, formal methods and agile methods, MDD (Model-Driven Develop‐
ment). Table 2 presents the categories used to classify the papers and the respective
references.

5 Discussion

This systematic literature review provides information from the chosen electronic data‐
bases answering the research questions that guided the review. In this section, the
answers to the review questions are presented.

4 https://www.mendeley.com.

Modeling in Agile Software Development 53

https://www.mendeley.com

Table 2. Papers selected and classification according to categories

Categories Quantity Papers
Comparative studies and
previous reviews about Agile
Modeling

2 [17, 18]

Integration proposals between
specific processes and Agile
Modeling

3 [19– 21]

Practical aspects about
modeling

2 [6, 22]

Architecture and requirements
modeling in agile software
development

8 [23–30]

Formal methods and Agile
methods

2 [31, 32]

Model-Driven Development 3 [33–35]

5.1 Software Design Instruments in Agile Software Development (RQ1)

Regarding design instruments used in agile software development, Stojanovic et al. [17]
argues that the software architecture is based on object-orientated paradigm, domains,
metaphors, and prototypes. The use of proofs of concept is encouraged when modeling
is used, suggesting building prototypes that prove the proposed model operation. The
use of components is considered in line with agile methods principles, since they accel‐
erate the software construction, when existent components with well-defined interfaces
are already available. The user interface definition, when applicable, assists in a fast
feedback from users’ expectation regarding the software usage and can be considered
an instrument to help in the software definition [17].

Some papers presented tools to help the modeling activity. These tools are intended
to making modeling tasks more practical. One example is the use of touch-screen boards
in collaborative design meetings, that allows free hand diagram sketching [35]. Another
tools (e.g., NORMATIC) aim helping to define the non-functional requirements.
Although there is a lack of evidences of the effectiveness of these tools in real-world
agile development projects [24].

There is also some proposal of formal methods use along with agile principles. They
suggested that only safety-critical functionalities should be analyzed using these models.
This approach demands the usage of proper modeling languages and tools assistance [31, 32].

Studies regarding MDD propose that, not only code could be automatically derived
from models, but also test cases. However, this approach is criticized because it demands
a high detailed modeling effort and the intensive use of tools. Debugging automatically
generated code could increase the effort for developers, because it is not constructed on
their own rationale [33, 34].

54 F. Mognon and P.C. Stadzisz

5.2 Modeling Usage in Agile Software Development (RQ2)

Modeling activity in agile software development is supported by the usage of sketches
and diagrams. It helps understanding and designing the project. Requirements elicitation
is also aided by modeling. The use of abstract elements facilitates communication
between stakeholders that also include customers or their surrogates that could not
understand software technical language [6, 22].

There are attempts to include modeling techniques to agile processes, since it is
intrinsic to the development process. Wei et al. [20] suggest UML use along with Scrum.
The proposed approach maps UML to Scrum practices. Requirements elicitation is
accomplished by use cases and user stories. The software design, using UML in the
sprints, should be in an iterative and incremental way, like Scrum. The proposed
diagrams to be used are class, collaboration, activity, and state diagrams. Diagrams
should be done collaboratively on whiteboards or flipcharts. The proposed model was
considered of easy understanding keeping the process agility of Scrum [20].

The use of incremental modeling, focusing on the development of functional soft‐
ware, verified by tests, was evidenced in the studies. Tests definition using models is
also reported in the literature [28, 29].

Due to more informal models creation process, in creative meetings, leading to
informal artifacts, there is, if decided to communicate the diagrams to other stakeholders,
the need for media transferring. This process may be done using tools to formalize the
models in standard modeling languages, such as UML, but there are other possibilities
like taking pictures of the created diagrams [6].

Abstraction concept is present in studies regarding modeling in agile software devel‐
opment. Due to participation of stakeholders that could not be familiar with technical
notation, using a more abstract modeling level can enhance project understating.
Depending on software construction demands, developers detail the necessary models.
But, considering agile coding focus, the detailing is not encouraged, keeping the high
level of models abstraction [22, 23, 28].

5.3 Modeling Languages in Agile Software Development (RQ3)

UML is the main modeling language reported in the found studies. There is also mention
to informal diagrams, which may contain elements like boxes and arrows, or other
pictures, such as databases, clouds or human representation. Although these informal
diagrams do not have a formal specification, they may contain UML elements. Some
papers mention the usage of Petri nets or Software Product Line. Studies regarding MDD
always report the usage of UML, including customized UML profiles. Textual language
is also used, for example in user stories. Additionally, papers mention the usage of CRC
and robust charts. CRC are similar to UML class diagrams, and represent classes and
their collaboration. Robust charts represent classes by their functionalities [6, 17, 20,
22, 26, 34–36].

Modeling in Agile Software Development 55

5.4 When Modeling Is Done in Agile Software Development (RQ4)

According to studies found, modeling is done along all iterations. Each iteration consists
of analysis, design, development and tests. However, there is more intensive modeling
efforts in the first sprints. In these early stages, requirements are not yet fully understand
and need modeling for their elicitation and better comprehension of the project. Archi‐
tectural design is also more critical at this point, once decisions that are more permanent
and difficult to change are usually taken at the beginning of the project. The development
team, in collaborative meetings, creating mainly structural models, does the architectural
definition [22, 23, 36, 37].

5.5 Evaluation Criteria Used in Agile Software Development Regarding
Modeling Activity (RQ5)

There was not any research about qualitative or quantitative metrics, regarding benefits
or limitations on using modeling in agile software development.

5.6 Definition and Communication of Software Architecture in Agile Software
Development

Architecture definition meetings are usually collaborative, creating free sketches on
whiteboards or paper. These artifacts, when already verified, by proof of concepts, for
example, are digitalized, if this is considered an important information to be communi‐
cated with others. After a formalization of the diagrams, they are published in wikis or
any physical visible place, such as walls. There are also proposals of coding tags to
generate automatically the architecture documentation [6, 22, 25, 27].

Figure 1 depicts a synthesis of the use of modeling in agile software development
according to the data collected from this systematic literature review. There is more
modeling efforts in the initial cycles, but it is performed throughout the whole devel‐
opment process. The modeling activity is usually collaborative and supports require‐
ments elicitation, better project understanding, and the communication among stake‐
holders. There is an attempt to use formal and MDD methods, as well as the use of
components and feature modeling with agile methods. The main modeling languages
used are UML, informal diagrams, CRC cards, and textual language. The studies
presented a restricted use of tools for modeling and extensive use of whiteboard and
paper sketches.

56 F. Mognon and P.C. Stadzisz

Fig. 1. Modeling in agile software development

6 Conclusion

In this paper, we verified evidences of the use of modeling in Agile Software Develop‐
ment. It employs mainly UML language, informal diagrams, CRC cards and textual
language. There is an attempt to include formal methods and MDD in conjunction with the
agile methods. Modeling is carried out throughout the development during each iteration,
with a higher intensity during the first cycles.

The literature lacks, though, more experiments conducted in real environments. Most
papers presents experiments making use of semi-structured interviews or questionnaires,
which only present perceptions of those involved with the software development process and
not the actual effects of using modeling in agile methods. In addition, many of the studies
are proposals for different uses of modeling in conjunction with the principles of agile
methods, among which only one case study is presented to validate the proposal, without a
more extensive validation of the new model.

Regarding the limitations of this study, it is assessed that due to the choice of search
bases and search phrases, relevant studies may have been omitted. The articles selection
were performed by only two persons and can also lead to errors in the verification, since the
analysis of the criteria are subjective, and could have different results if it was done by more
persons.

As proposals for future work, it would be possible to study modeling languages that are
more accessible and easy to understand, complete and have an adherence to the agile style,
which involves an in-depth development. These proposals would be a counterpart to the use
of UML, which, although widespread, is complex and presents many different diagrams.

We suggest also, that more studies could be done to establish evaluation criteria to iden‐
tify the advantages and disadvantages of using modeling, so that it is possible to evaluate its
usage impact.

Modeling in Agile Software Development 57

References

1. Chuang, S.W., Luor, T., Lu, H.P.: Assessment of institutions, scholars, and contributions on
agile software development 2001–2012. J. Syst. Softw. 93, 84–101 (2014)

2. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9-10), 833–859 (2008)

3. Beck, K., et al: Manifesto for Agile Software Development. http://www.agilemanifesto.org
4. Ludewig, J.: Models in software engineering - an introduction. Inform. Forsch. und

Entwicklung 18(3-4), 105–112 (2004)
5. Hadar, I., Sherman, S., Hadar, E., Harrison, J.J.: Less is more: architecture documentation for

agile development. In: 2013 6th International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE 2013 - Proceeding, pp. 121–124 (2013)

6. Cherubini, M., Venolia, G., Deline, R., Ko, A.J.: Let’s go to the whiteboard: how and why
software developers use drawings. In: CHI 2007 Proceeding, pp. 557–566 (2007)

7. Abrahamsson, P., Ali-Babar, M., Kruchten, P.: Agility and architecture: can they coexist?
IEEE Computer Society, pp. 16–22 (2010)

8. Selic, B.: Agile documentation, anyone? IEEE Softw. 26(6), 11–12 (2009)
9. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards

explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)
10. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practitioners. IEEE

Softw. 27(5), 8–9 (2010)
11. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile methods:

a comparative analysis. In: 25th International Conference Software Engineering 2003,
Proceedings, vol. 6 (2003)

12. Kupiainen, E., Mäntylä, M. V., Itkonen, J.: Why are industrial agile teams using metrics and
how do they use them? In: Proceeding 5th International Workshop on Emerging Trends in
Software Metrics - WETSoM 2014, pp. 23–29 (2014)

13. Schwaber, K., Sutherland, J.: The scrum guide, p. 17 (2011). Scrum.org
14. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley,

Boston (2004)
15. Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the Unified

Process. Wiley, New York (2002)
16. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in

Software Engineering. Keele University and University of Durham, EBSE Technical report
(2007)

17. Stojanovic, Z., Dahanayake, A., Sol, H.: Modeling and architectural design in agile
development methodologies. In: Proceedings of the 8th Workshop on Evaluating Modeling
Methods for Systems Analysis and Design (EMMSAD 2003), pp. 180–189 (2003)

18. Erickson, J., Lyytinen, K., Siau, K.: Agile modeling, agile software development, and extreme
programming: the state of research. J. Database Manag. 16(4), 88–100 (2005)

19. ShuiYuan, H., LongZhen, D., Jun, X., JunCai, T., GuiXiang, C.: A research and practice of
agile unified requirement modeling. In: 2009 International Symposium on InIntelligent
Ubiquitous Computing and Education, IUCE 2009, pp. 180–184 (2009)

20. Wei, Q., Danwei, G., Yaohong, X., Jingtao, F., Cheng, H., Zhengang, J.: Research on software
development process conjunction of Scrum and UML modeling. In: 2014 Fourth International
Conference on Instrumentation and Measurement, Computer, Communication and Control,
pp. 978–982 (2014)

58 F. Mognon and P.C. Stadzisz

http://www.agilemanifesto.org
http://Scrum.org

21. Wang, F., Gan, S., Huang, L.: The research and application of the requirement modeling
method on AM-RUP requirement process. In: Proceeding 3rd International Conference on
Information Management, Innovation Management and Industrial Engineering ICIII 2010,
vol. 2, pp. 643–646 (2010)

22. Baltes, S., Diehl, S.: Sketches and diagrams in practice categories and subject descriptors. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 530–541 (2014)

23. Lin, J., Yu, H., Shen, Z., Miao, C.: Using goal net to model user stories in agile software
development. In: 15th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (2014)

24. Farid, W.M., Mitropoulos, F.J.: NORMATIC: a visual tool for modeling non-functional
requirements in agile processes. In: Conference Proceeding - IEEE SOUTHEASTCON, no.
978 (2012)

25. Durdik, Z.: Towards a process for architectural modelling in agile software development. In:
Proceedings of the joint ACM SIGSOFT Conference – QoSA ACM SIGSOFT Symposium
– ISARCS Quality of Software Architectures – QoSA Architecting Critical Systems –
ISARCS – QoSA-ISARCS 2011, p. 183 (2011)

26. Hadar, E., Silberman, G.M.: Agile architecture methodology: long term strategy interleaved
with short term tactics. In: Proceeding Conference ObjectOriented Programming Systems
Languages and Applications OOPSLA, vol. 44(3), pp. 641–651 (2008)

27. Christensen, H. B., Hansen, K. M.: Towards architectural information in implementation:
NIER track. In: 33rd International Conference on Software Engineering, pp. 928–931 (2011)

28. Pohjalainen, P.: Bottom-up modeling for a software product line: an experience report on agile
modeling of governmental mobile networks. In: Proceeding - 15th International Software
Product Line Conference SPLC 2011, pp. 323–332 (2011)

29. Hofman, P., Stenzel, T., Pohley, T., Kircher, M., Bermann, A.: Domain specific feature
modeling for software product lines. In: Proceeding 16th International Software Product Line
Conference - SPLC 2012, vol. 1, p. 229 (2012)

30. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software
development. In: WET ICE 2003, Proceedings Twelfth IEEE International Workshops
Enabling Technologies: Infrastructure for Collaborative Enterprises 2003, pp. 308–313 (2003)

31. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal versus agile: survival of
the fittest. IEEE Comput. Soc. 42(9), 37–45 (2009)

32. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 1st International
Workshop on Formal Methods in Software Engineering Rigorous Agile Approaches,
FormSERA 2012 - Proceeding, pp. 23–29 (2012)

33. Rumpe, B.: Agile modeling with the UML 1 portfolio of software engineering techniques. In:
9th International Workshop in Radical Innovations of Software and Systems Engineering in
the Future, pp. 297–309 (2004)

34. Zhang, Y., Patel, S.: Agile model-driven development in practice. IEEE Softw. 28(2), 84–91
(2011)

35. Buchmann, T.: Towards tool support for agile modeling: sketching equals modeling. In:
Proceedings of the 2012 Extreme Modeling Workshop, pp. 9–14 (2012)

36. Bruegge, B., Krusche, S., Wagner, M.: Teaching Tornado categories and subject descriptors.
In: EduSymp12, pp. 5–12 (2012)

37. Durdik, Z.: An architecture-centric approach for goal-driven requirements elicitation. In:
Proceeding 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, pp. 384–387 (2011)

Modeling in Agile Software Development 59

Strategies for Reducing Technical Debt in Agile Teams

Marcelo M. Bomfim Jr.1(✉) and Viviane A. Santos2

1 Institute of Technical Research of the State of São Paulo, São Paulo, Brazil
marcelomazini@outlook.com

2 Federal University of Pará, Tucuruí, Brazil
vsantos@ufpa.br

Abstract. As the Technical Debt (TD) management is not yet explicitly part of
the software development process, teams need to seek strategies to reduce TD, as
well as continue adding value to the customer business. This paper presents a case
study of how agile teams deal with TD in their daily work, observing which strat‐
egies and TD reduction practices are used. Data were collected through six inter‐
views with Scrum Masters and technical leaders of four different companies. The
results suggest that the teams are concerned with the software quality and seek to
pay their TD proactively and preventively. However, several factors influence the
decision on prioritizing the TD payment, such as lack of test coverage, team
engagement, among others.

Keywords: Technical debt · Technical debt payment · Technical debt
reduction · Technical debt management · Agile methods

1 Introduction

The Technical Debt (TD) metaphor is an analogy to financial debt. It means that by
compromising the software quality to the detriment of some immediate benefit, it is
likely taking on debt the long-term software health [1].

Seaman et al. [2] present some examples of the consequences of not paying TD, such
as: high costs with software maintenance and evolution, software quality problems and
decrease in the software lifecycle prematurely. Thus, it is important to pay TD gradually
in a strategic way. As a result, the software project can be impacted positively, not only
on increasing its maintainability, but also on improving team morale and motivation [3].
Linking TD to future risks can be one of the important actions to improve the TD
management and visibility in order to minimize the impacts they may cause to the soft‐
ware. Still there is a need to identify strategies for reducing TD as a way to meet both
software technical needs and business value [4].

Although the concept of technical debt has been used since 1992, there are still few
effective strategies reported in the academic literature. The adoption of agile methods has
provided satisfactory ways of dealing with the treatment of technical debts [5]. In order for
teams to remain agile and add value to business frequently, it is always necessary to adapt
the software to meet business changes at a sustainable pace [6]. Incurring in a technical debt
may also generate customer value at some point, however to remain a sustainable software

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 60–71, 2017.
DOI: 10.1007/978-3-319-55907-0_6

development, the team has to manage TD and plan its payment [7]. Agile methods have
practices and processes capable of managing and dealing with technical debts [8], such as
refactoring, TDD (Test Driven Development), iterative management paradigm, pair
programming, continuous integration, among others.

Most code debts can be paid with refactoring. Some authors, especially from the
agile community, have suggested strategies for reducing technical debt, which comple‐
ment each other [5, 7, 9–14]. In [13], the authors indicate that developers should balance
available time in an iteration/release to provide value to customers and reduce TD. Other
authors also suggest that the team use about 20% of the time from one iteration/release
to concentrate efforts on reducing TD [5].

In this context, empirical studies on TD management are necessary to identify and
validate the strategies and practices of TD reduction already proposed [1]. Thus, the
objective of this research was to collect evidence of how agile teams deal with technical
debts in their daily lives, seeking to observe and analyze which debt reduction strategies
and practices are used. Therefore, the main research question is: “How do agile teams
deal with technical debts in their daily lives?”

Thus, it was possible to verify whether the TD payment was managed reactively or
proactively by the team. For example, if the debt is only paid if it is already impacting
critical software elements or is paid when there is an opportunity for refactoring.

The secondary research objectives are as follows:

• Identify empirical evidence of debt repayment in software development teams using
agile methods;

• Observe whether payment is made in a reactive or proactive manner by the team;
• Identify and analyze debt reduction strategies;
• Identify and analyze the influencing factors for paying TD.

This paper is structured as follows. Section 2 justifies and presents the research
method, the selected cases and data collection and analysis. Next, Sect. 3 describes and
analyzes the results, identifying how teams deal with daily technical debt, and which
strategies and practices are used to pay off debts. Section 4 presents a discussion of the
results with existing research in related areas. Section 5 concludes the paper presenting
the research limitations and future work.

2 Research Method

The method used in this research was the case study. We decided to conduct face-to-face
interviews, because it is one of the main methods used in qualitative researches to collect
data. The studied cases were selected based on the intentional sampling method [15]. This
approach is commonly used when the purpose of the research is to explore, understand or
find evidence about the research subject.

Strategies for Reducing Technical Debt in Agile Teams 61

2.1 Selected Cases

The research was carried out with six teams that work with maintenance and software
development in four companies. The teams are identified with the letter of the company
and a number, as for example: team A1, means team 1 of Company A. Table 1 presents
some characteristics of the teams.

Table 1. Teams characteristics

Team Project Agile methods Experience on agile
practices adoption

A1 Maintenance of a
fraud analysis tool for
e-commerce

Scrum and Kanban 1 year and six months

B1 Maintenance of the
basic product
framework of the
company that operates
in the financial market

Kanban and XP 10 years

C1 Development of an
incentive platform for
shopkeepers in the
resales of a large
network of gas
stations

Scrum 2 years

C2 Development of an
incentive platform for
shopkeepers who use a
credit card machine
from a payment
network

Scrum and Kanban 2 years

C3 Maintenance of 40
projects aimed at
incentive and award
campaigns through an
e-commerce to
exchange points

Kanban 1 year

D1 Development and
maintenance of public
sector pension
management software

Scrum 8 years

2.2 Data Collection and Analysis

Initially, a team daily monitoring was carried out to identify how they deal with the TD.
We collected evidence of the use of practices and techniques to reduce TD. The initial
observation was performed only with the A1 and B1 teams, as a pilot study. After that,

62 M.M. Bomfim Jr. and V.A. Santos

a semi-structured interview script, divided into four parts, was developed and conducted
with members of the selected cases.

Questions were asked about the experience of the interviewees and the projects of
the teams. In addition, a list of debt situations was presented and asked if these situations
occurred in the daily life of the team. Then, questions were asked to understand how
teams deal with debts, looking to observe how debts are organized, discussed and paid.
Finally, questions were asked to try to collect new cases of debt and situations in which
teams had to establish strategies to pay them.

The interviews were conducted only with the Scrum Masters and/or technical leaders
of each team, because they experienced the team’s daily lives in technical matters as
well as in process and business issues. All interviews were conducted individually and
by face-to-face and lasted an average of one hour. The interviews with the A1, C1 and
C2 team were only written notes. The interviews with the B1, C3 and D1 staff were
recorded with previous authorization of the interviewees, and later transcribed. These
last interviews were recorded with the objective of providing more fidelity and speed to
the interview, since in the first interviews we only took notes. This process took a
considerable interview time and was tiring for the interviewee.

The analysis of the annotated and transcribed information followed the strategy of
describing the cases, using the explanatory construction technique, constructing an
explanation of the case [15], and also making a comparison between them. Evidence
was analyzed by subjects and was described qualitatively in the following section.

3 Results

Based on the data collected, this section describes and analyzes how the studied teams
identify, discuss, organize and pay their TD. The strategies used by the teams are
presented, making a comparison with the strategies found in the literature.

3.1 TD Identification, Discussion and Organization

Daily and weekly meetings, planning meetings, reviews and retrospectives were consid‐
ered as a moment for discussing improvement points and dealing with software TD
within the context of each team. The TD identification is performed manually by the
teams during the contact with the code and artifacts of the software. Only the B1 team
uses the SonarQube tool for code analysis and TD identification.

Four teams (A1, B1, C2 and D1) add TD tasks to the product backlog, even if it is
implicitly (not highlighted as a TD). This strategy helped these teams manage their debts.
The debts are controlled in the main backlog by the technical team. Thus, it is possible
to prioritize them when planning or aligning the weekly tasks in the Kanban chart. It is
worth mentioning some relevant statements of A1, B1 and D1 teams:

“The team registers a task in Team Foundation Server tool and estimates its effort. Thus, tasks
enter the project backlog. In Sprint’s prioritization, tasks were discussed and eventually priori‐
tized. Most of the more technical tasks, the team itself attempted to absorb during the Sprints”
(Team A1)

Strategies for Reducing Technical Debt in Agile Teams 63

“(…) the team has the autonomy to refactor the problems encountered, but, for example, the
refactoring task may take much longer than planned. I’ve always tried to make it clear to my
team that if they find a bad code, they can fix it. If it takes time, we write down in a sticky note
and prioritize for a developer to refactor it (…)” (Team B1)
“(…) the team began to register tasks in TRELLO tool categorized by technical debt. When the
developer implements some task, he verifies if there is a debt to the related piece of code, because
depending on the case, that task can be performed along with the business demand” (Team D1)

Other agile practices have also been identified, such as: refactoring (all teams),
coding standard (A1, C1 and D1), code review (B1, C1 and D1), pair programming (B1
and D1), unit tests (B1), exploration of the definition of done (B1) and visual task board
(B1). In this sense, it is worth mentioning the D1 team’s Scrum Master statement, which
states that the practice of peer review can help the team improve the quality of the code
and also that the use of coding standards can contribute to preventing debts:

“The team itself realized that when doing the peer review, the code tends to improve automat‐
ically. I believe it is because the developer is more concerned about the code, because someone
else will take a look, and he does not want to be ashamed of the other developers who are in the
same room. It happens because at the time of the review the developers talk about the code…
the quality of the code has improved a lot and the team has defined a checklist to review the code
with a standard implementation guide” (Team D1)

3.2 TD Payment

Regarding debt payments, team A1 always tried to prioritize small refactoring left in
the previous Sprint, because sometimes the team implemented palliative solutions to be
able to deliver on time, and ended up leaving a mess in the code. It was common for the
teams to perform refactoring as a way to improve code organization, for example: split‐
ting methods to make them more reusable, using design patterns, and refactoring older
code. However, if the refactoring affected other modules and incurred a risk to the
customer, the team needed to share with the customer.

In the case of the B1 team, they also have the autonomy to prioritize refactoring in
order to achieve continuous improvement in the software. B1 team also greatly explores
the definition of done, and tasks are only finalized if the code is clean. Under pressure
situations, palliative solutions can be employed, but after delivery, the team seeks to
return to refactor. The team prioritizes debt if it is really disrupting development, other‐
wise it is not as necessary, as stated below:

“I’m just going to refactor something that is disrupting and something the most affects software
development is software coupling (…) pure and simple software coupling is what most hinders
and, in general, the refactoring efforts are mostly to decrease software coupling. Because soft‐
ware coupling generally destroys productivity, so you can’t deliver what you need” (Team B1)

Time-consuming refactoring and refactorings that can cause software instability are
shared with the product owner because the team needs to justify the hours spent and
share the involved risks. In the case of C1 and C3 teams, they only prioritize refactoring
if the software development time did not exceed the time planned for a business task.
Only the most critical cases were approved by the business area.

64 M.M. Bomfim Jr. and V.A. Santos

In the case of the C2 team, some technical tasks were prioritized to be refactored,
mainly performance related items, depending on the criticality. Tasks that presented
risks to the customers or that did not generate value to them were difficult to prioritize.
However, the C2 team includes TD tasks in larger tasks. The C2 team is uncomfortable
with the implemented code, and on its own attempts to perform refactoring, even
performing tasks overtime without charging the company. The D1 team prioritizes
refactoring in two situations: when there are many bugs related to a specific part of the
code or when the team has difficulty in understanding it. When planning activities for a
Sprint, the team prioritizes refactoring tasks related to the business demands selected by
the product owner.

Seven strategies are reported in the literature for TD payment, which are listed in
Table 2. It is worth emphasizing the strategy of allocating a time during each iteration/
release to solve TD. The strategies used by the teams studied were confronted with the
strategies mentioned in the literature [5, 7, 9, 11–15], in order to find similarities and to
validate their feasibility. The studied teams adopt four of the seven strategies presented
in Table 2.

In relation to strategy I, B1 team reported that dealing with TD during the tasks
occurs naturally in the team and there is no need to set aside additional hours to carry
out possible negotiations. The other teams A1, C1, C2, C3 and D1 reported that they
perform this strategy more explicitly, allocating a percentage of total Sprint time to make
possible adjustments to the code. C2 team looks for performing small refactorings to
improve performance, because it is a critical point of the software. The other teams use
this time to perform refactorings to improve code organization and decrease coupling.
This strategy seems to be much easier to implement in teams.

In relation to strategy II, only the C2 team often involves the customer or product
owner, because all the tasks are in the product backlog and the team prioritizes the
activities with the product owner every three times a week. Thus, refactoring items are
presented and defended by the team and then enter the kanban board. Sometimes the
team invites the customer to approve these tasks, but they face difficulty. A1, B1, C1,
C3 and D1 teams often do not involve the customer or product owner, because it is
difficult to convince the business staff that refactoring is critical to software sustaina‐
bility, since it does not immediately add tangible value to the business, as reported by
B1 team leader:

“It’s very difficult to explain this to a non-technical person… but a software with technical debt
takes you longer to develop than anything else. If I could explain to him that I’m not going to
give you anything now, because I’ll give you things later, because I’ll have less technical debt…
it’s a very difficult conversation to have… it’s much more feasible to mix business tasks with
technical debts tasks” (B1 team)

In relation to strategy III, it was observed that B1, C2 and D1 teams also follow this
strategy through the registration of technical debt tasks in the backlog. B1 team uses
visual elements to evidence the technical debts of the project and its evolution, through
TV panels in the development room, so that people can see the debts to be resolved. C2
team includes implicitly debts in the backlog, being only technical tasks. This strategy
generates greater visibility of the items that need to be refactored. We observed that

Strategies for Reducing Technical Debt in Agile Teams 65

these tasks can cause team discomfort. In consequence, the team members seek to pay
the debts on their own in some cases.

Table 2. Strategies versus teams

Strategy Teams
I. Allocate a time during an

iteration/release, trying to
balance the effort between
providing value to the
customer and resolving the
technical debts [5, 7, 13]

A1, C1, C2, C3 and D1

II. Involve the customers and
product owners by
communicating them the value
of paying off the project TD
and asking them to consider it
along with the new feature
requests [10, 11]

C2

III. Use daily team meetings, task
boards, and burndown charts
to increase communication
and visibility of items
considered important to the
release, and also to discuss
better solutions for reducing
the risk of incurring in new
debts [14]

B1, C2 and D1

IV. Create a discussion group to
meet periodically, review the
performance of the system as a
whole, and plan the changes
for further reduction of
technical debts [14]

B1

V. Establish dedicated teams to
pay off debts [5]

None

VI. Organize special events called
“ixit day” to identify and pay
off debts [12]

None

VII. Refactor a part of the system at
a time. A complete refactoring
of that part can give a broader
visibility that the debt is being
reduced, rather than
refactoring into several small
parts of the system at the same
time [9]

None

66 M.M. Bomfim Jr. and V.A. Santos

Strategy IV may not be so common in agile teams, whereas A1, B1, C1, C2, and D1
teams have stated that they are in constant communication. Due to their work method,
most adopt daily meetings, plannings, reviews and retrospectives. In addition, B1 team
adopts this strategy in a organizational level by performing bimonthly meetings with
the other teams of the company that use the framework to collect feedbacks, problems,
and points of improvement. Then, they prioritize what needs to be worked on.

A new strategy has also been identified in the D1 team, which can meet both the
software technical needs and add value to the business. According to the D1 team’s
Scrum Master report:

“Since we’re handling this (specific) part of the code, we may improve it, and if we have a lot
of trouble in this part, it’s time to handle it” (D1 team)

The mentioned strategy recommends that a good time to perform a code refactoring
is when the team is performing a business task in the piece of code with TD. In this case,
a team member can add a few hours to the business task and at the same time perform
the refactoring. This TD management strategy is proposed in [17] and states that debts
should be mapped and estimated in the form of a list.

3.3 Influencing Factors

In addition to the TD strategies, a standard decision flow was observed to perform the
refactorings within the teams, as shown in Fig. 1.

Fig. 1. TD payment decision flow.

Strategies for Reducing Technical Debt in Agile Teams 67

Table 3. Influencing factors versus teams

Factor Responsible General decision Team
Concern of impacting
some module because
the team does not
know all parts of the
code to carry out a
deeper impact analysis

Technical team Not to pay C1 and D1

Lack of test coverage
or excessive manual
testing

Technical team Not to pay A1, B1, C2 and D1

Members engagement
by software quality

Technical team To pay A1, B1, C1, C2, C3
and D1

Company image
degradation risk

Customer/product
owner

To pay A1, C2 and C3

Compliance with
contractual clauses
and/or end customer
requirement

Customer/product
owner

To pay A1, C1, C2 and D1

Opportunity for
software
improvements

Customer/product
owner

To pay B1 and D1

Low impact for
business and high
effort

Customer/product
owner

Not to pay C1

When teams are facing the need to refactor a code, they evaluate whether refactoring
could cause risk to the business or whether the customer is already at risk, justifying the
need for refactoring. If there is risk, the customer or product owner product are triggered.
Thus, the customer or product owner decide whether to approve the TD payment. If they
do not approve it, the debt can be forgotten or delayed. If there is no direct risk to the
customer and the team is sure that it will not affect other software modules, the team
checks the effort required for the refactoring. If the effort required is relatively small,
the team tries to absorb the refactoring within some related business task. If the effort
is large and the team is unable to absorb the refactoring, the customer or product owner
is triggered for decision making.

When the decision to pay off TD is passed on to the customer or product owner, the
factors that influence it are different because it has been observed that they need to be
related to something critical to the business or to part of their strategy. Table 3 shows
the influencing factors observed in the teams divided by those responsible for the deci‐
sion to pay the debt: technical team or customer/product owner. Factors were identified
based on the evidence collected from interview answers.

68 M.M. Bomfim Jr. and V.A. Santos

4 Discussion

Based on only the cases studied, the treatment of technical debts is a natural practice in
the daily activities of the studied agile teams, even implicitly in their work process.
Teams need to maintain the software technical excellence in order to sustain and increase
team agility [18]. In this sense, the result of this study shows that the studied teams value
the code quality of their applications and prioritize refactorings related to the source
code frequently and autonomously as much as possible. Quality attributes such as main‐
tainability and performance are also constantly observed by teams as the aspect of
refactoring.

Four of the teams (A1, B1, C2 and D1) record debt payment tasks on the project’s
main backlog and estimate the time taken to complete the negotiation, even if implicitly
(not highlighted as a technical debt). These tasks are not necessarily visible to the product
owner and the customer, because there are some concerns about involving the customer
or the product owner to discuss code quality problems. However, they are controlled in
the main backlog by the technical team, and such practice allows for further prioritization
when planning or aligning weekly tasks. This result reinforces the TD management
models proposed by [16, 17]. The models can be incorporated into teams in a more
natural way, since they get already used to register technical issues in the backlog, being
possible to categorize them through colors, as recommended by [16]. For teams using
Kanban, the use of colors according to the categories of the backlog items can promote
greater visibility to these items, and may even generate a psychological effect in the
team. This may help the team to remember existing debts, as Shriver [14] suggests.

The TD payment is treated with some caution by the teams, as it may involve risks
to the software operation. Paying a debt can impact something that is working, for
example. When teams are facing a code that needs to be refactored, the team checks to
see if the refactoring can negatively affect the customer and if there is a risk to the
business. Small refactoring is prioritized by the team itself, due to members engagement
on software quality, absorbing refactoring tasks within iterations. In cases where teams
can not absorb debt payment, the customer or product owner is consulted for prioriti‐
zation, when it involves something more critical or disturbs the team. Thus, risk manage‐
ment is necessary as part of the decision-making process for TD payment, and techniques
can be incorporated to assist the teams. As mentioned by [19], TD can have negative
effects in the form of poorly managed risks.

The weekly meetings, plannings, daily meetings, reviews and retrospectives, are
considered as a moment of discussion about improvement and TD treatment. This result
contributes with empirical data to the study presented by [8], which verified that the
practices of the agile methods promote a greater technical debt perception, mainly the
iterative process, reviews and retrospectives.

In one of the teams (B1) it was identified that it explores the definition of done to
determine if the task was completed. This reduces the risk of incurring in new debts.
Along with a coding standard and code review, these practices can help increase code
quality. Peer review can have a psychological effect on the team, forcing its members
to perform a more organized and readable coding. This reaffirms that agile methods have
components capable of dealing with TD [8].

Strategies for Reducing Technical Debt in Agile Teams 69

While all teams involve customers or product owners in more critical cases that
involve serious risks, only one team actually engages them on a frequent basis. There
is some concern among teams about involving the customer or product owner to discuss
code quality issues, making it more difficult to support refactoring. In some cases, TD
issues may expose a team technical weakness.

Overall, it is difficult to convince the business that refactoring is critical to software
sustainability because it does not immediately add tangible value to the business. This
argument reinforces the idea presented by [4], which mentions that it is necessary to
seek TD reduction strategies that meet both software technical needs and business value.

5 Conclusions and Future Work

The cases presented in this paper present evidence from the technical leaders’ and Scrum
Masters’ perspective of how six agile teams from the Brazilian software industry deal
with TD in a daily basis. The teams studied seek to pay TD proactively and preventively,
when a payment opportunity is found, preferably in the following iterations that the debt
was identify. However, obstacles are found and many factors influence the decision to
prioritize TD, such as: lack of tests coverage, compliance with contractual clauses, and
risk of company image degradation, among others. We have noticed that the risk of
impacting an existing complex code, may inhibit its refactoring.

The teams denote some autonomy to prioritize small refactorings and do them
following some strategies discussed in this study. This autonomy is related to agile
principles, which guide teams to maintain and value the software technical excellence,
in order to sustain and increase team agility. The big challenge is still to pay TD and at
the same time generate value to the business, mainly to be able to approve the payment
by the stakeholders.

Even presenting limitations, such as: limited access to project documents at the initial
observation phase and research results evidenced basically by the interview responses,
this study can contribute to the TD management area. Software development teams can
benefit from organizing a plan to reduce their technical debts, and incorporating activ‐
ities in their software development process, according to their context.

As a proposal for future studies, it would be interesting to carry out a research with
non-technical stakeholders, investigating how the technical teams approach TD issues
with customers and product owners, verifying the risks that are assumed when deciding
not to pay them. This study could also be conducted with other types of data collection
sources, such as observations, documents analysis, and tool data analysis. Quantitative
information could be drawn from agile team projects, for example, average time spent
on projects to reduce TD. It is also possible to perform the same work with a larger
number of teams and to use the Grounded Theory method to seek for a theory involving
the TD management in the agile teams context.

Acknowledgment. The authors thank all the companies and professionals who participated in
this research.

70 M.M. Bomfim Jr. and V.A. Santos

References

1. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

2. Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetrò, A.: Using technical
debt data in decision making: potential decision approaches. In: Proceeding of the 3rd
International Workshop on Managing Technical Debt, pp. 45–48. IEEE (2012)

3. Spínola, R.O., Zazworka, N., Vetrò, A., Seaman, C., Shull, F.: Investigating technical debt
folklore: shedding some light on technical debt opinion. In: Proceedings of the 4th
International Workshop on Managing Technical Debt, pp. 1–7. IEEE (2013)

4. Kruchten, P., Nord, R.L., Ozkaya, I., Falessi, D.: Technical debt: towards a crisper definition
report on the 4th international workshop on managing technical debt. ACM SIGSOFT Softw.
Eng. Notes 38(5), 51–54 (2013)

5. Codabux, Z. Williams, B.: Managing technical debt: an industrial case study. In: Proceedings
of the 4th International Workshop on Managing Technical Debt, pp. 8–15. IEEE (2013)

6. Bavani, R.: Distributed agile, agile testing, and technical debt. IEEE Softw. 29(6), 28–33
(2012)

7. Lim, E., Taksande, N., Seaman, C.: A balancing act: what software practitioners have to say
about technical debt. Softw. IEEE 29(6), 22–27 (2012)

8. Holvitie, J., Leppanen, V., Hyrynsalmi, S.: Technical debt and the effect of agile software
development practices on it-an industry practitioner survey. In: Proceedings of the 6th
International Workshop on Managing Technical Debt, pp. 35–42. IEEE (2014)

9. Krishna, V., Basu, A.: Minimizing technical debt: developer’s viewpoint. In: Proceedings of
the ICSEMA 2012, Chennai (2012)

10. Kruchten, P.: Strategic management of technical debt: tutorial synopsis. In: Proceedings of
the 12th International Conference on Quality Software (2012)

11. Laribbe, D.: Using agile techniques to pay back technical debt. MSDN Mag. (2009). http://
msdn.microsoft.com/en-us/magazine/ee819135.aspx

12. Morgenthaler, J.D., Gridnev, M., Sauciuc, R., Bhansali, S.: Searching for build debt:
experiences managing technical debt at Google. In: Proceedings of the Third International
Workshop on Managing Technical Debt, pp. 1–6. IEEE (2012)

13. Power, K.: Understanding the impact of technical debt on the capacity and velocity of teams
and organizations: viewing team and organization capacity as a portfolio of real options. In:
Proceedings of the 4th International Workshop on Managing Technical Debt, pp. 28–31. IEEE
(2013)

14. Shriver, R.: Seven strategies for technical debt (2011). http://ryanshriver.files.wordpress.com/
2013/01/sevenstrategiestechnicaldebt.pdf

15. Yin, R.: Case Study: Planning and Methods, 4 edn., 248 p. Bookman, Porto Alegre (2010)
16. Kruchten, P.: What colour is your backlog? Agile New England (2012). http://

pkruchten.files.wordpress.com/2012/07/kruchten-110707-what-colours-is-your-
backlog-2up.pdf

17. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. Adv. Comput. 82, 25–46
(2011)

18. Beck, K., et al.: Manifesto for agile software development. http://www.agilemanifesto.org
19. Falessi, D., Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt at the crossroads of research

and practice: report on the fifth international workshop on managing technical debt. ACM
SIGSOFT Softw. Eng. Notes 39(2), 31–33 (2014)

Strategies for Reducing Technical Debt in Agile Teams 71

http://msdn.microsoft.com/en-us/magazine/ee819135.aspx
http://msdn.microsoft.com/en-us/magazine/ee819135.aspx
http://ryanshriver.files.wordpress.com/2013/01/sevenstrategiestechnicaldebt.pdf
http://ryanshriver.files.wordpress.com/2013/01/sevenstrategiestechnicaldebt.pdf
http://pkruchten.files.wordpress.com/2012/07/kruchten-110707-what-colours-is-your-backlog-2up.pdf
http://pkruchten.files.wordpress.com/2012/07/kruchten-110707-what-colours-is-your-backlog-2up.pdf
http://pkruchten.files.wordpress.com/2012/07/kruchten-110707-what-colours-is-your-backlog-2up.pdf
http://www.agilemanifesto.org

ReTest: Framework for Applying
TDD in the Development

of Non-deterministic Algorithms

André A.S. Ivo1(B) and Eduardo M. Guerra2

1 Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN),
São José dos Campos, SP, Brazil

andre.ivo@cemaden.gov.br
2 Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP, Brazil

eduardo.guerra@inpe.br

Abstract. TDD is a technique traditionally applied in applications with
deterministic algorithms, when you have a known input and an expected
result. Therefore, the challenge is to implement this technique in appli-
cations with non-deterministic algorithms, specifically when several ran-
dom choices need to be made during its execution. The purpose of this
paper is to present the ReTest framework, a JUnit extension, that allows
an extension of the TDD technique, to enable its use for the development
of non-deterministic algorithms.

Keywords: TDD · Non-determinism · Tests · Framework · JUnit ·
Metadata · Code annotations

1 Introduction

TDD (Test-Driven Development) is a software development technique in which
tests are developed before code in short and incremental cycles [1]. The technique
proposes for the developer to create a new flawed test, and then, to implement
a little piece of code, in order to satisfy the current test set. Then, the code
is refactored if necessary, to provide a better structure and architecture for the
current solution [2,3].

TDD is traditionally applied in applications with deterministic algorithms,
when there is a known input and one expected result. The challenge becomes,
the use of TDD in applications with non-deterministic algorithms, where from
executions with the same input it is possible to obtain different valid results. This
type of approach usually uses several calls to functions that generates pseudo-
random numbers during the algorithm execution in order to represent random
decisions. Although it is not possible to know exactly what the output will be,
it is usually possible to check whether the output received is considered valid or
not. This scenario is very common in the development of scientific software [4].

The following factors make it difficult to develop non-deterministic software
using TDD: (a) the result of the same execution may be different for the same
c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 72–84, 2017.
DOI: 10.1007/978-3-319-55907-0 7

ReTest Framework 73

inputs, which makes it difficult to compare with a return value; (b) obtaining
a valid return for a test case execution does not mean that valid return will be
returned on the next executions; (c) there are may be several random decisions
and a variable number of such of decisions, making not viable the creation of
Mock Objects [5,6] that return fixed results for these decisions; and (d) it is
difficult to execute a previous failed test with the same random decisions made
in its last execution.

The goal of this paper is to present an extension for the JUnit framework
called ReTest, developed by the authors of this work, which allows an extension
of TDD to enable its application for algorithms with non-deterministic charac-
teristics. The main feature of ReTest is to allow a test case that receives a class
responsible to generate pseudo-random numbers to be executed several times
with different seeds, increasing the test coverage. From the result of these repe-
titions, the framework stores the seeds that generated failures and uses them in
future tests, ensuring that a scenario where an error was detected in the past is
executed again.

The paper is organized as follows: Sects. 2 and 3 give a brief introduction
to TDD and JUnit; Sect. 4 presents the ReTest framework; Sect. 5 describes the
use of ReTest in the context of TDD technique; and, finally, the conclusion and
proposals for future work are presented in Sect. 6.

2 Test Driven Development (TDD)

TDD is a code development and design technique, in which the test code is cre-
ated before the production code. There are several research reported by Guerra
and Aniche (see [1]) that indicates that the use of TDD can improve the source
code quality. One of the reasons for the popularization of TDD is its explicit men-
tion as part of the agile methodology Extreme Programming (XP) [7], however
today is widely use out of its context.

In TDD practice, the developer chooses a requirement to determine the focus
of the tests, then writes a test case that defines how that requirement should
work from the class client point of view. Because this requirement has not yet
been implemented, the new test is expected to fail.

The next step is to write the smaller amount of code as possible to implement
the new requirement verified by the test. At this point, the added test, as well as
all other previously existing tests, is expected to run successfully. Once you have
passed the tests, the code must be refactored so that its internal structure can
be continuously evolved and improved. The tests help to verify that the behavior
has not been modified during refactoring.

This cycle is performed repeatedly until the tests added verify scenarios for
all expected requirements of the class. The TDD cycle is presented in Fig. 1 [2,3].

With the use of TDD, the design of the code is defined in cycles. The idea
is that with each new test added, create a small increment of functionality com-
pared to the previous ones. TDD technique is described in several books, such
as “Test-Driven Development by Example”, “Agile Software Development, Prin-
ciples, Patterns, and Practices”, “Growing Object-Oriented Software, Guided

74 A.A.S. Ivo and E.M. Guerra

Fig. 1. TDD execution diagram

by Tests” and “Test-Driven Development: A Practical Guide” (see [2,3,8,9]),
besides being widely used in industry.

3 JUnit Framework and Its Extension Points

JUnit is an open-source framework, created and developed by Erich Gamma and
Kent Beck, for the creation of unit tests in the Java language. Its purpose is to be
a basis for the creation of test automation code. It is widely used for the practice
of TDD and its same model was used in the creation of test frameworks for other
languages, being these frameworks referenced in general as XUnit. Some main
features of such frameworks are the execution of test cases and the display of
execution results [10].

JUnit, since version 4, provides extension points that allow the introduction
of new functionality. Some of the most important JUnit extension points are
represented by the classes Runner and Rule.

Runner is the class responsible for running the test methods from a test
class. When a simple test class is executed with JUnit 4, it uses the class Block-
JUnit4ClassRunner.class as the default runner. The Runner class hierarchy is
represented in the diagram in Fig. 2.

In this way, to implement a Runner just create a new class and extend the
Runner class shown in the diagram in Fig. 2.

To use just create a test project, and in the tests class include the annotation
@RunWith and as argument pass the new class Runner.

This will replace all known JUnit 4 behavior. If you want to maintain the
behavior, simply create a new Runner that extends the BlockJUnit4ClassRunner
class.

Another extension point is known as Rule that other than Runner adds new
behaviors mainly before and after the execution of each test. To write our own
Rule, just create a class that implements the TestRule interface.

To use, just declare a public attribute in the test class and annotate it with
@Rule, as shown in Code Snippet 1.

ReTest Framework 75

Fig. 2. Core class diagram of ReTest framework

Code Snippet 1. @Rule use example

public class TestClass {

@Rule

public NewRule newRule = new NewRule();

public void testMethod(@RandomParam Random random){

Object result = nonDeterministicAlgorithm(random);

assertResult(result);

}

}

In the example shown in Code Snippet 1, when executing the test project,
who should call the testMethod() is newRule, responsible for adding the desired
behaviors before and after the tests.

4 ReTest: Test Framework for Non-deterministic
Algorithms

The ReTest framework, Random Engagement for Test, aims to extend JUnit
to provide a framework for testing non-deterministic algorithms. It provides to
its users a mechanism for managing the seeds used to generate random data
in the algorithm being tested. Consequently, the same test can be repeated
and the seeds used in failed runs can be repeated. These features facilitates
the application of TDD for the development of non-deterministic algorithms.
The ReTest framework is open-source and can be found at https://github.com/
andreivo/retest.

https://github.com/andreivo/retest
https://github.com/andreivo/retest

76 A.A.S. Ivo and E.M. Guerra

4.1 Overview

To use ReTest the developer needs to create a test project using JUnit 4, and
include the @RunWith annotation with ReTestRunner.class argument in the
test class.

In the test methods the developer needs to include annotations to config-
ure how it should be executed and annotations in the parameters that need to
receive values generated and managed by the framework. The framework man-
aged parameters are meat to be used as input data for the tests. The Code
Snippet 2 shows a simple example of use.

Code Snippet 2. Simple example of how to use ReTest

@RunWith(ReTestRunner.class)

public class TestClass {

@Test

@ReTest(10)

@SaveBrokenTestDataFiles(filePath = "/data/file1.csv")

@LoadTestFromDataFiles(filePath = "/data/file1.csv")

public void testMethod(@RandomParam Random random){

Object result = nonDeterministicAlgorithm(random);

assertResult(result);

}

}

In the code shown in Code Snippet 2, the test method is marked with the
@ReTest(10) annotation, which configures the framework to execute it 10 times.
At each execution, the framework will initialize the parameter marked with
@RandomParam received by the test method with a different seed. Notice that
this object is passed as an argument to the method being tested, called nonDe-
terministicAlgorithm(). The class Random is used internally by the test method
for the generation of its random numbers and, consequently, as a basis for its
non-deterministic decisions. The assertResult() method used checks whether the
return of the algorithm is considered valid. This test will be executed multiple
times with Random initialized with different seeds, simplifying the execution of
a large number of scenarios.

The seeds used in failed tests will be stored in the file “data/file1.csv”,
because the test method is marked with the @SaveBrokenTestDataFiles anno-
tation. When executed again, in addition to the 10 repetitions configured by
the @ReTest annotation, the test method will also run with the seeds stored
in the “data/file1.csv” file, which is configured by the @LoadTestFromDataFiles
annotation. That way, by running the failed tests again, you can check that the
error has been corrected in addition to maintaining a set of regression tests.

Since in TDD the tests are executed frequently, throughout the development
process the test executions should achieve good code coverage. This is reinforced
by the fact that the tests that have failed previously are always executed again,
creating data for regression tests.

ReTest Framework 77

4.2 Features

The ReTest framework has an API that allows you to:

(a) generate randomic data to be applied to the tests;
(b) create custom randomizers for data in the application domain;
(c) save the data from failed tests;
(d) save test data that has been successfully executed;
(e) save the return of the test method to generate a set of data based on random

inputs and expected outputs;
(f) load test data from external files or sources;
(g) create custom mechanisms for handling external sources, both for saving and

loading test data.

4.3 ReTest Annotation Set

In addition to the common JUnit annotations, the ReTest framework has a set of
4 annotations for the test methods and 4 annotations for the method parameters.

The annotations for the methods are:

(a) @ReTest: This annotation is responsible for performing the test repetition.
In this annotation it is possible to indicate how many times the test method
should be executed;

(b) @SaveBrokenTestDataFiles: When you mark a method with this anno-
tation, the input data will be saved to the file when the test fails;

(c) @SaveSuccessTestDataFiles: When you mark a method with this anno-
tation, the input data will be saved to file when the test is successful;

(d) @LoadTestFromDataFiles: When you mark a method with this annota-
tion, the input data from this file will be loaded and used in the execution.

The annotations for the method parameters are:

(a) @IntegerParam: Annotation indicates that the ReTest framework should
pass as a parameter a random integer;

(b) @RandomParam: This annotation indicates that the framework should
pass an instance of an object of type Random, with a known seed, so that
it can be stored and retrieved from files, making it possible to reconstruct
the same test scenario;

(c) @SecureRandomParam: This annotation indicates that the framework
should pass an instance of an object of type SecureRandom, with a known
seed, so that it can be stored and retrieved from files, making it possible to
reconstruct the same test scenario;

(d) @Param: This annotation allows to indicate custom randomizers for the
specific data types in the application domain, allowing the extension of the
framework for random generation of several types of data.

78 A.A.S. Ivo and E.M. Guerra

4.4 Internal Architecture and Extension Points

This framework is based on the implementation of a new Runner, which reads
and interprets the annotations presented in the session Sect. 4.3. The Fig. 3 shows
the class diagram of the ReTestRunner implementation. In this diagram it is
possible to observe the first extension point of the framework for personalization
of the format of the data files, in the form of the implementation of the abstract
class TestDataFiles. To configure the newly created class, it should be passed
as a parameter to the @SaveBrokenTestDataFiles, @SaveSuccessTestDataFiles,
and @LoadTestFromDataFiles annotations.

Fig. 3. Core class diagram of ReTest framework

The Fig. 4 shows the existing randomizers used to introduce parameters with
random values in the test methods. At this point it is possible to observe the
second extension point of the framework, in the form of the implementation of the
abstract class DataType. To configure the new class created as the data generator
for a test, it should be configure as an attribute of the @Param annotation.

Fig. 4. Class diagram of randomized objects

5 TDD with ReTest

Because to the difficulties presented in the introduction of this article, TDD is not
a technique normally used in the development of non-deterministic algorithms.

ReTest Framework 79

One of the goals of the ReTest framework is to make the use of this technique
feasible for these scenarios.

From the use of ReTest is possible complement the development cycle of
TDD as observed in Fig. 5. The steps of this new cycle consist of:

1. Create a new test that fails in at least one of its executions;
2. Store information of the failed scenarios to enable the verification if the

changes in the production code make the failed scenario to pass;
3. Develop the simplest solution that makes the test suite run successfully for

all inputs;
4. Run the test cases several times including new random generators with new

seeds and with seeds that falied in previous test executions;
5. Refactor, if necessary, to provide a better internal structure for the final

solution;

In this cycle, the steps of the original TDD are included, presented in Sect. 2.
New steps were added as extensions proposed by the use of the ReTest frame-
work, in order to ensure that TDD can be used as an application design technique
and as a regression testing tool for non-deterministic algorithms.

To illustrate the use of this TDD cycle, consider the creation of a method to
generate an array of “n” positions, with random numbers varying between 10
and −10, whose total sum of its elements is zero. This method receives as input
parameter a Random object (used by the method to generate random numbers)
and the size of the array to be generated.

Fig. 5. Adaptation of TDD to ReTest

80 A.A.S. Ivo and E.M. Guerra

The following items describe the steps used to develop this function using
TDD. Due to space limitations, the code for each of the steps will not be displayed
and refactoring steps will be omitted.

(a) The first test asks the method to create an array with size 1. Since there is
only one valid response for this case, which is 0, it is not necessary to use
any ReTest annotations;

(b) It is written as the method implementation the return of a fixed value, and
the test is executed successfully;

(c) The second test introduced invoke the method passing the parameter to cre-
ate a size 2 array, initially checking only if the response has the appropriate
array size. At first moment the test fails, because of the method in returning
an array of size 1;

(d) As an initial implementation, an array of the size passed as a parameter is
created and a random value generated within the range of −10 to 10 is set
for each position;

(e) When executed, the tests pass, but it is known that the validity of the
response is not being verified correctly;

(f) An auxiliary assertion method is then created to check the validity of the
output according to the requirements. This method checks if the array has
the expected size, if the value of each element is within range of −10 to 10,
and if the sum of the elements is equal to zero, as shown in Code Snippet 3;

Code Snippet 3. Method for evaluating rules

private void assertElements(int[] arr, int arraySize) {

int result = 0;

//verify if all

for (int i = 0; i < arraySize; i++) {

assertTrue(arr[i] >= -10 && arr[i] <= 10);

result = result + arr[i];

}

//verify the sum

assertEquals(0, result);

}

(g) The test code for n = 2 is then modified so that it uses the assertion method
created. The @ReTest annotation is used for this test method to configure
the framework to execute it 10 times. The Fig. 6 shows the result of the test
execution. Note that in 3 out of 10 scenarios the test runs successfully. As
it is known that the implementation has not yet been performed, therefore
the information about the failed test should not be saved yet;

(h) The code is changed so that the last array value is not randomly generated,
but is the value that makes the sum to be equals to zero. The tests are run
and now all pass successfully;

(i) The test is then annotated with @SaveBrokenTestDataFiles and @LoadTest-
FromDataFiles so that, from this point, that information of failed tests are

ReTest Framework 81

stored and executed again, as can be seen in Code Snippet 4; From this
point the test code for other methods is similar to this one, varying only the
parameter “n” passed to the function generateArrayWithSumZero();

Code Snippet 4. Example of test method

@Test

@ReTest(10)

@SaveBrokenTestDataFiles(filePath = "/tmp/dataTest.csv")

@LoadTestFromDataFiles(filePath = "/tmp/dataTest.csv")

public void test2(@RandomParam Random r) {

int n = 2;

int[] result = ArrayFactory.generateArrayWithSumZero(r, n);

assertElements(result, n);

}

(j) The third test added uses as parameter n = 3, so that an array of size 3 is
generated. This test already receives the @ReTest annotation to be repeated
10 times. When performing the tests, some of the repetitions fail, because
in some cases this approach does not generate a valid response, as can be
observed in Fig. 7;

(k) The TDD process follows by having all the test running in the 3-element
array generation scenario, and then placing the annotations so that failed
executions are stored and included in the regression tests;

(l) The process is repeated in the introduction of new tests with the parameter
“n” assuming the values 10, 100 and 1000. Figure 8 shows the execution of
the tests for an array with 1000 elements, after successive changes in the
algorithm being developed;

From the example, it is possible to have a more concrete vision of how ReTest
can be used to support the use of TDD in the development of a non-deterministic
algorithm. Note that test cases are gradually being introduced and implementa-
tion is also occurring incrementally.

Fig. 6. Result of using ReTest for 2-position array

82 A.A.S. Ivo and E.M. Guerra

Fig. 7. Result of using ReTest for 3-position array with previous tests

Fig. 8. Final result of the example with all tests running

ReTest Framework 83

The first point to emphasize is that when a test that needs to be repeated
is executed, its execution is only considered correct when in all cases success
is obtained. Note in Fig. 6, for example, that some executions always execute
successfully, not because the implementation is correct, but because randomness
leads to the correct solution in some cases. In this case, the repetition function-
ality of the framework is important because in each execution of the test suite
it is possible to repeat the same test several times.

Another important point is in storing the seeds that generated failed test sce-
narios. Although it has not been commented, in the development of the example,
in some cases modifications in code lead previous tests to fail in some scenarios.
In this case, it was important to have the same test scenarios executing again to
make sure that the problem was solved.

6 Conclusion

The goal of this work is to propose a test framework that facilitates the use of
TDD for the development of non-deterministic algorithms. Some of the exist-
ing difficulties were to repeat exactly the same test cases flow that had failed
previously and to be possible to have the test running successfully only in some
executions. These difficulties are linked to the random decisions made during
the execution of these algorithms.

The use of the ReTest framework makes it possible to use TDD for this
type of algorithm, since it can repeat the same test several times and manage
the seeds in order to repeat the failed test scenarios. The example presented
in Sect. 5 showed how these functions can help us to follow the TDD flow to
incrementally develop these algorithms.

As future work, we will evaluate the use of this framework for the development
of a real non-deterministic algorithm using TDD. In addition, it is also intended
to conduct an experiment with several developers to evaluate if they can use
TDD in this way to develop such kind of algorithm.

References

1. Guerra, E., Aniche, M.: Achieving quality on software design through test-driven
development. In: Mistrik, I., Soley, R., Ali, N., Grundy, J., Tekinerdogan, B. (eds.)
Software Quality Assurance, pp. 201–220. Elsevier Inc., Amsterdam (2016)

2. Beck, K.: Test-Driven Development by Example. Addison-Wesley, Boston (2002)
3. Astels, D.: Test-Driven Development: A Practical Guide. Prentice Hall, Englewood

Cliffs (2003)
4. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14, 636–644 (1967)
5. Mackinnon, T., Craig, P., Freeman, S.: Endotesting: unit testing with mock objects.

In: Succi, G., Marchesi, M. (eds.) Extreme Programming Examined, pp. 287–301.
Addison-Wesley Longman Publishing Co., Redwood City (2001)

6. Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, objects. In: Com-
panion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, pp. 236–246. ACM (2004)

84 A.A.S. Ivo and E.M. Guerra

7. Beck, K.: Extreme Programming Explained. Addison-Wesley Professional, Boston
(2004)

8. Martin, R.: Agile Software Development, Principles, Patterns, and Practices. Pren-
tice Hall, Englewood Cliffs (2002)

9. Freeman, S., Pryce, N.: Growing Object-Oriented Software, Guided by Tests.
Addison-Wesley Professional, Boston (2009)

10. Beck, K., Gamma, E.: JUnit test infected: programmers love writing tests. In:
Dwight Deugo, pp. 357–376. More Java Gems (2000)

Validation Board: Invalidating Ideas
and Discovering the Problems that Must

Be Solved

Avelino F. Gomes Filho(B), Carlos F. Cardoso de Resende, Patrick S. Gazaneo,
Vinicius Bittencourt, Raphael Duarte Paiva, and Rodrigo de Toledo

Postgraduate Program in Informatics,
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

{avelino.filho,patrick.gazeano,vinicius.bittencourt}@ppgi.ufrj.br,
{cfc,rdpaiva}@ufrj.br, rtoledo@dcc.ufrj.com

http://www.ppgi.ufrj.br

Abstract. Project-Based Learning (PBL) is a teaching method used
in many Computer Science courses. To implement it, it is necessary to
choose good problems that will drive students’ learning. These prob-
lems have to instigate students interest, encourage collaboration and
help them to develop their knowledge of course-related topics. This paper
presents a case study that sought to verify how the Lean Startup Idea
Invalidation process applied with a Validation Board a business strategy
assessment tool may assist in the choice of significant problems. Ini-
tial results indicate that this method helps students discard bad ideas,
improve on the most interesting ones and choose products that are actu-
ally used by real users.

1 Introduction

Project-Based Learning (PBL) is a teaching method that promotes learning
through experience. It allows students not only to learn the contents of courses
but also to develop reasoning strategies for problem solving [1].

Unlike traditional teaching methods, in which the teacher conveys contents
of the course and the students receive them without much questioning, PBL
aims to engage students in the whole learning process, since the conception of
the problem that will drive learning until its conclusion [1,12].

For this method to be feasible, it’s necessary to determine the problem that
will drive learning, which will be solved by students through a project. Such
problems must have some characteristics: be challenging so that the students will
explore the content of the course to reach a solution; be compatible with the level
that the students are at; be open, with multiple paths to solution; be mutable
as students acquire knowledge to solve them; not let students know if they made
“the right decision”; generate interest and controversy that allow students to
question what they are learning; stimulate collaboration and reasoning; have
content related to the course [21].
c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 85–97, 2017.
DOI: 10.1007/978-3-319-55907-0 8

86 A.F. Gomes Filho et al.

Course-related concepts are researched, presented and discussed as it becomes
necessary to use them to solve part of the problem. The teacher facilitates learn-
ing so these concepts become necessary during the period [11].

Selecting these problems is not a trivial task. With that in mind, the teachers
of the Agile Methods for Software Development course of the Computer Science
program at the Federal University of Rio de Janeiro (UFRJ) have decided to
apply Lean Startup techniques, covering from the suggestions of possible prob-
lems, to the lean construction of products, and making them available to real
users.

This work describes the Idea Invalidation and Fail Fast techniques from Lean
Startup [20], applied by means of a Validation Board [22]. They can be used to
help teachers and students choose relevant ideas that provide driving problems
to PBL. It also presents an evaluation of this method.

Section 2 of this paper presents the theoretical framework, briefly describing
the main concepts related to this research and other contributions to the theme.
Section 3 describes the Validation Board, a tool used to invalidate ideas during
the course. Section 4 presents the product evaluation metrics used by students to
verify the users’ acceptance of the products made available. Section 5 describes
the method used in the research, its context and limitations. Section 6 presents
and discusses the results. Finally, Sect. 7 concludes this work and directs future
researches.

2 Theoretical Framework

2.1 Project-Based Learning (PBL)

The main objectives of PBL are increasing student engagement in the learn-
ing process and helping them develop a profound understanding of important
concepts for the community they are part of. It is based on Situated Learning
[13], in which students engage in problems they perceive as being important and
similar to tasks performed by professionals [12,15].

Beside the characteristics described in the introduction, the guiding ques-
tion (problem) should be feasible for students to investigate it and answer it,
meaningful to promote learning, important, not trivial, contextualized in the
real world, interesting and thrilling for students, and, above all, ethical [12].

Another relevant characteristic is that the method must follow a process sim-
ilar to scientific research and Agile Software Development. Students explore the
problems using new ideas, validating knowledge, producing results and exchang-
ing information the whole time. Collaboration supports the process of investi-
gating problems and builds the shared meaning of ideas [12].

2.2 Lean Startup

In our Computer Science course, one of the topics presented to the students is
Lean Startup. The objective is to help students develop the ability to synthesize,
apply, evaluate, discard and perfect solutions with the least possible effort [5].

Validation Board: Invalidating Ideas and Discovering 87

Lean Startup was created from concepts developed by Ries [20]. It combines
Agile Software Development with Client Development techniques and Toyota’s
Lean Production System, creating a strategy to develop products and services
using the least possible amount of resources [16].

According to Ries [20], startups have high propensity to fail. The author
writes that more important than developing a big plan that attempts to predict
all possible risks is to carry out short, iterative experiments, preferably involving
the target-audience directly. To the author, it is better that failures are identified
quickly (Fail Fast), because this means that the company did not spend much
time and money on something that would not work.

Besides failing fast, it is important to understand what went wrong. For Ries,
it is very important that the experiences always generate learning that can be
used to improve on a good idea and discard bad ones.

2.3 Related Work

In the literature it is common that the problems that will be solved by the
students in a PBL context are previously chosen by the teachers or an expert
[9,10,23]. However, some authors advocate that students should be involved
since the beginning of the project and the teachers should act as facilitators and
not as decision makers [8].

Münch [18] writes about the Validate Learning Cycle (Sect. 3) and the impor-
tance of development team discover the right problem before the project start.
The author do not describes any tool or strategy to help the implementation of
the cycle.

A contribution a little closer to the theme of this work is done by Pomper-
maier, Prikladnicki and Cauduro [19] describe how the use of Business Model
Canvas (BMC), another tool for business strategy verification and assessment,
can assist in the creation of startups. Like the present work, the authors stress
the importance of understanding the problem and how this relates to possi-
ble clients. They describe how assessment methods (Subsect. 3.2) using BMC
can help not only verify the usefulness of an idea, but also sell it to possible
investors.

Another relevant piece of research on this theme is the one carried out by
D’Alençon and Müller [3]. The authors studied the behavior of users of an
education-related startup and how Pirate Metrics (Sect. 4) can be used to help
companies make decisions. The results they obtained will be referred to when
discussing the present work.

3 Validation Board

In order to improve the experimentation and learning process, the Validation
Board [22] was conceived to help the implementation of the Validate Learning
Cycle [20] and avoid waste of time, effort and money.

88 A.F. Gomes Filho et al.

Fig. 1. Validation board. Source: [22]

The Validation Board consists in creating hypotheses about the problem, cus-
tomer and solution, and setting experiments to be run, as in the model in Fig. 1.
Through iterative experimentation, results about the validation or invalidation
of a hypothesis are obtained.

The information stored on the board should help the entrepreneur make
decisions. The following subsections describe how the Validation Board works in
more detail, explaining each part of the board.

3.1 Track Pivots

Track Pivots is the section in the Validation Board where the experiment’s
hypotheses are described. They take three perspectives into account. The first is
that the Problem exists (Problem Hypothesis). The second is that there are cus-
tomers affected by the problem (Customer Hypothesis). The third is that the idea
creates a solution for the customer to solve the problem (Solution Hypothesis).
In the first iteration, the client’s perspective is not filled out, because its goal is
to confirm that there are potential clients affected by the problem imagined by
the entrepreneur.

After the initial experiment, the pivoting stage begins. On the Validation
Board, a pivot occurs when a hypothesis is invalidated, that is, either the sup-
position does not correspond to reality or there are other companies promoting
very similar solutions. Some forms of pivoting are listed below [20].

Validation Board: Invalidating Ideas and Discovering 89

Zoom-in Pivot: what was initially imagined as the functionality of a product
becomes the product itself. Zoom-out Pivot is the opposite: the product with a
given functionality is expanded in order to respond to other customer needs.

Client Segment Pivoting: the product attracts real customers, but not the
ones imagined as the hypothesis in the customer’s perspective. In other words,
it solves a real problem, but needs to be placed in a different customer segment,
for which the product had not been initially conceived. Pivoting for What the
Customer Needs occurs when the customer’s feedback indicates that the solution
does not solve the customer’s problem in a satisfactory way. This type of pivoting
seeks to modify the solution so that it really solves the problem.

Business Architecture Pivoting is also possible. There are two main business
architectures: high margin with low volume, or low margin with high volume.
Another strategy can be Revenue Model Pivoting, which refers to the moneti-
zation or revenue model. Modifying the way in which revenue is generated can
be one of the success factors for a startup. Often, there is no problem with the
product developed or the proposed solution, but rather with the way in which
the customer is being charged for using the product/service provided by the
startup.

Technology Pivoting: sometimes, a startup finds a way to achieve the same
solution using a completely different technology. This is relevant if the new tech-
nology can offer better price and/or performance to improve the startup’s com-
petitiveness in the market where it operates.

3.2 Design Experiment

In the Design Experiment section are the experiments that will test the ideas.
This area is composed by the following boards: Core Assumptions, Riskiest
Assumption, Assessment Method, and Minimum Success Criterion.

The Core Assumptions are related to the assumption perspectives, and should
be validated through experiments. If they are invalid, the hypothesis must be
pivoted or the idea must be discarded.

Among all the core assumptions, it is critically important to identify the
Riskiest Assumption to be tested in the iteration. If this assumption is invalid,
it has the biggest probability of “breaking” the business. As in the scientific
process, a method is required to test the Riskiest Assumption. Some of the
methods are described below.

The Exploration method has the goal of gathering a large amount of data
about a given sector or customer, seeking to learn about the business. It can be
implemented by means of surveys or interviews.

The Pitch method seeks to validate customer hypotheses. At this stage, one
has an idea about how to solve the problem, and the goal is to find out whether
the customers are willing to use it. The method consists of presenting the pro-
posed idea to solve a problem via a short video or a brief presentation, and
receiving customer feedback.

Minimum Viable Product (MVP) is the product built with the minimum
amount of functionalities that is able to assess the assumption being tested.

90 A.F. Gomes Filho et al.

When the evaluator builds the MVP, creating a way to gather usage metrics for
the product and customer feedback is essential. A variation of this method is
MVP Concierge, in which only the interface is built, while all of the back-end,
which seems to be automatic, is actually run by people.

Regardless of the method, it is important to define the Minimum Success
Criterion, which is the minimum value that must be obtained in the experiment
for it to be considered valid. This number is an expectation based on market
information. For example, it could be the number of users using the product, or
the number of downloads. Predetermining the criterion avoids self-sabotage with
Vanity Metrics, that is, believing that an unsatisfactory performance is able to
validate an assumption [16,20].

3.3 Results

After defining the hypotheses, assumptions, method and goal, one must “get
out of the building” and carry out the experiment. The last part of the board
is for Results. At every iteration, the evaluated assumptions are recorded and
classified as validated or invalidated.

4 Product Usage Metrics

When the first version of the product is made available, it is important to col-
lect metrics in order to know if it is actually being used, and how the customers
behave in relation to the product. For companies that develop software made
available through the internet, such as websites, portals and Software as a Ser-
vice, an interesting metrics for the product is AARRR [17].

Also known as Pirate Metrics, AARRR is an acronym for the stages cus-
tomers go through when using a product. It stands for: Acquisition, indicating
that the user reached the product for the first time. The user could sign up or
start to use it right away. It is considered as usage when the user accesses some
pages and uses the services for a few minutes without leaving it. Activation indi-
cates that the user is returning to the website or service to use it. S/he visits
more than one page or remains on the website for a long time. Retention occurs
when the customer continues using the service for weeks or months. Referrals is
when the customer, besides using the product, starts to recommend it to other
people by e-mail, posts, messages, etc. and new users start using it as a con-
sequence of those referrals. Finally, Revenue indicates how much the customer
pays for using the service or to acquire the product.

These metrics behave similarly to a funnel, in the sense that many users
go through the acquisition stage, but few acquisitions become revenue. The last
column in Table 2 shows the estimations made based on McClure’s [17] empirical
experiments on the expected behavior of these metrics.

Validation Board: Invalidating Ideas and Discovering 91

5 Research Method

5.1 Context of the Research

The Agile Methods course is offered as an optional course at the Computer
Science program of UFRJ’s Computer Science Department. It is a 4-credit course
with 60 h of class. It has duration of one semester and has been offered once a
year since 2011 [5,7].

On the second class of the course, the students are invited to propose ideas
through a brainstorming session for projects they will develop during the term.
For each proposal, the students must describe the problem the product will solve
and who the target audience will be. Then, the students are divided into groups
of two or three. Each group of students chooses the ideas they wish to invalidate
during the two following weeks.

After the students apply idea invalidation via the Validation Board, they
present the filled out Validation Board, describing what they have assessed,
how they did it, the pivots performed, and the results. The invalidated ideas
are discarded, and the validated ones follow to the selection process. Here the
students are invited to evaluate and choose only three problems, which will be
turned into projects and used to learn Agile Methods for the rest of the term [5].

During the term, the students build the product and learn concepts related
to Agile Methods. At the end of the term, they make their products available to
real users and collect metrics related to software usage [5,7].

5.2 Question and Assumptions

This research project intends to verify how the Idea Invalidation process through
the Validation Board helps students choose real and relevant projects, which are
able to promote the learning of Agile Methods. Its goal is to carry out initial
analysis on how the Validation Board helps students find significant problems
so that PBL can be used to teach Agile Methods.

The assumptions that help answer the research question are: A1: the Valida-
tion Board is able to invalidate bad ideas before the start of software implemen-
tation. A2: the Validation Board helps modify original ideas through pivoting.
A3: when ideas are implemented and made available via software for poten-
tial customers, these ideas are indeed used by these customers. A4: students
feel motivated with the problem they are solving and with the project they are
building.

5.3 Method

The method chosen was Case Study [4]. The data collection method was divided
into three parts. The first part refers to the beginning of the course, when the
students used the Validation Board to invalidate ideas. The second part of the
evaluation is Metrics Collection, as described in Sect. 4. This collection takes two
weeks and is carried out after the product is made available for real users and

92 A.F. Gomes Filho et al.

before the start of the holidays. The metrics are part of the students’ evaluation.
Finally, a form is sent out to all students to hear about their view of how the
strategy is used.

Three classes were selected to take part in this study: 2014.1, 2015.1 and
2016.1. During these terms, the classes were followed by 15 observers: seven in
2014, four in 2015 and four in 2016. Two of these were present in all classes
studied.

Moreover, a group of two students was selected to develop their end-of-course
assignment using the Validation Board to choose the product they would develop,
as a requirement for graduating. Differently from the Agile Method classes, this
group had one year to develop the assignment, during which time they had to
write a monograph and present their work to a panel. This group was monitored
by two researchers for the length of their work.

The Validation Board Use stage sought to assess assumptions A1 and A2. To
do that, the observers monitored the students during the brainstorming session
and the presentation of the Idea Invalidation result. The following variables were
observed: total number of students, number of 2-student groups formed, number
of 3-student groups formed, number of ideas presented in the brainstorming
session, number of ideas invalidated, and average number of pivot operations
performed per group.

In the Metrics Collection stage, the observers assessed the Pirate Metrics
(Sect. 4) seeking to verify assumption A3. In the initial planning, it was expected
that the 9 groups formed in the course, three in each class, produced data that
could serve as input for the research. This was not possible, though. Two groups
in the 2014 class did not collect metrics adequately. One of the 2015 projects
had as target audience the restricted group of restaurant managers. In the same
class, one of the groups decided to develop a hardware and software product,
and could not make it available for users [6]. In the 2016 class, the three projects
were impacted by a shorter academic term because of the 2016 Rio Olympic
Games.

Therefore, two groups participated in the study: a group that developed
Caronas in 2014.1, and a group that developed Concurseiros in 2015.1. The
first is a website through which UFRJ students, teachers and employees can
arrange car rides to commute to and from the university. Concurseiros is a
website for people who take standardized tests for public jobs in Brazil, who can
enter their grades and create a non-official ranking as soon as the official answers
are published.

This evaluation stage also included the team that was developing the end-of-
course assignment, which developed CookNow, a website with inverted recipes
that helps people learn new recipes based on the ingredients they have at home.

The results were collected via Google Analytics (https://analytics.google.
com). Since none of the projects was selling a product or service, the Revenue
stage was not assessed. The group responsible for Caronas was unable to collect
metrics related to Referrals.

https://analytics.google.com
https://analytics.google.com

Validation Board: Invalidating Ideas and Discovering 93

Finally, in relation to assumption A4, on students’ perception of the use of
the Validation Board, survey forms were sent out to all students. Apart from
asking students to identify their term, the form included the questions described
in Sect. 6.

5.4 Limitations

The issues with data collection described in Subsect. 5.3 represent a limitation
to the historic validity of the research, since the analysis of initial data was
later reduced in face of unforeseen interference [2]. Because the students have to
learn about Agile Methods during the course, they have a limited time to use
the Validation Board, which restricts the number of invalidations and discarded
ideas.

Moreover, because this is a social study done in specific contexts, the gener-
alization of its results is limited. Specific elements, such as the class, the teacher,
the researchers and the location make the procedure as well as the study results
very specialized [4]. The forms sent out are limited because it is impossible to
assist the responder, to know how the responder will interpret the questions, and
there is no guarantee that the form will be returned [4].

6 Results and Discussion

Table 1 presents the results obtained during the first stage of the study.

Table 1. Results of idea invalidation using the validation board

Variable Class Assignment

20141.1 2015.1 2016.1

Total students 19 20 20 2

2-student groups 2 2 1 1

3-student groups 5 4 6 −
Number of ideas presented in brainstorming 27 21 29 2

Number of ideas invalidated 20 15 25 1

Average of invalidated ideas 74,07% 71,43% 86,21% 50%

Average number of pivot operations
performed by groups of 3 or groups of 2

0,7 0,98 1,3 4

The results collected in the first stage and presented in Table 1 show that the
students were able to discard many ideas. The groups discarded up to 71% of the
ideas they had suggested in the brainstorming session. These discards happen
because hypotheses are invalidated: the potential client does not really have the
problem imagined; there are existing tools to solve the problem; the number of
potential customers is too low; the solution is too complex, among others.

94 A.F. Gomes Filho et al.

The number of pivot operations helps describe the extent to which the stu-
dents were able to use Idea Invalidation to improve the original idea presented
in the brainstorming session. The results are relatively low. During the presenta-
tions, some students reported that they did not have enough time to invalidate
some ideas. However, it can be noticed that the team working on the end-of-
course assignment, which had more time, was able to pivot more and improve
on the original idea. This corroborates the restriction indicated in Subsect. 5.4.

Table 2 presents the results of the second evaluation stage. On this table,
the last column presents the estimations ranges from McClure’s experiments
(Sect. 4) in order to better discuss the results. It must be noted that the products
were promoted by the students through different strategies, which likely affected
the number of acquisitions they achieved. Caronas was promoted in discussion
groups and Facebook pages used by the university students. Concurseiros was
promoted through posts in websites dedicated to the topic and in test locations
where the selection exams for the Brazilian Marines took place in May of 2015.
CookNow was promoted through two campaigns using Facebook Ads (https://
ads.facebook.com) and posts on student groups in social networks.

Table 2. Results of metrics collected after product implementation

Stage Caronas Concurseiros CookNow McClure’s estimation

Users % Users % Users % %

Acquisition 1542 71 3121 77, 04 5139 81, 23 70

Activation 109 7,07 549 17, 59 798 15, 52 2 a 5

Retention 18 1,17 63 2, 02 217 4, 22 2 a 3

Referral − − 18 0, 57 114 2, 21 1 a 2

Regarding the metrics collected, we can see that the ideas and the products
built by the students were well accepted by part of the users. In the Activa-
tion and Retention stages, the averages of all products were above McClures
[17] estimations. In relation to the Referral stage, it is likely that the promo-
tion of CookNow through Facebook and Facebook Ads significantly increased
the number of referrals. Compared to the figures collected by D’Alençon and
Müller [3], the numbers obtained in the stages are relatively lower: Activation
(18.57%), Retention (11.98%). However, their research involved a real startup
which, at the time, had more than 10 million accesses and had received financial
investment. Even so, the Activation percentages are close to the ones obtained
by Concurseiros and CookNow.

Table 3 presents the results of the forms collected. They were sent out to
the 59 students that took the three courses, and were filled out by 27 of them
(45.76%). From these, 7 are from the 2014 class, 13 are from the 2015 class, and
7 are from 2016. The questions were: (Q1) The Validation Board was able to
help me invalidate ideas; (Q2) The Validation Board was able to help me pivot

https://ads.facebook.com
https://ads.facebook.com

Validation Board: Invalidating Ideas and Discovering 95

Table 3. Results of the survey filled out by the students

Question Strongly agree Agree Indifferent Disagree Strongly disagree

Q1 10 16 0 1 0

Q2 9 15 2 1 0

Q3 12 10 3 2 0

Q4 11 15 0 0 1

Q5 10 7 5 5 0

ideas; (Q3) The problem we solved through the project was encouraging; (Q4)
I was able to learn Agile Software Development Methods through the project;
and (Q5) If I could, I would give continuity to the project. All of the options
followed the Likert scale [14].

Looking at the results, we can see that the respondents perceived the Valida-
tion Board as a tool that helped them discard ideas (96.30%) and saw the tool as
something that can help them improve their ideas (88.89%). They observed that
the problem they chose was encouraging (81.48%) and that the project helped
them learn the content of the course (96.30%). Also, more than 62.96% of the
students would like to continue their work.

7 Conclusion and Future Work

This work intended to verify how Idea Invalidation using the Validation Board
can help select problems to be used in Project-Based Learning. Besides PBL, it
also presented concepts related to Lean Startup, Validation Board and Software
Use Metrics, specifically the Pirate Metrics.

Through the case study carried out, we were able to verify that the tool seems
to help discard ideas that are not relevant (A1) and help choose those that solve
problems perceived by real users (A3). The students felt that invalidating ideas
via the Validation Board helped them choose an encouraging problem which
they appreciated as part of the learning of Agile Methods (A4). Given the lack
of other studies for comparison, the short time available, and the impact that
the time variable may have had on idea improvement through pivoting, it was
not possible to verify the validity of (A2).

This study will benefit from further research with future classes, especially
giving more emphasis to metrics collection. It would also be interesting for some
of these projects to continue being developed, in order to verify whether using
the Validation Board produces better results with time. Moreover, applying this
study outside of the academic context, in real startups, would be a further con-
tribution.

96 A.F. Gomes Filho et al.

References

1. Blumenfeld, P.C., Soloway, E., Marx, R.W., Krajcik, J.S., Guzdial, M., Palincsar,
A.: Motivating project-based learning: sustaining the doing, supporting the learn-
ing. Educ. Psychol. 26(3–4), 369–398 (1991). http://dx.doi.org/10.1080/00461520.
1991.9653139

2. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-Experimental Designs for
Research. R. McNally, Chicago (1966)

3. D’Alençon, C.P.P., Müller, C.J.: Modelo de medição de desempenho para startup
de saas: um estudo sobre a aplicação do modelo aarrr. Lume/UFRGS 1(1), 1–24
(2015)

4. Gil, A.C.: Estudo de Caso: Fundamentação Cient́ıfica, Subśıdios Para Coleta e
Análise de Dados e Como Redigir o Relatório. Atlas, São Paulo (2009)

5. Gomes Filho, A.F.: Modelo de Ensino baseado nos Métodos Ágeis de Desenvolvi-
mento de Software. Informática, Universidade Federal do Rio de Janeiro, Rio de
Janeiro (2016)

6. Gomes Filho, A.F., de Resende, C.F.C., Iglesias, C.A.F., Mayworm, J.G., Jardim,
M.E.O., Paiva, R.D., de Toledo, R.: Agile software development learning through
open hardware project. In: Proceedings of the 6th Workshop Brasileiro de Métodos
Ágeis, pp. 1–8. IEEE, New York (2015)

7. Gomes Filho, A.F., de Resende, C.F.C., de Toledo, R.: Usando métodos ágeis para
ensinar métodos ágeis. In: Anais do 5 Workshop Brasileiro de Métodos Ágeis, pp.
1–12. INPE, São José dos Campos (2014)

8. Helle, L., Tynjälä, P., Olkinuora, E.: Project-based learning in post-secondary edu-
cation - theory, practice and rubber sling shots. High. Educ. 51(2), 287–314 (2006).
http://dx.doi.org/10.1007/s10734-004-6386-5

9. Herreid, C.F., Schiller, N.A.: Case studies and the flipped classroom. J. Coll. Sci.
Teach. 42(5), 62–66 (2013)

10. Hmelo-Silver, C.E.: Problem-based learning: what and how do students learn?
Educ. Psychol. Rev. 16(3), 235–266 (2004)

11. Kolb, D.A., Boyatzis, R.E., Mainemelis, C.: Experiential learning theory: previous
research and new directions. In: Sternberg, R.J., Zhang, L. (eds.) Perspectives on
Thinking, Learning, and Cognitive Styles, pp. 227–248. L. Erlbaum Associates,
Mahwah (2001)

12. Krajcik, J.S., Blumenfeld, P.C.: Project-based learning. In: The Cambridge
Handbook of the Learning Sciences, pp. 317–334. Cambridge University Press,
Cambridge (2006). Chap. 19

13. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press, Cambridge (1991)

14. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140),
55 (1932)

15. Mahnic, V.: Teaching scrum through team-project work: students’ perceptions and
teacher’s observations. Int. J. Eng. Educ. 26(1), 96–110 (2010)

16. Maurya, A.: Running Lean: Iterate from Plan A to a Plan That Works. O’Reilly,
Sebastopol (2012)

17. McClure, D.: Validation board. http://500hats.typepad.com/500blogs/2007/06/
internet-market.html (2007). Acesso 29 July 2016

18. Münch, J.: Evolving process simulators by using validated learning. In: Proceedings
of the International Conference on Software and System Process, pp. 226–227.
IEEE Press (2012)

http://dx.doi.org/10.1080/00461520.1991.9653139
http://dx.doi.org/10.1080/00461520.1991.9653139
http://dx.doi.org/10.1007/s10734-004-6386-5
http://500hats.typepad.com/500blogs/2007/06/internet-market.html
http://500hats.typepad.com/500blogs/2007/06/internet-market.html

Validation Board: Invalidating Ideas and Discovering 97

19. Pompermaier, L., Prikladnicki, R., Cauduro, F.: Startup garagem: Um programa
de desenvolvimento de empreendedores. In: Anais da 25 Conferncia ANPROTEC,
pp. 1–15. Cuiabá (2012)

20. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

21. Stanford University: Problem-based learning. Speaking Teach. 11(1), 1–8 (2001).
http://www.ncbi.nlm.nih.gov/pubmed/22139779

22. The Startup Machine: Validation board. https://www.leanstartupmachine.com/
validationboard/ (2014). Acesso 24 July 2015

23. Tran, S.T., Le Ngoc Thanh, N.Q.B., Phuong, D.B.: Introduction to information
technology. In: Proceedings of the 9th International CDIO Conference (CDIO)
(2013)

http://www.ncbi.nlm.nih.gov/pubmed/22139779
https://www.leanstartupmachine.com/validationboard/
https://www.leanstartupmachine.com/validationboard/

IBM Design Thinking Software Development
Framework

Percival Lucena(B), Alan Braz, Adilson Chicoria, and Leonardo Tizzei

IBM Research, Sao Paulo, Brazil
{plucena,alanbraz,acjardim,ltizzei}@br.ibm.com

Abstract. The importance of understanding end user needs and involv-
ing them in the software development process is well known in software
engineering. Agile Software Development methodologies have incorpo-
rated user feedback in different ways. User stories should represent the
needs of a user, but often express the views of the Product Owner or the
software development team. Several works have investigated integrating
User Centered Design into Agile Software Development to satisfy end
user needs. This work proposes a different approach focused on satisfy-
ing end user needs employing Design Thinking iterative software devel-
opment. This methodology was applied in five real software development
projects which have been analyzed as part of this work.

Keywords: IBM Design Thinking · Agile Software Development ·
Scrum

1 Introduction

Agile Software Development (ASD) has improved software delivery process
through the use of short and fast iterations. By simplifying software engineering
practices agile methodologies were able to achieve a higher success rate than
traditional waterfall projects [1]. The Agile Manifesto emphasizes the collabo-
ration with customers, but its approach does not guarantee that the software
development team will work towards solving the correct problem [2].

Software development projects have a higher chance to solve the right prob-
lem when focused on satisfying users needs [3]. Agile methods including Scrum
have already tried to follow this approach by incorporating user feedback as part
of the requirement process. Cohn [4] has introduced a Customer Team that per-
forms brainstorming sessions to write user stories that capture all the facets of
user needs. The author also proposes to adopt observation techniques, conduce
user interviews, apply questionnaires, create personas and develop user interfaces
prototypes.

Although user stories can help understand the problem that needs to be
solved, several agile development projects adopt a simpler requirements gather-
ing process defined by a single Product Owner (PO) who might represent the
view of different project stakeholders but not necessarily the end-users needs,
c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 98–109, 2017.
DOI: 10.1007/978-3-319-55907-0 9

IBM Design Thinking Software Development Framework 99

desires and aspirations. Under these conditions, the developer team implements
a limited solution for the problem described at the Product Backlog [5].

Design Thinking (DT) [6] offers an innovative way of thinking based on diver-
gence and convergence around the real users in order to understand their inten-
tions and motivations and how to tackle everyday problems. This collaborative
way of work allows empowered development teams to make better decisions,
quickly test ideas with the user including feedback as a fundamental piece of the
solution process.

IBM Design Thinking [7] extends the original DT method providing a new
approach to write requirements, organize teams, and track project progress
including end-user feedback during all the project development phases. A prob-
lem for the reader willing to learn about IBM Design Thinking is that most
information about it is scattered over various documents and videos. Further-
more, neither these documents and videos nor existing DT literature qualita-
tively assesses the usage of IBM Design Thinking as software development frame-
work. The two main contributions of this paper are the following: (i) to provide
a compact and easy-to-access description of IBM Design Thinking and its dif-
ferences to DT; (ii) to assess strengths and limitations of using IBM Design
Thinking as an ASD based on a survey with developers and designers of five real
software development projects.

The rest of this paper is divided as follows: Sect. 2 presents an introduction to
Design Thinking. Section 3.1 presents IBM contributions to DT as an software
development framework. Section 4 presents a survey about projects that have
adopted IBM Design Thinking SDF. Section 5 presents related works. Section 6
presents a brief discussion of the survey results. Finally, Sect. 7 presents conclu-
sions and future work.

2 Background: The Design Thinking Process

According to Brown [8], Design Thinking is a methodology applied by project
teams for innovation activities focused on satisfying user needs. DT is an abstrac-
tion of the mental process used by designers to create new ideas.

The analytic process pursued in science explores a solution for a given prob-
lem. DT approach allows exploration in both problem and solutions. The process

Fig. 1. Design Thinking Process - Adapted from [10]

100 P. Lucena et al.

requires diverging on many possible solutions and converging on a focused direc-
tion. Diverging phases such as Empathy and Ideate, diverge the problem space,
while Understand, Prototype and Test phases converge to a solution. Figure 1
shows the main phases of the DT process.

Understand Phase: The first phase of DT process consists of the Empathy
mode, a set of activities to help to understand the users, within the context of
their problems. The first activity to be executed consists in observing how users
interact with their environment. Scenarios are observed through user perspec-
tives in order to capture the context of the project and understand user physical
and emotional needs. Engaging with users through interviews and questionnaires
provides a deep understanding about what they think and feel. The information
gathered could be later translated into insights and ideas to solve user needs [9].
The Define mode of the process brings clarity and focus to the design space. Its
goal is to craft a meaningful and actionable problem statement. The informa-
tion gathered is then analyzed and summarized using tools such as personas and
empathy maps.

Explore Phase focus on the generation of new ideas in order to avoid obvi-
ous solutions and thus increase the innovation potential. Brainstorming is a
common technique used in this phase that offers diverging thoughts in a way to
explore new ideas and solutions. The intention of brainstorming is to leverage
the collective thinking of the group, by engaging with each other, listening, and
building on other ideas [6].

Prototype Phase is the iterative generation of artifacts intended to answer
questions to solve the design problem. Prototypes in DT are generally mock-ups
that support the elaboration and evaluation of product concepts with the goal of
finding out which ways are right or wrong. The goal of the prototype phase is to
validate the ideas proposed during the Explore phase. The scope of a prototype
should be limited. Storyboards can be used to develop scenarios [10].

Evaluate Phase solicits users for feedback about the prototype created.
User Experience (UX) evaluation techniques could be used to test the prototype.
Micro-tests are a common approach to evaluate prototypes online. The time
available for recruiting end users, performing the tests, and for analyzing and
reporting the test results is usually very short, but it provides quick responses
for the development teams [11].

3 IBM Design Thinking Software Development
Framework

The stated goal of industrial manufacturing processes is to achieve repeatability
to minimize uncertainty. It can be implemented with well-defined specifications
and acceptance criteria, robust and dependable tooling, and economies of scale.
In a world of industrial manufacturing processes, this separation of design from
engineering was considered desirable.

IBM Design Thinking Software Development Framework 101

Fig. 2. IBM Design Thinking compared to traditional Design Thinking

Nevertheless software is built in the medium of code. Because of the uncer-
tainty of the medium, software design and software engineering are intrinsi-
cally linked, codependent activities. While traditional DT often separates design
from implementation, software demands close-knit, collaborative relationships
between designers and engineers. Without including software engineers as a part
of design the design team, a software project is likely to fail.

IBM Design Thinking Software Development Framework goal is to extend
DT principles so they be applied to develop software that captures user needs
at the speed and scale required for fast pace incremental software development
such as on Cloud based software. While it shares some similarities with other
Design Thinking methods, it has a few modifications, including three practises
that are unique to the framework: Sponsor users, Playbacks and Hills [12]. The
integration of those practises to Design Thinking are shown in Fig. 2.

3.1 IBM Design Thinking Roles and Workflow

The IBM Design Thinking defines three major roles with different set of respon-
sibilities. The Product Manager is responsible for understanding the market
opportunity and defining the product release. He is responsible for the project
kick-off, defining and recruiting Sponsor Users, and defining the playback strat-
egy. The Designer is responsible for the user experience and functional design.
She is engaged in developing design artifacts, mock ups, user research and the
design sprint plan. The engineering team is responsible for the technical design
and implementation of the release. They are in control of project architecture
and executable code, prototype and the technical sprint plan.

IBM Design Thinking Software Development Framework activities are
divided into two main phases. The Visioning Phase is responsible to develop
software requirements through the use of several Design Thinking practises that
combines user personas, empathy maps, hills and story maps. The Delivery Wave
consists of software development Sprints conduced by multidisciplinary teams
that includes Sponsors Users, who contribute with constant feedback about the

102 P. Lucena et al.

Fig. 3. IBM Design Thinking Software Development Framework

delivered artifacts. Figure 3 illustrates the workflow of a sample IBM Design
Thinking project.

3.2 Hills

Hills introduce a new way to express users needs into project requirements.
Each individual Hill articulates a clear goal and containable scope defined to
be achievable in one release or in a finite set of releases. A Hill must be writ-
ten to meet a specific, clearly-defined user problem that is informed by user
research. Although the Hills are written from the customer’s perspective, they
also emphasizes important intersections between user expectations and business
requirements. Hills are composed of three elements: a who that describes a user
or a specific group of users; a what that describes a problem that needs to be
solved; and a wow a measurable target for the Hill completion [7]. Table 1 illus-
trates a sample Hill.

Complex Hills can be decomposed into Sub-Hills. Those should be cohesive
such as if released independently, providing value on its own. Sub-Hills can be
further detailed by scenarios which provide perspectives of different Sponsor
Users. A Foundation Hill is a set of hills that represent the Product backlog for
a Iteration. In order to keep fast iterations, one should not select more that three
hills for each Foundation Hill [13].

Table 1. Sample hill

Who A sales leader

What Can get insights from a specific market region

Wow By receiving consolidated data information from all available sources

IBM Design Thinking Software Development Framework 103

3.3 Sponsor Users

User archetypes like personas can represent only part of understanding user needs
[14]. Participation with real users provides the remaining insights to improve
user experience. A Sponsor User is a real human being who can share his or
her experiences and point of view. Sponsor users can be selected among existing
users of a product, or potential users for a new product. A good practice consist
of selecting users who have extreme point of views and thus can contribute with
non-trivial insights. Sponsor users will have a role somewhat similar to a PO on
Scrum process, but will act by providing individual information about their real
needs.

A Sponsor User makes a significant commitment of time. They will be
involved in all product development phases. Sponsor Users will be interviewed by
Product Management and Design team members early on in the project. They
will also participate throughout the release process to review artifacts like Hills,
Design prototypes, and project deliverables.

3.4 Playbacks

Playbacks are checkpoints when the project team and Sponsor Users meet in
order to review the state of the project and plan next steps. Playbacks are a
safe space to provide and receive feedback. Playbacks occurs at the end of each
project development phase and have different goals.

Business Goals Playback establishes an initial market point of view and pre-
liminary business case. The purpose of this meeting is to understand the users
through user research practices, defining the main user needs and identifying
Sponsor Users who will be able to develop the project Hills.

Hills Playback are a set of meetings involving the product team and Sponsor
Users whose goal is to align on the three primary Hills of a release, or set of
releases. The first Hill meeting should define the release strategy specifying the
major Hills and their relationship in the product Roadmap. By the end of the
Hills Playback meetings the team should be able to make a rough order-of-
magnitude estimate of work to determine whether it can delivered within the
time and resource constraints.

Playback Zero happens just before the hardcore delivery work begins. It is
a time for the whole team and broader stakeholder community to commit to
the user experience for the product. This meeting aligns the team around the
finalized version of the Hills and the user experience to achieve them. Playback
zero should use a Customer Journey Map [15] to provide a diagram of the Hills
from an individual’s perspective of his experience with the service or product
which is being developed.

Hills are implemented in timebox iterations. A self-reliant multidisciplinary
team is organized to implement each hill. During Playback Zero, the Product
Manager defines a certain number of hours that could be invested on each Hill.
Teams are fully empowered to achieve the Hills, within their investment parame-
ters, and make the trade-offs required to hit the marks. A successful Playback

104 P. Lucena et al.

Zero should end with the team and stakeholders in agreement on the commit-
ment to deliver each Hill.

Delivery Playbacks are meetings among the product development team and
the Sponsor users to demonstrate a real working solution for a Hill. In cases
where the proposed solutions do not match with technical feasibility, design and
engineering team members collaborate to achieve feasible solutions. At the end of
the Delivery Playback, the team should decide on whether to release the project
to real users. Once the software is released, those users can be observed providing
course-corrections as early as possible.

4 Design Thinking Survey

We have conducted a survey on how IBM Design Thinking was applied in real
software development projects at IBM. The goal of our survey was to understand
how those teams have applied DT on their projects by (i) identifying the practices
adopted; (ii) identifying the project structure and phases and; (iii) understanding
the project results achieved. This survey was designed based on the guidelines
defined by [16] and it is cross sectional as participants were asked for information
at one fixed point, which in this case was a two-week period.

We have created a questionnaire with open and closed questions, which was
self-administered and is available at http://bit.ly/2a3qRr0. We have asked ten
Product Managers and Software Architects responsible for software develop-
ment projects to provide accurate information regarding IBM Design Thinking
Framework usage on their projects. The sample of participants was chosen by
convenience, since IBM Design Thinking is relatively new and thus few projects
have used it. Table 2 provides a summary of the information gathered from the
five survey responses received.

4.1 Design Thinking Survey Results

According to the ScrumAlliance’s 2015 State of Scrum Survey the highest busi-
ness priority for Scrum projects is to fulfill users needs [17]. Based on our survey
responses, the extra effort spent on Design Thinking Visioning Phase has helped
all the teams to have a deeper understanding of the problem to be solved. The
Product Managers have reported that most of the end users confirmed that the
solution delivered was valuable and satisfied their usage needs. We assume the
time spent on Design Thinking Visioning Phase contributes positively to improve
ASD goals and delivery results.

We have noticed that the up-front work phase on IBM Design Thinking
projects were usually longer than other ASD projects. Nevertheless the percent-
age of time spent on Design Thinking Visioning Phase was smaller than 30%
for all projects except for Project 1. The number of Sponsor Users involved did
not influence the percentage of total project time spent on Visioning Phase as
shown in Fig. 4.

http://bit.ly/2a3qRr0

IBM Design Thinking Software Development Framework 105

Table 2. Design Thinking Survey summary

Problem description: Enterprise sales were not fully automated depending
on spreadsheets and emails. The goal of the project was to develop an
Enterprise portal for the customers of a telecommunication company

DT usage: The project team has selected 6 Sponsor Users among the 3
biggest customers of the new portal. During 5weeks, Sponsor Users were
observed and interviewed. The project team developed empathy maps, as-is
scenarios and identified major pain points and opportunities. The Sponsor
Users helped to identify 3 Hills for the product development. The project
team developed low-fidelity prototypes and Sponsor Users performed user
testing. A multidisciplinary team composed of 6 persons including software
engineers and designers detailed and developed the Hills sequentially in
6 weeks, with 2 intermediate milestones until the final product release

P
ro

j1
:
sa

le
s

p
o
rt

a
l

Results: The Sponsor Users were involved in Delivery Playbacks
participating in all product demonstrations. They have provided useful
feedback, assuring the Hills satisfied their needs. The product released
included the minimum viable product that attended Sponsor Users needs
and was delivered faster than similar projects

Description: Backup and system maintenance were very complex tasks that
required special training for the users

DT usage: A few beta users of the existing product were selected as
Sponsor Users for the new product release. Since those users were not
available frequently, the project team has developed personas to represent
them. The team wrote 3 Hills for the storage administrator persona. Delivery
playbacks originated 2 beta releases. Sponsor Users revised the terminology,
helped adjusting workflows, added messages, and changed panel texts

P
ro

j2
:
b
a
ck

u
p

to
o
l

Results: The new release allows users to learn about the product without
leaving the GUI, which keeps them engaged when installing and using the
product. Support help desk tickets have dropped more than 50%

Description: The goal of the project was to create a mobile application for
caregivers. The application should help professionals to manage schedules,
keep information about elderly patients and deal with health plans
paperwork

DT usage: The project started with a Market Playback iteration. The
Product Manager and a team composed by 25 dispersed members
established a vision for the product based on user research. The team has
selected 8 Sponsor Users including care workers from different customers and
partners organizations. During the Hills Playback the team created empathy
maps, story boards and as-is scenarios in order to understand the users.
Playback Zero defined Caregivers’ Hills as a first release and Child welfare
workers’ Hills as a second product release. The product was developed in
12 weeks through 4 iterations

P
ro

j3
:
h
ea

lt
h

ca
re

p
ro

v
id

er
a
p
p

Results: Sponsor User feedback helped a geographically disperse team to be
aligned to a single product vision. The team was focused on Sponsor Users
feedback and was able to deliver a product faster than other distributed
Agile teams in the company

106 P. Lucena et al.

Table 2. (Continued)

Problem description: System administrators liked to use a legacy
command line tool, but did not have access to the logging information
needed to perform their work

DT usage: The project has spent 5 months on planning phase recruiting 16
Sponsor users who provided more than 162 hours of feedback. The project
stakeholders expressed their needs into 10 hills. After the prioritizing phase,
3 Hills that represented the most important pain points were selected for the
Foundation Hill. Next, the project team worked during 11 iterations
producing 2 intermediary beta releases until the final product release

P
ro

j4
:
A

IX
h
ig

h
av

a
il
a
b
il
it
y

Results: Users were excited with the new web based console because the UI
was intuitive and it helped System Administrators to solve their most
important daily problems without the need of contacting support

Problem description: In order to receive visitors in the company,
employees had to access a cumbersome legacy database, making hard to
arrange visits while out of the office. A new mobile application was
developed to simplify the process

DT usage: The project multidisciplinary team was composed by 7 software
engineers and 2 designers. Two sponsor users were recruited among the
application population and had defined 2 Hills in a process that took 3 weeks
until Playback Zero. The software development adopted 1week iterations
and took 8 weeks until the final application release

P
ro

j5
:
v
is

it
o
rs

a
p
p

Results: All the surveyed users were very pleased with the mobile
application that was released in the company internal application store. New
visitors could be scheduled in a few seconds saving time for all the
application users

Participants from Project 1 and Project 3 mentioned that managing Sponsor
Users took them several hours every week. Since some of the Sponsor Users could
not be available on the product demonstration sessions the teams have decided to
record videos so they could receive feedback asynchronously afterwards. All the
project teams surveyed agreed that Sponsor Users brought important insights
for the product development.

5 Related Work

User Centered Design (UCD) and ASD share a common focus on users and
customers. The two methodologies diverge on how to organize teams and the
need for upfront project and design. UCD encourages the team to understand
their users before the start of the product development, while ASD methods like
Scrum and Extreme Programming are usually against an up-front investigation
and documentation [18].

Common approaches to incorporate UCD in Agile methods include creating
UX tasks as part of User Stories and set up a parallel Sprint so design teams

IBM Design Thinking Software Development Framework 107

Fig. 4. IBM Design Thinking percent of time spent on Visioning Phase vs total time
project duration vs number of Sponsor Users

can work one Sprint ahead of development teams [19]. Those approaches restrict
user feedback since users are not directly involved in the software development
process [20]. In order to improve end-user collaboration new Agile methodologies
based on DT principles have been proposed including Lean UX, Design Sprints
and IBM Design Thinking.

Lean UX is a fast user-centered software development framework based on
principles from DT, ASD and Lean production. The Lean UX process aims to
produce as quickly as possible and with the minimal resources a product that
satisfies customer needs [21]. The development targets are specified at the start
of each iteration. The iterative process begins by defining the assumptions and
the problem. Then solution hypothesis are created for proto-personas. Next,
sketching and ideation exercises produce a prototype that is further detailed
on the following iterations to create a MVP (Minimum Viable Product). User
micro-testing and interviews takes place every week when user representatives
review the MVP [22].

IBM Design Thinking and Lean UX are both based on Design Thinking
principles but differ on how to implement the process. Besides using personas,
IBM Design Thinking incorporate Sponsor Users who provide feedback defining
requirements Hills and also provide feedback and user testing during Delivery
Playbacks.

Knapp [23] propose to create a Design Sprint to define strategic goals and
define the product scope before the team starts to work on a software develop-
ment project. A Design Sprint is a time-constrained framework that uses DT to
help teams to create a new product, service or feature [24]. A Design Sprint con-
sists of five discrete phases: Understand : discovers the business opportunity, the
audience, the competition, the value proposition, and defines metrics of success;
Converge: explores, develops and iterates creative ways of solving the problem,
regardless of feasibility; Diverge: identifies ideas that fit the next product cycle
and explores them in further detail through storyboarding; Prototype: designs
and prepares prototypes that can be tested with users; Test : conducts user test-
ing focusing on product’s primary target audience.

108 P. Lucena et al.

Unlike Design Sprints IBM Design Thinking does not provide a single Design
Sprint to understand the user research problem and provide a solution to a design
problem but a framework where those activities are integrated as part of different
Playback phases of the software development process.

6 Discussion

A known limitation of IBM Design Thinking process is related to the project
team structure. The process can not be applied successfully if the company
does not change their approach to solving problems. Similarly to the way IT
departments had to reorganize to change from command and control Waterfall
structures into Agile teams, implementing IBM Design Thinking also requires
those teams to reorganize and review their work model and functional roles.

In order to implement the SDF successfully it is necessary to the create
multidisciplinary teams composed by designers, engineers, product managers
and users who work together to drive a vision of the software development.
Fragmented teams can easily get out of the sync and important feedback may
be lost under those conditions.

7 Conclusion

While in the past, a software potential market share was constrained in large
part by the supply chain and distribution capability, today, the offering’s growth
is now determined by its fitness for user’s needs. IBM Design Thinking brings
up-front analysis and user feedback in all the iterations offering a better under-
standing of what problems need to be solved and what are the best solutions to
satisfy the user needs.

According to our survey, using a likert scale varying from very low to very
high, 80% of the surveyed reported End-Users had a very high satisfaction rate
on the projects delivered. The user experience improvement was related to a
productivity boost resulting in time and resources savings and user base growth
for the delivered services. Albeit those qualitative results are promising further
studies should be done in order to measure those satisfaction levels accurately
and to comprehend the limitations of the software developed framework.

Acknowledgements. We would like to thank Marco Aurelio Stelmar Netto, Heloisa
Candello and Miroslav Azis for reviewing this paper and for their constructive feedback.

References

1. VersionOne. Annual state of agile development survey (2016)
2. Norman, D.A.: The Design of Everyday Things: Revised and Expanded Edition.

Basic books, New York (2013)

IBM Design Thinking Software Development Framework 109

3. Marques, A.B., Cavalcante, E., Luiz, R.: Aplicando design thinking para melhorar
a qualidade de um aplicativo movel. In: Brazilian Symposium on Software Quality
(2015)

4. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston (2004)

5. Pichler, R.: Agile Product Management with Scrum: Creating Products that Cus-
tomers Love. Addison-Wesley Professional, Boston (2010)

6. Brown, T.: Change by Design. Collins Business, New York (2009)
7. Azis, M.: IBM design thinking (2016a). http://www.ibm.com/design/thinking/
8. Brown, T., et al.: Design thinking. Harv. Bus. Rev. 86(6), 84 (2008)
9. Plattner, H.: An Introduction to Design Thinking Process Guide. The Institute of

Design at Stanford, Stanford (2010)
10. Lindberg, T., Meinel, C., Wagner, R.: Design thinking: A fruitful concept for it

development? In: Meinel, C., Leifer, L., Plattner, H. (eds.) Design Thinking. Under-
standing Innovation, pp. 3–18. Springer, Heidelberg (2011)

11. Nielsen, L., Madsen, S.: The usability expert’s fear of agility: an empirical study of
global trends and emerging practices. In: Proceedings of the Nordic Conference on
Human-Computer Interaction: Making Sense Through Design, pp. 261–264. ACM
(2012)

12. Azis, M.: The making of IBM design thinking (2016b). http://ibm.co/1T8psiW
13. Gothe, M.: Adopting IBM design thinking for solution development (2016)
14. Chamberlain, S., Sharp, H., Maiden, N.: Towards a framework for integrating agile

development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi,
G. (eds.) XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006).
doi:10.1007/11774129 15

15. Richardson, A.: Using customer journey maps to improve customer experience.
Harv. Bus. Rev. 15 (2010)

16. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Shull, F., Singer,
J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp.
63–92. Springer, London (2008)

17. ScrumAliance: State of Scrum - 2015 (2016)
18. da Silva, T.S., Silveira, M.S., Maurer, F.: Ten lessons learned from integrating

interaction design and agile development. In: Agile Conference, pp. 42–49. IEEE
(2013)

19. da Silva, T.S., Martin, A., Maurer, F., Silveira, M.S.: User-centered design and
agile methods: a systematic review. In: AGILE, pp. 77–86. Citeseer (2011)

20. Bordin, S., Angeli, A.: Focal points for a more user-centred agile development. In:
Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 3–15. Springer, Cham
(2016). doi:10.1007/978-3-319-33515-5 1

21. Liikkanen, L.A., Kilpiö, H., Svan, L., Hiltunen, M.: Lean UX: The next genera-
tion of user-centered agile development? In: Proceedings of the Nordic Conference
on Human-Computer Interaction: Fun, Fast, Foundational, pp. 1095–1100. ACM
(2014)

22. Gothelf, J., Seiden, J.: Lean UX: Applying Lean Principles to Improve User Expe-
rience. O’Reilly, California (2013)

23. Knapp, J., Zeratsky, J., Kowitz, B.: Sprint: How to Solve Big Problems and Test
New Ideas in Just Five Days. Simon and Schuster, New York (2016)

24. Banfield, R., Lombardo, C.T., Wax, T.: Design Sprint: A Practical Guidebook for
Building Great Digital Products. O’Reilly, California (2015)

http://www.ibm.com/design/thinking/
http://ibm.co/1T8psiW
http://dx.doi.org/10.1007/11774129_15
http://dx.doi.org/10.1007/978-3-319-33515-5_1

SimKan: Training Kanban Practices
Through Stochastic Simulation

Francisco Jose Rego Lopes1(B) and Fabio Petrillo2

1 Universidade Estadual do Ceara (UECE), Av. Dr. Silas Munguba,
1700, Campus do Itaperi, Fortaleza, CE 60.714-903, Brazil

lopespaz@yahoo.com.br
2 Instituto de Informatica, Universidade Federal do Rio Grande do Sul (UFRGS),

Caixa Postal 15.064, Porto Alegre, RS 91.501-970, Brazil
fabio@petrillo.com

Abstract. Kanban is a software development methodology that has
grown and gained more supporters. Proportional of this growth, dissemi-
nation of knowledge in the use of its practices is essential. Moreover, train-
ing in software processes is not always a trivial endeavour, and explor-
ing some project practices in traditional training rooms can be a com-
plex task. This paper proposes SimKan, an analogical serious game for
training Kanban practices. SimKan uses stochastic simulation to intro-
duce aspects of randomness in the game, allowing a quasi-true experience
on Kanban, performing in a short time-frame and using simple tools. Our
results show that SimKan is adequate to train teams in Kanban, bringing
positive results in a short time-frame and with low cost.

1 Introduction

During the last decade, the use of agile software development methods has
increased and become more popular [1]. Agile methodologies are no longer
restricted to startups or small system developing companies, and the number
of big companies adopting agile methodologies is increasing every year. One of
the outstanding agile methodologies is Kanban [2].

Kanban is a scheduling and an inventory-controlling system for lean manu-
facturing [2]. The Kanban system is based on making visible what is otherwise
intangible knowledge work, to ensure that the client’s requests are delivered
within the capacity of the system. Kanban uses a flow based delivery system
through visual signals. This system is used to limit the quantity of work in
progress.

Since last decade, Kanban have been adopted in software development and
maintenance organizations [2], in order to apply flow based methodologies. From
2014 to 2015, the percentage of respondents who practiced Kanban techniques
expanded from 31% to 39%. As Kanban popularity has increased, the number of
people using work-in-progress and cycle time as measurements of agile success
has grown as well [1].

c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 110–121, 2017.
DOI: 10.1007/978-3-319-55907-0 10

SimKan: Training Kanban Practices Through Stochastic Simulation 111

However, the adoption of Kanban is not trivial [3]. The change of the team
culture, already existing traditional development methods and conformity to
prescriptive development models turn the dissemination of this practice more
difficult. However, one of the crucial aspects is the lack of experience and the
difficult training of new professionals in the use of Kanban. According to Ahmad
et al. [3], the professional training is the major hurdle in adopting Kanban in
organizations.

This article proposes SimKan, a technique that uses game elements (serious
games) and stochastic simulation to reproduce simulation scenarios of software
projects to train the use of Kanban. Simkan allow participants to experience
in a short time and at low cost, the practice of the methodology. Its possible
to collect metrics, accomplish discussions and gain experience without the risk
and necessary time of a real project, with its characteristics and established
commitments. SimKan is not based on software. Except for the metrics collection
tasks, the entire job is done manually using paper, scotch tape, cards, and pen.

This paper is organized as follows: Sect. 2 describes the Kanban methodology,
serious games and stochastic simulations. Section 3 presents SimKan, describing
its concepts and steps to be followed. Section 4 presents the experiment and
its results. Section 5 discusses the threats to the validity. Section 6 presents the
related work and Sect. 7 concludes and points out possible future researches.

2 Background

To comprehend the functions of SimKan, it is necessary to know the main con-
cepts related to Kanban, serious games and stochastic simulations. The following
sections bring these themes to light.

2.1 Kanban

Kanban is a Japanese word and means “signal card” [4]. In manufacturing,
kanban boards are used to inform at a certain stage of the production chain
that the next step needs more production inputs and that these can already be
produced. The responsible for a production stage can only work if a subsequent
stage has activated him/her through a kanban. This series of stages in which the
next one requests the work of the previous one, is what is called a “pull system”:
one stage requests or “pulls” the work of a previous one [5].

Kanban is a method that defines, manages and improves services that deliver
knowledge work, such as professional services, creative efforts and the develop-
ment of software products [2]. Some process management practices can be recom-
mended for an implementation of this technique, like to visualize the workflow,
to limit work in progress, to adjust and prioritize cadences, to measure the flow,
to identify service classes, to establish service level agreements and to manage
the workflow [6].

Besides the practice of process management, continuous improvement prac-
tices are adopted (e.g. inspection and adaptation), based on the principles of

112 F.J.R. Lopes and F. Petrillo

Lean, deriving in more detailed actions and practice. To understand and apply
these practices, it is necessary to comprehend some concepts which are contained
in the literature about Kanban [2,4,6], whose definitions follow:

The development and maintenance of a software is usually based on a group of
requests. There are various types of request, such as new functionality, changes
in established features, fixing bugs. This group of work items comprises the
backlog.

To work on the items of the backlog, passing them through the various phases
of development or maintenance, it is necessary to create the value chain based on
which the cycle is established. The value chain describes the phases through which
an item has to pass to become a finished software. For example: backlog, require-
ments, analysis, project, implementation, tests, acceptance, and deployment.

Backlog items are probably not all of the same type, thus they will have
different priorities. Probably there will be situations where the delivery of a
functionality will be necessary at a certain date, or fixing a bug which has to be
implemented immediately. Hence, the services need to be classified in service
classes with their respective policies. An example could be: the definition of
a service class of urgency called “expedition” by the stakeholder of the project
and the establishment of a policy informing that this class will get priority
treatment in all development process phases, including replacing tasks that are
being executed.

Cadence is a concept in Kanban which determines the rhythm of a type
of event. Priority, delivery, retrospectives and whichever recurring event can
have its own cadence [4]. Although there are various activity types in a typical
software development environment that can benefit from regular cadences, the
most typical and the ones that need being considered are incoming and out-
coming [6].

The Work in Progress - WIP is a set of work items which are in progress
in the Kanban system. The reduction of the work in progress is associated by
Anderson [4] to quality increase, deducing that it is necessary to invest in the
management of the work in progress, introducing explicit rules to limiting it.

2.2 Stochastic Simulation

Simulation is the imitation of the operation of a real world system or process dur-
ing a certain period of time [7]. Simulations are applied in various domains like
Physics, Chemistry, Engineering and Economics with the aim to establish poli-
cies, perform tests with new equipments, verify hypothesis, perform professional
training and others, thereby diminishing risks, costs and the time necessary used
in a real process for these same activities. To perform a simulation, a functioning
model of the system or the process to be studied is constructed.

Simulation models can be deterministic or stochastic. When they are deter-
ministic there are no random variable factors involved, and with a given entry
value, the return value of the model will always be the same. With random vari-
ables the model is called stochastic, and as a consequence, random entries will

SimKan: Training Kanban Practices Through Stochastic Simulation 113

lead to random return values and the operated measures have to be taken as
statistics of real return values of the system or of the process [7].

2.3 Serious Games

Serious games are games that explore concepts or simulates real situations with
purpose to accomplish a task, such as aircraft piloting or medical surgeries. Its
primary purpose is not to entertain, but to use playful elements to stimulate
engagement to the task [8].

According to Abt [9] serious games deliver “dramatic representations” of the
subject or problem which is studied and permit the players to assume realistic
roles, face problems, elaborate strategies, take decisions and get a fast feedback
about the consequences of their actions, without the costs of the consequences
or mistakes in the real world.

3 The SimKan Approach

SimKan is an approach which proposes a simulation of the use of Kanban for
activities in the maintenance of a software system which is already in use. It
consists of a serious game and is elaborated in a stochastic way, using a normal
dice casting with six sides to introduce randomness in points like finishing of an
activity or the entry of a certain type of activity into the system. Using these
concepts the participants are able to experience the main practices of Kanban,
training thus the use of the method in real projects, without the necessity to
await the conventional cycle of a project to observe the utilization forms and
results of Kanban.

During a section of SimKan, a backlog with m items is taken, being n of
them of the service class “expedition” and the others of standard service class.
For the last one, the items are distributed in sets of k with high priority, k
with average priority and p (p= k+ 4) with low priority. The decision to execute
the simulation with more low priority items was taken, adding four more items
in this category, but these values may be adjusted in various executions. The
following exercises were proposed: visualization of work flow through the use of
a kanban board, experimentation of limits for work in progress, adjustment tests
in the income cadence, use of service classes, and measurement and generation
of flow graphics.

3.1 Execution Parameters

The work items are distributed in two service classes: “standard” applicable to
all items and “expedition” for items that need to be immediately treated, like
bugs in productive environments. For the standard class the established policy
is, once selected by the team for service within the work in progress limits,
its items have to be attended to according to their priority: high, average or
low respectively. For the “expedition” class the overriding of imposed limits is

114 F.J.R. Lopes and F. Petrillo

permitted for the quantity of work in progress, although there will be only one
item of this type in the Kanban system and it will be treated with priority over
all other items.

Being an approach based on stochastic simulations [7] SimKan uses the con-
ventional throw of dice with six sides as definition what would be considered as
a finished activity. To determine what is considered a working day, the follow-
ing rule was adopted: all team participants threw the dice. After the last team
member threw the dice the period was considered as a finished working day.

To simulate priority meetings a raffle of the backlog items was adopted,
including only those not in the expedition class. To simulate the entry of items
of the expedition class into the system, the casting of dice was also used in a
certain point of the flowchart, like showed in Fig. 1.

Fig. 1. Experiment execution flow

To minimize a possible discussion about the initial value chain and limits
to the work in progress to be adopted in the beginning, the chain showed in
Fig. 2 is established with its respective limits (showed between parenthesis next
to the title of each stage) and separated by rays (horizontal lines) for the items
of “standard” and “expedition” classes, respectively. Continuing the established

SimKan: Training Kanban Practices Through Stochastic Simulation 115

Fig. 2. Value chain 1

politics for service classes, the expedition class allows only one item at a time
and therefore there is the note “(WIP=1)”.

3.2 Preparation

The team needs to distribute their roles which are: specifiers, implementers and
testers. In a five-people team for example there would be two specifiers, two
implementers and one tester.

It is important to highlight that the only component that is not manual is
the electronic spreadsheet to collect the metrics and to plot the graphics. All
others, such as the Kanban board and the work item cards, are made manually
on paper, with scotch tape, cards and pens.

After the definition of the roles, the initial value chain has to be established
on a wall (or on a table) and the items of the backlog written on post it cards.
The items of the “expedition” class are written on post its with a different colour
than those of the “standard” class.

3.3 Execution Flow

Figure 1 shows the flowchart of SimKan, whose steps are detailed as following:

1. Select the items which compose the backlog, according to the established
WIP: The team selects the items of the standard class among the existing
maintenance backlog to start the service. This choice obeys the limit of WIP
(5 items at the beginning of the experiment) established in the value chain.

2. Select the first items that can enter specifications, according to the estab-
lished WIP. The specifiers choose the first items to be attended to among
the selected backlog.

3. Register the values of day zero on the spreadsheet: One of the participants
writes the current situation of the system on the metrics spreadsheet.

4. Move on one day. After all the team members throw the dice, a working day
ends.

5. Select more items to enter the backlog, in case the WIP permits it and there
are still items; this step simulates the incoming cadence of the working items
into the system. A moment of prioritization happens every fifth workday
and, attending to the established limits for the quantity of permitted items
to the backlog column, new working items are selected to enter the system.

6. Fetch more items in the backlog and advance them to the next stage, if per-
mitted by the WIP. The responsible component for specification, respecting
the limits of work in progress, pulls one or more items of the column “back-
log” to the column “specification”.

116 F.J.R. Lopes and F. Petrillo

7. The person with the assigned task throws the dice: each team component
responsible for a work item throws the dice. If the result is odd, the item
is concluded. If not, nothing happens and the next team component throws
the dice, until everyone threw the dice.

8. Mark the work item as finished: if the casting executed in step 7 resulted
in an odd number, the person who threw the dice has his task finished and
will register this conclusion on the board. It is possible to do that in placing
his card in the column of the chart that indicates the finished item, if such
a column exists, or marking something on the working item card to inform
that it was concluded.

9. Get more items from the backlog or buffers, and advance them to the next
stage, if the limits permit it: after the casting of the dice by all team mem-
bers, the moment arrives to “pull” items to the next stage of the value chain.
Respecting the established limits of the work in progress, the team advances
the work item cards which are ready for the next stage.

10. Register the values on the spreadsheet: one of the team components registers
the current situation of the Kanban system on the metrics spreadsheet.

11. If there are still work items: the process continues until all work items are
finished. When this happens, the simulation is considered ended.

12. The entry of items of the “expedition” class into the system: after the elapse
of a working day and if the limit of permitted items in the system for the
“expedition” class has not been attained, a random entry of an item of this
class is simulated through the casting of the dice. One of the participants
throws the dice (step 13) and if the number 6 is drawn, the item enters the
system and is selected for the column “specification” (step 14).

4 Assessment of SimKan

A controlled approach execution was carried out to assess SimKan with the aim
to answer the following research question:

RQ1: SimKan facilitates the knowledge dissemination about Kanban and its
practices?

To answer the RQ1 research question an experiment was carried out following
the flow and rules mentioned in Sect. 3.3.

4.1 Participants

The experiment was executed with a team of 5 persons. All participants are grad-
uated in Computer Science or Electric Engineering. Four of them have a master
degree and were selected because of their large experience in software devel-
opment. Two participants have been acting for some years as project leaders,
conducting during most of the time, software maintenance projects. The other
ones are experienced in the exercise of roles such as developers, requirements
analysts, configuration managers, testers and software architects.

SimKan: Training Kanban Practices Through Stochastic Simulation 117

4.2 Execution

Once the participants were selected, the board set and the items described on
post it cards, the team started the flow execution with the raffle of the first
five items for the backlog, obeying the established limit of work in progress,
afterwards executing the following steps. There was a period of adaptation to
the execution process and on the third “day” (the time of the simulation used in
the game, represented by rounds of casting), there was a discussion in the team
about who would be the next person to pick up an activity to execute, due to the
conclusion of some activities of the initial stages. Based on this discussion, the
team felt the need to execute the first adjustment, to put “ready” columns for
the “specification” and “implementation” stages. Thereby the value chain was
set up on the board, showing now the following phases and their respective limits
for WIP: Backlog (5), Specification (2), Specification Done (2), Implementation
(2) Implementation Done (2), Integrated Tests (1), Ready to Deploy.

Despite this first fit, the team noticed moments of idleness of some partici-
pants. The execution continued, and on the twelfth “day” there was a new fit in
the value chain, as shown in Fig. 3.

Fig. 3. Value chain 3

For “Specification” the limit of four activities in progress was adopted, con-
sidering within this limit the activities being in the stage “Specification Done”.
For “Implementation” the limit was also four activities, with the same consider-
ation for the stage “Implementation Done”. After this adjustment the idleness
of some components remained. This fact and the perception of the bottleneck
in test activities, lead to new adjustment on the seventeenth “day”, considering
the role adjustment in the team and the establishment of new limits of work in
progress. Until this moment every person was specialized in one role. From this
“day” on, the implementers would also act as testers and the limit for integrated
tests was established in two.

After this last adjustment, the execution continued until the conclusion of
all 25 work items, totalizing 39 execution “days”. It is important to report that
the three items of the expedition class were attended to during the execution of
the experiment with their system entry according to the random criteria defined
in the flowchart.

4.3 Data Collection

During the experiment the data collection was made about the progress of the
activities. Figure 4 shows the cumulative flow diagram of the system. It is possible

118 F.J.R. Lopes and F. Petrillo

Fig. 4. Cumulative flow diagram

to notice that there was no continuous activity flow between the stages in the
value chain, mainly on the first days.

It could be observed for example that on the second “day” there was no item
in the backlog. That could be interpreted as an indication that the limit of 5
items should be increased. On the eighth “day” despite of having an item in the
backlog, there was no activity in “specification” going on. In this case it was
possible to verify an idleness because the limit for work in progress for the next
stage had already been attained, preventing the prosecution in the activity flow.

On the first days of the experiment, the lead time increased, but as the time
passed, it became a trend, which enabled us to establish an inferior and superior
limit. With these limits it was possible to define service level agreements, for
example, that 90% of the work would be finished in 16 “days”. The lead times
for items of the expedition class were, 7, 9 and 8 days respectively, in an average
of 8 days.

Another piece of information obtained as a result of the experiment was the
variation of team component’s idleness over the time. Though it is not a common
Kanban metric, it showed to be important for the team to guide some of the
decision making. Such an example would be when the implementers started to
act as testers too, decision taken based on the analysis of idleness and bottlenecks
existing in the “integrated tests”.

4.4 Discussion

Although a fast theoretical explanation of the Kanban Principles was given to the
experiment participants, the necessary time for it was short, not longer
than an hour. On the other hand, it’s believed that the presence of an expe-
rienced facilitator to support the execution of the simulation is necessary for a
positive realization of a SimKan training session.

To answer the proposed RQ1 research question, an assessment questionnaire
was prepared, which was answered by the participants, containing the following
questions:

1. Which was your prior Kanban knowledge and practice before participation
on the simulation?

SimKan: Training Kanban Practices Through Stochastic Simulation 119

2. The realization of the simulation permitted you to amplify our knowledge
about Kanban and its practice?

3. After the simulation, what perception do you have about your knowledge
level in Kanban practice?

As a result of the first question 20% of the participants answered, that they
had no previous knowledge of Kanban what so ever. For the other 80% the
previous knowledge was classified as “low”. The second question: 20% agreed
partially that the approach enabled them to acquire Kanban knowledge and
its practice and the other 80% agreed totally. The third question asked the
participants to classify their perception of their knowledge level about Kanban
after the realization on SimKan, with the options “no”, “low”, “intermediate”
and “high”, to which 60% answered “intermediate” and 40% “high”.

During the evaluation session, the interest and commitment of the partici-
pants in the execution of the simulation was observed. They considered the form
of the simulation as “playful” and interesting, rising discussions about idleness,
work progress, information collecting and about the technique of Kanban in
itself, which would take an enormous amount of time in conventional cycles in
a software project. The participants in the experiment, although experienced in
software development, had never experienced Kanban and its practices, and the
experiment enabled them to acquire these techniques in a playful way.

The employed technique contributes to a fast training of teams who
intend to start to migrate to Kanban, reducing the necessary time for train-
ing and permitting situation simulations of a real project. Furthermore in many
organizations, the training realization needs some level of formality and bureau-
cracy, tending to consume more time to acquire the knowledge. The hereby sug-
gested simulation does not need major formality, laboratories and complicated
tools, only few material, an electronic spreadsheet and a facilitator who supports
the execution, which permits a faster disruption of lethargy/inertia of
comprehension of Kanban in new teams.

5 Threats to Validity

The main threat to validity concerns the fact, that the proposal was not executed
many times. It is necessary to do this to attain a better based conclusion in
relation to the results.

6 Related Studies

As Kanban has its origin in the area of manufacturing, the simulation of its use
in this kind of processes is easy to find. Kochel and Nielander [10] describe a
simulator to treat the optimization of multi stages Kanban systems. Hao and
Shen [11] proposed a simulation model for complex processes of material manip-
ulations, based on a kanban system.

120 F.J.R. Lopes and F. Petrillo

In software development some researches that propose simulations of agile
maintenance processes can be listed. Lunesu [12] proposes a model of software
process simulation for Lean and Kanban and has conducted the construction
of a software simulation based on events. Anderson et al. [13] also propose a
simulation process to establish a comparison between Scrum and Kanban. These
research differ from the current proposed research form, as the simulation in this
research counts with the participation of persons and uses a dice to introduce
stochastic characteristics in the process, and the above mentioned were executed
through a software, which, depending on the implemented mechanism, tends to
inhibit discussions and learning of the method.

Other types of related studies are about games to teach Kanban. Heikkila
et al. [14] presents a collaborative game to teach Kanban at a university. Called
GetKanban, it differs from this research in being a board game and not a
simulation.

7 Conclusion and Future Research

Professional training in software processes almost never is trivial and the nor-
mally theoretical or not very practical character of traditional training leaves
gaps of knowledge and few real situation learning. Traditional learning can be
boring, or it can not achieve a necessary engagement level in the students. This
paper proposes SimKan, an approach to train teams for using Kanban, which
is based on the execution of a serious game, using stochastic simulation on a
Kanban system.

Simkan uses an execution flow which enables learning the main practice of
Kanban, using a backlog of functionalities and showing its evolution through the
value chain, using the casting of a dice of six sides as a parameter to simulate
specific issues of execution, like finished task or entry of an item of higher priority
into the system.

To verify the functioning of SimKan an experiment was realized using the
approach in a team without experience on Kanban and through a specific
questionnaire, to collect the perception of learning knowledge of Kanban after
SimKan usage.

According to the applied assessment questionnaire, 80% agreed totally that
SimKan permits to acquire knowledge about Kanban practices. After the exe-
cution of SimKan the level of Kanban was classified as “intermediate” by 60%
of the participants and “high” by 40%. Thus it can be concluded that SimKan
is adequate to train teams in Kanban, bringing positive results in a short time
and at low cost, in a playful training process which generates engagement.

A future research deriving from this study, could be the realization of an
experiment using a greater number of interactions. Moreover the implementa-
tion of new studies about the adaptations which occur during the simulation,
considering the fact that Kanban is an evolutionary approach and simulation
techniques will be used to contemplate this aspect. Some questions about the

SimKan: Training Kanban Practices Through Stochastic Simulation 121

fit which occurred during the game continue unanswered. The adaptations con-
tinued? Which of them were relevant to the Kanban reality and which were a
result of the simulation? Is there a necessity to fix an initial value chain?

Despite the fact of SimKam uses only manual tools, there are no constraints
for its implementation through a software, which could also be listed as a possible
future research.

Another point of a future research comes from the observation of the sim-
ulation execution. A high level of engagement of the participants was noticed
because the team needed to be totally focused and this reduced the level of dis-
traction. A comparative study focusing on the traditional training - where the
students observe and the teacher exposes - and on the study of the effectiveness
of SimKan to obtain more focus and to improve real learning, is necessary.

References

1. VersionOne: 10th annual state of agile report (2015). http://stateofagile.
versionone.com/

2. Anderson, D., Carmichael, A.: Essential Kanban Condensed. Lean Kanban Uni-
versity Press (2016)

3. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: a system-
atic literature review. In: 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications, pp. 9–16. IEEE (2013)

4. Anderson, D.J.: Kanban: Mudanca Evolucionaria de Sucesso Para Seu Negocio de
Tecnologia. Blue Hole Press (2011)

5. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit:
An Agile Toolkit. Addison-Wesley, Boston (2003)

6. Boeg, J.: Kanban em 10 passos. Tradução de Leonardo Campos, Marcelo Costa,
Lúcio Camilo, Rafael Buzon, Paulo Rebelo, Eric Fer, Ivo La Puma, Leonardo
Galvão, Thiago Vespa, Manoel Pimentel e Daniel Wildt. C4Media (2010)

7. Santos, M.P.: Introdução à simulação discreta. UERJ, Rio de Janeiro (1999)
8. Michael, D.R., Chen, S.L.: Serious games. Games that educate, train, and inform

(lernmaterialien): Games that educate, train, and info (2005)
9. Abt, C.C.: Serious Games. University Press of America, Lanham (1987)

10. Köchel, P., Nieländer, U.: Kanban optimization by simulation and evolution. Prod.
Planning Control 13(8), 725–734 (2002)

11. Hao, Q., Shen, W.: Implementing a hybrid simulation model for a kanban-based
material handling system. Rob. Comput. Integr. Manuf. 24(5), 635–646 (2008)

12. Lunesu, M.I.: Process software simulation model of lean-kanban approach (2013)
13. Anderson, D.J., Concas, G., Lunesu, M.I., Marchesi, M., Zhang, H.: A comparative

study of scrum and kanban approaches on a real case study using simulation. In:
Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 123–137. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30350-0 9

14. Heikkilä, V.T., Paasivaara, M., Lassenius, C.: Teaching university students kan-
ban with a collaborative board game. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 471–480. ACM (2016)

http://stateofagile.versionone.com/
http://stateofagile.versionone.com/
http://dx.doi.org/10.1007/978-3-642-30350-0_9

Short Papers

Predicting the Unpredictable:
Using Monte Carlo Simulation to Predict

Project Completion Date

Lucas Colucci(B) and Raphael Albino

Plataformatec, São Paulo, SP, Brazil
{lucas.colucci,raphael.albino}@plataformatec.com.br

Abstract. If you work with software development you will probably
face two important, but not always convergent, aspects: scope and deliv-
ery cadence. The process of aligning the expectations of product incre-
ment and team throughput is usually arduous but, when this happens,
it improves the chances of project success. Stakeholders frequently want
the project done faster than it is possible for us to do it. And then, when
they ask the date on which we will finish the work, we never have the
right answer. In the last two years, while working with different projects
at Plataformatec, we have been trying to solve that problem in many
different ways: mean throughput, linear regression and even manually
adjusting our predictions. However, all of them had their drawbacks.
This paper presents what we think will be the best approach to forecast
project deadline: Monte Carlo Simulation. We explain how it works, how
to apply it in a project and how you can benefit from using it.

Keywords: Monte carlo simulation · Statistics · Project management ·
Metrics · Agile methodology · Prediction · Forecast

1 Introduction

Deadline is a delicate subject in software development project regardless of the
technique used e.g. traditional, agile etc. The stakeholders always think the date
is too far away and, on the other hand, team members believe they do not have
enough time to finish what was agreed on.

Using Agile Software Development (ASD), software is developed incremen-
tally in small iterations, and customer feedback serves as an important input for
subsequent iterations. This also implies that estimations and plans need to be
done progressively [4].

In an effort to support the alignment between business and technology, agile
metrics are widespread inside agile companies in order to monitor work and tend
to make improvements inside them [3].

To understand how much work is being delivered, we usually measure
throughput as the number of work items (e.g. user story) that a team finishes in

c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 125–130, 2017.
DOI: 10.1007/978-3-319-55907-0 11

126 L. Colucci and R. Albino

a week. This metric helps us in having deadline predictability. It is also useful to
identify problems that could be occurring in the software development process.

During the past two years, while trying to predict projects’ completion date,
we had used three different approaches. After some research, we found out a new
technique: Monte Carlo Simulation; and it seems to be what we were looking for.

In this paper, we present the methodologies that we tried to use before, and
explain why they did not please us. Later we present the current solution and
expatiate on why we think it could be a better method as well as the pros and
cons of using it.

2 Methodologies Background

We have been testing prediction methods for a long time, and all of them had
some drawbacks, which could not be ignored. The methods that we used were:
mean throughput, linear regression and a throughput percentile approach.

2.1 Mean Throughput

A common concern about using throughput to predict delivery dates is the
requirement of relatively similar story sizes in the backlog. If not followed, the
large standard deviation could affect directly the predictions, which directly
affects the use of average to predict deadlines.

Mean throughput is the easiest approach that one could possibly think of. It
works by simply calculating the project’s average throughput based on its past
data. However, projects will rarely have a distribution in which average, median,
and mode are similar. Therefore, as data becomes skewed, the average loses its
ability to provide the best central location.

2.2 Linear Regression

Linear regression is a common next step for data-driven teams. Thus we followed
the same path. We started using it to predict when the regression line would
reach the backlog size in our burn-up chart.

It seemed to be working fine back then, but we reached two main problems
with that approach:

• We considered that the backlog would not change with time. Which is biased,
since in all of our projects the backlog indeed changed;

• When we use Linear Regression, we are making some assumptions. One of
them is multivariate normality. The linear regression analysis requires all vari-
ables to be multivariate normal [1]. When we put all our throughput data into
a statistical analysis, we saw that it did not fit into a normal distribution.

Since we did not know a methodology that would bind the prediction of the
backlog and throughput growth, we have decided to focus on the second problem
and start using an ad hoc approach.

Predicting the Unpredictable: Using Monte Carlo Simulation 127

2.3 Manual Setting

In our methodology, we studied the percentiles of our throughput history. For
example, we would analyze what was the throughput 95%, 80% and 50% of the
weeks. With that in mind, we could manually add three different projections,
one for each percentile. The result would be a range of dates in which the project
could be completed. We considered a higher percentile analysis more pessimistic
and a lower one more optimistic. But the static backlog problem was not solved
and, therefore, made us take a step further and try a new approach.

3 Monte Carlo Simulation

Monte Carlo simulation is a type of simulation that relies on repeated random
sampling and statistical analysis to compute the results. This method of simula-
tion is very closely related to random experiments, for which the specific result
is not known in advance [2].

Monte Carlo techniques have started to appear in commercial software devel-
opment project management tools, with an emphasis on modelling the uncer-
tainty of work estimate size. These tools help account for variability surrounding
team velocity and work estimate [5].

Next, we will present a simple example and then show how we used it in real
world.

3.1 Dice Game

Imagine you are playing a dice game in which the goal is to reach a sum of 12
points, with the least number of rolls. The best play here would be 2 consecutive
rolls in which you get a 6 in each of them, and the worst would be 12 rolls getting
a 1. What we want to calculate is the probability of ending the game after N runs.

We consider that we are rolling a 6-face dice, thus we have 6 possible outcomes
for each roll. The probability of reaching the 12 point threshold in the first roll
is zero, since the maximum value on the dice is 6.

On the second roll, to win you would need two consecutive 6:

P (x) =
1
6

∗ 1
6

≈ 2.78% (1)

In the third roll you can achieve 12 points in many ways: (3, 3, 6), (5, 5, 2),
(4, 4, 4), etc. The probability is not as easy anymore. That is when Monte Carlo
Simulation (MCS) comes handy.

What MCS does is to simulate thousands of dice rolls and then analyze the
outcome. For example, to know the probability of finishing the game on the third
round, it would roll the dice three times, sum the points and store that result.
After that, it would repeat those steps N times (where N is usually greater than
1000) and summarize how many rolls each sum of points got.

128 L. Colucci and R. Albino

Now, what we do is to sum all the occurrences that generated a sum greater
than 12 and divide it by the total. In this case, we ran it and the result, with N
= 5000 was 37%. The same way we did it for the third round, we could do it for
the fourth, fifth, and so on.

3.2 Real World

The real world solution is very similar to the dice rolling example. The only
difference is that we vary the goal as well (the 12 points in the game scenario),
to consider the change in the backlog.

So now, the possible outcome for each round is our throughput history. And,
in the same way we are “rolling dices” for our throughput, we need do the same
for our backlog in order to give it the chance to grow as well. In this case the
possible outcomes would be the Backlog Growth Rate (BGR).

We define BGR of the week x as:

BGR(x) =

{
backlogSize(x) − backlogSize(x − 1), if x ≥ 2
0, otherwise

(2)

Let’s say our project’s current state is as presented on Table 1.

Table 1. Project current state.

Week number Throughput history Backlog history

1 2 15 stories (BGR 0)

2 3 17 stories (BGR 2)

3 0 18 stories (BGR 1)

4 2 19 stories (BGR 1)

5 5 21 stories (BGR 2)

6 0 22 stories (BGR 1)

7 1 22 stories (BGR 0)

8 3 24 stories (BGR 2)

9 3 24 stories (BGR 0)

Our possible plays in each round, for the throughput, would be the set
{2, 3, 0, 2, 5, 0, 1, 3, 3} and for the BGR would be {0, 2, 1, 1, 2, 1, 0, 2, 0}. We
do not exclude repeated numbers because, with them, we can maintain the higher
probability of having a number instead of others.

Now, we can apply here the same rationale behind the dice game. Some of
the possible outcomes for the first round are illustrated in Table 2.

Then, we would run many like those and see how many have a throughput
sum greater than the backlog sum, and then divide the result by the number
of runs. Doing that, we would have the probability of completing the project in

Predicting the Unpredictable: Using Monte Carlo Simulation 129

Table 2. Part of sample project Monte Carlo simulation first round.

Throughput “Roll” BGR “Roll” Throughput sum Backlog sum

2 0 18+ 2 = 20 24 + 0 = 24

2 2 18+ 2 = 20 24 + 2 = 26

2 1 18+ 2 = 20 24 + 1 = 25

3 0 18+ 3 = 21 24 + 0 = 24

3 2 18+ 3 = 21 24 + 2 = 26

3 1 18+ 3 = 21 24 + 1 = 25

0 0 18+ 0 = 18 24 + 0 = 24

0 2 18+ 0 = 18 24 + 2 = 26

the first week. For the next week we would do the same, but then rolling the
dice twice in each round and summing them for both the throughput and the
backlog.

A problem that this method has is that the backlog at the beginning of
a project behaves differently than at the middle or end of it, due to different
contexts.

To solve this problem, instead of considering the whole BGR history as the
possible outcomes, we consider only the last 10 BGRs from the backlog, which
would give us a more accurate context. We can tune the number of BGRs accord-
ing to each project, but 10 worked fine for most of our data.

The result for the next 10 weeks, using the new last-ten-BGR approach, is
represented in Fig. 1.

Fig. 1. Monte Carlo simulation over our project’s data.

As you can see, we highlighted three different areas on the chart to illustrate
what we think could be considered takeaways:

130 L. Colucci and R. Albino

• The first area groups the weeks in which we have less than 50% probability
of finishing the project. For us, it means it would be too risky to tell your
project’s stakeholders that you would finish in those weeks.

• The next area illustrates the weeks in which we have a probability between
50% and 75% of finishing the project. If the stakeholders are pressuring you to
deliver fast, those are the weeks that, if you take a leap of faith and improve
your process, you may be able finish.

• The last is a more risk-free area, where you have a probability greater than
75% of completing the project by those weeks. We suggest that you always
give preference to estimate the end of your project based on this area, but we
know we cannot always be that safe.

We tested the MCS in past projects and it seems to work really well, but, as
in any other statistical method, it gets much better after some weeks into the
project than at the beginning.

4 Summary

Tracking throughput means that the team is looking for process improvements
based on numbers, which could make the process more transparent for all stake-
holders, but it is important to take care when using the method.

Predicting when a project is likely to end seems too “hokus-pokus” and
Monte Carlo simulation is really easy to implement and gives a much better
prediction and understanding of our project. It is important to make it clear
that this method is a statistical method, thus it is not fail proof. The main goal
is to add an element to your toolkit and make project management easier. We, at
Plataformatec, do not only rely on Monte Carlo Simulation to define deadlines
and predict project deliveries. It is just an extra piece to make more rational
decisions.

References

1. Osborne, J.W., Waters, E.: Four assumptions of multiple regression that researchers
should always test. Pract. Assess. Res. Eval. 8, 1–5 (2002)

2. Raychaudhuri, S.: Introduction to Monte Carlo simulation. In: Proceedings of the
2008 Winter Simulation Conference, pp. 91–100 (2008)

3. Brezonik, L., Majer, C.: Grid information services for distributed resource sharing.
In: Proceedings of the SQAMIA 2016: 5th Workshop of Software Quality, Analysis,
Monitoring, Improvement, and Applications, Budapest, Hungary (2016)

4. Usman, M., Mendes, E., Weidt, F., Britto, R.: Effort estimation in agile software
development: a systematic literature review. In: Proceedings of the 10th Interna-
tional Conference on Predictive Models in Software Engineering, Turin, Italy (2014)

5. Magennis, T.: Managing software development risk using modeling and monte carlo
simulation. In: Proceedings of the Lean Software and Systems Consortium 2012
Conference in Boston, Massachusetts, USA (2012)

Scrum Hero: Gamifying the Scrum Framework

Jamila Peripolli Souza(✉), André Ricardo Zavan, and Daniela Eloise Flôr

Graduate Program in Technology in Systems Analysis and Development,
Instituto Federal do Paraná (IFPR), Campus Paranavaí, Paranavaí, PR, Brazil

milaperipolli@outlook.com,
{andre.zavan,daniela.flor}@ifpr.edu.br

Abstract. This short paper presents a framework proposal for the planning and
the management of software projects based on Scrum, using gamification tech‐
niques. The objective of the proposal is to verify how the gamification can interfere
in the motivation and efficiency of a team in a real development environment.

Keywords: Gamification · Scrum · Software engineering · Agile

1 Introduction

In analyzing the current scenario of software development, it is possible to realize that,
in spite of all the efforts of software engineering, many projects show problems in this
area. As said Standish Group in CHAOS Report [1], only 29% of the software projects
are successfully completed.

One of the challenges faced by the development companies is to maintain a team
working hard on a project, because this is an activity that requires great mental strength.
This can be pointed out as one of the main causes of failures in IT projects (Information
Technology), which according to a research carried out by Geneca [2], 75% of the project
members do not expect the project to be successful. Furthermore, Feath [3] shows that
many IT projects fail due to a lack of focus from its team members.

It is believed that a possible solution to increase the efforts and motivation of the
developers would be to insert gamification within the development environment. As
described by Junior [4], gamification can involve people and make their activities
funnier, and also motivating the developers to complete their work.

2 Objective

The objective is to adapt the Scrum framework to the project’s planning and monitoring
by using gamification techniques. We also intend to evaluate the real effects of using
custom framework and test it on a real software development environment and applying
the parameters of on-time releases, customer satisfaction and, mainly, team motivation.

In order to achieve the general goal of this research, the following specific goals were
defined:

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 131–135, 2017.
DOI: 10.1007/978-3-319-55907-0_12

• Study the gamification and the Scrum framework in order to find games’ elements,
which can be used during the software development and find where to put them in
the Scrum;

• Adapt the Scrum framework in order to integrate it with the gamification by incor‐
porating elements such as score, achievements, levels and experience (XP) to the
artifacts, ceremonies and Scrum’s roles;

• To deploy and to evaluate the use of a gamified framework in a real environment of
software production;

• To analyze and to describe the results obtained by the use of gamification applied to
Scrum, comparing them with historical data from the development company.

3 Methodology

The research began with a bibliographic survey of the following themes: agile method‐
ologies, Scrum, gamification and related areas. Within them, we looked for ways to
insert gamification into the process of the Scrum framework.

Then, Scrum was mapped as a game, having a main challenge (the project under
development), secondary challenges (the ceremonies), tertiary challenges (daily tasks),
as well as challenges concurrent to the progress of the game (professional improvement).
Besides, we also added rewards and levels. The mapping was done based on RPG games
(Role Playing Game), due to its purpose of a continuous narrative and the characters’
evolution.

In order to evaluate the results, the custom framework was tested in a real develop‐
ment environment, where the data management was carried out with aid from a software
prototype (Scrum Hero Manager) and questions to collect information. Then, all this
data will be compared with the historical data, which had already been collected by the
company, using the same format as the quiz, thus making it possible to verify how the
gamification use may affect the team motivation, their on-time releases and the customer
satisfaction.

4 Theoretical Base

According to Schwaber [5], Scrum is an interactive and incremental framework that
focus on frequent releases, adding the highest business values to the customer in the
shortest time possible. Its structure is based on job cycles called Sprints, where one or
more features are developed by the team in each Sprint and then added to the software
after the validation made by the PO (Product Owner). In addition to validate the incre‐
ment, the PO is also responsible for maintaining the necessary requirements to complete
the product development. The Scrum also benefits from the Scrum Master, which is
responsible for ensuring that the team has conditions to work in a productive way,
removing any impediments.

In contrast to this, the gamification consists in bringing game elements to a real life
context. As pointed out by Junior [4], with instantaneous rewards, a feeling of progres‐
sion, constant positive feedback and challenges, human beings generate dopamine e

132 J.P. Souza et al.

serotonin, both enzymes that generate a pleasure sensation in our brains, which in its
turn directs the participants’ behavior by rewarding them with the pleasure of the joy.

The present study integrates gamification elements into Scrum, aiming at main‐
taining the positive aspects there is in both concepts.

5 Scrum Hero

The customized framework is called Scrum Hero, and it follows the same structure as
Scrum, including its roles, ceremonies and artifacts. Furthermore, it also adds playful
elements such as game terms, scores, characters, rankings, challenges, rewards, medals,
and trophies.

In Scrum Hero, the customers are treated like mystical entities that interfere in the
Clan’s life (the Scrum team). The PO is the Product Oracle, which keeps the Warriors
(the development team) up-to-date with the mystical entities desires, and, then, the
Scrum Master becomes the Scrum Healer, who is responsible for helping the Clan in all
the challenges and conflicts, and for expelling the Stone Monsters (impediments) during
the Quests (Sprints).

Each player can have their individual Skills, that is a specific ability related to tech‐
nology, and in each game (project) the company needs to define which skills they are
going to apply. The Skill score makes it possible to know which players have more
affinity with a certain Skill, which is useful to allocate professionals in a teamwork, since
the Skill score indicates the individual Skills of each person.

There are three kinds of scores in Scrum Hero. Each player has their own scores, but
there is no score for the Clan. The easiest scores to achieve are the Score Points (PT),
which are obtained when the player concludes their daily tasks. This kind of score has
a short duration; at the end of each project, it is reset. The most difficult scores to achieve
are the Experience Points (XP), which are acquired when the players fulfill their
achievements. This kind of score has a long duration, it continues valid until the end of
the current project. Finally, there is another kind of score with a long duration, named
the Skill Points (SP). The Skills of each player have their own scores, which are achieved
upon completing a task, which requires this particular Skill.

Scrum Hero also brings other kinds of rewards, as follows:

• Medals - Related to Skills, each Skill can also be awarded a bronze, silver, or a gold
medal.

• Trophies - Related to achievements, each achievement completed within the project
can be awarded a bronze, silver, or gold trophy.

• Real rewards - They are defined by the company and can be achieved at the end of
the Quests, as well as at the end of the game.

As the players gain experience, scores, and rewards, they can increase their level.
The following levels, in ascending order of difficulty: Newbie, Guardian, Knight, Ninja,
and Hero.

Scrum Hero: Gamifying the Scrum Framework 133

In addition to mapping the roles and ceremonies in Scrum, the artifacts are also
mapped in Scrum Hero in order to deal with all the Scrum elements as if they belong to
a game, thereby stimulating the game spirit of the players. The Scrum Hero artifacts are:

• Wish list (Product backlog) - The wish lists of the Mystical entities;
• Task list (Sprint backlog) - The task lists of the Quests;
• Burn down maps (Burn down charts) - Maps of the Quests and of the game;
• Offering (Increment) - Offerings made during the Quests to please the Mystical entities;
• Offering accepted (Increment validated by the Product oracle) - Offerings which were

accepted by the Mystical entities;

The Scrum Sprints were mapped in Scrum Hero as the Quests; each Quest has a goal
and tasks that must be performed by the Warriors. As well as the Scrum, the Quests
begin after a planning meeting (Quest Planning); on each day of the Quest, there is a
daily meeting (Daily Challenge), and at the end of every Quest there are two meetings,
the Quest Challenge and the Clan Improvement meetings.

During each ceremony held in Scrum Hero, there are small challenges which can
generate rewards for the players. Each time a player participates in or finishes an
expected goal, they will receive some kind of reward. The possible rewards, participa‐
tions and the Scrum Hero dynamic itself are illustrated in Fig. 1, below.

Fig. 1. Scrum Hero’s operational structure.

6 Scrum Hero Manager

As the objective of facilitating the control of the Wishlist, Tasklists, scores, Skills and
rewards, we developed a software prototype named Scrum Hero Manager. It helps in

134 J.P. Souza et al.

managing of the gamification techniques and the data, which will be used to analyze the
results of this study.

The Scrum Hero Manager allows the management of players, Wishes, Tasks, Real
Rewards, Achievements, Quests and Skills, besides the automatic scores assignments
as the players complete their tasks.

7 Preliminary Results and Future Studies

During the test phase of Scrum Hero, four Quests were realized by teams consisting of
four people each, being one Product Oracle, one Scrum Healer and two Warriors. The
releases were made on time in 75% of the Quests. This result shows an astonishing
increase by 55% compared to historical data from the company. The next step in the
evaluation of the results will be to apply the quizzes about the customer satisfaction and
the team motivation. In sequence, we will compare them to the historical data, permitting
us to evaluate the real effects of using the Scrum Hero.

By applying the Scrum Hero in a real development environment, it was possible to
observe some difficulties that can be facilitated in future studies. Therefore, in addition
to concluding this research, the following suggestions for future studies are:

• Conclude the development of the Scrum Hero Manager;
• Improve the game mapping made inside the Scrum framework;
• Apply the Scrum Hero in an environment, which can encourage the game spirit of

the players, for example, maintaining a ranking visible to all players all the time;
• Allow new Clan members to be added, making it possible to measure and assign XP

and SP to each player according to their individual professional experiences;
• Add TDD (Test Driven Development) techniques or other techniques that aim at the

quality of the code produced, ensuring that the urgency in completing the tasks will
not compromise the quality of the work;

• Develop an adaptation of the Scrum Hero focused on the teaching and learning areas.

References

1. Standish Group: CHAOS report (2015). http://blog.standishgroup.com/post/50
2. Geneca: Up to 75% of business and IT executives anticipate their software projects will fail,

Oak Brook (2011). http://www.geneca.com/75-business-executives-anticipate-software-
projects-fail/

3. Feath, F.: IT project failure rates: facts and reasons. Faeth Choaching, New York (2012). http://
faethcoaching.com/it-project-failure-rates-facts-and-reasons/

4. Junior, S.A.S.: Gamificação: Introdução e conceitos básicos (Gamification: An Introduction
and Basic Concepts), São Paulo (2014)

5. Schwaber, K.; Sutherland, J.: Guia do Scrum: Um guia definitivo para o Scrum: as regras do
jogo (A Guide to Scrum: The Definitive Guide to Scrum: The Rules of the Game) (2011)

Scrum Hero: Gamifying the Scrum Framework 135

http://blog.standishgroup.com/post/50
http://www.geneca.com/75-business-executives-anticipate-software-projects-fail/
http://www.geneca.com/75-business-executives-anticipate-software-projects-fail/
http://faethcoaching.com/it-project-failure-rates-facts-and-reasons/
http://faethcoaching.com/it-project-failure-rates-facts-and-reasons/

Motivating Factors in Agile and Traditional
Software Development Methods:

A Comparative Study

Regina Albuquerque1(B), Rosilene Fernandes1, Rafaela Mantovani Fontana2,
Sheila Reinehr1, and Andreia Malucelli1

1 Pontifical Catholic University of Paraná, PUCPR, R. Imaculada Conceição, 1155,
Curitiba, PR 80215-901, Brazil

{regina.albuquerque,rosilene.fernandes,sheila.reinehr}@pucpr.br,
malu@ppgia.pucpr.br

2 Federal University of Paraná, UFPR, R. Dr. Alcides Vieira Arcoverde, 1225,
Curitiba, PR 81520-260, Brazil
rafaela.fontana@ufpr.br

Abstract. We here present an investigation into how different software
processes may influence software engineers’ motivation. For that, we con-
ducted a qualitative cases study comparing motivating factors for individ-
uals who work with a prescriptive (traditional) process with the factors for
individuals who work with an adaptive (agile) process. The analysis was
based on Alderfer’s ERG Theory. Our results show that there are differ-
ences in motivating factors, contributing to evidence that work processes
do influence the motivation of software engineering practitioners.

Keywords: Software process · Motivation · Agile software development

1 Introduction

A software process defines the steps that should be taken to create the software
product, and also influences projects’ rhythm and artifacts. While the traditional
– or prescriptive – software process focus on up-front planning, using artifacts
for documenting the product and formal controlling [3], agile – or adaptive –
processes consider source code as the main artifact and value communication and
interaction between individuals over comprehensive documentation [2]. Although
conciliation between these two approaches is possible [4], the different emphasis
given to documentation, communication and planning is evident [1,2].

The premise under this study is that the difference between agile and tra-
ditional methods might influence the motivation of the individuals involved.
Motivation is one of the human factors recognized as directly influencing project
performance and success in software projects [5]. Theoretical and empirical inves-
tigation in a number of studies have shown that motivation is dependent on the
context and varies from one individual to another [6].

c© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 136–141, 2017.
DOI: 10.1007/978-3-319-55907-0 13

Motivating Factors in Agile and Traditional Software Development Methods 137

Our objective is thus to understand the motivating factors for software practi-
tioners work in software companies that use two different approaches for produc-
ing software: the traditional and the agile software process. The research ques-
tion that guides us is: “How does the motivation of traditional software process
practitioners differ from the motivation of agile software process practitioners?”.
To answer it, we conducted a qualitative cases study in two organizations. Our
results contribute to understanding how software practitioners’ motivation is
influenced by work processes context.

This paper is organized as follows: the next Section briefly describes studies
related to motivation in software engineering; Sect. 3 describes our theoretical
foundation; Sect. 4 presents our research approach and Sect. 5 shows our results.
Finally, Sect. 6 discusses the results and presents the conclusions.

2 Motivation in Software Engineering

Recent studies have shown that individuals’ demotivation to work contributes
to project failure [5]. Albeit an important issue, motivation is a complex subject
given that motivating factors are diverse and dependent on context and indi-
viduals [7]. Beecham et al. [7] have identified that software engineering itself
is the main motivator for software engineers, which is complemented by França
et al. [6], who identified that clear growth perspectives, clear objectives and team
cohesion also motivate software engineers.

Other researches suggest, however, that extrinsic motivators – such as
rewards and work conditions and environment – are becoming as important as
intrinsic motivators [5,6,8]. For example, Hall et al. [8] identified that good man-
agement practices positively influenced developers’ performance. The authors
identified other extrinsic motivators, such as rewards for appropriate behavior,
giving tasks according to people’s profiles and a good infrastructure.

In respect to agile methods specifically, Melo et al. [9] identified that there are
distinct motivating factors, such as sense of accomplishment, technical challenges
at work, good management, feedback, team relationship, experimentation to gain
experience and elimination of waste (mainly related to tasks automation).

According to França et al. [6], theoretical and empirical studies indicate that
motivation is idiosyncratic to context and varies among practitioners. To con-
tribute to academic studies in the field, we conducted this study presenting
motivating factors in a specific context. We founded our analysis on an existing
classical motivation theory, as suggested by [7], presented in the next Section.

3 Theoretical Foundation

A number of different theories and approaches have been proposed over the
years to explain human being motivation in organizations. Some of them are
based on human needs to explain motivational phenomena, such as: Maslow’s
Hierarchy of Needs, McClelland’s Three Needs Theory, McGregor’s Theory X

138 R. Albuquerque et al.

and Theory Y, Alderfer’s Existence, Relatedness and Growth (ERG) Theory [10]
and Herzberg’s Two-Factor Theory.

We chose Alderfer’s ERG Theory to guide our study because it does not point
out dependencies between different types of needs. It allowed us to characterize
motivation independently of the satisfaction of other types of needs. According to
Alderfer [10], in the organizational environment, a human being has three types
of needs to be met: (i) existence, (ii) relatedness, and (iii) growth. Existence
need is the most concrete one because it comprises material and physiological
desires, such as pay, benefits, infrastructure and work conditions. Relatedness
comprehends needs related to interpersonal relationship with superiors, cowork-
ers and subordinates, friends and even enemies. Growth needs “include all the
needs which involve a person making creative or productive effects on himself
and the environment” [10, p. 146]. Alderfer states that there is no hierarchy in
individuals’ central needs in the organizational environment. However, if a less
concrete need is not met, the desire to meet a more concrete need will grow [10].

These three needs were applied to this study to guide data collection and
analysis, as explained in the next Section.

4 Research Approach

We conducted this research as a qualitative case study, according to the guide-
lines provided by Yin [11]. Our research question was “How does the motivation
of traditional software process practitioners differ from the motivation of agile
software process practitioners?” and was answered by testing three propositions:

– P1 - Existence motivating factors in traditional software development do not
differ from existence motivating factors in agile software development;

– P2 - Relatedness motivating factors in traditional software development do
not differ from relatedness motivating factors in agile software development;

– P3 - Growth motivating factors in traditional software development do not
differ from growth motivating factors in agile software development;

The unit of analysis was the individual – software practitioner – that works
with either a traditional or an agile software process. Data was collected by semi-
structured interviews, with questions based on the evaluation of the propositions.
Each interview took about 30 min. They were all recorded and transcribed for
analysis. Six individuals were interviewed. Three of them worked in an organiza-
tion that used a traditional software process based on Rational Unified Process;
and the other three worked in an organization that used Lean as an agile method
for software development.

The analysis of the interviews was performed based on the content analysis
technique [12]. We analyzed all the transcribed interviews searching for codes
related to Alderfer’s ERG Theory [10]. A network analysis of codes was created
for each ERG category and for each group of interviewees.

Motivating Factors in Agile and Traditional Software Development Methods 139

5 Results

This section presents the results of the cross-case analysis, when networks of
codes were compared between individuals that work with traditional methods
and individuals that work with agile methods. Results are described compara-
tively for each ERG category.

5.1 Existence

In the existence needs category, we could find two subcategories, which group
evidences from interviews: satisfaction of financial needs and satisfaction of work
conditions. For the first subcategory, individuals that use both agile and tradi-
tional processes showed to be satisfied with salaries and benefits. We found three
elements in common among them: (i) their salary is compatible with the market;
(ii) there is no reward system related to the method used for software develop-
ment; and (iii) there is no expectation of salary growth related to the method
used for software development.

For the second subcategory – satisfaction of work conditions – we also
observed similar evidence in both groups: they feel that the software process
organizes the work environment. Yet agile practitioners mentioned that the
method (i) allows work to be divided into smaller parts and, as a consequence,
results are easier to accomplish; and (ii) individual management of the tasks.

5.2 Relatedness

We found three subcategories comprising the relatedness category: individual
and team, individual and superior, and esteem. For the individual and team sub-
category, we observed that individuals from both groups consider that the work
environment is collaborative, but there are members in the team who seem to
feel indifferent as regards the development method used. For traditional process
interviewees: (i) people are committed, but (ii) a not-committed team member
is a demotivating factor. In the agile process group, we identified that people feel
stimulated to work as a team and pointed out that (i) responsibility is shared,
(ii) knowledge is shared and (iii) there is a sense of union in the team.

Concerning the individual and superior subcategory, we could not find com-
mon motivating factors. In the traditional process group, leadership commitment
highly influences team members’ motivation. We observed that there is an open
relationship between individuals and their superiors. For the individuals that use
agile methods, leadership commitment seems to have little influence on motiva-
tion. Instead, the main motivating factor is collaborative decision making.

The esteem subcategory evidences professional appreciation as the main
motivator in both groups. For individuals that use traditional methods, we also
observed people feeling motivated for (i) being useful in the company; (ii) having
a sense of accomplishment by working on innovative projects; and (iii) meeting
customers’ expectations. In the agile process group we identified the sense of
self-assertion in the team.

140 R. Albuquerque et al.

5.3 Growth

According to Alderfer [10], satisfaction with growth needs happen when people
are challenged to solve problems that fully apply their capabilities and make
them develop new skills. For to this category, we found that learning is a common
motivating factor in both groups. Interviewees feel motivated to learn and to
apply new methodologies in their work activities.

For the group that uses the traditional process, we observed that motivation is
met when people are challenged to solve problems, to execute innovative projects
and meet customers’ expectations. We found other factors for the individuals
that use an agile process: (i) the development of an individual accountability,
considering that responsibility is shared among the team; (ii) the prestige in
software development market – according to interviewees, working with agile
method enriches employability; (iii) using agile methods for solving personal
problems; and, finally (iv) autonomy to be creative to solve problems.

6 Discussion and Conclusions

The results presented in the previous Section allow us to answer our research
question by confirming that motivating factors do differ – under some aspects –
between individuals that work with a traditional software development method
and individuals that work with an agile software development method.

Recalling our study propositions, we observe that P1 was confirmed, and
propositions P2 and P3 were not confirmed. We verified that, regarding exis-
tence aspects, motivating factors are similar among traditional and agile groups.
Concerning relatedness and growth, motivating factors were different between
them.

Regarding existence, we observed that most motivating factors are present in
both groups. The only difference appears when agile practitioners mention that
they value the individual management of their tasks, which is a characteristic of
the method they use. In the relatedness category, a number of differences were
found. We observed that leadership commitment has a stronger influence on
motivation when people work with traditional processes. In this group, we also
found out that demotivated individuals badly influence other team members’
motivation. For agile practitioners, we did not identify this influence. Esteem
also differs between the groups. While in the traditional process we observed
motivation when people feel useful at work, in the agile process, people feel
motivated by self-assertion in the team. In the growth category, differences were
also observed mainly for the fact that, in traditional processes, motivation is
related to meeting customers’ expectation and professional challenge. For agile
processes, growth motivation relates to individual accountability and autonomy.

When comparing our results to the existing literature, we observe that some
motivating factors were confirmed. Considering the traditional software process,
we observed similarities regarding the relatedness category: leader’s influence
on motivation, good relationship with team members and superiors, collabora-
tive and team work were factors also identified in [5,6,8]. Concerning the agile

Motivating Factors in Agile and Traditional Software Development Methods 141

software process, we confirmed some factors identified in [9]: the sense of accom-
plishment, feedback and involvement with the team. Besides, we identified that
learning and professional challenge are motivating factors for people who work
with either software process, which confirms Beecham et al.’s [7] statement that
software engineers get motivated by software engineering itself.

Although our results contribute to expanding the literature regarding human
aspects in software engineering and to managers concerned in motivating their
teams, we considered they are limited for (i) the sample size and (ii) the organi-
zational contexts in which the research was conducted. Data obtained from the
six interviews might prevent results generalization and raises the need for con-
firmatory studies. As we performed case studies in two different organizations,
the organizational context might also have influenced the motivating factors
described by interviewees. We thus plan to conduct future studies in a single
organization that uses both traditional and agile software process models.

References

1. Germain, E., Robillard, P.N.: Engineering-based process and agile methodologies
for software development: a comparative case study. J. Syst. Softw. 75, 17–27
(2005). doi:10.1016/j.jss.2004.02.022

2. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org

3. Kroll, P., Hrutchen, P.: The Rational Unified Process Made Easy: A Practitioners
Guide to the RUP. Pearson Education, Boston (2003)

4. Magdaleno, A.M., Werner, C.M., Araujo, R.M.: Reconciling software development
models: a quasi-systematic review. J. Syst. Softw. 85, 351–369 (2012). doi:10.1016/
j.jss.2011.08.028

5. Verner, J.M., Babar, M.A., Cerpa, N., Hall, T., Beecham, S.: Factors that motivate
software engineering teams: a four country empirical study. J. Syst. Softw. 92, 115–
127 (2014). doi:10.1016/j.jss.2014.01.008

6. França, C., Silva, F.Q., Feliz, A.L.C., Carneiro, D.E.S.: Motivation in software
engineering practice: a cross-case analysis of two software organisations. Inf. Softw.
Tech. 56, 79–101 (2014). doi:10.1016/j.infsof.2013.06.006

7. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: a systematic literature review. Inf. Softw. Tech. 50, 860–878 (2008).
doi:10.1016/j.infsof.2007.09.004

8. Hall, T., Jagilska, D., Baddoo, N.: Motivating developer performance to improve
project outcomes in a high maturity organization. Softw. Qual. J. 15, 365–381
(2007). doi:10.1007/s11219-007-9028-1

9. Melo, C.O., Santana, C., Kon, F.: Developers motivation in agile teams. In: 38th
Euromicro Conference on Software Engineering and Advanced Applications (2012).
doi:10.1109/SEAA.2012.45

10. Alderfer, C.P.: An empirical test of a new theory of human needs. Organ. Behav.
Hum. Perf. 4(2), 142–175 (1969). doi:10.1016/0030-5073(69)90004-X

11. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. Sage Publications,
Thousand Oaks (2013)

12. Bardin, L.: Análise de Conteúdo. Edições 70, Lisboa (2011)

http://dx.doi.org/10.1016/j.jss.2004.02.022
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://dx.doi.org/10.1016/j.jss.2011.08.028
http://dx.doi.org/10.1016/j.jss.2011.08.028
http://dx.doi.org/10.1016/j.jss.2014.01.008
http://dx.doi.org/10.1016/j.infsof.2013.06.006
http://dx.doi.org/10.1016/j.infsof.2007.09.004
http://dx.doi.org/10.1007/s11219-007-9028-1
http://dx.doi.org/10.1109/SEAA.2012.45
http://dx.doi.org/10.1016/0030-5073(69)90004-X

Quality Assurance in Agile Software
Development: A Systematic Review

Carlos Alberto Fortunato1(&), Felipe Furtado1, Fernando Selleri2,
Ivaldir de Farias Junior3, and Nelson Leitão Júnior1

1 CESAR.EDU, Recife, PE, Brasil
calbertofortunato@gmail.com, furtado.fs@gmail.com,

leitaojr@outlook.com
2 UNEMAT - Universidade do Estado do Mato Grosso,

Barra do Bugres, MT, Brasil
selleri@unemat.br

3 Softex Recife, Recife, PE, Brasil
ivaldirjr@gmail.com

Abstract. In software engineering, agile methods have emerged as alternative to
handle the growing pressures for innovation in increasingly shorter deadlines, the
constant needs for changes in requirements and the poor performance of most
software development projects accelerating time to market, bring improvements
in quality and productivity, Information Technology (IT)/business alignment,
and enhanced flexibility are noticed. In this context, through a systematic liter-
ature review, this work aims to identify, evaluate and analyze relevant studies on
quality assurance practices in agile. The results include the identified works,
practices and limitations.

Keywords: Agile software development � Quality assurance � Agile practices

1 Introduction

Software development using agile methods have been increasingly used by the soft-
ware development industry. When compared to traditional software development
methods, advantages such as accelerate time to market, increase in quality and pro-
ductivity, improve Information Technology (IT)/business alignment, and enhanced
flexibility are noticed [1]. In order to contribute to the improvement of process and
product quality, this work aims to identify the quality assurance practices that are
present in agile software development.

2 Methodology Approach

As stated by Kitchenham and Charters [2], a systematic literature review aims to assess,
identify and support all relevant studies available for a specific research question,
subject area, or phenomenon of interest. This section presents the research protocol
used in this study, having as reference the studies described by Dyba and Dingsøyr [3]
and Selleri et al. [4].

© Springer International Publishing AG 2017
T. Silva da Silva et al. (Eds.): WBMA 2016, CCIS 680, pp. 142–148, 2017.
DOI: 10.1007/978-3-319-55907-0_14

2.1 Research Questions

This study aims to answer the following research questions (RQ): (RQ1) which
practices are used for quality assurance in agile projects? (RQ2) What are the main
challenges and limitations of quality assurance on agile methods?

2.2 Data Sources and Search Terms

Based on Selleri et al. (2014), the research protocol of this paper adopts manual and
automated database searches. The ACM Digital Library, IEEE Explorer, Science
Direct, Scopus, Springerlink, Wiley Inter Science Journal Finder where used as
indexation mechanisms. For manual searches, the following conferences were selected:
XP Conference; Agile Development Conference; International Conference on the
Quality of Information and Communications Technology; International Conference on
Software Engineering Advances; International Symposium on Empirical Software
Engineering and Measurement; International Conference on Software Engineering. The
following journals were selected: IEEE Transactions on Software Engineering; Journal
of the ACM; ACM Transactions on Software Engineering and Methodology; IEEE
Software; Empirical Software Engineering Journal; Journal of Software Process:
Improvement and Practice; Agile Journal.

The search in the electronic databases used keywords derived from the previous
research such Dyba and Dingsøyr [3] and Selleri et al [4]. By combining these terms with
the logical operators AND and OR, we obtained the following search string: (“Quality
Assurance” OR “SQA” OR “QA”) AND (“agile” OR “agility” OR “lightweight” OR
“scrum” OR “extreme programming” OR “XP” OR “dynamic system development” OR
“DSDM” OR “crystal clear” OR “crystal orange” OR “crystal red” OR “crystal blue”
OR “feature driven development” OR “FDD” OR “lean software development” OR
“adaptive software development”OR “ASD”OR “test driven development”OR “TDD”).

2.3 Criteria and Procedures for Studies Selection

We adopted the following criteria for studies inclusion: academic and industry studies
with empirical data; works from conference and journals; experience reports on quality
assurance in agile development; studies in English; studies published between 2001
and 2015; qualitative or quantitative research studies. The following criteria were
adopted to studies exclusion: studies without the focus on quality assurance and agile
development; editorials, prefaces, article summaries, interviews, news, analysis, cor-
respondence, discussions, comments, reader letters, tutorials, summaries, workshops’
plan, panels and poster sessions; studies that focus on simple techniques or practices.

The selection of primary studies was carried out in four stages, by applying the
inclusion and exclusion criteria adopted in Selleri et al. [4], they are: Step 1: automatic
search and manual search (duplicate studies were discarded); Step 2: identification of
potentially relevant studies by analysis of the title and abstract, discarding clearly

Quality Assurance in Agile Software Development 143

irrelevant studies for research; Step 3: a review of studies by reading the introduction,
methodology, results, considerations, and if necessary throughout the text; Step 4:
critical reading of articles, including checking of references to obtain further study.

2.4 Performing the Review

The review began with the automatic search through the search string in the defined
mechanisms and the manual search. It was followed by the identification of potentially
relevant studies and the application of the inclusion/exclusion criteria. We identified
2992 papers, which are distributed by electronic databases as follows: IEEE (95), Wiley
Inter Science Journal Finder (191), ACM Digital Library (244), Springer Link (311),
Science Direct (710) and Scopus (1441). For manual search, we identified 12 works in
this disposition: QUATIC (1), Agile Conference (2), ICSEA (2), ICSE (3), XP Con-
ference (4). The results of the automatic search (2992) and manual search (12) were
consolidated in 3004 results. The studies were ordered by title to the exclusion of
redundancies, resulting in 2,950 studies. The studies that did not have to mention quality
assurance using agile practices in the title or abstract were discarded, elapsing 304
studies. Then the reference lists of included studies were checked, which led to 8 studies,
bringing the total to 312 studies, which were read. Then, were excluded those which did
not identify the use of practices common to agile methods or did not refer to the product
and process quality gain from its use and were included 3 of 8 studies identified by the
review of references, totaling 22 studies.

3 Results

The 22 identified studies, available in following link (https://goo.gl/nJcc0U), led to the
following results.

3.1 Agile Practices

Figure 1 shows the agile practices identified in the analyzed studies.

Fig. 1. Agile practices identified in the works

144 C.A. Fortunato et al.

https://goo.gl/nJcc0U

The most cited practices in the works are part of the Extreme Programming
methodology, as being the “Refactoring” the most used practice that was present in
fourteen works. Secondly, the practice of “Testing Driven Development” being present
in thirteen works. The “Knowledge Sharing” practice was identified in twelve works
and the “Pair Programming”, “Inspection” and “Simple Design” practices were present
in ten works. The “System Metaphor” and “Continuous Integration”, were both in nine
works. Scrum Practices, as the “Retrospective”, “Stand-up Meetings”, “Sprint Review”
and “Planning” meetings, were mentioned in six works and these were mentioned as
favoring quality assurance. Agile practices related to FDD such “Domain Object
Modeling”; “Feature Teams” and “Progress Reporting”; and Crystal Clear such “Joint
Planning Meeting” were cited at least in one of the included studies.

3.2 Quality Assurance in Agile Methods

Answering the question (Q1) of this study, Table 1 shows the works and their
respective practices that enable quality assurance in agile methods. Each study was
identified by a prefix “s” to “study” and a sequence indicator, both in parenthesis.

Table 1. Work and related practices

Work Related practices

(s1) The study was based on 10 projects identified gain quality with the use of
agile practices such as test-driven development, refactoring, pair
programming, and recruiting people with good technical level and ongoing
communication with the customer.

(s2) The study identified the practices that leverage quality projects that make
use of Scrum as validation of user stories; multidisciplinary team; software
construction with parallel tests; continuous improvement of technical
knowledge of the team; test automation; advanced use pair programming
and review.

(s3) The study was based on 42 institutions, and identified gain in quality as the
use of practices such as continuous customer communication, knowledge
sharing, small teams, well organized and trained, flexible code design and
refactoring code and database.

(s4), (s5),
(s13)

The studies identified the main agile practices derived from XP favoring
quality assurance: development guided by tests; refactoring; system
metaphor and pair programming.

(s5) The study identified the use of the quality manager and the creation of a
contingency plan for major mishaps during the software lifecycle promote
the quality of the final product.

(s6) The study identified the practices that promote quality assurance as
refactoring, continuous integration, making smaller deliveries, code review,
pair programming and testing.

(continued)

Quality Assurance in Agile Software Development 145

Table 1. (continued)

Work Related practices

(s7) The study proposed a model called Agile Quality Assurance Model
(AQAM), where the main focus is on quality assurance in agile
management, some key areas in the development process are based on agile
practices such as pair programming, sharing knowledge, unit testing and
continuous integration.

(s8) The study describes XP practices such as those focused on risk control and
quality of code produced, rather than relying on a process that will only
check the quality of the final product, as follows: System metaphor,
customer presence at the developers, and improvement in communication
between members of the team, pair programming, refactoring, continuous
feedback and acceptance testing.

(s9) The study proposes the scope of the ISO 9126 quality attributes
(Correctness, Maintainability, verifiability, efficiency, availability,
portability, testability and reliability) through agile practices derived from
XP.

(s10) The study identified the practices responsible for quality assurance: test
driven development, acceptance testing, code inspection, pair programming,
refactoring, continuous integration, collaborative work, system metaphor,
continuous feedback and coding best practices.

(s11) The study mentioned test driven development and acceptance testing as
agile practices that promoting quality assurance.

(s12) The study proposes the so-called Continuous Integration, Continuous
Measurement and Continuous Improvement (3C) in which quality assurance
is achieved from an improvement of the practice of Continuous Integration.

(s13), (s19) The studies claim that the practices of Scrum and XP, as the daily meeting,
acceptance testing and continuous integration allow quality assurance in
agile process and not allow changes while Sprint prevents the uncontrolled
growth of the project scope.

(s14) The study made a comparison between XP and Waterfall model, in which
were identified the following practices that enable quality assurance: pair
programming, refactoring, system metaphor, on-site customer with the team,
constant feedback, unit testing and acceptance, development team with
people who together take responsibility for ensuring the project, focusing on
collaborative work, interpersonal constant improvement and motivation.

(s15) The study identified some practices that promote quality assurance in the
Scrum framework and continuous collaboration, integration testing,
continuous feedback and development, knowledge sharing, retrospective,
and daily meetings.

(s4), (s16) Both said that the test application in all stages of development enables error
detection during the iterations of the software life cycle, adding the use of
refactoring, applied correctly, which increases the architectural quality and
the convenience of maintenance code for future iterations. Also with the
improvement in communication, disseminating knowledge about the
problems and methods to solve them, then identifies the possibility of
quality assurance.

(continued)

146 C.A. Fortunato et al.

3.3 Challenges and Limitations for the Quality Assurance in Agile
Methods

In response to the research question (Q2) of this work, Table 2 shows the works with
their limitations and challenges related to quality assurance in agile methods.

Table 1. (continued)

Work Related practices

(s18) The study mapped out a set of practices necessary to reach some quality
attributes defined by ISO 9126, which are: unit testing, retrospective, pair
programming and inspection.

(s18), (s21) The studies identified for Crystal Clear methodology, practices such as test
automation, direct involvement of the user and revisions enable quality
assurance.

(s21) The study evaluated six methods from the framework perspective “good
enough quality” and identified the following practices as quality assurance
enablers: software demonstration, joint planning meeting, joint application
development, customer on-site prototyping, automated acceptance testing,
continuous integration testing, inspection, pair programming, test driven
development, coding and refactoring patterns.

(s17), (s20),
(s22)

The mapped practices from Scrum and XP such system metaphor, on-site
customer with the team, constant feedback, unit and acceptance testing,
continuous integration, coding and refactoring patterns, pair programming,
stand up meting enable quality assurance.

Table 2. Works and their related limitations and challenges

Works Related limitations and challenges

(s11) The study proposes that should be avoided the developer testing as the sole
approach, because you cannot make use of destructive attitudes when planning the
tests.

(s19) The study states that the productivity and quality printed by the Scrum agile
methodology is closely related to the talent and expertise of the team; the lack of a
consolidated guide practices on the implementation of testing and dependence on
interpersonal talent team directly impact the quality of the final product.

(s21) The study states that empirical studies did not show an improvement in quality from
the customer’s use at the team of developers, which may not have the skills to take
on this important role, which strengthened the guarantee of the quality of the final
product.

(s22) The study exposes the limitations in identifying bugs by using unit tests for a lot of
code, because the degree of coverage tests in relation to the vast number of possible
scenarios may be insufficient.

Quality Assurance in Agile Software Development 147

4 Final Remarks and Future Work

From the reading and extraction of data on ensuring agile quality, we identified that the
use of people with a generalist professional profile, who treat teamwork and good
communication between team members as a philosophy, which are adept of constant
knowledge improvement and favor the perfectionism, support the adoption of agile
methods in projects, as corroborated by the latest Chaos Report [5], that states that one
of the factors that contributed to the success of the projects were the use of proficient
agile people. Also, as stated by analyzed works, the use of good programming practices
is regarded as one of the pillars of quality assurance, making the training and retraining
of the team in techniques such as coding standards, refactoring, creating unit tests,
review code, pair programming and use of continuous integration tools are important
factors for achieving the quality assurance. Regarding the identified limitations on agile
practices, software testing proved as the most likely to be incorrectly performed, but, as
stated by VersionOne [6], one of the main challenges in agile projects it is the lack of
knowledge of agile practices. It should also be noticed that the work (s18) mentions
some quality attributes such as reusability, portability and compatibility (ISO 9126) by
only linking their role in quality maintenance with object-oriented languages, as well as
the work (s11), that does not mention the use of testers for supporting the developers in
the creation of destructive test scenarios that will be covered by unit tests. Works from
Brazil relating quality assurance and agile practices were not found in the period
searched (2001 to 2015). As future work, we suggest the proposition of a model that
qualify and quantify the use of practices that make up the agile ecosystem, to achieve
the final product quality attributes proposed in ISO 9126 [7].

References

1. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring - a systematic literature review.
J. Syst. Softw. 110, 85–100 (2015)

2. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Technical report, School of Computer Science and Mathematics, Keele
University (2007)

3. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50, 833–859 (2008)

4. Selleri, F., Furtado, F.S.S., Peres, A.L., Azevedo, I.M., Vasconcelos, A.P., Kamei, F.K.,
Meira, S.R.L.: Using CMMI together with agile software development: a systematic review.
Inf. Softw. Technol. 58, 20–43 (2014). doi:10.1016/j.infsof.2014.09.012. Elsevier Editorial
System(tm)

5. Standish Group: The Chaos Report (2015). http://www.standishgroup.com
6. VersionOne: State of Agile Development Survey Results (2015). http://www.versionone.com
7. ISO/IEC 9126. Software Engineer Standard (2003). http://www.iso.org/

148 C.A. Fortunato et al.

http://dx.doi.org/10.1016/j.infsof.2014.09.012
http://www.standishgroup.com
http://www.versionone.com
http://www.iso.org/

Author Index

A. Cota, Marcos 28
A. Santos, Viviane 60
Albino, Raphael 125
Albuquerque, Regina 136

Bezerra de Oliveira, Isaac 16
Bittencourt, Vinicius 85
Braz, Alan 98

C. Gonçalves, Geovana 28
C. Stadzisz, Paulo 50
Cardoso de Resende, Carlos F. 85
Chicoria, Adilson 98
Colucci, Lucas 125
Costa Smolenaars Dutra, Alessandra 39
Costa, Raone 39

de Farias Junior, Ivaldir 16, 142
de Paulo Alves, Renata Kalina 16
de Toledo, Rodrigo 85
Duarte Paiva, Raphael 85

Eloise Flôr, Daniela 131

Feitoza Gonçalves, Wellington 16
Fernandes, Rosilene 136
Fortunato, Carlos Alberto 142
Furtado, Felipe 142

Gazaneo, Patrick S. 85
Gomes Filho, Avelino F. 85
Guerra, Eduardo M. 72

Ivo, André A.S. 72

J.P. Amorim, Vicente 28

Leitão Júnior, Nelson 16, 142
Lucena, Percival 98

M. Bomfim Jr., Marcelo 60
M. Pereira, Igor 28
Malucelli, Andreia 136
Mantovani Fontana, Rafaela 136
Mendonça Teixeira, Marcelo 16
Mognon, Fernando 50

Peripolli Souza, Jamila 131
Petrillo, Fabio 110
Prikladnicki, Rafael 3

Rego Lopes, Francisco Jose 110
Reinehr, Sheila 136
Ribeiro Parente Cortez, Herlon 16
Ricardo Zavan, André 131
Rodrigues, Raphael 39

Saraiva Barbosa, Pedro Luis 16
Selleri, Fernando 142

Tizzei, Leonardo 98

Vacari, Isaque 3

	Preface
	Organization
	Contents
	Full Papers
	An Empirical Study on the Adoption of Agile Software Development in Public Organizations
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Case Studies
	4.1 The Selection of Public Organizations
	4.2 The Selection of Research Subjects
	4.3 The Data Collection Instruments
	4.4 The Treatment and Analysis of Data
	4.5 Consolidation of Empirical Results

	5 Results
	5.1 For Beyond Results ... A Set of Recommendations
	5.2 Final Remarks

	References

	Using Agile Methods in Distributed Software Development Environments
	Abstract
	1 Introduction
	2 Agile Methods or Frameworks in DSD Environments
	3 Related Work
	4 Methodology
	5 Results
	5.1 Identification of Participants
	5.2 Main Challenges in DSD Environments
	5.3 Critical Factors for the Success of Adopting Agile Practices in DSD
	5.4 Most Commonly Used Tools in DSD Environments
	5.5 Agile Methods/Frameworks Used in DSD Environments
	5.6 Benefits of Agile Practices in DSD

	6 Selection of Agile Practices Used in DSD
	7 Final Remarks
	8 Research Limitations and Future Work
	References

	Gamification Use in Agile Project Management: An Experience Report
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Step 1
	3.2 Step 2
	3.3 Step 3

	4 Results
	4.1 Percentage of Non-conformities

	5 Conclusion
	6 Limitations and Future Works
	References

	Application of Scrum Maturity Model in SoftDesign Company
	Abstract
	1 Introduction
	2 Background
	2.1 Process Improvement
	2.2 Maturity Models

	3 SoftDesign Development Process
	4 Study Approach
	4.1 Maturity Model Choice
	4.2 Initial Process Improvement Proposal
	4.3 Evaluated Projects

	5 Proposed Improvement Process Execution – Cycle 1
	5.1 Project SAS Assessment
	5.2 Project PEXH Assessment

	6 Identified Improvements
	6.1 Release Planning Meeting
	6.2 Release Burndown
	6.3 Daily Meeting

	7 Proposed Improvement Process Execution – Cycle 2
	7.1 Project PDOC Assessment

	8 Work Result Feedback
	9 Final Considerations
	10 Research Limitations and Future Work
	References

	Modeling in Agile Software Development: A Systematic Literature Review
	Abstract
	1 Introduction
	2 Agile Methods
	3 Review Method
	4 Results
	5 Discussion
	5.1 Software Design Instruments in Agile Software Development (RQ1)
	5.2 Modeling Usage in Agile Software Development (RQ2)
	5.3 Modeling Languages in Agile Software Development (RQ3)
	5.4 When Modeling Is Done in Agile Software Development (RQ4)
	5.5 Evaluation Criteria Used in Agile Software Development Regarding Modeling Activity (RQ5)
	5.6 Definition and Communication of Software Architecture in Agile Software Development

	6 Conclusion
	References

	Strategies for Reducing Technical Debt in Agile Teams
	Abstract
	1 Introduction
	2 Research Method
	2.1 Selected Cases
	2.2 Data Collection and Analysis

	3 Results
	3.1 TD Identification, Discussion and Organization
	3.2 TD Payment
	3.3 Influencing Factors

	4 Discussion
	5 Conclusions and Future Work
	Acknowledgment
	References

	ReTest: Framework for Applying TDD in the Development of Non-deterministic Algorithms
	1 Introduction
	2 Test Driven Development (TDD)
	3 JUnit Framework and Its Extension Points
	4 ReTest: Test Framework for Non-deterministic Algorithms
	4.1 Overview
	4.2 Features
	4.3 ReTest Annotation Set
	4.4 Internal Architecture and Extension Points

	5 TDD with ReTest
	6 Conclusion
	References

	Validation Board: Invalidating Ideas and Discovering the Problems that Must Be Solved
	1 Introduction
	2 Theoretical Framework
	2.1 Project-Based Learning (PBL)
	2.2 Lean Startup
	2.3 Related Work

	3 Validation Board
	3.1 Track Pivots
	3.2 Design Experiment
	3.3 Results

	4 Product Usage Metrics
	5 Research Method
	5.1 Context of the Research
	5.2 Question and Assumptions
	5.3 Method
	5.4 Limitations

	6 Results and Discussion
	7 Conclusion and Future Work
	References

	IBM Design Thinking Software Development Framework
	1 Introduction
	2 Background: The Design Thinking Process
	3 IBM Design Thinking Software Development Framework
	3.1 IBM Design Thinking Roles and Workflow
	3.2 Hills
	3.3 Sponsor Users
	3.4 Playbacks

	4 Design Thinking Survey
	4.1 Design Thinking Survey Results

	5 Related Work
	6 Discussion
	7 Conclusion
	References

	SimKan: Training Kanban Practices Through Stochastic Simulation
	1 Introduction
	2 Background
	2.1 Kanban
	2.2 Stochastic Simulation
	2.3 Serious Games

	3 The SimKan Approach
	3.1 Execution Parameters
	3.2 Preparation
	3.3 Execution Flow

	4 Assessment of SimKan
	4.1 Participants
	4.2 Execution
	4.3 Data Collection
	4.4 Discussion

	5 Threats to Validity
	6 Related Studies
	7 Conclusion and Future Research
	References

	Short Papers
	Predicting the Unpredictable: Using Monte Carlo Simulation to Predict Project Completion Date
	1 Introduction
	2 Methodologies Background
	2.1 Mean Throughput
	2.2 Linear Regression
	2.3 Manual Setting

	3 Monte Carlo Simulation
	3.1 Dice Game
	3.2 Real World

	4 Summary
	References

	Scrum Hero: Gamifying the Scrum Framework
	Abstract
	1 Introduction
	2 Objective
	3 Methodology
	4 Theoretical Base
	5 Scrum Hero
	6 Scrum Hero Manager
	7 Preliminary Results and Future Studies
	References

	Motivating Factors in Agile and Traditional Software Development Methods: A Comparative Study
	1 Introduction
	2 Motivation in Software Engineering
	3 Theoretical Foundation
	4 Research Approach
	5 Results
	5.1 Existence
	5.2 Relatedness
	5.3 Growth

	6 Discussion and Conclusions
	References

	Quality Assurance in Agile Software Development: A Systematic Review
	Abstract
	1 Introduction
	2 Methodology Approach
	2.1 Research Questions
	2.2 Data Sources and Search Terms
	2.3 Criteria and Procedures for Studies Selection
	2.4 Performing the Review

	3 Results
	3.1 Agile Practices
	3.2 Quality Assurance in Agile Methods
	3.3 Challenges and Limitations for the Quality Assurance in Agile Methods

	4 Final Remarks and Future Work
	References

	Author Index

