

Where Code and
Content Meet

Where Code and
Content Meet

Design Patterns for Web
Content Management

and Delivery,
Personalisation and

User Participation

Andreas Rüping

This edition first published 2009
© 2009 John Wiley & Sons, Limited

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice
or other expert assistance is required, the services of a competent professional should be sought.

A catalogue record for this book is available from the British Library.

ISBN 9780470748459

Set in 10/12 point Sabon by WordMongers Ltd, Treen, Penzance, Cornwall
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall

Contents

Foreword	 vii

Preface	 ix

Acknowledgements	 xvii

Introduction	 xix

Chapter 1	 Architecture Overview 1

Content Management and Content Delivery 3

Dynamic Content Delivery plus Caching 9

Sensible Client-Side Interaction 14

Listener-Based Synchronisation 21

Layered Architecture for Content Delivery 25

Chapter 2	 Content Management 31

Content Type Hierarchy 33

Decoupling of Content and Navigation 39

Dynamic Content Linking 45

Taxonomy Based on Keywords and Categories 49

Workflow-Based Validation 54

Chapter 3	 Content Delivery 61

Content Services 64

Navigation Manager 73

Search Manager 78

System of Interacting Templates 83

v

vi Contents

Chapter 4

Chapter 5

Template per View 89

Self-Contained Pages 94

Personalisation and User Participation 99

Content Filters 101

Asynchronous Personalisation Engine 107

Segment-Specific Caching 111

Condensed Effectiveness Reports 115

Decoupling of Edited Content and User Contributions 118

Input Channel for User-Generated Content 122

Deployment and Infrastructure 127

One Web Application for Content Delivery 130

Dedicated Development and Production Environments 135

Smooth Relaunch 140

Planning a Project 147

Choosing a Content Management System 161

Final Remarks 169

Pattern Thumbnails 171

Glossary 179

References 187

Index 191

Foreword

About 60 years ago the American scientist Vannevar Bush envisioned a new way of ac

cessing and exchanging knowledge. In a paper that was originally drafted before World

War II, he outlined a machine he called MEMEX that would extend human memory in a

way that had never been seen before. Equipped with a microfilm reader, the knowledge

worker of the future would be able to access all the content that had ever been written and

create links between it. These ideas later influenced key computer scientists such as Ted

Nelson and Douglas Engelbart, and eventually led to the web as we know it today, which

builds on this vision – although it is still not able to reach the level of interaction that was

foreseen by Bush. Imagine a world in which we were able to create reading trails between

any items of knowledge.

When I think back to my first encounters with the hypertext systems that were devel

oped in research contexts in the late 1980s, I can still remember special-purpose hyperme

dia readers providing things like assistance for museum visitors. It was really exciting to

see how soon after that the World Wide Web became reality. I’m not sure what I would

have said if someone had told me that I would find web pages for almost everything only

a few years later. I still remember how funny it was to find the first web page for cat food,

or towels. I thought that this was really useless – however, even the web pages for cat food

were exciting, somehow: they offered an engaging user experience. Today, Google lists

more than 75 million pages that mention cat food – more than one for every UK citizen.

Such pages do not exist in isolation: they are connected to other pages to form a huge col

lection of websites maintained by people like you and me.

With the advent of Web 2.0 we see an increasing number of interactive sites where visi

tors become the authors of the content and link the content together. Wikipedia is one of

the largest examples, where a community of authors creates and manages a huge collec

tion of content. As you can imagine, you will find a page explaining cat food on Wikipedia

as well, at some considerable length. Links on such pages help you to research any subject

of your choice: an initial page can become an entry point for exploring biology, chemistry

vii

viii Foreword

or any other subject. I confess that I did not imagine this effect in the early 1990s. Maybe

you were more visionary in those days?

This book is not about cat food or towel sites, although you will find valuable hints for

building a special-interest site if that is what you need. Nor is it about museums and the

history of technology, although it illustrates web content management by designing a

website for a museum. Instead, the book will teach you how to plan, build and maintain

new or existing websites by providing essential guidelines for their architecture and de

sign without delving into the details of their implementation. It will help you to decide

which content management system to use, and give you the background knowledge re

quired to really understand the difficulties of content management, explaining good prac

tices that help you to avoid such difficulties in your project. If you have some experience

of content management already you might consider some of the advice obvious at first

glance, but even in these cases I became more and more excited when following the expla

nation of the details.

Each area of advice is presented as a design pattern, a format that is easy to memorise

and understand. One of the benefits of this style is that you can browse quickly through

the whole book by looking at the text set in bold font. I suggest that you try this first, or

simply look at the pattern thumbnails section at the end of the book. Just as web pages

are connected in the web to form a website, the patterns in this book are connected to

form a pattern language. Just as the web as a whole becomes more powerful because of

the connections, the pattern language will leverage your understanding of web content

management to give a holistic perspective – the pattern language gives you the vocabulary

to talk about websites. Try it out and investigate the presence of the patterns in one of

your preferred websites. I suspect that you will find at least some, and that you will be able

to suggest improvements by looking at those patterns that weren’t used for the site.

This is where we come back to the original vision of Vannevar Bush. Using the right in

tellectual tools, you will be empowered to analyse, manage, critique and structure the

knowledge that you want to present on the web. You will be able to improve the reading

paths and you will become aware of means for personalisation and participation for your

readers. All this will help you to create websites that are easier to maintain. Finally, visi

tors to the site will thank you for content that is up-to-date, easy to find and – above all –

exciting.

Till Schümmer

Cooperative Systems Group

FernUniversität in Hagen

Preface

Imagine that you are involved in a project that plans to develop a website for the House

of Effects – a museum of nature and science dedicated to explaining natural phenomena

to an interested audience. The website should inform visitors about what the museum has

in store, offer interactive online presentations and announce forthcoming special events.

In addition, there is going to be an online shop, where registered users will be able to buy

tickets as well as books, DVDs and the like. Finally, the site is supposed to express a com

munity feel. It will allow registered users to comment on and rate online materials and

shop items. Users will also be able to receive personalised recommendations that match

their interest profiles.

The screenshot in Figure 1 shows the start page for the House of Effects. It gives you a

rough idea of how this website will look.

However, there are more requirements. Content editors must be able to add presenta

tions and announcements smoothly, so straightforward workflow processes are required.

Some online presentations might invite user-generated content, so the website must also

be able to receive submissions from users. The site must be reliable, as it will be the main

channel by which the House of Effects will be advertised to the general public. Response

times should be reasonably short. The site has to scale to a potentially large number of

users. Last but not least, the website’s owners want to retain the option to change or ex-

tend the site later, so the software behind it should be easily maintainable.

All this is a fairly typical scenario: today pretty much every organisation has a website.

Company profile, service portfolio and contact information are among the things that all

organisations need to make available via the Internet. But many sites consist of much

more than this. Interaction and services for the users are common enough. In addition,

some sites include an online shop where digital products are sold over the Internet. Per

sonalised sites tailor their content to specific users or user groups. With the growing pop

ularity of Web 2.0, some sites have turned into collaborative platforms where users can

actively participate in a community.

ix

x Preface

Figure 1: Home page for the House of Effects

Almost all advanced websites or web platforms require a good deal of custom software.

Of course, you can (and should) use tools such as a content management system, a web

server, web application frameworks, tag libraries, a search engine and perhaps others, and

these tools provide much of the necessary standard functionality. But standard function

ality isn’t all you need – it is likely that you will have to meet more specific requirements.

Possible examples include a specifically designed content model, personalisation strate

gies, individual page layouts and support for different output media. To meet such re

quirements, custom software development becomes necessary.

An essential part of that custom software needs to handle the web content required by a

site. Web content can cover all sorts of digital assets, including text, pictures, videos or oth

er multimedia objects. To this end, there are two worlds that you need to balance. One is

the world of content, with its underlying models, classifications and lifecycles. The other is

the world of code, where the term ‘code’ is meant to summarise those software techniques

Preface xi

and mechanisms necessary to represent content on the web and to implement user inter

action.

If you are interested in either of these two worlds individually, plentiful information is

available. There are several books on web content management and enterprise content

management, usually offering an information management perspective. Similarly, there

are many good books on software development in general and on web applications spe

cifically.

This book sets out to do something different. Starting at the point where code and con

tent meet, it aims to explain how these two worlds go together, offering an approach that

aligns the requirements from either perspective. Code and content are viewed as inter

locking jigsaw pieces, as Figure 2 shows. Neither content nor code are going to be seen in

isolation.

Figure 2: Content and code complementing each other

Code Content

/

/

/

What this book is about

This book assumes a software designer’s perspective and presents a collection of patterns

that address the content-related aspects of custom software development for advanced

websites or web platforms.

So what are patterns? Patterns represent good practice and suggest solutions that have

worked well in many practical cases. Mined from a series of successful web projects, the

patterns in this book represent the collected expertise of designers from several software

development teams.

Key topics in the book include content modelling and content organisation, naviga

tion, findability, personalisation and user participation. The patterns are independent of

xii Preface

specific tools and technologies. They focus on non-functional requirements, with the

overall goal of defining a sustainable software architecture. In addition, checklists for

managing a web project and for the selection of a web content management system give

practical and straightforward advice.

I am not going to present one specific architecture, though. The reason for this is simple

enough: websites are much too heterogeneous to be designed in a uniform way. Require

ments differ a lot, as do the underlying technologies. There is no point in trying to define

a single all-purpose architecture. Instead, the patterns in this book should serve as a prac

tical guide to designing your own content-related custom components for your web

project. Since the patterns are independent of any specific tool or programming language,

you can use them to define an architecture that matches your specific needs.

This isn’t to say that you have to develop all software components yourself. Actually,

you should not do so. First, you’ll probably be using a content management system. There

are many systems available on the market, so it is unlikely you will have to develop your

own. Second, you will probably be using frameworks for web development, such as

Struts, Java Server Faces, Ruby on Rails or something else. These tools can save you a lot

of work, but you will have to integrate them, and there is no question that a non-trivial

site with individual requirements will also require a good deal of custom software. This

is where this book can help you.

The book is also meant to help you to define a sustainable architecture – one that has

a lasting positive effect on your website’s system characteristics. The patterns not only

seek to align code and content, but also focus on non-functional requirements. For exam

ple, the site should be fast, despite the fact that good response times can be hard to

achieve, especially in the presence of personalisation. Next, maintainability is essential.

Only a solid architecture can ensure that later changes to your site won’t require a large

and unjustified effort. There are also other important non-functional requirements, in

cluding security, reliability and scalability. Since the patterns in this book keep an eye on

these things, they can help you to design a website with an underlying high-quality soft

ware architecture.

What this book is not about

There are of course things that I cannot deal with. To further clarify what the book is

about, let me contrast it against related topics that are outside its scope:

■	 The book is not about web development in general. Its focus is on the interplay of

code and content, which is more specific, although there may be overlaps. If you are

interested in web development in general, I would refer you to the literature that is

available, including books by Martin Fowler on Patterns of Enterprise Application

Architecture (Fowler 2003) and Paul Dyson and Andy Longshaw on Architecting

Enterprise Solutions (Dyson Longshaw 2004).

■	 I am not going to talk about specific programming languages or tools. Java, PHP,

Ruby, JavaScript, XML, HTML and CSS are just a few examples of languages that

Preface xiii

play a role in web development, but this book isn’t an introduction into any of

them, nor is it an introduction to any specific content management system. Instead,

it describes techniques and strategies that work well with different languages and

tools.

■	 The book is not about developing a content management system. The book tells

you how to define an architecture that involves a content management system, but

how to develop such a system is outside its scope. However, when you select a

content management system for your project, you can use this book to evaluate

different systems and see how well they support the architectural principles for

advanced websites and web platforms.

■	 Groupware applications, even if they are web-based, are outside the scope of this

book. Forums, chatrooms and the like are becoming more and more popular, but

although they often appear next to web content, content management and content

delivery on one hand and groupware on the other are different things. True enough,

there is a connection if a website welcomes user participation and invites user

generated content. I will deal with user participation in this book, but the focus will

be on the content aspects, not on the interaction models for user collaboration. If

you are interested in collaboration techniques and strategies, refer to the book by

Till Schümmer and Stephan Lukosch on Patterns for Computer-Mediated

Interaction (Schümmer Lukosch 2007).

■	 This book is not about web design and web usability. I am not going to tell you what

your web pages should look like, and not going to talk about what kinds of

interaction are good and what are not. If you are interested in these topics, refer to

books on web page ergonomics (for example Hackos Redish 1998, Krug 2006) and

on interface design (for example Tidwell 2005, Scott Neil 2009).

■	 A current trend in many companies, enterprise content management refers to

strategies used to evaluate, maintain and access content in an organisation

(Rockley 2002). It is related to information architecture, which can be defined as

‘the combination of organization, labelling and navigation schemes within an

information system’ (Rosenfeld Morville 2006). These topics may enter into what I

discuss in this book, but they are not in its focus.

Why this book matters

You should now have a pretty good idea of what the book is about. As a next step I’d like

to tell you why this book matters – why it contains material that is important and why it

can be crucial to your project’s success. Here are some reasons why you should benefit

from reading this book:

■	 Many existing websites started several years ago. If you look behind the scenes you

will notice that quite often the architecture hasn’t evolved to the degree to which the

functionality has grown. Over the years rich interactions, backend integration or

xiv Preface

personalisation may have been added, but often in an ad-hoc way. Maintainability

and scalability problems are the logical consequence. By addressing these issues, the

patterns in this book can improve your site’s longevity.

■	 The last few years have seen several new trends and technologies emerge. Web 2.0

has brought us personalisation and user involvement. Ajax (Asynchronous

JavaScript and XML) as an underlying technology has made browser-based rich

client techniques popular, as well as asynchronous communication between

browser and server. It’s safe to assume that these techniques are here to stay. But

these more advanced techniques have also lead to increased complexity. The

patterns in this book tell you how to use these techniques with a reasonable degree

of caution, so that unnecessary complexity can be avoided and maintainability

improved.

■	 These days websites are more crucial to an organisation’s business model than they

were a few years ago. The information and services offered on a website are often

part of an organisation’s fundamental business processes. Think of the plethora of

corporate websites, e-government sites or online shops. As Chris Anderson has

outlined in his famous article The Long Tail (Anderson 2006), niche markets have

flourished a lot over the last couple of years as a consequence of using the Internet

as a distribution channel. Of course, non-niche markets can benefit from Internet

based distribution too. A reliable site based on a solid architecture can therefore

represent solid business value.

■	 Different groups of people are involved in the development and operation of a

website. There are users, content editors, software developers, operators and

sometimes others. These different groups take different perspectives and have

different priorities. This book acknowledges this fact and thus helps you to

reconcile the requirements brought in by the different stakeholders in a web project.

Who should read this book

This book is aimed at the IT people involved in a web project. If you’re involved as an ar

chitect, a software designer, a developer or an IT manager, then this book should be use

ful for you. You should be able to benefit from it in different ways:

■	 You can use the book if the plan is to develop a new website or web platform and

you want to ensure a solid architecture as a starting point. The patterns here will

help you to create a ‘big picture’ for your architecture and will also guide you

through more detailed design decisions.

■	 The book should be equally useful if you are working towards the relaunch of an

existing site. Adding lots of new features can be a challenging task. The patterns in

the book can help you to evolve the architecture of your site and to integrate new

functionality smoothly.

Preface xv

■	 It is sometimes a good idea to improve the internal structure of a software system

without changing its external behaviour. This process is known as refactoring

(Fowler 1999) and is a good strategy if software longevity is a goal. If you plan to

refactor your website, this book can help you to head in the right direction and take

the right steps.

■	 Finally, you can use this book when you have to select a tool or a technology. For

example, you might have to decide between the Java world, the PHP world, the

world of Ruby on Rails or others. Similarly you may have to decide on a specific

content management system. There are plenty of systems available, and picking the

right one can be difficult. Which technology and which tools best fit your platform

depends on how well they can be used to implement your architecture. You can use

the patterns in this book to evaluate the options you have.

Whatever your interest in web projects, and whatever role you may take in such a project,

I wish you a pleasant journey through the patterns presented here.

Acknowledgements

Writing a book always involves more people than just the author. I’d like to thank every

one who has helped me with this book project over the last couple of years.

Project thanks

First I’d like to thank those people with whom I worked on the projects where I mined the

patterns. The customers for the projects should remain anonymous, but if you recognise

any of the projects and you were involved, I’d like to thank you for good ideas, insightful

discussions and fruitful collaboration.

Over the years I’ve presented many of the ideas expressed in this book at various con

ferences. I’ve received lots of encouragement and valuable feedback from many people:

■	 I presented some early ideas in a workshop on web content management that I ran

at the OT 2004 conference in Cambridge. Thanks to everybody who participated.

■	 I presented sections of the book at various pattern conferences – EuroPLoP 2005,

2006 and 2007, and VikingPLoP 2006. Prior to these conferences I received much

helpful feedback from the people who acted as shepherds for the conference papers:

Uwe Zdun, Michael Weiss and Jorge Luis Ortega Arjona, whom I’d like to thank

for encouragement, helpful comments and thought-provoking questions. At the

conferences the papers were taken to writers’ workshops, where they received in

depth reviews. Thanks to all workshop participants for many helpful comments.

■	 Bird-of-a-feather sessions at EuroPLoP 2005 and 2006 spawned more interesting

ideas on the areas addressed here. Thanks go out to Joe Bergin and Michael Weiss,

Allan Kelly, Rui Lopes and Patrick Morisson.

■	 A focus group at EuroPLoP 2007 shed much light on the pros and cons of Ajax

technology. I’d like to thank all participants for their valuable contributions.

xvii

xviii Acknowledgements

I’ve also received a lot of help and support during the publication process, and I’m equally

grateful for that:

■	 First of all, thanks go out to Birgit Gruber of John Wiley and Sons for her work as

editor. She offered lots of enthusiasm and encouragement following our first

meeting at EuroPLoP 2008 and provided a lot of help in making this book come to

life.

■	 Thanks also to Rosie Kemp and Sally Tickner, then of John Wiley and Sons, for

their support during the early stages of this effort.

■	 I’d also like to thank Chris Webb, Colleen Goldring, Ellie Scott, Claire Spinks and

Louise Breinholt of John Wiley and Sons for their support during the production

process.

■	 Steve Rickaby of WordMongers was the copy-editor for this book and, as with

Agile Documentation six years ago, it’s again been a smooth ride through the copy

editing process. Thanks for taking care of layout and language, and for ultimately

turning the manuscript into a book.

■	 Several people provided feedback on the book proposal and made helpful

suggestions for improvement. Thanks are due to Peter Sommerlad, Stephan

Lukosch and Till Schümmer.

■	 Special thanks go to Till Schümmer who, in addition to his earlier feedback,

provided an in-depth review of the full manuscript. He offered many comments at

an amazing level of detail and helped me fine-tune the manuscript, making it

clearer, more complete and more comprehensible. His support had a lasting and

very positive effect on the book.

Publishers and IT folks, it’s been a pleasure to work with you. Thanks a lot!

Family thanks

It’s not just publishers and IT folks whom I’d like to thank. Family support has always

been important, whatever form it may have taken. Wholehearted thanks go out to all of

you: Hiltrud, Jutta, Sven-Folker, Magnus, Nils Johann and Mareike.

It was my father who first got me interested in computing. This book is dedicated to

his memory.

Introduction

The main contribution of this book is a collection of patterns. Patterns describe what has

worked well in many practical cases. They are meant to capture mature knowledge, not

to express novel ideas. This is why patterns aren’t invented, but instead are observed from

practical experience.

Project background

The patterns in this book have emerged from years of practice. The following table gives

an overview of the projects from which I have mined them.

INDUSTRY PROJECT DESCRIPTION

Insurance	 An insurance portal. Employees from different branches of an associated
bank can use this portal for selling insurance products to their customers. The
portal offers detailed product information and is an entry point for ordering
transactions.

Government	 The website for a German federal body. The content includes political
brochures, press releases, member information and announcements of public
events.

Government	 The Digital Town Hall. An architectural framework for a municipal service
portal, the Digital Town Hall offers a wide range of communal information
and public administration services.

Government	 A portal for e-government knowledge exchange. Targeted at various e
government initiatives all over the country, this portal allows registered users
and workgroups to plan joint efforts and to exchange documents. The portal
also offers a community platform for discussions about e-government.

Retail	 A trade portal for electronic parts. This highly personalised site sells electronic
parts to industry customers and offers user-specific navigation, a product
catalogue and a newsletter. The personalisation is based on user-specific
interest profiles.

xix

xx Introduction

INDUSTRY PROJECT DESCRIPTION

Retail	 An online shop with a personalised bonus system. Users can buy items from
any of the associated retail companies and receive bonus points for their
purchases. They can redeem bonuses at the shop. A recommendation engine
suggests products that match the user’s profile.

Entertainment	 An online shop for selling digital assets, especially music files. Much in the
vein of Web 2.0, the site includes an integrated community platform. Apart
from buying music, users can rate it, offer comments, suggest items to other
users and publish their favourite playlists.

Retail	 A catalogue for household devices sold by a retail company. The catalogue
includes product descriptions, images and technical data. It is maintained by
content editors and used for marketing purposes.

These projects were carried out for different customers and applied a wide range of tech

nologies. I was involved in different roles, including architect, designer, developer and re

viewer, so I had the chance to look at what worked well and what did not from very

different angles.

Although these projects were quite different in some respects, including size and tech

nology, I found they had quite a few things in common. I repeatedly ran into similar sit

uations, facing similar questions or design problems. All projects required a good deal of

custom software development, despite the content management systems and other tools

that were of course used. All projects had to align information architecture (the content

perspective) with software development (the code perspective). All projects were faced

with similar non-functional requirements, most importantly efficiency and maintainabil

ity.

This is what motivated me to collect the lessons learned from these projects. I’ve always

liked the idea of using patterns for capturing knowledge, so I soon decided to shape these

best practises into pattern form. And this is where you have now arrived – at a collection

of patterns for architecting advanced websites.

Organisation of the book

Before starting with the actual patterns, let me briefly explain how the book is organised:

■	 Chapter 1 starts with the big picture. It introduces the major components that are

usually part of the software architecture behind a website. On one hand, this

includes standard components like a content management system, a web server, an

application server and a search engine. On the other hand, it includes the custom

components that you must develop yourself. The patterns in this chapter explain

how these components interact, what architectural options exist and what major

design decisions you have to make.

■	 Chapter 2 discusses the organisation and management of content. This begins with

various aspects of content modelling and goes on to include things like navigation,

Introduction xxi

classification, findability and validation. The content model that is developed in

this chapter is rather fundamental. It forms the technical basis for how content is

maintained by content editors, for how content is delivered to the web and for how

content is perceived by the users.

■	 Chapter 3 deals with content delivery. This includes content retrieval from a

repository, its rendering for presentation on the web, possible user interaction and

the inclusion of client-side functionality. It addresses the design decisions that you

have to make when you develop your server-side custom components. Because non

functional requirements such as maintainability, efficiency and scalability play an

important role here, the focus of this chapter is the conceptual separation of

structured content from its layout and presentation.

■	 Chapter 4 specifically introduces personalisation and user involvement.

Personalisation refers to the idea of tailoring the content of your site to specific

users or user groups. User involvement is more than this. Made popular by Web 2.0,

user involvement refers to things like user-generated content, folksonomies and

content rating. Implementing such features requires a few additions to the content

model, as well as additions to the web delivery functionality, which is what this

chapter is about.

■	 Chapter 5 presents patterns on infrastructure and deployment. These patterns

address the environments and processes for website development, testing and

operation on one hand and the environments and processes for content creation

and maintenance on the other.

Figure 3 gives an overview of the patterns in the book. Arbitrary relationships between

patterns are represented by lines. The patterns of each chapter form a cluster, as they ad

dress related topics. There are also relationships between patterns from different chap

ters, as you can see from the grey lines that are drawn across clusters. Specifically, the

patterns in Chapter 1 define an overall architecture which gradually unfolds as we intro

duce more patterns in the chapters that follow. At the beginning of each chapter I’ll zoom

into this big picture and present a diagram that gives an overview of the patterns of that

chapter, including an explanation of how they are related.

Following the main chapters, I’ll conclude with two brief checklists that may be helpful

for you from a project management point of view. The first checklist identifies the typical

tasks and work packages for a web project. The second summarises important criteria for

the evaluation and the selection of a content management system.

The preface introduced the House of Effects – the museum of nature and science that

is in need of a new website with information, online presentations, event announcements

and an online shop. Throughout this book I’m going to use the House of Effects as a run

ning example. Although the House of Effects is a fictitious example, it is in fact a blend

of requirements and concepts from the real-world projects that I’ve mentioned earlier.

The House of Effects is actually quite realistic. You’ll learn more about it as we go.

xxii Introduction

ONE WEB
APPLICATION

FOR CONTENT
DELIVERY (5.1)

SMOOTH
RELAUNCH (5.3)

DEDICATED
DEVELOPMENT

AND PRODUCTION
ENVIRONMENTS

(5.2)

Deployment and Infrastructure

LAYERED
ARCHITECTURE
FOR CONTENT
DELIVERY (1.5)

CONTENT
MANAGEMENT
AND CONTENT
DELIVERY (1.1)

DYNAMIC
CONTENT

DELIVERY PLUS
CACHING (1.2)

SENSIBLE
CLIENT-SIDE
INTERACTION

(1.3)

LISTENER-BASED
SYNCHRONISATION

(1.4)

WORKFLOW
BASED

VALIDATION (2.5)

TAXONOMY BASED
ON KEYWORDS

AND CATEGORIES
(2.4)

DYNAMIC
CONTENT

LINKING (2.3)

DECOUPLING OF
CONTENT AND
NAVIGATION

(2.2)

CONTENT TYPE
HIERARCHY (2.1)

CONTENT
SERVICES (3.1)

SELF
CONTAINED
PAGES (3.6)

SEARCH
MANAGER (3.3)

NAVIGATION
MANAGER (3.2)

TEMPLATE PER
VIEW (3.5)

SYSTEM OF
INTERACTING

TEMPLATES (3.4)

CONDENSED
EFFECTIVENESS
REPORTS (4.4)

CONTENT
FILTERS (4.1)

ASYNCHRONOUS
PERSONALISATION

ENGINE (4.2)

INPUT CHANNEL
FOR USER

GENERATED
CONTENT (4.6)

DECOUPLING OF
EDITED CONTENT AND
USER CONTRIBUTIONS

(4.5)

SEGMENT
SPECIFIC

CACHING (4.3)

Architecture Overview

Content Management

Content Delivery

Personalisation and User Participation

Figure 3: Overview of the patterns

CHAPTER

1

Architecture Overview

If you refer to the preface you will see that there are many things on our agenda for this

book – we are going to address a wide range of topics. We’ll look at how web content is

managed, how interactive platforms are built and how personalisation can be brought in.

We’ll study modelling and design as well as infrastructure and deployment.

But before we go into the details, let’s study the big picture first. I’d like to develop the

patterns by piecemeal growth, beginning with the more fundamental principles and then

letting the big picture unfold to reveal more detailed aspects. This first chapter should

therefore get us started with an introduction into the overall architecture of a website or

web platform.

On the next few pages, I’d like to address the following basic questions:

■	 What are the main components involved in a website architecture? What are their

responsibilities and how do they relate?

■	 What are the dynamics underlying a website architecture? What do the processes

for content management and content delivery look like?

■	 Which of the components are typically standard and which are typically custom

components? How can you bring in an individual design?

1

2 Chapter 1 Architecture Overview

■ What non-functional requirements are essential? What challenges are caused by

possibly conflicting requirements?

The big picture that I’ll give is independent of any technologies or any tools (as is the

whole book). It also abstracts over hardware equipment, load-balancing and the like. It

presents the logical model for an advanced website.

Of course a website is not that different from any other Internet-based system, or from

distributed systems in general. It is no surprise that we can adopt many of the solutions

that people have successfully applied in a broader context. Patterns from software archi

tecture in general (Buschmann Meunier Rohnert Sommerlad Stal 1996) are a valuable

source of information. Many of the patterns in Martin Fowler’s book on Enterprise Ap

plication Architecture (Fowler 2003) apply. The same is true for Paul Dyson and Andy

Longshaw’s patterns on Architecting Enterprise Solutions (Dyson Longshaw 2004).

Our context is more specific, though. Our emphasis is on the amalgam of content and

code, and therefore we are specifically interested in patterns that address the synthesis of

content management and web application development. The overview diagram in Figure

4 gives you an initial impression of what this chapter has in store for you.

CONTENT
MANAGEMENT AND
CONTENT DELIVERY

(1.1)

SENSIBLE CLIENT-SIDE
INTERACTION (1.3)

LAYERED
ARCHITECTURE FOR
CONTENT DELIVERY

(1.5)
improves the maintainability
of software for

avoids consistency
problems in the presence ofDYNAMIC CONTENT

DELIVERY PLUS
CACHING (1.2)

improves the usability
of a strategy based on

can be smoothly
integrated using

LISTENER-BASED
SYNCHRONISATION

(1.4)

improves the
maintainability of
software implementing

Figure 4: Road map to the patterns for the architecture overview

By the end of the chapter we should have achieved a common understanding of some

fundamental architectural principles and of the underlying terminology. In a field as diverse

3 1.1 Content Management and Content Delivery

as Internet-based software systems, this common understanding will be crucial for the

follow-up chapters that will look at more specialised aspects.

1.1 Content Management and Content Delivery

Context

You plan to build a website using today’s technology. The idea is to use a content man

agement system that allows a team of editors to create, update and maintain the content

that should be made available to the site’s visitors. Visitors should be able to navigate the

site, search for content and interact with the system.

Problem

How can you accommodate both the users’ and the content editors’ needs?

Example

The House of Effects is a museum of nature and science. The plan is to launch a new web

site for this museum, featuring online presentations, announcements, an event calendar

and an online shop. Figure 5 shows how a typical page is going to look – in this case an

exhibition announcement.

There will be a group of content editors who will be in charge of putting the necessary

information together. They will maintain presentations, announcements, calendars,

product information and so on. It will be their job to make sure that content is accurate,

that proper proofreading takes place and that content is updated at reasonable intervals.

Users will be able to view the content once it is delivered to the web. Visiting the site

with their web browsers, users will be able to view online presentations, read announce

ments or make purchases from the online shop. Navigation mechanisms and search func

tions will help them find their way through the pages. To some degree, users will also be

able to make contributions to the site, for example by sharing comments or by rating a

shop item.

Forces

There are two distinct groups of people who take distinct perspectives on a website or web

platform: users and content editors.

Users primarily think of content as the information that is presented to them on a set

of web pages. They think of text, pictures and multimedia objects. They’re aware of nav

igation mechanisms and search functions that are available to them. They may see blogs

and newsletters to which they can subscribe. In the days of Web 2.0 they may be able to

4 Chapter 1 Architecture Overview

Figure 5: Exhibition announcement for the House of Effects

contribute user-generated content. We’re all familiar with this perspective – it’s the per

spective we all take when we visit a site.

Content editors, however, see things differently: they look behind the scenes. They are

concerned with the information model (or content model) that underlies a website or web

platform.

In her book on Content Management for Dynamic Web Delivery, JoAnn Hackos ex-

plains that an information model is ‘an organizational framework that you use to cate

gorize your information resources’ (Hackos 2002). Louis Rosenfeld and Peter Morville,

in their book on Information Architecture, use the term content model and point out that

a content model consists of ‘chunks, relationships and metadata’ (Rosenfeld Morville

2006). These explanation summarise the content editors’ view quite accurately.

Actually, content editors are concerned with content artefacts that can represent all

kinds of digital information. In addition, they maintain relationships between these arte

5 1.1 Content Management and Content Delivery

facts, provide metadata and establish classification schemes. Relationships between con

tent artefacts are relevant to how web pages are composed from these artefacts, and may

result in hyperlinks. Classification schemes and metadata are, among other things, im

portant for ensuring a content artefact’s findability on the web.

Moreover, content editors have to be aware of content life cycles and workflow process

es. Content is created and updated, edited and published, until eventually it expires and

is removed. Teamwork among content editors can, for example, result in the application

of a four-eye principle prior to publication.

It’s clear from this discussion that there is more to a website than meets the user’s eye.

Users and content editors may look at the same thing, but their perspectives are very dif

ferent.

Solution

Provide software for two distinct purposes. On one hand, you need content management

software that supports the content editors in their job. On the other, you need content

delivery software that makes content available to the web and controls possible user

interaction. You won’t have to develop the complete software yourself – a content

management system typically provides some of the necessary functionality – but you

must expect to develop a certain amount of custom software.

No content management system can foresee the specific requirements for your site. The

more non-standard functionality you want, and the more you wish to integrate your site

with backend systems, the more you’ll have to expect to develop custom software that

goes beyond merely customising the components that your content management system

may provide.

The overall architecture for a website or web platform is illustrated in Figure 6. Let’s

now dig a little deeper and explore the two clouds in this diagram. We’ll start with the

cloud on the right-hand side – the software for content management:1

■	 Content management software has to provide functionality for creating and

maintaining content artefacts, based on an underlying information model. This

includes not only the definition of the actual content elements, but also the

assignment of metadata and the linking of content elements.

■	 Because content editors need a feel for how their content will ultimately look, most

content management software comes with a preview function that gives editors an

impression of the resulting web pages.

1 There is no unambiguous definition of the term ‘content management’, neither in the literature nor in practical

web application development. Sometimes content management is supposed to include content delivery,

sometimes it’s not. Throughout this book I’ll assume a narrower but more precise meaning: content

management includes the techniques and processes necessary for the creation and maintenance of content.

Content delivery is outside this definition of content management.

6 Chapter 1 Architecture Overview

User client (web browser) Editor client (CMS client or web browser)

Content repository

Content delivery
– page generation
– personalisation
– page delivery to the web
– user interaction

Content management
– content creation and updating
– previews
– workflow processes
– import / export

Figure 6: Content management and content delivery

■	 Content management software usually has to support workflow processes for

content editors. This includes access permissions as well as rules that specify and

control the collaboration between content editors.

■	 Content management software usually has to include import and export functions.

Typically relying on an XML-based format, such functions make it possible to

exchange content with other data sources.

Most content management systems offer tools that provide this functionality. There is

usually an editor client, which could be a stand-alone application or one that’s integrated

into the web browser. Import and export functions might be integrated into the editor,

although normally they come as a separate application.

Experience shows that on the content management side customisation is often suffi

cient to meet site-specific requirements. Developing your own tools, such as your editor

client, should be the exception rather than the rule.

Things look different on the content delivery side. The software here is usually faced

with more complex, site-specific requirements, so more custom software is necessary.

Here are the main aspects of what content delivery software has to do:

■	 Before web pages can be delivered to the web they have to be generated from

content artefacts stored in the content repository. This includes the choice of a

7 1.1 Content Management and Content Delivery

layout as well as the creation of hyperlinks and interaction elements. For the time

being, let’s not make any assumptions about how or when this is going to happen.

Suffice it say that web pages have to be generated somehow.

■	 Page generation gets more complex for a personalised site, as pages need to be

tailored to specific users or user groups. Typically this means that, prior to page

generation, content elements have to be selected that match a user’s profile, so that

the resulting pages include precisely the information intended for that user.

■	 After a web page has been generated, it is ready to be delivered to the web. Software

is therefore necessary to react to requests received from a user’s browser. This is

primarily the job of a web server, but it may also involve a search engine or other

backend components, depending on the domain logic that must be processed to

fulfil the request. Custom software is usually necessary to implement the domain

logic, which typically requires some kind of application server.

■	 Collaborative sites allow users to contribute content themselves. Strictly speaking

the upload of user-generated content isn’t an aspect of content delivery – the

direction is actually the other way round, from the user to the site. The upload of

user-generated content, however, is of course handled within the same request

response scheme that is otherwise applied to content delivery. The difference is that

a user request might result in write access to the content repository, so additional

software is necessary to examine and process the user-generated content that is

submitted.

In a rather simplistic scenario, a web server and a few off-the-shelf components from your

content management system are all you need. In such cases you can typically specify the

layout for your site by providing page templates in some scripting language, or by config

uring the existing ones.

However, a larger and more complex site usually requires a good deal of custom soft

ware, especially for the implementation of domain logic and for embedding the site into

a larger application landscape. Many content management systems react to this require

ment by providing a framework that offers more hooks for you to customise the site. This

can cause the software for your site to become a mix of prefabricated and custom com

ponents. In such cases it is wise to choose a content management system with a relatively

‘open’ architecture – one that is reasonably flexible and makes a smooth integration of

your own components possible.

Figure 6 summarises the overall architecture, but intentionally leaves the details open.

It emphasises the distinct chunks of software for content management and content deliv

ery, but doesn’t try to show what they look like in detail: what is covered by the clouds in

Figure 6 can actually be implemented in many different ways.

Example resolved

The website for the House of Effects isn’t just a collection of web pages. We are going to

integrate a search engine, a personalisation engine and an online shop, so an out-of-the

8 Chapter 1 Architecture Overview

box solution won’t do. As far as content delivery is concerned, we’ll have to develop cus

tom software for implementing the domain logic and for gluing the pieces together.

However, we will be happy to use off-the-shelf components for the technical infrastruc

ture, so we won’t have to worry about XML processing, HTML generation, HTTP re

quests and the like. Ideally these things will be covered by our content management

system, so we’re looking for a system that allows us to use several prefabricated compo

nents and to bring in our own components at the same time.

For content management the plan is to use the editor client that the content manage

ment system provides. Ideally, this will be a web-based client that doesn’t require a roll-

out to all workplaces. It’s clear that a configuration with regard to the underlying content

model and workflow specification will be required, but no software development for the

client should be necessary.

Benefits

+	 The solution supports what is often considered to be the most fundamental

principle of content management – the separation of content and layout. Content,

when it’s created and maintained, is completely decoupled from any layout aspects,

which are only added later as part of the content delivery process. Content mainte

nance becomes straightforward, as it focuses on content and content alone.

+	 Because content and layout are clearly decoupled, it is easy to create different layouts

for the same content element. In other words, you can create different sites based on

the same content, like an intranet and an extranet. Similarly, you can to support

different output channels, such as browsers and mobile devices.

+	 The solution emphasises the importance of the software on the content

management side. A well-designed editor client makes life easier for content editors:

well-chosen workflow processes help them work efficiently and ultimately

contribute to higher content quality.

+	 The solution also emphasises the flexibility that’s necessary on the content delivery

side. As you are able to integrate your own custom components, you can ensure that

the site implements the domain logic you want it to implement.

Liabilities

–	 An information or content model is required as the basis for all content

management and content delivery software. You have to define a model that reflects

the domain-driven requirements on your site. The definition of a CONTENT TYPE

HIERARCHY (2.1) is a good starting point.

–	 The solution emphasises the fact that web pages have to be generated from content

artefacts, but it intentionally doesn’t reveal when and how this should take place.

While several strategies are possible, DYNAMIC CONTENT DELIVERY PLUS CACHING

(1.2) is usually best.

9 1.2 Dynamic Content Delivery plus Caching

–	 You’ll have to develop custom software for the server side. When you do this, several

more fine-grained components will turn out to be useful, including CONTENT

SERVICES (3.1), a NAVIGATION MANAGER (3.2), a SEARCH MANAGER (3.3) and a

SYSTEM OF INTERACTING TEMPLATES (3.4).

–	 You will have to choose an appropriate content management system. Most available

systems support the two distinct perspectives described in this pattern, but when it

comes to details content management systems differ widely. The ability to define a

domain-driven content model in a straightforward way, an easy-to-use editor client

and a sufficiently ‘open’ architecture are among the key requirements you should

place on a tool. We will come across more criteria in some of the follow-up patterns.

A checklist at the end of the book will help you to select a tool for your specific

purposes.

1.2 Dynamic Content Delivery plus Caching

Context

You’re in the process of defining the architecture for a website or a web platform. The big

picture includes software for CONTENT MANAGEMENT AND CONTENT DELIVERY (1.1),

so now a more refined architecture for content delivery and user interaction is required.

Personalisation and user involvement may be on your agenda, too, and the architecture

has to acknowledge that.

Problem

How can you ensure that the site is always up-to-date and reflects the latest changes made

by the content editors? How can you lay the foundation for interaction and personali

sation?

Example

Like other museums, the House of Effects relies on its website as a primary publicity

channel. The owners therefore have an obvious interest in presenting accurate and up-to

date content. New content should be made available to visitors as soon as it’s available.

In addition, the site is supposed to present personalised content to registered visitors, so

our software will have to take users’ profiles into account when delivering any web pages.

Moreover, the site is going to be highly interactive. For example, there are going to be

interactive online presentations to attract visitors. Next, registered users should be able

to leave comments, buy books or DVDs from the online shop and rate shop items, which

of course imposes more requirements on the content delivery software. The software ar

chitecture therefore has to ensure that these requirements can be met in an effective and

efficient way.

10 Chapter 1 Architecture Overview

Forces

Before pages can actually be delivered to the web they have to be assembled from content

elements. This process, known as page generation or page rendering, consists of several

smaller tasks: obtaining the required content artefacts from the repository, applying do-

main logic, adding links to other pages, perhaps adding personalised information, gener

ating the actual HTML page, adding stylesheets.

Different strategies exist for the point at which page generation should take place. Stat

ic delivery assumes that pages are generated off line after publication and are stored in

the repository in HTML format. Dynamic delivery assumes that pages are rendered on

request – that is, when the server receives an HTTP request from a browser. Hybrid de

livery is an intermediate strategy that combines static and dynamic delivery. These strat

egies have different pros and cons.

Static delivery is extremely fast, but dynamic delivery is much more flexible. First, dy

namic delivery allows changes to the content to be reflected on the web pages immediately

on publication, while static delivery might yield pages that are slightly outdated. Second,

user interaction and personalisation usually require dynamic delivery, since the pages that

are delivered depend on user input and the identity of the current user.

These days, most sites prefer dynamic delivery for its greater flexibility. Dynamic deliv

ery is supported by almost all content management systems available on the market –

which, however, leaves us with the performance issue to be resolved.

Solution

Combine dynamic content delivery with powerful caching strategies. Choose a content

management system that generates web pages on request and offers caching mechanisms

sufficient to meet your performance requirements.

Assuming dynamic content delivery, we can now draw a more concrete picture of what

happens when pages are requested from a browser and are delivered to the web. It’s clear

that a web server is necessary to react to browser requests, and usually an application

server is necessary as well to host the components that implement the domain logic. Fig

ure 7 shows an overview of an architecture that implements this concept. This is a refine

ment of the cloud representing content delivery that appears on the left-hand side in

Figure 6.

The following list provides an overview of the possible steps that constitute the page

delivery process:

■	 The web server accepts a page request as well as possible user input from a browser.

The request is mapped onto a template or other component that should be invoked

to generate the response. This is essentially a lookup functionality that is usually

provided by the content management system.

■	 The component that is invoked obtains the necessary content elements from the

repository. Applying the underlying domain logic, it processes the content

1.2 Dynamic Content Delivery plus Caching 11

User client (web browser)

Web / application server
– accept page requests and user input
– retrieve content elements from the repository
– apply personalisation
– generate pages from content elements
– deliver web pages

– cache elements
– retrieve elements from cache

Content repository

Figure 7: Dynamic content delivery and caching

elements, performs link management and, if necessary, calls other backend

components to collect all the information that should go into the web page.

■	 If required, personalisation is applied. What content elements are included and

how they are processed may depend on the current user. Details vary, as

personalisation can take on different forms.

■	 Finally, HTML has to be generated for the web page, which includes the assembly

of page fragments representing the individual content elements and the addition of

CSS styles. This is usually done by templates that implement the desired page

layout.

■	 Once this is completed, the page can be sent to the browser.

Caching can take place throughout these steps. The general idea behind caching is al

ways the same – frequently used objects are stored somewhere that offers fast access, as

12 Chapter 1 Architecture Overview

Paul Dyson and Andy Longshaw explain in their book on Architecting Enterprise Solu

tions (Dyson Longshaw 2004).

However, different caching strategies are possible and are applied at different levels of

granularity.

■	 An initial option is to keep content artefacts from the repository cached within the

application server. Because content artefacts are typically requested over and over

again, this strategy clearly reduces the number of repository calls, which are usually

calls to a remote machine.

■	 A further option is to cache objects that are composed from content elements from

the repository. These elements, as well as the way they are composed, represent the

domain-driven content model.

■	 This strategy not only reduces the number of repository calls, but also reuses the

application of domain logic.

■	 Finally, caching can be applied to HTML fragments or complete web pages. This

allows HTML to be reused across user requests, which not only reduces the effort

for the application of domain logic, but also reuses the application of templates or

other components in charge of HTML generation.

All caching strategies require that cached objects be invalidated when their original

source changes. Whenever a content element is updated in the repository, any cached ob

ject that relies on the element becomes invalid, meaning that it has to be regenerated if

requested.

The more complex and dynamic is a cached object, the smaller the probability that it

can be successfully reused before it undergoes invalidation. For example, personalised el

ements can easily become too numerous to be cached, as they will typically differ between

one user and another. Similarly, page elements that depend on user input aren’t easy tar

gets for caching strategies. In general, content artefacts from the repository are more ge

neric and can therefore be reused more easily than HTML fragments. It is therefore

important to be careful when choosing the level of granularity at which caching should

be applied.

Caching can be difficult to implement, and the need for content invalidation isn’t going

to make things any easier. Fortunately many content management systems come with

their own – often quite powerful – caching mechanisms. Different systems favour differ

ent strategies, and may even combine several strategies to achieve significant performance

improvements. Ideally you can rely on the capabilities of your content management sys

tem and won’t have to implement any caching yourself.

Example resolved

The House of Effects website requires dynamic content delivery. First, this ensures that

the site reflects changes made by the content editors immediately. Second and more im

portantly, dynamically generated pages are essential in the presence of interaction and

personalisation. Dynamic delivery is a precondition for ensuring that, for example, pages

1.2 Dynamic Content Delivery plus Caching 13

can be tailored to the current user, or that comments left by users become visible imme

diately.

Obviously we have to expect specific page elements to be requested many times and by

many different users, so we let the content management system apply caching whenever

possible. For the time being, let’s assume that our content management system offers ad

vanced caching mechanisms and is able to combine caching strategies at different levels

of granularity, so as to effectively improve performance even in the presence of interaction

and personalisation. Fortunately for us, there is little we need to do at this point.

Benefits

+	 Because all web pages are generated on request, they are up-to-date when they are

delivered to the user. Changes made by content editors are reflected immediately on

publication.

+	 Dynamic delivery sets the stage for creating a website rich with user interaction.

Because pages are generated dynamically, their contents can depend on user input.

This gives you the chance to integrate interactive forms, display results from search

engines and incorporate backend systems to build web applications.

+	 Dynamic delivery also makes a personalised site possible, in which content is

tailored specifically to the current user. Since pages are generated on request, the

content chosen for inclusion on a web page can depend on who is currently logged

in.

+	 Caching speeds up the site, as it can significantly reduce the volume of remote calls

and database access. Caching is particularly useful for large objects such as pictures

or multimedia artefacts.

Liabilities

–	 Since dynamic page delivery and caching strategies both involve a series of non-

trivial tasks, maintainability and scalability problems can occur. A LAYERED ARCHI

TECTURE FOR CONTENT DELIVERY (1.5) supports the separation of concerns and so

offers a good solution.

–	 There is a limit to the usefulness of caching, especially for personalised and heavily

interactive sites. Personalisation and caching are natural enemies, as are interaction

and caching. As we have mentioned before, one way to alleviate the problem is to

apply caching to relatively generic elements such as artefacts from the repository.

However, there are other techniques that tackle this problem. At the HTML level, a

well-tailored SYSTEM OF INTERACTING TEMPLATES (3.4) can increase the effec

tiveness of caching. If personalisation is applied to user segments rather than to

individual users, SEGMENT-SPECIFIC CACHING (4.3) can improve efficiency.

14 Chapter 1 Architecture Overview

–	 Dynamic page delivery requires content stored in the repository to be well-formed

and consistent, or problems might occur during page generation. WORKFLOW

BASED VALIDATION (2.5) can help you ensure reasonable content quality.

–	 Cache invalidation requires that the cache be informed of all significant changes

made to content artefacts in the repository. A LISTENER-BASED SYNCHRONISATION

(1.4) between the repository and the application server can provide the necessary

information.

–	 Caching isn’t the only way to make a site faster. Moving functionality from the

server to the browser is an option, especially for a heavily interactive site. This is the

idea behind SENSIBLE CLIENT-SIDE INTERACTION (1.3).

1.3 Sensible Client-Side Interaction

Context

You are in the process of defining the architecture for a website or a web platform. The

overall architecture embraces components for CONTENT MANAGEMENT AND CONTENT

DELIVERY (1.1), and applies DYNAMIC CONTENT DELIVERY PLUS CACHING (1.2) to en-

sure the presentation of up-to-date content and meet the demands of user interaction and

personalisation.

Problem

How can you ensure that your site features the desired degree of interaction and user

participation while maintaining reasonable system performance?

Example

The website for the House of Effects is going to offer various kinds of interaction. Users

will be able to navigate the site, submit search requests and filter and sort the search re

sults. There will be interactive online presentations. Users will be able to submit com

ments, buy items from the online shop and rate shop items. Essentially there are two

different ways in which the necessary user interaction can be implemented: on the server

or on the client.

To go into more detail, let’s look at the event calendar shown in Figure 8. Users can se

lect a tab (‘Mathematics’, ‘Physics’, ‘Chemistry’ or ‘Biology’) and so apply a filter to the

list of events shown below. Implementing these tabs can be done in different ways, either

by using standard hyperlinks and traditional server communication or by Ajax-based

event handling that involves only the client. Which is preferable?

1.3 Sensible Client-Side Interaction 15

Figure 8: Event calendar for the House of Effects

Forces

With the advent of Web 2.0 a high degree of interaction has become increasingly common

among websites world-wide. On the technical level, Ajax (Asynchronous JavaScript and

XML) is the key concept behind Web 2.0 (Garrett 2005). Ajax makes it possible to react

to user events directly in the browser without having to direct any HTTP requests to the

server, provided that the necessary event-handling mechanisms have been deployed to the

browser in the first place. Although it’s not a precondition for the ‘Collaborative Web’,

Ajax can facilitate the implementation of user participation and collaboration.

There is no doubt that this type of client-side interaction has some powerful

advantages. First, the browser can sometimes process input submitted by a user without

having to load a new page, which reduces network traffic. Second, asynchronous loading

16 Chapter 1 Architecture Overview

is possible, which means that large objects such as multimedia artefacts can sometimes

be loaded in the background while a page is already displayed. The combination of both

techniques makes a degree of interaction possible that is unknown from traditional

websites.

Traditional websites aren’t necessarily a thing of the past, but it’s clear that Web 2.0

techniques play a more important role than they did a few years ago. Because Ajax-based

sites can be both more interactive and faster, Ajax technology has become an integral part

of today’s advanced websites.

But there are drawbacks to Ajax technology. First, extensive use of Ajax can blur the

concept of a web page. If navigation can be handled by the browser, content that used to

be distributed over several web pages may end up on what is technically no more than a

single page. As a consequence, bookmarkability suffers – only a page can be book

marked, but not the pieces of information loaded into it by a client-side JavaScript mech

anism. Similarly, search engines have a hard time referring to information contained

within an interactive page, as they can only return links to full pages and not to any con

tent fragments that are made available by client-side functionality.

A second important disadvantage lies in the fact that code written in scripting languag

es such as JavaScript is notoriously difficult to understand, test and maintain. In defence,

there are Ajax libraries on the market that alleviate this problem, and to some extent it is

possible to produce well-structured JavaScript code. But larger applications remain tricky

when written in JavaScript.

Yet another disadvantage lies in the browser dependencies that are inevitable once Ajax

is introduced. Users must have JavaScript switched on if they want to use an Ajax-based

site, and not everybody has. Some users rely on a speech or Braille output device for which

JavaScript isn’t available, which raises an accessibility issue. Even if you can assume that

all users have JavaScript turned on, exactly what they see in their browser still depends on

the browser they’re using. A lack of standardisation causes different browsers to interpret

JavaScript slightly differently, at least for the time being.

You can avoid all these disadvantages if you restrict your site to server-side interaction.

But this would slow down response time and, as a consequence, would make highly in

teractive platforms virtually impossible.

Solution

Use Ajax-based client-side interaction, but use it with care. Retain the concept of a web

page and apply server-side event handling for all navigation purposes, but also apply

event handling inside the browser to adjust the way in which information elements are

presented within a web page. Combine this with asynchronous server calls if the browser

has to load data from the server.

The idea is not to set up a single page and let Ajax-based techniques load whatever in

formation is requested. Such an approach, referred to as Ajax deluxe in Michael Mahe

moff’s book on Ajax Design Patterns, can be the right choice for web applications that

1.3 Sensible Client-Side Interaction 17

should ‘feel similar to a desktop in that the browser is driving the interaction’ (Mahemoff

2006).

Things look different, though, for a web platform that is supposed to combine infor

mation with a certain amount of user interaction. It makes perfect sense to have several

web pages and so to distribute information over some kind of navigational space. The

trick is to combine traditional server calls for travelling from page to page with Ajax

based event handling for the presentation of information in the browser. Michael Mahe

moff calls this strategy Ajax lite. It is a well-balanced approach in which Ajax mecha

nisms are carefully used in those places where they can do good.

Exactly what interaction should happen on the client (the browser) and what should

take place on the server? Although to some degree a decision will be a matter of personal

taste, it is possible to give some concrete advice.

Michael Mahemoff describes two fundamental Ajax patterns for display manipula

tion, ‘display morphing’ and ‘page rearrangement’ (Mahemoff 2006). Both have in com

mon that they alter the view of what is presented on a page through relatively simple

manipulations of the domain object model (DOM). Interactions that result in this kind

of display manipulation are best handled inside the browser with Ajax-based techniques.

The following list presents a few typical examples:

■	 Tabs and scrolling, or similar GUI techniques for making information visible on the

screen. Well-known from desktop applications, these techniques often make sense

for websites too. Ajax allows you to use these techniques on a web page without

making any server calls.

■	 Filtering and sorting lists of items. Lists of items are common enough, and users are

often given the choice of how such a list should be presented. With Ajax-based

techniques you can allow users to change the sort order or apply a filter without

having to make a server call.

■	 Interactive forms. Choosing values from selection boxes and the like can easily be

dealt with on the client side. It is also common for forms to spawn additional fields

depending on the input already made by the user. While this is generally impossible

with static HTML, Ajax allows you to implement dynamic forms in a

straightforward way.

■	 Asynchronous loading of large objects, such as videos or other multimedia objects.

Loading such an object is typically invoked by the page that contains it, directly

after the page itself has been loaded. The page is made available to the user while

some of its contents are still loading in the background, for example by using some

kind of streaming mechanism.

■	 Use of multimedia objects, once they have been loaded. For example, events for

starting or stopping a video should be handled directly in the browser, with no

server-side event handling at all.

■	 Content updates. Certain content elements, such as news items, booking

information and so on can change frequently. You can apply Ajax-based

18 Chapter 1 Architecture Overview

asynchronous loading, which is usually triggered by the client that requests up-to

date content from the server at regular intervals.

User client (web browser)

Web / application server

client-side event handling for:
– tabs and scrolling
– filtering and sorting
– management of interactive forms
– asynchronous loading of large objects
– use of multimedia objects
– asynchronous content updates

server-side event handling for:
– travelling between pages covering different topics
– travelling between pages with different layouts
– form submissions

Figure 9: Event handling for user interaction

On the other hand, what kinds of user interaction are better handled on the server side?

The following list gives some typical examples:

■	 Pages addressing different topics. Imagine a logical, domain-driven site map, in

which different topics are represented by different pages. What appears as a distinct

page in this logical model should be technically implemented as a distinct web page

as well. This allows travelling from page to page to become a matter of server-side

event handling. The concept of web pages is retained.

■	 Pages with different layouts. If two pages have different layouts, then it’s probably

a good idea to keep them as separate pages and not map them onto one. The

different layouts suggest that they present different kinds of information to visitors.

■	 Form submissions. While filling in an interactive form can usually be handled on

the client side alone, the submission of the form marks the end of a use case and

typically triggers a backend transaction. In most cases this justifies a new page

(invoked by a server-side event) so that the user is informed of the transaction being

completed.

1.3 Sensible Client-Side Interaction 19

Neither of the two lists is necessarily complete, but they should still give you a good

impression of the two types of interaction and how to tell them apart. Figure 9 gives a

brief summary.

Finally, there are two things you should keep in mind when implementing this pattern.

First, make sure you use Ajax libraries whenever possible. Several good libraries are avail

able these days, some of which have been published by open source projects (www.icefac

es.org, labs.jboss.org/jbossrichfaces). Using such libraries helps you to reduce the amount

of client-side functionality that you have to develop yourself.

Second, you need to be concerned with accessibility issues, especially if you develop a

public administration site or any other site that has to comply with accessibility stand

ards. If you can’t be sure that the output devices you have to support are capable of Ajax

based mechanisms, you’ll have to supply a version of your site that is completely inde

pendent of any browser functionality and relies on server-side event handling alone. In

such a case, the server has to check for the availability of an Ajax-capable browser when

receiving a page request, and deliver the correct version accordingly.

Example resolved

We are going to use Ajax techniques to add rich interaction to the House of Effects site.

For example, the event calendar from Figure 8 is going to be implemented using Ajax.

The page will contain a complete list of events, but its actual view will be adjusted when

ever the user selects a tab without any server-side event handling becoming necessary. We

will also be using Ajax for the interactive online presentations that we plan to implement.

On the other hand, the House of Effects site is going to use traditional server-side event

handling for all navigation purposes. All navigation elements and other references to re

lated pages will be implemented through HTTP requests, as will the submission of a

search term, booking requests and purchase orders. The idea of a website as a navigation-

al space will, after all, remain intact.

What about accessibility? We don’t have to meet any special requirements, but what if

we did? We could offer a completely Ajax-free version if we tested, at the start of each

session, whether the user had JavaScript switched off, and delivered traditional HTML in

this case. This would represent extra effort, though, and as it’s not required we have no

plans to implement this option.

Benefits

+	 Client-side interaction gives your site a higher degree of interaction. You can embed

interactive mechanisms simply that would not be possible if every user input

resulted in a new page request. Starting or stopping a video embedded in a page is

only one example – the interaction needed for user participation is another. You can

turn your site into an interactive platform and improve its usability.

20 Chapter 1 Architecture Overview

+	 Client-side interaction doesn’t depend on network resources and is much faster than

a series of server requests. In addition, asynchronous server communication allows

you to load large objects in the background. Client-side interaction has a positive

impact on your site’s performance.

+	 The moderate use of client-side interaction retains the concept of a web page.

Bookmarkability and searchability therefore aren’t impaired, as they would be if you

used Ajax extensively.

+	 The moderate use of client-side interaction also means that less JavaScript code

becomes necessary, as opposed to a heavily Ajax-based site. As you only adjust the

view of page elements but don’t use Ajax to change an entire page’s content, client

side interaction will not result in any fundamental changes to the domain object

model (DOM) behind a web page. To implement the necessary SELF-CONTAINED

PAGES (3.6), a small amount of standard JavaScript code will do, which you should

probably be able to find in typical JavaScript libraries. Because you don’t have to

develop extensive JavaScript functionality yourself, comprehensibility, maintaina

bility and scalability are clearly improved.

Liabilities

–	 Client-side interaction, even if applied in a disciplined way, introduces browser

dependencies. Either you accept the fact that different browsers might present your

site slightly differently, or you have to develop functionality targeted specifically at

different browser types. This, of course, represents an additional effort for software

development.

–	 If accessibility is an issue, you may even be forced to provide a non-Ajax version of

your site. If, for example, you’re required to support speech or Braille output

devices, current technology demands that you make a version of your site available

that is independent of client-side interaction altogether. This has an influence on the

entire architecture for your website, and you must expect significant additional

effort for its development.

–	 Testing a platform that uses both client-side and server-side interaction is more

difficult than testing a site that relies on server-side interaction alone. This is

partially due to the inherent complexity of a more sophisticated architecture, and

partially due to the lack of support for client-side interaction by today’s devel

opment environments. The latter may change – it is likely that development tools

will soon become available that support Ajax better than most do today. The

increased complexity will still take its toll on the development effort, however.

–	 Security requirements demand that users must not be able to tamper with critical

data. Some data shouldn’t even be visible to users. It’s a wise strategy to assign

functionality to the client only if this functionality doesn’t have to process any data

that users shouldn’t be able to modify, let alone data that users shouldn’t be able to

see.

1.4 Listener-Based Synchronisation 21

1.4 Listener-Based Synchronisation

Context

You’re in the process of defining the architecture for a website or a web platform. The

overall architecture consists of software for CONTENT MANAGEMENT AND CONTENT

DELIVERY (1.1). The actual content is stored in a repository where it is maintained by con

tent editors following specific workflows. DYNAMIC CONTENT DELIVERY PLUS CACHING

(1.2) is applied to ensure the presentation of up-to-date content and to meet the demands

of user interaction and personalisation. Additional components such as a search engine

or a personalisation engine might also be part of the overall architecture.

Problem

How can you avoid inconsistencies between content in the repository and content stored

by other components?

Example

The content management system’s repository is, of course, the primary place where con

tent for the House of Effects site will be stored. This is where editors will create and main-

tain content according to workflow processes.

However, it will be necessary to store content in other places as well. An initial example

is the content management system’s cache, which keeps copies of elements that are fre

quently requested. A second example is the search engine. It may not store complete con

tent elements, but it will maintain links to pages that are generated from content

elements, along with specific metadata that’s necessary for processing a search request. A

further example is the personalisation engine. Regardless of whether this engine is part

of the content management system or a stand-alone application, it must know about the

content elements that are subject to personalisation. A final example is the fact that the

software required to support our online shop will have to keep lists of shop items as well

as pricing information, which may overlap with the information stored in the content re

pository.

It’s clear that in all these cases inconsistencies have to be avoided.

Forces

Although there is no question that the content repository is the primary source for con

tent elements throughout the system, some components may have to store their own cop

ies of content elements. There are different reasons for this.

The first and most important is performance. Most notably, a cache stores objects

redundantly so that they can be retrieved quickly, and so to some extent avoids the

normally costly access to the content repository. However there is a price to pay if you

22 Chapter 1 Architecture Overview

want to reduce remote calls and database access. Whether the cache is part of your

content management system or part of the custom software, whether the cache stores

objects from the domain model or HTML fragments, in either case cached elements must

be invalidated when their source in the repository undergoes a change.

A second reason is the use of a third-party component that requires its own repository.

Examples include an external search engine, an external personalisation engine, online

shop software or a billing component. It is highly likely that there are overlaps with the

content repository, so replicating the necessary content elements is the straightforward

solution. But then again, you introduce redundant data, so if you want to avoid things

such as invalid search results, inaccurately personalised pages or invalid transactions,

consistency has to be ensured.

In fact, ensuring consistency has to be done in a way that’s quick and robust. Interested

components must learn of changes in the content repository immediately. Whatever no

tification mechanism you use, it must be able to deal with any of the components involved

being down.

Solution

Establish repository listeners – asynchronous processes that react to specific workflow

events and notify interested components of relevant changes made to content artefacts in

the repository.

Good content management systems offer a listener interface or a similar mechanism

that you can use to react to specific events in the content management workflow. Typical

events include the creation, change, publication or deletion of a content element. On such

an event, a listener can be invoked and will then execute a call-back method. You can im

plement repository listeners that notify other components of all relevant events.

In principle, you need a repository listener for each component that has to be informed

of content changes. Typically though, you won’t have to implement all listeners yourself:

■	 If your content management system uses a built-in cache (which it probably does),

it will also have a built-in listener that invokes the necessary content invalidation

mechanisms for that cache.

■	 If your content management system uses a built-in search engine, it will also have a

built-in listener that notifies the search engine of any events that make it necessary

to rebuild the index.

■	 Similarly, any other redundant data storage that is internal to your content

management system should come with its own repository listener.

Since repository listeners react to workflow events, they usually run on the content

management server – the machine that hosts the content editor workflows. The content

management server is a core component of any content management system, therefore

little custom software should be necessary here. Nonetheless, it is here where you have to

register your custom repository listeners in order to add them to the built-in ones. Figure

10 gives an overview, representing notification by dotted lines.2

1.4 Listener-Based Synchronisation 23

User client (web browser) Editor client

Search engine

Personalisation engine

Web / application server
•••

Content management
– accept page requests server

and user input
– retrieve content elements Cache

– create and update
content

from the repository – provide previews
– apply personalisation – run workflow
– generate pages from processes

content elements – invoke import and
– deliver web pages export

Content repository

Figure 10: Repository listeners

This architecture is an implementation of the Publisher-Subscriber pattern

(Buschmann Meunier Rohnert Sommerlad Stal 1996), which is a large-scale variant of the

Observer pattern (Gamma Helm Johnson Vlissides 1995). The sole source of all content

2 Bear in mind that Figure 10 shows a logical architecture. Concrete installations can deviate from this. For

example, the search engine and personalisation engine could either be stand-alone components or be hosted by

the application server. The cache typically resides in the application server and is visualised here only to

underline its importance. The content management server and the content repository may be hosted by

different machines or by the same machine.

24 Chapter 1 Architecture Overview

artefacts, the content repository acts as the publisher, while the components that require

notification take on the role of subscriber.

To work reliably, all repository listeners must be able to cope with the content reposi

tory, the content server or any other component being down. When you implement a re

pository listener, be sure to apply buffering logic at both ends:

■	 Let a listener look for past events during its start-up – events that occurred while

the listener was down.

■	 Let a listener write all notifications into a queue from which a notification is only

removed once the subscriber has successfully processed it.

This ensures that neither repository events nor notifications can get lost, turning the

listeners into fail-safe synchronisation mechanisms between the different components of

your architecture.

Example resolved

Let’s make the (realistic) assumption that our content management system has a built-in

mechanism for cache invalidation. As we don’t implement any caching ourselves, no cus

tom listener is necessary here.

However, there are three listeners that we will provide. First, we have to implement a

repository listener that reacts to changes in the published content and feeds the search en

gine with the necessary indexing information. Second, we have to implement a listener

that notifies our personalisation engine of any relevant changes in the repository, such as

updates to user segments. Third, we have to implement a listener that reacts to changes

made to item descriptions and informs the online shop system.

To ensure robustness, our repository listeners will implement a buffering logic. First,

each listener uses a persistent time stamp to document its last activity, and will at start

up ask the content management server for all events after that time. Second, each listener

stores the notifications it generates in a queue, from which they are only removed after

they have been received and acknowledged by the target component.

Benefits

+	 One of the most prominent examples of listener-based synchronisation is cache

invalidation. This pattern therefore facilitates the implementation of caching strat

egies (either as part of a content management system or as a custom component)

and so contributes to a website’s efficiency.

+	 Listener-based synchronisation makes it possible to keep content consistent across

several components. It is therefore the precondition for successful and robust

integration of different software modules. Listener-based synchronisation allows

you to pursue a best-of-breed strategy when it comes to choosing tools – a content

management system, a search engine, a personalisation engine, shop software and

so on.

1.5 Layered Architecture for Content Delivery 25

Liabilities

–	 Content consistency relies on the fact that all repository listeners work reliably. If a

listener is down, its subscribers are no longer informed of relevant workflow events.

To avoid inconsistencies (which, for a while, might even go unnoticed by content

editors and users alike) you can establish watchdog processes to make sure that

repository listeners are restarted automatically.

–	 The solution assumes that your content management system provides a listener

interface that you can implement. You should make the possibility of implementing

and registering repository listeners an evaluation criterion when choosing a content

management system.

1.5 Layered Architecture for Content Delivery

Context

You plan to develop a website or web platform. You have set up the overall software ar

chitecture, whose most important constituents are the software packages for CONTENT

MANAGEMENT AND CONTENT DELIVERY (1.1). Along the way, you have applied DYNAM

IC CONTENT DELIVERY PLUS CACHING (1.2), SENSIBLE CLIENT-SIDE INTERACTION (1.3)

and LISTENER-BASED SYNCHRONISATION (1.4) to refine the architecture, which allows

you to meet important functional and non-functional requirements.

Perhaps a few – but typically not many – custom components will become necessary

on the content management side. Your content management system should provide most

of the required functionality – a small amount of customisation is usually all you need.

However, the content delivery side often requires a considerable quantity of custom com

ponents, as it is here where most of the domain logic has to be implemented.

Problem

How can you prevent the server-side custom software for content delivery from becoming

difficult or impossible to maintain? How can you avoid a server-side architecture that

doesn’t scale properly?

Example

The website for the House of Effects doesn’t require much custom software for content

management. We certainly have to configure the content management server to match the

underlying content model, we have to specify workflow processes, and we have to imple

ment a few repository listeners. However, this isn’t exactly what you would call extensive

custom software development.

26 Chapter 1 Architecture Overview

We need a good deal of custom software development on the content delivery side,

though, as many web platforms do. Among other things, we have to define our own do-

main logic, design templates that match our layout requirements, and implement some

personalisation functionality. We have to integrate third-party components such as a

search engine and an online shop. All in all, we had better not underestimate the amount

of custom software.

Of course, the site owners are interested in keeping the website maintainable, despite

the undeniable complexity. Future changes must be possible with reasonable effort. The

owners are also interested in keeping it scalable. It must be possible to adapt the architec

ture should the amount of content or the number of users increase.

Forces

Dynamic delivery often involves a large number of different components. Server-side

components have to retrieve content elements from the repository, apply domain logic,

maintain a session state, apply personalisation, apply templates to generate HTML and

apply caching. If there is going to be client-side interaction, then server-side components

must provide the JavaScript functionality that is to be executed in the browser. Finally,

third-party products may have to be integrated. Examples include a search engine, a per

sonalisation engine or shop software. A content management system usually covers some

of this functionality, but typically a considerable amount of custom software remains.

As you implement much of the necessary functionality yourself, you have to be con

cerned with important non-functional requirements such maintainability, extensibility

and scalability. The more you make use of a content management system’s open architec

ture – the possibility of integrating custom components smoothly – the more you’re re

sponsible for the architecture that evolves.

Moreover, you will typically come across different technologies and different program

ming languages. Usually there is some scripting code (JSP or the like) for HTML gener

ation, programming language code (especially for the domain logic) and JavaScript (for

the functions that will be executed directly in the browser). This adds to the architecture’s

complexity.

However, unmanaged complexity makes software difficult to understand, maintain

and extend. Yet experience shows that in existing websites and web platforms the server

side software is often a mess, especially if server pages are used extensively. In his book on

Enterprise Application Architecture, Martin Fowler notes: ‘When domain logic starts

turning up on server pages it becomes far too difficult to structure it well and far to easy

to duplicate it across different server pages. All in all, the worst code I’ve seen in the last

few years has been server page code.’ (Fowler 2003).

1.5 Layered Architecture for Content Delivery 27

Solution

Define a server-side architecture that consists of three distinct layers. The bottom layer

encapsulates all access to the content repository. The middle layer provides the domain

logic. The top layer contains the templates that are used for page generation.

The Layers pattern, a long-valued architectural principle, achieves a separation of con

cerns through vertical decomposition. The introduction of layers allows you to decom

pose an application into groups of subtasks at different levels of abstraction (Buschmann

Meunier Rohnert Sommerlad Stal 1996).

The architecture sketched in Figure 11 is the result of applying the Layers pattern to

content delivery software. The server-side architecture consists of three layers, much in

agreement with the three principle layers that Martin Fowler recommends for web appli

cations in general (Fowler 2003). Similar ideas are expressed in Michael Weiss’s Patterns

for Web Applications, especially a strict separation of content and presentation and the

use of services to provide an application with the content it requires (Weiss 2006).

Let’s go through these layers from bottom to top:

■	 The repository layer encapsulates all access to the content repository. Every content

management system provides an interface for accessing content in the repository,

and the modules behind this interface could very well constitute the repository

layer. However, you may choose to develop some custom software that wraps this

interface and provides, for example, syntactical validation or simple formatting

routines. This allows the repository layer to make ‘polished up’ content elements

available to the logical layer.

■	 The logical layer hosts the domain logic. This is where domain objects are

composed from content elements, which may involve link management, session

handling and personalisation. The logical layer is usually connected to external

components such as a search engine, a personalisation engine, or arbitrary backend

systems. The logical layer makes domain objects available in two different ways.

First, it makes them available to the template layer. Second, it makes them available

through a web service interface that client-side Ajax modules can use for server

communication. While a content management system may provide a framework for

integrating all this functionality, you must expect a good deal of custom software

to be necessary to implement the domain logic.

■	 The template layer is where HTML generation takes place. This is the only place

where server pages seem appropriate, though alternative techniques (such as

servlets) could also be used. Relying on domain objects provided by the logical

layer, templates generate web pages and include style sheets and possible client-side

functionality that embody the page layout.

Caching can, in principle, take place in all layers. Depending on the layer, different

kinds of objects can be subject to caching, ranging from content artefacts on the reposi

tory layer, through domain objects on the logical layer, to HTML fragments on the tem

plate layer. Which of these options becomes effective depends, of course, on your content

28 Chapter 1 Architecture Overview

Template layer
Web server / application server

HTTP API

Logical layer

Repository layer

– generate HTML
– include CSS styles

– apply domain logic
– perform link management
– maintain session information
– integrate search functionality
– apply personalisation
– provide client-side functionality

– access the content repository
– check content elements for validity

Client (web browser)

Web service API

Personalisation engine

Search engine

•••

Client layer
– present HTML
– execute client-side functionality

Content repository

Figure 11: Layered architecture for dynamic content delivery

1.5 Layered Architecture for Content Delivery 29

management system or on your own caching strategies, should you decide to implement

any yourself.

Figure 11 gives a rather general picture of a layered architecture for content delivery.

The details depend on your content management system, the interfaces it offers and the

underlying technology. Details vary with regard to the programming language (which

may or may not be Java), available frameworks (such as Struts or Spring), backend inte

gration and caching strategies.

Whatever content management system you use and whatever architectural conse

quences this has, you should aim for a layered architecture that implements a separation

of concerns at different levels of abstraction.

Example resolved

We choose a Java-based content management system that allows us to integrate custom

components into the content delivery process. Since maintainability is a critical issue for

the House of Effects site, we make sure that the components for content delivery will be

organised in a layered architecture.

The repository layer is going to be quite simple. It deals with the various kinds of con

tent artefacts that are stored in the repository – multimedia objects such as online pres

entations, announcements, shop item descriptions and so on.

The domain objects on the logical layer are more complex than this. Things like pres

entations or announcements are meaningful in the domain, but there are also domain ob

jects that relate or aggregate several content elements. Examples includes lists of events

for the event calendar, complete with references to individual events, or comprehensive

online presentations including detailed background information and user comments. Per

sonalisation is applied too, so the way in which domain objects are composed may de-

pend on the current user’s profile. As we have opted for a Java-based architecture, Java

beans are the natural choice for implementing these objects.

The template layer relies on JSP technology, but also uses tag libraries to reduce the

amount of server page code. There are tags for smooth integration of domain objects into

the final web page, so the actual server page code only defines the page structure, includes

the CSS sheets that specify the page layout and provides the JavaScript functions that the

browser needs for client-side interaction.

Benefits

+	 A layered architecture avoids monolithic blocks and so decreases the coupling

between system components. The vertical decomposition – the clear separation of

domain logic and presentation – leads to reduced dependencies between compo

nents of all kinds, which improves comprehensibility and maintainability.

30 Chapter 1 Architecture Overview

+	 Different layers can be implemented using different technologies and different

programming languages. This, too, contributes to improved comprehensibility and

maintainability. In particular, the use of server pages is confined to the template

layer, which avoids the feared ‘spaghetti code’ scenario of extensive domain logic

implemented in a scripting language.

+	 The software from different layers can be deployed onto different physical machines.

Scalability can therefore be improved, as you can effectively address performance

requirements by selecting appropriate hardware for each layer specifically.

+	 There are several places where caching can be applied. Different caching strategies

can be combined to achieve significant performance improvements. For example,

you can cache content on the repository level if it is subject to personalisation, and

use the template level to cache HTML fragments that are unaffected by personali

sation. This allows you to maximise the efficiency benefits that caching brings.

+	 The domain logic implemented on the logical layer can be used in two distinct ways:

by the templates that generate HTML and by client-side functions for browser

server communication. The introduction of a well-defined logical layer therefore

avoids redundant domain logic code to a large extent.

Liabilities

–	 There are few drawbacks associated with the definition of a layered architecture.

The most critical issue is that the solution requires the content management system

to support the vertical decomposition of custom components, and not every system

on the market does. In fact, if your content management system is inflexible, imple

menting a layered architecture may turn out to be difficult. In such cases the ultimate

recommendation is to consider using a different content management system. Better

yet, make sure initially that you select a system that gives you the necessary freedom

to organise your own server-side components.

–	 Since the introduction of layers is a high-level architectural pattern, it cannot extend

so far as to facilitate good designs for the individual layers. There is no doubt that

on a more fine-grained level there is still work to be done. Once you have imple

mented this pattern, you can start designing the individual layers and think about

the introduction of CONTENT SERVICES (3.1), a NAVIGATION MANAGER (3.2), a

SEARCH MANAGER (3.3) and a SYSTEM OF INTERACTING TEMPLATES (3.4).

CHAPTER

2

Content Management

In the previous chapter we gained an overview by looking at the big picture of the soft

ware architecture behind a website. We identified software for content management and

software for content delivery as the prime constituents, and we analysed some of their

characteristics and variations. It’s now time to move to a more detailed level. We’ll begin

with patterns for content management in this chapter, while content delivery is on our

agenda for Chapter 3.

Much of the content management functionality your site requires is likely to be provid

ed by your content management system. Whatever system you choose, the chances are

that it will provide you with a content editing tool and a workflow engine, so you will

probably not have to develop much custom software for content management. What you

have to do, however, is come up with an appropriate content model for your site and make

the necessary configurations to your system.

31

32 Chapter 2 Content Management

This is where the patterns in this chapter start. They address the following questions:

■	 How can you model the content artefacts for your site? How are artefacts

composed from smaller elements? How are content artefacts related?

■	 How can you integrate content into the navigation hierarchy for your site? How do

you specify what content should appear on which page?

■	 What about findability? What mechanisms can content editors use to increase the

likelihood that users find the content they’re looking for?

You can see from these introductory questions that much (though not all) of this chap

ter is about modelling. But although the focus is on modelling, the following patterns still

take an IT perspective. They are targeted at software designers and developers involved

in a web project and they address modelling and design problems that, in the context of

such a project, are common enough.

DECOUPLING OF
CONTENT AND

NAVIGATION (2.2)

CONTENT TYPE
HIERARCHY (2.1)

DYNAMIC CONTENT
LINKING (2.3)

can be a useful
addition to a

is complemented by

WORKFLOW-BASED
VALIDATION (2.5)

TAXONOMY BASED
ON KEYWORDS AND
CATEGORIES (2.4)

adds findability
aspects to a

adds quality
assurance to a

is completed by a

Figure 12: Road map to the patterns for content management

However, we won’t be looking at the business side of content modelling. I won’t be

talking about how to align content models with business strategies – questions like these

are outside the scope of this book. For further information on that topic, refer to books

such as Information Architecture by Louis Rosenfeld and Peter Morville (Rosenfeld Mor

2.1 Content Type Hierarchy 33

ville 2006) and Content Management for Dynamic Web Delivery by JoAnn Hackos

(Hackos 2002).

Again, I’d like to take an approach of piecemeal growth, so the patterns begin with ba

sic modelling techniques and conclude with more specific aspects of findability and con

tent validation. Figure 12 presents a road map.

2.1 Content Type Hierarchy

Context

You plan to develop a website that will present various kinds of content artefacts to its

visitors. Content can take many forms, ranging from text to graphics, sound, video and

other multimedia objects.

It’s now time to specify exactly what content the site is going to use. You have to come

up with a content model that specifies what content elements will be stored in the central

repository. The content model will form a conceptual basis for all your CONTENT MAN

AGEMENT AND CONTENT DELIVERY (1.1) software.

Problem

How can you ensure that content editors can maintain artefacts that are meaningful to

them in a way that is straightforward and avoids redundant information?

Example

The website for the House of Effects uses different page types. Apart from simple articles

(such as those on the welcome page), there will be event announcements, an event calen

dar, online presentations and shop item descriptions. Many of these will feature pictures

or videos.

However, there’s not going to be a 1:1 relationship between content and page types. For

example, some information found in individual event announcements will also appear in

the event calendar, and pictures and videos might be used several times across the site.

Nevertheless, we want to avoid a scenario in which content has to be maintained redun

dantly.

Forces

Your content model must meet several sometimes conflicting requirements.

First, the content model must be meaningful to content editors, as it forms the basis

for their editorial work. The content artefacts they will create and maintain will be

34 Chapter 2 Content Management

categorised according to the model that you set up, so your model has an immediate

consequence on their job. You must expect content editors to ‘think in terms of their

domain’, whether that is company information, items for an online shop, e-learning

materials, e-government or something else. The content model must reflect their

understanding of the domain.

Second, the content model has an effect on how content is presented. Content artefacts

of the same type are likely to share the same layout. Whether or not two content artefacts

should be of the same type depends on how these artefacts should be presented on the

web.

Third, the content model must be convincing in terms of data modelling. One of the

fundamental ideas of content management is to compose web pages from smaller ele

ments. Your content model has to describe the different types of content elements at var

ious levels of granularity, and it must introduce relationships between content elements

that are sufficiently expressive to make page composition possible. The content model

should also avoid redundancy, as any good data model should, to avoid inconsistencies

and unnecessary maintenance effort.

Solution

Introduce a content model in which content types represent domain-motivated artefacts

consisting of basic building blocks such as texts, pictures, multimedia objects and links.

Apply object-oriented modelling techniques to express abstraction and association

relationships between content types.

Content editors will create, maintain and publish instances of the content types that

you define. Web pages will be composed from one or several such elements, applying the

same layout to content elements of the same type. It’s therefore a good rule of thumb to

introduce separate content types for elements that are going to receive clearly different

layouts or require different attributes, and to introduce just one type for content elements

that will be handled in much the same way.

What attributes does a specific content type require? Each content element needs to be

assigned those informational bits and pieces that are necessary to generate its possible

views. Attributes typically fall into the following categories:

■	 Attributes for the content element’s constituents, such as formatted and

unformatted text, pictures, hyperlinks, multimedia objects, binary large objects

(blobs) etc.

■	 Attributes for keywords or tags to be provided by content editors for categorisation

purposes.

■	 References or lists of references to other artefacts within the content repository.

■	 Attributes that relate a content element to a possible context. This includes

parameters like a locale or a distribution channel (such as an intranet or extranet)

that specify the context in which a content element is valid.

2.1 Content Type Hierarchy 35

■	 Attributes that specify a layout variation, in case you wish to allow content editors

to choose from several variations. If so, keep in mind that simple variations can be

fine (like allowing content editors to choose a 1-column or a 2-column layout), but

that layout details (such as font sizes, type faces etc.) belong to the template

definitions – to ensure a consistent layout across your site, among other things.

■	 Meta attributes such as the author’s name and the publication date. Most content

management systems define these meta attributes automatically and assign

appropriate values whenever a content element is created, updated or published.

The references between content elements deserve special attention. Your goal should

be to use these associations to ‘normalise’ the content model – much in the sense of nor

malisation in database design. It’s a good strategy to extract attributes that would other

wise be shared by different content types into types of their own and to apply association

to express the relationship. In addition, you can introduce abstraction when several con

tent types have attributes in common, meaning that the content model evolves into a con

tent type hierarchy.

Although mainly a conceptual thing, the content model is the basis for almost all as

pects of a website architecture. Most content management systems require the configura

tion of a content model – this is how the content management system gets to ‘know’ the

content types and their attributes. Different systems provide different configuration

mechanisms: XML files and database tables are among the most commonly used tech

niques. Regardless of the system you choose, while the system may provide you with some

off-the-shelf content management functionality, you still have to provide the content type

model.

Example resolved

The first step towards an effective content model is to identify the necessary content types

and their major attributes. We perform a thorough requirements analysis, which involves

discussions with domain experts, especially the site owners and the content editors.

This analysis leads to the following list of domain-motivated content types for the

House of Effects website:3

CONTENT TYPE DESCRIPTION

article	 An article in general, featuring a title, a subtitle, a main text,
possibly pictures and videos, as well as a list of related
articles. To be used for example for the portal’s home page.

3 In a real-world project there would be more content types and the content types listed here would require more

attributes. If you look hard enough, you can probably spot several things that are a little too simple to work in

practical cases. But let’s not introduce too much detail into our example model, for simplicity’s sake.

36 Chapter 2 Content Management

CONTENT TYPE DESCRIPTION

event announcement	 A special kind of article, announcing a singular event like a
talk or a film, featuring an event type, a date, an entrance
fee and possibly a list of related items in the online shop.

exhibition announcement A special kind of article, announcing an exhibition, featuring
a start and end date, an entrance fee, and possibly a list of
related items in the online shop.

presentation An online presentation, featuring (in addition to the standard
article attributes) a list of animations, as well as additional
details.

book description A special kind of article describing a book that’s sold in the
online shop; featuring an author, a publisher, a release date,
a price, as well as additional details.

DVD description A special kind of article describing a DVD that’s sold in the
online shop, featuring a duration, a publisher, a release
date, a price, as well as additional details.

details Text sketching details or background information regarding
an online presentation or a shop item.

All content for our site falls into one of these categories. The next step is now to estab

lish a content model, applying data modelling techniques such as normalisation to get rid

of possible data redundancy and applying abstraction to model inheritance-like relation

ships. Figure 13 presents the UML sketch of the resulting content type hierarchy.

A few important aspects should be pointed out. First, we introduce separate content

types for event announcements and exhibition announcements, although both types fea

ture similar attributes. This is a trade-off: we could force all announcements into just one

type, but we opt for separate types because event announcements and exhibition an

nouncements will later receive quite different layouts. The same is true for the different

kind of shop item descriptions (books and DVDs).

Second, we extract pictures, videos and animations into content types of their own and

use association to express the relationship. Not only do these objects get some attributes

of their own, but the advantages of normalisation materialise as well: pictures, videos and

animations are maintained only once and can still be shared across different articles.

Third, moderate use of abstraction has lead to a few inheritance relationships, intro

ducing two abstract types for announcements and item descriptions in general. This al

lows us to express things like ‘all kinds of announcements’ without having to list all

announcement types explicitly.

Fourth, because all articles can be assigned a list of references to related articles, it is

possible for content editors to express arbitrary links between the main content elements.

Useful examples include the link from an online presentation to the announcement of a

special event, or the link from an exhibition announcement to a DVD in the online shop.

2.1 Content Type Hierarchy 37

F
ig

u
re

 1
3
:
T

h
e
 c

o
n
te

n
t
ty

p
e
 h

ie
ra

rc
h
y
 f
o
r

th
e
 H

o
u
s
e
 o

f
E

ff
e
c
ts

A
nn

ou
nc

em
en

t

A
rti

cl
e

Pr
es

en
ta

tio
n

A
ni

m
at

io
n

D
et

ai
ls

Ite
m

D
es

cr
ip

tio
n

Pi
ct

ur
e

Vi
de

o

tit
le

: S
tri

ng
su

bt
itl

e:
 S

tri
ng

te
xt

: M
ar

kU
p

pi
ct

ur
es

: P
ic

tu
re

[]
vi

de
os

: V
id

eo
[]

re
la

te
dA

rti
cl

es
:

A
rti

cl
e[

]

en
tra

nc
eF

ee
:

In
te

ge
r

re
la

te
dI

te
m

s:
Ite

m
[]

se
ct

io
ns

:
M

ar
ku

p[
]

an
im

at
io

ns
:

A
ni

m
at

io
n[

]
de

ta
ils

: D
et

ai
ls

re
la

te
dI

te
m

s:
Ite

m
[]

pu
bl

is
he

r:
St

rin
g

re
le

as
eD

at
e:

D
at

e
pr

ic
e:

 In
te

ge
r

de
ta

ils
: D

et
ai

ls

si
ze

: I
nt

eg
er

[2
]

pi
ct

ur
e:

 B
lo

b
al

te
rn

at
iv

eT
ex

t:
St

rin
g

tit
le

: S
tri

ng
du

ra
tio

n:
 T

im
e

vi
de

o:
 B

lo
b

Ev
en

t-
A

nn
ou

nc
em

en
t

da
te

: D
at

e
ev

en
tT

yp
e:

 S
tri

ng

Ex
hi

bi
tio

n-
A

nn
ou

nc
em

en
t

be
gi

n:
 D

at
e

en
d:

 D
at

e

an
im

at
io

n:
 B

lo
b

Bo
ok

D
es

cr
ip

tio
n

au
th

or
: S

tri
ng

D

vd
D

es
cr

ip
tio

n
du

ra
tio

n:
 T

im
e

38 Chapter 2 Content Management

We configure our content management system so that it ‘becomes aware’ of our con

tent type hierarchy, the individual content types and their attributes. Let’s assume that

meta attributes such as the content editor’s name and the publication date will be gener

ated automatically, which is why we haven’t included them in our UML sketch.

We have now established the basis for content editors to create content elements.

Benefits

+	 Because the content model is motivated by domain analysis, it is meaningful to the

content editors. The content model will underlie their content maintenance

workflow processes and they will be comfortable using it.

+	 Because the content model is normalised in the sense of data modelling, you avoid

redundant content to a large extent. This makes life easier for the content editors,

as they don’t have to maintain the same content in different places. Also, inconsist

encies are avoided.

+	 The ‘normalised’ content model also saves space in the repository – that is, on the

database on which your content management system is based. This is a real benefit

when it comes to larger objects such as videos or other multimedia artefacts that

might appear in several places on your site.

+	 If you introduce abstraction relationships carefully, the content model becomes a

well-designed hierarchy. This makes potential classification schemes more powerful.

For example, if you choose to implement a search function that is able to return only

content of a certain type, the availability of super-types (abstraction of several

content types) will make this feature more effective.

+	 Although the content model abstracts over concrete layouts, it provides the basis for

the consistent use of different layouts across your site. Once you define a SYSTEM OF

INTERACTING TEMPLATES (3.4) you can choose to implement a TEMPLATE PER VIEW

(3.5) for each content type.

Liabilities

–	 Experience shows that the number of content types tends to become rather large.

The more the domain analysts think about it, the more content types they seem to

identify. However, if there are too many, the model becomes complex and incompre

hensible. It’s a good strategy to bring domain experts and software designers

together to develop a well-balanced model – one in which separate content types are

introduced only when clearly motivated by distinct attributes and distinct layouts.

–	 The content model gives you a tentative set of content type definitions, but it’s

important to understand that more content types may have to be added for technical

reasons. The DECOUPLING OF CONTENT AND NAVIGATION (2.2) and the concept of

DYNAMIC CONTENT LINKING (2.3) will both require additional content types.

2.2 Decoupling of Content and Navigation 39

–	 Not all content management systems support the concept of abstract content types

and abstraction (or inheritance) relationships between content types. If your content

management system doesn’t, you will have to use a ‘flat’ model instead in which

attributes aren’t inherited, but are defined separately wherever they are required.

Nevertheless, a type hierarchy is still useful on the conceptual level.

–	 Finally, the content model may have to change as your site evolves. As a conse

quence, content migration may become necessary if you plan to relaunch your site.

Be sure to apply appropriate migration techniques such as staging to achieve a

SMOOTH RELAUNCH (5.3).

2.2 Decoupling of Content and Navigation

Context

You have established a CONTENT TYPE HIERARCHY (2.1) that embodies the content mod

el for your website. The hierarchy describes what content types exist and relates them to

each other. The next step is to define a navigation hierarchy. You have to provide a means

for the content editors to specify how content should be distributed over web pages and

how users should be able to travel from one page to another.

Problem

How can you ensure that content editors can organise both the content and the

navigation hierarchy in a straightforward and flexible way? How can you support

different content hierarchies for different sites, like an intranet and an extranet, or for

different countries or distribution channels?

Example

Like many other sites, the website for the House of Effects will be organised mainly in a

tree-like navigation hierarchy. As you can see from the various screenshots (Figures 5, 8,

18, etc.), first-level navigation nodes include Information, Announcements, Presentations

and Shop. There will be subnodes whose identity will be established by the editors.

However, things are slightly more complex than this. The website for the House of

Effects is supposed to support different languages. For the time being, English and

German are sufficient, but a French version is likely to be added in the near future. Flag

icons indicate that users can change from one language to the other. Although they cover

separate sets of content elements, the navigation hierarchies for the different languages

are identical as far as their structure is concerned.

40 Chapter 2 Content Management

Forces

A website doesn’t just make content available, but presents content to visitors as a navi

gable space. This navigable space allows visitors to travel from one web page to another.

It can take many different forms, but is usually organised as a structure that more or less

resembles a tree. Everyone’s familiar with this – tree-like navigation hierarchies are found

all over the web.

The consequence is of course that in addition to maintaining the actual content, con

tent editors must define a navigation hierarchy that fits the site – or more than one hier

archy, as we will see. The specification of navigation hierarchies has to meet some typical

requirements.

First, content editors must be able to specify several navigation hierarchies with iden

tical structures. Examples include navigation hierarchies for different languages or navi

gation hierarchies for different output channels (such as standard web browsers and

mobile devices). Although such hierarchies refer to separate sets of content elements, they

are structurally identical, or at least parts of them are. Content editors should be able to

reuse hierarchies they have already specified, but shouldn’t have to maintain identical

structures redundantly.

Second, content editors must be able to specify overlapping hierarchies. For example,

they may have to specify navigation hierarchies for an intranet and an extranet that over

lap where they cover the same content, but differ where content should only appear in one

of them.4 The resulting requirement is that it must be possible to use content elements in

more than one hierarchy.

Third, maintenance of the navigation hierarchy or hierarchies should be simple and

straightforward. Rearranging a hierarchy shouldn’t be too much work for the content ed

itors and, most importantly, shouldn’t require the republication of any content elements.

These requirements influence the usefulness of different approaches you can take to

represent a navigation hierarchy.

An initial approach is to use content element attributes to express the navigation hier

archy. Attributes could specify the web pages on which a content element should appear.

There are important drawbacks to this approach though. Not only does this technique

prevent content editors from reusing structurally similar hierarchies, but worse – rear

ranging a content hierarchy would require that content elements be changed (with regard

to their position within the hierarchy) and republished, which would be extremely awk

ward.

A second approach is to use the organisational structures that the content management

system offers. Most such systems allow content editors to organise content in folders and

subfolders, and these structures can be employed to represent a navigation hierarchy. This

approach avoids the republication of content when a navigation hierarchy changes.

4 An intranet and an extranet may technically qualify as different sites, as they will probably be reached via

different URLs. The argument holds good though, as long as they share the same content base and we can regard

them, from a logical point of view, as one site.

2.2 Decoupling of Content and Navigation 41

However, it would be difficult to represent several navigation hierarchies, and what’s

more – you would introduce dependencies on your content management system and its

organisational principles. The approach is too inflexible to be generally useful.

Solution

Decouple the navigation hierarchy from the content. Introduce dedicated navigation

nodes that span the navigation hierarchy. Allow the navigation nodes to be attributed

with configuration information if the navigation hierarchy needs to vary across different

contexts.

The navigation nodes represent the individual pages of your website. Identified by a

unique URL, every node references those content elements that should appear on a page.

In many cases this will be just one content element – the one that provides the main con

tent for the page and that itself may reference other content elements. However, pages can

represent more than one content element, in which case the navigation node has to main-

tain several content references.

To be able to specify a content hierarchy, you have to extend the tentative CONTENT

TYPE HIERARCHY (2.1) developed so far. The idea is to introduce a content type for nav

igation nodes – a pseudo type in fact, since navigation nodes represent pages, not content

elements. It takes the following attributes:

■	 Attributes describing the navigation node itself, such as its name (the name that

should be used when displaying navigation elements).

■	 References to subnodes – a node’s children in the hierarchy. Often these references

span a tree, although this isn’t always the case. If it is, you can include an additional

attribute for the reference to the unique parent node.

■	 References to one or several content elements assigned to the navigation node – the

actual content that should appear on the page.

If you have to support several navigation hierarchies, you can extend this model in a

straightforward way. A navigation node will still be identified by a unique URL, but what

content it holds will depend on what is best described as a request context. Technically,

the navigation node’s attributes become mappings that map the request context onto

concrete values.

The definition of a request context depends on the flexibility that your site requires.

Typical constituents include the following:

■	 The current language and country. This allows you to specify language-dependant

navigation hierarchies.

■	 The current distribution channel, which for example allows you to specify separate

hierarchies for an intranet and an extranet, or for different output devices.

A request context can be determined in different ways. Typical examples include the

evaluation of the URL parameters, the HTTP request parameters or information stored

in the user’s session. Based on parameters such as these, you can set up a highly config

urable navigation hierarchy.

42 Chapter 2 Content Management

Example resolved

The UML diagram in Figure 14 shows the additions we have to make to the content model

for the House of Effects website. We introduce NavigationNode as a new type and estab

lish the necessary associations to Article – the content type for articles in general that we

have introduced in the UML diagram back in Figure 13.

NavigationNode
title: Map<Locale, String>
parent: NavigationNode
children: NavigationNode[]
content: Map<Locale, Article>

0 .. 1

The Locale value
defines the request
context and serves as a key for
the mappings that retrieve the
NavigationNode attributes.

Article
title: String
subtitle: String
text: MarkUp
pictures: Picture[]
videos: Video[]
relatedArticles: Article[]

0 .. *

0 .. *

Figure 14: Configurable navigation nodes for the House of Effects

In our example, the request context only consists of the current locale. We’ll add the

locale to all our URLs as a URL parameter. This allows us to establish two separate nav

igation hierarchies for an English and a German version of our site. This is all we need to

do, at least for the time being, as there are no plans for other variations of the navigation

hierarchy (such as intranet versus extranet).

The attributes of NavigationNode can therefore depend on the current locale, al

though they don’t have to. First, there is the navigation node’s title. It does depend on the

locale, as there are both English and German versions. Second, there are references to the

navigation node’s parent and children. These references are independent of the locale,

spanning a navigation hierarchy that is used consistently for English and German.

Finally, there is a reference to the actual content – the article that should appear on the

page which the navigation node represents. This attribute, too, depends on the locale, as

different content will be used for different languages. Once the locale is known, the cor

rect article for the page can be obtained, as well as pictures, videos etc. that are associated

with that article.

2.2 Decoupling of Content and Navigation 43

ExhibitionsEvents

Announcements Shop

Welcome

locale: English

locale: German

NavigationNode
Article

Contact
PresentationsInformation

Figure 15: Navigation nodes and content elements for a specific locale

44 Chapter 2 Content Management

Figure 15 illustrates how two distinct sets of articles are referenced from one navigation

hierarchy.

Benefits

+	 Changes to the navigation hierarchy don’t result in any updates to, and republi

cation of, the actual content. The real content elements (all except the pseudo

elements that represent navigation nodes) are completely unaffected by any changes

to the navigation hierarchy. Whether you rearrange the navigation hierarchy or

introduce additional variations of it, only navigation nodes have to be updated and

published, which keeps the editorial workflow convenient and straightforward.

+	 The mapping from navigation nodes onto content elements is extremely flexible. It

gives you the freedom to support navigation hierarchies for different languages,

different audiences (intranet versus extranet, for example), different distribution

channels and the like. Navigation nodes can depend on the request context, so

content editors are free to configure navigation hierarchies as they see fit, reusing

those parts that several hierarchies may have in common. The editorial workflow is

improved, as the definition of variable navigation hierarchies becomes significantly

easier.

+	 The navigation hierarchy is completely independent of how content is organised in

the repository. It’s probably a good idea to establish repository structures that

largely mirror the navigation hierarchy, but ultimately content editors are free to

organise the content as they like.

+	 The solution also paves the way for a personalised site. Once you implement

CONTENT FILTERS (4.1) to tailor the site to individual users, you can use the

navigation nodes to configure which parts of the navigation hierarchy should be

visible to which user groups.

Liabilities

–	 Whenever a page element requires any navigation-related information, the

hierarchy spanned by the navigation nodes has to be evaluated. This isn’t a serious

problem, but it may require substantial computation: the request context has to be

determined and references to subnodes have to be followed. To avoid scattering

navigation-related code all over your custom components, you should implement a

NAVIGATION MANAGER (3.2) that encapsulates all navigation-related computation.

–	 When a new page is added to the site, content editors have to create two elements in

the repository, one for the navigation node and one for the actual content. This is

the price you have to pay for the flexibility you get from decoupling content and

navigation. However, there may be cases when you don’t really need this flexibility.

2.3 Dynamic Content Linking 45

In these cases you can apply DYNAMIC CONTENT LINKING (2.3) to make content

maintenance easier.

–	 The solution slightly depends on your content management system’s ability to

support non-trivial content models. Your content model will include mappings, at

least for some of the attributes for navigation nodes. Check your content

management system to make sure there is a convenient way to implement this

pattern.

2.3 Dynamic Content Linking

Context

You have established a CONTENT TYPE HIERARCHY (2.1) and you’ve made the necessary

extensions to express a navigation hierarchy as well, implementing the DECOUPLING OF

CONTENT AND NAVIGATION (2.2) principle. Content editors can now create content ar

tefacts of different types and refer to these artefacts from potentially configurable navi

gation hierarchies.

Problem

How can frequently changing content be maintained without burdening the content

editors with the tedious job of manually linking the new content into the navigation

hierarchy?

Example

Some of the content for the House of Effects website is stable, some changes frequently.

For example, presentations are relatively stable. New presentations are added occasion

ally, but existing ones are kept for long periods. When a new presentation is added, con

tent editors decide their location within the subhierarchy below Presentations, perhaps

adding a subtree to locate it.

On the other hand, announcements change frequently. A new announcement is added

to one of the two lists that appear under the menu entries Events and Exhibitions. Similar

ly, new shop item descriptions are added on a regular basis. They always appear under the

Shop menu. None of these cases require elaborate additions to the navigation hierarchy.

46 Chapter 2 Content Management

Forces

A principle liability caused by DECOUPLING OF CONTENT AND NAVIGATION (2.2) is that

the addition of a new page requires both a new navigation node and one or more new

content elements. The advantage of this approach is the flexibility that content editors

gain for the definition of the navigation hierarchy. But what if this flexibility isn’t needed?

Think of material that is best organised as a list of items. Regardless of what such a list

looks like in detail, regardless of whether or not it should be sorted, what all lists have in

common is a linear structure. If all you need is a list of content elements, the flexibility

that you gain from a highly configurable navigation hierarchy doesn’t add any benefit.

Worse yet, it’s often the content that takes the form of list items that undergoes fre

quent changes. This makes the situation doubly unsatisfactory. First, the effort required

to create the content and to link it into dedicated navigation nodes doesn’t seem justified,

as there’s no advantage to a highly flexible navigation hierarchy where this hierarchy is

actually flat. Second, this scenario could occur often, causing the content editors’ job to

become unnecessarily tedious.

Solution

Establish dynamic lists that, instead of maintaining links to any content elements, specify

criteria for potential list items, meaning that when a page featuring a dynamic list is

generated, the repository is searched for content elements that match these criteria.

Dynamic lists are best implemented with another pseudo content type that you add to

the CONTENT TYPE HIERARCHY (2.1) developed so far. This pseudo content type requires

a number of attributes that the content editors must supply to specify what items the list

should include. These attributes fall into the following categories:

■	 First, potential list items have to be identified. You can specify a query, which will

typically cover a repository path, a name pattern and perhaps a content type.

Content elements found in the specified repository folder qualify as list items if

their names and types match the specified criteria.

■	 Next, the list itself can have properties. A typical example is the default order that

should be applied to the list items.

There are two ways in which dynamic lists can be used. A dynamic list can represent

the main content of a page, in which case it is directly referenced by a navigation node.

Alternatively, a dynamic list could be embedded into manually edited content, meaning

that it would be referenced by real content elements.

2.3 Dynamic Content Linking 47

Example resolved

There are two places in the content model for the House of Effects website where dynamic

lists make sense. One is the lists of announcements (for special events and exhibitions),

the other is the list of shop items offered by the online shop.

We introduce a new subtype of Article to hold these kinds of lists. Named Overview,

this special article is different from a standard article only in that it maintains an

association to a dynamic list whose list items are, for example, announcements for

upcoming events. Since these Announcement elements won’t be referenced from any

dedicated NavigationNode element, no menu items will be created for them.

Nonetheless, all announcements will be referenced from the overview page.

Figure 16 shows the UML sketch for the necessary additions to the CONTENT TYPE

HIERARCHY (2.1).

Article
title: String
subtitle: String
text: MarkUp
pictures: Picture[]
videos: Video[]
relatedArticles: Article[]

0 .. *

Overview
listItems: DynamicList

DynamicList
query: Query
defaultOrder: Order

The query covers a path, a
name pattern and a content
type. List items are retrieved if
they’re found in the specified
repository folder, provided their
names and types match.

Figure 16: Specification of a dynamic list

48 Chapter 2 Content Management

Benefits

+	 Dynamic lists represent a quick and easy way to add content to a website, provided

that it’s sufficient to present the content elements in the form of a list and that no

real navigation hierarchy is required. Creating content elements and storing them in

the specified repository folder is all the content editors have to do when they wish to

add content – no navigation nodes have to be defined. Removing content elements

after they have expired is equally simple, so content maintenance becomes more

straightforward.

+	 Dynamic lists also represent a hook for personalisation. You can apply CONTENT

FILTERS (4.1) to the lookup functions that search for list items and so tailor dynamic

lists to specific users or user groups.

Liabilities

–	 Dynamic lists can become quite long when more and more content elements are

placed in the repository folder from which list items are taken. However, if there is

no limit to the number of list items, performance problems can be a consequence,

both when content is retrieved from the repository and when it is delivered to the

web. It is the responsibility of CONTENT SERVICES (3.1) to return content portions

of reasonable size and to apply pagination to dynamic lists if necessary.

–	 List items aren’t referenced from any navigation node and so aren’t embedded into

the navigation hierarchy. In a way they are ‘orphaned’ content elements. It is the

responsibility of a NAVIGATION MANAGER (3.2) to provide a default navigation

context for them.

–	 The implementation of dynamic lists depends to some extent on your content

management system. The solution assumes that it’s possible to use a query to

identify content elements in the repository. The query will consist of things like a

name pattern and a path, but may not include the unique id that a content

management system typically assigns. Most content management systems provide

such a lookup mechanism, but if your system doesn’t you may have to develop it

yourself.

–	 Dynamic lists are affected by reorganisation of content within the repository.

Content editors must be aware that moving list items from one folder to another can

have unwanted effects on the content that is delivered to the web.

2.4 Taxonomy Based on Keywords and Categories 49

2.4	 Taxonomy Based on Keywords and
Categories

Context

You have designed a CONTENT TYPE HIERARCHY (2.1) for a website that you plan to set

up. In addition to the navigation mechanisms, you plan to offer a search function that will

help users find the information they are looking for.

Problem

How can you lay the foundations for an effective and powerful search function?

Example

It quickly becomes clear that a mere full-text search won’t be sufficient for the House of

Effects website. The reason is quite simple – words people are likely to choose as search

terms don’t always appear verbatim within a content element’s textual attributes, even if

that content element is indeed a good search result. For example, visitors might search for

online presentations on astronomy using the word ‘astronomy’ as a search term. Howev

er, a mere full-text search wouldn’t return an online presentation on solar eclipses unless

that presentation featured the word ‘astronomy’ in its title or its description. Full-text

search alone isn’t powerful enough.

Sometimes, however, full-text search isn’t restrictive enough. What if a visitor is look

ing for online presentations, but not for shop items? How could this be expressed? If all

the site offered was a full-text search, the necessary distinction could not be made.

Forces

With more and more content populating websites world-wide, findability has become in

creasingly important. Peter Morville, in the subtitle to Ambient Findability, even states

that ‘what we find changes what we become’ (Morville 2005). If a website wants to reach

its target audience, it had better ensure that potential visitors can successfully and effec

tively find the content they’re looking for.

Of course, findability across the web is not an easy matter. Achieving ambient findabil

ity is one of the goals behind the ‘Semantic Web’ (Berners-Lee Hendler Lassila 2001) and

is the subject of current research. The idea is to develop models and ontologies that bring

structure to the meaningful content of web pages, so that information is related in an ef

fective way. However, some are sceptical over the chances for success, as the Semantic Web

relies heavily on metadata, and metadata is intrinsically difficult to organise in an ‘open

space’ such as the web (Morville 2005).

50 Chapter 2 Content Management

Achieving findability is less problematic in the confined space of a single website. A sin

gle website has – or at least should have – a consistent content model. Based on this con

tent model, you can implement a search function designed specifically to meet the

findability requirements for the site.

It is likely that in many cases a full-text search alone won’t be sufficient – the limits to

its usefulness are all too evident. Full-text search suffers from a trade-off between recall

and precision. Recall describes the percentage of relevant information that a search func

tion is able to find, while precision describes the percentage of relevant information

among all search results. Several studies have been performed that investigate how preci

sion and recall relate to each other. The consensus is that you can only improve one at the

expense of the other: if you make a full-text search less restrictive, it will return more rel

evant results, but the number of insignificant results increases as well, and vice versa

(Blair Maron 1985). Values for recall and precision that add up to 100% are considered

to be fairly typical.

As Peter Morville describes in Ambient Findability, the introduction of meta informa

tion can significantly improve the situation (Morville 2005). A first option is to let content

editors assign descriptive meta attributes to content elements. Well-chosen keywords can

improve both recall and precision, especially when thesauri and fuzzy search algorithms

are brought in to handle spelling variations and synonyms.

However, to increase precision significantly, you have to find a way to discard content

in which users are not interested. Assigning descriptive meta attributes alone may not do

the trick. Instead, it may be helpful to allow users to select specific content categories and

deselect others when they submit a search request.

Solution

Build a taxonomy that combines arbitrary keywords with well-defined content

categories. Make sure that individual content elements can be attributed with lists of

keywords. In addition, establish a set of possibly overlapping content categories to which

individual content elements can be assigned.

Keywords and categories represent different concepts:

■	 Keywords serve to describe content elements. They are essentially tags that are

assigned to content elements. It’s fine to allow arbitrary terms that describe a

content artefact well – there is no limit to the set of keywords that can be used.

■	 Content categories serve to classify content elements. The set of categories is always

limited – each content element will have to belong to at least one. There are

different ways in which you can identify useful categories. You can specify a list of

categories motivated by the application domain, you can use the list of content

types, or you could use a combination of both, making the categorisation even

more powerful. Although it may be unusual, it is generally acceptable for categories

to overlap, meaning that content elements may belong to more than just one

category.

2.4 Taxonomy Based on Keywords and Categories 51

Keywords and categories complement each other: it is the combination of both that al

lows you to define an effective taxonomy.

The introduction of keywords and content categories makes a few extensions to the

CONTENT TYPE HIERARCHY (2.1) necessary. In most cases you will need a few additional

attributes that allow you to store keywords and categories along with the content ele

ments. The one exception is the content type – content elements are typed anyway, so us

ing the content type as a category doesn’t require an addition to the model.

Keywords and categories will be assigned to content elements when these content ele

ments are created or updated, so you are now ready to establish a mechanism that notifies

the search engine of these keywords and categories. Search engines essentially consist of

two components: the indexer and the query engine. Right now we’re only concerned with

the indexer, as this is the component that needs to be notified of any changes to the con

tent. You can apply LISTENER-BASED SYNCHRONISATION (1.4) to guarantee that the in

dexer is informed of content artefacts, including their keywords and categories.

If you plan to use your content management system’s search engine, configuring the

built-in listener is probably all you need to do. If you plan to use a stand-alone search en

gine, you may have to develop your own custom listener. In either case, ensure that the

indexer is notified of the keywords and categories that you have added to your model.

Example resolved

The first addition we make to the content model for the House of Effects website is to

assign a list of keywords to all articles. These keywords will be provided by the content

editors when they create an article. They can be changed in the course of content

maintenance.

The second addition lies in the introduction of domain-motivated content categories.

We use the four categories Mathematics, Physics, Chemistry and Biology, and allow these

categories to overlap. Content editors can assign not just one category, but a list of cate

gories to all articles.

These additions are reflected by additional attributes for the content type Article. Fig

ure 17 shows the relevant excerpt from the resulting UML sketch of our CONTENT TYPE

HIERARCHY (2.1).

Moreover, we want to extend the categorisation, and also use the content type (such as

Presentation, Announcement or ItemDescription) as a classification scheme. This gives us

two orthogonal sets of content categories – Mathematics, Physics, Chemistry and Biolo

gy on one hand, and the different content types on the other. Since the content type is

available anyway, no further additions to our CONTENT TYPE HIERARCHY (2.1) become

necessary.

Figure 18 gives an example of the kind of search request that we can now plan to make

possible.

Users will be able to enter a search term, but unlike a mere full-text search, an article

will be found not only if the search term occurs in its text, but also if the search term

52 Chapter 2 Content Management

Article
title: String
subtitle: String
text: MarkUp
pictures: Picture[]
videos: Video[]
relatedArticles: Article[]
keywords: String[]
categories: Category[]

0 .. *

Provided by content
editors or users,
keywords are arbitrary
terms that describe an
article and that can freely
be assigned.

Possible categories
include music, art,
film and photography.
Articles can be assigned
to one or several
categories.

Figure 17: Addition of keywords and categories as metadata

matches the (hopefully well-chosen) keywords. As you can see in Figure 18, a search re

quest for ‘colour’ should find the announcement of a special exhibition on synaesthesia

– a neurological condition that causes people to associate different sensory modalities,

for example numbers and colours – even if the word ‘colour’ doesn’t appear in the actual

announcement text. The precondition for this is of course that the content editors have

chosen to use ‘colour’ as a keyword.

Moreover, users will be able to select or deselect content categories and content types.

This will give them the freedom to express more complex search requests, such as the

search for biology presentations or the search for shop items categorised under either

physics or chemistry.

With the additions to the content model we’ve just made, we have laid the foundations

for a powerful content taxonomy, but obviously there a few more things we have to do.

We plan to use an external search engine, so we have to configure it to implement the kind

of taxonomy-based search function that we wish to make available. At least we’ll have to

configure the search engine to make it aware of the keywords and categories that its in

dexing algorithms should take into account in addition to the full-text attributes.

We must also implement a mechanism that actually provides the search engine with all

significant information. We will develop a dedicated repository listener that will notify

the search engine of any relevant changes to content elements or their metadata, which of

course includes the keywords and categories. This way, LISTENER-BASED

SYNCHRONISATION (1.4) will ensure that our search engine is able to implement a search

function based on the taxonomy we have defined.

2.4 Taxonomy Based on Keywords and Categories 53

Figure 18: The House of Effects’s search page using categories and document types

Benefits

+	 You have laid the foundation for a search function with improved recall. Recall is

improved mainly through the definition of keywords. The search function can return

a content element whenever a keyword matches the search term, so it is no longer

restricted to the unsatisfactory results of a full-text search.

+	 You have also laid the foundation for a search function with improved precision.

Since categories are well-defined and their number is limited, you can implement a

search function in which users can actively deselect those categories that are irrel

evant to them. The results that are returned therefore tend to be more significant.

54 Chapter 2 Content Management

+	 When you generate web pages from content elements, you can use the keywords and

categories to add meta attributes to the HTML you create. Search engines on the

web may evaluate these meta attributes. Findability on the web, though not the

primary goal of this pattern, may be improved as well.

Liabilities

–	 Because arbitrary keywords are possible, undesired mismatches between search

terms and keywords can occur. You may consider implementing fuzzy search

techniques to tackle this problem on different levels. On a syntactical level, applying

the Levenshtein distance to the matching algorithm can handle spelling variations

and the like (Gusfield 1997). On a semantic level, a thesaurus allows you to identify

matches in the presence of synonyms.

–	 The reorganisation of categories can be expensive. It is likely that the custom code

for your search function will rely on existing categories one way or another (for

example to generate a search page, as in Figure 18). Of course it would be unwise to

hard-code any categories, but adding or removing categories may still result in code

or configuration changes.

–	 Storing keywords and categories together with the content elements is one thing,

while using this information for a powerful search function is quite another. What

you have done so far is to build a useful taxonomy and notify the search engine of

it. Querying the search engine and handling its results is a task that still needs to be

done. You can implement a SEARCH MANAGER (3.3) – a component that encapsu

lates this functionality.

2.5 Workflow-Based Validation

Context

You have completed the content model for your site. Your CONTENT TYPE HIERARCHY

(2.1) specifies the various content types, their relations and their attributes, including

those attributes that are required to set up a TAXONOMY BASED ON KEYWORDS AND

CATEGORIES (2.4). The content model may include a pseudo type for navigation nodes

(caused by the DECOUPLING OF CONTENT AND NAVIGATION (2.2)) and a pseudo type for

dynamic lists (motivated by the need for DYNAMIC CONTENT LINKING (2.3)).

2.5 Workflow-Based Validation 55

Problem

How can you avoid content elements with illegal or inconsistent attribute values?

Example

The CONTENT TYPE HIERARCHY (2.1) for the House of Effects website (as in Figures 13,

14, 16 and 17) specifies content types, their attributes and their relationships. However,

so far we haven’t specified any constraints.

Such constraints of course exist. Some attributes are mandatory and must not be emp

ty, markup has to be well-formed, date values have to be valid, pictures and videos have

to use legal formats, references to other content elements must not be dangling and the

navigation hierarchy must not contain circular links. It is the content editors’ job to be

aware of these constraints and to ensure that no constraints are violated, but we would

still appreciate it if our system could offer support.

Forces

Content can meet all kinds of constraints. Constraints can apply to elementary content

elements or to larger artefacts. Constraints can address single content elements or relate

different ones. Constraints ensure things like plausibility, validity, completeness and con

sistency.

If constraints are violated, the appearance of a website suffers. Incomplete web pages,

unusable links, worthless multimedia objects or flawed layout can be the consequence. It’s

only natural that most sites are faced with the requirement that important constraints

should be tested automatically during the workflow process.

Most content management systems offer support, at least to some extent. Checking for

mandatory attributes and for valid links is something that many systems are able to do –

all that’s required is the necessary configuration. Other constraints require custom soft

ware: if you want to ensure specific domain-driven constraints for your content, you will

probably have to develop the routines that check these constraints.

However, there can be too much of a good thing. If you are too restrictive about certain

constraints, workflow processes may suffer. For example, content editors should be free

to handle work in progress in which specific plausibility requirements may not be met: it

makes no sense to enforce all constraints at all times. Once content is being published and

delivered to the web, things look different. At this point existing constraints can no longer

be ignored and need to be enforced.

56 Chapter 2 Content Management

Solution

Apply validators that check content for plausibility. Integrate these validators into the

content editors’ workflow in two ways: validators that reject illegal attribute values

should be applied during the editing process, while validators that check for

completeness and consistency should only be applied on publication.

In principle all content types can be subject to validation, including the pseudo types

for navigation nodes and dynamic lists. The first thing you have to do is to decide on the

necessary validators for each content type and when those validators should be applied.

The following list gives a few typical examples of validators that check for legal at

tribute values and should therefore be applied during the editing process:

■ Check that markup is well-formed and valid.

■ Check that date values are correct and plausible.

■ Check that e-mail addresses and URLs are well-formed.

■ Check that blob objects use a legal file formats and have an acceptable file size.

■ Check that referenced content elements are of the correct type.

Checks for completeness and consistency should be deferred until publication. Here

are a few examples of typical validators from this category:

■ Check that mandatory attributes aren’t empty.

■ Check that no URL or path expression specifies a dangling link.

■ Check that no circular links occur in the navigation hierarchy.

A very sophisticated workflow process might require more than just two classes of val

idators (for example to differentiate between validation on editing, reviewing and publi

cation). In most cases, though, the two classes of validators described above are adequate.

This typical model is described in the UML state diagram given in Figure 19.

Once you have decided what validators are necessary, you have to implement those that

your content management system doesn’t supply. The more common validators, such as

checks for mandatory elements, or simple formatting checks, are sometimes readily avail

able. Also, almost all content management systems check that no content element is de

leted while it is still referenced from other content elements, an idea similar to the

referential integrity concept from database design.

However, non-standard validators usually require some custom software. Most con

tent management systems provide an interface for implementing and registering custom

validators. You can use this interface to integrate the validators you need.

Example resolved

Let’s assume that our content management system offers a few basic validation

mechanisms, including checks for mandatory attributes and checks for correctly typed

2.5 Workflow-Based Validation 57

edited

publication requested
[completeness and consistency
validation unsuccessful] /reject publication

published

publication requested
[completeness and consistency validation
successful] /accept publication

update requested
[legal attribute validation successful] /

accept changes

update requested
[legal attribute validation unsuccessful] /

discard changes

Figure 19: State diagram for the content editors’ workflow

references between content elements. Let’s also assume that our content management

system offers an interface for registering arbitrary custom validators.

We can now set up the list of validators we need, and split up the overall list into two

lists, for validation during content editing and validation on publication.5

Let’s look at the validation during the content editing process first. We’ll use the built

in type-checking validator which, for example, checks that the attribute of Presentation

that is supposed to point to the presentation’s details indeed holds a reference to a Details

object, but not to any other. We’ll also use the following custom validators:

CONTENT TYPE ATTRIBUTE VALIDATION

Article text well-formed markup

EventAnnouncement date valid date

ExhibitionAnnouncement begin valid date

ExhibitionAnnouncement end valid date

ItemDescription releaseDate valid date

5 We only list validators for the most important constraints. You could of course think of more validators, but

as before, let’s keep the example simple.

58 Chapter 2 Content Management

CONTENT TYPE ATTRIBUTE VALIDATION

DvdDescription duration valid time value

Details sections well-formed markup

Picture picture legal picture format,
file size must not exceed a specified
maximum

Video video legal video format,
file size must not exceed a specified
maximum

Animation animation legal Flash file,
file size must not exceed a specified
maximum

DynamicList defaultOrder legal order specification

Next, validation on publication includes the built-in checks that no mandatory at

tributes are left empty, as well as the following custom validators for consistency and

completeness:

CONTENT TYPE ATTRIBUTE VALIDATION

ExhibitionAnnouncement begin, end begin earlier than end

NavigationNode children must not cause circular links

DynamicList query valid query

Most of the custom validators are quite simple and can be implemented easily. The

most challenging implementation is the one that checks the navigation hierarchy for un

wanted circular links. Registering our custom validators with the content management

system, we can ensure that our content will meet the domain-driven constraints that are

placed on it.

Benefits

+	 Invalid, inconsistent and incomplete content is rejected during the editing process.

Content editors benefit from the feedback the system gives them. As the underlying

content is accurate, complete and consistent, your website gains authority and

reputation.

+	 Content editors retain the freedom to work on the content in any way that they see

fit. Since completeness and consistency aren’t checked until publication, content

editors can store their work in progress in the repository without being bothered by

plausibility checks that are too restrictive.

2.5 Workflow-Based Validation 59

Liabilities

–	 The solution depends on your content management system. To make workflow

based validation possible, the system must be flexible enough to integrate validators

for arbitrary content types at different points in the workflow process.

–	 Validation is useful, but it doesn’t make robust content delivery software unnec

essary. When you design the custom software for content delivery for your site, you

must ensure that it can deal with content that hasn’t been properly validated. First,

this software could be used in the context of a preview function. A preview function

has to work reasonably well with content that hasn’t been validated. Second, if for

some odd reason non-validated content makes it to the ‘published’ state uninten

tionally, your site should still be able to work. Robustness is essential – a missing

validation can never be the excuse for severe errors in the content delivery process.

CHAPTER
l

3

Content Delivery

While the previous chapter was concerned with how content is managed and organised,

this chapter is devoted to how it is brought to the web. We’ll look at patterns for the serv

er-side architecture for content delivery. We’ll study what components are typically in

cluded in such an architecture and what the underlying principles are.

In many respects software for content delivery is similar to any other web application,

so a variety of patterns apply that are targeted at web applications in general. The context

of this book is more specific though, as we’re not looking at web applications in general,

but focusing on the kind of web applications that are necessary to make content available

on the Internet. This chapter therefore deals with issues such as content retrieval, naviga

tion and search functionality.

Before we start with the actual patterns, I’d like to revisit a fundamental principle of

application development, as it’s going to set the stage for the patterns to come. The Mod

el-View-Controller pattern, well-known from the literature, divides an interactive appli

cation into three constituents. The model represents the data, the view implements

possible visualisations and the controller handles user requests and interaction. The pat

tern recommends separating all model aspects from all view aspects and from all control

ler aspects. Due to a reduced coupling, there will be fewer dependencies and the system’s

61

62 Chapter 3 Content Delivery

Template Layer

Logical Layer

Repository Layer

– generate HTML
– include CSS styles

– apply domain logic
– perform link management
– maintain session information
– integrate search functionality
– apply personalisation
– provide client-side functionality

– access the content repository
– check content elements for validity

View

Model

Figure 20: Layered architecture for dynamic content delivery

comprehensibility and maintainability are improved (Buschmann Meunier Rohnert Som

merlad Stal 1996, Fowler 2003).

As Martin Fowler points out in Patterns of Enterprise Application Architecture, the

Model-View-Controller pattern is particularly important for web applications (Fowler

2003). In fact it implements two distinct principles. The first is the separation of the mod

el and the view, which is regarded as ‘one of the most fundamental heuristics of good soft

ware design’. The second is the separation of the view and the controller, which serves to

make the control flow through a website independent of its presentation. Examples can

be found in web frameworks such as Struts (struts.apache.org), Spring (www.springframe

work.org) or Ruby on Rails (www.rails.org).

We have already come across the separation of model and view in this book. You can

sense this separation in the three layers that constitute the LAYERED ARCHITECTURE FOR

CONTENT DELIVERY (1.5). While the logical layer and the repository layer implement the

model independently of all presentation aspects, it is the template layer that implements

the view. Figure 20 summarises what we already know from the first chapter.

It’s now time for us to zoom into this picture and study things in a little more detail.

Applying the Model-View-Controller pattern to content delivery, we come to the follow

ing sequence of actions that is performed after a request has been received from the

browser:

1.	 The request is handled by a controller that analyses the request and invokes all

necessary actions. Many architectures define what is often referred to as a front

controller (Fowler 2003) – a singleton object that acts as a central dispatcher for all

kinds of requests, whether they’re caused by following an HTTP link or by

submitting an HTML form.

 63

2.	 The controller calls components in the logical layer that are in charge of providing

the necessary content. These components usually rely on repository layer function

ality that retrieves content artefacts from persistent storage. The components on the

logical layer add domain logic: they perform link management, make search results

available and apply personalisation. They collaborate with external components

and depend on the user’s HTTP session to maintain data across HTTP requests.

3.	 The controller also invokes the templates that generate output for the web.

Templates rely on the content that is provided by the logical layer, and may include

Ajax functionality in the HTML they generate. Their output is sent to the browser

as an HTTP response.

This, however, is just the server-side request handling. If you decide to include SENSIBLE

CLIENT-SIDE INTERACTION (1.3), you will also require client-side request handling –

request handling that happens directly in the browser – which means that you’ll have to

provide specific Ajax components.

Fortunately, some of the overall functionality will probably be provided by the tools

and frameworks that are available to you:

■	 First of all, your content management system should provide large parts of the

server-side controller logic, including a lookup mechanism that finds the right

template to invoke after receiving a page request, and so on. Details depend on the

actual system.

■	 Most content management systems provide a framework for content retrieval from

the repository, usually including one or more caching mechanisms. This saves you

having to implement the technical infrastructure yourself, although of course you

still have to fill in the domain logic.

■	 Almost all content management systems provide a mechanism for template

construction. Either there is a set of templates for you to customise or, in a more

flexible setting, there is a well-defined way to integrate your own templates. Again,

details depend on the content management system.

■	 You can use an Ajax library or Ajax framework that gives you the client-side

components you need. Examples include ICEfaces (www.icefaces.org) and

RichFaces (labs.jboss.org/jbossrichfaces). You can embed Ajax elements from such

a framework into the pages you deliver to the web.

■	 Finally, you may want to use a search engine for indexing your web pages and for

retrieving search results efficiently. Various search engines are available, including

Lucene, a well-known open-source tool (lucene.apache.org).

This is where the patterns of this chapter come in. While the tools and frameworks save

you a lot of work, implementing your domain logic is of course outside their scope. Typ

ical questions that remain include the following:

■	 How can you compose meaningful page content from the individual content

elements that you receive from the repository?

64 Chapter 3 Content Delivery

CONTENT SERVICES
(3.1)

relies on a

provides
content
elements to be
processed by a

rely on

NAVIGATION
MANAGER (3.2)

SEARCH MANAGER
(3.3)

includes a

provide the Ajax-based
client code for

SYSTEM OF
INTERACTING

TEMPLATES (3.4)

TEMPLATE PER VIEW
(3.5)

relies on a

is best accompanied
with a

is best accompanied with a

SELF-CONTAINED
PAGES (3.6)

Figure 21: Road map to the patterns on content delivery and interaction

■ How can you integrate navigation elements and search functionality smoothly?

■ How can you add personalisation in an efficient way?

■ How can you organise templates and reuse layouts?

■ How can you deliver client-side functionality to the browser?

These are the questions I’d like to address in this chapter, with the exception of personal

isation, which we’ll study specifically in Chapter 4. Figure 21 presents a road map to the

patterns in this chapter.

3.1 Content Services

Context

You have kicked off your web project by defining a CONTENT TYPE HIERARCHY (2.1),

naming the various content types along with their attributes, as well as possible associa

tion and abstraction relationships. You have also implemented WORKFLOW-BASED VAL

IDATION (2.5) to ensure that complete and consistent content artefacts are stored in the

repository.

3.1 Content Services 65

You are now ready to design the server-side components that will process content for

its delivery to the web. The plan is to begin with a standard model-view-controller archi

tecture and to add custom components that implement the necessary domain logic.

Problem

How can you avoid domain logic being scattered all over your server-side components?

Example

The content model for the House of Effects is organised around a few central content

types. Articles, announcements, presentations and shop item descriptions are the most

notable artefacts stored in the content repository. Pictures and videos are stored as sepa

rate content elements, although of course they are referenced from the objects that use

them.

Typically, a web page will require more than just one content artefact. You can see that

from the example screenshots in Figure 22 (in fact there will be more). All pages use dif

ferent layouts, but what they have in common is that they are all composed from different

content elements.

The first page shows an article with its associated pictures, three in this case. The sec

ond page contains an announcement with one picture. The third page uses a list of an

nouncements to generate thumbnails for the event calendar. It doesn’t use all the

attributes of an announcement though – a few key attributes are sufficient to create the

list entries. The fourth page relies on a list of articles, including announcements, presen

tations and item descriptions. Again, the list entries only require a subset of the available

attributes.

It will be our job to provide software for assembling the necessary content for the dif

ferent page types. Of course we don’t want this functionality to be scattered all over our

server-side components. In particular, we don’t want these model aspects to enter into the

templates or any other view layer components.

Forces

There is no 1:1 correspondence between the content elements stored in the repository and

the content that is used to populate web pages. Content in the repository is organised ac

cording to the demands of data modelling, as expressed in the content model. When con

tent is assembled for page generation, however, the modelling aspect takes a back seat to

the concrete demands of the individual web pages. Web pages usually require what is best

described as ‘content aggregates’, such as assemblies of related content elements or lists

of content elements.

The server-side model components have to bridge this gap. Content artefacts from the

repository have to be mapped onto the content aggregates the web pages require.

66 Chapter 3 Content Delivery

Figure 22: Different page types for the House of Effects site

However, the model components that implement such a mapping have to fulfil three

important requirements.

First, all necessary domain logic must have been applied before content aggregates are

made available to any view components. View components must be able to generate

HTML fragments without applying any further domain logic, or the separation between

model and view would be violated – with dire consequences for maintainability, as Mar

tin Fowler points out (Fowler 2003).

Second, view components must be able to use those content aggregates in a highly ef

ficient way. Efficient processing must be possible even in the presence of comprehensive

content structures, such as long lists of content artefacts. It’s the responsibility of the

model components to provide the view components with content aggregates that are ad

equately structured.

3.1 Content Services 67

Third, reliability is a requirement. Usually WORKFLOW-BASED VALIDATION (2.5) takes

place before content elements are used for page generation. However, there are scenarios

in which no validation has been performed, such as a preview function. But even in cases

like these, the view components must be able to process the content aggregates they re

ceive properly, so the domain logic has to ensure specific consistency requirements.

Meeting these requirements adds to the complexity of the domain logic, but there is no

alternative. Burdening the view components with model aspects would lead to much

complex scripting code scattered over server pages – a scenario that is notorious for its

disastrous software structures and, consequently, for its extremely poor maintainability.

Solution

Implement services that provide the content aggregates that the various pages of your site

may require. This begins with single content elements from the repository, but also

includes lists or compositions of content elements. If necessary, content services must

apply personalisation. Whatever the content services make available, it must be ready to

be processed by the presentation logic.

To provide ready-to-use content aggregates, a content service has to rely on function

ality that extends over the logical layer and the repository layer within the LAYERED AR

CHITECTURE FOR CONTENT DELIVERY (1.5), as Figure 23 explains.

Here is the functionality that you’ll have to include when you implement a content

service:

■	 Content retrieval is necessary to obtain the required content elements from the

repository. It’s only natural that content retrieval relies heavily on the interface the

content management system offers for repository access.

■	 Validation has to be applied to the content elements retrieved from the repository,

even if WORKFLOW-BASED VALIDATION (2.5) has been applied previously. You can

plan to reuse validation functionality that you have already implemented.

■	 Because repository access is usually a remote operation, many content

management systems provide caching mechanisms to speed up content retrieval. In

many cases this will be adequate, but if these mechanisms turn out to be insufficient

you can opt for a custom-built cache that stores content elements locally.

■	 It sometimes makes sense to ‘polish up’ content elements from the repository

before passing them to the logical layer. Examples include resizing images, breaking

down text into paragraphs, integration of images into a text flow, formatting of

date values and so on. You can choose to define ‘wrapper’ objects around content

elements and so prepare the elements for use by view components.

■	 The logical layer’s most prominent task is to receive objects from the repository

layer and assemble them into the content aggregates the various page types require.

Content aggregates can take many different forms. This begins with single, and

68 Chapter 3 Content Delivery

Logical layer

Repository layer

Content assembly
– aggregate related

content elements
– assemble lists of

content elements

Pagination
– apply

segmentation
– apply sorting
– apply filtering

Personalisation
– add personalised

information
– filter content

elements

Content retrieval
– access the CMS

repository

Content service

CMS API

Validation
– check for

consistency
– check for

completeness

Cache

Cache

Content wrapping
– add wrappers to

‘polish up’
content elements

Figure 23: Model components involved in a content service

possibly wrapped, content elements, but also includes compositions of associated

content elements or lists of content elements.

■	 In the case of a personalised site, personalisation strategies must be applied before

content is made available to any view component. You may choose to implement

your own personalisation component, or you can delegate personalisation requests

to an external personalisation engine.

■	 Long lists of content elements might require pagination. Obviously, view

components might be concerned with pagination to some extent, but content

services should be able to split lists of content elements into segments anyway, if

only to ensure that no overly long lists of content elements are sent to the browser.

3.1 Content Services 69

In addition, to make things easier for the view components, content services that

return lists of content elements should be able to apply sorting and filtering.

■	 Finally, a content service may introduce a cache on the logical layer. Unlike the

repository layer cache, this cache provides fast access not only to basic content

elements, but also to content aggregates that might have been subject to

personalisation and pagination.

A content service that implements this functionality is a powerful tool. Integrating all

necessary model aspects, it manages to provide precisely those content aggregates the

view components require.

Content services can be used by server-side and client-side view components alike:

■	 First, templates from the server-side template layer can call content services from

the underlying logical layer. Technically, there are various ways in which templates

can do this, ranging from direct service invocation to the use of tag libraries.

Whatever method is used, when a template generates HTML fragments it can

directly use the content aggregates it receives from a content service.

■	 Second, client-side Ajax components can rely on content services. The idea behind

SENSIBLE CLIENT-SIDE INTERACTION (1.3) is to handle specific user requests

directly within the browser. To handle such requests, Ajax components may choose

to use a content service as a web service.

Content services embody much of the domain logic for your site. Interpreting associa

tions between content elements from the repository, they compose content aggregates in

a way that is meaningful in terms of the application domain.

It’s no surprise that implementing content services is a non-trivial task. How much of

a challenge it is depends on the complexity of your CONTENT TYPE HIERARCHY (2.1) and

on how heterogeneous the different page types are.

Example resolved

Let’s analyse what content services make sense for the website for the House of Effects.

First we need to identify the page types that we have to support. We’ve already seen a few

in Figure 22. Others include online presentations and shop item descriptions.

Taking this information as a basis, we can identify the following content services:

CONTENT SERVICE CONTENT AGGREGATE PAGINATION

ArticleService A single standard article,
including all referenced
pictures and videos

 –

AnnouncementService A single announcement,
including all referenced
pictures and videos

 –

70 Chapter 3 Content Delivery

CONTENT SERVICE CONTENT AGGREGATE PAGINATION

AnnouncementListService A list of announcements over a
specific time period

Filtering by category (mathematics,
physics, chemistry, biology),
pagination, sorting

PresentationService A single presentation, including
all referenced details, pictures,
videos and animations

 –

ItemService A single shop item description,
including all referenced details,
pictures and videos

 –

ItemListService A list of shop items Filtering by type (books, DVDs),
pagination, sorting

ArticleListService A list of search results Filtering by category (mathematics,
physics, chemistry, biology) and type
(presentation, event announcement,
exhibition announcement, shop item),
pagination, sorting

Each content service is responsible for making a specific type of content aggregate

available. Some services return sets of associated content elements, while others return

lists of content elements. The services that fall into the latter category also offer pagina

tion, including filtering and sorting. These services are required for those content types

that appear in dynamic lists.

How can our content services be implemented? Let’s study two example services in a

little more detail.6

Let’s look at the AnnouncementService first. Any component that uses this service has

to provide a request context that includes the id of the announcement in question and the

current locale. We know from the CONTENT TYPE HIERARCHY (2.1) presented in Figure

13 that an Announcement object can be associated with several Picture and Video objects,

so this gives us the content aggregate we’re looking for. The necessary content elements

are retrieved from the repository and, after some validation, are transformed into

‘wrapped’ objects that, for convenience, offer some additional functionality. The wrapper

around an Announcement object offers functionality to identify those places within the

announcement’s markup where pictures can be anchored, while the wrapper around a

Picture object offers resizing functionality. The AnnouncementService can now return the

requested content elements in a way that makes it easy to generate HTML fragments for

an announcement page.

The EventListService works similarly. As it returns a list of content elements, the re

quest context is different, though, and includes parameters necessary for pagination, fil

6 For the moment we’ll be ignoring the influence that personalisation has on our content services. The services

will have to integrate personalisation, but we’ll be dealing with this aspect in Chapter 4.

3.1 Content Services 71

tering and sorting. The service interprets these parameters to retrieve the accurate set of

EventAnnouncement elements from the repository.

Benefits

+	 Content services may cover a wide range of functionality and add a lot to the clarity

and straightforwardness of your software architecture. Content services free view

components from model aspects, so that once you implement a SYSTEM OF INTER

ACTING TEMPLATES (3.4) less scripting code will be necessary. Content services also

strengthen the separation of concerns within the logical layer, so model components

become more focused (as shown in Figure 23) and redundant functionality is

avoided to a large degree. Overall maintainability benefits.

+	 Since less scripting code is necessary, testability is also greatly improved. Your

domain logic resides completely in the logical and repository layers, where a

programming language is used, as opposed to any scripting mechanisms, so that

writing unit tests becomes possible.

+	 Server-side efficiency benefits from the option of introducing local caches (Dyson

Longshaw 2004) at different levels of object granularity. You can cache content

elements received from the repository, you can cache the ‘wrapped’ objects or you

can cache the (possibly personalised) content aggregates. It is likely that you won’t

need all these different caches, and you’ll probably prefer to focus on those caching

mechanisms that are readily available from your content management system. In

any event, the architecture allows you to tune the system performance by intro

ducing caching at different stages during the content delivery process.

+	 Client-side efficiency benefits from the integration of pagination into content

services. Browsers will only receive reasonably sized lists of content elements.

Client-side Ajax components may still require pagination functionality for presen

tation purposes, but they won’t be sent lists that are too voluminous for them to

handle.

+	 Robustness is improved as a consequence of validation. Even if for some reason no

WORKFLOW-BASED VALIDATION (2.5) could be performed during content

management, some basic validation will still take place during content delivery,

before content is made available to any view components. This avoids corrupted

web pages as a consequence of invalid or inconsistent content – a scenario that

would damage the reputation of your site.

72 Chapter 3 Content Delivery

Liabilities

–	 The solution sketched above mentions personalisation, yet it doesn’t offer any

concrete advice about how personalisation strategies can be integrated. In fact there

are other patterns that complement this one as far as personalisation is concerned.

Most importantly, you can integrate CONTENT FILTERS (4.1) into your content

services if you wish to tailor your site to specific user preferences. Also, caching is

sometimes difficult in the presence of personalisation, and if that turns out to be the

case for your site, SEGMENT-SPECIFIC CACHING (4.3) can represent a viable solution.

–	 While caching can clearly speed things up, its implementation isn’t always simple.

There isn’t much you have to worry about as long as you rely on off-the-shelf

components alone, such as the caching mechanisms your content management

system may provide. But if you decide to establish your own caching strategies, you

have to be concerned about implementation details and the necessary effort, as Paul

Dyson and Andy Longshaw point out (Dyson Longshaw 2004). The trickiest part is

usually the implementation of an invalidation mechanism that updates a cached

object whenever the original object has changed. In most cases, the method of choice

is a LISTENER-BASED SYNCHRONISATION (1.4) between the content repository and

the local cache.

–	 Content services make content available, as the name suggests. However, they inten

tionally ignore the navigation hierarchy – any navigation-related information is

outside their scope. On the other hand, view components do require navigation

related information in addition to the mere content. A NAVIGATION MANAGER (3.2)

can help you make navigation-related information available.

–	 Content services are fine for looking up content if the requested content element is

known by its identity. This is the case when you look up content for a specific page,

or when you follow references from one content element to another. Finding content

elements that meet arbitrary search criteria is quite a different matter. A SEARCH

MANAGER (3.3) can help you to integrate a search engine that offers sophisticated

search strategies.

–	 The implementation of your content services depends on the CONTENT TYPE

HIERARCHY (2.1) you have designed for your site. Obviously there is little you can

do about this – an implementation will always depend on its underlying model.

Ideally your content model should be fairly stable, but if changes to the model

become inevitable, you’ll have to adapt your content services accordingly.

–	 Robustness requires effective content validation during content delivery in addition

to possible WORKFLOW-BASED VALIDATION (2.5). You must ensure that you reuse

all validation code if you want to avoid redundant functionality. This may come

down to some cross-application reuse, as the workflows belong to the content

management application, while the content services are part of your content

delivery components.

3.2 Navigation Manager 73

3.2 Navigation Manager

Context

You have implemented CONTENT SERVICES (3.1) that make content of various types and

in various combinations available. As a consequence of the DECOUPLING OF CONTENT

AND NAVIGATION (2.2), however, all navigation structures are outside the scope of these

services.

It is clear that view components need to be aware of navigation structures. You have

laid the basis for specifying these navigation structures by adding a pseudo content type

for navigation nodes to your CONTENT TYPE HIERARCHY (2.1). You may also have intro

duced DYNAMIC CONTENT LINKING (2.3). Navigation information is readily available

and it’s now time to use this information properly.

Problem

How can you prevent templates and other view components from being burdened with

the calculation of navigation-related information?

Example

Like most other websites, the website for the House of Effects features a set of standard

navigation mechanisms. As you can see from the various screenshots in Figure 22, a tree

like navigation bar on the left can be found on every page. It represents the navigation

hierarchy specified by the content editors, and it is context-sensitive in the sense that the

branch of the tree that opens depends on the current page. Most pages (announcements,

presentations and shop item descriptions) also feature ‘breadcrumbs’ near the top of the

page – essentially the page’s path within the navigation hierarchy.

Of course there are more links that serve navigation purposes. Links from an article to

related articles, links from the event calendar to individual announcements, links from a

list of search results to the full pages: these links, too, have to be provided somehow.

Forces

Linking content is what makes the World Wide Web a web: hyperlinks are what distin

guishes a website from a mere information catalogue.

The internal links of a website essentially fall into two categories.7 First, there are links

that represent the navigation hierarchy that is maintained by the content editors. The

7 External links – those that refer to other websites – are outside the scope of this pattern, as they cannot be

generated and therefore aren’t subject to server-side computation. External links are essentially just attributes

that are maintained along with other content, though some sites choose to employ tools that test links for

correctness and sort out dangling links.

74 Chapter 3 Content Delivery

typical navigation bar and breadcrumb navigation fall into this category. Calculating

links for such navigation elements requires the traversal of the tree-like structure spanned

by the individual navigation nodes. As a consequence of the DECOUPLING OF CONTENT

AND NAVIGATION (2.2), these navigation nodes are specified separately from the actual

content.

Second, there are links that represent associations between arbitrary content elements,

regardless of their position in the navigation hierarchy. However, associations hold be

tween content elements, whereas links connect pages. Calculating links from associations

can be non-trivial. For example, if one content element keeps a reference to another and

you have to generate a page for the first, then obviously that page should include a link

that points to the second one. But what if that content element appears on more than one

page? To which page should the link point?

Whatever strategy you implement to solve these problems, it will involve a certain

amount of computation. Moreover, in the context of DYNAMIC CONTENT LINKING (2.3),

you’ll have to take dynamic navigation structures into account as well.

Things are even more complex if the navigation hierarchy depends on an overall re

quest context. For example, the navigation hierarchy can vary between different languag

es, or it could be different for the Internet and for an intranet. Personalisation can lead to

different navigation hierarchies too – different users may get to see different parts of the

hierarchy. Cases like these require that the current request context be evaluated while the

links for a page are being generated.

However, there are downsides to the computation of links. First, because complexity is

involved, it is crucial that link management doesn’t spread all over your server-side – let

alone client-side – components. Maintainability demands that the non-trivial evaluation

of navigation structures and the computation of links should be concentrated in one

place.

Second, link computation relies heavily on the completeness and consistency of the un

derlying navigation hierarchy. Generated links will always represent what the content ed

itors have specified. But even if the content editors have failed to come up with a well

formed navigation hierarchy, dangling links should never be the consequence, and links

to empty pages shouldn’t exist either. If you want an appealing website, you have to find

a way to prevent inaccurate links from being generated.

Solution

Establish a navigation manager that provides the various kinds of navigation-related

information that your site requires. Evaluating relationships between content elements

and mapping navigation nodes onto URLs, the navigation manager encapsulates the link

management for your site.

3.2 Navigation Manager 75

An integral component of the server-side logical layer, the navigation manager can be

called by model and view components alike. It makes navigation-related information

available through an interface, which typically includes the following:

■	 A function that returns the URL for a given navigation node. This function needs

to be aware of possible prefixes it has to add to the navigation node’s path to

construct the URL.

■	 A function that yields the path to a given page. The path is an ordered list of

navigation nodes, beginning with the node that represents the start page and

ending with the node that represents the given page itself. The path can be obtained

efficiently by following the parent references that you introduced into navigation

nodes when implementing DECOUPLING OF CONTENT AND NAVIGATION (2.2).

■	 A function that yields the navigation tree for a given page. The navigation tree

represents the complete navigation hierarchy, although usually it opens only along

the branch that contains the given page, and is otherwise closed. You may also

choose to ignore empty nodes – that is, with no children or content element

assigned to them. More variations are possible, similarly to the different ways in

which folder hierarchies are presented in user interfaces. The navigation tree can be

obtained by traversing the tree-like structure spanned by the entirety of navigation

nodes. The result can be returned as a tree object or as a list, whatever is easier to

process. Be careful to avoid endless loops caused by circular links when you

implement the necessary tree traversal.

■	 A function that yields all navigation nodes that reference a given content element.

The result set may include more than one navigation node if a content element

appears on several pages.

■	 A function that yields the default navigation node for a given content element. If

the content element is referenced from only one node, then the decision is clear. If

it appears on several pages, then this function defines which of these nodes best

represents the content element. It’s usually the node that features a full view of the

content element in question and not just, say, a teaser view.

Functions like these usually take the request context as an input parameter. The re

quest context typically consists of things like the current language, the current domain or

(in the case of personalisation) the user’s identity. The request context is a prerequisite for

calculating navigation paths, navigation trees and so on.

To implement these functions, the navigation manager has to evaluate the different

kinds of relationships that hold between navigation nodes. This includes the static par

ent-child relationships between navigation nodes, as well as the dynamic relationships

that are expressed through DYNAMIC CONTENT LINKING (2.3). A navigation manager

designed in this way provides you with all the information you need for generating the

links for your site, whether they appear in navigation elements or in the actual content of

any pages.

76 Chapter 3 Content Delivery

Of course, you may choose to design a navigation manager that offers different or ad

ditional functionality, depending on your navigation requirements. However, this pattern

illustrates what a navigation manager is supposed to do and how it can implement the

desired functionality.

Navigation-related information is required throughout a website. As a consequence, a

navigation manager has to work efficiently. When implementing the navigation manager,

you can opt to cache those navigation trees and subtrees that are requested frequently. Al

so, whatever information the navigation manager makes available, its results must be or

ganised in data structures that are straightforward to process by other components,

especially view component such as templates.

Example resolved

We decide to develop a dedicated navigation manager component that will handle all

navigation-related requests. It has to offer the functionality that’s necessary to generate

the navigation elements our site requires, most notably the tree and breadcrumb naviga

tion. The navigation manager will also cover the mapping of content elements onto nav

igation nodes, so that it can provide links between arbitrary pages.

The following table summarises the most important functions the navigation manager

makes available:

FUNCTION RESULT

getUrl (NavigationNode node,
Locale locale,
User user)

Url

The full URL for the given navigation node.

getPath (NavigationNode node,
Locale locale,
User user)

List <NavigationNode>

The full path from the start page to the current
page, represented by the given navigation
node.

getTree (NavigationNode node,
Locale locale,
User user)

Tree <NavigationNode>

The navigation tree, unfolded along the path to
the current page, including the current page’s
siblings and children.

getAllReferrers (Article article,
Locale locale,
User user)

List <NavigationNode>

An unsorted list of all navigation nodes that
contain references to the given article.

getDefaultNode (Article article,
Locale locale,
User user)

NavigationNode

The default navigation node for the given article.
If there is more than one node that refers to a
certain article, the ‘most prominent’ one is
chosen.

3.2 Navigation Manager 77

These functions allow us to generate all navigation elements as well as other internal

links within our web pages:

■	 To generate the tree navigation, we first call getTree to obtain the current

navigation tree – the visible part of the overall hierarchy. Next, we call getUrl for all

tree elements to obtain the URLs that we need to include in the HTML fragment.

■	 To generate breadcrumb navigation we do essentially the same, but calling getPath

instead of getTree.

■	 To generate a link that represents an association between arbitrary content

elements we first call getDefaultNode for the target. To receive the URL we need,

we then invoke getUrl on the navigation node that is returned.

The functions our navigation manager offers will be used mainly by templates that rely

heavily on navigation-related information. They can embed the results from these func

tions in the HTML fragments they generate without having to do much computation

themselves.

Benefits

+	 Maintainability of the logical layer is improved. As a consequence of the separation

of concerns all link management and all navigation-related functionality is encap

sulated by one dedicated component, largely avoiding complex or redundant code.

It will be relatively easy to make changes to the navigation logic should the need

arise.

+	 Maintainability of the view components is equally improved. View components are

freed from navigation-related computation completely. Template code especially is

much simpler, as all navigation information is readily available and no tedious

computations have to be performed. As a consequence, it will be easier to design a

SYSTEM OF INTERACTING TEMPLATES (3.4).

+	 It becomes easier to test navigation-related functionality. The algorithms around the

computation of navigation information are all implemented by the navigation

manager, so applying unit tests is straightforward. This would be difficult or impos

sible if the functionality offered by the navigation manager was scattered across

several components, let alone view components.

+	 Efficiency is improved, because the navigation manager can implement fast

algorithms for tree traversal that efficiently calculate lists of navigation nodes. In

addition you can choose to enhance the navigation manager with a cache to further

improve efficiency.

+	 Reliability is increased, as the navigation manager applies the necessary consistency

checks on navigation elements. Illogical links, dangling links or links that point to

empty pages can all be avoided by simple routines that the navigation manager can

perform.

78 Chapter 3 Content Delivery

Liabilities

–	 Obviously the navigation manager can only use the information it obtains from the

navigation structure specified by the content editors. While it can detect inconsist

encies and dangling links, it cannot always repair inaccurate or inconsistent

navigation structures: content editors are still responsible for providing navigation

structures that are accurate and meaningful.

–	 If you choose to implement a local cache for the navigation manager, you must allow

for the extra effort necessary to do so. In particular, you will have to develop cache

invalidation mechanisms that update the cached objects whenever any navigation

structures change.

3.3 Search Manager

Context

You have implemented CONTENT SERVICES (3.1) that make various types of content ag

gregates available. Looking up content artefacts based on their identity, these services

work well to retrieve content required for specific web pages, making use of association

relationships between content elements whenever necessary.

This, however, isn’t enough. You also need to be able to look up content elements that

match specific search criteria without knowing their identity – or at least this is the case

if you plan to offer a search function, as is likely.

You have already laid the foundation for implementing the required functionality by

building a TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4) and by integrating

the necessary attributes into your content model. You have also established a mechanism

for LISTENER-BASED SYNCHRONISATION (1.4) between your content repository and your

search engine, so that the search engine is notified of all relevant content changes.

Problem

How can you implement a powerful and user-friendly search function and reduce the

number of expensive search queries?

Example

Users of the House of Effects website should be able to do more than browse the site via

the existing navigation schemes. They should be able actively to search for presentations,

announcements or shop items.

We’d like to offer a powerful search function. Specifically, we’d like to integrate the

categories we introduced into our content model earlier: mathematics, physics, chemistry

and biology on one hand, and presentations, announcements and shop items on the

3.3 Search Manager 79

other. Users should be able to use these categories as criteria for searching, sorting and

filtering.

We’ll also have to bear in mind that the volume of content that a search engine returns

can become large. The search function should be fast, and it shouldn’t return too many

results, at least no more than the client can handle, no matter how unspecific the original

search query may have been.

Forces

A search engine is a powerful tool. Assuming that you have provided the search engine’s

indexer with the necessary information, you can now take advantage of this by integrat

ing the search engine into your server-side architecture and making its results available to

your content delivery components.

To do this, some component will have to translate search queries entered by users into

search engine calls. However, a large variety of search queries are possible, and different

searches can be combined in many different ways. In his pattern language on User Inter

faces for Search Queries, Tim Wellhausen gives several examples, including searches spe

cific to a given context, searches that refine previous search results and searches that users

can save to persistent storage (Wellhausen 2005). If you choose to implement such fea

tures, your search function will be more convenient, but translating search queries into

search engine calls becomes a non-trivial business that, among other things, may involve

storing objects in the HTTP session.

Adding to the complexity is the fact that the presentation of search results is a good

candidate for SENSIBLE CLIENT-SIDE INTERACTION (1.3). Sorting and filtering search re

sults is often done by some client-side Ajax component, which invites a discussion of how

search functionality should be distributed over client and server. It is possible for both cli

ent and server to be involved.

Whatever design you choose, you have to ensure robustness and efficiency. The most

unfortunate case is probably that of a user triggering a search query that would in prin

ciple yield an extremely large number of results. Even in a case such as this, the search

function must respond in reasonable time. In addition, any view component in charge of

displaying the results must be able to handle the result set without difficulty.

Solution

Implement a search manager that receives and handles all search requests throughout a

user’s session. The search manager contacts the search engine and makes the search

results available to the components that will process them. For convenience, the search

manager may store previous queries and results, and it can check queries for plausibility

before forwarding them to the search engine.

Processing search results can involve the server and the client. Known from traditional

websites, a search query can result in a standard server request in which server-side tem

plates generate a page in response that displays the results. On the other hand, it’s fairly

80 Chapter 3 Content Delivery

common these days to introduce an Ajax component for submitting search queries, as

well as for sorting and filtering the results. This means that search results may or may not

have to be processed by client-side software.

Search engine

Search manager (content
delivery)
– check search queries for

plausibility
– forward search queries to

the search engine
– sort, filter and paginate

results received from the
search engine

– store previous queries and
results

Content management
– maintain content

artefacts
– build a taxonomy
– listen to changes in the

repository
– notify the search engine

Client-side presentation logic
– do sorting, filtering and

pagination in addition to
what the search manager
has already done

Figure 24: Search manager and search engine

As a logical consequence, the search manager has to be designed in such a way that it

can be invoked from server-side or from client-side components, the latter via a web serv

ice interface that allows Ajax components to receive data from the server.

In either case it is the search manager’s job to encapsulate the entire search functional

ity by accepting search queries and making sets of search results available, performing the

following tasks:

■	 Checking search queries for plausibility. In particular, the search manager has to

implement functionality that protects the system against queries that would return

3.3 Search Manager 81

an excess number of results, for example by ignoring search terms that are too short

and therefore not sufficiently specific.

■	 Analysing a query entered by a user and translating it into a search engine call.

What a search engine call looks like depends on what search engine you’re using. In

any case, the search manager needs to pass both the search query and possible

keywords and categories to the search engine, so that the search engine can scan its

database efficiently for entries that match the request.

■	 Applying filters, sorting and pagination to the results received from the search

engine. This makes sense even if the primary responsibility for the presentation of

search results lies with some client-side Ajax component. The search manager can

still apply a default order, a default filter and so on before an initial set of results is

sent to the client.

■	 Storing previous queries and previous results. It may make sense for the search

manager to store previous queries and previous results in the user’s session. In this

case the most recent query or queries, as well as their search results, will remain

available should the user navigate to other pages and later revisit the search page.

■	 Storing search queries. The search manager may also store a user’s search queries

across sessions, or provide the basis for sharing search queries between users.

Figure 24 summarises the search manager functionality in its overall context. The

search engine is fed the necessary information by the content management server and is

later prompted for results by the search manager. The search manager makes the results

available to the client, which may choose to offer additional mechanisms for presenting

the results.

Example resolved

Figure 25 shows the search page of the House of Effects website. Its central area is divided

into two parts: the search query at the top and the search results at the bottom. This is

convenient, as it makes it easy for users to refine the query they have entered previously.

Presentation of the search results is completely implemented with Ajax components

and so is handled solely by the client. This applies to the filtering of results (the tabs rep

resenting the different categories) and to the navigation through the results (the ‘for

wards’ and ‘backwards’ buttons).

Making an actual search query, however, has to involve the server, but it does not mean

that the search page is reloaded completely. If the user presses the ‘Search’ button, an Ajax

component forwards the query to the server-side search manager via the XMLHttp inter

face, receives the search results und displays them.

Things look different if a user submits a search query through the small search box on

the right-hand margin that appears on every page except the search page itself (see Figure

22). The small search box only serves as an input form: the results will be presented on

the main search page, as in Figure 25. As displaying the search results involves loading an

other page, the search manager is contacted via a standard HTTP request.

82 Chapter 3 Content Delivery

Query
specification	 Query

restriction
Query
with respectrestriction
to typewith respect

to category

Result
navigationResult filter

with respect
Search resultsto category

In either case the search manager receives the search query, including the categories and

types a user may have selected. It calls the search engine and makes the results available

in a default order. The search manager ignores search terms that are too short to be sig

nificant, and limits the number of search results to a configurable maximum to avoid clog

ging the client.

On top of this, the search manager retains the user’s latest search query and its results

in the user’s session, so that it can make them available once the user re-enters the search

page without having to make another search engine call.

Benefits

+	 Maintainability is clearly improved, since most search-related functionality is

encapsulated in a single component. It’s true that the client may require specific

Ajax components for the presentation of search results, but the model aspects of the

search function are encapsulated in one server-side component. This reduces the

effort should changes to the search logic become necessary.

+	 The introduction of a search manager also gives you some independence from the

search engine you’re using. Should you ever decide to replace the search engine, this

will only affect the search manager, not any other components.

Figure 25: Client-side and server-side search functionality

3.4 System of Interacting Templates 83

+	 Robustness and efficiency are both improved, as the search manager is able to reject

queries that are too unspecific to be useful. The search manager protects the client

from having to deal with lists of search results that would slow it down unacceptably

or would be too large for it to handle.

+	 Usability can be improved if you choose to implement convenience functions that

rely on the search manager’s ability to maintain a list of previous search results. For

example, the modification of a previous query is a feature that’s often desired, and

the search manager can help you to implement it.

Liabilities

–	 If you choose to let Ajax components display, sort, filter and paginate search results

on the client, you clearly make a move to a rich client architecture. There is value to

SENSIBLE CLIENT-SIDE INTERACTION (1.3), but you have to be aware that you may

have to implement some functionality twice. Sorting, filtering and pagination of

search results are likely to be required on the server side too (within the search

manager), so you have to be careful not to introduce any inconsistencies.

–	 Obviously you need a reasonably powerful search engine to implement the search

function. Things to ensure include the search engine’s ability to support the catego

risation you wish to implement. Specifically, your search engine will have to support

the use of special keywords, and it has to be able to search different kinds of content

artefacts (HTML, PDF and so on).

–	 As with any other server component, you must be careful not to design a session

state that’s too large. Because the server has to provide sessions for all users simul

taneously, overly large session objects use a lot of memory on the server side, which

can result in performance penalties (Broemmer 2003). It is acceptable to store

previous search results in the HTTP session, but you should define a limit to the

amount of data that is stored.

3.4 System of Interacting Templates

Context

Based on your underlying CONTENT TYPE HIERARCHY (2.1) you have completed the cus

tom software that constitutes the server side’s repository layer and logical layer. In partic

ular, you have implemented CONTENT SERVICES (3.1), a NAVIGATION MANAGER (3.2)

and a SEARCH MANAGER (3.3).

In addition, someone, probably a web designer, has provided the layouts and style

sheets for the different page types of your site, so you know what kind of pages your view

components will have to generate. You’re now ready to tackle the template layer within

your server-side architecture.8

84 Chapter 3 Content Delivery

Problem

How can you avoid, to a large extent, redundant template code and inefficient page

generation?

Example

Looking back at Figure 22, you can see that although the website for the House Of Effects

features quite a few different page types, these page types still have many things in com

mon. Figure 26 shows a ‘wireframe’ that demonstrates how a typical page is composed

from smaller elements.

This of course means that there is potential for reuse. For example, the small event cal

endar on the right-hand margin shows up on almost all pages, and obviously we would

like to reuse the template code that generates it. The same is true for other page elements.

We’d also like our site to be efficient, which suggests caching HTML elements. Al

though we’re not focusing on personalisation at present, we need to bear in mind that

personalisation has an effect on the appearance of specific page elements. As a conse

quence, there are a few page elements that we don’t plan to cache.

First, the login area will look different depending on whether the current user is logged

in or not. Caching HTML fragments is difficult if the cached elements depend on state

information like this, so we will not cache the login area.

Second, the tree navigation might not be the same for different users – after all, regis

tered users will be given access to additional online presentations, and will therefore get

to see an extended menu. Since the tree navigation will depend on the current user, we

won’t apply caching here either.

Forces

Templates serve as blueprints for web pages. A template in this sense is essentially a piece

of code that combines static HTML with HTML that represents content elements. This

enables templates to specify a layout for web pages and the content elements they present.

Similar pages share a template, while structurally different pages require separate tem

plates. Where exactly the line should be drawn between ‘similar’ and ‘structurally differ

ent’ depends on the underlying technology, but the principle is the same whether you use

JSP, XSLT, PHP, Ruby or something else.

However, even different page types are likely to have some page elements in common.

If you provided a template for each page type, the code for the commonly used elements

would have to exist multiple times. It’s an old rule that redundant code is almost always

undesirable, and template code is no exception.

8 This should not suggest that implementing the logical layer and implementing the template layer have to be

done in a strict order. You can of course choose to do things simultaneously, provided that the interface

between logical layer and template layer has been defined.

3.4 System of Interacting Templates 85

Language

Tr
ee

 n
av

ig
at

io
n

Logo

Breadcrumb navigation
Login area

Search area

Event
calendar

Main content area

Figure 26: A wireframe for a typical page

To this end, it’s helpful to remember that one of the central ideas behind web content

management is to compose pages from smaller elements. As Oliver Vogel and Uwe Zdun

explain in their pattern language on Content Conversion and Generation on the Web,

templates combine content elements and basic HTML structures in a highly dynamic

way to compose a multitude of HTML fragments and complete HTML (Vogel Zdun

2006). You can benefit from this flexibility if you include commonly used page elements

across different templates.

86 Chapter 3 Content Delivery

You also have to take a further issue into account. If you assume DYNAMIC CONTENT

DELIVERY PLUS CACHING (1.2) as a fundamental principle of your software architecture,

you apply one or more caching strategies to ensure fast page delivery. The caching of

HTML fragments is one possible strategy, and one that has an effect on template design.

The reason is simple: caching is virtually impossible for HTML fragments that undergo

personalisation or depend on user interaction, as they might look different each time a

user visits the page. You have to design your templates with care if you don’t wish to un

dermine the success of your caching strategies.

Solution

Define a system of interacting templates, from templates for the full page down to tem

plates for individual page elements. Reuse templates for smaller page elements wherever

possible. Make sure you extract any state-specific or personalised page elements into tem

plates of their own, as this increases the potential for caching HTML fragments.

The template call hierarchy should mirror the structure of your web pages. The full

page templates include templates for individual page elements, which may include tem

plates for still smaller elements, and so on. You need a full page template for each page

type you’re going to support.

What the different templates do depends on their position within the call hierarchy:

■	 Page templates don’t generate much markup themselves. They do generate the

outermost page structure, things like the HTML header and body as well as

references to style sheets, but otherwise only invoke other templates. Page templates

are aware of the layout of the page type they represent, and so know which inner

templates to invoke.

■	 Templates for content elements generate HTML fragments that represent

individual content artefacts. Different templates represent different layouts. They

all rely on the available CONTENT SERVICES (3.1) to generate a specific view of a

content artefact, and may in addition use the NAVIGATION MANAGER (3.2) if they

need to include links to related pages.

■	 Navigation templates generate the different kinds of navigation elements, such as

tree or breadcrumb navigation. They obviously rely on information they obtain

from the NAVIGATION MANAGER (3.2).

■	 Templates for search functions generate the various HTML fragments that are

necessary for displaying search forms and search results. Search templates rely on

the different functions a SEARCH MANAGER (3.3) offers.

■ A few simple templates generate static content such as logos or footers.

In addition to the HTML fragments they generate, some of these templates may have

to insert client code into their output. If you choose to apply SENSIBLE CLIENT-SIDE IN

TERACTION (1.3), then it is the templates’ job to include the necessary client code in the

pages they generate.

3.4 System of Interacting Templates 87

When tailoring the templates, you need to keep efficient caching in mind. It’s often dif

ficult to cache state-specific or personalised HTML fragments, so ensure you separate

page elements that are state-specific or personalised from those that are not, and intro

duce separate templates for each.

Building a system of interacting templates is possible regardless of the technology you

use. JSP, XSLT and PHP all provide some sort of inclusion mechanism and so allow you

to implement a call hierarchy for your templates.

Example resolved

Figure 27 describes the call hierarchy for those templates that generate the announcement

page from Figure 26. It begins with the template for the full page and goes down to those

templates that render individual page elements.9 Those templates whose HTML output

we plan to cache are shown shaded.

This design maximises the potential for reuse among templates. Obviously there are

going to be more page templates, for the start page, the search page, the event calendar

page, the presentation pages, the item description pages and so on. But while these page

types require page templates of their own, they can reuse many of the templates for indi

vidual page elements.

Our design also allows for a maximum of caching. Obviously the full page (generated

by the NavigationNode.renderAnnouncementPage template) cannot be cached, as it con-

tains state-dependant (login area) and personalised (tree navigation) elements. Except for

these, however, all other page fragments are suitable for caching, including all larger mul

timedia objects.

Benefits

+	 The overall amount of scripting code is reduced, as templates for page elements are

reused wherever they’re needed. Given that scripting code is often difficult to under

stand, this is a clear improvement for maintainability.

+	 Since you have a system of templates that invoke each other, the individual templates

will be relatively simple and easy to understand. Again, maintainability is improved.

+	 Carefully tailored templates allow you to maximise caching. You can now apply

caching to HTML fragments on the template layer of your server-side architecture

(see Figure 20). Performance is improved, as you can apply caching to large objects,

especially images, videos and other multimedia assets.

9 We understand templates as methods of a specific content type, hence the notation that is reminiscent of

object-oriented languages. A template that renders a page element operates on the underlying content element

(or a navigation node in case of a full page) and has access to all its attributes.

88 Chapter 3 Content Delivery

navigationNode

renderLogo()

renderLanguageIcons()

renderBreadcrumbNavigation()

renderTreeNavigation()

render()

renderLoginArea()

renderSearchArea()

renderEventCalendar()

renderAnnouncementPage()

announcement picture

render()

template with non
cacheable output

template with
cacheable output

Figure 27: Call hierarchy of the template for an announcement page

3.5 Template per View 89

Liabilities

–	 If you choose to use caching on the template layer, you will probably be using a

mechanism provided by your content management system rather than one you

implement yourself. The content management system needs to be informed about

which templates’ output should be cached and which templates’ output shouldn’t.

This usually requires little more than the relevant configuration, but nevertheless it

is a liability that should be mentioned.

–	 Splitting template code over several smaller templates is a good idea, but if you take

it too far you can end up with a relatively large number of templates. This isn’t

necessarily problematic – just be careful not to introduce too many templates

unnecessarily.

–	 The solution suggests that different templates may be necessary for one content

type. However, it doesn’t say exactly what templates are going to be necessary. Below

we will see that there should be one TEMPLATE PER VIEW (3.5), where ‘view’ refers

to the possible representations of a content element on a web page.

3.5 Template per View

Context

You are in the process of implementing a SYSTEM OF INTERACTING TEMPLATES (3.4) that

generates markup for the full page and for individual page elements.

Problem

How can you support the different views that content elements may assume on different

pages, for different variations of your site or for different output channels?

Example

Different views of the same content element occur frequently on the House of Effects

website.

Announcements are one example. First, there is the full view of an announcement,

complete with pictures and videos, if any, which is the view that occurs on the announce

ment pages. Announcements make appearances on other page types as well, however.

The search page uses a ‘teaser’ view of an announcement – a view that only contains title,

subtitle and date values and no pictures or videos. The same is true for the event calendar.

It also uses a teaser view, although a different one (see Figure 22). Similarly, different

views exist for presentations, shop items and articles in general.

90 Chapter 3 Content Delivery

In addition, we won’t be using the same page layout for screen and print. There’s no

point in including interactive page elements in a printed page, so the plan is to provide

print versions for the various page types to supplement the online versions.

Forces

It is common for content elements to require different views: there are plenty of examples.

In addition to the standard view that displays a content element in its entirety, lists (such

as search results) often require a teaser view – a small representation of each content ele

ment covering only its most important aspects, accompanied usually by a link to the full

view. Accessibility issues sometimes demand that a text-only version of a page be availa

ble, which of course makes text-only versions of the individual page elements necessary.

Supporting different output media may also lead to a variety of views. A standard

screen, the screen of a hand-held computer, a printed page and a Braille output device for

visually impaired people all have different requirements for page geometry, and may sup

port user interaction to different degrees.

This invites the question of how different views for a content element can be imple

mented. One option is to make the individual templates powerful enough to generate dif

ferent views of the same content element. However, this strategy quickly adds to the

complexity of template code. If one template has to generate different kinds of markup,

depending on what view it is supposed to generate, it will quickly become complex as a

consequence of alternatives and case statements.

The clear downside here is that complexity is the enemy of maintainability, especially

in the context of the scripting languages that are typically used for templates. Scripting

code that differentiates between several modes, introduces layout alternatives or features

large case statements is notoriously difficult to understand and maintain. This isn’t what

you want.

Solution

Define a template for each distinct view a content type has to support. Typical examples

include a full view, a teaser view, a text-only view or views for specific output channels

such as mobile devices. This way all individual templates can be quite simple, responsible

only for assembling the markup necessary for one specific view of a content element.

Exactly what templates you will need depends on the specific requirements for your

website or web platform, but it is possible to give some concrete advice. Let’s begin with

page templates. Page templates have access to the attributes of the navigation node that

represents the current page. Page templates generate the outermost page structures and

‘know’ which inner templates for individual content elements they have to invoke. Each

page type requires at least one template. However, there may be more than one template

per page type, for the following reasons:

3.5 Template per View 91

■	 If your site supports different media, for example standard browsers and hand-held

devices, you will have to handle different page geometries. It makes sense to

introduce separate page templates that each use a specific CSS sheet.

■	 If accessibility is an issue you may have to provide page templates for text-only

representations. Such templates often also use their own CSS sheets and invoke

special text-only templates for the content elements from which the page is

composed.

In many cases page templates send just one view of a page to the browser. However,

page templates may choose to send alternative views and let the browser decide which it

should display. This can involve some Ajax component that is able to switch between

views, or it can be done by built-in browser functionality. Many browsers can distinguish

between ‘screen’ and ‘print’ provided the HTML is attributed accordingly, while some

also support ‘hand-held’, ‘aural’, ‘Braille’ and others.

Navigation templates also operate on navigation nodes and their attributes. Represent

ing different views of the current navigation node, the following navigation templates

make sense:

■	 A template for tree navigation, representing the current navigation node in the

context of the overall navigation hierarchy. Parts of the hierarchy may be hidden,

and only the branch that includes the current node may be shown.

■	 A template for breadcrumb navigation, representing the current navigation node

along with its path.

■	 A template for the site map, representing the overall navigation hierarchy, and

usually highlighting the current navigation node.

Navigation templates rely heavily on the NAVIGATION MANAGER (3.2).

Unlike page and navigation templates, templates for content elements operate on the

attributes of genuine content artefacts. Typically, each content type requires the following

templates:

■	 Templates for the full view of a content element. There is a long list of different full

views that may become necessary: views for special output media, text-only views

and so on. Sometimes separate templates for different layouts can make sense, such

as a 1-column versus a 2-column layout.

■	 Templates for teaser views such as those required for list items, as in search results.

You may have to provide a combined teaser text-only view in addition if this is what

accessibility demands. Media-specific teaser views are less common but can also

become necessary.

Templates for content elements rely heavily on CONTENT SERVICES (3.1).

Finally, there are going to be static templates – templates that don’t depend on the cur

rent page and its contents:

■	 Templates for the search box or other interactive elements that have to be embedded

into every page.

92 Chapter 3 Content Delivery

■	 Templates for logos, provided that the logos are truly static and their use doesn’t

depend on the current page.

This may add up to quite a few templates to represent various views of different con

tent types. However, the advantage is that the individual templates will be straightfor

ward.

Only let templates generate markup that describes the logical structure of a page or

page element, and leave the definition of page geometry, fonts, font sizes, colours and the

like to CSS style sheets. Page templates can include the necessary style sheets, as they are

‘aware’ of how the full page is supposed to look.

Finally, if you plan to enhance your web pages with SENSIBLE CLIENT-SIDE INTERAC

TION (1.3), you need to deliver the necessary client code to the browser. More specifically,

the templates for individual content elements will have to include the necessary JavaScript

code in the markup they generate.

Example resolved

Almost all content types for the House of Effects website require more than one view. Fig

ure 28 shows a UML sketch that summarises the necessary templates for each content

type. Templates are represented as methods of a content type.

The pseudo content type NavigationNode holds the full page templates and the navi

gation templates. Because the overall page layout depends on whether the page is a plain

article, announcement, presentation or item description, different page templates be

come necessary. The navigation templates are fairly standard: we need a template for the

tree navigation and one for the breadcrumb. We also assign the static templates for ren

dering the logo and the language icons to NavigationNode.10

The templates for content elements are assigned to individual content types. The main

content types each require a template for the full view and one for the teaser view that’s

used for search results. In addition, the two announcement types require an additional

teaser view for displaying calendar events.

What about a printed version? This is easy, as we let the page templates include CSS

sheets for both screen and print and let the browser decide which should be used. Printed

pages can hide unwanted interactive elements, or otherwise make changes to page geom

etry, without additional templates becoming necessary.

What about a text-only version? We currently have no such requirement, but a text

only version would be straightforward to add. Another set of templates would become

necessary, but could be integrated smoothly into our overall SYSTEM OF INTERACTING

TEMPLATES (3.4).

10 As static templates aren’t associated with any content type, we’ve chosen this solution for reasons of

simplicity, although static templates don’t rely on any NavigationNode attributes.

3.5 Template per View 93

F
ig

u
re

 2
8
:

C
o
n
te

n
t

ty
p
e
s
 a

n
d
 t

h
e
ir
 t

e
m

p
la

te
s

A
nn

ou
nc

em
en

t

A
rti

cl
e

Pr
es

en
ta

tio
n

A
ni

m
at

io
n

D
et

ai
ls

Ite
m

D
es

cr
ip

tio
n

Pi
ct

ur
e

Vi
de

o

re
nd

er
()

re
nd

er
Te

as
er

()

re
nd

er
()

re
nd

er
()

re
nd

er
Te

as
er

()

re
nd

er
()

re
nd

er
A

lte
rn

at
iv

e
Te

xt
()

re
nd

er
()

Ev
en

t-
A

nn
ou

nc
em

en
t

re
nd

er
()

re
nd

er
Te

as
er

()
re

nd
er

A
s

C
al

en
da

rE
ve

nt
()

Ex
hi

bi
tio

n-
A

nn
ou

nc
em

en
t

re
nd

er
()

re
nd

er
Te

as
er

()
re

nd
er

A
s

C
al

en
da

rE
ve

nt
()

re
nd

er
()

Bo
ok

D
es

cr
ip

tio
n

re
nd

er
()

re
nd

er
Te

as
er

()

D
vd

D
es

cr
ip

tio
n

re
nd

er
()

re
nd

er
Te

as
er

()

N
av

ig
at

io
nN

od
e

re
nd

er
A

rti
cl

eP
ag

e(
)

re
nd

er
A

nn
ou

nc
em

en
tP

ag
e(

)
re

nd
er

Pr
es

en
ta

tio
nP

ag
e(

)
re

nd
er

Ite
m

D
es

cr
ip

tio
nP

ag
e(

)
re

nd
er

Tr
ee

N
av

ig
at

io
n(

)
re

nd
er

Br
ea

dc
ru

m
b

N
av

ig
at

io
n(

)
re

nd
er

Lo
go

s(
)

re
nd

er
La

ng
ua

ge
Ic

on
s(

)

94 Chapter 3 Content Delivery

Benefits

+	 Maintainability is greatly improved, as each template is relatively simple. There is

no need for templates to embody layout variations, let alone implement any domain

logic. If you’ve ever seen templates that lack this simplicity, you can gauge the

benefit.

+	 It’s easy to provide the entire site with a consistent layout for fonts, font sizes, colour

schemes, page geometry and so on. As layout definitions are concentrated in the

styles sheets that the page templates use, small layout modifications can be imple

mented with little effort.

+	 Usability and accessibility are improved, as adding views tailored towards specific

user groups is straightforward. You can support different media (such as screen and

print) and different output channels (such as hand-held computers and speech or

Braille output devices).

Liabilities

–	 Because you introduce a template for each view, the overall number of templates

increases. This isn’t a serious problem, and clearly preferable to a small number of

complex templates, but the need to organise the templates nevertheless arises.

–	 The solution introduces a certain degree of browser dependency. Some browsers are

better than others at handling media assignments in CSS style sheets. While most

browsers can handle ‘screen’ and ‘print’, ‘hand-held’, ‘aural’ and ‘Braille’ aren’t

always supported.

–	 The solution mentions the inclusion of client code (JavaScript) in the markup that

the templates generate. It is straightforward to use components from Ajax libraries

here. However, templates must use Ajax components sensibly to generate what is

supposed to become SELF-CONTAINED PAGES (3.6) – pages that are sufficiently

interactive to be useful.

3.6 Self-Contained Pages

Context

You are in the process of implementing a SYSTEM OF INTERACTING TEMPLATES (3.4).

More specifically, you develop a TEMPLATE PER VIEW (3.5) for each content type from

your content model.

As your site will feature SENSIBLE CLIENT-SIDE INTERACTION (1.3), a certain amount

of client code becomes necessary. Your templates will have to include this client code in

the output they generate. Client code can then be sent to the browser as part of the web

pages that are delivered.

3.6 Self-Contained Pages 95

Problem

How much client-side interaction is sensible in terms of usability? How can you deliver

the required client-side components to the browser?

Example

The website for the House of Effects is very interactive, so we will be using Ajax occasion

ally. We’ve already decided to use Ajax for the filtering and sorting that we’d like to apply

to search results and our event calendar.

There will be more examples of Ajax throughout our website. Figure 29 shows an on

line presentation that includes a video that users should be able to start, stop and restart.

The plan is to use a component from an Ajax library for this video object and so get the

client code for the video for nothing.

Figure 29: Online presentation with video object

96 Chapter 3 Content Delivery

The question remains of whether we should use Ajax for other page elements as well,

such as background information and lists of comments. Should we?

Forces

With the growing popularity of Ajax technology, more and more web pages feature mul

timedia objects such as videos that require a certain amount of interaction. Integrating

interactive elements is relatively easy, since many prefabricated components are offered

by various Ajax libraries. Several Ajax libraries are available commercially, some are open

source (www.icefaces.org, labs.jboss.org/jbossrichfaces).

Interactive or multimedia objects introduce an additional aspect into page ergonomics

that is relatively unknown from traditional web pages: time. The following example can

explain this phenomenon. Imagine a web page that features a video along with its neces

sary controls. To enjoy the video properly, the average user wants to stay on the page for

some time. Simultaneously, the user might want to study information related to the video

that the website may offer. However, if looking up this related information leads the user

to a different page via HTTP links, the video is interrupted. This effect is clearly disturb

ing if the user wants to continue watching the video.

You have to be aware of this effect when you design the interaction model for a web

page, especially when you have to decide between an HTTP link that points to another

page and an Ajax-based event that is handled without leaving the page. Moreover, such a

decision refers to a mere link, but to make it properly, you have to take into account what

other elements exist on that page and what their requirements are with regard to page vis

it duration.

Solution

Ensure that you create self-contained pages – pages that are sufficiently rich with content

that visitors don’t have to leave a page to look up closely related information. This is

especially important for pages that feature multimedia objects that require a specific time

to be viewed. Use Ajax components to implement the necessary interaction on these

pages and integrate the client code into your templates.

Let’s look at this in a little more detail. To come up with self-contained pages, you need

to take the following steps:

■	 The first thing to do is to analyse each page type and work out what the average

page visit duration is – the typical time an average user will spend on that page to

appreciate it fully. If a page includes an animation, a sound file, a video or any other

multimedia object with a specific duration, that object probably determines the

average visit duration.

■	 The average visit duration tells you how long users will probably stay on a page.

The next step is to determine what related content users might want to see during

3.6 Self-Contained Pages 97

that time without leaving the page. This may be hard to predict, but at least you can

make an educated guess.

■	 Design the full page so that the content you have identified is embedded into the

page such that it can be accessed with client-side event handling alone. Plan to

optimise the presentation, for example through hide and show mechanisms.

The design of self-contained pages lies on the boundary between web page design and

template programming. Obviously it forms part of the tasks that are usually performed

by a web designer, rather than a software developer or software designer, but it clearly

also affects the client-side functionality with its underlying interaction models. It is there

fore something you have to do in the overall context of the design of a SYSTEM OF INTER

ACTING TEMPLATES (3.4).

The implementation of the necessary client-side functionality is straightforward if you

use an Ajax library or framework that allows you to integrate prefabricated interactive

components into the pages and page elements your custom templates create.

Example resolved

The video on the web page from Figure 29 requires a few minutes of visitors’ attention to

be useful. Explaining a specific sound effect, this presentation wouldn’t make much sense

if visitors needed to move on to other pages while the video was still showing. To allow

users to watch the video uninterrupted, we plan to embed all related information directly

on the page, especially detailed explanation that visitors might want to read while the

video is playing.

Putting all related information directly on the page would be excessive – the page

would suffer from information overflow. We therefore choose to use interactive boxes that

can show or hide specific text: the text blocks Explanations and All Comments in this

case. The event handling that opens and closes these boxes is implemented using Ajax, so

no server communication is necessary. Users can keep watching the video while reading

the explanation details or browsing through the list of comments that other users have

left.

We use an Ajax framework that provides us with the necessary interactive elements,

such as expandible text blocks with show/hide buttons, along with their underlying func

tionality and event handling. All that remains for us to do is to integrate these Ajax com

ponents into the full view template for presentations (Presentation.render from Figure

28).

98 Chapter 3 Content Delivery

Benefits

+	 The usability of your site is increased, as requirements for page visit duration are

taken into account. With self-contained pages, users stand a much better chance of

enjoying multimedia elements properly, as there will be no need to follow links to

other pages to look up related information. Even if no multimedia objects are

involved, however, usability is still improved, as related information is readily

available without the need to travel between pages.

+	 When you integrate Ajax components into your custom templates, you reuse client

side functionality throughout your site. This has two advantages. First, this

approach benefits from reduced effort when compared to developing all client-side

components in JavaScript yourself. Second, the use of a standard library facilitates

a consistent layout throughout your site.

Liabilities

–	 If you use an Ajax library or framework, you have to live with the constraints it may

impose on your own design. Details vary depending on what framework you use, but

in any case you must expect to expend some effort on integrating the framework

components with your own templates.

–	 The solution invites a tendency towards an increased use of Ajax. There are

probably various sorts of information that you can think of as being in some way

related to the main topic of an individual page, so embedding this information into

the page using Ajax-based event handling might seem like a good idea. This is fine

as long as what you implement is still SENSIBLE CLIENT-SIDE INTERACTION (1.3), but

you can have too much of a good thing. As there are still drawbacks to Ajax, such as

security issues and browser dependencies, you should ensure that you do not

introduce too many Ajax components.

CHAPTER

4
Personalisation and User

Participation

Until now this book has dealt with the management and the delivery of web content in

general. It’s now time to add more spice to the content we’re dealing with. When you look

at websites around the world, you will notice that there’s an increasing demand to present

personalised content – content that is tailored specifically to a user’s or a user group’s in

terests and preferences.

But it is not just personalisation that is becoming more and more important. In the

Collaborative Web, many web platforms these days make user participation an integral

part of their domain model. Wikipedia is perhaps the most prominent example

(www.wikipedia.org); Amazon, with ratings and reviews provided by customers, is an

other (www.amazon.com). Many platforms allow users to contribute their own content

and share it with others. Users can communicate with each other and rate content that

others have contributed. They can tag content, allowing tag clouds or other folksonomies

to evolve. Everybody can get involved, and the roles of users and editors seem to fuse.

In some respects, personalised and user-generated content isn’t that different from

traditional web content. The patterns from the previous chapters still apply, even in the

99

100 Chapter 4 Personalisation and User Participation

make content
available that is
processed most
efficiently with

DECOUPLING OF EDITED
CONTENT AND USER
CONTRIBUTIONS (4.5)

SEGMENT-SPECIFIC
CACHING (4.3)

provides input for
CONTENT FILTERS

(4.1)

can be
monitored
with CONDENSED

EFFECTIVENESS
REPORTS (4.4)

can be
monitored
with

ASYNCHRONOUS
PERSONALISATION

ENGINE (4.2)

provides material for a
repository based on a INPUT CHANNEL FOR

USER-GENERATED
CONTENT (4.6)

Figure 30: Road map to the patterns

presence of personalisation and user participation. But there are additional requirements

and challenges that I’m going to address in this chapter:

■	 How can you implement personalisation strategies?

■	 Personalisation is known to be the enemy of performance. How can you handle this

challenge and make sure that your content delivery software still runs efficiently?

■	 How can you monitor the effects of your personalisation strategies?

■	 How can you deal with user-generated content? How should it be related to edited

content?

I’d also like to mention what’s not in the focus of this chapter. First, this chapter doesn’t

contain any patterns of groupware applications such as forums or chatrooms. It’s not

about user collaboration processes either. The focus of this book is on web content, and

therefore this chapter will cover aspects of user-contributed content. However, the mod

els, techniques, processes and strategies that underlie groupware applications are outside

its scope. Till Schümmer and Stephan Lukosch cover that area extensively in their Pat

terns on Computer-Mediated Interaction (Schümmer Lukosch 2007).

Second, this chapter does not focus on system security. Security is certainly an issue

when you develop software architectures for the web, as you must protect data from being

compromised or misused. This is even more true if you’re dealing with highly sensitive

4.1 Content Filters 101

data in the context of personalisation or user participation. While the patterns in this

chapter cover security aspects occasionally, security is not their main topic. You can find

a detailed discussion of security on the web in Security Patterns by Markus Schumacher

et al. (Schumacher Fernandez-Buglioni Hybertson Buschmann Sommerlad 2006).

Figure 30 presents the road map to the patterns in this chapter. We begin with several

patterns that deal with personalisation and conclude with different aspects of user par

ticipation.

4.1 Content Filters

Context

You plan to add personalised content to your website and tailor its appearance to the

preferences of your visitors. Content editors should be able to define and implement per

sonalisation strategies.

Problem

How can you let content editors define personalisation strategies?

Example

The website for the House of Effects allows users to register. Registered users can buy

items from the online shop, can make ticket reservations for special events, and in some

cases are given access to special online presentations. There are also going to be premium

users – users who are frequent and regular visitors of the real-world museum. As a ‘thank

you’ such users are granted access to a few online simulation games that are not otherwise

publicly available.

The idea is to exploit our knowledge of registered users to personalise the website.

We’d like to direct them to those exhibitions, events, presentations and shop items that

we expect them to find particularly interesting.

The place to do this is will be the start pages of the different sections of our navigation

hierarchy, such as the start page for all announcements, or the start page for the online

shop. Figure 31 shows the start page for online presentations on mathematics, which be

gins with a list of presentations tailored specifically to the current user. The page should

of course look different for another user, with different interests and a different profile.

Forces

People differ: different users are interested in different kinds of content. Many of today’s

websites therefore try to personalise the content they present and tailor it to individual

users (Rosenfeld Morville 2006).

102 Chapter 4 Personalisation and User Participation

Figure 31: Personal recommendations

Personalisation can take different forms. The most common way to personalise a site

is to make specific content available to some users and hide it from others. Various criteria

enable you to decide who may see what, but usually user preferences or attributes from

user profiles are evaluated and matched against specific content attributes.

Another form of personalisation doesn’t make content elements visible or invisible, but

affects the way in which content is placed on a page. List items or teasers that a user is

expected to find interesting are placed more prominently, typically at the top of a page.

Ultimately it is the content editors who must decide what content is going to be per

sonalised, and how. Content editors must define personalisation strategies that can be ap

plied to the pages of your site. They also must be able to define these personalisation

strategies in a way that is comfortable for them, preferably with a tool with which they

are familiar. As content editors have to work with the content management system any

way, it should be possible for them to define personalisation strategies within this system.

4.1 Content Filters 103

Solution

Implement filters for content selection. Integrate these filters into the domain logic for

your site: implement services that apply these filters to deliver content only if it matches

an individual user’s profile. Allow content editors to express personalisation strategies by

configuring how the content filters work in detail.

Content filters check content elements against user profiles and allow content elements

to pass only if specific criteria are met. Using content filters, your domain logic can ex

press personalisation strategies such as the following: a content element should be includ

ed only if the user belongs to a specific customer segment, or a content element should be

included only if the user’s business value exceeds a specific threshold. Customer seg

ments, threshold values and so on must be defined by the content editors, who can fine

tune personalisation strategies in this way.

From a technical point of view, content filters operate on lists of content elements and

take two kinds of parameters. First, there are arbitrary characteristics of the user’s pro

file.11 Possible examples include:

■ The user’s membership of a specific customer segment.

■ Tracked behaviour, for example with regard to navigation.

■ The user’s purchase record.

■ Attributes from an online profile the user may maintain.

Second, each content filter requires a set of configuration parameters that have to be

provided by the content editors. Examples include but are not limited to the following:

■ Specification of customer segments.

■ Threshold values.

■ Maximum number of results.

■ Default content (in case no matching content elements are found).

In addition to the actual filtering logic, content filters sometimes apply a sorting order

on the content elements they pass. Usually filters return matches in descending order of

relevance, running from the closest matches down to the weakest. As an alternative, filters

can return content elements along with a value that measures their relevance so that other

components can bring the results into the desired order.

Once you have implemented the content filters you need, you can integrate them into

the CONTENT SERVICES (3.1) that run on your content delivery server, as Figure 32 shows.

The integration of filters is common for services that return lists of content elements.

These lists will look different from one user to another. You can also integrate filters into

services that return individual content elements, but this makes sense only if specific

11 The term ‘user profile’ refers to all user-related data that can be used for personalisation purposes. This

includes both data users may have provided themselves (e.g. through an online profile) and data that can be

deduced from user behaviour.

104 Chapter 4 Personalisation and User Participation

content elements have to be blocked from some users (in which case the service wouldn’t

return the content element in question, but no element at all).

Similarly, you should include your content filters in the services offered by the NAVIGA

TION MANAGER (3.2) and the SEARCH MANAGER (3.3), to ensure that unwanted elements

are removed from navigation structures and search results for a specific user.

Content service
Content delivery server

Content
filter

User
profiles

Content repository

Filter
configuration

Figure 32: Integration of a content filter into a content service

The components involved in a personalised content filter interact as follows:

■	 The user profile is loaded into the HTTP session on login.

■	 The server receives an HTTP request and calls a content service.

■	 The content service receives candidate content elements from the repository and

applies one or more filters. Details depend on the filter configuration.

■	 The content service makes the personalised results available to the presentation

layer.

■	 The presentation layer uses the results and makes exactly those content elements

available that the user should see. Content elements that are likely to meet the user’s

interest will be placed prominently to attract the user’s attention.

The processes for services offered by the NAVIGATION MANAGER (3.2) and the SEARCH

MANAGER (3.3) are similar.

4.1 Content Filters 105

Finally let’s again take the content editors’ perspective. Content editors are free to fine

tune content filters by changing the filter configuration. This allows them to influence the

content individual users get to see. The question that remains is how content editors can

actually provide a configuration. If you use a dedicated personalisation engine (either

stand-alone or as part of your content management system) than it will probably offer a

built-in mechanism for filter configuration.

However, if you implement personalisation through custom components alone, you

need to come up with your own solution. A straightforward mechanism is to introduce

special configuration objects into your content model as pseudo types. This enables con

tent editors to use the content management application to specify the necessary filter con

figurations.

Example resolved

We implement an initial filter for online presentations. This filter lets online presentations

pass if the current user is allowed to see them. The decision is based on the segment to

which the user belongs: anonymous users, registered users or premium users, where con

tent editors define the criteria for premium users. The filter must be able to operate on

both Presentation objects (the content elements representing online presentations) and

links to them. We integrate this filter into all CONTENT SERVICES (3.1) that may return a

single presentation (ArticleService, PresentationService), into the service that the SEARCH

MANAGER (3.3) relies on (ArticleListService) and into the functions offered by the NAV

IGATION MANAGER (3.2) (getPath, getTree, getAllReferrers, getDefaultNode). If a user

doesn’t belong to a segment that can view a specific presentation, no trace of it will be

visible.

Two other filters are required for the type of personalisation shown in Figure 31. The

first takes a list of articles and returns those that match a topic the current user has rated

as sufficiently interesting in a self-maintained online profile. Content editors can define

what ‘sufficiently’ means by specifying a threshold value. The second filter also operates

on lists of articles, but returns those that are related to an event at the House of Effects

for which the user has bought tickets in the online shop. Content editors can specify the

time span that has to be considered, as well as the maximum number of results for either

filter. Figure 31 shows how both filters can be combined to generate a highly personalised

page.

106 Chapter 4 Personalisation and User Participation

The following table summarises the content filters we need.

FILTER TYPE

SIGNIFICANT
USER
PROFILE
ATTRIBUTES FUNCTIONALITY CONFIGURATION

SegmentBased
PresentationFilter

segment
assignment

Includes an online presentation
(or a link to one) only if the user
belongs to a segment that is
allowed to view the presentation.

Segment
specification

PersonalInterest
Filter

user
preferences

Includes an article on a specific
topic only if the interest the user
has expressed in this topic
exceeds a threshold value.

Interest rating
threshold

Maximum number of
results

EventAttendance
Filter

event ticket
sales

Includes an article only if it is
directly associated with an event
for which the user has bought
tickets in the online shop during
the past couple of months.

Exact time span

Maximum number of
results

Since we plan to implement personalisation with our own custom components, we

have to offer a mechanism that allows content editors to configure and fine-tune the dif

ferent filters. We add three types to our CONTENT TYPE HIERARCHY (2.1): Segment-

BasedPresentationFilter, PersonalInterestFilter and EventAttendanceFilter. We then

create a singleton instance for each of these types, which gives us three special content el

ements that serve as configuration objects within the content repository. The attributes of

these configuration objects store the data necessary for filter configuration. This enables

content editors to use the standard content management client to maintain the different

configurations for each type of filter. Content filters access the configuration objects and

operate accordingly.

Benefits

+	 Content filters allow you to create a website with content tailored to individual

users, taking their interests and preferences into account. If personalisation is

applied sensibly, users will appreciate content that is particularly useful to them.

Your site can also gain attention and attract more visitors as a consequence of

personalisation.

+	 Because content editors can fine-tune the content filters, they are to free to

implement any personalisation strategies they want. Obviously there are limits to

what a specific filter can do, but if its configuration is well-chosen a filter can easily

be flexible enough to be adapted to changing business goals.

4.2 Asynchronous Personalisation Engine 107

+	 Content editors can specify personalisation strategies using tools they are familiar

with anyway. Either your content management system or a specific personalisation

engine offer the necessary mechanisms, or the content editors can use the standard

content management client to make filter configurations with the pseudo content

objects that you have added.

+	 Since you integrate your filters into your CONTENT SERVICES (3.1), no aspect of

personalisation shows up in the presentation layer, which contributes to the

separation of concerns. In particular, your keep your templates simple and straight

forward, as they won’t be affected by personalisation at all.

Liabilities

–	 The solution tacitly assumes that user profiles are readily available. This is fair

enough as long as mere attributes from a user-maintained online profile are

concerned. However, content filters often rely on user data that isn’t so obvious.

What navigation or purchasing behaviour does a user exhibit? To which customer

segment should a user belong? Evaluations like these are known as implicit person

alisation and can involve algorithms that are too complex to be performed

efficiently online. An ASYNCHRONOUS PERSONALISATION ENGINE (4.2) can help.

–	 Content services that integrate personalisation cannot apply caching, as their

results depend on the current user. Templates that rely on personalised services

cannot apply caching to the HTML output they generate either: it’s a well-known

fact that severe performance problems can result. The problem is not so severe for

page elements that vary only across larger user groups rather than appearing differ

ently for every individual user. You can apply SEGMENT-SPECIFIC CACHING (4.3) in

this case.

–	 Complexity increases as you introduce personalisation. If you develop custom

components you must ensure that you do not introduce too much complexity, as

complex filters can be difficult to understand. If you use a third-party product for a

personalisation engine, you must ensure that it integrates smoothly into your overall

architecture.

4.2 Asynchronous Personalisation Engine

Context

You plan to apply CONTENT FILTERS (4.1) or other forms of personalisation that make

content elements available if they match the current user’s profile. What this means in de

tail depends on the personalisation strategies you wish to implement: different kinds of

criteria are possible.

108 Chapter 4 Personalisation and User Participation

Problem

How can you implement personalisation strategies in an efficient way?

Example

Implementing personalisation strategies efficiently can be difficult, and the website for

the House of Effects is no exception. To apply CONTENT FILTERS (4.1) properly, we have

to know what event tickets a user has bought from the online shop during the last few

months, so we need to access the database that stores all shop transactions. We also have

to know whether or not a registered user is a premium user, which involves an evaluation

of the user’s long-term history of purchases from the online shop, the user’s attendance

of special events in the past and possible donations the user may have made.

Such factors make it necessary to retrieve data from different sources and to apply non-

trivial algorithms. However, the website must remain responsive despite the personalisa

tion requirements.

Forces

Personalisation always relies on user profiles – data that users provide themselves or data

that is deduced from available sources. Known as implicit personalisation, the latter case

comprises various and quite diverse scenarios. For example, a user’s customer status can

be calculated on the basis of previous purchasing behaviour. Recommendations can be

based on the user’s navigation habits, provided they have been monitored and recorded.

Recommendations can also be calculated based on the interests of customers with similar

profiles.

All these scenarios have in common the fact that they rely on information from differ

ent data sources. In other words, to come up with a sophisticated concept for implicit per

sonalisation you often have to access various data sources, which means making calls to

remote systems.

Moreover, strategies for implicit personalisation can be complex in their underlying al

gorithms. For example, imagine an algorithm that makes an educated guess about the

content in which a user might be interested. It is quite clear that such an algorithm is far

from trivial and in many cases will require a rule-based system for its implementation.

The consequence is that in many cases personalisation requires substantial computa

tion time. This, however, is directly opposed to the performance requirements that most

websites face, personalised or not. No degree of personalisation will serve as an excuse

for a website being slow: if a site is too slow to be useful, users will simply ignore it.

4.2 Asynchronous Personalisation Engine 109

Solution

Identify the complex algorithms necessary for assigning content to individual users or

user groups. Take these algorithms off line to a dedicated personalisation engine that

runs asynchronously and independently from the application server that handles HTTP

requests.

Running asynchronously, these algorithms can update user profiles at regular intervals.

Implementing advanced personalisation strategies, the algorithms can use data from dif

ferent sources, such as the following:

■ The user’s navigation patterns.

■ The user’s shopping record and purchasing behaviour.

■ Demographic data: the user’s age, sex, profession, place of residence etc.

■ User-maintained personal preferences.

Content service

Content
delivery
server

Content
filter

User
profiles

Content
management
server

Personalisation
engine

Filter
configuration

Content maintenance

Personalisation
management
– specify user segments
– provide filter

configuration

Content repository

Figure 33: Personalised content services configured by an asynchronous personalisation engine

The entirety of personalisation algorithms hosted by the personalisation engine

generate the sort of user profile data that the CONTENT FILTERS (4.1) require as input

110 Chapter 4 Personalisation and User Participation

parameters. The concept originally sketched in Figure 32 evolves into the architecture

shown in Figure 33.

If your content management system includes a built-in personalisation engine, or if you

use a stand-alone tool, that engine will probably allow you to execute complex personal

isation algorithms asynchronously. You also need to register the algorithms you have im

plemented and make the necessary configurations.

However, if you develop your own personalisation components, you must set up your

personalisation engine as a distinct application running as a separate process, independ

ent of the content management and content delivery applications. If content editors have

to fine-tune the personalisation engine (which they probably will), you can introduce

pseudo content types for configuration purposes (similar to those for the configuration

of CONTENT FILTERS (4.1)) and let content editors maintain the configuration objects via

the content management application. You can apply LISTENER-BASED SYNCHRONISA

TION (1.4) to notify the personalisation engine of any changes to the configuration ob

jects in the content repository.

Example resolved

Personalisation for the House of Effects website requires a few algorithms that we do not

want to perform online. The first is the collection of content elements that are related to

events the user has attended in the past – content elements that should now be presented

to the user as a personal recommendation. The second is the assignment of users to user

segments, especially the assignment of premium user status.

Although these algorithms aren’t extremely complex, they need to retrieve data from

different sources, including the shop database. Executing these algorithms involves re

mote calls and the evaluation of different data sources, which might take time. For rea

sons of efficiency, we don’t directly integrate them into the CONTENT FILTERS (4.1) that

are applied when a content service is called, but take them off line to what is to become

our custom personalisation engine – an asynchronous process running nightly, updating

user profiles, especially for status and content recommendations. Nightly updates are

fine, as there are no requirements to update user recommendations or premium content

visibility immediately after the user has made a purchase or has qualified for a specific

status: a delay of a few hours is perfectly acceptable.

Our personalisation algorithms rely on a few configuration parameters, such as the

definition of user segments. These are stored in the content repository as special config

uration objects and are maintained by the content editors. A notification mechanism in

forms our personalisation engine of any relevant changes.

Benefits

+	 System performance is improved as complex algorithms are taken off line.

CONTENT FILTERS (4.1) work much more efficiently if time-consuming computa

tions are performed asynchronously.

4.3 Segment-Specific Caching 111

+	 Because the personalisation engine is a separate and asynchronous process, person

alisation algorithms become possible that otherwise couldn’t even be considered.

Your personalisation strategies can become more advanced and more powerful,

taking more and more different parameters into account. Advanced implicit person

alisation becomes possible.

Liabilities

–	 Since the personalisation engine runs asynchronously, user profile data isn’t calcu

lated at the same moment as the user requests a web page. The consequence is that

changes to the user’s profile aren’t immediately reflected by the page that is

delivered. For example, after a user has qualified for specific content, there may be

a short delay until that content becomes visible. Similarly, delays are possible when

a user is no longer supposed to see specific content. If this unacceptable you may

have to implement an invalidation mechanism.

–	 An asynchronous personalisation engine allows you to implement fairly advanced

personalisation strategies, but there’s a limit to what personalisation can do. As

Louis Rosenfeld and Peter Morville point out in Information Architecture for the

World Wide Web, ‘in many cases, it’s really hard to guess what people will want to

do or learn or buy tomorrow’ (Rosenfeld Morville 2006). Don’t get carried away

with the vast range of options that a powerful personalisation engine may give you.

In most cases it’s wise to stick to just a few personalisation mechanisms that you can

expect to work well.

–	 Implicit personalisation can be powerful, but it can quickly go too far. Ensure that

you don’t compromise your users’ privacy. First, there is a legal aspect to this: there

are limits to what user data you are allowed to collect. Second, there’s a cultural

aspect to privacy: most users won’t take kindly to a website that monitors every

thing they do. Be sure to apply personalisation in a way your users can appreciate.

One possible strategy is to inform the users explicitly what data is collected and how

that data will be used.

4.3 Segment-Specific Caching

Context

You have introduced CONTENT FILTERS (4.1) that allow you to generate pages tailored

specifically to the individual visitors of your site.

As an initial step towards preventing performance problems, you have introduced an

ASYNCHRONOUS PERSONALISATION ENGINE (4.2) that performs the complex algorithms

involved in advanced personalisation strategies. This might not solve all performance

problems, though.

112 Chapter 4 Personalisation and User Participation

Problem

How can you avoid efficiency problems with content delivery in the presence of person

alisation?

Example

The introduction of personalisation can easily impair system performance. This is as true

for the House of Effects website as it is for virtually any other. Despite our efforts to take

complex algorithms off line to our ASYNCHRONOUS PERSONALISATION ENGINE (4.2), we

still have to be careful not to introduce performance problems.

The reason for this is that several of our pages and page fragments cannot be cached.

This applies to start pages for exhibitions, events, presentations and shop items, which

will look different depending on the recommendations for the current user. It also applies

to navigation elements and some articles, which may or may not include links to specific

presentations, depending on whether the current user is anonymous, registered (and

logged in) or premium.

Switching off caching for all these elements would be unfortunate, though, as it could

slow down the site considerably.

Forces

Personalisation is sometimes said to be the natural enemy of system performance. This is

due not so much to the complex algorithms that may be involved: you can use an ASYN

CHRONOUS PERSONALISATION ENGINE (4.2) to solve that problem. However, personali

sation makes caching largely impossible. If a content service returns different content

elements for every user, its results cannot be cached. If the appearance of a page element

depends on the current user, that page element cannot be cached either. In other words,

caching is disabled at different levels of granularity – both on the logical and the template

layer of our LAYERED ARCHITECTURE FOR CONTENT DELIVERY (1.5).

Still, caching is a paramount factor for a website’s performance (assuming pages are

generated dynamically). The difference in response time between a page that is cached

and one that isn’t can be significant, which is why so many content management systems

offer sophisticated caching strategies. Unfortunately, personalisation threatens to render

these caching strategies useless.

The degree of personalisation varies greatly. One content element might be specific for

individual users, while others might be specific only for specific user segments: groups of

users whose profiles have things in common. In the latter case you can benefit from the

fact that only limited variations of a page or page element exist provided that the number

of user segments is not large.

4.3 Segment-Specific Caching 113

Solution

Identify content elements that are specific to user segments rather than individual users.

If the number of segments is not large, implement segment-specific content services and

segment-specific templates, and apply caching to the resulting personalised content

elements and HTML fragments.

Make a distinction between personalised elements that are specific to individual users

and personalised elements that are specific to user segments.

As far as the segment-specific elements are concerned, you can do either of the follow

ing, depending on whether you wish to apply caching on the logical layer or the template

layer of your server-side architecture:

■	 Split up all personalised CONTENT SERVICES (3.1) into several segment-specific

services. As neither of the segment-specific services takes the current user as a

parameter, you can apply caching to the results either of them returns.

■	 Introduce several segment-specific templates for one personalised page element.

What you then get is a TEMPLATE PER VIEW (3.5), taking the specifics of the

presentation for each user segment into account. As neither of the segment-specific

templates depends on the current user, their output can safely be cached. You can

configure the templates accordingly.

As you can combine caching at different levels of abstraction, you may even choose to

implement both techniques. All that then remains to do is to implement a small piece of

dispatching logic that selects the appropriate content service or template based on the

identity of the current user.

Example resolved

We cannot do much for the start pages for exhibitions, events, presentations and shop

items. These pages will be different for every user, so there is no way to apply caching.

This is not too severe a problem, however, as the actual recommendations are calculated

asynchronously and putting the pages together won’t take that long.

However, things look different as far as our navigation elements are concerned. These

elements don’t depend on the individual user, but on the user segment alone. There are

no more than three variations: one for anonymous users, one for registered users and one

for premium users. We therefore choose to replace the one template for tree navigation

we have by three segment-specific templates, as the UML sketch in Figure 34 shows.

Our full pages still cannot be cached as a consequence of personalisation, but the tree

navigation elements can. This is fortunate, as the mechanism for calculating tree naviga

tion with its underlying tree traversal algorithm is relatively expensive in terms of execu

tion time. It is much more efficient to calculate three different variations of the tree

navigation and store them in the cache than to execute the tree traversal each time a page

is requested.

114 Chapter 4 Personalisation and User Participation

NavigationNode
...

renderTreeNavigationForAnonymousUsers()
renderTreeNavigationForRegisteredUsers()
renderTreeNavigationForPremiumUsers()

...

A dispatcher object

decides on a specific

template for the tree

navigation, depending on

the current user’s user

segment.

Figure 34: Three different templates for tree navigation as seen by three different user segments

Alternatively, we could have decided to keep one template for the tree navigation, but

to use three segment-specific services instead. More specifically, we would have to replace

the getTree function offered by our NAVIGATION MANAGER (3.2) by three functions.

Benefits

+	 Segment-specific personalisation is quite common, and sometimes the bulk of the

personalised elements rely on the current user’s segment rather than the user’s

identity. You can expect an improvement in system performance that can, at least in

some cases, be quite significant.

+	 The solution is flexible enough to be applied to caching at different levels of granu

larity. You can apply it to content or navigation services on the logical layer of your

architecture, or to templates on the template layer.

Liabilities

–	 The number of services and templates increases, which may be accompanied by a

slightly increased complexity of the overall system. Actually the solution represents

a trade-off: the more services and templates you are willing to accept, the more

segment-specific caching you can apply. Clearly there is a limit to the number of

4.4 Condensed Effectiveness Reports 115

different segments you can handle if you want a design that is still clear and

maintainable.

–	 Because you cache objects for every user segment, your servers use more memory

than they otherwise would. Specifically, if you introduce a significant number of user

segments, you must evaluate the consequences this has on the memory requirements

caused by your caching strategies.

4.4 Condensed Effectiveness Reports

Context

Your website offers personalised content to users. Content editors can configure and fine

tune the personalisation strategies that are in effect.

Problem

How can you provide content editors with effective feedback on the success of the person

alisation strategies they have implemented?

Example

Content editors of the House of Effects website can use different mechanisms to fine-tune

recommendations to users on the start pages for exhibitions, events, presentations and

shop items.

For example, they can define the degree of interest a user has to express in a specific

topic to be considered. They can define a time span for past events that are analysed when

making recommendations. In addition, they are free to specify how the recommendations

are sorted and how many will be shown.

The rationale is of course to attract users to presentations, events and shop items that

they may find interesting, obviously with the idea of future bookings or sales in mind.

The content editors will be interested in finding out how well their strategies work.

Forces

You don’t introduce personalisation for personalisation’s sake. Personalisation represents

a service to the user, offering a content selection based on an educated guess of what the

user might find particularly interesting. Obviously personalisation is in many cases intro

duced for commercial motives as well. Site owners wish to attract users to commercial of-

fers with the hopes of increased revenue.

Given such a scenario, it is clear that content editors want to check whether their per

sonalisation efforts are successful in terms of visitor attraction. This invites the question

116 Chapter 4 Personalisation and User Participation

of how visitor attraction can be measured. Measurements are needed that allows content

editors to draw conclusions about the fine-tuning of their personalisation strategies.

An initial idea is to measure how often personalised content is delivered and viewed.

However, this approach has shortcomings. First, the fact that a page with personalised

content is being viewed says nothing about how well it is received by the user. Second, per

sonalisation is often expressed through lists of teasers with links to full articles, but you

can’t draw any conclusions about a single teaser from the fact that such a teaser list is re

quested.

It is more promising to analyse how well personalised links are received, especially

those that underlie special teaser elements. Evaluating the success of personalised teasers

can give content editors feedback about the effectiveness of their personalisation strate

gies. However, such an analysis must be presented in a way that is easy to understand: a

large volume of statistical data might cause more confusion than insight.

Solution

Measure the effectiveness of personalisation strategies by comparing the click ratio of

personalised teasers with that of non-personalised ones. The click ratio relates the

number of times a teaser’s underlying link was followed to the number of times the teaser

was displayed. Use a reporting tool to apply metrics and condense the results.

The click ratio appears to be the most meaningful measurement, as it relates the attrac

tiveness of one teaser to the attractiveness of others and so allows you to measure the rel

ative popularity of personalised teasers.

To calculate the click ratio for a specific teaser, you need to take the following steps:

■	 Count the number of times a teaser is delivered (as part of a page). Every time a

personalised teaser is counted, also log the reason why the teaser was chosen, such

as what CONTENT FILTERS (4.1) were applied, the current user’s user segment, etc.

■	 Count the number of times the underlying link is followed. To make this possible,

you can add a parameter to the link that allows you to trace the request back to that

link (and the teaser) when the landing page is generated.

Be careful that your monitoring results aren’t obfuscated by your caching strategies.

What matters is the number of times a teaser is delivered, not the number of times it is

generated. Similarly, you’re interested in the number of times a personalised link is fol

lowed, not the number of times an element on the landing page is generated. Integrate

your monitoring techniques into the mechanisms of HTTP request evaluation and page

delivery, not into any page generation mechanisms that might be omitted if caching takes

place.

The best way to handle the collected data is to use a tool that can condense the results

and present visualisations and meaningful statistics about the effectiveness of your per

sonalisation strategies. Some statistics can easily be established, including the following:

4.4 Condensed Effectiveness Reports 117

■	 How often a teaser was delivered.

■	 Why a teaser was delivered (which personalisation strategy was responsible for its

inclusion).

■ How successful a teaser was in terms of click ratio.

In many cases a relatively simple tool will be fine. Different tools are available: many

of them are web-based tools that allow you to view the results through a web browser. It

shouldn’t be difficult to find one that suits your needs.

Example resolved

We’re interested in finding out about the effectiveness of the two different kinds of filters

we apply: the filter based on personal interests specified by the users themselves, and the

filter based on events users have attended in the past. We count the number of times that

teasers are delivered and break down the data into the different filters that were applied.

We also count the number of times a teaser was selected by a user and its underlying link

was followed.

A simple tool is sufficient for our purposes. Figure 35 shows the results for Presentation

teasers. Although this web-based form of personalisation monitoring is simple, it still

allows us to draw a few key conclusions about the effectiveness of our personalisation

strategies.

Figure 35: Effectiveness reports for teasers of online presentations

Obviously the PersonalInterestFilter is the more important one, as it returns more re

sults than the EventAttendanceFilter, at least in most cases. Nonetheless, both filters are

118 Chapter 4 Personalisation and User Participation

effective, as their click ratio (on average for all teasers) is relatively high and clearly better

than the click ratio for non-personalised teasers shown in third row for each presentation.

Benefits

+	 Content editors are given a tool that allows them to check the usefulness of their

personalisation strategies. Because monitoring data is presented in the condensed

form of effectiveness reports, content editors quickly get a feel for how well their

personalisation strategies work.

+	 The monitoring data that is collected and evaluated is accurate and meaningful. As

you count teasers that are not just viewed but are actually followed, you receive more

valuable and meaningful results.

Liabilities

–	 You need a reporting tool for visualising the results. This may represent extra cost,

and certainly means that you’ll have to evaluate possible candidates to find the right

tool. Also, an extra tool adds to the overall complexity of your software archi

tecture, if only slightly.

–	 If a detailed analysis is required, the monitoring data stored in the database can

accumulate to significant proportions. Make sure you do not collect more data than

you can properly evaluate.

–	 Personalisation monitoring can slow down the system. You can choose to delegate

the actual monitoring (including database access) to an asynchronous process if the

extra execution time would otherwise impair system performance.

–	 Although the collected data is valuable, there is still room for interpretation. For

example, effectiveness reports tell you how often a page was viewed, but not for how

long. They tell you how often a personalised link was used, but not how much it

would have been used had it been a standard, non-personalised link. In other words:

content editors should use the feedback they get on their personalisation strategies,

but they should use it with care.

4.5	 Decoupling of Edited Content and User
Contributions

Context

You plan to let users contribute to your website actively and turn it into a collaborative

Web 2.0 platform.

4.5 Decoupling of Edited Content and User Contributions 119

Specifically, you are going to invite user-generated content – that is, any kind of content

authored and provided by the website users. However, users can submit other forms of

contributions as well, including content ratings, tags, etc.

Problem

How can you invite user-generated contributions without disturbing workflow processes

for edited content?

Example

Figure 36 shows a page from the House of Effects that invites user contributions. It’s a

presentation that involves an online game. Users must try to solve a mathematical puzzle

as quickly as possible: they are asked to colour the European map, initially with no more

than five colours, then with no more than four. The highest scores of the day are stored.

Users can also leave comments that may be valuable for other users. Other pages will also

include user ratings, for example for shop items.

Comments, ratings and high scores obviously have to be stored somewhere from which

they can be retrieved during page generation. It makes sense to think of comments as

user-generated content, so it’s straightforward to introduce content types for specific user

contributions and store these contributions in the content repository.

We have to bear in mind though that the workflow we have defined for edited content

doesn’t apply to user contributions: users will be able to make their submissions without

any formal publication process.

Forces

In the age of Web 2.0 user participation has become more and more important. As Clay

Shirky points out in Here Comes Everybody, ‘collaborative production… is considerably

harder than simple sharing, but the results can be more profound’ (Shirky 2008). Wikis

especially enjoy increasing popularity, as they allow users to contribute and collaborate

in a very straightforward way (Leuf Cunningham 2001, Mader 2008). Groupware appli

cations allow users to share content within a community (Schümmer Lukosch 2007).

User participation can take different forms. There is user-generated content: content

artefacts authored and submitted by the website users. There are folksonomies:

taxonomies provided by the website audience, often in the form of tags, as well as user

comments and ratings. The conclusion to be drawn is that there is no longer a clear

distinction between users and editors.

However, the workflow processes for edited content and user contributions are very

different. Edited content undergoes a publication process and usually goes live only after

it has been officially approved. User contributions may or may not go through some kind

of moderation process, but even if they need editorial approval before going live, their

publication process is different and usually less formal.

120 Chapter 4 Personalisation and User Participation

Figure 36: Edited content versus user submissions

From a technical viewpoint, elements of edited content in the content repository have

to undergo a state change and need to be updated and re-published whenever any of their

attributes change. This is true for all types of attributes defined in the CONTENT TYPE

HIERARCHY (2.1), including associations to other content elements. In other words, if a

content element keeps a list of references to other content elements and you add a refer

ence, you need to re-publish the element with the additional reference for the change to

become effective.

It’s obvious that there will be relationships between edited content and user contribu

tions, as user contributions, such as comments and folksonomies, often refer to specific

content elements. The workflow for edited content must nevertheless remain undis

turbed: no edited content must have to re-published as a consequence of any kind of user

submission.

4.5 Decoupling of Edited Content and User Contributions 121

Solution

In your overall content model, decouple edited content from user contributions, whether

they are user-generated content, tags, ratings or anything else. Avoid references from

edited content to user contributions, and maintain the necessary relationships between

edited content and user contributions as attributes of user contributions alone.

To integrate user contributions into your content model, you have to take the following

steps:

■	 Add content types to the CONTENT TYPE HIERARCHY (2.1) to accommodate the

various kinds of user-generated content. This may include additional content types

for articles, plain text, tags, ratings, pictures, multimedia objects, etc. – whatever

objects you expect the site’s users to submit.

■	 If you prefer not to store specific user contributions in the content repository, you

can choose to store them in any other data structure that appears appropriate, for

example database tables.

■	 Establish unidirectional references that point from user contributions to the

elements of edited content to which they refer. When a page with user contributions

has to be generated, CONTENT SERVICES (3.1) can look up the various

contributions related to a specific content element. The implementation of such a

lookup logic becomes part of your site’s domain logic.

As a consequence, no attribute of any edited content element will hold a reference to

any user-generated content element. If a user contribution is added, no attribute of an ed

ited content element will change.

Example resolved

User comments essentially consist of markup for formatted text, along with the user’s

name and e-mail address, so we introduce a new content type Comment into our CON

TENT TYPE HIERARCHY (2.1). As Figure 37 shows, this new content type is not referenced

from any existing content type.

Article
title: String
subtitle: String
text: MarkUp
pictures: Picture[]
videos: Video[]
relatedArticles: Article[]
keywords: String[]
categories: Category[]

0 .. *

Comment
referencedArticle: Article
author: String
eMail: E-Mail
date: Date
text: MarkUp

Figure 37: Content model including user-generated content

122 Chapter 4 Personalisation and User Participation

We will store other objects that result from user participation, such as high scores from

online games and ratings of shop items. These objects are too simple to justify content

types of their own, so we’ll simply store them in plain database tables.

Benefits

+	 The solution allows you to add user-generated content and folksonomies to your

content model. It gives you a prime mechanism for meeting the requirements of Web

2.0.

+	 The content editor workflow remains intact. The workflow for individual content

elements, including processes of editing, updating and publishing, is completely

independent of any user submissions and the way in which they are processed. No

re-publication of edited content is necessary after user contributions have been

added that refer to that content.

+	 While the solution endorses a logical separation of edited content and user contri

butions, you can easily implement a physical separation as well if you store all user

contributions in a separate database, should this be necessary for security reasons.

Liabilities

–	 To find the user contributions that refer to an element of edited content, you have to

implement a lookup function that follows the unidirectional references backwards.

Most content management systems offer a function that lists all referrers of a given

content element. If your content management systems doesn’t do this, you will have

to maintain such a mapping yourself.

–	 This solution may have a slight impact on system performance. As there are no refer

ences from edited content to user-generated content, the lookup function has to be

invoked every time such a connection has to be made. However, the additional level

of indirection shouldn’t prove too costly.

4.6 Input Channel for User-Generated Content

Context

You have made those additions to your content model that are necessary to accommodate

user-generated content. You have established DECOUPLING OF EDITED CONTENT AND

USER CONTRIBUTIONS (4.5). The workflow processes for edited content are independent

of the artefacts, texts, tags or ratings that users may provide.

4.6 Input Channel for User-Generated Content 123

Problem

How can you ensure that user-generated content fits well into your content base?

Example

The website for the House of Effects accepts different types of user contributions. Most

notably there are comments that users can write and attach to an article, a presentation

or a shop item description. However, users can also rate shop articles, and the average rat

ing is displayed on that item’s page. Users can also participate in online presentations,

and some of these presentations store the users’ results, as in the example from Figure 36.

Forces

Unlike edited content, user-generated content usually doesn’t follow a workflow process

based on editing and publication. Users just submit or upload whatever they want to con

tribute using the mechanisms a site offers them.

There are two problems associated with this. First, if you accept all material that users

may submit, you will soon run into problems: the chances are that users will submit ma

terial that cannot be properly processed. Typical examples include ill-formatted markup

that fails to be parsed, pictures that are too large to be displayed correctly and multimedia

objects that are too large to be used on a web page. This doesn’t mean that your users

intend to submit unusable material, it just means that they often aren’t aware of the tech

nical requirements and require a little guidance.

Second, there may be some users who aren’t well-meaning. The inclusion of user-gen

erated content into a website quickly invites malware such as viruses. Security becomes a

major issue once user-generated content enters the scene – it’s safe to assume that most

sites that accept user-generated content will eventually be subject to a malware attack.

Ill-formatted, unwanted or inappropriate content can damage your site. The effect

could be severe, beginning with awkward page layouts as a consequence of ill-formatted

markup and ending with a fully-fledged virus infection. It’s clear that this unacceptable.

Solution

Accept user-generated content only if it is submitted in a format that you endorse. Appro

priate formats typically include the markup used by wikis, as well as standard formats

for pictures and videos. If necessary, apply automatic transformations to adapt user

generated content to meet specific requirements.

In his article Building Secure Web Applications, George V. Neville-Neil emphasises

that ‘most sites now allow some form of user-generated content, and the smart ones do

this by having a very restrictive whitelist of allowable things the user can upload’ (Neville-

Neil 2007).

124 Chapter 4 Personalisation and User Participation

Combining such a whitelist with a set of transformation processes, you can establish

an input channel that handles user submissions in a way that is both effective and reason

ably secure:

■	 To begin with, users can submit formatted text that may include some kind of

markup. Tags for formatting purposes (such as headings, boldface or italics) are

generally fine, while fully-fledged HTML and, especially, script tags are not

(Neville-Neil 2007). A straightforward idea is to allow the kind of markup that

wikis use. Also known as ‘Wiki creole’, this markup is powerful enough to express

the necessary formatting while excluding tags that go beyond mere text processing.

To ensure that users’ submissions conform to this standard, you can implement a

mechanism that parses the markup and automatically removes all unwanted tags.

■	 As far as images are concerned, accept only image types that you are able to

process. Automatically resize all images to the size that you need immediately after

they’ve been uploaded. This technique makes it easier for you to use user-submitted

pictures on your web pages, while at the same time enabling the destruction of

potential viruses, such as a virus in the header of a JPEG file (Neville-Neil 2007).

■	 If you allow the upload of sound files, videos or other multimedia objects, limit

their size to acceptable proportions, if only to avoid unpleasant response times for

the web pages where these elements will eventually show up. Check all incoming

objects and reject them if necessary.

■	 Finally, some sites may allow users to submit instances of ‘official’ content types:

objects that represent content types the content editors use as well. Although these

objects are still user-generated content, you may want to apply the validators from

WORKFLOW-BASED VALIDATION (2.5), such as those that check for valid date

values, valid e-mail addresses and so on.

The overall principle should be clear. It’s fine to accept a wide range of user-generated

content, but it is important that you retain the right to discard content elements that don’t

fit your site or that fail to meet certain requirements, security or otherwise.

Example resolved

The House of Effects website is quite restrictive about user-generated content. For the

time being users cannot submit Flash files, videos or other multimedia objects. These are

not necessary, as the content editors are in charge of providing articles and presentations

that represent the museum. On the other hand, the site does welcome feedback from vis

itors. Users are free to leave comments and to rate shop items. Figure 38 shows a sample

page.

To allow users to leave comments, we’ll use a simple markup that includes tags for for

matting purposes. It’s a markup that some users have probably already used with wikis

and with which they should be relatively comfortable. A simple filter will remove any un

known tags or script code from the user-submitted markup.

4.6 Input Channel for User-Generated Content 125

Figure 38: Ratings and user comments as user-generated content

User ratings are made possible by a simple Ajax component that allows users to choose

from one to five stars. A mouse-click is all it takes a user to offer a rating: no other user

interaction is required, so only ratings between one and five are possible.

Benefits

+	 A well-defined input channel provides users with some guidance regarding the

submission of user-generated content. Usability is improved, as users will find it

easier to add texts, tags, ratings, pictures, multimedia objects and whatever else your

site may invite.

126 Chapter 4 Personalisation and User Participation

+	 It is easier to incorporate user-generated content into your web pages if that content

meets specific requirements, especially with regard to types and formats. There’s a

clear benefit that comes from using text that’s properly formatted, pictures that are

correctly sized, multimedia objects that aren’t too large and so on.

+	 Security is improved, as you avoid at least some malware. You can protect your site

from script tags, weird markup fragments, malicious images and other malware

elements by using a well-defined and reasonably secure input channel for user

generated content.

Liabilities

–	 This solution doesn’t guarantee complete security. You will have to apply a set of

general security patterns to protect your site completely against attackers.

Important security patterns include a Demilitarized Zone, a Protection Reverse

Proxy and an Integration Reverse Proxy (Schumacher Fernandez-Buglioni

Hybertson Buschmann Sommerlad 2006).

–	 The solution doesn’t guarantee content quality either. Even if user-generated

content meets all the requirements for format and processing, it can still be

valueless, embarrassing or even illegal. There is an ongoing discussion about the

extent to which a web platform can be held responsible for the contributions its

users make. Regardless of any legal aspects, most web platforms have an interest in

shutting out inappropriate content, although what ‘inappropriate’ means depends

of course on the individual website.

There is no technical way to do this, but there are several site management strategies

that can help you achieve your goal. First, you can accept user contributions only

from a limited number of known and identified users, which quickly reduces the

amount of nonsense contributions. Second, you can establish a moderation process

in which a moderator approves user-contributed material before it is accepted for

publication. This strategy is described in the Quality Inspection pattern (Schümmer

Lukosch 2007). There is a downside to moderation, though, as it removes the

spontaneity from user contributions, and might invite accusations of censorship on

the part of the site owners. Third, you can accept all contributions, but let users rate

the contributions for quality. The Letter Of Recommendation pattern takes this

approach (Schümmer Lukosch 2007). Whatever strategy you apply to ensure the

quality of user-generated content for your site, aim to achieve a balance of openness

and security.

CHAPTER

5
Deployment and

Infrastructure

In the preceding chapters we analysed how to structure, validate, organise and deliver

web content. We looked at how domain logic can be applied, how search functionality

can be integrated and how personalisation strategies can be added. We studied how s can

be applied to create the actual web pages. We looked at quite a few software components,

custom and otherwise, and at how they collaborate.

It’s now time to examine how a website can go live. You might want to launch a new

site or to relaunch an existing one, but in any case it’s important to establish a set of reli

able deployment processes and mechanisms. This is what this chapter is about.

This chapter is also about the infrastructure that’s necessary to do so. It’s about envi

ronments for development, testing and operation, and about how these environments

have to be equipped to serve their purposes well.

Much of what can be said about deployment and infrastructure isn’t specific to con

tent management and content delivery, of course, but applies equally to web applications

in general. I’m not going to talk much about web applications though, but rather keep

the focus on content-related aspects of deployment and infrastructure. For a broader dis

cussion of these topics, I’d like to refer you to the relevant literature, especially the pat

terns that Paul Dyson and Andy Longshaw describe in Architecting Enterprise Solutions

127

128 Chapter 5 Deployment and Infrastructure

(Dyson Longshaw 2004). Putting a strong focus on the non-functional requirements of

web-based systems, these patterns discuss techniques for making web applications fast,

reliable, secure and maintainable. In addition, Security Patterns by Markus Schumacher

et al. (Schumacher Fernandez-Buglioni Hybertson Buschmann Sommerlad 2006) plays an

important role with regard to deployment and infrastructure for web-based systems.

Nonetheless, there are two patterns from the existing literature that I’d like to revisit,

however briefly, before we move to the content-specific aspects of deployment and infra

structure. These two patterns are quite fundamental and form the basis for the rest of the

chapter.

■	 The first pattern addresses the way in which web servers and application servers are

normally distributed across different zones for security reasons. The idea is to

introduce a Demilitarized Zone between the ‘width’ of the Internet on one hand

and the secure inside world that hosts servers and databases on the other. The web

servers reside in the Demilitarized Zone, where they are given limited access

permissions. ‘Ideally these web servers are not responsible for any business

functionality’, while ‘business functionality is delegated to application servers that

can be shielded from the outside world’ (Dyson Longshaw 2004).

■	 The second pattern introduces Load-Balanced Elements, for reasons of scalability,

performance and reliability. The rationale is to ‘use multiple elements of similar

capability and balance the load continuously across them to achieve the required

throughput and response’ (Dyson Longshaw 2004). As multiple web servers and

multiple application servers operate in parallel, response times are improved and

the risk of services not being available is reduced.

The application of both patterns results in the architecture sketched in Figure 39. It’s a

fairly typical architecture, found in many of today’s web systems, with variations of

course in the number of servers, the way in which these servers communicate, the firewall

technology and other details.

This is the overall architecture we assume for the rest of this chapter, and it provides a

good starting point from which to ask content-related questions about deployment and

infrastructure:

■	 How exactly can you deploy software to the application servers – the software that

is necessary for CONTENT MANAGEMENT AND CONTENT DELIVERY (1.1)?

■	 What are the consequences if the underlying content model changes, rather than

only the software? How can you safely evolve your content model over time?

■	 How can you avoid downtime for the site during software deployment: periods

during which the site isn’t available?

■	 How can you reduce downtime for content management: periods during which the

site is live but when content editors cannot create new, or maintain existing,

content?

 129

Internet
User client

Firewall

Demilitarised zone
Load balancer

Web servers

Firewall

Internal zone
Load balancer

Application servers

Content repository

Figure 39: Load-balanced web and application servers distributed

over internal environment and DMZ

130 Chapter 5 Deployment and Infrastructure

SMOOTH RELAUNCH
(5.3)

is deployed in a

ONE WEB
APPLICATION FOR

CONTENT DELIVERY
(5.1)

DEDICATED
DEVELOPMENT AND

PRODUCTION
ENVIRONMENTS (5.2) are the

precondition for a

requires

Figure 40: Road map to the patterns

The three pattern in this chapter answer these questions. They give both technical and

organisational advice, taking the architecture described in Figure 39 as a basis. Figure 40

presents a road map to what the chapter has in store.

5.1 One Web Application for Content Delivery

Context

Software for a website consists of two main building blocks for CONTENT MANAGEMENT

AND CONTENT DELIVERY (1.1). The content management components usually contain

little custom software. The main task here typically lies in the correct configuration of the

content management application, especially the specification of the underlying content

model. You may have to register listeners for LISTENER-BASED SYNCHRONISATION (1.4),

provide WORKFLOW-BASED VALIDATION (2.5) mechanisms or customise the editor client,

but that should be all.

On the other hand, the content delivery software implements much of the domain logic

for your site, so you have to expect a lot of custom software. Necessary components in

clude CONTENT SERVICES (3.1), CONTENT FILTERS (4.1), a NAVIGATION MANAGER

(3.2), a SEARCH MANAGER (3.3) and a SYSTEM OF INTERACTING TEMPLATES (3.4). To

launch the site, you have to deploy all these components to the servers of the live system.

5.1 One Web Application for Content Delivery 131

Problem

How can you establish a straightforward deployment process for your content delivery

software?

Example

Content delivery software for the House of Effects website includes Java classes, JSPs and

Ajax components that are all embedded in an overall framework provided by our content

management system. To launch the site or to relaunch it implies deployment of all these

components into the production environment.

How can this be done? What is the most straightforward way to do it? What kind of

packaging is recommended when deploying content delivery components? These are

questions we need to address before our software can go live.

Forces

Content delivery software consists typically of a variety of components, including classes,

server pages, client code and configuration data. Depending on the underlying technolo

gy, you may have the option of defining one or more web applications. By definition, a sin

gle web application consists of resources that together provide a specific service to users.

Different web applications are relatively independent of each other, while the resources

within a single web application collaborate closely.12

Because different web applications are largely independent of each other, they can be

deployed separately. This has the advantage that each software deployment is less com

plex and therefore less error-prone. It is considered good practice to avoid ‘big-bang’ style

deployments, instead taking independent software packages live in sequence.

However, separate web applications have their drawbacks. Collaboration between

them is possible but limited. First, it’s possible for a component to call a component from

another web application, but it’s is more complicated and usually less efficient than a call

made within the same web application. Second, application servers maintain different

sessions for different web applications – exchanging session information across web ap

plications is possible, but awkward.

These disadvantages are serious, since the different components for content delivery

rely on each other rather heavily. Close collaboration in terms of service invocation is re

quired, and the CONTENT TYPE HIERARCHY (2.1) represents a common basis for domain

logic components, personalisation components, templates for HTML generation and

Ajax-based client-server communication alike.

12 The concept of web applications is common in the Java world – it’s supported by virtually every application

server on the market. Other technologies such as PHP don’t yet offer support for separate web applications,

although some frameworks are heading in this direction.

132 Chapter 5 Deployment and Infrastructure

Moreover, the various components for content delivery usually share the same security

configurations. Different kinds of security configurations are possible, specifying for ex-

ample legal access paths, legal URL patterns and legal URL parameters for user requests.

These configurations apply to content delivery as a whole, so it’s hard to split them across

separate web applications.

Solution

Define a single web application for all components directly involved in content delivery.

This includes the custom components that you have developed for content retrieval,

domain logic, personalisation and HTML generation, as well as the necessary configu

ration data. Define separate web applications only for loosely coupled tools, such as a

stand-alone search engine or a personalisation engine connected through asynchronous

communication.

A general principle from component-based software development is to ‘provide an as

sembly package that contains all the component packages that make up an application’,

where a component package refers to the entirety of interfaces, implementations, anno

tations and configuration files required by a specific component (Völter Schmid Wolff

2002). More specifically, Paul Dyson and Andy Longshaw recommend that you ‘adopt an

application server architecture’ and ‘group all core system functionality in a single appli

cation’ (Dyson Longshaw 2004).

The core components for content delivery of course include all the major custom com

ponents you have developed. The following components in particular will become part of

a central web application for content delivery:

■	 CONTENT SERVICES (3.1), including their interfaces and implementations.

■	 Navigation Manager (3.2).

■	 Search Manager (3.3).

■	 CONTENT FILTERS (4.1) for providing personalised web content.

■	 Components implementing an INPUT CHANNEL FOR USER-GENERATED CONTENT

(4.6).

■	 Components providing the Ajax code required for SELF-CONTAINED PAGES (3.6).

■	 A SYSTEM OF INTERACTING TEMPLATES (3.4) consisting of templates for the

different layouts of various content types.

In addition, the web application should include all the necessary configuration data,

ranging from access controls to deployment descriptors. Typical examples are:

■	 The specification of access permissions that express authentication and

authorisation requirements, unless these requirements are implemented in server

side components such as CONTENT FILTERS (4.1).13

5.1 One Web Application for Content Delivery 133

■	 The specification of legal URL patterns, for example to prevent the direct

invocation of server pages or other scripting code ‘from the outside’, especially the

invocation of templates reserved for logged-in users or special user segments.14

■	 The specification of legal URL parameters, for example to disallow parameters like

‘mode=edit’ for a Wiki-style web page, in case the user isn’t logged in or doesn’t

have the necessary permissions for write access.

These components and configuration files constitute a single web application, so they

will be deployed together.

On the other hand, separate web applications are justified for tools that are sufficiently

independent from the actual content delivery. Typical examples include an asynchronous

search engine, an ASYNCHRONOUS PERSONALISATION ENGINE (4.2), shop software or a

payment system. In many cases stand-alone third-party products will be used, but even if

you choose to develop any of these systems yourself, they should become separate web

applications with their own, independent deployment processes.

Example resolved

We introduce a single central web application for the delivery of House of Effects web

content. Since our overall architecture is J2EE, this web application consists mostly of

Java classes and JSPs and will be deployed as a ‘.war’ file.

This web application embodies most of the custom components we have developed,

but also includes a few components provided by our content management system. The

following table gives an overview.

COMPONENT TYPE COMPONENTS

CMS components	 Components provided by the content management system
implementing a framework for the integration of custom components,
for example:

■	 A dispatcher for the invocation of page template JSPs.
■	 Repository layer functionality for database access.
■	 Standard caching mechanisms.

13 Most web servers allow you to express access constraints for specific web pages. This is a straightforward

solution if access permissions for your site are simple. However, more advanced access permissions probably

require dedicated server-side components to implement the desired behaviour.

14 Most J2EE-based web and application servers allow you to define invocation constraints for JSPs and other

components, usually through the specification of URL patterns. This enables you to ensure that specific

templates cannot be activated directly through an HTTP request and must be invoked by an internal

component.

134 Chapter 5 Deployment and Infrastructure

COMPONENT TYPE COMPONENTS

Custom Java classes	 Various classes, mostly implementing the domain logic for the House
of Effects website:

■	 Content services.
■	 The navigation manager.
■	 The search manager.
■	 Content filters and other classes implementing personalisation

strategies.
■	 Additional caching functionality.

JSPs	 JSP code, representing layouts and client-side functionality:

■	 Templates for all kinds of content elements, including articles,
announcements, online presentations and shop item
descriptions, as well as navigation nodes (page templates).

■	 CSS definitions.
■	 Ajax code to be included into JSPs, representing client-side

functionality.

Configuration data	 A web server configuration for URL patterns:

■	 Legal:*.html.
■	 Illegal:*.jsp.

HTTP requests for JSPs therefore aren’t routed to the application
server, so users are prevented from bypassing the authorisation
mechanisms implemented in our content filters and other
personalisation components.

In particular, users cannot call any JSPs that generate navigation
elements for special user segments
(NavigationNode.renderTreeNavigationForRegisteredUser,
NavigationNode.renderTreeNavigationForPremiumUser).

No further configuration data for access control is required, as all
access permissions are handled by our server-side personalisation
components.

There are of course components that are only loosely related to the content delivery

processes and that therefore don’t have to be included in the central web application.

The search engine and the shop software are in fact third-party products that come as

separate stand-alone web applications. Our personalisation engine is not a third-party

product, as we developed it ourselves, but it constitutes a separate web application any

way, since it’s connected to the actual content delivery processes through asynchronous

communication only. These stand-alone web applications can be deployed separately and

independently of each other and of our content delivery web application, unless their in

terfaces and the specifics of their collaboration change.

5.2 Dedicated Development and Production Environments 135

Benefits

+	 You create a central and self-contained web application that contains all compo

nents directly involved in content delivery. As you remove potential barriers, collab

oration between related components becomes more straightforward.

Comprehensibility, maintainability, even efficiency are improved as cross-appli

cation communication is reduced to a minimum.

+	 You retain the option of independent deployment processes for any third-party

products you use. Whether it’s a search engine, a personalisation engine or shop

software, any stand-alone application will also have its stand-alone deployment

process. Software updates will be more straightforward, as loosely coupled compo

nents reside in separate web applications.

+	 The single web application for content delivery provides a well-defined place for

storing the configuration data that is necessary for your site to operate smoothly

and securely. Web server and application server configurations are stored in a single

central place, so it’s easier to make sure they are accurate and complete. As a conse

quence it becomes easier for you to prevent users from bypassing authentication

mechanisms and access control.

Liabilities

–	 You cannot establish separate deployment processes for specific components

involved in your content delivery software. For example, you can’t deploy CONTENT

SERVICES (3.1), the NAVIGATION MANAGER (3.2) or any CONTENT FILTERS (4.1)

separately.

–	 Your web application will require more configuration data than just a set of URL

patterns for access control and the like. For example, load balancers will require

additional configuration data, as will other tools you may use. Also, bear in mind

that configurations differ from one environment to another. Development

environment and production environment, internal zone and demilitarised zone all

require specific configurations.

5.2	 Dedicated Development and Production
Environments

Context

Your website undergoes occasional changes, not just to the content, but also to the soft

ware that implements the domain logic. Whenever updates to the domain logic must go

live, the site needs to be relaunched, and ONE WEB APPLICATION FOR CONTENT DELIV

ERY (5.1) must be deployed to the live system.

136 Chapter 5 Deployment and Infrastructure

Problem

How can you evolve your website while ensuring its undisturbed operation?

Example

No website is ever complete, and it’s safe to assume that the site for the House of Effects

will not be an exception. Although we’re quite happy with the site we have developed so

far, there are ideas for future extensions.

Most notably, the House of Effects plans to open a section on computing. Once this

section opens, it should of course be reflected by the museum’s website. The idea is to al

low users to contribute special online presentations that demonstrate example programs

at work. This is likely to require additional content types.

These ideas are only plans for the future, and no concrete software development has to

be done, but of course we want to make the preparations that are necessary to enable fu

ture additions to the site.

Forces

All software systems evolve. This is true especially for software systems in the quickly

changing world of the Internet. There is a virtually endless list of reasons why changes

and additions to a website might become necessary. The information model may change,

a new ‘look and feel’ might be required, demands for additional functionality might arise,

an increased number of users might cause new performance requirements. The extent of

these changes varies greatly, ranging from small updates to a complete relaunch.

An important aspect of this is the effect that changes to the domain logic may have on

the content model. Although you can try to keep this effect to a minimum, modifications

to the CONTENT TYPE HIERARCHY (2.1) might become necessary. These modifications

could be simple additions (either of new content types or of attributes to existing content

types), but might amount to a fully-fledged reorganisation of the content model.

However, reorganising the content model usually isn’t something you can do on the

spot. The content model, and more specifically the CONTENT TYPE HIERARCHY (2.1), is

essential for content management and content delivery processes alike. These processes

must continue undisturbed while new software is under development and being tested.

This is quite clear for the content delivery processes, as the site has to stay on line all the

time, but it is equally true for the content management processes – content creation,

maintenance and publishing must continue as well.

5.2 Dedicated Development and Production Environments 137

Solution

Establish separate environments for software development and for the live system. Make

sure that these environments can work on different content models if essential changes to

the content model have to be expected. This may require the introduction of logical parti

tions for your content repository, or even separate installations of your content

management system.

It is clear that separate environments are necessary for software development and test

ing (development environment) and for the live system (production environment).15 The

development and the production environments should be largely identical, except per

haps for hardware equipment and security configurations. For example, the live system is

likely to have more load-balanced web and application servers than the development sys

tem and, unlike the development system, typically has its web servers placed in a demili

tarised zone (Dyson Longshaw 2004). Distinct development and production

environments make an undisturbed operation possible while new software is under devel

opment.

An important issue, however, is raised by a possible evolution of the content model:

■	 If no changes or mere additions to any content types have to be expected, the

development and the production environment can use the same content model. In

fact, they can use the same content repository. You can make backward-compatible

changes to the CONTENT TYPE HIERARCHY (2.1) on the fly: they will be in effect for

both environments immediately.

■	 Things look different if the CONTENT TYPE HIERARCHY (2.1) undergoes a

reorganisation that isn’t backward-compatible. This is the case if, for instance,

content types or attributes are deleted or associations between content types are

modified. Changes like these must only be made to the content model in the

development environment and need to be tested there, leaving the production

environment and its content model completely unchanged. This requires at least

separate ‘logical’ repositories with distinct content models for either environment.

If your content management system doesn’t support logical repositories, separate

physical repository installations become necessary.

The first case is of course easier to handle, but the second is more flexible and gives you

more freedom to evolve your content model. Which case applies depends on the require

ments you wish to implement.

Figure 41 shows an example infrastructure with dedicated development and produc

tion environments. The development environment on the left-hand side largely mirrors

the production environment on the right save for different hardware equipment. Firewalls

15 You can also introduce dedicated environments for development and testing, and in fact many projects

choose to do this. The advantage is that integration testing is more effective in a dedicated testing environment

in which no development takes place. However, this discussion is in no way specific to the handling of web

content, and therefore beyond the scope of this pattern.

138 Chapter 5 Deployment and Infrastructure

Fi
re

wa
ll

Internet
User client User client

Firewall
Demilitarised zone

Load balancer

Web servers Web server

Firewall

Load balancer

Application server

Search engines

Personalisation engines

Application servers

Content repositories

Content management Editor client
server

Figure 41: Dedicated development and production environments

5.2 Dedicated Development and Production Environments 139

separate the Internet from the demilitarised zone and the demilitarised zone from the in

ternal environments. All development and testing activities take place in the development

environment. Since both environments have their own content repository, an evolution of

the content model is possible, as it would only affect the repository in the development

environment. If your content management system supports repository partitions with

distinct content models, the two repositories in the diagram can be implemented as logi

cal repositories (partitions) residing within the same physical repository.

The infrastructure in Figure 41 also features separate installations of stand-alone tools

such as search engine and personalisation engine. Separate installations give you the best

possible freedom for tests in the development environment. If you plan to take new ver

sions of any stand-alone tool live, you need separate installations for these, as only this

approach will allow you to perform the necessary tests. However, if you’re sure that a

stand-alone tool will remain untouched, it is acceptable to have just one installation and

share it across the development and the production environment.

Example resolved

Although currently there are no concrete plans for a relaunch that would require a reor

ganisation of our CONTENT TYPE HIERARCHY (2.1), we make sure that our development

environment and our production environment can, in principle, operate with different

content models.

Fortunately, our content management system allows us to split the content repository

into separate logical partitions that reside in separate database schemas and are therefore

free to use separate content models. This ensures that we are well prepared for the future.

Should computing be introduced as an additional topic one day and should, as a conse

quence, new content types become necessary, we can make these changes in the develop

ment environment while the existing site can operate undisturbed.

Benefits

+	 Website operation and software development are largely decoupled. No software

development activities have an effect on the site that is currently live until the

moment the new software goes into production. Most notably, arbitrary changes

can be made to the content model without an effect on the live site.

+	 Content maintenance and software development are largely decoupled. Content

editors can create and update live content completely independently of any software

development activities.

+	 The dedicated development environment contributes much to the site’s testability.

The environment can serve as a platform for unit tests, system tests, performance

tests and more, resulting in a more accurate and more reliable site.

140 Chapter 5 Deployment and Infrastructure

Liabilities

–	 Maintaining separate development and production environments represents

additional cost of both software and hardware, especially if separate installations of

the content repository or other tools become necessary. Details depend on the

licence models of the tools you use. The additional cost, however, is a price you have

to pay to stay manoeuvrable in the presence of change.

–	 Although the development environment may simulate the production environment

to some extent, these environments will probably not be exactly the same. Firewall

installations and load-balancing configurations could differ, at least in their details,

which puts a small question mark against the reliability of the tests you perform in

the development environment. As important as these tests are, it’s still wise to check

the live site for possible deviations from the development environment.

–	 If a relaunch requires a reorganisation of the CONTENT TYPE HIERARCHY (2.1), the

content models in the development and the production environment are different

and have to be merged before the relaunch can take place. In other words, some

content migration will become necessary immediately before the new site –

including the new content model – can go live. While this migration effort is

underway, no content maintenance will be possible: some period of content freeze is

impossible to avoid. You need to plan for a SMOOTH RELAUNCH (5.3) to tackle this

problem both at a technical and an organisational level.

5.3 Smooth Relaunch

Context

You are in the process of further evolving your site, making changes and additions to your

custom software, and perhaps making changes to the CONTENT TYPE HIERARCHY (2.1)

as well.

You have established DEDICATED DEVELOPMENT AND PRODUCTION ENVIRONMENTS

(5.2) to decouple software development and content maintenance. Now you’re planning

to take the new software live.

Problem

How can you avoid conflicts when relaunching your site?

Example

Despite the separate environments we established for software development and the op

eration of the House of Effects website, we’re aware that when we take software updates

5.3 Smooth Relaunch 141

live, or even relaunch our site, conflicts with content maintenance can occur. This is to be

expected, especially if significant changes are made to the content model.

However, we want to keep the impact on the content editors’ workflow to a minimum,

and we certainly don’t want to take the site off line.

Forces

Once the development of new software has been completed and the software has been

successfully tested, you need to deploy it in the production environment. Most impor

tantly, this includes the ONE WEB APPLICATION FOR CONTENT DELIVERY (5.1) that you

have established and which needs to be taken live to relaunch the site.

Even if your DEDICATED DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.2) are

largely identical, they are still separate environments and they will probably differ in

hardware and network configurations. Software that has been tested in the development

environment is likely to work well in the production environment, but this cannot be

guaranteed. It is therefore wise to perform a final test after the software has been deployed

but before it’s taken live.

Moreover, if the software you plan to release requires a new version of your CONTENT

TYPE HIERARCHY (2.1), there are a few other things that you need to take into account.

In such a case, content migration becomes necessary – existing content has to be trans

formed from the old model to the new one. Despite the possible need to migrate existing

content, you have to avoid downtime during which the site has to be taken off line. For

many sites, downtime is a clear ‘no-go’ due to its severe consequences on business and

reputation.

It’s also desirable to avoid content freezes as much as possible – periods during which

content cannot be created or maintained. Such periods aren’t popular with content edi

tors, although short time spans are usually acceptable.

In fact a content freeze is hard to avoid in the case of content migration, which may take

some time. Typical time spans range from a few hours to a weekend, depending on the

content volume. To avoid conflicts, no editorial changes to the content should be made

during that time. You should nevertheless try to minimise periods of content freeze.

Finally, the fact that different groups of people are involved, and that these groups have

slightly conflicting requirements, adds to the difficulty of a site relaunch. On one hand

there are software people who have an interest in proper development and testing, while

on the other there are the site owners and content editors who want to reduce downtime

and content freezes.

142 Chapter 5 Deployment and Infrastructure

Solution

Apply staging to ensure that you can deploy a new software version to the production

environment while the old version is still up and running. If necessary, migrate the live

content in the staging environment. Launch the new version by a simple change of config

uration, so that an equally simple change allows you to revert to the old version should

anything fail.

A part of the production environment, the staging area has the overall purpose of mak

ing convenient changes between software versions possible. In Architecting Enterprise So

lutions, Paul Dyson and Andy Longshaw make the following recommendation:

‘Introduce a staging environment into the production servers. Implement a mechanism

that allows you to swap the staging environment with the production environment, effec

tively swapping in the new version of the system.’ (Dyson Longshaw 2004)

Although not primarily a test environment, the staging area can also be used for final

tests. As the staging area is a part of the production environment, tests performed there

are particularly meaningful.

The precise role of the staging area in content migration depends on the extent of

changes that have been made to the content model:

■	 If the content model remains unchanged, or if only backward-compatible changes

have been made, the live system (the ‘old’ site) and the system in the staging area

(the ‘new’ site) share the same CONTENT TYPE HIERARCHY (2.1). No content

migration is therefore necessary.

■	 If non-backward-compatible changes have been made to the CONTENT TYPE

HIERARCHY (2.1), then different versions of the content model are used in the live

repository (the ‘old’ content model) and in the development repository (the ‘new’

content model). In this case, you can use the staging area to perform the necessary

content migration: export the entire content from the live repository, transform it

into the schemas of the new CONTENT TYPE HIERARCHY (2.1), and populate the

repository in the staging area by importing the results of the transformation

process. The staging area repository is either a separate installation or a ‘logical’

repository, provided that your physical content repository allows for several logical

partitions with distinct content models. A content freeze is in effect while the

content migration takes place, so no content maintenance will be possible during

that time.

In either case, the process of taking the new version of your site online consists of no

more than a configuration change after the final tests in the staging area have been

approved and any necessary content migration has been completed.16 Moreover, you have

the option of reverting to the old version in the case of an emergency. Should the new

16 The configuration that is changed is usually the load-balancer configuration, as it specifies which of the

servers (virtual hosts) in the production environment are used for the live system.

5.3 Smooth Relaunch 143

time

Launch preparation

Content freeze

Development and test
– develop custom software in the development environment
– if necessary, adjust the content model in the development

environment
– perform tests with special test content in a designated area of the

content repository

Deployment
– deploy the new version of the delivery software to the staging

area

Content migration

if there are significant changes to the content model:

– disable content creation and content maintenance
– migrate the live content onto the new content model (from the

live repository to the staging area repository)
– deploy updates to the content management software

(including validation) to the content management
environment

Final tests
– perform final tests in the staging area

Launch

Content unfreeze

Operation
– take the new version online by swapping the load balancer

configuration
– in case of emergency, go back to the old version
– if there was a content freeze, re-enable content creation and

content maintenance on repository that stores migrated
content

Figure 42: Relaunch process using a staging environment

144 Chapter 5 Deployment and Infrastructure

version of your site turn out not to work properly, you can undo the configuration change

and swap the old version back in.

Ideally you always keep two versions of your site in the production environment – the

one that is currently online and the previous one, until preparations for the next relaunch

begin and servers that still host the previous version become the staging area for the up

coming release.

Figure 42 summarises the overall relaunch process with its major milestones. The steps

shown shaded are those that are always necessary, while those shown unshaded are only

needed if a significant change to the content model has been made.

Finally, there is also an organisational aspect to a site relaunch. Since a relaunch in-

volves various groups of people – site owners, content editors, software developers and

testers above all – collaboration is essential. It is generally good practice to appoint a site

manager who is equally aware both of the software processes and the demands on content

maintenance. The site manager must keep in touch with all stakeholders and ultimately

has to coordinate all activities concerned with the site’s evolution. The site manager has

to negotiate deployment schedules and identify content freeze periods. A good deal of co

ordination by the site manager is the precondition for a smooth ride through the software

release cycles and for an undisturbed content editors’ workflow.

Example resolved

We decide to equip the production environment for the House of Effects website with

four application servers. Two servers will host the live application and share the load be

tween them, while the remaining two servers will form the staging area. Our load-balanc

er ‘knows’ which servers are currently online, and a simple configuration change is all it

takes to let the servers change roles and swap in the new version.

This means that the previous version of our site will be available until the servers that

host it become the staging area for the next release – the place to which the next version

will be deployed, where a possible content migration is performed and where final tests

will be made before taking that version online.

Benefits

+	 Since you can simply swap in a new version, including a new content model if

necessary, downtime for your site can be avoided altogether. Availability is

improved, as you never have to take the site off line, which clearly is a great plus.

+	 Periods of content freeze are reduced to a minimum. Even if the content model

undergoes significant changes or a complete reorganisation, a content freeze is

necessary only while the content migration takes place. The content editors’

workflow isn’t disturbed more than absolutely necessary.

5.3 Smooth Relaunch 145

+	 Testability is improved, because new software can be tested after it has been

deployed to the production environment and after a possible content migration has

taken place. What you test is exactly the same version that will be swapped in and

go live after you make the necessary configuration change.

+	 As you retain the option of reverting to the old version in the event of a failed

relaunch, the site’s reliability is increased. This fall-back strategy is available to you

even if that version uses an older content model. Of course this fall-back strategy

isn’t what you want, and of course you’ll perform the necessary tests to avoid such

a scenario, but if things do go wrong, going back to the old version is still better than

being unable to do anything.

+	 As the site manager coordinates all software deployments, relaunches, content

freezes and so on, collaboration between software developers and content editors is

improved. There won’t be any unexpected periods during which no content mainte

nance is possible, let alone any unexpected downtime. Content freezes and other

issues that require coordination can be planned ahead comfortably.

Liabilities

–	 The introduction of a staging area requires you to equip your production

environment with additional servers. If you want to be perfectly flexible and keep the

two most recent versions available at all times, you need twice the number of servers

as you would for the live system alone. There is not much organisational overhead,

as all servers are likely to be controlled by one load-balancer, but of course the

additional servers represent additional cost for operating the site.

–	 The solution allows you to perform content migration without taking the site off

line, yet the price you pay for this is to have two ‘logical’ repositories in the

production environment, at least if you expect significant changes to the content

model. If your content management system is able to partition the content base and

use different content models simultaneously, there is not much of a problem. If it

isn’t, you’ll need two separate repository installations to store content based on

different content models. In the latter case, you’ll probably face extra costs, with the

details depending on your content management system’s licence model.

–	 Although you keep the content freeze to a minimum, it still has to be handled with

care. A complete content migration can take a few hours or even a couple of days,

depending on how large your content base is, and during that time no content

maintenance is possible. It’s wise to choose a time when no urgent content updates

are expected.

–	 The role of a site manager admittedly represents an additional organisation effort,

and ultimately increased cost. Someone has to be paid to do the job, after all, but

it’s a worthwhile cost, as the cost of unexpected downtime can easily exceed the cost

of proper site management.

Planning a Project

In the previous chapters we studied a collection of design patterns for custom software

development of an advanced website. Now I’d like to change the perspective and look at

web development from a project management point of view.

This chapter describes the tasks and activities that must appear on a typical web

project’s agenda, where ‘web project’ refers to the kind of project that seeks to establish

an advanced website or web platform, and the necessary custom software development in

particular. I won’t be too specific, as details vary from project to project. Web projects

can take on quite different forms and it is pointless to come up with a prefabricated

project plan and assume that every project could use it. It’s the old rule again: one size

does not fit all.

Nonetheless, I’d like to present, in the form of a checklist, those topics that have to be

addressed in a typical web project. The list should give you a fairly realistic impression of

what a project plan might look like. Feel free to tailor this list to the needs of your specific

project and make additions and modifications as you see fit.

Figure 43 gives an overview, while the subsections that follow list the tasks for the indi

vidual work packages. For convenience, I’ll add references (following an arrow symbol)

to relevant patterns from this book, and to other books in a few cases.

This chapter does not a assume a specific software development method, though to

some degree I’ll favour an agile approach. Agile methods are characterised by iterative

processes that adapt well to changing requirements and by the close collaboration of eve

rybody involved in a project. The principles of agile development are available on the web

(www.agilemanifesto.org).

An agile approach seems well-suited for a web project, as it favours quick release cycles,

early customer feedback and increased manoeuvrability – all things that are of para

mount importance for projects that aim at a medium that is evolving as quickly as the

web.

Various agile methods have been described in the literature (Beck 2004, Schwaber Bee

dle 2008, Cockburn 2002). This is not the place to discuss the pros and cons of any of

147

148 Planning a Project

them, although I’d recommend that you make yourself familiar with one of these more

straightforward and more light-hearted approaches to software development before you

start your web project.

Requirements analysis Architecture

Requirements
for content
management

Content
management
components

Design and implementation

Framework and tool
integration

Content services and
domain logic

View components

System documentation

User documentation

Documentation

Launch / relaunch

Deployment / staging Content migration Relaunch management

Server-side requirements for
content Delivery

Client-side requirements for
content delivery

Non-functional requirements
for content delivery

Architecture
fundamentals

Tools and frameworks

Infrastructure and security

Figure 43: Work packages of a web project

Requirements Analysis 149

Requirements Analysis
Agile methods suggest that requirements analysis is not performed ad infinitum, but in

stead that you analyse the functional and non-functional requirements only to an extent

that allows you to get properly started with the next steps, which include design and im

plementation.

Much in this vein, the work packages that follow aren’t necessarily meant to produce

overly detailed specifications. They simply summarise those things that are worth consid

ering in the early stages of a web project. Discuss important requirements with your cus

tomer and show them your models and sample web pages. Use the feedback you receive

to refine and improve your requirements analysis as you go. And as soon as it feels safe to

do so, move on to design and implementation.

Server-Side Requirements for Content Delivery

Content model
■	 Analyse the content types your site requires. Focus on domain-driven content

types, not on technical ones.

■	 Specify what kind of content users should be able to submit. Define special

content types for user-generated content.

■	 Establish what relationships hold between content elements. Express this

through associations between content types.

■	 Add attributes for classification purposes (tags, categories) to all content types.

Make sure you meet the requirements that the intended search functionality has

on meta information.

■	 Specify how users will be able to get involved in content classification (tags,

folksonomies, ratings).

→ CONTENT TYPE HIERARCHY (2.1)

→ TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4)

→ DECOUPLING OF EDITED CONTENT AND USER CONTRIBUTIONS (4.5)

150 Planning a Project

Navigation and search
■ Set up an initial navigation hierarchy. Content editors will later be able to adapt

the navigation hierarchy as they see fit, but an initial hierarchy is necessary to get

you started.

■ Think about possible examples of dynamic content linking.

■ Specify the search functionality for your site (full-text search, keyword search,

category-based search, fuzzy search).

→ DECOUPLING OF CONTENT AND NAVIGATION (2.2)

→ DYNAMIC CONTENT LINKING (2.3)

→ TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4)

Personalisation
■ Define what user segments will exist, and the extent to which content editors

will have to define criteria for grouping users into segments. User segments form

the targets for the personalisation strategies that apply.

■ Define the personalisation strategies for your site.

■ Define possible algorithms that underlie these personalisation strategies.

Examples include recommendation strategies and algorithms for assigning users

to user segments.

■ Decide what monitoring is required for the personalisation efforts.

→ CONTENT FILTERS (4.1)

Additional functionality
■ Check what additional functionality your site requires (community support

such as forums or chatrooms, shop software, etc.).

■ Analyse the requirements on operations (reports, statistics, etc.).

→ (Schümmer Lukosch 2007)

Requirements Analysis 151

Client-Side Requirements for Content Delivery

Page design
■ Define the necessary page types. A page type for each domain-motivated content

type is the norm, plus page types for search forms and the like.

■ Design wire frames for the all page types, outlining how the pages are in

principle composed from smaller page elements.

■ Engage a web designer to provide sample pages (preferably in XHTML with the

necessary CSS sheets) for the different page types. Several sample pages are

necessary if different views are required (for example for different output

channels, such as standard browsers and mobile devices). Make sure these

sample pages meet the layout requirements for your site.

→ (Scott Neil 2009)

Client-side functionality
■ Decide on realistic assumptions about browser technology, taking the target

users’ expected software infrastructure into account.

■ Specify the client-side functionality (later to be implemented with Ajax

technology) for all page types.

→ SENSIBLE CLIENT-SIDE INTERACTION (1.3)

→ SELF-CONTAINED PAGES (3.6)

Non-Functional Requirements for Content Delivery

Performance requirements
■ Analyse the performance requirements that hold for your site, especially the

average and the maximum response time (assuming an average and a maximum

number of users).

Availability requirements
■ Analyse the required average availability.

■ Analyse what downtimes and what content freeze intervals are acceptable

during relaunch periods.

Scalability requirements
■ Analyse the expected number of concurrent users at present.

■ Analyse the expected number of concurrent users in the future.

152 Planning a Project

Maintenance requirements
■ Get an idea of features you may have to add to the site in the long run. More

generally, get an idea of how the site might evolve in the future. This will give you

a feel for the importance of maintainability.

Security requirements
■ Analyse security requirements for authentication, privacy, etc. based on the site’s

criticality.

→ (Schumacher Fernandez-Buglioni Hybertson Buschmann Sommerlad 2006)

Requirements for Content Management

Workflow
■ Analyse what workflows are desired for the content editing process (four-eye

workflow, etc.).

■ Analyse the extent to which content validation has to be integrated into these

workflows.

→ WORKFLOW-BASED VALIDATION (2.5)

User Participation
■ Analyse how user-generated content should be managed, and what approval

processes should be in effect.

→ INPUT CHANNEL FOR USER-GENERATED CONTENT (4.6)

Architecture
Before you can start with the implementation, you need to make a few fundamental de

cisions about software architecture. Moreover, you have to select the tools and frame

works that you wish to use. In addition there are dependencies, as the architecture you

define has an impact on the tools you choose and, vice versa, the tools that are available

to you may impose constraints on the architecture that you can define.

The following work packages cover the essential aspects of software architecture for a

web project.

Architecture 153

Architecture Fundamentals

Technology
■	 Decide on an overall technology. A common option is a Java-based platform

(including Java, JSP, XML, etc.). Alternative options include platforms such as

PHP or Ruby on Rails. Which of these options should be given preference

depends on the demands of your specific project, on what technology is readily

available and on the available development skills. In general, Java is considered

fine for expressing domain logic, so sites rich with domain logic may favour a

Java-based approach, while on the other hand PHP or Ruby may appear more

lightweight and may offer quicker release cycles. In principle, the patterns in this

book can be applied regardless of the technology you choose, although many

patterns suggest, for maintainability’s sake, the reduction of scripting code to a

minimum.

Overall architecture
■	 Define an overall architecture, consisting of several components (content

management system, search engine, personalisation engine etc.). Define how

these components interact (synchronous versus asynchronous communication).

■	 Develop a layered server-side architecture for dynamic content delivery,

motivated by a strict separation of concerns.

■	 Organise the server-side functionality as a set of services, in the sense of a

service-oriented architecture.

■	 Decide on an overall caching strategy. In particular, make a decision about the

caching of content objects versus the caching of HTML fragments (or both),

taking the possible effects of personalisation into account.

■	 Decide on the extent to which you wish to apply Ajax to support client-side

event handling.

→ CONTENT MANAGEMENT AND CONTENT DELIVERY (1.1)

→ DYNAMIC CONTENT DELIVERY PLUS CACHING (1.2)

→ SENSIBLE CLIENT-SIDE INTERACTION (1.3)

→ LISTENER-BASED SYNCHRONISATION (1.4)

→ LAYERED ARCHITECTURE FOR CONTENT DELIVERY (1.5)

→ CONTENT SERVICES (3.1)

→ (Buschmann Meunier Rohnert Sommerlad Stal 1996)

→ (Fowler 2003)

→ (Dyson Longshaw 2004)

154 Planning a Project

Tools and Frameworks

CMS selection
■ Select a content management system that fits your choice of technology.

→ See the checklist in the next part of the book, Choosing a Content Management

System.

Framework integration
■ Plan the use of web development frameworks. Such frameworks usually support

a layered server-side architecture. Frameworks are available for different

technologies (Struts, Spring, Java Server Faces in the Java world, Zend in the

PHP world, Ruby on Rails for Ruby).

→ LAYERED ARCHITECTURE FOR CONTENT DELIVERY (1.5)

Tool integration
■ Plan the use of other third-party tools (search engine, personalisation engine,

shop software, community software such as a chatroom or a forum). Make sure

you select tools that fit your technology of choice and that integrate smoothly

with existing tools and frameworks, most notably your content management

system. Make sure you take licensing questions (for example commercial versus

open source) into account when you make your decisions.

→ LISTENER-BASED SYNCHRONISATION (1.4)

Infrastructure and Security

Infrastructure
■ Set up the technical infrastructure for your site, especially the hardware

equipment (web servers, application servers, load balancers, etc.). Make sure

you meet performance, availability and scalability requirements.

→ (Dyson Longshaw 2004)

Security
■ Set up the security mechanisms for your site, for example a demilitarised zone,

firewalls, authentication and authorisation mechanisms.

→ (Schumacher Fernandez-Buglioni Hybertson Buschmann Sommerlad 2006)

Design and Implementation 155

Design and Implementation
Once you have a reasonably good idea of the requirements for the site and the overall soft

ware architecture has been defined, you can move on to design and implementation.

In an agile project, design and implementation aren’t performed in strict sequential or-

der, but instead follow an iterative approach. The following work packages describe the

areas that need to be covered by design and implementation, preferably in the course of

several iterations, each of which will provide you with valuable feedback for the next.

An iterative approach also makes refactoring easier. Refactoring contributes to soft

ware maintainability and paves the way towards sustainable software architectures (Fowl

er 1999). The patters in this book can help you with design and refactoring activities

alike.

Content Services and Domain Logic

Content hierarchy
■ Extend the content model you have obtained in the analysis stage with

‘technical’ content types that aren’t motivated by the application domain, but

represent concepts such as navigation or configuration.

■ Relate content types through association and abstraction.

→ CONTENT TYPE HIERARCHY (2.1)

→ DECOUPLING OF CONTENT AND NAVIGATION (2.2)

→ DYNAMIC CONTENT LINKING (2.3)

→ TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4)

Services
■ Define and implement a set of services that represent the domain logic for your

site. Services will cover content, search functionality, navigation and perhaps

more.

■ If necessary, integrate caching mechanisms into these services where

appropriate. This depends on the caching strategies that your overall

architecture requires and the extent to which these strategies are made available

by your content management system.

→ CONTENT SERVICES (3.1)

→ NAVIGATION MANAGER (3.2)

→ SEARCH MANAGER (3.3)

156 Planning a Project

Personalisation
■ Define content filters that implement personalisation strategies by assigning

content to specific user segments.

■ If you use a dedicated personalisation engine, integrate it into your server-side

architecture. Consider applying asynchronous communication.

■ Implement mechanism for monitoring personalisation effectiveness.

→ CONTENT FILTERS (4.1)

→ ASYNCHRONOUS PERSONALISATION ENGINE (4.2)

→ SEGMENT-SPECIFIC CACHING (4.3)

→ CONDENSED EFFECTIVENESS REPORTS (4.4)

User participation
■ Implement mechanisms for accepting and storing user-generated content.

■ Add services for handling user-generated content to your service-oriented

architecture.

→ DECOUPLING OF EDITED CONTENT AND USER CONTRIBUTIONS (4.5)

→ INPUT CHANNEL FOR USER-GENERATED CONTENT (4.6)

Frameworks and Tool Integration

Frameworks and tool integration
■	 Provide integration mechanisms for all external tools (search engine,

personalisation engine, shop software, community software, etc.). This typically

includes specific adapter components as well as communication components

such as listeners.

→ LISTENER-BASED SYNCHRONISATION (1.4)

→ SEARCH MANAGER (3.3)

→ ASYNCHRONOUS PERSONALISATION ENGINE (4.2)

Design and Implementation 157

View Components

Template hierarchy
■ Design a hierarchy of templates for page generation.

■ Implement the necessary templates so that they generate the XHTML that

matches exactly the pages and page fragments the web designer has provided.

→ SYSTEM OF INTERACTING TEMPLATES (3.4)

→ TEMPLATE PER VIEW (3.5)

→ SELF-CONTAINED PAGES (3.6)

Client-side functionality
■ Implement the client-side functionality with Ajax.

→ SENSIBLE CLIENT-SIDE INTERACTION (1.3)

→ SELF-CONTAINED PAGES (3.6)

→ (Mahemoff 2006)

Content Management Components

Configuration
■ Create the necessary configurations that inform the content management system

of the content model (usually an XML file).

■ Create more configurations if necessary. Typical examples include the

customisation of the editor client, workflow definitions etc.

Workflow and event handling
■ Implement the necessary validation mechanisms and integrate them into the

workflow processes.

■ Implement the custom repository listeners. Examples include listeners that

notify the search engine or the personalisation engine of content changes.

→ LISTENER-BASED SYNCHRONISATION (1.4)

→ WORKFLOW-BASED VALIDATION (2.5)

→ ASYNCHRONOUS PERSONALISATION ENGINE (4.2)

158 Planning a Project

Documentation
In agile development the idea is to cut down documentation to what is really needed.

Most websites, even truly advanced web platforms, will hardly require extensive docu

mentation – producing loads of documents will get you nowhere fast.

However, some documentation is necessary. The most important goal here is to capture

knowledge that will be useful in later project stages, or once the project has been com

pleted and the team has dissolved. Important targets of documentation include the fun

damental models, the big picture of the overall architecture, and the rationale behind the

design decisions that were made (Rüping 2003).

The following section describes what’s worth documenting in a typical web project.

You can mine the necessary information from team discussions or from special project

retrospectives (Kerth 2001).

System Documentation

Requirements specification
■ Provide a requirement specification. In most cases all that’s required is a brief

document that summarises the results from the requirements analysis phase and

adds the sample web pages provided by the web designer.

■ Document the relevant non-functional requirements.

Architecture sketch
■ Provide an architecture sketch that documents the important decisions

regarding the overall software architecture, including the integration of

frameworks and third-party tools.

Design documentation
■ Document the content model, including the attributes and meta attributes for

every content type.

■ Document the relevant design decisions. Web project teams are often relatively

small. In an attempt to avoid frequent and costly documentation updates, it can

be a good idea to document the relevant design decisions only at the end of a

release cycle (but not in advance).

Launch / Relaunch 159

User Documentation

Content management manual
■ Provide a brief manual for content editors in addition to the documentation of

your content management system. The focus of the manual should be on

concrete usage guidelines for your specific site.

■ Offer interactive workshops to demonstrate use of the editor client.

Operations manual
■ Provide a brief operations manual. Typical contents include server

configurations, tool configurations, resource requirements etc.

Launch / Relaunch
A web project needs to be concerned with launching or relaunching the site. This covers

aspects of deployment, testing, content migration and management. The following work

packages summarise these issues.

Deployment / Staging

Installation
■	 Install all tools (content management system, database, search engine,

personalisation engine, shop software, community software, etc.) and

frameworks in all environments (development environment, staging

environment, live environment).

■	 Perform all necessary configurations.

160 Planning a Project

Deployment
■ Establish the necessary software configuration techniques (version control,

build mechanisms, etc.).

■ Devise mechanisms for deploying content delivery software to the application

servers of the staging environment or the live environment.

■ Devise mechanisms for deploying configuration files to the staging environment

or the live environment.

■ Devise mechanisms for deploying workflow configurations and the like to all

content editor installations.

→ ONE WEB APPLICATION FOR CONTENT DELIVERY (5.1)

→ DEDICATED DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.2)

→ SMOOTH RELAUNCH (5.3)

Testing
■ Establish integration tests and performance tests in the staging environment.

Content Migration

Migration
■	 Analyse the need for possible content migration as a consequence of the

evolution of the content model.

■	 Develop tools for content migration if necessary.

→ DEDICATED DEVELOPMENT AND PRODUCTION ENVIRONMENTS (5.2)

→ SMOOTH RELAUNCH (5.3)

Relaunch Management

Processes
■	 Plan deadlines for software development, unit tests, staging, integration tests,

go-live.

■	 Plan periods of content freeze if necessary (in the case of content migration).

■	 Coordinate all efforts between site owners, content editors and software

developers.

→ SMOOTH RELAUNCH (5.3)

Choosing a Content
Management System

The patterns in this book are independent of specific technologies or specific tools. In par

ticular, they don’t assume any specific content management system. But at some point

you may have to make the decision for a specific tool, either when you set up the software

components for a new site or when you consider replacing the content management sys

tem used for an existing site.

Content management systems vary greatly. There are plenty of systems on the market,

and they differ with regard to scope, usability, technology, licence model and more. Some

support a clean and sustainable software architecture better than others. You need to find

a content management system that suits your needs.

The following checklist presents a series of questions that can help you evaluate a con

tent management system. This doesn’t mean that there’s any one single correct answer to

any of these questions. There isn’t – different kinds of solutions are possible and require

ments differ from one project to the next. Still, evaluating a tool against this checklist

should give you a feel for how well the tool matches your requirements.

The checklist addresses a wide range of topics. Figure 44 gives a short overview.

Throughout the checklist references to individual patterns appear whenever the applica

tion of a pattern is directly affected by a feature that a content management system may

or may not have. In these cases, it may be worth analysing the extent to which the tool in

question will allow you to implement the solution the pattern suggests. In this way the

checklist should help you select a tool that offers the best possible support for setting up

a software architecture that is well designed, sustainable and technically sound.

161

162 Choosing a Content Management System

Tool Evaluation

Technology and
architecture

Content management

Vendor information

Content delivery

Figure 44: Areas of tool evaluation

Technology and Architecture

Technology
■ What is the basic underlying technology (Java, PHP, Ruby, others) and how does

it fit into the technology prevailing in your organisation?

■ What formats are used for storing content (XML, proprietary formats)?

Architecture
■ How is the separation of content and layout implemented?

■ How is dynamic page generation and dynamic delivery supported?

■ Does the system offer any caching mechanisms? If so, which?

■ Is there an API that offers access to the content repository?

■ How can custom software be integrated?

■ Is it possible to register custom repository listeners that react to workflow

events?

→ CONTENT MANAGEMENT AND CONTENT DELIVERY (1.1)

→ DYNAMIC CONTENT DELIVERY PLUS CACHING (1.2)

→ LISTENER-BASED SYNCHRONISATION (1.4)

→ LAYERED ARCHITECTURE FOR CONTENT DELIVERY (1.5)

Vendor Information 163

System components
■ What are the system’s major components?

■ Does the system include its own search engine? If not, is it possible to integrate

a search engine into the content delivery components?

■ Does the system include its own personalisation engine? If not, is it possible to

integrate a personalisation engine into the content delivery components?

■ Can shop software be integrated? How?

■ Can community software be integrated? How?

■ If the system is used alongside other web applications, is it possible to integrate

a single sign-on component?

Non-functional properties
■ What performance can the system guarantee? Are any measurements available?

■ Does the system scale to a larger number of users? Can an installation be

distributed over several machines? How exactly?

■ What security mechanisms does the system include?

System requirements
■ What operating systems can be used?

■ What database system can be used?

■ What web server and application server can be used?

■ What are the hardware requirements?

Vendor Information

Licence model
■ What kind of licences are available (depending on the number of users,

depending on the number of processors, etc.)?

■ Is the system an open source tool?

■ Is it possible to have separate installations of the system in the development, the

staging and the live environments? How many licences would that require?

Support and references
■ What kind of support does the vendor offer?

■ Are any reference websites available that are implemented using the system in

question?

164 Choosing a Content Management System

Content Management

Content modelling
■ How can content models be specified? How powerful can these models be? What

kinds of relationships can be expressed between content types? Is there a meta

model for content modelling?

■ How are content models made known to the system?

■ What meta attributes are available? Which of them are managed automatically

(author, creation date, publication date, etc.)?

■ What support for content classification exists (tags, categories)?

■ What content types are possible? Can multimedia objects or other blobs be

handled?

■ Is it possible to let one content type inherit from another? Is it possible to define

‘abstract’ content types?

→ CONTENT TYPE HIERARCHY (2.1)

→ TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4)

Link management
■ Is there internal link management? Are content elements prevented from

deletion if they are referenced from other content elements? Is the system able to

avoid dangling (internal) links?

■ Can links to external sources be checked?

■ Is there a method of finding all referrers to a specific content element (that is, all

content elements that hold a reference to it)? If so, is this method available to the

custom software components?

→ CONTENT TYPE HIERARCHY (2.1)

→ DECOUPLING OF CONTENT AND NAVIGATION (2.2)

→ DYNAMIC CONTENT LINKING (2.3)

→ DECOUPLING OF EDITED CONTENT AND USER CONTRIBUTIONS (4.5)

Content evolution
■ Is it possible to apply different content models to separate content partitions at

the same time (as can be necessary if the content model evolves)?

■ How else is the evolution of content models supported?

→ SMOOTH RELAUNCH (5.3)

Content Management 165

Content import and export
■ How can content be imported?

■ How can content be exported?

Editor client
■ What kind of editor client is provided? Is there a client application? If so, what

is the roll-out process like? Is there a web client?

■ Is it possible to customise the editor client (or clients)? How? To what extent?

■ Does the editor client provide any built-in content validation mechanisms?

Which?

■ Does the editor client provide a spelling checker? In what languages?

■ Does the editor client meet requirements for ergonomics?

→ WORKFLOW-BASED VALIDATION (2.5)

Workflow
■ Is it possible to specify custom workflows (a four-eye workflow as well as

others)?

■ How can permissions be specified for content editors?

■ Can custom repository listeners be connected to arbitrary workflow events such

as creation and publication?

■ What other kinds of notification are supported?

■ Does the editor workflow include any built-in content validation mechanisms?

■ Is it possible to integrate custom validation mechanisms?

→ LISTENER-BASED SYNCHRONISATION (1.4)

→ WORKFLOW-BASED VALIDATION (2.5)

166 Choosing a Content Management System

Content Delivery

Controller logic
■ Does the system offer support for content delivery, for example controller logic

that maps incoming page requests onto template invocations?

■ Alternatively, is it possible to use web frameworks such as Spring, Struts (in the

Java world) or Ruby on Rails (for Ruby) to provide the necessary controller

logic?

■ If the system offers some controller logic, how can this logic be integrated into

an application server or a servlet engine?

→ CONTENT SERVICES (3.1)

→ NAVIGATION MANAGER (3.2)

Domain logic
■ Is there an easy and straightforward way to integrate custom components that

implement the domain logic?

■ Does the system support a service-oriented architecture?

■ How can custom components use the API for accessing the content repository?

■ Does the system provide any lookup mechanisms for content elements (that is,

mechanisms that retrieve content elements not known by their internal id, based

on their attributes or their path in the repository)? How fast are these lookup

mechanisms?

→ CONTENT SERVICES (3.1)

→ NAVIGATION MANAGER (3.2)

Page generation and page delivery
■ Does the system offer any mechanisms for generating web pages from content

elements, such as a system of templates?

■ Are users free to define their own templates? How?

■ Is it possible to set up a hierarchy of templates that call each other?

■ Does the system support multiple sites (for example intranet and Internet),

multiple output channels, multiple output formats, multiple languages? How?

→ SYSTEM OF INTERACTING TEMPLATES (3.4)

→ TEMPLATE PER VIEW (3.5)

Content Delivery 167

Search engine
If the system includes a search engine:

■ What kind of content elements can be indexed (text, XML, PDF, blobs)?

■ Will only meta attributes be indexed, or is a full-text search possible, for

example for text and PDF objects?

■ What meta attributes are covered by a search (author, publication date, tags,

categories)?

■ How fast is the search engine?

If the system does not include a search engine:

■ What search engines are recommended? Are there any that are known to

integrate well with the system?

→ TAXONOMY BASED ON KEYWORDS AND CATEGORIES (2.4)

→ SEARCH MANAGER (3.3)

Personalisation engine
If the system includes a personalisation engine:

■ How can content be assigned to individual users? Does the personalisation

engine implement concepts such as user roles or user segments?

■ Does the personalisation engine operate in synchronous or asynchronous mode?

■ How does the system support caching in the presence of personalisation? What

system performance can be expected?

■ Does the system offer any support for monitoring the delivery of personalised

content?

If the system does not include a personalisation engine:

■ Is it possible to integrate a third-party personalisation engine?

■ If so, how exactly? How will the persistent storage of that personalisation engine

be synchronised with the content repository?

→ ASYNCHRONOUS PERSONALISATION ENGINE (4.2)

→ SEGMENT-SPECIFIC CACHING (4.3)

→ CONDENSED EFFECTIVENESS REPORTS (4.4)

Final Remarks

A decade ago web projects were a challenge, not least because the technology was new

and little experience was available. Although today the technology it still evolving, the

web isn’t new any more: by now there is loads of content on the web, there are web appli

cations all over the place, and there are many sites for web-based user collaboration.

Given the large number of web projects that have been carried out over the last couple

of years, it is no surprise that a few good practices have emerged. This doesn’t mean that

a web project cannot still be a challenge, but at least there is some experience to draw on.

The patterns in this book present this kind of experience. The whole idea of patterns

is to describe what has worked well in the past, and here we are with a collection of twen

ty-five patterns that have been mined from a series of successful web projects.

The patterns address content modelling and management, content delivery and pres

entation, personalisation and user involvement, deployment and infrastructure, and so

cover a large spectrum of topics that are relevant to a web project that keeps a focus on

content. In addition, the two checklists should serve as a practical guide for planning a

web project and for an evaluation of commercially available content management sys

tems.

Obviously web technology is still moving fast, and future solutions will look different

from those today. The focus of this book is on design principles, however, not on specific

tools or technologies. The patterns represent solid experience, have long-term relevance,

and should put you in a position to design your own solutions. I hope that the patterns

prove to be helpful for your projects and that you will enjoy using them.

169

Pattern Thumbnails

For convenience, the following pages contain thumbnails of the individual patterns in the

book. You can use these thumbnails to get an overview of the pattern collection as a

whole, or to gain a first impression of individual patterns that you find interesting.

Architecture Overview

Content Management and Content Delivery (1.1)

How can you accommodate both the users’ and the content editors’ needs?

Provide software for two distinct purposes. On one hand, you need content management

software that supports the content editors in their job. On the other, you need content de

livery software that makes content available to the web and controls possible user inter

action. You won’t have to develop the complete software yourself – a content

management system typically provides some of the necessary functionality – but you

must expect to develop a certain amount of custom software.

Dynamic Content Delivery plus Caching (1.2)

How can you ensure that the site is always up-to-date and reflects the latest changes made

by the content editors? How can you lay the foundation for interaction and personali

sation?

Combine dynamic content delivery with powerful caching strategies. Choose a content

management system that generates web pages on request and offers caching mechanisms

sufficient to meet your performance requirements.

171

172 Pattern Thumbnails

Sensible Client-Side Interaction (1.3)

How can you ensure that your site features the desired degree of interaction and user

participation while maintaining reasonable system performance?

Use Ajax-based client-side interaction, but use it with care. Retain the concept of a web

page and apply server-side event handling for all navigation purposes, but also apply

event handling inside the browser to adjust the way in which information elements are

presented within a web page. Combine this with asynchronous server calls if the browser

has to load data from the server.

Listener-Based Synchronisation (1.4)

How can you avoid inconsistencies between content in the repository and content stored

by other components?

Establish repository listeners – asynchronous processes that react to specific workflow

events and notify interested components of relevant changes made to content artefacts in

the repository.

Layered Architecture for Content Delivery (1.5)

How can you prevent the server-side custom software for content delivery from

becoming difficult or impossible to maintain? How can you avoid a server-side archi

tecture that doesn’t scale properly?

Define a server-side architecture that consists of three distinct layers. The bottom layer en

capsulates all access to the content repository. The middle layer provides the domain log

ic. The top layer contains the templates that are used for page generation.

Content Management

Content Type Hierarchy (2.1)

How can you ensure that content editors can maintain artefacts that are meaningful to

them in a way that is straightforward and avoids redundant information?

Introduce a content model in which content types represent domain-motivated artefacts

consisting of basic building blocks such as texts, pictures, multimedia objects and links.

Apply object-oriented modelling techniques to express abstraction and association rela

tionships between content types.

Content Management 173

Decoupling of Content and Navigation (2.2)

How can you ensure that content editors can organise both the content and the

navigation hierarchy in a straightforward and flexible way? How can you support

different content hierarchies for different sites, like an intranet and an extranet, or for

different countries or distribution channels?

Decouple the navigation hierarchy from the content. Introduce dedicated navigation

nodes that span the navigation hierarchy. Allow the navigation nodes to be attributed

with configuration information if the navigation hierarchy needs to vary across different

contexts.

Dynamic Content Linking (2.3)

How can frequently changing content be maintained without burdening the content

editors with the tedious job of manually linking the new content into the navigation

hierarchy?

Establish dynamic lists that, instead of maintaining links to any content elements, specify

criteria for potential list items, meaning that when a page featuring a dynamic list is gen

erated, the repository is searched for content elements that match these criteria.

Taxonomy Based on Keywords and Categories (2.4)

How can you lay the foundations for an effective and powerful search function?

Build a taxonomy that combines arbitrary keywords with well-defined content catego

ries. Make sure that individual content elements can be attributed with lists of keywords.

In addition, establish a set of possibly overlapping content categories to which individual

content elements can be assigned.

Workflow-Based Validation (2.5)

How can you avoid content elements with illegal or inconsistent attribute values?

Apply validators that check content for plausibility. Integrate these validators into the

content editors’ workflow in two ways: validators that reject illegal attribute values

should be applied during the editing process, while validators that check for completeness

and consistency should only be applied on publication.

174 Pattern Thumbnails

Content Delivery

Content Services (3.1)

How can you avoid domain logic being scattered all over your server-side components?

Implement services that provide the content aggregates that the various pages of your site

may require. This begins with single content elements from the repository, but also in

cludes lists or compositions of content elements. If necessary, content services must apply

personalisation. Whatever the content services make available, it must be ready to be

processed by the presentation logic.

Navigation Manager (3.2)

How can you prevent templates and other view components from being burdened with

the calculation of navigation-related information?

Establish a navigation manager that provides the various kinds of navigation-related in

formation that your site requires. Evaluating relationships between content elements and

mapping navigation nodes onto URLs, the navigation manager encapsulates the link

management for your site.

Search Manager (3.3)

How can you implement a powerful and user-friendly search function and reduce the

number of expensive search queries?

Implement a search manager that receives and handles all search requests throughout a

user’s session. The search manager contacts the search engine and makes the search re

sults available to the components that will process them. For convenience, the search

manager may store previous queries and results, and it can check queries for plausibility

before forwarding them to the search engine.

System of Interacting Templates (3.4)

How can you avoid, to a large extent, redundant template code and inefficient page

generation?

Define a system of interacting templates, from templates for the full page down to tem

plates for individual page elements. Reuse templates for smaller page elements wherever

possible. Make sure you extract any state-specific or personalised page elements into tem

plates of their own, as this increases the potential for caching HTML fragments.

Personalisation and User Participation 175

Template per View (3.5)

How can you support the different views that content elements may assume on different

pages, for different variations of your site or for different output channels?

Define a template for each distinct view a content type has to support. Typical examples

include a full view, a teaser view, a text-only view or views for specific output channels

such as mobile devices. This way all individual templates can be quite simple, responsible

only for assembling the markup necessary for one specific view of a content element.

Self-Contained Pages (3.6)

How much client-side interaction is sensible in terms of usability? How can you deliver

the required client-side components to the browser?

Ensure that you create self-contained pages – pages that are sufficiently rich with content

that visitors don’t have to leave a page to look up closely related information. This is es

pecially important for pages that feature multimedia objects that require a specific time

to be viewed. Use Ajax components to implement the necessary interaction on these pag

es and integrate the client code into your templates.

Personalisation and User Participation

Content Filters (4.1)

How can you let content editors define personalisation strategies?

Implement filters for content selection. Integrate these filters into the domain logic for

your site: implement services that apply these filters to deliver content only if it matches

an individual user’s profile. Allow content editors to express personalisation strategies by

configuring how the content filters work in detail.

Asynchronous Personalisation Engine (4.2)

How can you implement personalisation strategies in an efficient way?

Identify the complex algorithms necessary for assigning content to individual users or

user groups. Take these algorithms off line to a dedicated personalisation engine that

runs asynchronously and independently from the application server that handles HTTP

requests.

176 Pattern Thumbnails

Segment-Specific Caching (4.3)

How can you avoid efficiency problems with content delivery in the presence of person

alisation?

Identify content elements that are specific to user segments rather than individual users.

If the number of segments is not large, implement segment-specific content services and

segment-specific templates, and apply caching to the resulting personalised content ele

ments and HTML fragments.

Condensed Effectiveness Reports (4.4)

How can you provide content editors with effective feedback on the success of the person

alisation strategies they have implemented?

Measure the effectiveness of personalisation strategies by comparing the click ratio of

personalised teasers with that of non-personalised ones. The click ratio relates the

number of times a teaser’s underlying link was followed to the number of times the teaser

was displayed. Use a reporting tool to apply metrics and condense the results.

Decoupling of Edited Content and User Contributions (4.5)

How can you invite user-generated contributions without disturbing workflow processes

for edited content?

In your overall content model, decouple edited content from user contributions, whether

they are user-generated content, tags, ratings or anything else. Avoid references from ed

ited content to user contributions, and maintain the necessary relationships between ed

ited content and user contributions as attributes of user contributions alone.

Input Channel for User-Generated Content (4.6)

How can you ensure that user-generated content fits well into your content base?

Accept user-generated content only if it is submitted in a format that you endorse. Ap

propriate formats typically include the markup used by wikis, as well as standard formats

for pictures and videos. If necessary, apply automatic transformations to adapt user-gen

erated content to meet specific requirements.

Deployment and Infrastructure 177

Deployment and Infrastructure

One Web Application for Content Delivery (5.1)

How can you establish a straightforward deployment process for your content delivery

software?

Define a single web application for all components directly involved in content delivery.

This includes the custom components that you have developed for content retrieval, do-

main logic, personalisation and HTML generation, as well as the necessary configuration

data. Define separate web applications only for loosely coupled tools, such as a stand

alone search engine or a personalisation engine connected through asynchronous com

munication.

Dedicated Development and Production Environments
(5.2)

How can you evolve your website while ensuring its undisturbed operation?

Establish separate environments for software development and for the live system. Make

sure that these environments can work on different content models if essential changes to

the content model have to be expected. This may require the introduction of logical par

titions for your content repository, or even separate installations of your content manage

ment system.

Smooth Relaunch (5.3)

How can you avoid conflicts when relaunching your site?

Apply staging to ensure that you can deploy a new software version to the production en

vironment while the old version is still up and running. If necessary, migrate the live con

tent in the staging environment. Launch the new version by a simple change of

configuration, so that an equally simple change allows you to revert to the old version

should anything fail.

Glossary

This glossary explains the relevant terminology used in the context of content manage

ment and content delivery. For some terms the meaning given here is specific to the con

text of this book, and therefore more specific than it would be in a broader context.

Ajax Asynchronous JavaScript and XML. A collection of

techniques that allow the browser to handle user input

efficiently. Ajax leads to faster and richer user interaction,

but is sometimes criticised for conceptual flaws and

security drawbacks.

Caching Storage optimisation techniques that provide fast access to

frequently used objects (for example content elements or

web page fragments).

Click ratio The number of times a link underlying a page element is

followed relative to the number of times that page element

is displayed, usually expressed as a percentage.

Community software Software that facilitates collaboration among communities

with shared interests. Examples include forums and

chatrooms.

Content The sum of digital artefacts that are valuable to an organ

isation, including text, pictures, multimedia objects, as

well as relations and dependencies between these objects.

Referred to as web content if the intention is to make these

artefacts available on the web.

179

180 Glossary

Content delivery Techniques and processes for distributing and delivering

content to its target audience. The target medium is often,

in the case of web content, the web.

Content editor A person who creates, maintains and publishes content for

an organisation, often with the purpose of making the

content available on the organisation’s website or web

platform. The content editor’s tasks usually follow a

specific workflow.

Content element A single content artefact, like a text, a picture, a video or a

multimedia object. Content elements are usually organised

by their content type and contain both attributes for the

actual content and attributes for meta information.

Content management 1. Techniques and processes centred around the

creation, maintenance, publication and delivery of

content.

2. Techniques and processes centred around the

creation, maintenance and publication of content, as

opposed to techniques and processes summarised by

content delivery. (The meaning assumed throughout

this book.)

Content management

system (CMS)

A software system that supports aspects of content

management and content delivery. A content management

system consists at least of a content repository and an

editor client that supports the editor’s workflow. In many

cases, a content management system will also offer mecha

nisms or frameworks for content delivery, or additional

tools such as a search engine or a personalisation engine.

Content model A model that explains what content types exist and how

they are related. It is driven by the requirements and the

characteristics of the application domain.

Content migration Processes that support the adjustment of existing content

to the evolution of the underlying content model.

Content repository A persistent storage for content elements. A content repos

itory is typically hosted by the database that underlies the

content management system.

Glossary 181

Content type Description of the content elements of one kind. A content

type specifies a set of attributes (for storing the actual

content) and a set of meta attributes (for workflow-related

information).

CSS Cascading style sheets, a widespread technique for

assigning layout to HTML pages.

Demilitarised zone

(DMZ)

A security mechanism that locates a web server in a

network zone with limited access permissions and protects

application servers and databases by shielding them from

the outside world.

Deployment Techniques and processes to take code live or, in the case of

a website, to launch or relaunch the site.

Dynamic content In the context of web content, content that underlies

editing processes and workflows. Web pages are usually

created from elements of dynamic content by an automatic

page generation process.

Dynamic delivery The delivery of dynamic content or, more often, web pages

generated from dynamic content. Dynamic delivery

usually involves page generation processes that use content

elements as their source and apply domain logic to

generate the results. Dynamic delivery is much better at

presenting accurate and up-to-date content than static

delivery. Any performance problems that result are often

alleviated by caching techniques.

Editor → content editor

Editor client A tool that allows content editors to create, maintain and

publish content. An editor client implements specific

editorial workflows. It can be stand-alone or browser

based – in the latter case it is often referred to as a web

client.

Explicit personalisation Personalisation strategies based on personal data or

personal preferences actively provided by users.

182 Glossary

Folksonomy A blend of the words ‘folklore’ and ‘taxonomy’, a

folksonomy offers a classification scheme for content

elements based on criteria provided by the site’s users,

especially by tags that are attributed to content elements

for description purposes.

HTML Hypertext Markup Language, a markup language for the

specification of web pages.

HTTP Hypertext Transfer Protocol, the standard protocol for

client-server communication on the web.

Implicit personalisation Personalisation strategies based on observed user

behaviour, such as users’ navigation, interaction or

purchasing habits. Usually more powerful than explicit

personalisation, but sometimes criticised for a lack of

respect for users’ privacy.

Indexer That part of a search engine that is in charge of receiving

and storing information about individual content

elements, for example content attributes, tags, keywords

or meta information.

Java A programming language common in web development.

Used mostly for implementing domain logic.

JavaScript A scripting language used to implement client-side user

interaction directly within the browser. Part of the Ajax

technology, JavaScript code is embedded into web pages

and executed on loading a page.

JSP Java Server Pages. A scripting language used for web page

generation in a Java-based architecture.

Keyword A term that is passed to a search function as a parameter.

The search function returns objects that match the

keyword, either because the keyword appears in a text

object (full-text search) or because it matches specific meta

attributes, such as tags that are assigned to the resulting

object.

Launch The process of taking a website or web platform live.

Glossary 183

Meta attributes Workflow-related information describing individual

content elements, such as author, creation date and publi

cation date. Typically assigned automatically by the

content management system.

Meta information → meta attributes

Navigation The set of HTTP links that connect the individual pages of

a website. Almost all websites feature a tree-like navigation

hierarchy with the start page at the root and pages with

more specific content in the branches of the tree. The

navigation hierarchy allows users to travel through a

website in a structured way.

Output channel Target media for content delivery. Typical examples

include the web, an intranet or mobile devices.

Page → web page

Page element An individual part of a web page, such as the main content

area, a navigation bar, a logo etc.

Page generation A set of processes that generate web pages from content

elements, often applying domain logic along the way.

Personalisation Strategies that aim to tailor content specifically to

individual users or user groups. This begins with content

that matches preferences specified by users themselves and

ends with strategies that aim to select content based on

observed behaviour of users’ navigation, interaction or

purchasing habits.

Personalisation engine A software module designated specifically to imple

menting personalisation strategies, for example content

recommendations.

PHP A scripting language used mainly for web page generation.

Query engine The part of a search engine that returns those content

elements that match the search criteria specified in a search

query.

Rating An evaluation scheme usually applied to content elements,

especially for assets that are sold in an online shop. Ratings

are typically provided by users rather than by content

editors.

184 Glossary

Recommendation A special personalisation strategy that seeks to make a user

aware of content that is expected to be particularly relevant

or interesting to the user.

Recommendation

engine

A software module designated specifically to imple

menting recommendation strategies.

Relaunch The process of taking a website or web platform live after

a major revision or redesign.

Rendering → page generation

Repository → content repository

Search engine A software module that supports the search for specific

content elements. A search engine consists of two major

components. The indexer receives information about

individual content elements, for example attributes, tags,

keywords or meta information. The query engine returns

those content elements that match the specified search

criteria.

Scripting ASCII-based non-compiled programming instructions.

Typical examples of scripting code include JSP code and

PHP code.

Staging A concept for testing a website under simulated live condi

tions before it actually goes live. After the site has been

developed it is deployed to a staging area that resembles the

live environment, where quality control takes place.

Static content In the context of web content, content that is stored as web

pages and or fragments of web pages. Once made available,

static content rarely changes and no automated page

generation process is implemented for its delivery to the

web.

Tag A term that is attributed to a content element for classifi

cation purposes. Assigned either by content editors or

users, tags are part of a content element’s meta infor

mation and can be used to make search functions effective.

Glossary 185

Template

Template engine

User

User-generated content

User interaction

User participation

Web application

Web client

1.	 A blueprint for web pages of the same layout, usually

provided a web designer in the form of XHTML

documents and CSS files.

2.	 Code that generates web pages or page fragments

from content elements. A template defines the layout

for the web pages it creates and so becomes part of the

page generation process for dynamic delivery. (The

meaning assumed throughout this book.)

A software module that executes template code, such as a

servlet engine for JSPs, a PHP interpreter or an XSLT

processor.

A person who uses a website or web platform. This covers

people who merely consume information, but also includes

people who submit user-generated content to a site that

invites user participation.

Content provided by users, as opposed to content provided

by content editors.

The interaction between the user and the website. The

necessary communication between browser and server can

be implemented either with traditional HTTP or with

Ajax.

The sum of processes that actively involve users in a web

platform with the purpose of inviting user contributions or

allowing user collaboration. User participation can take on

different forms, including the submission of tags, folkson

omies, ratings or user-generated content.

A software application made available on the web.

Although a web application may feature some web

content, its focus is on providing functionality and inter

action, as opposed to a website or a web platform where

the focus is on making content available. There is only a

thin line between the two, as advanced websites or web

platforms may involve user interaction and user partici

pation and do require a certain amount of functionality.

A browser-based editor client.

186 Glossary

Web content Content specifically target at the web. In the case of

dynamic web content, the web is the major output channel

for the content delivery process.

Web design The sum of tasks around the layout of web pages. Web

design may include aspects of usability engineering and

ergonomics, but has nothing to do with content

management.

Web designer A person in charge of web design, as opposed to a content

editor who is in charge of content, its structure and its

relations, but not its layout.

Web page An HTML page that a user receives as a response to an

HTTP request.

Web platform A website with a special emphasis on user participation.

Website A set of related web pages, usually connected by links and

a common navigation structure, as well as the mechanisms

for user interaction and user participation that the web

pages may use.

Workflow The entirety of tasks to be performed by content editors,

organised in a way that reflects the importance of the

individual tasks and the dependencies between them.

XHTML Extensible Hypertext Markup Language. A more rigid

version of HTML that conforms to the structure of XML.

Generally preferred over HTML for reasons of increased

reliability and browser independence.

XML Extensible Markup Language. A meta language for the

construction of custom markup languages whose principle

purpose is sharing structured information in an easily

parsable form.

XSLT XSL Transformation. A language for the transformation of

XML documents. Part of the Extensible Stylesheet

Language (XSL) family.

References

www.agilemanifesto.org

The Agile Manifesto. http://www.agilemanifesto.org.

www.amazon.com

Amazon. http://www.amazon.com.

Anderson 2006

Chris Anderson. The Long Tail – Why the Future of Business is Selling Less of More.

Hyperion, 2006

Beck 2004

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2004.

Berners-Lee Hendler Lassila 2001

Tim Berners-Lee, James Hendler, Ora Lassila. The Semantic Web, in Scientific

American (available at http://www.scientificamerican.com). May 2001.

Blair Maron 1985

David C. Blair, M. E. Maron. An Evaluation of Effectiveness for a Full-Text

Document-Retrieval System, in Communications of the ACM, Vol. 28, No. 3. ACM,

March 1985.

Broemmer 2003

Darren Broemmer. J2EE Best Practices – Java Design Patterns, Automation, and

Performance. John Wiley and Sons, 2003.

Buschmann Meunier Rohnert Sommerlad Stal 1996

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.

Pattern-Oriented Software Architecture, Vol. 1 – A System of Patterns. John Wiley

and Sons, 1996.

Cockburn 2002

Alistair Cockburn. Agile Software Development. Addison-Wesley, 2002.

187

188 References

Dyson Longshaw 2004

Paul Dyson, Andy Longshaw. Architecting Enterprise Solutions – Patterns for High-

Capability Internet-based Systems. John Wiley and Sons, 2004.

Fowler 1999

Martin Fowler. Refactoring – Improving The Design Of Existing Code. Addison-

Wesley, 1999.

Fowler 2003

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,

2003.

Gamma Helm Johnson Vlissides 1995

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns –

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Garrett 2005

Jesse James Garret. Ajax: A New Approach to Web Applications.

http://www.adaptivepath.com/publications/essays/archives/000385.php, February

2005.

Gusfield 1997

Dan Gusfield. Algorithms on Strings, Trees, and Sequences – Computer Science and

Computational Biology. Cambridge University Press, 1997.

Hackos Redish 1998

JoAnn Hackos, Janice Redish. User and Task Analysis for Interface Design. John

Wiley and Sons, 1998.

Hackos 2002

JoAnn Hackos. Content Management for Dynamic Web Delivery. John Wiley and

Sons, 2002.

www.icefaces.org

ICEfaces. http://www.icefaces.org.

Kerth 2001

Norman Kerth. Project Retrospectives – A Handbook for Team Reviews. Dorset

House, 2001.

Krug 2006

Steve Krug. Don’t Make Me Think – A Common-Sense Approach to Web Usability.

New Riders Press, 2006.

Leuf Cunningham 2001

Bo Leuf, Ward Cunningham. The Wiki Way – Quick Collaboration on the Web.

Addison-Wesley, 2001.

lucene.apache.org

The Apache Lucene Project. http://lucene.apache.org.

References 189

Mader 2008

Stewart Mader. Wikipatterns. John Wiley and Sons, 2008.

Mahemoff 2006

Michael Mahemoff. Ajax Design Patterns. O’Reilly, 2006.

Morville 2005

Peter Morville. Ambient Findability – What We Find Changes Who We Become.

O’Reilly, 2005.

Neville-Neil 2007

George V. Neville-Neil. Building Secure Web Applications, in Queue – Architecting

Tomorrow’s Computing, Vol. 5, No. 5. ACM, July / August 2007.

labs.jboss.org/jbossrichfaces

RichFaces http://labs.jboss.org/jbossrichfaces/.

Rockley 2002

Ann Rockley. Managing Enterprise Content – A Unified Content Strategy. New

Riders Press, 2002.

Rosenfeld Morville 2006

Louis Rosenfeld, Peter Morville. Information Architecture for the World Wide Web

– Designing Large-Scale Web Sites. O’Reilly, 2006.

www.rails.org

Ruby on Rails. http://www.rails.org.

Rüping 2003

Andreas Rüping. Agile Documentation – A Pattern Guide to Producing Lightweight

Documents for Software Projects. John Wiley and Sons, 2003.

Schumacher Fernandez-Buglioni Hybertson Buschmann Sommerlad 2006

Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank

Buschmann, Peter Sommerlad. Security Patterns – Integrating Security and Systems

Engineering. John Wiley and Sons, 2006.

Schümmer Lukosch 2007

Till Schümmer, Stephan Lukosch. Patterns for Computer-Mediated Interaction.

John Wiley and Sons, 2007.

Schwaber Beedle 2008

Ken Schwaber, Mike Beedle. Agile Software Development with Scrum. Prentice

Hall, 2008.

Scott Neil 2009

Bill Scott, Theresa Neil. Designing Web Interfaces – Principles and Patterns for Rich

Interactions. O’Reilly, 2009.

Shirky 2008

Clay Shirky. Here Comes Everybody – The Power of Organizing Without

Organizations. Penguin, 2008.

190 References

www.springframework.org

The Spring Application Framework. http://www.springframework.org.

struts.apache.org

The Apache Struts Project. http://struts.apache.org.

Tidwell 2005

Jenifer Tidwell. Designing Interfaces – Patterns for Effective Interaction Design.

O’Reilly, 2005.

Vogel Zdun 2006

Oliver Vogel, Uwe Zdun. Content Conversion and Generation on the Web: A

Pattern Language, in Dragos Manulescu, James Noble, Markus Völter (Eds.),

Pattern Languages of Program Design, Vol. 5. Addison-Wesley, 2006.

Völter Schmid Wolff 2002

Markus Völter, Alexander Schmid, Eberhard Wolff. Server Component Patterns –

Component Infrastructures Illustrated with EJB. John Wiley and Sons, 2002.

Wellhausen 2005

Tim Wellhausen. Query Engine – A Pattern for Performing Dynamic Searches in

Information Systems, in Klaus Marquardt, Dietmar Schütz (Eds.), EuroPLoP 2004

– Proceedings of the 9th European Conference on Pattern Languages of Programs,

2004. Universitätsverlag Konstanz, 2005.

Weiss 2006

Michael Weiss. More Patterns for Web Applications, in Andy Longshaw, Uwe Zdun

(Eds.), EuroPLoP 2005 – Proceedings of the 10th European Conference on Pattern

Languages of Programs, 2005. Universitätsverlag Konstanz, 2006.

www.wikipedia.org

Wikipedia – The Free Online Encyclopedia. http://www.wikipedia.org.

Index

Accessibility 16, 19, 20, 90, 91, 94

Acknowledgements xvii

Ajax xiv, xvii, 14–20, 27, 63, 64, 69, 71, 79, 80, 81,

82, 91, 94, 96, 97, 125, 131, 132, 134, 151, 153,

157, 179

deluxe 16

lite 17

Anderson, Chris xiv

Architecture overview 1–30

ASYNCHRONOUS PERSONALISATION ENGINE 107,

107–111, 112, 133, 156, 157, 167

Attribute, avoiding inconsistency 55

Book

intended audience xiv

not about xii

organisation xx

subject xi

why it matters xiii

Bush, Vannevar vii, viii

Caching 9–14, 24, 26, 27, 29, 30, 63, 67, 71, 72, 84,

86, 87, 107, 111–115, 116, 133, 134, 153, 155,

162, 167, 179

Click ratio 116–117, 179

Client-side functionality xxi, 14–20, 27, 28, 62, 64,

97, 98, 134, 151, 157

Client-side interaction 14–20, 26, 29, 95

optimising 95

CMS, see Content management system

Collaborative Web 15, 99

Community software 154, 156, 159, 163, 179

CONDENSED EFFECTIVENESS REPORTS 115–118,

156, 167

Consistency, of repository 21

Content 179

and personalisation 112

avoiding inconsistent attributes 55

controlling user-generated 123

delivery 112

deploying delivery software 131

element 180

ensuring consistency 21

hierarchy 39

linking 45

maintaining 45

migration 180

model 180

organising 39

rating xxi, 3, 106, 123, 125, 183

user-generated 119, 123

Content delivery 61–98, 180

Content editor 9, 45, 180

accommodating 3

and personalisation 101

maintaining content 33

maintaining workflow 119

organising content 39

organising navigation 39

providing feedback 115

191

192 Index

CONTENT FILTERS 44, 48, 72, 101–107, 108, 109,

110, 111, 116, 130, 132, 135, 150, 156

Content freeze 140–145, 151, 160

Content management 31–59, 180

CONTENT MANAGEMENT AND CONTENT

DELIVERY 3–9, 14, 21, 25, 33, 128, 130, 153,

162

Content management system 180

choosing 161–167

Content model x, xi, xx, 4, 8, 9, 12, 25, 31, 32, 33–

39, 42, 45, 47, 50, 51, 52, 54, 65, 72, 78, 94, 105,

121, 122, 128, 130, 136, 137, 139, 140, 141, 142,

143, 144, 145, 149, 155, 157, 158, 160, 164, 169

Content repository 180

ensuring consistency 21

CONTENT SERVICES 9, 30, 48, 64–72, 73, 78, 83, 86,

91, 103, 105, 107, 113, 121, 130, 132, 135, 153,

155, 166

Content type 181

CONTENT TYPE HIERARCHY 8, 33–39, 41, 45, 46,

47, 49, 51, 54, 55, 64, 69, 70, 72, 73, 83, 106,

120, 121, 131, 136, 137, 139, 140, 141, 142, 149,

155, 164

CSS xii, 11, 29, 91, 92, 134, 151, 181

Custom software, ensuring maintainability 25

DECOUPLING OF CONTENT AND NAVIGATION 38,

39–45, 46, 54, 73, 74, 75, 150, 155, 164

DECOUPLING OF EDITED CONTENT AND USER

CONTRIBUTIONS 118–122, 149, 156, 164

DEDICATED DEVELOPMENT AND PRODUCTION

ENVIRONMENTS 135–140, 141, 160

Definition of terms 179–186

Demilitarised zone 181

Demilitarized Zone 126, 128

Deployment 181

and infrastructure 127–145

establishing process 131

Development environment 20, 135, 135–145, 159

DMZ, see Demilitarised zone

Domain logic, organising 65

Dynamic content 9–14, 28, 45–48, 62, 150, 153, 181

DYNAMIC CONTENT DELIVERY PLUS CACHING 8,

9–14, 21, 25, 86, 153, 162

DYNAMIC CONTENT LINKING 38, 45, 45–48, 54, 73,

74, 75, 150, 155, 164

Dynamic delivery 10, 12, 26, 162, 181

Dyson, Paul xii, 2, 12, 72, 127, 132

Editor client 6, 8, 9, 23, 130, 138, 157, 159, 165, 180,

181, 185

Editor, see Content editor

Engelbart, Douglas vii

Explicit personalisation 181, 182

Findability 5, 32, 49, 50, 54

Folksonomy xxi, 99, 119, 120, 122, 149, 182, 185

Fowler, Martin xii, 2, 26, 27, 62, 66

Google vii

Groupware xiii, 100, 119

Hackos, JoAnn 4

HTML 182

HTTP 182

Implicit personalisation 107, 108, 111, 182

Indexer 51, 79, 182

INPUT CHANNEL FOR USER-GENERATED CONTENT

122–126, 132, 152, 156

Integration Reverse Proxy 126

Interaction, ensuring 14

Java xii, 29, 131, 134, 153, 162, 182

Java Server Faces xii, 154

JavaScript xii, 16, 19, 20, 26, 29, 92, 94, 98, 182

JSP 26, 29, 84, 87, 131, 133, 134, 153, 182

Keyword 34, 49–54, 81, 83, 121, 150, 182

Launch 3, 127, 130, 131, 140–145, 159–160, 181, 182

optimising 140

LAYERED ARCHITECTURE FOR CONTENT DELIVERY

13, 25–30, 62, 67, 112, 153, 154, 162

Layers 27

Letter Of Recommendation 126

Link management 11, 27, 62, 63, 74, 77, 164

LISTENER-BASED SYNCHRONISATION 14, 21–25, 51,

52, 72, 78, 110, 130, 153, 154, 156, 157, 162,

165

Index 193

Load balancer 129, 135, 138, 143, 154

Longshaw, Andy xii, 2, 12, 72, 127, 132, 142

Lukosch, Stephan xiii, 100

Mahemoff, Michael 16

Maintainability xii, xiv, xx, 2, 13, 20, 26, 29, 30, 62,

66, 71, 74, 77, 82, 87, 90, 94, 135, 152, 153, 155

ensuring 25

MEMEX vii

Meta attributes 35, 38, 50, 54, 158, 164, 167, 181,

183

Meta information, see Meta attributes

Model-View-Controller 61, 62

Monitoring 116, 117, 118, 150, 156, 167

Morville, Peter 4, 49, 50, 111

Navigation xi, xiii, xix, xx, 3, 16, 19, 32, 39–45, 46,

48, 49, 54, 55, 56, 58, 61, 64, 72, 73–78, 81, 84,

86, 90, 91, 101, 103, 104, 107, 108, 109, 112,

113, 114, 134, 150, 155, 182, 183

organising 39

removing from template 73

NAVIGATION MANAGER 9, 30, 44, 48, 72, 73–78, 83,

86, 91, 104, 105, 114, 130, 132, 135, 155, 166

Nelson, Ted vii

Neville-Neil, George V 123

Observer 23

ONE WEB APPLICATION FOR CONTENT DELIVERY

130–135, 141, 160

Output channel 8, 40, 89, 90, 94, 151, 166, 183

Page element 12, 20, 44, 84, 87, 90, 92, 96, 97, 107,

112, 151, 179, 183

Page generation 183

optimising 84

Page template 134

Page, see Web page

Pattern

origin xix

overview xxii

thumbnails 171–177

Performance, maintaining 14

Personalisation 183

and content 112

and user participation 99–126

defining strategy 101

implementing strategy 108

providing feedback 115

Personalisation engine 7, 21, 23, 24, 26, 27, 28, 68,

105, 107, 107–111, 132, 134, 138, 139, 153, 154,

156, 157, 159, 163, 167, 183

PHP xii, xv, 84, 87, 131, 153, 154, 162, 183

Planning a project 147–160

Precision 50, 53

Production environment 131, 135, 135–145

Protection Reverse Proxy 126

Publisher-Subscriber 23

Quality Inspection 126

Query engine 51, 183

Rating xxi, 3, 106, 123, 125, 183

Recall 50, 53

Recommendation ix, 30, 102, 108, 110, 112, 115,

150, 183, 184

Recommendation engine xx, 184

Redundant information, avoiding 33

Refactoring xv, 155

References 187–190

Referential integrity 56

Relaunch 127, 131, 140–145, 159–160, 181, 184

Rendering, see Page generation

Repository listener 22, 23, 24, 25, 52, 157, 162, 165

Repository, see Content repository

Rosenfeld, Louis 4, 111

Ruby xii, 84, 153, 154, 162, 166

Ruby on Rails xii, xv, 62, 153, 154, 166

Scalability xii, xiv, xxi, 13, 20, 26, 30, 128, 151, 154

ensuring 25

Schumacher, Markus 101, 128

Schümmer, Till viii, xiii, xviii, 100

Scripting 7, 16, 26, 30, 67, 71, 87, 90, 133, 153, 184

Search

implementing 78

laying foundations 49

Search engine x, xx, 7, 13, 16, 21, 22, 23, 24, 26, 27,

28, 51, 52, 54, 63, 72, 78–83, 132, 133, 134, 138,

139, 153, 154, 156, 157, 159, 163, 167, 180, 184

SEARCH MANAGER 9, 30, 54, 72, 78–83, 86, 104,

105, 130, 132, 155, 156, 167

194 Index

Security xii, 20, 98, 100, 122, 124, 126, 128, 132, 137,

148, 152, 154, 163, 179, 181

SEGMENT-SPECIFIC CACHING 13, 72, 107, 111–115,

156, 167

SELF-CONTAINED PAGES 20, 94, 94–98, 132, 151,

157

Semantic Web 49

SENSIBLE CLIENT-SIDE INTERACTION 14, 14–20, 25,

63, 69, 79, 83, 86, 92, 94, 98, 151, 153, 157

Shirky, Clay 119

SMOOTH RELAUNCH 39, 140, 140–145, 160, 164

Spring 29, 62, 154, 166

Staging 39, 142–144, 148, 159, 160, 163, 184

Static content 86, 184

Struts xii, 29, 62, 154, 166

SYSTEM OF INTERACTING TEMPLATES 9, 13, 30, 38,

71, 77, 83–89, 92, 94, 97, 130, 132, 157, 166

Tag library x, 29, 69, 184

TAXONOMY BASED ON KEYWORDS AND

CATEGORIES 49–54, 78, 149, 150, 155, 164, 167

Template 83–89, 89–94, 107, 113, 114, 127, 131,

132, 133, 134, 185

avoiding redundant code 84

layer 112, 114

removing navigation logic 73

Template engine 185

TEMPLATE PER VIEW 38, 89, 89–94, 113, 157, 166

Terms, definition of 179–186

Usability xiii, 2, 19, 83, 94, 95, 98, 125, 161, 186

User 185

accommodating 3

User interaction xxi, 5, 6, 9, 13, 14, 17, 18, 21, 86,

90, 125, 179, 182, 185

user interaction xi

User participation xi, xiii, xxii, 14, 15, 19, 99–126,

152, 156, 185

User segment 13, 24, 109, 110, 112, 113, 114, 115,

116, 133, 134, 150, 156, 167

User-generated content 119, 123, 185

Validation xxi, 27, 33, 54–59, 67, 68, 70, 71, 72, 143,

152, 157, 165

Validator 57

View 17, 19, 61, 62, 86, 89–94

component 66, 67, 68, 71, 73, 75, 76, 77, 83,

157

layer 65

supporting 89

Vogel, Oliver 85

Web 2.0 vii, ix, xiv, xx, xxi, 3, 15, 16, 118, 119, 122

Web application x, xi, 2, 5, 13, 16, 27, 61, 62, 127,

130–135, 163, 169, 185

Web client 165, 181, 185

Web content x, xii, xiii, 1, 85, 99, 100, 127, 132, 133,

137, 179, 180, 181, 184, 185, 186

Web design xiii, 186

Web designer 83, 97, 151, 157, 158, 185, 186

Web page 186

Web platform x, xi, xiii, xiv, 1, 3–5, 9, 14, 17, 21,

25, 26, 90, 99, 126, 147, 158, 180, 182, 184, 185,

186

Website 186

ensuring interaction 14

ensuring smooth launch 140

ensuring up to date 9

evolving 136

maintaining performance 14

optimising uptime 136

Weiss, Michael xvii, 27

Wellhausen, Tim 79

Wikipedia vii, 99

Workflow ix, 5, 6, 8, 21–25, 38, 44, 54–59, 72, 119,

120, 122, 123, 141, 144, 152, 157, 160, 162, 165,

180, 181, 183, 186

WORKFLOW-BASED VALIDATION 14, 54–59, 64, 67,

71, 72, 124, 130, 152, 157, 165

World Wide Web vii, 73

XHTML 151, 157, 185, 186

XML xii, 6, 8, 35, 153, 157, 162, 167, 179, 186

XMLHttp interface 81

XSLT 84, 87, 185, 186

Zdun, Uwe xvii, 85

Zend 154

	Where Code and Content Meet
	Contents
	Foreword
	Preface
	Acknowledgements
	Introduction
	Chapter 1 Architecture Overview
	Content Management and Content Delivery
	Dynamic Content Delivery plus Caching
	Sensible Client-Side Interaction
	Listener-Based Synchronisation
	Layered Architecture for Content Delivery

	Chapter 2 Content Management
	Content Type Hierarchy
	Decoupling of Content and Navigation
	Dynamic Content Linking
	Taxonomy Based on Keywords and Categories
	Workflow-Based Validation

	Chapter 3 Content Delivery
	Content Services
	Navigation Manager
	Search Manager
	System of Interacting Templates
	Template per View
	Self-Contained Pages

	Chapter 4 Personalisation and User Participation
	Content Filters
	Asynchronous Personalisation Engine
	Segment-Specific Caching
	Condensed Effectiveness Reports
	Decoupling of Edited Content and User Contributions
	Input Channel for User-Generated Content

	Chapter 5 Deployment and Infrastructure
	One Web Application for Content Delivery
	Dedicated Development and Production Environments
	Smooth Relaunch

	Planning a Project
	Choosing a Content Management System
	Final Remarks
	Pattern Thumbnails
	Glossary
	References
	Index

