
TEAM LinG

��������	
�

��	���	��������

��������	 ������
��

Hongji Yang
De Montfort University, UK

Hershey • London • Melbourne • Singapore
����	 �����	 ����� �!�

TEAM LinG

Acquisitions Editor: Renée Davies
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: Amanda O’Brien
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2005 by Idea Group Inc. All rights reserved. No part of this book may be reproduced, stored
or distributed in any form or by any means, electronic or mechanical, including photocopying, without
written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names
of the products or companies does not indicate a claim of ownership by IGI of the trademark or registered
trademark.

Library of Congress Cataloging-in-Publication Data

Advances in UML and XML-based software evolution / Hongji Yang, editor.
 p. cm.
 Summary: "Reports on the recent advances in UML and XML based software evolution in terms of a
wider range of techniques and applications"--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 1-59140-621-8 (hardcover) -- ISBN 1-59140-622-6 (softcover) -- ISBN 1-59140-623-4
(ebook)
 1. Computer software--Development--History. 2. UML (Computer science) 3. XML (Document
markup language) I. Yang, Hongji.
 QA76.76.D47A378 2005
 006.7'4--dc22
 2005005919

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

TEAM LinG

��������	
�	��
���	��������

��������	������
��

"�#��	��	$�������

Preface .. vi
Hongji Yang, De Montfort University, England

Chapter I.
Design Recovery of Web Application Transactions ..1

Scott Tilley, Florida Institute of Technology, USA
Damiano Distante, University of Lecce, Italy
Shihong Huang, Florida Atlantic University, USA

Chapter II.
Using a Graph Transformation System to Improve the Quality Characteristics of
UML-RT Specifications ... 20

Lars Grunske, University of Potsdam, Germany

Chapter III.
Version Control of Software Models ... 47

Marcus Alanen, Åbo Akademi University, Finland
Ivan Porres, Åbo Akademi University, Finland

Chapter IV.
Support for Collaborative Component-Based Software Engineering 71

Cornelia Boldyreff, University of Lincoln, UK
David Nutter, University of Lincoln, UK
Stephen Rank, University of Lincoln, UK
Phyo Kyaw, University of Durham, UK
Janet Lavery, University of Durham, UK

Chapter V.
Migration of Persistent Object Models Using XMI .. 92

 Rainer Frömming, 4Soft GmbH, Germany
 Andreas Rausch, Technische Universität Kaiserslautern, Germany

TEAM LinG

Chapter VI.
PRAISE: A Software Development Environment to Support Software Evolution 105

William C. Chu, Tunghai University, Taiwan
Chih-Hung Chang, Hsiuping Institute of Technology, Taiwan
Chih-Wei Lu, Hsiuping Institute of Technology, Taiwan
YI-Chun Peng, Tunghai University, Taiwan
Don-Lin Yang, Feng Chia University, Taiwan

Chapter VII.
Developing Requirements Using Use Case Modeling and the Volere Template:
Establishing a Baseline for Evolution ... 141

Paul Crowther, Sheffield Hallam University, UK

Chapter VIII.
Formalizing and Analyzing UML Use Case View Using Hierarchical Predicate
Transition Nets ... 154

Xudong He, Florida International University, USA

Chapter IX.
Formal Specification of Software Model Evolution Using Contracts 184

Claudia Pons, Universidad Nacional de La Plata, Argentina
Gabriel Baum, Universidad Nacional de La Plata, Argentina

Chapter X.
Visualising COBOL Legacy Systems with UML: An Experimental Report 209

Steve McRobb, De Montfort University, UK
Rich Millham, De Montfort University, UK
Jianjun Pu, De Montfort University, UK
Hongji Yang, De Montfort University, UK

Chapter XI.
XML-Based Analysis of UML Models for Critical Systems Development 257

Jan Jürjens, TU München, Germany
Pasha Shabalin, TU München, Germany

Chapter XII.
Augmenting UML to Support the Design and Evolution of User Interfaces 275

Chris Scogings, Massey University, New Zealand
Chris Phillips, Massey University, New Zealand

Chapter XIII.
A Reuse Definition, Assessment, and Analysis Framework for UML 286

Donald Needham, United States Naval Academy, USA
Rodrigo Caballero, United Technologies Research Center, USA
Steven Demurjian, The University of Connecticut, USA
Felix Eickhoff, The University of Connecticut, USA
Yi Zhang, The University of Connecticut, USA

TEAM LinG

Chapter XIV.
Complexity-Based Evaluation of the Evolution of XML and UML Systems 308

Ana Isabel Cardoso, University of Madeira, DME, Portugal
Peter Kokol, University of Maribor, FERI, Slovenia
Mitja Lenic, University of Maribor, FERI, Slovenia
Rui Gustavo Crespo, Technical University of Lisbon, DEEC, Portugal

Chapter XV.
Variability Expression within the Context of UML: Issues and Comparisons 322

Patrick Tessier, CEA/List Saclay, France
Sébastien Gérard, CEA/List Saclay, France
François Terrier, CEA/List Saclay, France
Jean-Marc Geib, Université des Sciences et Technologies de Lille, France

About the Authors ... 350

Index .. 360

TEAM LinG

�������

vi

This book continues to provide a forum, which a recent book, Software Evolution with
UML and XML, started, where expert insights are presented on the subject.
In that book, initial efforts were made to link together three current phenomena: soft-
ware evolution, UML, and XML. In this book, focus will be on the practical side of
linking them, that is, how UML and XML and their related methods/tools can assist
software evolution in practice.
Considering that nowadays software starts evolving before it is delivered, an apparent
feature for software evolution is that it happens over all stages and over all aspects.
Therefore, all possible techniques should be explored. This book explores techniques
based on UML/XML and a combination of them with other techniques (i.e., over all
techniques from theory to tools).
Software evolution happens at all stages. Chapters in this book describe that software
evolution issues present at stages of software architecturing, modeling/specifying,
assessing, coding, validating, design recovering, program understanding, and reusing.
Software evolution happens in all aspects. Chapters in this book illustrate that soft-
ware evolution issues are involved in Web application, embedded system, software
repository, component-based development, object model, development environment,
software metrics, UML use case diagram, system model, Legacy system, safety critical
system, user interface, software reuse, evolution management, and variability model-
ing.
Software evolution needs to be facilitated with all possible techniques. Chapters in
this book demonstrate techniques, such as formal methods, program transformation,
empirical study, tool development, standardisation, visualisation, to control system
changes to meet organisational and business objectives in a cost-effective way.
On the journey of the grand challenge posed by software evolution, the journey that
we have to make, the contributory authors of this book have already made further
advances.

TEAM LinG

Organisation of the Book

The book is organised into 15 chapters and a brief description of each chapter is as
follows.
Chapter I, Design Recovery of Web Application Transactions, is by Scott Tilley, Damiano
Distante, and Shihong Huang. Modern Web sites provide applications that are increas-
ingly built to support the execution of business processes. In such a transaction-
oriented Web site, poor transaction design may result in a system with unpredictable
workflow and a lower-quality user experience. This chapter presents an example of the
recovery of the “as-is” design model of a Web application transaction. The recovered
design is modeled using extensions to the transaction design portion of the UML-
based Ubiquitous Web Applications (UWA) framework. Recovery facilitates future
evolution of the Web site.
Chapter II, Using a Graph Transformation System to Improve the Quality Characteris-
tics of UML-RT Specifications, is by Lars Grunske. Architectural transformations are an
appropriate technique for the development and improvement of architectural specifica-
tions. This chapter presents the concept of graph-based architecture evolution and
how this concept can be applied to improve the quality characteristics of a software
system, where the UML-RT used as an architectural specification language is mapped
to a hypergraph-based datastructure, so that transformation operators can be specified
as hypergraph transformation rules.
Chapter III, Version Control of Software Models, is by Marcus Alanen and Ivan Porres.
Through reviewing main concepts and algorithms behind a software repository with
version control capabilities for UML and other MOF-based models, this chapter dis-
cusses why source code- and XML-based repositories cannot be used to manage
models and present alternative solutions that take into account specific details of MOF
languages.
Chapter IV, Support for Collaborative Component-Based Software Engineering, is by
Cornelia Boldyreff, David Nutter, Stephen Rank, Phyo Kyaw, and Janet Lavery. Col-
laborative system composition during design has been poorly supported by traditional
CASE tools and almost exclusively focused on static composition. This chapter dis-
cusses the collaborative determination, elaboration, and evolution of design spaces
that describe both static and dynamic compositions of software components from
sources such as component libraries, software service directories, and reuse reposito-
ries. It also discusses the provision of cross-project global views of large software
collections and historical views of individual artefacts within a collection.
Chapter V, Migration of Persistent Object Models Using XMI, is by Rainer Frömming
and Andreas Rausch. Change is a constant reality of software development. With ever-
changing customer requirements, modifications to the object model are required during
software development as well as after product distribution. This chapter presents the
conceptualisation and implementation of a tool for the automated migration of persis-
tent object models. The migration is controlled by an XMI-based description of the
difference between the old and the new object model.
Chapter VI, PRAISE: A Software Development Environment to Support Software Evo-
lution, is by Chih-Hung Chang, William C. Chu, Chih-Wei Lu, YI-Chun Peng, and Don-

vii

TEAM LinG

Lin Yang. This chapter first reviews current activities and studies in software stan-
dards, processes, CASE toolsets, and environments, and then proposes a process and
an environment for evolution-oriented software development, known as PRocess and
Agent-based Integrated Software development Environment (PRAISE). PRAISE uses
an XML-based mechanism to unify various software paradigms, aiming to integrate
processes, roles, toolsets, and work products to make software development more
efficient.
Chapter VII, Developing Requirements Using Use Case Modeling and the Volere Tem-
plate: Establishing a Baseline for Evolution, is by Paul Crowther. The development of
a quality software product depends on a complete, consistent, and detailed require-
ment specification but the specification will evolve as the requirements and the envi-
ronment change. This chapter provides a method of establishing the baseline in terms
of the requirements of a system from which evolution metrics can be effectively ap-
plied. UML provides a series of models that can be used to develop a specification
which will provide the basis of the baseline system.
Chapter VIII, Formalizing and Analyzing UML Use Case View Using Hierarchical
Predicate Transition Nets, is by Xudong He. UML use case diagrams are used during
requirements analysis to define a use case view that constitutes a system’s functional
model. Each use case describes a system’s functionality from a user’s perspective, but
these use case descriptions are often informal, which are error-prone and cannot be
formally analysed to detect problems in user requirements or errors introduced in sys-
tem functional model. This chapter presents an approach to formally translate a use
case view into a formal model in hierarchical predicate transition nets that support
formal analysis.
Chapter IX, Formal Specification of Software Model Evolution Using Contracts, is by
Claudia Pons and Gabriel Baum. During the object-oriented software development pro-
cess, a variety of models of the system is built, but these models may semantically
overlap. This chapter presents a classification of relationships between models along
three different dimensions, proposing a formal description of them in terms of math-
ematical contracts.
Chapter X, Visualising COBOL Legacy Systems with UML: An Experimental Report, is
by Steve McRobb, Richard Millham, Jianjun Pu, and Hongji Yang. This chapter pre-
sents a report of an experimental approach that uses WSL as an intermediate language
for the visualisation of COBOL legacy systems in UML. Visualisation will help a soft-
ware maintainer who must be able to understand the business processes being mod-
eled by the system along with the system’s functionality, structure, events, and inter-
actions with external entities. Key UML techniques are identified that can be used for
visualisation. The chapter concludes by demonstrating how this approach can be used
to build a software tool that automates the visualisation task.
Chapter XI, XML-Based Analysis of UML Models for Critical Systems Development, is
by Jan Jürjens and Pasha Shabalin. High quality development of critical systems poses
serious challenges. Formal methods have not yet been used in industry as they were
originally hoped. This chapter proposes to use the Unified Modeling Language (UML)
as a notation together with a formally based tool-support for critical systems develop-
ment. The chapter extends the UML notation with new constructs for describing criti-

viii

TEAM LinG

cality requirements and relevant system properties, and introduces their formalisation
in the context of the UML executable semantics.
Chapter XII, Augmenting UML to Support the Design and Evolution of User Inter-
faces, is by Chris Scogings and Chris Phillips. The primary focus in UML has been on
support for the design and implementation of the software comprising the underlying
system. Very little support is provided for the design or evolution of the user interface.
This chapter first reviews UML and its support for user interface modeling, then de-
scribes Lean Cuisine+, a notation capable of modeling both dialogue structure and
high-level user tasks. A case study shows that Lean Cuisine+ can be used to augment
UML and provide the user interface support.
Chapter XIII, A Reuse Definition, Assessment, and Analysis Framework for UML, is by
Donald Needham, Rodrigo Caballero, Steven Demurjian, Felix Eickhoff, and Yi Zhang.
This chapter examines a formal framework for reusability assessment of development-
time components and classes via metrics, refactoring guidelines, and algorithms. It
argues that software engineers seeking to improve design reusability stand to benefit
from tools that precisely measure the potential and actual reuse of software artefacts to
achieve domain-specific reuse for an organisation’s current and future products. The
authors consider the reuse definition, assessment, and analysis of a UML design prior
to the existence of source code, and include dependency tracking for use case and
class diagrams in support of reusability analysis and refactoring for UML.
Chapter XIV, Complexity-Based Evaluation of the Evolution of XML and UML Sys-
tems, is by Ana Isabel Cardoso, Peter Kokol, Mitja Lenic, and Rui Gustavo Crespo. This
chapter analyses current problems in the management of software evolution and ar-
gues the need to use the Chaos Theory to model software systems. Several correlation
metrics are described, and the authors conclude the long-range correlation can be the
most promising metrics. An industrial test case is used to illustrate that the behaviours
of software evolution are represented in the Verhulst model.
Chapter XV, Variability Expression within the Context of UML: Issues and Compari-
sons, is by Patrick Tessier, Sébastien Gérard, François Terrier, and Jean-Marc Geib.
Time-to-market is one severe constraint imposed on today’s software engineers. This
chapter presents a product line paradigm as an effective solution for managing both the
variability of products and their evolutions. The product line approach calls for design-
ing a generic and parameterised model that specifies a family of products. It is then
possible to instantiate a member of that family by specialising the “parent” model or
“framework,” where designers explicitly model variability and commonality points among
applications.

ix

TEAM LinG

x

��%������&'����

Sincerely, I would like to thank all the people who have helped with the publication of
this book.
First, I would like to acknowledge the authors for their academic insights and the
patience to go through the whole proposing-writing-revising-finalising process to get
their chapters ready, and also for serving as reviewers to provide constructive and
comprehensive reviews for chapters written by other authors.
Special thanks go to the publishing team at Idea Group Inc.; in particular, to Mehdi
Khosrow-Pour whose support encouraged me to finish this continuation book in the
area of software evolution with UML and XML which provides me a wonderful oppor-
tunity to work with more leading scholars in the world; to Jan Travers for her continu-
ous support in logistics of the project; to Michele Rossi and Amanda Appicello for
copyediting and typesetting the book; and to Megan Kurtz for designing the one-page
promotion brochure.
Finally, I would like to thank my wife, Xiaodong, and my son, Tianxiu, for their support
throughout this project.

Hongji Yang, PhD
Loughborough, UK
January 2005

TEAM LinG

Design Recovery of Web Application Transactions 1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Design Recovery of
Web Application

Transactions
Scott Tilley, Florida Institute of Technology, USA

Damiano Distante, University of Lecce, Italy

Shihong Huang, Florida Atlantic University, USA

Abstract

Modern Web sites provide applications that are increasingly built to support the
execution of business processes. In such a transaction-oriented Web site, the user
executes a series of activities in order to carry out a specific task (e.g., purchase an
airplane ticket). The manner in which the activities can be executed is a consequence
of the transaction design. Unfortunately, many Web sites are constructed without
proper attention to transaction design. The result is a system with unpredictable
workflow and a lower quality user experience. This chapter presents an example of the
recovery of the “as-is” design model of a Web application transaction. The recovery
procedure is prescriptive, suitable for implementation by a human subject-matter
expert, possibly aided by reverse engineering technology. The recovered design is
modeled using extensions to the transaction design portion of the UML-based Ubiquitous
Web Applications (UWA) framework. Recovery facilitates future evolution of the Web
site by making the transaction design explicit, which in turn enables engineers to make
informed decisions about possible changes to the application. Design recovery of a
commercial airline’s Web site is used to illustrate the process.

TEAM LinG

2 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

As with other kinds of software systems, Web sites undergo maintenance and evolve
over time in response to changing circumstances. For complex Web sites supporting the
execution of business processes, evolution can be particularly challenging. The hidden
nature of the transaction model in the overall design of most Web sites further
exacerbates the situation.
Business processes are realized as transactions that are triggered as the user executes
a series of activities in order to carry out a specific task (e.g., purchase an airplane ticket).
The manner in which the activities can be executed is a consequence of the transaction
design. Therefore, the quality of the transaction design can have a direct influence on
the quality of the user experience.
Unfortunately, many Web sites are constructed without proper attention to transaction
design. It is quite common to incorrectly treat a transaction as a sequence of navigational
steps through pages of the Web application (Rossi, Schmid, & Lyardet, 2003; Schmid &
Rossi, 2004). The result is a system without an explicit transaction design, which leads
to unpredictable workflow, maintenance difficulties, and a potentially frustrating session
for the user.
This chapter presents an example of the recovery of the “as-is” design model of a Web
application transaction. The recovery procedure is prescriptive, suitable for implemen-
tation by a human subject-matter expert, possibly aided by reverse engineering technol-
ogy (Tilley, 2000; Müller et al., 2003). The recovered design is modeled using extensions
to the transaction design portion of the Ubiquitous Web Applications (UWA) framework
(UWA, 2001f). Recovery facilitates future evolution of the Web site by making the
transaction design explicit, which in turn enables engineers to make informed decisions
about possible changes to the application. Design recovery of a commercial airline’s Web
site is used to illustrate the process.
The next section outlines UWAT+, which is a refinement of the UWA transaction design
model. The section “The Design Recovery Procedure” describes the design recovery
procedure, including a formalization of the transactions, the creation of the Execution
Model, and the construction of the Organization Model. The section “An Illustrative
Example” demonstrates the use of the procedure on a representative Web site from the
travel industry. Finally, “Summary” goes over the main points of the chapter and outlines
possible avenues for future work.

UWAT+

The Web provides a distributed information system infrastructure as the base platform
for application deployment. Indeed, one of the reasons for the success of e-commerce
business today is the transactional behavior that the Web offers. However, for many
Web sites that are already in use and in need of maintenance, this widely used behavior
is often too complex, consisting of several ill-defined sub-transactions which can hinder

TEAM LinG

Design Recovery of Web Application Transactions 3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systematic evolution. The transaction design for such applications needs to be more
explicit, flexible, and take users’ goals into account.
The UWA framework provides a complete design methodology for ubiquitous Web
applications that are multi-channel, multi-user, and generally context-aware. As illus-
trated in Figure 1, the UWA design framework organizes the process of designing a Web
application into four main activities (UWA, 2001a): (1) requirements elicitation (UWA,
2001b); (2) hypermedia design and operation design (UWA, 2001c); (3) transaction
design (UWA, 2001d); and (4) customization design (UWA, 2001e). Each design activity
results in a unique design model, which can iteratively affect the creation of other designs
elsewhere in the process.
The UWA framework represents an excellent platform on which to build the conceptual
modeling portion of the design recovery procedure. This section outlines a refined and
extended version of the UWA framework, called UWAT+, which focuses specifically on
extensions to the transaction design model. In the UWA vernacular, “transactions”
represent the way business processes are addressed and implemented in Web-based
applications. The extensions to the UWA transaction model include simplifications and
extensions related to the definition of Activity and enhancements to several aspects of
the Organization and Execution models, which are (according to the UWA) the main
models on which the design of a Web transaction is based. Extensive details of UWAT+
are provided in Distante (2004); this section provides an overview of the salient features
used for design recovery.

Changes to the Definition of Activity

Activities taken into account by the Organization and Execution model of a transaction
implementing a business process should only be those that are meaningful for the user
of the Web-based application; system-related activities and data-centered operations

Figure 1. An overview of the UWA application design process

TEAM LinG

4 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

can be de-emphasized. This implies that in UWAT+, the OperationSet of an activity is
no longer considered, mainly because it is primarily related to data-level details and to
the implementation of a transaction, whereas user-centered design recovery is more
concerned with conceptual models.
An Activity’s PropertySet is redefined to be more user-oriented, through the introduc-
tion of a new property (Suspendability), and the tuning of the semantics associated with
the previously existing properties. The extended PropertySet set is now Atomicity,
Consistency, Isolation, Durability, and Suspendability (ACIDS).

Changes to the Organization Model

The Organization model describes a transaction from a static point of view, modeling the
hierarchical organization in terms of Activities and sub-Activities in which the Activity
can be conceptually decomposed. It also describes the relations among these activities
and the PropertySet of each of them. The Organization model is a particular type of
Unified Modeling Language (UML) class diagram (Booch, Rumbaugh, & Jacobson,
1998), in which activities are arranged to form a tree; the main activity is represented by
the root of the tree and corresponds to the entire transaction, while Activities and sub-
activities are intermediate nodes and its leaves.
In UWAT+, significant changes have been made to the Organization model by dividing
the possible relations between an activity A1 and its sub-activities A1.1 A1.n into two
categories: the Hierarchical Relations and the Semantic Relations. As shown in Figure
2 and Figure 3, the two categories are defined as follows:

• Hierarchical Relations: The set of “part-of” relations from the Organization
model. It is composed of relations such as Requires, RequiresOne, and Optional.

• Semantic Relations: The set of relationships that are not a “part-of” type.
Relations among sub-activities of different activities are normally part of this kind
of relation. The list semantic relations currently consists of the Visible, Compen-
sates, and Can Use.

The changes to the Organization model provide a better modeling instrument with which
design recovery can be accomplished. In particular, the distinction between hierarchical
and semantic relations permit the designer to reason about transactions in a manner that
is not possible with the unadorned UWA model. This in turn can lead to improvements
in support for the business processes realized by the Web application.

Changes to the Execution Model

The Execution model of a transaction defines the possible execution flow among its
Activities and sub-Activities. It is a customized version of the UML Activity Diagram
(Bellows, 2000), usually adopted by the software engineering community to describe

TEAM LinG

Design Recovery of Web Application Transactions 5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

behavioral aspects of a system. In the execution model, the sequence of activities is
described by UML Finite State Machines, Activities and sub-Activities are represented
by states (ovals), and execution flow between them is represented by state transition
(arcs).
The original Execution model includes both user- and system-design directions for the
developer team. Since our focus is more on the former than the latter, several changes
have been introduced into UWAT+.

• Commit and Rollback Pseudo-State: These two pseudo-states that exist in the
original UWA execution model have been removed. Positive conclusion of an
Activity is directly derived by the execution flow in the model, while the failure or
the voluntary abort of it is modeled by the unique pseudo-state of “Process
Aborted” in an Execution model.

Figure 3. An example of the Organization model highlighting the semantic relationships

Figure 2. An example of the Organization model highlighting the hierarchical
relationships

<<Activity>>

<<Sub_Activity>>
Sub Activity Ai,m
XOR with Ai,m

<<Requires>>

<<Sub_Activity>>

<<Optional>>

<<Sub_Activity>>

Sub Activity Ai,n
Is optional

Activity Ai

Sub Activity Ai,j
Must be executed

<<Sub_Activity>>

Sub Activity Ai,l
XOR with Ai,m

<<Requires One >>

<<Activity>><<Activity>>

<<Sub_Activity>>

Sub Activity Ai,m

<<Sub_Activity>>

Sub Activity Ai,m

<<Sub_Activity>><<Sub_Activity>>

Activity Ai

Sub Activity Ai,j
Support Activity Ai,l,m

<<Sub_Activity>>

Sub Activity Ai,l

<<Compensation>><<Compensation>>

~Compensation Cj,m
Compensate the Activity Ai,m

<<Compensate>>

<<Activity>><<Activity>>

<<Sub_Activity>>

Sub Activity Aj,m

Activity Aj

<<Sub_Activity>>
Sub Activity Aj,l

Support Activity Ai,m

<<Can_Use>>
<<Can_Use>>

<<Sub_Activity>>

Sub Activity Ai,l,m

<<Sub_Activity>>

Sub Activity Ai,l,n

TEAM LinG

6 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Transition Between Activities: Each possible user-permissible transition between
activities must be explicitly represented in the model with a transition line between
them. The actions that trigger the transition should be specified on the transition
line with a transition label. Compensation activities (activities which rewind the
results of others) needed to allow a transition between two activities are implicit
and controlled by the system. No transition of the Execution model can be
associated with the action of the user selecting the “Back” navigation button in
the browser, which should be disabled in order to avoid client-side to server-side
data inconsistencies.

• Transition Labels: A classification of the possible labels that can be associated
with the transition lines of an Execution model has been introduced, with a simple
labeling mechanism being used to indicate the category of the transition:

• A: Action invoked by the user;

• C: Condition(s) required for Activity execution;

• R: Result of activity execution; and

• S: State associated with system due to Activity.

• Failure Causes and Actions Table: A list of causes of Activity failure and possible
actions the user or the system can take is maintained. The list also explains why
an Activity fails and how the user or the system can react.

• Adoption of Swimlanes: It is suggested that swimlane diagrams (OMG, 2003) be
adopted when it is useful to describe how two or more user-types of the application
collaborate in the execution and completion of a transaction.

The changes to the Execution model provide better visibility into the dynamic execution
paths the user will experience while completing a specific transaction. By making such
paths explicit, improvements in the transaction design can be more easily accomplished.
However, for such paths to be modeled properly for existing Web sites, they must first
be recovered.

The Design Recovery Procedure

Given an existing Web site, the goal is to populate an instance of the UWAT+ model
described in the previous section with data from the site’s content and structure. The
resultant model can then be used to guide restructuring decisions based on objective
information concerning the quality attributes of the business process’ implementation
by the Web-based application. The model can be recreated using a three-step prescrip-
tive design recovery procedure: (1) formalization of the transactions; (2) creation of the
Execution model; and (3) construction of the Organization model for each of the identified
transactions.

TEAM LinG

Design Recovery of Web Application Transactions 7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A human subject-matter expert can accomplish this design recovery procedure without
any tool support. However, as described in the subsection “Future Work” at the end of
this chapter, the use of automated reverse engineering technology (Chikofsky & Cross,
1990) may improve the efficacy of the process. Extensive details of the design recovery
procedure using reverse engineering are provided in (Distante, Parveen, & Tilley, 2004);
this section provides an overview of these three steps.

Formalization of the Transactions

In the first step of the process, the user-types of the application and their main goals/
tasks are formalized. Only goals/tasks that can be defined as “operative” are considered
and a transaction is associated with each of them. Overlapping tasks of two or more user-
types suggests UML swimlanes in the corresponding transaction’s Execution model. At
the end of this step the list of transactions implemented by the application is obtained.

Creation of the Execution Model

For each of the transactions found in the first step, the Execution model is created by first
performing a high-level analysis of the transaction in order to gain a basic understanding
of its component Activities and Execution Flow. The transaction is then characterized
as “simple” (linear) or “composite” (with two or more alternative execution paths). If the
transaction is composite, then it should be further decomposed into sub-transactions
until only simple transactions remain. Each simple transaction can be investigated
separately. To each transaction (simple and composite) an Activity of the Execution
model (and later of the Organization model) is associated.
A first draft of the Execution model is created for each simple transaction identified by
executing it in a straightforward manner. Failure events are not yet taken into account
in the model. The draft Execution model is then refined with deeper analysis of the
transaction. All the operations available to the user during the execution of the
transaction are invoked. Erroneous or incomplete data are provided in order to model
failure states and possible actions the user can undertake. In this analysis phase, new
secondary execution flows of the transaction can be found, and the reverse modeling
technique could be invoked recursively as needed.
Finally, the table that describes the possible failure causes and the corresponding user
actions or system invocations is investigated for each of the sub-activities that have
been found.

Construction of the Organization Model

Once the Execution model has been obtained for a transaction, the Organization model
can be constructed, which will model the transaction from a static point of view. The
Execution model is used to determine the set of Activities and sub-Activities of a

TEAM LinG

8 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

transaction. In the case of a simple transaction, the set is determined by all the Activities
and sub-Activities encountered in the single flow of execution available to the user. In
the case of a composite transaction, the set is composed of the union of the Activities
and sub-Activities of the single transaction that have been found for the composite
transaction.
The tree structure of the Organization model is constructed by aggregating sub-
Activities that are conceptually part of an Activity ancestor. Singleton Activities that
are related to the transaction are modeled with a Can-Use Semantic Relation. Each arc in
the tree represents either a hierarchical or semantic relation. To define Hierarchical
Relations, the analyst can refer to the Execution Flow defined by the Execution model and
conditions and execution rules defined in it. However, defining the semantic relations still
requires direct inspection of the application.
For each Activity and sub-activity, it is necessary to define the value for the ACIDS
PropertySet. The analyst is required to refer to the definition given for each of the
properties in the UWA documentation and discover the value to be assigned to each of
them through direct inspection using the Web-based application.

An Illustrative Example

To illustrate the potential benefits of design recovery, this section of the chapter focuses
on the use of the procedure described in the previous section. This technique is used
to recover the as-is transaction design model using the formalism outlined in the section
“UWAT+” of a real-world Web-based application. The application selected is the flight
reservation system of Alitalia airlines (Alitalia, 2004). The Italian Alitalia Web site
(www.alitalia.it) was chosen because it is representative of a commonly used e-
commerce application, and one that appears to offer significant room for improvement
from a user’s perspective. The analysis refers to a period of observation from November
to December 2003. It should be emphasized that it was the Italian version of the Alitalia
Web site that was analyzed; the versions for other locales, such as the USA, have been
found to be quite different.
The specific transaction from the Web site used to illustrate the design recovery
procedure is called “Round-Trip Flight Reservation.” The next two subsections de-
scribe the Organization and Execution models representing this transaction recovered
from the Alitalia Web site. The subsection “Discussion” narrates some of the perceived
shortcomings of the recovered transaction design that become apparent using these two
models.
The recovery was realized using a manual reverse engineering process. There is no
inherent reason why this process could not be made more efficient through the use of
appropriate tool support. For example, one possible useful tool would be a UML editor
with UWAT+ profiles. However, such tools do not as yet exist.

TEAM LinG

Design Recovery of Web Application Transactions 9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Recovered Organization Model

The recovered “as-is” Organization model of the “Complete Flight Reservation”
process is shown in Figure 4. The Organization model has a tree structure, with the
Activity corresponding to its root representing the main process. The model includes the
Hierarchical and Semantic Relations existing among the Activities, and for each Activity,
the PropertySet it verifies.
The Activity names used in the model are purposely lengthy, so that they indicate some
of the characteristics worthy of attention later in the recovery process. The user-type
simulated in the analysis is “Nonregistered User.” Unless otherwise stated, this is the
user-type implied in the following discussion.
A registered user can choose to execute one of the following three activities to reserve
a flight using the Alitalia Web site: Fast Flight Reservation, Complete Flight Reserva-
tion, and Managing Reserved Flights. These activities are in fact connected to the main
activity of the diagram (the reservation process) with a Requires One relation. This last
activity is available only to the user type Registered User. The Payment activity is an
optional activity that the users could execute if they wish to purchase the corresponding
ticket online. The hierarchical relation of Optional that links it to its ancestor indicates
this.
The model in Figure 4 details the Complete Flight Reservation Activity; the other
Activities (which are represented by a filled version of the UML Class Stereotype), are
omitted for lack of space. The PropertySet of the Complete Flight Reservation activity
is set to AID (Atomic, Isolated, and Durable). It was observed that the user could
experience inconsistency among data visualized, so the Activity is not Consistent.
Moreover, the Activity is not Suspendable because it cannot be suspended in any time;
instead, it must be completed during one usage session of the application.

Figure 4. The “as-is” Organization model of the “Complete Flight Reservation”
Activityin the Alitalia.it Web site

<<AID_Activity>>
Complete Flight

Reservation

<<A_Activity>>
Identification

<<Requires_Visible>>

<<Requires One>><<Requires One>>

<<A_Activity>>

Login
<<A_Activity>>

Login
<<AD_Activity>>
Insert Name &

Telephone #

<<AD_Activity>>
Insert Name &

Telephone #

<<Requires_Visible>> <<Requires_Visible>> <<Requires_Visible>> <<Requires_Visible>> << Required >>

<<Compensates>>

<<AC_Activity>>
View & choose
Flight & Class

among available

<<

<<AC_Activity>>
Define and Search

for Flights

<<

View Flight Fare without
Taxes and Confirm Request

of Flight Reservation

<<A_Activity>>

<<

<<ACD_Activity>>
View Reservation
Details and Total

Ticket Price

<<

<<AC_Compensation>>

~ Confirm Reservation

Insert Passenger’s
Information & Choose

On-board Options

<<AC_Activity>>

<<

TEAM LinG

10 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. The “as-is” Execution model of the “Complete Flight Reservation” Activity
in the Alitalia.it Web site

The diagram also shows the sub-activities into which the Complete Flight Reservation
Activity can be conceptually decomposed. These are Define and Search for Flights,
Choose Flight & Class Among available, Insert Passenger’s Information & Choose On-
board Options, View Flight Fare Without Taxes and Confirm Request of Flight
Reservation, View Reservation Details and Total Ticket Price, and Identification. All
of these are activities required for the main Complete Flight Reservation Activity to be
completed.
The activities that correspond to the leaves of the tree are elementary ones the user
normally executes in a single episode. The model shows that the user can accomplish the
Identification Activity by either logging into the system (Login activity, available only
for registered users) or providing a name and a telephone number (Insert Name and

TEAM LinG

Design Recovery of Web Application Transactions 11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Telephone # activity). These two activities are in fact related to their ancestor with a
Requires One hierarchical relation.
Most of the activities in the recovered Organization model were found to be Visible since
the changes they affect on data are visible by other activities during a session. The
~Confirm Reservation activity is a Compensates activity which in essence rewards the
effects of a successfully completed reservation when the user decides to delete it.

The Recovered Execution Model

The recovered “as-is” Execution model of the Complete Flight Reservation process is
shown in Figure 5. The model details the activities of Complete Flight Reservation and
Payment of the Organization model described in the “UWAT+” section. In the following
discussion, the most linear flow of execution the user can experience while reserving a
seat using the Alitalia Web site is used. (Note that while the Execution model also depicts
the sub-Activities that compose the Payment Activity and describes the set of payment
options the user can choose from, this activity is quite simply structured and is therefore
not the focus of the design recovery process.)
The process of Round-Trip Flight Reservation requires five steps to be completed.
These steps are illustrated in sequence by referring to the Execution model in Figure 5
and the screenshots of the Web page of the application supporting each of the five
activities.

Step 1. The user starts the flight reservation process by defining the request of “Round-
Trip Flight Reservation” and starting the flight search (Define and Search for Flights).

Figure 6. The activity of “Define and Search for Flights” in the Alitalia.it Web site

TEAM LinG

12 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6 shows a screenshot of the Alitalia Web page for this Activity. For this Activity
to be successfully executed, the user must indicate the number of passengers, the
preferred class, the departure and destination airports, and the departure and return
dates. Default values are provided for most of the required input parameters; utilities that
might have been helpful, such as a calendar, are not available to the user.

Step 2. If the flight search is successful, a list of possible flights (with different routes
between departure and destination, and different times) is proposed for the itinerary (with
an indication of the traveling class) specified in the previous step. The user is then
required to choose the preferred path from the departure airport to the destination, and
class of travel (View & Choose Flight & Class Among Available). Even if the preferred
traveling class was specified in Step 1 of the process, the system still shows flights
belonging to other classes. Figure 7 shows the screenshot of the Web page that enables
the user to execute this Activity.

Step 3. To proceed ahead toward the completion of the reservation process, the user is
required to provide all the information about the traveling passengers and choose for
them the On-Board options such as the preferred meal and eventual needs for assistance
services (Insert Passenger’s Information & Choose On-board Options). Figure 8 shows
a screenshot of the Web page in charge of this activity.

Step 4. After the previous activities have been successfully completed in sequence, the
flight details and fare (without taxes) are shown. The user is asked to confirm the choices
in order to effectively request the flight reservation and the system to commit it (View
Flight Fare Without Taxes and Confirm Request of Flight Reservation). This is shown
in Figure 9.

Figure 7. The activity of “Choose Path & Class Among Available” in the Alitalia.it Web
site

TEAM LinG

Design Recovery of Web Application Transactions 13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Step 5. If the flight reservation request succeeded, then the activity of Complete Flight
Reservation, represented in Figure 5 by a large rounded rectangle as background, can
be considered successfully completed. As shown in Figure 10, at this point the user is
provided with the flight reservation code, the date they must purchase the ticket, details
of the reserved flight, and the total price (taxes included) (View Reservation Details and
Total Ticket Price). A necessary condition for the reservation confirmation to be
successful is that the user has previously been identified to the system by executing the
Identification Activity. This is accomplished by either logging into the system (in the
case of a registered user), or by specifying first and last name and providing a telephone
number (in the case of an unregistered user).

Figure 8. The “Insert Passenger
Information & Choose On-board Options”
Activity

Figure 9. The “View Fare Without Taxes
and Confirm Request of Flight
Reservation” Activity

Figure 10. The “View Reservation Details and Total Ticket Price with Taxes” Activity

TEAM LinG

14 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When Step 5 is completed, the user can exit the process or proceed with the Payment for
purchasing the ticket corresponding to the reservation just confirmed by the system.
However, only the link that starts the Payment activity is made explicit by the application;
neither “Exit” nor “End Process” button is provided to the user to indicate that the
reservation process has been completed and can be exited. The model shows that only
the user call “Proceed with Payment Options” is provided to the user. This may be
considered a navigation problem, but if known at design time, it could have been avoided.
In the case of a registered user, the reservation is stored in Personal Travel Book and from
here the user can pay the ticket online at a later time. In the case of an unregistered user,
if the process is exited without contextually executing the Payment activity (e.g., simply
closing the browser or navigating outside the pages related with the process), the user
has no way to restart the Activity and to buy the ticket in a later session. The previous
consideration tells us that the Payment activity is Suspendable only for registered users.
As mentioned at the beginning of this section, Steps 1 to 5 depict the normal, linear
execution flow for the process of Complete Flight Reservation. However, depending on
the user’s choices and the system’s responses, several execution paths can be followed.
For example, the execution flow can take a different path from the one described if one
of the involved activities fails.
Failure causes and corresponding actions that can be undertaken by the user or the
system in response to them are described by Failure Tables. Two of these are summarized
in Table 1 and Table 2. The first table refers to the activity of Define and Search for
Flights, while the second refers to the possible failure causes identified for the activity
of View Flight Fare Without Taxes and Confirm Request of Flight Reservation.

Discussion

A number of observations can be made regarding possible areas of improvement for the
Alitalia transaction design, based on the as-is recovered Organization and Execution
models and taking into account other information extracted from the application during
its direct analysis. Five areas that can be considered the most important are: the

Table 1. Failure table for Activity “Define and Search for Flights”

TEAM LinG

Design Recovery of Web Application Transactions 15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

suspendability of the entire process of Complete Flight Reservation, the Identification
Activity, the Insert Passenger’s Information & Choose On-board Options activity,
visualizing total cost, and restarting the process. Each of these shortcomings (SC) is
discussed in turn.

SC1: Suspendability of the Entire Process

The first consideration concerns the Suspendability of the entire “Complete Flight
Reservation” transaction. As shown by the Execution model, none of the activities
involved in the process are Suspendable. For example, the user cannot store a flight they
found interesting to continue the reservation process in a following session.
In addition, the Payment activity, as noted in Step 5 of the previous section, is
Suspendable for registered users only. An unregistered user has no chance to purchase
the ticket in a following usage session of the application. One could argue that this is an
implementation issue. One could also argue that this is a matter of security policy. In
either case, the designer could document the tradeoffs regarding design decisions such
as Suspendability if the rationale were made explicit in the model.

SC2: The Identification Activity

The second important consideration is related to the Identification Activity. As shown
by the Organization model in Figure 4, the Identification activity is required for the
successful completion of the “Complete Flight Reservation” process. In this case, the
shortcomings lie in the way the user is forced to access and execute this activity and what
its execution causes.The user can start the Identification Activity with the user call
Login (following a link provided by the application) only when executing the Define and
Search for Flights or the Choose Flight & Class Among Available activities. Moreover,
as described by the transition line of the Execution model in Figure 5, executing the

Table 2. Failure table for Activity “View Flight Fare Without Taxes and Confirm
Request of Flight Reservation”

TEAM LinG

16 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Identification activity causes a loss of the state of the transaction (implementation of
the process) and forces the user to restart the process.This also happens when the user
reaches the confirmation step (Step 5) of the reservation process and, because the user
did not do it before, the activity fails in requesting the user to identify themselves.

SC3: The Insert Passenger’s Information & Choose On-Board Options

Another aspect worthy of attention is the Insert Passenger’s Information & Choose
On-board Options Activity. As shown by the Execution model in Figure 5 and
described in the previous section (Step 3), this Activity is required in order to carry out
the reservation process. The reverse modeling process exposed the fact that this activity
is executed before the user knows the fare of the selected flight (Step 4), and each time
the user conducts a new search or selection of flights. It rapidly becomes very frustrating
to the user to have to repeatedly input the same information. Iteratively searching for
flights by changing dates and itineraries looking for the best fare available is a very
common activity in any airline flight reservation application. Rather than acting as it does
now, the Alitalia system should instead request the Passenger’s Information only one
time, and then display the fare of the chosen flight during the entire session of usage.
The fact that the system loses the information entered by the user when executing this
activity is also modeled by the lack of the Durability property in the Organization model
in Figure 4.

SC4: Visualizing Total Cost

The fourth issue regards the visualization of the total cost, including taxes, of the chosen
flight. Users can easily find themselves guessing between available flights shown by the
system in Step 2, but needing to reach Step 4 to see the flight fare. Moreover, the price shown
in this Step, as the names of the Activity suggests, does not include taxes, and only after
confirming the reservation request will the user finally know the total ticket price.

SC5: Restarting the Process

Last but not least is the consideration about how much easier it is for the user to start
over with another search for flights looking for a better fare. Since this is a common goal
for most of the users, the application should offer the opportunity to start a new search
at nearly every point of the reservation process. Instead, as the Execution model in Figure
5 shows, the application explicitly provides a way to start a new search only at Step 2,
which is prior to the user knowing the price of a chosen flight. The user can attempt to
get around this limitation by using the “Back” button in the browser, but this invites
problems related to session expiration.

TEAM LinG

Design Recovery of Web Application Transactions 17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

This chapter presented an example of design recovery of Web application transactions.
The design recovery procedure relies on UWAT+, which is a conceptual model that is
based on extensions to the transaction design portion of the UWA framework. The
prescriptive recovery procedure is composed of three steps, which can be accomplished
by a human subject-matter expert. A commercial airline’s flight reservation system was
used to illustrate the procedure.To use the procedure, there is a one-time learning curve
required for the engineer to become familiar with the UWA design framework and the
UWAT+ refinements. However, once this is done, the procedure is relatively easy to
understand and systematic to apply. The designer is provided with a sequence of clear
steps to be carried out and a set of well-defined concepts to refer to, represented by means
of the well-known notation of UML diagrams. Applying the reverse modeling technique
allows the analyst to draw from the application and effectively represent with the models
a lot of information perceived by the user and worthy of attention from their point of
view.The design recovery procedure provides the analyst/designer with a tool (broadly
intended and not specifically a software tool) that is able to represent most of the aspects
related to the user execution of a process to carry out their goals. UWAT+ relies on two
models, the Organization model and Execution models, that, taken together, are suitable
for describing at a conceptual level the design of Web application transactions. These
are strong bases of discussion and comparison of ideas and strategies that the Web
application realizes.

Future Work

One area of future work we foresee is to develop tool support for the design recovery
procedure. Such tool support would greatly improve the likelihood of adoption by easing
the reverse modeling task. It would also make the analysis phase faster and more
thorough than the current manual approach. Supporting tools could range from commer-
cial UML diagramming editors, provided with UWAT+ Organization and Execution model
profiles (plug-in), to semi-automatic tailored tools able to analyze and model the
Activities of an identified transaction.Another area of future work is to use the recovered
design as a guide to reengineering the Web site’s transactions. The following three steps
outline a possible reengineering technique for Web application transactions:

1. Perform the transaction design recovery of the Web site using the procedure
described in this chapter;

2. Analyze the recovered “as-is” UWAT+ transaction design model and evaluate it
according to quality attributes such as usability and fulfillment of business
requirements; and

TEAM LinG

18 Tilley, Distante and Huang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Develop a new version of the transaction via restructuring of the as-is model,
resulting in a candidate “to-be” model that better meets the user’s expectations and
improves the user’s experiences using the Web site.

Evidence-based techniques such as empirical studies could be used to verify that the
resultant Web site is “better” in some quantifiable way than the original. The difficulty
is in quantifying “better,” both for the designer and the developer. For the designer, one
measure might be shorter time-to-market for a complex Web application, while still
retaining and even improving functionality and lower subsequent maintenance costs.
For the user, the measure is likely to remain usability—something that is notoriously
difficult to measure, but ultimately the most important attribute of all for any application.

Acknowledgments

Tauhida Parveen contributed to the development of an early draft of this chapter.

References

Alitalia (2003). Available online at www.alitalia.it
Bellows, J. (2000). Activity diagrams and operation architecture. CBD-HQ White paper.

Available online at www.cbd-hq.com
Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The unified modeling language user

guide, (Rational Corporation Software). Reading, MA: Addison-Wesley.
Chikofsy, E. & Cross, J. (1990). Reverse engineering and design recovery: A taxonomy.

IEEE Software, 7(1), 13-17.
Distante, D. (2004). Reengineering legacy applications and web transactions: An

extended version of the UWA transaction design model. Unpublished Doctoral
Dissertation, University of Lecce, Italy.

Distante, D., Parveen, T. & Tilley, S. (2004, June 24-26). Towards a technique for reverse
engineering web transactions from a user’s perspective. In Proceedings of the 12th

International Workshop on Program Comprehension, IWPC 2004, Bari, Italy, (pp.
142-150). Los Alamitos, CA: IEEE Computer Society Press.

Müller, H., Jahnke, J., Smith, D., Storey, M.-A., Tilley, S., & Wong, K. (2003). Reverse
engineering: A roadmap. In A. Finkelstein (Ed.), The future of software engineering
(pp. 47-60). New York: ACM Press.

Object Management Group (OMG) (2003). Unified language modeling specification,
version 1.5. Available online at www.omg.org

TEAM LinG

Design Recovery of Web Application Transactions 19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Rossi, G., Schmid, H. & Lyardet, F. (2003). Engineering business processes in web
applications: modeling and navigation issues. Proceedings of the 3rd International
Workshop on Web Oriented Software Technology (IWWOST 2003), Oviedo, Spain.

Schmid, H. & Rossi, G. (2004). Modeling and designing processes in e-commerce
applications. IEEE Internet Computing, January/February.

Tilley, S. (2000). The canonical activities of reverse engineering. Annals of Software
Engineering, 9, (pp. 249-271). Dordrecht, The Netherlands: Baltzer Scientific /
Kluwer Academic.

UWA (Ubiquitous Web Applications) Project (2001a). Deliverable D3: Requirements
investigation for Bank121 pilot application. Available online at
www.uwaproject.org

UWA (Ubiquitous Web Applications) Project (2001b). Deliverable D6: Requirements
elicitation: model, notation and tool architecture. Available online at
www.uwaproject.org

UWA (Ubiquitous Web Applications) Project (2001c). Deliverable D7: hypermedia and
operation design: Model and tool architecture. Available online at
www.uwaproject.org

UWA (Ubiquitous Web Applications) Project (2001d). Deliverable D8: Transaction
design. Available online at www.uwaproject.org

UWA (Ubiquitous Web Applications) Project (2001e). Deliverable D9: Customization
design model, notation and tool architecture. Available online at
www.uwaproject.org

UWA (Ubiquitous Web Applications) Project (2001f). The UWA approach to modeling
ubiquitous Web application. Available online at www.uwaproject.org

TEAM LinG

20 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Using a Graph
Transformation System
to Improve the Quality

Characteristics of
UML-RT Specifications

Lars Grunske, University of Potsdam, Germany

Abstract

This chapter presents the concept of graph-based architecture evolution and how this
concept can be applied to improve the quality characteristics of a software system. For
this purpose, the UML-RT used as an architectural specification language is mapped
to a hypergraph-based data structure. Thus, transformation operators can be specified
as hypergraph transformation rules and applied automatically.

Introduction

Over the past few years, software intensive technical or embedded systems have
increasingly been implemented in software components (Douglas, 1999; Gomaa, 2000;
Liggesmeyer, 2000). These software components have to fulfill requirements relating to
quality characteristics or nonfunctional properties (NFPs), such as safety, availability,
reliability, and temporal correctness. If a system does not fulfill these requirements, the

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 21

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system must be restructured to improve the quality characteristics. Due to economical
reasons, this change must be made as early as possible, preferably in the design phase,
after the development of the system/software architecture. Based on the architecture
specification, for the first time, an evaluation of the quality characteristics of the system
is possible.
For the restructuring of software architectures in Bosch and Molin (1999), a cyclic
process (see Figure 1) is presented that can be used to improve the quality characteristics
of software architectures. The precondition for its application is an architectural
specification that fulfills all functional requirements. Based on this specification, the
quality characteristics are determined by an evaluation of the architecture. If the
architectural specification does not meet its quality requirements, the software architec-
ture must be restructured by the application of transformation operators. These trans-
formation operators should influence the quality characteristics without changing the
functional behavior. Thus, after the transformation the architectural specification is still
functionally correct. If it turns out that all quality characteristics meet their correspond-
ing requirements, the cyclic process can be terminated and system development can
proceed with the detailed design and the implementation phase.
This chapter presents the concept of hypergraph-based architectural evolution and how
this concept can be applied in the process model. For this purpose UML-RT is used as
an architectural description language and the relevant elements of the UML-RT metamodel
are mapped to a hypergraph-based data structure. The main benefit of this approach is
the possibility to model architecture transformations as hypergraph transformation
rules. Consequently, this approach allows for a (semi-) automatic application. Due to the
complexity of the overall setup and the precision needed, it becomes inevitable to support
the evolution process with an appropriate utility. For this purpose, a tool called Balance
has been developed, which provides facilities for applying the architectural transforma-
tions explained previously.
To clarify the understanding of the hypergraph-based architecture evolution, we are
going to explain these items more precisely in the following sections. In the second

system-/software architecture that fulfills all functional
requirements

architecture-
evaluation

architecture-
transformation

ok

architectural
problem

system-/software architecture that fulfills all functional and non-
functional requirements

Figure 1. Cyclic process for the improvement of quality characteristics

TEAM LinG

22 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

section, the theoretical background of hypergraphs and hypergraph transformations is
presented. The next section gives an overview of the current state-of-the-art for software
evolution with graph transformation. In the fourth section, an approach on how to use
graph transformation for architectural evolution is presented. The fifth section demon-
strates the application of this approach in the tool balance. Finally, conclusions are
drawn and directions for future work are discussed.

Theoretical Background

Hypergraphs Theory

Hypergraphs are a generalization of normal graphs, where an edge can be associated to more
than two nodes. They are a data structure that can be applied in many areas (Habel, 1992).

Basic Concept

Generally, a hypergraph contains a set of nodes and hyperedges. Each hyperedge can
be attached to any number of nodes and each node can be attached by any number of
hyperedges.
To construct a hierarchical hypergraph, we use the concept of hyperedge refinement
(Drewes, Hoffmann, & Plump, 2002; Hoffmann, 2001; Hoffmann & Minas, 2001). For this
purpose, special hyperedges are introduced that are used to embed another hypergraph.
These hyperedges are called complex hyperedges.
Altogether, the metamodel presented in Figure 2 characterizes a typed hierarchical
hypergraph.

hyperedge

hypergraph

att

cts

complex
hyperedge

*
*

1

* *

E V

node

Figure 2. Metamodel of a hierarchical typed hypergraph

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 23

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Formal Definition

This section deals with the formal concept of a hierarchical typed hypergraph. Flat typed
hypergraphs are introduced first, followed by multi-pointed hypergraphs. Based on
these definitions, a hierarchically typed hypergraph can be defined.
According to Habel (1992) a flat typed hypergraph can be defined as follows:

Definition: Typed Hypergraph
Let LV be a set of node types and LE be a set of hyperedge types, then a hypergraph G
from the possible set of hypergraphs G

SET
 over LV and LE is characterized by the tuple

<V, E, att, lab>, with two finite sets V and E of nodes (or vertices) and hyperedges, a
labeling function lab : V→LV∪E→LE and an attachment function att : E∪V *, where V *
denotes a sequence of nodes with a specified order.
The labeling function allocates for each hyperedge, and each node, a hyperedge or node
type. The attachment function att assigns a sequence of nodes to a hyperedge. The
number of elements in this sequence att(e) is called the arity of the hyperedge.
Hierarchical hypergraphs are introduced in Drewes et al. (2002) and Hoffmann (2001) by
the refinement of special hyperedges. These hyperedges are used to embed a multi-
pointed hypergraph, which contains external nodes and is defined as follows:

Definition: Multi-Pointed Hypergraph
A multi-pointed hypergraph is characterized by the tuple <V, E, att, lab, ext>, where
<V, E, att, lab> is a typed hypergraph and ext describes a sequence of external nodes
ext∈V *.
The arity of a multi-pointed hypergraph can be determined by the length of the external
node sequence ext. For the embedding of a multi-pointed hypergraph into another
graph a hyperedge with the same arity can be refined. For this reason, the hyperedge must
be removed from the graph and the multi-pointed hypergraph included in the remaining
hyperedge frame. This hyperedge frame consists only of the associated nodes of the
removed edge. The nodes of the hyperedge frame and the external nodes are mapped and
define the glue between the enclosing graph and the embedded hypergraph (Drewes et
al., 2002).
Based on the hyperedge refinement and the definition of a multi-pointed hypergraph, a
hierarchical typed hypergraph can be defined as follows:

Definition: Hierarchical Typed Hypergraph
A hierarchical typed hypergraph G from the set of hypergraphs G

SET
 over LV and LE is

characterized by the tuple <V, E, att, lab, ext, cts>, where <V, E, att, lab, ext> is a multi-
pointed hypergraph and cts : E→G

SET
 is an assignment function which assigns contained

hierarchical typed hypergraphs to a hyperedge.
Due to the recursive nature of this definition, the structure of a hierarchical hypergraph
is defined inductively over levels of the hierarchy. In the lowest level G0

SET
, no hyperedge

TEAM LinG

24 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

e∈E contains an embedded hypergraph cts(e) = ∅. Thus, all hypergraphs in G0
SET

are
regular typed graphs. In higher hierarchy levels G≥1

SET
with the function cts : E→G

SET
 the

embedded graphs are assigned to the hyperedges.
Based on object-oriented concepts, the node types LV and hyperedge types LE can be
specified as classes. These classes can contain a set of application-specific attributes
and operations. Furthermore, hypergraphs can be typed as classes.
Specific classes can be derived by inheritance from the classes of the metamodel. These
classes extend the set of attributes and operations. In addition, with the introduction of
classes it is easy to define variables and integrate them into a hypergraph specification.
These variables can be instantiated from the class itself or from a subclass.

Hypergraph Transformation

Basic Principles

Before graph transformation rules can be specified, some basic principles have to be
introduced. One of them is the identification of a subhypergraph that can be defined as
follows (Habel, 1992):

Definition: Subhypergraph
Let G = <V, E, att, lab> and G' = <V', E', att', lab'> be two hypergraphs. Then G' is called
a subhypergraph of G, denoted by G' ⊆ G, if V' ⊆ V, E' ⊆ E and att(e) ⊆ att'(e), lab(e)
= lab'(e) lab(v) = lab'(v) for all edges e∈E' and nodes v∈V'.
A subhypergraph specifies the exact occurrence in an application graph—a graph to
which a transformation is to be applied. This exact identification restricts the application
of a transformation rule. Thus, the identification of a subhypergraph is done by a
hypergraph morphism, which is a structure- and type-preserving mapping (Habel, 1992):

Definition: Hypergraph Morphism
Let G = <V, E, att, lab> and G' = <V', E', att', lab'> be two hypergraphs. A hypergraph
morphism m : G→G' consists of a pair of mappings <mV, mE>, with mV : V→V' and mE : E→E'
which satisfy the following conditions:

()() (): Ee E lab m e lab e′∀ ∈ =

()() (): vv V lab m v lab v′∀ ∈ =

()() ()()eattmemtatEe VE
*: =′∈∀

If both mappings mV : V→V' and mE : E→E' are injective (surjective, bijective), then
the mapping m : G→G' is injective (surjective, bijective). Furthermore, if the mapping

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 25

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

m : G→G' is bijective, the morphism is called an isomorphism and both graphs G and G'
are isomorphic denoted by G G′≅ .

In addition to the identification of a subhypergraph in an application graph for the graph
transformation, it is necessary to define how a subhypergraph can be removed and added
to an application graph. The hypergraph addition will be constructed by a disjoint union
of the node and hyperedge sets. The removal of a subhypergraph can be constructed
separately by the difference of sets for nodes and hyperedges.

Definition: Disjoint Union of Hypergraphs, Hypergraph Addition
Let G = <V, E, att, lab> and G' = <V', E', att', lab'> be two hypergraphs with V ∩ V' = ∅
and E ∩ E' = ∅, then the disjoint union G+G' is defined by the tuple <V ∪ V', E ∪ E', attG+G',
labG+G'>, with attG+G' and labG+G' which can be constructed as follows:

() ()
()

() ()
G G

G G
G G

att e att e if e E
att e

att e att e otherwise
′+

′+
′+

= ∈
= ′=

() ()
()

() ()
G G

G G
G G

lab a lab a if a E V
lab a

lab a lab a otherwise
′+

′+
′+

= ∈ ∪
= ′=

Definition: Removal of a Subhypergraph, Hypergraph Subtraction
Let G = <V, E, att, lab> and G' = <V', E', att', lab'> be two hypergraphs, with G'⊆G, then
the hypergraph G – G' is characterized by the tuple <V – V', E – E', attG – G',labG – G'>, where:

() () () , ()
() () , () ()

G G

G G

att e att e V e E E
lab a lab a a V V E E

′−

′−

′ ′= − ∀ ∈ −
′ ′= ∀ ∈ − ∪ −

�

Hypergraph Replacement

A hypergraph transformation rule defines in an abstract manner the replacement of a
subhypergraph by another in an application graph. A hypergraph transformation rule
can be formally defined as follows (Corradini et al., 1997; Ehrig, 1979):

Definition: Hypergraph Transformation Rule
A hypergraph transformation rule is a tuple <GL, GI, GR, l, r>, with three hypergraphs GL,
GR, GI, ∈ G called left-hand-side graph, right-hand-side graph and interface graph and
two hypergraph morphisms l : GI→GL and r : GI→GR. For simplification, a hypergraph
transformation rule can be denoted with GL←GI→GR.

TEAM LinG

26 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the application of a hypergraph transformation rule, the following algorithm can be
used:

• Find an occurrence morphism o : GL→G that identifies the left-hand-side graph GL
in an application graph G.

• Check the following two conditions:

• Dangling condition: No hyperedge e ∈ EG – Eo(GL) is associated with a node
k ∈ Vo(GL) – Vo(GI)

• Identification condition: If two hyperedges x, y ∈ EGL or nodes x, y ∈ VGL
are identified by o with o(x) = o(y), then these hyperedges or nodes are
elements of the interface graph x, y ∈ EGI

 ∪ VGI.
• Remove the occurrence of the left-hand-side hypergraph except for the inter-

face graph from the application graph. The resulting graph is called context
graph D = G – o(GL – GI).

• Add the right-hand-side GR except for GI to the context graph resulting in G'
= D+(GR – GI) and connect all hyperedges e ∈ EGR

– EGI
which are

associated to a node k ∈ VGI
 to the corresponding node of the context graph

o'(k), where o' : GI→D.

The dangling condition and the identification condition must be checked to get a
syntactically correct graph after the application of the graph transformation rule. If the
dangling condition fails, hyperedges which are associated to already removed nodes
exist in the context graph. If the identification condition is neglected, elements exist in
the application graph which must be simultaneously preserved and removed. Thus, the
context graph cannot be constructed. Due to simplicity, for the implementation of a
hypergraph transformation rule the algebraic approach (Ehrig, 1979; Corradini et al., 1997)
is preferred. This approach is based on the construction of pushouts and pushout
complements in the category of typed graphs. To visualize a graph transformation rule
and its application within the algebraic approach the following pushout diagram can be
used:

l r

L I R
o o o

G G G

G D G

′ ′′

← →
↓ ↓ ↓

′← →

The context graph D and the morphism o' are constructed by pushout complements of
the tuple <GL, o, l>. Subsequently, the resulting graph G' can be constructed with the
pushout of the tuple <GI, o, r>.

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 27

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Type-Generic Graph Transformation

Type-generic graph transformation improves the expressiveness of graph transfor-
mation rules by allowing the identification of subtypes with the occurrence morphism
o : GL→G (Mens, 1999). For this reason, the partial order for the subtype relationship
must be defined first.

Definition: Partial Ordered Type Hierarchies
A type hierarchy over the nodetypes LV, edgetypes LE and hypergraph types G ∈ GSET

can be defined by partially ordered relations �V, �E, �G, where x ��y means that the type
x is a subtype of y.
Based on this, a subtype preserving hypergraph morphism can be defined as follows.

Definition: Subtype Preserving Hypergraph Morphism
Let G = <V, E, att, lab> and G' = <V', E', att', lab'> be two hypergraphs. A
hypergraph morphism m : G→G' consists of a pair of mappings <mV, mE>, with mV :
V→V' and mE : E→E' which satisfy the following conditions:

()() (): ′∀ ∈ E Ee E lab m e lab e�

()() (): V Vv V lab m v lab v′∀ ∈ �

()() ()()eattmemtatEe VE
*: =′∈∀

This subtype preserving hypergraph morphism allows the algebraic specification (Ehrig,
1979) of a type-generic graph transformation rule as presented in Mens (1999).

Hypergraph Transformation in Hierarchical Typed Hypergraphs

For the hypergraph replacement in hierarchical typed hypergraphs, the morphisms must
first be introduced into this category. This can be defined according to Drews, Hoffmann,
and Plump (2002) and Hoffmann and Minas (2001) inductively over the embedding
hierarchies:

Definition: Morphism in Hierarchical Typed Hypergraphs
Let G = <V, E, att, lab, cts> and G' = <V', E', att', lab', cts'> be two hierarchical typed
hypergraphs, then a morphism m : G→G' is defined by a tuple <mV, mE, M>, where <mV,
mE> characterizes a morphism of a flat graph and M is a family of morphisms Me for the
embedded hypergraphs of all complex hyperedges e ∈ dom(cts). Thereby, each morphism
Me can be defined as follows:

TEAM LinG

28 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

))(()(: emsctectsM Ee ′→

Drews, Hoffmann, and Plump (2002) show that in the category of hierarchical typed
hypergraphs, pushouts and pushout complements can be constructed. Thus, the
application of a hypergraph transformation rule can be applied similar to the algebraic
approach (Ehrig 1979).

Graph-Based Software Evolution:
An Overview

In this section, the existing approaches for graph-based transformation of software
specifications will be reviewed. For this purpose a short introduction into relevant
approaches is given. The goals, the theoretical background, and the practical realization
of each approach are presented. At the end of this section all approaches are compared
in Table 1 in order to decide which concepts and aspects can be used for the graph-based
architecture evolution. Furthermore, the relevant aspects for qualitatively improving
architectural evolution are pointed out.

Approach of T. Mens et al.

Mens (1999) introduces a general approach for the evolution and transformation of
models for the object-oriented software development process. This approach aims at a
consistent formalism for the evolution during the design time of the software. For this
purpose, graphs and graph transformation rules are utilized, where graphs represent
model-independent specification formalism, and graph transformation rules represent
model-independent transformation formalism. For the specification, hierarchical typed
graphs are considered in particular. This formalism is used in Mens, Demeyer, and
Janssens (2002) to describe behavior-preserving transformation rules. For the specifi-
cation of the transformation rules, conditional rules are used, which are graph transfor-
mation rules enhanced with preconditions. Consequently, a systematic selection of the
rules is possible and conflicts with the parallel and sequential rule application can be
identified. For the practical validation of the approach, a prototype realized in Fujaba is
described.

Approach of G. Taentzer

Taentzer’s approach (1999) describes the visual specification of the behavior and the
evolution of distributed systems. In particular, the runtime-evolution of the system is
considered. At this point, her approach differs from the previously presented approach.

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 29

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the description of the runtime evolution, the concept of distributed graph transfor-
mation based on the algebraic approach (Ehrig, 1979) is used (Ehrig, Boehm, Hummert,
& Löwe, 1988). The practical applicability of the approach and the application to two case
studies (Taentzer, 1999) is presented by the realization of a prototype in AGG (Taentzer,
Ermel, & Rudolf, 1999).

Approach of D. Le Metayer

Le Metayer (1998) describes a basic approach for the formalization of architectural styles.
The idea of his approach is the specification of software architectures as a graph whose
nodes describe active components and whose edges describe the communication
relations between these components. Based on previous information, architecture
transformations with a refinement focus can be specified as graph transformation rules.
With these architecture transformations, a graph grammar can be constructed that
describes a class of architectures or an architectural style.

Approach of D. Hirsch et al.

Hirsch, Montanari, and Inverardi (1999) present an approach for the architectural
configuration of distributed systems. Communication systems and their basic compo-
nents, such as Client, Server, Router and Bridges, are considered particularly. The goal
of the reconfiguration is to refine architectures and thereby follow an architecture style.
The approach resembles the work of Le Metayer (1998). Hypergraphs are used for the
modeling of software architectures. Here, components are hyperedges and the commu-

General Information Specification and Transformation Notation Process and Tool Support Characteristics

Approaches

Date of
Publica-
tions

Intention of the Ap-
proaches

Specification Formal-
ism (Special Charac-
teristics)

Transformation For-
malism (Special
Characteristics)

Selection and
Achievement
Test

Tool Support

T. Mens et al. 99, 00, 02,
03

Development of the
formal basics for the
evolution of object-
oriented Models

Hierarchical typed
hypergraphs

Hyper graph replace-
ment (SPO and DPO,
preconditions)

Limited
choice with
preconditions

Prototype
realized in
Fujaba

G. Taentzer 99, 01 Description of a visual
concept for the model-
ing and evolution of
distributed systems

Typed graphs Graph replacement
(distributed graph
transformations)

 Prototype
realized in
AGG

D. Le Métayer 96, 98 Formalization of archi-
tecture styles by graph
grammars

Hypergraphs Proposition of Hyper
edge, Hyper graph
and node replacement

H. Fahmy, R. C. Holt 98, 00, 01 Improvement of the un-
derstandability of an
architecture specifica-
tion

Hierarchical typed
graphs +Tarski opera-
tions

Graph replacement
(SPO)

 Prototype
realized in
PROGRES

M. Wermelinger 99, 01, 02 Formalization of the
dynamic architecture
reconfiguration at the
runtime of a system

Typed graphs Graph replacement
(DPO)

D. Hirsch et al. 99, 00 Reconfiguration of dis-
tributed systems under
retention of an architec-
ture style

Typed hyper graphs Hyper edge replace-
ment (SPO)

Table 1. Software evolution with hypergraphs: An overview

TEAM LinG

30 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nication between the components is modeled with nodes. As formalism for architecture
reconfiguration context-free hyperedge replacements are used.

Approach of H. Fahmy and R. C. Holt

The goal of the approach proposed in Holt (1998) and Fahmy and Holt (2000) is to reduce
the complexity and to improve the understandability of software architectures. For this
purpose, simple transformations are presented which predominantly improve the cou-
pling and binding. The transformations in Fahmy and Holt (2000) are specified as
conditional graph transformation rules and are realized prototypically in PROGESS. Holt
(1998) chooses a different approach for the representation of the same rules: the
architecture is specified as a graph with the classic, algebraic Tarski-operators. The
transformation of Holt’s architecture is described by algebraic relations realized by a
relation interpreter called GROK. The practical applicability of the approach is corrobo-
rated in Holt (1998) by several case studies (250-300 KLOC COBOL and C programs).

Approach of M. Wermelinger et al.

The study of Wermelinger, Lopes, and Fiadeiro (1999, 2001) aims at the formalization of
the dynamic architectural reconfiguration of a system at runtime. Distributed systems are
considered in particular. For the specification of architectures, an algebraic approach and
the architectural description language CommUnity are utilized. The possible modifica-
tions of the architecture at runtime are described by simple transformations. An example
of such transformations is the addition, removal, and refinement of components as well
as the assignment of communication variables. For the application of these trans-
formations the double-pushout approach of Ehrig (1979) is applied. Besides the simple
transformations in Wermelinger et al. (2001), a possibility is presented to design complex
transformations. These complex transformations use syntax constructs that are similar
to simple programming languages.

Summary of the Current Approaches

The current approaches as presented in Table 1 provide a good theoretical background
for the graph-based evolution of software specifications.
Nevertheless, the current approaches lack aspects that are necessary for the application
of graph-based architecture evolution in the process model presented in the introduc-
tion. These aspects are:

• An architectural description language that supports the quality improvement
process

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 31

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A set of transformation operators that improve quality characteristics without
changing the functional properties

• A tool that supports the (semi-) automatic application of the transformation
operators

To allow the utilization of graph-based architectural evolution, these aspects are
discussed in the following two sections.

Quality Improving Architecture
Evolution with the UML-RT

This section explains the basic concepts for the graph-based architectural evolution with
UML-RT. First, an introduction to UML-RT is given. Then, a mapping of the UML-RT
to a hypergraph-based data structure and an annotation with modular analysis models
for the evaluation of the relevant quality characteristics are presented. Based on this,
quality improving architectural transformations can be specified as hypergraph trans-
formation rules and applied (semi-) automatically.

Introduction to UML-RT

Due to the popularity in the industrial development of embedded systems, in this
approach, the UML-RT (Selic & Rumbaugh, 1998) is used as a modeling language for the
structure specification of a software intensive technical system. This modeling language
is based on the ROOM methodology developed by Selic, Gullekson, and Ward (1996) and
is suited to model architectural specifications as presented in Cheng and Garland (2001)
and Rumpe, Schoenmakers, Radermacher, and Schürr (1999).
To model architectural specifications with UML-RT, the following three principal
elements are needed:

• capsules

• ports (end-ports and relay-ports)

• connectors

The capsules are the main entities of the architectural specification. They encapsulate
the functional behavior and correspond to the ROOM concept of actors (Selic et al., 1996).
Furthermore, the capsules are concurrent objects, which are created based on capsule-
class definitions. These capsule-classes can also be defined as composites consisting

TEAM LinG

32 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of finer, more granular capsules. With respect to this, the hierarchical structure between
the capsules is defined by a (composition) hierarchy.
For communication with its environment, a capsule owns a set of interface objects. These
interface objects are called ports and describe the functional interfaces of a capsule.
Between the ports, point-to-point connections can be established that are used to send
messages or signals. These point-to-point connections are called connectors and
correspond to ROOM bindings (Selic & Rumbaugh, 1998). If a message is sent directly
to a component, the receiving port is called an end-port. To communicate with a capsule
inside a hierarchical capsule special ports are needed to forward a message from the
outside of a composite capsule to an inner capsule or in the opposite direction. These
ports are called relay-ports.

Mapping of UML-RT to Hierarchical-Typed
Hypergraphs

The mapping of the principal UML-RT elements to the elements of a hierarchical typed
hypergraph is presented with a type system in Figure 3. This type system contains two
meta-levels. The meta-level II describes the relevant elements of a hierarchical typed
hypergraph.
The meta-level I contains the metaclasses capsule, connector, end-port, and relay-
ports, needed to model architectures in the UML-RT.
The metaclass capsule is derived from the metaclass hypergraph and the metaclasses
end-port and relay-ports are derived from the metaclass node in the hypergraph
specification. Based on this, every capsule contains a finite set of ports, because of the
composition V in the hypergraph-meta-level. The metaclass connector is derived from
the metaclass hyperedge. Consequently, a connector can connect a set of ports to model
a communication connection between these ports.
Furthermore, the hypergraph-based structure specification distinguishes between flat
and hierarchical capsules. A flat capsule contains only one hyperedge. This hyperedge

relay portend port

meta-level II (hypergraph)

nodehyperedgecomplex
hyperedge

conectorcapsule

att

cts

meta-level I (UML RT structure)

hypergraph *
*

1

* *

V

E

Figure 3. Mapping of the principal UML-RT elements to the elements of a hierarchical
typed hypergraph

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 33

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is associated with all contained ports of the capsule. Hierarchical capsules can contain
a set of hyperedges. Some of these hyperedges can be complex and can contain other
capsules.

Level-Crossing Example

In Figure 4, a simplified version of a control system for a level crossing is modeled in UML-
RT, which is specified with a capsule called LevelCrossingControlSystem. This capsule
contains the capsules LevelCrossingControl, GateControl, TrainSignalControl,
GateSensorManager and TrainSensorManager. These capsules are not further decom-
posed. The LevelCrossingControl capsule is the controller of the level crossing system.
This capsule can send messages to the GateControl capsule to open or close the gates
and to the TrainSignalControl capsule to allow or deny the passage for an arriving train.
To get the information from the environment the LevelCrossingControl capsule utilizes
two sensors: One sensor determines the state of the gates, and the other detects an
arriving train and checks its progress through the level crossing section. These sensors
are controlled by the GateSensorManager and TrainSensorManager capsules.
Due to the mapping of the principal UML-RT elements to the elements of a hierarchical
typed hypergraph, as presented in the previous section, the specification of the
LevelCrossingControlSystem capsule is a hypergraph. This hypergraph contains a node
for each port. Thereby external ports are nodes of the type relay-port and all other ports
are of the type end-port. Additionally, the hypergraph contains a set of hyperedges.
These hyperedges are distinguished into hyperedges of the type connector that model
the communication-connections between the ports, and of the type hierarchical
hyperedge that contain the embedded capsules.

:LevelCrossingControl

:GateControl :GateSensorManger :TrainSignalControl :TrainSensor-
Manager

:LCGates :LCGateSensors :LCSignals :LCTrainSensors

:GIntern

:GLC

:GSIntern :SIntern :TSIntern

:GSLC :SLC :TSLC

:LevelCrossingControlSystem

:GExtern :GSExtern :SExtern :TSExtern

Figure 4. Structure specification of the level crossing example

TEAM LinG

34 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Evaluation of Quality Characteristics

In the cyclic process presented in the introduction, software architectures must be
evaluated with an architecture evaluation method to prove that the system will meet its
quality requirements. For these evaluations, a set of analysis models must be integrated
into the presented structural specification.
For this purpose, the analysis models presented in Table 2 are used. These models
represent the state-of-the-art for each relevant quality characteristic (Birolini, 1999;
Douglas, 1999; Fenelon & McDermid, 1993; Gomaa, 2000; Liggesmeyer, 2000; Pumfrey,
1999).
For the annotation of the elements of the structural specification, these analysis models
are modularized as described in Papadopoulos, McDermid, Sasse, and Heiner (2001) and
extend the metaclass capsule. An analysis model for the complete software architecture
or a hierarchical capsule can be constructed with composition-based techniques accord-
ing to the composition hierarchy. To apply these techniques, a modular analysis model
only specifies the relevant aspects of the quality characteristics of an architectural
element and can be characterized by the following parts:

• a set of outputs

• a set of inputs

• a set of internal information

The set of outputs describes the effects of the architectural element on the quality
characteristics. As an example, in modular fault-trees, these outputs represent a set of
failures that can be produced by the capsule and their probabilities. For the calculation
of the outputs of a modular analysis model, the set of inputs and the internal information
must be considered. In a fault-tree the inputs describe external failures that can influence
the capsule. The internal information specifies the Boolean function that characterizes
the fault tree and the probability of internal elementary failures which can be determined
for an architectural element by expert knowledge or experimental studies (Birolini, 1999;
Liggesmeyer, 2000; Musa, Iannino, & Okumoto, 1987).

Quality characteristic Analysis model
Safety Fault-tree-model
Reliability, main-
tainability, availability

Fault-tree-model and
Markov chains

Temporal correctness Scheduling models
(RMA, EDFA) and
End-to-End analysis

Economic attributes Life-Cycle-Cost-
model

Table 2. Quality characteristics and relevant analysis models

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 35

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Transformation Operators

A transformation operator describes in an abstract way the structural changes of
software architectures. These changes can be:

• the removal or the addition of architectural elements

• the redirection of a connection between the architectural elements

This section gives a graphical notation and describes how to specify a graph transfor-
mation rule with this graphical notation. Thereafter, four transformation operators are
presented that can be used to improve the quality characteristics of architectural
specifications. A more detailed description of the transformation operators and other
transformation operators can be found in Grunske (2003b).

Graphical Notation

A graphical notation is used for the representation of a transformation operator. This
notation is denoted as T-notation because it groups the architectural elements of an
operator into three parts, forming a T. The semantic of this notation implies that all
elements or connections on the bottom-left-side of the T must be removed from the
architecture. All elements or connections on the bottom-right-side of the T must be added
to the architecture. The elements above the T remain unaffected and serve as gluing
points between the rest of the architecture and the new added elements. This is the reason
why they are redundantly contained in the upper left and the upper right side.
An example for a transformational pattern in the T-notation is given in Figure 5. This
abstract operator shows that the capsules of type A and B, the two ports of type A, and
the connection between them must be removed. The ports (type A, B, and C) above the
T remain unaffected. They serve as gluing points for the component with type C. This
component must be added to the software architecture. The application of this pattern
is presented in Figure 6 for a concrete architecture.
Based on this graphical representation of the transformation operator, a graph transfor-
mation rule TO : GTO

L ←GTO
I →GTO

R can be created. In this graph transformation rule the left-
hand-side graph GTO

L contains all COOL-elements in the bottom-left-side of the T. The
right-hand-side graph GTO

R contains all COOL-elements in the bottom-right-side of the
T and the interface hypergraph GTO

I is represented by the COOL-elements above the T.

:port C :port B:port A

:port A

:component A :component B :component Cbefore after

:port C :port A :port B

:port A

Figure 5. Example of a transformational pattern in the T-notation

TEAM LinG

36 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Based on this graph transformation rule, a transformation operator can be applied
automatically to an architectural specification in COOL with the double pushout ap-
proach (Ehrig, 1979; Corradini et al., 1997).

Behavioral Equivalence

The automatic application of an architecture transformation operator requires a proof-
algorithm to verify the behavioral equivalence before and after the application of the
architectural transformation. Behavioral equivalence in this context means that the
system before and after the transformation responds in the same way to each possible
message trace that can be generated by the environment. Usually this is defined as trace
containment or trace equivalent.
To check the behavioral equivalence a proof algorithm should contain the following
steps:

1. Identify the part of the architecture that will be removed by the transformation
operator

2. Identify the part of the architecture that will be added by the transformation
operator

3. Construct for both parts the set of possible traces and check their equivalence

The removed part of the architecture can be constructed with the occurrence morphism
o : GL→G and the hypergraph subtraction of the interface graph GI from the left-hand-
side graph GL as follows o(GL–GI). The added part to the architecture o''(GR–GI) can be
similarly constructed with the morphism o'' : GR→G'.
The proof of trace equivalence of both parts is a complex problem that is extensively
discussed for state charts in Harel and Kupferman (2002). For the behavioral specification
with interface automata, a further proof of trace equivalence is presented in Grunske
(2003a). These interface automata as proposed in de Alfaro and Henzinger (2001) are
simpler than statecharts because they have no hierarchical states and no history states.

after

:component C

:component A

:port C

:port A

:component D
:port A:port C

:port B

:port A

:port C

:port B

:port A

:component A

:component B

:port A
:port A

before

:component A

:port C

:port A

:component D

:port A

Figure 6. Example of the application of a transformational pattern

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 37

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Multi Channel Redundancy with Voting

The first transformation operator we want to present is called Multi Channel Redundancy
with Voting. The idea of this transformation operator is to replace a capsule that does
not fulfill its safety, availability, or reliability requirements by multiple capsules on
different hardware platforms and a comparator (m-out-of-v voter) that gets the inputs from
the environment and generates multiple messages for the redundant capsules (Figure 7).
Based on these messages, the capsules compute the results and send them back to the
comparator, which in turn chooses the message to be sent to the environment by a
majority voting. For the realization of this pattern, often three components and a two-out-
of-three voting are used (Douglass, 1999, 2002). Due to the structure, random and single
point failures of the hardware platforms can be detected if homogeneous software
components are used. Thus, the reliability of the system will be improved if the hardware
platform of the comparator is more reliable than the hardware platforms of the redundant
capsules.
This operator also can be used to protect against systematic failures. Therefore, different
development teams must heterogeneously implement the redundant capsules. This will
reduce the probability that a systematic error in one component will affect the rest of the
system (Mitra, Saxena, & McCluskey, 1999). However, Knight and Leveson (1986) point
out that a diverse implementation does not detect all systematic errors, because different
development teams made similar faults, and therefore the different versions do not fail
independently.

v:voter

c:component

:port

c2:component

before after

c1:component cv:component

:port

:port

:port :port :port

Figure 7. Transformation operator: Multi Channel Redundancy with Voting

cv1:validation:component

:port

cv2:validation

c2:component

before after

:switch to
 backup

c1:component

:integrity
 test

:integrity
 test

:port :port

:port:port

Figure 8. Transformation operator: Two Channel Redundancy

TEAM LinG

38 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Two Channel Redundancy

The transformation operator Two Channel Redundancy is similar to the transformation
operator Multi Channel Redundancy with Voting. This operator replaces a capsule with
two redundant channels operating in parallel on different hardware platforms (Figure 8).
One channel consists of a redundant capsule of the replaced type and a capsule that is
called channel validation. Both channels are getting all information from the environ-
ment, but one of them is active and one is passive. The active channel checks its operation
with a channel validation capsule. The results of this validation are sent to the channel
validation capsules of the passive channel via the connection between the switch to
backup ports. If a failure occurs, an error is detected, or if the active channel omits to send
the results, the passive channel becomes active. In this case, the former active channel
must be informed. To check the correct operation of one channel the utilization of several
strategies are possible (Grunske, 03b). By the application of this pattern, one channel can
be still available in case of random or wear-out failures of the hardware platform of the
other channel. Thus, availability can be increased by the application of this transforma-
tion operator.

Recovery Block

The transformation operator Recovery Block uses a concept developed by Randell (1975)
and Randell and Xu (1995). The basic idea of this operator is to use multiple heteroge-
neously developed capsules operating in parallel on a single hardware platform (see
Figure 9). All capsules are getting information from the environment, but one of them is
the primary capsule and the others are backup capsules. The primary capsule performs
the desired operations that are checked by an acceptance test capsule. The acceptance
test capsule checks the primary capsule itself to detect errors. If it detects an error or a
failure, the primary capsule becomes one of the backup capsules, and the next capsule
in the backup pool becomes the primary capsule. To obtain protection from failures
caused by systematic errors, the capsules must fail independently. For this, different
development teams should implement these capsules (Avizienis, 1985).

Figure 9. Transformation operator: Recovery Block

cv:component

:acceptance test

:component

:port

c2:component

before after

cn:component

:port

:port

:integrity
 test

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 39

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Process Fusion

The Process Fusion operator should be applied if an architecture specification contains
a large number of active capsules (tasks or processes), which are processed and
scheduled on a single hardware platform; the time to switch between these capsules
(redirect the program counter, save and restore the registers, swap the cache pages) is
high. This can have a negative effect on the temporal correctness. Therefore, the
transformation operator merges two capsules into a new one, which acts like the two
processes did before (see Figure 10). This will lead to scheduling, where task switching
does not occur as often as before. As a result, the new components will have a better
chance to meet their deadlines.

Tool Support

To support the architectural evolution process, a tool called Balance was developed.
This tool is introduced next.

Short Description of Balance

Balance can be used to model architectural specifications in UML-RT. These specifica-
tions can be directly designed by the user, or they can be extracted from a commercial
tool like IBM/Rational Rose RT.
To further apply the graph-based architectural evolution process, the following steps
must be taken:

• The architectural elements must be annotated with modular evaluation models for
the relevant quality characteristics.

• The quality requirements must be specified.

With this information, the tool evaluates the quality characteristics of the system and
proposes a set of transformation operators that will improve the architecture. The
proposed transformation operators can be applied (semi-) automatically because they are
specified as hypergraph transformation rules.

Figure 10. Transformation operator: Process Fusion

x1:component x2:component x:component
before after

:port:port:port:port

TEAM LinG

40 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Case Study: Level Crossing Control System

The practicability of the tool is presented by modeling the level crossing control system
(see Figure 11) with the objective of improving the safety properties. These safety
properties are evaluated by annotating each capsule with an encapsulated fault tree.
Such an encapsulated fault tree describes the failure behavior of the component. It
contains a set of outputs called output failure ports defining all concrete failure types
that can be caused by the component. The output failures further can be caused either
by an internal fault or by an external failure of the environment or another component.
The external failures that can influence the correct behavior of the component are
specified with a set of input failure ports. The internal structure of an encapsulated fault
tree is specified similar to normal fault trees as a Boolean function.
Starting from the structural specification of the system, an encapsulated fault tree can
be constructed by taking a closer look at the messages that can be sent or received by
a capsule. Each received message can be an input failure port and each sent message can
be an output failure port of the encapsulated fault tree. The probability of an internal fault
and the internal structure of fault trees can be determined by structured techniques like
(IF)-FMEA, HiP-HOPS, or HAZOPS (Birolini, 1999; Fenelon & McDermid, 1993; Gomaa,
2000; Liggesmeyer, 2000; Pumfrey, 1999). Based on the encapsulated fault trees, a fault
tree for the architecture can be constructed with composition-based techniques, as
presented in Grunske (2003c). The resulting fault tree of the level crossing control system
is presented in Figure 12. It contains the encapsulated fault trees of the components and
connects them with respect to the message flow in the system.

Figure 11. Architecture specification of the level crossing example in the tool Balance

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 41

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gates-
Closed

1 2 3

1≥ 1≥

4

1≥1≥ 1≥

GatesDown

Gates-
Open

Gates-
Closed-
Approved

GatesUp

4

1≥ 1≥

Incoming-
Train

Left

Train-
Detected

Entered

Train-
Entered

Train-
Left

4

1≥ 1≥ 1≥

Deny-
Passage

Red Green

Allow-
Passage

4

1≥ 1≥

Open-
Gates

Open Close

Close-
Gates

4

1≥ 1≥

1 = Confusion
 in control flow
2 = Message sent
 to late
3 = Ignored signal
 TrainEntered
4 = Hardware
 defect

T
ra

in
S

ig
na

l
-

C
on

tr
ol

G
at

eC
on

tr
ol

Le
ve

lC
ro

ss
in

g-
C

on
tr

ol

T
ra

in
S

en
so

r-
M

an
ag

er

G
at

eS
en

so
r

-M
an

ag
er

Figure 12. Fault tree of the level crossing control system

Based on this fault tree, the system level failures responsible for accidents can be
identified. In the level crossing control system, the safety-relevant failures are (1) to send
a faulty green signal to the train when the gates are open or (2) to open the gates when
a train is in the level crossing section. The probabilities of these safety critical failures can
be determined based on the fault tree and the probabilities of the internal faults as well as
the system level input failures given in Table 3. These probabilities are 1,099 *10-5 for the
first and 4,999 *10-6 for the second critical failure. To reduce this failure probability the
architecture specification can be restructured. More precisely, the transformation
operators Two Channel Redundancy and Multi Channel Redundancy with Voting with
two or four ports in the interface graph can be applied to the architecture.
If we assume a probability of 0.5 *10-6 for an internal fault in the voter or validation
capsule, the probabilities of the critical failures will be reduced as presented in Table 4.
Based on these results, the best architecture transformation is the application of the
Multi Channel Redundancy operator to the level crossing control capsule. The resulting
architecture after this transformation is presented in Figure 13. The application of the
Two Channel Redundancy does not reduce the probabilities of the safety critical failures.
The reason for this is the combined probability of an internal fault of the validation
capsules, which is nearly identical to the probability of an occurrence of a hardware
defect in the target capsule.

TEAM LinG

42 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion and Future Work

In this chapter, the basic concepts of graph-based architecture evolution have been
presented. These concepts were extended and adapted to transformation operators
improving the quality characteristics of an architectural specification. Consequently, a
mapping of the elements of the UML-RT to hypergraph-based elements was presented.
Further, the UML-RT was extended to evaluate quality characteristics, such as safety,
availability, reliability, and temporal correctness. Based on the mapping of the UML-RT

Transformation operator
(transformed capsule)

Probability of the safety
critical failure “A green
signal is sent to the train
when the gates are open”

Probability of the safety
critical failure “The gates
are opened when a train is
in the level crossing
section”

Original Architecture ~1,099 *10-5 ~4,999 *10-6
Multi Channel Redundancy with Voting
(TrainSignalControl)

~1,1 *10-5 ~4,5 *10-6

Multi Channel Redundancy with Voting
(GateControl)

~4,6 *10-6 ~5,0 *10-6

Multi Channel Redundancy with Voting
(LevelCrossingControl)

~4,5 *10-6 ~4,5 *10-6

Multi Channel Redundancy with Voting
(GateSensorManager)

~9,6 *10-6 ~5,0 *10-6

Multi Channel Redundancy with Voting
(TrainSensorManager)

~9,6 *10-6 ~4,5 *10-6

Two Channel Redundancy
(TrainSignalControl)

~1,1 *10-5 ~5,0 *10-6

Two Channel Redundancy
(GateControl)

~1,1 *10-5 ~5,0 *10-6

Two Channel Redundancy
(LevelCrossingControl)

~9,6 *10-6 ~1,1 *10-5

Two Channel Redundancy
(GateSensorManager)

~1,1 *10-5 ~5,0 *10-6

Two Channel Redundancy
(TrainSensorManager)

~1,1 *10-5 ~5,0 *10-6

Table 4. Application of the transformation operators to the level crossing control
system

Internal faults or system level input failures Failure or fault probability in 2,000
hours mission time)

TrainSignalControl. HardwareDefect 1,0 *10-6

GateControl. HardwareDefect 1,0 *10-6
LevelCrossingControl. ConfusionInControlFlow 0,05 *10-6
LevelCrossingControl. MessageSentToLate 0,05 *10-6
LevelCrossingControl. IgnoredSignalTrainEntered 0,05 *10-6
LevelCrossingControl. HardwareDefect 1,0 *10-6
GateSensorManager. HardwareDefect 1,0 *10-6
TrainSensorManager. HardwareDefect 1,0 *10-6
InputFailure.GatesDown 2,0 *10-6
InputFailure.GatesUp 2,0 *10-6
InputFailure.Entered 2,0 *10-6
InputFailure.Left 2,0 *10-6
InputFailure.IncomingTrain 2,0 *10-6

Table 3. Probabilities of the internal faults and the system level input failures in the
level crossing system

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 43

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to hypergraphs, a set of transformation operators was presented that can be used to
improve the quality characteristics of an architectural specification. The practical
feasibility of the approach was shown by developing a tool able to propose and to apply
transformation operators to an existing architectural specification.
We conclude with some items that remain for future work. First, the transformation
operators should be extended by structure-generic graph transformation rules. With
these structure-generic graph transformation rules, a component can be identified with
the occurrence morphism that can have an arbitrary number of ports. Second, the
evaluation models and the set of transformation operators should be extended to
evaluate and improve other quality characteristics. Furthermore, the approach and the
tool should be applied to other more complex case studies. This will show the scalability
of the approach and the performance properties of Balance.

References

Avizienis, A. (1985). The N-Version approach to fault-tolerant software. IEEE Transac-
tions on Software Engineering, SE-11(12), 1491-1501.

Birolini, A. (1999). Reliability engineering: Theory and practice. New York: Springer.
Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user

guide. New York: Addison Wesley.
Bosch, J., & Molin, P. (1999). Software architecture design, evaluation and transforma-

tion. IEEE Engineering of Computer Based Systems Symposium.

Figure 13. Architecture specification after the application of the Transformation
operator: Multi Channel Redundancy with Voting

TEAM LinG

44 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cheng, S. W., & Garlan D. (2001). Mapping architectural concepts to UML-RT. Proceed-
ings of the 2001 International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA 2001), Las Vegas.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., & Löwe, M. (1997). Algebraic
approaches to graph transformation - Part I: Basic concepts and double pushout
approach. In G. Rozenberg (Ed.), Handbook of graph grammars and computing by
graph transformation: Vol. 1: Foundations (pp. 163-245). Singapore: World
Scientific Publisher.

de Alfaro, L., & Henzinger, T.A. (2001). Interface automata. The Ninth Symposium on
Foundations of Software Engineering. ACM Press.

Douglas, B.P. (1999). Doing hard time. Reading, MA: Addison Wesley.
Douglas, B.P. (1999). Real time design patterns. Reading, MA: Addison Wesley.
Drewes, F., Hoffmann, B., & Plump, D. (2002). Hierarchical graph transformation. Journal

of Computer and System Sciences, 64(2), 249-283.
Ehrig, H. (1979). Introduction to the algebraic theory of graph grammars. In V. Claus, H.

Ehrig, & G. Rozenberg (Eds.), The First Graph Grammar Workshop (pp. 1-69).
Springer LNCS 73.

Ehrig, H., Boehm, P., Hummert, U., & Löwe, M. (1988). Distributed parallelism of graph
transformation. In LNCS 314, 13th Int. Workshop on Graph Theoretic Concepts
in Computer Science (pp. 1-19). Berlin: Springer.

Fahmy, H., & Holt, R.C. (2000). Using graph rewriting to specify software architectural
transformations. Proceedings of Automated Software Engineering.

Fenelon, P., & McDermid, J.A. (1993). An integrated toolset for software safety analysis.
Journal of Systems and Software, 21(3), 279-290.

Gomaa, H. (2000). Designing concurrent, distributed, and real-time applications with
UML. Reading, MA: Addison-Wesley.

Grunske, L. (2003a). Automated software architecture evolution with hypergraph trans-
formation. Proceedings of the Seventh International IASTED on Conference
Software Engineering and Application (SEA 03), (pp. 613-621). Marina del Ray.

Grunske, L. (2003b). Transformational patterns for the improvement of safety properties
in architectural specification. In J. Bargary & C. Haskins (Eds.), Proceedings of the
Viking PLOP 03. Copenhagen: Microsoft Business Press.

Grunske, L. (2003c). Annotation of component specifications with modular analysis
models for safety properties. Proceedings of the 1st International Workshop on
Component Engineering Methodology, (WCEM 03) (pp. 31-41).

Grunske, L., & Neumann, N. (2002). Quality improvement by integrating nonfunctional
properties in a software architecture specification. Proceedings of the Second
Workshop on Evaluating and Architecting System Dependability (pp. 23-33).

Habel, A. (1992). Hyperedge replacement: Grammars and languages. Lecture notes in
computer science: No. 643. Berlin: Springer.

TEAM LinG

Improving the Quality Characteristics of UML-RT Specifications 45

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Harel, D., & Kupferman, O. (2002). On object systems and behavioral inheritance. IEEE
Trans. Software Engineering, 28(9), 889-903.

Hirsch, D., Inverardi, P., & Montanari, U. (1999). Modeling software architectures and
styles with graph grammars and constraint solving. Proceedings of the First
Working IFIP Conference on Software Architecture (WICSA1), February 22-24
(pp. 127-142).

Hoffmann, B. (2001). Shapely hierarchical graph transformation. Proceedings of the
Symposium on Visual Languages and Formal Methods, Stresa, Lago Maggiore,
Italy, September 5-7 (pp. 30-37). IEEE Press.

Hoffmann, B., & Minas, M. (2001). Transformation of shaped nested graphs and
diagrams. In M. van den Brand & R. Verma (Eds.), Electronic notes in theoretical
computer science: Vol. 59. Firenze, Italy: Elsevier Science Publishers.

Hofmeister, C., Nord, R., & Soni, D. (1999). Applied software architecture. Reading, MA:
Addison Wesley Longman.

Holt, R. C. (1998). Structural manipulations of software architecture using Tarski
relational algebra. Working Conference on Reverse Engineering (WCRE ’98),
Honolulu.

Knight, J.C., & Leveson, N.G. (1986). An experimental evaluation of the assumption of
independence in multiversion programming, IEEE Transactions on Software
Engineering, 12(1), 96-109.

Le Metayer, D. (1998). Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7), 521-553.

Liggesmeyer, P. (2000). Qualitätssicherung Softwareintensiver Technischer Systeme.
Heidelberg: Spektrum-Akademischer-Verlag.

Mens, T. (1999). A formal foundation for object-oriented software evolution. Unpub-
lished Doctoral Dissertation, Department of Computer Science, Vrije Universiteit
Brussel.

Mens, T., Demeyer, S., & Janssens, D. (2002). Formalising behaviour preserving program
transformations. In A. Corradini, H. Ehrig, H.-J. Kreowski, & G. Rozenberg (Eds.),
Proceedings of the International Conference on Graph Transformation, Vol.
2505 of Lecture Notes in Computer Science (pp. 286-301). New York: Springer-
Verlag.

Mitra, S., Saxena, N.R., & McCluskey, E. J. (1999). Design diversity for redundant
systems. The 29th International Symposium on Fault-Tolerant Computing (FTCS-
29) (pp. 33-34).

Musa, J.D., Iannino, A., & Okumoto, K. (1987). Software reliability: Measurement,
prediction, application. New York: McGraw-Hill International Editions.

Papadopoulos, Y., McDermid, J. A., Sasse, R., & Heiner, G. (2001). Analysis and
synthesis of the behaviour of complex programmable electronic systems. Condi-
tions of Failure, Reliability Engineering and System Safety, 71(3), 229-247.

Pumfrey, D.J. (1999). The principled design of computer system safety analyses. Unpub-
lished Doctoral Dissertation, University of York.

TEAM LinG

46 Grunske

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Randell, B. (1975). System structure for software fault tolerance. IEEE Transactions on
Software Engineering, (2), 220-232.

Randell, B., & Xu, J. (1995). The evolution of the recovery block concept. In Software
fault tolerance (pp. 1-21). New York: Wiley.

Rumpe, B., Schoenmakers, M., Radermacher, A., & Schürr, A. (1999). UML + ROOM as
a standard ADL? In Proceedings of the ICECCS ’99 Fifth IEEE International
Conference on Engineering of Complex Computer Systems, (pp. 43-54).

Selic, B., & Rumbaugh, J. (1998). Using UML for modeling complex real-time systems.
Retrieved July 20, 2003, from Rational Software Corporation, http://
www.rational.com/media/whitepapers/umlrt.pdf

Selic, B., Gullekson, G., & Ward, P. T. (1994). Real-time object-oriented modeling. New
York: Wiley.

Taentzer, G. (1999). Adding visual rules to object-oriented modeling techniques. Pro-
ceedings of Technology of Object-Oriented Languages and Systems (TOOLS’99),
Nancy, France. Singapore: IEEE.

Taentzer, G., Ermel, C., & Rudolf, M. (1999). The AGG approach: Language and tool
environment. In Handbook of graph grammars and computing by graph transfor-
mation: Vol. 2. Applications, languages and tools. World Scientific.

Wermelinger, M., & Fiadeiro, J. L. (1999). Algebraic software architecture reconfiguration.
In Software Engineering -ESEC/FSE’99, LNCS 1687 (pp. 393-409). Springer-
Verlag.

Wermelinger, M., Lopes, A., & Fiadeiro, J. L. (2001). A graph based architectural
(re)configuration language. Proceedings of the Joint 8th European Software
Engineering Conference and 9th Symposium on the Foundations of Software
Engineering (pp. 21-32). ACM Press.

TEAM LinG

Version Control of Software Models 47

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Version Control of
Software Models

Marcus Alanen, Åbo Akademi University, Finland

Ivan Porres, Åbo Akademi University, Finland

Abstract

We review the main concepts and algorithms behind a software repository with version
control capabilities for UML and other MOF-based models. We discuss why text- and
XML-based repositories cannot be used to manage models and present alternative
solutions to build a model repository that takes into account specific details of MOF-
based modeling languages.

Introduction and Motivation

In this chapter, we study how to store and manage large models during the lifetime of a
software project. The first generation of UML editors used to store a whole model as a
single file. This approach assumes that once a model is ready there will be no major
changes and it can be distributed to the programmers as documentation. Programmers
use the model as a reference design or blueprint for the code to be developed, but the
model is no longer updated. In this scenario, software evolution and maintenance reverts
over to the program source code, not to the UML model.
However, this approach is not satisfactory if we plan to use models instead of source code
as the main and most important description of our software. This requires that any model
should always be up-to-date. In this context, there will be different developers working

TEAM LinG

48 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simultaneously on the same models. Different versions of the same model will be targeted
to different platforms or customer requirements, and evolution and maintenance will be
carried out over the models. This implies that we need to use a proper configuration
management system to keep track of our models that comprise the final product.
Configuration management is a well-studied topic, and there are many tools available on
the market. It involves several different subtopics such as version control as well as
change, build, and release management. Configuration management is a key element in
the management of any software development project. It is possible to construct a self-
made system using a combination of open-source tools such as CVS, autoconf, make, and
Tinderbox, or to use complete commercial solutions such as IBM Rational ClearCase.
However, most of the existing tools are designed to manage either program code or
informal documents in natural language. The question now is if we can use existing
configuration management systems to keep track of evolving models or if we need new
tools and methods customized to the idiosyncrasies of the Object Management Group
(OMG) standards. This research is centered on what we consider the central element of
a configuration management system for models: a model repository with version control
capabilities.
The objective of this chapter is to raise different issues that appear when we try to use
inappropriate methods and tools to manage models while discussing possible alterna-
tives that comply with the existing standards.

Modeling Languages and the
Meta Object Facility

According to the OMG standards, the information stored in a model is organized
internally according to a metamodel. A metamodel describes the abstract syntax of a
modeling language. Each class in a metamodel describes a concept or abstraction. Each
class may have a number of attributes. An association connecting two classes represents
a relation between these elements and is usually split into two opposing properties. A
property has several characteristics, such as a name, multiplicity ranges, and direction-
ality. Instances of the elements have connections to each other obeying the properties.
The interconnections can be either ordered or unordered, and an element can occur either
once or several times.
We can illustrate these concepts in a small modeling language of our invention that is
much simpler than UML. Our example language is called FSM and is a language for
describing finite state machines. A state machine has a finite number of states and
transitions. Each transition connects two states and can be triggered by a token. The set
of tokens in a state machine is called the alphabet. One or more states may be marked as
final states, while one of the states is marked as initial. These concepts are described as
a class model on the left side of Figure 1. We call this kind of diagram a metamodel. This
diagram is similar to the metamodels shown in the OMG UML standards. In our example
language, the fact that each state machine has an initial state is represented by the

TEAM LinG

Version Control of Software Models 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

property named initial. We use the generalization relationship to define a model element
as a specialization of other model elements. In our metamodel, a final state is a
specialization of state.
The right side of Figure 1 shows an example model in the FSM language. The model is
represented using two notations. The diagram at the right uses a syntax that is specific
for our language for finite state machines. Most designers would prefer this notation
since it is a fully visual language where each concept is described using a different icon,
and more importantly, benefits from the human eye’s tendency to comprehend diagram-
matic data better than text.
However, we can also represent the same model as an XMI document. XMI is an OMG
standard (OMG, 2003) for model interchange. It is based on XML and can be used to
represent models of any modeling language (i.e., it is not limited to UML). XMI is the
preferred notation to exchange models between programs since XMI documents strive
to be portable and easy to parse. A full disclosure of the XMI standard is beyond the
contents of this chapter; it is sufficient to say that XMI incorporates facilities to exchange
abstract models, diagrammatic information, and model differences. An important and oft-
forgotten feature of XMI is the concept of XMI.Extension elements, which can be used
to add additional metadata when the metamodels used cannot express the desired

Figure 1. Example model in the FSM language

<XMI xmi.version=’1.1’>
 <XMI.header>
 <XMI.metamodel xmi.name=’FSM’ xmi.version=’1’/>
 </XMI.header>
<XMI.content>
 <FSM:StateMachine xmi.id=’if564’ initial=’i5044’ name=’Example’>
 <FSM:StateMachine.alphabet>
 <FSM:Token xmi.id=’i8e5d’ name=’A’></FSM:Token>
 <FSM:Token xmi.id=’i606b’ name=’B’></FSM:Token>
</FSM:StateMachine.alphabet>
 <FSM:StateMachine.state>
 <FSM:State xmi.id=’i5044’ name=’S1’ stateMachine=’if564’>

TEAM LinG

50 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

qualities. Trivial examples of these extensions include the addition of tool-specific
metadata to an element which describes further how it should be implemented or
transformed, supplemental graphical information, or the addition of version information
to a model. Unfortunately, the current tools lack support for the more advanced features
of XMI.
A model or an XMI document describing a model conforms to the metamodel of the model.
The UML metamodel is defined in a language called the Meta Object Facility (MOF)
(OMG, 2001), which is commonly known as a meta-metamodel. The meta-metamodel gives
the power to model the relationships, or, rather, properties, between metamodel elements.
For example, the fact that a Statemachine in Figure 1 can own several States is defined
by the black diamond, which represents the MOF concept of ownership. Other MOF
concepts are the multiplicity ranges, metamodel element names, and the named associa-
tion ends.
MOF is defined as an OMG standard, and it can be used to define many different modeling
languages (i.e., there is nothing specific to UML in MOF). In this chapter, we assume that
the models representing our software have metamodels that are described as MOF
metamodels. In this sense, this chapter is not specific to UML but to MOF. However, UML
is the largest, most used, and best known MOF application, so we will use the UML to
illustrate our findings.

A Model-Based Repository with Version Control
Capabilities

A configuration management system (CMS) is based on a central repository that
contains all artifacts relevant to a software project. We define a model-based configu-
ration management system as a CMS where the project artifacts are structured logically
as defined in a metamodel such as the UML modeling language. The central element in
a model-based CMS is the repository. The main function of the repository is to store
models, but it also has another key function: to enable team work by providing a
distributed environment, version control, and change control.
Most repositories are usually distributed systems that allow different developers to work
simultaneously on the same project. In this case, the repository resides on (at least) one
server and the client computers read and update parts of the repository as needed. We
would like that the communication between the repository and the client is based on open
standards so we can seamlessly use tools from different vendors. This includes two
different standards: a standard to define how and when information is transferred; and
a standard to define the format of the information that is being transferred. An example
of this distinction is the HTTP and HTML protocols used in Web applications. We can
expect that the repository server and the client will use XMI as a common data format.
However, there is no standard transfer protocol for XMI models yet. Obviously, a great
success of HTTP has been that it does not merely transport HTML, but it transports other
kinds of data as well. As such, suitably extended, it could be an appropriate protocol for
transporting models as well. The fact that a client and a server use XMI as a model
interchange format does not prevent the server to store the models in the repository using

TEAM LinG

Version Control of Software Models 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a different format (e.g., to use auxiliary index files to find the information inside an XMI
file quickly or even a relational database).
A version control system should store and keep track of different versions of each artifact
or document created in a project. A version of a model can represent a different design
solution, a different or improved implementation of the same design in a given platform,
or perhaps just add more metadata about the design. An important feature of a version
control system is the locking scheme. We consider that an optimistic locking scheme, as
used in many source code-based versions systems such as CVS or Subversion, increases
the level of collaboration and overall productivity of a team and avoids problems such
as stale locks. However, an optimistic locking scheme introduces a new requirement into
the version control system: a mechanism to compare and merge different simultaneous
changes from different developers.
Finally, a change control mechanism defines who can introduce new artifacts and new
versions of an existing artifact in the repository and how these changes are reviewed and
approved. In larger projects, it may be of interest to restrict the modification of classes
or components that are well designed, implemented, and/or tested. In safety-critical
systems, the models should not be changed without a formal change procedure.
Commercial modeling tools exist that provide a model repository and version control
capabilities in one way or another. It is not in the scope of this chapter to present a review
of these tools, but most of these tools present one or more drawbacks that are avoided
in this work: they use a pessimistic locking scheme and restrict the version control system
to a subset of the UML, usually UML class diagrams. This is precisely the main advantage
of our work: it provides a version control system without explicit locks that can be used
in any MOF language, for example, all kinds of UML diagrams such as class, state,
sequence, activity diagrams, UML profiles, and new languages that have not yet been
designed.
The rest of this chapter will discuss some key issues in creating a model-based repository
with version control capabilities. In order to implement a repository we need to be able
to perform several basic tasks on the elements of a model. First, we must be able to
uniquely identify elements in a model, and find elements according to specific criteria.
Then, we must be able to further query about the data of the element. Finally, we must
be able to change that data. Together, these operations can be used to calculate
differences between elements, track element evolution, merge element data and resolve
merge conflicts, restrict read and write access to specific parts of a model, transform
elements, and enforce a process upon the development of the models.

Element Identification

The most fundamental feature of the repository is to be able to uniquely identify the
elements stored in it. One of the most widely used mechanisms to identify an element in
a repository is to use a hierarchical naming scheme. The file name C:\My
Documents\UML\evolution.tex or the Java class name java.util.Iterator are examples of

TEAM LinG

52 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hierarchical names. In UML we can create similar names using two colons as a separator.
A class named Person inside the package Sales can be referred to as Sales::Person.
Hierarchical names are intuitive and easy to use. However, there are two problems with
using this mechanism to identify elements in a model.
First, if we rename an element in the model, we lose the linking between the current and
the previous version. As an example, if we rename the class Person to Customer, there
will be nothing in our repository that would tell us that Sales::Customer is actually derived
from Sales::Person. The solution would be to somehow add this missing information to
the repository. However, there is yet another problem: not all the UML model elements
have proper names. For example, generalization relationships are never named. The same
applies to transitions in a statechart, links in a sequence diagram, and many other minor
but equally important elements. Consequently, the identification of elements cannot
depend on the metamodel but must work as a generic solution for any (MOF) metamodel.
The solution is provided by the XMI standard itself. The standard states that each
element in a model may have a Universally Unique Identifier (UUID) (pp. 1-3 of (OMG,
2003)). An example UUID is the string DCE:2fac1234-31f8-11b4-a222-08002b34c003.
UUIDs are assigned the first time that an element is exported to an XMI document. Later,
any standard-compliant open tool that imports the XMI document should not change or
remove the assigned UUIDs. Primitive types, such as integers or strings, are special and
cannot be treated in the same manner as model elements. Thus, they do not acquire unique
identifiers.
UUID strings in the DCE namespace (CAE Specification, 1997) are assumed to be globally
unique, even across models, tools, and time. They are based on a 128-bit pseudorandom
number generated from the physical address of the network interface in the host running
the tool and the tenths of microseconds elapsed since the Gregorian reform (15 Oct. 1582).
The UUID strings are long and too complex to be generated by hand, but this is not an
issue for the user since the UML tools should take care of this aspect. Unfortunately,
many of the existing UML tools do not generate or even preserve UUID strings. To check
this, we can perform a simple test. Use your favorite CASE tool to generate a small model
(it can be empty) and save the model in an XMI file. Edit the XMI file with a text editor
and add a UUID identifier to the Model element. For example:

<UML:Model xmi.id = ‘122’ name = ‘Example Model’ isAbstract = ‘false’
 xmi.uuid = ‘DCE:2fac1234-31f8-11b4-a222-08002b34c003’
 isRoot = ‘false’ isLeaf = ‘false’ isSpecification = ‘false’>

Then save and close the file in your text editor and load it in the CASE tool. The modified
XMI file should be imported without problems. Export the model again to the XMI format
and open the XMI file with your text editor. Examine the line defining the Model element.
The UUID should be there, unaltered. If the CASE tool has modified the UUID string or
has removed it completely, then it does not comply with the XMI standard for open tools.
UUID strings allow us to differentiate between two instances of the same element and
two elements that are similar. We consider that two model elements of the same type and

TEAM LinG

Version Control of Software Models 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with similar properties are still two different model elements if their UUID strings are
different. An example of this is illustrated in Figure 2. This contains two classes that have
the same name and properties but that represent two different abstractions from two
different problem domains.
This distinction is fundamental to implement model management operations like compar-
ing two models, merging two models into one, or duplicating/deleting (parts of) a model.
If we merge the two models represented in Figure 2 into one, we want to keep two different
classes named Window, since they represent two different things.
In other cases, model elements with the same name do actually represent the same
abstraction. One typical example is the standard classes predefined in a programming
language such as Integer or java.util.Iterator. The two models from Figure 2 implicitly
contain two classes named Integer, which probably are the same concept. If we merge
the two models, the result should contain only one class named Integer. We can solve
this problem by assigning a predefined identifier to standard elements such as the
libraries of programming languages. In fact, the Java Object Serialization Specification
states that each (serializable) Java class has a unique 64-bit integer used to uniquely
identify the class in a stream. We could derive the 128-bit UUID from the 64-bit Java
identifier. However, the XMI standard does not describe how to do this. Also, other
programming languages like C++ do not have assigned identifiers for their library
elements. A possibility would be to identify such elements by name, (e.g.,
c++.std.iostream.cout), but this is exactly what we are trying to avoid by using UUID
strings! The solution may be to standardize a method to create UUID strings once based
on the name and signature of these classes (e.g., using MD5 hash sums). This way it could
be possible to generate automatically UUID strings for the standard library of languages
such as C++.
The next question is what happens when we have two instances of a model element, with
the same UUID but different properties. Since we assume that UUIDs are unique, we have
two versions of the same element. In this case, we want to be able to detect that the
element has been changed and to calculate what actually has been changed.

Figure 2. Unique identification of elements using UUID

length:Integer
width:Integer

length:Integer
width:Integer

TEAM LinG

54 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Version Control

A version control mechanism keeps track of what has changed in different versions of
a configuration item. It can also combine different changes into a new item. In the context
of a model-based repository with optimistic locking, version control is provided by the
possibility to calculate the difference between several versions of a model and to combine
a difference between models into another model. As an example, assume that the original
model shown at the top of Figure 3 is edited simultaneously by two developers. One
developer has focused his work on the classes A and B and decided that the subclass
B is no longer necessary in the model. Simultaneously, the other developer has decided
that class C should have a subclass D. The problem is to combine the work of both
developers into a single model. This is the model shown at the bottom of Figure 3.
Traditional version control systems work with larger program units such as the file level.
In the case of UML, this would be equivalent to performing version control at the diagram
level. However, there is a need for fine-grained version control. Coven (Chu-Carroll &
Sprenkle, 2000) also implements what its authors call fragment-based versioning.
According to them, coarse version control systems produce change sets that are too
large and difficult to integrate.

Difference Between Models

Computing the differences between two models or two versions of the same model is a
fundamental operation in a version control system. This basic operation allows us to
define the evolution of a model as the sequence of differences between two consecutive
versions of the model.
The implementation of this operation may seem trivial. Since XMI files are basically text
files, we could try to use a tool designed to compute differences for line-based text files
such as source code to analyze our models. The UNIX programs diff and patch are two

Figure 3. Union of multiple versions of a model

TEAM LinG

Version Control of Software Models 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

fine examples of these tools. The problem is that line-based tools will detect false changes
in a model. For example, file1.xml and file2.xml as shown in Figure 4 represent the same
UML model, probably generated by two different UML editors. However, a line-based
tool such as diff considers these files different.
The next possibility is to use an XML-based tool. Such a tool should be aware that the
previous example represents the same document. Still, an XML-based tool is not aware
of special features of a metamodel such as whether or not some elements in a model are
ordered. For example, the order in which the classes in a package are defined is not
relevant in a UML model. Considering this, file3.xml and file4.xml as shown in Figure 5
represent the same UML model, although they are two different documents at the XML
level. In other cases, such as the definition of the parameters in a method of a class, the
actual order of the parameters is relevant. So, using an XML-based tool that simply
ignores the order in which elements are defined is not a solution to this problem either.
The ordering information of metamodel associations is only available in the metamodel
and will be ignored by a generic XML tool.
As a consequence of the previous discussion, we can only compute differences between
two models by using algorithms specifically designed to handle XMI models and only
when these algorithms use information about the metamodel of a given modeling
language.
An algorithm for calculating the difference between two arbitrary models is described in
Alanen and Porres (2003). In this chapter, we present an application of these algorithms

Figure 4. The same model in XMI as two different ASCII files

Figure 5. The same model in XMI as two different XML documents

 file3.xml:

<UML:Model xmi.id = '122' name = 'Example Model'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '123' name = 'Customer'>
 <UML:Class xmi.id = '124' name = 'Product'>
 ...

file4.xml:

<UML:Model xmi.id = '122' name = 'Example Model'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '124' name = 'Product'>
 <UML:Class xmi.id = '123' name = 'Customer'>
 ...

 file1.xml:
 <UML:Model xmi.id = '122' name = 'Example Model'/>

file2.xml:
 <UML:Model name = 'Example Model' xmi.id = '122'/>

TEAM LinG

56 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in a model-based repository. We will denote ∆ to describe a difference between two
models. The example described earlier in Figure 3 can be decomposed into three tasks.
Calculate the difference ∆1 between the model from Designer 1 and the original model (see
the bottom of Figure 6), calculate the difference ∆2 between the model from Designer 2
and the original model (see the top of Figure 6) and finally, merge the original model with
the two differences (see Figure 7). The result of a difference is not always a model, in a
similar way that the difference between two natural numbers is not always a natural
number but can be a negative one. An example of this is shown in the bottom part of Figure
6. In this case, the difference of the models contains negative model elements (i.e.,
elements that should be removed from a model).
In a version control system we require two basic algorithms for model difference and
model merge; given any two models Mold and Mnew and a difference ∆ between them, they
have the following properties:

Mnew - Mold = ∆
∆(Mold) = Mold + ∆ = Mnew

The ∆ is a transformation that when applied to model Mold, yields model Mnew. The internal
representation of ∆ and the operators + and - can be defined in several ways. Figures 6
and 7 suggest that the granularity of the components for a difference would be parts of
models, and indeed that is the approach taken by the XMI standard. However, using even
more basic building blocks has its advantages, as we will see next.

Figure 6. Difference of models

Figure 7. Union based on differences

TEAM LinG

Version Control of Software Models 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Representing and Storing Differences

We have shown informally that the result of a difference between two models may contain
negative elements (i.e., information that should be removed from a model). We further
realize that it is very common to only have tiny parts of the model changed, especially
merely interconnections between elements. Thereby we consider that it is intuitive to
represent a ∆ in operational terms; not as a set of elements and negative elements but
as a sequence of transformations that add or remove elements from a model.
We have identified seven elementary transformations in a model that will be used as the
basis for defining a ∆. We assume that it is not possible to change the type of a model
element (e.g., a UML Class cannot become a Package, and an element cannot change its
UUID). Yet an important assumption is the concept of “zero” values, denoting a well-
known value independent of the metamodel or model but dependent on the datatype (an
empty string, list, set, or the number zero). The operations are split into two categories;
the first category delves into the lifetime of elements and consists of two operations:

• create(e,t) : Create a new element of type t with the UUID of e. By default, a new
element has all its features set to their default values.

• del(e,t) : Delete an element of type t with the UUID of e. An element may only be
deleted if all its features are set to their default values.

The second category consists of operations which modify slots, in practice the intercon-
nections between elements. Here, modifications of a slot of property type p of an element
e with UUID u are done. Where necessary, there is another element et with UUID ut.
Depending on the type of the property, this might mean one of the following modifica-
tions:

• set(e, f , vo, vn) : Set the value of e.f from vo to vn, for an attribute of primitive type.

• insert(e, f , et) : Add a link from e.f to et, for an unordered property.

• remove(e, f , et) : Remove a link from e.f to et , for an unordered property.

• insertAt(e, f , et , i) : Add a link from e.f to et, at index i, for an ordered property.

• removeAt(e, f , et , i) : Remove a link from e.f to et , which is at index i, for an ordered
property.

It should be noted that none of the operations try to maintain the bidirectionality of
relations. It is maintained at a higher level in the actual difference algorithm. Also, for
transferring operations over the network, the UUID of an element must be used instead
of the actual element.
These operations have two important properties. First, the positive operations (create,
set, insert, and insertAt) are complete in the sense that they can be used to represent any

TEAM LinG

58 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model. Also, each operation has a dual operation with the opposite effect. The map
between operations and their dual operations is given in Table 1. This is needed to
calculate the inverse of a ∆. An inverse effectively cancels a previously applied ∆ and
is useful for empowering developers to back out bad changes.
An example of a difference between two models is given in Figure 8, in which the old model
is on the left and the new model is on the right. In the ∆, two new elements u2 and u3 are
created. They are connected to the root Model element u0 (not shown) via their
namespace association, and the Model connects them to its ownedElement composition,
due to bidirectionality constraints. The new class u2 is connected to the old class u1 via
the Generalization element, using the specialization/parent and generalization/child
properties. Finally, the name of the new class is set.
The XMI standard describes a system to represent differences in a model inside an XMI
document (pp. 1-32 of (OMG, 2003)). According to the standard, a difference entity can
be used to add, delete or replace an element in a model. Although this approach is valid
and can be used to describe differences, it is very coarse-grained. If we just want to
represent that a class has changed its name, we need to replace the complete class in the
model. We consider that the various elements of XMI.Difference should be specialized
into basic operations that work at the property level instead of the element level. An
example of how the difference in Figure 8 could look in this XMI is given in Figure 9.
(Please note, we have shortened the UUID strings for clarity.)

Table 1. Map between operations and dual operations

Figure 8. Difference between two simple models

Operation O Dual operation Õ
create(e,t) del(e,t)
del(e,t) create(e,t)
set(e, f , vo, vn) set(e, f , vn, vo)
insert(e, f , et) remove(e, f , et)
remove(e, f , et) insert(e, f , et)
insertAt(e, f , et , i) removeAt(e, f , et , i)
removeAt(e, f , et , i) insertAt(e, f , et , i)

TEAM LinG

Version Control of Software Models 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

By using finely grained differences we reduce the traffic between the repository and the
clients as well as increase its overall performance, since we have actually reduced the
total amount of difference information. In a distributed setting, network communication
will be substantially faster as model differences are often significantly smaller than
complete models. Also, for visualization purposes, it is important to keep the difference
as small as possible in order to aid the developers.

Merging

Conventional repositories often enable users to use optimistic locking. This means that
several developers can check out and edit the same file, and the changes are then
interleaved together into a final merged version. In case the same parts of files were
modified and the conflict resolution algorithm of the repository cannot correct the
problem, a conflict has occurred and it is the task of one of the developers to rectify the
situation before proceeding further.
The same applies to modeling, as could be seen in Figure 3. A merging facility is
necessary, as well as systems for conflict detection, automatic resolution, and manual
correction. One possibility of a merging facility was introduced in Alanen and Porres

Figure 9. Example of the ∆ from Figure 8 described in a modified XMI syntax

Figure 10. The principle of calculating the union of two models, given their base model.
Either difference is modified according to the other one, and then applied.

<XMI.Difference>
 <XMI.create type = ’Class’ uuid = ’u2’ />
 <XMI.create type = ’Generalization’ uuid = ’u3’ />
 <XMI.insert from = ’u3’ name = ’namespace’ to = ’u0’ />
 <XMI.insert from = ’u3’ name = ’parent’ to = ’u1’ />
 <XMI.insert from = ’u3’ name = ’child’ to = ’u2’ />
 <XMI.insert from = ’u1’ name = ’specialization’ to = ’u3’ />
 <XMI.insert from = ’u0’ name = ’ownedElement’ to = ’u2’ />
 <XMI.insert from = ’u0’ name = ’ownedElement’ to = ’u3’ />
 <XMI.insert from = ’u2’ name = ’namespace’ to = ’u0’ />
 <XMI.insert from = ’u2’ name = ’generalization’ to = ’u3’ />
 <XMI.set from = ’u2’ name = ’name’ oldvalue = ’’ newvalue = ’B’ />
</XMI.Difference>

TEAM LinG

60 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(2003). In the context of a base model and two different changes, ∆1 and ∆2, the main idea
can be illustrated in Figure 10; either of the ∆i is modified according to the other, and then
applied after the other has been applied. Naturally, when the ∆i do not overlap, no
modifications are necessary, so the nontrivial cases are when the changes overlap for
various properties. In the paper, several shortcuts were presented in a metamodel-
independent way to allow some automatic conflict resolution. However, far from every-
thing can be automated, and unfortunately this leads to conflict situations akin to those
found in ordinary line-based repositories which the developer must correct.
There are several cases where merge conflicts are a fact and manual resolution is required.
Modifying the same attribute or the same ordered slot easily creates such situations. For
association slots, the opposite slot also must be kept in synchronization. The extreme
case of deleting an element even though another ∆ merely modifies it slightly leads to
a complex question: Which change should be prioritized? Further work in this area is
clearly required as automatic conflict resolution is an important feature in any collabo-
ration platform. Again, a pure XML-based approach to conflict resolution is not as
thorough as one with knowledge of the metamodel. This is due to the fact that XML
considers all properties to be ordered, even though some are not. A great number of
seemingly conflicting cases can be resolved automatically if the property under modi-
fication is actually unordered.
We have developed a conflict resolution mechanism that has three distinct steps 1) A
metamodel-independent resolution step, 2) a metamodel-dependent step where the
conflict resolution algorithm takes the metamodel of the elements and their well-formed
rules into consideration, thus providing automatic resolution where possible, and 3) a
step for manual resolution by the developer. Naturally, the work to be done should
become smaller in each step for this to be a viable mechanism.
The second step in the conflict resolution mechanism can also include specific heuristics
for conflicts depending on the metamodel. A prime example is diagrammatic information,

Figure 11. A complete merge system with three distinct resolution steps

TEAM LinG

Version Control of Software Models 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as the diagram elements themselves do not have any semantic meaning, so the features
of the diagram elements are not nearly as correctness-critical as the underlying model.
For example, conflicting diagram element coordinates on the diagram canvas can more
or less be completely ignored by modifying ∆2 suitably. Clearly, there is a strong need
for metamodel-specific resolvers.
The schema in Figure 11 summarizes a merge system for models. The difference under
modification, ∆2, passes through several filters which modify it to better fit ∆1(Mbase).
Obviously, all possible mechanic resolution mechanisms should be tried before manual
resolution is used.
This simple repository is too coarse-grained for most practical uses. It also lacks many
important features. We may want to use the repository to keep a history of the evolution
of a model through the whole development cycle. In this case, it is important that we are
able to identify, version and retrieve each individual element in a model.

A Model Repository

The task of a model repository is to store successive versions of a model and retain old
versions. A simple model repository can store each version of a model as a different file
containing the model as an XMI document. In such a system, the file name can be used
to identify each version of a model in the CMS. Access control to the repository is
managed by the access control mechanism of the filesystem.

Model Storage

While a filesystem still can be used for all this, it is not efficient and problems can occur
with respect to atomicity and concurrency. An alternative is to store models into a
database. A database can set arbitrary rules for access, modification, and retrieval;
transactional properties such as atomicity, consistency, isolation, and durability are
guaranteed by the database backend. Also, it is easy to store additional metadata of the
models.
Relational databases are not specially well suited to store hierarchically structured
information, which models are. The upside is that relational databases have been
researched very thoroughly and industry has greatly invested in creating highly scalable
and efficient products. The downside might be that model information is inherently
object-oriented and does not map naturally into the relational model.
The advent of XML has spurred research in databases particularly suited for storing large
XML documents (Jagadish et al., 2002). XML repositories are very similar to object-
oriented databases (OODBs), and share their benefits and ills. Among the benefits are
much more flexible arrangements of data, ways to manipulate that data and more
complicated queries. However, current technology does not scale as well as relational
databases. Query optimization, especially, is not as well-known as in the relational

TEAM LinG

62 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

database field. Using an XML database itself could be a great advantage, but until
technology catches up, it cannot be deployed for large-scale projects.
In the next subsection, we take a closer look at the relational database schema required
for a model repository. It serves merely as an example skeleton of how to map hierarchical
information to relational space.

Relational Database Schema

Formally, a relational database consists of relations, tuples, and attributes. Each relation
is defined by its name and its named attributes. A tuple is a record of the database (i.e.,
the actual data we are storing). The data can be cross-linked between several relations.
Retrieval consists of fetching the tuples matching a certain query, often speeded up by
matching attributes which are primary keys (i.e., unique values in the relation). The
problem of storing models in a relational database is fundamentally about mapping a
graph with different kinds of nodes and edges to a relational model.
The relational database schema consists of a static set of relations independent of the
metamodels used, and a set of relations for each element in every metamodel used
(Alanen, 2002). The static set consists of database tables that maintain the version
history of the models and enables arbitrary elements to connect to other elements,
whereas the rest consists purely as containers of primitive model data such as strings,
integers or enumeration values.
There are two strategies to store the different versions of a model element. The first is
to store each individual version as a different element including all its attributes. The
second alternative is based on the previous discussion on differences between models.
We can store only the difference between two versions of a model instead of the complete
model elements.
If we store complete model elements, the database will require more space. If we store only
the differences between revisions of an element, the size of the database will be smaller,
but the queries will be more complex and require more processor time. To simplify our
exposition, we present only a database schema where model elements are stored
completely. We also do not discuss tables required for a full repository implementation
requiring transaction histories, branching and access control, and omit various string
concatenation encoding rules.
In the database schema, the table Model consists of a map between model revision to
element revisions. The ElementType table contains a row for each model element in a
model. It has two columns, the UUID of the model element and the type of the model
element. We assume that an element cannot change its type. Each revision of an element
receives a revision number from the version database sequence which is unique for the
repository. To know what UUID a revision has, we must keep a RevisionUuid table which
maps revisions to UUIDs.
A revision of an element consists of data of primitive type, and of links to other elements.
These are collected into two different tables, of which one is specific to the metamodel
type, and the other is generic. The name of the specific table is created based on the full

TEAM LinG

Version Control of Software Models 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

name of the modeling language and the name of the metaclass. For example, the table
Elements_UML15_SimpleState is used to store SimpleState elements from the UML 1.5
language and Elements is just a prefix to avoid name collisions with other tables unrelated
to the UML 1.5 language. Each row in this table will represent a specific revision of a model
element of that given metaclass. The primary key of the table is the revision number of
the model element. The other attributes are the properties of primitive type of the element.
Another example of a metamodel-specific table can be seen in Figure 12.
The generic table is called Connections and maps the connections between elements.
Since a slot of an element contains a set or sequence of references to elements, it is
important to be able to remember the position of elements for ordered connections. Thus,
Connections is a relation (revision, name, target, index). Here, revision is the repository-
unique version identifier of our element. Name represents the connection name, for
example, ownedElement for a Package owning several classes. Curiously, target must
reference the UUID of the target element, not its repository version identifier. This is
inherent in the bidirectionality of connections in most modeling languages. If we had two
interconnected elements A and B and repository revisions were used exclusively, and
A were to change, its revision identifier changes, and thus the database tuples of B would
change, resulting in a change of its revision identifier as well! This would cascade
through the whole model and create new revisions of every element in the model. This
is clearly not desired, and thus links must be from a revision to a UUID. Then RevisionUuid
and Model can be used to retrieve the actual revision to use. The final column, index,

Figure 12. An extract from an Elements_UML15_Class table. Any attributes of primitive
type are present in the table. The rows are indexed by the element revision, which is a
primary key in this table. The enumerations index into their respective types table (e.g.,
Enum_UML15_VisibilityKind).

revision name visibility isAbstract . . .
5 Class1 public false . . .
9 Class2 protected true . . .
13 Class3 private true . . .

Figure 13. An extract from a Connections table. Parameters with UUIDs E2, E4, E3 (in
that order) of revisions 2, 4, 3 are bidirectionally connected to E1 with revision 1. Notice
the usage of the index attribute to maintain the correct order.

revision name target index
1 parameter E2 0
1 parameter E3 2
1 parameter E4 1
2 behavioralFeature E1 -1
3 behavioralFeature E1 -1
4 behavioralFeature E1 -1

TEAM LinG

64 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simply keeps track of which element should be in which position in the connection. This
is required since few (if any) relational databases keep their records in order. An example
of a Connections table can be seen in Figure 13.
Naturally, there are several more ways to encode the same information, and several
optimizations that could be made, especially space-wise. For example, since the set of
possible connections are known, we can also separate Connections tables for each
connection, in this case, Connections_UML15_Package_ownedElement, thus making
some of the information implicit. Another trivial optimization is to split the Connections
table in two, one for all unordered connections (thereby making the fourth attribute index
unnecessary), and one for all ordered connections. The main drawback of these
optimizations is that the amount of database commands that must be used increases, and
thus there is a risk for an effective slowdown of the repository. This, however, can only
be determined by empirical tests since the actual performance varies from one backend
to another.
In order to aid in debugging the database, several string constants are kept in some
tables, and rows of the other tables reference these strings. Each enumeration is kept in
a separate table, e.g., Enum_UML15_VisibilityKind, and the enumeration strings for
attributes in the element tables keep references to those strings. Thus, the user
debugging sees the actual enumeration strings instead of obscure enumeration numbers,
while still keeping the memory requirements low. All element names and all connection
names are also kept in separate tables, ConnectionNames and MetaclassNames, for the
same reason. This might even save database memory and make the processing faster.
To clarify, the tables discussed in this section have been collected. Where possible, the
database has received hints of which columns can be hashed, made primary keys, or
reference other tables. Hashes group together similarly hashed columns, primary keys
create unique rows in a table, and references provide integrity between the various
database tables. These common database layout enhancements speed up queries
considerably, and provide some referential integrity in the database. They are marked
with the keywords hashed, primary and references table name.

• Model = (model_revision hashed, element_revision)

• ElementType = (UUID primary, type references MetaclassNames)

• RevisionUuid = (revision primary, UUID)

• Connections = (revision hashed, name references ConnectionNames, target,
index)

• ConnectionNames = (name primary)

• MetaclassNames = (name primary)

Additionally, one table for each metamodel class or enumeration is required.

TEAM LinG

Version Control of Software Models 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Access Control

Access control defines the mechanisms by which read or write access to parts of the
model are defined and modified. Access control can be implemented at different levels
of granularity. The access control level that is easiest to understand and implement is
access control at the model level. In such a mechanism the repository may grant read-
only or read and write rights to a whole model for a specific set of developers.
However, in some projects, limiting access for developers to only some parts of a model
may be important, or even mandatory. As an example of limiting read access, security-
related information is to be disclosed only to a specific set of developers. A more common
scenario is limiting write access, such that a group of developers may work on a part of
a model, and another group on another part. In such cases, it might feel intuitive to set
the granularity of access at the element level, whereby read or write access is determined
based on the elements that a developer wants to read or change. However, this may be
impossible due to fact that associations in the metamodel are relations. Each metamodel
association is represented as one property in each participating class. Modifying an
association implies the modification of the two associated properties.
For example, consider a class which has write restrictions. In UML, this class is
represented as different properties, including its name, attributes, superclasses, and
subclasses. It is then impossible to create a new class as a subclass of this write-restricted
class, since that requires modification of the specialization property of that class – which
the developer is not allowed to modify! However, most developers would consider these
changes as harmless to the original class. This is because while some properties carry
semantic meaning for an element, other properties only act as a navigational aid or as the
opposite end of a bidirectional meta-association.
Clearly, the level of detail in access control must be based on the properties of elements,
not on the elements themselves. In some cases, the developer ought to be able to use
a class, subclass it but not add new operations or change existing attributes. The
distinction cannot be made by allowing or disallowing write access to the class element
itself, but the properties of the class.

Client-Server Communication

As already mentioned, XMI as such does not define a protocol for transferring models
over a network, only the encoding of a model. In the interest of software compatibility
common standards ought to be defined. Special interest groups, separate from OMG, are
advancing the state of the art of distributed authoring, and are creating official Internet
standards to fill this void. Good examples are the IETF WebDAV and Delta-V working
groups, which have defined “HTTP Extensions for Distributed Authoring - WEBDAV”
(RFC 2518) (Goland, Whitehead, Faizi, Carter, & Jensen, 1999) and “Versioning Exten-
sions to WebDAV” (RFC 3253) (Clemm, Amsden, Ellison, Kaler, & Whitehead, 2002) to
ease communication in a distributed development environment. These standards can be
used for a protocol between a model repository and the client tools, such as a UML editor.

TEAM LinG

66 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is beneficial to examine in more detail what operations especially related to models these
relatively new protocols should provide in order to become de facto standards of model
transportation.
Most of the time, a client will not be interested in all the elements in a model but only in
a subset of them. The problem is that a client might not know the name or the UUID of
a certain model element in which it is interested. The reason the client cannot download
the whole model is due to the comparatively low bandwidth between the client and the
server. There are two main solutions to this problem: One is to let a client seek elements
in the model; the other is to implement a query language.
In the first solution, the server should provide a simple interface with two services: one
service, named getRoot, returns the UUID of the root element in a model, while the second
service, getElement, accepts a UUID as a parameter and returns the model element
associated to it. As an example, we can assume our repository contains a simple UML
model with two packages and one class as shown in Figure 14. For simplicity, we use
integers to denote the UUIDs of the model elements.
In the example repository, if a client invokes the service getRoot the repository will return
the value ‘1,’ the UUID of the main element in the repository. If the client invokes
getElement(‘1’), the repository will return all the properties of the element with UUID ‘1,’
including the property named ownedElement. In UML, this property describes the
contents of a model or a package. In the repository the model contains the packages Sales
and UI, therefore the ownedElement property will be the set {‘2,’ ‘3’}, the UUIDs of the
previous packages. The client can use these UUIDs to continue traversing the models.
This interface can be naturally extended to include revision numbers, for example,
getRoot(5) will return the root element in the 5th revision of the model.
An alternative solution is to use a query language, something akin to the SQL in the world
of relational databases. In this case, the client will send a query as a text string to the
repository that will evaluate the query against all elements in the model and return those
who satisfy it. We can use different alternatives as a query language. OCL (Warmer &
Kleppe, 1998) is used in the UML metamodel to define additional constraints over valid
UML model elements, but also can be used as a query language. As an example, if a client

Figure 14. Example repository client access

TEAM LinG

Version Control of Software Models 67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sends the query self.oclIsKindOf(Class) and self.name=“Customer” to our example
repository, the repository will return the set {4}. The result is a set since there can be more
than one class with the name Customer.
Unfortunately, most UML practitioners are not familiar with OCL. Also, the current OCL
parsers are not as optimized as the existing database engines. This is due to the fact that we
still do not know which are the most common queries that should be optimized. Finally, we
would need to extend the current OCL standard with queries to retrieve version information
so we can perform queries against the version history of the repository such as

self.name = “Customer” and self.lastEdited < “1 Mar 2004”

An alternative to OCL is to use an XML-based query language such as XQuery (W3C,
2003). However, the syntax of XQuery and other XML-based languages is too cumber-
some. Currently, parsing and compiling technology is so advanced and desktop comput-
ers so powerful that there is no reason to obfuscate the syntax of a computer language
to make it easy to parse by a computer. Also, this approach does not solve the need to
know how the model information is arranged in the UML metamodel in order to create a
complex query.

Model Evolution

The basic algorithms for model difference and merge allows us to know that a model has
changed, however, quite often we need to know why it has changed. For this, additional
metadata is required. While an informal description of the change goes a long way, formal,
traceable reasons for the change are a boon to bring software engineering toward a robust
scientific discipline. Also, we would like to keep the history of the model, and review
several old versions of it.
Quite often, a new version of an element represents just an improvement from the
previous version. But in many other cases, a new version of an element is derived from
one or more other elements, possibly of a different type. This is the case, for example,
when we create a new class that realizes the functionality described in a use case or create
a statechart as a refinement of another statechart. A version control system keeps track
of edited elements but not of derived elements, nor the reason why they have been
created. Previous versions of the UML provided a model element named Flow to model
evolution relationships. However, it seems that this element has been removed from
UML 2.0. It was not supported by the main UML tools, and in any case it, was not useful
to create traces between elements that resided in two different models or in models that
were described in different modeling languages.
The long-term solution seems to be in yet another standard. The OMG has a request for
proposals for a query, view, and transformation language for MOF 2.0 (QVT) (OMG,
2002). One of the operational requirements for the proposals is the ability to trace the
execution of transformations. This can be achieved by defining a tuple (S, T, r), where

TEAM LinG

68 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

S and T represents sets of model elements and r a transformation rule such that r(S) = T.
This can also be generalized to allow free-form editing of a model as a possible
transformation.
Another requirement for the proposals is that they should provide a MOF-based
metamodel for the proposed language. The actual metamodel varies from one proposal
to another, but the important implication is that the MOF standard describes how to
generate XMI documents from any MOF model. Once the standard is accepted, we will
be able to represent the evolution history of a model as a sequence of transformation
traces, and we will be able to store the evolution history as a standard XMI document.

Conclusion

A software repository is an essential element in any software development project where
there is more than one person involved. If we follow a model-based development
approach such as MDA (OMG Architecture Board, 2001), we may require a software
repository that can manage and version software models since models are the primary
artifact representing our software. Also, in an MDA project, models are created and
updated constantly, including multiple versions of the same model that are created
simultaneously in order to separate the problem space from the implementation concerns.
The construction of a repository that supports model-based development and model
evolution may not seem an interesting problem. Many similar systems to manage source
code and XML documents already exist. XMI, the standard model interchange format,
is based on XML so it may seem that we can simply use any of the existing XML systems
to manage our models. However, we have seen in this chapter that XML tools may be too
generic and that there are open issues not addressed by the standards. The solution is
to implement a repository and version control system for models that is aware of the
features of the modeling language used to create the models. That is, to create a
repository that manages models using information about the metaclasses and meta-
associations of a given metamodel.
Once we assume that XML-based tools do not provide a good foundation for managing
our models, we can envision new features for a model repository that are not present in
current systems. Specifically, we have discussed the basic algorithms to perform version
control of models with optimistic locking. This is an important feature that has become
de facto in most source code-based repositories, but it is not trivial to implement in a
metamodel-independent way. A model-based repository may also provide additional
features such as a search for specific model elements in a large repository using a
specialized query language or partial transfer of models between the repository and the
clients.
We have also discussed that while a model repository and its clients can use XMI as a
model interchange format, there is still the need to identify the transfer protocol.
Probably, there is no need to create a new protocol since we can use existing protocols
such as WebDAV for this task. However, the OMG standards should define which
protocol should be used, independently if this is a new or an old protocol, in order to

TEAM LinG

Version Control of Software Models 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

guarantee interoperability between clients and repositories from different vendors. Also,
there is no special advantage for a repository to store models internally using XMI. We
have presented an alternative storage model based on a relational database that may be
more efficient. However, the actual performance of the repository depends on many
components, including the available network bandwidth and the database backend.
Also, we expect that in the future XML-based databases (Jagadish et al., 2002) may
outperform relational databases for this specific task.
The open question is what the responsibility of the repository for maintaining the models
in a consistent state is, especially maintaining consistency between structural and
behavioral diagrams and between diagrams and program code. One possibility is to
follow the same approach as in source code repositories: It is the responsibility of the
clients to ensure that the models stored in the repository are consistent. However, the
other alternative opens an interesting research problem and future direction for our work:
How a repository can determine whether a model is consistent or not and which model
transformation and code generation steps can a repository invoke in order to make a
model consistent.

References

Alanen, M. (2002). A meta object facility-based model repository with version capabili-
ties, optimisticlocking and conflict resolution. Unpublished Master’s Thesis,
Åbo Akademi University.

Alanen, M., & Porres, I. (2003). Difference and union of models. Proceedings of the UML
2003 Conference, October.

CAE Specification. (1997). DCE 1.1: Remote procedure call. (1997). Available at http:/
/www.opengroup.org/onlinepubs/9629399/toc.htm

Chu-Carroll, M. C., & Sprenkle, S. (2000). Coven: Brewing better collaboration through
soft-ware configuration management. Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering: 21st Century
Applications, November.

Clemm, G., Amsden, J., Ellison, T., Kaler, C., & Whitehead, J. (2002, March). Versioning
Extensions to WebDAV, RFC 3253. Available at http://www.ietf.org/rfc/rfc3253.txt

Goland, Y., Whitehead, E., Faizi, A., Carter, S., & Jensen, D. (1999, February). HTTP
Extensions for Distributed Authoring — WEBDAV, RFC 2518. Available at http:/
/www.ietf.org/rfc/rfc2518. txt

Jagadish, H., Al-Khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A., Paparizos, S.,
Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y., & Yu, C. (2002, December).
TIMBER: A native XML database. The VLDB Journal, The International Journal
on Very Large Data Bases, 11, 274-291.

OMG. (2001). OMG meta-object facility (MOF). Retrieved January 11, 2002, from
www.omg.org

TEAM LinG

70 Alanen and Porres

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OMG. (2002). MOF 2.0 Query/views/transformations RFP. Retrieved February 10, 2004,
from www.omg.org

OMG. (2003). OMG XML metadata interchange (XMI) specification. Retrieved March
3, 2002,from www.omg.org

OMG Architecture Board. (2001). Model driven architecture: A technical perspective.
Retrieved January 7, 2001, from www.omg.org

W3C. (2003, August). XQuery 1.0: An XML query language (working draft). Available
at http://www.w3.org/TR/xquery/

Warmer, J., & Kleppe, A. (1998). The object constraint language: Precise modeling with
UML. Boston: Addison-Wesley.

TEAM LinG

Support for Collaborative Component-Based Software Engineering 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Support for
Collaborative

Component-Based
Software Engineering

Cornelia Boldyreff, University of Lincoln, UK

David Nutter, University of Lincoln, UK

Stephen Rank, University of Lincoln, UK

Phyo Kyaw, University of Durham, UK

Janet Lavery, University of Durham, UK

Abstract

Collaborative system composition during design has been poorly supported by
traditional CASE tools (which have usually concentrated on supporting individual
projects) and almost exclusively focused on static composition. Little support for
maintaining large distributed collections of heterogeneous software components
across a number of projects has been developed. The CoDEEDS project addresses the
collaborative determination, elaboration, and evolution of design spaces that describe
both static and dynamic compositions of software components from sources such as
component libraries, software service directories, and reuse repositories. The GENESIS
project has focussed, in the development of OSCAR, on the creation and maintenance
of large software artefact repositories. The most recent extensions are explicitly

TEAM LinG

72 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

addressing the provision of cross-project global views of large software collections and
historical views of individual artefacts within a collection. The long-term benefits of
such support can only be realised if OSCAR and CoDEEDS are widely adopted and
steps to facilitate this are described.

Introduction

The systemic representation and organisation of software descriptions (e.g., specifica-
tions, designs, interfaces, and implementations) of large distributed applications using
heterogeneous software components have been addressed by research in the Practitio-
ner and AMES projects (Boldyreff et al. , 1990; Boldyreff, 1992; Boldyreff, Burd, Hather,
Mortimer, Munro, & Younger, 1995; Boldyreff, Burd, Hather, Munro, & Younger, 1996).
The Practitioner project explicitly addressed the reuse of software concepts and devel-
oped a standard form to handle representations of software concepts from their speci-
fication to their associated implementations as components. The AMES project, while
focused on maintenance support, organised the associated software components at
various levels of abstract representations using hypertext and the Web. In both projects,
it was assumed that the underlying collections of software components would support
software reuse and the subsequent evolutions of systems composed from components.
However, without appropriate representations and organisations, large collections of
existing software are not amenable to the activities of software reuse and software
maintenance; these activities are likely to be severely hindered by the difficulties of
understanding the software applications and their associated components. In both of
these projects, static analysis of source code and other development artefacts, where
available, and subsequent application of reverse engineering techniques were success-
fully used to develop a more comprehensive understanding of the software applications
under study (Zhang & Boldyreff, 1990; Fyson & Boldyreff, 1998). Later research
addressed the maintenance of a Web-based component library in the context of compo-
nent-based software product line development and maintenance (Kwon, Boldyreff, &
Munro, 1997). The classic horizontal and vertical software decompositions proposed by
Goguen (1986) have influenced all of this research. While they are adequate for static
composition, they fail to address the dynamic aspects of composing large distributed
software applications from components especially where these include software services
that may be dynamically bound at run-time.
Recent research within the CoDEEDS project has made some progress toward the
determination of design spaces to support both the static and dynamic system compo-
sition as well as the determination of the physical deployment and long-term operation
of large distributed systems composed from heterogeneous components (Boldyreff,
Kyaw, Nutter, & Rank, 2003). The current prototype implementation of collaborative
support for the determination, elaboration, and evolution of design spaces, based on the
CoDEEDS framework (Boldyreff & Kyaw, 2003), employs as its base another development
of our recent research within the GENESIS project, the Open Source Component Artefact
Repository, OSCAR (Boldyreff, Nutter, & Rank, 2002a; Boldyreff, Nutter, & Rank, 2002b;
Boldyreff, Nutter, & Rank, 2002c; Nutter, Boldyreff, & Rank, 2003).

TEAM LinG

Support for Collaborative Component-Based Software Engineering 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The GENESIS project developed a generalised environment for process management in
collaborative software engineering (Gaeta & Ritrovato, 2002). A key component of this
environment is an underlying distributed repository, OSCAR, to hold the software
artefacts (both the artefact data and its associated metadata). A software artefact is any
component of a work product resulting from the software engineering process. Thus the
support provided covers not only the engineering of software systems from reusable
software components, but also more generic reuse based on any work product compo-
nents, such as project plans, requirements specifications, designs, test cases, and so on.
The research areas addressed in this chapter are:

• Process-aware support for collaborative software engineering

• Management of software (and other) artefacts within and across software engi-
neering projects

• Use of XML-based artefact representations and interchange formats

The remainder of this chapter is organised as follows: First, the background related to
Web-based collaborative software development and software evolution are examined.
Then, the overall design of OSCAR and the support for co-operative software develop-
ment that it currently offers combined with CoDEEDS are described, along with exten-
sions to OSCAR to provide historical awareness of artefact development across projects
(Nutter & Boldyreff, 2003), and a global view of a number of distributed artefact
repositories are elaborated. Finally, planned deployment and future research activities
are discussed.

Web-Based Collaborative Software
Development

The Web and its associated technologies facilitate communication and cooperation
amongst software developers, enabling large collaborative software development projects
to be undertaken. The open source community provides many examples of such projects.
Multinational software projects also are commonplace within industry today. Various
solutions are available to address the immediate support of these collaborative devel-
opment projects throughout the life cycle of the project. These solutions, open source
and commercial, vary considerably in the elements of collaborative development and
project management they address. SourceForge, in the open source domain, provides
basic support for managing cooperative development of software artefacts such as
handling mailing lists, forums, repository services, and bug tracking. However, it does
not support workflow, resource management, or collaborative work by many users on a
single artefact (apart from the use of a CVS (Concurrent Versions System) repository to
handle configuration management). Microsoft Project Professional supports enterprise
project management over single or distributed sites in the commercial domain. It

TEAM LinG

74 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concentrates on the workflow and planning elements of cooperative development but
has no specific focus on software engineering projects, unlike Rational’s range of
products, which support industrial software development across a global enterprise in
the commercial domain. There also are general, not software-development-specific,
Web-based solutions that have been used to support cooperative working of distributed
software development teams, such as SiteScape, which handles a central repository, with
forum-like facilities for interaction, and Basic Support for Cooperative Work (BSCW),
which formed the basis of the SEGWorld development (Drummond & Boldyreff, 1999).
The GENESIS project has employed SiteScape to manage the deliverables associated
with its various work packages and to coordinate document reviewing associated with
the project’s research and software developments. All of these current solutions support
Web-based access to project-related data and artefacts under production by the
software team.
In contrast, the OPHELIA (Dewar et al., 2002; Wilcox et al., 2002) project offers support
for collaborative work using software tools and employs a CORBA-based tool integra-
tion approach to do this. Various tools including project planning (MS Project) and
development tools (such as ArgoUML) have been integrated using the ORPHEUS
implementation of the OPHELIA framework. These applications can interchange data
with other modules of the ORPHEUS system, which perform tasks such as metrics
calculation, recording traceability information, and archiving data. Theoretically, any
tool may be integrated within ORPHEUS but providing truly universal data interchange
is of course difficult and the effort required to integrate a tool is significant.
The use of standard representations such as UML and XML-based notations has a
beneficial effect on the cost and efficiency of software engineering projects. The
GENESIS and CoDEEDS projects represent artefacts as XML documents. This has
allowed the rapid development of sophisticated tools to handle artefacts; using currently
available tools for XML handling has avoided the requirement to build entirely new
artefact handling software. The use of UML as a common communication language
amongst software engineers is supported by both projects. UML improves communica-
tion at the human level, while use of an XML exchange format can facilitiate the exchange
of software artefacts.
Current solutions lack any means of obtaining a global view of project data and software
artefacts across a number of projects irrespective of the initial methods and tools
employed during the project’s lifetime. Here the underlying artefact management system,
OSCAR, being developed within the GENESIS project and coupled with the CoDEEDS
framework, offers the basis for delivering such support in the future. One benefit of this
is that a collection of artefacts can be treated as a repository of reusable components.
The navigation and search facilities provided by GENISOM support the discovery of
reuse candidates.
The GENESIS platform offers a process-aware environment which supports distributed
software engineering, allowing flexible modeling and control of a collaborative software
engineering project. While the GENESIS platform is based around process modeling and
control, CoDEEDS specifically supports software engineering, providing support for
specific software-related tasks such as architectural design. Both projects address
supporting the evolution of software artefacts during their development and subsequent
deployments within a variety of systems.

TEAM LinG

Support for Collaborative Component-Based Software Engineering 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Evolution

Boldyreff was one of the first to recognise the role of evolution within the process of
engineering computer systems (Boldyreff, 1954). He distinguished between mathemati-
cal models of systems and their corresponding physical realisation, and noted the
necessity to evolve these models in step. In the 1970s, Lientz and Swanson (1980) studied
a large number of software projects in many data-processing organisations. The study
showed that software maintenance consumed approximately half the time of software
professionals in the organisations which responded to their questionnaire. Generally,
larger organisations spent a larger proportion of their time on maintenance, though
results varied across industries. Their study showed that in organisations where
maintenance was considered as a separate activity, it consumes a smaller proportion of
effort. Lientz and Swanson’s study was carried out in the late 1970s, and the level of
technology that was used by the organisations reflected this. For example, change logs
were handled manually, and implementation languages such as COBOL and FORTRAN
were common. Lientz and Swanson concluded, unsurprisingly, that larger and older
systems have greater maintenance problems than smaller and newer systems, and that
personnel issues, such as the skill level and turnover of staff, are of importance in
determining the quality and effort of system maintenance.
Lehman and Belady (1985a) made a detailed study of the development of a single software
system. In contrast to the method used by Lientz and Swanson, Lehman and Belady
studied the software product (IBM’s OS/360), rather than the organisation. They
examined the system’s size at each release point, and showed that the size (in terms of
lines of code and number of modules) and complexity of a system grows with each
successive release, unless specific effort is made to reduce these factors. During this
work, Lehman and Belady developed the idea of software system types, using the terms
S-type, P-type, and E-type to describe the three types (Lehman & Belady, 1985b).
S-type programs are the simplest kind, being those programs which are formally defined
as a function between input and output, with no reliance on or interaction with their
environment, such as simple UNIX software tools (e.g., grep and awk). P-type programs
are those which solve real-world problems, and must use heuristics to arrive at approxi-
mate solutions. Examples include weather forecasting and chess playing, where the input
to the software is well-defined and well-formed, but in order to arrive at a useful solution
in a reasonable amount of time, approximations must be used. E-type software is the most
complex and most interesting kind of software. An E-type program is situated in and
interacts with its environment, leading to feedback between the software and the “real
world.” Total correctness of an E-type system cannot be shown in the abstract. Such
software interacts with its environment, and thus it can be only be shown to be effective
in a particular, given, situation.
The results of these studies motivated Lehman to develop his laws of software evolution
(Lehman, 1979; Lehman, 1996; Lehman, Ramil, Wernick, Perry, & Turski, 1997). These
laws describe the behaviour of software systems over time (Lehman, 1996). They are:

TEAM LinG

76 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Continuing Change: An E-type program must either adapt or become obsolescent.

• Increasing Complexity: Unless an evolving program has work done specifically to
reduce its complexity, it will become more complex as a result of the evolution.

• Self-Regulation: The evolution process is self-regulating, with statistically deter-
minable trends and invariants.

• Invariant Work-Rate: The average effective global activity rate is constant over
the lifetime of the system.

• Conservation of Familiarity: The content of successive releases is statistically
invariant.

• Continuing Growth: Functional content of a system must increase with each
release in order to satisfy user demands.

• Declining Quality: Unless an E-type program is rigorously maintained and up-
dated to its changing environment, it will be perceived as declining in quality.

• Feedback System: The evolution process for E-type programs is multi-loop and
multi-level. Successful management of the process depends on recognising and
accounting for this fact.

Two of the key problems of maintenance are understanding the software in order to
determine where to make changes, and validating the changed version of a system —
determining that the correct changes and no others have been made (Baxter & Pidgeon,
1997). One important cause of the difficulty of maintenance is the complexity of software
systems (Jackson, 1998); understanding a system in its entirety is often necessary before
even a simple change can be made and validated, thus the need for support environments
to capture and preserve the developer’s understanding of programs.
As previously described, there have been several studies of the evolution of software
systems. These and other studies have led to models of the process and products of
software evolution which have been used to manage and control software evolution.
Process models identify the mechanism by which the evolution is carried out, and product
models identify the characteristics of the software which are important with respect to
evolution.
There are two complementary research approaches to software evolution. The first
approach, related to reverse engineering, aims to devise methods of working with legacy
systems, while the second approach, related to forward engineering, attempts to design
software that is easy to change. Whether a software system has been designed for ease
of modification or not, there are common tasks which must be performed. In order to
change a software system, the software engineer performing the task must understand
both the system and the changes to be made (Takang & Grub, 1996). The software
engineer must be able to verify that exactly the required changes have been made to the
software.
Various techniques for handling software evolution have been described in the literature,
including those by Takang and Grub (1996) and Pigoski (1996). Takang and Grub describe

TEAM LinG

Support for Collaborative Component-Based Software Engineering 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several software life cycle processes, and put each in the context of evolving software
systems, while Pigoski takes a more evolution-centred approach, concentrating more on
the processes which occur after the development of a software system. Pigoski describes
software evolution processes, metrics, and management issues.
While developing software which is easy to change is not entirely removed from
changing so-called “legacy” software, it is sufficiently different to merit separate
treatment. Various techniques for creating software have been described. These range
from product-oriented guidelines for developing understandable source code (McConnell,
1993; Kernighan & Pike, 1999) to processes with attempts at psychological grounding
in program comprehension (Smith, 1999).
There have been several attempts to categorise methods for dynamically changing
software at run-time. These include simple techniques based on plug-ins (i.e., dynami-
cally loadable modules) and parameter alteration (Rubini, 1997), and more sophisticated
approaches based on component replacement or adaption (Bihari & Schwan, 1991; Segal
& Frieder, 1989).
The lack of explicit representation of communication in a software system causes
problems with the evolution of the system; communication is a key part of a software
system and should be explicitly represented rather than implicitly inferred. Maintaining
the existence of connectors through to the run-time instantiation of the code allows
connectors to encapsulate more information about the communication that occurs
between components, to contribute to the mobility, distribution, and extensibility of
systems, and to act as domain translators, providing mappings from messages in one
format to messages in another (Oreizy, Rosenblum, & Taylor, 1998).
The initial design of a modern system usually aims to have low inter-component coupling.
This coupling between modules increases as a system is maintained (Lehman, 1998).
Whatever the initial architecture of a software system, maintenance of the system
without regard to the effects on the architecture will cause degradation of architecture
(Lehman, 1996). There are several ways to tackle the problems here:

• Use a process of maintenance that pays explicit and careful attention to the
architecture of the system.

• Design the architecture of the system in such a way that maintenance can be carried
out in a way that preserves the structure and ‘cleanliness’ of the system.

When building a software system of significant size, reuse of existing pieces of software
is desirable. Usually, unless the components have been specifically designed to work
together and do not violate each others’ assumptions, simple composition of compo-
nents is not possible. Each component will make different assumptions about the
environment and the behaviour of other components in the system, leading to so-called
architectural mismatch (Garlan, Allen, & Ockerbloom, 1995). The most common approach
to tackling this mismatch is to “wrap” components (commonly by inserting “glue” code
between them) to insulate them from each other and to transform the input and output
(Shaw, 1995).

TEAM LinG

78 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One approach to architectural reuse is the concept of product-line architectures. These
provide the opportunity to reuse parts of previously existing systems in later software,
though this requires a significant amount of work to achieve and is hard to perform after-
the-fact (Bosch, 1999).
Use of the C2 architectural style (Oreizy et al., 1998), which is based on a layered system
of components and connectors, has been claimed to ease run-time software evolution;
evolution without re-compilation of the system, in such a way that the system retains its
integrity without becoming successively brittle over modifications (Oreizy & Medvidovic,
1998). Two types of system change are identified: changes to the system requirements,
and changes to the implementation that do not affect the requirements.
Work on run-time architectural evolution has, in general, concentrated on providing the
ability to dynamically replace components. This typically requires provision to be made
at design time (Amdor, de Vicente, & Alons, 1991; Oreizy, 1998).
Distributed systems offer further challenges and opportunities. Large distributed (and
other) systems may need to remain functional for long periods of time without interrup-
tion. In order to tackle this, Kramer and Magee (1985) propose replacing traditional (build-
time) static configuration with incremental dynamic reconfiguration. This requires a
greater separation between programming (implementation of behaviour) and configura-
tion (implementation of composition), and requires a configuration language distinct
from the programming language(s) used in the system. The more recent C2 architectural
style advocates explicit representation of connectors, which provides the ability to
abstract away from distribution and to insulate components from changes occurring in
other parts of the system (Oreizy & Taylor, 1998).
There are several approaches to handling the evolution of a software system. These fall
into the two categories of process-oriented solutions and product-oriented solutions.
The GENESIS platform supports process-oriented software evolution, while the CoDEEDS
project aims to assist with the maintenance of knowledge about software engineering
products that have been developed collaboratively.

 Suppport for
Collaborative Development

In order to realise the approaches and models in practice, software engineering support
environments with explicit provision for evolutionary design of component-based
systems are required. Two complementary projects are described in greater detail.

The CoDEEDS Project

The CoDEEDS project is concerned with the Collaborative Determination Elaboration
and Evolution of Design Spaces (Boldyreff, Kyaw, Nutter, & Rank, 2003b; Boldyreff &
Kyaw, 2003). It provides support to design teams enabling them to record their determi-

TEAM LinG

Support for Collaborative Component-Based Software Engineering 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nation of the solution space in the development of large complex distributed systems
composed of heterogeneous software components. The result is a potentially N-
dimensional design space layered by static and dynamic views of the component
subsystems and models of their deployed instances within the system being designed
and deployed in practice. The design environment being developed as part of the
CoDEEDS project supports collaborative design throughout the system life cycle with
an agent-based architecture to support the design team in their various activities.
Different members of the design team may employ their own preferred design methods
and tools when carrying out the detailed design work. The CoDEEDS environment
provides a global view of the overall design of the system and the various design
decisions that have been made in its composition from a number of potentially hetero-
geneous components. Figure 1 indicates the primary areas (use cases) supported by the
GENESIS and CoDEEDS systems; it shows both the overlapping and discrete primary
areas addressed by each system.

The GENESIS Project and OSCAR

The GENESIS project is focused on the development of a Generalised Environment for
Process Management in Co-operative Software Engineering. In the context of Figure 1
it addresses the needs for process and work product management. It is employed at both
the project management and process workflow level. It complements the design rationale
capture of the CoDEEDS system through its support of process engineering and
collaborative activity recording. The GENESIS project has developed a low-overhead
platform to support collaborative software engineering. The system has been designed
to be process aware, but nonintrusive; like CoDEEDS, it does not mandate methods and
tools to be employed by the development team. GENESIS is now an open source project
that was seeded by initial closed-source developments by the project partners.

Process engineering

Abstract and refined views

Constraint checking

Collaboration recording

Store/retrieve artefacts

Manage project and workflow

CoDEEDS

GENESIS

Developers

Software agents

Figure 1. GENESIS and CoDEEDS overlap

TEAM LinG

80 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

GENESIS, outlined in Figure 2, provides a solution for modeling and enacting workflow
processes, and for managing both planned and unplanned work products. The process
enactment is distributed over multiple physical sites coordinated by a global process at
one site. Both local and global processes are managed via the GENESIS workflow
management system.
Underlying both the GENESIS platform and the CoDEEDS system is an artefact manage-
ment system, OSCAR, which acts as a repository for all artefacts resulting from
development. OSCAR supports the creation, storage, retrieval, and presentation of
artefact data elements and their associated metadata. “Everything is an artefact” is the
view of the repository’s data; this results in a simplified data model throughout OSCAR.
By using Castor, an open source data-binding framework, in the implementation of
OSCAR, the ability to treat artefacts as objects and documents simultaneously has been
achieved allowing for flexible processing and extension of artefacts and their associated
types. The actual storage of the artefact content is achieved through plug-ins to external
storage mechanisms such as CVS. An abstraction over software configuration manage-
ment (SCM) is currently mapped to a CVS plug-in and a plug-in for the Perforce SCM
system is underdevelopment. Similarly plug-ins for searching are possible, such as the
GENISOM extension described in the next section. Instrumentation to collect data about
the users and system activities provides the basis for awareness extensions also
described in the next section, and potentially for studies of collaborative working in the
future.
Currently OSCAR is shipped with the following set of basic artefact types:

• Software – specifications, designs, code, and so forth

• Annotation – any additional information such as e-mail messages and other
discussion that may help users of the original artefact

• Human Resource – description of the relevant software engineering personnel

• Project – workflow models and enactment descriptions

• Default – all artefacts are extensions of this

Metrics Tool

OSCAR Client Process
DefinitionTool

Clients

Web ServicesStub Web ServicesStub

WFMS OSCAR

Workflow Client

Figure 2. Overview of GENESIS

TEAM LinG

Support for Collaborative Component-Based Software Engineering 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The user may extend this default set of types, at present new types may only be added
to the system when the server is started. In particular, the CoDEEDs and GENISOM
projects expanded the set of artefact types for their own purposes.
OSCAR’s restrictive RMI interface is being complemented with a more accessible Web
Services interface to ease deployment of the system in user environments where access
through a firewall is necessary. This alternative interface will be useful to industrial users
of OSCAR and to users in Open Source projects (Boldyreff, Lavery, Nutter, & Rank,
2003a).

Extending Artefact Types

To extend the set of types, two things are required: a set of Java classes derived from the
base artefact type containing the functionality provided by the new type, and a Castor
mapping file to translate between instances of the class and an XML document. Once the

Version

cVersionNumber: String

Artefact
 cDocument: XMLDocument
cRelations: Hashtable

0..*

1..*

Object

Document

Persistence

<?xml version=”1.0”?>
<artefact>
´<rdf:Description>
´´<dc:Identifier uniqueid=”http://localhost/oscar/TheArtefact”/>
´´<dc:Relation href=”http://foo.org/oscar/Software/foobar”/>
´´<dc:Title>An Example Artefact</dc:Title>
´</rdf:Description>
´<version version=”1.2”/>
´<data filename=”data.txt”>
´´<![CDATA [some text]]>
´</data>
</artefact>

Version

Artefact Relationship

HAS

HAS

REFERS
TO

Relationship
 cFrom: Artefact
cTo: Artefact
cType: String

Figure 3. Artefact representation

TEAM LinG

82 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new type has been written and tested, the OSCAR server must be reconfigured and
restarted to recognise the new type. Users may then create and modify instances of the
type like any of the basic types.
There is a faster way to extend the set of “types”: that is to use the default classes and
mapping file but under a new name. Obviously, the user gains no new features by doing
this but can differentiate a set of otherwise similar artefacts by changing the type name
without needing to spend time developing new classes. For example, the CoDEEDS
project first used the default artefact type under the name “CoDeedsArtefact” before
writing classes and mappings for an artefact that provided features necessary for the
project, which then replaced the default type.
Figure 3 illustrates how the XML-based representation of artefacts forms a link between
the higher level human-understandable representation, which is rendered as a Java
object describable in UML, and the lower level database (entity-relationship) represen-
tation, which is used to provide persistence.

 Basic Artefact Operations

Currently high-level artefact operations exist for automatic indexing to support search
and retrieval, and for various transformations to allow for flexible presentation of
artefacts to users, usually as an XML document, sometimes as an object. Also, basic
facilities common to all artefacts exist, including the ability to query and modify the basic
metadata, store data within an artefact, store and retrieve versions of an artefact or
collection of artefacts, and make relationships between artefacts.

Extending Oscar with
Addtional Repository Services

We describe two additional services that are part of OSCAR alongside the basic
management facilities described previously.

Historical Awareness

The possibility of extending OSCAR with historical awareness arises along with the cross
project historical data that is captured as OSCAR is used to support a number of projects
and as data sharing between distributed OSCARs is realised.
Historical awareness deals with a collection of heterogeneous artefacts, allowing the
user to view the complete context of an artefact’s creation and history of changes into
its present form across a number of projects, rather than a contextless view of changes
to a single project artefact (Nutter & Boldyreff, 2003). Historical awareness is superfi-
cially similar to change logs and history views provided by SCM systems but, unlike

TEAM LinG

Support for Collaborative Component-Based Software Engineering 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

these systems, provides information that has not been explicitly requested by the user.
One way of displaying historical data is via a timeline relating the changes made to an
artefact by various users over time. Such a display can be driven by events as they occur
providing immediate feedback to developers sharing an artefact across projects or within
a single project. In effect, through historical awareness, users gain a view of the software
artefact’s evolution over time and across a number of uses within various projects.
The implications of supporting component reuse via this feature are that historical
awareness may be able to provide potential users of the component with the big picture
of the component’s development over time necessary for program comprehension, which
must precede effective reuse and evolution. It also gives them immediate feedback from
other developers reusing the component and possibly adapting or evolving its function-
ality, thus preventing conflict (Nutter & Boldyreff, 2003).

GENISOM

A prominent problem within the field of Component-Based Software Engineering
concerns finding suitable components to reuse. Reusable assets are in abundance over
the Web and in libraries, but it is extremely difficult to locate reusable software
components that are relevant to a particular application. The necessary organisation is
often lacking and difficult to achieve given the dynamic nature of such software
collections. This problem also can be found where a large evolving software system
consists of an ever-growing number of components and the management, and hence the
comprehension of the associated software components tends to become increasingly
difficult. In the GENISOM project, we have applied self-organising maps (SOMs) to a
large population of software components and developed various visualisations of the
SOMs. Their effectiveness in relation to the organisation of a large software collection
and their usage by software engineers wishing to search the collection has been
investigated (Brittle, 2003; Brittle & Boldyreff, 2003).
SOMs are an adaptive technique used to hierarchically (in our case) organise a large
search space into a two-dimensional array of smaller spaces. The organisation is
performed using an unsupervised neural network (Kohonen et al., 2000).
OSCAR’s initial large-scale population for demonstration purposes is derived from the
packages of the Debian open source project and consists of just over 1,500 software
artefacts. This population with its extracted metadata has been employed in some
experimental studies to gauge the effectiveness of using SOMs to classify large
collections of software artefacts in the GENISOM project (Brittle, 2003). In GENISOM,
we have replicated Kohonen’s original WebSOM (Kohonen et al., 2000) and extended
it to the domain of Web-based software artefact collections. SOMs are used as a data
visualisation technique to support users browsing and searching large collections of
data by representing the collection’s population as an interactive map, thereby exploiting
computer technology and people’s abilities to comprehend visual representations. Even
though reusable assets are in abundance, a growing problem is the ability to actually
locate assets that are relevant for reuse. Organisation of a collection is therefore a
necessity, and the GENISOM project and other research (Merkl, 1998) have come to the
conclusion that SOMs are viable organisational tools that could be used instead of

TEAM LinG

84 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hierarchical or faceted classification. SOMs also provide a virtually automatic organisation
process that could save on the costs associated with employing reuse librarians and
reduce the amount of time needed to train engineers in the use of the library. More
recently, GENISOM has been redeveloped to provide a front-end to OSCAR, and the test
population has been expanded to include the Java software components that comprise
the current implementation of OSCAR (Brittle & Boldyreff, 2003).
The GENISOM maps provide potential component reusers with various views of the
software collection. Figure 4 illustrates one view of such a map.
Our preliminary results, applying a prototype implementation GENISOM to the Debian
and OSCAR components, show promise and support our belief that SOMs are an ideal
solution to organising the incrementally expanding content of the large distributed
repositories that we anticipate will result from OSCAR’s usage by a growing number of
software development projects.

Extending OSCAR for GENISOM and Awareness

Extending OSCAR to support both these projects will require modification of both the
client and server parts of OSCAR. Though the goals were different, some of the
architectural modifications are similar.
GENISOM at first required client-side modifications to generate useful maps from a user’s
own collection of artefacts in a workspace. These initial modifications required the
addition of a new artefact type to describe a particular SOM configuration and a special
artefact type describing Debian package metadata used to represent the test artefact
population.
The modifications to the client entailed adding a new user view in addition to the existing
hierarchical view of the workspace contents, and allowing the user to switch between the
views at will. Dialogues to guide the user through the process of creating a self-
organising map of the contents of their workspace (and a descriptive artefact) were
prepared and added to the client. A tool to extract test artefacts from the Debian packages
file was prepared.

Search terms Keywords corresponding
to selected cell

Map cell
(small
number of
items) Map cell

(large number
of items)

Selected cell

Figure 4. GENESOM 2D map view

TEAM LinG

Support for Collaborative Component-Based Software Engineering 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Adding awareness support requires modification of the client Though in contrast to the
view added for GENISOM, this will not allow navigation of the complete workspace, just
the parts of the workspace which are affected by the activities of other software
engineers. Several server-side modifications are necessary to deliver awareness infor-
mation to the client; an event handler is required to convert change and dependent
change events generated by artefacts into a form suitable for display in the awareness
view. This handler will feed the information it creates to the distribution mechanism,
which communicates with the peers in a distributed awareness network.
The awareness network is built by closely linking clients (few hops) working with similar
artefact collections; potential algorithms for doing this are described in previous work
(Nutter & Boldyreff, 2003). Awareness information messages are then given a time to live
(TTL) and sent to the originating client’s immediate peers. From there, messages are
propagated further until the TTL has expired. Since nearby peers will all be using similar
artefacts, this approach will ensure that information expires once it becomes irrelevant,
keeping the network clear of spurious traffic and removing the need to filter information
for relevance on the client.
This method necessarily means that some information will be lost when the network is
imperfectly arranged as it will not reach all the clients interested in it. However, the display
method outlined for historical awareness can cope with lost information.

 Deployment

Within the framework of the GENESIS project, the consortium’s industrial partners have
deployed the GENESIS platform including OSCAR in a number of user trials. Members
of the GENESIS project team have used it to support their own internal development. A
stable version of the GENESIS platform is available on SourceForge (http://
sourceforge.net/projects/genesis-ist). The CoDEEDS system is currently a research
prototype which is being prepared for release as an open-source system.
The GENESIS platform has been evaluated in the industrial partners’ organisations
(LogicDIS and Schlumberger) using a comprehensive test bed. In each partner’s
organisation, the platform was used to model an already completed project. The project
was re-run with the assistance of the GENESIS platform.
Consideration has been given to the adoption of the GENESIS platform by organisations.
For large organisations with highly distributed cooperating teams, the adoption of a new
technology is a complex process that requires an organisation to consider the technology
in context of the organisation’s business goals (Lavery, Boldyreff, Nutter, & Rank, 2003).
Prior to the adoption of GENESIS a large organisation must determine the answers to two
difficult questions: Do the existing software processes require additional or improved
technical support supplied by GENESIS?
Does the organisation need to improve their software processes and will GENESIS
support that improvement effort?

TEAM LinG

86 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is essential to any organisation that the adoption of any new technology is based on
the determined needs of the organisation. In the GENESIS project, we advocate the use
of the Carnegie Mellon Software Engineering Institute’s Capability Maturity Model
(SW-CMM) (Dewar et al., 2002) to determine those organisational needs and to support
an incremental technology adoption strategy (Lavery et al., 2003).
GENESIS and CoDEEDS are a collection of distinct systems that work together to provide
effective support for the management of both software product evolution and software
processes enactment. Thus, it is possible to introduce the individual systems incremen-
tally based on the determined needs of the organisation.
To ease adoption of the platform, a stand-alone version of OSCAR has been developed
and made available. As well as the tools described earlier to up-load the Debian project
software, a simple import tool for Java software and other miscellaneous files has been
developed. This has enabled the GENESIS project software to be easily transferred into
OSCAR as part of the project’s own use of its developments.
As with the local and global work processes, the work products managed by OSCAR will
soon be visible in a similarly global name-space composed of multiple local OSCAR
repositories. Also in progress for OSCAR is user-transparent metadata extraction and
indexing functionality.
It is only with the widespread adoption of OSCAR and the development of much larger
collections of software artefacts stored in OSCAR that advantages, such as being able
to obtain global views of such collections held in distributed repositories, will become
apparent.
Instrumenting the tools provided by both GENESIS and CoDEEDS will allow evolution
studies of both software engineering processes and products to be performed. Monitor-
ing the real behaviour of projects managed by the GENESIS workflow engine will allow
studies of software development processes, indicating how closely real software
engineering projects adhere to idealised models. Studying the evolution of products
across a number of projects allows a full picture of the development effort to be obtained
and may be the basis for predicting future changes.
The architecture of the GENESIS platform currently relies on the relatively tight binding
of RMI. This is being transformed to a new architecture based on Web services. Once
this has been done, the distribution model of the platform will be more flexible. It will no
longer be necessary to maintain a strict one-to-one relationship between GENESIS and
OSCAR installations; an instance of OSCAR could be shared by more than one GENESIS
platform, or a single GENESIS project could use more than one repository.
The industrial partners have evaluated the GENESIS project in real projects. The
feedback on the prototype platform that was evaluated has provided motivation for
future development in terms of functionality, usability, and interaction mechanisms. The
CoDEEDS prototype also is being released as an Open Source project. Feedback from its
users will guide its further development.

TEAM LinG

Support for Collaborative Component-Based Software Engineering 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Conclusion and Future Work

Our initial experimental developments show that GENISOM provides an effective way to
organise a large collection of artefacts. Research is in progress to evaluate visualisation
techniques applied to the associated SOMs in terms of their utility to support the
software reuse by software engineering teams.
The applicability of collaborative technologies and theory to software engineering in the
open source environment has not yet been studied. The CALIBRE Co-ordinated Action
will provide an opportunity for collaboration experts and Open Source stakeholders to
employ tools and techniques for collaboration in highly distributed projects.
We also have proposed a track of research complimentary to the UK E-Science agenda
(Boldyreff & Nutter, 2003). The objective of this research programme is to study the needs
of collaborators on the scientific grid who will be performing the following activities:

• Designing experiments, much like collaborative design of software

• Replicating or studying previous experiments (data provenance is therefore
important)

• Collaborating on data analysis, requiring descriptions of scientists working on the
system, data sources and full traceability between them

The eScience agenda itself is very technology focussed, concentrating on the develop-
ment of technologies for distributed computing and data exchange. However, we believe
that collaboration is at the heart and critical to the success of scientific endeavour and
must be considered in any large-scale scientific system for that system to be successful.
This chapter has described two open source projects which support collaboration using
UML and XML. Use of standard representation formats such as these plays a critical role
in facilitating software reuse and the evolution of software artefacts. Support is needed
for both the process of software engineering as well as the products of these processes.
GENESIS provides support for the processes, OSCAR and CoDEEDS provide support
for the products. As software engineering matures as a discipline, software reuse has
become a more viable option and is becoming a more important part of the software
engineer’s toolkit. The systems described here support collaborative development, per
se, and also collaboration across projects at different times, by supporting reuse, aided
by common standard representations.

Acknowledgments

We wish to acknowledge and thank both James Brittle and Christopher Korhonen for
their work with the GENESIS project team. GENESIS was funded by the EU under their
IST programme, and CoDEEDS was funded by the UK EPSRC.

TEAM LinG

88 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Amdor, J., de Vicente, B., & Alons, A. (1991). Dynamically replaceable software: A design
method. Proceedings of the Third European Software Engineering Conference,
(ESEC) (pp. 210-228).

Baxter, I. & Pidgeon, C. W. (1997). Software change through design maintenance.
Proceedings of the 1997 International Conference on Software Maintenance
(ICSM 97) (pp. 250-259).

Bihari, T. E. & Schwan, K. (1991). Dynamic adaptation of real-time software. ACM
Transactions on Computer Systems, 9(2), 143-174.

Boldyreff, A.W. (1954). Systems engineering. Technical Report P-537. Mathematics
Division, The RAND Corporation, 16 June 1954. Available at http://
hemswell.lincoln.ac.uk/~cboldyreff/boldyreff-se.pdf

Boldyreff, C. (1992). A design framework for software concepts in the domain of steel
production. Proceedings of the Third International Conference on Information
System Developers Workbench, Gdansk, Poland, September 22-24.

Boldyreff, C. & Kyaw, P. (2003). A framework for developing a design evolution
environment. Proceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC).

Boldyreff, C. & Nutter, D. (2003, Septmeber 8). Supporting collaborative grid application
development within the e-science community. First International Workshop on
Web Based Collaboratories, collocated with IADIS WWW/Internet, Carvoiero,
Algarve.

Boldyreff, C., Burd, E.L., Hather, R.M., Mortimer, R.E., Munro, M., & Younger, E.J. (1995).
The AMES approach to application understanding: A case study. Proceedings of
the International Conference on Software Maintenance. IEEE Computer Press.

Boldyreff, C., Burd, E.L., Hather, R.M., Munro, M., & Younger, E.J. (1996). Greater
understanding through maintainer driven traceability. Proceedings of the 4th
Workshop on Program Comprehension, April (pp. 100-106). IEEE Computer Press.

Boldyreff, C., Elzer, P., Hall, P., Kaaber, U., Keilmann, J., & Witt, J. (1990). PRACTITIO-
NER: Pragmatic support for the reuse of concepts in existing software. Proceedings
of Software Engineering 1990 (SE90), Brighton, UK. Cambridge, UK: Cambridge
University Press.

Boldyreff, C., Kyaw, P., Nutter, D., & Rank, S. (2003). Architectural framework for a
collaborative design environment. Proceedings of Second ASERC Workshop on
Software Architecture, Banff, Canada.

Boldyreff, C., Lavery, J., Nutter, D., & Rank, S. (2003). Open-source development
processes and tools. Proceedings of Taking Stock of the Bazaar: The Third
Workshop on Open Source Software Engineering, Portland, Oregon.

Boldyreff, C., Nutter, D., & Rank, S. (2002a). Open-source artefact management for
distributed software engineering. Proceedings of the Second Workshop on Open-

TEAM LinG

Support for Collaborative Component-Based Software Engineering 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Source Software Engineering at the 24th International Conference on Software
Engineering.

Boldyreff, C., Nutter, D., & Rank, S. (2002b). Active artefact management for distributed
software engineering. Workshop on Cooperative Supports for Distributed Soft-
ware Engineering Processes: Proceedings of the 26th IEEE Annual International
Computer Software and Applications Conference (COMPSAC).

Boldyreff, C., Nutter, D., & Rank, S. (2002c). Architectural requirements for an open
source component and artefact repository system within GENESIS. Proceedings
of the Open Source Software Development Workshop, Newcastle upon Tyne, UK,
February 25-26 (pp. 176-196).

Bosch, J. (1999). Evolution and composition of reusable assets in product-line architec-
tures: a case study. Proceedings of the First Working IFIP Conference on Software
Architecture (pp. 321-340).

Brittle, J. (2003). Self organizing maps applied to Web content. Final Year Project Report,
Department of Computer Science, University of Durham.

Brittle, J. & Boldyreff, C. (2003). Self-organising maps applied in visualising large
software collections. Proceedings of IEEE VISSOFT.

Dewar, R. G., Mackinnon, L. M., Pooley, R. J., Smith, A. D., Smith, M. J., & Wilcox, P. A.
(2002, September 13-15). The OPHELIA project: supporting software development
in a distributed environment. IADIS WWW/Internet 2002.

Drummond, S. & Boldyreff, C. (1999). SEGWorld: A www-based infrastructure to support
the development of shared software engineering artifacts. Proceedings of the
Workshop on Web-Based Infrastructures and Coordination Architectures for
Collaborative Enterprises. IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 120-
125). IEEE Press.

Fyson, M. J. & Boldyreff, C. (1998). Using application understanding to support impact
analysis. Journal of Software Maintenance: Research and Practice, 10 , 93-110.

Gaeta, M. & Ritrovato, P. (2002). Generalised environment for process management in
cooperative software engineering. The 26th Annual International Computer
Software and Application Conference Proceedings (pp. 1049-1053). IEEE.

Garlan, D., Allen, R., & Ockerbloom, J. (1995). Architectural mismatch or why it’s hard
to build systems out of existing parts. Proceedings of the 17th International
Conference on Software Engineering (pp. 179-158).

Goguen, J.A. (1986). Reusing and interconnecting software components. IEEE Com-
puter, February, 16-28. (Reprinted in Freeman, P. (Ed.). Tutorial: Software reus-
ability (pp. 251-263). IEEE Computer Society Press.

Jackson, M. (1998). Will there ever be software engineering? IEEE Software, 15(1), 36-
39.

Kernighan, B.W. & Pike, R. (1999). The practice of programming. Reading, MA: Addison
Wesley Longman.

TEAM LinG

90 Boldyreff, Nutter, Rank, Kyaw and Lavery

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela J., Paatero, V., & Saarela, A.
(2000). Self organization of a massive document collection. IEEE Transactions on
Neural Networks, 11(3), 574-585.

Kramer, J. & Magee, J. (1985). Dynamic configuration for distributed systems. IEEE
Transactions on Software Engineering, SE-11(4), 424-436.

Kwon, O. C., Boldyreff, C. & Munro, M. (1997). An integrated process model of software
configuration management for reusable components. Proceedings of the Ninth
International Conference on Software Engineering & Knowledge Engineering
(SEKE’97), Madrid, June 18-20.

Lavery, J., Boldyreff, C., Nutter, D., & Rank, S. (2003). Incremental adoption strategy for
the GENESIS platform. GENESIS Project Report. University of Durham. Available
at http://www.dur.ac.uk/janet.lavery/documents/AdoptStratFinal.pdf

Lehman, M.M. (1979). On understanding law, evolution and conservation in the large
program life cycle. Journal of Systems and Software, 1, 213-221.

Lehman, M.M. (1996). Laws of software evolution revisited. In Proceedings of EWSPT96,
number 1149 in Lecture Notes in Computer Science (pp. 108-124). Heidelberg,
Germany: Springer-Verlag.

Lehman, M.M. (1998). Software’s future: Managing evolution. IEEE Software 15(3), 40-
44.

Lehman, M.M. & Belady, L.A. (1985a). Program evolution: Processes of software
change. (Number 27 in APIC Studies in Data Processing.) Academic Press.

Lehman, M.M. & Belady, L. A. (1985b). Programs, life cycles and laws of software
evolution. In Program evolution: Processes of software change (pp. 393-449).
(Number 27 in APIC Studies in Data Processing.)

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., & Turski, W.M. (1997). Metrics and
laws of software evolution: The nineties view. In K.E. Eman & N.H. Madhavji (Eds.),
Elements of software process assessment and improvement (pp. 20-32). Albuquer-
que, NM: IEEE CS Press.

Lientz, B.P. & Swanson, E.B. (1980). Software maintenance management: A study of the
maintenance of computer application software in 487 data processing organi-
zations. Reading, MA: Addison-Wesley.

McConnell, S. (1993). Code complete: A practical handbook of software construction.
Redmond, WA: Microsoft Press.

Merkl, D. (1998). Self-organizing maps and software reuse. In Computational intelli-
gence in software engineering. World Scientific.

Nutter, D. & Boldyreff, C. (2003). Historical awareness support and its evaluation in
collaborative software engineering. Proceedings of the Workshop on Evaluation
of Collaborative Information Systems and Support for Virtual Enterprises at the
12th IEEE international Workshops on Enabling Technologies for Collaborative
Enterprises (WETICE).

Nutter, D., Boldyreff, C., & Rank, S. (2003). An artefact repository to support distributed
software engineering. Proceedings of 2nd Workshop on Cooperative Support for
Distributed Software Engineering Processes, CSSE 2003, Benevento, Italy.

TEAM LinG

Support for Collaborative Component-Based Software Engineering 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Oreizy, P. (1998). Issues in modeling and analyzing dynamic software architectures.
Proceedings of the International Workshop on the Role of Software Architecture
in Testing and Analysis, Marsala, Sicily, Italy.

Oreizy, P, & Medvidovic, M. (1998) Architecture-based runtime software evolution.
Proceedings of the International Conference on Software Engineering, Kyoto,
Japan (pp. 19-25).

Oreizy, P. & Taylor, R.N. (1998). On the role of software architectures in runtime system
reconfiguration. IEE Proceedings-Software, 145(5), 137-145.

Oreizy, P., Rosenblum, D.S., & Taylor, R.N. (n.d.). On the role of connectors in modelling
and implementing software architectures. Technical Report UCI-ICS-98-04. De-
partment of Information and Computer Science, University of California, Irvine,

Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber, C.V. (1993). The capability maturity
model for software. IEEE Software, 10(4), 18-27.

Pigoski, T.M. (1996). Practical software maintenance. New York: John Wiley & Sons.
Rubini, A. (1997). The sysctl interface. Linux Journal, 41. Available at http://

www2.linuxjournal.com/lj-issues/issue41/2365.html
Segal, M.E. & Frieder, O. (1989). Dynamic program updating: A software maintenance

technique for minimizing software downtime. Journal of Software Maintenance:
Research and Practice, 1(1), 59-79.

Shaw, M. (1995). Architectural issues in software reuse: it’s not just the functionality,
it’s the packaging. Proceedings of the IEEE Symposium on Software Reusability.

Smith, D. D. (1999). Designing maintainable software. Springer-Verlag.
Takang, A.A. & Grub, P.A. (1996). Software maintenance: Concepts and practice.

London: International Thomson Computer Press.
Wilcox, P.A., Smith, M.J., Smith, A.D., Pooley, R.J., MacKinnon, L.M., & Dewar, R.G.

(2002). OPHELIA: An architecture to facilitate software engineering in a distributed
environment. The 15th International Conference on Software and Systems Engi-
neering and Their Applications (ICSSEA), Paris, December 3-5.

Zhang, J. & Boldyreff, C. (1990). Towards knowledge-based reverse engineering.
Proceedings of the Fifth Annual Knowledge-Based Software Assistant Confer-
ence, Syracuse, New York, September 24-28.

TEAM LinG

92 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Migration of
Persistent Object

Models Using XMI
Rainer Frömming, 4Soft GmbH, Germany

Andreas Rausch, Technische Universität Kaiserslautern, Germany

Abstract

Embrace the change! Change is a constant reality of software development, a reality
that must be reflected in not only our software process but also our software production
environment. With ever-changing customer requirements, modifications to the object
model are required during software development as well as after product distribution.
The associated migration of existing persistent object data is a nontrivial problem. This
chapter presents the conceptualization and implementation of a tool for the automated
migration of persistent object models. The migration is controlled by an XMI-based
description of the difference between the old and the new object model. Both, the schema
and the data of the persistent object model are migrated efficiently and reliably.

Introduction

“Time-to-market” is one of the major factors for success of software products today.
Competitive pressure is forcing companies to introduce new versions of their software
products with increased functionality to the market in ever-decreasing time intervals. For

TEAM LinG

Migration of Persistent Object Models Using XMI 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

instance, extreme programming (Beck, 2000) promises a development process to cope
with this dramatically shortened life cycle.
However, agile software development with associated code-refactoring has its down-
sides as well. Short development cycles and fast assimilation to market requirements are
possible, but this entails frequent enhancements and changes to the object model of the
application under development. While changes to the object model and its correspond-
ing program code are not necessarily crucial, due to modern development environments
such as eclipse (Eclipse Foundation, n.d.), the migration of existing persistent object data
in databases exposes the developer to supplementary, time-consuming tasks. Usually,
there are two possibilities to address this problem: The first is to write additional program
code besides the related product which handles the migration of data. The second is to
include the logic how to access old and new data in the application itself. The drawback
with the first possibility is that there is no framework which handles the basics of data
migration to support the developer. This part can be very tricky, for example, without
security features to backup your database or an architecture that can cope with class-
naming-conflicts. When adapting the second possibility, the application is littered with
code fragments only needed to differ between old and new data. This gets even worse
when many new versions are built. Up to this point in time, no database vendor provides
a suitable tool that addresses this migration problem in full complexity.
This results in the need for a tool which is capable in migrating the persistent object data
from an aged software system to a new one in an automated, efficient, and reliable way.
With the aid of such a tool, data migration expenses will be greatly reduced and the overall
quality of the product will be improved considerably.
This chapter focuses on the concept and the functionality of such a tool, referred to here
as ShapeShifter. The application domain of ShapeShifter is mainly concentrated on the
object oriented software development cycle in conjunction with databases, where it
improves data migration in terms of efficiency, traceability, and quality. ShapeShifter is
written in Java, and in its present state, is able to migrate object-oriented databases from
the Versant Corporation (n.d.). However, ShapeShifter is not basically limited to the
Versant Database. Due to its flexible architecture and well designed interfaces, support
for additional databases such as Oracle, DB2, or other relational databases is easily
achievable and is already in preparation.

XMI: Describing Object Models

Any changes made to the object model entail knock-on changes to both the database
schema and the persistent data. Although, small tools to support migration are delivered
by the database vendors, these tools are insufficient and most of the migration work has
to be done manually (Nierstrasz & Tsichritzis, 1995).
However, the migration process could be automated to a great extent, because most of
the information you need is already at hand. The object models for both the new and old
systems are available as source code and therefore also as a Unified Modeling Language
(UML) description (Ambler, 2002; Fowler & Kendall, 2003).

TEAM LinG

94 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Due to the fact that many different object-oriented languages and case tools exist, it
would not be advisable for a tool developer to focus on a proprietary language
specification or a special case tool file format. For further processing, a standardized,
platform-independent representation of the object model should be used. The XML
Metadata Interchange (XMI) standard adopted by the Object Management Group
(OMG) (Grose, 2002) is particularly suitable for this. XMI provides a complete textual
description of object-oriented models, which is in contrast to graphically description
techniques like for the UML (Fowler & Kendall, 2003) more suitable for further automatic
processing and transformation operations.
The main goal in the development of XMI was the creation of a vendor-independent
industry standard for a model interchange format. Currently, all major CASE-Tools, as
well as some other tools such as the XMI Toolkit of IBM Alphaworks (n.d.), can directly
generate XMI from the existing source code or the UML description.

XMI: Describing Differences
Between Object Models

XMI has a very important feature: It allows the description of the difference between two
object models. This feature can be used to describe the migration of object models as a
sequence of primitive operations on the object model. If the difference is “added” to the
old version of the object model, the result will be the new one.
Figure 1 shows two versions of a simple object model (original.xmi, new.xmi), represented
as an UML diagram (UML object model) and a XMI-based description (XMI object
model). Additionally, the XMI-difference description can be seen in the middle of the
illustration (difference.xmi).
At first it is important to understand the basic structure of a XMI description and how
XMI works. The XMI standard defines three different types of operations: XMI.add,
XMI.delete, and XMI.replace. These operations (or elements) are used to describe how
a source model is changed into a target model. When the XMI.difference instructions are
applied to a xmi model description, the model is converted into a target model. These basic
operations add, delete, or change an attribute or a class in the object model. Every
operation can hold plenty of attributes like xmi.id, xmi.label, href, and more. These
attributes are basically used for naming and referencing elements in the object model and
are needed to describe where changes have to be applied. Finally the tags class or
attribute inside the operation tags describe the class and attribute modifications or
additions in detail.
The example in Figure 1 uses the XMI.add operation to add a new class called Address,
including all its attributes, to the model. The XMI.replace operation changes the type
of the attribute address in the class Company from String to Address. These two
operations are sufficient to describe the complete object model migration.
As mentioned, XMI descriptions of the object model can be generated very easily.
Creating the XMI-Difference description is much more difficult, as this cannot be

TEAM LinG

Migration of Persistent Object Models Using XMI 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1. Two simple object models represented as XMI

TEAM LinG

96 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

automated completely, with additional information from the developer needed. Formally
spoken, this is an undecidable problem (Waller, 1991).
To explain this, we give a short example: There is no difference for the resulting schema
when changing the type of the attribute address from String to Address through an
XMI.replace on the address attribute or by deleting it with XMI.delete and inserting the
new Address attribute with the XMI.add operation.
The end result of the whole data-migration process, however, would be totally different
in these two cases. In the first case, the data must be converted from the String to the
Address class, in the second case the data has to be deleted and the new Address attribute
has to be initialized with a default value.
To sum up, tools like XMLDiff from IBM Alphaworks (n.d.), can only generate sugges-
tions which still have to be reworked by the developer. If an XMI-Difference description
is available, the schema migration can be done automatically. In the case of the data-
migration though, this is generally not possible, as special converters and other
additional information has to be prepared. This means that in most cases custom code
has to be developed in order to migrate data with ShapeShifter.

Components of ShapeShifter

Figure 2 shows the main components and interfaces of ShapeShifter. The Migration
Engine is the primary component of ShapeShifter which is used to manage the whole
migration process. It takes control of the workflow of the migration and for this purpose
it uses the offered services of the components below it as needed to perform all the tasks.
The XMI Parser & Validator processes the XMI input file and accepts only valid XMI
files matching the respective Document Type Definition (DTD) (Harold & Means, 2002).

Migration Engine

D
atabase

M
anager

Schem
a

M
anager

Instance
M

anager

C
onverter

Fram
ew

ork

Initializer
Fram

ew
ork

Protocol
M

anager

X
M

I Parser and
V

alidator

M
igration

V
erifier

Database Database
XMI

Input File
Protocol

File

U
ser-Provided
C

onverter

U
ser-Provided
Initializer

User

ShapeShifter Components

User-Provided Components

Migration Engine

D
atabase

M
anager

Schem
a

M
anager

Instance
M

anager

C
onverter

Fram
ew

ork

Initializer
Fram

ew
ork

Protocol
M

anager

X
M

I Parser and
V

alidator

M
igration

V
erifier

Database Database
XMI

Input File
Protocol

File

U
ser-Provided
C

onverter

U
ser-Provided
Initializer

User

ShapeShifter Components

User-Provided Components

Figure 2. ShapeShifter components

TEAM LinG

Migration of Persistent Object Models Using XMI 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Database Manager handles all physical access operations like copying or deleting
databases. The Schema Manager enables the Migration Engine to make changes to the
object schema of the database. The Instance Manager provides read and write access
on object instances.
For initialization of new classes that are created in the migration process, the Initializer
Framework is used. The data migration is handled by the Converter Framework. These
two frameworks provide standard converters and standard initializers for standard data
types. For instance, the conversion of int to long is a standard conversion, whereas the
migration of the custom attribute address from Figure 1 needs a custom converter. This
can be included via the plug-in framework of ShapeShifter which will be explained later.
The Migration Verifier will check the database for consistency after the migration. The
Protocol Manager documents the whole migration process.

Technical Architecture

Figure 3 shows an overview of the technical architecture of ShapeShifter. ShapeShifter
uses three virtual machines which communicate via Remote Method Invocation (RMI)
in order to perform the migration.
The first virtual machine (Java VM1) holds the Migration Engine as the primary
component. In this process, the migration is controlled and coordinated. The second
virtual machine (Java VM2) provides access to the original persistent object model. The
third virtual machine provides access to the new persistent object model, plus it contains
the Schema Manager in order to be able to make changes to the database schema.

Source-
Database

Target-
Database

Figure 3. ShapeShifter technical architecture

TEAM LinG

98 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are several reasons why three virtual machines are needed. One of them is a
configuration issue (e.g., if a migration is done from an old database version to a new one
and the database interface does not allow the usage of both versions at the same time).
Another reason is the migration between different Java versions. As RMI is compatible
between different Java releases it provides a common representation of the migrated data.
In many cases two virtual machines are sufficient, so VM1 and VM2 or VM1 and VM3
can be put together. However, at least two virtual machines are needed due to the nature
of migration, ShapeShifter needs to work with two classes which share the same name
at the same time. This is not possible in a single virtual machine.
The core of the migration process is done in the first virtual machine (VM1). The data from
the original and the new object model are transported via RMI and transformed in a neutral
representation. The migration is performed and the resulting data is saved in the new
persistent object model.
As mentioned in the introduction, in its present implementation ShapeShifter provides
an adapter for migrating object-oriented databases from the Versant Corporation. The
Versant database is an object-oriented database, providing an interface that meets the
requirements of the ODMG (Cattell, Berler, & Eastman, 2000) standard for accessing
persistent object oriented data which is used by ShapeShifter. The present implementa-
tion of the Versant database provides support for Java Data Objects (JDO) as well, which
is not used by ShapeShifter so far. JDO is the latest interface standard of the ODMG for
transparent object persistence.
The interfaces of the components accessing the database are the “DB Manager,” the
“InstanceManager,” and the “SchemaManager.” Adapters for other databases can
easily be implemented. Thus, ShapeShifter can be extended for use with Oracle or other
well known databases. It is unnecessary to provide more information about the Versant
database for explaining the concepts of object migration, as the user of ShapeShifter does
not need to know details about the underlying database.

Figure 4. ShapeShifter procedure during the database migration

User defined
initialisation

User defined data
migration

Init
Environment Parse XMI input Migrate schema

Initialise with
Default values

Standard data
migration

Validate database
Cleanup
environment

TEAM LinG

Migration of Persistent Object Models Using XMI 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Basic Procedure of the Migration

The Migration Engine follows a fixed procedure during the database migration. The
database as a consequence is always in a well defined state. Figure 4 illustrates the
principal procedures of ShapeShifter during the migration of a database.

1. Initialization of the environment. Internal examinations and initializations are
carried out. The different virtual machines are started and the required services are
loaded and started.

2. Parsing and validation of XMI input. The XMI Parser & Validator reads the XMI
input and examines it.

3. Schema migration. A new database is created with a new schema. The data from
the old database is copied into the new one, as far as this is possible.

4. Initialization with default values. If specified in the XMI input, new attributes and
classes will be allocated with default values.

5. User-specific initialization. The user-specific initialization program code, which
is referenced in the XMI input, will be executed.

6. Standard data migration. The supported standard Data-Migration directives are
executed as specified in the XMI description.

7. User-specific data migration. The user-specific data migration program code,
which is referenced in the XMI input, will be executed.

8. Examination of the new database. The Migration Verifier examines the database,
to assess whether or not it is in a consistent state and if it is accessible by the newly
created schema.

9. Cleanup environment. The database and other components will be de-initialized.
Memory will be de-allocated.

Accessing Persistent Objects
During Migration

As shown in the previous section, ShapeShifter follows a determined workflow which
always keeps the database in a well defined state. User-specific convertion or initializa-
tion code is executed at specific points within the scope of this workflow.
It must always be possible to access the old persistent object model as well as the new
object model in a consistent state. This also applies when the migration is performed with
distributed databases/systems. The component providing this functionality is the
Instance Manager. It enables the user to access the original database as well as the new
one at the same time. The original database only can be accessed read only, while the new
database has read and write access.

TEAM LinG

100 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At the beginning of the data migration, the new version of the database already contains
all data from the original one, as far as the schema allows it. Accessing the database
objects is done with the use of handles. Currently, only attributes of persistent objects
can be accessed with ShapeShifter. Calling methods of persistent objects has not yet
been implemented.

Figure 5. Accessing old and new objects during migration

Figure 6. Accessing and manipulating instances of classes

TEAM LinG

Migration of Persistent Object Models Using XMI 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To allow easy access to the database objects, ShapeShifter provides several interfaces
for the user, as shown in Figures 5 and 6. The interfaces can be looked upon as providing
two basic types of functionality: On the one hand, there are interfaces for finding classes
and creating objects; on the other hand, there are interfaces for the manipulation of
objects and attributes.
During the migration, the interface InstanceSessionIf provides the entry to these
services. The methods locateNewClass() and locateOldClass() supply a handle of a
persistent class. Thus, developers are able to access the original and the new classes or
objects simultaneously. Of course, the new schema may differ from the original one in
shape as well as in naming of classes and attributes.
The new and old classes can cross-access the old and new schema, respectively. In
Figure 5, this is expressed through the generalization of PClassNewIf and PClassOldIf
which both expand PClassIf.
With the method getField() in PClassIf, field descriptors for the access to the fields of
the instances of the classes can be retrieved. The interface for PfieldIf is shown in Figure
6. Additionally PclassIf provides a getInstances() method to retrieve the object in-
stances for the calling class. The new object instances can be manipulated in the ways
permissible by the interface of PObjectNewIf in Figure 6. It could be noted that only object
instances in the new database can be manipulated.

Example Migration

The following simple example demonstrates how a migration can be performed with
ShapeShifter. For this purpose, the example makes use of the demonstration migration
shown earlier in Figure 1.

Figure 7. XMI difference file for ShapeShifter

<XMI.difference xmi.id="_1" href="package|user">
 <XMI.replace xmi.id="_1.1" href="attribute|user.Company.address">
<XSHS.attribute xmi.id="_1.1.1" visibility="private" name="address"
 href="class|user.Address">
 <XSHS.convert xmi.id="_1.1.1.1" type="String2PObjectNewIf"
 href="class|converter.String2Address">
 <XSHS.source xmi.id="_1.1.1.1.1" href="attribute|user.Company.address"/>
 <XSHS.target xmi.id="_1.1.1.1.2" href="attribute|user.Company.address"/>
 </XSHS.convert>
 </XSHS.attribute>
 </XMI.replace> <XMI.add xmi.id="_1.2" href="package|user">
 <XSHS.class xmi.id="_1.2.1" visibility="public" name="Address">
 <XSHS.superclass xmi.id="_1.2.1.1" href="class|java.lang.Object"/>
 <XSHS.attribute xmi.id="_1.2.1.2" visibility="private" name="zip"
 href="basetype|String"/>
 <XSHS.attribute xmi.id="_1.2.1.3" visibility="private" name="street"
 href="basetype|String"/>
 <XSHS.attribute xmi.id="_1.2.1.4" visibility="private" name="city"
 href="basetype|String"/>
 </XSHS.class>
 </XMI.add>
</XMI.difference>

TEAM LinG

102 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At first, the class Company contains a simple string attribute address. Next, an evolution
in the datamodel takes place and a new class called Address is created that is referenced
from the class Company. The data from the original address strings must not be deleted
and has to be inserted in the appropriate fields in the new Address class.
To accomplish this task, two steps have to be performed: First, a converter class needs
to be created, which copies the original data from the attribute address of the class
Company into the attributes street, city, and zip of the new class Address. Second, an
XMI difference file has to be written, which calls the converter class and creates the new
class Address with the appropriate attributes.
The XMI difference file in Figure 7 describes the exact procedure of the migration for
ShapeShifter. Compared to the XMI difference file in Figure 1, it is interesting to see that
the file has been extended with a few “XSHS-Tags.” These extensions to the XMI-
Standard are necessary for ShapeShifter to perform the migration properly. The exten-
sions consist of directives to include appropriate plug-ins, respectively, user-specific
converters.
The XMI file is divided into two parts: the XMI.replace part and the XMI.add part. The
XMI.replace part converts the original data from the address string to the corresponding
fields in the new Address class. This is realized by the converter class String2Address
using the plug-in framework of ShapeShifter. The following tag in the XMI file is the
XSHS.attribute tag, which may seem redundant, but is actually needed if the visibility
of the attribute has to be changed. The next tag, the XSHS.convert tag, specifies the
converter class to be used, with the source and target of the conversion specified by the
XSHS.Source and the XSHS.Target tags, respectively.
In the XMI.add part, a new class called Address with the corresponding attributes is
created which is self-explanatory when looking at the XMI file.
Figure 8 shows the user-specific converter class needed for this migration. As mentioned
before, the execution of this class is specified in the XMI file. The task of the converter

Figure 8. Converter plug-in

public class String2Address implements CString2PObjectNewIfIf
{
 private static PFieldIf pfStreet, pfCity, pfZip;
 private static PClassNewIf pclass = null;
 public PObjectNewIf convert(String source) {
 PObjectNewIf result = null;
 // The follwing variables have to be set only once
 if (pclass == null) {
 InstanceSessionIf session = InstanceSessionManager.getCurrent();
 pclass = session.locateNewClass("user.Address");
 pfStreet = pclass.getField("street", "java.lang.String");
 pfZip = pclass.getField("zip", "java.lang.String");
 pfCity = pclass.getField("city", "java.lang.String");
 }
 // Create the Adress Object and set the variables
 result = pclass.createObject();
 result.setStringValue(pfStreet, extractStreet(source));
 result.setStringValue(pfCity, extractCity(source));
 result.setStringValue(pfZip, extractZip(source));
 return result;
 }
}

TEAM LinG

Migration of Persistent Object Models Using XMI 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is to decompose the address string from the old class and to insert it into the appropriate
fields in the new class.
When called, the converter is delivered the address string from the source class by the
migration engine. If the converter is executed for the first time (pclass==null) it has to
acquire the references for the attributes, but this has to be done only once.
With the method pclass.createObject(), a new address object is created. The attributes
are set with the method setStringValue(). The methods extractStreet(), extractCity()
and extractZip() are used for the decomposition of the appropriate data from the address
string. The implementations of the extracting methods are not shown here as they are
negligible.
The combination of the XMI file from Figure 7 and the converter plug-in from Figure 8
serves as input for ShapeShifter. The migration of the schema and the data can then be
performed automatically.

Conclusion

Migration of object models is a common task in today’s agile software development,
particularly in case of code refactoring. Suitable tools for the corresponding data
migration are not yet available and much work must be done by hand. The tools provided
by the database vendors can only handle small parts of the work and fail when complex
migrations have to be performed (Nierstrasz & Tsichritzis, 1995).
In this domain, ShapeShifter provides a solution for the object oriented database Versant
(n.d.). However, the market share of the Versant Corporation is very small compared to
IBM or Oracle. Hence, the next step in the development of ShapeShifter should
concentrate on the adaption of other database products. Other concepts are imaginable
as well, like migration between different database vendors, such as Versant and
ObjectStore, or even between different database technologies, such as relational and
object-oriented databases.
Another area of application could be software testing. In automatic regression testing
environments like JXUnit (n.d.) with separated test data, schma changes of the applica-
tion not only entail the migration of the application data but also the migration of the
complete set of test data. ShapeShifter can be used to migrate the test data automatically
to the new schema and hence perform the migration of test data more efficiently.

References

Ambler, S. (2002). Agile modeling: Effective practices for extreme programming and the
unified process. New York: John Wiley & Sons.

TEAM LinG

104 Frömming and Rausch

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison
Wesley.

Cattell R., Berler M., & Eastman J. (2000). The object data standard: ODMG 3.0. San
Fransisco: Morgan Kaufmann.

Eclipse Foundation Internet Homepage. (n.d.). Retrieved July 10, 2004, from http://
www.eclipse.org

Fowler, M., & Kendall, S. (2003). UML distilled second edition: A brief guide to the
standard object modeling language. Boston: Addison-Wesley.

Grose, T. (2002). Mastering XMI: Java Programming with XMI, XML, and UML.
Indianapolis, IN: Wiley

Harold, E., & Means W. (2002). XML in a nutshell second edition: A desktop quick
reference. Sebastopol, CA: O’Reilly & Associates.

IBM Alphaworks Internet Homepage. (n.d.). Retrieved July 10, 2004, from http://
alphaworks.ibm.com

JXUnit Internet Homepage. (n.d.). Retrieved July 10, 2004, from http://sourceforge.net/
projects/jxunit/

Nierstrasz, O., & Tsichritzis D. (1995). Object-oriented software composition. Indianapo-
lis, IN: Prentice Hall.

Versant Internet Homepage. (n.d.). Retrieved at July 10, 2004, from http://www.versant.com
Waller, E. (1991). Schema updates and consistency in DOOD’91. Proceedings: Lecture

Notes in Computers Sience (Vol. 566). Berlin: Springer-Verlag.

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

PRAISE:
A Software Development
Environment to Support

Software Evolution
William C. Chu, Tunghai University, Taiwan

Chih-Hung Chang, Hsiuping Institute of Technology, Taiwan

Chih-Wei Lu, Hsiuping Institute of Technology, Taiwan

YI-Chun Peng, Tunghai University, Taiwan

Don-Lin Yang, Feng Chia University, Taiwan

Abstract

Responding to the fact that software systems become more and more complex and
mutable, not only the software-standards-related technologies should be adopted, but
the environments for software development and evolution should also be flexible and
integratable. These facts make software development and maintenance difficult and
costly. In this chapter, we first illustrate the activities and studies for software
standards, processes, CASE toolsets, and environments. Then, we propose a process
and an environment for evolution-oriented software development, called the PRocess
and Agent-based Integrated Software development Environment (PRAISE). PRAISE
advocates software development with popular software methodologies, and it uses an
XML-based mechanism to unify the various paradigms with different standards. It
integrates processes, roles, toolsets, and work products to make software development

TEAM LinG

106 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

more efficient. With PRAISE, users are encouraged to adopt familiar mechanisms and
formal approaches as they wish. PRAISE maintains the consistency of the paradigms
so that users do not need to worry about conflicts with other paradigms that are built
in or added later. PRAISE meets the need for evolving software development and
maintenance.

Introduction

Software must keep evolving to meet the variability of the software requirements, system
environment, users, and so forth. As modern software expands, it also becomes
increasingly complex, making software development more difficult than before. This
complexity naturally affects software evolution. Changes to software can come up at any
time in the software life cycle. If developers do not consider the demands of software
evolution during the primary stage of development, later changes can be very costly.
In software evolution, the first challenge is design recovery. Maintainers need to do more
because documents often become inconsistent with the system. Secondly, the architec-
tures of some software systems are poor or lack flexibility. Maintainers may get half the
results with twice the effort due to the built-in drawback of software. They cannot
improve the quality of the software easily since these are architecture-level problems.
Thirdly, the quality of software heavily depends on the standard methodologies,
supporting tools, process management, developer expertise, domain knowledge, and the
extent of the integration of the factors. Currently, most of the activities for software
development are quite ad hoc. Standardization is rarely applied, and changes are usually
implemented manually. Software development involves many activities in many phases
with different types of stakeholders who play different roles and produce artifacts in a
collaborated way. Without a proper modeling approach and tool support, the perfor-
mance of these activities will be poor, and the handling of artifacts produced from these
activities will be error-prone and sometimes too overwhelming.
Thus, software systems nowadays face more challenges. One of the toughest challenges
is teamwork development and integration. Therefore, standardization becomes vital and
important for effective software development and maintenance. Many software stan-
dards, such as Unifying Modeling Language (UML), design patterns (DPs), and com-
monly accepted standard mechanisms, such as component-based approaches, have
been proposed and advocated to improve software productivity and reduce the high cost
of software.
Current standard methods and mechanisms usually only cover part of the software
process. For example, UML provides standardized notation for modeling software
analysis and design, yet lacks support to the implementation and maintenance phases.
DPs help developers in the design phase, while component-based technologies focus
on the implementation phase. Because these standards do not talk to each other,
designers need to spend much manual effort to map and integrate these standards.
Without unifying and integrating these standards, reused parts of the software process
will still be very less, so that the development cost will become more.

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 107

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In our previous studies (Chu et al., 2002; Lu, Chu, Chang, Lian, & Yang, 2003), we
proposed an XML-based unified model, called XUM, which can integrate and unify a set
of well-accepted standards of a system into a unified model represented in XML. We have
demonstrated the feasibility, with XUM, to overcome the inconsistency problem of
software artifacts inherent in ripple effects during software development and mainte-
nance. However, it still lacks many important features when applied to a real case of
software development, such as process modeling, role modeling, the mechanism of
integrating with CASE tools, and so forth. In this chapter, we propose an integrated
software development environment called PRocess and Agent-based Integrated Soft-
ware development Environment (PRAISE), which can be tailored to support software
development and evolution much more effectively.
This chapter is organized as follows. First, the problems and related studies of software
development environment are discussed. The next section illustrates the details of
PRAISE. And the last section offers a conclusion and discusses future works.

Software Development

The Software Development Environment and Process

There are numerous factors such as organization scale, applied software process, and
specific projects which may significantly affect the software development process.
Moreover, software methodologies, technologies, supporting tools, and process man-
agements also vary frequently in order to accommodate specific requirements. A
supportive software development environment can help the designer to solve some
problems of software development in a cost-effective way. Software development
environment (SDE) is a comprehensive, highly integrated set of tools supporting the
complete software development process (Engels, Lewerentz, Nagl, Schäfer, & Schürr,
1992). SDE has been designed to effectively support software development (Harrison,
Ossher, & Tarr, 2000). However, most existing SDEs still lack some important features
necessary to be able to support software development more effectively. For example, the
programming support environment only focuses on the assistance of coding and does
not cover other phases of the software engineering process (Habermann & Notkin, 1986;
Workflow Management Coalition (1994). Software engineering environments (Ossher,
& Harrison, 1990; Wassermen, Pricher, Shewmake, & Kersten, 1986) integrate a collection
of tools that facilitate software engineering activities. Process-centered software engi-
neering environments (Finkelstein, Kramer, & Nusibeh, 1994) have provided a powerful
means of integrating processes and tools, and partially automating tasks. However, some
problems still cannot be solved.
The major problem of software development is that elements of a software document are
not integrated, and the information used to combine and integrate the shared/general
semantics must be remedied by human labour. One way to stem this problem is to
represent and integrate software document elements into a common form. Mi and Scacchi
(1996) provided a metamodel for formulating knowledge-based models as a Unified

TEAM LinG

108 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Resource Model (URM), which integrates characteristics of major types of objects
appearing in software development models. URM also includes specialized models for
software systems, documents, agents, tools, and development processes. URM serves
as the basis for integrating and interoperating a number of process-centered CASE
environments. Although URM provided a very good general conceptual model and tool
integration mechanism, it was not concerned with the issues of applying it to support
software development and evolution in an integrated environment.
The task of software development cannot be achieved simply by only modeling tech-
niques, but it needs effective cooperation from all of the tools/models through the
software process. The message and information exchange among these cooperative
models becomes another key problem of the process. MOF and XMI provided a possible
solution to this problem.
The Meta Object Facility (MOF) (Object Management Group, 2002) is the foundational
technology for describing object models, which cover the wide range of object domains:
analysis (UML), software (Java, C++), components (EJB, IDL, CORBA Component
Model), and databases (CWM). In addition, the XML Metadata Interchange (XMI)
specification (Object Management Group, 2003) defines technology mappings from MOF
metamodels to XML DTDs and XML documents. These mappings can be used to define
an interchange format for metadata conforming to a given MOF metamodel. XMI is a
widely used interchange format for sharing objects using XML. Sharing objects in XML
is a comprehensive solution that builds on sharing data with XML. In our approach, we
use MOF and XMI standards as an interface to communicate and cooperate with other
CASE tools.
The XML-Based Unified Model (XUM) (Chu et al., 2002; Lu et al., 2003) is a representation
of artifacts of software systems defined in XUMM (XUM Metamodel). These artifacts
(i.e., software products) are the standardized modeling information collected from
submodels of paradigms used in each phase of the software life cycle; they are integrated
into an XUM document of a system with XUMM, by revealing the interrelationships of
the artifacts. However, XUM only integrates the artifacts of the software process; it does
not deal with processes themselves, along with toolsets and roles. In the next section,
we will extend XUM to cover definitions of processes, participants, artifacts, and applied
tools of the software development.
Maes and Wooldridge (1997) provided important definitions of the agent. An agent was
defined as “a computational system which is long-lived, has goals, sensors, and
effectors, and decides autonomously which actions to take in the current situation to
maximize progress toward its [time-varying] goals,” specifying that the software agent
was a particular type of the agent, inhabiting computers and networks, and assisting
users with computer-based tasks (Maes, 1997). We also have adopted agent paradigm
to implement the coordination of different models in PRAISE.

Related Work

PRAISE has adopted some of features and ideas from the works of PRIME (Lu et al., 2003),
RUP (Pohl et al., 1999), and URM (Maes, 1997). PRIME is a framework for PRocess-

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 109

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Integrated Modeling Environments. PRIME has integrated tool and process models
together. It also adapts agents to help the software developing process. PRIME is an
implemented framework for process-integrated tools and process engines.
RUP is a software engineering process framework used to enhance team productivity and
to deliver software cases via guidelines, templates, and tool guidance for all software
development activities. RUP is an implementation of process-integrated environment
(PIE). In most cases, RUP is general and complete enough; it can be modified, adjusted,
extended, and tailored to accommodate specific characteristics, constraints, and ca-
pabilities of the software development for required business rules. While supporting a
specific case, RUP recombines predefined activities to configure an appropriate software
process, using a process engineering toolkit. The representation of a tailored process
is a set of HTML pages, which can be viewed using Web-based browsers. RUP can serve
as a knowledge base for software developments. Nevertheless, since the processes/
performances and the performances’ guidance are not integrated properly, the engineers
have to interact with the “passive” separated guidance tools frequently; that is, users
need to perform the development tasks and feedback the status of the task performances,
either the states of work products or the performed actions. Hence, the guidance offered
by RUP is still limited.
Unified Resource Model (URM) is a knowledge-based metamodel which integrates
characteristics of major types of objects appearing in software development models.
URM includes specialized models for software systems, documents, agents, tools, and
development processes. URM has implemented a prototype, which serves as the basis
for integrating and interoperating a number of process-centered CASE environments.
PRAISE is an XML-based metamodel for a process and agent-based integrated software
development environment. PRAISE includes both the external representation in UML
and its internal representation in XML, and can be used to support the integration of
software development in a global aspect.
We summarize the major characteristics of these software development environments in
Table 1.
From the discussions and Table 1, it is clear that PRAISE has many beneficial character-
istics and aims to provide more practical features to the environment for effective
software development and evolution.

PRAISE:
An Environment for Evolution-
Oriented Software Development

The primary objectives of PRAISE are to support software development and evolution
effectively. The major features are summarized as follows:

TEAM LinG

110 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1. Major characteristics of four software development environments

1. Design a software process engineering metamodel which can be customized or
tailored to describe a concrete software development process to meet the specific
project’s needs.

2. Implement a workflow engine that realizes the tailored software development
process based on the semantic of the software process engineering metamodel, and
then take over the actual enactment process (i.e., planning and executing a project
using the tailored software process described with metamodel).

3. The software development process is performed by collaborating actual develop-
ment activities, such as “Understand Stakeholder Needs,” “Defined System
Architecture,” and so on. The collaboration process is controlled and facilitated
by the workflow engine according to the definition of tailored software develop-
ment process. Each of the performed roles manipulates separate Computer-Aided
Software Engineering (CASE) tools with particular functionalities, such as require-
ment tools, design and analysis tools, testing tools, and so on, or to be assisted
by other alternative guidance, such as checklists, templates, guidelines, and so on.

4. Make the software production process achieve better process quality and product
quality at decreased costs in order to promote the competition ability of software
industries.

The Architecture of PRAISE

PRAISE is composed of three domains: the methodology modeling domain for the
process build time, the process enactment domain, and the process performance domain
for the process run-time, as shown in Figure 1.

Legend: V: have this feature, O: partially

Process Integration

D
ata Integration

A
gent-based developm

ent

Process M
anagem

ent

Custom
ize Process

V
isual

Tool Integration

D
ocum

ent D
riven

Process D
riven

W
orkflow

 G
uidance

V
ariation Control

G
uidance

R
ole M

odeling

D
ocum

ent Integration
 Ripple Effect A

nalysis

PRAISE V V V V V V V V V V V V V V V
PRIME V V V V V V V V V V V O O
RUP V V V V V V V V V
URM V V V V V V V V V V V

 Legend: V - have this feature; O - partially

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 111

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methodology Modeling Domain (MMD)

Process is the key to good software development practices. For this reason, in the
methodology modeling domain shown in Figure 2, the necessary modeling elements
should be well-defined, which then can provide the software process engineer rich
semantics to describe the variant software development process. PRAISE adopts a well-
accepted process model, the Software Process Engineering Metamodel (SPEM) devel-
oped by OMG (2003) to provide a standard metamodel which emphasizes the software
process engineering. However, some modeling definitions about performed roles, work
products, and tools are still very poor. The detail of the model about MMD will be
described later.

Process Enactment Domain (PED)

The process enactment domain (see Figure 3) is responsible for the process enactment
which is implemented by managing the control logic of coordination between separate
tools. Similar to the definition in WFMC’s Workflow Reference Model (Workflow
Management Coalition, 1994), the process enactment service is responsible for instan-
tiating process instances utilizing the workflow engine, which is in charge of interpreting
the process definition, to enact process instances according to the interpretation in order
to coordinate distinct responsible performers’ contributions to achieve project’s goal.
Two logical separated control mechanisms constitute the process enactment service: the
workflow engine and the agent-based interactive mechanism.

The Workflow Engine

The workflow engine is the core component in this domain is engine, which maintains
the running process instances according to the interpretations of the process definition.
It handles internal control data and relevant work products for determining flow-control
logic and interacts with CASE tools in the PPD, as shown in Figure 4, via Enactment
Service Interface. Enactment Service Interface is an invoked application interface which
enables the workflow engine to indirectly activate a specific tool for responsible
performer to execute a particular activity, and vice versa.

The Agent-Based Interaction Mechanism

The socket is a common technology for implementing a particular protocol, but in
PRAISE, we implement it by the intelligent agent mechanism (see Figure 5) because of
its two characteristics: intelligence and mobility. Two sorts of agents utilize the respec-
tive characteristics.
PEn Agent is implemented as an intelligent agent. As the descriptions of the PED, the
enacted process is determined according to the various conditions of state transitions.

TEAM LinG

112 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Process Engineer Software Developers
Methodology Model ing

Domain

PRAISE
Metamodel

M et hodology
Knowledge Base

Organ izat ion

Cl ient /CASE
Tool GUI

M odeling
Tools GUI

Pr ocess Per formance

Per for mer Product

Pr ocess M odel ing ToolConform
with

PRAI SE Model

Proc
ess

 M
od

el
Pr oduct Model

Per f
orm

ance
Mod

elPer former Model

Reference

Reference

PRAI SE Assistant Tool

M
easu

rem
ent T

ool

T
esting T

ool

A
nalysis &

 D
esignT

ool

R
equirem

ent T
ool

SCM Tool Guidance
DB

Process Execution Agent

Invoke Feedback

Process Enactment Agent

Process Relevan t
 Dat a

Work flow
Con t rol Dat a

M anipulate
Process
Engine

Use

Recognized by Agent Communicat ion

Legend
Access

GUI
Flow

SAPI

Interface

Repository

Tool

Template

Guidel ine

CheckL ist

ToolM entor

Guidance

Process Performance
 Domain

Process Enactment Domain

Figure 2. Methodology modeling domain

Figure 1. PRAISE architecture

Process Engineer
Methodology Modeling

Domain

PRAISE
Metamodel

M et hodology
Knowledge Base

Organizat ion

M odel ing
Tools GUI

Process Per formance

Per former Product

Process M odel ing ToolConform
with

PRAI SE Model

Proc
ess

 M
od

el
Pr oduct Model

Per f
orm

ance
Mod

elPer former Model

Refer ence

Reference

Recognized
 by

Agent Communicat ion

Process Performance
 Domain

Process Enactment
 Domain

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 113

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Based on numerous factors, such as the product states or feedback data, those
conditions can be formulated as several rule clauses and fact with formal format that may
be Simple HTML/XML Ontology Extension (SHOE), XML-based Ontology exchange
Language (XOL), Resource Description Framework (RDF), and so on. Such ontology
groups the control-logic knowledge base that is imposed to the PEn Agent. During the
process, the agent may infer which activities should be executed next from the imposed
knowledge base and feedback data, and then pass corresponding directives to the PEx
Agents to execute next activities. The PEn Agent iteratively directs PEx Agents until the
finish conditions of the software process are all satisfied. Briefly, the collaborations of
PEn/PEx Agent pairs are namely the familiar master/slaves paradigm. As a result, PEn
agents could be the delegations of flow engine and the traditional workflow management
will be displaced from centralized to distributed, and computational loads of the workflow
engine could be reduced substantially but increase the flexibility and scalability for
implementation purposes.

Figure 3. Process enactment domain
Methodology Model ing

Domain

Process Enactment Agent

Pr ocess Relevant
 Dat a

Work flow
Cont rol Dat a

M anipulate
Process
Engine

Use

Recognized by Agent Communicat ion

SAPI

Process Performance
 Domain

Process Enactment
 Domain

Figure 4. Coordination between distinct process performer, supporting tools, and
activities

TEAM LinG

114 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PEx Agent is implemented as a mobile agent. A software development is achieved by
several activities’ executions in particular order. The traditional transitions mechanism
was implemented primarily using the relational database, but all the necessary data
placed into the database will cause frequent access communications while numerous
activities are running concurrently. The motilities of agents may well be an alternative
technology to implement the transitions mechanism; for instance, a mobile agent may
carry the output products away from the finished activity execution, and bring them as
an input parameter to the next execution in other host, to simplify the implementation of
the process enactment system. It may make the transitive behaviors closer to the
essential of the workflow paradigm in nature.
The agent-based interaction mechanism provides message exchange facilities which are
required for the interaction between the PED and PPD; for instance, a tool request from
the PED has to be directed to the PPD in order to invoke the tool responsible for
performing the requested activity according to the process definition. On the other hand,
the invoked tool also needs to feed back the relevant product created in the activity to
the PED and then keep on furthering the process.

Process Enactment Agent Platform (PEn-AP)

For internal, the PEn-AP deployed in the PED consumes enactment directed from the
workflow engine and communicates with the process performance agent platform
deployed in the PPD for external. Applying to the FIPA’s Agent Management Reference
Model (Foundation for Intelligent Physical Agents, 2000), the process enactment agent
platform provides the physical infrastructure in which process enactment agents (PEn-
Agent) can be deployed. The PE-AP is formed by the agent management container,
numerous PEn-Agents, directory facilitator, agent enactment system, and message
transport interface.

Figure 5. Agent-based interaction mechanism

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 115

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The agent management container provides a run-time execution environment for agent
instances and controls their life cycles, conceptually, the agent’s life cycle related with
the life cycle of the process instance.
The directory facilitator provides agents the directory services to facilitate the agent-
query mechanism.
The agent enactment system receives the enactment form the workflow engine and is
responsible for instantiating the corresponding PEn-Agent with given rule clauses
which are produced by interpreting the process definition. After the instantiation, the
agent will be registered on the directory facilitator and the container will take over its life
cycle.
The message transport interface (MTI) provides a message-oriented communication
mechanism between the process enactment and execution agent platforms. PEn Agents
encapsulate the directive to a message and pass to PEx Agents through MTI and vice
versa. In addition, the requests of DF services also are passed by MTI.

Process Execution Agent Platform (PEx-AP)

PEx-AP provides an infrastructure and run-time environment in which PEx agnets are
deployed and responsible for activities transitions. Most structural building blocks of
PEx-AP are similar with PEn-AP except for the WorkProduct Register. During the process
execution, there are several products that cannot only be used in an activity but server
as global parameters shared by many activities in order to complete necessary works.
This kind of product can be registered into the work product register and share the
product instance with other PEx agents.

Process Performance Domain (PPD)

The process performance domain shown in Figure 6 provides a run-time environment,
within which allows assigned tools to be invoked by PEx agents that delegate the
enactment service in PED through the tools invocation interface according to the process
definition to support the particular activities’ executions. By interacting with the generic
PRAISE client tool, the development team makes hand-on use of distinct CASE tools
along with a general assistant tool, which is responsible for presenting development
guidance to support activities’ execution in different ways (e.g., templates, guidelines,
tool mentor, or checklist) to improve the process and product qualities while some sort
of manual and creative activities are carrying out, such as “Analyze the Problem” or
“Understand Stakeholder Needs,” Activities may not be easily fully supported with the
requirement tools. The PEx agents may just directly access external resources without
invoking CASE tools deployed in the PPD once the executing activity is set as automatic.
An external resource may be a stand-alone distributed service, Web services, or a
database.

TEAM LinG

116 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The PRAISE Model

In PRAISE, the software developer or maintainer may perform the tasks to produce
artifacts in software phases — analysis, design, coding, testing, and maintenance — with
software standards like UML. PRAISE offers users guidance by revealing the sharing and
integrating information of these artifacts. PRAISE also provides service to manage
individual role’s tasks and interactions of the participants of the project, so as to foster
team cooperation. All the information manipulated with PRAISE is modeled and repre-
sented in an XML-based document, called a PRAISE model.
Extending the idea of the Software Process Engineering Metamodel (SPEM) (Object
Management Group, 2003), we have designed 1 + 4 submodels to support the PRAISE
model (see Figure 7). The 1 + 4 model is one foundation model plus four submodels:
process model, performer model, performance model, and product model.

• Foundation Model: The foundation model provides the primitive semantic for the
other four submodels. The elements of the foundation model are described as
follows.

ModelElement is the primitive component of all models in PRAISE. Classifier is an
element that describes behavioral and structural features. It comes in several specific
forms, including class, data type, interface, component, artifact, and so forth. Operation
defines the dynamic behaviors of a class. Parameter is a variable that can be changed,
passed, or returned by the operation, classifier, or model elements. Generalization is the
relationship between a more general element and a more specific element. The more
specific element is fully consistent with the more general element and contains additional

Figure 6. Process performance domain

Software Developer s

Methodology Modeling
Domain

Client /CASE
Tool GU I

PRAI SE Assistant Tool

M
easurem

ent T
ool

T
esting T

ool

A
nalysis &

 D
esignT

ool

R
equirem

ent T
ool

SCM Tool Guidance
DB

Process Execut ion Agent

Invoke Feedback

Recognized by

Agent
Communicat ion

Template

Guideline

CheckL ist

ToolM entor

Process Per formance
 Domain

Process Enactment
 Domain

Access

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 117

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

information. Association is the relationship between two or more classifiers that specifies
connections among their instances. Dependency is the relationship between process
model elements in which a change to one modeling element will affect the other modeling
element. Composition is a relationship, which represented an element, is a composite of
other elements. Guidance elements can be utilized to provide the performer some useful
knowledge for the associated model elements. Guidance is a Model Element associated
with the major process definition elements, which contains additional descriptions such
as techniques, guidelines and procedures, standards, templates of work products,
examples of work products, definitions, and so on. The structure of the foundation model
is shown in Figure 8.

• Process Model

Process Model defines the phases of a software process that is adopted in a specific
software development. It offers users options for generic and tailored design
processes, which suit the needs of software diversity. Figure 9 illustrates the
structure of the process model.

The process model defines the structural model elements that are utilized to construct
a software development process by the process engineer. WorkDefinition is a model
element of a process. A work definition describes what a process role performs. Activities
are the main element of work. There are two elements that are specialized from the Activity
element: AtomicActivity and SubflowActivity. AtomicActivity is composed of several
Step elements in sequence. Each step stands for the preceding activity’s states.
SubflowActivity element presents a subprocess, which includes certain non-atomic
activities.

SpecificCASETool
Functionality

StandaloneService

Docum entationTool UpperTool LowerTool

Tem plate ToolM entor Guideline

GuildanceGeneralAssistantTool

Performance model

W orkProduct

ProductState W orkProductKind

Docum ent UM LM odel SourceCode CheckList

Product model

RoleSet Session

SoftwareAgent ProcessRole User

Perm issionProcessPerform er

Perform ance

Performer
model

SubflowActivityAtom icActivity

ActivityStep

ActionState
W orkDefinition

Process
model

Param eter

Classifier

Operation

GuidanceKind

M OF

Figure 7. The structure of the PRAISE model

TEAM LinG

118 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8. The structure of the foundation model

• Performer Model: Performer Model defines the attributes of roles and their
relations with other model paradigms. The roles in the software development
process include designer, users, and software agents, which involve or enact the
software development. Figure 10 shows the structure of the performer model.

The performer model defines those elements that stand for the performers in the software
development process. ProcessPerformer is responsible for work products and perform-
ing assigned activities. ProcessPerformer may be defined as a ProcessRole or a
SoftwareAgent. ProcessRole is a real developer in the development process.
The access control mechanism is also an important subject to the performer model. Each
User is assigned one or more process roles, and each process role is assigned one or more
permissions. A process user establishes a Session in the run time, during which the user
acts as some roles that they are a member of, thereby acquiring the roles’ permissions.
RoleSet organizes those roles with closely related capabilities involved in the software
process.

• Product Model: Product Model defines and specifies the contents of all software
products in the software development process. It is used to define product
information of analysis, design, source coding, design guidance, etc. Figure 11 is
the structure of the product model.

The product model defines the elements which may be produced, consumed, or modified
by performers described in the performer model. WorkProduct can be treated as the
parameters of a work definition. ProductState defines the possible states in a work
product’s life cycle. WorkProductKind describes a particular category of work products.
From the parameter’s perspective, it means the data type of work products. There are four
possible types defined in the PRAISE model; they are Document, UMLModel,
SourceCode, and CheckList.

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9. The structure of the process model

Figure 10. The structure of performer model

Figure 11. The structure of the product model

TEAM LinG

120 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Document simply represents any type of text documents (e.g., Glossary, Risk List,
Software Development Plan, hardware specification, etc.).

2. UMLModel represents those UML models that may be involved in the process,
including the use case model, analysis model, design model, and implementation
model.

3. SourceCode represents all the source code written by responsible programmers in
particular programming languages, such as C++, Java, and so forth.

4. CheckList, which was described as a guidance type in the foundation model, also
represents a special kind of parameter in the product model.

• Performance Model: Performance Model defines the information that is needed
by the toolset of PRAISE to assist users to develop or maintain software. Figure
12 is the structure of the performance model.

The performance model is defined as the actual performances of work definitions which
are defined in the process model. The actual performances include a general assistant tool
and specific CASE tools.
The main class Performance in this model is actually an association class that is used
to provide more semantic meanings on the connection between a work definition and its
responsible role. Performance includes three elements: SpecificCASEtool, AssistantTool,
and MOF.
SpecificCASEtool describes specific capabilities of a CASE tool. Those tools are categorized
into three kinds according to a different purpose in each development phase, and they
support the corresponding work product kinds. Functionality is modeled on the capabilities
of tool. StandaloneService describes software services, like RMI, CORBA, and so on that
may be deployed on standalone hosts. GeneralAssistantTool describes the tools, that
support the manipulations of CASE tools for performers with some useful guidance.
Guidance displays the information that assists developers to perform those tools. There
are four guidance kinds: ToolMentor, Guideline, Template, and CheckList. ToolMentor
shows how to manipulate corresponding tools. Guideline describes the practical
information, techniques, and advice about how to perform tasks or work products.
Template is ready-to-use or semi-finished documents with “standard” formats. The
template can be quickly applied to document-based work products for standardized
intention. CheckList is a special element that refers to guidance, and work products. A
checklist may be a kind of guide for performers. A checklist also can be authorized and
modified by the process engineers using the modeling tool.
The MOF elements describe the information in XMI format which will be exchanged with
other tools, including CASE tools.

• The Collaboration of Four Models: The relationships of the 1+4 models are shown
in Figure 13. The foundation model provides the backbone semantics and basic
elements for the other four submodels. The process model defines the structural

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model elements that are utilized to construct the software development process by
the process engineer. The product model defines the data model elements that are
work products which may be produced, consumed, or modified in the software
development process. The performance model tries to identify the actual perfor-
mances of work definitions in the tool-based approach.

An integrated PRAISE model is formed by interrelating the 1+4 submodels. Primary inter-
relations are summarized as follows:

1. ProcessPerformer element connects WorkProduct element with “is responsible
for” association relationship.

2. WorkDefinition element relates WorkProduct element with the aggregation rela-
tionship.

3. ProcessPerformer element connects WorkDefinition element with “perform” asso-
ciation relationship that is further represented by Performance association class.

Figure 12. The structure of the performance model

Figure 13. The interaction relationship between the four models

�������

������	

���
�����

���
������

����
����������	

������	������
�	��	

���
����

�����	� ��
���
	�

�����	� ��
��
��
��
�
��
��
�

��

TEAM LinG

122 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. All model elements and relationships in PRAISE model are extended from general
elements in the foundation model.

The PRAISE model is used to support the software evolution process, which is performed
by several roles. Each role is responsible for certain work products, which are produced
by the development activities.
These work products are utilized as the output of finished activities; and they will be the
input of continuing activities. Further, the activities they perform will be supported by
specific CASE tools or alternatives, fully or partially.
PRAISE provides a generalized model that can be easily tailored to specific environments
for different projects. We define the PRAISE MetaModel, PRAISEMM, which is specified
with XML schema, defines the structure of a PRAISE model. The relationship of the
PRAISEMM with a PRAISE model is similar to that of the DTD with an XML document.

The Metamodel of PRAISE

In PRAISEMM, we define three primitive elements: Component, Relation, and
Integration_link. Component describes the ingredient information of models. Relation
represents the relationships/associations among components in models. Integration_link
is used to link/connect a set of components or relations that have the same semantics
but may be named or represented differently in different paradigms. Integration_links,
which are implemented with xlink (Thompson, 2003) and IDREF(s) of XML technology,
are one of the key features for the modeling information integration. Through these
underlying interconnections, the paradigms, which adopt various standards that might

Figure 14. The structure of PRAISEMM

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 123

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

share some semantics but which were not explicitly represented, can be integrated and
unified in a PRAISE model.
Figure 14 shows the structure of the PRAISEMM, and Figure 15 shows partial semantic
of process model and representation in a well-accepted language, XML.

The Toolset of PRAISE

PRAISE consists of three domains: methodology modeling domain, process enactment
domain, and process performance domain. In PRAISE, three corresponding executable
components respectively support the three domains:

1. PRAISE Definition Tool is a Java-written stand-alone application that supports the
methodology modeling domain.

2. PRAISE Enactment Service is a Java-written demand service that supports the
process enactment domain.

3. PRAISE Client Tool is a Java-written stand-alone application that supports the
process performance domain.

Before detailing the functionality of a provided tool, Table 2 shows the convention of
icons that are used in PRAISE. Note that we have used notations similar to RUP, so the
learning curve from the user of RUP will be much lower.

Table 2. The icon notation of PRAISE

TEAM LinG

124 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <xs:element name="ProcessModel">
 …
 <xs:element name="Processes">
 …
 <xs:element ref="Process" minOccurs="0" maxOccurs="unbounded"/>

…
 </xs:element>

 <xs:element name="Process">
 …
 <xs:element name="Activities">
 …
 <xs:element ref="Activity" minOccurs="0" maxOccurs="unbounded"/>
 …
 <xs:element name="Synchronizations">
 … …
 </xs:element>
 </xs:all>
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
…
 <xs:element name="Activity">
 …
 <xs:element name="StartActivity">
 …
 <xs:element name="Precondition" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:anySimpleType"/>
 <xs:attribute name="enactmentState" type="xs:anySimpleType"/>
 …
 <xs:element name="SubflowActivity" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:anySimpleType"/>
 <xs:attribute name="process" type="xs:IDREF"/>
 <xs:attribute name="enactmentState" type="xs:anySimpleType"/>
 …
 <xs:element name="AtomicActivities" minOccurs="0">
 …
 <xs:element name="InputParameters">
 …
 <xs:element name="OutputParameters">
 …
 <xs:element name="Performers">
 …
 <xs:element name="Performances">
 …
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 … …
 …
 </xs:element>
 <xs:element name="EndActivity">
 …
 <xs:element name="Postcondition" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 … …
 </xs:sequence>
 <xs:attribute name="uuid" type="xs:ID" use="required"/>
 <xs:attribute name="name" type="xs:anySimpleType"/>
 … …
 </xs:complexType>
 </xs:element>

Figure 15. Partial XML schema of the process model

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 125

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 16. PRAISE definition tool

Figure 17. UML representation

Figure 18. XML representation

User Figure

User Assignment Connection

Role Figure

Performer Diagram

Model Elements

Performer Model

TEAM LinG

126 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 19. Create multiple views for the performer model

Figure 21. Rename views

Figure 20. Modify the properties of mode elements

Selected Figure

Modifiable Properties

Apply Changes Button

All Properties

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 127

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 22. Delete model or view

Figure 23. The CASE tools view

Figure 24. The guidance view

Lower Tool

Upper Tool

Documentation Tool

GuideLine Figure

 Template Figure

CheckList Figure

Tool Mentor

TEAM LinG

128 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 25. The development process of the library system

Figure 26. The performer view in PRAISE

PRAISE Definition Tool

The PRAISE definition tool is used to assist software developer to define the performer
model, performance model, product model, and process model. As shown in Figure 16,
it provides a GUI-based window for a navigation tree for these four models, the UML tool,
element information table, and modification information table.
The PRAISE definition tool contains the performer modeling tool, performance modeling
tool, product modeling tool, and process modeling tool.

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 129

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performer Modeling Tool

The performer modeling tool provides the facility to define each user’s role and their
relation with assigned tasks and other users using UML and is automatically represented
as part of the PRAISE model in XML internally. Each defined performer model can be a
template for later reuse, which is shown in Performer View. Figures 17 and 18 show the
UML and XML representation, correspondingly. To support the software evolution
activities, each modified performer modeling information will be tracked and shown in
Modifiable item window. Since each performer may serve as different roles, the performer
modeling tool can create, modify, rename, and delete views each performer model (see
Figures 19, 20, 21, and 22).

Performance Modeling Tool

The Performance modeling tool offers an operating window for the integrated CASE
tools, such as documentation tool, Rational Rose, and JBuilder (see Figure 23). It also
provides the adopted guidance, such as tool mentor and checklist (see Figure 24).

An Example of Applying PRAISE to Software Evolution

To demonstrate the advantages of PRAISE, we have used PRAISE to assist the software
development and evolution of a library system. The first step is to define the development
process of this project. Its process is shown in Figure 25.
In PRAISE, the project manager defines the development process using thePRAISE
Definition Tool. Figure 26 shows the definition of each performer (role) and the relations
with other performers in this project. Figure 27 shows the modeling of the partial
development process, “Requirement Analysis process”. The process consists of defin-
ing the tasks of “Capture Common Vocabulary,”, “Find Actor,” and “Specify Use Case,”
and “Develop Vision.” PRAISE provides the “Document ToolMentor,” “Documentation

Figure 27. The corresponding representation of “Process: Analysis the Requirement”
in PRAISE

TEAM LinG

130 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 28. The corresponding XML representation of PRAISE model

Tool,” ”UML Tool,” “UML Modeling GuideLine,” and “Vision Template” tools to
support these tasks. Software products such as “Glossary,” “Use Case Model,” and
“Vision” will be generated by these tools after finishing these activities. The activities
of process include roles, toolsets, process, and work products (Figure 27). The informa-
tion of modeling and produced products are represented in the PRAISE model in XML
format (see Figure 28).
To simplify the explanation of our example, we choose a subprocess, “Find Actors and
Use Cases,” to show the details of the model. Table 3 lists the related steps, participators,
toolsets, and products of this subprocess.
The information listed in Table 3 can be modeled in the PRAISE model. Figures 29, 30,
and 31 show the partial semantic of the process model, the performer model, and the
performance model, respectively. In order to identity the elements, each element in the
PRAISE model has a UUID whose attribute type is xs:ID as a unique identity. If an element
needs to refer to others, we can use ID to refer to other elements.
For example, Figure 29 shows the modeling information of “Find Actor and Use Cases.”
Some semantics are described as follows:

1. The <Performer_ref performer=“PR002”> means that one Performer in this
AtomicActivity refers to a ProcessRole element with the same UUID as PR002 in the
Performer Model, that is, <ProcessRole uuid=“PR002” name=“SystemAnalyst”/>.

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 131

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 3. The activities of subprocess: “Find Actors and Use Cases”

Process Find Actors and Use Cases

Pre-condition Collect complete user requirements

Post-condition Produce the use case diagram

Find Actors

Find Use Cases

Describe How Actors and Use Cases Interact

Package Use Cases and Actors

Develop a Survey of Use Case Model

Steps

Evaluate Results

Participators SystemAnalyst

CASE Tool PRAISE UML Modeling Tool
Tools

Guidance Use-Case Analysis Workshop

Inputs User Requirements
Products

Outputs Use Case Models

2. The <Performance_ref uuid=“FY0002”> and <Performance_ref uuid=“GL002”> in
the same AtomicActivity will respectively refer to <Functionality uuid=“FY0002”
name=“Modeling Use Cases Model”/> or <CASETool uuid=“CT002”
name=“PRAISE UML Modeling Tool”> <Guideline uuid=“GL002” name=“Use-
Case Analysis Workshop”/> in the Performance Model.

3. The <Integration_link …> is used to link the components that share some semantic
information in other models of the PRAISE model.

This means that the “Find Actor and Use Case” atomic activity will be performed by the
“System Analyst” role and be supported with a guideline “Use-Case Analysis Work-
shop” and “Modeling Use Cases Model” functionality in “PRAISE UML Modeling
Tool.” The tool will use “Glossary” as the input product and finally will produce a “Use
Case Model” with “Init” state. Similarly, each element can be referred to by other elements
in the same way.
With the support of PRAISE, each participator will know what, when, and how to perform
the assigned tasks. On the other hand, manager can control the progress of this project
according to the PRAISE model, too. For example, in Figures 29, 30, and 31, System
Analyst (uuid = “PR002”) must do the Atomic Activity (uuid=“AA0002”) “Find Actors
and Use Cases” according to input parameter uuid=“IP0001,” performance: “Modeling
Use Cases Model” (uuid=“FY0002”), and “Use Case Analysis Workshop” (uuid=

TEAM LinG

132 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<ProcessModel>
 … …

<AtomicActivity uuid="AA0002" name="Find Actors and Use Cases">
 <Integration_link xlink:lable = "AA0002" xlink:title="Find Actors and Use Cases"/>
 <Steps>
 <Step uuid="SP0003" name="Find Actors"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0002"/>
 <Step uuid="SP0004" name="Find Use Cases"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0004"/>
 <Step uuid="SP0005" name="Describe How Actors and Use Cases Interact"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0005"/>
 <Step uuid="SP0006" name="Package Use Cases and Actors"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0006"/>
 <Step uuid="SP0007" name="Develop a Survey of Use-Case Model"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0007"/>
 <Step uuid="SP0008" name="Evaluate Your Results"/>
 <Integration_link xlink:from = "AA0002" xlink:to="SP0008"/>
 </Steps>
 … …
<InputParameters>
 <Parameter inputProduct="IP0001" />
</InputParameters>
 <OutputParameters>
 <Parameter outputProduct="OP0001" />
 </OutputParameters>
… …
 <Performers>
 <Performer_ref performer="PR002"/>
 <Integration_link xlink:from = "AA0002" xlink:to="PR002"/>
 </Performers>
 <Performances>
 <Performance_ref performance="FY0002"/>
 <Integration_link xlink:from = "AA0002" xlink:to="FY0002"/>
 <Performance_ref performance="GL002"/>
 <Integration_link xlink:from = "AA0002" xlink:to="GL002"/>
 <Performance_ref performance="TM002"/>
 <Integration_link xlink:from = "AA0002" xlink:to="TM002"/>
 </Performances>
</AtomicActivity>

… …
</ProcessModel>

Figure 29. Partial semantic of the PRAISE process model

Figure 30. Partial semantic of the PRAISE performer model

<PerformerModel>
 <Performers>
 <Performer>
 <ProcessRoles>
 … …
 <ProcessRole uuid="PR002" name="SystemAnalyst"/>
 <Integration_link xlink:lable = "PR002" xlink:title="SystemAnalyst"/>
 <Integration_link xlink:from = "PR002" xlink:to="AA0002"/>
 … …
</PerformerModel>

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 133

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“GL002”), and so forth. When this activity is accomplished, SystemAnalyst must
generate product uuid=“OP0001” as output.
After the project manager finishes the development process definition, the developer can
log in PRAISE according to the PRAISE client application, Figure 32 is the user login
picture of PRAISE Client Application. And then, PRAISE will show the task following
PRAISE model in task table. Figure 33 shows a developer, “chchang,” log in. There are
two tasks have been assigned to him, which are shown in the task table. After he finishes
this task, PRAISE will pass the next task to the corresponding assigned developer.
PRAISE also provides UML editor to modeling object-oriented analysis and design,
where each icon and specified model information are supported by XUM. Figure 34 shows
the work product of the process: “Find Actors and Use Cases.” Figure 35 shows the
corresponding XUM representation (Chu et al., 2002; Lu et al., 2003). Figure 36 shows
the modeling of the class diagram.
Therefore, software development in PRAISE will get a strong support since it offers rich
information and links related information together. First, we will show the tractability of
the PRAISE model.
Assume that we want to modify the use case diagram in Figure 34. The PRAISE model
lets us know the product semantics and related tools. Figure 37 shows the related
semantics in different submodels that have been integrated and modeled in the PRAISE
model. After the modification and analysis, the affected elements will be shown in the
ripple effect manager (see Figure 38).
Usually, changes to software systems may involve software products produced by
different tools in a different phase. Figure 39 shows an example that covers the execution

<PerformanceModel>
 <CASETools>
 … …
 <CASETool uuid="CT002" name="PRAISE UML Modeling Tool">
 <Functionality uuid="FY0002" name="Modeling Use Cases Model"/>
 <Integration_link xlink:lable = "FY0002" xlink:title="Modeling Use Cases
Model"/>
 <Integration_link xlink:from = "FY0002" xlink:to="AA0002"/>
 <Functionality uuid="FY0003" name="Modeling Design Model"/>
 <Integration_link xlink:lable = "FY0003" xlink:title="Modeling Desing
Model"/>
 ……
 </CASETool>
 </CASETools>
 <Guidances>
 … …
 <Guideline uuid="GL002" name="Use-Case Analysis Workshop"/>
 <Integration_link xlink:lable = "GL002" xlink:title="Use-Case Analysis
Workshop"/>
 <Integration_link xlink:from = "GL002" xlink:to="AA0002"/>
 … …
</PerformanceModel>

Figure 31. Partial semantic of the PRAISE performance model

TEAM LinG

134 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 32. PRAISE user login window

Figure 33. The task table

Figure 34. A partial use case diagram of a library system

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 135

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 35. XUM Specification of the use case diagram

<ProductModel>
 … …

<Requirement>
 <UseCase_Daigram>
 <Integration_link xlink:lable = "OP0001" xlink:title="Use Case Diagram of library
system"/>
 <Actor name="Book Borrower"/>
 <Actor name="Manager"/>
 <Usecase name="Loan Book">
 < Integration_link xlink:label="RA001" xlink:title="Use Case of Loan_Book" />
 … …
 </Usecase>
 <Usecase name="Return Book"> … …
 <Usecase name="Maintain Book"> … …
 <Usecase name="Query Book"> … …
 <Relationship from="Book Borrower" to="Loan Book" type="association"/>
 <Relationship from="Book Borrower" to="Return Book" type="association"/>
 <Relationship from="Manager" to="Loan Book" type="association"/> … …
 </UseCase_Daigram>
</Requirement>

 … …
</ProductModel>

Figure 36. Corresponding class diagram
of “Use Case: Return Book”

Figure 37. The relationship between “Use
Case: Return Book” and corresponding
class diagram

TEAM LinG

136 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 38. The ripple effect manager of PRAISE

�������������	
��������������������	
�������

?

�������

�������	�	��

�������	�	��

�������	�	��

�����

�����

�����

�����

�����

�����

�����

����������

����������

����������

���	����������

���	����������

���	����������

���	����������

���	����������

���	����������

���
�����

��������	��

��������	��

��������	��

� !����	��

� !����	��

� !����	��

� !����	��

� !����	��

� !����	��

���
������

���"���#��

���"���#��������

���"���#� ��

���������	������$

���������	������$

�������������#$$$

�������������#$$$

�������������#$$$

�������������#$$$

������	 �%

�����

��	���

�������������	
��������������������	
�������

?

�������

�������	�	��

�������	�	��

�������	�	��

�����

�����

�����

�����

�����

�����

�����

����������

����������

����������

���	����������

���	����������

���	����������

���	����������

���	����������

���	����������

���
�����

��������	��

��������	��

��������	��

� !����	��

� !����	��

� !����	��

� !����	��

� !����	��

� !����	��

���
������

���"���#��

���"���#��������

���"���#� ��

���������	������$

���������	������$

�������������#$$$

�������������#$$$

�������������#$$$

�������������#$$$

������	 �%

�����

��	���

�����������	
����	��������������	
����	���

DesignProcess

Performer System Designer

Performance UML Editor

Product Class Diagram: Business

Description

�������&���	����������'�&())*+)(+,*�,)#-,�. '
//

.����������#������0���
����	��

11

�%

�����

��������

2�3	

4��

User chchang

 ����4�����

4�0���4�����

�������5

��	

�����������	
������������	
�

���
������������ ���
������ ������	
�%

�����

Add Component: Class Diagram: BusinessEvent:

�0��

!�����

�����

������

����

�0��

!�����

�����

������

�����������

���	���������

����������

����������

���	��.���6��

���� 7��	�

Figure 39. The execution steps of the ripple effect manager

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 137

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the ripple effect manager. With the support of PRAISE, the activities are organized and
supported much more effectively.
To show the efficiency of the support from PRAISE, we have collected some statistics.
We have used PRAISE to support the development of the library system which is a
window-based system implemented by using Java language with 31 classes and a size
of 4,100 lines of code. All information of process, performer, performance, and product
are listed in Table 4.

Ripple Effect

When there is a need to modify a component in the product model, we must realize how
many components that may be affected by this modification. Table 5 shows the scale of
efforts required for this impact analysis with and without the PRAISE support.

We can see that the impact degree of PRAISE is smaller than that of the
traditional approach. For larger projects, the difference between PRAISE and the
traditional way becomes even larger.

Table 4. Some statistics of the library system

Process Performer Performance Product
Analysis /3
activities

System
Analyzer / 1

UML/Use Case editor 2 use case diagram /
2 roles
11 use cases
Logical View:
Business / 5 classes
Database / 1 class
UI / 20 classes
Utility / 1 classes

8 Class diagrams
10 Sequence diagrams
7 Collaboration diagrams
4 Statechart diagram

Design/ 12
activities

System
Designer/ 2

UML/ Class diagram,
Collaboration diagram,
Sequence Diagram,
Component diagram,
Statechart diagram
editor

Component View:
Business / 5
Database / 1
UI / 19
Utility / 1
Main / 1

5 Component diagrams

Implementation/
27 activities

Programmer/ 2 Java Editor/ JDK 27 files / 4100 (loc)

Testing / 11
activities

Tester/ 2 11 reports

Total 4 process/
53 activities

Total 4 role/ 7
men

Total 8 Total modules: 141

TEAM LinG

138 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

In this chapter, we have introduced PRAISE, an XML-based metamodel for a process and
agent-based integrated software development environment. PRAISE integrates and
unifies a set of models with well-accepted software paradigms of a software development
process into a unified model represented in XML.
PRAISE facilitates software evolution by exploiting the unification of models of the
software development process, including roles, processes, toolsets, and work products.
Its unification links, which connect components of models in the software development
process, enable systematic software reuse for analysis and design at the earliest stages
in the software life cycle.
PRAISE integrates software documents scattered over the process of development,
while integrating phases of the software process itself. PRAISE helps users in the task
of development all across the software process. PRAISE simplifies maintenance in all its
aspects by upholding the connections of roles, processes, toolsets, and work products,
while at the same time preserving the reset conditions of those in the views of the original
paradigms and models. Users can update submodels of a system from any modeling
techniques or paradigms as needed. Any implicit inconsistencies will present themselves
in the other related models, allowing maintainers to deal with them in a clear, systematic
manner.
The PRAISE approach improves software development and integrates the process, roles,
toolset, and product into a unified model. PRAISE facilitates development by exploiting
the unification and the common points of models. Its unification links, which connect
components among four models, enable cross-phase tractability during software devel-
opment. Users can update related elements of a software development process from any
modeling or process as needed. According to this discussion and validation, we believe
that the PRAISE approach proposed in this chapter can be extended and benefit more
activities in various processes for software development.
Before we close, we would like to point to some future work on PRAISE. First involves
extending PRAISE to support collaborative software development. The scale of software
projects is so enormous that cooperation is necessary. Access control is the next target
of PRAISE.
A second future study is needed to enhance PRAISE. Presently, it is just a prototype.
A software environment that supports the PRAISE approach and provides more auto-
mation, guidance, distributed processing with collaborative work, and assistance to the
activities of software evolution and maintenance is another important future task.

Table 5. Impact degree of search related components

 Process Performer Performance Product
(4 + 1) / (4 + 12) (4 + 1) / (4 + 7) 5 / 8 (27 + 7) / (141 * 2) PRAISE 31.25 % 45.45 % 62.5 % 12 %
(4 + 12) / (4 + 12) (4 + 2) / (4 + 7) 8 / 8 141 * 2 Tradition

way 100 % 54.54 % 100 % 100 %

TEAM LinG

PRAISE: A Software Development Environment to Support Software Evolution 139

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A third area for further study involves the PRAISE model-based analysis. Currently, most
software products retain no structural representation. As a result, high-level information,
such as roles, processes, and toolsets, has no explicit links to the corresponding.
Representing the software development process information in a PRAISE model that is
linked to the related elements/documents can facilitate the analysis. Because XML
documents are represented in DOM and the compilers of XML are already available,
efforts to implement analysis toolsets are much easier.
A fourth topic to study is an integrated software estimation model, like CMMI (Software
Engineering Institute, 2004). Most of the estimative factors like product, process, and
roles have been integrated into PRAISE. If CMMI can be integrated into PRAISE, the
support of software development and evolution will be more complete.

References

Chu, C.W., Chang, C.H., Lu, C.W., Jiau, H.C., Yang H., Bing, Q., & Chung Y.C. (2002).
Enhancing software maintainability by unifying and integrating standards. In
Advances in software maintenance management: technologies and solutions (pp.
114-150). Hershey, PA: Idea Group Publishing.

Engels, G., Lewerentz, C., Nagl, M., Schäfer W., & Schürr, A. (1992). Building integrated
software development environments. Part I: Tool specification. ACM Transactions
on Software Engineering and Methodology, 1(2), 135-167.

Finkelstein, A., Kramer, J., & Nusibeh, B. (1994). Software process modeling and
technology. New York: John Wiley & Sons.

Foundation for Intelligent Physical Agents. FIPA (2000, November). Agent message
transport envelope representation in bit efficient specification, Specification
number SC00088. Available online at http://www.fipa.org/specs/fipa00088/.

Habermann, A.N. & Notkin, D. (1986). Gandalf: software development environments.
IEEE Transactions on Software Engineering, 12(12), 1117-1127.

Harrison, W., Ossher, H., & Tarr, P. (2000). Software engineering tools and environments:
A roadmap. Proceedings of International Conference on Software Engineering
Proceedings of the conference on the future of Software engineering (pp. 261-277).
New York: ACM Press

Lu, C.W., Chu C.W., Chang, C.H., Lian, W.D., & Yang, D.L. (2003). Integrating drivers
paradigms in evolution and maintenance by an XML-based unified model. Journal
of Software Maintenance and Evolution, 15(3), 111-144.

Maes P. (1997). General tutorial on software agents. Available online at http://
pattie.www.media.mit.edu

Mi, P. & Scacchi, W. (1996). A meta-model for formulating knowledge-based models of
software development. Decision Support Systems, 17(4), 313-330.

Object Management Group. (2002). Meta Object Facility (MOF) Specification, Version
1.4. Needham, MA: OMG.

TEAM LinG

140 Chu, Chang, Lu, Peng and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object Management Group. (2003). XML Metadata Interchange (XMI) Specification,
Version 2.0. Needham, MA: OMG.

Object Management Group. (2003, April 2). The software process engineering metamodel
(SPEM), Revised Submission, OMG document number: ad/2001-03-08. Retrieved
May 16, 2003, from http://www.omg.org/cgi-bin/ doc?ptc/2002-01-23.

Ossher, H. & Harrison, W. (1990). Support for change in RPDE3. Proceedings of the
Fourth ACM SIGSOFT Symposium on Software Development Environment. ACM
Press. Reengineering methodology. IEEE Transactions on Software Engineering,
12(2), 326-345.

Thompson, H.S. (2003). W3C XML Pointer, XML Base and XML Linking. The World
Wide Web Consortium. Retrieved August 21, 2003, from http://www.w3.org/
XML/Linking

Wassermen, A.I., Pricher, P.A., Shewmake, D.T., & Kersten, M.L. (1986). Developing
interactive information systems with the user software engineering methodology.
IEEE Transactions on Software Engineering, 12(2), 326-345.

Workflow Management Coalition (1994, November). The Workflow Reference Model.
Document Number WFMC-TC-1003, Version 1.1.

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 141

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Developing
Requirements Using

Use Case Modeling and
the Volere Template:

Establishing a
Baseline for Evolution

Paul Crowther, Sheffield Hallam University, UK

Abstract

A major contributor to the development of a quality final product is a complete,
consistent, and detailed requirement specification (Pressman, 2000). No matter how
good the specification and its translation into an initial system, it will evolve once it
is released to users as the requirements and the environment change and the users
develop. The aim of this chapter is to provide a method of establishing the baseline in
terms of the requirements of a system from which evolution metrics can be effectively
applied. UML (Rumbaugh, Jacobson, & Booch, 1999) provides a series of models that
can be used to develop a specification which will provide the basis of the baseline
system. This can then be used as a datum from which measurements can be made. One
of the starting points for modeling is use case analysis. Other models can then be
developed based on these initial models. One of the difficulties with this approach is

TEAM LinG

142 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that once the initial models have been agreed upon, they are not maintained as the later
more detailed models evolve. The methods described in this chapter show how this can
be achieved and measured.

Introduction

This chapter discusses the establishment of a baseline from which to measure the
evolution of a software system. The work described is based on the development of a
system designed to deliver a collaborative learning environment on personal Web-
enabled mobile computing devices called MOBIlearn (2000). Further, the components
which make up the system are being developed by a series of teams which are distributed
throughout Europe.
A system in constant use evolves. This is because of changes in:

• Requirements

• Environment

• User development

However, the evolution needs to be both controlled and measured. The foundation of
the initial instance of the system is the requirements on which it is based. Feedback from
users and refinements as the environment is more completely understood will lead
individual components to evolve and hence the overall system itself to evolve.
UML has the advantage that it can be used in conjunction with a variety of development
methodologies while providing a readily understandable set of diagrams. These are
based on a series of interconnected models that range from use cases used to develop
requirements through collaboration diagrams used to determine how the use cases will
be implemented on to logical models which will form the basis of the final software.
In this chapter, the primary emphasis will be on use cases and their role in establishing
the base requirements of the system. These will be discussed in terms of their relationship
to the Volere template which adds control and referencing. Finally this will be tied into
the UML component model and the use of XML in the resulting service-oriented
architecture.

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 143

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Background

The Need to Establish a Baseline for Software Evolution

Software evolution is not a new study with references dating back to the 1960s (Lehman
& Ramil, 2003). Evolution comes about because of the changes required to meet user or
operational needs. Lehman (2000) has been a major contributor to studies of evolution
with the FEAST projects where feedback (the F in FEAST) is the driver for the next
evolutionary step.
The case study used in this chapter will be discussed in relation to using UML to prepare
system specifications which establish a baseline from which the evolution of the
software can be measured. Hall and Munson (2000) discuss metrics which can be applied
to software and provide measures which can be applied to this baseline. What is needed
is a method of creating the baseline in the first place. This is supported by Lehman’s
(2000) position paper where he defines S-type and E-type programs. Initially, programs
should be of the specification (S) type giving a baseline. Once the programs are released
and integrated into larger systems they become evolutionary (E-type).

The Case Study: MOBIlearn

This work is based on experiences from the MOBIlearn project funded by the European
Framework V IST programme. Learners today want to learn when and where they want,
in formal, nonformal, and informal ways (Brand, Petrak, & Zitterbart, 2002). MOBIlearn

Figure 1. MOBIlearn hardware architecture

TEAM LinG

144 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

meets learners requirements utilising mobile communications and personal computing
devices such as PDAs, smart phones, and portable computers (see Figure 1).
A key part of the MOBIlearn project is the integration of new technologies in education.
It aims at improving access to knowledge for selected target users giving them ubiquitous
access to appropriate learning objects (Taylor, 2003). Initially, the Mobilearn require-
ments were provided by four scenarios:

• Master in Business Administration

• University orientation

• A European city famous for its art (Florence)

• Access to basic medical knowledge

The aim of MOBIlearn is therefore “…the creation of a virtual network for the diffusion
of knowledge and learning via a mobile environment…to…demonstrate the convergence
and merging of learning supported by new technology, knowledge management, and new
forms of mobile communication.” (MOBIlearn 2002, Annex 1, p. 7)
In the MOBIlearn project a series of distributed development teams have been estab-
lished with specific roles or workpackages (WPs). One of these WPs is the development
of requirement specifications to be used by the technical WP teams.
 Initially, these requirements were derived from the user scenarios using use cases alone,
one set for each scenario. The next stage was to amalgamate these into a single
specification which could then be handed on to the software developers for the final
system. The technical teams then developed a series of services which were required to
service the use cases.
The development methodology for MOBIlearn was a combination of the service-oriented
approach (SOA) and prototyping loosely based on Boehm, Egyed, Kwan, Port, Shah, and
Madachy’s (1998) spiral model. Modeling was done using the use case modeling parts
of UML. The baseline is established as the first iteration of the spiral, referred to in
MOBIlearn as the second prototype (the first prototype, as will be described in detail,
was a throwaway demonstrator).

Volere Templates

Volere (Robertson & Robertson, 2001) is a template for requirement specifications. It
provides a mechanism for documenting both functional and nonfunctional requirements
as well as project constraints, drivers, and issues. Altogether there are 27 shells which
can be completed to document a system’s requirement. It should be noted that not all of
the shells are mandatory, and modifications can be made to the shells. Several of the shell
types were used in the MOBIlearn project including:

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 145

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Client and Stakeholder definition (shell type 2)

• Naming conventions and definitions (shell type 5)

• Relevant facts and assumptions (shell type 6)

• Functional and data requirements (shell type 9)

Basically the template was used as a form of data dictionary.
In the context of this chapter, it is the functional requirements and data requirement shell
which are important. The functional and data requirement shells (shell type 9), an example
of which is shown in Figure 2, are designed to specify the functional requirements that
must be supported by the system. These shells are directly linked to use cases in the UML
model.

Metrics and Baselines

Demeyer, Mens, and Wermelinger (2001) propose a software evolution benchmark for
comparing various techniques dealing with software evolution. The MOBIlearn project
meets the criteria proposed in terms of life cycle, evolution, and domain as a represen-
tative system — it is designed to be expanded beyond the existing four scenario domain.
The main thrust of this chapter is a baseline for metrics. There is much discussion of the
best way of measuring software evolution. Mens and Demeyer (2001) make the distinc-
tion between predictive analysis and retrospective analysis. Predictive analysis attempts

Figure 2. Volere shell of type 9 (requirement)

TEAM LinG

146 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to identify which parts of the system either need or are likely to be evolved and those
that can suffer as a result of evolution. Secondly, there is retrospective analysis after or
possibly during an evolving systems life.
Lehman (2000), on the other hand, considers evolution as a process that commences
when an application moves from S-type to E-type. As a measure of evolution, it is the S-
type that is the base. However, to be a suitable point from which to measure, there needs
to be a series of features in place to help with the measurements. If these are in place, some
of the analyses proposed by Mens and Demeyer (2001) may be unnecessary as evolution
has been considered as part of the original design.
One problem with Lehman’s (2000) approach, particularly when considered in terms of
the MOBIlearn project, is that the development methodology is prototyping, so each
prototype could be regarded as an evolution of the overall system, but the system could
still be in S-type form as it had not moved from the original specification. On release, the
system would almost certainly evolve as new domain applications are added (e.g., a
theatre scenario).
Another approach is that described by Hall and Munson (2000) who see evolution as a
series of discrete increments or builds. In their case, they are almost certainly considering
systems rather than individual components. In their approach, they consider the
application of metrics to measure evolution being applied more than once, stating
“measuring an evolving software system only once can be very misleading.” Hall and
Munson (2000) also discuss the need for a measurement baseline as the basis for
comparing the evolving system.
There is a certain dichotomy here between the different authors. Hall and Munson (2000)
talk in terms of builds, that is, of a group of independent programs which are linked. The
first build is the baseline, the second build, which may add or delete programs from the
system, is the second build, or evolution, and so on. Lehman (2000), on the other hand,
appears to be talking of individual programs. In this discussion, both points of view will
be covered. Individual programs evolve from the initial specification and deployment as
do integrated systems.

Establishing a Baseline

From the beginning, it was determined that the MOBIlearn system would evolve. The
technical developers opted for a service-oriented approach (Grishikashvili, Badr, and
Taleb-Bendiab, 2003), with the distributed teams taking on the development of a series
of related services. The system requirements were developed independently and formed
the basis of identifying the services.
The initial requirements were established in terms of a series of scenarios written as a
storyline, for example, a group of individuals visiting a museum. These were developed
by interviews with end users, both learners and administrators. These scenarios were
then documented using use case diagrams. The scenarios were not exhaustive, and
initially no attempt was made to determine generic use cases. This led to the system
specification being:

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 147

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• too broad

• potentially incomplete

• inconsistent

• duplicated

• in effect, the specifications for three independent systems

• unsuitable for use as the basis of a system baseline.

These problems were solved by developing the requirements specification with a generic
series of use cases. Templates were developed within the use cases’ descriptions which
were tied to shells within a Volere template.

UML, Volere, and Baselines

The Volere template provides a concise information base for the project and along with
UML establishes a baseline from which the original S-type system (Lehman, 2000) is
developed. As the system evolves, changed requirements can be tracked. The second
prototype, which can be regarded as the measurement baseline, was produced based on
these specifications. A third prototype and a release system are part of the project plan,
and it is assumed that the system will continue to evolve after release. Although these
are not strictly E-type in Lehman’s terms, they are evolutionary cycles, and hence
measurements can be applied.

Figure 3. Top-level generic or general use case diagram for MOBIlearn

G1 Setup

G3 Get Plan

G5 Post comments

G2 Participate in Organised
Activity

Learner

G6 Manage Material

G7 Produce material

G4 Moderate discussion

G8 Communicate Interpersonal
Educator

TEAM LinG

148 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Volere shells incorporate references to use case diagrams, but not the other way around.
Likewise for every use case there must be a Volere shell, but a Volere shell may encompass
several use cases. This has the advantage of combining use cases with similar functions.
The main problem is overlap and redundancy between use case descriptions and fields
in a Volere shell. The way around this was to adopt the Cockburn (1998) template for
documenting use cases which was adapted for this project.
In MOBIlearn, the first stage of developing requirements was to develop use case
diagrams for each of the four documented scenarios. Common features were then
identified from these and a top-level generic use case diagram was constructed (see
Figure 3).
Some of the top-level use cases were too general and need further elaboration. To this
end, a second level of use cases was added; for example, Figure 4 shows the expansion
of the G1 Setup use case.
To establish a common method of documenting all primitive (those that are not further
expanded) use cases, the template suggested by Cockburn (1998) was used (see Figure
5). This overcame some of the shortcomings of fields in the Volere shell.
Establishing the requirements using UML and Volere is, however, only one part of
establishing a baseline for system evolution. One could consider these to be the baseline
requirements from which the S-type or first build or first iteration is produced. As part
of the development process, UML was used to prepare a component diagram (see Figure
6) which met the requirements from use case diagrams and a Volere template. The use case
and components were then linked together in a collaboration diagram. That is, each of
the use cases was linked to the services that were required to implement it. This was found
to be more effective in this project than a statechart approach such as that suggested
by Ratcliffe and Budgen (2000). MOBIlearn is therefore a service-oriented architecture
with a network addressable interface and strongly supporting interoperability.

Figure 4. Expansion of the generic G1 Setup use case

G1.1 Connect

G1.3 Update Profile

G1.6 process profile

G1 Setup

G1.2 Create Profile

G1.4 Select Learning Area

G1.5 Post profile

<<include>>

<<include>>

G1 Setup

<<include>>

<<include>>
<<include>> <<include>>

<<extend>>

<<extend>>

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 149

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. Use case description template based after Cockburn (1998)

Figure 6. Fragment of the component diagram showing the relationships between
services in MOBIlearn

Content Management
Service

Multi-rendering
Service

Content Rendering
Service

Content Tracking
Service

Local Repository
Service

Priorities
Tagging Service

Content Awareness
Service

Indoor Location
Service

Multimedia
Delivery service

Content Broadcasting
Service

Contact Packaging
Service

Notes Management
Service

User Profile
Management service

Service Name Use
Case

Service
Code

Main
work

package
(wp)

involved

Other
WPs

involved

Prototype
2

Final
System Future

Portal PO

Portal Service G1.1,
G1.4 PO_POS wp10 wp7,

wp6 x X

User Registration
Service G1.1 PO_URS wp10 wp7,

wp6 X

Login Service G1.1 PO_LIS wp10 wp7,
wp6

x

Authentication Service G1.1 PO_ACS wp10 wp7,
wp6 X

Authorization Service G1.1 PO_AZS wp10 wp7,
wp6 X

Billing Service G1.1 PO_BIS wp10 wp7 X

Service Discovery
Service G1 PO_SDS wp10

wp7,
wp6,
wp8,
wp9

x X

Content Delivery
Service G1 PO_CDS wp10 wp7 X

Table 1. Fragment of the of the service implementation plan

TEAM LinG

150 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From the collaboration diagram a table was produced representing:

• The use cases

• Their related services

• The phase in which they would be implemented

This was regarded as a useful summary rather than having a relatively large number of
individual collaboration diagrams. The service implementation was undertaken by a
variety of different groups with integration planned as the second prototype. The first
prototype was a throwaway demonstrator loosely based on the museum scenario before
detailed use cases were developed. It could not be considered the S-type and the basis
of the evolution of the system. The second prototype, however, is tightly coupled to the
models and will be regarded as the S-type or baseline system from which the evolution
of the system will be measured.
Table 1 shows the relationship between services and the generic use cases. An expansion
of this table included a detailed analysis of services required for specific scenarios. For
example, the heath scenario had use cases not found in the other scenarios and required
some special services.
As part of the development and integration of the services, XML was used to exchange
information between the various service components. The service-oriented approach
was essential because of the distributed nature of the development teams and the final
distributed nature and requirements of MOBIlearn.

Recommendations

Establishing a Baseline for Evolution

Pressman (2000) has provided useful and comprehensive templates for both software and
system requirements specification. Generally, these involve a complete set of UML
models and can be used to establish a baseline for measuring evolution. A combination
of a Volere template and UML models cover most of the items in this template. One of the
advantages of using a Volere template is that shells can be created to specify metrics to
be used to measure the evolving system (see Figure 7). Note that the type 5 shell of the
Volere template is used here. This is primarily for establishing definitions.
To develop a baseline, the following steps were used in the MOBIlearn project:

• Create a series of use scenarios.

• Develop use cases for the scenarios.

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 151

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Identify generic use cases for the integrated system.

• Create Volere shells for metrics definition.

• Create Volere shells for requirements from the use cases.

• Create component diagram (in terms of services).

• Correlate services to use cases using a collaboration diagram.

As new or changed requirements are found, in other words, the system requirements
evolve, the affected Volere shells are updated. A change audit trail is built into the shell
so the evolution of the requirements can be traced.

Problems Still to be Addressed

The main problem encountered during the MOBIlearn project was with control of the
Volere template. Too many people were adding requirements, and there was too little
control over standards and redundancy (duplicate entries). Management of the process
was not trivial and has been improved. Future projects will have more stringent
management and filtering processes in place for Volere.
There is also a requirement for a specialised Volere shell which is used for metrics. The
shell currently used is for all definitions in the project (shell type 5); this is not an ideal
situation. Therefore, it is proposed that a metric definition shell be added to the Volere
template.

Figure 7. Volere shell defining a metric

TEAM LinG

152 Crowther

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Further Work

Once a baseline has been established, the next question is when to acquire the data for
the metrics which have been defined. Establishing what is an evolutionary cycle requires
more work. Do we consider each modification to each component of the overall system
an evolutionary cycle? If this is so, the number of evolutions of a system could be quite
large. Alternatively, a higher level view could be taken where each release of the system
is a cycle. Finally, a combination of these two approaches may be feasible where
evolution of individual software components is considered at one level, and evolution
of the total in terms of major releases is considered, the Hall and Munson (2000) view,
at the higher level. This has implications for the metrics which need to be defined and
the design of the proposed metric definition Volere shell. As an interim measure, it is
suggested that the level at which evolution is being measured is explicitly stated.
For example, in the case of MOBIlearn, new combinations of components (services in the
MOBIlearn terminology) result in the release of a new evolution. Below this is the
evolution of individual components. In this chapter, the emphasis has been on the
evolution of the overall system.

Conclusion

The advantage of the methods described here is the establishment of a baseline and
metrics at the beginning of the project. This has been developed at the system level,
although the techniques could be applied at the component level. The basis of establish-
ing the baseline is the development of generic use cases form a series of user centred
scenarios. We are looking at the system level here. It was possible to develop the first
iteration by selecting a subset of services to be implemented. This gave a representative
version which could be used for enhancement in the second prototype. The service-
oriented approach is such that third party products can be added. This, however, raises
the question: Should a change in such a third party product be considered as an
evolutionary cycle?

Acknowledgments

This work was part of MOBIlearn, a European framework F Information Society Technolo-
gies Program. I would like to acknowledge the contribution of all the MOBIlearn
consortium members, particularly, those involved in WP 2 and WP 10.

TEAM LinG

Developing Requirements Using Use Case Modeling and the Volere Template 153

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., & Madachy, R. (1998). Using the
winwin spiral model: A case study. IEEE Computer, 31(7), 33-44.

Brand, O., Petrak, L., & Zitterbart, M. (2002). Support for mobile learners in distributed
space, Learning Lab Lower Saxony (L3S). Retrieved July 12, 2003, from
www.learninglab.de/~brand/Publications/elearn02.pdf

Cockburn, A. (1998). Basic use case template. Retrieved September 26, 2003, from http:/
/members.aol.com/acokcburn

Demeyer, S., Mens, T., & Wermelinger, M. (2001). Towards a software evolution
benchmark. Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE 2001), Vienna, Austria.

Grishikashvili, E., Badr, N., & Taleb-Bendiab, A. (2003, June). Service-oriented approach
for distributed application assembly and management. Proceedings of PGNET
2003, Liverpool.

Hall, G.A. & Munson, J.C. (2000). Software evolution: Code delta and code churn. The
Journal of Systems and Software, 54, 111-118.

Lehman, M.M. (2000). Rules and tools for software evolution planning and management
– position chapter. Proceedings of FEAST Workshop, Imperial College, London.

Lehman, M.M. & Ramil, J.F. (2003). Software evolution – background, theory, practice.
Information Processing Letters, 88, 33-44.

Mens, T. & Demeyer, S. (2001). Evolution metrics. Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE 2001), Vienna, Austria.

MOBIlearn (2002). Next Generation paradigms and interfaces for technology sup-
ported learning in a mobile environment exploring the potential of ambient
intelligence, Annex 1, Information Society Technologies Program EU Proposal/
Contract: IST-2001-37187.

Pressman, R.S. (2000). Software engineering: A practitioner’s approach, European
Adaption (5th ed.). London: McGraw-Hill.

Ratcliffe, M. & Budgen, D. (2001). The application of use case definitions in system
design specification. Information and Software Technology, 43, 365-386.

Robertson, J. & Robertson, S. (2001). Volere: Requirements specification template (8th

ed.). London: Atlantic Systems Guild.
Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modelling language

reference manual. Reading, MA: Addison Wesley.
Taylor, J. (2003, May). A task-centred approach to evaluating a mobile learning environ-

ment for pedagogical soundness. Proceedings of MLEARN 2003; Learning with
Mobile Devices, London.

TEAM LinG

154 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Formalizing and
Analyzing UML Use

Case View Using
Hierarchical Predicate

Transition Nets
Xudong He, Florida International University, USA

Abstract

Unified Modeling Language (UML), developed by a group of leading experts in object-
oriented methodologies, has become the standard object-oriented development
methodology in the software industry. UML contains a set of diagrams for describing
different views and aspects of systems. UML use case diagrams are used during
requirements analysis to define a use case view that constitutes a system’s functional
model. Each use case describes a system’s functionality from a user’s perspective.
However, the use case descriptions are often informal, which are error-prone and
cannot be formally analyzed to detect problems in user requirements or errors
introduced in a system functional model. A well-defined use case view is not only
necessary for subsequent correct system design and implementation but also serves as
a basis for future system evolution. Therefore, it is extremely important to ensure the
correctness of the functional model captured in a use case view. In this chapter, we
present an approach to formally translate a use case view into a formal model in
hierarchical predicate transition nets that support formal analysis and thus are
capable to detect possible requirements and modeling errors in a use case view.

TEAM LinG

Formalizing and Analyzing UML Use Case View 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Software evolution is greatly impacted by a software design paradigm and software
development methodologies. The object-oriented (OO) software development paradigm
has been widely adopted in software industry in recent years and thus dictates the future
software development and evolution. Among the various existing OO methods, UML
(Booch, Rumbaugh, & Jacobson, 1999; Rumbaugh, Jacobson, & Booch, 1999) has
become the de facto standard OO design language. UML contains a set of graphical
notations for different views and aspects of software systems. While UML graphical
notations are conceptually sound, they lack precise semantics and thus do not support
formal analysis. Although it is desirable to separate and individually define the different
aspects of a system, it is often not clear how to do and is very difficult to relate the
different views together and to ensure their consistency.
To tackle the impreciseness of UML, there have been considerable research activities to
make the UML semantics more precise in recent years. There is a worldwide pUML
(precise UML) research group. Researchers have attempted to define formal semantics
for class diagrams (Shroff & France, 1997; Evans, 1998; France, Evans, Lano, & Rumpe,
1998; Lano & Bicarregui, 1998; Kim & Carrington, 1998; McUmber & Cheng, 1999; He,
2000a; McUmber & Cheng. 2001), use case diagrams (Overgaard & Palmkvist, 1998, Back,
Petre, & Paltor, 1999; He 2000b), interaction diagrams Knapp 1999, and statechart
diagrams (McUmber & Cheng, 1999; Saldhana & Shatz, 2000; Saldhana, Shatz & Hu et
al., 2001; Dong & He, 2001; McUmber & Cheng, 2001; Dong, Fu, & He, 2003). A variety
of formal methods have been applied in the previous attempts, including variants of Z,
variants of logic and temporal logic, refinement calculus, and variants of Petri nets.
In this chapter, we focus on one of the UML notations, use case diagrams. Use case
diagrams were proposed by Jacobson, Christerson, Jonsson, and Overgaard (1992) to
capture typical system use scenarios in system analysis. UML use case diagrams are
used to define a use case view that constitutes a system’s functional model. Each use
case documents a system’s functionality from a user’s perspective. Use case analysis
is one of the major activities of system requirements analysis and forms the backbone
of the unified software development process (Jacobson, Booch, & Rumbaugh, 1999). A
well-defined use case view is not only necessary for subsequent correct system design
and implementation but also serves as a basis for future system evolution. Currently, only
informal semantics of UML use case diagrams exists (UML, 2003). A use case diagram
depicts the relationships between use cases and actors as well as relationships between
use cases. There is no standard language for defining use cases, although a variety of
choices, including plain text, state machines, operations, and interaction diagrams, is
suggested; hence, informal plain text is often used in defining use cases. The lack of a
precise standard language for defining use cases and their relationships makes the
understanding and realization of use case diagrams difficult and the formal analysis of
use case diagrams impossible. As a result, many errors due to incomplete and inconsis-
tent requirements as well as incorrect specification cannot be detected and revealed until
late in the system development process.
Hierarchical predicate transition nets (HPrTNs) are chosen to provide a formal semantics
for UML use case diagrams for the following reasons: (1) HPrTNs (He, 1996) are a

TEAM LinG

156 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hierarchical high-level extension to Petri nets, which have a huge worldwide researcher
and user community; (2) HPrTNs have a graphical representation that can help preserve
the visual structure depicted by UML use case diagrams; (3) HPrTNs have an operational
semantics that can precisely define the behaviors implied in a use case view; and (4) we
have extensive experience in developing and using HPrTNs (He & Lee 1991; He & Yang,
1992; He, 1995; He, 1996; He, 1998; He, 2000c; He & Ding, 2001), and have obtained some
preliminary results in formalizing UML notations using HPrTNs (He, 2000a & b; Dong &
He, 2001; Dong et al., 2003).
In this chapter, we first introduce the essential concepts and notations of the use case
diagrams and HPrTNs; then, we provide an approach to translate a use case view into
an HPrTN; and finally, we illustrate how to analyze system properties using HPrTNs.

Use Case Diagrams

The use case view captures the external behavior of a system or a subsystem, and divides
the system’s functionality into transactions meaningful to system users. In UML, a use
case view is represented in use case diagrams as a result of requirement analysis. The
use case view is used as a basis for designing a subsequent system behavioral model
represented in UML statechart diagrams and interaction diagrams.

The Basic Concepts and Notation

A use case “is a description of a set of sequences of actions, including variants, that a
system performs to yield an observable result of value to an actor” (Booch et al., 1999).
A use case is represented by an ellipse. An actor, represented by a stick figure, denotes
a role or an external environment that interacts with a system. A use case is connected
to some actor(s) through solid line(s) called association.
A use case (the base case) can include other use cases that represent some common and
shared behavior. The include relationship is denoted by a dashed arrow from the base
use case to the included use case with a stereotype label <<include>>.
A use case (the base case) can be behaviorally extended by another use case. The
extension is implicit and extends the original behavior of the base case. The extend
relationship is denoted by a dashed arrow from the extending use case to the base use
case with a stereotype label <<extend>>.
A use case can have sub-use-cases. The generalization is represented by a solid line with
a triangle head from a general use case to a specific use case.
Figure 1 summarizes the symbols of use case diagrams.

TEAM LinG

Formalizing and Analyzing UML Use Case View 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Informal Semantics

In document UML 2003, an informal semantics in English was provided for use case
diagrams. The majority of the description cannot be considered as a semantic definition;
rather, it is an informal explanation and discussion. We quote some of the description
of relevant semantics below.

• Actor:
“Actors model parties outside an entity, such as a system, a subsystem, or a class, which
interact with the entity. Each actor defines a coherent set of roles the entity can play
when interacting with the entity. Every time a specific user interacts with the entity, it
is playing one such role.”

“Since an actor is outside the entity, its internal structure is not defined but only its
external view as seen from the entity. Actor instances communicate with the entity by
sending and receiving message instances to and from use case instances.”

“Two or more actors may have commonalities, that is, communicate with the same set
of use cases in the same way. The commonality is expressed with generalizations to
another (possibly abstract) actor, which models the common role(s).”

• Use Case:

“A use case describes the interactions between the users and the entity as well as the
responses performed by the entity.” “A use case also includes possible variants of this
sequence (e.g., alternative sequences, exceptional behavior, error handling, etc.).”

“A use case can be described in plain text, using operations and methods together with
attributes, in activity diagrams, by a state machine, or by other behavior description
techniques, such as preconditions and postconditions.”

Figure 1. The symbols of use case diagrams

Actor

Use case

association

extend <<extend>
>

include <<include>
>

generalization

TEAM LinG

158 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“A use-case instance is a performance of a use case initiated by a message instance from
an instance of an actor. As a response, the use-case instance performs a sequence of
actions as specified by the use case, like communicating with actor instances, not
necessarily the initiating one.”

“In the case where subsystems are used to model the system’s containment hierarchy,
the system can be specified with use cases at all levels.” “A use case specifying one
model element is then refined into a set of smaller use cases.”

“Commonalities between use cases can be expressed in two different ways: with
generalization relationships or include relationships. A generalization relationship
between use cases implies that the child use case contains all the attributes, sequences
of behavior, and extension points defined in the parent use case, and participate in all
relationships of the parent use case.”

“An include relationship between two use cases means that the behavior defined in the
target use case is included at one location in the sequence of behavior performed by
an instance of the base use case.”

“An extend relationship defines that a use case may be augmented with some additional
behavior defined in another use case.” “The extend relationship contains a condition
and references a sequence of extension points in the target use case.” “The description
of the location references by an extension point can be made in several different ways,
like textual description of where in the behavior the addition should be made, pre- or
post-conditions, or using the name of a state in a state machine.”

There are several points worth of notice in the quotations of UML semantic descriptions:

(1) An actor is an external entity and thus no further detailed description is needed.
(2) A use case describes an interaction between the users and the entity (a system or

subsystem).
(3) Many types of languages can be used to define use cases, ranging from informal

plain text to formal graphical notations such as state machines.
(4) Several relationships can exist between use cases, which are depicted in use case

diagrams.
(5) A use case instance is initiated by a message instance from an actor instance.

These points serve the basis for our translation approach.

TEAM LinG

Formalizing and Analyzing UML Use Case View 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Example of Use Case Diagrams

Let us look at a simple library system that has two types of users — ordinary users and
librarians. Ordinary users can use the system to search for books, and librarians use the
system to process ordinary user requests for borrowing and returning books and to
update library collections.
Based on the previous brief description, we can identify two actors — User for ordinary
users and Librarian for librarians. We also can identify the following use cases: Search
for User, Transact and Maintain for librarians. A further analysis of the library system
reveals additional details of system behavior, and the refined use case diagram is shown
in Figure 2.
The previous use case diagram specifies that the use case Search extends the use case
Transact, which consists of two subtype use cases Borrow and Return, and includes two
sub-use-cases Validate (user identification) and Update (book status).
Although a variety of techniques are suggested for describing use cases in UML 2003,
the plain text description often is the choice due to its simplicity. The use cases in this
example (except Maintain for simplicity) are defined using plain text as follows:

• Search: A user provides a book title and receives a message indicating whether
the book is in the library or not.

• Validate: This case is invoked in the beginning either in borrow or return. It returns
a value indicating either an invalid user or a valid user.

• Update: This use case is invoked either in borrow or return after user validation and
book status is checked. It updates both the user record and the book record if all
the conditions are satisfied.

• Borrow: This use case is initiated when a borrowing request is received. It invokes
validate use case and searches for the requested title. It invokes update to change
the user and book records.

• Return: This use case is initiated when a returning request is received. It invokes
validate use case and checks the validity of the returned title. It invokes update to
change the user and book records.

User

Search

Librarian

Transact

Maintain

<<extend>>

Borrow Return

<<include>> <<include>>

Validate Update

Figure 2. A use case diagram

TEAM LinG

160 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The plain text description is easy to understand; however, it is often incomplete and
ambiguous due to the inherent problems of a natural language. To detect and prevent
the errors in requirements and specification, a more formal treatment and an analysis of
these descriptions are necessary. This example is used to demonstrate the formalization
and analysis approach in a later section.

Hierarchical Predicate Transition Nets

HPrTNs are a class of hierarchical high level Petri nets (He 1996), which extend predicate
transition nets (Genrich, 1987) with super nodes (dashed circles and boxes for super
places and transitions, respectively) and compound arc labels. The development of
HPrTNs was inspired by the statecharts (Harel, 1988) and data flow diagrams (Yourdon,
1989). With the hierarchical constructs, a large net can be made modular and presented
at different abstraction levels; and thus achieve the benefits of better understandability
and modeling scalability. In this subsection, a simple description of HPrTNs is given. We
try to make the description as understandable as possible by avoiding overwhelming
number of mathematical symbols and rules. A formal method does not need to appear
formal or complicated as long as it has a precise and well-defined syntax and semantics.
A more detailed formal treatment can be found in He (1996).

The Syntax and Static Semantics of HPrTNs

An HPrTN N is a tuple (P, T, F, ρ, SPEC, ϕ, L, R, M0) consists of (1) a finite hierarchical
net structure (P, T, F, ρ) – the syntactic domain, (2) an algebraic specification SPEC —
the semantic domain, and (3) a net inscription (ϕ, L, R, M0) — the mappings from
syntactic domain to the semantic domain.
(P, T, F) is the essential net structure, where P ∪ T is the set of nodes satisfying
the condition P ∩ T = ∅. P is called the set of places and T is called the set of
transitions. There are two kinds of nodes for both places and transitions — elementary
nodes (represented by solid circles or boxes) and super nodes (represented by
dotted circles or boxes). In particular, we identify two subsets IN ⊆ P ∪ T and OUT
⊆ P ∪ T such that IN contains the heads of all incoming non-terminating arcs (an
arc inside a super node is a non-terminating arc if one of its end is connected to the
boundary of the super node) and OUT contains the tails of all outgoing non-
terminating arcs. Nodes in IN ∪ OUT are called interface nodes. We use •IN to
denote the set of the presets of all elements in IN, that is, •IN = {•n | n ∈ IN}; and
OUT• to denote the set of the post-sets of all elements in OUT. F is the set of arcs
and is called the flow relation satisfying the conditions: P ∩ F = ∅, F ∩ T = ∅, and
F ⊆ (•IN × IN ∪ P × T ∪ T × P ∪ OUT × OUT•). An arc f can be uniquely identified
by a pair of nodes (n1, n2) denoting its source and sink, in which n1 (n2) may denote
the preset (post-set) of n2 (n1) when f is a non-terminating arc. An arc in an HPrTN

TEAM LinG

Formalizing and Analyzing UML Use Case View 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may represent a cluster of flows due to the use of super nodes, and the arc label
is used to distinguish individual component flows.
ρ: P ∪ T → ℘(P ∪ T) is a hierarchical mapping that defines the hierarchical
relationships among the nodes in P and T.
The underlying specification SPEC = (S, OP, Eq) consists of a signature S = (S, OP)
and a set Eq of S-equations. Signature S = (S, OP) includes a set of sorts S and a
family OP = (OPs1,...,sn

, s) of sorted operations for s1, ..., sn, s ∈ S. For each s ∈ S,
we use CONs to denote OP,s (the 0-ary operation of sort s), that is, the set of
constant symbols of sort s. The S-equations in Eq define the meanings and properties
of operations in OP. We often simply use familiar operations and their properties
without explicitly listing the relevant equations. SPEC is a meta-language to define
the sets of tokens MCONS (ground terms of the algebra), labels LabelS (X), and
constraints TermOP,bool(X) (terms of Boolean values) of an HPrTN.
The net inscription (ϕ, L, R, M0) associates each graphical symbol of the net structure
(P, T, F, ϕ) with an entity in the underlying SPEC, and thus defines the static
semantics of an HPrTN.

• ϕ: P → ℘(S) is a sort assignment, which associate each place p in P with a subset
of sorts in S. The sorts of elementary places are members of S in SPEC. The sort
of a super place is defined as the union of sorts of its interface child places.

• L: F → LabelS (X) is a sort-respecting labeling of N. All simple labels of a
compound label must have distinct identifiers, and all simple labels of arcs
connected to the same node must have distinct identifiers.

• R: T → TermOP,bool(X) is a well-defined constraining mapping of N, which
associates each transition t in T with a first order logic formula defined in the
underlying algebraic specification.

• M0: P → MCONS is a sort-respecting initial marking of N, which assigns a multi-
set of tokens to each place p in P. The tokens of a super place are a sorted union
of the tokens of its interface child places since only those tokens are externally
accessible.

Dynamic Semantics

The dynamic semantics of an HPrTN is defined by its flattened predicate transition
net (He, 1996). Thus, we can define the dynamic semantics of an HPrTN by only
considering elementary places and transitions.
A marking M of an HPrTN is a mapping P → MCONS from the set of elementary
places to multi-sets of tokens. An elementary transition t ∈T is enabled in marking
M if its preset •t contains enough tokens and its constraint R(t) is satisfied with an
occurrence mode α (a substitution of variables with tokens in the constraint). The
statement can be formulated as follows:

.(() (,) :) () :p t M p L p t R t∀ ∈• ⊇ α ∧ α

TEAM LinG

162 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The firing of an enabled elementary transition t in marking M with occurrence mode
α produces a new marking M’ defined by:

.('() () {((,) : } {((,) : })p P M p M p L p t L t p∀ ∈ = − α ∪ α

where L(p, t) = ∅ if (p, t) ∉ F and L(t, p) = ∅ if (t, p) ∉ F.
Two transitions (including the same transition with two different occurrence modes)
can fire concurrently if they are not in conflict (the firing of one of them disables
the other). Conflicts are resolved nondeterministically. The firing of an elementary
transition is atomic. We define the behavior of an HPrTN to be the set of all possible
maximal execution sequences containing only elementary transitions. Each execution
sequence represents consecutively reachable markings from the initial marking, in
which a successor marking is obtained through a step (firing of some enabled
transitions) from the predecessor marking. We use [M0 > to denote the set of all
markings reachable from the initial marking M0.

An Example of HPrTNs

The high-level abstraction in Figure 3 (1) shows two super nodes, super place
Philosophers and super transition Chopsticks, which are connected through two
arcs with the same label x + y (label constructor + indicates nondeterministic flow
relation, i.e., either x, or y, or x and y). We only list (distinct) variable names x and
y without using label identifications to simplify our discussion. The low-level
refinement in Figure 3, (2) shows the internal structure of Philosophers with two
states denoted by places Thinking and Eating, respectively, and the internal structure
of Chopsticks with two transitions Take and Release and two places Avail and Used

Figure 3. An HPrTN specification of dining philosopher problem

 Philosophers Chopsticks

x + y

x + y

Philosophers Chopsticks

Thinking

Eating

Take Avail

Release Used

x

y

x {u,v}

x
y

x

y

y {u,v}

{u’,v’}

{u’,v’}

(2) A refinement

(1) A high-level view

TEAM LinG

Formalizing and Analyzing UML Use Case View 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

denoting the states of chopsticks. The algebraic definition of the net structure is as
follows:

P = {Philosophers, Thinking, Eating, Avail, Used};
T = {Chopsticks, Take, Release};
F = {(Philosophers, Chopsticks), (Chopsticks, Philosophers), (Thinking, Thinking•),

(•Thinking, Thinking), (Eating, Eating•), (•Eating, Eating), (•Take, Take), (Take, Take•),
(•Release, Release), (Release, Release•), (Take, Used), (Avail, Take),
(Release, Avail), (Used, Release) };

ρ = { Philosophers � {Thinking, Eating}, Chopsticks � {Take, Release, Avail, Used},
Thinking � ∅, Eating � ∅, Take � ∅, Release � ∅, Avail � ∅, Used � ∅}

In the underlying specification SPEC = (S, OP, Eq),

(1) S includes elementary sorts such as Integer and Boolean, and also two sorts
PHIL and CHOP derived from Integer. S also includes structured sorts such
as set and tuple obtained from the Cartesian product of the elementary sorts.

(2) OP includes standard arithmetic and relational operations on Integer, logical
connectives on Boolean, set operations, and selection operation on tuples (we use
A[i] to denote the ith component of tuple A).

(3) Eq includes equations defining the known properties of the operators.

The net inscription (ϕ, L, R, M0) is as follows:

(1) Sorts of places:
ϕ(Philosophers) = ϕ(Thinking) = ϕ(Eating) = ℘(PHIL),
ϕ(Avail) = ℘(CHOP), ϕ(Used) = ℘(CHOP´PHIL).

(2) Label definitions:
Labels are self-evident in this example.

(3) Constraints of transitions:
R(Take) = (x = u) ∧ (v = x ⊕ 1) ∧ (u’ = <u, x>) ∧ (v’ = <v, x>),
R(Release) = (y = u[2])∧ (y = v[2]) ∧ (u’ = u[1]) ∧ (v’ = v[1]),
R(Chopstcks) =True,
in which ⊕ is modulus k addition assuming that there are k philosophers.

(4) The initial marking:
M0(Thinking) = {1, 2, ..., k},
M0(Eating) = { },
M0(Philosophers) = M0(Thinking) ∪ M0(Eating) = {1, 2, ..., k},
M0(Avail) = {1, 2, ..., k},
M0(Used) = { }.

TEAM LinG

164 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Approach to Translate a
Use Case View into an HPrTN

In the following subsections, we provide an approach to translate a use case view into
an HPrTN.

Translating a Use Case Diagram into an HPrTN Net
Structure

• Translating Actors and Associations. An actor denotes a user of an entity (system,
subsystem, or class) and initiates an interaction. Thus, we can use a transition to
denote an actor. Each firing of the transition can be viewed as a request for
interaction or actor instance. Since an actor is an external entity, the transition is
elementary. The tokens generated by the transition depend on the type of requests,
which are dependent on specific use cases. Therefore, if an actor connects to more
than one use case, we need to introduce an additional transition and its constraint
to denote each additional connected use case. The definition provides a dynamic
spontaneous view of an actor. Actors with commonalities (i.e., with Generalization
and Specialization relationships) are denoted by the same transition and distin-
guished by the constraint of the transition. The subsequent message exchanges
are taken place through free variables in the constraints of transitions. Thus, we
have the following translation rules:

Rule 1: Translation rule for a single actor and multiple use cases:
To distinguish individual actor instances and use case instances, tokens generated need
to include session identifications and use case identifications, which are defined in net
inscription.

Rule 2: Translation rule for multiple actors sharing a common use case:
To distinguish different actors, tokens generated from different actors need to carry actor
identifications.

Figure 4. Actor translation rule 1

 Actor Use Case 1

Use Case k

Input

TEAM LinG

Formalizing and Analyzing UML Use Case View 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Translating Use Cases and Associations. A use case describes the interactions
between the users and an entity (a system, a subsystem, or a class) as well as the
responses performed by the entity. To define a use case, we need to represent
interactions, the entity, and the responses. It is natural to define the interaction
pattern by using an input place and a transition pair with proper inscription. The
place holds arrival requests and the transition defines behavior changes of the
entity. The entity is denoted by another place connected to and from the transition.
The entity responses can either be defined implicitly by using the constraint of the
transition or explicitly by an output place of the transition. Each firing of the
transition indicates a particular interaction or use case instance.

Rule 3: Translation rule for a use case

• Translating Generalization Relationship. From the informal description of gen-
eralization, it is easy to see that the child use case contains everything in the parent
use case and participates in all relationships of the parent use case. The only
difference is that a child use case may have some additional behavior sequences.
Therefore, we can use a super transition to denote the general (parent) use case
and international transitions to denote special (children) use cases and combine
the child and the parent use case’s constraints to differentiate them.

Rule 4: Translation rule for use case generalization relationship:
The use case description of parent is combined with those of children and translated into
constraints associated with the children transitions.

• Translating <<include>> Relationship. The include relationship between two use
cases is defined by embedding the net structure of the target use case at some
location of the net structure of the base use case. The embedding is done
depending on the location of the point of inclusion, which is extracted from the use
case description. The target case can be inserted before the base case if the target
case is invoked first shown in Figure 8 (a); or the target case can be inserted after

Figure 5. Actor translation rule 2 Figure 6. The use case translation rule

 Actor 1

Use Case Input

Actor k

 Input Output Use Case

Entity

TEAM LinG

166 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Parent
Child 1

Child k

Figure 7. Translation rule for generalization

Figure 8 (a). Target case invoked in the beginning of base case

Figure 8 (b). Target case invoked at the end of base case

Figure 8 (c). Target case invoked in the middle of base case

 TInput TOutput Target Base BOutput

BInput BOutput Base Target TOutput

BInput TOutput Base-Part1 Base-Part2 BOutput BOutput1 Target

the base case if the target case is invoked at the end of the base case as shown in
Figure 8 (b); or the target case is inserted in the middle of the base case, in which
a base case is split into two transitions with additional connecting places as shown
in Figure 8 (c).

Rule 5: Translation rule for <<include>> relation

• Translating <<extend>> Relationship. The informal description of the extend
relationship says the relationship contains a condition and a sequence of extension
points in the target use case. To define the condition and extension points, it is

TEAM LinG

Formalizing and Analyzing UML Use Case View 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

necessary to have a finer view of a use case. Therefore, the target use case is defined
by a sequence of the net elements such that a main path defines the essential
behavior of the target use case and each branch includes a relevant base use case
for extended behavior. It is not difficult to see that an extend relationship is more
complicated than an include relationship. In HPrTNs, conditions and thus choices
are defined by the following net element and the constraints of the relevant
transitions.

Rule 6: Translating rule for <extend>> relation

Translating Use Case Descriptions into an HPrTN Net
Inscription

In the previous subsection, we provided an approach to translate a UML use case
diagram into a HPrTN net structure. To define the formal semantics of a use case diagram,
we need definitions of use cases. In the UML semantic document UML 2003, a variety
of options, including plain text, using operations and methods, activity diagrams, state
machines, or other behavioral description techniques such as pre- and post-conditions,
are listed as possible means for defining the semantics of UML use cases. Most of the
mentioned alternatives only provide the static semantics with the exception of state
machines. The advantages of using HPrTN net to define UML use case views are that
HPrTNs are executable (He, 1996), and there are several behavioral analysis techniques
for HPrTNs. Once an HPrTN is derived from a UML use case diagram, we can carry out
a variety of analysis, including simple simulation to formal verification to reveal potential
defaults in the original use case view. Since UML 2003 does not provide any detailed
specification with regard to which technique to use and how to use the chosen technique,
we can only provide some general ideas on how to translate these different techniques
into HPrTNs based on our prior works. More technical details can be found in the relevant
works cited in the descriptions. In general, plain English descriptions of use cases are
the most difficult to translate since they are less precise, not well structured, and require
more extensive human involvement.
In the following subsections, we discuss the alternative descriptions of use cases and
the possible Petri net formalization approaches.

extension
point

Base

Extending Case

Figure 9. Translation rule capturing one extension point

TEAM LinG

168 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Plain Text Description of Use Cases

When plain English is used to define the use cases, we essentially have to create a formal
specification based on the English description. The problem is inherently difficult and
there is not a general solution, although there are many different ways and heuristics to
deal with the problem. Here we point out two Petri net based formalization approaches.
First, we can apply the Petri net formalization technique proposed in He and Yang (1992),
which adapts the modern strutcured analysis methods in Youdon (1989). Use cases are
thus viewed as event lists. A simple predicate transition net is developed for each use
case, and these predicate transition nets are then connected according to the overall use
case diagram. Second, an intermediate specification is generated using the modern
structured analysis methods. Then, the intermediate specification consisting of a data
flow diagram, a data dictionary, and a set of process specifications written in decision
tables can be systematically translated into an algebraic Petri net using the approach
developed in Kan and He (1996), in which the net structure is derived from the data flow
diagram, the sorts (or types) of data elements are derived from the data dictionary, and
the transition contraints are derived from the decision tables.

Operation and Method Description of Use Cases

While it is not clear whether the operations and methods mentioned in UML 2003 refer
to those defined in class definition or not, one thing is sure: they provide more structures
than the plain text descriptions. If the operations and methods are not defined in a class
context, then we can certainly use the approaches proposed in dealing with plain text
descriptions. If the operations and methods are defined in a class context, we offer the
following two possible translation approaches. The general object-orientation tech-
nique in HPrTNs (He & Ding, 2001) can be used to define the operations and methods
when the operations and methods are not defined in classes represented in a UML class
diagram. The more specific technique in translating UML class diagrams into HPrTNs
(He, 2000a) can be used to integrate the HPrTN defintions of operations and methods in
both UML class diagrams and use case diagrams. The main ideas in both of the
approaches are similar: A class is defined by a super place, operations are defined by
transitions and their meanings are specified by transition constraints, and attributes are
defined by places with appropriate sorts. Based on the correspondences between OO
entities and HPrTN elements, various relationships such as associations and inheritance
can be realized using additional net structures and inscriptions.

Activity Diagram Description of Use Cases

UML activity diagrams are directly derived from low-level Petri nets, thus an HPrTN net
structure can be directly obtained from a given activity diagram. However, an activity
diagram only shows simple control information and causal relationships between
activities; there is no description in existing UML documentation how to use activity

TEAM LinG

Formalizing and Analyzing UML Use Case View 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

diagrams to define data processing and transformation in use cases. There is also no
discussion what is the relationship between an activity and a use case or even an
illustration that shows the use of both of these diagrams in an example in existing UML
documentation. Therefore, we believe that the suggestion of using activity diagrams to
define use cases is not well-defined and cannot be considered as a meaningful alternative
approach at this present time.

State Machine Description of Use Cases

State machines, especially UML statechart diagrams, are a suitable means for defining
use cases. Statechart diagrams are a formal method and thus provide precise meanings
for use cases. The translation from a statechart diagram to an HPrTN net is quite
straightforward. The hierarchical (nested) states in a statechart are translated into super
places in an HPrTNs and the concurrent states are translated into independent places
in an HPrTN. Each elementary state in a statechart diagram is translated into an
elementary place in an HPrTN, and each state transition in a statechart diagram is
translated into a transition with proper constraint in an HPrTN such that the transition
connects two places representing the corresponding states in the statechart diagram. We
have developed techniques to translate UML statechart diagrams into HPrTNs (Dong
& He, 2001; and Dong et al., 2003).

The Pre- and Post-Condition Description of Use Cases

If the semantics of a use case is given using pre- and post-conditions, we can easily
translate them into first order logic formula and inscribe the formula to the transition. We
have shown how to derive transition constraints from decision tables (Kang & He, 1996)
in which the condition part is essentially preconditions and the action part defines the
post-conditions. We also developed a set of heuristics to develop precondition and post-
condition style constraints using PZ nets (He, 2001), and the heuristics can be adapted
to HPrTNs easily.

Analyzing Behavioral
Properties of HPrTNs

Several techniques have been developed for analyzing HPrTNs (He, 1995, 1996, 1998).
One obvious choice is the simulation technique based on the dynamic semantics of a
predicate transition net after an HPrTN is flattened; this can be used to demonstrate any
given scenario and uncover requirement errors as well as specification errors in the use
case view if the execution deviates from the expected external behavior.
In this chapter, we also discuss one formal proof technique (He, 1995)—temporal
induction technique for analyzing invariant properties of HPrTNs.

TEAM LinG

170 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

System invariant properties are a subclass of general system behavioral properties. A
system invariant must be true in every system state, that is, every reachable marking of
an HPrTN. The formal definition of invariant properties can be found in Alpern and
Schneider (1985). The technique is based on an invariance inference rule from Manna and
Pnueli (1992) and combines net structural and behavioral reasoning as well as traditional
logical reasoning.

Formalizing Invariant Properties

Let [M0 >ω denote the set of all valid marking sequences extracted from all execution
sequences of a given HPrTN, and σ be a valid marking sequence and |σ| be the length
of the sequence, and σ(i) be the ith state (marking) in σ. W (a first order logic formula)
is an invariant property if and only if the following holds:

0[.(: 0 | | .(()))M i i i Wωσ σ σ∀ ∈ > ∀ ≤ ≤ = ,

where σ(i) W denotes that marking σ(i) satisfies W, that is, the evaluation of W under
marking σ(i) yields true. Thus, a safety property holds in every marking of every
valid marking sequence. The formulation can be simplified to the following equivalent
version in terms of the set of all reachable markings only:

0[.()M M M W∀ ∈ > = .

Proving Invariant Properties

In Manna and Pnueli (1992), several temporal logic-based inference rules for invariance,
or safety properties, were given. Among the rules, the following basic invariance rule in
its state validity form re-formulated in terms of HPrTNs is essential:

The Basic Invariance Rule

B1. M0 ⇒ W
B2. R(t) : α ∧ W ⇒ W' for each and occurrence α

0 for every [M W M M= ∈ >

In the rule, premise B1 requires that the initial marking M0 imply property W and
premise B2 requires that all transitions preserve W. R(t) is the of t. W' is obtained
from W by changing the names of variables to their dashed version. Based on the

TEAM LinG

Formalizing and Analyzing UML Use Case View 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

premises B1 and B2, we conclude that W is valid or is satisfied under any reachable
marking from M0.
We provide the following induction procedure to apply the inference rule:

• Step 1: Prove that the initial marking satisfies a system property formula.
• Step 2: Assume that the system property formula holds after k events in a state M.
• Step 3: Prove that the system property formula holds after k+1 events in any

directly reachable state M' from M.

It is easy to see that Steps 2 and 3 in the temporal induction proof technique fulfill Premise
B2 of the invariance rule. Furthermore, we only need to consider the firing of a relevant
transition and its constraint with regard to the given property under the guidance of the
net structure during Step 3. For example, a system deadlock may occur when a particular
predicate has a special marking. To show the system does not have the deadlock, we only
need to show that transitions connected to this predicate cannot result in this special
marking. Therefore, the proof is in general local in the sense that only a subset of the
transitions needs to be considered. In general, logical, net structural, and net behavioral
reasoning are needed to prove an invariant property. The temporal induction technique
is demonstrated in the next example.

A Translation Example

In this section, we first translate the library system described in Figure 2 to an HPrTN
structure using the guidelines discussed earlier, and then translate use case descriptions
into net inscription according to the guidelines in a previous section to complete the
formal definition.

Translating the Use Case Diagram into an HPrTN
Structure

Step 1: Translate Use Case Search

Since the actor User initiates the interactions, a transition User is used to generate a token
that models an actor instance and hence a use case instance. Applying Rule 1 to actor
User and Rule 3 to use case Search, we obtain the following HPrTN structure.

TEAM LinG

172 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10 (a). User’s search

 User Search SI SO

Library

Step 2: Translate Use Case Transact and Maintenance

Similarly applying Rule 1 to actor Librarian and Rule 3 to use cases Transact and Maintain,
we obtain the following HPrTN net structure:

Figure 10 (b). Librarian use cases

Librarian

Transact

IN

TO

Library

Maintain

MO

Step 3: Translate the <<extend>> Relation with Regard to Search

An <<extend>> use case defines an optional interaction sequence within the main use
case. In this example, place TI serves as a good extension point since no direct behavioral
dependence between Transact and Search. After applying Rule 6, we obtain the HPrTN
structure illustrated in Figure 10(c).

Step 4: Translate <<include>> Relations with Regard to Validate and
Update

Validation takes place before a borrowing or returning request can be processed, while
Update takes place only on proper records. Thus, it is easy to see the pattern in Figure
8 (a) is suitable for use case Validate and the pattern in Figure 8 (b) is suitable for use case

TEAM LinG

Formalizing and Analyzing UML Use Case View 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Update. After applying Rule 5 to the <<include>> relationships with regard to Validate
and Update, we obtain the following HPrTN structure:

Figure 10 (d). The HPrTN structure with <<include>>

Librarian

Transact

IN

TO

Librar
y

Search

SO

Maintain M

Validate Update VO UI

Step 5: Translate the Generalization Relationship with Regard to
Transact and Borrow and Return

Applying Rule 4 to the use case Transact in Figure 10 (d), we obtain the following HPrTN
structure:

Figure 10 (c). Librarian use cases with <<extend>>

Librarian

Transact

IN

TO

Library

Search

SO

Maintain MO

TEAM LinG

174 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Step 6: Combine HPrTN structures from multiple actors.

Applying Rule 2 to actors User Figure 10 (a) and Librarian Figure 10 (e), we obtain the
following complete HPrTN structure:

Figure 10 (f). The HPrTN structure with generalization

Librarian

Transact

IN

TO

Librar
y

Search

SO

Maintain M

Validate Update Borro

Return

V UI

Use

As discussed earlier, different actor instance and use case instances are distinguished
through user identifications and session numbers, which are defined in net inscription
discussed next.

Figure 10 (e). The HPrTN structure with generalization

Librarian

Transact

IN

TO

Librar
y

Search

SO

Maintain M

Validate Update Borro

Return

V UI

TEAM LinG

Formalizing and Analyzing UML Use Case View 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Translating the Use Case Descriptions into a Net
Inscription

Thus far, we have obtained a net structure translated from the use case diagram in Figure
2. In this subsection, we demonstrate how to translate use case descriptions into net
inscription. Since the use case descriptions in our example were written in plain English,
we use the approach in He and Yang (1992). We omit the translation of use case Maintain
and its associated net elements.

Deriving the Sorts of Places

In this section, we define the sort assignment j for all places based on the information
in the use case descriptions.

(1) Place IN – place IN holds two types of user requests from users and librarians,
respectively. A user request is originated from use case Search and the description
mentioned a book title. A librarian request is either from use case Borrow or Return.
From the use case descriptions of Borrow or Return, it can be seen that user
identification and a book title are needed. To reconcile the two types of requests,
a type of ID × BT is needed, where ID denotes the set of valid user identifications
and BT denotes the set of all possible book titles. ID also includes a special symbol
λ denoting an empty name. Furthermore, to distinguish a different type of request,
a request type COM = {S, B, R} is needed. Thus the type of IN is COM × ID ×
BT.

(2) Place Library – the library needs to contain user information. The essential user
information needs to contain user identifications ID. The library needs to contain
book information and book status. The essential information needs to contain book
titles Title and their status, which can be ID indicating their borrowers. If a book
title maps to λ, it is available. Thus the type of place Library is ID × (BT → ID).

(3) Place VO – the type of VO combines the request information, library information,
and validation results. If we use VAL = {V, I} to denote a valid user or an invalid
user, respectively, then the type of VO is (COM × ID × BT) × (ID × (BT → ID))
× VAL.

(4) Place UI – the type of UI contains the result of Borrow or Return. If we use set
OK = {Y, N} to denote that a Borrow or Return command is successful or not,
respectively, place UI has the following type (COM × ID × BT) × (ID × (BT → ID))
× VAL × OK.

(5) Place TO – place TO contains the result of a request and thus has the type (ID
× BT) × VAL × OK.

(6) Place SO – place SO has the type ID × AV, where AV = {Y, N} indicating the title
is in the library or not, respectively.

TEAM LinG

176 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In summary the sorts of the places are:

ϕ(IN) = COM × ID × BT,
ϕ(Library) = ID × (BT → ID),
ϕ(VO) = (COM × ID × BT) × (ID × (BT → ID)) × VAL,
ϕ(UI) = (COM × ID × BT) × (ID × (BT → ID)) × VAL × OK,
ϕ(TO) = (ID × BT) × VAL × OK,
ϕ(SO) = ID × AV.

Deriving Arc Label Definitions

We use the following convention in defining arc labels: A lower case variable x denotes
an individual variable / or a singleton set, and an upper case W denotes a set variable.
The arc labels are derived from the sorts of connecting places. Based on the types of the
places, we have the following arc label definitions:

L(Librarian, IN) = L(User, IN) = x, L(IN, Validate) = L(IN, Search) = x,
L(Library, Validate) = W,
L(Validate, VO) = L(VO, Borrow) = L(VO, Return) = <x, W, y>,
L(Borrow, UI) = L(Return, UI) = L(UI, Update) = <x, W, y, z>,
L(Update, TO) = <x’, y, z>,
L(Update, Library) = W’,
L(Search, Library) = L(Library, Search) = W,
L(Search, SO) = <x’, y>.

Deriving Constraint Definitions

We use x[k] to denote the project operation of kth component of variable x.
The constraint of Librarian only has a post-condition defined as follows:

R(Librarian) = (x[1] ∈ {B, R} ∧ x[2] ∈ ID ∧ x[3] ∈ BT)

The firing of transition Librarian generates a token x with a command type of either
B or R, a user identification, and a book title.
The constraint of User only has a post-condition defined as follows:

R(User) = (x[1] = S ∧ x[2] = S ∧ x[3] ∈ BT)

TEAM LinG

Formalizing and Analyzing UML Use Case View 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The constraint of Validate is defined as follows:

R(Validate) = (x[1] ∈ {B, R}) ∧ (x[2] ∈ W[1] ⇒ y = ‘V’ ∨ x[2] ∉ W[1] ⇒ y = ‘I’),

The validation of user request checks whether a provided user identification x[2] is in
the set of valid library users W[1].
The constraint of Search is defined as follows:

R(Search) = (x[1] ∈ S) ∧ (x[3] ∈ dom W[2] ⇒ y = ‘Y’ ∨ x[3] ∉dom W[2] ⇒ y = ‘N’)
 ∧ (x’ = x[2]),

The constraint of Borrow is defined as follows:

 R(Borrow) = (x[1] = B) ∧ (x[3] ∈ dom W[2] ⇒ (W[2](x[3]) ≠ λ ⇒ z = ‘N’ ∨
 W[2](x[3]) = λ ⇒ z = ‘Y’) ∨

 x[3] ∉ dom W[2] ⇒ z = ‘N’),

The precondition of Borrow specifies whether the requested book title is available or not.
Based on the precondition, a ‘N’ or ‘Y’ is output as a part of post-condition.
The constraint of Return is defined as follows:

 R(Return) = (x[1] = R) ∧ (x[3] ∈ dom W[2] ⇒ (W[2](x[3]) = x[2] ⇒
z = ‘Y’ ∨ W[2](x[3]) ≠ x[2] ⇒ z = ‘N’) ∨ x[3] ∉ dom W[2] ⇒ z = ‘N’),

The constraint of Return is defined similarly.
The constraint of Update is defined as follows:

 R(Update) = ((y = ‘V’) ∧ (z = ‘Y’) ⇒
(x[1] = B ⇒ W’[1] = W[1] ∧ W’[2] = W[2] – {x[3] � λ} ∪ { x[3] � x[2]}) ∨
(x[1] = R ⇒ W’[1] = W[1] ∧ W’[2] = W[2] – { x[3] � x[2]} ∪{x[3] � λ})) ∨
((y ≠ ‘V’) ∨ (z ≠ ‘Y’) ⇒ W’ = W).

The Update is unsuccessful if a user is not a valid user y ≠ ‘V’ or the transaction condition
is not met z ≠ ‘Y’, as a result the library content is unchanged W’ = W. The Update is
successful if both of the conditions are satisfied, and the book status is changed.

Deriving the Initial Marking

Initially, there are m users in ID and n books in BT such that all the books are available
in place Library.

TEAM LinG

178 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Analyzing an Invariant Property

We demonstrate the application of the structured induction analysis technique through
analyzing one invariant property of the use case specification in Figure 10 (f). The
invariant property specifies that all copies in the library must be either available for
checkout or be checked out.
The property can be formulated as follows:

.([2].([2] [2] [1]))W Library co W co co Wλ∀ ∈ ∀ ∈ = ∨ ∈ (*)

The formula states that any copy co, which is a maplet consisting of a book title and a
user name, is either available denoted by λ, or checked out with a valid user name in W[1].
We apply the temporal induction procedure to prove (*). In the following proof outline,
we skip explanations of simple logical reasoning.
Proof outline of formula (*):

• Step 1: Under the initial marking M0, (*) is true since all the books are available for
checkout.

• Step 2: Assume (*) holds after k transactions in a marking M:

 [2].([2] [2] [1])co W co co Wλ∀ ∈ = ∨ ∈

• Step 3: Prove (*) holds after k+1 transactions in a state M’ such that M[t/α>M’ for
a transition t with an occurrence mode α. We examine each transition firing in turn:

Case 1: Firing transitions Librarian, User, Validate, and Borrow/Return:
A firing of any transition listed has no effect on place Library, thus (*) holds from
the induction assumption;

Case 2: Firing transition Search:
A firing of transition Search does not change Library since the labels from and to
Library are both W. Thus (*) holds from the induction assumption.

Case 3: Firing transition Update:
(1) From the disjunct ((y ≠ ‘V’) ∨ (z ≠ ‘Y’) ⇒ W’ = W) of the constraint
R(Update): Library content is unchanged, thus (*) is true from the induction
assumption;
(2) From the disjunct ((y = ‘V’) ∧ (z = ‘Y’) ⇒
(x[1] = B ⇒ W’[1] = W[1] ∧ W’[2] = W[2] – {x[3] � λ} ∪ { x[3] � x[2]}) ∨
(x[1] = R ⇒ W’[1] = W[1] ∧ W’[2] = W[2] – { x[3]� x[2]} ∪{x[3] � λ}))

TEAM LinG

Formalizing and Analyzing UML Use Case View 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

W’[2] is changed either from available to checked out or from checked out to
available. Thus (*) holds from the induction assumption.

Therefore, (*) holds after firing transition Update from (1) to (5).
Since all possible transition firings from a given marking M have been considered and
all maintain the property (*), (*) is thus proved by the temporal induction procedure.

Related Work

In Back et al. (1999), the refinement calculus (Back & Wright, 1998) was used to define
the formal semantics of use cases. Given a use case diagram, a supplemental formal
semantic document, called a contract, was written in refinement calculus. The contract
was further used to analyze the behavior of the use case diagram. Their work was very
much like the net inscription definition part in our approach. However, they did not deal
with the translation of a complete use case diagram, and they did not consider how to
formally define use case relationships such as <<extend>>, <<include>>, and generali-
zation. Our approach provides a translation technique to map the syntax of a use case
diagram into an HPrTN structure.
In Overgaard and Palmkvist (1998), the formalization of the structure of UML use cases
in terms of the sequences of actions defined in predicate logic was discussed, but no
analysis was shown.
In Lee, Cha, and Kwon (1998), a modular low-level Petri net model, called constraints-
based modular Petri nets (CMPNs), was used to define use cases. A translation technique
was provided to map a set of use cases to a CMPN net structure and the Petri net
simulation method was used to detect potential incompleteness and inconsistency in the
given use cases. Their technique was developed to handle general use cases in
requirements engineering but not aimed at the UML use case diagrams. Furthermore, their
Petri net model does not support data definition and analysis, which are necessary in
UML use case diagrams.

Conclusion

In this chapter, an approach to define and analyze use case view in UML using HPrTNs
is presented. We have shown how to define the structure and semantics of a use case
view in terms of HPrTN elements and provided a behavioral property analysis technique.
We have demonstrated our approach through an example. A correctly defined case use
model establishes the foundation for subsequent system development and furthermore
provides a sound basis for future system evolution.

TEAM LinG

180 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Compared with UML notations, HPrTNs are relatively more difficult to understand and
use. HPrTNs are a formal method having a formal semantics and supporting formal
analysis, and thus are intrinsically more complicated than informal methods. Further-
more, HPrTNs define all system aspects (functionality, data, structure, and behavior) in
one notation while UML offers different notations such as Class diagrams, Interaction
diagrams, State diagrams, and Activity diagrams for different system aspects. Although
this multiple aspects definition may be more complex, it has the advantage of providing
a unified semantic domain facilitating cross view consistency checking.
Our purpose of formalizing UML diagrams is not to substitute UML diagrams using
HPrTNs, rather we want to use HPrTNs to supplement UML diagrams for formal analysis.
Based on our extensive experience on research of formal methods as well as those of other
researchers, it is evident that it is extremely difficult, if not possible, to train software
engineers to directly use formal methods. A wise and feasible approach is to let software
engineers use informal or semi-formal notations such as UML and have special trained
analysts to analyze these informal specifications and design through a translation to
some formal model. Based on our prior work on using HPrTNs for formalizing UML
notations, we see the following potential benefits of our approach to define use case view
using HPrTNs. First, our translation approach provides a systematic way to integrate
multiple use cases based on given use case diagrams and thus supports incremental and
scalable translation. Second, we believe that HPrTNs can serve as a unified notation for
other UML graphical notations, that is, class diagrams, object diagrams, sequence
diagrams, collaboration diagrams, statechart diagrams, and activity diagrams. We have
developed an approach to formally define UML class diagrams using HPrTNs (He, 2000a),
and an approach in formalizing statechart diagrams and collaboration diagrams (Dong
& He, 2001; Dong et al., 2003). By translating an individual UML diagram into an HPrTN,
we can formally analyze its structure and behavior, and thus reveal possible modeling
and design errors in the original UML diagrams. Third, we believe that a single HPrTN
can provide a unified model to define many different views provided by separate diagrams
in UML. Building a unified HPrTN for multiple views defined in several UML diagrams
can help detect inconsistencies among these UML models. We are exploring ways to
facilitate the practical use of our translation techniques, including developing tech-
niques to map detected errors to relevant use cases or relationships in the original use
case view and building prototype tools to assist the translation process.

Acknowledgments

We thank the two reviewers for helping us to improve the presentation of this work. This
research was supported in part by the Office of Naval Research of the USA under grant
N00014-98-1-0591, by the National Science Foundation of the USA under grant HRD-
0317692, and by the National Aeronautics and Space Administration of the USA under
grant NAG2-1440.

TEAM LinG

Formalizing and Analyzing UML Use Case View 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Alpern, B., & Schneider, F. (1985). Defining liveness. Information Processing Letters,
21(4), 181-185.

Back, R. & Wright, J. (1998). Refinement calculus: A systematic introduction. Berlin,
Germany: Springer-Verlag.

Back, R., Petre, L., & Paltor, I. (1999). Analyzing UML use cases as contracts. Lecture
Notes in Computer Science, 1723, 518-533.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user
guide. Reading, MA: Addison Wesley Longman.

Dong, Z., & He, X. (2001). Integrating UML statechart and collaboration diagrams using
hierarchical predicate transition nets. Lecture Notes in Informatics, P-7, 99-112.

Dong, Z., Fu, Y., & He, X. (2003). Deriving hierarchical predicate/transition nets from
statechart diagrams – A case study. Proceedings of the SEKE 2003, California (pp.
150-157).

Evans, A. (1998). Reasoning with UML class diagrams. Proceedings of the Second IEEE
Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton,
(pp. 102-113).

France, R., Evans, A., Lano, K., & Rumpe, B. (1998). Developing the UML as a formal
modeling notation. Computer Standards and Interfaces, 19, 325-334.

Genrich, H. (1987). Predicate transition nets. Lecture Notes in Computer Science, 254,
205-247.

Harel, D. (1988). On visual formalisms. Communications of the ACM, 31, 514-530.
He, X. (1995). A method for analyzing properties of hierarchical predicate transition nets.

Proceedings of the 19th International Computer Software and Applications
Conference, Dallas, (pp. 50-55).

He, X. (1996). A formal definition of hierarchical predicate transition nets. Lecture Notes
in Computer Science, 1091, 212-229.

He, X. (1998). Transformations on hierarchical predicate transition nets: Abstractions
and refinements. Proceedings of the 22nd International Computer Software and
Application Conference (COMPSAC’98), Vienna, Austria, (pp. 164-169).

He, X. (2000a). Formalizing UML class diagrams – A hierarchical predicate transition net
approach. Proceedings of the 24th International Computer Software and Appli-
cation Conference (COMPSAC 2000), Taiwan, (pp. 217-222).

He, X. (2000b, August). Formalizing use case diagrams in hierarchical predicate transition
nets. Proceedings of the IFIP 16th World Computer Congress, Beijing, China, (pp.
484-491).

He, X. (2000c). Translating hierarchical predicate transition nets into CC++ programs.
Information and Software Technology, 42(7), 475-488.

He, X. (2001). PZ nets – A formal method integrating Petri nets and Z. Information and
Software Technology, 41(1), 1-18.

TEAM LinG

182 He

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

He, X. & Ding, Y. (2001). Object-orientation in hierarchical predicate transition nets.
Lecture Notes in Computer Science, 2001, 196-215.

He, X. & Lee, J.A.N. (1991). A methodology for constructing predicate transition net
specifications. Software - Practice and Experience, 21(8), 845-875.

He, X. & Yang, C.H. (1992). Structured analysis using hierarchical predicate transition
nets. Proceedings of 16th International Computer Software and Applications
Conference, Chicago, (pp. 212-217).

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified modeling language
development process. Reading, MA: Addison Wesley Longman.

Jacobson, I. Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-oriented
software engineering: A use case driven approach. Reading, MA: Addison-
Wesley.

Kan, C. & He, X. (1996). A method for constructing algebraic Petri nets. Journal of
Systems and Software, 35, 12-27.

Kim, S. & Carrington, D. (1999). Formalizing the UML class diagram using object-Z.
Proceedings of UML’99, Lecture Notes in Computer Science (Vol. 1723, pp. 83-98).

Knapp, A. (1999). A formal semantics for UML interactions. Proceedings of UML’99,
Lecture Notes in Computer Science (Vol. 1723, pp. 116-130).

Lano, K. & Bicarregui, J. (1998). Formalizing the UML in structured temporal theories.
Proceedings of the Second ECOOP Workshop on Precise Behavioral Semantics,
(pp. 105-121). Springer-Verlag.

Lee, W., Cha, S., & Kwon, Y. (1998). Integration and analysis of use cases using modular
Petri nets in requirements engineering. IEEE Trans. on Software Engineering,
24(12), 1115-1130.

Manna, Z. & Pnueli, A. (1992). The temporal logic of reactive and concurrent systems
– Specification. Springer-Verlag.

McUmber, W. & Cheng, B. (1999). UML-based analysis of embedded systems using a
mapping to VHDL. Proceedings of IEEE High Assurance Software Engineering,
Washington, DC, November.

McUmber, W. & Cheng, B. (2001, May). A generic framework for formalizing UML.
Proceedings of IEEE International Conference on Software Engineering (ICSE01),
Toronto, Canada.

Overgaard, G. & Palmkvist, K. (1998). A formal approach to use cases and their
relationships. Lecture Notes in Computer Science, 1618, 309-317.

Rumbaugh, J., Booch, G., & Jacobson, I. (1999). The unified modeling language
reference manual. Reading, MA: Addison Wesley Longman.

Saldhana, S. & Shatz, S. (2000). UML diagrams to object Petri net models: an approach
for modeling and analysis. Proceedings of the 12th International Conference on
Software Engineering and Knowledge Engineering, Chicago, (pp. 103-110).

Saldhana, S., Shatz, S., & Hu, Z. (2001). Formalization of object behavior and interactions
from UML models. International Journal of Software Engineering and Knowl-
edge Engineering (IJSEKE), 11(6), 643-673.

TEAM LinG

Formalizing and Analyzing UML Use Case View 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Shroff, M. & France, R. (1997). Towards a formalization of UML class structures in Z.
Proceedings of COMPSAC’97, Washington, DC.

UML (2003). Unified Modeling Language. Version 1.5. Available online at http://
www.omg.org

Yourdon, E. (1989). Modern structured analysis. Englewood Cliffs, NJ: Prentice Hall.

TEAM LinG

184 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Formal Specification
of Software Model
Evolution Using

Contracts
Claudia Pons, Universidad Nacional de La Plata, Argentina

Gabriel Baum, Universidad Nacional de La Plata, Argentina

Abstract

During the object-oriented software development process, a variety of models of the
system is built. All these models are semantically overlapping and together represent
the system as a whole. In this chapter, we present a classification of relationships
between models along three different dimensions, proposing a formal description of
them in terms of mathematical contracts, where the software development process is
seen as involving a number of agents (the development team and the software artifacts)
carrying out actions with the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason about correctness of the
development process, and to compare the capabilities of various groupings of agents
in order to accomplish a particular contract. The goal of the proposed formalization
is to provide formal foundations for tools that perform intelligent analysis on models
assisting software engineers through the software life cycle.

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

A software development process is a set of activities that jointly convert users’ needs
to a software system. Modern software development processes, such as the Unified
Process (Jacobson, Booch, & Rumbaugh, 1999), are iterative and incremental, they repeat
over a series of iterations making up the life cycle of a system. Each iteration takes place
over time and consists of one pass through the requirements, analysis, design, imple-
mentation, and test activities, building a number of different models. Due to the
incremental nature of the process, each iteration results in an increment of models built
in previous iterations. This creates a natural relationship between the elements among
different phases and iterations; elements in one model can be related to elements in
another model. For instance, a use case (in the use case model) can be traced to a
collaboration (in the analysis or design model) representing its realization. Figure 1 lists
the classical phases or activities — requirements, analysis, design, implementation, and
test — in the vertical axis and the iteration in the horizontal axis. Three different
dimensions are distinguished in order to classify relationships between models:

• horizontal dimension (internal dimension)

• vertical dimension (activity dimension)

• evolution dimension (iteration dimension)

The horizontal dimension deals with relations between submodels that coexist consis-
tently making up a more complex model. The UML incorporates several sublanguages,
each one allowing a specific view on the system. Models of different viewpoints have
a certain overlap, for instance, an analysis model consists of sequence diagrams and

Figure 1. Dimensions in the development process

TEAM LinG

186 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

collaboration diagrams both representing different aspects of the behavior of the system.
The vertical dimension considers relations between models belonging to the same
iteration in different activities (e.g., a design model realizing an analysis model). Two
related models represent the same information but at different levels of abstraction.
The evolution dimension considers relations between artifacts belonging to the same
activity in different iterations (e.g., a use case is extended by another use case). In this
dimension, new models are built or derived from previous models by adding new
information that was not considered before or by modifying or detailing previous
information.
An essential element to the success of the software development process is the support
offered by case tools. Existing case tools facilitate the construction and manipulation of
models, but in general, they do not provide checks of consistency between models along
either vertical or evolution dimension. Tools neither provide automated evolution of
models (i.e., propagation of changes when a model evolves, to its dependent models).
The weakness of tools is mainly due to the lack of a general underlying formal foundation
for the software development process (particularly focused on relations between
models).
To overcome this problem, we propose to apply the well-known mathematical concept
of contract to the specification of software development processes by introducing the
concept of software process contract (sp-contract). Sp-contracts introduce precision of
specification, avoiding ambiguities and inconsistencies, and enabling developers to
reason about the correctness of their joint activities. The goal of the proposed formalism
is to provide foundations for case tools assisting software engineers during the
development process. Sp-contracts provide a formalization of software artifacts and their
relationships. They clearly specify pre- and post-conditions for each software develop-
ment task, allowing for the verification of consistency between models through evolu-
tion.
The remainder of this chapter is organized as follows. First, we describe the underlying
formalism we use to develop our proposal. Then, we introduce the concept of software
process contract (sp-contract), which constitutes our proposal to improve formality of
software development process. The next section contains some ideas about future trends
and the construction of a case tool based on sp-contracts. Finally, we present the
conclusion and related works.

Background:
Notion of Software Contract

Generally, a computation can be seen as involving a number of agents (objects) carrying
out actions according to a document (specification, program) that has been laid out in
advance. This document represents a contract between the agents involved. A contract
imposes mutual obligations and benefits; it protects both sides (the client and the
contractor):

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• It protects the client by specifying how much should be done; the client is entitled
to receive a certain result.

• It protects the contractor by specifying how little is acceptable; the contractor must
not be liable for failing to carry out tasks outside of the specified scope.

The notion of contract regulating the behavior of a software system has been investi-
gated by several authors (Andrade & Fiadeiro, 1999; Back, Petre, & Porres Paltor, 1999;
Helm, Holland, & Gangopadhyay, 1990; Meyer, 1992; Meyer, 1997). In particular, in our
work, we apply the formalism of contracts proposed by Ralf Back which is based on the
Refinement Calculus (Back & von Wright, 1998).
The refinement calculus is a logical framework for reasoning about programs. It is
concerned with two main questions: Is a program correct with respect to a given
specification? And, how can we improve, or refine, a program while preserving its
correctness? Both programs and specifications can be seen as special cases of a more
general notion, that of a contract between independent agents. Refinement is defined as
an ordering relation between contracts. Correctness is a special case of refinement where
a specification is refined by a program.
The refinement calculus is formalized within higher order logic, allowing us to prove the
correctness of contracts and to calculate contracts refinements in a rigorous, mathemati-
cally precise manner. The refinement calculus is equipped with automatic tools: the
Mechanised Reasoning Group led by Joakim von Wright has developed a system for
supporting program derivation, precondition calculation and correctness calculation
within the Refinement Calculus framework that is called the Refinement Calculator
(Butler, Grundy, Langbacka, Ruksenas, & Von Wright, 1997; Celiku & von Right, 2002).
This system is based on the HOL theorem prover.

Contract Language

Consider a collection of agents, where each agent has the capability to change the world
in various ways through its actions and can choose different courses of action. The
behavior of agents and their cooperation is regulated by contracts. The contract can
stipulate that the agent must carry out actions in a specific order. This is written as a
sequential statement S1;...;Sm, where S1,...,Sm are the individual actions that the agent has
to carry out. A contract may also require the agent to choose one of the alternative actions
S1,...Sm. The choice is written as the alternative statement S1È...ÈSm.
The world is described as a state s. The state space S is the set of all possible states s.
The state is observed as a collection of attributes x1, x2, ...,xn, each of which can be
observed and changed independently of the others. An agent changes the state by
applying a function f to the present state s, yielding a new state f.s. These functions
mapping states to states are the most primitive form of action that agents can carry out.
An example of state transformer is the assignment x:=exp, that updates the value of
attribute x to the value of the expression exp.

TEAM LinG

188 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The language for contracts is simple:

S ::= 〈f〉 if p then S1 else S2 fi S1 ; S2 asserta p Ra S1 ∪∪∪∪∪a S2 rec X•S

Here a stands for an agent while f stands for a state transformer, p for a state
predicate (i.e., a boolean function p:Σ→Bool) and R for a state relation (i.e., relation
R:Σ→ Σ→ Bool relates a state σ to a state σ´ whenever R.σ.σ´ holds).
Each statement in this language describes a contract for an agent. Intuitively, a
contract is executed as follows:

The functional update <f> changes the state according to the state transformer f,
that is, if the initial state is σ0 then the final state is f.σ0. An assignment statement
is a special kind of update where the state transformer is expressed as an assignment.
For example, the assignment statement <x:=x+y> requires the agent to set the value
of attribute x to the sum of the values of attributes x and y.
In the conditional composition if p then S1 else S2 fi, S1 is carried out if p holds in
the initial state, and S2 otherwise. In the sequential composition S1; S2, statement S1
is carried out first, followed by S2.
An assertion asserta p , for example, asserta (x+y=0) expresses that the sum of (the
values of) x and y in the state must be zero. If the assertion holds at the indicated
place when the agent a carries out the contract, then the state is unchanged, and
the rest of the contract is carried out. If, on the other hand, the assertion does not
hold, then the agent has breached the contract.
The relational update and choice both introduce nondeterminism into the language
of contracts. Both are indexed by an agent which is responsible for deciding how
the nondeterminism is resolved. The relational update Ra requires the agent a to
choose a final state σ´ so that R.σ.σ´ is satisfied, where σ is the initial state. In
practice, the relation is expressed as a relational assignment. For example, updatea
{x := x´| x´ <x} expresses that the agent a is required to decrease the value of the
program variable x. If it is impossible for the agent to satisfy this, then the agent has
breached the contract.
The statement S1 ∪a S2 allows agent a to choose which is to be carried out, S1 or
S2.
Finally, recursive contract statements are allowed. A recursive contract is defined
using an equation of the form X = S, where S may contain occurrences of the
contract variable X. With this definition, the contract X is intuitively interpreted as
the contract statement S, but with each occurrence of statement variable X in S
treated as a recursive invocation of the whole contract S. It also is permitted the
syntax (rec X•S) for the contract X defined by the equation X=S. An important
special case of recursion is the while-loop which is defined in the usual way: while
p do S od =(rec X•if p then S ; X else skip fi) where skip is the well-known “do
nothing” statement.

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cooperation Contract

Consider a set of agents that work on the same state independently of each other. Each
agent has a will of its own and makes decisions for itself. If these agents want to
cooperate, they need a contract that stipulates their respective obligations.
A typical situation is that one of the agents acts as a server, and the other as clients.
Assume that a client follows contract S,

Contract S = (f1 ∪ skip) ; T ; f2

Where f1 and f2 are primitive actions and T is the contract for the server,

Contract T = f3 ∪ f4

The occurrence of T in the contract statement S signals that the client asks the server
to carry out its contract T.
We can combine the two statements S and T into a single contract statement regulating
the behavior of both agents. The combined contract is described by

Contract V = (f1 ∪client skip) ; (f3 ∪server f4) ; f2

The combined collaborative contract is the result of substituting the contract statement
T for the invocation on T in the contract S and explicitly indicating for each choice which
agent is responsible for it.
Another form of interaction between agents occurs when they need to synchronize their
individual actions. Assume that the agents (a0, a1, a2) are placed in a ring, with a collection
of resources situated between them (ri is the collection of resources placed between
agents ai-1 and ai+1, where modulo-3 arithmetic is used). This situation is illustrated in
Figure 2.

a1
r 0 r 2

r 1

a2 a0

Figure 2. Resource game

TEAM LinG

190 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each agent ai has access to the resource in ri-1 and ri+1 but not to ri. Resources are
nonrenewable, and we assume that the agents take turns grabbing one of them from either
side (left or right). An agent also can choose to do nothing. Initially, no agents have
grabbed any resource, and the resources are evenly distributed,
init = n0,n1,n2,r0,r1,r2 := 0,0,0,m,m,m
where ni models the number of resources that agent ai has grabbed and m is the initial
number of resources at each point.
The alternatives open to agent ai are described by the following contract:

Contract Si = grabli ∪ai skip ∪ai grabri

 Where
 grabli = assert ai ri-1 >0 ; ni, ri-1 := ni + 1, ri-1 – 1
 grabri = assert ai ri+1 >0 ; ni, ri+1 := ni + 1, ri+1 – 1

Now the whole system can be described as the combination of subcontract S0, S1 and S2
into a single contract statement that regulates the behavior of the three agents, as
follows:

Contract System = init; while ro + r1 + r2 > 0 do S0 ; S1 ; S2 od

According to this contract, on every round the order of choices is deterministic: agent
a0 chooses first, then a1 and finally a2. It is possible to write a different contract permitting
a different order of choices.

Semantics of Contracts: The Rules of a Game

Agents try to achieve their goals, that is, to reach a new, more desirable state. The desired
states are described by giving condition that they have to satisfy (the post-condition).
The possibility of an agent to achieve such a desired state depends on the functions that
it can use to change the state.
Given a contract for a single agent and a desired post-condition, we can ask whether the
agent following the contract can establish the post-condition. This will depend on the
initial state, the state in which the agent starts to carry out the contract. For instance,
consider the contract

Contract S = x:=x+1 ∪ x:=x+2

The agent can establish the post-condition x=2 if x=1 or x=0 initially. When x=1 initially,
the agent should choose the first alternative; but when x=0, the agent should choose the

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

second alternative. But the agent cannot achieve its goal from any initial state satisfying
either x>1 or x<0.
 On the other hand, an agent cannot be required to follow a contract if the assumptions
that it makes are violated for non-allied agents. Violating the assumptions releases the
agent from the contract.
The main concern with a contract is to determine whether a set of agents, say A, can use
the contract to achieve the stated goals. In this sense, agents have to make the right
choices in their cooperation with other agents, which are pursuing different goals that
need not be in agreement with their goals. The other agents need not to be hostile; they
just have different priorities and are free to make their own choices. However, because
no one agent in A can influence the other agents in any way, they have to be prepared
for the worst and consider the other agent as hostile. From the point of view of a specific
agent or a group of agents, it is therefore interesting to know what outcomes are possible
regardless of how the other agents resolve their choices.
As far as analyzing what can be achieved with a contract, it is justified to consider the
agents involved as the opponents in a game. The actions that the agents can take are the
moves in the game. The rules of the game are expressed by the contract; it states what
moves the opponents can take and when.
A player in the game is said to have a winning strategy in a certain initial state if the player
can win (by doing the right moves) no matter what the opponents do.
Consider the situation where the initial state σ is given and a group of agents A
agree that their common goal is to use contract S to reach a final state satisfying
q. Satisfaction of a contract (denoted by σ{S}q) corresponds to the existence of a
winning strategy. It means that σ{SA}q holds if and only if the set of agents has a
winning strategy to reach the goal q when playing with the rules S, when the initial
state of the game is σ.
If some of the agents in A are forced to breach an assertion, then the coalition loses
the game. If the opponents are forced to breach an assertion, they lose the game,
and the coalition wins. In this way, an agent can win the game either by reaching
a final state that satisfies the post-condition or by forcing the opponents to breach
an assertion.
This notion of satisfaction is precisely defined, in the following way: The predicate
transformer wpA.S maps post-condition q to the set of all initial states σ from which
the agents in A jointly have a winning strategy to reach the goal q. Thus, wpA.S.q
is the weakest precondition that guarantees that the agents in A can cooperate to
achieve post-condition q. This means that a contract S for a coalition A is
mathematically seen as an element (denoted by wpA.S) of the domain PΣ →PΣ. Then,
the satisfaction of contracts is captured naturally by the notion of weakest

precondition, as follows: σ{S}q ≡ wpA.S.q.σ

The definition of the predicate transformer is as follows. See Back & von Wright (1998)
for a more detailed explanation:

(i) wpA.〈f〉.q = (λσ.q.(f.σ))

TEAM LinG

192 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(ii) wpA.(if p then S1 else S2 fi).q = (p ∩ wpA.S1.q) ∪ (¬p ∩ wpA.S2.q)
(iii) wpA.(S1;S2).q = wpA.S1.(wpA.S2.q)
(iv) wpA.(asserta p).q = λσ.(p.σ ∧ q.σ), if a∈A
 λσ.(¬p.σ ∨ q.σ),if a∉A
(v) wpA.Ra.q = λσ.∃σ´• R.σ.σ´∧ q.σ´ , if a∈A
 λσ.∀σ´• R.σ.σ´→ q.σ´ , if a∉A
(vi) wpA.(S1 ∪a S2).q = wpA.S1.q ∪ wpA.S2.q , if a∈A

 wpA.S1.q ∩ wpA.S2.q , if a∉A

Notion of a Software Process Contract

While the notion of a formal contract regulating the behavior of software agents is
accepted, the concept of contract regulating the activities of software developers is quite
vague. In general, there is no explicit contract establishing obligations and benefits of
members of the development team. At best, the development process is specified by
either a graph of tasks or object-oriented diagrams in a semi-formal style, while in most
cases activities are carried out on-demand, with little previous planning.
However, a disciplined software development methodology should encourage the
existence of formal contracts between developers, so that contracts can be used to
reason about correctness of the development process, and to compare the capabilities
of various groupings of agents (coalitions) in order to accomplish a particular goal.
We propose to apply the notion of a formal contract described in the previous section,
to the software development process itself. That is to say, the software development
process can be seen as involving a number of agents (the development team and the
software artifacts) carrying out actions with the goal of building a software system that
meets the user requirements. The software development process consists of a collection
of interacting activities. When specifying a specific activity, we may consider the other
activities to be controlled by other agents. We may need some of these activities in order
to carry out the set of tasks of our activity, but we cannot influence the choices made
by the other agents. This situation is analogous to a contractor using subcontractors.
A specification of an activity is a contract that gives some constraints on the results and
effects of the activity but leaves freedom for the agent to decide how the actual behavior
is to be realized. For example, a member of the development team, say the agent ai, agrees
to take over the task of specifying a method of a given Class by either creating a State
machine, or a sequence diagram or a set of pre-and post-conditions,

Contract S = create-SM ∪ai create-SeqD ∪ai write-Pre&Post

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The rest of the agents can assume that after ai carries out their contracts, some
specification for the method does exists, but they do not know precisely which alternative
was chosen; so whatever they want to achieve, it should be achieved no matter which
alternative was chosen.
A remarkable difference between traditional software contracts and software process
contracts (sp-contracts) is the kind of object constituting a state. While in software
contracts, objects in the state represent objects in a software system (e.g., a bank account
object in a banking system), in sp-contracts, objects in the state are process artifacts,
such as a class diagram or a use case model. But this difference is just conceptual, from
the mathematical point of view we can reason about process contracts in the standard
way, as if they were software contracts. This view of software process as software is not
new, we can go back to the work of Osterweil (1997).

Building sp-Contracts

There are different levels of granularity in which sp-contracts are defined. On the one
hand we have contracts regulating primitive evolution, such as adding a single class in
a Class diagram, while on the other hand, we have contracts defining complex evolution,
such as the realization of a use case in the analysis phase by a collaboration diagram in
the design phase, or the reorganization of a complete class hierarchy. Complex evolutions
are non-atomic tasks which are composed by a number of primitive tasks. We start
specifying atomic contracts (contracts explaining primitive tasks) which will be the
building blocks for non-atomic contracts (i.e., regulations for complex evolution activi-
ties).

Primitive sp-Contracts

To make contracts more understandable and extensible, we use the object-oriented
approach to specify them. The object-oriented approach deals with the complexity of
description of software development process better than the traditional approach.
Examples of this are the framework for describing UML compatible development pro-
cesses defined by Hruby (1999) and the metamodel defined by the OMG Process Working
Group (OMG, 1998), among others. In the object-oriented approach, software artifacts
produced during the development process are considered objects with methods and
attributes.
A Class is a template used to describe objects with identical behavior. The Refinement
Calculus has been applied to the specification of Classes, by giving a syntax for the Class
declaration and a formal semantics for object instantiation, message passing, inheritance
and substitutability (Back, Mikhajlova, & von Wright, 1997; Back, Mikhajlov, & von
Wright , 2000).
A Class is given by the following declaration:

TEAM LinG

194 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C = subclass of P
 var attr1:Σ1,...,attrm:Σm
 C(val x0:Γ0)= K,
 Meth1(val x1:Γ1 , res y1:∆1) = M1,
 ...
 Methn(val x1:Γ1 , res y1:∆1) = Mn,

 end

This class C describes attributes, specifies the way the objects are created, and gives
a (possibly nondeterministic) specification for each method. Class attributes
attr1,..,attrm have the corresponding types Σ1...Σm. The identifier self represents the
tuple (attr1,...,attrm). The type of self is Σ= Σ1 x ... x Σm. A class constructor is used
to instantiate objects and has the same name as the class. The statement K :Γ0→
Σ x Γ0, representing the body of the constructor, introduces the attributes into the
state space and initializes them using the input parameter x0:Γ0. Methods Meth1...
Methn specified by bodies M1 ... Mn operate on the attributes and realize the object
functionality. Every statement Mi is of type (Σ x Γi x ∆i) → (Σ x Γi x ∆i). The identifier
self acts as an implicit result parameter of the constructor and an implicit variable
parameter of the methods.
In general, every body Mi includes a precondition pi and an effect Si (Mi =assert pi ; Si).
When a method Mi is called there is an agent a responsible for the call. The method
invocation is then interpreted as the following contract: (asserta pi ; Si), that is, the agent
is responsible for verifying the preconditions of the method. If agent a has invoked the
method in a state that does not satisfy the precondition, then a has breached the contract.

Figure 3. Part of the UML metamodel

Generalization
GeneralizableElement

isAbstract : Boolean *1

+spcialization

*

+parent

1
*1

+generalization

*

+child

1

Association

Feature

Classifier

*

0..1

+feature*

+owner
0..1

AssociationEnd

2..* 1

+connection

2..* 11

*+participant

1

*

StructuralFeature BehavioralFeature

Attribute Operation

NameSpace

ModelElement

name
*

+ownedElement

*

Package

*

+importedElement

*

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the sake of readability, we write Methi(val xi : Γi) : ∆i = Mi[resu/yn], to denote
the declaration Methn(val xn:Γ1 , res yn:∆n) = Mn, . The result variable yn is replaced
by the special variable called resu in the body of the method. And regarding method
invocation, we write o.methi(xi).methj(xj) to indicate that the second method is applied
on the object that results from the first invocation, that is to say: o.methi(xi, z);
z.methj(xj).
The library of primitive contracts intentionally reflects the class hierarchy of the UML
metamodel (OMG, 2003). Contract library consists of a set of UML artifact’s specifica-
tions (metaclasses), where each specification describes both the artifact’s properties
(i.e., attributes of the artifact) and all the possible ways of modifying the artifact (i.e.,
operations that can be applied on the artifact, such as adding a new feature to a class).
Figure 3 shows a part of the UML metamodel. Primitive contracts for these artifacts are
(partially) specified as follows:

Generalization = subclass of Relationship
var parent, child : GeneralizableElement,
Constructor Generalization(val p,c : GeneralizableElement) = parent:=p; child:=c,
parent() : GeneralizableElement = resu:=parent,
child() : GeneralizableElement = resu:=child,

end

The Class Generalization has an internal state composed by two attributes called parent
and child, respectively, both storing a GeneralizableElement. The Class defines a
constructor operation and two observer methods, one for each attribute.

NameSpace = subclass of ModelElement
 var ownedElements : Set of ModelElement,
 Constructor NameSpace() = ownedElements:= {} ,
 ownedElements() : Set of ModelElement = resu:=ownedElements,
 addElement(val e:ModelElement) =
 assert (e∉ ownedElements ∧ ∀g• (g∈ ownedElements → e.name ≠

g.name)) ;
 ownedElements:= ownedElements ∪ {e} ,
 deleteElement(val e:ModelElement) =
 assert (e∈ ownedElements) ; ownedElements:= ownedElements - {e} ,
end

GeneralizableElement = subclass of ModelElement
 var generalizations, specializations : Set of Generalization,
 isAbstract: Bool
 Constructor GeneralizableElement() = generalizations := {};

specializations := {},

TEAM LinG

196 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

parents() : Set of GeneralizableElement =
 resu:= generalizations.collect(parent)1,

children() : Set of GeneralizableElement =
 resu:= specializations.collect(child),

allParents() : Set of GeneralizableElement =
 ps := self.parents() ; resu := ps ∪ ps.collect(allParents),

isA(val c : GeneralizableElement) : Bool =
 resu:= (self=c ∨ c ∈ self.allParent()) ,

end

The Class GeneralizableElement has an internal state composed by three attributes, the
first two attributes containing a set of Generalizations and the third attribute containing
a Boolean value. The Class defines a set of methods: method parents() returns a Set
consisting of all direct parents of the generalizable element which are accesible through
its Generalizations; the method children() returns a set of all direct children; the method
allParents() results in a Set containing all ancestors. IsA() returns true if the receiver of
the message is a subclass (direct or indirect) of the parameter.

Feature = subclass of ModelElement
 var owner : Classifier,
 Constructor Feature (val o : Classifier) = owner:=o,
 owner() : Classifier = resu:=owner,
 setOwner(val o:Classifier) = owner:=o,
end

Classifier = subclass of GeneralizableElement, NameSpace
 var features : Set of Feature,

associationEnds : Set of AssociationEnd,
 Constructor Classifier() = features :={}; associationEnds :={},
 allFeatures() : Set of Feature =

 resu:= (features ∪ self.parents.collect(allFeatures)),
 associations(): Set of Association =

 resu:= self.association.collect(association),
 oppositeAssociationEnds() : Set of AssociationEnd = ...

 addFeature(val f : Feature) =

assert (f ∉ features ∧ ∀g • (g ∈ features ∨
g ∈ self.oppositeAssociationEnds → f.name ≠ g.name)) ;
features:= features ∪ {f} ; f.setOwner(self),

 deleteFeature(val f:Feature) =
 assert f∈self.features;self.features:=self.features - {f}

end

The Class Classifier has an internal state with two attributes; the first one stores a set
of Features while the second one stores a set of AssociationEnds. The Class defines a

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

set of query methods: the method allFeatures() results in a Set containing all Features
of the Classifier itself and all its inherited Features; the operation associations results
in a Set containing all Associations of the Classifier itself; the operation
oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the
Classifier. Additionally, the Class declares a set of mutator methods which modify the
object internal state: the method addFeature() has a precondition stating that the new
feature does not belong to the classifier, and the new feature should have a different name
from all the other attributes in the classifier, and from all the opposite associationEnds
of the classifier. The effect of the method is that the feature is added to the list of features
and the classifier is set as the feature’s owner.

Package = subclass of NameSpace, GeneralizableElement
 var importedElements : Set of ModelElement,
 Constructor Package() = importedElement:= {} ,
 allContents() : Set of ModelElement = resu:=ownedElement ∪
importedElement,
 addGeneralization(val g:Generalization) =
 assert (g ∉ ownedElements ∧ g.parent ∈ ownedElements ∧
 g.child ∈ ownedElements ∧ ¬ g.parent.isA(g.child) ;
 self.addElement(g) ,

end

The class Package inherits from NameSpace and GeneralizableElement. It specifies a
method addGeneralization() to insert a new generalization in the package. The precon-
ditions for the method are that the generalization is not in the package, all elements
connected by the new relationship (i.e., the parent and the child) are included in the
package and that the new generalization preserves absence of circular inheritance. The
effect of the method is that the new element is added in the collection of owned elements
of the package by invoking the method addElement() inherited from the class NameSpace.
Apart from software artifact specifications, the other component in the formalism of sp-
contract is the specification of software developers. Software developers are specified
by declaring their attributes and the contracts for their activities:

Developer = subclass of Object
 var name : String , skills : Set of String,
 Constructor Developer(val n : String) = name := n ,

end

The class Developer is the root in the hierarchy, it will be subsequently specialized in
order to specify concrete behavior of specific developers.

TEAM LinG

198 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Complex sp-Contracts

On top of primitive contracts it is possible to define complex contracts, specifying non-
atomic forms of evolution through the software development process. Then, by using
the wp predicate transformer we can verify whether a set of agents (i.e., software
developers) can achieve their goal or not. We can analyze whether a developer (or team
of developers) can apply a group of modifications on a model or not by means of a contract
designed in terms of a set of primitive operations conforming the group.
Developers will successfully carry out the modifications if some preconditions hold. We
can determine the weakest preconditions to achieve a goal by computing wpA . C . Q, where
C is the contract, A is the set of software developers (agents) and Q is the goal.
If computing the wp we obtain a predicate different from false, then we proved that with
the contract the developers can achieve their goal under certain preconditions.
The wp formalism allows us to analyze a single contract from the point of view of different
coalitions of agents. If computing the wp we obtain ‘false,’ we can look for a different
coalition (e.g., we can permit an outside agent to join the coalition) and compare the
results. In other case (if the coalition should be preserved) to achieve the goal the
contract have to be modified.
In the following sections, we give examples of complex contract.

Example 1: Contract on the Evolution Dimension
Consider a collaborative activity, in which two software developers have to carry out a
refactoring on a class diagram. One of the agents will detect and move all the features
that could be pulled up to a superclass, while the other agent will simplify the class
diagram by collecting empty classes.
To coordinate this collaborative activity, both agents (e.g., the lifter and the cleaner)
subscribe a complex contract that is built on top of primitive contracts establishing the
primitive responsibilities for each agent.
The primitive specification for the cleaner agent describes a method called
deleteEmptyClass(), as follows:

Cleaner = subclass of Developer
 deleteEmptyClass(val p : Package) =
 (updateself c:=c´ c’ ∈ p.ownedElement ∧ c’.features=∅ ∧
 c’.children=∅∧ c’.associations=∅) ;
 p.deleteElement(c);

end

The contract for this method states that the agent will detect nondeterministically a class
c from the package p given as parameter, such that class c is empty (i.e., it has no children
and no features). Then the selected class is deleted from the package.

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The primitive specification for the lifter agent contains three methods:

Lifter = subclass of Developer
 pasteRepeatedFeature(val c : Class) =
 (updateself f:=f´ c´∈ c.children • f´∈ c’.features) ; c.addFeature(f)
,
 deleteRepeatedFeature(val c : Class) =
 (updateself f:=f´ c´∈ c.children • f´∈ c’.features) ;
 for i=1 to (c.children.size) do c´:=c.children.at(i); c´.deleteFeature(f)
od,
 liftRepeatedFeature(val p : Package) =
 (updateself c:=s s ∈ p.ownedElement ∧
 ∃f:Feature • (c´∈ s.children • f∈c’.features)) ;
 (pasteRepeatedFeature(c); deleteRepeatedFeature(c))
 ∪self
 (deleteRepeatedFeature(c); pasteRepeatedFeature(c)) ;
end

The method pasteRepeatedFeature() says that the agent will receive a class as parameter
and will select nondeterministically a feature that appears in all subclasses of the given
class. Then, the selected feature is pasted in the class; the method deleteRepeatedFeature()
states that the agent will select nondeterministically a feature that appears in all
subclasses of a given class. Then, the selected feature is deleted from all the subclasses;
finally liftRepeatedFeature() is a more complex method that allows the agent to choose
nondeterministically in which order to carry out its activities, after having selected
(nondeterministically) a class that is candidate for refactoring).
The complex contract R states that both developers (plus a coordinator agent named
coord) commit themselves to carry out the refactoring task in a collaborative way. The
coordinator agent will nondeterministically choose either asking a1 to lift a repeated
feature or asking a2 to delete an empty class. The terms of the contract are as follows:

R = a1 := new Lifter ; a2 := new Cleaner ;
 while (¬Q) do a 1. l if tRepeatedFeature(p) ∪ coord

a2.deleteEmptyClass(p) od;

Where Q specifies the expected effect of the refactoring activity: (i) there is no repeated
feature and (ii) the model does not contain any empty class:

Q = ∀c:Class • c∈p.ownedElement →
 (¬∃f:Feature • (∀c´∈c.children • f∈c’.features) ∧ (i)

 (c.features≠∅ ∨ c.children≠∅ ∨ c.associations≠∅)) (ii)

TEAM LinG

200 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We may be interested in calculating the weakest precondition for agents a1 and a2 to reach
the goal G by using the contract R. That is to say: wp{coord, a1, a2} . R. G
where G = Q∧T , being T a formula specifying that the resulting model keeps all the
functionality of the original model.
Applying the calculus is possible to determine that if agents a1 and a2 work together (i.e.,
both of them integrate the coalition), then they can reach the goal.
But if a1 leaves the coalition, the wp is false. The achievement of the goal cannot be
guaranteed because agent a1 is free to resolve their nondeterministic choices in a hostile
way. For example, in the following choice:

(pasteRepeatedFeature(c) ; deleteRepeatedFeature(c))
 ∪a1
(deleteRepeatedFeature(c) ; pasteRepeatedFeature(c))

only the first option guarantees the achievement of the goal. If agent a1 chooses the
second option a problem will occur: A feature is deleted before being pasted in the
superclass; consequently, the model loses functionality and the final goal cannot be
achieved.

Example 2: Contract on the Horizontal Dimension
Arbitrary modifications that do not cause problems when they are applied exclusively,
may originate conflicts when they are integrated. Consider a collaborative task in which
two agents a1 and a2 need to add a generalization relationship respectively to a model,
preserving the consistency of the model.
Contract statement C specifies that agents a1 and a2 will perform their activities sequen-
tially, one after the other:

C = a1 := new Designer ; a2 := new Designer ;

 a1.addGeneralization(p,r) ; a2.addGeneralization(p,g)

The primitive contract regulating the behavior for Designer states that any designer will
accomplish this task by directly invoking the method addGeneralization() of the package
artifact:

Designer = subclass of Developer
 addGeneralization(val p : Package , g: Generalization) = p.addGeneralization(g)

end

As we explained before, the method invocation is interpreted as the following contract:
(asserta1 pi ; Si), that is, the agent takes over the responsibility for the preconditions of

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the method. If agent a1 (respectively a2) invokes the method in a state that does not satisfy
the precondition, then a1 breaches the contract.
Using the calculus, it is possible to find out which is the weakest precondition to achieve
the goal of introducing two generalization relationships without breaking the non-
circularity principle of inheritance hierarchies by computing: wp{a1,a2} . C . Q, where C is
the contract between agents and Q is the post-condition that specifies the goal of the
activity, which is the creation of new generalization relationships guaranteeing the
absence of circularity in the class hierarchy:

Q = (r ∈ p.ownedElements ∧ g ∈ p.ownedElements) ∧

 ∀c1,c2 :GeneralizableElement. (c1.isA(c2) ∧ c2.isA(c1) → c2 = c1)

The weakest precondition P for agents a1 and a2 to reach the goal Q by using the contract
C, (i.e., P = wp{a1,a2} . C. Q) can be semi automatically calculated applying the rules in
section 2.3 arriving to the following result:

P =
(i) r ∉ p.ownedElements ∧ r.parent ∈ p.ownedElements ∧
 r.child ∈ p.ownedElements ∧ ¬ r.parent.isA(r.child) ∧
(ii) g ∉ p.ownedElements ∧ g.parent ∈ p.ownedElements ∧
 g.child ∈ p.ownedElements ∧ ¬ g.parent.isA(g.child) ∧
(iii) ∀c1,c2 :GeneralizableElement.(c1.isA(c2) ∧c2.isA(c1)→c2 =c1)

(iv) ¬ (g.parent.isA(r.child) ∧ r.parent.isA(g.child))

Where (i), (ii) and (iii) specify the precondition for applying the first and the second
evolution, respectively (as if they were applied in isolation), and (iv) specifies a special
requirement to avoid circular inheritance in the case that both evolution actions were
applied together.
Figure 4 illustrates a conflictive case, in which the expected weakest precondition does
not hold in the initial state. As a consequence agents cannot achieve their goals (because
a circularity is introduced) in spite of fulfilling the contract.

Future Trends

The sp-contract formalism should be equipped with automatic tools supporting contract
derivation, precondition calculation, and correctness calculation. These tools should
be connected with the Refinement Calculator (Butler et al., 1997; Celiku & von Right,
2002), which supports the Refinement Calculus (Back & von Wright, 1998).
The need for automatic support is the main motivation for future work. It is necessary
to count with a tool to assist developers in the task of writing and applying sp-contracts.

TEAM LinG

202 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This tool should be integrated with an environment for thesoftware development
process, providing the following functionality:

• Contract edition and storage: Developers can create new contracts and store them
in a repository. There are different ways in which a new contract can be created:
from scratch as a primitive contract; by specializing an existing contract stored in
the repository; or by selecting a group of contracts stored in the repository and
composing them to form a new complex contract.

• Pre condition calculus: Given a contract between a set of agents and a specific
goal, the tool would be able to compute the weakest precondition for the application
of that contract.

• Contract refinement: Specific contracts can be derived from abstract contracts by
applying the refinement calculus.

• Contract correctness: If a precondition p and a post-condition q are given and
contract S has already been defined, we can prove that S is correct with respect to
precondition p and post-condition q.

• Visual assistance: functions of edition of contracts have a textual interface using
mathematical notation, but also may have a graphical interface. A contract can be
created using a UML editor that both records the operations applied on models
(such as adding a new class) and translates them to the mathematical notation. This
translation is straightforward using the primitive contracts on the UML artifacts
described. On the other hand, the task of selecting a contract from the repository
will be assisted by the generation of a graphical view of the contract. This is
provided by animating a contract, that is to say, showing how the execution of the
contract modifies a given UML model, step by step.

Conclusion and Related Work

During the software development process different UML models are employed to specify
the system from different viewpoints at different levels of abstraction. Models of

Figure 4. Collaborative evolution breaching consistency rule

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

different viewpoints have a certain overlap (Spanoudakis, Frinkelstein, & Till, 1999) and
models produced at different levels of abstractions in the development process also are
related. Consequently, handling of consistency between models is of major importance
(Ghezzi & Nuseibeh, 1999; Kuzniarz, Huzar, Reggio, & Sourrouille, 2002; Kuzniarz, Huzar,
Reggio, Sourrouille, & Ataron, 2003).
Different types of consistency problems have been identified; Engels, Küster, Heckel,
and Groenewegen (2001) distinguish two dimensions of consistency problems —
horizontal and vertical:

• Horizontal consistency concerns specifications consisting of different parts
representing the different points of view from which the system is specified.

• Vertical consistency arises when a model is transformed into another refined model.
For example a collaboration diagram can be derived from a use case diagram.

However, we need to distinguish three dimensions of consistency (Pons, Giandini, &
Baum, 2000): Horizontal, Vertical, and Evolution dimensions (the last two refine Engels’
vertical dimension) because two dimensions are insufficient to comprise an iterative and
incremental software process where model refinement occurs vertically, inside each
iteration; but also horizontally, from one iteration to the next one.
A wide range of different approaches for checking consistency of UML models has been
proposed in the literature. Here is an overview of the most relevant works, classified in
two groups. The first group focuses on the consistency between a fixed set of artifacts:
Glinz (2000) defines a lightweight approach to consistency between a scenario model and
a class model. He assumes semi-formal, loosely coupled models that are complementary:
scenarios model the external system behavior, the class model specifies the internal
functionality. He achieves consistency by minimizing overlap between the two models
and by systematically cross referencing corresponding information. He gives a set of
rules (some of them automatically checked) that can be used both for developing a
consistent specification and for checking the consistency of a completed specification.
Petriu Sun (2000) analyze the consistency between two different UML sublanguages:
Activity diagrams and Sequence Diagrams.
Whittle and Schumann (2000) developed an algorithm for automatically generating
statechart designs from a collection of sequence diagrams.
Ehrig and Tsiolakis (2000) investigate the consistency between UML class and sequence
diagrams by representing them by attributed graph grammars.
Works in the second group propose a general methodology that can be applied to
different consistency problems:

Astesiano and Reggio (2003) look at the consistency problems in the UML in terms of
the well-known machinery of classical algebraic specifications. Thus, first they review
how the various kinds of consistency problems were formulated in that setting. A similar
approach, but using dynamic logic, was defined by Pons and Baum (2000).

TEAM LinG

204 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Engels et al. (2001) discuss the issue of consistency of behavioral models in the UML
and present a general methodology about how consistency problems can be dealt with.
According to the methodology, those aspects of the models relevant to the consistency
are mapped to a semantic domain in which precise consistency tests can be formulated.
The choice of the semantics domain and the definition of consistency conditions vary
according to each concrete consistency problem. An instantiation of this approach is the
work of Fradet, Le Métayer, and Périn (1999) where systems of linear inequalities are used
to check consistency for multiple view software architectures. The general idea is further
enhanced in Engels, Heckel, Küster, and Groenewegen (2002) with dynamic metamodeling
rules. Model transformation rules are used to represent evolution steps, and their effect
on the overall model consistency is explored.
Egyed (2001) presents an approach for automated consistency checking among UML
diagrams, called ViewIntegra. The approach makes use of consistent transformation to
translate diagrams into interpretations to bring models closer to one another in order to
simply comparison.
Grundy, Hosking, and Mugridge (1998) claim that a key requirement for supporting
inconsistency management is the facilities for developers to configure when and how
inconsistencies are detected, monitored, stored, presented and possibly automatically
resolved. They describe their experience with building complex multiple-view software
development tools supporting inconsistency management facilities.
Toval and Alemán (2000) formalize the UML notation and transformations between
different UML models within rewriting logic. They implement their formalization in the
Maude system, focussing on using reflection to represent and support the evolution of
models.
Van Der Straeten, Mens, Simmonds, and Jonckers (2003) propose and validate an
approach to detect and resolve inconsistencies between different versions of a UML
model, specified as a collection of class diagrams, sequence diagrams, and state
diagrams. The formalism used is description logic, a decidable fragment of first-order
predicate logic. Logic rules are used to detect and to suggest ways to resolve inconsis-
tencies.
The proposal described in this chapter belongs to the second group; sp-contract is a
mathematical tool the objective of which is to improve the formality of software
development processes. The core of sp-contracts is the formalization of UML software
artifacts and their relationships on three dimensions. Sp-contracts handle consistency
between models through evolution by specifying state invariant and pre- and post-
conditions for each software development task. This feature is closely related to the
mechanism of reuse contracts (Steyaert, Lucas, Mens, & D’Hondt, 1996; Mens, Lucas,
& D’Hondt, 2000). A reuse contract describes a set of interacting participants. Reuse
contracts can only be adapted by means of reuse operators that record both the protocol
between developers and users of a reusable component and the relationship between
different versions of one component that has evolved.
The originality of sp-contracts resides in the fact that software developers are incorpo-
rated into the formalism as agents (or a coalition of agents) who make decisions and have
responsibilities (Pons & Baum, 2001; Pons & Baum, 2002). Given a specific goal that a

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 205

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

coalition of agents is requested to achieve, we can use traditional correctness reasoning
to show that the goal can in fact be achieved by the coalition, regardless of how the
remaining agents act. The weakest precondition formalism allows us to analyze a single
contract from the point of view of different coalitions and compare the results. For
example, it is possible to study whether a given coalition A would gain anything by
permitting an outside agent b to join A. On the other hand, formal refinement techniques
can be applied to a contract in order to obtain an improved contract preserving its
correctness.
We believe the formalism of sp-contracts can play an important role in the study of
software development process: sp-contracts can be useful for reasoning about and
justifying good practices in software process, providing a formal rational for them; sp-
contracts can provide a means to analyze and reason about refactoring tasks, refine-
ments, and transformation of models.
Regarding scalability issues, when the software development process becomes complex,
the formalism allows us to manage the complexity by means of a hierarchical definition
and classification of contracts. On the one hand, the library of contracts is organized into
a generalization-specialization hierarchy. Then, it is possible to define a new contract by
specializing an existing one, by writing only the incremental features. On the other hand,
contracts can be specified in a compositional way. It means that complex contracts are
built in terms of less complex ones, and weakest preconditions for a complex contract are
calculated from weakest preconditions of its constituent contracts. Furthermore, speci-
fications are organized along three different dimensions (horizontal, vertical, and
evolution dimension), thus increasing the cohesion and readability of each contract.

References

Andrade, L.F. & Fiadeiro, J.L. (1999). Interconnecting objects via contracts. Proceedings
of the Second International Conference on the Unified Modeling Language.
Lecture Notes in Computer Science 1723. Springer.

Astesiano, E. &, Reggio, G. (2003). An algebraic proposal for handling UML consis-
tency. Workshop on Consistency Problems in UML-based Software Development.
Blekinge Institute of Technology Research Report 2003:06.

Back, R. & von Wright, J.(1998). Refinement calculus: A systematic introduction,
graduate texts in computer science, Springer Verlag.

Back, R., Mikhajlova, A. & von Wright, J. (1997). Class refinement as semantics of correct
subclassing. Turku Centre for Computer Science. TUCS Technical Report No 147.
ISBN 952-12-0114-2. December 1997.

Back, R., Petre, L. & Porres Paltor, I. (1999). Analysing UML use cases as contract.
Proceedings of the Second International Conference on the Unified Modeling
Language. Lecture Notes in Computer Science 1723. Springer Verlag.

TEAM LinG

206 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Back, R., Mikhajlov, L. & von Wright, J. (2000). Formal semantics of inheritance and
object substitutability. Turku Centre for Computer Science. TUCS Technical
Report No 337. ISBN 952-12-0637-3. January 2000.

Butler, M., Grundy, J., Langbacka, T., Ruksenas, R. & Von Wright, J. (1997). The
refinement calculator – Proof support for program refinement. Proceeding of
Formal Methods Pacific. Springer-Verlag.

Celiku, O. & von Right, J. (2002). Theorem prover support for precondition and correct-
ness calculation. Proceedings of the Fourth 4th International Conference on
Formal Engineering Methods ICFEM (LNCS 2495). Springer-Verlag.

Egyed, A. (2001, November). Scalable consistency checking between diagrams – The
VIEWINTEGRA approach. Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering (ASE), San Diego.

Ehrig, H. & Tsiolakis, A. (2000). Consistency analysis of UML class and sequence
diagrams using attributed graph grammars. In H. Ehrig & G. Taentzer (Eds.), ETAPS
2000 Workshop on Graph Transformation Systems (pp. 77-86).

Engels,G., Heckel, R., Küster, J. & Groenewegen, L. (2002). Consistency-preserving
model evolution through transformations. In Proceedings of the International
Conference on. The Unified Modeling Language. Model Engineering, Concepts,
and Tools, number 2460 in Lecture Notes in Computer Science (pp. 212-227).
Springer-Verlag.

Engels, G., Küster, J., Heckel, R., & Groenewegen, L. (2001). A methodology for
specifying and analyzing consistency of object oriented behavioral models.
Proceedings of the IEEE International Conference on Foundation of Software
Engineering, Vienna.

Fradet, P., Le Métayer, D., & Périn, M. (1999). Consistency checking for multiple view
software architectures. In Proceedings of the International Conference on ESEC/
FSE’99, volume 1687 of Lecture Notes in Computer Science (pp. 410-428).
Springer-Verlag.

Ghezzi, C. & Nuseibeh, B. (1999). Special Issue on Managing Inconsistency in Software
Development (2). IEEE Transaction on Software Engineering, 25(11).

Glinz, Martin. (2000). A lightweight approach to consistency of scenarios and class
models. Proceedings of the Fourth International Conference on Requirements
Engineering, Schaumburg, IL, June 10-23.

Grundy, J.C, Hosking, J.G., & Mugridge, W.B. (1998). Inconsistency management for
multiple-view software development environments. IEEE Transactions on Soft-
ware Engineering, 24(11), 960-981.

Helm, R. Holland, I., & Gangopadhyay, D. (1990). Contracts: Specifying behavioral
compositions in object-oriented systems. Proceedings of OOPSLA ’90. ACM
Press.

Hruby, Pl. (1999). Framework for describing UML compatible development processes.
Proceedings of the Unified Modeling Language Conference. Lecture Notes in
Computer Science 1723. Springer.

TEAM LinG

Formal Specification of Software Model Evolution Using Contracts 207

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development
process (Professional, 1st edition). Addison Wesley.

Kuzniarz, L., Huzar, Z., Reggio, G., & Sourrouille, J. (Eds.) (2002). Proceedings of the first
Workshop on “Consistency Problems in UML-Software Development.” RR-2002-6.

Kuzniarz, L., Huzar, Z., Reggio, G., Sourrouille, J., & Ataron, M. (Eds.). (2003). Proceed-
ings of the Second Workshop on “Consistency Problems in UML-Software
Development.” Blekinge Institute of Technology Research Report 2003:06.

Mens, T., Lucas, C., & D’Hondt, T. (2000). Automating support for software evolution
in UML. Automated Software Engineering Journal, 7, 1.

Meyer, B. (1992). Advances in object oriented software engineering. (Chapter 1, Design
by Contract). Prentice Hall.

Meyer, B.(1997). Object-oriented software construction (2nd edition). Prentice Hall.
OMG (1998, July). Analysis and design process engineering. Process Working Group,

Analysis and Design Platform Task Force.
OMG (2003, March). The unified modeling language specification version1.5, revised by

the Object Management Group. Available online at http://www.omg.org
Osterweil, L. (1997). Software processes are software too. Revisited: An invited talk on

the most influential paper of ICSE. Proceedings of the 19th International Confer-
ence on Software Engineering. ACM Press.

Overgaard, G. & Palmkvist, K.(2000). Interacting subsystems in UML. In Proceedings of
The Third International Conference on the Unified Modeling Language. Lecture
Notes in Computer Science. Spring Verlag.

Petriu, D. & Sun, Y. (2000) Consistent behaviour representation in activity and sequence
diagrams. In Proceedings of the Third International Conference on the Unified
Modeling Language. Lecture Notes in Computer Science. Spring Verlag.

Pons, C. & Baum, G. (2000). Formal foundations of object-oriented modeling notations.
The Third International Conference on Formal Engineering Methods, ICFEM
2000, York, UK. IEEE Computer Society Press.

Pons, C. & Baum, G. (2001). Software development contracts. The 5th European
Conference on Software Maintenance and Reengineering, Special Session on
Formal Foundation of Software Evolution. Portugal.

Pons, C. & Baum, G. (2002). Contracts soundness for object oriented software develop-
ment process. OOPSLA2002 Workshop on Behavioral Semantics. Seattle, WA.
Northeastern University, College of Computer Science, 163-177.

Pons, C., Giandini, R., & Baum, G. (2000). Dependency relationships between models
through the software development process. The 10th International Workshop on
Software Specification and Design (IWSSD), California. IEEE Computer Society
Press.

Spanoudakis, G., Frinkelstein, A., & Till, D. (1999). Overlaps in requirement engineering.
Automated Software Engineering: An International Journal, 6(2), 171-198.

Steyaert, P., Lucas, C., Mens, K., & D’Hondt, T. (1996). Reuse contracts: Managing the
evolution of reusable assets. Proceedings of OOPSLA’96, New York. ACM Press.

TEAM LinG

208 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Toval, A. & Alemán, J. (2000). Formally modeling UML and its evolution: A holistic
approach. In S. Smith & C. Talcott (Eds.), Formal methods for open object-based
distributed systems IV (pp. 183-206). Kluwer Academic Publishers.

Van Der Straeten, R., Mens, T., Simmonds, J., & Jonckers, V.(2003) Using description
logic to maintain consistency between UML-models. Proceedings of the Sixth
International Conference on the Unified Modeling Language. Lecture Notes in
Computer Science number 2863. Springer.

Van Gorp, P., Stenten, H., Mens, T., & Demeyer, S. (2003). Towards automating source-
consistent UML refactoring. Proceedings of the Sixth International Conference
on the Unified Modeling Language. Lecture Notes in Computer Science number
2863. Springer.

Whittle, J. & Schumann, J. (2000). Generating statechart designs from scenarios.
Proceedings of International Conference on Software Engineering ICSE 2000.
Limerick, Ireland.

Endnote

1 The type Set provides the traditional operations: select, reject, collect (or map),
size, ∪, ∩, − , ∈, ⊆.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 209

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Visualising COBOL
Legacy Systems

with UML:
An Experimental Report

Steve McRobb, De Montfort University, UK

Richard Millham, De Montfort University, UK

Jianjun Pu, De Montfort University, UK

Hongji Yang, De Montfort University, UK

Abstract

This chapter presents a report of an experimental approach that uses WSL as an
intermediate language for the visualisation of COBOL legacy systems in UML. Key UML
techniques are identified that can be used for visualisation. Many cases were studied,
and one is presented in detail. The report concludes by demonstrating how this
approach can be used to build a software tool that automates the visualisation task.
Furthermore, understanding a system is of critical importance to a developer who must
be able to understand the business processes being modeled by the system along with
the system’s functionality, structure, events, and interactions with external entities.
Such an understanding is of even more importance in reverse engineering. Although
developers have the advantage of having the source code available, system
documentation is often missing or incomplete, and the original users, whose
requirements were used to design the system, are often long gone.

TEAM LinG

210 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

A developer requires a model of a system not only in order to understand the business
processes being modeled but also the structure and dynamics of the system. Visualisation
of the system model is often necessary in order to clearly depict the complex relationships
among model elements of that system.
This chapter focuses on the visualisation of a system from a reengineering, rather than
a forward engineering, point of view as an attempt is made to extract documentation from
the system code into the visual notation of UML. In many legacy systems, the system
code is the only surviving artefact and consequently, any reengineering efforts must
focus on this artefact. Visualisation, whether through UML or some other graphical
notation, is important because it better enables our brains to make the connections
between the software system and the ideas represented within this system; this
connection is much more difficult if the documentation is based purely on textual form.
This chapter also investigates whether it is possible to visualise a system and which of
the nine possible UML diagrams are needed to represent this visualisation. A detailed
outline of the process of deriving information from an analysis of the selected legacy
system, a batch-oriented system, is given, along with the rules to convert this information
to a UML model of this system. A brief overview of the methods, along with their inherent
difficulty that are used to extract UML diagrams from a legacy system is provided. Given
the selected system, a batch-oriented legacy system, and relying on the only surviving
form of documentation, it was found that it was not possible to extract statecharts or use
cases from this system. Use cases, which model external actors and business processes
of a system, cannot satisfactorily be extracted from system code alone but require
intensive user intervention and guidance in order to identify the external actors and their
roles. Statecharts, which model external events and the system’s response to them,
cannot be extracted satisfactorily from a batch-oriented legacy system for two reasons.
One reason is that batch-oriented systems have very few external events; usually, their
only external event is the arrival of input. The other reason is that an event-response trace
of the system, which can be used to model statecharts of this system, cannot be obtained
through analysis of system code alone; this event-response trace requires the use of a
run-time environment along with a full set of possible external events that this system
might encounter. Finally, a tool, TAGDUR, is introduced which has automated some of
these analysis processes and which models some aspects of this system in UML.

Why Visualisation of the Legacy System is Necessary for
Reverse Engineering

Program understanding can be defined as the process of developing an accurate mental
model of a software system’s intended architecture, purpose, and behaviour. This model
is developed through the use of pattern matching, visualisation, and knowledge-based
techniques. The field of program understanding involves fundamental issues of code
representation, structural system representation, data and control flow, quality and

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

complexity metrics, localisation of algorithms and plans, identification of abstract data
types and generic operations, and multiple view system analysis using visualisation and
analysis tools. Reverse engineering involves analysing data bindings, common refer-
ence analysis, similarity analysis, and subsystem and redundancy analysis (Whitney,
1995).
Program understanding involves the use of tools that perform complex reasoning about
how behaviours and properties arise from particular combinations of language primitives
within the program. One method of program understanding is to use visitors, or small
reusable classes, whose function is to parse the source system and evaluate the
combinations of language primitives that had been discovered during parsing (Wills,
1993). Other methods try to evaluate and understand a system by taking, as input, the
goals and purpose of the system as a specification (Johnson, 1986). Another method is
to use clichés that try to recognise commonly used data structures and algorithms and
then match these structures and algorithms to higher level abstractions. Examples of
clichés are the structures and algorithms associated with hash tables and priority queues.
The degree of accuracy of the matching varies with the goal of program understanding.
For example, an exact match is needed for program verification while only a reasonably
close match is needed for documentation purposes.
Software visualisation is a technique to enable humans to use their brain to make
analogies and to link a visual software representation with the ideas that this represen-
tation portrays. This link would be much more difficult to make if the software represen-
tations were purely in textual form. Software visualisation relies on crafts such as
animation, graphic design, and cinematography (Price, Small I, & Baecker, 1992).
Software visualisation has been used for decades in order to help developers understand
programs. These techniques vary from flowcharts (Goldstein & Neumann, 1949) to
animated graphical representations of data structures (Baecker, 1981). However, many
of these software visualisation systems are limited to displaying one type of data or level
of abstraction. Few visualisation systems have the ability to suppress lower level detail
in order to depict higher level concepts of the system.
Program visualisation systems or tools can be characterised according to their scope,
content, form, method, interaction, and effectiveness (Price et al., 1992). Scope refers to
the visualisation system’s general characteristics such as whether it models concurrent
programs or whether there are any size limitations as to the system being depicted.
Content refers to the content being visualised. Some visualisation systems can model
both data and code, while others model algorithms only. Form refers to what elements
are being used in the visualisation. Some visualisation systems use animated graphics,
while other systems provide multiple views of different parts of the system. Method
refers to how the tool specifies the visualisation. Does the tool require the program
source code to be modified in order for it to be visualised? Some tools require the user
to insert special statements in code of special interest in order for this code to be properly
visualised. Interaction refers to how the user interacts and controls the visualisation.
How does the user navigate through the visualisation of a large system in order to see
how different parts of the system are being modeled? Effectiveness refers to how well
the visualisation communicates information regarding the system being visualised (Price
et al., 1992).

TEAM LinG

212 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using this taxonomy, a number of program visualisation systems can be classified and
grouped in order to enable the developers to find the visualisation tool that best fits their
needs. For example, if the source programming language is Pascal, Balsa might be a better
visualisation tool for the developers than LogoMotion. Some examples of visualisation
tools include the film, Sorting Out Sorting, which is an animated visualisation tool to
explain algorithms. Balsa, another visualisation tool, generates animations of Pascal
programs. LogoMotion allows users to indicate what aspects of a Logo program they
wish to have visualised (Price et al., 1992).
Chifosky and Cross (1990) define reverse engineering to be “the process of analysing
a subject system to identify the system’s components and their interrelationships and
create representations of the system in another form or at a higher level of abstraction.”
Chifosky and Cross state six goals of reverse engineering:

• controlling complexity

• generating alternative views

• recovering lost information

• detecting side effects

• synthesising higher abstractions

• facilitating reuse (Chifosky & Cross, 1990)

A reverse engineering tool, TAGDUR, which is outline later in this chapter, tries to
accomplish at least three of these goals. TAGDUR tries to control complexity by
encapsulating formerly globally scoped variables and procedures into classes. TAGDUR
tries to synthesise higher abstractions by trying to incorporate abstractions, classes,
into various abstract representations, such as sequence diagrams, to model system
behaviour. TAGDUR generates alternative views by producing UML diagrams, such as
sequence or activity diagrams, to model the structure and behaviour of the system.
Creating a model of a system is a useful way to understand the system for many reasons.
One reason is that the system itself is a model of an external business process and as such
this model can be analysed to ensure that the model accurately maps these external
processes. Another reason is that programs are constructed from executable and data
structures — these existing entities can be extracted and analysed, through reverse
engineering, in order to produce a model of the structure and dynamics of the system
(Hall, 1992; Rugaber & Clayton, 1993). Another reason is that a model obtained through
reverse engineering, because it embodies explicit knowledge representation of a software
system (Van, 1992; Rajlich, 1992), is better able to predict reverse engineering’s expected
results.
This knowledge representation may be in multiple formats such as textual or graphical
notation. Graphical notation has the advantage over textual formats that graphical
notations can more clearly depict complex relationships between model elements, such
as class (Rugaber & Clayton, 1993).

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 213

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Why Not Rely on Source Code for System
Documentation?

Relying on source code solely to obtain an understanding of the system has many
disadvantages, particularly for legacy systems. In many legacy systems, the original
design of the system has been obfuscated by the many incremental changes during the
system’s long maintenance history. Furthermore, the end-users, whose requirements
originally helped design the system to meet their business needs, are usually long gone
and the documentation outlining these requirements is often missing. Without these
original end-users and no documentation, it is often difficult to determine the exact
business processes that these systems model.
Source code is very programming-language-dependent (Yang, 1999). In order to under-
stand the code, the developer must be fully proficient in the programming language used
to develop the system. The function and role of each section of source code within the
system may be obvious to a developer but may be meaningless to a nontechnical end-
user. End-users want to see how the business processes that the system represents are
modeled and they want to ensure that all of their business requirements are met in the
system. End-users are not concerned with the internal design and details of this system.
It is difficult for developers to view parallel data and control flows from reading the code.
The control logic, especially if this control logic is heavily nested, is difficult to visualise
from the source code, particularly to quickly identify which control constructs affect
which parts of code. It is difficult to visualise events occurring in various parts of code
and to visualise how these events interact with various objects in the system. Relying
on source code as the only documentation source makes it difficult to view the interaction
of system objects with other objects and external actors.
Source code encompasses many perspectives such as objects, deployment of compo-
nents, and timing of object interactions within itself. These multiple perspectives are
confusing — it is difficult to represent the source code in each separate perspective.
Source code has the additional disadvantage in that it is difficult to represent abstract
concepts and behaviour from low-level, detailed source code.

UML

One method to overcome this problem of requiring multiple perspectives of the same
system is to visualise the system using some sort of graphical notation. Each perspective
is given its own diagram type that is specialised to best represent this perspective.
Rumbaugh, Blaha, Premerlani, Eddy, and Lorenson identify three viewpoints necessary
for understanding a software system: the objects manipulated by the computation (the
data model), the manipulations themselves (functional model), and how the manipula-
tions are organised and synchronised (the dynamic model).
Rugaber and Clayton state that most of the representation techniques emphasise one of
these views.

TEAM LinG

214 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML, through its various UML diagrams, encompass all of Rumbaugh’s views. The data
model is represented by UML’s class and object diagrams. The functional model is
represented by activity and state diagrams. The dynamic model is represented by
sequence and collaboration diagrams.
One of the most common graphical notations is Unified Modeling Language (UML). UML
provides multiple perspectives of the system. Use case diagrams model the business
processes embodied in the system from a user’s perspective. Statecharts and class
diagrams model the behaviour and structure of the system, respectively; the behaviour
and structure of the system would be of most interest to developers.
UML has many advantages for a graphical modeling notation. UML encompasses many
earlier modeling notations that are well understood and well accepted by the software
development community. UML has a core set of concepts that remain unchanged, but
UML provides a mechanism to extend UML to new concepts and notations beyond this
core set. UML allows concepts, notations, and constraints to be specialised for a
particular domain.
UML is implementation and development process independent (D’Souza & Wills, 1999).
In other words, UML is not dependent on any particular programming language nor is
it dependent on a particular development process, such as the waterfall software
development model.
UML addresses recurring architectural complexity problems using component technol-
ogy, visual programming, patterns, and frameworks. These problems include the physi-
cal distribution, concurrency and concurrent systems, replication, security, load balanc-
ing, and fault tolerance.
In order to enable the developers to achieve the same understanding and interpretation
of the model when this model is exchanged among different technologies and tools, some
sort of common model exchange format is needed. In order to achieve syntactic
interoperability of the model, a canonical mapping of the abstract data representation
model to the data interchange format is needed. UML provides several methods to
exchange models between tools including UXF (Suzuki, 1999) and XMI (Irwin &

Representation References
Object-Oriented Frameworks (Johnson & Foote, 1988)
Category Theory (Srinivas, 1991)
Concept Hierarchies (Biggerstaff, 1989; Lubara, 1991)
Mini-languages (Neighbors, 1984; Arango, Baxter, Freeman,
& Pidgeon, 1986)
Database Languages (Chen & Ramanoorthy, 1986)
Narrow Spectrum Languages (Webster, 1987)
Wide Spectrum Languages (Wile, 1987; Ward, Calliss, & Munro, 1989)
Knowledge Representation Text (Barstow, 1985)

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 215

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Churcher, 2002). Because UML is general purpose, expressive, simple, widely accepted,
and extensible, UML has wide applicability and usability (Muller, 1997).

UML Diagrams

UML has different types of diagrams:

• use case

• class

• object

• sequence

• collaboration

• statecharts

• activity

• component

• deployment

Figure 1 embodies the different views of the system in a slightly different way than
Rumbaugh’s three views of the system. Rumbaugh’s static view is embodied in its
structured view. Rumbaugh’s dynamic and behavioural view is incorporated into a single
view, the behavioural view, which describes both the behaviour of the system and the
interaction of objects within that system (interactive view).

Figure 1. Different UML diagrams model different views (Alhir, 1998)

TEAM LinG

216 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Our architectural view is divided up, in Figure 1, into an external system view (the
Deployment View), which embodies the deployment diagram, and an internal system view
(the Implementation View), which embodies the component diagram. Neither Rumbaugh
nor our additional view, the architectural view, includes the user view, which is embodied
in use case diagrams, because the user view is usually considered to be external to the
system. Figure 1 demonstrates that different authors may classify views of the system
differently and accord the various UML diagrams to their particular views differently.
Use case diagrams emphasise services and operations that a system offers to entities
outside the system. Use case diagrams are often used to model the business processes
that the system represents.
Class diagrams emphasise the static structure of the system. Object diagrams model the
static structure of a system at a particular point in its execution. Object and class diagrams
can be differentiated in that classes model the structure of a system, while objects are
specific examples of the structure.
Sequence diagrams model the messages exchanged over time among the objects within
a system. Collaboration diagrams model messages exchanged over time among the
objects and their links within a system.
Statecharts model how an object changes or responds to external stimuli within a system.
Statecharts model the changes of state embodied within a system due to messages.
Activity diagrams model how an object changes or responds to internal processing
within a society. Activity diagrams model the flow of control and of information within
a system.
Component diagrams model the packaging of an object as a solution. Deployment
diagrams model the deployment of objects within a society as a solution within an
environment (Muller, 1997).

Figure 2. Different UML diagrams model different views at different levels of abstraction
(Muller, 1997)

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Which UML Diagrams are Needed to Fully Represent a
System?

The nine diagrams of UML represent several different perspectives and several different
views. UML diagrams are designed to portray information deemed to be of most interest
to a particular set of users. Use case diagrams, which depict the external business
environment and business processes modeled by the system, are of most interest to end-
users who are not interested in the system’s structure, behaviour, or deployment but are
interested in ensuring that their business processes are fully represented in the modeled
system. Deployment and component diagrams are of most interest to system architects
who typically are concerned with the deployment of components within a specific
architectural framework rather than the lower level details of structure and behaviour.
Developers, on the other hand, are most interested in the internal structure and behaviour
of the system.
The question of how many of these nine UML diagrams are needed to properly represent
a system is dependent on several factors, including the type and size of the system. Large
systems, which are composed of multiple software components, require component and
deployment diagrams to reduce this complexity and to depict information most useful to
system architects. In smaller systems, with only a few software systems, these compo-
nents can more easily be kept track of, and a separate diagram, in the form of a deployment
diagram, is not needed to depict their particular deployment.
Class diagrams are necessary to describe the structure of a system. Object diagrams may
not be necessary for systems with statically created objects; however, object diagrams
may be necessary to reduce a system’s complexity in a system with dynamically created
objects. Object diagrams, in this case, may be needed to depict which objects are active
at a particular point in time.
Activity diagrams and statecharts have different focuses on modeled system. Statecharts
differ fundamentally from activity diagrams in that statecharts model external events
interacting with system objects, but activity diagrams model the internal processing of
the system. While external events may be a critical part of the legacy systems that are
highly interactive and reactive, many legacy systems are batch-oriented. Because these
systems are batch-oriented, the only event external to this type of system is the arrival
of batch input that invokes the batch application. Consequently, in batch-oriented
legacy systems, activity diagrams are sufficient to describe the behaviour of this system,
and these types of systems do not need statecharts to describe their behaviour. However,
activity diagrams, because they do not model external events as well as statecharts, are
inadequate to describe the behaviour of reactive systems; statecharts must be used as
well to model these reactive systems.
Sequence and collaboration diagrams are used to help describe the dynamic behaviour
of a system. These diagrams are most useful to help reduce complexity in highly
interactive systems with complex behaviour and interactions among objects in the
system. However, in non-interactive, strictly batch-oriented systems, the interactions
among objects are much less complex and often can be adequately modeled using activity
and class diagrams without the need for sequence/collaboration diagrams.

TEAM LinG

218 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Use case diagrams are very necessary in order to clarify system requirements from the
end-users. However, many other methods, such as textual representation or formal
specifications methods such as Z, exist to depict the information contained within a use
case diagram. Thus, while defining system requirements is a necessary part of the
software development process, it is not strictly necessary to utilise use case diagrams
to model this information.
Use case diagrams are very necessary in order to clarify system requirements from the
end-users. However, many methods exist to depict the information contained within a use
case diagram. Thus, while defining system requirements is a necessary part of the
software development process, it is not strictly necessary to utilise use case diagrams
to model this information.

Why Use UML Diagrams to Represent a Legacy
System?

It is necessary to comprehend the legacy system with UML activity diagrams in order
to fully comprehend them and enable the developers to make needed changes to them.
Software systems are becoming larger and more complicated with the rapidly developing
changes in the business world and incremental maintenance over the system’s history.
Meanwhile, as time marches on and technology changes, these systems tend to be old-
fashioned and become legacy. The legacy system may be characterised as a large,
complicated, old, heavily modified, difficult to maintain, and old-fashioned software that
is still vital to the organisation (Yang, 1999). A legacy system is a computer system or
application program that continues to be used because of the cost of replacing or
redesigning it, despite its poor competitiveness and compatibility with modern equiva-
lents (Howe, 2002). The implication of the legacy system is that the system is large,
monolithic, and difficult to modify. If legacy software only runs on antiquated hardware,
the cost of maintaining legacy software may eventually outweigh the cost of replacing
both the software and hardware, unless some form of emulation or backward compatibil-
ity allows the software to run on new hardware. It is important to note that the term
“legacy” refers to the state of a system before the strategic change. Legacy is a function
of the change of a system. It is the result of the change of the environment. Without
change, there would be no legacy. It is essential to realise that the legacy system is not
useless. In most situations, the legacy system is important, valuable, and vital to the
business organisations.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 219

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Process of Modeling the Legacy System

Structural Model

Cleaning Source Code

Reverse engineering a legacy system means going all the way back to the design stage
from legacy source code. The original code may contain unstructured statements such
as “GO TO” lines in programs written in COBOL, which cause the source code to become
“spaghetti code” (Hutty & Spence, 1997). It is necessary to clean the original code and
eliminate dead code.
Cleaning the code means obtaining an equivalent but different design with clearer and
simpler semantics than the original code or representation. The representations are
structured by the way to structure the code in order that each line of the source code is
a meaningful fragment of a program specification (Pu & Yang, 2003b).
The process of cleaning the legacy software code can provide a clear description of the
program in a readily understandable format, and thus form a solid base for further
application. This involves migrating a legacy system onto a modern hardware or
operating system platform, migrating an existing database to a relational database
management system and converting a system to a modern programming language.
In the legacy system, there may be dead code that is useless to the execution of the tasks.
Such dead code may have existed at the stage of the development. Or, with changes to
the environment, especially due to improvements in the hardware, some methods of
inputting or outputting data may have been modified, or some ways of storing data have
been improved. Therefore the corresponding code becomes useless; on some occasions
it may even result in failure of the system. Consequently that dead code must be
recognised and removed from the legacy system (Pu & Yang, 2003b).
The legacy system will be improved over a series of increments, making functionality
available to the user sooner than is possible with a big bang deployment strategy. The
goal is to break up the migration to the future system into small manageable steps, where
the objectives of each increment are well defined. Incremental plans are driven foremost
by complexity and technical feasibility. It is critical to ensure that the functionality,
reliability, and performance of the system are not diminished after the development of
clean code has been completed through the removal of dead code. Incremental deploy-
ment also offers an opportunity for the organisation to gradually begin substitution of
modernised components, easing the transition from legacy to modern technologies. At
the completion of each increment, the percentage of the unaltered legacy system
decreases while the percentage of cleaned code increases. Eventually, the legacy
software code is completely cleaned.

TEAM LinG

220 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gathering Parameters and Operations

In the legacy system, all parameters are gathered together and important information
about the main data structures is recorded in files or tables. Basically, a program is the
set of all parameters and their characteristics and the operations on them. It is a semantic
set within the specified operational environment. Therefore, the input parameters are
served as the original raw data, the programming environment and the execution of
program lines are regarded as the producing machines that change the characteristics of
those parameters, and the output parameters are the outcomes that are produced during
the execution of the whole software program. In some cases the input parameters are the
same as the output, while in other cases they are different (Ben-Menachem & Marliss,
1997).
All parameters and associated operations are collected together. Those operations
include systematic operations which may themselves include systematic calls.

Classifying Parameters and Operations

All the parameters and the operations on them are classified into several groups. Each
group has one nucleus. Each group is related closely to each other to describe the
common core. Although that core is not always obvious, each parameter and its related
operations are part of the specifications of that nucleus in that group. In every group,
each parameter depicts one part of the characteristics of that nucleus, such as its name,
its age, its weight, its height, and its ID; and every operation is the change, assessment,
or detection of those pieces of characteristics of that nucleus, such as increasing or
decreasing its weight, confirming whether it is at that age, or determining whether it has
another name.
It is possible that one operation may be involved in more than one group. The best way
to deal with this is to separate it into several different operations, each of which
concentrates on only one group.

Extracting the Classes

The nucleus that is contained in each group is regarded as a single class. Sometimes the
name of the nucleus is not mentioned in the program, and it is then necessary to define
a name for it. All parameters and operations in a group describe the attributes of the
nucleus, the operations on the nucleus, and its relationships with other groups. These
can be distilled as attributes and operations of the corresponding class (D’Souza & Wills,
1999).
The names given to classes, their attributes, and their operations should be domain-
related. The domain is where the problem is allocated. All definitions and extractions must
be based on domain knowledge (Yang, 1991; Pu, Millham, & Yang, 2003a). It should also
be noted that an object is strictly not the same as its class. All objects with similar
properties, including attributes and operations, are distilled into one class.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 221

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Defining Relationships of Classes

Classes that represent a legacy system have relationships between them. Each relation-
ship presents one special aspect of the characteristics of the related classes.
An association shows a relationship between two or more classes. Associations have
several properties:

• A name that describes the association between the two classes. Association names
are optional and need not be unique globally.

• A role at each end that identifies the function of each class with respect to the
associations. Since the name of an association is optional, its roles are optional,
too.

• A cardinality at each end that identifies the possible number of instances that can
participate in the association.

Associations between the classes are domain-related. Initially, associations are the most
important characteristics of the classes because they reveal more information about the
application domain. Each association should be named as appropriate and roles assigned
to each end.
It also is necessary to model generalisation relationships. Generalisation is used to
eliminate redundancy from the analysis model. If two or more classes share attributes or
behaviour, the similarities are consolidated into a superclass (Dorfman & Thayer, 1997).
Other characteristics of classes include composition, multiplicity, inheritance, and roles.
For example, in Figure 3, one school has many students; one school district is composed
of many schools; all cars and trucks are vehicles; an employee works for an employer.

Figure 3. Examples of class composition, inheritance, roles, and multiplicity

TEAM LinG

222 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pretty Printing Class Diagrams

A class diagram is a diagram that shows a set of classes, interfaces, collaborations, and
their relationships. Class diagrams are typically used to explore domain concepts in the
form of a domain model, analyse requirements in the form of an analysis model, and depict
the detailed design of object-oriented software. Class diagrams are essential to modeling
the legacy system.
During the analysis development period, analysis models focus on the responsibilities
of classes and not on their attributes or operations, while associations should be modeled
as association classes. When association classes are modeled on analysis class dia-
grams, the dashed line of the association class is placed to the centre of the association
and the association itself is not named. Only when a specific type of an attribute is a
requirement of the system should it be described on an analysis class diagrams.
Attributes and operations should be modeled on design class diagrams. During the
design development period, four types of visibility of attributes or operations are
defined: Public “+”, Protected “#”, Private “-”, and Package “~”. These are design details
that define levels of access to the classes.
A class name is a singular noun based on common domain terminology. An attribute name
is a domain-based noun and an operation name begins with a strong active verb.
Graphically, a class is rendered as a rectangle with three compartments that contain name,
attributes and operations, respectively. These three compartments are essential and
necessary to a class even if one of the compartments is left blank. A class symbol may
optionally contain other compartments, which should be labelled at the centre top. A
compartment with an incomplete list should be marked by an ellipsis at the compartment
end. Within each class compartment, attributes and operations should be listed in
decreasing order of visibility, with static ones placed before instance ones.
If operation signatures are too long to fit the class symbol, only those object types that
are passed as parameters to the operation are listed, in order to save space. Consistency

Figure 4. An example of a class diagram

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 223

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of naming of attributes, operations, parameters, and of their ordering within classes is
essential. Following language conventions, if the names of attributes and operations
imply their stereotypes, the stereotypes should be omitted. Exceptions of operations can
be indicated with a property string.
If two classes interact with each other, some kind of relationship may be needed between
them. A transitory relationship is a dependency. It may not be necessary to model implied
relationships or every single dependency.
In class diagrams, multiplicity between classes should always be shown. The indefinite
multiplicity “*” can usually be replaced either by “1..*” or “0..*” and this should be done
where possible. In some cases, attribute types can replace relationships. In normal
modeling, the minima and maxima of multiplicities can be extended to “1..*” or even “0..*”
to make class diagrams more flexible.
It is a common convention to centre the name of an association above an association path
and use one or two descriptive words to name the association. The direction in which
an association name should be read can be modeled with filled triangles; the common
direction name is left-to-right. If multiple associations exist between two classes, class
roles should be introduced to clarify the class diagram. Role names can be used to
describe recursive associations that involve the same class at both ends. Only when
collaboration can occur in both directions are the associations shown as bi-directional.
Associations are inherited by implication and thus when changes occur to inheritance
structures associations may need to be redrawn.
Inheritance models a generalisation relationship between a subclass (child) and a
superclass (parent). It is usually modeled vertically with the subclass below its super-
class, while other relationships are usually shown horizontally. A subclass inherits
attributes and operations of a superclass. For inheritance to apply, one of the following
sentences should make sense: “The subclass behaves in the same way as the superclass”
or “The subclass behaves in a similar way to the superclass.” If a subclass inherits only
some characteristics (attributes or operations) but not others, an inheritance relationship
between these two classes is not appropriate. A more formal test for inheritance is the
Liskov Substitution Principle (Bennett, McRobb, & Farmer, 2002), which states in
essence that it should be possible to treat a derived object (i.e., an instance of the
subclass) as if it were the base object (i.e., an instance of the superclass).

Behavioural Model

Using Activity Diagrams to Understand and Model Behaviour

A UML activity diagram describes the dynamic aspect of a system. It is essentially a
flowchart, showing flow of control from activity to activity. An activity can be defined
as an ongoing non-atomic execution within a state machine (although activity diagrams
do not necessarily model finite state machines). Activities ultimately result in some
action, which is made up of executable atomic computations that result in a change in the
state of the system or the return of a value. Actions encompass calling another operation,

TEAM LinG

224 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sending a signal, creating or destroying an object, or some pure computation. An activity
diagram models the sequential and concurrent steps in a computational process. It also
can model the behaviour of an object as it moves from state to state at different points
in the flow of control. Activity diagrams can be used to visualise, specify, construct, and
document the dynamics of a society of objects, or they may be used to model the
sequence of control of an operation (Booch, Rumbaugh, & Jacobson, 1999; Rumbaugh,
Jacobson, & Booch, 1999; Larman, 1998).
Activity diagrams can model complex operations, business rules, business processes,
and software processes. In addition to activity states, they can contain action states. An
action state represents an an executable and atomic computation, such as an operation
on an object, sending a signal to an object, or the creation or destruction of an object.
An action state cannot be decomposed; events may occur, but the execution of the action
state is not interrupted. The execution of an action state is generally considered to take
insignificant time. In contrast, activities can be further decomposed with their activity
being represented by other activity diagrams. Activities are not atomic, may be inter-
rupted, and are considered to take some duration to complete. An action state is a special
case of an activity state that cannot be further decomposed. An activity is thought of
as a composite, whose flow of control is made up of other activities and actions. An
activity can be extended to an activity diagram (Booch et al., 1999; Bennett et al., 2002;
D’Souza & Wills, 1999).
Actions and activities are just special kinds of diagrams. An activity is semantically
equivalent to expanding its activity graph until actions are represented. However,
activities are important because they can help break down complex computations into
parts. This is helpful when comprehending a legacy system that is large, complicated, and
difficult to understand.
Activity diagrams are used to model the dynamic aspect of the legacy system (Systa,
2000). These dynamic aspects may involve the activity of any kind of abstraction in any
view of a system’s architecture. Activity diagrams model a workflow and the operation
of a system. An activity diagram can be attached to any modeling element for the purpose
of visualising, specifying, constructing, and documenting that element’s behaviour.

Classifying Calls

A call stands for the procedure or function call in the programming language. The starting
point in analysing the structure of the legacy system is to develop a call graph. Examining
the calling structure of the legacy system can be used to identify program elements with
minimal dependencies that can easily be migrated. Four different kinds of program
elements are distinguished: root program elements that call other program elements but
are not themselves called; leaf program elements that are called by other program
elements but are not themselves called; node program elements that both call and are
called by other program elements; and isolated program elements that neither call nor are
called by other program elements.
Root program elements are typically programs that are invoked directly by the user or by
some external process; otherwise, there would be no way to execute these programs. In

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 225

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

themselves, these program elements are not a good starting point for understanding the
legacy system, since they call other program elements. The execution control goes back
and forth among the elements of the legacy system.
Node program elements are even more difficult to migrate than root program elements.
They are called by root program elements and in turn call leaf program elements. Thus,
they share the difficulties of root program elements — that they call other elements —
but must be migrated correctly from the legacy system so that the remainder of the legacy
system can continue to function, permitting those node program elements to continue
to be used by other program elements. Meanwhile, they share the difficulties of leaf
program elements — that they are themselves called — and thus the flow of execution
control goes up and down, and the executing procedures become more like “spaghetti
code.” They are the worst candidates for comprehending the legacy system.
Isolated program elements can be migrated easily. These elements could be converted
in any given increment since their conversion neither increases nor decreases the number
of elements that need to be developed from the legacy system.
Leaf program elements are the best candidates for the starting point in comprehending
the legacy system. They do not call back to legacy source code, and although they require
development, it is possible to minimise the number of these elements by transferring an
entire subsystem in a single iteration.

Specifying the Behaviour of a Legacy System

Because a legacy system is typically large, unstructured, complicated, and old-fash-
ioned, it is difficult to read and understand. Its specification must be realised from the
source code. However, since the specification includes all the information of the source
code, it is similarly complex in structure to the source code. Therefore the next work is
to present the specifications in a graphical manner, which means extracting a high-level
representation that is more understandable than the legacy system itself. This process
will result in a great loss of detail, resulting in a description of the legacy system with UML
activity diagrams. These describe the behavioural aspect of the legacy system (Yang,
Luker, & Chu, 1997).
It is preferable to deal with the data structure, and to represent code as operations on data
structures, rather than trying to recognise simple operations in the code and then
attempting to limit the number of program variables involved in those operations. The
specification of the system contains detailed information about interactions of variables
and classes, detailed code structure, and a complete description of operations on
variables.
Higher equivalent reasoning is essential. The data structures contained in the specifi-
cations can be eliminated to obtain a clearer description. Behavioural structures imple-
ment the dynamic aspect through internal constraints and hidden behaviour is repre-
sented explicitly. When a section of code implements a mathematical function, it is useful
for these techniques to be applied as part of the object abstraction process, allowing a
simpler description of a higher level behaviour or auxiliary behaviour to be obtained
(Breuer & Lano, 1991).

TEAM LinG

226 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Behavioural specifications consist of a set of top-level behaviour definitions, an explicit
definition of the valid domain, and a set of lower level local specifications. After the code
is improved, the specifications of the legacy system are generated entirely with a line-
by-line translation mechanism. Although many new variables and executions of those
variables are produced, and the first version of the specification from the legacy system
is not very readable, the application of simple transformations presents an acceptable
form. This is taken as the basis for the further transformations employed in equivalent
reasoning.
Specifications of the legacy system are presented with the purpose of describing the
legacy software using real-world domain names, together any comments embedded in the
programs — such as “student,” “university,” “bank,” “This is to input data,” “This is
to print the file,” or “This is to stop the program” — in order that the users of the system
should clearly understand how it works. For large, complicated software with millions of
lines of the programming language, it is essential to identify the detailed behaviour of
the calls (Li & Yang, 2001).

Realising Activity Diagrams from a Legacy System

Activity diagrams permit a great deal of flexibility regarding what is modeled. A model
is a communication device, and so requires an adequate level of detail to address the
problem to be solved. Clarity and brevity are important to avoid visual overload, and a
model should present key features, for example, of the control flows. Activity diagrams
have an appropriate level of detail to describe system functionality.
When drawing an activity diagram, the starting point is usually located in the top-left
corner of the activity diagram and an end point at the bottom-right corner. The start state
is modeled with a filled-in circle, and the end state with a filled-in circle with a border
around it. Every UML activity diagram has a starting point.

Figure 5. An example of an activity diagram that achieves an optimal room temperature

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 227

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each activity typically represents the invocation of an operation, a step in a business
process, or an entire business process. Every activity (other than the start and end states)
must have at least one transition into it and at least one transition out of it; otherwise
one or more transitions must have been missed.
A decision point is modeled as a diamond. Each transition leaving a decision point must
have a guard, and these are depicted using the format “[condition].” The condition must
be true in order to traverse a transition. Guard conditions on transitions leaving a decision
point help to describe the decision. The set of guards on all transitions from a decision
point or an activity must be a complete and mutually exclusive set.
Activities that can occur in parallel are regarded as forks and joins. Each fork has one
entry transition and should have a corresponding join with one exit transition (Ambler,
2002).
It is important to limit the level of complexity within each activity diagram. For example,
if there are more than three possible paths (alternate or exceptional), additional activity
diagrams should be used to promote understanding. Additional activity diagrams also
can be used where the processing requires specific data elements.

Discovering Actors

It is important to identify the direct users of a legacy system, and this can only be done
using knowledge from outside the system, since it involves human interaction and is also
closely related to domain knowledge, neither of which is directly represented within the
system. Candidate actors include humans who interact with the code, hardware that is
external to the code, and other systems that interact with the system.
Software interacts with humans and also with other systems in the real world. All such
interactors have a relationship with the legacy system. Users of the system perform tasks
with it, and the code also can exchange information with other software, sending data to
other systems, receiving data from them, or both.
When code is executed, it may exchange messages with other systems. It may send data
to other systems and receive data from them, send control signals to other systems,
receive control signals from them, or its execution may be initiated by other hardware
systems. All these systems are regarded as interacting with the legacy system.
Each interactor has a different view of the legacy system. Each interactor is interested
in a particular aspect of the legacy system. All interactors are considered to be candidate
actors in the model of the legacy system that will be developed.
Each interactor should be regarded as a single actor. When there is a choice between a
human actor and some hardware or software component, the human should be consid-
ered as the more important candidate actor. Only human actors can use the software
directly or indirectly for their own purposes. Ideally, all users, maintainers, managers of
the company, and even organisational sub-units should be considered as candidate
actors.

TEAM LinG

228 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The relative importance of each candidate actor should be carefully considered. While
all candidate actors have importance in relation to the legacy system, some may be more
important than others. Direct users are the most important of all candidate actors, since
they use the legacy system and determine when it is executed. Operational results are
reported directly to them, and they decide what should happen next. Next most important
may be company managers, because they not only use the legacy system (directly or
indirectly), but they also manage other direct users. For example, they may manage a
business project based on the output of the legacy system. Both direct users and
company managers use the legacy system for business purposes, and in some cases may
even be the same people. Next most important are indirect users and maintainers, who
in most cases do not use the legacy system for business purposes.
Other interactors besides humans are considered and may be modeled as actors,
including the hardware that executes the legacy system and other systems that interact
with it. This can describe the interaction, how the legacy system is executed by the
hardware,and what messages are exchanged with other systems. Any system that
invokes the legacy system is regarded as an actor.

Extracting Objects

The first step in object identification is to use static code analysis, where the degree of
coupling and cohesion between variables and procedures are analysed. Procedures with
high fan-in and low fan-out or with high fan-out and low fan-in are placed in separate
classes. The reason for this separation is that procedures with high fan-in but low fan-
out are typically logging modules, while procedures with high fan-out but low fan-in are
typically controller modules that simply call other procedures. Eliminating these logging
and controller modules (by placing them in separate classes from the rest of the analysis)
helps to separate procedures whose only link with other procedures is functional
cohesion. Functional cohesion occurs when two procedures perform a function together
but do not share any other type of logical cohesion such as belonging to a common
business unit. Otherwise, closely related variables and procedures are grouped into
objects, with variables becoming object attributes and procedures becoming the object
methods (Millham, 2002). Parameters are also collected together with their associated
operations, including systematic operations such as systematic calls.
The validity of each object and its corresponding operations and attributes should be
checked carefully for any overlap. If overlap between two objects occurs, the groups
should be redefined. If an operation on one object contains an operation on another
object, it is necessary to divide that operation into two parts, each of which focuses on
only one object. If an inconsistency occurs in the code where the objects are accessed,
it is necessary to restructure the code at a higher level in order to correct this type of
logical flaws.
Attributes are properties of an individual object. When identifying attributes, only those
properties that are relevant to the system should be considered. It is important not to
confuse objects with attributes. An attribute consists only of a name that identifies it
within its object, a brief description, and a type that describes the legal values it can take.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 229

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the case of entity objects (that is, objects with little or no interesting behaviour), any
property that needs to be stored by the system is a candidate attribute.
An association shows a relationship between two or more objects. Associations have
several properties:

• A name that is used to describe the association between the two objects. Asso-
ciation names are optional and need not be unique globally.

• A role at each end that identifies the function of each object with respect to the
association.

• A cardinality at each end that identifies the possible number of instances.

Associations between objects are important because they reveal information about the
application domain; associations are domain-related. Each association should be named
and roles assigned.
It is also necessary to identify generalisation relationships between objects. Generalisation
is used to eliminate redundancy from the analysis model.
Aggregation is the typical whole/part relationship. This is operationally similar to an
association with the exception that instances cannot have recursive aggregation rela-
tionships (i.e., a part cannot contain its whole).
Composition is exactly like aggregation except that the lifetime of the “part” is dependent
on the “whole”. This dependency may be direct or transitive. That is, the “whole” may
take direct responsibility for creating or destroying the “part,” or it may accept an already
created part, and later pass it on to some other whole that assumes responsibility for it.

Refining Messages from Operations

A message from one object to another is an interaction between their respective lifelines.
An object also can send a message to itself, that is, from its lifeline back to its own lifeline.
Each message must be extracted from one or more operations. Similar operations that work
together sequentially are collected together and presented as one message. For example,
the three operations of sending the value of the day, the month, and the year to the date
are extracted into one message named “display date.” The source code for this is shown.

{
int day, month, year;
dim date;
{
day=today;
month=this-month;
year=this-year;

TEAM LinG

230 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

display date(day,month,year);
}
}

In the legacy system, some kinds of complex computation, especially mathematical
formulae, are represented by messages in the application domain. Messages within the
legacy system should be presented as sequence diagrams, and ordered according to their
time and sequence of execution. For each message, the sending and receiving objects
are recorded.
It is important to concentrate on critical operations to refine the messages of the legacy
system. Not all operations are necessarily treated as messages, nor does one operation
necessarily correspond to one message (Li & Yang, 2001).

Specifying Behaviour Using Sequence Diagrams

A sequence diagram is an interaction diagram that details how operations are carried out
– what messages are sent and when. Sequence diagrams are organised according to time.
Normally time proceeds down the page.
A sequence diagram has two dimensions:

• The vertical dimension represents time.

• The horisontal dimension represents object interaction.

The vertical line extending down from each object is called its lifeline. A lifeline represents
an object’s life during the interaction shown in the diagram. Messages are represented
by horisontal solid arrows between the lifelines of the sender and receiver objects. Each
message is labelled either with the name of the operation to be invoked or with the name
of the signal. Argument values or argument expressions also may be represented. The
arrow may optionally be labelled with a sequence number, and a message can also be
prefixed with an iteration maker (*), which shows that the message is sent many times.
Sequence diagrams are used to demonstrate the flow of control for a certain part of a
program. They show how objects in the system interact based on messages sent and
returned.
Layering is a common approach to the organisation of systems. As a result, it makes sense
to layer sequence diagrams of the legacy system in a similar manner. This is based on
layers of program calls, where the root program element is regarded as the first and most
important sequence diagram. Other program elements are included in that diagram. Node
program elements are presented before leaf and isolated program elements.
The primary actor of the legacy system is located at the top left side of the sequence
diagram. Other actors follow in time and importance. Reactive actors (those that respond
to outputs of the legacy system, but do not initiate interaction) are described at the top
right side of sequence diagrams.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 231

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Message names are justified and aligned with the arrowhead. The message name is placed
close to the recipient, and this makes sense since the receiver of the message implements
the corresponding operation. The syntax of the legacy system’s implementation lan-
guage is utilised in naming messages, because this improves their understandability and
readability.
In a sequence diagram, an object receives messages that invoke its operations in a time-
ordered manner. Only when the operation that responds to one message has been
executed, can the object respond to the next message in sequence. The timing of
execution of messages by objects is clearly shown on a sequence diagram.
Legacy systems often use return values. When an object finishes processing a message,
control returns to the sender of the message. This marks the end of the activation that
corresponds to that message. The return of control is optionally marked by a dashed
arrow from the bottom of the activation rectangle back to the lifeline of the object that
sent the message giving rise to the activation. Activations and return messages need not
be shown on a sequence diagram. When they are shown, they also may optionally carry
a label that indicates the return value. When the next part of a sequence diagram refers
to the return, it is necessary to model the return values. Otherwise, they are omitted for
the sake of clarity and simplicity. This is a common modeling convention because it helps
to visually determine the volume of message flows to a given object, and thus to judge
the potential coupling that object has with other objects, which is often an important
consideration for refactoring the design.

Comprehending the Legacy System with Collaboration Diagrams

A collaboration diagram is exactly equivalent to a sequence diagram; therefore, it is
produced following the same steps as for the realisation of a sequence diagram.
In a collaboration diagram, object roles are represented as boxes and association roles
are shown as solid lines that follow the association paths between the objects.
If the system being modeled has a layered architecture, it makes sense to layer collabo-
ration diagrams in the same way as sequence diagrams.
As for sequence diagrams, message names are justified and aligned with the arrowhead.
The receiver of the message implements the corresponding operations and it makes sense

Figure 6. An example of a sequence diagram

TEAM LinG

232 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that the message name is close to that message recipient. The syntax of the implemen-
tation language of the legacy system is utilised in naming the messages. That improves
the understandability and readability.
In a collaboration diagram, an object receives messages and invokes the operation of time
ordering. Only when one message has been executed, can the next message then be
performed in the time dimension. So the time periods of executing the messages by
objects are clearly shown with the numbering of those messages on collaboration
diagrams.
Since collaboration diagrams are logically equivalent to sequence diagrams, similar
considerations apply regarding the omission of return values to improve clarity and
readability. When they are indicated, this is shown with an arrow labelled to indicate the
return value. Activations also are optional on a collaboration diagram; when they are
shown, they are represented by an arrow alongside the association path.

Modeling the Legacy System Using Statecharts

Statecharts differ from activity diagrams in that they can only model those elements of
the legacy system whose behaviour can be represented formally as a finite state machine.
In order to determine events, a run-time environment for the legacy system must be
created and then, with a comprehensive set of test data, the event/condition sequence
output by the legacy system (in response to the test data) is recorded and analysed.
Systa and Koskimies (1997) describe a process of extracting state diagrams from a legacy
system by first creating an event trace diagram that models the interaction of a set of
objects and actors during a specific usage of a system, and then uses this event trace
diagram to create a state diagram. Given a comprehensive set of test cases that provides

Figure 7. An example of a collaboration diagram for sending messages

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 233

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

coverage of all possible behaviours of a system, the legacy system is run using these test
cases as input.
The running system is monitored for event and condition sequences that are produced
by objects of that system. This event/condition sequence is sent to a tool, SCED, which
constructs a scenario diagram that models the interactions of a set of objects implied by
the event/condition sequence. SCED then is used to synthesise the general behaviour
of an object as a state diagram, given a set of scenario diagrams in which the object
participates (Systa & Koskimies, 1997; Booch et al., 1999).

Domain Model

Defining Use Cases

A use case represents a task that a user of the legacy system (represented by a selected
actor) wants the system to do (Howe, 2002). At a more abstract level, the main purpose
of all users of the legacy system, including direct and indirect end users and company
managers, is to achieve success for the business in its wider environment. Other persons,
who are not themselves users, may also gain some benefit from the operation of the legacy
system. Other systems and the hardware on which it runs provide support for it. As a user-
centred analysis technique, the purpose of a use case is to yield a result of measurable
value in response to an actor’s request (in most cases, the actor can be considered to
be acting in a wider commercial environment, and it is within this wider context that the
value is defined).
The legacy system has responsibility for accomplishing the expected tasks for each
actor. It is thus important to define what that actor wants the system to do. The starting
point for this may be just a vague notion of the main task that the actor wants the legacy
software to do, and this may contain ambiguities, inconsistencies, confusion, and
incompleteness (Yang, 2000).

Figure 8. An example of a statechart that achieves an optimal room temperature

TEAM LinG

234 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The demands of each actor must be defined and analysed in order to resolve conflicts
and remove ambiguities. To do this, it is necessary to collect all requirements for each
actor, identify those functions of the legacy system which contribute to that actor’s
purpose, along with any quality attributes such as performance, safety, portability,
environmental questions, and so on, to form a viewpoint that represents all parts of the
system which affect that actor.
Each use case executes a function of the legacy system that is termed the “usage.” The
main tasks that the legacy system is able to perform together represent its functionality.
The choice of actors is closely related to the identification of these tasks.
An actor may use the legacy system for more than one purpose. Because the use case
is utilised to present the main tasks that the actor would like to perform, detailed and
common performance of the program should be ignored. For example, an actor may require
the software to accept new input, carry out some arithmetical calculation, put stored data
in some particular sequence according to a supplied parameter, output the result to a file,
and then print it. These requirements do not need to be presented as, or in, a single use
case. For a legacy system that has more than one actor, each actor’s requirements should
be prioritised in order of importance. Meanwhile, a collection of associated requirements
may be conflicting and ambiguous. If the specification consists of requirements that are
simple and not too closely related to each other, it will work well. But if, during the
specification of the legacy system, it is found that the requirements are repeated or
overlap with each other, it will be necessary to understand the overall tasks of the legacy
system first, and then to distinguish in detail which among them are routine and/or
frequently executed.
Each task that an actor wants the system to accomplish can be regarded as a candidate
use case. Thus, the various purposes that actors have in requesting the legacy system
to carry out some task can generate candidate use cases for that actor.

Figure 9. An example of use cases involving a student, registrar, and teacher in a
university

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 235

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each task related to a specific actor within a large, complex legacy system, then,
represents a development from a completely detailed use case for that actor (Reed, 1998).
Thus, to identify use cases correctly requires an understanding of the external users’
point of view and is handled in the business domain.
Once one use case has been identified and modeled for a selected actor, other tasks
related to the same actor can be identified, extracted, and modeled as use cases for the
same actor. Thus, all use cases with a relationship to one actor are extracted and defined
together.
Systematic calls within the legacy system also are regarded as use cases. Such calls
invoke the operating system to perform specific tasks. They send parameters to the
operational environment and use feedback from the environment to achieve a result. How
the operational environment performs its tasks is not shown in any detail. But procedures
executed within the legacy system are distinct from systematic calls and they also are
modeled as being initiated by use cases. They represent the way in which the tasks are
performed and include subprograms and functions.
For each use case modeled, it is important to define a basic course. This is a main task
for the corresponding actor. The main tasks of the legacy system should be modeled first.
Use cases are categorised as primary if they are main functions of the system, and
secondary if they are secondary to the main purpose of the system (e.g., they are rarely
executed). A primary use case is represented as a brief description of the main processes
used to accomplish the corresponding system functions (Graham, 2000). Each major
process corresponds to a primary use case of the modeled system.
Once the basic courses of the primary use cases have been defined, other tasks that
seldom occur, or that are infrequently followed alternate courses of a primary use case,
are defined as secondary use cases.
Systematic calls that are secondary tasks, or that are seldom executed, correspond to
secondary use cases. Similarly, procedures that are secondary to the main purpose of the
system, or that are not frequently executed, correspond to secondary use cases.
Use cases are documented by a use case name, the initiating actor (and any other
communicating actors), the type of use case, and a description of the processes invoked.
The syntax of a primary use case is as follows:

• Name: system action

• Actors: Actor1 (Initiator), Actor2, other systems,

• Type: primary

• Description: the use case begins when Actor1 interacts with the system.

Secondary use cases are similar apart from their type.
Use case descriptions should be compared to each other, since it is important to
differentiate the goals of one use case from another. Any overlap, incompleteness,
inconsistency or ambiguity should be removed. Any commonality between different use

TEAM LinG

236 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cases can be extracted into separate use cases that are related by either an <extends> or
an <includes> relationship. This is reported to be the most efficient way of finding use
cases related in this way (Rubin, 1998). <Extends> and <includes> relationships are
discussed further in the next section.
Finally, one use case may be invoked by more than one actor and, similarly, one procedure
may be called by more than one other procedure in the legacy system. Thus at this stage,
it also is important to record the interaction between actors and use cases, and to decide
which use cases can be invoked by only one actor and which by more than one actor
(Graham, 2001).

Modeling the Legacy System with Use Case Diagrams

It is recommended that use case diagrams should be drawn in sequence, according to their
relative importance for the system and their sequence of execution in time (Ambler, 2002).
Each use case is named with a phrase that begins with a strong verb and this should be
consistent with domain terminology.
An actor represents a coherent set of roles that a user of a use case can play, and not
necessarily an individual job or position within the organisation. An actor’s name should
be a singular, domain-related noun. Actors are drawn outside the boundary of a use case
diagram (since they are regarded as distinct from the system that is modeled). An actor
regarded as a primary actor is placed in the top-left corner of the diagram.
Actors can interact with one or more use cases but cannot interact with other actors. No
relationship between actors can be represented in a use case diagram (except for
generalisation), even when in reality the individuals or systems represented by actors
do interact with each other. Any interactions that do occur between actors are recorded
in text notes, and are not strictly part of the use case diagram itself. If there is a system
actor, this is stereotyped as <system> (Heywood, 2002).
It is recommended for the sake of clarity and simplicity to avoid more than four levels of
use case associations. Included use cases are placed to the right of the invoking use case,
while extending and inheriting use cases are normally placed below the parent use case.
If generalisation between actors is defined, this should be checked carefully for
consistency between parent and child actors. Similarly, names, meanings, and domains
of actors and use cases should be checked for consistency, as this is essential for the
reader to have a clear understanding of the models.
The system boundary of the legacy system indicates the scope of the model. A use case
diagram only shows interactions of actors with the code of the legacy system. It should
not include the boundaries of other software and programs.
Based on the identification of all use cases for a selected actor, relationships among use
cases also can be identified. This principally applies to the discovery and modeling of
<extends> and <includes> relationships between use cases.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 237

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each actor has an association with at least one use case, which represents the ability of
that actor (i.e., a user of the legacy system in the role designated by the actor) to initiate
the use case or to transfer messages to or from the use case. An <extends> relationship
(Booch et al., 1999) between two use cases signifies that the base use case (the one that
is extended) implicitly incorporates the behaviour of another use case (the extending use
case) at a specified point in its behaviour.
The base use case may execute alone, but also, under certain conditions, its behaviour
may be extended by the behaviour of another use case. An <extends> relationship is a
way to model a part of the use case behaviour that a user regards as optional system
behaviour. An <includes> relationship between two use cases signifies that the base use
case (the including use case) explicitly incorporates the behaviour of another use case
(the one that is included) at a specified point in its behaviour (Larman, 1998).
Commonality between the definitions of two actors may be modeled using the generali-
sation concept (in exactly the same way that commonality between two classes can be
abstracted as a generalised superclass). A generalisation relationship between actors
signifies that the child actor inherits both the behaviour (in other words, the use cases)
and the semantics of the parent actor.
There are many tools that help to draw use case diagrams. These include Rational Rose,
UMLet, Artisan Real-time Modeler and Real-time Studio Professional, Atos Origin
Delphia Object Modeler, Documentator, Logic Explorers Code Logic, and MasterCraft
Component Modeler.

Figure 10. An example of a use case diagram

TEAM LinG

238 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Reverse Enginerering Tool, TAGDUR

Many software tools support reverse engineering, forward engineering, and reengineering.
According to Müller (2004), reengineering tools may be categorised in several different
ways according to their function. Some tools function as analysis tools by extracting
artefacts, such as call graphs and metrics, from the legacy system. Other tools function
as an understanding environment which parses the legacy system and stores the
extracted software artefact in a repository for querying, behavioural pattern matching,
and abstract representation. Still other tools offer an integrated forward and reverse
engineering environment that incorporates both analysis and understanding tools with
the ability for code generation. Furthermore, tools can be designed for scale, extensibil-
ity, or applicability and can be integrated along control, data, and presentation lines
(Müller, 2004).
Integrisoft’s Hindsight tool is designed for program understanding with the ability to
provide documentation of the program’s control flow, data structures, test coverage, and
complexity. Viasoft’s Existing Program Workbench (EPW) tool is a parsing engine that
also provides documentation of the program’s control and data flow. EPW decomposes
a large COBOL program into smaller, more manageable units through program slicing and
code extraction. Telelogic’s Logiscope is a program analysis tool. IDE’s StP/SE and StP/
RevC is an integrated forward and reverse engineering toolset for C. McCabe’s Visual
Reengineering Toolset analyses systems written in multiple programming languages
such as C, COBOL, and Fortran. Reasoning’s Software Refinery generates tools for
reverse engineering. This tool has the features of executable program specifications and
rule-based program transformations.
Modeling a system into UML diagrams during the reverse engineering process poses
some particular problems. UML was designed to model object-oriented systems; legacy
systems which are the target of most reverse engineering efforts, tend to be procedural
rather than object-oriented. Furthermore, these legacy systems tend to be designed to
operate in a strictly sequential manner and to respond to procedural invocations rather
than events. In order to enable this type of legacy system to be modeled in UML, it is
important to first transform the original legacy system from a procedurally structured and
strictly sequential-operating design to an object-oriented, event-driven system.
TAGDUR is a forward and reverse engineering toolset which, combined with Fermat, has
the ability of program analysis, dead code elimination, rule-based program analysis and
transformation, and code generation. TAGDUR was designed to automate the restruc-
turing and re-documentation of batch-oriented legacy systems using source code as the
only available software artefact.
TAGDUR also documents the transformed system via a series of UML diagrams. The
UML diagrams produced by TAGDUR are written in a WSL notation that maps syntac-
tically to the corresponding diagram structures in the UML 1.5 Specification (OMG,
2004). By incorporating the latest fully available version of UML, version 1.5, into its WSL
diagrammatic notation, TAGDUR ensures that its diagrammatic notation correspond to
UML’s most recent specification. WSL is extended to represent high-level constructs
such as UML’s classes, associations, and activities (Yang & Ward, 2003). By keeping

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 239

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

this diagrammatic notation within WSL, TAGDUR maintains the advantages of the WSL
representation of the system, notably tool independence, but because the WSL and UML
diagrammatic notation are syntactically similar, conversion from this WSL notation into
any UML exchange format, such as UXF, and hence, their importation into many UML
graphical tools is easily accomplished. Furthermore, through WSL (Yang & Ward, 2003),
there is a direct relation between the original source code, the model of the restructured
system, and the reengineered target system.

Transforming Procedural Legacy Systems into Object-
Oriented Systems

Before the transformation, we first convert the legacy system from its original program-
ming language into WSL using a set of conversion rules particular to that original
programming language which were formulated using Martin Ward’s paper, The Syntax
and Semantics of the Wide Spectrum Language, which defined the basis of the Wide
Spectrum Language. Wide Spectrum Language (WSL) is a mathematical, intermediate
language (Ward, 1992). WSL is called wide spectrum because this language represents
both high- and low-level constructs. Consequently, WSL is ideally suited to represent
all types of programming languages. Furthermore, this conversion from original program-
ming language gives the converted system implementation independence such that any
transformation of this program is independent of the programming language that the
system was originally developed in.
WSL was chosen for an intermediate language for several reasons. WSL is programming
and platform independent. Consequently, the transformations and modeling that TAGDUR
performs on a WSL-represented system could be performed regardless of whether the
original legacy system was in COBOL or C. The original legacy systems need only to be
converted into WSL first.
WSL has other advantages as well. WSL has excellent tool support, in the FermaT
transformation system which allows transformations and code simplification to be
carried out automatically. It has the capability of enabling proof-of-correctness testing.
WSL is programming and platform independent. WSL also was specifically designed to
be easy to analyse and transform (Yang & Ward, 2003).
This transformation process involves three main steps. The first step is object identifi-
cation using static code analysis where the degree of coupling and cohesion between
variables and procedures are analysed. Procedures with high fan-in and low fan-out or
with high fan-out and low fan-in are placed in separate classes. The reason for this
separation is that procedures with high fan-in but low fan-out are typically logging
modules, while procedures with high fan-out but low fan-in are typically controller
modules that simply call other procedures. Eliminating these logging and controller
modules, by placing them into separate classes, from the rest of the analysis helps
separate procedures whose only link with other procedures is functional cohesion.
Functional cohesion is when two procedures perform a function together; these two
procedures might not necessarily share any other type of logical cohesion such as
belonging to a common business unit. Otherwise, closely related variables and proce-

TEAM LinG

240 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

dures are grouped into objects with the variables becoming the object’s attributes and
procedures becoming the object’s methods (Millham, 2002). The next step of this
transformation process is to analyse two or more normally sequential units (whether
these units are procedures, program blocks, or individual code lines) for dependencies.
If there are no dependencies, the units that are being evaluated are deemed to be able
to execute independently; otherwise, if there are dependencies, the units being evaluated
are deemed to execute sequentially only. A dependency is defined as a simultaneous read
and write operation of the same shared variable by two or more granular units of
execution. Simultaneous reads and writes of the same shared variable results in an
inconsistent state; for example, the value read by task A may be different depending on
whether parallel-executing task B updates this shared variable before or after the variable
is read by task A. Because such an inconsistent state cannot be allowed, these tasks must
execute in their original sequential order rather than be allowed to execute independently
(Millham, Yang, & Ward, 2003a).
The third step in this process is to identify possible events in the system and to model
these events as asynchronous or synchronous events in UML. Although events occur
outside the application domain, events such as user input, in many batch-oriented legacy
systems, most events occur within the application domain. In other words, in batch-
oriented legacy systems, the only external event is the arrival of batch input. All other
events occur within the application domain. The latter types of events include input/
output operations, procedure invocations, and system interrupts and exceptions. This
transformation step consists of parsing the source code in order to identify these
possible events. These events, once identified, are then analysed in order to determine
if any dependency occurs between the code line where the event occurs and code lines
immediately successive to this code line. If a dependency exists, which means that a
system must wait for the event handler invoked by the occurrence of the event to
complete its execution before resuming its normal post-event execution, the event is
deemed to be synchronous. Otherwise, if no dependency exists, the event is deemed to
be asynchronous. It is necessary to determine if each event is asynchronous or
synchronous before they can be properly depicted as such in various UML diagrams
which model these events.

Creating UML Diagrams Using TAGDUR

In many legacy systems, finding system artefacts to use as a basis for modeling UML
diagrams of the system is difficult. Any documentation of the system often does not exist.
The original developers and end-users, who would be most knowledgeable about the
design of the system, have long since left the organisation. Often these systems have
been left in light maintenance mode for many years; consequently, current maintainers
and end-users have a minimal knowledge of the system. Because the source code, along
with the associated data files, are the only available system artefacts, any UML diagrams
that are generated to model this system must be based primarily on source code.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 241

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Class Diagrams

Class diagrams represent the static structure of the COBOL legacy system. Class
diagrams convey information about classes used in the system such as their properties,
their interfaces, and how these classes interact with one another. Associations are
relationships between instances of two classes. The attributes of the class describe its
characteristics. For example, if one class is a student, its attributes may include the age,
the sex, the class, the name, and the ID.
After our reverse engineering process transforms the legacy system from its procedural
structure to that of an object-oriented one, our tool extracts the class diagram from the
transformed system. Class definitions from the system are modeled as classes in the UML
class diagram; variables encapsulated within a class become class attributes, and
procedures associated with a class become methods in the UML class diagram.
Classes in this system are grouped into UML packages. A package, in this legacy system
example, corresponds to the original COBOL copybook. The assumption is that the
original programmers divided up the system into modules, in this case COBOL copybooks,
according to some logical criteria. This logical modularisation of the system is preserved
in the form of packages in UML diagrams. These packages with their classes also can be
considered frameworks of classes with each framework retaining the logical partitioning
criteria that divided the original system.
Classes that have been identified within the legacy system may be aggregated into a
super-class hierarchy using a number of criteria. Highly coupled groups of classes may
be grouped into a super-class hierarchical structure (Pu & Yang, 2003b).

Figure 11. An example of a class diagram

TEAM LinG

242 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since this legacy system makes much use of logical file names rather than physical file
names, I/O operations may be modeled as interactions between the class whose method
invokes the I/O operation and a class deemed to represent the logical file. Because many
of the latter class may access the same physical file, these logical filename classes may
be deemed to be subclasses of the physical filename class. In turn, the physical filename
class is, in turn, deemed to be a subclass of the File class itself.
In this example, four classes, whose methods each invoke an I/O operation, interact with
a logical filename class. These logical filename classes, in turn, are grouped, as part of
a compositional relationship, with their physical filename classes, F101 and F102. These
physical filename classes are then grouped, as part of a compositional relationship, with
the predefined super-class, File.
Our tool models accesses between the classes of other attributes or methods as static
associations between the classes. Each end of an association contains a multiplicity; the
multiplicity of an association end is the number of possible instances of the class being
associated with a single instance of the other end. Depending on the ratio of classes
accessing the attributes/method to the classes accessed, the multiplicity of these
association ends may be modeled as many-to-one, one-to-one, one-to-many, and many-
to-many. For example, if an instance of Class A accesses methods and attributes of
multiple instances Class B, this association end would be modeled as many-to-one. If an
instance of Class A accesses the attributes and methods of just one instance of Class
B, then this association end would be modeled as one-to-one multiplicity.
The information gained during the transformation process of this system is used in
modeling these multiplicities. During the object identification process, TAGDUR con-
structs two matrices: one matrix is a procedural usage grid which records the number of
times procedure A is called by procedure B; the other matrix is a variable usage grid which
records the number of times variable A is accessed within procedure B. These matrixes
are used during the object identification process where highly coupled procedures and
variables are grouped into classes. These matrices also are used when modeling UML
diagrams.
Variables or procedures that form the attributes and operations of one class, class A, but
that are accessed by procedures that form operations of another class, class B, are
modeled as an association between classes A and B. These two usage matrices are used
when modeled the multiplicity of these associations.

Figure 12. An example of a class diagram with two classes and a one-to-many
association between them

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 243

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

After the class aggregation process is complete, both procedural and variable usage
matrices are used to determine the number of times that the variables and procedures of
instances, or objects, of class A are accessed by procedures of an instance of class B;
this usage forms the multiplicity relationship between classes A and B. For example, if
the procedures of an object of class B access the variables and procedures of 10 objects
of class A, the association between classes A and B is modeled as an association of 1:n
multiplicity (Millham & Yang, 2003b).

Example of UML to WSL Notation Mapping

A small example of a class diagram is given. This diagram consists of two classes, Person
and Customer, and has an association of one-to-many between them because one Person
may represent several Customers to a company.
Each package consists of a set of classes within a diagram. Hence, the WSL notation of
a package, defined as a structure, would consist of both a package name and a class name
list. The WSL notation of class, also defined as a structure, consists of a class name, a
visibility name, an attribute list, and an operations list.
An attribute list is a list of ordered pairs in the format (VisibilityName: AttributeName).
VisibilityName can be one of the following visibility options: + public, # protected, -
private, and ~package.
An operations l ist consists of a l ist in the format <Visibili tyName>
<OperationsName>(<ParameterList): <ReturnTypeExpression><PropertyString>.
<OperationsName> is the name of the Operations; <ReturnTypeExpression> is an
optional expression that describes what an operation returns. <Property String> indi-
cates property values that apply to the element. In the case of Operations, these property
values may include <Query> which, if true, indicates an operation that does not modify
the system state and <Concurrency> which has the following values: sequential,
concurrent, or guarded (the operation’s invocation is governed by a guard condition).
The parameter list is in the format: <KindName><ParameterName>:<Type-Expression>
= <Default_Value>. <KindName> indicates the parameter direction such as in, out, or
inout. <Type-Expression> is the data type of the parameter. The Association consists
of a structure including the fields of AssociationName, MultiplicityName,
AssociationEndName1, and AssociationEndName2. The AssociationEnd structure has
the fields of Ordering (whose value can be ordered or unordered), Navigability (whether
an association is navigable or not), AggregationIndicator (if yes, indicates that the
association is an aggregation association between classes), RoleName, Changeability
(if this association is changeable or not), and VisibilityName. Multiplicity may be a one-
to-one [1..1], one-to-many [1..*], zero-to-one[0..1], zero-to-many [0..*], and many-to-
many [*..*] (OMG, 2004). Because WSL is typeless, each WSL structure has an additional
field ElementType which indicates what UML element this structure represents.
In the previous example, the WSL notation would be as follows:

TEAM LinG

244 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Var Struct ClassPackage
Begin
Var ElementType = Package
Var PackageName = Package
Var ClassList = Person, Customer
Var AssociationList = PersonCustomerAssociation
End

Var Struct Person
Begin
 Var ElementType = Class
Var AttributeList = {Private, PersonID},{Private, PersonName}
Var OperationsList = Public GetName():String
 End

Var Struct Customer
Begin
Var ElementType = Class
Var AttributeList = {Private, PersonID}, {Private, CustomerType}
End

Var Struct PersonCustomerAssociation
 Begin
 Var ElementType = Association
Var MultiplicityName = [1..*]
Var AssociationEndName1 = PersonAssociationEnd
Var AssociationEndName2 = CustomerAssociationEnd
End

Var Struct PersonAssociationEnd
 Begin
Var ElementType = AssociationEnd
 Var AssociationEndName = Person // name of linked class object
 Var Ordering = unordered
 Var Navigability = yes
Var AggregationIndicator = none

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 245

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Var RoleName = ‘No Role’
Var Changeability = Yes
Var Visibility = Public
Var Multiplicity = [1..*]
End

Var Struct CustomerAssociationEnd
 Begin
 Var ElementType = AssociationEnd
 Var AssociationEndName = Customer // name of linked class object
Var Ordering = unordered
 Var Navigability = yes
Var AggregationIndicator = none
Var RoleName = ‘No Role’
 Var Changeability = Yes
Var Visibility = Public
Var Multiplicity = [1..*]
End

The purpose of this UML to WSL structure mapping is twofold: One is to extend WSL
to represent high-level abstract modeling concepts and elements; the other is to make
this mapping UML-compliant such that these structures can easily be exported, via XML,
to various UML tools.

Figure 13. An example of a sequence diagram

TEAM LinG

246 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sequence Diagrams

A sequence diagram is an interaction diagram that details how operations are carried out
— what messages are sent and when. Sequence diagrams are organised according to time
with time progressing as you go down the page. The objects involved in the operation
are listed from left to right, according to when they take part in the message sequence.
Sequence diagrams are modeled as one line; this line contains all the objects in the system
with each object in its own swimlane. Because all objects have a global scope, and
variables in COBOL are globally scoped, these objects are shown as being immediately
activated after their declaration in the swimlane. Messages are depicted with their origin
at the source object and their endpoint being the target object. These messages are
depicted as synchronous or asynchronous.
Exceptions are depicted as messages originating in the object where the exception
occurred and ending at System object, which handles exceptions. Similarly, system
interrupts are depicted as messages originating in the object where the interrupt occurred
and ending at System object, which handles interrupts.
Procedure calls between objects are depicted as messages between the source, or caller,
object and the target, or callee, object. Exceptions and interrupts are modeled as
messages between the object where the interrupt/exception occurred, the source object,
and the System object, the target object. Procedure I/O calls, such as Put or Fetch
statements, are modeled as messages between the source object, where the procedure
I/O calls is invoked, and the File object, the target object.
Depending on whether immediately successive tasks are dependent on the result of these
messages as determined during the identification of independent process, these mes-
sages are depicted as asynchronous or synchronous in the sequence diagrams.
The determination of independent tasks’ process assigns sequence numbers at the
procedural and individual codeline granularity. The order of sequence number indicates
the order of execution such as the task(s) with the lowest sequence number being
executed first followed by the tasks with the next lowest sequence number and so on.
Tasks with the same sequence number may be executed in parallel.
Depending on whether the task immediately succeeding the message task is dependent
on the message finish execution first, the message is modeled as synchronous, if such
a dependency exists, or as asynchronous, if no such dependency exists.
Each message depicted in the sequence diagram is given a sequence number in the format:
<procedure task sequence number>.<individual codeline task sequence number>. The
procedure task sequence number is the sequence number of the procedure where the
message is invoked and individual codeline task sequence is the sequence of the codeline
where the message is invoked. The sequence indicates the order of execution in
ascending order; messages with the same sequence number may be executed in parallel.
We model sequence diagrams as message passing between objects of the system
(Millham & Yang, 2003b).

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 247

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component Diagrams

Component diagrams model software components and their relationships within the
implementation environment. These components may be simple files or dynamic libraries.
Relationships between components are modeled as dependency relationships; a rela-
tionship between two components is identified when one component offers services to
other components. Generally, these components represent compilation dependencies.
Several of these components may be grouped into packages, or subsystems, according
to some logical criteria.
TAGDUR models component diagrams in its re-engineering process. Often the legacy
system consists of a main program file that calls, or loads, several program sub-files
which, in turn, load other program sub-files. This sub-file call hierarchy is first identified
by parsing the source code of legacy file in order to identify which sub-files are loaded
from which files; this call graph is modeled as a component diagram (Millham, Pu, & Yang,
2004).

Deployment Diagrams

Deployment diagrams show the physical configurations of software and hardware. Our
tool parses the source code to identify any relationships between the classes or packages
that contain the source code and any external entities that this source code refers to. For
example, a WSL statement in the source code might access a Terminal device. Parsing
by this tool will reveal the relationship between the class containing this WSL statement
and the Terminal object. This relationship is then depicted in the Deployment diagram.
Deployment diagrams are derived by parsing source code to determine the possible
relationship between the class containing the source code being parsed and external
entities such as a file system and its physical files, peripheral devices such as a printer,
or user interfaces.
Physical devices, such as printers, are modeled as nodes in deployment diagrams.
Program modules, such as the original COBOL Copybooks, are modeled as component

Figure 14. An example of a deployment diagram

TEAM LinG

248 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

instances. These modules are composite parts of the legacy system (original source code
programs) (Millham et al. 2004).

Activity Diagrams

Activity diagrams describe the internal behaviour of a class method as a sequence of
steps. These sequence of steps model the dynamic, or behavioural, view of a system in
contrast to class diagrams, which model the static, or structural, view of the system.
An activity in UML represents a step in the execution of a business process. Activities
are linked by connections, called transitions, which connect an activity to its next
activity. The transitions between activities may be guarded by mutually exclusive
Boolean conditions. These conditions determine which control flow(s) and activities are
selected.
Activity diagrams may contain action states. Action states are states that model atomic
actions or operations. Activity diagrams also may contain events.
Activity diagrams can be partitioned into object swimlanes that determine where an
activity is placed in the swimlane of the object where the activity occurs.
Tasks that have been determined to be able to execute in parallel by the independent task
evaluation step of the transformation process are modeled as parallel activities and flows
in the activity diagram, while tasks that have been determined to be able to execute
sequentially only are modeled as sequential activities and flows. In activity diagrams,
synchronisation bars are used to synchronise the divergence of sequential activities into
parallel tasks or the merging of parallel tasks to a sequential task. These enable the control
flow to transition to several parallel activities simultaneously and to ensure that all
parallel tasks complete before proceeding to execute the next sequential task.
Our activity diagrams are code-based. Each activity represents an atomic WSL statement.
Because the WSL code lines of a procedure form steps in the execution of this procedure
and because individual WSL code lines form an atomic unit of execution, basing activities
on individual WSL code lines is a logical basis for the nodes of an activity diagram.
Conditions within WSL control constructs, such as WSL’s if-then statements, form
conditions within the guards that govern the flow of control to activities enclosed by the
condition blocks of this WSL control construct (Yang & Ward, 2003).
One might question why TAGDUR chooses to generate activity diagrams from WSL code
rather than simply allow the developers to view the WSL or generated C++ code of the
transformed system. Activity diagrams were chosen for many reasons. UML is widely
understood by many developers while WSL and, to a much lesser extent, C++ has less
of a universal understanding. Furthermore, activity diagrams clearly represent the
interaction among objects and the occurrences of events among activities; this represen-
tation would be much less apparent than if the developer were simply perusing the code
of the transformed system.
Although our activity diagram is based on WSL code and individual WSL code lines are
used to distinguish action states in the activity diagram, this lack of understanding is
mitigated by attached comments which describe the WSL code line being modeled. For

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 249

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

example, a file I/O event is described in terms of its type (File I/O), subtype (Read), and
destination, source, and index variables. The decision to base our activity diagram on
WSL, rather than C++, was due to several reasons, including the fact that WSL is
programming and platform independent. For example, a file I/O operation is represented
through one type of WSL statement while representing the same operation in C++ may
take several C++ statements depending on the type of file being accessed. Consequently,
many implementation-specific details that would clutter an activity diagram based on C++
code are avoided if this same activity diagram is based on WSL code instead.
A small sample of WSL code is presented with a corresponding UML activity diagram
based on this code.

WSL Code Sample:
X : = Y + 1
If X > 4 Then

Fetch D1, Y2, Z2
Else

Call B.UpdateRec(X)
Fi
J := D1 + X
M := N + 2 /* potentially parallel operation */
K := 3 /* potentially parallel operation */

The following diagram models the following WSL code sample as action states in an
activity diagram. Each action state is labelled by the WSL statement whose entry action

Figure 15. An example of an activity diagram representation of the WSL code sample

TEAM LinG

250 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the state represents. Each action state is placed in the object swimlane whose object
produces the action. For example, the invocation of Class B’s UpdateRec method is
represented as an action state in the Object B swimlane. Potential parallel operations,
such as “M := N + 2” and “K:= 3,” are modeled as parallel flows emanating from a fork
synchronisation bar. An if-then-else WSL construct is modeled in the activity diagram
as a branch, with mutually exclusive guard conditions, to two action states. Using these
guard conditions, the control flow in the activity diagram is governed in a similar manner
to the system that it represents. Potentially parallel executing WSL code lines are modeled
as parallel control flows in the activity diagram (Millham & Yang, 2003b).

Statecharts

TAGDUR does not extract statecharts, similar to state diagrams, from source code but
does derive activity diagrams, which describe a system’s behaviour, from source code.
Statecharts differ fundamentally from activity diagrams in that statecharts can only
model elements of the system, such as classes or subsystems, whose behaviour can be
formally described using a state machine while activity diagrams can model almost any
process of the system. Although statechart modeling is a future feature of TAGDUR,
statecharts may not be necessary to understand the behaviour of many legacy systems.
While external events may be a critical part of legacy systems that are highly interactive
and reactive, many legacy systems are batch-oriented. Because these systems are batch-
oriented, the only event external to this type of system is the arrival of batch input that
invokes the batch application. Consequently, in batch-oriented legacy systems, activity
diagrams are sufficient to describe the behaviour of this system.

Use Case Diagrams

Use case diagrams are very necessary in order to clarify system requirements from the
end-users. However, many other methods, such as textual representation or formal
specifications methods such as Z, exist to depict the information contained within a use
case diagram. Thus, while defining system requirements is a necessary part of the
software development process, it is not strictly necessary to utilise use case diagrams
to model this information.
Use case diagrams are very difficult to derive from source code during the reverse
engineering process. While it is possible to extract system processes from activity
diagrams and to properly label these processes using some type of artificial intelligence,
it is very difficult to derive use cases without significant manual input from the users.
For example, the purpose of a process may be derived through such means as natural
language parsing and analysis of programmer comments associated with this process
and of the names of associated procedures. If a procedure is named UPD-ACCT, the
reverse engineering tool, through an analysis of this procedure name and concordance
with programmer-defined abbreviation standards, may conclude that this procedure’s
purpose is to update a bank account. However, this natural language parsing and
analysis process is often faulty. Furthermore, a reverse engineering tool cannot easily

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 251

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

know, without explicit user input, of actors external to the system. For example, the
reverse engineering tool may detect places in the source code which accept user input
but from this source code, the tool cannot easily determine what particular type of user
might input this information.
Consequently, a reverse engineering tool cannot produce a relatively error-free use case
diagram from source code. Instead, users must participate heavily in this process. These
users must develop use cases from their own system knowledge and activity/class
diagrams of this system. Because one of the goals of TAGDUR is to automate the
derivation of UML diagrams from software architecture as much as possible, use case
diagrams, because they require so much manual user intervention, are not yet an
implemented feature of TAGDUR.

A Small Case Study

A small case study of a reengineering effort using TAGDUR is presented. The original
legacy system is a COBOL, batch-oriented system of 1,500 source code lines (Hutty &
Spence, 1997). This COBOL program, after its translation into the intermediate language
WSL, is transformed into an object-oriented, event-driven system.
This transformed system is then analysed and various UML diagrams are derived from
the code of this system. The following statistics are produced:

1. There are 22 classes identified. Of these 22 classes, 20 classes are derived from the
application domain and 2 are predefined objects (System, File).

2. These classes have a total of 887 attributes and 40 methods. There are 627
associations, one class shares variables or methods of another class, between
different classes.

3. There are 337 events identified. Of these events, the following types of events
occur:

• 1 external event (the invocation of the application upon arrival of input)

• 19 error

• 19 system interrupts

• 220 file I/O operations

• 113 method invocations

4. In the activity diagram derived from the source code, there are 1,275 action states
identified and modeled. There are 41 conditions that govern the execution of these
action states.

TEAM LinG

252 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

Creating a well-defined system model of a legacy system that is being reversed engi-
neered is crucial in order to understand the structure and dynamics of the legacy system.
Visualisation of this model, through a graphical modeling notation such as UML, has the
advantage over textual notations in that graphical notations are better able to depict the
complex relationships between model elements.
UML was chosen as the graphical modeling notation for several reasons, including
UML’s good tool support and its ability to support multiple perspectives of the same
system.
However, many legacy systems are procedurally structured and driven. This structure
and behaviour of this type of legacy system is difficult to model in UML because UML
presupposes an object-oriented and, to some extent, an event-driven system. In order
to represent a legacy system in UML, it is necessary to restructure the original system
into an object-oriented system with the independent tasks and events of this system
identified. This restructuring must occur using a set of proven restructuring processes
in order to prevent restructuring errors from affecting the restructured system. Restruc-
turing processes may be proven through proofs of correctness, functional equivalence
of source and restructured systems, and many other methods. TAGDUR provides these
proven restructuring processes of a legacy system in order to enable it to be modeled in
UML and in order to achieve the advantages of an object-oriented system such as
componentisation, lower maintenance costs, and easier program comprehension by
developers through modularisation.
Deriving information from an analysis of the legacy system is a complex process. A
theoretical framework to extract UML diagrams from the legacy system is provided. A
partial implementation of this framework is available in the TAGDUR tool which extracts
seven of the possible nine UML diagrams from the legacy systems. These seven diagrams
represent the behavioural, static, dynamic, and architectural views of the system.
However, TAGDUR does not extract statecharts or use case diagrams from the legacy
systems. TAGDUR was originally designed to reverse engineer batch-oriented legacy
systems from their only surviving information, their source code, and no user interaction
during the reverse engineering process. Consequently, within this set of constraints,
only a limited number of UML diagrams, which exclude use case and statechart diagrams,
could be satisfactorily extracted. Statecharts, because they model event-response
actions precisely in terms of states, are important in modeling and in understanding the
behaviour of highly reactive systems. Activity diagrams, which are provided by TAGDUR,
are often sufficient to model the behaviour of simpler batch-oriented legacy systems. Use
case diagrams are crucial in modelling business process and in representing the system
from an end-user viewpoint. However, use case extraction from the legacy systems
requires a considerable amount of user intervention. Consequently, use case extraction
has not been implemented in TAGDUR.
Enabling the developers to fully understand the structure, behaviour, and interaction
with external devices of a system through reengineering and re-documentation through
a series of selected UML diagrams allows the developers to recover lost documentation,

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 253

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

assist with maintenance such as existing error correction and prevention, facilitates
software reuse by enabling the identification of reusable software components, enables
the integration of disparate software systems, and enables the migration to another
hardware/software platform (Klosch, 1996). Many tasks involving legacy systems, such
as making changes to existing code or transporting it to a new platform, require a full
understanding of the current system first in order to accomplish these tasks satisfactorily.

References

Alhir, S.S. (1998). UML in a nutshell. Sebastapol, CA: O’Reilly.
Ambler, S.W. (2002). UML class diagramming guidelines. Available online at http://

www.modelingstyle.info/useCaseDiagram.html
Arango, G., Baxter, I., Freeman, P., & Pidgeon, C. (1986). TMM: software maintenance by

transformation. IEEE Software, 3(3), 27-39.
Baecker, R. (1981). Sorting out sorting dynamic graphics project. University of Toronto:

ACM SIGGRAPH ’81 (distributed by Morgan Kaufmann, Los Altos, CA). Software
Visualization: Programming as a Multimedia Experience (pp. 369-381). MIT
Press.

Barstow, D. (1985). On convergence toward a database of program transformations. ACM
Transactions on Programming Languages and Systems, 7(1), 1-9.

Ben-Menachem, M. & Marliss, G.S. (1997). Software quality production practical,
consistent software. Boston: International Thomson Computer Press.

Bennett, S., McRobb, S., & Farmer, R. (2002). Object-oriented systems analysis and
design using UML (2nd edition). Maidenhead: McGraw-Hill.

Biggerstaff, T.J. (1989). Design recovery for maintenance and reuse. IEEE Computer,
22(7).

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user
guide. Boston: Addison-Wesley-Longman.

Breuer, P.T. & Lano, K. (1991). Creating specification from code: Reverse-engineering
techniques. Journal of software maintenance: Research and practice.

Chen, Y.F. & Ramanoorthy, C.V. (1986). The C information abstractor. COMSASC 86,
291-298.

Chifosky, E.J. & Cross, J.H.II (1990). Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1), 13-17.

Dorfman, M. & Thayer, R. (1997). Software engineering. Los Alamitos, CA: IEEE
Computer Society Press.

D’Souza, D.F. & Wills, A.C. (1999). Objects, components, and frameworks with UML.
Boston: Addison-Wesley.

Goldstein, H.H. & Neumann, J.V. (1949). Planning and coding problems for an elec-
tronic computing instrument. New York: McMillan.

TEAM LinG

254 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Graham, I. (2000). Requirements engineering and rapid development. Boston: Addison-
Wesley.

Graham, I. (2001). Object-oriented methods principles & practice (3rd edition). Boston:
Addison-Wesley.

Hall, P.A.V. (1992). Software reuse and reverse engineering in practice. UK: Chapman
& Hall.

Heywood, R. (2002). UML use case diagrams: Tips and FAQ. Available online at http:/
/www.andrew.cmu.edu/course/90-754/umlucdfaq.html#actors

Howe, D. (2002). FOLDOC: Free on-line dictionary of computing. Available online at
http://foldoc.doc.ic.ac.uk/foldoc/index.html

Hutty, R. & Spence, M. (1997). Mastering COBOL programming. London: Macmillan
Press.

Irwin, W.N. & Churcher, N. (2002). XML in the visualisation pipeline. In D.D. Feng, J. Jin
& P. Eades (Eds.), Visualisation 2001, Vol. 11 of Conferences in Research and
Practice in Information Technology, Sydney, Australia, April, (pp. 59-68). Online
at http://citeseer.ist.psu.edu/article/irwin01xml.html

Johnson, R.E. & Foote, B. (1988). Designing resusable classes. Journal of Object-
Oriented Programming. 1(2), 22-35.

Johnson, W.L. (1986). Intention-based diagnosis of novice programming errors. Los
Altos, CA: Morgan Kaufmann Publishers.

Klosch, R. (1996). Reverse engineering: Why and how to reverse engineer software.
Proceedings of CSS ’96, Los Angeles, (pp. 92-99).

Larman, C. (1998). Applying UML and patterns — An introduction to object-oriented
analysis and design. Indianapolis, IN: Prentice-Hall.

Li, Y. & Yang, H. (2001). Simplicity: A key engineering concept for program understand-
ing. International Workshop on Program Comprehension (IWPC01).

Lubara, M.D. (1991). Domain analysis and domain engineering in IdeA. In Domain
analysis and software systems modelling (pp. 163-178). Los Alamitos, CA: IEEE
Computer Society Press.

Millham, R. (2002). An investigation: Reengineering sequential procedure-driven soft-
ware into object-oriented event-driven software through UML diagrams. Proceed-
ings of the International Computer Software and Applications Conference
(COMPSAC), Oxford.

Millham, R. &Yang, H. (2003). TAGDUR: a tool for producing UML diagrams through
reengineering of the legacy systems. Proceedings of the 7th IASTED International
Conference on Software Engineering and Applications (SEA), Marina del Rey,
CA.

Millham, R., Pu, J., &Yang, H. (2004). TAGDUR: a tool for producing UML sequence,
deployment, and component diagrams through reengineering of the legacy sys-
tems. Proceedings of the 8th IASTED International Conference on Software
Engineering and Applications (SEA), Innsbruck, Austria.

TEAM LinG

Visualising COBOL Legacy Systems with UML: An Experimental Report 255

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Millham, R., Yang, H., & Ward, M. (2003). Determining granularity of independent tasks
for reengineering a legacy system into an OO system. Proceedings of the Interna-
tional Computer Software and Applications Conference (COMPSAC), Dallas.

Muller, P.A. (1997). Instant UML. Birmingham: Wrox Press.
Müller, H.A. (2004). Understanding software systems using reverse engineering tech-

nologies research and practice. Available online at http://www.rigi.csc.uvic.ca/
UVicRevTut/F6tools.html#Reengineering%20tool%20taxonomy

Neighbors, J.M. (1984). The Draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, SE-10(5), 564-571.

Price, B., Small I., & Baecker, R. (1992). A taxonomy of software visualization. Proceed-
ings of the 25th Hawaii International Conference on System Sciences.

Pu, J., Millham, R., & Yang, H. (2003). Acquiring domain knowledge in reverse engineer-
ing the legacy code into UML. Proceedings of the 7th IASTED International
Conference on Software Engineering and Applications (SEA), Marina del Rey,
CA.

Pu, J. & Yang, H. (2003). Modelling legacy code with UML class diagrams — Another
reverse engineering attempt. Proceedings of the Conference CACSUK2003, Luton
University, Luton, UK.

Rajlich, V. (1992). Redocumentation of software architecture. Position paper. In P.G.
Selfridge et al. (Eds.), Applying artificial intelligence to software problems (pp.
7-14).

Reed, P. (1998). The unified modelling language takes shape. Colorado Springs, CO:
Jackson-Reed.

Rubin, D.M.(1998). Uses of use case. Available online at http://www.softstar-inc.com/
index.htm

Rugaber, S. & Clayton R. (1993). The representation problem in reverse engineering.
Proceedings of the 1993 Working Conference on Reverse Engineering.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorenson, W. (1991). Object-
oriented modelling and design. Indianapolis, IN: Prentice-Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modeling language
reference manual. Boston: Addison-Wesley-Longman.

Srinivas, Y. (1991). Pattern-matching: A sheaf-theoretic approach. Unpublished Doc-
toral Thesis. Dept. of Information and Computer Science, University of California
at Irvine.

Systa, T. (2000). Static and dynamic reverse engineering techniques for Java software
systems. University of Tampere, Finland.

Systa, T. & Koskimies, K. (1997). Extracting state diagrams from the legacy systems.
ECOOP Workshops, 272-273.

Van, S.L. (1992). Workshop Notes – AI and Program Understanding. AAAI.
Ward, M. (1992). The syntax and semantics of the wide spectrum language. Technical

Report. Durham University, UK.

TEAM LinG

256 McRobb, Millham, Pu and Yang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ward, M., Calliss, F.W., & Munro, M. (1989). The maintainer’s assistant. Proceedings
of Conference on Software Maintenance, (pp. 307-315).

Webster, D.E. (1987). Mapping the design representation terrain: A survey. Technical
Report. Micro-Electronics and Computer Technology Corporation. MCC STP-093-
87.

Whitney, M. et al. (1995). Using an integrated toolset for program understanding.
Proceedings of the CASCON ’95, (pp. 262-274).

Wile, D.S. (1987). Local formalisms: Widening the spectrum of wide-spectrum languages.
In Program specification and transformation (pp. 165-195). Burlington, MA:
Elsevier Science Publishers.

Wills, L. (1993). Flexible control for program recognition. Proceedings of the 1993
Working Conference on Reverse Engineering, Baltimore, MD.

Yang, H. (1991). The supporting environment for a reverse engineering system — the
maintainer’s assistant. IEEE Conference on Software Maintenance (ICSM 91).
Los Alamitos, CA: IEEE Computer Society Press.

Yang, H. & Ward, M. (2003). Successful evolution of software systems. Norwood, MA:
Artech House.

Yang, H. et al. (1999). Acquisition of entity relationship models for maintenance —
Dealing with data intensive programs in a transformation system. Journal of
Information Science and Engineering, 15(2), 173-198.

Yang, H. et al. (2000). Abstraction: A key notion for reverse engineering in a system
reengineering approach. Journal of Software Maintenance: Research and Prac-
tice, 12(5), 197-228.

Yang, H., Luker, P., & Chu, W. (1997). Measuring abstractness for reverse engineering
in a re-engineering tool. IEEE International Conference on Software mainte-
nance, 48-57.

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 257

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

XML-Based Analysis
of UML Models for

Critical Systems
Development

Jan Jürjens, TU München, Germany

Pasha Shabalin, TU München, Germany

Abstract

High-quality development of critical systems poses serious challenges. Formal methods
have been proposed to address them, but their use in industry is not as widespread as
originally hoped. This chapter proposes to use the Unified Modeling Language (UML),
the de-facto industry standard specification language, as a notation together with a
formally based tool-support for critical systems development. The authors extend the
UML notation with new constructs for describing criticality requirements and relevant
system properties, and introduce their formalization in the context of the UML
executable semantics. Furthermore tool-support concepts for this approach are
presented, which facilitate transfer of the methodology to industrial applications.

Introduction

Modern society relies on distributed IT-based infrastructures in many aspects including
communication, finance, energy mining and distribution, and transportation. The disrup-

TEAM LinG

258 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion or incorrect functioning of these systems may threaten the economical or even
physical well-being of people and organizations.
Complex distributed systems can have subtle flaws, which are not obvious and often
cannot be detected by common testing procedures. Additionally, the distributed char-
acter of such infrastructures and the interconnection of modern information systems
make remote and anonymous attacks on them possible. Examples indicating the potential
scale of the problem include the following:

• The survey published in 2002 by Computer Security Institute in cooperation with
FBI indicated that 90% of the interviewed organizations detected intrusion into
their IT infrastructures within the last year. Only 44% of them were willing and able
to quantify their losses. These 223 companies reported $455,848,000 in financial
losses (Richardson, 2003).

• In 1997, a NASA hacker team broke into the U.S. Department of Defense and U.S.
electric power grid system networks. They were able to provoke power outages and
911 emergency phone overloads in Washington, D.C. (Schneider, 1999).

• Spectacular examples for software failures in complex systems include problems
with the Ariane 5 rockets: an independent inquiry board set up to investigate the
explosive failure in 1997 reported that the flight control system failed because of
errors in computer software design.

Obviously, the problem with critical systems was not left unnoticed, and many method-
ologies exist to improve their reliability. However, as we argue in the following section,
we are still far from a satisfying solution. In this chapter, we would like to demonstrate
how the Unified Modeling Language (UML) together with XML-based processing of
UML models, offers a significant step toward a solution to the problem, in the context
of model-based development of critical systems using UML.

Overview and Background

Traditionally, different methods exist for ensuring reliability of critical systems:

Break-And-Fix. This approach accepts that deployed systems may fail; whenever a
problem is noticed and identified, the error is fixed. The Break-And-Fix approach
is probably the most obvious one, however, it has many drawbacks. It is inherently
disruptive — fixing the system often implies distributing patches, which disturbs
users, annoys customers, and destroys their confidence. What is worse, the
method is unsafe and insecure — we can never be sure that the new problem will
not disturb critical functionality, or that it will not be spotted at first by a malicious
person, who will try to compromise the system further.

Traditional formal methods, on the other hand, offer very good quality of the developed
critical systems. There is much successful research in this direction. For security-

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 259

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

critical systems, this includes Millen, Clark, and Freedman (1987), Burrows, Abadi,
and Needham (1989), Meadows, (1991), Lowe (1996), Abadi and Gordon (1997), and
Paulson (1998). However, formal methods are rarely applied in practice because of
the high costs arising from the necessary training for the developers of the system,
and from the construction of the formal specification of the system.

UML, the de facto industry-standard in object-oriented modeling, together with XML-
based processing of UML models, offers an unprecedented opportunity for high-quality
critical systems development that is feasible in an industrial context.

• As the de facto standard in industrial modeling, a large number of developers are
trained in UML, making less training necessary. Also, UML specifications of
systems under development may already be available for analysis, which again
saves time and cost.

• Compared to previous notations with a user community of comparable size, UML
is relatively precisely defined, opening up the possibility for advanced tool-
support to assist the development of safety-critical systems.

• After several years of evolution, an XML/XMI-based standard for UML model
representation has evolved, enabling interchange and automated processing of
the UML models.

XML-Based UML Analysis for
Critical Systems Development

We will now explain how UML, together with an XML-based analysis of UML models,
can be used as a basis for a formally based method for critical systems development. We
will first analyze our requirements on the proposed method and demonstrate how the
UML-based solution meets them. To keep the presentation concise and intelligible, we
will restrict ourselves to security-critical systems. However, our approach is generic and
can be applied to other criticality requirements such as safety and quality-of-service.
The UML-based formal methodology for development of security-critical system should
meet the following requirements:

• Given a system model described with UML, it should automatically evaluate it for
security-related vulnerabilities in design.

• The methodology should be available to developers not specialized in security,
and still allow them to ensure the necessary security properties of the system under
design.

TEAM LinG

260 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Security properties are often imprecisely defined or misunderstood. Formulating
security properties of a system can often be a challenge by itself. Therefore we
should enable the user to define easily and unambiguously both security features
and security requirements of the system. The latter step is often considered as
granted. However for many security properties it can be very difficult (Ryan,
Schneider, & Goldsmith, 2001) and normally requires the developer to have special
qualifications in cryptography.

• Costs of correcting flaws in a software system grow dramatically in the process of
development; therefore, we would like to consider security from early design
phases.

• Consider security on different levels of abstraction and in system context. Security
of a complex distributed computer system can be violated on different levels. Even
worse, security properties are generally not preserved by the composition (Jürjens,
2001). Therefore, blindly combining even proven security mechanisms may result
in a faulty system. The method should detect these kinds of errors.

• Make use of the powerful pattern concept and encapsulate established rules of
prudent security engineering.

• For certain security-critical software products, such as firewalls, the acceptance
procedure is comparable to the development itself in laboriousness. Thus, we want
to make certification cost-effective.

Now we will look closer at some of the requirements listed. It is obvious that today any
software development methodology, which aims broad acceptance, needs to provide the
end user with software tools supporting it. We were facing two challenges in this regard.
First, we need a uniform and standardized way of acquiring and processing UML models.
Until recently, there were no standards on storing UML models, and different UML
editing tools were producing files in proprietary format. The development and spreading
of XML as a universal data representation language motivated the development of the
XML Metadata Interchange (XMI) language, which is used, among other applications,
for storing UML models into a file.
For developing critical systems using UML and XML-based analysis, one needs a
precise semantics of the used notation. The UML is relatively precisely defined, however
its semantics is given partially in prose, leaving room for ambiguities (UML Revision Task
Force, 2001). We have refined the semantics by giving mathematically precise meaning
of UML constructs, as shown in the next chapter.
Now we will take a close look at UMLsec, the UML-based language for secure-critical
system development.

Creating and Using UMLsec

There is a set of requirements to meet before UML can be used for secure system
development. The language must be extended with the necessary security-related

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 261

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constructs. Correct application of the new language in the application domain must be
described and enforced. The conflict between flexibility and non-ambiguity of the
notation must be solved. Last but not least, tools for working with UMLsec models must
be created. In more details, on the notational level we want the language to have the
following properties.

Basic security requirements such as secrecy and integrity should be integrated into
the language.

Different Threat scenarios should be considered automatically depending on the
adversary strengths.

Common security concepts like tamper-resistant hardware should be readily available.
Common security mechanisms such as access control should be included in the

language.
Cryptographic primitives (e.g., (a)symmetric encryption) should be defined and cor-

rectly handled. Data security properties of a computer system cannot be feasibly
modeled at the abstraction level of the data values and cryptographic key values
being processed. In fact, a possibility for precise modeling of a cryptographic
algorithm at the data value level means finding a feasible way of breaking the
algorithm, and therefore renders it useless. Thus, the modeling with UMLsec is
normally done on the protocol level using the supplied Cryptographic primitives.

Physical security of the deployed system needs to be described by using the language.
Security management (e.g., secure workflow) should be addressed.
Domain-specific extensions (Java, smart cards, CORBA, ...) shall be considered during

language design.

UMLsec: Extending UML

The UML specification (UML Revision Task Force, 2001) introduces profiles as a
lightweight mechanism for extending the language (as opposed to heavyweight exten-
sions through modifying the UML metamodel). A profile contains definitions for
stereotypes, tagged values, and constraints. An important feature of a lightweight
extension is that it should be “strictly additive to the standard UML semantics. This
means that such extensions must not conflict with or contradict the standard semantics.”
(UML Revision Task Force, 2001). In particular, adhering to this requirement ensures that
UMLsec can be used to extend any UML model without conflicting with existing tools
or other UML extension, potentially UML profiles for other criticality requirements.

Stereotypes define new types of modeling elements extending the semantics of existing
types in the UML metamodel. Their notation consists of the name of the stereotype
written in double angle brackets << >>, attached to the extended model element.
This model element is then interpreted according to the meaning ascribed to the
stereotype.

TEAM LinG

262 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tagged values allow explicitly attaching a property to a model element. They are
represented by a name=value pair in curly brackets associated with model elements.
The value can be either a simple data type value, or a reference to another model
element.

Constraints can be attached to a model element to refine its semantics. Attached to a
stereotype, constraints must be observed by all model elements marked by that
stereotype.

With UMLsec, stereotypes and tagged value are used to define data security require-
ments on model elements, and to define their security-relevant properties. The con-
straints, given using the formal semantics formulate rules, which must be met by the
design to support the requested security properties. The most commonly used UMLsec
stereotypes together with associated tags are listed in Figure 1.
To enable automatic reasoning about UMLsec model properties, formal semantics are
introduced, which give mathematically precise meaning to the UML subset we are using,
and to UMLsec constructs in its content. The following subset of UML diagrams is
considered.

Class diagrams define the static class structure of the system: classes with attributes,
operations, and signals and relationships between classes. On the instance level,
the corresponding diagrams are called Object diagrams.

Statechart diagrams give the dynamic behavior of an individual object or component:
events may cause a change in state or an execution of actions.

Sequence diagrams describe interaction between objects or system components via
message exchange.

Stereotype Base Class Tags Description
Internet link Internet connection
encrypted link Encrypted connection
LAN link, node LAN connection
smart card node Smart card device
secure links subsystem Enforces secure communication

links
secrecy dependency Assumes secrecy
integrity dependency Assumes integrity
high dependency Assumes high sensitivity, both

secrecy and integrity
secure dependency subsystem Structural interaction data

security
critical object, subsystem secrecy, integrity,

high, fresh
Critical object

no down-flow subsystem secret Prevents leak of information
fair exchange subsystem start, stop After start eventually reaches

stop
guarded access subsystem Access control using guard

objects
guarded object guard Guarded object

Figure 1. UMLsec stereotypes

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 263

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Activity diagrams specify the control flow between several components within the
system, usually at a higher degree of abstraction than statechart diagrams and
sequence diagrams. They can be used to put objects or components in the context
of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to be imple-
mented.

Subsystems (a certain kind of packages) integrate the information between the different
kinds of diagrams and between different parts of the system specification.

Security Analysis of UMLsec Models

To apply formal verification methods for testing security properties of a distributed —
which means open — system, it is necessary to “close” it by modeling all the possible
interactions between the system and the outside world. This includes behavior of the
potential adversary trying to break or compromise the system. For that reason, efficiency

Figure 2. Simulating adversary behavior

������

����	

 �

�

�
�
��
�
��

����������������������

������������������

���������������

����������������

��	������������������

������	�����������	�����������

Figure 4. Threats from the insider adversary

Stereotype Threatsdefault()
Internet {delete, read, insert}

encrypted {delete}
LAN ∅

smart card ∅

Figure 3. Threats from the default adversary

Stereotype Threatsinsider()
Internet {delete, read, insert}

encrypted {delete}
LAN {delete, read, insert}

smart card ∅

TEAM LinG

264 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and reliability of the automated verification of security properties depend on the
correctness and completeness of the simulated adversary behavior. The issue is
addressed in the literature, for example Lowe (1999) and Jacquemard, Rusinowitch, and
Vigneron (2000). To create the adversary model we do not have to foresee any possibly
attack scenario; we can define an intruder, which can do everything possible, as shown
in Figure 2, and further restrict his behavior using additional information about the
system.
The extent of possible intervention into the system functionality depends on the
physical properties of the system, and on the adversary abilities. The UMLsec method-
ology provides possibility to define these parameters, addressing two issues. First,
obviously impossible attack scenarios are not included in the analysis report. Second,
the whole analysis process can be clustered into several steps, avoiding the state
explosion problem (Clarke, Grumberg, & Peled, 1999).
We suggest that there can be adversaries with different capabilities regarding interven-
tion with the system. Considering for example an online banking application, a simple user
could read and modify information on the Internet, and access the client node. A
malicious employee, however, could read and alter traffic in the internal LAN, and access
internal servers. To define capabilities of an adversary type A against an object
stereotyped with s we introduce a function ThreatsA(s) returning a subset of abstract
threats {delete, read, insert, access}. Examples in Figures 3 and 4 define the function for
two adversary types; new adversary types can be freely formulated.
Basing on these model-wide definitions, we define how the adversary can interact with
each model element. For a link l in deployment diagram contained in the subsystem S we
define the set threatsS

A(l) of concrete threats to be the smallest set satisfying the
following conditions. If each node n, that l is contained in (note that nodes and
subsystems may be nested one in another), carries a stereotype sn with access ∈∈∈∈∈
ThreatsA(sn), then:

• If l carries a stereotype s with delete ∈ ∈ ∈ ∈ ∈ ThreatsA(s), then delete ∈ ∈ ∈ ∈ ∈ threatsS
A(l).

• If l carries a stereotype s with insert ∈ ∈ ∈ ∈ ∈ ThreatsA(s), then insert ∈ ∈ ∈ ∈ ∈ threatsS
A(l).

• If l carries a stereotype s with read ∈ ∈ ∈ ∈ ∈ ThreatsA(s), then read ∈ ∈ ∈ ∈ ∈ threatsS
A(l).

• If l is connected to a node that carries a stereotype s with access ∈ ∈ ∈ ∈ ∈ ThreatsA(s),
then {delete, read, insert} ⊆ threatsS

A(l).

The idea is that threatsS
A(x) specifies the threat scenario against a component or link x

in the subsystem S that is associated with an adversary type A. On the one hand, the threat
scenario determines which data the adversary can obtain by accessing components; on
the other hand, it determines which actions the adversary is permitted by the threat
scenario to apply to the concerned links. delete means that the adversary may delete the
messages on the corresponding link, read allows him to read the messages on the link,
and insert allows him to insert messages in the link. The new messages can be created
by applying cryptographic primitives to the previously read data and initial knowledge
of the adversary.

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 265

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To investigate security of the system with respect to the chosen adversary type we build
an executable specification of the system combined with the adversary model, and verify
its properties.
This requires mathematically precise definitions of the UMLsec models, including their
dynamic behavior. This is defined in Jürjens (2004) using UML Machines, which are
inspired by the Abstract State Machines (ASM) (Gurevich, 1995; Börger & Stärk, 2003).
A UML Machine is a transition system the states of which are algebraic structures, with
built-in communication mechanisms; it defines behavior of a system component. A UML
Machine is defined by the initial state, transitions rules, which is applied iteratively and
defines how the machine state changes in time, and two multi-set buffers (output queue
and input queue).
A UML Machine communicates with other system parts by adding messages to its output
queue and retrieving messages from its input queue. All the messages in the system
compose the set Events. To build executable UML specification in a modular way, by
combining a set of UML Machines together with communication links connecting them,
one can use the notion of a UML Machine System (UMS) also defined in Jürjens (2004).
The intuition is that a UMS models a computer system that is divided into components
that may communicate by sending messages through communication links and whose
execution is scheduled by a specified scheduler.
The definition of the UML semantics has to be omitted here and can be found in Jürjens
(2004).

Example Application

We demonstrate usability of the UMLsec methodology on a variant of the Internet
security protocol TLS (the successor of SSL) as proposed in Apostolopoulos, Peris, &
Saha (1999). The example in Figure 5 shows the UMLsec specification.
The goal is to let a client C send a secret m over an untrusted communication link to a
server S in a way that provides confidentiality and server authentication, by using a
symmetric key KCS to be exchanged.
We write {E}K for the encryption of the expression E under the key K and DecK(E) for the
decryption of E with K. The protocol uses both RSA encryption and signing. Thus. we
assume the equations DecK

-1({E}K) = E and {DecK
-1(E)}K = E to hold (where K-1 is the

private key belonging to the public key K).
The protocol assumes that there is a secure (with respect to integrity) way for C to
obtain the public key KCA of the certification authority, and for S to obtain a certificate
DecKca

-1(S :: KS) signed by the certification authority that contains its name and public
key. The adversary also may have access to KCA, DecKca

-1(S :: KS) and DecKca
-1(Z :: KZ)

for an arbitrary Z ∈ Data\{S}. The complete specification can be found in Jürjens (2004).
One can now demonstrate that this proposed variant of TLS contains a security flaw. The
message flow diagram corresponding to the man-in-the-middle attack is the following.

TEAM LinG

266 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. Variant of the TLS handshake protocol

)::(:::: 1 CKCi KCSignKN
C
−)::(:::: 1 AKAi KCSignKN

A
−

)::(::)}::({ 11 SKKijK KSSignNKSign
CACS
−−)::(::)}::({ 11 SKKijK KSSignNKSign

CAAS
−−

jKs}{
jKs}{

C A S

C A S

C A S

Here the adversary has access to the communication link between client and server since
it is supposed to be an Internet link. More details are given in Jürjens, (2004) as well as
a correction which is proved secure using the formal semantics.

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 267

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tools for Advanced XML-Based
Processing of UML models

During the last couple of years UML is getting a completely new role in the software
development. Traditionally since its appearance UML encapsulated two aspects:

• Standardized notation helped to capture, store and exchange knowledge about the
system under design.

• Semantics, although semi-formal, ensured that different developers understood
the common meaning of UML diagrams.

However, the information was meaningful on the graphical (diagram) level only. Different
UML tools implemented proprietary UML storage format which made exchange and reuse
of the models impossible. Having chosen a UML tool, the developer was tied to using
it through the whole project. Applying emerging technologies to the UML modeling on
the industrial level was virtually impossible. To suggest any custom UML process-
ing, one would have to develop a complete UML editor and persuade the auditorium
to use it.
Development of the XML as universal data storage format changed this situation
dramatically. In the year 2000, the Object Management Group (OMG) issued the first
specification for the XML Metadata Interchange (XMI) language, which — among other
applications — became a standard for serializing UML models into a file.
The XMI language is compliant with Meta Object Facility (MOF), which is a framework
for specifying meta-information (also called metamodels). Initially, it was developed to
define CORBA-based services for managing meta-information. Currently, its applica-
tions include definition of modeling languages such as UML and Common Warehouse
Model (CWM). The framework operates on a four-level data abstraction model, shown
in Figure 6.
We consider the abstraction levels from bottom up. The lowest level M0 deals with the
data instances, for example Mr. Smith, 35 years old, lives in New York. The level M1
describes data models, in software development this corresponds to the UML model of
the application. An example for this layer is a Person with attributes Name, Age, Address.
The next abstraction level M2 is the modeling language itself. Different modeling

Figure 6. MOF framework

M3 Meta-Metamodel MetaClass, MetaAssociation
 – MOF Model

M2 Metamodel Class, Attribute, Dependency
UML (as a language), CWM

M1 Model Person, City, Book
– UML Model

M0 Data Bob Marley, Bonn
– Running program

TEAM LinG

268 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

languages exist for different application domains, and the last abstraction level M3 is the
common environment for defining these modeling languages, standardized by the MOF.
It operates with three elements:

MOF Object defines object types for the target model. It includes a name; a set of
attributes, both predefined and custom; a set of operations; a set of association
references; a set of supertypes it inherits; and some other information. The MOF
object is a container for its component features (i.e., any attributes, operations,
and association references). It also may contain MOF definitions of data types and
exceptions.

MOF Association defines a link between two MOF objects. The MOF links are always
binary and directed. A link is a container for two association ends, each represent-
ing one object the link is connected to.

MOF Package groups related MOF elements for reuse and modularization. It is defined
by a name; a list of imports which defines a set of other MOF Packages whose
components may be re-used by components defined within the Package; a list of
supertypes which defines a set of other MOF Packages whose components form
a part of the Package; and a set of contained elements including other Objects,
Associations, and Packages.

The MOF also defines the following secondary elements:

Data Types can be used to define constructed and reference data types.
Constants define compile-time constant expressions.
Exceptions can be raised by Object operations.
Constraints can be attached to other MOF Elements. Constraint semantics and verifi-

cation are not part of the MOF specification, and therefore they can be defined with
any language.

The MOF is related to two other standards.

XML Metadata Interchange (XMI) is a mapping from MOF to XML. It can be used to
automatically produce an XML interchange format for any language described with
MOF. For example, to produce a standardized UML interchange format, we need
to define the UML language using MOF and use the XMI mapping rules to derive
DTDs and XML Schemas for UML serialization. MOF itself is defined using MOF
itself, and therefore XMI can be applied not only for metamodel instances, but for
metamodels themselves (as they also are instances of a metamodel, which is MOF).

Java Metadata Interface (JMI) standard defines MOF-to-Java mapping (similarly to the
MOF-to-XML mapping provided by XMI). It is used to derive Java interfaces
tailored for accessing instances of a particular metamodel. As MOF itself is MOF-
compliant, it can be used to access metamodels, too. The standard also defines a

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 269

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

set of reflective interfaces that can be used similarly to the metamodel-specific API
without prior knowledge of the metamodel.

After the standards were introduced, major producers of UML editors eventually have
picked it up, and currently support model interchange in the XMI format. Together, with
the wide support for the XML language in the industry including broad range of libraries,
editors, and accompanying technologies, this enables development of the lightweight
UML processing tools, tailored to carry one particular task.
The whole story is applicable to the formalized critical system development with UML.
To facilitate acceptance of the formalized UML-based software development, automated
processing of UML models was highly required. Prototype tools supporting this
functionality have been developed at the TU Munich; some results of these projects are
presented. Especially we hope that the publicly available Web-based interface will
provide a simple and accessible entry into the methodology.

XML-Based Data-Binding with MDR

Technically the central question was how to work with UML/XMI files. Three possible
approaches exist:

• XML parsing and transformation languages coupled with the XML standard
(XPath, XSLT)

• Any high-level language with appropriate libraries (Java, C++, Perl)

• Data binding

The first two methods, although more flexible, require more development effort. However,
for UML processing, we are concerned about the data contained in documents rather
than about the document itself and its structure. For this purpose, data binding offers
a much simpler approach to working with XML data.
Several libraries support data binding for XML. It was important to use one with
appropriate data abstraction level. For example, the widely used Castor library would
leave the developer with a very abstract representation of the UML model, on the level
of MOF constructs. However existing data binding libraries provide representation of a
UML / XMI file on the abstraction level of a UML model. This allows the developer to
operate directly with UML concepts (e.g., classes, statecharts, stereotypes, etc.). We use
the MDR (MetaData Repository) library, which is part of the Netbeans project, also used
by the freely available UML modeling tool Poseidon 1.6 Community Edition. Another
such library is the Novosoft NSUML project.
The MDR library implements a MOF repository with support for XMI and JMI standards.
Figure 7 illustrates how the repository is used for working with UML models.

TEAM LinG

270 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The XMI description of the modeling language is used to customize the MDR for working
with a particular model type, in this care, UML (Step 1). The XMI description of the UML
1.4 is published by the Object Management Group (OMG). A storage customized for the
given model type is created (Step 2). Additionally, based on the XMI specification of the
modeling language, the MDR library creates the JMI (Java Metadata Interface) implemen-
tation for accessing the model (Step 3). This allows the application to manipulate the
model directly on the conceptual level of UML. The UML model is loaded into the
repository (Step 4). Now, it can be accessed through the supplied JMI interfaces from
a Java application. The model can be read, modified, and later saved into an XMI file again.
Because of the additional abstraction level implemented by the MDR library, using it in
the UML suite should facilitate upgrading to upcoming UML versions and promises the
highest available standard compatibility.

XML-Based UML Tool Suite

Further, we present the architecture of the UML tool suite developed at the TU Munich.
Its architecture and basic functionality are illustrated in Figure 8.
The developer creates a model and stores it in the UML 1.4 / XMI 1.2 file format. The file
is imported by the UML into the internal MDR repository. Other components of the UML
suite access the model through the JMI interfaces, generated by the MDR library. The
Static Checker parses the model, verifies its static features, and delivers the results to
the Error Analyzer. The Dynamic Checker translates the relevant fragments of the UML
model into an input language of an external tool (Model Checker, Automatic Theorem
Prover, Prolog). The external tool is spawned by the UML suite as an external process;
its results are delivered back to the Error Analyzer. The Error Analyzer uses the
information received from both Static Checker and Dynamic Checker to produce a Text
Report for the developer describing found problems, and a Modified UML Model, where
the found errors are visualized and/or corrected.
The idea behind the tools suite is to provide a common programming framework for the
developers of different verification modules (tools). Thus, a tool developer should

Figure 7. Using the MDR library

���
���

����� !"# ���� !"

�����

��
��

$%�
��
��
���
�

&�'

 %�()(*) +!,���-���� !"���������.

*%������������

"%������!,��

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 271

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concentrate on the verification logic and not on the handling Input/Output. Different
tools, implementing verification logic modules (Static Checkers or Dynamic Checkers
in Figure 8) can be independently developed and integrated. Currently, Static Checkers
exist for most static UMLsec properties, and Dynamic Checkers for some dynamic
properties.
The tool implementation follows the following simple concepts:

• It is given a default UML model it operates on. It may load further models if
necessary.

• The tool exposes a set of commands, which it can execute.

• Every single command is not interactive. It receives parameters, executes, and
delivers feedback.

• The tool can have its internal state which is preserved between commands.

The tool architecture presented in Figure 9 allows development of the verification logic
independently of the input and output media with minimum effort. Each tool is required
to implement the ITextMode interface, which exposes tool functionality in text mode, with
string array as input and text as output. The framework provides default wrappers for

����/����

-���� !"�0�1�'� !*�)�	��������.

�!�!�2������� !3

��������

-���� !"�0

1�'� !*.

/,�����������

-�����4��	���5

6�������2�����.

�78
&�'

����

��

2���������

4�������)

/,�����

6�,��8�����

9����	�4��	���

7�����	�4��	���

��������9����

���:��

��������

/�����
�������

;����<

����:���

Figure 8. UML tools suite

TEAM LinG

272 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Graphical User Interface (GUI) GuiWrapper and Web mode WebWrapper. These
wrappers enable using the tool without modifications in the GUI application (part of the
framework) or through a Web interface by rendering the output text on the respective
media. However, each tool may itself implement the IGuiMode and/or IWebMode to fully
exploit the functionality of the corresponding media, for example, to fully use GUI mode
capabilities to display graphical information.
Following these principles, the framework was initially developed for use in the text mode,
and later a Web front-end was added to make the verification functionality available over
the Internet. This extension did not require changes to the verification modules.

Future Perspectives

The proposed method of XML-based Analysis of UML Models has been successfully
tried out in several industrial projects. The next goal in the development of the
methodology is to extend the UML tool suite to provide complete support for security
properties verification of UMLsec models.
However, the presented ideas are not exhaustive, at least the following future develop-
ment directions seem interesting.

• The application of the methodology for further criticality requirements in the
computer systems development, such as safety and real-time.

• The automatisation of other aspects of UML-based development. For example,
Houmb and Jürjens (2003) combine UMLsec with model-based risk assessment.
Broad practical acceptance of these approaches can be greatly facilitated by
sufficient formalization and automated tool-support.

Figure 9. Tool interfaces

������		�
'6���4������

=:��������>

��������

=:��������>

��������

'6���?��

'6���@�A

'6�������

TEAM LinG

XML-Based Analysis of UML Models for Critical Systems Development 273

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

The development and spreading of the UML language within the last years, especially
its standardization and introduction of supporting technologies, is changing its role in
the software development from a notational aid to a powerful framework with support for
automation of many development tasks.
We believe that the suggested approach to critical system development using UML and
XML-based processing of UML models will find widespread acceptance in the modern
software development industry for the following reasons:

• It is based on UML, which is the de-facto standard in software development, which
facilitates acceptance in industrial software development teams.

• The application of the methodology requires no special training in security (in case
of UMLsec) or the other criticality domains.

• The suggested formal semantics for a simplified fragment of UML lays a foundation
for advanced XML-based tool-support for the methodology, making automatic
verification of the criticality features possible.

References

Abadi, M. & Gordon, A.D. (1997). A calculus for cryptographic protocols: The Spi
calculus. In Proceedings of the Fourth ACM Conference on Computer and
Communications Security (pp. 36-47). New York: ACM Press.

Apostolopoulos, V., Peris, V., & Saha, D. (1999). Transport layer security: how much does
it really cost? Conference on Computer Communications (IEEE Infocom), New York.

Börger, E. & Stärk, R. (2003). Abstract state machines. Germany: Springer.
Burrows, M., Abadi, M., & Needham, R. (1989). A logic of authentication. Proceedings

of the Royal Society of London A, 426, (pp. 233-271). A preliminary version appeared
as Digital Equipment Corporation Systems Research Center report No. 39, February.

Castor (2004). Castor library. Available online at http://castor.exolab.org
Clarke, E.M., Jr., Grumberg, O., & Peled, D.A. (1999). Model checking. Cambridge, MA:

The MIT Press.
Gentleware (2004). Gentleware corporation. Available at http://www.gentleware.com
Gurevich, Y. (1995). Evolving algebras 1993: Lipari guide. In E. Börger (Ed.), Specification

and Validation Methods (pp. 9-36). New York: Oxford University Press.
Houmb, S. &Jürjens, J. (2003). Developing secure networked web-based systems using

model-based risk assessment and UMLsec. 10th Asia-Pacific Software Engineer-
ing Conference (APSEC 2003), Chiangmai (Thailand). IEEE Computer Society.

TEAM LinG

274 Jürjens and Shabalin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacquemard, F., Rusinowitch, M, & Vigneron, L. (2000). Compiling and verifying
security protocols. Technical Report, LORIA Universite, France. Germany.

Jürjens, J. (2001). Composability of secrecy. In V. Gorodetski, V. Skormin, & Popyack, L.
(Eds.), International workshop on mathematical methods,models and architec-
tures for computer networks security (MMM-ACNS 2001), Volume 2052 of LNCS
(pp. 28-38). Springer.

Jürjens, J. (2004). Secure systems development with UML. Springer.
Lowe, G. (1996). Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In Tools and algorithms for the construction and analysis of systems, Volume
1055 of LNCS, (pp. 147-166). Springer.

Lowe, G. (1999). Towards a completeness result for model checking of security protocols.
Journal of Computer Security, 7(2,3).

Meadows, C. (1991). A system for the specification and analysis of key management
protocols. In IEEE Symposium on Security and Privacy (pp.182-195).

Millen, J., Clark, S., & Freedman, S. (1987). The interrogator: protocol security analysis.
IEEE Transactions on Software Engineering, SE-13(2), 274-288.

Netbeans (2004). Netbeans project. Open source. Available online at http://
mdr.netbeans.org/

Novosoft (2004). Novosoft NSUML project. Available online at http://
nsuml.sourceforge.net/

Object Management Group (2002). MOF 1.4 specification. Available at http://
www.omg.org/technology/documents/formal/mof.htm

Object Management Group (2002a). OMG XML metadata interchange (XMI) specifica-
tion. Available online at http://www.omg.org/cgi-bin/doc?formal/2002-01-01

OMG (2003). Object Management Group. Available at http://www.omg.org/
Paulson, L. C. (1998). The inductive approach to verifying cryptographic protocols.

Journal of Computer Security, 6(1-2), 85-128.
Richardson, R. (2003). 2003 CSI/FBI computer crime and security survey. Technical

report, Computer Security Institute, San Francisco. Available online at http://
www.gocsi.com/forms/fbi/pdf.html

Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., & Roscoe, B. (2001). The modeling and
analysis of security protocols: The CSP approach. Boston: Addison-Wesley.

Schneider, F., editor (1999). Trust in cyberspace. National Academy Press. Available at
http://www.nap.edu/readingroom/books/trust

UML Revision Task Force (2001). OMG UML Specification v. 1.4. OMG Document ad/
01-09-67. Available at http://www.omg.org/uml

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 275

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Augmenting UML
to Support the

Design and Evolution
of User Interfaces

Chris Scogings, Massey University, New Zealand

Chris Phillips, Massey University, New Zealand

Abstract

The primary focus in UML has been on support for the design and implementation of
the software comprising the underlying system. Very little support is provided for the
design or evolution of the user interface. This chapter commences with a brief review
of UML and its support for user interface modeling. Lean Cuisine+, a notation capable
of modeling both dialogue structure and high-level user tasks, is described. It is shown
through a case study that Lean Cuisine+ can be used to augment UML and provide the
user interface support that is currently lacking.

Introduction

Considerable effort has been devoted to the development of models and tools to support
the analysis and design of software systems, culminating in the Unified Modeling
Language (UML) (Rumbaugh, Jacobson, & Booch, 1999). The primary focus has been
on support for the design and implementation of the software comprising the underlying

TEAM LinG

276 Scogings and Phillips

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system, referred to in (Collins, 1995) as the internal system. Very little support is provided
for the design of the external system or user interface.
The user interface is a vital part of any software application. To the user, the interface
is the system (Collins, 1995). It is important, therefore, to devote time and effort to the
user interface when building and upgrading software. Indeed, research indicates that
applications are often upgraded precisely because a new user interface is desired
(Church & te Braake, 2002). The user interface may be redesigned to improve its usability,
to add new functionality, or to take advantage of new technologies and visualisation
techniques – for example, a system may be changed from a forms-based interface to a
graphical user interface (GUI), or a help system may be added.
A user interface can be described at three levels:

• the visible interface (the ‘look and feel’);

• the underlying structure and behaviour, known as the dialogue, which describes
the response of the system to user and system generated events;

• the high-level user tasks (sequences of actions) that must be supported by the
interface.

These three views of the user interface need to be identified and separated so that during
software evolution the visible interface can be changed independently of dialogue
structure and user tasks — although these also can be modified or extended if required.
The dialogue and task information is preserved through the use of appropriate concep-
tual models.
This chapter commences with a brief review of UML and its support for user interface
modeling. Lean Cuisine+, a notation capable of modeling both dialogue structure and
high-level user tasks, is then introduced. It is shown through a case study that Lean
Cuisine+ can be used to augment UML by providing the user interface support that is
currently lacking. The work is placed in context.

UML and the User Interface

Prior to the introduction of UML, it had already been established that there was a lack
of integration between the software engineering and HCI communities (Jacquot &
Quesnot, 1997). Janssen, Weisbecker and Ziegler (1993) make the point that user
interface tools cannot make use of the models developed with general software engineer-
ing methods and tools. Kemp and Phillips (1998) show that support for user interface
design is weak within object-oriented software engineering methods.
As UML is primarily a collection of previously defined notations, no significant change
has occurred. The approach taken in Eriksson and Penker (1998) is typical in that they
state that the design of the user interface should be carried out separately but in parallel

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 277

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the design work carried out with UML. Quatrani (2000) mentions that prototyping the
user interface is useful and adds that UML can be used to model something like a window
but could not successfully be used for modeling each of its dialogue boxes or buttons.
Some of the UML notations are being used for user interface modeling. These include
statecharts, use cases, and activity diagrams. However, Kovacevic (1998) states that
UML activity diagrams and interaction diagrams (collaboration and sequence diagrams)
are not enough to perform the task modeling required for user interface design. This is
supported by Rourke (2002) which states that UML diagrams are not sufficient for task
modeling and need to be linked to separate task models.
The UML software design process should incorporate user interface design as an
important component. It is therefore desirable to include user interface modeling within
the UML framework.

Augmenting UML to Support
User Interface Modeling

In a discussion of this nature, it is necessary to clarify the difference between strategies
and notations. UML is a collection of specific notations (a language), and this chapter
discusses whether these notations are useful and efficient for modeling a user interface.
There also exist strategies, or patterns, which provide guidelines for user interface design
and layout but (deliberately) do not provide specific notations. Such patterns can be
used with UML notations but could equally be used with any other suitable notations.
One such strategy is the Model-View-Controller or “MVC Architecture.” It originally
appeared in the 1980s and has undergone a number of changes over the years. It is still
relevant today as a strategy but does not provide any notations. An interesting debate
about the history and usefulness of MVC can be found at (MVC Design, 2003).
Researchers have suggested using UML notations to model the user interface, for
example, OVID (Roberts, Berry, & Isensee, 1997) and ASP (Conallen, 2002) but such
methods perpetuate the problem of using notations that are not intended for user
interface modeling and they also use state diagrams to model dialogue when they are
known to be inadequate (Phillips, 1993).
Naked Objects (Pawson & Matthews, 2002) supplies both a principle and a method. The
principle is that all objects should be accessible to the user in the simplest possible way.
However, the technique has several disadvantages:

• It is applicable only to a limited set of “database-type” applications and would be
unsuitable for any graphics-based application such as a simulation. The authors
themselves stress that it was developed for business applications;

TEAM LinG

278 Scogings and Phillips

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• It is only useful for users who are familiar with the business concepts that are being
modeled. For example, the user interface of a typical Automatic Teller Machine
(ATM) could not be replaced by a naked object interface;

• The method is very limiting as a fixed interface is always used.

In order to successfully model a user interface within the UML environment, it is therefore
necessary to provide a new notation that integrates well with UML, while augmenting
its capabilities. One such approach is UMLi (Pinheiro da Silva & Paton, 2003) in which
UML activity diagrams are extended to model tasks. However, UMLi still uses two
separate diagrams — one to model the dialog and another to model tasks. This chapter
introduces Lean Cuisine+ which is capable of modeling tasks within the dialogue
structure of the user interface, and which combines naturally with UML.

Task and Dialogue Modeling

Task models focus either on task decomposition or task flow. Their primary purpose is
to define the activities of the user in relation to the system, as a means of uncovering the
functional requirements to be supported by the system. Task modeling is not new, and
methods such as hierarchical task analysis (HTA) have been used for many years. Task
modeling is also used in a wider context than that of modeling the user interface. For
example, it appears in UML via use cases that have been so successful that they have
been integrated into virtually every major approach to object-oriented analysis and
design (Constantine & Lockwood, 1999).
Dialogue models have been developed as a means of capturing information about the
behaviour of the user interface at an abstract level, separate from that of the visible
interface. Research has found that it is necessary to focus on the structure of the dialogue
to avoid producing a user interface that looks good but is functionally useless (Jacquot
& Quesnot, 1997). Dialogue modeling has been used as the basis for various attempts
at the automatic generation of user interfaces and tends to use well-known notations
such as state transition diagrams (STDs) and Petri nets. It also can be carried out within
UML by using statecharts. However, dialogue modeling using these formal notations is
complicated and liable to error (Phillips, 1993).
A major problem with the modeling techniques and notations mentioned is that task and
dialogue modeling are performed largely in isolation. Task models, such as use cases,
provide no indication of user interface structure. Similarly, a criticism of existing dialogue
notations is that the linkage to tasks is often obscure (Brooks, 1991). They define the
structure and behaviour of the dialogue but they do not always readily reveal the
interconnections between dialogue components during the execution of higher level
tasks. That is, they do not represent tasks within the context of the dialogue structure.
Ideally, task and dialogue models should be linked within a common notation.

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 279

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lean Cuisine+

Lean Cuisine+ (Phillips, 1995) is a graphical notation for modeling the behaviour of event-
based direct manipulation interfaces. The Lean Cuisine+ notation has several basic
strengths in that it has been specifically developed as an interface design tool, it
incorporates the structure of the interface dialogue and it fits easily into an object-
oriented approach. A major advantage of the notation is that task sequences can be
represented in the context of the structure of the interface dialogue and in this way, Lean
Cuisine+ combines both dialogue modeling and task modeling. Lean Cuisine+ has been
derived from Lean Cuisine (Apperley & Spence, 1989) and is an example of a dialogue
modeling language.
In a Lean Cuisine+ specification, the interface is represented primarily as a dialogue tree.
The behaviour of the interface is expressed in terms of the constraints and dependencies
which exist between the nodes of the tree (the menemes). A meneme, which can represent
an object or action available in the user interface, is defined as having just two possible
states, “selected” and “not selected.” Menemes can be grouped into subsets that are
either mutually exclusive (1-from-N) or mutually compatible (M-from-N). Mutually
exclusive options are shown diagrammatically by a horizontal fork, and mutually compat-
ible options by a vertical fork.
An example showing the notation in use appears in Figure 1. This Lean Cuisine+ diagram
models the user interface for a typical library catalogue system. Users are provided with
several options, such as View record or Book search. Certain menemes act as headers of
subdialogues – for example, User identification is the header of the subdialogue
containing Surname, ID number, and Password. A virtual meneme is one where the name
appears in braces. This indicates that the meneme is simply a header and is not available
for selection. For example, {Display} is a virtual meneme but View record is not.
Selection triggers can be added to the diagram. These indicate where the selection of
a particular meneme will generate the automatic selection (or deselection) of other
meneme(s). In Figure 1, the trigger from Book to Display book details indicates that the

Figure 1. The Lean Cuisine+ tree for a typical library catalogue

TEAM LinG

280 Scogings and Phillips

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

selection of Book by the user will trigger the selection of Display book details by the
system. The trigger from {View options} to Display lending record indicates that the
selection of one or more of the menemes in the {View options} subdialogue will trigger
the selection of Display lending record by the system. Note that {View options} itself
can never be selected as it is a virtual meneme. Similarly, the third trigger indicates that
the selection of one of the menemes in the {Book search} subdialogue will trigger the
selection of Display book list.
Conditions can also be added to the diagram. For example, in Figure 1, a condition
indicates that the meneme Fines may only be selected if the user has actually received
one or more fines. Meneme designators also are added to the diagram at this stage. Most
menemes can be selected or deselected by the user, and the designators indicate the
exceptions to this rule. A monostable meneme (⊥) can be selected by the user, but then
reverts to an unselected state on completion of the operation it represents. A passive
meneme (⊗) cannot be selected or deselected by the user but can be selected by the
system. A dot next to a subdialogue (see {View options}) indicates an unassigned
default choice that takes on the value of the last user selection from the subdialogue.
Figure 2 shows the Lean Cuisine+ diagram from Figure 1 with a task sequence superim-
posed on it. Note that selection triggers have been hidden in this view. The task sequence
displayed shows the selections needed for a library user to view their lending record. A
solid arrow in the task indicates a user action and a dashed arrow indicates a system
action. The task sequence is a representation of a UML use case.
Lean Cuisine+ is naturally more inclined toward object-oriented design than STDs,
statecharts, or Petri nets. When tasks are modeled in conjunction with dialogue, Lean
Cuisine+ presents the objects available for selection during task execution, whereas the
other representations focus on the transitions between states in the system and thus
emphasise task flow.
Lean Cuisine+ is a powerful tool for linking dialogue and task modeling. As an example,
the Lean Cuisine+ task sequence in Figure 2 can be compared with the UML activity
diagram representing the same task in Figure 3. This illustration clearly demonstrates the
difference between the isolated task in the activity diagram and the task shown in the
context of the dialogue in the Lean Cuisine+ representation.

Figure 2. A Lean Cuisine+ diagram showing a task sequence

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 281

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The inclusion of task modeling provides several benefits: the task is represented at a level
useful for user interface design; the task is shown within the context of the interface
dialogue; system actions are clearly distinguished from user actions; and it can be used
as an analysis tool, for example, to minimise key strokes in a task sequence.

Placing Lean Cuisine+
within the UML Context

The UML process for modeling software applications (known as the Unified Process) and
the process for modeling user interfaces with Lean Cuisine+ have significant overlap. In
particular, both processes begin with UML use cases and class diagrams. Thus, if a
system is undergoing significant changes, it is possible to provide new UML use cases
and class diagrams for the application and then derive Lean Cuisine+ models from these
initial diagrams. A user interface can then be constructed from the Lean Cuisine+ models.
A detailed description of the process for deriving a Lean Cuisine+ model from UML use
cases and class diagrams is provided in Scogings and Phillips (2001). A small part of this
case study will be reproduced here to illustrate what is possible when the UML design
process and Lean Cuisine+ models are combined.
The case study investigates the software application for a university timetabling system.
Figure 4 shows the UML use case diagram for this system.
Textual descriptions of use cases are recommended by the Unified Process and used by
most UML-based methods. The description for the Create Student Timetable use case
is provided in Figure 5.
A UML class diagram for the Timetable Viewer project is provided in Figure 6. It should
be noted that this study is concentrating on aspects of user interface design and
consequently Figure 6 provides only an outline of the class diagram for the Timetable
Viewer; many details have been omitted.

Figure 3. UML activity diagram for the task represented in Figure 2

TEAM LinG

282 Scogings and Phillips

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. UML use case diagram for the Timetable Viewer

Figure 5. Textual description for the Create Student Timetable use case

Figure 6. UML class diagram for the Timetable Viewer. This is not a complete class
diagram.

Use Case: Create Student Timetable

Actor: Student

Goal: The student wants to print out their own timetable.

Preconditions: None.

Main flow: The student selects a semester and then selects a number of courses.
As each course is selected, the system includes the times for that course in the
timetable display. The student can select to display only lectures, only tutorials, only
laboratories or any combination of these. When the display is satisfactory, the student
can print the timetable and the use case terminates.

Exceptions: The student selects the wrong course. To correct the problem, the
student may deselect the course. The system displays the timetable without the
deselected course.

Postconditions: None.

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 283

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Lean Cuisine+ model of the user interface is constructed, using the UML classes as
a base for the tree structure. Each use case is then represented as a Lean Cuisine+ task
sequence in the model. For example, see Figure 7.
It must be noted that this process is highly iterative and only the finished model is
illustrated here.

Guidelines for Upgrading
a User Interface

When upgrading an existing software application, there are two possible ways of
handling the user interface — either (a) the essence (dialogue) of the interface can be
retained and passed onto a new user interface, or (b) the old interface can be destroyed
and a new one created.
In the case of (a), a Lean Cuisine+ model should be constructed that represents the
dialogue and tasks of the existing interface. Ongoing research is investigating the
possible automation of this process (Scogings & Phillips, 1998). In the case of (b), a Lean
Cuisine+ model can be derived from the UML use cases and class diagrams for the
application.
In both cases, new elements of the dialogue structure and new tasks can be added to the
Lean Cuisine+ model, if required. Similarly, existing structure and/or tasks can be
removed. The Lean Cuisine+ model can be analysed for completeness and efficiency and
finally, a new user interface can be constructed from the Lean Cuisine+ model.

Figure 7. A Lean Cuisine+ task sequence for the Create Student Timetable use case

TEAM LinG

284 Scogings and Phillips

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

The user interface is a vital part of any software application, and may well determine its
success or failure. Many software upgrades include a complete revision of the user
interface. This process is greatly aided by the existence of an accurate model of the
dialogue and tasks required of the new interface, which is independent of its surface “look
and feel.” Task and dialogue modeling are well established but have been largely carried
out as separate activities. Dialogue notations (e.g., STDs, Petri nets) were not designed
to model user interfaces and can be clumsy and difficult to construct and understand.
The linkage between tasks and dialogue tends to be obscure. The user interface should
be modeled as part of the overall software development process, but UML makes no
specific provision for this.
The use of Lean Cuisine+ solves these problems by introducing a model of the user
interface that combines both tasks and dialogue, and which combines naturally with
UML. An existing interface can be modeled in Lean Cuisine+ and a new visible interface
can then be constructed. The Lean Cuisine+ model can be constructed directly from UML
use cases and class diagrams. During the process, the Lean Cuisine+ model can be
checked for accuracy and efficiency.

References

Apperley, M.D., & Spence, R. (1989). Lean Cuisine: A low-fat notation for menus.
Interacting with Computers, 1(1), 43-68.

Brooks, R. (1991). Comparative task analysis: an alternative direction for human-
computer interaction science. In J. Carrol (Ed.), Designing interaction: Psychology
at the human-computer interface (pp. 50-59). Cambridge: Cambridge University
Press.

Church, K., & te Braake, G. (2002). The future of software development. In S. Valenti (Ed.),
Successful software reengineering (pp. 99-110). Hershey, PA: IRM Press.

Collins, D. (1995). Designing object-oriented user interfaces. Redwood City, CA:
Benjamin Cummings.

Conallen, J. (2002). Building Web applications with UML. Boston: Addison-Wesley
Longman.

Constantine, L., & Lockwood, L. (1999). Software for use. Reading, MA: Addison-
Wesley.

Eriksson, H-E., & Penker, M. (1998). UML toolkit. New York: John Wiley & Sons.
Jacquot, J-P., & Qesnot, D. (1997). Early specification of user interfaces: Towards a formal

approach. Proceedings of ICSE’97, Boston, (pp. 150-160).
Janssen, C., Weisbecker, A., & Ziegler, J. (1993). Generating user interfaces from data

models and dialogue net specifications. Proceedings of INTERCHI’93 (pp. 418-
423). ACM.

TEAM LinG

Augmenting UML to Support the Design and Evolution of User Interfaces 285

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kemp, E., & Phillips, C. (1998). Extending support for interface design in software
engineering methods. Proceedings of HCI’98. Sheffield, UK, (pp. 96-97).

Kovacevic, S. (1998). UML and user interface modelling. In J. Bezivin & P-A. Muller
(Eds.), Lecture Notes in Computer Science 1618. New York: Springer-Verlag.

MVC Design. (2003). Re: MVC design or architecture pattern. Available online at http:/
/www.mail-archive.com/gang-of-4-patterns@cs.uiuc.edu/msg00038.html

Pawson, R., & Matthews, R. (2002). Naked objects. Hoboken, NJ: John Wiley & Sons.
Phillips, C. (1993). The development of an executable graphical notation for describing

direct manipulation interfaces. PhD Thesis. Palmerston North, New Zealand:
Massey University.

Phillips, C. (1995). Lean Cuisine+: An executable graphical notation for describing direct
manipulation interfaces. Interacting with Computers, 7(1), 49-71.

Pinheiro da Silva, P., & Paton, N. (2003) User interface modelling in UMLi. IEEE Software
Magazine, 20(4), 62-69.

Quatrani, T. (2000). Visual modelling with Rational Rose 2000 and UML. Reading, MA:
Addison-Wesley.

Roberts, D., Berry, D., & Isensee, S. (1997). OVID: object view and interaction design.
Proceedings of IFIP TC13 International Conference, Sydney, Australia (pp. 663-
664).

Rourke, C. (2002). Making UML the lingua franca of usable system design. Interfaces 50.
British HCI Group. Swindon, UK.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modelling language
reference manual. Reading, MA: Addison-Wesley.

Scogings, C., & Phillips, C. (1998). Beyond the interface: modelling the interaction in a
visual development environment. Proceedings of HCI’98, Sheffield, UK (pp. 108-
109).

Scogings, C., & Phillips, C. (2001). Linking tasks, dialogue and GUI design: A method
involving UML and Lean Cuisine+. Interacting with Computers, 14(1), 69-86.

TEAM LinG

286 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

A Reuse Definition,
Assessment, and

Analysis Framework
for UML

Donald Needham, United States Naval Academy, USA

Rodrigo Caballero, United Technologies Research Center, USA

Steven Demurjian, The University of Connecticut, USA

Felix Eickhoff, The University of Connecticut, USA

Yi Zhang, The University of Connecticut, USA

Abstract

This chapter examines a formal framework for reusability assessment of development-
time components and classes via metrics, refactoring guidelines, and algorithms. It
argues that software engineers seeking to improve design reusability stand to benefit
from tools that precisely measure the potential and actual reuse of software artifacts
to achieve domain-specific reuse for an organization’s current and future products. The
authors consider the reuse definition, assessment, and analysis of a UML design prior
to the existence of source code, and include dependency tracking for use case and class
diagrams in support of reusability analysis and refactoring for UML. The integration
of these extensions into the UML tool Together Control Center to support reusability
measurement from design to development is also considered.

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 287

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Software evolution addresses the changes a software system undergoes so as to remain,
or become, a viable solution to a problem. Developing reusable software components is
a critical aspect of software evolution since a reusable component offers the promise of
being beneficial in situations unforeseen at the time of the component’s development.
Although reusable software components have been in use for over 30 years (McIlroy,
1968), their benefits, including reduced risk, limited development and maintenance costs,
reduced time-to-market, increased quality and reliability, improved interoperability, and
the support of rapid prototyping (Software reuse executive premier, 1996; Hall, 1999;
Rine & Nada, 2000; Schmietendorf, 2000; Tsagias & Kitchenham, 2000), have proven
difficult to demonstrate in practice. Today’s component-based programming languages
and their APIs support actual reuse of standard components (e.g., GUIs, communica-
tions, databases), but are less successful in attaining the reuse potential of components
(Succi, 1995), a target of domain-and-organization-specific reuse (Meekel, 1997; Poulin,
1996) which represents a long-term investment in reuse (Sarshar, 1996). To support reuse
potential, we provide an integrated reusability metric, framework, and tool (Price &
Demurjian, 1997; Price, Demurjian, & Needham, 1997; Price, Needham, & Demurjian, 2001)
with formal underpinnings (Caballero & Demurjian, 2002) for reusability definition,
assessment, and analysis of software. We provide the ability to mark components/
classes to indicate their reuse level, which can range from general (reuse in multiple
contexts) to specific (single use). For example, in a retailing application, a supplier would
have a general Item (reusable in many contexts), while an auto-parts supplier would have
a less general AutoItem (reusable in that context), and individual retailers would have
a specific WalmartItem (not reusable). Given a marking of an application’s classes/
components, our reuse metrics can objectively classify and measure dependencies
(couplings) within and among classes/components, thereby identifying couplings that
promote or hinder future reuse. This process can be automated with an algorithm for
reusability assessment and refactoring (Caballero & Demurjian, 2002), and is supported
by a Design Reusability Evaluation (DRE) tool (UConn, 2003).
To fully support reuse potential, a reusability definition, assessment, and analysis must
be provided for the Unified Modeling Language (UML) prior to the development of
software (code), to concentrate on reusing a design model and to monitor reuse as the
model evolves when using UML via a tool (e.g., Rational Rose or Together Control
Center). Specifically, this chapter details the integration of reuse and refactoring
concepts for reusable UML components, allowing these components to be easily
incorporated into a product family while tracking reuse assessments during design and
following through to the development and maintenance stages. Our approach to
reusability assessment and analysis in UML focuses on use cases and class diagrams.
In practice, software engineers tend to start the process by defining use cases, followed
by classes and the various activity views (sequence and collaboration diagrams),
iterating across the various diagrams over time as the design evolves. Our approach
supports the marking of use cases and classes with varying levels of generality, and then
tracks and enforces this marking as a software engineer modifies the design. For example,
as a software engineer starts with UML and defines use cases, the use cases are marked

TEAM LinG

288 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with reuse levels that range from general to specific. As use cases interact with one
another, and interact with new and existing classes as they are defined, our reuse model
automatically notifies the software engineer when conflicts that hinder reuse are
detected so that the UML components can be refactored. Further, as the design evolves,
the reuse model tracks the couplings that are defined (via class, sequence, and collabo-
ration diagrams) in order to assess the impact on reuse of existing components, which
may result in the need to refactor. To provide a seamless environment for reuse definition,
assessment, and analysis, our model has been integrated into the UML tool Together
Control Center (TCC). The remainder of this chapter is organized as follows. First, we
discuss foundational work and provide background information on our reuse and
refactoring framework. Next, we present our reuse definition, assessment, and analysis
framework for UML, providing reuse properties and associated refactoring guidelines.
We then discuss the integration of the UML reuse framework into TCC. Finally, we
present our conclusions and discuss our ongoing research.

Foundational and Related Work

Reuse metrics and models are used to estimate and reduce the software development
effort. Frakes (1996) reviews six different types of reuse metrics and models. Our approach
resembles what Frakes refers to as the “reusability” and “amount of reuse” models, as
we focus on identifying the reuse potential of software as well as suggest ways to
improve that potential. An initial attempt to develop formal metrics for object-oriented
(OO) design (Chidamber, 1994) characterizes important properties for OO designs and
mentions several candidate metrics to facilitate OO development while providing an
evaluation of each candidate’s metrics. Virtanen’s (2000) component reuse metrics focus
on estimating the component-based development, and calculates the time required based
on excluding human effects, deriving from historical data of previous developments. Our
approach is similar in that we evaluate the current product and recommend changes based
on our metrics with the objective of improving software reusability. While Virtanen
estimates the development time of a component based on historical data, we focus on
reducing future development time by developing components with a high reuse poten-
tial. In Basili’s (1990) studies on the Ada programming language’s reusability, cluster
analysis is carried out to identify couplings between data bindings. Based on this
information, components are classified as either reusable or not. Basili’s view is similar
to our approach, except that we have the notion of classifying components as general
or specific by the software engineer, before the coupling information is calculated.
Moreover, couplings between independent components do not necessarily result in low
reuse potential as long as the software engineer identifies these components as related,
that is, as components intended to be reused together.
Component-based software engineering (CBSE) focuses on constructing large-scale
software applications from previously existing components. In support of CBSE, toolkits
such as Carnegie Mellon University’s Aesop System (Garlan, 1995) provide environ-
ments tailored to a given set of designer-specific styles that guide developers in creating

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 289

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architectural designs for their systems. Such toolkits provide mechanisms through which
developers can mitigate disparities between assumptions made about a reusable compo-
nent and the system in which the component is to be reused. Our work is similar in that
we provide a formal framework for the reusability assessment of development-time
components and classes via metrics, refactoring guidelines, and algorithms. However,
we examine reusability from a domain-and-organization-specific perspective rather than
focusing on collections of architectural styles generic enough to apply across domains.
An international workshop on component-based software engineering held in Kyoto,
Japan (Brown, 1998) identified two important component relationships aspects, those
between components and object technology and those between components and
software architecture, and stressed the importance of a clear definition of reuse from an
organizational perspective. Our work addresses the latter relationship, between compo-
nents and software architecture, and supports the tailoring of reuse at the organizational
level.
Another aspect of component-based models for reuse involves reuse contracts (Steyaert,
1996; Cernuda, 2001; Lucas, 1997), which seek certification that the components in
question are in fact reusable. Reuse contacts focus on the interfaces between compo-
nents, offer guidelines for reuse within a specific problem domain, and can include an
acquaintance clause which indicates that one component has knowledge about another
component. Like the acquaintance clause of a reuse contract, our approach allows for an
indication of the anticipated relationships between components. Our work builds upon
this area to include a set of metrics through which acquaintance-like relationships may
be evaluated, and offers refactoring guidelines that assist in determining how such
relationships can be restructured to enhance the reuse potential of the components. Our
work is similar to Cernuda’s (2001) notion of a bypass, in which relationships between
classes in an inheritance hierarchy are replaced with relationships closer to or further
from the hierarchy’s leaf nodes. We further this approach by providing refactoring rules
that guide a designer in moving relationships both up and down an inheritance hierarchy,
and provide an analysis of the impact on reuse that such design decisions encompass.

Background: A Reuse Model

In this section, we review our component reuse framework proposed in Price and
Demurjian (1997), extended in Price et al. (2001), and formalized in Caballero and
Demurjian (2002), based on two characteristics: class generality assessment and rela-
tions among classes. To summarize our previous work, we developed a methodology for
assessing the reuse potential of components through which classes may be marked as
either general or specific. A general class (G) is one that is expected to be reused in future
applications, while a specific class (S) is only intended for one application. For example,
an Item class for products is general to all retail applications, while a WalmartItem class
descendant has store specific characteristics. In a later effort by Price et al. (2001), the
model was extended to accommodate levels of generality to better exploit the reuse
potential of classes, and led us to several definitions through which to base our
dependency analyses of software designs. These definitions are as follows:

TEAM LinG

290 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 1: The generality level of a class Ci is denoted by Gi, where Gi = 0 is the most
general class and Gi = N (N > 0), when Ci is the most specific class.
For example, generalities for classes range from Item (Gitem=0) to DeptStoreItem
(GdeptStoreItem=1) to DiscountStoreItem (GdiscountStoreItem=2) to WalmartItem
(GwalmartItem=3), demonstrating four different levels. Relations among classes char-
acterizes classes that are expected to be reused together in a future application, for
example, an ItemCollection class (set of all Items) is related to the Item class. More
often than not, related classes are coupled, leading to:

Definition 2: Class Cp is related to class Cq if Cp must use Cq in all future reuse. Related
classes have dependencies in the direction of the relation in the form of attribute
inclusion, method invocation, and object inclusion.

Definition 3: Each time any member of class Cp references any member of class Cq, a
Coupling is said to exist from Cp to Cq. Couplings among unrelated classes prohibit
reuse, while couplings among related classes may improve, hinder, or have no
influence on the reuse of the classes.

It is important to note that an inheritance relation between two classes is an instance of
a coupling. Specifically, if class Cp extends class Cp’, then class Cp is coupled to class Cp’.
If class Cp is reused in an application, then class Cp’ must also be brought along for the
new application to function properly. Class generality and relations among classes are
an important part of our framework for reusability analysis, clarified by the following
properties:

Property 1: In an inheritance hierarchy, the parent class is equally general or more
general than its children, meaning that children have at least the reusability level
of the parent, plus optional specific (less general) attribute(s) and/or method(s).
For example, WalmartItem is less general than its ancestor Item due to WalmartItem’s
additional, specialized class members. An interesting case arises when subclasses
override methods defined in the superclass. Consider the Java classes ClassX and
ClassY defined as follows:

 public class ClassX {
 public int f(int i) {
 //Very specific code here
 }
 }
 public class ClassY extends ClassX {
 public int f(int i) {
 return i;
 }
 }

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 291

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Observe that although class ClassX is a super class of ClassY, the implementation of
class ClassX is more specific than the implementation of class ClassY. In particular, the
implementation of method ClassX.f(int i) might contain couplings to classes marked
Specific. However due to Property 2, the generality of ClassY is at least the generality
of class ClassX due to the coupling induced by the inheritance relationship.

Property 2: The generality level of a class is equal to the generality level of the least
reusable related class, as considered over all the classes that a class is related to.
Given two classes, Cp and Cq with generality levels Gp and Gq there are two cases:
Cp is more specific than Cq (Gp > Gq), in which case Cp is the least reusable class;
and Cp is more general than Cq (Gp < Gq). If there is a relation from Cp to Cq, Cp may
be dependent on specific features of Cq that will condition the reusability of Cp to
situations when Cq is reusable, that is, the generality level of Cp must be equal to
or greater than the reusability level of Cq.

Property 3: Couplings between unrelated classes are undesirable and hinder reuse since
unrelated classes are not intended to be reused together in future applications. If
there are dependencies among unrelated classes, the coupled classes must be
brought along to the reusing application in order for the system to function
properly, which contradicts the intent of not reusing the components together.

Software engineers label or mark their classes with a generality level, which denotes the
developer’s reuse expectancy for the class. To simplify, assume that there are only two
levels of generality, G and S; if there are multiple levels, as is the case with our model,
one proceeds in a similar manner, focusing on only two levels at a time. Between any two
generality levels there are four types of couplings: a G class can depend on another G
class, a G class can depend on a S class, a S class can depend on a G class, and a S class
can depend on another S class. These dependencies can take the form of a method call,
inheritance, or an instance variable reference. As classes also may be related or unrelated,
we have identified a total of eight separate types of couplings (Price and Demurjian, 1997;
Price et al., 1997; Price et al., 2001):

Type 1. G → G among related classes is an asset to reuse, the two classes are expected
to be reused together, and the objective is to increase these couplings.

Type 2. G → G among unrelated classes is undesirable since the source and destination
are not expected to be reused together. Refactor by moving both the source and
destination to Specific descendant classes or making the classes related.

Type 3. G → S among related classes is undesirable, since the General class (to be reused)
depends on a class which is not expected to be reused. Refactor by moving the
source to a Specific descendant or the destination to a General ancestor.

Type 4. G → S among unrelated classes is undesirable (source expected to be reused,
destination is not). Refactor by moving the source to a Specific descendant class.

Type 5. S → G among related classes does not hinder reuse since the source of the
coupling is not expected to be reused at all. Refactor to improve reuse by moving
the source to a General ancestor.

TEAM LinG

292 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Type 6. S → G among unrelated classes does not hinder reuse since the source of the
coupling is not expected to be reused. There is no need to refactor in this case.

Type 7. S → S among related classes does not hinder reuse since the source of coupling
is not expected to be reused. Refactor to improve reuse if both source and
destination are moved to their General ancestors.

Type 8. S → S among unrelated classes represents the desired situation for couplings
between unrelated classes; they need to be among the Specific classes.

Given the eight different coupling types, we refactor to improve reuse. Our method is
based on the reduction of couplings that hinder future reuse, by transitioning couplings
to types that promote or are neutral to future reuse. For example, by identifying and
transitioning a coupling from Type 3 to Type 1, we are able to move a coupling that hinders
reuse (Type 3) to one that promotes reuse (Type 1).

Reuse Definition, Assessment,
and Analysis in UML

In this section, we examine reuse definition, assessment, and analysis in UML (Booch,
Jacobson, & Rumbaugh, 1999) from the perspective of use cases, classes, behavior
modeling, and component diagrams. We concentrate on the steps that software engi-
neers take as they create and evolve their design, and we provide properties and
associated refactoring guidelines to facilitate the improvement of reuse potential. While
the following discussion is sequential, a software engineer would typically iterate among
the various UML diagrams during design.

Use Case Diagrams

Use case diagrams are made up of three different elements: actors, systems, and use cases
(see Figure 1). A UML system collects connected units that are organized to accomplish
some purpose, for example, the Sales system in Figure 1. From a reuse perspective, we
are interested in the couplings between systems. In Figure 1, to reuse Sales, one must
also use the Credit Institute Visa and the Credit Institute MC systems. Conversely, Credit
Institute Visa or Credit Institute MC can be reused without reusing Sales. Currently, reuse
at the system level is not supported; our focus is on understanding the reusability of the
use cases so that when a use case is reused, we only reuse what is necessary for
supporting that use case. Actors, as shown in Figure 1, represent a set of roles for
interacting with use cases. Assigning generalities to actors does not make sense, since
actors are external entities and are not part of the system under consideration.
Use cases provide us with the first UML construct to begin to define a reuse definition,
assessment, and measurement framework for UML. In the initial stages, as a software

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 293

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

engineer defines use cases, the generality level can be assigned in a similar fashion to
classes (Price and Demurjian, 1997; Price et al., 1997; Price et al.,2001). The assigned
generality level of a use case measures its reuse potential, and allows comparison against
other use cases, in an effort to track the couplings among use cases.
Recall the properties presented in the Background Section that delineate reuse definition
requirements: Property 1: generality of a parent class versus its child classes; Property
2: generality of a class is equal to generality of the least reusable coupled class; and
Property 3: unrelated classes with dependencies between them that hinder reuse. To
augment these properties, we define additional properties that focus on the reusability
requirements for UML that must be enforced by the reuse framework in order to “design”
reusable UML artifacts. At initial design stages, with only use cases defined, the
emphasis on reuse definition and analysis is primarily on the assignment of generality
level, and the impact of these assignments by the different types of relations between
use cases in UML, namely <extend>, <include>, and <generalization>.
Relations between use cases are transitive in the direction of the relation arrows. An
exception is when a use case is marked as abstract, and the generalization links are
followed against the arrow direction. The first link in a relation chain sets the type of the
relation to all transitive related use cases (if the first link is an <include>, all transitive
related use cases are included). Transitivity of relations, as shown in Figure 2, is
important since it allows the tracking of indirect dependencies that can hinder reuse.
Figure 2 depicts the following relations: “Place Order” includes: “Supply Customer
Data,” “Get Person Info,” and “Arrange Payment.” As “Arrange Payment” is abstract,
it also includes “Pay Cash” and “Arrange Credit”; “Supply Customer Data” extends “Get
Person Info”; “Pay Cash” inherits from “Arrange Payment”; and “Arrange Credit”
inherits from “Arrange Payment.” Considering use cases UCA and UCB with respective
generalities GUC-A and GUC-B leads us to the following additional properties:

Figure 1. An example use case diagram

TEAM LinG

294 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Property 4. UCA extends UCB is a relation in which UCA adds behavior to UCB, meaning
that UCA is at most as general as UCB.

Property 5. UCA includes UCB is a relation of the behavior sequence of the supplier UCB
into the interaction sequence UCA. From a reuse perspective, it means that UCA is
at most as general as UCB, for example, in Figure 2 use case “Supply Customer Data”
is more general or equally general than use case “Place Order.”

Property 6. UCA generalizes UCB is a relation of a specialized UCB to a more general UCA,
meaning that UCB is at most as general UCA.

Violating these properties yield bad couplings (i.e., poor reusability) between the use
cases which must be corrected. This is facilitated by our development of refactoring
guidelines (RGs) for software engineers, which enumerate the possibilities available for
correcting the violations. For Properties 4, 5, and 6, RG1, RG2, and RG3, respectively, are:

RG1, RG2: To enforce Property 4 or Property 5, the refactoring rule is: If GUC-B > GUC-

A , then refactor by making UCB more general (or UCA more specific) so GUC-B
≤ GUC-A or by removing the extend/include.

RG3: To enforce Property 6, the refactoring rule is: If GUC-A > GUC-B, then refactor by
making UCA more general (or UCB more specific) so that GUC-A ≤ GUC-B or by
removing the generalization.

The use-case-to-use-case reuse assessment applies our refactoring guidelines from the
Background Section. When the generalities differ by one level, the refactoring guidelines
for Types 1, 3, 5, and 7 apply. When the generalities differ by two or more levels, additional
refactoring guidelines (Price et al., 2001) apply. The change of generality of either, or
both, of the two use cases may result in conflicts with other use cases that are connected
to UCA and UCB via extend, include, or generalize relationships. Use cases that are not
related at initial design stages do not have dependencies, since they are not linked by
extend, include, or generalize. Unrelated use cases with dependencies to classes that are
not related to the use case must be checked, tracked, and corrected.

Figure 2. Transitivity in use case relations

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 295

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3 gives a use case diagram with the generality level of each use case assigned.
In Figure 3, the level of generality of each use case follows the name of the use case. As
currently marked, use case “Order Product” violates Property 5 for <include>, by being
more specific than use case “Place Order,” and use case “Pay Cash” violates Property
6 for <generalize>, by being more general than “Arrange Payment.” Refactoring the
design in Figure 3 is essential for maintaining the reusability dependencies that adhere
to Properties 1 to 6, in order to reuse use cases in future domain-and-organization-
specific applications. By using RG2, “Place Order” <includes> “Order Product” can be
refactored by: making the generality of “Order Product” G1 (more general), by making the
generality of “Place Order” G2 (more specific), or by removing the <include>.
The selection amongst these three choices is at the discretion of the software engineer.
Similarly, by using RG3, the generality of “Pay Cash” can be changed to G1, the generality
of “Arrange Payment” can be changed to G0, or the generalization between the use cases
can be deleted. For the purposes of the discussion, assume that both “Order Product”
and “Pay Cash” are changed to G1.

Class Diagrams

Once the use cases have been initially defined, the software engineer can begin to model
classes. The reuse potential of class diagrams is evaluated according to our earlier
metrics (Price & Demurjian, 1997; Price et al., 1997; Price et al., 2001) that measure class-
to-class couplings. This effort assumes the existence of detailed couplings, such as
method calls and attribute inclusions, which will not be the case at initial stages of the
design process. Rather, we assume that a software engineer is defining use cases and
classes (initially by name only), assigning generality levels to use cases and classes, and
establishing relations between use cases and classes, and among classes, all of which
have the potential to impact reuse. In a UML design, there can be relations between use
cases and classes as follows:

Figure 3. “Order Product” and “Pay Cash” violate Properties 5 and 6

TEAM LinG

296 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 4: A use case UCA is related to a set of classes �A = {C1 , C2 , …, Cn}
for some n, if UCA relies on �A for its functionality. It is left to the developer
of the application to determine which classes implement the use case and
belong to �A.

Reusing UCA means reusing all classes in the set �A. The � sets for the example are:

�Place Order = {Order Container, Order, ItemDB }, �Order Product = {Item },
�Order Computer = {Computers }, �- Order Car = {Cars }, �Request Catalog = {Catalog },
�Supply Customer Data = {Customer, DB Access }, �Arrange Payment = {Payment}

Given this definition, we can now examine use case generality when a use case is related
to a set of classes, assuming that both the use cases and the classes related to them have
been assigned generality levels. The software engineer can then redefine the generality
level of any class as part of an iterative design process. Intuitively, a class C is at least
as general as any use case UC related to it, or stated another way, a use case UC is no
more general than the most specific (least general) class C to which it is related, which
leads to the Property 7 and guideline RG4.

Property 7. Suppose that UCA is related to a set of classes �A = {C1 , C2 , …, Cn}
for some n. Then, the generality of UCA must be as specific as the most specific
class in �A, and may be more specific, that is, GUC-A = max{generality ∀Ci∈�A}.

RG4: To enforce Property 7, the refactoring rule is: generality change of UCA or one
or more Ci∈�A until GUC-A = max{generality ∀Ci∈�A}, or the removal of all
classes in �A that cause the GUC-A = max{generality ∀Ci∈�A } to be violated.
The changes made in this situation may impact elsewhere, and our tool (see
Prototyping in Together Section) automatically detects and suggests alternatives
for correction of the software design.

Figure 4 contains a class diagram with generality levels annotated next to each class
name. Note that while we have shown the various relations among the classes, we have
not identified the type of each relation (e.g., dependencies, associations, and generali-
zations) since it is not needed for our purposes. Figure 4 contains two violations of
Property 7 as a result of dependencies among classes: Use case “Place Order” is related
to a more specific class, “Item DB,” than itself; and Use case “Order Car” is related to a
more specific class, “Cars,” than itself. These can be refactored according to RG4,
respectively, as: Change “Item DB” to be more general with a level G1, “Place Order” to
be more specific with a level of G2, or remove “Item DB” from “Place Order”; and Change
“Cars” to be more general with a level G1, change “Order Car” to be more specific with
a level G3, or remove “Cars” from “Order Car.” Since changing relations between use cases
and classes also may affect the generality levels elsewhere in the design, the reuse must

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 297

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be constantly reanalyzed. The prototype in the Prototyping in Together Section of this
chapter supports this through warnings and alerts.
In addition to Property 7, we also must track dependencies that can impact reuse among
use cases that are related and unrelated, and between use cases and classes. Use-case-
to-use case dependencies involve both related (expected to be reused together) and
unrelated (not expected to be reused together) situations. The use-case-to-use-case
dependencies related situation, as given in Property 8 and RG5, assumes that there are
two use cases that are related to one another, which must be mirrored by a relation at the
class level.

Property 8. Suppose that UCA is related to �A, and UCB is related to �B. If UCA is
related to UCB (extend, include, or generalize — see Reuse Section), then there
has to be at least one transitive relation chain from one Ci∈�A to one Cj∈�B.

RG5: To enforce Property 8, the refactoring rule is: add one or more dependencies
between class(es) Ci∈�A and class(es) Cj∈�B, or remove the relation between
UCA and UCB.
RG5 maintains dependencies among use cases to allow their reuse in future
settings. In the use-case-to-use-case dependencies unrelated situation, given in
Property 9, since the two use cases are not related, any class dependency between
them requires an alert to the software engineer to correct the situation following
RG6.

Property 9. Suppose that UCA is related to �A and UCB is related to �B, and that
UCA is not related to UCB (i.e., there is not an extend, include, or generalize
relation). Then, if at least one Ci∈�A is directly related (i.e., not by a transitive
relation chain) to at least one Cj∈�B, there must be a refactoring.

Figure 4. Sample class diagram with generalities

TEAM LinG

298 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RG6: To enforce Property 9, the refactoring rule is: make UCA related to UCB or
remove all dependencies between all Ci∈�A and all Cj∈�B.

The use-case-to-class dependencies situation involves a use case related to a class,
which in turn is related to another class which is not in the � set of the use
case. To satisfy reuse requirements, a use case must be related to all other
classes, both direct (in �) and inferred (via a relation). This situation is handled
by Property 10/RG7 as described.

Property 10. Suppose that UCA is related to � A. Then for all Ci∈�A, if there exists
a transitive relation chain from Ci to some Cj∉�A, then UCA must also be related
to Cj in some manner. UCA can be either related directly to Cj, or it can be
related to some UCB, to which Cj is related.

RG7: To enforce Property 10, the refactoring rule is: ∀Ci∈�A related to some Cj∉�A
include Cj in �A (�A= �A ∪ Cj), or relate UCA to some UCB where Cj∈�B, or
unrelate UCA to Ci (�A= �A – Cj). Note that this refactoring guideline maintains
dependencies among use cases to allow their reuse in future settings.

To explore Properties 8 to 10, and RG5 to RG7, we continue our example as established
in Figures 2 and 3, with the � sets as given after Definition 3. There are two
violations of Property 8 and 10, which can be refactored according to RG5 and RG7,
and one problem with the design corrected with additional relations:

• Use case “Place Order” in Figure 3 includes use case “Supply Customer Data,”
but there are no relations between �Place Order and �Supply Customer Data in Figure 3. Use
RG5 to add a relation from class “Order” to class “Customer” in Figure 3.

• Use case “Place Order” is related to class “Item DB,” and “Item DB” is related
to class “Catalog.” “Place Order” should therefore be related to “Catalog” or
some use case that is related to it (like “Request Catalog”). Use RG7 to add an
<extend> relation from “Place Order” and “Request Catalog” in Figure 5. Note
that with this action, Property 5 is now violated; since use case “Request
Catalog” extends use case “Place Order” it should be at least as specific as
“Place Order.” Our prototype (See Prototyping in Together Section) automatically
tracks these new violations.

• The software engineer should consider relating classes from Figure 4 to use case
“Pay Cash” and use case “Pay Credit” in Figure 2, as these use cases are not
yet related to any classes. Add relations from use case “Pay Cash” to class
“Cash Payment” and from use case “Arrange Credit” to class “Credit Payment.”

Refactoring using RG5 to RG7 to maintain Properties 8 to 10 is not a trivial task, and
requires a deep understanding of application content and semantics in order to be
successful. Relations can be added or removed at will; but relations should only be

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 299

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

changed if they make sense for the system. A reuse-focused UML tool can identify
situations that require change, but the software engineer must use their own knowledge
and experience and understanding of the domain to make appropriate changes.
As software engineers start to add details to their designs, including attributes,
member functions, associations, and inheritance, there is an impact on reuse. New
attributes and member functions all raise the possibility of new dependencies between
classes that impact reuse. An attribute or member function argument whose type is
that of another class may reveal a dependency that impacts Properties 8, 9, or 10,
which would need resolution via RG5, RG6, or RG7. For example, in Figure 3, suppose
an attribute “Last Payment Made” of type “Payment” is added to class “Customer,”
which is a new dependency.This new dependency has a direct impact on use case
“Supply Customer Data,” since �Supply Customer Data = {Customer, DB Access} does not
contain “Payment,” which violates Property 10, and must be corrected by RG7.
Associations and inheritance also may impact properties. For example, defining a
new association or inheritance between classes can impact Properties 8, 9, or 10, in
a similar fashion to the example given for attributes. For new inheritance relations,
a derived class cannot be more general than its parent (Property 1).
Finally, as the design continues to evolve with the development code, the actual count
of couplings between classes can be more carefully tracked, which is supported in our
current reuse framework (Caballero & Demurjian, 2002; Price & Demurjian, 1997; Price et
al., 1997; Price et al., 2001) and the design reusability evaluation (DRE) tool. Coupling
counts help the software engineer make reusability-related decisions about the overall
design. For example, if the coupling count for one class to another is high and there is
no relation defined between them, the engineer might want to add a relation showing that
these components are intended to be used together. On the other hand, if the coupling
count is low, the engineer might consider changing his design such that the classes are
not dependent. As a UML design evolves toward code, the transition to the DRE tool
is seamlessly handled (see Prototyping in Together Section).

Figure 5. Refactored use case diagram of Figure 3

TEAM LinG

300 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Prototyping in Together Control Center

In this section, we describe the ongoing prototyping of our original reuse framework
(Price & Demurjian, 1997; Price et al., 1997; Price et al., 2001) and the extensions to support
reuse of UML into Together Control Center, TCC (TogetherSoft, 2003). The DRE tool
measures and reports the reuse potential of Java software according to our original reuse
framework (Price & Demurjian, 1997; Price et al., 1997; Price et al., 2001) and extensions
for automated refactoring (Caballero & Demurjian, 2002). The software engineer analyzes
code by specifying the two reuse characteristics of the classes that comprise the
application: the generality and the relations between them. DRE analyzes the source code
of an application and tabulates the coupling counts for the eight coupling types we
previously discussed in the Background Section of this chapter. A report of these
coupling counts is presented to the user, along with refactoring guidelines for improving
couplings that hinder future reuse. The DRE prototype can be downloaded at UConn
(UConn’s Reuse Web site).
As shown in Figure 6, we have integrated DRE into Together Control Center (TCC) with
a focus on reuse assessment of the software produced using TCC, rather than based on
UML designs. Our use of TCC offers us a selection of software audits and metrics that
a software engineer can employ to measure different aspects of code. We integrated our
reuse framework and metrics as a user-defined metric to be consistent with TCC.
TCC provides a rich set of Open APIs and a plug-in structure that has facilitated the
integration of DRE and our reuse framework into TCC. Using TCC’s OpenAPIs, func-
tions, and objects, we developed a bridge between our standalone DRE application and
the TCC editor, providing the ability to apply our reuse evaluations to any TCC Java
project. A TCC property window pane for classes was extended, as shown in Figure 6,
for the generality and relation information of each of the classes. This information can

Figure 6. Running the design reusability evaluation (DRE) tool in TCC

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be accessed and updated through the standard Together-defined window to view
property information.
Once the generality levels of classes and relations among classes have been established
by the software engineer, our reuse metric can be run via TCC by activating the standard
DRE tool to parse through the source files (stored under the control of TCC) and
determine and classify all couplings that exist. While the standard metrics and audits of
TCC display themselves in a TCC results pane, the complete DRE tool opens as a new
application for use by the software engineer. Changes made to source code within the
DRE environment propagate back to TCC, and vice versa, providing round trip engineer-
ing with respect to reuse (Figures 6, 7, and 8). The generalities of classes and relations
among classes are persistently stored into Javadoc-style comments for the methods/data
members, which can be parsed by DRE, so that future reuses of classes can automatically
initialize the generalities/relations.

Figure 7. Round trip engineering

Figure 8. Creating use cases and assigning generalities

TEAM LinG

302 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition, our reuse definition, assessment, and analysis framework for UML has been
integrated into Together Control Center (TCC), providing direct support to the properties
and refactoring guidelines for UML designs in order to allow software engineers using
TCC to define, track, and manage reuse at all stages of design and development. This is
inclusive from initial design through detailed design and implementation, and is sup-
ported by the integration of DRE and TCC. The TCC is a full concept-to-code CASE tool,
allowing the incorporation of our reuse framework methodology to span the entire
software life cycle.
The early support in the design process of a UML reuse framework as presented in the
Reuse Section allows: setting generalities for the assessment and analysis resulting in
the enforcement of Properties 4 to 13; and presenting to the software engineer the
refactoring guidelines RG1 through RG10 that improve future reuse. As use cases are

Figure 9. Violations and refactoring guidelines

Figure 10. Corrective measures and results

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 303

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

created and marked with a generality level by the software engineer (see Figure 8) our
extended TCC enforces Properties 4, 5, and 6. TCC alerts the software engineer that
properties have been violated, and provides refactoring guidelines that suggest changes
to improve the reusability of the design (RG1, RG2, and RG3) (see Figure 9).
Following these guidelines, the software engineer can take corrective measures and
improve the design from a reuse perspective (see Figure 10). The generality markings are
stored in TCC, allowing the user to retrieve and/or change the markings in the future. The
TCC use case properties were extended to support use case generality level marking and
relations among use cases. The properties windows where use case generality level and
relations among use cases are analogous to the class properties windows illustrated in
Figure 11. As use cases are defined and related to one another (see Figure 4), our
extension to TCC enforces Properties 4, 5, and 6. If these properties are violated, TCC
alerts the software engineer and provides reuse guidelines RG1, RG2, and RG3 as
suggestions to improve the reusability of the design.
As an application’s design continues to evolve, the software engineer will follow the use
cases with the creation of class diagrams to give application functions more detail. The
software engineer employs the class diagram property windows as given in Figure 11 to
define both the generality and relations among classes. After these class diagrams are
created and marked, the use cases that comprise an application can be related to the
classes (via Definition 3 in the reuse section) as illustrated in Figure 12. At this stage of
design, the generality of the use case versus the generality of the classes related to the
use case is enforced with refactoring via RG4 as needed. Also, Properties 8, 9, and 10,
for use-case-to-use-case and use-case-to-class dependencies, and Properties 11, 12, and
13, for components, are tracked, enforced, and refactored (via RG5 to RG10) (Figure 13).
To track and analyze considerations for all properties, a reuse assessment pane for TCC
has been prototyped, as shown in Figure 14. There are four windows in Figure 14 that
track the current warnings and violations (first window), the affected elements for a
selected warning (second window), and for a particular selectable element, a description
of the problem (third window), and the refactoring guidelines (fourth window).
This organization is consistent with the properties and refactoring guidelines as
presented in Reuse Section. Using these various windows, the software engineer can
explore the reuse problems with a UML design, make changes, and analyze their impact.

Conclusion and Ongoing Work

Developing reusable software components is a key aspect of software evolution.
Evaluating the reuse potential of components at design time can benefit from an
integrated reusability tool that provides an assessment of software design decisions. We
have presented such a reuse definition, assessment, and analysis framework for UML
that helps the software engineer to increase reusability since early stages in the
development process. We focused on future reuse, extending our previous work focused
at reusability at the class level, to consider reusability of UML use case diagrams.

TEAM LinG

304 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 11. Properties windows

Figure 12. Relating classes to use cases

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 305

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the Reuse Definition Section, we proposed a set of formal properties and the associated
refactoring guidelines for reuse definition, assessment, and analysis for use case
diagrams and class diagrams. We have implemented our UML extensions into the TCC
tool. Our research efforts represent a step forward in seamlessly supporting reuse in UML
and Java for software designers, engineers, and developers.
In our ongoing work, we are exploring a formal model for reuse (Caballero & Demurjian,
2002) for automated reusability assessment and refactoring. We plan on expanding our
UML framework and on applying our formal model concepts for automated refactoring
to UML designs, including investigating the relevance of state and activity diagrams for
our reusability definition, analyses, and assessment. This new framework will also be
implemented in our existing prototype (UConn, 2003).

References

Basili, V.R., Rombach, H.D., Bailey, J., & Delis, A. (1990, May). Ada reusability and
measurement. Computer Science Tech. Rep. Series, University of Maryland.

Figure 13. Violations and refactoring guidelines

Figure 14. Reuse assessment pane

TEAM LinG

306 Needham, Caballero, Demurjian, Eickhoff and Zhang

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Booch, G., Jacobson, I., & Rumbaugh, J. (1999). Unified modeling language reference
manual. Reading, MA: Addison-Wesley.

Brown, A. & Wallnau, K. (1998). The current state of CBSE. IEEE Software, September/
October.

Caballero R., & Demurjian, S. (2002). Towards the formalization of a reusability framework
for refactoring. Proceedings of the Seventh International Conference on Software
Reuse.

Cernuda, A., Labra, J., & Cueva, J. (2001). Verifying reuse contracts with a component
model. In 6th JISBD, November.

Chidamber, S. & Kemerer, C. (1994). A metric suite for object-oriented design. IEEE
Transactions on Software Engineer, 20(6), 476-493.

Frakes, W. & Terry, C. (1996). Software reuse: Metrics and models. ACM Computing
Surveys, 28.

Garlan, D., Allen, R. & Ockerbloom, J. (1995). Architectural mismatch: Why reuse is so
hard. IEEE Software, November.

Hall, P. (1999). Architecture-driven component reuse. Information and Software Tech-
nology, 41(14).

Lucas, C. (1997). Documenting reuse and evolution with reuse contracts. Unpublished
Doctoral Dissertation, Department of Computer Science, Vrije Universiteit Brussel.

McIlroy, M. (1968). Mass produced software components. Proceedings of the NATO
Software Engineering Conference.

Meekel, J. (1997). From domain models to architecture frameworks. Proceedings of the
1997 Symposium on Software Reusability.

Poulin, J. (1996). Measuring software reuse: principles, practices and economic models.
Reading, MA: Addison-Wesley.

Price, M. & Demurjian, S.A. (1997). Analyzing and measuring reusability in object-
oriented designs. Proceedings of OOPSLA’97.

Price, M., Demurjian, S., & Needham, D. (1997). Reusability measurement framework and
tool for Ada95. Proceedings of 1997 TriAda Conference.

Price, M., Needham, D., & Demurjian S. (2001). Producing reusable object-oriented
components: a domain-and-organization-specific perspective. Proceedings of
2001 Symposium on Software Reusability.

Rine, D., & Nada, N. (2000). Three empirical studies of a software reuse reference model.
Software - Practice and Experience, 30(6).

Sarshar, M. (1996). Reuse measurement and assessment. Proceedings of the Interna-
tional Workshop on Systematic Reuse.

Schmietendorf, A. (2000). Metrics based asset assessment. Software Engineering
Notes, 25(4).

Software reuse executive premier (1996). Technical Report, DOD Software Reuse
Initiative Program Management Office.

TEAM LinG

A Reuse Definition, Assessment, and Analysis Framework for UML 307

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Steyaert, P., Lucas, C., Mens, K., & D’Hondt, T. (1996). Reuse contracts: managing the
evolution of reusable assets. Proceedings of the OOPSLA’96, ACM SIGPLAN
Notices, 31(10).

Succi, G. (1995). Reuse and reusability metrics in an object oriented paradigm. Interna-
tional Journal of Applied Software Technology, 1.

TogetherSoft Corporation (2003). Together control center. Retrieved October 1, 2003,
from http://www. togethersoft.com

Tsagias, M. & Kitchenham, B. (2000). An evaluation of the business object approach to
software development. Journal of Systems and Software, 52(2-3), 14.

UConn’s Reuse Web site. Retrieved October 1, 2003, from http://www.engr.conn.edu/
˜steve/DRE/dre.html

Virtanen, P. (2000, April). Component reuse metrics – Assessing human effects. In K.
Maxwell, R. Kusters, E. van Veenendaal, & A. Cowderoy (Eds.), Proceedings of the
combined 11th European Software Control and Metrics Conference and the 3rd
SCOPE Conference on Software Product Quality, (pp. 171-179). Munich, Ger-
many: Shaker Publishing.

TEAM LinG

308 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Complexity-Based
Evaluation of the
Evolution of XML
and UML Systems
Ana Isabel Cardoso, University of Madeira, DME, Portugal

Peter Kokol, University of Maribor, FERI, Slovenia

Mitja Lenic, University of Maribor, FERI, Slovenia

Rui Gustavo Crespo, Technical University of Lisbon, DEEC, Portugal

Abstract

This chapter analyses current problems in the management of software evolution and
argues the need to use the Chaos Theory to model software systems. Several correlation
metrics are described, and the authors conclude the Long-Range Correlation looks to
be the most promising metrics. The Long-Range Correlation measures for XML and
Java files are very similar. We then identify the number of ideas that may be raised in
the process of software development, and link the different behaviours of the software
evolution to the Verhulst model. Finally, we analyse one industrial test case and verify
that the behaviours of software evolution are represented in the Verhulst model.

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 309

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Since the 1960s, software engineers have recognised the growing costs, errors, and
delays in the development and evolution of software systems are manifestations of a
software crisis (Naur & Randell, 1969). The impact of the software crisis is huge. For
example, the annual costs of software defects in the US are estimated to be up to $60 billion
(NIST, 2002).
Software systems are frequently updated and, nowadays, the relative cost for maintain-
ing the software evolution is around 90% (Seacord, 2003). Software maintenance is now
an important issue, both in industry and research institutions (Grubb & Takang, 2003).
The pressures for changing software systems have been identified and include (a) the
technology, market, and legislation evolution, (b) the need to correct undetected errors,
and (c) the increase of understanding of the system by the users after the release
installation (Lehman & Belady, 1985). As result of the pressures for system change, either
the software system adapts to these changes or becomes less useful until, ultimately, it
must be discarded. After analysing multiple versions of the IBM OS/360 operating
system, Lehman has suggested that the evolution of a software system is subject to three
informal laws: (a) continuing change, that states a program used in a real-world
environment must change, (b) increasing entropy, that prescribes the program structure
becomes more complex unless efforts are made to avoid the complexity, and (c) statis-
tically smooth growth, that enounces the global system metrics appear locally stochastic
in time and space but are self-regulating and statistically smooth (Lehman, 1980).
Nowadays, software systems have a wide range of applications, such as reactive systems
for Machine Control, symbol processing in Artificial Intelligence, and number crunching
for Simulation. Developers now have available many design and programming lan-
guages, each one oriented for a specific range of applications. The object-oriented
design and programming languages have been adopted for the development of many
applications because they are closer to the real world, and data are not shared, which
reduces overall system coupling as there is no possibility of unexpected modifications
to shared information. The Unified Modeling Language (UML) (Fowler & Kendall, 1999)
and Java (Arnold & Gosling, 1997) are two examples of widely used object-oriented
design and programming languages.
Project managers recognise that the higher the semantic organisation of the computer
applications is, the easier the software understanding and the lower the cost of system
evolution. Informally, the semantic organisation of a program is given by the regularity
presence of software elements. Object-oriented systems enforce regularity in some of the
software elements, such as data encapsulation and class hierarchies. Our research
focuses on the regularity of the software elements in UML diagrams and Java programs
that vary according to the programmers and to the project goals. For example, program-
mers with different practices create, in the UML sequence diagrams, different sequences
of message interactions between the same classes for the same software system.
Many project teams and researchers have proposed metrics to quantify and control the
software development and evolution (Fenton & Pfleeger, 1997). The results, however,
fell below the initial expectations. One possible reason for this failure is that the current

TEAM LinG

310 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

metrics focus only on some aspects of the software development and their products. In
this chapter, we use another approach, based on complex or chaotic systems, to assess
the overall organisation and evolution of the software systems.
The purpose of this chapter is twofold: (a) to show how to measure the semantic
organisation of object-oriented systems; and (b) to identify the behaviours that the
evolution of software systems may depict. These two goals help us to validate the laws
of software evolution and to control the adaptation of software systems.

Software as a Complex System

Complex, or chaotic, systems have been adopted in the representation of many areas of
activity, such as biology, economics, and physics. Complex systems share certain
features like having a large number of elements, being sensibility dependent on the initial
conditions and representing an extended space for evolution (Gell-Mann, 1995). Also,
the behaviour of complex systems cannot be understood from the sum of the behaviours
of its parts.
Likewise complex systems, software systems are made of many software artefacts, such
as design UML diagrams, specifications expressed in Object Constraint Language (OCL)
(Warmer & Kleppe, 2003), source programs in Java, object files, and test cases. The
attributes and the behaviour of the individual software artefacts are different from the
system attributes and behaviour. Also, systems are constantly updated and the evolu-
tion space is very large. Therefore, software systems may be modeled as complex
systems.
Whatever representation scheme is selected, each software artefact is a string, or a
sequence of code symbols (CS). UML diagrams and test cases may be stored in eXtended
Markup Language (XML) (Ray, 2001). The source program symbols are those of the
programming language, Java, for example, and the object file symbols are the binary
digits. For the high-level languages, we are interested on the reserved words that have
a meaningful relationship with the user goals and provide actions. We do not care about
the regularity imposed by the “sugar syntax” of the UML and the XML languages, neither
to the attributes and constants.
The symbols are organised in two levels, syntactical and semantic. The syntactical
organisation is a well-known field of study (Appel, 2002). There are many ways to
describe the semantics of programming languages, for example, attribute grammars
(Knuth 1971) and denotational semantics (Winskel, 1993). The regularity of the semantic
language components, however, is still largely unknown. We advocate that it is possible
to quantify the level of the semantic organisation without the explicit determination of
the program semantics.

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 311

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Process Metrics

The impact of metrics in the evaluation of software processes has been studied. The
analysis may be focused on specific areas, such as the measurement theory (Briand, 1995)
and the project team classification (Paulk, 1993). In this chapter, we divide the analysis
of the software process metrics according to the underlying system process modeling,
classical and Chaos Theory based.

Classical Metrics

Classical modeling observes software processes as a coordinated set of activities, each
one manipulating different software products. The metrics based on classical modeling
of systems measure specific attributes of the system. The global understanding of the
software development process and products is expected to be some sort of attribute
summation. We divide the classical metrics in two categories, plain and entropy metrics.

Plain Metrics

Plain metrics are concerned with the overall value of the attributes. Many software
product metrics are available, such as dimension, cohesion, and coupling. Classical
metrics, such as the number of lines of code (LOC), are intuitive and have been
successfully used in important aspects of software projects, such as cost estimation
(Boehm, 1981). Yet, the classical software product metrics have provided limited use in
the measurement of software processes (Kitchenham, 1998). Reasons for such failure
include (Cardoso, 2001)

• Product current metrics depend on the selected language, thus making it impossible
to compare systems implemented in different languages.

• Software products are modeled by different representation schemes, such as
informal and graphic representation in the requirements phase and programming
languages in the code phase. Therefore, classical metrics only measure particular
aspects of the software processes.

• Current software process metrics measure some attributes of the process. Because
our knowledge is limited, we are unable to quantify global values of the software
process.

Entropy Metrics

Entropy metrics have been used to study the regularity of the distribution of symbol
frequencies. Consider a string sεS+, with each wiεS having the pi frequency. The
equations (1) and (2) define, respectively, the Shannon and the Rény entropies.

TEAM LinG

312 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

i
i

i ppH log∑−= (1)

()∑−
=

i
ir pH α

α1
1

(2)

In the Shannon entropy, the greater and the lesser frequencies contribute equally to the
result. In the Rény entropy, the greater frequencies are overcome if α>1. If 0<α<1, the
lesser frequencies are overcome.
We identified the entropy metrics for valid programs, with a purpose, and randomly
generated programs with syntactic correctness. We verified that there is no difference
between the two sorts of programs. Therefore, we directed our attention to the correlation
metrics.

Correlation Metrics

Complex modeling realises that merging different activities results in the formulation of
new behaviours.
The correlation metrics are often used in measuring complex systems. Correlation metrics
quantify the connection between the same symbol elements in different string positions.
The short-range correlation metrics, such as the Markov chains, relates elements closely
positioned, and the long-range correlation metrics (LRC) filters short-range fluctuations.

Brownian Cumulative Walk

LRC has been used to identify the basic structure in different areas, such as DNA (Peng,
1992) and human writings (Schenkel, Zhang, & Zhang, 1993). In this chapter, we adopt
the Brownian cumulative random walk (RW) (Peng, 1992) to measure the LRC.
The symbols are translated with a balanced numeric code, that is, the sum of all codes
is equal to zero. The RW is identified as

RW0 = 0

RWi = RWi-1 + Cod(Si)

From the RW, we identify the characteristic function, F(l), as the root of the mean square
fluctuation about the average of the displacement l. l is the distance between 2 points
of RW in the horisontal axis, and y is the distance between 2 points of RW in the vertical
axis. Dy(l,l0) is equal to y(l+l0)-y(l0).

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 313

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

() ()[] ()[]2
0

2
0

2 ,, llllylF ∆−∆= (3)

Figure 1 depicts one example of the F(l) characteristic function. The F(l) characteristic
function can distinguish two possible types of behaviour:

1. If the string is uncorrelated, or there are local correlations extending up to the
characteristic range (e.g., Markov chains and sequences generated by regular
grammars), then F(l) » l0.5.

2. If the correlations are “infinite,” then F(l) ≈ lα and α ≠ 0.5.

The α value is extracted from slope of the F(l) characteristic function, removing the lowest
and the highest values. The lowest initial values are considered to be noise and,
therefore, are useless for alpha estimation. The highest l values must be discarded
because the index difference is close to the sample size.
The α values for valid programs with a purpose, and for randomly generated programs
with syntactic correctness, are different (Cardoso, Crespo, & Kokol, 2004). Well-
organised programs hold a values furthest away from 0.5, around 0.7 and 0.8.
We developed the Complexity Analyser tool, running on Windows, to measure the a
values in several languages such as C, Java, UML, and binary files. More information may
be found at http://lsd.uni-mb.si/eng/research/software/SCA.

Restrictions on the α Determination

The computational cost of the a determination is O(N2), with N equal to the string size.
We consider the a value to be valid if, in the best fitting curve obtained by the least
squares method, the slope has an adjustment coefficient greater than 0.7 (McClave,
1991). We conducted some experiments on C language programs, where the CS size is
equal to 32, and the a values were valid only for files containing more than 700 reserved
words. We also have verified a strong correlation between the a values in source and in
the derived object files (Cardoso et al., 2004). Hence, project managers may select the
best representation to overcome the restrictions on the computational costs and on the
string lengths.
For object files, the code symbols are the binary digits and CS is equal to 2. Therefore,
the major restriction is the computational cost of the value.
For Java programs, the symbols are reserved words of primitive types (e.g., int and
boolean), qualifiers (e.g., unsigned and public), class declarations (e.g., class and
implements), and statements (e.g., while and throw). CS is equal to 47 and, thus, the
sample dimension becomes a major restriction for Java programs.
UML version 2.0 defines 13 types of diagrams. We intend to study the correlation
between the organisational levels of the UML diagrams and the object code files.
Therefore, we restrict our analysis to the data and to the behaviour UML diagrams.

TEAM LinG

314 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML provides diagrams for data modeling, such as Class (CD), Object and Package
diagrams. We selected CDs because they describe the basic structure of the system. The
reserved words of the CDs are the Java primitive types, qualifiers and class statements.
For the class diagrams, the CS value is equal to 22.
UML provides diagrams for behavioural modeling, such as Activity (AD), Sequence, and
Use Case diagrams. We selected ADs, because they model the control flow between the
operations on the classes in the system. The reserved words for the ADs are activities,
branching (branch and merge), object flow, and synchronisation (fork and join). For the
activity diagrams, the CS value is equal to 6.

Reverse Bifurcations
in Software Development

The evolution of organisations and populations may be modeled by the logistic map, or
Verhulst model (Devaney, 1989). We advocate that the logistic map also models the
evolution of the computer applications.

Logistic Map

The sequence of elements Xtε[0,1] is derived by the function depicted in (4)

()ttt XkXX
X

−=
>

+ 1
0

1

0
(4)

Figure 1. The shape of the F characteristic function

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 315

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The terms kXt and -kXt
2 may be seen, respectively, as the balance of natural “births” minus

natural “deaths,” and the number of extra “deaths” due to the population overcrowding.
The function depicted in (4) considers that the population grows proportionally to the
current population, if lower than 1, and declines with a slope equal to the distance to 1,
if greater than 1. The behaviour of the Xt sequence depends on the k coefficient, known
as carrying capacity, and is depicted in Figure 2.

• If k is lower than 3.0, Xt tends to a fixed value. Figure 2 depicts, on the left, the cases
for k equal to 0.95, 1.4, and 2.8.

• If k is greater than 3.0 and lower then 3.569945…, Xi oscillates between a fixed
number of values equal to a power of 2 (2 values if k is lower than 3.44949, 4 values
if k is lower than 3.54409,…). Figure 2 depicts, on the upper right, the case for k equal
to 3.4.

• If k is greater than 3.569945…, Xi changes chaotically. Figure 2 depicts, on the lower
right, the case for k equal to 3.75.

The Iteration Process

We advocate the behaviour of the iteration process is linked to the number of ideas
generated in the generic process of software development. The number of ideas, about the
computer application and its implementation, are depicted in the upper part of Figure 3.

Figure 2. Behaviour of the sequence

TEAM LinG

316 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the early stages of the software process life cycle, the number of ideas is very large.
Some ideas represent possible valid solutions; others lead to invalid or impossible
implementations. In the early stage, creativity is large, entropy level is high, and
information content is low. The semantic organisation is low, and the α values are close
to 0.5.
In the intermediate stages of the software process life cycle, the project passes through
a convergence of ideas, where invalid and incorrect choices are discarded. In the
intermediate stages, a number of ideas may be further explored, in the search for a locally
optimal solution. The intermediate stages conclude with the selection of one single idea,
probably a very complex one.
In the last stages of the software process life cycle, the project members work with one
single idea, the creativity and the entropy reach a minimum level, and the information
content is high. The semantic organisation is high, and the α values are much higher than
0.5.
Each cycle of the iteration process is an instance of the generic software process, where
the previous versions have a strong influence on the number of ideas in the new cycle.
Some version implementations are simple adaptations, with one unique idea, and the early
and intermediate stages of the software development are absent. Other version imple-
mentations represent major changes, many ideas are explored, and the early and
intermediate stages of the software development play a major role.
To quantify the behaviour of the version sequence, using the semantic organisation, we
first normalise the α values to

5.0*2 −= αα nor (5)

����������	�
�

��
	 ���������
�	 �
����
��� ���

����	

�
�����
�

�
����������
�

����	

������������
�

����	����������

��
���
���
�����
�

�
�����

������������

�������
������	��

����
��

Figure 3. The software development process and the logistic map

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 317

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

And Equation 4 is rewritten to

())()(

)1(

1 tnortnor

tnork
αα

α
−

= +
(6)

Test Cases

We explored our ideas with Java applications registered in the JBOSS repository. JBOSS
is a J2EE-based application server, available at http://www.sourceforge.net/projects/
jboss. The repository contains more than 600 programs, each one with a number of
versions. We directed our attention to programs that suffered adaptations more than 200
times.

Invariance on the Semantic Organisation

To verify if the a values remain constant along the different software artefacts in the same
process life cycle, we evaluated the semantic organisation values of the UML diagrams
and the binary code files generated from the UML diagrams. We did not determine the
α values for the Java source files, because the required size for the number of reserved
words is too high and each source file contains less than 400 lines of code (LOC).
The class and activity diagrams are not available at the repository, therefore we reversed
engineered the diagrams from the Java source files. In the reverse engineering of CDs,
we simply collect the class and attribute definitions. In the reverse engineering of ADs,
we adopted the rules of (a) an activity represents a sequence of assignment statements

���

����

���

����

���

����

���

����

���

�
	

�

	�

�

�
�

�
�
	�
��
�

�
�
�
�
��

�

�
�

�
�
�
�
�
�

�
	

�
�

�
�

	�
�

�
�
	�

��

�
	

��

��

�
�
	

�

�
�

!
�

!
�
�
"
��
�
�
�

�
"
�
�
�
�
	

�
�
�
�
�
!
�

�

�
�

�
�
��
�
	

�
�
��
��

�

�
�

����� � ��

	

�

�
	

#
�
����	��

$%&

Figure 4. Correlation between UML and Java α values

TEAM LinG

318 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or function calls, (b) an object flow represents a method evocation, a method return. or
an exception throw, and (c) the branch and merge represent the outer limits of the Java
control-flow statements of do, for, if, switch, and while.
To make the results statistically valid, we identify the a values for a pair of files and remove
in the α calculation the seldom-used reserved words of short, final, transient and
volatile.
Figure 4 depicts the a values, for seven different packages, measured in the UML and in
the Java files. The results suggest there is a strong correlation between the UML and the
Java α values.
Figure 5 depict the α values, for 11 versions of the ProComplex package in the XML and
in Java files. This package measures and plots α and k values in different languages, from
object code to Java and C (Kernighan & Ritchie, 1988) source files. Again, the results
suggest a strong correlation between the XML and the Java α values.

Figure 5. Correlation between XML and Java α values

�'��

�'�

�'�(

�'�)

�'��

�'��

�'�

��
(�
�(
�*
��
(�

��
(�
�(
�*
*�
*�

��
(�
�(
�*
(�
*�

��
(�
�+
��
*�
(�

��
(�
�+
��
*�
(�

��
(�
�+
��
(�
��

��
(�
�+
��
(�
(�

��
(�
�+
��
��
*(

��
(�
�+
��
��
*�

��
(�
�+
�*
��
��

��
(�
�+
�*
��
(+

������
�����������

	

�

�
	

�

,%&

0

1

2

3

4

5

6

1.
1

1.
4

1.
7

1.
10

1.
13

1.
16

1.
18

1.
21

1.
24

1.
27

1.
29

1.
23

.2
.3

1.
32

1.
35

1.
38

1.
39

.2
.1

1.
42

1.
41

.2
.1

Version

k

Figure 6. k evolution at the BeanMetaData versions

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 319

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Behaviour of Class Versions

The behaviours, depicted in Figure 2, are observed in the JBOSS packages. In this
section, all Π values are collected in the Java bytecode files.
Figures 6 and 7 depict, respectively, the k values and the LOC for the BeanMetaData.java
versions. The first version was stored in the repository on July 2000, and we conducted
the analysis until version number 52 was stored in the repository on October 2002.
The chaotic behaviour, as a result of idea formation, is depicted from version 1.2 to 1.7,
and between versions 1.19 and 1.20. The behaviour reveals convergence of ideas in
versions 1.1 and versions between 1.8 and 1.18. From versions 1.21, the behaviour
remains stable.
Despite the change of behaviours in the BeanMetaData.java versions, from chaos to
stability, the number of source lines of code grows steadily from 17 to 700. The
independence between the program behaviour and the number of source lines of code
also is verified in many other Java packages.
We also informally compared the behaviour of several JBOSS packages with the revision
comments. In the JBQLCompiler, a parser, the a values reveal the initial behaviour to be
chaotic, becoming stable after the application of the parsing theory. This result suggests
the complexity-based method may be used to support project managers in the control of
software evolution.

Conclusion

The complex system model provided an excellent framework in the analysis of the
evolution in UML and Java system versions. With the LRC metrics, we are able to quantify
the semantic organisation of the programs and how it evolves. Moreover, the LRC α
metric reveals that, the values are strongly correlated between the different products

Figure 7. LOC evolution at the BeanMetaData versions

0

100

200

300

400

500

600

700

800

1.
1

1.
4

1.
7

1.
10

1.
13

1.
16

1.
18

1.
21

1.
24

1.
27

1.
29

1.
23

.2
.3

1.
32

1.
35

1.
38

1.
39

.2
.1

1.
42

1.
41

.2
.1

Version

L
O

C

TEAM LinG

320 Cardoso, Kokol, Lenic and Crespo

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

generated in a software process life cycle. These results must be checked for other design
and programming paradigms, for example, to compare highly structured and low struc-
tured programming languages.
The evaluation of the α values also reveals some limitations in the file size. The file size
must be sufficiently high to make the results statistically valid, but not too high due to
the computational costs of the LRC evaluation. It is highly desirable to identify a good
estimation for the minimal string size, in terms of the alphabetic dimension CS. Also,
research must be conducted to identify other LRC metrics that identify the semantic
organisation and strongly correlate the values on different software artefacts of the same
project version, and impose less limitations in the artefact size and in the computational
costs. While a more precise identification of the string limits remains unavailable, the
strong correlation between the α values of different products gives some freedom for
managers to select the project samples in the project.

References

Appel, A. (2002). Modern compiler implementation in Java (2nd ed.). New York:
Cambridge University Press.

Arnold, K. & Gosling, J. (1997). The Java programming language (2nd ed.). Boston:
Addison-Wesley.

Boehm, B. (1981). Software engineering economics. Englewood Cliffs, NJ: Prentice-Hall.
Briand, L. & Eman, K.E. & Morasca, S. (1995). On the application of measurement theory

in software engineering. Technical Report International Software Engineering
Research Network #ISERN-95-04.

Cardoso, A.I., Crespo, R.G., & Kokol, P. (2001). An alternative way to measure software
— A measure from complex system theory. Proceedings of World Multiconference
on System Cybernatics and Informatics, (pp. 213-216). Orlando, FL: IEEE Computer
Society.

Cardoso, A.I., Crespo, R.G. & Kokol, P. (2004). Complexity-based metrics for the
evaluation of the program organization. In R. Dobrescu & C. Vasilescu (Eds.),
Interdisciplinary approaches in fractal analysis. Bucharest, Romania: Publishing
House of the Romanian Academy.

Devaney, R. (1989). An introduction to chaotic dynamical systems. Boston: Addison-
Wesley.

Fenton, N.E. & Pfleeger, S.L. (1997). Software metrics, a rigorous and practical
approach (2nd ed.). London: Thomson Computer Press.

Fowler, M. & Kendall, S. (1997). UML distilled: A brief guide to the standard object
modelling language (2nd ed.). Boston: Addison-Wesley.

Gell-Mann, M. (1995). What is complexity? Complexity, 1(1), 16-19.

TEAM LinG

Complexity-Based Evaluation of the Evolution of XML and UML Systems 321

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Grubb, P. & Takang, A. (2003). The software maintenance, concepts and practice (2nd
ed.). London: World Scientific.

Kernighan, B.W. & Ritchie, D.M. (1988). The C programming language (2nd ed.).
Englewood Cliffs, NJ: Prentice-Hall.

Kitchenham, B. (1998). The certainty of uncertainty. Proceedings of the European
Software Measurement Conference (pp. 17-25). Antwerp, Belgium: Technologisch
Instituut KVIV.

Knuth, D.E. (1971). Semantics of context-free languages. Mathematical Systems Theory,
2(2) , 127-145.

Lehman, M.M. (1980). Programs, life cycles and laws of software evolution. IEEE Special
Issue on Software Engineering, 68(9), 1060-1076.

Lehman, M.M. & Belady, L.A. (1985). Program evolution: Processes of software change.
San Diego, CA: Academic Press.

MacClave, J., Benson, P.G. & Sincich, T. (1991). Statistics for business and economics
(7th ed.). Englewood Cliffs, NJ: Prentice-Hall.

Naur, P. & Randell, B. (1969). Software engineering. Report on Conference sponsored
by NATO Scientific Affairs Division, Garmisch-Paterkirchen.

NIST (2002). The economic impact of inadequate infrastructure for software testing.
Planning Report 02-03 for National Institute for Standards & Technology,
Gaithersburg, MD.

Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber, C.V. (1993). Capability maturity model
for software. IEEE Software, 4(10), 18-27.

Peng, C.K., Buidyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M., &
Stanley, H.E. (1992). Long-range correlations in nucleotide sequences. Nature,
356, 168-170.

Ray, E.T. (2001). Learning XML. Sebastopol, CA: O’Reilly and Associates.
Seacord, R., Plakosh, D., & Lewis, G.A. (2003). Modernizing legacy systems: Software

technologies, engineering processes and business practices. Boston: Addison-
Wesley

Schenkel, A., Zhang, J., & Zhang, Y. (1993). Long-range correlations in human writings.
Fractals, 1(1), 47-55.

Warmer, J. & Kleppe, A. (2003). The object constraint language (2nd ed.). Boston:
Addison-Wesley.

Winskel, G. (1993). The formal semantics of programming languages. Cambridge, MA:
MIT Press.

TEAM LinG

322 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

Variability Expression
within the

Context of UML:
Issues and Comparisons

Patrick Tessier, CEA/List Saclay, France

Sébastien Gérard, CEA/List Saclay, France

François Terrier, CEA/List Saclay, France

Jean-Marc Geib, Université des Sciences et Technologies de Lille, France

Abstract

Time-to-market is one of the most severe constraints imposed on today’s software
engineers. The increasing complexity of systems has also shortened the time available
for designing them. Several solutions have therefore been proposed to decrease the time
and cost of producing applications. This chapter presents the product line paradigm
as an effective solution for managing both the variability of products and their
evolutions. The product line approach calls for designing a generic and parameterized
model that specifies a family of products. It is then possible to instantiate a member of
that family by specializing the “parent” model or “framework.” In describing the latter,
designers need to explicitly model variability and commonality points among
applications. The following discussion explains in detail how UML models express

TEAM LinG

Variability Expression within the Context of UML 323

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

these different requirements. We then describe specific extensions of UML profiles and
the way they are used in various product line methodologies.

Introduction

Thanks to increasing storage and processing capabilities, software-based applications
now provide more and more functionalities. This is achieved at the cost of ever greater
complexity and heavier developer workloads. Market conditions have fostered sharp
competition that has accelerated the software production cycle, while maintaining the
same high quality development criteria.
To reduce time and cost, companies must therefore be able to capitalize on their work.
Their systems must be maintainable throughout their service life. They also must be
updatable to integrate future evolutions (new functionalities, new hardware, improved
optimization, etc.). This evolutivity is one of the most important features of industrial
systems at a time when service life requirements are being stretched to a maximum. For
example, automotive systems are adapted to each type of automobile and may need to
evolve with changes in automobile design or the advent of new hardware platforms that
are cheaper and more efficient.
One approach to managing the evolution of software-based systems consists of
designing each new application as an application family (Bosch, 2001). Any subsequent
evolution in that application is then viewed as a new member of the family.
The application family paradigm was first proposed by (McIlroy, 1968; Parnas, 1979). The
main focus behind their idea was to foster reuse of the models for a whole set of
applications. An application is then seen as a specific instance of an application family
called an application domain. This is known as the “product line” approach.
Clements later defined the software product line as follows:

“A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed way.”
(Clements & Northrop, 2001)

From this definition, one can deduce that a software product line relies on its capacity
to use and compose common and specific features of an application domain called a
framework. Each specific member of an application domain then results from one
specialization of a framework.
The main requirement for modeling a product line is the ability to depict the commonalities
and variabilities of an application domain in the context of a framework. Several
formalisms such as FAST (Harsu, 2002), FODA (Kang, Cohen, Hess, Novak, & Peterson,
1990), and GenVoca (Batory, Chen, Robertson, & Wang, 2000) are still available to
address this need.

TEAM LinG

324 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

All of these product-line-based approaches rely on their own formalisms to model the
variability features of applications.
The Unified Modeling Language (UML) (OMG, 2002), which was developed to deal with
certain aspects of software engineering (architecture and behavior specifications for
distributed object systems), has now become the lingua franca for software-based
applications (Franch & Ribo, 1999). In keeping with this trend, some product-line-based
approaches have been ported to UML to make the most of its now broad acceptance. For
all these reasons, our purpose here is to provide a survey of several product line
approaches. This chapter focuses on two points: firstly, UML2 native facilities for
modeling product line frameworks; secondly, UML-based (Catalysis, Kobra, UML-F,
CAFÉ) approaches. Special attention is therefore devoted to extensions which improve
the usability of UML2 for variability modeling management. The following table gives
a quick overview of the various approaches that are examined in greater detail in the rest
of the chapter.

Case Study

Each of the concepts described in this chapter is illustrated by a simple case study. The
example used is a robot driving system. This example is taken from a project baptized
JOSEFIL (http://www.ensieta.fr/mda/JOSEFIL).
The common requirement for the JOSEFIL project is to drive a robot to various
predetermined positions in a room. The robot is equipped with sensors that ensure both
current position acquisition and possible obstacle detection.
There are then three variable requirements corresponding to different robot driving
modes:

Table 1. Summary of the features provided by various product line approaches

 Variability in a
structural model

Variability in an
interaction model

Variability in
behavioral model

Decision
Model

Support
Tool

Catalysis
Pattern template

+
Component

Nothing specific Extension of UML
use case diagrams

Extension of
UML use

case diagrams

SmartDraw
seems to
support

this
approach

CAFÉ

Apply
<<optional>>
stereotype to

entity with OCL
constraints

UML2.0 combined
fragment of

sequence diagrams

Apply <<variant>>
and <<optional>>

stereotypes to actor
and use case

Nothing
specific No

UML-F Pattern template

Stereotyped action
in sequence

diagrams to model
repetition or

optional features of
message

Nothing specific

Instantiation
case depicted

via textual
scenarios

No

Kobra

Stereotype
<<variant>> on
components and

methods

Apply <<variant>>
stereotype to
message of

sequence and
collaboration

diagrams

Apply <<variant>>
stereotype to use

case transitions of
activity diagrams

and state/transitions
of state-machine

diagrams

Parameterized
checklist

A
prototype

exists

TEAM LinG

Variability Expression within the Context of UML 325

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Automatic mode – The system itself calculates the paths to each specified position
and also is able to avoid automatically detected obstacles. This mode calls for
parameterizing path calculation to ensure that the robot reaches each of the
specified positions in the fastest, most cost-effective way.

• Partially assisted mode – In this mode, the system still calculates the robot paths
automatically, but, on detecting an obstacle, requires interaction with a user to
manually bypass it.

• Manual mode – The user drives the robot via a remote interface.

Based on the requirements, it is possible to define a product family of JOSEFIL robot
control systems, some of which offer only manual control, others manual plus automatic
control, and so forth.

Variability Modeling in UML

As shown, modeling a family of products entails building a framework made up of
common and variable elements. The following section describes the native concepts
provided by UML in its standard form for modeling such a framework. The section is
organized around three subsections covering three model types—structural, behavior,
and interaction.

Structural Model

The structural model is an entity/relation-based model consisting of basic elements (e.g.,
classes, components) and their relationships (e.g., associations, dependencies). The
rest of this section is dedicated to describing UML structural concepts that afford
variability modeling support.

Interface

An interface is a declaration of a set of features that may be structural (e.g., attributes,
association) and/or behavioral (e.g., operation, reception). This concept is generally
used to model a kind of contract that has to be realized by at least one classifier (e.g., class,
use case) in the application. In this case, the classifier realizing an interface is associated
with it via an implementation relationship.
The interface concept also affords the possibility of expressing variability of realization
in one model. When considering a system as a black box, it is possible to declare a set
of provided features by defining its interfaces. Later, when considering it as a white box
(i.e., detailing the inside of the box), it may be possible to model different ways of
realization, for example by introducing classes that realize the different interfaces.

TEAM LinG

326 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Various realizations of a same interface can then be proposed as a function of constraints
or conditions defined by the user.
The interface described in Figure 1 declares that the driving system must provide three
main services: start, stop, and run. The diagram also requires that, for each different
driving mode, these services be realized by the associated classifiers (in this case
classes).
If the requirements subsequently evolve (e.g., by specifying a new way to drive the
system), it is then only necessary to add a new realization link with the provided interface.
Finally, it is possible to restrict the implementation relationship by adding to the model
constraint declarations that specify conditions for choosing a particular realization from
among the various possibilities. For this purpose, UML proposes to write OCL1 con-
straints (OMG, 2003). In the example depicted in Figure 1, it is possible to add the
constraint {xor} between all classes that implement the interface. This means that these
implementations cannot coexist in the same specific application.

Component

A component is a modular piece of a system that encapsulates its contents. It is defined
in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these interfaces. A component implements provided
interfaces and uses operations defined in required interface. Larger “chunks” of a system
functionality may be assembled by reusing components as parts in an encompassing
component or assembly of components, and wiring them together through their required
and provided interfaces.
Product line approaches are often associated with the component concept (Christian
Bunse, 2001; D’Souza & Will, 1998). The first reference to a product line was in fact
associated with the component concept (McIlroy, 1968). Components are used to insert
variability into models of product families.
In UML 2.0, a component is first manifested as one or more artifacts that are the
specification of a physical piece of information used or produced by software. This
information can be a source or binary file. Variability is expressed by choosing one of
several artifacts. In this context, the component is viewed as a black box.

Figure 1. Three variations afforded by an interface for three possible driving modes

TEAM LinG

Variability Expression within the Context of UML 327

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The driving system has two variants and therefore has two artifacts. These artifacts are
binary files optimized for different hardware architectures (see Figure 2). They are linked
to a DrivingSystem component model by a “manifest” relationship indicating that the
component is implemented by a tangible physical entity. The
OptimalProcessingDrivingSystem artifact is optimized for processing capacity; and
another artifact, OptimalMemDrivingSystem, is optimized for memory capacity.
Variability then also allows several realizations of a component. A component can have
several models that describe its architecture and behavior. In this context, it is viewed
as a white box. In designing a component, engineers then choose one from among several
possible realizations.
In Figure 3, the DrivingSystem component has two realizations. Different versions of the
driving system have been produced. This component proposes two modeling variations:
DrivingSystemV1 and DrivingSystemV2.

Template

In UML, templates are one of the most straightforward ways of expressing variability by
parameterizing a model element. In general, any element can be assigned a parameter and
thus become a template. In practice, template elements usually include Class, Package,
and Operation.
Variability is achieved here by parameter declarations attached to model elements. To
specialize a framework element, it then suffices to give specific values to the parameters
of that element. This is known as binding a template, and the result is a bound element.
Figure 4 illustrates the use of a package template. Our system is required to send different

Figure 2. Two possible code artifacts for the DrivingSystem component

Figure 3. Two variations of component model design

TEAM LinG

328 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

kinds of information to a remote user display. In our framework, we would like to ensure
that the type of information sent by the system can be modified. To achieve this goal,
we introduce a package template in which the type of information is a parameter. It is then
possible to bind the parameter with different types, for example the BatteryLevel type.
This mechanism can also be applied to managing other information such as Speed or
Position.
Figure 5 depicts use of a class template. The left-hand side of Figure 5 shows the specified
generic sensor class. This class has two parameters: DataType specifies the type of the
data the sensor is managing; and freshness specifies the time during which the acquired
value is valid after its timeStamp (acquisition date). The right-hand side of Figure 5 shows
a bound class that models a speed sensor class.

Framework

A framework is a stereotyped package («framework») that usually consists of classes,
patterns, or templates. It contains elements of a reusable architecture for all members of
the system family. A framework can be specialized, using an inheritance relationship, to
yield a specific application.
Thanks to this entity, reuse elements of a product family can be grouped into several
framework packages. A system family project can thus be structured into several

Figure 4. Use of a template package for data communication management to construct
two variations: SpeedCom and LevelBatteryCom

Figure 5. Expressing variability by binding a class template for a generic sensor

TEAM LinG

Variability Expression within the Context of UML 329

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

framework packages and each package specialized to build a specific package. Each
member of the family is then a combination of specific packages. This allows designers
to organize a system family model by expressing large scale variability.
In Figure 6, reused elements of GenericSystemDriving are grouped into a framework
package. To obtain an automatic or manual driving system, all elements of the
GenericSystemDriving package are copied and adapted (e.g., by binding template
elements) into two new packages: AutomaticSystemDriving or ManualSystemDriving.

Generalization

A generalization is an inheritance relationship connecting two categories of entities,
generally parent elements and child elements. A parent may have various children, but
a child also may have several parents (in some cases more than two!). Parent entities are
general classifiers and child entities more specific classifiers. Each specific classifier
inherits the features of its parent classifier.
This is used when variation points are set by methods that need to be implemented for
every application or when an application needs to extend a type with additional
functionalities (Svahnberg & Bosch, 2000). Such a mechanism allows factorizing of
commonalities between several applications. Commonalities are contained in more
generalized classes. Variability is contained in each class that has an inheritance link with
the more generalized class.
Note that a parent class can be abstract. This kind of class cannot be directly instantiated
and has to be generalized by a concrete class.
The RouteCalculator class can have two variations (see Figure 7). In the first case, the
method calculates a route to make the robot faster. In the second case, the method
calculates a route to minimize energy consumption. Both variation points are introduced
via the following classes: RouteCalculatorForSpeed and
RouteCalculatorForBatteryLevel. These cases present the following commonalities:
the setPosition method and the attributes currentRoute and currentPosition.

Figure 6. Framework package of driving system with two specializations

TEAM LinG

330 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

GeneralizationSet

GeneralizationSet defines a particular set of generalization relationships that describe
the way in which a specific Classifier may be partitioned. This element indicates whether
the sets of specialized classifiers share instances. It can inform the user that no instances
of the general classifier are instances of specialized classifiers. This element also
indicates whether there is intersection between sets of instances of specialized inter-
faces.
In Figure 8, the RouteCalculator class is specialized by four subclasses:
RouteCalculatorForSpeed, RouteCalculatorForBatteryLevel, speedRouteCalculator
(which is designed to quickly find a route), and LongRouteCalculator (which takes
longer to find the optimal route). A disjoint GeneralizationSet concept model indicates
that specific classes have no common instances. For example, the incomplete constraint
indicates that there are RouteCalculator instances that are not instances of either
RouteCalculatorForSpeed or RouteCalculatorForBattery. In constrast, every instance
of RouteCalculator must be either a SpeedRouteCalculator or a LongRouteCalculator.

Figure 7. Inheritance mechanism for calculating robot route: Two possible calculations

Figure 8. Use of GeneralizationSet to model variability

TEAM LinG

Variability Expression within the Context of UML 331

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pattern

According to Gamma, Helm, Johnson, and Vlissides (1994), “design patterns model the
description of communicating objects and classes that are customized to solve a general
problem in a particular context.” Patterns represent, in a framework, common mechanisms
used in the whole of an application domain. Their variability is expressed by connecting
the specific classes of the family members to patterns.
In UML 2.0, this mechanism is called Collaboration. The pattern is represented as a kind
of classifier. The collaboration entity is associated with a set of cooperating entities that
play a role in the pattern. Collaboration is a specific view on relations between classifiers.
UML patterns are more restrictive than generic patterns because they are focused on
structural description, whereas general design patterns may also depict behavioral
aspects.
The robot moves by displacement between two positions. To enable this, our framework
has to provide a mechanism to manipulate a list of positions. In this case, a position class
is not imposed, but instead is considered as a variation point. Thanks to the Iterator
pattern, the framework proposes a common mechanism for manipulating a position list.
To obtain a member of the product family, we can specialize classes and associate a role
(see Figure 9).
Standard UML provides many elements (Template, GeneralizationSet, etc.) to describe
framework variations and commonalities. Structural entities do not give enough informa-
tion to describe a system. Designers, therefore, need to describe behavior. The next
section explains what UML elements are used to do so.

Behavioral Model

This model aims at describing the behavior of applications, either at the system level, for
example, through use case diagrams (UCDs), or locally, by means of state machine
diagrams (SMDs).

The “Extend” Relationship Between Use Cases

UML proposes to describe system requirements through UCDs. These consist mainly
of use case and actor elements. Whereas the former specify functionalities of the system,
the latter model elements of the system environment that interact with it. Use cases are
associated with actors participating in the functionality, but they may also have the

Figure 9. Iterator pattern for position management in the driving system

TEAM LinG

332 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

stereotyped interrelationships «include» or «extend». The include dependency is used
to focus on specific parts of use cases specifying that a use case includes some other
use cases.
The extend dependency, which indicates that a use case may include another use case,
is a better solution from the standpoint of variability modeling. The extend dependency
contains a condition. This condition restricts the existence of the extended use case. For
example, if the condition is evaluated as false in the specific system design, the extended
use case does not appear in the model of this system.
In our case study, the driving system UCD has the following use case: driveAutomatically.
This use case may present several variations that are modeled using the «extend»
dependency relationship. Two variations are described in Figure 10: an automatic driving
mode which optimizes speed; and the same mode minimizing energy consumption. These
use cases represent variability. In this example, the «extend» relationship has an
extension point with a condition. An extension point identifies a point in the behavior
of a use case where that behavior can be extended. The extended use case “Drive with
speed optimization” appears in the specific system if the condition: “select speed
optimization” is true.
There is a lack of precision here for defining the extension point. For example, the reader
of this model does not know whether the extension point takes place at the beginning
or end of the action sequence contained in the “Drive with autonomy” use case.
Standard UML provides few elements for describing variability. Variations in a structural
model have impact on the behavior model. Framework designers thus need to devise state
machine and activity diagrams that incorporate variations.
The next section describes the UML elements that indicate interactions between entities
based on an analysis of variability expressions.

Interaction Model

Interaction Diagram

In this diagram, an interaction sequence can be grouped into an entity, called a
“CombinedFragment.” UML enables association of constraints with this entity. More
specifically, this set of interactions can be specified as alternative or optional. When sets

Figure 10. Extend relationship for autonomous driving

TEAM LinG

Variability Expression within the Context of UML 333

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of interactions are alternative, an associated guard informs the user that only one set of
interactions will be executed. When a set of interactions is optional, the associated guard
indicates that the set of interactions may or may not be executed. In this diagram, common
interactions can be represented without constraints and alternative or optional interac-
tions define variability in the systems family.
These elements are used to specify our drive system. Figure 11 represents an interaction
between two instances. The RouteController object manages execution; the Communi-
cator object is in charge of sending information to a remote user interface. When the
automatic system detects an obstacle, it manages this constraint in an autonomous way.
If the system is manual or assisted, it calls for human commands. To indicate these
varying behaviors, the combinedFragment “ALT” operator (for “alternative”) indicates
that it is composed of two disjunctions. The first disjunction has a guard
“[mode==automatic]” and the second has the operand “else.” Using the returned value
of the guard, the designer is able to identify the appropriate variability.

Conclusion on the Usability of UML for Variability
Modeling

UML provides many elements for describing variability in a framework (templates,
generalization). These elements focus essentially on architectural issues. As entities can
be variants in a family system, they affect the behavior of that system. UML does not
allow variability to be expressed in state-based models. This has led to development of
the so-called UML-based methodologies.

Figure 11. A CombinedFragment expressing behavior variability in the case of
obstacle detection

TEAM LinG

334 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML-Based Methodologies for
Product Family Modeling

Building a product line is different from building an application. To design a family of
systems, engineers devise a generic model (or framework), then specialize it to obtain a
specific system. In such models, it is necessary to describe communalities and variations
in the system family. To do so, engineers need the help of a specific methodology. Several
approaches now exist for this purpose. They are based on the concept of “profile,” which
uses standard mechanisms (stereotypes and constraints) to extend/customize the UML
language.
This section gives a brief description of UML-based methodologies, which are then
analyzed for structural, behavior, and interaction models. Here again, the driving system
case study serves to illustrate the explanations.

Outline of UML-Based Methodologies for Variability
Modeling

This section depicts the principles and organization of existing UML-based methods for
variability modeling.

Catalysis Approach (D’Souza & Will, 1998)

Most of the principles inherent in this approach are applied and used in UML 2.0.
Its purpose is to design a ‘generic architecture. The framework is viewed as a basis on
which to build members of system families. Emphasis is placed on use of templates,
patterns, and components. While the framework does not explicitly describe variation
points for the family, variations are obtained by using component properties. This entails
combining a basic set of components into different configurations. By specifying these
components, Catalysis relies on Component-Based Software Development (CBSD).
This approach is iterative and parallel. It consists of building five layers of abstraction:

1. Business Model (domain model) – This model is used to capture term domain rules
and business tasks of the target software. The business model step appears in
several approaches.

2. Requirement Specification – This layer specifies system requirements. Such
specification is mandatory for building the complete system. The requirement
specification step is used to refine specifications and to give an idea of the system
components.

3. Component Design – This layer provides a high-level specification of major system
components along with requirements for each.

TEAM LinG

Variability Expression within the Context of UML 335

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. Object Design – For each component, this layer describes the set of classes and
how they work together.

5. Component Kit Architecture – This layer describes common elements of the
component collection. It is used to group components into product families.

UML-F (Fontoura, Pree, & Rumpe, 1999; Fontoura, Braga, Moura,
& Lucena, 2000; Fontoura & Lucena, 2001; Fontura, Pree, & Rumpe,
1999)

In 2001, the members of this research team noticed that the UML standard did not provide
appropriate constructs to model frameworks. There were no indications in UML design
diagrams of variation points and instantiation constraints. The researchers then applied
a UML mechanism to add extensions in the standard specification. This work led to the
UML-F profile.
According to the authors of UML-F, framework building also requires new methodologi-
cal tools and concepts. Their methodology is intended to permit design of an application
from the start as a family. It is based on the cluster cycle process specified by Meyer
(Bertrand, 1990) and includes the following steps for systematic and efficient develop-
ment:

1. Identification of key domain abstractions – This step calls for use of the lass-
Responsibility-Collaboration (CRC) methodology and for determination of ab-
stract system entities – classes and interfaces. The authors then propose to design
class families (class sets that implement an interface), class teams (class sets that
collaborate), and subsystems (entities that encapsulate class teams).

2. Definition of flexibility requirements (variation points) – Once the main frame-
work entities are identified, the next step consists of determining variation points.
This is done with the help of a domain application expert.

3. Design of refinement and transformation into an architecture – In this step,
engineers again analyze system architecture with the help of an expert. They
examine class distribution and identify patterns in order to improve flexibility. This
is the point at which the UML-F profile is used. To deal with system complexity,
authors have added the notion of framelet. Framelets are groupings of patterns and
variation points intended to help users design frameworks. The authors consider
a framelet as an abstract view of the framework.

4. Adaptation of the framework – To enable use of the product line approach,
designers must specialize the framework (i.e., add and modify specific entities in
the model). To guide them in performing this task, the authors propose the concept
of implementation case. Implementation cases describe an aspect of the application
instantiation process by specifying how a component, an architectural feature or
a functionality for an application in the framework domain can be implemented
using the constructs provided by the framework.

TEAM LinG

336 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kobra Approach (C. Atkinson et al., 2002)

Kobra is a product line approach relying on Component-Based Software Engineering. It
represents an object-oriented customization of the PuLSE method (Bayer et al., 1999). The
infrastructure construction phase of PuLSE corresponds to Kobra’s framework engi-
neering activity.
Like UML-F, this approach calls for designing a framework with variations at system level
as early on as possible in development. It assists the user in choosing suitable variation
points from among those available in a framework — a feature afforded by designing a
decision model.
To permit design of a component-based framework, the authors have defined their own
component concept known as a Komponent. This entity merges the UML concepts
package and the component. In the first stages of the approach, Komponents are viewed
as packages, then, after several refinements, they become components in the UML1.x
sense (implementation parts such as binary files2).
The Kobra approach then requires the following to obtain a product line:

1. Variability identification – Komponent creation and variability identification take
place at the same time. The set of concepts used to express variability in a model
is small. Variance is modeled everywhere using the «variant» stereotype. Variabil-
ity in the Kobra process can be conveyed at various granularities: the Komponent
entity or method can be variable. The repercussions of these variances are found
in the structural, behavior, and interaction models.

2. Decision modeling – Knowledge of the application domain is an important source
of dependencies and constraints for the decision model. This construction is
complex and requires the assistance of an expert. All decisions are postponed to
cope with existing variations, which are identified during system analysis. For each
variable element, a simple decision is created as a question associated with the
modification to be made to the system. The model obtained the results in a checklist
in which each question can be interdependent.

3. Component packaging – This step consists of specializing the framework and thus
requires the user to scan the decision model. Each answer to a question implies
modifications. The application model is complete once the decision model has been
fully scanned. It then remains for the user to implement and deploy the components
obtained on the relevant hardware. Nothing specific is proposed by the authors to
perform these final tasks.

CAFÉ

CAFÉ is an ITEA3 project that was itself an extension of the ESAPS4 project. The ESAPS
project allows definition of family system concepts. It defined the concept of variability

TEAM LinG

Variability Expression within the Context of UML 337

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and communalities to describe a systems family. It proposes a sequence of steps for
building systems: domain analysis (identification of requirements), domain design
(design of the system), domain implementation, and component paradigms, which are
used throughout the process.
The CAFÉ project mainly aims to bring ESAPS-defined concepts to maturity so that they
can be applied to tangible projects, by using them to develop methods and procedures.
The results of the project, which will encompass knowledge of methods and procedures,
will be used for designing tools and concrete applications.
All product line approaches have the same principle. They determine the entities and
system variations needed to build a system, then specialize the system to obtain an
application. In these approaches, several profiles are adopted to express model varia-
tions.
Work performed as part of the CAFÉ project has been geared to integrating the variation
concept of FODA into the UML formalism. FODA is a product line approach. To represent
a product family, it uses the concept of features (Kang et al., 1990):

“Features are the attributes of a system that directly affect end-users. The end-users
have to make decisions regarding the availability of features in the system, and they
have to understand the meaning of the features in order to use the system.”

There are several relationships available to express variability between these features.In
the CAFÉ project, UML elements may be mandatory, optional, or alternative. This CAFÉ
project explicitly describes the relationships between variations using OCL rules.
All of the discussed approaches also use UML 2.0. The following section assesses the
structural elements used by each to describe variation in a product family.

Variability In structural Models

Catalysis

The Catalysis approach is mainly architecture-oriented. It made use of parameterized
packages even before this notion was standardized by the OMG. Catalysis also intro-
duces the concept of package inheritance. The original package can be contained in the
framework and represents the commonality of the application domain. For each applica-
tion, said package is specialized to meet specific requirements. Catalysis also introduces
many other concepts to describe reusable mechanisms such as templates or patterns. The
ultimate goal is to obtain components, which, as already seen, are an ideal means for
expressing variability.

TEAM LinG

338 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML-F

The UML-F profile adds a lot of information to standard UML. In the structural model,
its purpose is to help the user distinguish common elements. It therefore facilitates
variability assessment. This entails using a set of tags for classes or methods to identify
those that are fully defined. Other tags are used to visualize the elements added by an
inheritance relationship (see Figure 12).
Several tags are used to define properties of design elements. They indicate whether or
not an element belongs to the specific application or framework. They also may indicate
whether that element can be modified for framework specialization purposes.
In Figure 12, the © sign indicates that the specification is complete and the sign identifies
any new properties that are added in a specialized class. The gray rectangle indicates that
the properties are new in the class that features them.
UML-F does not make use of the template concept. The authors of this approach
developed it for JAVA language, in which there are no templates. To compensate, the
appropriate elements are therefore stereotyped «template» and «hook» (see Figure 13).
The hook stereotype is applied for operations that potentially have different implemen-
tations. As shown in Figure 13, the record() method can be implemented in various ways,
depending on the information recorded.
The usefulness of a hook stereotype is questionable in cases where UML template
entities are available. However, this approach provides a means for expressing template
mechanisms in implementation languages that do not support templates.

Figure 12. Class diagram for route calculus

Figure 13. Expression of variability using a template and hook stereotype in the
InformationRecorder class

TEAM LinG

Variability Expression within the Context of UML 339

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To express the pattern reuse mechanism, the profile provides a set of stereotypes that
describe the nature of patterns (factory, singleton, etc.).

Kobra

Kobra is a component-based approach whose purpose is to describe variant elements
in its architecture.
To enable use of a component approach, Kobra organizes its architecture as a komponent
tree (see Figure 14). In this view, variations do not appear, but information is provided
about relations between Kobra components. At the root of the tree, there is a komponent
that represents the system. Subkomponents then represent system constitutive entities.
Components also have relationships with type indications about their links: creation,
acquisition. A creation link indicates that a component A obtains an instance of a
component B by creating it.
In this methodology, variations are clearly expressed. The Kobra components them-
selves, as well as any of their methods, can be variants. Such variants can be seen in a
structural view centered on each component (see Figure 15). The targeted komponent of
the view features the «subject» stereotype. In the resulting diagram, relationships
between classes and komponents are visible, and variability can be quickly visualized.
The variable methods are tagged «variant» and the classes or komponents are stereo-
typed by the «variant» keyword. In a Kobra diagram, variant elements do not have

Figure 14. Kobra komponent tree

Figure 15. variability in a Kobra class diagram

TEAM LinG

340 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constraints. Relations between variant elements are defined in textual form in the decision
model.

CAFÉ

The structural model places emphasis on variations between architectural elements.
This model is based on the FODA principle specially developed to facilitate analysis and
produce a graphical representation of domain application features.
As a means for expressing these qualities (mandatory, alternative, optional) in UML
formalisms, the CAFÉ project (Speck, Clauss, & Franczyk, 2001; Ziadi, Hélouët, &
Jézéquel, 2003) suggests the addition of stereotypes and OCL constraints.
This CAFÉ project uses the UML structural diagram to represent features. Each object
is a feature of the system that can have a mandatory, optional or alternative stereotype.
Objects are connected by aggregation links with OCL constraints to express certain
dependencies between features. The advantage of this approach is that OCL rules
provide information about dependencies between variations.
In our example (see Figure 16), based on the work of (Ziadi et al., 2003), an “xor” OCL
constraint is used to express an alternative between two features.
To conclude this section on variability expression in the structural domain, it is
noteworthy that all the approaches mentioned provide mechanisms for describing
variations. They enable description of a model with fine-grain variants.
For example, in the Kobra approach, operations can be variants. It is difficult, however,
to describe relationships between such precise variants. This approach therefore
provides OCL rules to explain such relationships.
The next section examines variation elements available for interaction models under the
different approaches described and indicates whether such elements can make up for
those lacking in UML.

Figure 16. Variability in a class diagram (Ziadi et al., 2003)

TEAM LinG

Variability Expression within the Context of UML 341

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Variability in Interaction Models

Catalysis

This approach has no specific mechanisms for expressing variability in the interaction
model.

UML-F

UML-F provides means for describing variation in a sequence diagram. Use of conditions
at message output in combination with specific tags ensures definition of optional
messages and specifies alternatives. It also is possible to define a sequence of messages
produced when a specific message is sent. Conditions then clearly indicate the effects
of choosing a variation.
In Figure 17, the tag ‘+’ means that the message can be optional. In our example, it can
be used with or without a condition.
The main drawback of this approach is that there are no clear and explicit links between
conditions defined in the sequence diagram. Defining/changing conditions can thus be
very difficult since it is then necessary to check all other conditions defined in the
sequence diagram to ensure consistency.

Figure 17. Variability expression with UML-F for a route control sequence diagram

Figure 18. Variability expression in the Kobra route control sequence diagram

TEAM LinG

342 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kobra

In Kobra, a method can be a variant, which means that behavior is likewise subject to
variants. The resulting impact can be visualized in the diagram of interaction. Operation
sequences in the interaction diagram also can be stereotyped by the word “variant” (see
Figure 18). This stereotype allows the user to quickly visualize variations, but the same
problem occurs as for structural views, that is,. information about relationships is not
indicated. For this reason, it is difficult to determine the specific interaction diagram of
a particular system.

CAFE

Combined fragments defined in UML2 sequence diagrams are used to specify variability
points within interaction models. In this case, conditions define whether a combined
fragment can be executed or not.
The main drawback here is similar to the one encountered in the UML-F approach. If a
variation also is changed or added, the designer has to review all other conditions defined
in the sequence diagrams for the sake of consistency.
These approaches all provide mechanisms for describing interaction variability; but the
diagrams are difficult to construct. Where conditions of variation are indicated, it is
difficult to ensure consistency between diagrams. Designers must check all the condi-
tions for each diagram.
The next section examines the means available for expressing behavioral variability.

Variability in Behavior Models

Catalysis approach

To express behavioral variability, Catalysis proposes a diagram based on the actors, use
cases and objects of a system. This diagram allows the association of objects with their
use cases and actors.

Figure 19. Diagram of action and object constituents

TEAM LinG

Variability Expression within the Context of UML 343

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To express the features of a product family, Catalysis adds variant actors and variant use
cases by means of inheritance links. At this level, the object does not have the property
of being inherited. An entity becomes a template package and finally a component, by
refinement. It gives an idea of the future system component. Using the Catalysis diagram,
designers can associate variable entities with variable functionalities. For this reason,
the interaction diagram itself does not inform the user about variance. Instead variants
are associated with each future component.
In Figure 19, there are three optional variations: automaticDriving, assisted driving, and
manual driving.

Kobra Approach

In this approach, variability is expressed in the behavior model.
Kobra expresses the variant functionality from the very first stages in development. It
therefore appears in the use case diagram. The relevant use cases are stereotyped
“variant” (see Figure 20). Since Kobra system design is based on use cases, it is easier
for the designer to describe variant elements in the future framework architecture.

Figure 20. Use case diagram for an information recorder: two possible variations

Figure 21. Variability expression in the activity and state-machine diagrams under the
Kobra approach

TEAM LinG

344 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Kobra approach provides means to express variability of object operations. This
fine-grain variability has impact on activity diagrams and state machine diagrams. In the
activity diagrams (see Figure 21), activities and subactivities can have a «variant»
stereotype. The branches that reach these elements also can be stereotyped «variant».
In the state machine diagrams (see Figure 21), the states are not variant but the events
issuing from class operations can be stereotyped «variant». The state machine therefore
always has the same shape. Variant elements do not influence the global behavior of a
class.
This approach allows description of variations and their consequences for system
behavior. For example, a variation can add an activity to an activity diagram. On the other
hand, there are no indications about relationships between variations in the behavior
model. Therefore, it is difficult to get a precise idea of the behavior of a specific system.
Alternative variations, for example, are not clearly expressed.

CAFÉ

In this approach, both «variant» or «optional» stereotypes can be applied to use cases
and actors of the use case diagram. Relationships (e.g., alternatives) between variations
are not depicted. The stereotyped «extend» relationship between use cases also may be
applied. Thanks to these stereotypes, variations in a family product can be preanalyzed
in use case diagrams. Designers can then quickly visualize the different variations of
functionalities provided by a system family, in order to make choices for a specific
application.
The approaches described all have few elements available to describe variability in the
behavior model. Variations in statemachines, for example, only are indicated by Kobra.
Note that the management of variations in a behavior model is difficult. Behavior
variations in fact depend on structural and interaction elements. This is further compli-
cated by the fact that variations are of different types—alternative, optional, and so forth.
Therefore, designers require suitable tools for maintaining these variations and ensuring
the consistency of diagrams.

State-of-the-Art Variability Modeling

Table 2 provides an overview of the various tools offered by UML-based methodologies
designed to support a product line approach. More specifically, it shows how these
methodologies manage variability description in UML models.
All of these approaches provide means for expressing variability. Catalysis and UML-
F use mechanisms provided by UML. Kobra and CAFÉ use a profile to directly express
variations. The expression of variability in the behavioral and interaction models is not
well developed. Only Kobra and CAFÉ have the necessary mechanisms. CAFÉ uses UML
2.0 sequence diagrams, and Kobra uses the “variant” stereotype.
Only Kobra enables separation of concerns between variability expression in models and
choices to select variations. It can express variability in a system and provides a decision

TEAM LinG

Variability Expression within the Context of UML 345

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model to indicate relationships between variant entities. Other approaches combine
descriptions of variations with their relationships. With Kobra, the designer knows all
the relationships between variant entities and can easily specialize the framework. The
Kobra decision model is built from all specifications of family systems. In the future, it
may be of interest to generate a decision model from the framework.
Few tools are proposed by these approaches. Some tools, however, are available to
manipulate a framework. In general, designers need to adapt an approach to a CASE tool.
It is probable that other tools will be developed in the future to help designers specialize
a framework. Such tools will be able to specialize variations according to designer needs.

Approaches Under Development

CEA-List also is working on software product line concepts. To this effect, it is
participating in the ITEA project FAMILIES (http://www.esi.es/en/Projects/Families/
famMain.html).

Outline of the FAMILIES Project

Members of the project consortium have now been investigating and developing system
family technologies for seven years, and the experience gained so far has been quite

Table 2. An overview of the various tools offered by UML-based methodologies

 Variability in a
structural model

Variability in an
interaction model

Variability in behavioral
model Decision Model Support Tool

Catalysis

Pattern template
+

Component. These
mechanisms are present

in UML2.0

Nothing specific. Uses
UML1.1.

Extension of UML use
case diagrams. Use of

inheritance links between
use cases.

Extension of UML
use case diagrams.

This diagram enables
the user to choose

components
according to use case.

SmartDraw seems to
support this

approach. This tool is
used to draw

Catalysis diagrams.

CAFÉ

Apply <<optional>>
stereotype to entity with
OCL constraints in the

class diagram
Reuses features of
FODA approach.

UML2.0 combined
fragment of sequence

diagrams. Expression of
alternative, optional

variations.

Apply <<variant>> and
<<optional>> stereotypes
to actor and use case. Its

use also extends the
relation to express

variability.

Nothing specific. In
Ziadi’s approach, the

user can read the
class diagram to

specialize the
framework. OCL

constraints help the
user to choose

variations.

No

UML-F

Pattern template
This approach does not

provide new
mechanisms for

expressing variability

Stereotyped action in
sequence diagrams to
model repetition or
optional features of

message

Nothing specific. Only
UML1.4 is used.

Instantiation case
depicted via textual

scenarios
No

Kobra

Stereotype <<variant>>
on components and

methods. These
elements may or may

not be present in a
specific application

Apply <<variant>>
stereotype to message of

sequence and
collaboration diagrams.

There is consistency with
other diagrams.

Apply <<variant>>
stereotype to use case
transitions of activity

diagrams and
state/transitions of state-

machine diagrams

The model decision I
made with an expert.

The decision is
check-list

A prototype exists
It runs with rational.

Users can use
stereotype Kobra, but
it does not allow an

automatic
specialization of the

framework.

TEAM LinG

346 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

significant. In particular, they have been involved in ITEA projects ESAPS and CAFÉ,
which focus on a similar subject. This has led to a recognized community of European
experts on System Family Engineering. The FAMILIES project aims at expanding the
community and consolidating results into a fact-based management for the practices of
FAMILIES and earlier projects. It also plans to explore fields that were not covered by
previous projects in order to complete the proposed framework for product family
support.
FAMILIES is the finalizing stage for both ESAPS5 and CAFÉ6 European projects. It
focuses on maturity, institutionalization, business relevance, standardization, and
dissemination of product families.

Conclusion

Distributed information systems feature an increasing number of functionalities and
require longer and longer development times. At the same time, heightened competition
is pushing industrialists to always get their systems out first. The resulting products
have long service lives and must undergo evolutions. One way of keeping them in service,
while enabling gradual addition of new functionalities, is to create a “system family”
framework (McIlroy, 1968). Each subsequent version of the system is then viewed as a
member of the same family. In this chapter, we described the different approaches
available for doing so.
There are many formalisms for describing the framework, or generic architecture, of a
system family. Since UML is now the de facto standard for modeling, many of the
approaches discussed here employ UML to express product line requirements.
One of the tenets of a product line approach is that it be able to express differences
between family members in a model. These differences can be expressed by variations
or “hot spot” elements in the framework.
UML now provides more and more mechanisms for expressing such variability in design
models. To quote one example, template packages and variability in interaction models
appeared recently in UML 2.0.
Several approaches now enable extending UML, to account for greater variability. As
seen in this chapter, variability may exist at several granularities: package, class, and
method. It also may be assigned a type, for example, optional, mandatory, or alternative.
Variability introduction makes models more complex, and it then becomes difficult to
assess the impact of variations on the framework. To deal with such problems, system
family approaches like Kobra (Atkinson, Bayer, & Muthig, 2000) use the concept of
decision model. This is an artifact that guides user choice of variable entities during the
framework specialization phase. Most of these approaches rely on the user to construct
the decision model.
The purpose of our particular approach is to help engineers construct software in the real-
time domain by automating as many analysis steps as possible. This entails adapting
product line approaches to expressing differences in distributed real-time systems. In the

TEAM LinG

Variability Expression within the Context of UML 347

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resulting methodology, emphasis is placed on the construction and execution of decision
models.
Our future research will concentrate on extending UML to expressing variability in real-
time systems. During the refinement of our model, several OCL rules will be written to
indicate relationships between variations. This will give rise to a tool for both construct-
ing the decision model and helping designers specialize the framework to obtain a specific
system.

References

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., et al. (2002).
Component-based product line Engineering with UML. Addison Wesley.

Atkinson, C., Bayer, J., & Muthig, D. (2000). Component-based product line develop-
ment: The KobrA approach. Paper presented at the the First Software Product Line
Conference.

Batory, D., Chen, G., Robertson, E., & Wang, T. (2000). Design wizard and visual
programming environment for GenVoca generators. IEEE Transaction on Software
Engineering, 26.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., & Widen, K.S T. (1999). PuLSE:
a methodology to develop software productline. Paper presented at the Fifth ACM
SIGSOFT Symposium on Software Reusability (SSR’99), Los Angeles.

Becker, M., Geyer, L., Gilbert, A., & Becker, K. (2001). Comprehensive variability
modelling to facilitate efficient variability treatment. Paper presented at the
Software Product Family Engineering, Bilbao, Spain.

Bertrand, M. (1990). Lessons from the design of the Eiffel librairies. ACM, 33(9).
Bézivin, J., Dupé, G., Jouault, F., Pitette, G., & E.Rougui, J. (2003). First experiments with

the ATL model transformation language: transforming XSLT into XQuery. Paper
presented at the OOPSLA 2003 Workshop, Anaheim, California.

Bosch, J. (2001). Software product lines: Organizational alternatives. Paper presented
at the 23rd International Conference on Software Engineering.

Christian Bunse, C.A. (2001). Implementation of component based systems by semantic
refinement and translation steps. Paper presented at the WTUML: Workshop on
Transformations in UML, Genova, Italy.

Clauss, M. (2001). Generic modeling using UML extensions for variability. Paper
presented at the An OOPSLA Workshop 2001, Tampa Bay, Florida, USA.

Clements, P., & Northrop, L.M. (2001). Software product lines: practices and patterns.
Addison Wesley.

D’Souza, D., & Will, A. (1998). Catalysis: Objects, framework and components in UML.
Addison Wesley.

TEAM LinG

348 Tessier, Gérard, Terrier and Geib

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fontoura, M., Pree, W., & Rumpe, B. (1999). UML-F: A Modeling Language for Object-
Oriented Frameworks (No. Technical Report TR-613-99). Computer Science,
Princeton University.

Fontoura, M. F., Braga, C., Moura, L., & Lucena, C. J. (2000). Using domain specific
languages to instantiate object-oriented frameworks. Paper presented at the IEE
Proceedings - Software.

Fontoura, M. F., & Lucena, C. J. (2001). Extending UML to improve the representation
of design patterns. Journal of Object-Oriented Programming (JOOP), 13(11), 12-
19.

Fontura, M., Pree, W., & Rumpe, B. (1999). UML-F: A modeling language for object-
oriented frameworks. (No. Technical Report TR-613-99). Computer Science,
Princeton University.

Franch, X., & Ribo, J. M. (1999). Using UML for software process modelling. Paper
presented at the UML’99 - The Unified Modeling Language. Beyond the Standard.
Second International Conference, For t Collins, CO.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Addison Wesley.

Gérard, S., Terrier, F., & Tanguy, Y. (2002). Using the model paradigm for real-time
systems development: ACCORD/UML. Paper presented at the OOIS’02-MDSD.

Harsu, M. (2002). FAST product-line process (No. 29). Institute of Software
Systems,Tampere University of Technology.

Kang, K. C., Cohen, S.G., Hess, J.A., Novak, W.E., & Peterson, A.S. (1990). Feature-
oriented domain analysis (FODA). No. CMU/SEI-90-TR-21 ESD-90-TR-222.
Carnegie Mellon University.

McIlroy, M.D. (1968). Mass-produced software component. Paper presented at the
NATO SCIENCE COMMITTEE, Garmisch, Germany.

OMG. (2002). UML 1.4 with Action Semantics.
OMG. (2003). UML 2.0 OCL 2nd revised submission (No. ad/03-01-07).
Parnas, D. L. (1979). Designing software for ease of extension and contraction. IEEE

Transactions on Software Engineering, SE-5, 128-137.
Pollet, D., Vojtisek, D., & Jézéquel, J.-M. (2002). OCL as a core UML transformation

language. Paper presented at the WITUML, Malaga, Spain.
Speck, A., Clauss, M., & Franczyk, B. (2001). Concerns of variability in “bottom-up”

product-lines. Paper presented at the German GI Workshop Aspect-Oriented
Programming, Universität Paderborn.

Svahnberg, M., & Bosch, J. (2000). Issues concerning variability in software product
lines. Paper presented at the the Third International Workshop on Software
Architectures for Product Families, Berlin, Germany.

Tessier, P., Gérard, S., Mraidha, C., Terrier, F., & Geib, J.-M. (2003). A component-based
methodology for embedded system prototyping. Paper presented at the 14th IEEE
International Workshop on Rapid System Prototyping, San Diego, CA.

TEAM LinG

Variability Expression within the Context of UML 349

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ziadi, T., Hélouët, L., & Jézéquel, J.-M. (2003). Modélisation de ligne de produits en
UML. Paper presented at the Langages et Modèles à objets (LMO’03).

Ziadi, T., Jézéquel, J.-M., & Fondement, F. (2003). Product line derivation with uml.
Paper presented at the Software Variability Management Workshop, University of
Groningen Departement of Mathematics and Computing Science.

Endnotes

1 OCL is language defined by OMG to add constraints in UML models: http://
www.omg.org/

2 In the UML2 context, these are equivalent to component artifacts. Komponents
of the Kobra approach are then fully in keeping with the Component concept
redefined in UML2.

3 ITEA (Information Technology for European Advancement) is an eight-year
strategic pan-European program for advanced precompetitive research and devel-
opment in embedded and distributed software.

4 ESAPS = Engineering Software Architectures, Processes and Platforms for System-
Families : http://www.esi.es/en/Projects/esaps/esaps.html

5 http://www.esi.es/en/Projects/esaps/esaps.html
6 http://www.esi.es/en/Projects/Cafe/overview.html

TEAM LinG

350 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Hongji Yang is a professor and head of the Software Engineering Division in the School
of Computing at De Montfort University, UK. He received a BSc and an MPhil in computer
science from Jilin University, China, and a PhD in computer science from Durham
University, UK. His research interests include software engineering and distributed
computing. He served as program co-chair at the IEEE International Conference on
Software Maintenance (ICSM’99), program co-chair at the IEEE International Workshop
on Future Trends in Distributed Computing Systems (FTDCS’01), and the program chair
at the IEEE Computer Software and Application Conference (COMPSAC’02).

* * *

Marcus Alanen received his MSc in computer engineering at the Åbo Akademi Univer-
sity in Turku, Finland (2002). Currently, he works as a PhD student at the Department of
Computer Science at Åbo Akademi University.

Gabriel Baum (gbaum@info.unlp.edu.ar) is full professor at Universidad Nacional de La
Plata (UNLP), Argentina. He teaches courses in functional programming and formal
languages. He has published a large number of papers of his work on formal methods
including specification and derivation of programs. He is leader of several national and
international research projects. Since 2002, Professor Baum is the president of SADIO,
the Argentinean Society of Computer Science. For more information, visit http://portal-
lifia.info.unlp.edu.ar/~gbaum.

TEAM LinG

About the Authors 351

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cornelia Boldyreff has more than 25 years experience in software engineering and has
been a professor of software engineering at the University of Lincoln, UK, since January
2004 where she leads the Distributed Software Engineering group. Her research spans
both distributed systems and software engineering. Currently, she is focused on
collaborative software development within the EU Framework 5 GEneralised eNvironment
for procEsS management in cooperative Software Engineering (GENESIS) project and the
UK EPSRC Collaborative Determination, Elaboration, and Evolution of Design Spaces
(CoDEEDS), collaborative learning via the Grid within the LeGE-WG project, and system
evolution within the Web Site Evolution project. The group is currently developing the
Open Source Component Artefact Repository within GENESIS and developing support
for collaborative design teams within CoDEEDS.

Rodrigo E. Caballero is a staff research engineer with the United Technologies Research
Center in East Hartford, Connecticut (USA). His specialization at UTRC is in the area of
Controls and Embedded Systems. Mr. Caballero is a PhD student in computer science at
the University of Connecticut. The focus of his PhD research is in software reusability
and refactoring for component-based systems.

Ana Isabel Cardoso is an invited professor in the Engineering and Mathematical
Department at Madeira University, Portugal, and a PhD student in information technol-
ogy and computer engineering at the Technical University of Lisbon, Portugal. She has
been a project manager in Portugal Telecom for the last 20 years. Her research interests
include complex systems, software process, and metrics.

Chih-Hung Chang received his MS and PhD degrees in information engineering and
computer science from Feng Chia University, Taichung, Taiwan (1997 and 2004, respec-
tively). He is currently an assistant professor in the Department of Information Manage-
ment of Hsiuping Institute of Technology, Taiwan. His areas of research interest include
software maintenance, software reengineering, design pattern, component-based soft-
ware engineering, reuse, and software process document formalization.

William C. Chu is a professor and the chairman of the Department of Computer Science
and Information Engineering at Tunghai University, Taiwan. From 1994 to 1998, he was
an associate professor at the Department of Information Engineering and Computer
Science at Feng Chia University. He was a research scientist at Software Technology
Center of the Lockheed Missiles and Space Company, Inc., where he received special
contribution awards in both 1992 and 1993 and the PIP award in 1993. In 1992, he also was
a visiting scholar in the Department of Engineering Economic Systems at Stanford
University, where he was involved in projects related to intelligent knowledge-based
expert systems. His current research interests include software engineering, embedded
systems, and E-learning. Dr. Chu received his MS and PhD degrees from Northwestern
University in Evanston, Illinois, in 1987 and 1989, respectively, both in computer science.
He has edited several books and published over 100 refereed papers and book chapters,
as well as participated in many international activities, including organizing many

TEAM LinG

352 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

international conferences. Dr. Chu has received many research awards and funded
research grants. His e-mail address is chu@csie.thu.edu.tw.

Paul Crowther completed his PhD at the University of Tasmania, Australia (1999) where
he also was a lecturer. He is currently at Sheffield Hallam University, UK. His research
interests include requirement elicitation and intelligent agent-based applications. He has
been working on the European MOBIlearn project for the last two years. Sheffield Hallam
is one of more than 20 European partners working on this collaborative project.

Steven Demurjian is a full professor and associate department head of computer science
& engineering at The University of Connecticut, USA, with research interests of secure
software design using UML and aspect-oriented programming, security requirements
specification and assurance, RBAC/MAC models and security solutions for UML,
distributed environments and XML documents, and reusability and refactoring for
component-based systems (UML and Java). Dr. Demurjian has more than 100 publica-
tions, in the following categories: 1 book, 1 edited book, 8 journal articles, 24 book
chapters, and 72 refereed articles.

Damiano Distante is a post-doc at the Research Centre on Software Technologies (RCOST)
in the Department of Engineering of the University of Sannio in Italy, and an instructor of
database systems in the Faculty of Engineering of the University of Lecce. He has a PhD from
the University of Lecce and spent part of his doctoral studies at the Florida Institute of
Technology. His research interests include conceptual modeling of Web applications, Web
transaction design and reengineering, Web engineering, and recently, service-oriented
system engineering. He is the program chair for WSE 2005.

Felix Eickhoff graduated from The University of Connecticut with a MS in computer
science & engineering in August 2002 with a research focus on UML and software
reusability. In May 2004, he graduated from the University of Stuttgart (Germany) with
a German Diploma in software engineering and a research focus on distributed systems,
especially mobile ad hoc networks and sensor networks.

Rainer Frömming works as a senior consultant at the 4Soft GmbH in Munich, Germany.
In 1999, he graduated in computer science at the Technical University of Munich. Since
then, his working experience involves mainly object-oriented software development,
software development methodology, project management, and resource management.
Mr. Frömming was successfully leading several large software development projects in
the engineering process management domain. Concurrently, he was taking part in the
state-aided Software Quality Rates Maturity (SoQrates) project, aiming at the improve-
ment of development processes by performing a ISO15504/SPiCE assessment.

Jean-Marc Geib is full professor of computer science at the University of Lille (France).
He is currently leading the Software Engineering Group on Objects and Components

TEAM LinG

About the Authors 353

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(GOAL) of the Computer Science Laboratory of the University. This group tries to
contribute to the design and implementation of future platforms for component-oriented
distributed computing. One of the current projects, named OpenCCM, is about designing
a full software process to product and exploit reliable components following the Corba
Component Model (CCM) of the Object Management Group (OMG). Jean-Marc Geib
received his PhD from the University of Lille in 1989 for his work on distributed operating
systems, and his “Habilitation à Diriger des Recherches” in 1993 for his contribution to
object-based distributed computing. Mr. Geib is also the director of the Computer
Science Laboratory of the University of Lille and the creator of IRCICA, a French virtual
laboratory for mixed basic researches on hardware and software components.

Sébastien Gérard has a doctorate in computer science. He also graduated in 1995 from
French Superior School of Mechanics and Aeronautics at Poitiers (ENSMA) as a
mechanical and aeronautics engineer. He worked for one year at Laboratory of Scientific
and Industrial Computer Science of Poitiers (LISI), where he had interest in defining a
methodology for the measurement of the worst case execution time of real-time applica-
tion. Today, he is researcher at CEA - French Atomic Energy Agency (LIST) in the LSP
Group (Software for Process Safety) where he leads the research theme: “Model-Based
Software Engineering for RT Systems.” He also is strongly involved in UML standard-
ization working on UML within the U2P group and being part of the FTF of the real-time
UML profile and supporter of the incoming UML profile for QoS and fault tolerance.
Finally, he is the main initiator of this series of workshop dedicated to the development
of distributed, real-time, and embedded systems using the model-driven paradigm in the
one hand. And he was co-organizer of the international summer school on MDD for DRES
located in France in September 2004 (www.ensieta.fr/mda).

Lars Grunske is a research assistant at the Department of Software Engineering and
Quality Management of Hasso-Plattner-Institute for Software Systems Engineering. He
received a diploma in informatics from the Technical University of Berlin and a diploma
in computer engineering from the Berufsakademie, Berlin. His research interest includes
software/system architectures, quality characteristics and requirements, architecture
transformation, and architecture evaluation. In his recently finished PhD thesis, he
explores the problem of how to improve quality characteristics at an architectural level.

Rui Gustavo Crespo is an assistant professor in electrical engineering and computers at
the Technical University of Lisbon, Portugal. He received his PhD in information
technology and computer engineering from the Technical University of Lisbon. His
research interests include protocol specification, feature interaction, and software
quality models.

Xudong He received a BS and MS in computer science from Nanjing University, China,
in 1982 and 1984, respectively. He received a PhD in computer science from Virginia
Polytechnic Institute & State University (Virginia Tech) in 1989. He joined the faculty in
the School of Computer Science at Florida International University (FIU) in 2000, and is

TEAM LinG

354 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

an associate professor of the School of Computer Science and the director of the Center
for Advanced Distributed System Engineering. Prior to joining FIU, he was an associate
professor in the Department of Computer Science at North Dakota State University since
1989. His research interests include formal methods, especially Petri nets, and software
testing techniques. He has published over 70 papers in the above areas. Dr. He is a
member of the Association for Computing Machinery, and a senior member of the IEEE
Computer Society.

Jan Jürjens leads the Competence Center for IT-security at the Software \& Systems
Engineering chair at TU Munich (Germany). Holding a Doctor of Philosophy in Comput-
ing from the University of Oxford, he is the author of “Secure Systems Development with
UML” (Springer-Verlag, 2004) and numerous publications on computer security and
safety and software engineering. He is the founding chair of the working group on Formal
Methods and Software Engineering for Safety and Security within the German Society
for Informatics (GI). He is a member of the executive board of the Division of Safety and
Security within the GI, the executive boad of the committee on Modeling of the GI, the
advisory board of the Bavarian Competence Center for Safety and Security, the working
group on e-Security of the Bavarian regional government, and the IFIP Working Group
1.7 “Theoretical Foundations of Security Analysis and Design”.

Peter Kokol is a full professor at the University of Maribor, Slovenia, and obtained a PhD
from the University of Maribor. He is the head of Laboratory System Design and head
of Centre for Medical Information. Since 1997, he wass the head of Research Institute at
the University College of Nursing Studies and from February 2001 also the dean for
Research. Since January 2002, he is the director of the Independent Centre for Interdis-
ciplinary and Multidisciplinary Studies and Research. He has written over 300 technical
and research papers published in recognized international journals and major confer-
ences and co-authored some textbooks. He was the general and program chair of some
major conferences, had numerous invited presentations, and won several best paper
awards. His main research interests are intelligent systems, complex systems, system and
chaos theory, software quality and metrics, and medical and nursing informatics.

Phyo Kyaw has a BSc in computer science from the University of Sunderland and an MSc
in computer science from the University of Durham, UK, where he is currently studying
for a PhD. His research interests include distributed software development and collabo-
rative software engineering.

Janet Lavery has a BSc and a research MSc from the University of Durham, Department
of Computer Science. She has worked on a range of research projects including
Generalised Environment for Process Management in Co-operative Software Engineer-
ing (GENESIS), a project focusing on issues surrounding collaborative working environ-
ments and the Institutional Secure Integrated Data Environment (INSIDE), an investiga-
tion into the issues surrounding the development of managed learning environments for
higher education. In addition, she has contributed to the Learning Grid of Excellence —

TEAM LinG

About the Authors 355

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Working Group (LeGE — WG), whose aim is to facilitate the establishment of a European
Learning Grid Infrastructure by supporting the exchange of information and creating
opportunities for closer collaboration between the different stakeholders. Currently, she
is taking a year off from structured research to teach in order to gain practical experience
with student learning issues.

Mitja Lenic obtained his BS, MS, and PhD in computer science from the University of
Maribor Slovenia. He joined the Department of Computer Science at the University of
Maribor as an assistant researcher in 1998, where he is now a teaching assistant and
member of the System Software Laboratory. He has written more than 100 technical
research papers published in recognized international journals and major conferences,
and co-authored some textbooks. His main research interests are intelligent systems,
programming languages, complex systems, and chaos theory, and software quality and
metrics.

Chih-Wei Lu is currently an associate professor in the Department of Information
Management, and also the chief of the Computer Center, Hsiuping Institute of Technol-
ogy, Taiwan. He received his BS degree in information science from Tunghai University
in 1987, his MS degree in computer science from University of Southern California in 1992,
and his PhD degree in information engineering and computer science from Feng Chia
University in 2003. His areas of research interest include component-based software
engineering, design pattern, software reuse, and software maintenance.

Steve McRobb has worked as a senior lecturer in the School of Computing, De Montfort
University since 1992. Currently based in the Division of Information Management, he
teaches systems analysis and design, e-business strategy and management and related
subjects. He is co-author of a successful textbook on object-oriented analysis and design
using UML, research associate in the School’s Centre for Computing and Social Respon-
sibility and a doctoral research supervisor with the Software Technology Research
Laboratory. Before joining De Montfort, he followed a successful career in local govern-
ment administration, working for Leicester City, Leicestershire County and the Yorkshire
Dales National Park.

Richard Millham received his BA(Honours) from the University of Saskatchewan in
Saskatoon, Canada (1992), his MSc in software engineering from the University of Abertay
in Dundee, Scotland (1995), and is completing his PhD at DeMontfort University in Leicester,
UK. His PhD focuses on program transformations, WSL, and UML diagram extraction from
the system code of batch-oriented legacy systems. His interests lie in software evolution,
legacy system migration, UML, reverse engineering, program transformations, and WSL. He
has many years of IT industry experience.

Donald Needham is an associate professor of computer science at the United States Naval
Academy, with research interests of software engineering and software reuse frame-
works. He has been funded through several research grants including high energy laser

TEAM LinG

356 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modeling and simulation framework evaluation (Joint Technology Office), development
of a reusability analysis framework for shipbuilding components modeled in XML and
Java (Electric Boat Corporation), CORBA-based access to geospatial information (Naval
Research Laboratory), and work on a formal basis for propagation modeling in multi-
disciplinary design optimization (NASA).

David Nutter is studying the role of awareness in distributed software engineering, with
a view to improving the efficacy of distributed software engineering teams by reducing
conflict between participants and providing a historical record of the interaction by
engineers with the artefacts they create. Previously, he has worked on the GENESIS
project (an IST-funded project to develop and release an open source software engineer-
ing environment capable of enacting processes, managing human resources, and storing
artefacts such as source code and documentation). The open source software produced
is available on Source Forge. Currently, he is helping to complete the Collaborative
Determination, Evolution, and Evaluation of Design Spaces (CoDEEDS) project, an
EPSRC-funded project which applies a collaborative design tool developed for the steel
industry to the domain of software engineering.

YI-Chun Peng received his BS and MS degrees in computer science and information
engineering from Tunghai University, Taichung, Taiwan, in 2000 and 2002, respectively.
His research interests include software reuse, software model and API design, design
pattern, and software maintenance.

Chris Phillips is an associate professor of computer science. He has been researching
in the areas of human-computer interaction (HCI), software engineering (SE), and object-
oriented design for the past 15 years. He is convenor of the Massey University (New
Zealand) HCI Research Group. He has refereed for a number of HCI and SE journals and
conferences, and has been a member of the programme committee for several
international HCI conferences. He is a member of the British Computer Society, and in
1990 was granted chartered engineer status by the Engineering Council in London.

Claudia Pons is professor of logic and formal specification at the University of La Plata,
Argentina. She obtained a PhD in the application of formal methods to object-oriented
modeling in 1999. She has participated in several research projects and has published
papers in international conferences’ proceedings and journals. She co-leads a research
group on formal methods in software engineering at the Lifia (Laboratorio de Investigacion
y Formacion en Informatica), at the University of La Plata, Argentina. She works part-time
as a trainer and consultant in object-based development with Lifia. To contact:
cpons@info.unlp.edu.ar http://portal-lifia.info.unlp.edu.ar/~cpons

Ivan Porres received his MSc in computer science in 1997 at the Polytechnic University
of Valencia, Spain, and in 2001, his PhD in computer science at Åbo Akademi University
in Turku, Finland. His thesis, “Modeling and Analyzing Behavior in UML,” studies how

TEAM LinG

About the Authors 357

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to use different formal methods to ensure the correctness of software modeled using
UML. Currently, he works as an assistant professor at the Department of Computer
Science at Åbo Akademi University where he studies how to use models and modeling
in all aspects of software engineering.

Jianjun Pu is a graduate of Beijing University of Aeronautics and Astronauts in Beijing,
China (1900), earning a BSc. He is currently a PHD student in the Software Technology
Research Laboratory at De Montfort University in Leicester, UK. His research interests
include reverse engineering and UML. His PhD project is through wide spectrum language
to acquire the importance of UML diagrams in modeling legacy COBOL systems, describe
the relationship between UML diagrams, and find out the method to produce UML use case
diagrams from legacy COBOL system through other diagrams. He has been working for 14
years on software test and software reengineering as a senior engineer.

Stephen Rank has a PhD in software evolution and a BSc in computer science from the
University of Durham. He has worked on the RELEASE project. producing tools for
source code analysis, and the GENESIS project, producing a component of a large
process-centred software engineering environment. He is currently a research assistant
at the University of Lincoln, investigating support for software engineering and other
collaborative activities. His research interests include software architecture, evolution
of software system, and collaborative software engineering.

Andreas Rausch is heading the software architecture research group at the Technische
Universität Kaiserslautern, Germany. He received a PhD in 2001 from the Technische
Universität München at the chair of Prof. Dr. Manfred Broy, with the dissertation titled
“Componentware — Evolution-Based Development of Software Architectures.” He was
responsible for the research project WEIT, developing the standard system development
process model of the German government and military called V-Modell XT. Andreas
Rausch has joined and headed various large interdisciplinary research projects concern-
ing the foundations of software engineering. He has been leading various industrial
software projects, developing large distributed systems, and is one of the four founders
of the software house 4Soft GmbH.

Chris Scogings is a senior lecturer in computer science at the Auckland campus of
Massey University, New Zealand. He is interested in user interface design and software
engineering, and the development of software applications to assist practitioners and
researchers in these areas.

Pasha Shabalin works for the Software & Systems Engineering chair at TU Munich
(Germany) in the area of formal methods in information security, and is the author of
several publications in this area. He has broad experience with IT projects in the industry,
including systems with special requirements on data security, and actively provides
related consulting services.

TEAM LinG

358 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

François Terrier is a doctor in electronics and head of the Software for Process Safety
Laboratory at the CEA-List, France. He obtained the title of professor at the National
Institute of the Nuclear Sciences and Technologies where he provides courses on
complex and embedded system modeling and development. The LSP Laboratory team
studies and realizes methods, tools, and platforms for the development of complex real-
time systems including management of safety constraints, real-time model verification
and test case generation, system evolution, and reuse. He has tutorials on “Real-Time
and Object Technology” and organized several workshops on advanced issues in this
domain. François Terrier has personally started and led the development of the ACCORD
platform for object-oriented real-time design and implementation of embedded systems.
He has been acting as project leader for several national and international projects in
these domains. Recently, he has set up a large common research program among CEA,
INRIA, and Thales: The Carroll program focussed on model-driven engineering and
component-based midllware. The LSP Laboratory has been selected to be a core partner
of the network of excellence ARTIST. François Terrier is the CEA representative in
ARTIST, being more particularly in charge of ensuring network relations with UML and
MDA standards and related works for on embedded domain.

Patrick Tessier earned his MS in computer science in 2002 from University of Lille
(France). Currently, he is doing his PhD in the Software for Process Safety Laboratory
at the CEA - French Atomic Energy Agency supervised by Pr. Jean-Marc Geib (LIFL) and
Dr. Sébastien Gérard (CEA-List). His PhD is about the management of the variability for
the design of a real-time system family in the context of a model-driven approach and
dedicated to development of distributed real-time embedded systems. More precisely,
the purpose is to define and implement mechanisms in order to derive in a good way the
behavioral model of a system family. He also is involved in the European project Families,
an ITEA project about system family management (http://www.esi.es/en/Projects/Fami-
lies/).

Scott Tilley is an associate professor in the Department of Computer Sciences at the Florida
Institute of Technology. He has a PhD from the University of Victoria. His research interests
include software evolution, program redocumentation, and empirical studies of information
technology efficacy. He is chair of the steering committee for the IEEE Web Site Evolution
(WSE) series of events, and the current president of the Association for Computing
Machinery’s Special Interest Group on Design of Communication (ACM SIGDOC).

Don-Lin Yang received a BE degree in computer science from Feng Chia University
(Taiwan) in 1973, an MS degree in applied science from the College of William and Mary
in 1979, and a PhD degree in computer science from the University of Virginia in 1985.
He is currently a professor and the chair with the Department of Information Engineering
and Computer Science at Feng Chia University. Prior to joining the university in 1991,
he was a staff programmer at IBM Santa Teresa Laboratory from 1985 to 1987 and a member
of technical staff at AT&T Bell Laboratories from 1987 to 1991. His research interests
include software engineering, distributed and parallel computing, and data mining. He
is a member of the IEEE computer society and the ACM.

TEAM LinG

About the Authors 359

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Yi Zhang is a master’s student of computer science & engineering at The University of
Connecticut, with research interests of reusability and refactoring for component-based
systems (UML and Java).

TEAM LinG

360 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

agent-based architecture 79
AMES 72
architectural

specification language 20
transformations 21

architecture 77
artefacts 72
attacks 258
automated processing 259
awareness 82

B

Basic Support for Cooperative Work
(BSCW), 74

Brownian cumulative walk 312

C

CASE tools 71, 107
Castor 80
certification 260
chaos theory 308
class diagram 214, 287, 338
classical modeling 311
CoDEEDS 72

collaborative software development 73
communication 73
complex sp-contracts 198
complexity 76, 212
component-based software engineering 83
components 78
composition 72
conceptual modeling 3
configuration management 48
conflict resolution 60
connectors 78
contract language 187
control flow 210
cooperation 73
cooperation contract 189
CORBA 74
correlation metrics 312
coupling 77
critical functionality 258
critical systems 258
CVS 73

D

data flow 210
decision model 336
deliverables 74

TEAM LinG

Index 361

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

deployment 72
design 72

recovery 3
spaces 71

dialogue
modeling 278
structure 275

dynamically bound 72

E

e-type 75
element identification 51
elementary transformations 57
embedded systems 20
evaluation 21
evolution 2

-oriented software 105
exchange models 49

F

feedback 75
flexibility 106
formal

methods 155, 258
specification 259

G

GENESIS 71
GENISOM 74
graph-based architecture evolution 20

H

hierarchical
predicate transition nets 155
typed hypergraph 23

hypergraph 22
transformation rules 20

I

increasing entropy 309
interfaces 72

J

JOSEFIL 324

L

Lean Cuisine+ 275
legacy systems 76, 209
life cycle 73
lines of code (LOC) 311
logistic map 314

M

metadata 83
metamodel 48, 107
metrics 77
Microsoft project 73
migration process 93
model repository 48
multi-pointed hypergraph 23

N

neural network 83

O

object models 94
object-oriented (OO) 155
object-oriented software development 184
open source 73
OPHELIA 74
optimistic locking 51
ORPHEUS 74
OSCAR 71

P

P-type 75
Perforce 80
Petri nets 156
plain metrics 311
practitioner 72
process 77

enactment 80
modeling 107

product
family 325
line approach 323

projects 73

TEAM LinG

362 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Q

quality 76
characteristics 20

quality-of-service 259

R

rational 74
reliability 258
resource management 73
restructuring 21
reuse 72, 287
reverse engineering 2, 72, 209

S

S-type 75
safety 259
SCM 80
security

engineering 260
features 260
properties 259
requirements 260
-critical systems 259

SEGWorld 74
self-organising maps (SOM) 83
semantic organization 310
service-oriented architecture 142
ShapeShifter 96
SiteScape 74
software

artefact 71
components 20, 71
contract 186
development 106, 314
evolution 73, 75
failures 258
maintenance 75
model evolution 184
process contract 192
process metrics 311
standards 105

Sp-contracts 186
specifications 72
standard methodologies 106
standardization 106

structural model 325

T

task modeling 277
teamwork development 106
time-to-market 92
tools support 260
transactions 2
typed hypergraph 23

U

UML 74, 155, 210
UML-RT 20
unified modeling language (UML) 4, 106,

257, 287, 324
universally unique identifier 52
use case 142, 287, 325

diagrams 155, 214
user interface 275, 283

modeling 275

V

validating 76
Verhulst model 308
version control 48
Volere templates 144

W

Web sites 6
workflow 73

X

XMI 49
XML 73, 107

TEAM LinG

BO O K CH A P T E R S

JO U R N A L ART I C L E S

CO N F E R E N C E PR O C E E D I N G S

CA S E ST U D I E S

The InfoSci-Online database is the

most comprehensive collection of

full-text literature published by

Idea Group, Inc. in:

n Distance Learning

n Knowledge Management

n Global Information Technology

n Data Mining & Warehousing

n E-Commerce & E-Government

n IT Engineering & Modeling

n Human Side of IT

n Multimedia Networking

n IT Virtual Organizations

BENEFITS

n Instant Access

n Full-Text

n Affordable

n Continuously Updated

n Advanced Searching Capabilities

The Bottom Line: With easy
to use access to solid, current
and in-demand information,
InfoSci-Online, reasonably
priced, is recommended for
academic libraries.

- Excerpted with permission from
Library Journal, July 2003 Issue, Page 140

“

”

Start exploring at
www.infosci-online.com

Recommend to your Library Today!

Complimentary 30-Day Trial Access Available!

InfoSci-Online

Instant access to the latest offerings of Idea Group, Inc. in the fields of

INFORMATION SCIENCE, TECHNOLOGY AND MANAGEMENT!

Database
InfoSci-Online
Database

A product of:

Information Science Publishing*
Enhancing knowledge through information science

*A company of Idea Group, Inc.
www.idea-group.com

TEAM LinG

Idea Group
R E F E R E N C E

Edited by: John Wang,
Montclair State University, USA

Two-Volume Set • April 2005 • 1700 pp
ISBN: 1-59140-557-2; US $495.00 h/c
Pre-Publication Price: US $425.00*
*Pre-pub price is good through one month
after the publication date

� Provides a comprehensive, critical and descriptive exami-
nation of concepts, issues, trends, and challenges in this
rapidly expanding field of data warehousing and mining

� A single source of knowledge and latest discoveries in the
field, consisting of more than 350 contributors from 32
countries

� Offers in-depth coverage of evolutions, theories, method-
ologies, functionalities, and applications of DWM in such
interdisciplinary industries as healthcare informatics, artifi-
cial intelligence, financial modeling, and applied statistics

� Supplies over 1,300 terms and definitions, and more than
3,200 references

New Releases from Idea Group Reference

Idea Group Reference is pleased to offer complimentary access to the electronic version
for the life of edition when your library purchases a print copy of an encyclopedia

For a complete catalog of our new & upcoming encyclopedias, please contact:
701 E. Chocolate Ave., Suite 200 • Hershey PA 17033, USA • 1-866-342-6657 (toll free) • cust@idea-group.com

ENCYCLOPEDIA OF

DISTANCE LEARNING

April 2005 • 650 pp
ISBN: 1-59140-560-2; US $275.00 h/c
Pre-Publication Price: US $235.00*

*Pre-publication price good through
one month after publication date

ENCYCLOPEDIA OF

MULTIMEDIA TECHNOLOGY
AND NETWORKING

April 2005 • 650 pp
ISBN: 1-59140-561-0; US $275.00 h/c
Pre-Publication Price: US $235.00*
*Pre-pub price is good through

one month after publication date

ENCYCLOPEDIA OF

INFORMATION SCIENCE
AND TECHNOLOGY

AVAILABLE NOW!

Five-Volume Set • January 2005 • 3807 pp
ISBN: 1-59140-553-X; US $1125.00 h/c

� More than 450 international contributors provide exten-
sive coverage of topics such as workforce training,
accessing education, digital divide, and the evolution of
distance and online education into a multibillion dollar
enterprise

� Offers over 3,000 terms and definitions and more than
6,000 references in the field of distance learning

� Excellent source of comprehensive knowledge and liter-
ature on the topic of distance learning programs

� Provides the most comprehensive coverage of the issues,
concepts, trends, and technologies of distance learning

ENCYCLOPEDIA OF

DATABASE TECHNOLOGIES
AND APPLICATIONS

Four-Volume Set • April 2005 • 2500+ pp
ISBN: 1-59140-555-6; US $995.00 h/c
Pre-Pub Price: US $850.00*
*Pre-pub price is good through one
month after the publication date

www.idea-group-ref.com

The Premier Reference Source for Information Science and Technology Research

ENCYCLOPEDIA OF

DATA WAREHOUSING
AND MINING

TEAM LinG

