


The best one-volume introduction to point-based graphics ever, it addresses virtually
every aspect of computer graphics from a point-based perspective: acquisition, repre-
sentation, modeling, animation, rendering–everything from the history of point-based
graphics to the latest research results. A broad and deep book destined to be the standard
reference for years to come, edited and written by leaders in the field.

Dr. Henry Fuchs
Federico Gil Professor, Department of Computer Science, University North Carolina,
Chapel Hill

Point-based representations have recently come into prominence in computer graphics
across a range of tasks, from rendering to geometric modeling and physical simulation.
Point-based models are unburdened by connectivity information and allow dynamically
adaptive sampling, according to the application needs. They are well-suited for modeling
challenging effects such as wide-area contacts, large deformations, or fractures. The lack
of manifold connectivity and regularity among the samples, however, presents many
new challenges in point-based approaches and requires the development of new toolkits
to address them. This book, in a series of well-written chapters, covers all essential
aspects of using point-based representations in computer graphics, from the underlying
mathematics to data structures to GPU implementations—providing a state-of-the-art
review of the field.

Prof. Leonidas J. Guibas
Computer Science Department, Stanford University

There is no simpler object than a zero dimensional point. Yet somehow, armed with mil-
lions of such simple primitives, researchers have constructed complex 3D models that
we can see and manipulate on the screen. Point-Based Graphics brings us the rich his-
tory of work that has been done in this area of computer graphics. Editors Markus Gross
and Hanspeter Pfister and their contributing authors present a complete set of all the
detailed work that has exploded over the past decade resulting in many of the images
we see today. This book provides both the theoretical foundations as well as the practical
elements needed to build new applications with point-based graphics.

Michael F. Cohen
Principal Researcher, Microsoft Research

This book offers much more than what its title advertises. It provides not only an
in-depth coverage of the new field of point-based graphics, but also a solid introduction
to most modern techniques in computer graphics, from acquisition to rendering and
animation. Written by leading experts on the topic, chapters include the introduction



of fundamental tools as well as in-depth case studies of state-of-the-art algorithms.
I learned a lot reading the book and I expect to use it often as a reference.

Frédo Durand
Associate Professor, Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology

Point-based graphics has seen a significant rebirth, which greatly changes the graphics
arena. This book, focusing on the major, recent advances in point-based graphics, pro-
vides an excellent introduction and overview of the state of the art. It is particularly
impressive for its breadth and depth, covering the foundations of the point primitive,
modeling, processing, and rendering, as well as advanced topics, such as physics- based
animation. Other distinctive features of the book are its world-renowned editors, Markus
Gross and Hanspeter Pfister, and the high academic caliber of the contributors. Pro-
fessionals and students alike will find the book intriguing and stimulating with sound
and practical advice. It is a required reading for anyone who wants to keep pace with
the rapid progress in this re-emerging and important area of research.

Dr. Arie E. Kaufman
Distinguished Professor & Chair, Computer Science Department, Stony Brook
University (SUNY), Stony Brook, NY
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Foreword

In any established field, doing something “different” presents a challenge. Even in
computer graphics, an area that evolves rapidly, the notion of treating simple points
as primitive modeling and display elements did not get off to a fast start. Nevertheless,
every good idea has its time. Two timely factors that promote the idea of point-based
graphics are procedural shape definition and automated shape acquisition. The for-
mer has the flexibility to produce as many or as few points as needed to accurately
represent itself. The latter naturally produces a massive flood of points. The sheer
complexity of such models begs for a representation that is inherently simple. Points
are simple. However, effectively acquiring, editing, animating, rendering, and other-
wise processing points requires a non-intuitive understanding of the representations
and processes. That’s why this book is necessary.

Twenty years ago, when my students were experimenting with point-based repre-
sentations of surfaces and volumes, they repeatedly asked “what would happen if we
tried this crazy idea?” As demonstrated in this text, today’s discussions are conducted
with more rigor and sophistication. While points themselves may be simple, a com-
plete understanding of how they are processed and how collections of them should be
interpreted requires sophisticated explanations. And there is no single “best” method
for processing such point collections. The explanations in this book are broad; the
authors cover a range of applications and techniques, and they cover these thoroughly.

The approaches described in this book may once have been considered outside the
mainstreambyexperiencedgraphicspractitioners.Theeditorsandcontributorsthem-
selves, however, are among the best and brightest in mainstream computer graphics
research. To bring their expertise to bear on a single coherent volume is no small feat.

There are undoubtedly a few of us that enjoy ideas just because of their inherent
beauty. Having migrated to computer graphics from a background in signal process-
ing, I have a certain attachment to point-based graphics methods. Because of this
interest, I have tracked the work of many of the book’s contributors for several years.

xxi



xxii FOREWORD

Their perseverance and ingenuity are an inspiration. Seeing their work collected in
one place is a tremendous personal pleasure. More importantly for the reader, this
text is a unique and valuable resource for those who wish to understand and make
use of point-based graphics technology.

Turner Whitted
Microsoft Research
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1 INTRODUCTION

Markus Gross and Hanspeter Pfister

1.1 OVERVIEW

Point primitives have experienced a major renaissance in recent years, and
considerable research has been devoted to the efficient representation, modeling,
processing, and rendering of point-sampled geometry. There are two main reasons
for this new interest in points: on one hand, we have witnessed a dramatic increase in
the polygonal complexity of computer graphics models. The overhead of managing,
processing, and manipulating very large polygonal-mesh connectivity information
has led many researchers to question the future utility of polygons as the funda-
mental graphics primitive. On the other hand, modern three-dimensional (3D) dig-
ital photography and 3D scanning systems acquire both geometry and appearance
of complex, real-world objects. These techniques generate huge volumes of point
samples, which constitute the discrete building blocks of 3D object geometry and
appearance—much as pixels are the digital elements for images.

Over the past five years, point-based graphics has seen an amazing growth. By the
time of publication of this book, three symposia on point-based graphics will have

1
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concluded, the first of which was started in Zürich, Switzerland, in 2004. The large
number of submissions to these conferences shows the huge interest in this young
and exciting field and its potential for research and teaching.

This interest in combination with the huge success of various tutorials on this topic
and thousands of downloads of Pointshop3D, a freeware software package for point-
based graphics, have motivated us to create this textbook. It presents a comprehensive
collection of both fundamental and more advanced topics in point-based computer
graphics. The book is based on a series of courses that we and some of the authors
taught over the past five years at major graphics conferences. We have extended our
material significantly and we have invited numerous prolific authors in the field to
contribute to this publication.

The book assumes familiarity with the standard computer graphics techniques
for surface representation, modeling, and rendering. No previous knowledge about
point-based methods is required. The book is suitable for both classroom and pro-
fessional use. The comprehensive coverage of the topic makes the book a reference
and teaching tool, and the in-depth coverage of algorithms as well as the inclusion of
the Pointshop3D open-source system makes it very attractive for developers.

The book is intended for researchers and developers with a background in traditional
(polygon-based) computer graphics. They will obtain a state-of-the-art overview of
the use of points to solve fundamental computer graphics problems such as sur-
face data acquisition, representation, processing, modeling, and rendering. With
this book, we hope to stimulate research and development of point-based methods
in games, entertainment, special effects, visualization, digital content creation, and
other areas. For instance, game developers will learn how to use point-based graphics
for game characters and special effects (physics, water, etc.) employing real-time ren-
dering on graphics processing units (GPUs). Developers in the movies and special
effects industry will learn how to use points for offline, high-quality global illumi-
nation, character rendering, and physics. Engineers will learn how to process huge
point clouds that naturally arise during object scanning. Architects of current GPUs
(e.g., at NVIDIA and ATI) will learn what operations need to be implemented or
accelerated to facilitate point-based graphics. Digital content creators and artists will
use Pointshop3D for the creation of very complex models.

We believe that point-based graphics bear a huge potential for future research and
development and might influence the way we will do computer graphics in the future.
We hope that this book will stimulate new ideas in this rapidly moving field and that
it will convince more graphics researchers and developers of the utility of point-based
graphics.
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1.2 BOOK ORGANIZATION

The book organization follows essentially the 3D content creation pipeline, as
outlined in Figure 1.1.

Historically, points have received relatively little attention in computer graphics. Yet,
there has been fundamental work that laid ground for the more recent developments.
In Chapter 2, Marc Levoy will present an historical perspective on the topic. He will
highlight early work on point-based modeling and rendering, and will point out how
this work provided a basis for the subsequent chapters of this book.

The first stage in Figure 1.1 involves the acquisition of point clouds from real-world
models through means of 3D scanning and reconstruction. Chapter 3 will give a com-
prehensive overview over the state-of-the-art in 3D acquisition and scanning meth-
ods for point-sampled models. The authors focus both on geometry and appearance
acquisition. The discussed algorithms and systems will make the reader familiar with
the essentials of scanning technology, including a practical guide to build a low-cost
3D scanning system. The final topic of this chapter is devoted to sophisticated appear-
ance acquisition using 3D photography.

The next stage in the content creation pipeline includes mathematical methods
to reconstruct surfaces from point clouds and to deal with the discrete nature of

Figure 1.1: The 3D graphics content-creation pipeline serves as a model for the book’s organization.
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point sets. Chapter 4 acquaints the reader with the mathematical and algorithmic
fundamentals of point-based surface representations. It describes the basic concepts
of discrete differential geometry and topology as well as specific representations, such
as the famous moving least squares (MLS) method. Other topics of the chapter are
discretization and sampling and an overview over the most important data struc-
tures for point-based representations. The chapter concludes with a presentation of
real-time, iterative refinement methods.

Once the surface representations are in place, the next step in the content cre-
ation pipeline is the digital processing, filtering, modeling, and editing of point
models. Chapter 5 is devoted to the digital processing of point-sampled models.
It demonstrates the versatility of point-sampled representations that combine the
simplicity of conventional image editing operations with the power of advanced 3D
modeling methods. The chapter includes a variety of preprocessing methods, such as
model cleaning, filtering, and feature extraction, as well as photo editing operations.
More advanced shape modeling operations, like deformations and constructive solid
geometry (CSG), will also be discussed. The chapter is closely related to the core func-
tions of Pointshop3D, the software accompanying the book.

The final stage in our content creation pipeline is high-quality and efficient display
of the point model. Novel rendering pipelines and concepts had to be devised for
point-based models. Chapter 6 presents a comprehensive overview of high-quality
rendering methods for point-sampled geometry. It starts with a review of the funda-
mentals of surface splatting, one of the most widely used techniques for point ren-
dering. More advanced and hardware-accelerated methods for point splatting will be
discussed next. Finally, we explain ray-tracing methods for point-sampled geometry
and acceleration structures for high-performance point rendering.

Very often, graphics models have to be animated; i.e., their shape and attributes have
to be controlled and altered over time. Due to the complexity of the topic, anima-
tion cannot be treated comprehensively. But Chapter 7 will describe physically based
animation using point-sampled representations. This topic has emerged recently as
a promising alternative to conventional finite element simulation. It is inspired by
so-called meshless methods, where the continuum is discretized using unstructured
point samples. We will demonstrate that such methods allow for a wide spectrum
of material simulations, including brittle fracture, elastic and plastic deformations,
and fluids. Such physical point representations are combined with high-resolution
point-sampled surface geometry.

The concluding Chapter 8 contains a collection of select topics related to point-based
computer graphics. One such method is the dynamic representation, compression,
and display of 3D video. A second one is the modeling and analysis of uncertainty
in point clouds. A further topic discusses point-based visualization of attributed
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datasets. Another contribution addresses the computation of global illumination in
point-sampled scenes and shows how such methods are used in a production envi-
ronment. The chapter demonstrates the versatility and application potential of point-
based methods.

1.3 COMMON ISSUES AND REOCCURRING
PATTERNS

Points are clearly the simplest of all graphics primitives. Throughout the book, there
are reoccurring issues inherent to point-based graphics that can be summarized as
follows.

Points generalize pixels and voxels toward irregular samples of geometry and appear-
ance. The conceptually most significant difference to triangles is that points—much
as voxels or pixels—carry all attributes needed for processing and rendering. There
is no distinction between vertex and fragment anymore.

As a sampled representation including geometry and (prefiltered) appearance, point
representations allow one to carry over some of the computationally expensive frag-
ment processing, such as filtering, to the preprocessing stage. Their very “sameness”
of geometry and appearance creates the potential of designing leaner graphics
pipelines. Of course, this simplified processing comes at a price. Straightforward
framebuffer projection leaves holes in the image that have to be filled for close-up
views. Point models also require a denser sampling compared to triangle meshes.
The higher resolution of the representation potentially leads to increased bandwidth
requirements between the computer processing unit (CPU) and GPU. In some sense,
bandwidth has to be traded with processing speed.

Points, in their purest form, do not store any connectivity or topology. Since many 3D
acquisition algorithms generate point clouds as output, points naturally serve as the
canonical representation for 3D acquisition systems. In contrast, triangle meshes are
the result of 3D reconstruction algorithms and require prior assumptions on topol-
ogy and sampling. The lack of topology and connectivity, however, is strength and
weakness at the same time. The atomic nature of a point sample gives the represen-
tation a built-in level of detail (LOD), making it possible, for instance, to stream and
render point clouds progressively.

Points have proven their ability to model complex geometry. Their lack of connectiv-
ity enables one to conveniently resample without the need to restructure the repre-
sentation on the fly. Resampling, one of the key ingredients of many point graphics
algorithms, can be accomplished in many different ways. Continuous surface recon-
structions are provided by the many versions of MLS. The lack of connectivity



6 INTRODUCTION C H A P T E R 1

makes changes of model topology more accessible, but comes at a cost. k-nearest
neighborhoods, needed for many surface processing algorithms, have to be com-
puted on the fly. This, in turn, requires more elaborate data structures, including
K-d-trees or spatial hashing. Also, improperly sampled point models do not give
guarantees on topological correctness, which may or may not be a problem. The flex-
ibility of dynamic adjacency computation is specifically efficient if the model size is
large and the operations are local. Some researchers have resorted to cache strategies
to retain some static adjacency in the representation.

Similar observations hold for physically based simulations. Meshless methods have
successfully been applied to compute elastic and plastic deformations as well as frac-
turing of solid objects. It has been shown that the absence of a rigid mesh structure
facilitates the modeling of phase transitions, for example, during melting. The pro-
posed methods are robust and render visually plausible results. In addition to the use
of points for the discretization of computational domains, some research has been
done to reconstruct and animate the corresponding surfaces using point samples.
Again, the previously discussed properties of point representations help to conve-
niently change topology (fracture, melting) or resample dynamically (deformation).

In summary, point primitives constitute a simple and versatile low-level graphics
and visualization primitive. Representation points have different strengths and weak-
nesses compared to other graphics primitives. They are not going to replace the exist-
ing ones, but have proven their ability to complement them. Many technical issues
related to point-based graphics boil down to reconstruction and resampling. As a
sample-based approach to graphics, points stimulate us to take a signal processing
view onto graphics and visualization.
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2 THE EARLY HISTORY OF
POINT-BASED GRAPHICS

Marc Levoy

Why is it worthwhile to study where an idea came from? Thomas Kuhn, writing in The
Structure of Scientific Revolutions, notes that scientists like to see their discipline’s past
“developing linearly toward its present vantage” [Kuh62]. As a result, textbooks often
discard or obscure the origins of ideas, thereby robbing students of the experience of
a scientific revolution. This in turn makes them unable to realize when one is upon
them and ignorant about how to act in these circumstances. I do not claim that point-
based rendering was a scientific revolution, at least not in 1985 when Turner Whitted
and I wrote our first paper on the topic. However, that paper was written in response
to a scientific crisis, which bears some of the same characteristics. As a technical
achievement, our paper was a failure. However, as a story of crisis and response it
is instructive. In this spirit I offer the following historical account.

2.1 SAMPLE-BASED REPRESENTATIONS OF
GEOMETRY

Since the beginning of computer graphics, a creative tension has existed between
representing scenes as geometry versus as collections of samples. Early sample-
based representations included textures, sprites, range images, and density volumes.

9
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More recent examples include light fields, layered depth images, image caches, and
so on. Points are another such representation, often used to approximate curved sur-
faces as this book amply demonstrates. In each case researchers faced a common set
of challenges: how to edit the scene by manipulating its samples, how to store and
compress these samples, how to transform and shade them, and how to render them
with correct sampling, visibility, and filtering.

However, to understand the early history of point rendering, we must understand a
different tension that existed in the early history of computer graphics, one between
image-order and object-order algorithms for displaying geometric primitives. It was
in response to this tension that Turner Whitted and I proposed points as a way to
display curved surfaces [LW85]. And it was on the shoals of sampling, visibility, and
filtering that our idea ran aground. Let us see why.

2.2 IMAGE-ORDER VERSUS OBJECT-ORDER
VISIBILITY AND ANTIALIASING

In their seminal paper on hidden-surface algorithms [SSS74], Ivan Sutherland et al.
showed that visibility is tantamount to sorting. As any student of computing knows,
sorting N objects into P bins can be done using a gather or a scatter. In computer
graphics, the gather strategy leads to an image-order algorithm. One example is ray
tracing [Whi80]; for the viewing ray associated with each image pixel, search among
the geometric primitives in a scene for the frontmost primitive intersecting that
ray. By contrast, the scatter strategy leads to an object-order algorithm. The most
common of these is the Z-buffer [Cat74]; create an array as large as the screen, and
for each primitive decide which pixel it falls into. While building such an array was
expensive in the 1970s, causing Sutherland et al. [SSS74] to dismiss the Z-buffer algo-
rithm as hopelessly impractical, a steady decline in semiconductor memory prices
eventually made this and other image-order algorithms both practical and attractive.
Image-order traversal is particularly easy to implement because the number of sam-
ples that should be taken of the primitive is obvious: one per pixel. For an object-order
algorithm, enough samples must be taken to avoid leaving any pixels uncovered, but
not so many that the algorithm becomes inefficient.

To avoid aliasing artifacts in computer-generated images, each pixel should be
assigned not a point sample of the scene but instead a sample of the convolution of the
scene by a filter function. Repeating this process for every pixel in a two-dimensional
(2D) image, and assuming the filter is a discrete 2D function, we obtain four nested
loops. Since convolution is linear, these loops can be rearranged so that the outer loop
is over image pixels, leading to an image-order algorithm, or over points on the scene
primitives at some resolution, leading to an object-order algorithm. As was the case



S E C T I O N 2 . 3 THE CHALLENGE POSED BY PROCEDURAL MODELING 11

for visibility, antialiasing poses fewer problems if implemented in image order. In an
influential early paper, Edwin Catmull [Cat78] observed that to compute a correct
color in a pixel, only those primitives or portions of primitives that lie frontmost
within the filter kernel centered at the pixel should be included in the convolution.
This is easy in an image-order algorithm, because all primitives that might contribute
to the pixel are evaluated at once. In an object-order algorithm, solving this problem
requires retaining subpixel geometry for every primitive in every pixel. To avoid this
difficulty, researchers have proposed computing visibility at a higher resolution than
the pixel spacing (by supersampling and averaging down), approximating subpixel
geometry using a bitmask [Car84] or summarizing it as a scalar value (called alpha),
leading to digital compositing [Wal81, PD84]. In some rendering algorithms, sub-
pixel geometry has been used as both an alpha value and a filter weight, leading to
problems of correctness to which I will return later.

2.3 THE CHALLENGE POSED BY PROCEDURAL
MODELING

If it is easier to render scenes in image order, why did researchers develop object-
order algorithms? The answer lies in the convenience of procedural modeling, which
may be loosely defined as the generation of scene geometry using a computer algo-
rithm (rather than interactively or by sensing). Examples of procedural modeling
include fractal landscapes [Car80], clouds [Gar85], plants [PL90], and generative
surface models [Sny92]. Although some cite Levoy and Whitted [LW85] as intro-
ducing points as primitives, procedurally generated points or particles had already
been used to model smoke [CHP+79], clouds [Bli82b], fire [Ree83], and tree leaves
and grass [Ree85].

To render a procedurally defined object using favored image-order algorithms, one
must be able to compute for a given pixel which part of the object (if any) lands
there. If the procedure is expensive to invert in this sense, or even uninvertible, then
an object-order algorithm rendering must be used. During the 1970s and early 1980s,
researchers invested considerable effort in resolving this conflict between rendering
order and geometry traversal order. As an example, Reeves [Ree85] modeled tree
leaves as circular particles with semitransparent fringes. To decide how many particles
to draw for each tree, he examined its approximate size on the screen. He rendered
these particles using an image-order algorithm. In this algorithm, transparency could
be used either as a filter weight or a compositing alpha, but not both, as noted earlier.
To resolve this ambiguity, Reeves sorted his particles into buckets by screen location
and Z-depth, treated transparency as weight, and additively accumulated color and
weight in each pixel. When a bucket was finished, it would be combined with other



12 THE EARLY HISTORY OF POINT-BASED GRAPHICS C H A P T E R 2

buckets using digital compositing, with the accumulated weight in each pixel now
serving as its alpha value. While not exact, this algorithm worked well for irregular
geometry like trees and grass.

Another important class of procedurally defined objects are parametric surfaces.
For given values of the parameters s and t, it is straightforward to evaluate the
surface functional, yielding an (x, y) position on the screen. However, for a given
pixel position it may be difficult to determine whether the surface touches it. For
parametric bicubic surfaces, some researchers attacked this inverse problem head-
on, developing scanline algorithms that directly gave these curves of intersection
[Bli78, Whi78]. However, these algorithms were fragile and difficult to implement
efficiently. Others proposed an object-order approach, subdividing the surface recur-
sively in parametric space into patches until their projection covered no more than
one pixel [Cat74]. Still others proposed hybrid solutions, subdividing the surface
recursively until it was locally flat enough [Cla79, LCWB80] (or detailed enough in
the case of fractal surfaces [Car80]) to represent using a simpler primitive that could
be rendered using an image-order algorithm. Another hybrid solution was to par-
tially evaluate the procedural geometry, producing an estimate of its spatial extent
in the form of an image space decomposition [RW80] or collection of bounding
boxes [Kaj83]; the overlap between these extents and screen pixels could then be
evaluated in image order.

This struggle, which had to be repeated each time a new geometric primitive was
proposed, was perceived by many as a crisis in the field. Kuhn [Kuh62] states that
when such a crisis arises in a scientific paradigm, and “normal science” is no longer
fruitful, there is a gradual loosening of the rules for research, leading researchers to
propose solutions that were previously considered outlandish. Before we make that
jump, there is one procedural modeling method that so severely broke the dominant
display paradigm that it requires special mention.

2.4 THE CURIOUS CASE OF DISPLACEMENT
MAPPING

One of the most important single advances in the realism of computer imagery was
texture mapping, first used by the GE lunar lander simulator in 1968, then described
and analyzed by Catmull [Cat74]. By associating a tabular two-dimensional array
of colors with each geometric primitive, the visual complexity of a scene could far
exceed its shape complexity. Bump mapping [Bli78] generalized texture mapping by
using a tabular array to locally modify surface orientation.

In his paper on shade trees, Cook proposed using textures to locally modify surface
position [Coo84] (Figure 2.1). Although a powerful idea, displacement mapping
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F igure 2.1: Levoy and Whitted envisioned modeling complex objects from points, rep-
resented as textures and compounded using simple rules. At left, a tree trunk is modeled
using two textures—giving color and X,Y,Z-displacement from the surface of a cylinder.
At right, a trapezoidal texture is warped using a sequence of mappings, each defined
as a texture or procedure. If the compound mapping is uninvertible, then rendering can
only be done in object order. These sketches are from Marc Levoy’s research notebook
of September 1984.

badly broke the accepted image-order graphics pipeline. In this pipeline the set of
pixels covered by a primitive was independent of whatever textures were associated
with it; a primitive could be rasterized without regard to its textures, and once a pixel
was selected by the rasterizer for rendering, its textures could be considered when
computing its color. In Cook’s method a texture was allowed to move a primitive
and thereby change the set of pixels it covered.

For the restricted case of a flat plane displaced in one direction only (i.e., a terrain
model), this problem could be fixed by changing the screen traversal order, as
described by Fishman and Schachter [FS80] and Max [Max81]. However, if the dis-
placement could be in any direction, or the underlying geometric primitive was
curved, then the problem became harder. Moreover, since displacement maps could
be generated procedurally, interactively, or by sensing, their displacement function
was often uninvertible. This made the problem insoluble except by abandoning
image-order rendering.

2.5 POINTS AND MICROPOLYGONS TO THE RESCUE

The notion of using points and an object-order rendering algorithm to display
smooth (i.e., continuous) primitives was first proposed for lines and curved strokes
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by Whitted [Whi83] (based on Alvy Ray Smith’s earlier Z-paint brush [Smi79]),
and for displacement-mapped surfaces by Levoy and Whitted [LW85] (Figure 2.2).
Although the latter paper advertised points as a universal metaprimitive, having in
mind the rather ambitious modeling paradigm described in Figure 2.1, they only
demonstrated its use for rendering displaced surfaces.

The notion of using points to display continuous surfaces was not an obvious idea
when proposed, nor was it obviously a good idea once proposed. Indeed, the method
immediately ran into exactly the problems enumerated at the beginning of this
chapter. The first of these was how to vary the density of points locally to match
the pixel spacing. If this density was too high, the algorithm would be slow; if it was
too low, the surface would contain holes. To solve this problem, Levoy and Whitted
used the determinant of the Jacobian of a unit-sized surface patch after transforma-
tion to screen space, an idea that resurfaced in Heckbert’s analysis of texture mapping
[Hec89].

Harder to resolve was the conflict between visibility and antialiasing. For this Levoy
and Whitted proposed (concurrently but independently from Reeves) a moving
surface cache composed of depth buckets that were dynamically created and destroyed
as the surface was traversed. Like Reeves, points were rendered with antialiasing,
whose weights were combined additively within a bucket and multiplicatively (via
digital compositing) between buckets. Unfortunately, while Reeves got away with this
approximation because he was rendering irregular objects, Levoy and Whitted did
not. Their use of a moving cache was clever, but it was also fragile; narrow surfaces,
highly curved surfaces, and surfaces that folded over on themselves sometimes exhib-
ited holes, almost regardless of the density of points employed.

The REYES algorithm [CCC87] solved this same problem—of rendering
displacement-mapped surfaces—by traversing them in object order, dicing each into
micropolygons about the size of a pixel, and rendering these using an image-order
algorithm with stochastic sampling [Coo86]. Although arguably more expensive
than point rendering, Cook’s micropolygons fit snugly against each other. An image-
order algorithm could render such a mesh of micropolygons without creating holes.
In retrospect, Levoy and Whitted’s mistake was to discard the natural connectivity
between points on a surface. In so doing, they made reconstruction of a continuous
surface difficult.

Not to belabor our story, the publication and obvious success of the REYES algorithm
caused Levoy and Whitted to abandon their work on point-based rendering. Points
might still be advantageous, they reasoned, but their advantages must lie elsewhere.
Indeed, researchers continued throughout the 1980s experimenting with pointlike
approaches in other domains. For example, under the name splatting [Wes90], anti-
aliased points briefly became one of the two dominant methods for rendering volume
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F igure 2.2: At left, Whitted [Whi83] rendered continuous curves as a sequence of
brush stamps in 3D, each represented as a pixel array having color, opacity, and Z-depth.
At right, Levoy and Whitted [LW85] rendered displacement-mapped surfaces (i.e., sur-
faces with relief) as a collection of points in 3D, each represented as a pixel array having
the same characteristics.

data, the other two being ray tracing [Lev88] and planar texture mapping [DCH88].
For the special case of displaying isosurfaces from volume data, a pointlike algorithm
called dividing cubes was proposed by Cline and Lorensen [CLL+88], whereby a vol-
ume was subdivided into subvolumes until their projection covered no more than a
pixel. Although implemented in hardware, this algorithm was eventually overshad-
owed in popularity by the same authors’ marching cubes algorithm [LC87].

2.6 THE CURRENT RENAISSANCE IN POINT
GRAPHICS

Kuhn says that crises in science end in one of three ways: (1) the existing paradigm
proves capable of handling the crisis, (2) the problem is set aside for future genera-
tions having better tools, or (3) there is a transition to a new paradigm. Although
I have argued here that the crisis in rendering algorithms in the 1980s was ade-
quately resolved without a switch to point-based rendering, this is not to say that
all the difficulties posed by the dominant paradigm were resolved. Micropolygon
rendering is slow and parallel poorly, and the out-of-order evaluation demanded
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by displacement maps still causes headaches to the designers of graphics hardware.
Nevertheless, except for one paper in the mid-1990s on a hardware system for point-
based rendering [GD98], the idea was more or less forgotten for a decade.

By the time point-based rendering was resurrected (contemporaneously by
Rusinkiewicz and Levoy in their QSplat system [RL00] and by Pfister et al. in their
surfels system [PZvBG00]), the graphics landscape had changed considerably. The
number of pixels covered by a typical polygon had been shrinking for a decade, and
hardware antialiasing was becoming commonplace. These developments made con-
nectivity less important than it was in 1984, and they made antialiased points a more
attractive primitive. At the same time, display screen resolution was rising slowly,
which made accurate antialiasing less critical than it was 15 years earlier. In addi-
tion, the 1990s saw the development of several new ways to create points, includ-
ing 3D scanning and particle-based physics simulations. In some cases these point
sets included connectivity information, but in other cases they did not, leading to
so-called point-cloud data. Finally, new techniques had been invented for discretely
approximating the operators of differential geometry, enriching the set of operations
that could be applied to point-based representations of surfaces.

With the lesson of the rise and fall of point-based rendering in the 1980s in mind,
and in my unenvious position as the author of this rise and fall, I encourage the new
generation of researchers in this field, many of whom are represented in this book, to
learn from my mistake by clearly distinguishing those things points can do but so can
other representations, those things points can do that other representations cannot,
and those things points cannot do or will never do well.
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3 ACQUISITION

INTRODUCTION

This chapter provides a comprehensive overview of state-of-the-art 3D acquisition
and scanning methods for point-sampled models. The chapter will focus both
on geometry and appearance acquisition. The discussed methods and systems are
intended to make the reader familiar with the essentials of scanning technology.
Section 3.1 gives an overview of 3D geometry acquisition and introduces the basic
concepts of 3D scanning. Section 3.2 demonstrates how the presented methods
can be utilized in practice to design and build a low-cost 3D scanning system.
The chapter concludes with the more advanced topic of 3D digital photography.
Section 3.3 presents a method and system for appearance acquisition.
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The field of 3D acquisition has emerged as an important source of both challenges
and applications for point-based techniques. The high detail and ease of acquisition
of 3D models of real-world objects have driven their acceptance in computer graphics
productions, but the size and density of these datasets have required the development
of efficient representations and processing algorithms. In this chapter, we present
both the background of 3D scanning technology and related algorithms, as well as
a complete example of a 3D model acquisition pipeline built around point-based
techniques. Note that in this chapter we deal exclusively with 3D surface scans and
scanners, as opposed to the volumetric data (representing density as a function of
position in space) produced by devices including computed tomography (CT) and
magnetic resonance imaging (MRI) scanners.

Among the reasons for the natural affinity of 3D scanners and points are:

• Size: 3D scans can be large and detailed, with models in the range of 106 to 109

samples becoming commonplace. As argued throughout this book, point-based
methods achieve greater efficiency in storage and certain kinds of geometric
processing, and these advantages are put to greatest effect on scanned models.

• Noise: All scans have noise, and depending on the particular scanner design
this noise can be on the order of the sample spacing. This makes it difficult to
infer and preserve mesh connectivity, leading to a strong preference for tech-
niques that defer or avoid inferring adjacency information and compute sur-
face properties such as normals, when required, by considering variable-sized
neighborhoods in space.

• Sparseness: Some 3D acquisition techniques, especially passive methods, can
only return reliable geometry at a few locations on the surface (essentially,
at “features” or “texture” resulting from color variation). This makes it error
prone to estimate the connectivity of points within a scan, and mistakes can
lead to difficulty in combining multiple scans of the same object. Even for
those scanning technologies that return “dense” point clouds, establishing the
connectivity of nearby samples must rely on a heuristic to avoid connecting
across the depth discontinuities visible from a single view. Point-based tech-
niques, by omitting or deferring the estimation of connectivity, can avoid such
difficulties.

3.1 ACQUISITION OF POINT-SAMPLED GEOMETRY

Szymon Rusinkiewicz

This section presents an overview of 3D scanning hardware, focusing on the reso-
lution, noise, and point density achievable by the different available technologies.
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In addition, it describes the algorithms for registration and scan merging necessary
to go from raw 3D data to finished models. To see the need for such algorithms,
we begin with an overview of the 3D model acquisition pipeline, some version of
which appears in every research and commercial scanning system.

3.1.1 OVERVIEW OF THE 3D ACQUISITION PIPELINE

To begin, let us discuss the important distinction between 3D scanners and 3D model
acquisition systems. The former refers simply to devices capable of returning the shape
of (some portion of) surfaces visible from one viewpoint. These data are useful in a
variety of contexts including robot navigation, metrology (e.g., for quality control),
and cases in which the complete surface actually can be captured from one direc-
tion (e.g., terrain). In addition, single scans may be used together with color images
for image-based modeling and rendering (IBMR) applications, such as view inter-
polation or foreground/background segmentation. For almost all objects, however,
a single “scan” can only capture part of the surface. Thus, for most applications in
graphics it is necessary to combine the information in 3D scans taken from multiple
(usually overlapping) viewpoints, making necessary the development of a “pipeline”
of algorithms that operate on multiple 3D scans and attempt to produce a single,
integrated 3D model. We shall refer to this use of scanning as 3D model acquisition.

A basic 3D model acquisition pipeline may include the following stages:

• 3D scanning: A scan is taken at some viewpoint.
• Registration: The transformation of the newest scan relative to other scans is

computed. This may include a combination of tracking the position of the scan-
ner, user input, feature detection and matching, or iterative minimization of
scan-to-scan distance. After all scans have been acquired, a global registration
algorithm may be used to simultaneously minimize misalignment errors over
all pairs of overlapping scans.

• Merging: The aligned scans frequently contain significant regions in which
many scans overlap. Merging these logically separate scans into a single model
both reduces storage and averages away some of the scanning noise (while,
hopefully, keeping the “signal”). Many merging algorithms are possible, of
which the most popular approaches include averaging of implicit functions
[HDD+92, CL96, Kaz05]; stitching or “zippering” of the original range images
[TL94]; moving least squares [Lev04, ABCO+03, AA04b, AK04, DS05]; and
directly triangulating the union of the point clouds of all scans [EM94, ABK98,
ACK01a, DG04]. Some of these methods are described in detail elsewhere in
this book.

• View planning: A decision is made about where to position the scanner relative
to the object in order to perform the next scan. In most systems, this decision
is left to the user, though there has also been research on automated view
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planning systems [MB93, SA98]. In any case, view planning usually requires
the availability of partial results from the above stages, in order to detect holes
or undersampled regions in the data. In cases in which the view planning is
performed by the user, these partial results must be in a form that can be
efficiently rendered [RHHL02].

• Postprocessing: Depending on the final use for the model, the output of the
merging step may undergo further processing [WPK+04], including noise
or outlier reduction, automated filling of small remaining holes [DMGL02,
SACO04, PR05], and curvature-adaptive resampling or decimation.

The form of the data that is passed among these stages can have a significant influence
on the efficiency of the algorithms. Since it is the goal of this book to describe and
advocate the use of point-based methods, we will confine ourselves to describing two
possible representations for these points.

1. One possibility is to represent the data as unorganized point clouds. That is, the
data consist of an unordered list of 3D point locations, together with any other
per-point properties that are necessary or relevant.

2. A second possibility is to represent the data using range images. This is a data
structure, analogous to a regular image, in which one stores not a color but
a depth along each of a regularly spaced set of rays in space. Range images go
by many names, and are also called range surfaces, depth images, depth maps,
height fields, 2 ½D images, etc.

While unorganized point clouds are conceptually simple and are appropriate for
all scanners and all stages of the pipeline, it is nevertheless the case that many 3D
scanners naturally return a range image as their fundamental data type, and there
are some advantages to maintaining the range image organization (at least until the
merging stage of the pipeline). First, range images implicitly store information about
empty space (i.e., the portion of each ray between the center of projection and the
sample on that ray is known to be empty), which is used by some registration and
merging algorithms. In addition, there is an implicit and easily calculated notion of
adjacency or connectivity provided by a range image that, with some caveats, may be
used to accelerate local computations such as determining normals. Of course, merely
looking at neighbors in the range image does not provide connectivity directly, since
one must be careful to avoid considering points lying across a depth discontinuity as
being adjacent. In practice, this decision of whether or not to consider neighboring
points as being adjacent is made on the basis of a heuristic, based either on a fixed
depth difference threshold or a threshold on the ratio of depth difference (e.g., in z)
to sample spacing (in x and y).

Because algorithms for the merging and processing stages of the 3D model acquisition
pipeline are described elsewhere in this book, the remainder of this section will focus
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on 3D scanning technologies and registration algorithms. For the 3D scanners, our
goal is not to provide a complete description of how each possible technology is
implemented (such details may be found in sources such as computer vision books
[Fau93, TV98, FP03a]), but to describe enough of the process to be able to under-
stand the characteristics of the resulting data.

3.1.2 TRIANGULATION-BASED 3D SCANNERS

We begin our look at 3D scanning technologies by considering the scanners based
on the principle of triangulation. All of these scanners have the common element of
possessing two (or more) viewpoints on the object being scanned, and determining
correspondences between rays from those viewpoints. That is, they are able to find
rays from the two viewpoints that intersect at a common 3D point on the surface of
the object, and find the coordinates of that point by computing the intersection of
the rays (Figure 3.1). This, of course, requires calibration: it is necessary to know the
mapping of pixels from the two views to rays in space [Tsa86, HS97].

The above description is deliberately vague about what exactly the two “viewpoints”
represent. In fact, there are many possible variants of triangulation systems, differ-
ing largely in what type of device is present at the two viewpoints. Conceptually,
the simplest setup is passive stereo, in which the viewpoints contain cameras and
no controlled light is introduced into the scene. In this case, the correspondence

3D Point

Baseline
Viewpoint #1 Viewpoint #2

Figure 3.1: Triangulation-based 3D scanners find the positions of points on a surface
by computing corresponding pixels from two viewpoints. The correspondence defines
a pair of rays in space, and the intersection of the rays determines a 3D position.
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problem requires finding pixels (or local neighborhoods of pixels) in one image
that are as similar as possible to pixels or neighborhoods in the other. This problem
proves to be difficult in many cases, so active stereo systems augment the setup with a
spatially or temporally varying projected pattern designed to introduce features into
the scene that make the correspondence problem easier to solve. This leads nat-
urally to structured-light systems, in which one of the viewpoints for triangulation is
replaced with a projector of known patterns of light. One important variant of struc-
tured light, namely single-light-stripe scanning, has been frequently implemented in
commercial systems, largely because of its potentially low cost and the ability to
optimize it for very high precision. Finally, multibaseline stereo and structure from
motion systems rely on more than two viewpoints on the scene to obtain advantages
such as higher robustness or fewer calibration requirements.

As might be guessed from the above description, there are many qualitative
differences in the kinds of data that may be obtained using each of the possi-
ble triangulation setups. Some, such as passive stereo, return data that are sparse
and often noisy. In contrast, light-stripe scanners return dense, high-quality data
with relatively few outliers, but do so at the cost of introducing light into the
scene, as well as their long acquisition time (since the stripe must be swept across
the scene). There are, however, certain advantages and disadvantages shared by all
triangulation-based scanners. Among the advantages are

• Flexible working volume: The working volume (i.e., region of space in which
the object being scanned must be contained) is a function of parameters
such as the field of view of the camera(s), but most importantly is directly
proportional to the baseline (i.e., the distance between the two viewpoints
used for triangulation). Because of this, it is relatively straightforward to
design triangulation-based scanners covering a wide range of working vol-
umes, ranging from millimeters to tens of meters. At the low end, the limits
are the same as those present in all scanners that rely on light, namely that
they are inappropriate when the object being scanned begins to approach the
wavelength of light (400–700 nm). The limits on the high end are discussed
below.

• Low complexity and cost: Triangulation-based scanners require calibrated cam-
eras and, depending on the design, possibly calibrated projectors, light sources,
and/or motors. These are items that are readily available in both research and
commercial settings, and are less expensive and easier to work with than some
of the exotic devices necessary for designs based on principles such as time
of flight. In particular, the rapid technological progress in electronic imager
technology in the past several years has dramatically increased the resolution
and decreased the cost of digital cameras, while the development of DLP
“micromirror” chips has led to speed and precision gains for light projectors.
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• Precision scales with camera resolution: Since triangulation-based scanners rely
on ordinary cameras, and since the resolution of consumer-grade cameras
had advanced considerably in the past decade, it is becoming easier than
ever to design scanners that have both high precision and larger working
volumes.

Some of the common disadvantages are

• Two-line-of-sight problem: In order to return the 3D position of a point, tri-
angulation scanners must observe that point from two separate viewpoints.
Depending on the specifics of the scanner, this may cause one of two differ-
ent problems. For active systems, this merely implies that the patch of surface
acquired from one scanner position will typically not cover one complete
side of the surface: it will have missing data in regions shadowed from one
view or the other. In extreme cases, such as a deep indentation in the surface,
there may not be any position in which the scanner may be placed such that
the deepest part of the indentation is unshadowed from both views simulta-
neously. This is then an ultimate limitation on scannable surface geometry
that cannot be overcome without changing the design (e.g., by reducing the
baseline and hence the triangulation angle). For passive systems, the two-line-
of-sight problem is potentially even more serious. In particular, the fact that
there are regions of the surface visible from one camera but not the other can
lead to difficulties in recognizing that the correspondence problem does not
have a solution for those points. Special techniques, often relying on global
regularization, are necessary to prevent the correspondence algorithm from
returning outliers in such cases.

• Sensitivity to shiny or translucent objects: Essentially all triangulation systems
make the implicit assumption that a diffuse, opaque surface is being scanned.
Specular reflection and subsurface scattering violate this assumption and lead
to errors in the returned depth estimates. For specular reflection, these errors
can be arbitrarily large, as interreflection of light from multiple surfaces can
lead to false correspondences between the reflections. These problems are exac-
erbated if the ratio of specularly reflected light to diffuse reflection is large, as
is the case for dark objects. The effects of translucency on triangulation are less
serious, and typically show up as a bias in the estimated depth (i.e., the scanned
model is some distance inside the correct surface [GBR+01]). Of course, for
completely transparent objects it is difficult to acquire depth using any optical
means.

• Difficulties for large scenes: Although triangulation systems scale to different
scene sizes better than many other designs, the practicality of scanning large
scenes is limited by the difficulty of constructing and calibrating a system with
a large baseline. Active triangulation systems face an additional difficulty in
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that the light they introduce must be detectable over any ambient light that is
present. This leads to difficulties in using active systems for outdoor scanning
during daylight.

We now describe the most popular triangulation scanner designs in more detail. Note
that although we present these systems in something of a logical progression, empha-
sizing the similarities between them, this in fact has not been how these systems have
traditionally been considered in the research literature. Indeed, there has been rela-
tively little communication and exchange of ideas between, for example, the stereo
and light-stripe scanner communities. This is beginning to change, however, with the
development of some hybrid scanner designs that combine ideas originally explored
in different research communities.

Passive Stereo
Constructing an effective 3D scanner based on stereo is essentially synonymous
with solving the correspondence problem between images taken with two cameras.
Passive stereo begins with the immediate recognition that it is hopeless to solve this
problem by looking at individual pixels, hence it is necessary to match regions in
one image against the other. Depending on the amount of texture in the scene, the
optimal size of the patches may range from 3 × 3 pixels to, for example, 25 × 25
pixels or even larger.

In the simplest cases, the correspondence is computed merely by evaluating some
matching cost function between a window of pixels in one image, known as the
reference image, and windows of pixels in the other image at various disparities, or
displacements in pixel location. The match having the lowest cost is taken as the
correct one. The matching cost function ψ may be as simple as the sum of squared
differences (SSD):

ψSSD(δ) =
∑

i

(
I1(i) − I2(i + δ)

)2
, (3.1)

where I1 and I2 are the two images, δ is the disparity, and the sum is overall pixels in
the matching window.

Although the SSD metric corresponds strongly to the intuitive notion of similarity,
several other functions are common. For example, the sum of absolute differences
(SAD) function replaces the square with an absolute value, leading to less sensitivity
to outliers. The normalized cross-correlation (NCC) incorporates terms that make
the function sensitive only to brightness differences within the window, ignoring any
overall difference in brightness between the two images:

ψNCC(δ) = −
∑

i

(
I1(i) − Ī1

)(
I2(i + δ) − Ī2

)

σ1σ2
. (3.2)
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Here, Ī and σ are the mean and standard deviation of pixel values in the window,
as evaluated in both the left and right images. Note that, for consistency with other
matching functions, the sum is negated so that lower matching cost scores indicate
higher similarity.

Although a naive implementation of stereo correspondence would require, for a
window in the reference image, evaluating this similarity function at all possible
windows in the other image, there is an important property of multiview or epipolar
geometry that reduces the search space greatly. This is based on the observation that
the correspondence to a point in one image must lie along the projection of the ray
of that pixel into the other image. Thus, given any pixel in the reference image, it
is possible to compute the epipolar line in the other image along which the match
must lie.

In fact, in many stereo systems an additional shortcut is used to simplify this search
even further. This is based on the observation that any plane through the baseline
connecting the centers of projection of the two cameras intersects the two image
planes in a pair of lines. Any points on one of the lines must have correspondences on
the conjugate epipolar line in the other image plane (Figure 3.2). The process of rec-
tification involves warping the two images such that conjugate epipolar lines lie, for
example, along horizontal scanlines, and in fact may be done such that correspon-
dences lie along the same scanline in both images [Fau93]. The warps necessary for
rectification may be computed from the intrinsic and extrinsic calibration of the two
cameras (i.e., the field of view and relative position and orientation), and perform-
ing the warps is typically relatively fast compared to the rest of the correspondence-
finding process.

Conjugate
Epipolar

Lines

Viewpoint #1 Viewpoint #2

Figure 3.2: Each plane passing through the baseline intersects the two image planes
in a pair of conjugate epipolar lines. All matches to points on the line in one image must
lie on the conjugate line in the other image.
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So, finding the correspondence between windows can be reduced to considering one
window in the rectified reference image and evaluating the matching function for
windows in the other rectified image, considering all possible horizontal disparities.
The disparity yielding the highest similarity is chosen as the correct one (possibly
with some threshold on the similarity value used to eliminate false matches), and
rays corresponding to the two corresponding points are triangulated to find a 3D
location. Many things can still go wrong, however. First, it is certainly the case that
two image windows at the location of the correct match can look dissimilar. This
can be because of the presence of nondiffuse materials, or because the surface is
tilted a different amount relative to the two cameras, leading to a difference in the
amount of foreshortening present in the two views. To address the first of these prob-
lems, one may use a matching metric such as NCC, which tends to be more robust
to small differences in appearance, or a technique such as Helmholtz stereopsis (an
active method), which relies on the reciprocity of Bidirectional Reflectance Distribu-
tion Functions (BRDFs) to compensate for non-Lambertian reflectance [ZBK02]. To
address the problem of differential foreshortening, a common method is to use an
iterative technique in which a first round of correspondence finding is used to esti-
mate the shape of the surface, which in turn is used in a second round to warp the
images of windows to account for the estimated foreshortening [LK81]. The process
may be repeated a few times to obtain more precise correspondence estimates.

The above problems are, however, minor compared to the major weakness of passive
stereo, which is the presence of ambiguous matches. Since the correspondence find-
ing is at the mercy of the brightness variations that occur naturally in the scene, the
presence of either regions of constant color or repeated texture can lead to equally low
matching cost at multiple disparities. Of the many methods that have been developed
to address this problem, here we will consider two.

One method for dealing with ambiguous matches involves adapting the window size,
shape, and weighting to the data themselves. The basic idea is that larger windows can
reduce ambiguity, but also lead to more blurring in the estimated shape. Thus, win-
dows should be expanded locally, and only in regions in which this is necessary to
provide unambiguous correspondence. Moreover, the pixels near the center of the
window should be given more weight than pixels near the edge, in an effort to pre-
serve local detail when this is possible. One system implementing this approach is
described by Scharstein and Szeliski [SS98]. They propose to start with the matching
score for single-pixel windows and “diffuse” a fraction of the matching score from
neighboring pixels in cases in which this reduces the matching certainty. The latter
property is measured using metrics such as winner margin (i.e., what is the difference
in the matching score between the best match and the next-best match) or entropy
of the matching scores across all disparities.
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An alternate method for reducing the errors due to ambiguous matches relies on
regularization. That is, a scoring function is constructed that considers not only the
matching score at each location, but also the extent to which the computed disparities
are smooth across the scene. The latter is measured locally, as the difference between
the disparity at each location and at its neighbors, but in practice it should be a non-
linear function of the disparity difference to prevent excessive blurring across true
depth discontinuities. For example, a function such as the following is often used:

V(i, j) = min(|δi − δj|, K), (3.3)

where a penalty V is assigned to the disparities δ found at neighboring pixels i and j.
The threshold K represents the disparity difference considered to be a true depth
discontinuity, and no additional penalty is applied for greater jumps in disparity.

One may thus construct an energy function consisting of both matching and reg-
ularization terms, and attempt to compute a global assignment of disparities that
minimizes the energy. Unfortunately, such an energy function invariably contains
many local minima and minimizing it is provably NP-hard. Most practical algo-
rithms use heuristics to find approximate minima of this function, using methods
such as simulated annealing. Recent work by Boykov et al., for example, has demon-
strated how to use graph min-cut algorithms to compute excellent approximations
to the minimum of this function [BVZ01], while work of Meltzer et al. has shown
that in some cases it is possible to compute the global minimum of the energy func-
tion in reasonable time, though of course there are no guarantees of fast running
time [MYW05].

Ultimately, both the variable window-size and regularization approaches serve to
return dense depth estimates by interpolating and extrapolating information from
locations at which the correspondences are truly unambiguous. This motivates
an alternative general approach to correspondence finding that first performs fea-
ture detection to locate regions in the image likely to have unambiguous matches,
then simply tries to match those features between the two images. Although these
methods return sparse correspondences, such matches are often of consistently
high quality and, depending on the application, may be more useful than the
dense but low-quality matches returned by correllation-based approaches. One
such system is the Marr-Poggio method, which is based on the proposition that
image edges, in conjunction with the epipolar constraint, make good features for
matching [MP79]. The edges are detected and matched using a dynamic pro-
gramming algorithm, which includes a regularization component that attempts
to preserve the relative ordering of matches between the two images. The entire
process is repeated in a coarse-to-fine manner, leading to coarse matching of the
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most important edges at early rounds followed by smaller-scale matches of the
fine details in the later rounds (during which less smoothing is performed).

Characteristics Passive methods differ from most of the other techniques consid-
ered in this section in that most of the characteristics of the datasets they produce,
including density, accuracy, and presence of outliers, depend almost exclusively on
the object or scene being acquired, rather than on the cameras and setup of the
scanner itself. In the best case, namely scenes with significant texture, stereo can
return accurate estimates of depth, and has the advantages of lowest equipment cost
and the ability to return depth from a pair of frames taken at a single time instant.
The depth maps in this case are also relatively dense, though the maximally accurate
matches are still restricted to brightness or color edges in the scene. For this reason,
in many applications the output of stereo is best suited to the unorganized point
cloud representation. As scene contrast decreases, of course, so do data density and
accuracy.

Active Stereo
In situations that permit additional light to be introduced into the scene, significant
gains in robustness, accuracy, and data density may be obtained by moving to an
active-stereo method. The typical assumption is that a pattern of light is projected
into the scene, though the projector or other device used to introduce the light is
not itself calibrated with respect to the cameras. The purpose of the projected light
is, therefore, purely to reduce the ambiguity of stereo matching by introducing addi-
tional visible features in the scene.

The simplest way to incorporate an active element into stereo is to project a static
pattern consisting of a high-frequency texture, such as an array of dots, a grid of lines,
or even a random binary pattern. A traditional passive-stereo algorithm is run with-
out modification on the resulting images, retaining the advantages described above
while minimizing the presence of ambiguous matches. Alternatively, special algo-
rithms that take advantage of knowledge of the projected pattern may be used. This
is especially popular with patterns that are regular grids or arrays of dots [PGO96],
and algorithms that take advantage of surface continuity to look for neighboring dots
or corners are possible. Algorithms such as these are especially effective when acquir-
ing relatively smooth objects with few depth discontinuities, and a popular applica-
tion is scanning of faces. More complex spatial patterns are also possible, with some
based, for example, on arrays of colored dots having specified uniqueness properties.
We will look at such patterns in greater detail in the section on structured light.

An alternative way of extending passive stereo to include active lighting is to
consider the time dimension. The idea behind temporal active stereo is to project
a time-varying pattern into the scene, permitting the stereo matching functions to
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be evaluated over windows that have temporal, rather than spatial, extent [DC01,
DNRR05]. As long as each pixel accumulates a unique pattern of lighting over time,
the correspondences may be computed robustly using windows that have spatial
extent of a single pixel. This leads to greater precision in the reconstruction, and
typically reveals significantly more surface detail than methods using spatial win-
dows greater than one pixel.

In fact, with good temporal illumination the ultimate limit on the accuracy of surface
reconstruction relies heavily on the ability to perform good subpixel estimation of cor-
respondence. A simple implementation of this is to find the best integer match, then
consider the matching cost for the two immediately neighboring pixels. By fitting
a parabola to the three samples of the matching-cost-versus-position function, one
may analytically find the minimum of the parabola and take its (noninteger) loca-
tion as the best match. More complex schemes for subpixel matching are possible,
and Nehab et al. [NRD05] show that it is necessary to simultaneously refine subpixel
positions in both images to avoid bias and noise in the estimates.

While active stereo with static patterns operates on one frame at a time, hence allow-
ing for moving objects, temporal stereo requires the object to remain still for many
frames. Using matching with windows having both spatial and temporal extent, how-
ever, allows for systems that balance between the high precision of temporal stereo
and the tolerance to movement of spatial stereo. Such spacetime stereo systems can be
tuned for different speeds of motion, by adjusting the relative widths of the match-
ing window in space and time [DNRR05], and, by estimating the motion that is
present, can use diagonal windows through space-time to obtain the highest robust-
ness and accuracy [ZCS03]. Recent work has demonstrated the ability of such systems
to capture moving objects such as faces [ZSCS04].

Characteristics The data returned by active stereo systems can be of high quality,
and it is not uncommon to have noise in depth less than one-tenth of the sample
spacing. The scanning also tends to be robust, with few outlier points (with some
exceptions near depth discontinuities). The points returned are dense on the sur-
face (though subject to the two-line-of-sight problem, or even a three-line-of-sight
problem if the illumination source is shadowed), meaning that some algorithms can
take advantage of the space carving and implicit connectivity provided by a range
image representation. Relative to passive stereo, therefore, active stereo systems tend
to return better data, at the cost of the requirement to introduce light into the scene
and the inability to acquire the color of objects simultaneously with their shape.

Structured Light
Conceptually, structured-light systems may be thought of as active stereo systems
in which the second camera is eliminated and the source of illumination is itself
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considered to be one of the viewpoints on the scene. This has a few disadvantages
relative to active stereo, in that it imposes requirements on how precise the active
light must be, and requires that it be calibrated (for both intrinsics and extrinsics).
This precludes the use of space- or time-varying, yet uncontrolled illumination
(which has been referred to as “unstructured light”), and requires full control
over the light (and, for temporal systems, synchronization to the camera). On the
other hand, structured-light systems have the advantage of reducing the amount
of equipment that is required and, more importantly, allowing for algorithms that
take advantage of the epipolar constraints between the camera and projector.

It is this latter characteristic that has driven the development of structured-light
systems based on “light codes” [PA82, Bes88]. These are spatial or temporal (or,
indeed, space-time) patterns of projected light that are carefully designed so that
every point visible from the camera is guaranteed to correspond uniquely to one
ray from the projector. For example, a spatial light code may consist of an array of
colored dots [DN96] having the property that every local subset of n× n dots has
a different pattern of colors from every other. Alternatively, the code may consist
of stripes perpendicular to the camera-projector baseline [BK87, CKS98], with the
property that any n adjacent stripes have a unique color pattern. In this case,
the epipolar constraint between the camera and projector is implicitly used: the
triangulation proceeds by intersecting a ray from the camera with a plane from the
projector (Figure 3.3). Because stripe codes are easier to design and easier to detect

Camera

Projector

Object
Coded stripe

(x, y)

Figure 3.3: Structured-light systems frequently code only stripes of light from the
projector, and perform ray-plane intersection to find 3D geometry.
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than codes of dots, most structured-light systems, whether spatial or temporal, use
some type of stripe coding.

Temporal structured-light systems provide perhaps the most “bang for the buck” in
that they return high-quality 3D data for static objects while being easy and inexpen-
sive to build. Indeed, homemade structured light scanners are frequently found in
research labs, and they make excellent student projects. Section 3.2 describes a prac-
tical scanning system based on temporal structured light.

The most popular temporal structured-light scanners are based on binary stripe
coding (i.e., each stripe is either on or off at each frame in time), and the most popular
scheme for coding the stripes is based on the binary Gray code [BER76]. The latter is a
way of arranging the 2n binary numbers of n bits such that adjacent codewords differ
only in one bit (this property leads to greater robustness in “decoding” the observed
pattern). The reflected code, the most popular way of constructing a Gray code, arises
from the following simple recipe:

• The reflected code for one bit is 0, 1.
• The reflected code for n bits consists of the code for n − 1 bits, prefixing each

element by a 0, followed by the reverse of the code for n− 1 bits, prefixing each
element by a 1.

Each codeword is assigned to a stripe, and at frame k, each stripe is colored black or
white depending on the value of its k-th bit. The resulting pattern consists of a series
of wide stripes on early frames, with the stripes becoming progressively narrower
with each frame (Figure 3.4). Additional all-white and all-black frames are frequently
included to allow compensation for surface reflectance and ambient illumination.
Even with these additional frames, scanning is usually relatively fast, with the number
of required frames being logarithmic in the number of projector stripes.

Two other temporal structured-light codes are frequently encountered, and are wor-
thy of mention. The phase-shifting code augments a low-resolution Gray code with a
sequence of black-and-white stripes, each several projector pixels wide. The stripes
are shifted by one pixel on successive frames, leading to greater robustness and
better subpixel matching than is achievable with full-resolution Gray codes (which
may include very narrow stripes, several of which can fall on the same camera
pixel). The cost for this is the requirement for slightly more total frames in order
to uniquely code a fixed number of projector stripes. Moving away from binary
codes, the gray wedge technique uses only two frames: an all-white frame and a
frame in which stripe intensity smoothly varies from black on one side to white
on the other [CH85]. The identity of the stripe is found by dividing the intensities
observed on the two frames.
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Figure 3.4: Example of a Gray code and the resulting frames that would be projected
in a structured-light system.

Most structured-light systems are either purely spatial or purely temporal, but there
has been some work on spatiotemporal codes as well. For example, Hall-Holt and
Rusinkiewicz introduced a code in which each pair of adjacent stripes, as seen over
n frames, is unique [HHR01]. As with spacetime stereo techniques, adjusting the
relative spatial and temporal extent of the code-carrying windows provides for a nat-
ural trade-off between the degree of spatial continuity (i.e., surface smoothness) and
temporal continuity (i.e., motion) that is assumed. In this case, the method allows
for slow motion of the object while assuming relatively little surface continuity. The
stripe pairs (or, more specifically, the stripe boundaries) are tracked over time to
provide robust and relatively dense 3D estimates at video rates. The scanner may
be combined with real-time alignment, merging, and point-rendering methods to
enable the entire 3D model acquisition pipeline to run in real time [RHHL02]. More
recent research by Koninckx and van Gool has shown how structured-light codes may
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be adapted to the scene in real time, providing for both higher accuracy and greater
robustness [KPDG05].

Characteristics The data returned by structured-light systems qualitatively share
many features with active stereo. Datasets tend to be accurate, dense, and large. Out-
liers are few, and are mostly caused by depth discontinuities or specular reflections.
One interesting difference is the role played by surface texture (i.e., reflectance varia-
tion): as opposed to active stereo systems, which are often helped by texture, the data
returned by structured-light systems are usually degraded by variations in reflectance.
Phenomena such as “texture embossing,” in which reflectance variations show up
as systematic biases in estimated depth, are often observed [CL95]. In addition,
structured-light systems often suffer from missing data in dark regions of the sur-
face, where the projected light patterns cannot be detected.

Light Stripe
A simple way of thinking about light-stripe scanners is that they are structured-light
scanners with a pattern that illuminates only one stripe per frame. The visual effect
is that of a stripe being swept slowly across the surface, tracing out a single 2D “slice”
of geometry at each point in time. This description should make it clear that light-
stripe triangulation scanners are significantly slower than, for example, Gray code
structured-light systems, but the single-stripe configuration allows for greater opti-
mization of the physical scanner setup, leading to greater accuracy.

The first major optimization performed on light-stripe systems is to use a laser as
the light source. This allows the stripe to be made bright and consistent, leading to
lower sensitivity to ambient light (especially if a narrow-band filter is used in front
of the camera). The use of a laser also allows the stripe to be focused to a very nar-
row width, leading to high resolution. Next, the laser-stripe generator and camera
are often mounted to each other, with the scanning motion consisting of moving the
laser and camera as a rigid assembly (Figure 3.5a). This configuration can simplify
calibration, but more importantly it results in a working volume with a more use-
ful shape and more uniform sample spacing than the intersection of two pyramids
typical of structured-light systems (Figure 3.5b–c). There is no reason to restrict the
motion to be purely translational, and configurations based on rotation of either
the laser-camera scanhead or of the object itself are common. Finally, the optics
of the camera in a laser-stripe system may be optimized to ensure that the image
of the laser stripe is in focus, by tilting the sensor relative to the optical system (the
“Scheimpflug principle”). In addition, cylindrical lenses may be used to effect the
desired trade-off between depth of working volume and depth resolution. Manu-
facturers of high-quality laser scanners, such as Cyberware Corp., typically use all
of these principles.
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Figure 3.5: (a) Laser-stripe scanners are frequently designed with the laser and
camera mounted rigidly on a translating assembly. This results in a working volume with
a more useful shape and even sampling (b), as compared to the working volume of a
structured-light scanner (c).

The processing to extract depth from a light-stripe scanner may broadly proceed
along either spatial or temporal lines. The “spatial” approach to processing treats
each frame in time separately, and finds the peak of the light stripe along each scan-
line. The peakfinding can be based simply on maximum intensity, but it is more
stable to use the mean of a Gaussian fit to the intensity profile along a scanline. Tem-
poral processing, in contrast, treats each camera pixel independently, and finds the
time instant at which it achieves the highest intensity. Temporal processing in gen-
eral tends to result in fewer artifacts than spatial, but as shown by Curless and Levoy
the optimal processing is in fact spatiotemporal, in which peaks are found along
paths angled through space-time [CL95]. Despite this, many laser triangulation
systems today use spatial processing because it is the simplest and least computa-
tionally expensive (data are naturally gathered and organized spatially, so temporal
processing requires transposing the data and spacetime processing requires a more
complex rotation).

Characteristics The data produced by light-stripe scanners are among the highest
in quality, and the use of laser light results in little missing data (other than due to
occlusion of the camera or laser) and few outliers. Datasets are dense, and are most
naturally organized as range images.

Multiview Triangulation and Structure from Motion
Any of the above techniques can be combined with additional calibrated cameras,
leading to multiview techniques. Multiview stereo (both active and passive) has been
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explored in greatest detail, due to the ability of the additional cameras to reduce the
ambiguity inherent in stereo matching [OK93]. This relies on the observation that an
incorrect match from a pair of cameras, leading to an incorrect 3D position, will not
in general appear to match when projected to a third viewpoint. Incorrect matches
may appear consistent between pairs (or small subsets) of cameras, but only the true
matches are likely to be consistent between all cameras. Passive multiview systems
therefore suffer from significantly fewer false correspondences between regions that
appear similar, though of course the introduction of additional cameras does nothing
to improve the situation in textureless regions. Single-pattern active multiview stereo
systems are fairly popular, and can return relatively dense 3D estimates with high
reliability.

In one sense, structure from motion (SfM) represents a limiting case of multiview
stereo: there are many “cameras” placed densely together. In practice, the many views
are acquired with a video camera that is moved throughout a scene. Features are
detected in the video stream and are tracked over many frames, thus establishing
correspondence. The major difference, however, between multiview stereo and SfM
techniques is the portion of the algorithm that is considered to be difficult. For stereo,
the difficulty is in finding correspondences; for SfM, the feature-tracking problem is
relatively easy, and the challenge is performing the 3D reconstruction.

The interesting feature of most SfM techniques is that they do not require the
camera to be calibrated (some methods require intrinsic calibration, however): they
solve for the camera parameters simultaneously with solving for the 3D positions
of the tracked features. The reason this is possible becomes clear if we consider the
number of knowns and unknowns. Assume that we have p feature points that have
been tracked for n frames. At each frame, we know the 2D position of each point in the
image, leading to 2np knowns. In contrast, the unknowns for which we must solve are
the 3D positions of the points, as well as the camera parameters (which, considering
only the extrinsics, are the camera position and orientation at each frame). Thus,
there are only 3p + 6n unknowns, which given enough points and enough frames can
be fewer than the number of knowns. Of course, there are certain global unknowns
that can never be solved for, such as the absolute scale of the scene. Methods for
solving the SfM problem include a popular linear method [TK92] that assumes weak
perspective (i.e., assumes that the scale of the scene is small relative to the distance to
the camera), as well as full nonlinear bundle adjustment algorithms [PGV+04].

Characteristics Both structure from motion and multiview stereo systems return
sparse, though accurate, depth estimates. In addition, SfM, in contrast with most of
the techniques considered here, can return points from all around an object, rather
than just from one direction. Unorganized point clouds are therefore the appropriate
representation.
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3.1.3 OTHER 3D SCANNING TECHNOLOGIES

There exist several methods for 3D shape acquisition that are based on technologies
fundamentally different from triangulation. While they are sometimes less accurate
than triangulation scanners, they are also more appropriate in certain regimes such as
very large or very small scenes. Here we consider some of the most popular alternative
scanning technologies.

Pulsed and Modulated Time of Flight
Although SONAR and RADAR are both relatively well-known methods for obtain-
ing 3D distances at large scales, there is a smaller-scale cousin, LIDAR (light detec-
tion and ranging), that uses the round-trip time of light between the scanner and
the scene to estimate depth. One way to use the LIDAR principle involves firing
a short (often on the order of picoseconds) pulse of light, and timing how long
it takes to return. A rotating mirror is used to change the direction of the pulses,
and so a depth map is built up one point at a time. Pulsed time-of-flight scan-
ners are usually expensive, require long scanning times, and have poor accuracy in
absolute terms (many millimeters or larger, with slow progress on the technology
to reduce this—after all, this requires picosecond-level timing). Nevertheless, they
have some significant strengths. First, these scanners have large working volumes,
often measured in tens or hundreds of meters. Thus, their relative depth accuracy
can be quite significant. In addition, they require only a single line of sight to the
surface point being scanned, since the light pulse returns along the same path along
which it was projected. Therefore, these systems can both acquire geometry that
may be impossible to scan using triangulation systems, and are significantly more
practical for large scenes since they do not require a long, calibrated baseline. For
this reason, pulsed time of flight is the dominant scanning technology used for
large objects such as building interiors or exteriors.

The other main technology that makes use of time of flight relies on modulation.
A continuous beam of laser light is projected, with its intensity modulated at a high
frequency. The reflected light is then modulated at the same frequency, allowing the
measurement of a signal that depends on the phase difference between the outgoing
and reflected beams. Since this phase difference depends on the distance between
the scanner and the scene, it may be converted to a depth measurement. Different
variants of this scheme may measure either a single point or a complete 2D array of
range pixels at a time. The choice of modulation frequency is important: too low a
frequency will give poor depth accuracy, while too high a frequency will allow for
only a shallow range of depths before the depths “wrap around” (because of the 2π
ambiguity in phase). To improve on this, a series of sweeps using different modulation
frequencies can be used to disambiguate the depths while retaining high accuracy.
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In practice, most of these systems are optimized for working volumes of a few meters
(i.e., room-sized) and are a natural choice for measuring people, furniture, etc.

Shape from Silhouettes and Other Space-carving Methods
The idea behind most space-carving methods is to maintain an estimate of which
portions of space are occupied and which are not. This estimate is initialized to mark
the whole working volume as occupied, and as information about empty space is
acquired it is used to “carve off ” regions. The effect is not unlike sculpting, in that
material may only be removed, not added, to the shape estimate.

While some 3D scan-merging methods, such as VRIP [CL96], make use of space
carving in addition to traditional depth estimates, there have been some 3D acquisi-
tion systems that rely purely on space carving. The most popular rely on the ability
to distinguish the object’s exterior silhouette (i.e., the boundary between the object
and the background) in each of a set of calibrated views [MTSA97, MBR+00]. Space
carving is performed based purely on this information, resulting in a final model
that is a superset of the original object. The intermediate model representation used
during the carving may be a binary voxel (occupancy) grid or a polyhedron, or for
image-based applications, the 3D model might not be reconstructed directly (with
the method relying on mapping candidate points into the original images and test-
ing them against the silhouettes). In all cases, there is a restriction on the types of
objects whose shape may be recovered: there are some features such as spherical con-
cavities that silhouette carving cannot recover. In general, with a sufficient number of
views, the reconstruction converges to the line hull of the original shape. The strength
of shape from silhouettes, therefore, is not in precise reconstruction but rather in
obtaining a rough 3D model with little effort.

A related technique, sitting somewhere between space carving and multiview tri-
angulation, is voxel coloring [SD99]. In this system, the shape being recovered is
represented as a voxel grid and is carved from the outside in. Each voxel on the
currently outermost layer is considered in turn, and is projected into all of the
available views. A consistency metric is evaluated across all the views, testing whether
the colors visible from the different cameras are the same. If the colors are incon-
sistent, the voxel is carved away. This algorithm results in reconstructions that have
the character of multiview stereo in regions with significant texture, but that look
more like space-carving results in regions of constant color.

One fact that should be noted about all carving methods is that they, by definition,
produce a watertight surface as output. This property is important for many appli-
cations including rendering, simulation, and 3D hardcopy output. In contrast, most
other 3D acquisition methods do not produce watertight surfaces automatically and
require special support in the scan merging or holefilling stages of the pipeline.
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Shape from Shading and Photometric Stereo
The brightness of a surface depends on its orientation relative to light sources, and
there exist techniques that use this to estimate surface normals. Although this is
different from obtaining 3D positions directly, the normals may be “integrated” to
obtain shape, possibly with some additional stability provided by sparse or rough
depth estimates obtained using a different method. Although passive shape from
shading is of some interest, especially since it is clear that the human visual sys-
tem uses such shading cues, most practical systems are active methods that rely on
multiple calibrated, controlled light sources. These are known generally as photo-
metric stereo [Woo80, RTG97]. Note that, despite the use of the word stereo, this
is a single-view method and it is the lights of which there are two or more.

The most direct photometric stereo methods assume Lambertian reflectance and
three light sources of known direction and radiance. The object is imaged under each
light source in turn, and at each pixel we know that

Ii = Li ρ (n · li), (3.4)

where Ii is the observed pixel intensity, Li is the radiance of the light source, and li is
the direction to the i-th light source. The unknowns are ρ, the diffuse albedo of the
surface, and the surface normal n. Given three such measurements, we can write




l1,x l1,y l1,z
l2,x l2,y l2,z
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
 =


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I2/L2

I3/L3


 (3.5)

and solve for the vector ρn. Since we know that the normal is unit length, we obtain
both it and the albedo (in practice, the albedos are determined up to a constant, and
finding them in absolute terms requires calibrating the gain of the camera, vignetting
in the lens system, etc.). If there are more than three light sources, the resulting
overconstrained system may be solved using least squares, or the most reliable three
lights may be used, eliminating shadowed regions and specular highlights [RTG97].
In order to avoid singularities in the solution, the three lights plus the camera must
be noncoplanar.

As we have mentioned, photometric stereo is very well suited for use in combination
with other techniques that return noisy, inaccurate, or sparse depth estimates. When
used in combination with scanners returning dense depths, such as those based on
structured light, the normals may be associated one to one with the 3D points, for use
in rendering or accurate surface reconstruction. The noise present in these normals
is generally lower than in the surfaces obtained from triangulation, though pho-
tometric stereo is susceptible to systematic low-frequency bias resulting from non-
Lambertian surfaces or imperfect estimation of light source radiance and position.
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Nehab et al. have demonstrated that by combining the high-frequency information
obtained using photometric stereo with the low-frequency information from trian-
gulation, the benefits of both types of scanners may be obtained while avoiding their
drawbacks [NRDR05].

A somewhat related technique to shape from shading is shape from texture, which
relies on either the variation in density of texture elements or the foreshortening
of individual elements to estimate surface orientation. Another similar technique
is shape from specularity, which uses the presence of specular highlights to obtain
(usually sparse) orientation measurements.

Shape from Focus and Defocus
It is possible to construct systems that determine depth based on the focus distance at
which a lens must be set to observe objects with greatest clarity (“shape from focus”)
or based on how out-of-focus objects appear at a fixed lens setting (“shape from
defocus”). Real-time systems have been demonstrated using active depth from defo-
cus, which relies on a projected pattern of dots [NN94].

3.1.4 SCAN ALIGNMENT

Since most types of scanners return data from only one part of the object at a time,
it is necessary to obtain multiple scans and align them together. The alignment stage
is not necessary, of course, if the motion of the scanner and object relative to each
other are calibrated, but in many instances this is not possible. However, provided
the geometry or color of the object is sufficiently distinctive, and provided there is
sufficient overlap in the scanned regions, the data themselves may be used to align
the different scans to each other. Alignment based on color is conceptually similar
to image feature matching, and many of the same techniques that are used for stereo
correspondence are applicable. Here we focus on alignment techniques that use geo-
metric information, splitting them into methods that obtain an initial rough estimate
for the alignment, methods that refine the alignment between a pair of scans, and
methods that attempt to balance the pairwise registration errors across all pairs of
overlapping scans.

Initial Alignment
The simplest method for obtaining an initial alignment, of course, is to ask the user.
A typical user interface displays a pair of scans, then either provides the capability
for directly moving the scans, using, for example, a virtual trackball interface, or
allows the user to click on at least three pairs of corresponding points and solves
for the optimal transformation. Despite the fact that this manual method does not
sound particularly elegant or exciting, it should not be overlooked: automated meth-
ods for computing initial alignment can be slow, not robust, and tricky to implement
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correctly. Even for a large scanning session, manual initial alignment can be the fastest
and most reliable technique.

In situations in which automated initial alignment is desirable, the general technique
is as follows:

1. Find distinctive feature points on each scan.
2. Compute local shape descriptors characterizing the surface geometry around

the features [Kaz04].
3. Propose correspondences between features by matching similar descriptors.
4. Compute the rigid-body transform that best aligns corresponding features.
5. Verify that the proposed alignment is reasonable, by checking the scan-to-scan

distance at a large number of points. If the alignment does not seem plausible,
repeat using a different set of proposed correspondences.

There are many possible variations on this broad outline, and to a large extent
greater sophistication in one stage may compensate for simplicity in another. For
example, if the feature points are particularly distinctive and are consistently found
in similar locations on different scans, there may not be a need for a shape descrip-
tor: all triplets of feature correspondences may simply be tried [CH99]. Conversely,
if a sophisticated shape descriptor is used it may be sufficient to compute that
descriptor at random locations on the surface [JH99, HH03]. Finally, in many situ-
ations it is not unreasonable to simply use a brute-force algorithm, testing a sparse
sampling of possible rotations and translations.

Iterative Pairwise Registration Using ICP
The ICP (originally iterative closest point, though iterative corresponding point is
perhaps a better expansion for the abbreviation) algorithm has become the domi-
nant method for pairwise alignment of 3D models based purely on the geometry,
and sometimes color, of the meshes. ICP starts with two meshes and an initial guess
for their relative rigid-body transform, and iteratively refines the transform by repeat-
edly generating pairs of corresponding points on the meshes and finding the trans-
formation that minimizes an error metric, such as the sum of squared point-to-point
distances. The original ICP algorithm computed the “correspondences” as being, for
each point on one mesh, the closest point on the other mesh (Figure 3.6).

Since the introduction of ICP by Besl and McKay [BM92], many variants have been
introduced on the basic ICP concept. We may classify these variants as affecting one
of six stages of the algorithm:

1. Selection of some set of points in one or both meshes.
2. Matching these points to samples in the other mesh.
3. Weighting the corresponding pairs appropriately.
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F igure 3.6: In the ICP algorithm, points on one scan (blue) are selected and matched to
the closest points on the other scan (red). One of the scans is moved such as to minimize
the distances between pairs of points and the process is iterated until convergence.

4. Rejecting certain pairs based on looking at each pair individually or con-
sidering the entire set of pairs.

5. Assigning an error metric to the current alignment, based on the point pairs.
6. Minimizing the error metric.

A survey of many of these variants is available [RL01a], so here we will restrict the
description to variants generally regarded as current “best practice.”

Point Selection A reasonable method for selecting points at each iteration is sim-
ply random sampling of points on both scans, with a few hundred to a few thousand
points usually sufficient for good stability. However, in difficult cases in which some
components of the transform are restricted by features on a relatively small portion
of the mesh, greater care must be taken to sample points that do a good job of con-
straining the transformation. A simple option is to estimate normals on the scan,
then sample points having as uniform a distribution of normals as possible. A more
theoretically well-grounded method, proposed by Gelfand et al., directly considers
the error metric being minimized, performs an eigenanalysis on the linear system
being solved, and uses the eigenvalues of the system to determine which eigenvec-
tors are most underconstrained. Sampling according to these criteria ensures that all
components of the transformation are well constrained [GIRL03].

Matching Although the distinguishing feature of ICP-like algorithms is that they
use the closest point (given the current best estimate of the transformation) as
the approximation for the corresponding point at each iteration, greater stabil-
ity and faster convergence may be achieved by instead matching to the closest
compatible point, using some compatibility criterion. Criteria based on color, nor-
mals, curvature, etc. have been proposed, and all improve performance in certain
cases [GRB94, Pul99, SLW02]. A simple condition, such as that normals should be
within 45◦ of each other, can improve convergence at minimal cost. In all cases,
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a spatial data structure such as a K-d-tree may be used to accelerate the closest-point
computations.

Weighting Although many weighting schemes based on uncertainty, compatibility,
point-to-point distance, and other criteria have been proposed, in most cases the
effect of weighting on convergence rate tends to be small and highly data dependent.

Rejection Since ICP is fundamentally a least squares approach, it is necessary
to perform outlier rejection to avoid contamination of the results by incorrect
matches. A good, all-purpose approach is to reject pairs whose point-to-point
distance is larger than some small multiple of the median distance. In cases in
which ICP is being performed on meshes or range images, such that it is possible
to determine which points are on mesh boundaries, we additionally recommend
rejecting all pairs containing such edge points (Figure 3.7). This strategy avoids
erroneous pairings (that cause a systematic bias in the estimated transform) in
cases when the overlap between scans is not complete [TL94].

Error Metric The original ICP algorithm minimized the sum of squared point-to-
point distances among corresponding pairs of points, but a variant by Chen and
Medioni proposed using point-to-plane distances instead [CM92] (Figure 3.8). That
is, the algorithm minimizes the distance from one point to the plane containing
the other point and perpendicular to its normal. This has the effect of making
it easy to move the scans “along” the surface, leading to dramatically (order of
magnitude) faster convergence in many cases.

Mitra et al. have also proposed precomputing a piecewise-quadric approximation
for the function representing the distance to one of the scans and evaluating the
function at locations on the other scan [MGPG04]. A special data structure is used

(a) (b)

Figure 3.7: (a) When two meshes to be aligned do not overlap completely (as is the
case for most real-world data), allowing correspondences involving points on mesh
boundaries can introduce a systematic bias into the alignment. (b) Disallowing such
pairs eliminates many of these incorrect correspondences.
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F igure 3.8: The point-to-plane metric for ICP captures the notion that sliding two
planes along each other does not affect the distance between them. In this example,
the two scans are mostly planar, with only the small bump at right constraining the
left-to-right component of the translation. Using the original point-to-point minimization,
however, the point pairs in the flat region will prevent the scans from “sliding along
each other” to reach the correct transformation (it is useful to think of them as small
springs that are attempting to contract). In this situation, using the point-to-plane
metric will lead to significantly faster convergence.

to store this approximation, and the parameters of the quadric are used directly
during a Newton’s method-style minimization. This provides the stability of point-
to-point minimization far away from the correct minimum while retaining the high
convergence rate of point-to-plane minimization once the transformation is close
to correct.

Minimization While there exist closed-form solutions for the rotation and trans-
lation that minimize point-to-point distance [ELF97], there are no analogous
methods for the recommended point-to-plane minimization. Instead, the recom-
mended method is as follows.

Assume we have a collection of points (pi, qi) with normals ni. We want to deter-
mine the optimal rotation and translation to be applied to the first collection of
points (i.e., the pi) to bring them into alignment with the second (i.e., the qi).
Thus, we want to minimize the alignment error

ε =
∑

i

[
(Rpi + t − qi) · ni

]2
(3.6)

with respect to the rotation R and translation t.

The rotation is a nonlinear function, incorporating sines and cosines of the rotation
angles. If, however, we assume that incremental rotations will be small, it is possible
to linearize the rotations, approximating cos θ by 1 and sin θ by θ. For example,
in the case of rotation in x,
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Rx =




1 0 0

0 cos rx − sin rx

0 sin rx cos rx


 ≈




1 0 0

0 1 −rx

0 rx 1


 . (3.7)

Thus, the full rotation may be approximated as

R ≈




1 −rz ry

rz 1 −rx

−ry rx 1


 , (3.8)

for rotations rx, ry, and rz around the x, y, and z axes, respectively.

Defining

c = p × n, r =




rx

ry

rz


 (3.9)

and substituting Equation (3.8) into (3.6), we obtain

ε =
∑

i

[
(pi − qi) · ni + t · ni + r · ci

]2
. (3.10)

We now minimize ε with respect to rx, ry, rz, tx, ty, and tz, leading to the following
linear system:

[
∑

i

(
ci

ni

)
(ci ni)

] ( r

t

)
= −

∑

i

(
(pi − qi) · ni

) ( ci

ni

)
. (3.11)

This is a linear matrix equation of the form Cx = b, where C is the 6× 6 “covariance
matrix” accumulated from the ci and ni, x is a 6 × 1 vector of unknowns, and
b is a 6 × 1 vector that also depends on the data points. The equation may be
solved using standard methods (C is symmetric, so Cholesky decomposition is the
preferred algorithm), yielding the optimal incremental rotation and translation.

As mentioned above, this 6 × 6 covariance matrix plays a critical role in the
stability sampling, since it encodes the increase in the alignment error when the
transformation is moved away from its optimum:

dε =
(

dr dt
) (

C
)
(

dr

dt

)
. (3.12)
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The larger this increase the greater the stability of ICP, since the error landscape will
have a deep, well-defined minimum. On the other hand, if there are incremental
transformations that cause only a small increase in alignment error, ICP will be
relatively unstable with respect to these degrees of freedom.

By expanding C in terms of its eigenvectors we may see directly the effect of various
incremental transformations. If all eigenvalues of C are large, any transformation
away from the minimum will result in a large increase in alignment error. If, on the
other hand, one or more eigenvalues are small, the corresponding eigenvectors are
transformations that do not increase error much, and therefore represent directions
in transformation space along which the error landscape is shallow.

Global Registration
Although it is sometimes possible to build complete 3D models just by aligning
each scan to one other, this can be unstable. Consider the situation in which there
is a chain of scans stretching all the way around an object. Simply aligning each
scan to the one immediately before it can lead to an accumulation of any pairwise
alignment errors that might have been caused by noise, miscalibration, or some
other cause. As a result, the final scan can end up quite a distance away from the
first. As a result, some method of “spreading out” the alignment error is necessary,
so it is not concentrated in just one pair of scans. This is the goal of so-called
“global registration” algorithms.

One global registration approach that is sometimes used is to take a special scan
that covers a large part of the surface. This might be a “cylindrical scan” that goes
all around the object, and some commercial laser-triangulation scanners have the
capability of taking such scans in addition to the more-common linear scans. If
such a scan is available, it certainly makes sense to take advantage of it by aligning
all the other scans to it, rather than to each other [TL94]. In many cases, however,
it is impossible or impractical to obtain such a scan.

The simplest “true” global registration technique is the brute-force solution: bring
all scans into the ICP iteration loop. That is, at each ICP iteration we compute
correspondences from points on one scan to the closest point on all overlapping
scans, then find the transformation for that scan that minimizes all the pairwise
transformations [BSGL96]. While this approach works, it requires holding all the
scans in memory at once and can be computationally impractical.

A simple way of speeding up the previous idea is to precompute pairwise alignments
between all overlapping scans. The final global registration step then just has to
solve for a set of transformations that are as consistent as possible with all the
pairwise ICPs. The advantage of this is that the global registration step does not
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need all the scans themselves in memory, just some data computed during the
pairwise registrations. This makes it much more practical for models with many
scans.

Pulli’s algorithm is a combination of the two previous ideas: the result of the
pairwise ICPs is a small set of precomputed point correspondences between the
scans, never to be computed again, and these are the only thing that is used during
the global registration. The final global step itself involves repeatedly considering
each scan and finding the transformation that minimizes its precomputed point
correspondences with respect to all other scans [Pul99]. Faster convergence is
achieved by considering scans in decreasing order of the number of other scans
that they overlap. Sharp has proposed a different variant on the same theme, which
focuses specifically on “spreading out” the mutual inconsistency between pairwise
alignments [SLW05]. Specifically, the algorithm looks for cycles within the graph of
scan overlaps. For each cycle, the net alignment error is spread out equally among
all pairs of scans within that cycle. Scans belonging to multiple cycles receive the
average transformation.

Finally, Krishnan et al. have proposed an SVD-based method that can solve for the
optimal transformations directly, given precomputed pairwise transformations for
a set of scans [KLMV05]. The method is an extension of one of the closed-form
solutions for pairwise point-to-point alignment, and is exact in the absence of
noise. Otherwise, the SVD provides an initial estimate, and the global registration
proceeds via a Newton iteration.

3.1.5 CONCLUSION

Scanning hardware, based on technologies such as triangulation and time of flight,
has emerged as an important source of detailed 3D models and has partially
driven the development of point-based methods. Depending on the method, data
are produced as either unorganized point clouds or range images and are pro-
cessed by further stages in a 3D model acquisition pipeline, including registration
(described in this section) and merging (described later in this book). While the
scanning technologies are mature and capable of producing high-quality models
for most objects, research continues to improve the speed and accuracy of scan-
ning hardware, the ability to scan specular and translucent objects, and the ease
and automation of creating complete 3D models. The following section describes
a case study based on the principles surveyed in this chapter: a complete system
for acquiring 3D models with color using a structured-light scanner.
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3.2 A PRACTICAL LOW-COST SCANNER FOR
GEOMETRY AND APPEARANCE

Filip Sadlo, Tim Weyrich, and Ronald Peikert

3.2.1 OVERVIEW

The previous section gave an overview of state-of-the-art acquisition techniques.
This section describes in detail an implementation of a temporal structured-light
system based on binary Gray codes. It allows robust and accurate acquisition of
objects with arbitrary geometry and a wide range of materials. A benefit of this
method is that geometry and texture can be acquired with the same camera,
resulting in texture that is consistent with the geometry. As stated in Section 3.1.2,
another benefit is the low cost compared to other systems, since video projectors
are often available and because only a single camera is needed. During the whole
acquisition stage, the data are represented and processed in point-based format,
resulting in an unorganized point-cloud model.

The object is rotated in small known steps by a turntable and for each posi-
tion the view is reconstructed using structured light. Unlike many approaches,
the demanding and error-prone task of mutually registering the single reconstruc-
tions is avoided. Instead, precise calibration of the projector, the camera, and the
axis of the turntable is assured. This allows them to produce consistent multiview
reconstructions (rings of overlapping views). Then some methods for the removal
of artifacts are applied. After that, an efficient method for merging the overlap-
ping reconstructions into a single-layered surfel representation is applied. For the
reconstruction of texture, photometric calibration is added to the already com-
puted geometric calibration of the projector. This way, a calibrated light source is
obtained that is used for the per-surfel reconstruction of either Lambertian texture
or texture according to the Phong reflectance model. At the end of this section a
method for analyzing the geometric accuracy of the system is described.

3.2.2 SYSTEM OVERVIEW

The acquisition system (Figure 3.9) consists of custom hardware, namely a video
projector that projects the structured-light patterns, a turntable that rotates the
object, a camera that takes images of the projections, and a computer that controls
the hardware and does the reconstruction.
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F igure 3.9: System overview: turntable, camera, projector, and control computer
(from left to right).

In our setup, the system contains an analog-input 1, 024×768 DLP video projector.
It is beneficial if the projector allows for disabling features such as automatic
synchronization and image size adaption. This way the calibration is not lost when
the projector is turned off between scans. Another aspect is the projector’s minimal
image diagonal, or in other words, the minimal focal distance. This becomes impor-
tant if small objects have to be acquired. Currently, an IEEE-1394 video camera with
a resolution of uncompressed 1, 024× 768 pixels is used to acquire the images. It is
preferred to use monochrome cameras and to illuminate the object (or calibration
pattern) with red, green, and blue projector light in order to acquire colors. The
reason is that cameras using a Bayer pattern for color acquisition (each pixel has a
red, green, or blue filter attached) exhibit increased blur and artifacts due to under-
sampling and interpolation. This complicates calibration, smoothes the reconstruc-
tion, and can produce artifacts comparable to those in Figure 3.14 shown later. For
similar reasons, it is also avoided to rectify the images and instead the lens distortion
is modeled.

Often several rings of reconstructions are needed in order to get a complete
reconstruction. This is accomplished by either tilting the object, or by moving
projector and camera to a new position between the scans. The optimal solu-
tion would be to perform these transformations again around a calibrated axis.
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But since this tends to be mechanically demanding, the object is tilted by hand
and each time a ring of reconstructions is acquired by rotation of the turntable.
Therefore, the resulting rings have to be mutually registered, treating each ring as a
separate rigid model. Some methods for mutual registration of reconstructions are
geometry based, such as iterated closest points (ICP) described in Section 3.1.4,
and others are image based, such as that by Bernardini et al. [BMR01]. The cur-
rent system uses ICP for registration. Some challenges of registration, such as error
accumulation, play a minor role in this case because the rings are already consistent
at high accuracy, leading to a simpler registration problem. After the rings have
been merged to a single-layered surfel representation, reflectance samples for each
surfel are collected into lumitexels [LGK+01] and used for texture reconstruction
according to the Phong reflectance model, which is then rendered and edited using
Pointshop3D [ZPKG02] as described in Section 5.2.

3.2.3 CALIBRATION

Although often underestimated, precise calibration of the structured-light system
is one of the main prerequisites for a successful and accurate reconstruction. This
is especially true for multiview reconstructions, where a given surface point is
reconstructed several times and the corresponding reconstructions have to match.
In order to increase accuracy and to ease calibration, separate intrinsic calibration
of camera and projector is performed and then an extrinsic calibration step is
applied.

For intrinsic and extrinsic calibration of the camera and projector, the Zhang cali-
bration method [Zha00] is used as implemented by OpenCV’s cvCalibrateCamera.
This calibration model consists of focal length with respect to pixel widths and
heights, the principal point, and a radial and a tangential lens distortion modeled
by two parameters each. As proposed by OpenCV, a chessboard pattern is used
for calibration. However, the pattern detection algorithm of OpenCV fails under
difficult lighting or oblique viewing conditions. This conflicts with the experience
that strong perspective views at oblique angles increase the accuracy of intrin-
sic and especially extrinsic calibration. It also conflicts with the need to detect
a printed pattern and a (distorted) chessboard projection in the same view (for
intrinsic projector calibration). Therefore, an alternative detection procedure based
on projective geometry is applied.

Calibration Patterns
OpenCV’s detection of the calibration pattern inside the images is done in two
steps. First, approximative guesses of the chessboard corners are computed. Then,
the corners are detected at subpixel accuracy from the guesses. The second step
works well, but the first step fails under difficult light or viewing conditions.
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To ease the pattern detection, identical color marks are attached onto the four
corners of the chessboard pattern and an additional one for defining the origin. It
has been chosen to use colors instead of spatial marks because of the invariance of
color with respect to projective transforms. A detailed description of the detection
procedure and the subsequent calibration steps is given in Sadlo et al. [SWPG05].

Intrinsic Camera Calibration
The camera is calibrated using different views of a printed chessboard pattern as
described above. The pattern is illuminated by the projector in order to create
similar lighting conditions as in the case of projector calibration. This allows the
use of identical camera settings and HSV segmentation ranges for detection in all
calibration steps.

Intrinsic Projector Calibration
The projector is calibrated as an inverse camera. This means that instead of taking
pictures of a chessboard with known geometry and detecting the corners inside
the images, a chessboard pattern with known geometry is projected to different
orientations and positions of a plane and the projections are measured with the
calibrated camera.

Extrinsic Calibration
The orientation of projector and camera relative to each other is determined in
a similar way as in the projector calibration, but with a single camera image.
This time both projector and camera are calibrated extrinsically. The reference
coordinate frame is also determined in this step.

Turntable Axis Calibration
Calibration of turntables is approached in different ways, such as using markers
permanently attached to the turntable [SPMS04], or by fitting an axis to rotated
reconstructions. A color-marked chessboard pattern is put horizontally on the
turntable and a full rotation is done in a given number of steps, typically 12. For each
step, the position and orientation of the camera relative to the pattern is computed
by extrinsic calibration. Then a circle is fitted to the resulting ring of virtual camera
positions. The rotational axis of the circle represents the axis of the turntable.

Luminous Projector Calibration
Because the object is illuminated by the projector for texture acquisition, the irra-
diance from the projector has to be known at a given point in space. For each new
projector, the luminous intensity I of the projector pixels is to be initially calibrated.
This could be done using a calibrated reflection target, for example, Spectralon.
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As our application does not require absolute physical quantities, a gray cardboard
is used instead and I is scaled to map color intensities into a useful range. Two
calibration modes have been implemented. I is either assumed to be identical for all
pixels, or I is determined on a per-pixel basis, capturing spatial intensity variations
at the cost of more noise. The irradiance E at a given surface point is then computed
as follows: E = I/d2, with d its distance to the projector’s center of projection.

3.2.4 GEOMETRY RECONSTRUCTION

Geometry is reconstructed using structured light according to the Gray code and
phase-shifting method described below. Normals are computed from the weighted
positions of neighboring samples by plane fitting. They are computed separately for
each view before merging the reconstructions. This avoids influence of registration
errors.

Gray Code and Phase Shifting
Structured-light methods make use of a projection device to determine the z-depth
of every illuminated camera pixel. This is done by optical triangulation of the cam-
era ray with the corresponding projector ray that illuminated the surface element.
There are many possibilities to structure light in order to allow the identification
of a projector pixel by its light. It has been chosen to do time-multiplexing of gray
level codes. This allows a wide range of materials but limits the system to static
objects.

In the standard Gray code algorithm (see Section 3.1.2), the ray defined by a camera
pixel is intersected with the plane defined by the corresponding projector column.
However, this assumes no lens distortion inside the projector because otherwise
the plane would be distorted. To make the reconstruction process more robust
against lens distortion and decoding errors, both projector columns and rows are
encoded. The plane-ray intersection problem becomes an overdetermined ray-ray
intersection problem that also allows for the removal of artifacts by the ray skew
criterion as described below.

Since the projected Gray codes are binary, the achievable precision is limited to inte-
ger projector coordinates. Therefore, the detected pixel relations are subsequently
improved using a variant of the phase-shifting technique (Section 3.1.2) based on
a grayscale sine pattern as shown in Figure 3.10. This also reduces decoding errors
in the least significant bits of the Gray code. In addition, phase-shift reconstruction
even allows to determine the projector coordinates at subpixel accuracy. It has also
been experimented with line-shifting [GBBF00], which achieves subpixel accuracy
in camera coordinates rather than in the projector domain. However, in our setup
it generally produced inferior results.
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Figure 3.10: (a) Gray-coded structured light. The temporal signal (blue box) at a
given object point represents the column of the corresponding projector pixel. The
procedure is repeated with horizontal stripes to also encode the projector rows.
(b) Phase shifting. Shifted sinusoidal stripe patterns are projected to the object,
producing a temporal sine signal on a given object point. The phase of this signal
represents the projector column. The procedure is repeated with horizontal stripes
to also encode the projector rows.

Due to errors in calibration and decoding, the two corresponding rays usually do
not intersect. The method presented by Guehring [Gue01] addresses the problem by
nonlinear least squares and analysis of the residual, while Hartley and Sturm [HS94]
give an overview and introduce a polynomial method. In our system the point
of intersection is computed as the point on the camera ray that is closest to the
projector ray. The solution is constrained to the camera ray because its calibration
can be assumed more accurate than that of the projector rays. This way the
projector only contributes depth information, which meets the original intention.
The distance between the intersecting rays (ray skew) is used for the removal of
artifacts as described below. The ray skew is also visualized by color coding the
reconstructions for visual verification of the quality of calibration. Figure 3.11
shows an example.

Artifact Removal
Here some of the implemented methods for the elimination of geometric artifacts
are described. They are all applied to the single-view reconstructions before they
are merged.
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F igure 3.11: Single-ring reconstruction colorized by the ray skew for verification of
calibration quality. Red means small skew; surfels with ray skew larger than 0.6 mm
(outliers) have already been removed.

Signal Strength A black reference image with all projector pixels set to black and
a white reference image with all projector pixels set to white are taken for each
view. They are used for elimination of camera pixels that receive no or too weak
signals and they are also used for normalization of the structured-light signal.
A camera pixel is eliminated if the white reference differs from the black reference
by less than a user-defined threshold. The threshold is chosen in order to reject
mainly background and part of the shadows.

Ray Skew This method detects artifacts caused by decoding errors as well as
artifacts that are produced by reflected or scattered codes. Assuming accurate cali-
bration, it is unlikely that the projector ray corresponding to the falsely decoded
code intersects with the camera ray as well as the correct projector ray would do.
In other words, the ray skew tends to increase on decoding errors. A threshold for
the minimal distance between intersecting rays is used and the reconstruction is
rejected if the threshold is exceeded (Figure 3.12).

Subpixel Variance This method addresses artifacts that originate during phase
shifting from object regions with varying reflectance and curved (or discontinuous)
surface as described by Curless and Levoy [CL95]. The phase-shift signal is spatially
integrated over the area of each camera pixel during acquisition. Assuming that the
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(a) (b)

Figure 3.12: Removal of artifacts based on ray skew and component size. (a) Ray
skew and component size are unlimited (2,527,362 surfels). (b) Ray skew is limited
to 0.6 mm and connected component size to six surfels (2,053,543 surfels). Only
the last few outliers were eliminated by component size.

left half of the camera pixel looks, say, at black material, while the right half observes
a bright material, the signal integrated over the pixel will contain only codes from
the right half, leading to wrong projector rays usually visible as depth errors. As
overlapping views have been acquired, it is possible to address this problem by
eliminating surfels that lie on edges in image space. The pixel corresponding to
the surfel is resampled at subpixel resolution using Lanczos interpolation, and its
variance is computed. It is rejected if its variance exceeds a threshold. The method
also removes sharp shadow boundaries.

Outliers are also removed based on other geometric criteria, such as small connected
component size of surfels, and photometric criteria, such as saturated pixels.

View Merging
After the rings of reconstructions have been registered, we want to merge the
overlapping reconstructions into a single-layered surfel representation in order to
reduce storage and visualization cost. Doing so, care has to be taken that texture
quality and geometric accuracy remain as high as possible.

Blending of the overlapping textures and averaging the overlapping surfel positions
would require that the reconstructions fit together at subpixel accuracy, otherwise
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the resulting reconstruction would get blurred or doubled. Therefore, combining
original patches of the overlapping reconstructions, as described later in this section,
is tried to preserve detail. This method relates to Turk and Levoy [TL94] and it
also has a thinning effect because the patches have original resolution.

Bounded Projective Nearest Neighbors The system does a nearest-neighbor search
to get the overlapping surfels of a given surface element of the object. Instead
of performing a standard nearest-neighbor search, it is more efficient to perform
the search in the M camera images. Because every point is reconstructed by a
corresponding camera pixel, one can make use of the calibrated setup. To find for
a given point p and a given search radius r the nearest (or all) point reconstructions,
p is projected to all camera images, yielding a p′i for each view i. Then all point
reconstructions that have been reconstructed by camera pixels within a search
radius r ′i around p′i in image space are tested for whether they lie within distance
r to p in world space. The search radius r ′i is computed from r by projection.

The complexity of the search is O(M·r ′2), where M is the number of camera images
(r ′2 is limited by the number of pixels per image). In the current application, the
search radius is small and constant. Therefore r ′ has a small upper bound, resulting
in an algorithmic complexity of O(M).

Best Surfels A simple greedy approach is used to select patches from overlapping
reconstructions in order to get a single layer of points and for each object region
the best patch regarding the quality of geometry and texture. The current approach
is purely surfel based, hence it does not maintain a volumetric representation such
as by Pulli et al. [PDH+97].

The algorithm defines and selects the patches implicitly in two steps. First, the
homologous surfels representing the same point on the surface are determined
using the nearest-neighbor search just presented. Then the best of these candidates
is chosen for the resulting reconstruction.

The method is based on a simple idea: for each object point, take the surfel that has
been reconstructed most orthogonally by its camera (regarding the surface normal
computed from its neighbors). This addresses the fact that texture and geometry
usually have the highest resolution when acquired by perpendicular view. At the
same time, this simple criterion generates the patches. Figure 3.13 shows an example
result. There are holes due to the greedy nature of the algorithm. However, the
holes are small enough to disappear when the surfels are rendered.

A modification is applied to the described algorithm in order to remove outliers
(additionally to the methods described above). This is achieved by modification of
the nearest-neighbor search. Instead of computing the search range in image space
r ′i using projection, it is set by the user to a smaller range. This way, the region
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(a) (b)

Figure 3.13: Best surfels. (a) Before merging (2,053,543 surfels). (b) After merging
(226,664 surfels). Search radius in world space = 1.2 mm. Search radius in image
space = 1 pixel in order to remove outliers.

where best surfel candidates are sampled is not spherical any more (as would result
from a true 3D distance test); instead, the search range is restricted in directions
perpendicular to the views. This eliminates outliers because it allows us to choose
a larger search radius that captures the outliers without thinning out too many
neighboring surfels. Figure 3.13 shows an example result.

3.2.5 TEXTURE RECONSTRUCTION

Most materials exhibit a certain amount of specular reflection. In the case of strong
specular reflection, the effects are confined to a small region on the object for a given
view and illumination by the projector. Since many overlapping reconstructions
are acquired, one could remove the specularly reflecting parts in all of them before
view merging. Theoretically this would lead to consistent diffuse reconstructions
of specular objects. However, the specular information would be lost. Additionally,
many materials have moderate specular reflection that leads to specular effects that
cover large parts of the object. There it would not be possible to remove them
without producing holes. Consequently, a specular reflectance model has to be
fitted in these cases.

The diffuse reflectance model can however be used to generate high-resolution
reconstructions of objects that do not possess too strong of a specular reflection.
The surfel reconstruction preserves the subpixel information discretized by the
camera if the surfels are located on the viewing rays of the camera pixels and if
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each surfel gets its uniform color only from the corresponding pixel. This can be
achieved for the diffuse reflectance model, because it can be robustly fitted to a
single reflectance sample.

Shadow Removal
The acquisition system can generally not acquire shadowed object regions, because
the structured light does not reach these parts. However, the reconstruction still
may yield points in shadows if they are indirectly illuminated by interreflection,
subsurface scattering, and other effects. It is important to detect and remove shad-
ows when computing texture. Furthermore, structured-light reconstruction of indi-
rectly illuminated regions and at shadow boundaries leads to geometric artifacts
(see Figure 3.14a). These artifacts include texture embossing (see Section 3.1.2)
and additional depth error from indirect illumination. The texture embossing phe-
nomena can be reduced by avoiding Bayer tiling in the camera and by the above
subpixel variance method.

The shadows are detected using a depth test relative to the projector. For each posi-
tion of the turntable a reconstruction with corresponding viewpoint and projector
position is obtained. After view merging, the remaining surfels are projected into
each virtual view of the projector. Projector pixels that get more than one surfel
projection are tested for shadow. If the surfel producing the projection belongs
to the same depth map as the virtual view and if it is not nearest to the camera,
it is removed. In order to preserve surfels at silhouettes, the surfel is only removed
if it is farther away from the nearest surfel than a user-defined small threshold.

(a) (b)

Figure 3.14: Removal of shadows (seam artifacts). (a) No removal. (b) Local range = 1
and minimal distance = 2 mm (18,452 surfels removed).
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The generated holes are filled with other surfels by repeating the view-merging
procedure.

Although some shadow surfels are eliminated by the described method, there are
usually shadow surfels remaining due to calibration errors, reconstruction errors,
and the fact that the sampled surface elements have an extent. Therefore, instead
of projecting each surfel to the projector and storing it only in the corresponding
projector pixel, it is stored to a user-defined range around that projector pixel.
This way the sensitivity for depth discontinuities is increased, and at the same
time, surfels that have been reconstructed at grazing angles are removed.

Reflectance Sampling
In order to reconstruct the texture, it is necessary to collect for each surface
point all available and reliable reflectance samples from the acquired texture views.
Reflectance is computed from the image intensities using the calibrated illumination
model described in Section 3.2.3. According to Lensch et al. [LGK+01], a surface
point together with the corresponding samples is called a lumitexel. Not all views
contribute a sample for a given surface point. There might be effects like occlusion
and insufficient illumination or shadows that invalidate a sample in a given view.
Insufficient illumination is detected using a user-defined threshold that rejects
samples illuminated at grazing angles, in addition to the signal strength threshold
described above.

The shadow and occlusion tests are based on the surfel representation. Only surfels
that belong to the final merged reconstruction represent surface points and hence
lumitexels. Therefore, the points that are removed by the merging procedure are
only marked as such, since they are needed for sample selection.

Occlusion/Shadow Test The structured-light method already performs a kind of
implicit occlusion test in the sense that it can only acquire surface points that
are visible by the camera. The same holds for the light source, so theoretically no
shadows can be acquired. Therefore, it can be decided if a point p gets occluded
in a given view vi by projecting p to that view (onto the camera pixel p′i) and by
examining the surfel sp′ i that has been reconstructed by the pixel p′i of view vi.
Possible cases are:

• There has been no sp′ i reconstructed. This means that reconstruction failed
for that pixel or that it has been removed by one of the presented methods.
Another possibility is that it has been removed by the shadow removal process.
In any case, the corresponding sample is rejected.

• sp′ i has been reconstructed (and either selected as best surfel or not). This
means either that vi has an unobstructed view to the point p or that sp′ i
represents a surface point different to p. To test if sp′ i represents a different
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point, the distance between p and pvi (pvi is the camera position of vi)
is measured as well as the distance between sp′ i and pvi . If the difference
|‖p − pvi‖ − ‖sp′ i − pvi‖| exceeds a user-defined threshold, the points are
assumed to be distinct and the sample is rejected due to occlusion.

Lambertian Texture
Diffuse texture is computed from a single reflectance sample according to the
Lambertian reflectance model:

ρd =
L

nTl E
, (3.13)

with, for a given object point, ρd the diffuse albedo, L the radiance observed by
the camera, E the irradiance from the projector at that point, n its normalized
surface normal, and l the normalized vector toward the light source. The surface
normal is actually computed from the neighbors of the reconstructed point. The
direction l is computed from the geometric projector calibration and E from the
luminous projector calibration. Figures 3.15 and 3.16a show respective results.

Figure 3.15: Single view reconstruction, Lambertian texture.
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(a) (b)

(d)

(f)

(c)

(e)

Figure 3.16: Reconstructed Lambertian texture (a), Phong texture (b), blended over-
lapping reconstructions (c), region of original camera view (d ), diffuse component of
Phong texture (e), and specular component (f ).
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Phong Texture
Alternatively, the diffuse term is used together with a specular Phong lobe as the
reflectance model:

L

E
= ρdnTl + ρs(lT(2nnT − I)v)n, (3.14)

with ρs the maximum specular albedo, v the normalized vector toward the camera,
and n the specular exponent. Nonlinear least squares fitting of Equation (3.14) to
the reflectance samples is done simultaneously for red, green, and blue ρd and ρs,
but with a single exponent n using the Levenberg-Marquardt method as suggested
by Lafortune et al. [LFTG97]. An initial estimate is computed by linear fitting.
This is achieved by fixing n for optimization and by solving the resulting linear
least squares problem. This is repeated for exponentially increasing n and each
time the residual is computed. The fit leading to the smallest error is chosen as
a result of the linearized fitting. Linear fitting can also be used as fall back to
nonlinear fitting.

Figure 3.16 shows a result of the Phong fit. The reconstruction still shows some
artifacts in regions of sparse sampling and at points with erroneous normals due
to outliers. However, the diffuse part of the specular fit provides a significantly
improved texture compared to the Lambertian fit, as the Lambertian fit overesti-
mates brightness in specular regions.

Further improving the Phong fit is difficult due to the limited number of samples
per lumitexel. One way to come around this would be to apply material clustering
as presented by Lensch et al. [LGK+01]. Another possibility is to improve the
accuracy of the normals by including them into the texture-fitting process, but
this also requires a well-distributed reflectance sampling.

3.2.6 RESULTS

Figure 3.17 shows a single-ring reconstruction of a clay pot acquired from only
15 views. Figure 3.18 shows a telephone also reconstructed from 15 rotated views
using the same setup. It can be seen that the clay pot produces better quality
regarding texture and geometry because its material is mostly diffuse, in contrast
to plastic material of the telephone.

Because the chosen objects contain both diffuse and specular materials and rela-
tively much occlusion, the achieved results still contain artifacts such as outliers,
false normals, and holes. These are addressed by the postprocessing stage as
described by Weyrich et al. [WPK+04], although in our case, most of the holes
originate from suboptimal setup and could be addressed by interactive control of
the turntable and more appropriate tilting of the object in order to generate optimal
views.
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(a) (b)

Figure 3.17: Clay pot reconstructed from 15 rotary views (384,492 surfels).
Lambertian texture (a) and synthetic Phong texture (b) for showing geometric detail.
The Lambertian texture exhibits stripe artifacts due to specular reflection of the clay
surface.

(a) (b)

Figure 3.18: Telephone reconstructed from 15 rotary views (317,681 surfels).
Lambertian texture (a) and no texture (b).

Accuracy
The accuracy of the system is evaluated using a steel sphere of 150 mm in diameter
that had been manufactured with a tolerance of 0.1 mm and painted in white color.
A single ring of 10 partial reconstructions at a uniform angular step was taken and
merged according to Section 3.2.4. For the merged reconstruction, a center was
computed by fitting a least squares sphere to the surfels. The mean distance to the
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center was 74.947 mm and the maximal errors were less than 0.5 mm, which is
roughly the surfel spacing (red histogram in Figure 3.19a). For further analysis of
these errors, a sphere of the same radius was fitted to each partial reconstruction.
The resulting centers (Figure 3.19b) reveal a small systematic error in the turntable
calibration, plus a mechanical effect happening between the first two scans. The
blue histograms show the higher accuracy of each partial reconstruction. The green
histogram is obtained by translating the partial reconstructions to a common center.
This step cannot be done for general objects, it just illustrates that there is some
potential left in the merging process. However, registration of surfel objects based
on geometry or texture to extreme subsurfel precision is difficult.

Performance
The angel figurine of 180 mm height was reconstructed from 3 × 30 views. Each
view contributed in average 28,082 surfels, leading to a raw reconstruction con-
sisting of 2,527,362 surfels. From these, 473,819 erroneous surfels were removed
by the ray skew criterion or because they formed too-small connected components
(outliers). Another 1,826,879 surfels were discarded during merging. Finally, 18,452
surfels got discarded by the shadow removal process. Removing the shadows is the
computationally most expensive step—it took 38 minutes. Texture reconstruction
took 16 minutes and computation of the normals another 6 minutes. The best
surfels merging procedure took again 6 minutes and the cost of the remaining
operations is negligible.

(b)(a)
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Figure 3.19: (a) Histograms of surfel distances to sphere center (red: full reconstruction; blue: partial recon-
struction; green: partial reconstructions merged by optimal translations). (b) Centers of least squares fits for
partial reconstructions. All units given in millimeters.
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3.2.7 CONCLUSION

This section described a completely point-based acquisition system for geometry
and texture. The system consists of a projector as a calibrated light source, a single
grayscale camera, and a turntable. Methods for robust reconstruction and removal
of artifacts have been presented as well as methods for merging multiple point-based
reconstructions into a single-layered representation. Additionally, to the Lambertian
reflectance model, the Phong model was fitted to the reflectance samples, utilizing
the underlying structured-light approach.

The described system is oriented for low cost, simple operation, and arbitrary
object geometry, and can handle cavities due to the structured-light approach.
The next section presents a high-end system based on the visual hull method,
aiming at the acquisition of objects with difficult surface properties, such as fuzzy
and highly specular objects.

3.3 POINT-BASED 3D PHOTOGRAPHY

Wojciech Matusik and Hanspeter Pfister

3.3.1 OVERVIEW

The point-based acquisition systems described in the previous two sections, includ-
ing most commercial systems, cannot scan very complex geometries and appear-
ances, such as glass, fur, hair, cloth, leaves, or feathers. In this section we describe
a robust, completely automated point-based scanning system that can capture
objects with arbitrary geometric complexity and appearance. It automatically cre-
ates object representations that produce high-quality renderings from arbitrary
viewpoints, either under fixed or novel illumination. The system is built from
off-the-shelf components. It uses digital cameras, leveraging their rapid increase
in quality and decrease in cost. It is easy to use, has simple setup and calibration,
and scans objects that fit within one cubic foot volume. The acquired objects can
be accurately composited into synthetic scenes.

3.3.2 PREVIOUS WORK

There are many approaches for acquiring high-quality 3D shape from real-world
objects, including contact digitizers, passive stereo depth-extraction, and active
light-imaging systems. The previous two sections discuss passive and active scan-
ning systems. To acquire objects with arbitrary materials, we use an image-based



S E C T I O N 3 . 3 POINT-BASED 3D PHOTOGRAPHY 67

modeling and rendering approach. Image-based representations have the advantage
of capturing and representing an object regardless of the complexity of its geometry
and appearance.

Early image-based methods [MB95, CW93] allowed for navigation within a scene
using correspondence information. Light field methods [LH96, GGSC96] achieve
similar results without geometric information, but with an increased number of
images. Gortler et al. [GGSC96] combine the best of these methods by includ-
ing a visual hull of the object for improved ray interpolation. These methods
assume static illumination and, therefore, cannot accurately render objects into
new environments.

An intermediate between purely model-based and purely image-based methods is
the view-dependent texture mapping systems described by Pulli et al. [PCD+97]
and Debevec et al. [DYB98, DTM96]. These systems combine simple geometry
and sparse texture data to accurately interpolate between the images. These meth-
ods are extremely effective despite their approximate 3D shapes, but they have
some limitations for highly specular surfaces due to the relatively small number
of textures.

As noted in Debevec et al. [DYB98], surface light fields [GMP98, WAA+00, NSI99a,
CBCG02] can be viewed as a more general and more efficient representation of
view-dependent texture maps. Wood et al. [WAA+00] store light field data on
accurate high-density geometry, whereas Nishino et al. [NSI99a] use a coarser tri-
angular mesh for objects with low geometric complexity. Chen et al. [CBCG02] use
a decomposition of surface light fields that can be efficiently rendered on modern
graphics hardware. Surface light fields are capable of reproducing important global
effects such as interreflections and self-shadowing. Our system is capable of surface
light field acquisition and rendering.

Images generated from a surface light field always show the object under a fixed
lighting condition. To overcome this limitation, inverse rendering methods estimate
the surface BRDF from images and geometry of the object. To achieve a compact
BRDF representation, most methods fit a parametric reflection model to the image
data [SWI97, YDMH99, LGK+01]. Sato et al. [SWI97] and Yu et al. [YDMH99]
assume that the specular part of the BRDF is constant over large regions of the
object, while the diffuse component varies more rapidly. Lensch et al. [LGK+01]
partition the objects into patches and estimate a set of basis BRDFs per patch.

Simple parametric BRDFs, however, are incapable of representing the wide range
of effects seen in real scenes. As observed in Hawkins et al. [HCD01], objects
featuring glass, fur, hair, cloth, leaves, or feathers are very challenging or impossible
to represent this way. Reflectance functions for points in highly specular or self-
shadowed areas are very complex and cannot easily be approximated using smooth
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basis functions. In our work we make no assumptions about the reflection property
of the material we are scanning.

An alternative is to use image-based, nonparametric representations for object
reflectance. Marschner et al. [SHWC99] use a tabular BRDF representation and
measure the reflectance properties of convex objects using a digital camera. Their
method is restricted to objects with a uniform BRDF, and they incur prob-
lems with geometric errors introduced by 3D range scanners. Georghiades et al.
[GBK99] apply image-based relighting to human faces by assuming that the surface
reflectance is Lambertian.

More recent approaches [MGW01, DHT+00, HCD01, BKMK01] use image
databases to relight objects from a fixed viewpoint without acquiring a full BRDF.
Debevec et al. [DHT+00] define the reflectance field of an object as the radiant
light from a surface under every possible incident field of illumination. They use
a light stage with few fixed camera positions and a rotating light to acquire the
reflectance field of a human face [DHT+00] or of cultural artifacts [HCD01]. The
polynomial texture map system described in [MGW01] uses a similar technique
for objects with approximately planar geometry and diffuse reflectance proper-
ties. Belhumeur et al. [BKMK] use essentially the same method as Debevec et al.
[DHT+00] to render objects with arbitrary appearance. These reflectance field
approaches are limited to renderings from a single viewpoint.

3.3.3 SYSTEM OVERVIEW

Our system uses a point-sampled visual hull [MBR+00] as the underlying geometric
model. The visual hull can be computed robustly using active backlighting. We
augment the point-sampled visual hull with view-dependent opacity to accurately
represent complex silhouette geometry, such as hair. We call this new shape repre-
sentation the opacity hull. To construct the opacity hull we use the multibackground
matting techniques similar to Smith and Blinn [SB96].

Our system can acquire a surface light field of the object. It can also acquire
reflectance fields of the object from multiple viewpoints. We call this representa-
tion a surface reflectance field, because the data are parameterized on the surface
of the visual hull of the object. Surface reflectance fields can be rendered from
any viewpoint under new illumination. We use images from the same viewpoints
to compute the opacity hull and the surface reflectance field. This avoids any
registration inaccuracies and has proven to be extremely robust.

Laurentini [Lau94] introduced the visual hull as the maximal volume that is con-
sistent with a given set of silhouettes. The visual hull cannot represent surface
concavities. Yet, due to its hull property, it provides a conservative estimate of
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an object’s structure. The opacity hull and surface reflectance field extend the
utility of visual hull considerably by faithfully representing complex silhouettes
and materials.

Instead of relying on accurate geometry, our representation relies heavily upon
acquired radiance information to produce accurate renderings of the object. We
can adaptively acquire more images for objects with concavities or high specularity,
and fewer images for objects with simple geometry and mostly diffuse surfaces.
Naturally, this approach is not useful for applications where geometric fidelity is
required. In this Chapter we demonstrate that the combination of opacity hull
geometry and the image-based surface-reflectance field leads to an effective rep-
resentation for rendering applications. Our system is capable of acquiring and
rendering objects that are fuzzy, highly specular, or that contain any mixture of
materials.

3.3.4 HARDWARE SETUP

Figure 3.20 (left) shows an overview of our hardware setup. Objects are placed
on a plasma monitor that is mounted onto a rotating turntable. An array of light
sources is mounted on an overhead turntable. The lights are spaced roughly equally
along the elevation angle of the hemisphere.

During object scanning, the lights can be fixed, rotate around the object for a fixed
point of view, or made to rotate with the object. Six video cameras are pointed at
the object from various angles. To facilitate consistent backlighting we mount the
cameras roughly in the same vertical plane. A second plasma monitor is placed
directly opposite of the cameras. Figure 3.20 (right) shows a picture of our third-
generation scanner. The two plasma monitors have a resolution of 1,024 × 768
pixels.

We use six QImaging QICAM cameras with 1,360 × 1,036 pixel color CCD imag-
ing sensors. The cameras are photometrically calibrated. They are connected via
FireWire to a 2 GHz Pentium-4 PC with 1 GB of RAM. We alternatively use 15 mm
or 8 mm C-mount lenses, depending on the size of the acquired object. The cameras
are able to acquire full resolution RGB images at 11 frames per second.

The light array holds four to six directional light sources. Each light uses a 32-watt
HMI halogen lamp and a parabolic reflector to approximate a directional light
source at infinity. The lights are controlled by an electronic switch and individual
dimmers. The dimmers are set once such that the image sensor is not oversaturated
for viewpoints where the lights are directly visible.

In many ways, our setup is similar to the enhanced light stage that has been
proposed as future work in Hawkins et al. [HCD01]. A key difference is that our
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Figure 3.20: Our 3D digitizing system combines both active and passive imaging methods. Objects are
rotated on a turntable while images are acquired. Plasma monitors are used to extract high-quality alpha mattes.
An overhead array of light sources can be rotated to acquire surface reflectance fields. A system diagram is
shown on the left and the photograph is shown on the right.

system uses multicolor backlights for alpha matte extraction and construction of
the opacity hull. As we will show, the availability of approximate geometry and
view-dependent alpha greatly extends the class of models that can be captured.

3.3.5 DATA ACQUISITION PROCESS

Calibration
The scanning sequence starts by placing the object onto the turntable and, if neces-
sary, adjusting the position and aperture of the cameras. If any camera adjustments
are required, we must first acquire images of a known calibration object, a pat-
terned cube in our case. An image of the calibration target is taken from each of
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the viewpoints. Intrinsic and extrinsic camera parameters are computed using a
special calibration procedure for turntable systems with multiple cameras [Bea02].
Calibration can be computed reliably given the fixed rotation axis and the large
numbers of images.

Reference Images
Next, the plasma monitors are turned on and we acquire images of patterned
backdrops used for multibackground matting. For each viewpoint, each patterned
backdrop is photographed alone without the foreground object. As in Zongker
et al. [ZWCS99], we call these images the reference images. Reference images only
have to be acquired once after calibration. They are stored and used for subsequent
object scans.

Object Images
The object is then put on the turntable and a sequence of images is automatically
acquired. The number of turntable positions is user specified and depends on the
object. During this first rotation, both plasma monitors illuminate the object from
below and behind with the patterned backdrops. As in Zongker et al. [ZWCS99],
we call the images of the foreground object in front of the backdrops object images.
The object images and reference images are used to compute alpha mattes and the
opacity hull. We depend on good repeatability of the turntables to ensure that the
reference images and the object images are well registered.

Radiance Images
We then switch off the plasma monitors and turn on one or more directional
lights of the array. We found that we get the best results when using additional fill
light to avoid dark shadows and high contrast in the images. We avoid specular
reflections from the monitors by covering the vast majority of the display surface
with black felt without upsetting the object position. We acquire a set of radiance
images of the illuminated object during the second rotation of the turntable. The
radiance images are used for surface light-field rendering. The directional lights
can be fixed or made to rotate with the object. The coupled rotation case leads to
greater coherence of radiance samples in each surface point.

Reflectance Images
If we want to relight the acquired object, we acquire an additional set of images
used to construct the surface reflectance field. The array of lights is rotated around
the object. For each rotation position, each light in the light array is sequentially
turned on and an image is captured with each camera. We use four lights and
typically increment the rotation angle by 24◦ for a total of 4× 15 images for each
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camera position. This procedure is repeated for all viewpoints. We call the set of
all images the reflectance images. They are used to construct the surface reflectance
field.

Environment Mattes
If we would like to relight highly specular or refractive objects, we additionally
acquire environment mattes from multiple viewpoints. Environment mattes are
a compact representation for high-resolution surface reflectance. The acquisition
process involves taking multiple images of the scanned object in front of a backdrop
with a 1D Gaussian profile that is swept over time in horizontal, vertical, and
diagonal directions. We capture environment mattes using three of the six cameras,
roughly spaced 10◦ apart in elevation and 5◦ in angular turntable increments. For
a full 360◦ view of the object this corresponds to 3 × 72 = 432 viewing positions.

HDR Images
All radiance and reflectance images are captured using a high dynamic range
technique similar to that of Debevec and Malik’s [DM97]. Since raw output from
the CCD array of the cameras is available, the relationship between exposure time
and radiance values is linear over most of the operating range. For each viewpoint,
we take four pictures with exponentially increasing exposure times and use a least
squares linear fit to determine the response line. Our imager has 10 bits of precision.
Due to nonlinear saturation effects at the extreme ends of the scale we only use
values in the range of 5 to 1,000 in our least squares computation. We can ignore
the direct current (DC) offset of this calculation and store only the slope of the
response line as one floating point number per pixel. This image representation
allows for the specification of a desired exposure interval at viewing time.

Alpha Mattes
To construct the image-based visual hull on which we parameterize the opacity
hull, we extract silhouette images from various viewpoints. Earlier versions of
our system use fluorescent lights to acquire silhouette views. Backlighting is a
common segmentation approach that is often used in commercial 2D machine
vision systems. The backlights saturate the image sensor in areas where they are
visible. We then threshold the silhouette images to establish a binary segmentation
for the object.

However, binary thresholding is not accurate enough for objects with small silhou-
ette features, such as hair. It also does not permit subpixel accurate compositing
of the objects into new environments. An additional problem is color spill [SB96],
the reflection of backlight on the foreground object. Spill typically happens near
object silhouettes because the Fresnel effect increases the specularity of materials
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near grazing angles. With a single color active backlight, spill is particularly
prominent for highly specular surfaces, such as metal or ceramics.

We use a variant of the multibackground matting technique of Smith and Blinn
[SB96] to solve these problems. We acquire alpha mattes of the object from each
viewpoint. An alpha matte of a foreground object can be extracted by imaging
the object against two background images with different colors. We display the
following sinusoidal background patterns on the plasma monitors:

Ij(x, y, n) =

(
1 + n sin

(
2π(x + y)

φ
+ j
π

3

))
× 127. (3.15)

Ij(x, y, n) is the intensity of color channel j = r, g, b at pixel location (x, y). To
maximize the per-pixel difference between the two backdrops, the patterns are
phase shifted by 180◦ (n = −1 or 1). The user defines the period of the sinusoidal
stripes with the parameter φ.

Using the multibackground matting equation from Smith and Blinn [SB96], the
per-pixel object alpha α is computed as

α = 1 −
∑ |On=1 − On=−1|∑ |Rn=1 − Rn=−1|

(3.16)

where Rn=1 and Rn=−1 are per-pixel background colors of the reference images,
and On=1 and On=−1 are per-pixel foreground colors for n = ±1, respectively.

If we measure the same color at a pixel both with and without the object for each
background, Equation (3.16) equals zero. This corresponds to a pixel that maps
straight through from the background to the sensor. The phase shifts in the color
channels of Equation (3.15) assure that the denominator of Equation (3.16) is
never zero. The sinusoidal pattern reduces the chance that a pixel color observed
due to spill matches the pixel color of the reference image. Nevertheless, we still
observed spill errors for highly specular objects, such as the teapot or the bonsai pot.

To reduce these errors we apply the same procedure multiple times, each time
varying the parameter φ of the backdrop patterns. For the final alpha matte we
store the maximum alpha from all intermediate mattes. We found that acquiring
three intermediate alpha mattes with relatively prime periods φ = 27, 40, and 53
is sufficient. The overhead of taking the additional images is small, and we need
to store only the final alpha matte. Figure 3.21 shows two alpha mattes acquired
with our method. We found that in practice this method works very well for a
wide variety of objects, including specular and fuzzy materials.
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F igure 3.21: Alpha mattes acquired using our backdrops.

Opacity Hull Construction
Using the alpha mattes of the object from various viewpoints, we construct the
opacity hull. First, we use binary thresholding on the alpha mattes to get binary
silhouette images. Theoretically, each pixel with α > 0 (i.e., not transparent) belongs
to the foreground object. We use a slightly higher threshold because of noise in
the system and calibration inaccuracies. We found that a threshold of α > 0.05
yields a segmentation that covers all of the object and parts of the background.

The binary silhouettes are then used to construct the Image-Based Visual Hull
(IBVH) [MBR+00]. The IBVH algorithm can be counted on to remove improperly
classified foreground regions as long as they are not consistent with all other
images. We resample the IBVH into a dense set of surface points as described in
Section 3.3.6. Each point on the visual hull surface is projected onto the alpha
mattes to determine its opacity from a particular observed viewpoint.

The opacity hull is similar to a surface light field, but instead of storing radiance
it stores opacity values in each surface point. It is useful to introduce the notion
of an alphasphere A. If ω is an outgoing direction at the surface point p, then
A(p,ω) is the opacity value seen along direction ω.

Figure 3.22 shows the observed alpha values for three surface points on an object
for all 6 × 36 viewpoints. Each pixel has been colored according to its opacity.
Black color corresponds to α = 0, white color corresponds to α = 1, and gray
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F igure 3.22: Observed alpha values for points on the opacity hull. Red color indicates
invisible camera views.

color corresponds to values in between. Red color indicates camera views that are
invisible from the surface point.

The function A is defined over the entire direction sphere. Any physical scanning
system acquires only a sparse set of samples of this function. As is done for radiance
samples of lumispheres in Wood et al. [WAA+00], one could estimate a parametric
function for A and store it in each alpha sphere. However, as shown in Figure 3.22,
the view-dependent alpha is not smooth and not easily amenable to parametric
function fitting. Consequently, we store the acquired alpha mattes and interpolate
between them to render the opacity hull from arbitrary viewpoints.

It is important to keep in mind that the opacity hull is a view-dependent rep-
resentation. It captures view-dependent partial occupancy of a foreground object
with respect to the background. The view-dependent aspect sets the opacity hull
apart from voxel shells, which are frequently used in volume graphics [UO93].
Voxel shells are not able to accurately represent fine silhouette features, which is
the main benefit of the opacity hull.

Recognizing the importance of silhouettes, Sander et al. [SGG+00] use silhouette
clipping to improve the visual appearance of coarse polygonal models. However,
their method depends on accurate geometric silhouettes, which is impractical
for complex silhouette geometry like fur, trees, or feathers. Opacity hulls are
somewhat similar to the concentric, semitransparent textured shells that Lengyel
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et al. [LPFH01] used to render hair and furry objects. They use geometry—called
textured fins—to improve the appearance of object silhouettes. A single instance
of the fin texture is used on all edges of the object. In contrast, opacity hulls can
be looked at as textures with view-dependent alphas for every surface point of the
object. They accurately render silhouettes of high complexity using only visual hull
geometry.

Surface Light Fields and Reflectance Fields
Similar to constructing the opacity hull, we reparameterize the acquired radiance
images into rays emitted from surface points on the visual hull. This representation
is a surface light field as described by Miller et al. [RMP98] and Wood et al.
[WAA+00]. However, our surface light fields are created on the surface of the
visual hull rather than on the surface of the object.

Surface light fields can only represent models under the original illumination. To
address this limitation we acquire surface reflectance fields from multiple viewing
positions around the object. Debevec et al. [DHT+00] define the reflectance field
under directional illumination as a six-dimensional function R(p,ωi,ωr). For each
surface point p, it maps incoming light directions ωi to reflected color values
along direction ωr. Thus, for each point p we have a four-dimensional function
Rp(ωi,ωr).

During acquisition, we sample the four-dimensional function Rp(ωi,ωr) from a
set of viewpoints Ωr and a set of light directions Ωi. In previous reflectance field
approaches [DHT+00, HCD01, BKMK01], the sampling of light directions is dense
(e.g., |Ωi| = 64 × 32 in [DHT+00]), but only a single viewpoint is used. In our
system, we sample the reflectance field from many directions (|Ωr| = 6 × 36). To
limit the amount of data we acquire and store, our system uses a sparse sampling
of light directions (|Ωi| = 4 × 15). Thus, our illumination environment has to be
filtered down substantially, and our re-illumination is accurate only for relatively
diffuse surfaces [RH01a].

Reconstruction of an image from a new viewing direction under a new lighting
configuration is a two-pass process. First, we reconstruct the images from the orig-
inal viewpoints under novel illumination. Once we have computed these images,
we interpolate the image data to new viewpoints. For a particular image from the
original viewpoint, it is useful to define a slice of the reflectance field called a
reflectance function R(xo,ωi) [DHT+00]. It represents how much light is reflected
toward the camera by pixel xo as a result of illumination from direction ωi. We
can reconstruct the image L(xo) from the original viewpoint under novel illumi-
nation as a weighted linear combination of the light sources as we will show in
Section 3.3.8.
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Environment Mattes
We observe that using a high-resolution environment matte in a particular viewing
direction is superior to using only the light array to provide incident illumination.
For example, Debevec et al. [DHT+00] use 2,048 light positions, which corresponds
to a 32× 64 pixel environment map. Using only our light array effectively constrains
us to illumination from a 4 × 15 pixel environment map. These resolutions are
not nearly enough to accurately capture and represent transmissive and refractive
effects. For example, looking straight through a glass window shows the background
in its full resolution. On the other hand, using a high-resolution illumination
environment is only feasible with environment matting. The alternative would be
to store a very large number of reflectance images for each viewpoint, which is
impractical. Environment mattes are in essence a very compact representation for
high-resolution surface reflectance fields.

To acquire environment mattes, we are using the high-quality procedure by Chuang
et al. [CZH+00]. The acquisition process involves taking multiple images of the
foreground object in front of a backdrop with a 1D Gaussian profile that is swept
over time in horizontal, vertical, and diagonal directions. Using the nonlinear
optimization procedure described by Chuang et al. [CZH+00], we then solve for
a and the parameters of the 2D Gaussian’s G.

To save storage and computation time for the nonlinear parameter estimation, we
identify and remove areas outside the object silhouette. The environment matte is
subdivided into 8 × 8 pixel blocks. Each surface point on the opacity hull that is
visible from this view is projected into the image. Only those blocks that contain
at least one back-projected surface point are stored and processed.

For certain positions in the camera array, the rim of the plasma monitors is visible
through a transparent object, which makes much of the field of view unusable.
Consequently, we only use the lower and the two uppermost cameras for acquisition
of environment mattes. The lower camera is positioned horizontally, directly in
front of the background monitor. The two upper cameras are positioned above
the monitor on the turntable. Using our environment matte interpolation (see
Section 3.3.8), we can render plausible results for any viewpoint.

3.3.6 POINT-SAMPLED DATA STRUCTURE

We use an extended point representation based on the layered depth cube (LDC)-
tree [PZvBG00] as our shape model on which we parameterize the view-dependent
appearance data. In a preprocess, we compute the octree-based LDC-tree from the
IBVH. The creation of the LDC-tree starts with the sampling of the visual hull
from three orthogonal directions. The sampling density depends on the model
complexity and is user specified. The layered depth images are then merged into
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a single octree model. Since our visual hulls are generated from virtual orthographic
viewpoints, their registration is exact. This merging also insures that the model is
uniformly sampled.

Point samples have several benefits for 3D scanning applications. From a modeling
point of view, the point-cloud representation eliminates the need to establish topol-
ogy or connectivity. This facilitates the fusion of data from multiple sources, as
pointed out by Levoy and Whitted [LW85]. They also avoid the difficult task of
computing a consistent parameterization of the surface for texture mapping. We
found that point models are able to represent complex organic shapes, such as a
bonsai tree or a feather, more easily than polygonal meshes. In particular, it would
be hard to represent the view-dependent opacity values at each point of the opacity
hull using polygonal models and texture mapping.

Each surfel (surface element) in the LDC-tree stores depth, normal, and a camera-
visibility bit vector. The visibility vector stores a value of one for each camera posi-
tion from which the surfel was visible and zero if it was not visible. It can be quickly
computed during IBVH construction using the visibility algorithm described in
Matusik et al. [MBR+00]. Our representation stores all of the acquired radiance
and reflectance images with irrelevant information removed. This is accomplished
by dividing each source image into 8 × 8 blocks and removing those blocks that
lie outside the object’s silhouette. For each image, we compute a simple mask by
back-projecting all surfels from which this view is visible. Only the 8 × 8 pixel
blocks that contain at least one back-projected surfel are stored. This simple scheme
typically reduces the total amount of image data by a factor of 5 to 10, depending
on the geometry of the model.

A relightable model requires more than 20 GB of raw image data. In order to
make these data more manageable, we have implemented a simple compression
scheme for reflectance images. For each original viewpoint, we apply principal
component analysis (PCA) to corresponding 8×8 image blocks across the varying
4 × 15 illumination directions taken from a common viewpoint. We set a global
threshold for the root mean square (RMS) reconstruction error and store a variable
number of principal components per block. As shown in Section 3.3.8, the average
number of components per block is typically four to five. PCA compression typically
reduces the amount of reflectance data by a factor of 10.

Figure 3.23 shows a depiction of our data structure for surface reflectance fields,
simplified for clarity. The figure shows the first six PCA images for two origi-
nal views. These images are combined into new radiance images from the same
viewpoints under new illumination using the method described in Section 3.3.8.
During rendering, points on the opacity hull of the object are projected into the
radiance images based on their visibility. Each surfel’s color is determined using
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Relighted Model
New View

PCA Images 
for View 1

PCA Images 
for View 2

Relighted View 1 Relighted View 2

Figure 3.23: Data structure for surface reflectance fields.

interpolation among the four closest views. Note that the figure shows the two
closest views.

3.3.7 SURFACE LIGHT FIELDS

Surface Light Field Rendering
To render our point-sampled models we use the elliptical weighted average (EWA)
surface-splatting approach of Zwicker et al. [ZPvG01] (see Section 6.1). First,
the opacity and color of each surfel are interpolated from the radiance images
as discussed below. A hierarchical forward-warping algorithm projects the surfels
onto the screen. A screen-space EWA filter reconstructs the image using the opac-
ity, color, and normal stored per surfel. A modified A-buffer provides order-
independent alpha blending and edge antialiasing.



80 ACQUISITION C H A P T E R 3

To interpolate the radiance images from the original viewpoints to arbitrary
viewpoints, we use the unstructured lumigraph interpolation of Buehler et al.
[BBM+01]. For each surfel, we use k-nearest neighbor interpolation to reconstruct
view-dependent alpha and radiance values. This assures continuous transitions
between camera views.

For each frame, we compute the normalized direction rc(i) from each surfel position
to each visible camera i using the visibility bit vector and a global array of camera
positions. We also compute the normalized viewing direction rv from the surfel
position to the center of projection of the current view. We then assign a penalty
p(i) = 1 − cos θi to each visible camera, where cos θi = rc · rv. We consider only
the k = 4 cameras with smallest penalty p(i) when interpolating a value. All other
cameras are assigned an interpolation weight w(i) of zero. We take care that a
particular camera’s weight falls to zero as it leaves the set of the closest four
cameras. We accomplish this by defining an adaptive threshold cos θt = r4 · rv,
where r4 is the direction of the surfel to the fourth closest camera. The blending
weight w(i) for each camera is

w(i) =
cos θi − cos θt

1 − cos θt
. (3.17)

This weight function has its maximum value of one for cos θi = 1, and it falls off
to zero at cos θi = cos θt. To ensure epipole consistency, we multiply w(i) by 1/p(i).
This ensures that rendering the object from original camera viewpoints reproduces
exactly the original images. We also normalize all w(i) so that they sum up to one.

Surface Light Field Examples
We have collected a wide range of objects and surface types with our system.
We have acquired many difficult surfaces including those of various genuses, with
concavities, and with fine scale features. We have also captured a wide range of
materials, including fuzzy and highly specular materials. A variety of different
models are shown in Figure 3.24.

For all objects, we use 6 cameras and 36 turntable positions. We acquire 6 object
images for alpha matting from each viewpoint (over three φ values with n = ±1).
For surface light fields, we capture 1 radiance image from each viewpoint for a
total of 6 × 36 × (4 × 1 + 6) = 2,160 images. The entire digitizing process takes
about one hour for a surface light field. The whole process is fully automated
without any user intervention. All of our models are created from a single scan.

We resampled all of our visual hull models to 512×512 resolution of the LDC-tree.
The processing time to segment the images, compute the opacity hull, and build
the point-based data structure is less than 10 minutes.
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Figure 3.25 shows the visual hull, opacity hull, and final composite rendering of
a bonsai tree. Notice the coarse shape of the visual hull and the much improved
rendition using the opacity hull, despite the fact that their geometry is identical.
The opacity hull also allows high-quality compositing over complex backgrounds
without edge aliasing.

Figure 3.24: Surface light fields of several objects from new viewpoints. Note the
alpha compositing with the textured backgrounds.

Figure 3.25: (a) Photo of the object. (b) Rendering using the opacity hull. (c) Visual
hull. (d ) Opacity hull.
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(a) (b) (c)

Figure 3.26: Rendering from arbitrary viewpoints. (a and c) Original images.
(b) Interpolated view.

Unstructured lumigraph interpolation for viewpoints other than those seen by
reference cameras introduces small artifacts, most notably for specular or con-
cave areas. Figure 3.26 shows acquired images of an object (Figures 3.26a and c).
Figure 3.26b shows the object from an intermediate viewpoint. Note that the
figure shows only the two closest views, although we use the four closest views for
interpolation. As can be seen in the figure, the artifacts are generally small. The ani-
mations show that the k-nearest neighbor interpolation leads to nice and smooth
transitions.

To evaluate the number of images required to compute the visual hull, we instru-
mented our code to compute the change in volume of orthographic visual hulls
as each silhouette is processed. We then randomized the processing order of the
images and repeated the IBVH calculation multiple times. The plots shown in
Figure 3.27 illustrate the rather typical behavior.

Generally, the visual hull converges to within 5% of its final volume after processing
around 20 images, and seldom is this plateau not reached by 30 images. Collecting
data over the entire hemisphere ensures that this volume closely approximates
the actual visual hull. This implies that the visual hull processing time can be
dramatically reduced by considering fewer images to compute the hull model.
However, dense alpha mattes are still important for representing view-dependent
opacity. These view-dependent opacities and radiance measurements dramatically
improve the final renderings.

3.3.8 RELIGHTING

Light Transport Model
We first develop our model for how light scatters at the object surface following
the exposition of Chuang et al. [CZH+00] and Debevec et al. [DHT+00]. Assuming
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F igure 3.27: The volume of the visual hull as a function of the number of images
used to construct the visual hull.

that the incident radiation originates infinitely far away from the object surface,
the light arriving at a camera pixel can be described as

L(xo) =

∫

Ω
R(xo,ωi)L(ωi)dωi. (3.18)

L(xo) is the recorded radiance value at each camera pixel, and L(ωi) is the environ-
ment illumination from direction ωi. R(xo,ωi) is a weighting function that com-
prises all means of light transport from the environment through the foreground
object to the camera. Debevec et al. [DHT+00] call it the reflectance function. The
integration is carried out over the entire hemisphere Ω and for each wavelength.
We will drop the wavelength dependency in the rest of this Chapter, assuming that
all equations are evaluated separately for r, g, and b.

Given a measured radiance L(xo) at a pixel and an environment L(ωi), we want to
estimate the function R(xo,ωi) for the point xo on the object surface corresponding
to the ray through that pixel. Our scanning system provides two different illumi-
nation fields for the environment: illumination from a high-resolution 2D texture
map behind the object (displayed on the plasma monitors), and illumination by the
overhead light array from a sparse set of directions on the remaining hemisphere.
Figure 3.28 shows the basic setup.

We call the sector of the environment hemisphere covered by the high-resolution
texture map Ωh, and the remaining sector covered by the light array Ωl. Further-
more, we are making the simplifying assumption that light transport in Ωh can
be described by two components (see Figure 3.28a). As shown in the figure, we
are approximating the (potentially complicated) paths of light through the object
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(a) (b)

T

L(ωi)

Ω1Ωh

Figure 3.28: Illumination environment and light propagation model in our system.
(a) High-resolution sampling across Ωh. (b) Low-resolution sampling across Ωl.

by two straight light bundles from the ray-surface intersection to the background
monitor. On the other hand, light from one or more directional light sources
L(ωi) in Ωl is refracted and reflected by the object before arriving at pixel xo (see
Figure 3.28b). Here we assume that the incident light field in Ωl can be sampled
at substantially lower resolution than light in Ωh coming directly from behind the
object. Thus, Equation (3.18) becomes

L(xo) =

∫

Ωh

Rh(xo,ωi)L(ωi)dωi +

∫

Ωl

Rl(xo,ωi)L(ωi)dωi. (3.19)

As proposed by Chuang et al. [CZH+00], we use a sum of 2D Gaussians to describe
Rh(xo,ωi). We restrict ourselves to a maximum of two Gaussians per surface
point xo. Thus,

Rh(xo,ωi) =
2∑

j = 1

aj(xo)Gj(ωi, xo). (3.20)

Gj are elliptical, oriented 2D unit-Gaussians, and aj are attenuation factors. Each
Gaussian Gj is parameterized by the center Cj, its standard deviation σj, and its
orientation θj.

Since we are sampling Ωl with a discrete set of n light positions Lj, we can rewrite
Equation (3.19) as

L(xo) =

∫

Ωh

2∑

j = 1

aj(xo)Gj(ωi, xo)L(ωi)dωi +
n∑

j = 1

RjLj. (3.21)
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Using the environment matting and reflectance field procedures outlined in
Section 3.3.5, we estimate the parameters for aj, Gj, and Rj. For each viewpoint,
the estimated parameters aj and Gj are stored in an environment matte T and Rj

is stored in n reflectance images.

Discussion Equation (3.21) is a compromise between high-quality environment
matting [CZH+00] and the practical limitations of our 3D acquisition system.
Ideally, one would surround the object with high-resolution monitors and acquire
the parameters of an arbitrary number of weighting functions W distributed over
multiple monitors. Instead, we assume that most of the refracted and reflected rays
arriving at a pixel originate from the incident light field behind the object. This is
true for most objects with a strong reflected component (mostly at grazing angles)
and a strong refracted component. It is not necessarily correct for transparent
objects with large-scale internal structure or surface facets, such as a crystal glass.
However, in practice we found this approach to work reasonably well.

It is important to note that, despite the term surface reflectance field, we are
capturing a much wider array of effects, including refraction, dispersion, subsurface
scattering, and nonuniform material variations. These effects, which are typically
costly or impossible to simulate, can be rendered from our model in a reasonable
amount of time. As noted by Debevec et al. [DHT+00], the surface reflectance field
is almost equivalent to the Bidirectional Surface-Scattering Distribution Function
(BSSRDF). The main differences are that we do not know the exact physical location
of a ray-surface intersection, and that the incoming direction of light is the same
for any point on the surface. The first problem could potentially be addressed by
improving the visual hull geometry using methods of stereopsis. Solving the second
problem would require illuminating the object with a dense set of laser-point light
sources.

Equation (3.21) differs from Equation (3.12) in Chuang et al. [CZH+00] by restrict-
ing the number of incoming ray bundles from the monitors to two, and by replacing
the foreground color F with a sum over surface reflectance functions Ri. The first
assumption is valid if reflection and refraction at an object causes view rays to
split into two distinct ray bundles that strike the background (see Figure 3.28a).
The second assumption results in a more accurate estimation of how illumination
from Ωl affects the object’s foreground color. Chuang et al. [CZH+00] make up
for this by capturing additional environment mattes using monitors on each side
of the object.

Surface Reflectance Field Rendering
We start with a new environment map, for example, a spherical high-dynamic
range light probe image of a natural scene. We first reconstruct the low-resolution
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reflectance function for the original viewpoints using this new illumination
environment. Next we interpolate these relit images to the new viewpoint. The
high-resolution reflectance function is reconstructed by first interpolating the
parameters of the Gaussians for a new viewpoint. Then we integrate the Gaussians
with the environment map to compute the outgoing radiance. (Note the differ-
ence between environment “mattes” and “maps.”) Finally, we sum the low- and
high-resolution components. We now discuss these steps in more detail.

Low-resolution Reflectance Function During rendering, we compute the k-nearest
(k = 4) visible original viewpoints used for each surface point. As mentioned in
Section 3.3.5, visibility is determined during opacity hull construction and stored
in the visibility vector. We compute the interpolation weights wi for the four
closest viewpoints according to unstructured lumigraph interpolation [BBM+01].
The weights ensure continuous transitions between camera views and epipole con-
sistency; in other words, rendering the object from original camera viewpoints
exactly reproduces the original images. Using the global camera parameters, each
surface point is then projected into its k-nearest alpha mattes. We use the interpo-
lation weights wi to interpolate the view-dependent alpha from the alpha mattes.

Now we describe how we compute images that show the object under the new
environment map illumination for each of the k-nearest original viewpoints. The
environment map must be down-sampled to match the light positions used during
acquisition. In our case it contains only 4 × 15 positions. The original reflectance
images for a viewpoint are compressed using PCA as described in Section 3.3.6.
This allows us to express the reflectance function Rj of a specific incoming light
direction for the low-resolution lighting environment as

Rj ≈ R̃j =
m∑

i = 1

γijei, (3.22)

where ei are the eigenvectors corresponding to the the largest m eigenvalues. Each
ei is a 64-element vector corresponding to an 8 × 8 pixel block. Given a new set
of n directional lights L̃j, we can compute the outgoing radiance LΩl for the relit
image as

LΩl =
n∑

j = 1

R̃j L̃j =
n∑

j = 1

(
m∑

i = 1

γijei)L̃j (3.23)

=
m∑

i = 1

(
n∑

j = 1

γij L̃j)ei.

The inner summation over n is the same for each of the 8 × 8 pixels and can,
therefore, be computed only once. Finally, we use the interpolation weights wi to
interpolate the k relit images to obtain the image from the novel viewpoint.
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High-resolution Reflectance Function Our acquired environment mattes are param-
eterized on the plane T of the background monitor. However, for rendering they
need to be parameterized on the global environment map Ω. Figure 3.29 shows
a 2D drawing of the situation.

During system calibration we determine the position of each monitor plane T with
respect to each viewpoint. This information is globally stored per viewpoint. Ω is
the parameterization plane of the new environment map. The mapping from T to
Ω may be nonlinear, for example, for spherical environment maps. A 3D surface
point p on the object is projected onto a pixel of the environment matte E, which

stores the parameters of the 2D Gaussian G. We compute the Gaussian G̃ that best
approximates the projected Gaussian G on the parameterized surface T̃.

We represent the new Gaussian G̃ using the following parameters: a (the amplitude

of G), C̃ (a 3D vector), (α, β) (the opening angles), and θ̃ (the new rotation angle).
This projection is performed for each change of the environment map.

To compute the radiance contribution from the environment mattes involves two
steps: interpolating the new Gaussian Ĝ, and convolving it with the environment
map to compute the resulting colors.

We first interpolate the parameters of k = 4 reprojected Gaussian G̃i. Using wi, we

compute linear combinations for the amplitudes ai and the directional vectors C̃i.
The angular parameters (αi, βi) and θ̃i are blended using quaternion interpolation.

The result is a new Gaussian Ĝ that is an interpolated version of the Gaussian G̃i,
morphed to the new viewpoint.

T

G

P

E

T
∼

∼
G

∼
C

αC

Figure 3.29: Reprojection of the environment matte Gaussian G from the monitor
plane T into the environment map Ω.
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Note that this interpolation needs to be performed on matching Gaussians from the
environment mattes. Figure 3.30 shows a simplified 1D drawing of the matching
process. We are only storing two Gaussians Gi per environment matte pixel, where
each pixel corresponds to a viewpoint ray Vi in the figure. The two Gaussians per

pixel are classified as reflective (G̃ir) or transmissive (G̃it). We compute the angle φ of

their center vectors C̃ir and C̃it with the surface normal N. If φ > 90◦, we classify the
Gaussian as transmissive. If φ <= 90◦, we classify it as reflective. If both Gaussians
are reflective or refractive, we only store the one with the larger amplitude a. This
computation has to be performed for each change of the environment map, after

computing the reprojected Gaussian G̃.

During interpolation, we match up refractive and reflective Gaussians. In other

words, new Gaussians Ĝr and Ĝt are interpolated from G̃ir and G̃it, respectively.
Note that this matching would be much more difficult if we had stored more
than two Gaussians per environment matte pixel, as proposed by Chuang et al.
[CZH+00].

To compute the outgoing radiance LΩh for a new viewpoint we integrate the

interpolated Gaussian Ĝr,t with the novel high-resolution illumination L(ωi):

LΩh =

∫

Ωh

∑

j = r, t

aj(xo)Ĝj(ωi, xo)L(ωi)dωi. (3.24)

The final pixel color C according to Equation (3.21) is the sum of the low-
resolution reflectance field (Equation 3.23) and the high-resolution reflectance
field (Equation 3.24).

G1r
∼

G2r
∼

G2t
∼

G1t
∼

N

V1

V2

Figure 3.30: Matching of reflective and refractive Gaussians.
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Surface Reflectance Field Examples
Low-resolution Illumination First, we present the results and analysis of relighting
using only low-resolution reflectance fields. For low-resolution surface reflectance
fields, we acquire reflectance images using 4× 15 light directions from each view-
point for a total of 6×36×(4×(4×15))+6) = 53,136 images. The entire digitizing
process takes about 14 hours for a surface reflectance field.

Figure 3.31 shows a model under new illumination. Figure 3.32 shows several
scanned objects composited into real environments. We acquired spherical light
probe images [DM97] at the respective locations to capture the illumination. All
objects shown in this paper are rendered from novel viewpoints that are not part
of the acquired image sequence.

In the process of acquiring models, we have made many interesting measure-
ments and observations. Figure 3.33 shows plots of the measured low-resolution
reflectance field data for three surface points on an object. We chose the surfels to
be in specular and self-shadowed areas of the object. The dark parts of the plots are
attributable to self-shadowing. The data lack any characteristics that would make
them a good fit to standard parametric BRDF models or function approximation
techniques. This is typical for the data we observed.

Figure 3.34 shows a visualization of the number of PCA components per 8 × 8
pixel block of the reflectance images from an original viewpoint. We set the global
RMS reconstruction error to be within 1% of the average radiance values of all
high dynamic range (HDR) reflectance images. Note that areas with high texture
frequency require more components than areas of similar average color. The max-
imum number of components for this view is 10, the average is 5. This is typical
for all of our data.

High-resolution Illumination Next, we present the results of using the com-
bined low-resolution reflectance fields and high-resolution environment mattes.
Figures 3.35 and 3.36 show different models in new illumination environments.

Figure 3.31: Relightable model under novel illumination.
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F igure 3.32: A combination of scanned and real objects in real environments. The scanned objects were
illuminated using surface reflectance fields.

Figure 3.33: Measured reflectance function data for several surface points.
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(a) (b)

Figure 3.34: (a) Original view. (b) Visualization of the number of PCA components
per block (Max. = 15, Mean = 5).

Figure 3.35: Left: High-resolution reflectance field from the environment mattes.
Middle: Low-resolution reflectance field from the reflectance images. Right:
Combined.
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F igure 3.36: Frames from an animation with rotating viewpoint.

We used the light-probe images available from Paul Debevec’s website as environ-
ment maps. All objects are rendered from novel viewpoints that are not part of
the acquired image sequence.

Figure 3.35 shows renderings using only the environment mattes (left), using only
the reflectance images (middle), and combining the two (right). Note that the
environment mattes, storing the high-resolution reflectance field, mostly capture
refractions, while the reflectance images, storing the low-resolution reflectance field,
mostly capture reflections.

Figure 3.36 shows a few frames from an animation with a rotating viewpoint. Note
how the specular highlights and refractive effects are accurately preserved by our
interpolation procedure.

In addition to low-resolution surface reflectance fields we need to acquire environ-
ment mattes from different viewpoints. For each viewpoint we capture 300 images
to estimate an environment matte. Because the aspect ratio of our monitor is 16:9,
we use a different number of backdrop images for each direction: 125 in diagonal,
100 in horizontal, and 75 in vertical direction. We capture environment mattes
using only three of the six cameras. The cameras are roughly spaced 10◦ apart in
elevation and 5◦ angular turntable increments. For a full 360◦ view of the object,
this corresponds to 3 × 72 = 432 viewing positions. All environment matte and
reflectance images are captured using the HDR technique. For each viewpoint, we
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take four pictures with different exposure times. The total number of pictures is
3× 72× 300× 4 = 259,200. The additional acquisition time is about 18 hours, or
5 minutes per viewpoint.

3.3.9 CONCLUSION

This section described a fully automated and robust 3D photography system
optimized for the generation of high-quality renderings of objects. The basic
premise of our scanning approach is to use large amounts of radiance and opacity
information to produce accurate renderings of the object instead of relying on
accurate geometry. We have also presented a method for acquisition and rendering
of transparent and refractive objects. Using a point-based 3D scanning system with
color monitor backdrops, we are able to scan transparent objects that would be
extremely difficult or impossible to scan with traditional 3D scanners.

We have introduced the opacity hull, a new shape representation that stores view-
dependent alpha parameterized on the visual hull of the object. Opacity hulls
combined with surface reflectance fields allow us to render objects with arbitrarily
complex shape and materials under varying illumination from new viewpoints.
We have shown that a parameterization of surface reflectance fields into high- and
low-resolution areas offers a practical method to acquire high-quality models.
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Université Paul Sabatier
118, Route de Narbonne
31 062 Toulouse Cedex
France
Mathias.Paulin@irit.fr
Tel: +33 56 155 83 29



4 FOUNDATIONS AND
REPRESENTATIONS

INTRODUCTION

This section acquaints the reader with the mathematical and algorithmic
fundamentals of point-based surface representations. The chapter starts with a
comprehensive overview of point-based surface representation and reconstruction
methods presented in Section 4.1. It discusses major results from graphics, geo-
metric modeling, and computational geometry. Section 4.2 is devoted to moving
least squares surface representations (MLS) which are of fundamental importance in
point-based computer graphics. The issue of point-cloud sampling and resampling
is addressed in Section 4.3. Very often, point-based algorithms require fast access to
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neighbored samples. The aspect of efficient spatial data structures will be elaborated
in Section 4.4. Section 4.5 concludes this chapter with a presentation of real-time
point model refinement, a somewhat more advanced topic which is important for
efficient, high-quality rendering and display.

4.1 SURFACE RECONSTRUCTION

Nina Amenta

4.1.1 OVERVIEW

Converting a point-cloud representation of an object into a more explicit one, such
as a triangle mesh, a collection of parametric patches, or the zero-set of a function
on space, is known as surface reconstruction. For a point cloud dense enough to serve
as a surface representation, the desired surface should be fairly unambiguous and
most any computational technique one tries will produce a reasonable surface. This
accounts for the wide variety of approaches that have been taken to the surface recon-
struction problem. Rather than a single dominant method, there are many different
approaches that are used depending on properties of the input, the desired output,
the availability of software, the philosophy of the user, and so on.

Certainly which method is best depends in part on the input. For a noisy input point
cloud with many outliers, for instance one captured using a stereo camera, it is impor-
tant to filter the outliers and extract as much information as possible from the noisy
data. A point cloud produced by a series of modeling operations, on the other hand,
will be essentially noise free and a method that interpolates the input points could be
used. Point clouds captured using commercial laser range scanners fall somewhere
in between, with few outliers but some noise, mostly caused by scanner artifacts
at sharp edges and, more significantly, alignment error between scans. The desired
output also of course affects the choice of algorithm. Many applications require a
watertight surface, that is, a surface bounding a closed solid, or, better yet, a closed
manifold (disallowing points of contact of the surface with itself). This is necessary if
the output solid is to be used for finite element analysis, rapid prototyping, parame-
terization, and many other purposes. In addition, the added constraint that the out-
put surface needs to be watertight often makes for easier, or more robust, algorithms;
the fewer choices the algorithm has the opportunity to make incorrectly, the bet-
ter. On the other hand, some input point clouds, for instance a scan of a human
face, cannot reasonably be interpreted as the boundary of a solid object. For such
inputs, methods that produce a watertight surface have to “hallucinate” large por-
tions of the output. In these cases, a method that produces surfaces with boundaries is
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preferable. Another way algorithms have been compared is by theoretical analysis.
For the most part this kind of analysis has been applied to algorithms that use com-
putational geometry, probably because of the theoretical history of that field. Most
of the theoretical results use the following framework: assume that the input point
set is sampled “densely enough” from the surface of an object, and then prove that
some algorithm produces an output surface that recovers the correct topology and
approximate geometry of the object surface. These proofs include a precise enough
definition of what it means for a sample to be dense enough so that we get a very good
sense of when the algorithm is guaranteed to work, which has been a strong aspect of
this line of work. In this chapter, we will survey several of the approaches that have
been taken to the surface reconstruction problem.

4.1.2 NORMAL ESTIMATION

We preface this survey by briefly considering the closely related problem of estimat-
ing normals vectors at or near an input point cloud P . Surface reconstruction from a
set of surfels with reliable normal directions is an easier problem than surface recon-
struction from points alone; in essence, each surfel provides a local reconstruction
of the surface. Finding normals is the first step in some reconstruction algorithms;
others simply assume that reliable normals are available. Like surface reconstruction
itself, the quality of the normals that can be computed for a point cloud depends on
its distribution.

An approach first used by Hoppe et al. [HDD+92] in the context of surface recon-
struction is to find the k-nearest neighbors of point p, the set Nk(p), and take the
normal of the total least squares best-fitting plane to Nk(p) as the surface normal
at p. This method might lead to trouble when the points are not uniformly dis-
tributed. An example of particular concern is that when the points are distributed
in rows or slices on the surface, then all of the points ofNk(p) are likely to lie in the
same slice, and the total least squares best-fit plane might be perpendicular to the
surface rather than an approximate tangent plane, as intended. An alternative is to
use all points within distance r of p. Using a fixed radius r leads to the same difficul-
ties as using a fixed number of neighbors k, although one method or the other might
work better on specific inputs.

Mitra et al. [MNG04] studied methods for choosing r adaptively at different points
of P . They observed that there is generally not a single best choice of r for a given
input P : the error of the best-fit plane increases with r in areas of high curvature,
while it decreases with r where the noise is high. Assuming a random noise model,
they gave analytic methods for bounding the error of the normal as a function of r,
and proposed an algorithm for estimating the local curvature and noise level from
the data and using them to choose an optimal r.
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The Voronoi diagram of P can also be used to give a good estimate of the surface
normal for points near the boundary of P . Assuming that P is fairly dense, the
Voronoi cells of a point p on the exterior of P are elongated in the direction per-
pendicular to the surface. Call the vertex of the Voronoi cell of p farthest from p the
pole of p [ABK98]. The vector from p to its pole is a good estimate of the surface nor-
mal. Dey and Goswami [DG04] bounded the error of this estimate, again assuming a
specific noise model. Dey et al. [DLS04] compared this method experimentally to the
total least squares approach above, and found it to be more accurate, although much
more time consuming.

Whatever method is used to produce normals, some algorithms then expect them
to be oriented so as to agree with each other about which is the inside and which is
the outside of the surface. Sometimes (e.g., with laser range scanner data) this can
be determined from the input. Finding a consistent orientation is also easy when
the input densely samples a closed surface that cleanly divides the surrounding space
into interior and exterior. With noisy and incomplete surface data, however, find-
ing a consistent orientation can be difficult, especially if parts of the surface are very
close to one another or if there are sharp creases that might be mistaken for surface
boundaries.

4.1.3 IMPLICIT SURFACE METHODS

Many surface-reconstruction algorithms are based on the idea of using the input
sample to produce a function f () on all of 3D space. The function f () is designed
to be negative inside the object and positive outside the object, so that the desired
surface S can be extracted as the zero level-set of f (). The signed distance function,
representing the oriented distance from the surface, is one possible candidate for f (),
but any function such that S is the zero-set can be used. There is a huge variety of
techniques for representing and handling such implicit surfaces, and many of them
have been applied to surface reconstruction.

Implicit function methods have the advantage that the output surface is always the
watertight boundary of a solid (the set of points x such that f(x)≤0). In the generic
case in which the zero-set avoids singularities of f, the resulting surface is also a
manifold. To produce a manifold surface, the function f () should be computed on
a domain large enough to surround the input point set P and contain the entire
zero-set of f (), as for instance in Turk and O’Brien [TO99]. An alternative is to
instead take the domain to be a thin shell surrounding P , as for instance in Cur-
less and Levoy [CL96]. This produces the subset of the surface that lies near P , which
is typically a partial surface with boundary. While the output is not watertight, this
approach is often more efficient.
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Voxel-based Methods
The implicit surface method was implemented on a voxel grid by Hoppe et al.
[HDD+92] in an influential paper that popularized the surface reconstruction prob-
lem in the graphics community. Their algorithm first estimates the normal direction
at each point p by fitting a plane through p’s k-nearest neighbors, the setNk(p). The
resulting directions are unoriented (see Section 4.1.2). We then traverse a spanning
tree of P assigning a consistent orientation to the normals. The value of the func-
tion f () at a point x in space is defined to be the distance from x to the tangent plane
associated with the point p ∈ P nearest to x. Finally, a piecewise-linear surface is
extracted from the zero-set of f () using marching cubes. Notice that this function f ()
is discontinuous; the marching cubes process plasters over most of the discontinuities
in the zero-set, but the resulting surfaces can suffer from holes. The implicit func-
tion representations discussed below, based on blending (rather than just switching
between) locally defined approximations to the distance function, could remedy this
problem at the cost of some additional computation.

Curless and Levoy [CL96] focused on the problem of surface reconstruction from
laser range data. Their algorithm is remarkable for its efficiency and the quality of
the output, and an implementation is available. Recall that a single laser range scan
is a depth map: a grid of points in the x − y plane, each associated with a depth
value in the z-direction, all in some coordinate system related to the position and
orientation of the scanner relative to the object. Rather than assigning point normals,
patches of surface are reconstructed from individual input scans by simply connect-
ing points adjacent in the x− y grid if their distance from the scanner does not differ
too greatly. Each such patch is then associated with a directional distance function in
the z-direction associated with the coordinate system of that particular scan. These
directional distance functions are then blended, using normalized Gaussian weights,
to form the function f (), and again the surface is extracted using marching cubes.
While each of the individual directional distance functions is itself continuous, the
fact that two functions with very different directions might be blended together seems
to lead to a noisier function F than might at first be expected, and some subsequent
work has addressed the problem of cleaning up the “topological noise” in the out-
put surfaces [WHDS04]. Efficiency is gained by limiting the domain on which f () is
computed to a thin shell around the input points, and only dealing with voxels within
the shell. The algorithm returns a surface with boundaries, which tends to have holes
where P has gaps. Curless and Levoy’s algorithm is one of the few that treats scanner
noise carefully. Each point of P is assigned a confidence. Points at which the scanner
z-direction is nearly tangent to the surface patch are assigned lower confidence
than points at which the scanner z-direction is nearly normal to the patch. Points
near sharp features and near the edges of the patch are assigned lower confidence.
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Probably because of this careful weighting of the input, this algorithm manages to
produce good outputs from very difficult inputs involving many outliers and a lot of
noise. See Figure 4.1.

The VripPack software, available at the Stanford Graphics website, implements this
reconstruction method. It takes individual laser range scans as input.

Basis Functions
Implicit surfaces are also commonly represented by a weighted sum of basis func-
tions, most commonly radial basis functions. Given the value of f () at a set of con-
straint points in space, we center a radial basis function at each constraint point,
and then solve for the choice of weights that causes the function to interpolate or
approximate the constraints. For a number of natural measures of “smoothness or
regularity” of the function f (), the optimal f () satisfying the constraints is given by
the interpolation using a particular radial basis function related to the smoothness
measure [Dyn87]. This optimality is a very appealing property, both theoretically and
in practice. Although it is the 3D function f () that is optimized, not the zero-set S
that is the actual output, nonetheless the surfaces produced tend to be very smooth
and attractive. One important detail is that if all of the constraint points are surface
points, then they have function value zero, since they are intended to lie on the

Figure 4.1: Reconstruction of a drillbit from Curless and Levoy [CL96]. (Left) A cross–
section of the noisy input data, including a lot of scatter from the sharp corners. (Right)
The reconstructed surface of the drillbit, extracting the spiral shape from the noisy data.
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zero-set of f (). But the smoothest function fitting a set of points all with value zero
is just the constant function zero. So it is necessary to provide constraint points in
the interior of the object, with negative values, and outside the object, with positive
values, as well as surface points.

In some situations such points are naturally available, and in others they can be gen-
erated. For instance, if points with normals are supplied, then for every surface point
we can place additional off-surface points offset from it in both normal directions,
and provide them with negative and positive values [TO99, CBC+01]. In this case
it is important to ensure that the offset is small enough that the constructed points
are not placed near other surface points. Turk and O’Brien [TO99] and Dinh et al.
[DTS02] have applied implicit surfaces based on radial basis functions to a number
of problems in computer graphics, including surface reconstruction. They show that
radial basis functions can be used both with dense, fairly clean inputs like laser range
scanner data, and also for sparse and noisy inputs that arise often in computer vision.
Solving for the weights or other parameters associated with radial basis functions can
be quite demanding computationally. Carr et al. [CBC+01] used multiscale methods
developed by Beatson to efficiently compute radial basis function surfaces for inputs
consisting of hundreds of thousands of input points, and also explored methods for
iteratively adding basis functions until sufficient resolution is achieved.

Indicator Function
Another choice for f () is the indicator function, which is one inside the object and
zero outside. Kazhdan [Kaz05, KBH06] has proposed a clever algorithm, based on
the observation that the gradient of the indicator function has a particularly simple
form: it is zero everywhere except at the object surface, where it is equal to the surface
normals. A continuous representation of the gradient field is easily computed from
an input set of oriented surfels. The computation of f () from its gradient field is
a Poisson problem. Initially, this was solved in the Fourier domain, while the more
recent paper with Bolitho and Hoppe [KBH06] gives a much more efficient solu-
tion using radial basis functions to represent both the gradient field and f () itself.
This surface reconstruction method produces a global function, like the radial basis
function (RBF) methods of the previous section, but it is computationally much
more efficient. It produces excellent looking results, and should be a very compet-
itive method in practice.

MLS and MPU with Local Functions
Some recent implicit surface representations are based on the idea of constructing
many “little” implicit functions locally near the point cloud, and then blending them
together to form f (). Each function fi() is associated with a point pi in space. To
evaluate f () at an arbitrary point x in space, we blend the fi(), using weights that
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are designed to form a partition of unity, as follows. We associate a weight function
wi with each pi that decreases monotonically with the distance from pi (often all
the wi are the same, but this is not necessary). Then the value of f () at point x is
computed as:

f (x) =

∑
i wi(||x − pi||)fi(x)
∑

i wi(||x − pi||)
. (4.1)

This blending function produces the value for f (x) that minimizes

∑

i

wi(||x − pi||)∑
i wi(||x − pi||)

( f (x) − fi(x))2. (4.2)

This idea of finding an optimum with respect to the local weights is the defini-
tion of the moving least squares function approximation (as opposed to the MLS
projection method). If the weights can be chosen so that for any x, most of the weights
wi(||x − pi||) are zero, f () can be computed efficiently. In the common case in which
the wi are chosen to be Gaussian, usually the functions associated with points pi suf-
ficiently far from x can be disregarded.

The multilevel partition of unity (MPU) surface representation [OBA+03] is one
implementation of this idea. It is built on an octree decomposition of space around
the point cloud. Each octree leaf contains a constant number of points, each with
an associated normal. A low-degree polynomial function that approximates the dis-
tance function to the points within the cell is used as fi(), and the center of the cell
is used as pi. Functions are also associated with interior nodes in the tree, giving
lower-resolution approximations of the surface that fill in holes and ensure that the
function is represented everywhere in space. Three different surface representations
are used at the nodes, depending on the number of points and whether their nor-
mals agree or not: a parametric function (normals agree); an implicit quadric (many
points, varying normals); or a piecewise-parametric function (few points, varying
normals). Because of the quadtree, MPU does not require a uniform distribution of
input points, but the possibility of octree artifacts (especially induced by outliers far
from the data points) is a drawback.

A preliminary version of the software for MPU surface reconstruction is currently
available from Ohtake’s website at MPI-SB. It takes a list of points, followed by a
list of normals, as input. The MPU code is quite fast, and can handle hundreds of
thousands of input points.

Other applications of this idea are formulated in terms of the MLS function approx-
imation rather than partitions of unity. Xie et al. [XWH03] compute approximating
quadric polynomials fi to cover homogenous patches of surface. These patches are
grown from seeds and expanded as long as the points included can be well
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approximated by a quadric. Orientations are assigned to the patches in a final step,
and the final surface representation is formed by locally blending the polynomials.
The surfaces used by Nielson [Nie04] and Shen et al. [SOS04] for converting polyg-
onal surfaces to implicit surfaces also fall into this category. In both cases local
functions are defined for the facets of the polygonal model, and associated with points
on the facets.

Such a function can also be defined given an input point setP with normals: we define
the function fi() at each input sample pi to be the distance from the plane through pi

with its normal ni. Kolluri [Kol05] showed that using such functions to define an MLS
implicit function f () gives a provably correct surface reconstruction algorithm. His
analysis is similar to some of the results for algorithms based on Voronoi diagrams
discussed in Section 4.1.4. Kolluri’s proof requires the sample points to be distributed
nearly uniformly on the surface. Dey and Sun [DS05] recently gave a similar defini-
tion that they show gives a correct reconstruction, even when the sampling density
varies, so long as it is everywhere sufficiently dense. The influence of an input point
s on the function at a point x in space is weighted both by the sampling density near
x and the sampling density near s.

4.1.4 VORONOI METHODS

Algorithms for surface reconstruction developed in the computational geometry
community have for the most part been based on the Voronoi diagram and its dual,
the Delaunay triangulation. A particular strength of these algorithms is the empha-
sis on providing proofs of correctness, which usually take the following form: first
assume that a smooth surface S is sampled “sufficiently densely” by set P , and then
show that the output of the algorithm on P is a good approximation of S . The def-
inition of a sufficiently dense sample must depend on some property of the surface;
computational geometry algorithms use the distance from the medial axis. The local
feature size lfs(x) at a point x in space is defined as the minimum distance from x to
the medial axis. The distance between samples is then required to be proportional to
lfs(x). Specifically, a set of sample points on the surface is an ε-sample if, for every
point x on the surface, there is a sample within distance ε f (x) of x. The idea of this
definition is that while the samples must be dense in more intricate parts of the
surface, featureless areas can still be sampled sparsely. The radius of curvature of the
surface is an upper bound on lfs(x), so this definition is related to sampling accord-
ing to curvature, but lfs(x) can be small even when the curvature is zero, if two sheets
of the surface lie near each other. One unfortunate feature of this definition is that
lfs(x) is zero at a sharp corner, requiring infinitely dense sampling. Thus most of the
results below are only valid for a smooth surfaceS . An ε-sample remains an ε-sample
when more sample points are added; any kind of oversampling is allowed. Another
drawback is that the sampling is usually assumed to be noiseless, and many of the
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Voronoi diagram-based surface-reconstruction algorithms do not in fact do well on
very noisy samples; current work is beginning to address this issue [CL05, DG04].

Algorithms
Surface reconstruction has been a topic in computational geometry since the 1980s,
although the analytic framework is more recent. Jean-Daniel Boissonnat proposed
“sculpting the shape from the 3D Delaunay tetrahedralization” [Boi84]. Tetrahedra
likely to be outside the object are identified by their shape and removed one by one,
in such a way that the remaining solid is always a sphere. Edelsbrunner and Mücke
used a filtration of the Delaunay triangulation, the alpha shape, which is based on the
interpoint distances [EM94]. Triangles for which small circumspheres can be found
are retained as possible surface triangles.

Delaunay Filtering
The analytic framework and the sampling model were introduced in conjunction
with the crust algorithm of Amenta and Bern [AB99, ABK98]. This algorithm is based
on explicitly using the the Voronoi diagram to estimate the medial axis. The Voronoi
cells of an ε-sample have a distinctive shape: they are long, thin, and perpendicular
to the surface S ; see Figure 4.2. The two “ends” of these long thin cells have to lie

Figure 4.2: The 3D Voronoi diagram of points sampled from a smooth 2D surface. The
intersection of the 3D cells with the surface is shown in black, and the edges of one
Voronoi cell, belonging to the blue point, are shown in red. Notice that the Voronoi cell is
long and skinny, with its long axis perpendicular to the surface. The ends of the Voronoi
cell are located near the medial axis.
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near the medial axis [ACK01b]. We call these Voronoi vertices the poles. The crust
algorithm used the poles to eliminate triangles from the Delaunay tetrahedralization
that cannot belong to the surface. The co-cone algorithm [ACDL02] simplifies and
improves on this idea. The essential observation is that the vector from a sample point
p to either of its poles should be close to the surface normal, so Delaunay triangles
lying on the surface can be recognized by comparing their normals with the vectors to
the poles. This algorithm was extended in various ways by Dey and others, to handle
surfaces with sharp features and boundaries [DG01] and to produce watertight mod-
els [DG03]. Software for these algorithms is available. A recent algorithm of Dey and
Goswami [DG04] generalizes the definition of poles to include all Voronoi vertices
far from the surface, which can be determined from noisy as well as smooth data, to
give an algorithm that works well on quite noisy inputs.

Distance Function and Gradient Flow
Another family of algorithms based on the Voronoi diagram and Delaunay triangula-
tion uses the structure as an approximation of the distance function of S , from which
a surface can be extracted. The Voronoi diagram of a point setP is the set of singular-
ities of the squared distance function of P . The value of the distance function should
be low near P and high near the medial axis. Unfortunately this function is only zero
at the points themselves, and bumpy nearby, so it is not obvious how to extract an
approximate surface directly from the Voronoi diagram. Two different algorithms,
one due to Edelsbrunner [Ede05] and another to Giesen and John [GJ03], extract a
3D solid from the Delaunay triangulation by constructing a discrete flow correspond-
ing to the gradient flow on the squared distance function; the two algorithms differ
in the details of how the discrete flow is defined. In a discrete flow, a Delaunay tetra-
hedron flows into its neighbor across a face, or not, depending on the gradient of the
Voronoi edge dual to the face. The part of the Delaunay tetrahedralization that flows
to infinity is discarded as the exterior of the object. Interior portions flow to maxima
in the interior of the object. Unfortunately, there can also be maxima corresponding
to pockets exterior to the object. Resolving which maxima are interior or exterior to
the object requires some user input, or other information.

Rather than the squared distance function, Boissonnat and Cazals [BC02b]
interpolate a signed distance function. To get the sign, they need points with nor-
mals as input. They use Sibson’s interpolation method, which is based on the Voronoi
diagram. Sibson’s interpolation adapts well to irregularities in the distribution of the
input points, so that the zero-set of the resulting smooth function is used to select a
set of Delaunay triangles to represent the surface.

Power Crust
The power crust algorithm of Amenta et al. [ACK01a, ACK01b] also constructs a
3D solid, but it uses the weighted Voronoi diagram of the poles, known as a power
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diagram, rather than the Delaunay triangulation of the sample points P . Instead of
meeting at the medial axis, the cells of the power diagram meet at the object’s surface.
Power diagram cells belonging to the interior of the object can be cleanly separated
from those belonging to the outside of the object by traversing the structure and look-
ing at the connections between the cells. The resulting algorithm is quite robust. The
output is the surface separating the interior and exterior cells, and it passes through
the setP of input sample points (at least in the noise-free case). A drawback is that the
output facets are convex polygons rather than triangles, and unfortunately this algo-
rithm produces overly dense tessellated surfaces, even given nice inputs. Software for
this algorithm is available, but it only works on moderately sized (tens of thousands
of points) inputs.

Advantages and Disadvantages
All of these algorithms begin by computing the Delaunay triangulation of the input
points. While Moore’s Law and the sporadic improvement of 3D Delaunay codes
make this feasible for increasingly large inputs, the current maximum seems to be
somewhere in the tens of millions of points, and the computation is expensive in
time and space. Then most of the triangulation is thrown away. Computing only
the necessary part of the Delaunay triangulation would be much better. The ball-
pivoting algorithm of Bernardini et al. [BMR+99] does this. Intuitively, the algorithm
rolls a ball of fixed radius around the outside of the point cloud. Every time the ball
comes to rest on three input samples, we connect those samples with a triangle. This
works well for fairly uniformly sampled surfaces, such as laser range scanner data.
It is not as robust as the algorithms that compute the entire Delaunay triangulation,
however.

One advantage of these Voronoi/Delaunay algorithms is that most of them do not
require surface normals as part of the input; the poles provide a very good approx-
imation of the surface normals, and they generally relay on the global structure of
the Voronoi diagram and the Delaunay triangulation to find a consistent orienta-
tion of the normals.

4.1.5 SURFACE EVOLUTION METHODS

Yet another class of methods is based on surface evolution. The idea is to gradually
deform a simple input surface, using rules to maintain its structure and also rules to
attract it to the input data. Since the initial placement of the evolving surface defines
the inside or the outside of the object, typically these methods do not require normals
for the input points.

An early straightforward implementation of this idea is due to Chen and Medioni
[CM94]. They initialize the surface as a small ball inside the input point cloud, and
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allow it to expand using “balloon forces” until it reaches the input points. This is an
example of a Lagrangian approach to surface evolution, in which the the evolving
surface is represented explicitly, in this case by a triangle mesh. The forces include
an inflation force in the normal direction and spring forces between neighboring
vertices. When a sample point is detected close to a surface vertex and nearly in
its normal direction, the vertex is “anchored” and no longer moved. Triangles that
remain active and grow too large are subdivided. This has the effect of allowing the
surface to change shape and adapt to non-star-shaped objects. A major drawback of
this algorithm is that it only can be used to reconstruct objects homeomorphic to a
sphere. Also the balance of the spring forces and edge subdivision seems like it might
require some calibration for different inputs.

The level-set method of Osher and Sethian [OS88] has revolutionized surface
evolution algorithms over the last decades. The level-set method is a Eulerian
approach, meaning that the evolving surface is represented by a level-set in an
implicit 3D function represented on a voxel grid. Changes in the implicit function
can induce topological changes in the evolving surface, so that the topological
genus of the output surface need not be known in advance. The level-set method
was applied to surface reconstruction by Zhao et al. [ZOMK00], and the efficiency
of the method was improved by Zhao et al. [ZOF01].

To use the level-set method, it is necessary to formulate the problem in terms of a
PDE describing the evolution of the surface. This is then translated into the problem
of evolving an implicit function f () on the space, with the surface represented by the
zero-set f (x) = 0. Finally this evolution is solved numerically.

To apply this, we assume that the evolving surface Γ is trying to minimize the surface
quality functional:

E(Γ) =

[∫

x∈Γ
dm(x,P)ds

]1/m

. (4.3)

Here ds indicates a surface area element, and typically the exponent m = 1 or m = 2.
Notice that the functional is reduced both by bringing the surface closer to the sample
set P and by reducing the surface area. The reconstructed surface is thus something
like a minimal surface spanning the samples.

Since there is no explicit requirement on the topology of the surface, and we only
measure the distance from the surface to the samples, not the distance from the
samples to the surface, the global minimum Γ is the empty set. But there are also
locally minimal solutions, and if we choose our starting surface well, we can end
up at a local minimum that is a good approximation to the surface. Because the
level-set method can introduce topological changes in the surface when they locally
result in a reduction of the quality functional, the evolving surface can usually handle
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F igure 4.3: Surface evolution starting from a bounding surface. Most topological
changes are handled gracefully, but sometimes it can get stuck in an undesired local
minimum. (Left) The outer surface is attracted to the object boundary. At some moment,
it covers both the connected components, and the connecting channel shrinks to have
zero volume, and then disappears, leaving a correct surface representation. (Right) The
shrinking outer surface will get stuck in a local minimum including the dotted line and
not the interior of the cavity; moving the dotted line into the cavity increases the surface
area and requires more energy.

situations in which a handle should be introduced or two connected components
should be separated, as in Figure 4.3 (left). In other situations, as in Figure 4.3 (right),
even a topologically correct starting surface might get stuck in other local minima
before reaching the surface points. Starting from a good initial estimate generally
avoids such problems; for instance, a connected component of a small isocontour
often works well [ZOF01].

4.1.6 CONCLUSION

Surface reconstruction is applied to point clouds in different contexts. Point clouds
captured by laser range scanners are large, too dense in many areas, and somewhat
irregular and noisy. Taking more processing time to do a better job of integrating
noisy data is a very appropriate trade-off in this case. The method of Curless and
Levoy (Section 4.1.3) does a good job of integrating information available from the
scanning process into the reconstruction process, but other methods have for the
most part not addressed this important issue. Memory efficiency is probably more
important than speed for handling really large inputs. The MPU method (also in
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Section 4.1.3) handles quite large inputs, and the Poisson surface method of Kazhdan
et al. seems very promising.

In point-based modeling, the point sets are synthetically generated, and so can
be nearly uniform or sampled according to some appropriate criterion, and are
essentially noise free. This presents a great opportunity to develop very fast surface
reconstruction algorithms that depend on having good input data available. An
improved understanding of the point distributions required by different recon-
struction methods will be helpful here, for which the sampling theory devel-
oped in the context of the Voronoi/Delaunay algorithms (Section 4.1.4) should be
useful.

4.2 MOVING LEAST SQUARES–BASED SURFACE
REPRESENTATIONS

Marc Alexa

4.2.1 OVERVIEW

Representing the surface with points is slightly different from the problem of
reconstructing a surface from point samples: the basic idea of representation is to use
the points as the main source of information about the shape. Efficient algorithms
are applied to the points to determine if a certain point in space is inside or outside
of the shape or how far it is from the surface, to project this point onto the surface
or to intersect other primitives with the surface. In contrast, reconstruction is
typically concerned with converting the point set into another representation, where
these algorithmic goals are potentially easier to perform.

A consequence of this view is a focus on local algorithms. Specifically, we’d like to
avoid the construction of a global connectivity structure among the points. Doing
this could lead to very good reconstruction results, as it considers all of the data at
once. At the same time, looking at all the data has the severe drawback that gather-
ing information about some part of the shape always requires all of the data to be
considered. For example, examining the face of a large scanned statue would require
processing all points including those of the lower torso, which hardly seem relevant.
In addition, effective global solutions would require to keep all data in main memory,
which is impossible for the current size of large datasets in comparison to available
memory.

Only local algorithms have the premise to be efficient when used to perform certain
local operations on very large point sets. Despite the lack of global structure, we wish
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that putting all the local computations together would result in a nice surface. Nice
in this context means that the surface is smooth, in other words, contains no visible
kinks and is (where reasonable) manifold (locally equivalent to a disk). In fact, we will
construct surfaces that are locally equivalent to parametric surface patches, which is
an even stronger property.

In particular, this section introduces methods that are related to locally weighted least
squares approximations for defining a surface from points—the so-called moving
least squares (MLS) approach.

We start by discussing some common methods to interpolate or approximate
functional data. To compute a surface from points is different as the parameteriza-
tion of the surface is unknown. This requires additional data, which we usually find
by considering the normals in the points. These normals are either available with the
data or have to be computed. We discuss some simple techniques to estimate normals.

Using the normals, the techniques for fitting to functions can be extended to fitting
surfaces to scattered points in space. We feel that the most advanced method in terms
of desirable properties is the MLS method for surface. We derive two variants in the
end of this section, where the latter one exceeds in terms of computational ease.

4.2.2 NOTATION AND TERMS

We assume that the points P = {pi ∈ R
3}, i ∈ {1, . . . , N}, are sampled from an

unknown surface S , and that they might contain some noise due to the imperfect
sampling process. Some sampling processes additionally provide normal informa-
tion in each point, which we assume to be represented asN = {ni ∈ R

3,‖ni‖ = 1}.
We assume that data are irregular (i.e., that the points are not sampled from a reg-
ular lattice in space).

Our goal is to define computational methods for the interrogation or manipulation
of a point x ∈ R

3. These computational tools indirectly define a surface Ŝ from the
pointsP (and possibly the normalsN ). We understand the term locality as the extent
of space or the number of points that is necessary to perform the computations for x.
A global method will potentially require all points inP to perform the computations.

The reconstructed surface is said to be interpolating if P ∈ Ŝ , otherwise it is approxi-
mating (see Figure 4.4). We will almost exclusively look at the case of approximation.
Approximating the points takes into account that the surface is assumed to be not too
wiggly and that the points contain some noise. An approximation allows smoothing
this noise and providing a reasonably behaved surface.

Before we approach the general surface representation problem, we’ll recall some
basic methods for the interpolation or approximation of functional data. For this,
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(a) (b)

Figure 4.4: A point set is (a) respectively approximated by a curve and (b) interpolated.

qi

pi = (qi , fi)

fi = f (qi)

Figure 4.5: The notation for the functional (parameterized) setting.

we assume that each point pi = (qi, fi) is composed of a position qi in parameter
space (R2 in our setting) and a value fi at this position (see Figure 4.5 for an
illustration). Note that in the general case of computing a surface from a set
of points we don’t have the distinction of parameter values and function values
(i.e., the surface is not parameterized). That makes the problem harder, and we
discuss concepts for solving it once the basic solutions for the simpler problem are
introduced.

4.2.3 INTERPOLATION AND APPROXIMATION OF
FUNCTIONAL DATA

For now, our goal is to determine a function f that interpolates or approximates the

given constraints pi = (qi, fi) (i.e., f̂ (qi) ≈ fi). Defining such a function means to

describe an algorithm that computes for every x ∈ R
2 a function value f̂ (x).

We start with a very simple approach: given x, find the closest location for which a
function value is defined (i.e., minj ‖qj − x‖). If the minimum is not unique, choose

the one with smallest index j. Then set f̂ (x) to fj. More formally, we define
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f̂ (x) = q j, 0 < j < i⇒ ‖qj−x‖ < ‖qi = x‖, i < j < N⇒ ‖qj−x‖ ≤ ‖qi = x‖. (4.4)

The result is a function that interpolates the points but is not continuous.

The obvious idea to improve the continuity of f̂ is to combine the values of several
close points. In general, our approach looks like this:

f̂ (x) =
∑

i

wi(x)fi, (4.5)

where wi(x) are weight functions appropriate to combine the values of several points
in a location x.

Depending on how the set of “close” points is identified and how the weight func-
tions are computed based on the set of close points, several methods with different
properties can be derived. We consider the following ideas:

• Voronoi techniques. Identify the regions for which the location of data point
qi is closest and exploit the adjacency of these regions. The Voronoi decompo-
sition in two or more dimensions is a global problem, so we won’t cover this
approach here. It was briefly discussed in the previous section.

• Radial basis functions. Attach a (radial) function to each data point that des-
cribes how it influences space.

• Shepard. Collect points in a certain radius and weight them based on distance.
• Moving least squares. Collect points in a certain radius and weight them so

that polynomials are reproduced.

Radial Basis Functions
A basic and very general approach is to model the weight functions as radial
functions:

wi(x) =
ci

fi
θ(‖x − qi‖)⇔ wi(x)fi = ciθ(‖x − qi‖), (4.6)

where θ is a function that describes the influence of qi on x based on the distance
between the two locations (see Figure 4.6 for an illustration and [Dyn89, Buh03]).

In this approach, all weight functions wi are essentially the same and only differ by
a linear factor. Note that the method is already fully defined for a fixed function θ in

case we ask for interpolation: Requiring f̂ (q j) = fj leads to

f̂ (q j) =
∑

i

ciθ(‖q j − qi‖) = fj, (4.7)

which is, in fact, a system of linear equations:
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F igure 4.6: The RBF approach to interpolating functional data. A radial weight function
is attached to each data point. The coefficients for each weight function are computed
by solving a linear system of equations, resulting from asking for interpolation in each of
the data points.




θ(‖q0 − q0‖) θ(‖q0 − q1‖) θ(‖q0 − q2‖) · · ·

θ(‖q1 − q0‖) θ(‖q1 − q1‖) θ(‖q1 − q2‖) · · ·

θ(‖q2 − q0‖) θ(‖q2 − q1‖) θ(‖q2 − q2‖) · · ·

...
...

...
. . .







c0

c1

c2

...




=




f0

f1

f2

...




(4.8)

So, before we are able to compute the weights we first need to solve this linear system.
This requires that the system has a solution, which means the data points allow being
interpolated with the given functions. As the matrix depends only on values of θ,
solvability obviously depends on the choice of θ.

Standard choices for the radial function θ are θ(δ) = δ−u, u ∈ N [Dyn87] or the
Gaussian θ(δ) = exp(δ2/h2) [Dyn89]. However, another concern makes these func-
tions impractical: each point influences every other point, making the approach
global. This can also be recognized from the fact that a dense linear system has to

be solved before f̂ could be evaluated in any point.

In an attempt to make the solution local we should use locally supported radial func-
tions. This means we can choose a distance parameter ε. If two points are farther
apart than ε the function θ attached to either of them vanishes in the other point
(i.e., δ > ε⇒ θ(δ) = 0).

Popular choices with good properties are Wendland’s radial functions [Wen95],
because they consist of polynomial pieces with low degree (i.e., they are easy to
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compute) and lead to solvable linear systems. The particular function to be used
depends on the space in which the locations qi live.

Using these locally supported functions leads to sparse linear systems, which can be
solved in almost linear time (e.g., using multiresolution methods [FI96]. Neverthe-
less, strictly speaking this is a global solution, as the inverse of a sparse matrix is not
necessarily sparse. Practically speaking this means moving one point could poten-
tially influence points farther away than ε by a cascade of effects on other points.

On the other hand, the sparse linear system has to be solved only once. This defines
the linear factors {ci}, which in turn define the weight functions wi(x). Evaluating

f̂ (x) is typically very cheap, as θ has to be evaluated only for few close points.

Least Squares Fitting
Most readers will be familiar with the idea of least squares fitting a polynomial to
given data (Figure 4.7 shows fitting a quadratic function to univariate data). Here,
we will rediscover this method in our setting, by introducing the concept of a preci-
sion set. This presentation aims at helping with the understanding of the following
techniques.

As before, we represent f̂ at x as
∑

i wi(x) fi. We ask that f̂ has a certain precision,
which is described by a precision set G: if the pairs (qi, fi) happen to be sampled from

a function contained in the precision set (say, g ∈ G), then we wish that f̂ results
to be exactly that function. We can formalize this requirement as follows: for every
g ∈ G the weight functions have to satisfy

g(x) = a + bx + cx2

min
g

( fi − g(pi)) 2
i

∑

Figure 4.7: Least squares: Fitting a (here: quadratic) function f̂ by minimizing the
squares of differences between the given function values fi and the values of the
quadratic function at the corresponding locations qi. The standard approach is to min-
imize among all quadratic functions f̂ (x) = a + bx + cx2 (i.e., mina,b,c

∑
i(fi − f̂ (qi))2); here

we rediscover the same solution starting from different assumptions (see text).
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g(x) =
∑

i

wi(x)g(qi). (4.9)

As a more concrete example, consider the precision set of quadratic polynomials
g(x) = a + bTx + xTCx. Look at the following system of equations:

1 =
∑

i

wi(x)1

x0 =
∑

i

wi(x)qi0

... (4.10)

x2
0 =
∑

i

wi(x)q2
i0

...

Note that the set of linear combinations of these equations,

a + bTx + xTCx =
∑

i

wi(x)
(

a + bTqi + qT
i Cqi

)
, (4.11)

is, in fact, the requirement of reproducing any function from the precision set of
quadratic polynomials.

We can write the system of equations in matrix form as

Qw(x) = z. (4.12)

Typically, we will have more points than dimensions in the space of polynomials (i.e.,
the system is underdetermined). We need to restrict the weights further. A common
way to do this would be to ask that the sum of squared weights is minimal, in other
words

min
{wi(x)}

∑

i

(wi(x))2 = min
w(x)

w(x)Tw(x). (4.13)

How could we find this minimum, subject to the linear constraints given in
Equation (4.12)? Assume we know the solution vector w(x). Now look at the polyno-
mial (a, b0, . . . )Qw(x). We can certainly choose the polynomial coefficients (a, b0, . . . )
so that this polynomial attains a minimum or a maximum for the given weight vector
w(x). So instead of minimizing only squared weights, we try to minimize

w(x)Tw(x) − (a, b0, . . . )Qw(x), (4.14)

where we have the polynomial coefficients as additional degrees of freedom. This
approach helps to include the linear constraints in the minimization, at the cost of
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additional variables to solve for. A necessary condition for the minimum is that all
partial derivatives are identical to zero. Taking all partial derivatives with respect to
the weights and setting to zero leads to

w(x)T − (a, b0, . . . )Q = 0⇐⇒ w(x) = QT(a, b0, . . . )T. (4.15)

Using that in Equation (4.12) yields

QQT(a, b0, . . . )T = z, (4.16)

which is identical to the normal equation for least squares fitting a polynomial and
also shows that the solution is independent of the location x. Once the polynomial
coefficients are determined one could indeed solve for the weights at x, however, in

this case it is easier to compute f̂ using the representation as a polynomial.

Notice that the solution we have presented works for any precision set that could be
represented as a finite linear space.

Moving Least Squares
We will follow the basic ideas of the last section. The only modification is that we
localize weights. We do this by incorporating a separation measure into the mini-
mization of squared weights:

min
{wi(x)}

∑

i

w2
i (x)η(‖qi − x‖) = min

w(x)
w(x)TE(x)w(x). (4.17)

The separation measure η(‖qi − x‖) penalizes the influence of points at qi far away
from x (i.e., the function increases with the distance between qi and x).

The solution to this constrained minimization is similar to the uniform situation.
Now one has to solve

w(x)TE(x) − (a, b0, . . . )Q = 0, (4.18)

which leads to

w(x) = E(x)−1QT(a, b0, . . . )T. (4.19)

This can be inserted into the constraint equation Qw(x) = z to get the polynomial
coefficients:

(
QE(x)−1QT

)
(a, b0, . . . )T = z. (4.20)

We see that the polynomial coefficients result from a weighted least squares system.
The weighting comes from the η−1, which we call θ for convenience. It depends on
the location x, because η depends on x.
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The resulting approach could also be interpreted like this: in each location x
determine a locally weighted least squares fitting polynomial and use the value of
this polynomial at x (a moving least squares approximation [LS86, Lev98]). This is
illustrated in Figure 4.8. In this interpretation it seems the approximating values of

f̂ (x) are computed independently for different locations, so it might not be imme-

diately clear that f̂ is a continuously differentiable function. Our derivation of f̂ ,
however, reveals that it is, if η (or, better, E(x)) is continuously differentiable.

If θ is locally supported (i.e., vanishes for large distances between x and qi) the com-
putations for x are also local, as they depend only on the data points that are within

the support. For η(0) = 0 (i.e., θ(0) = ∞) the resulting function f̂ interpolates the

points. Notice that the statements about the continuity of f̂ hold also for the case of
local support and/or interpolation.

The coefficients of the polynomial could be used to find the weights as

w(x) = E(x)−1Q
(

QE(x)−1QT
)−1

z. (4.21)

Now we take a closer look at the special case of asking only for constant precision.
Then, Q is a row vector containing only ones and z = 1. Then E(x)−1Q is a row
vector containing the terms θ(‖qi − x‖), and QE(x)−1QT is the sum of these terms.
This means we get the following weights for location x when asking only for constant
precision:

wj(x) =
θ(‖qj − x‖)
∑

i θ(‖qi − x‖)
. (4.22)

This type of weight is commonly called a partition of unity, because the weights
sum up to one everywhere. Using θ(δ) = δ−r, r > 0 we rediscover a particular
and well-known instance of partition of unity: Shepard’s interpolation method
[She68, FN80].

t

g(x) = a + bx + cx2

Figure 4.8: Moving least squares: In each location x a polynomial is computed using
the least squares method, however, weighting the influence of the data points based on
their distance. The value of this polynomial at x yields the functional approximation (left).
The set of locally approximated function values, together, forms the approximated curve
(right).
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4.2.4 NORMALS

So far we have considered functional data. Now we turn to the problem of
approximating a surface represented by points P in space. In this setting, we don’t
have a suitable parameter domain to directly apply the techniques explained above.
It turns out that almost all approaches compensate for this lack of information by
using approximating tangent planes or normals on or close to the point set.

Normals might be part of the data or not. If normals are missing, we can try to esti-
mate them as follows. Assume we want to compute the normal n in a location q in
space. The points close to q describe the surface around q. A tangent in q should be
as close as possible to these close points.

Determining a tangent plane around q can be formulated as a least squares problem
(see Figure 4.9). We search a plane H(x) : nTq = nTpi, ‖n‖ = 1 passing through q
that minimizes the squares (nT(q − pi))2. However, we want to consider only a few
points pi close to q. We could do this by either using only the k-nearest neighbors of
q or by weighting close points with a locally supported weight function θ. Because
the k-nearest neighbor approach could be simulated by using a hat function with
appropriate radius for θ, we will only detail the locally weighted version. Then, n is
defined by the following minimization problem:

min
|n‖=1

∑

i

(
nT(pi − q)

)2
θ(‖pi − q‖). (4.23)

n

q

Figure 4.9: Estimating the normal direction close to a point q: A unit normal n is com-
puted so that the plane orthogonal to n minimizes the squared distances to the points.
The extra constraint ‖n‖ = 1 makes this a nonlinear problem that can be solved, however,
by an eigenvalue/eigenvector computation.
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This is a nonlinear optimization problem, because of the quadratic constraint
‖n‖ = 1. To arrive at a computable solution, we use the outer product matrices
(pi − q)(pi − q)T and rewrite the functional to be minimized as

m(n) = nT

(
∑

i

(pi − q)(pi − q)Tθ(‖pi − q‖)

)
n, (4.24)

and inspect the eigenvalue/eigenvector decomposition of the sum of outer products:

∑

i

(pi − q)(pi − q)Tθ = Ediag(λ0, λ1, . . . )ET. (4.25)

Using this decomposition we see that in transformed coordinates ETn the functional
m(n) = nTEdiag(λ0, λ1, . . . )ETn has only pure quadratic terms, and each of these
quadratic terms has an eigenvalue as coefficient. Let λ0 ≤ λ1, . . . , then m(n) clearly
attains its minimum among all unit-length vectors for ETn = (1, 0, 0, . . . )T. This
means, n = e0 (i.e., the eigenvector corresponding to the smallest eigenvalue).

Fitting a tangent plane will only yield a normal direction, not an orientation. We
assume that the correct orientation can be derived from inside-outside information
generated using scanning of the object.

4.2.5 IMPLICIT SURFACES FROM POINTS AND OFFSET POINTS

The basic idea of approaches based on implicit surfaces is to assume that all points
on the surface have zero value; in other words, the surface is implicitly defined by

S = {x| f̂ (x) = 0}. (4.26)

In this setting, the point set delivers a set of constraints of the form

f̂ (pi) = 0. (4.27)

Now, our approach is to apply the techniques for local function estimation presented

in the preceding section. However, all of these methods would result in f̂ = 0, as this
perfectly satisfies all constraints. We obviously need additional nonzero constraints.
These additional constraints have to be generated based on the given point data.

The normals can be used to generate additional point constraints for f̂ . A standard
trick is this: move a small step (say, δ) from pi in the normal direction outward from

the surface. This point is pi + δni. Require f̂ to be δ at this point. The surface could
be additionally supported by also moving to the inside and requiring that the value
at pi − δni is −δ.
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A potential danger of this approach is that the location pi + δni is less than δ away
from the surface, because the step is so large that we have moved toward some other
part of the surface. A good strategy to check and avoid this is to compute the closest
point to pi +δni. If this is not pi, the step size δ has to be reduced until this holds true.

If a spatial subdivision is used to organize the points this is another good way to add
nonzero constraints (Figure 4.10). In each of the corners and centers of a cell the
distance to the surface is approximated as the smallest distance to any point of the
set. A sign for the distance can be computed from inside-outside information. For
small distances, the distance to the closest point becomes less reliable. We propose to
rather compute the distances to the k-nearest points (k = 3) and check that they all
have the same sign.

The result of either procedure is a set of additional constraints of the form

f̂ (pN+i) = di. (4.28)

Together with the constraints f̂ (pi) = 0 they can be used to approximate a function

f̂ using any of the techniques for approximating functions as described in the last
section.

Several works discuss the details of using RBF for approximating the implicit
function [Mur91, MYR+01, CBC+01, DST01, TO02, DTS02, OBS03]. Spatial subdi-
visions have been used together with partition of unity weights, either RBF approxi-
mations in a K-d-tree [TRS04], or local polynomial and specific sharp edge functions
in the cells of an octree [OBA+03].
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Figure 4.10: Fitting an implicit function to the data. An implicit surface is defined as
the zero-set of a scalar function in space. Consequently, at the data points the function
should be zero (left). Using normals or a spatial subdivision helps provide the necessary
additional nonzero modeling constraints.
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4.2.6 IMPLICIT SURFACE FROM POINTS AND TANGENT FRAMES

Rather than generating additional point constraints to make the standard function
approximation techniques applicable we could also try to adapt them to the more
general setting. An underlying idea of several approaches in this direction is to
estimate local tangent frames and then use a standard technique in this local tangent
frame.

Hoppe’s and Related Approaches
A straightforward approach to generate an implicit function f̂ based on the normals
is due to Hoppe et al. [HDD+92]. For a point in space x compute the closest point pi

in P . Then set f̂ (x) to ni(pi − x); in other words, the signed distance to the tangent
plane through pi (see Figure 4.11). This yields a piecewise linear approximation of
signed distances to the surface. The set of points in space associated to the same point
pi forms the Voronoi cell around pi. So, another viewpoint on this is that we use local
linear approximations, however, for Voronoi cells we use a local frame based on the
tangent plane.

One can compute a smoother surface approximation by exploiting the Voronoi cells
around the points and using Voronoi interpolation as explained in the preceding sec-
tion. This has been exploited by Boissonnat and Cazals [BC00].

Figure 4.11: Hoppe’s approach to defining an implicit function from local tangent
frames. Each point in space is associated to the closest data point. The distance value
is then computed as the distance from the tangent plane associated to the data point.
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MLS Surfaces
The MLS surface SP of P is defined implicitly by a projection operator. The basic
idea for projecting a point r onto SP is based on two steps. First, a locally tangent
reference domain H is computed. Then, a local bivariate polynomial is fitted over H
to the point set (Figure 4.13).

However, to compensate for points with some distance to the surface, we don’t restrict
the tangent plane to pass through the point r (Figure 4.12). Yet, we still want to weight
the influence of points based on the distance to the origin of the tangent frame. This
leads to a more complex minimization problem, however, yields the desired projec-
tion property.

Specifically, the local reference domain H = {x|〈n,x〉 −D = 0,‖n‖ = 1 is determined
by minimizing

N∑

i=1

(〈n, pi − r − tn〉)2 θ(‖pi − r − tn‖) (4.29)

among all normal directions n and offsets t (see Figure 4.12).
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Figure 4.12: The reference plane for the first step of the MLS projection is found by
optimizing over all normal directions n and all offsets t.
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Figure 4.13: The reference plane is then used to compute a polynomial least
squares approximation. The value at the origin of the reference frame is used as the
projection of q.

Let qi be the projection of pi onto H, and fi the height of pi over H (i.e., fi =
n · (pi − q)). The polynomial approximation g is computed by minimizing the
weighted least squares error:

N∑

i =1

(g(xi, yi) − fi)
2 θ(‖pi − r − tn‖). (4.30)

The projection of r is given by (see Figure 4.13)

MLS(r) = r + (t + g(0, 0))n. (4.31)

Formally, the surface SP is the set of points that projects onto itself . We can also define
the surface in the standard notation using

f̂ (x) = ‖(t + g(0, 0))n(x)‖. (4.32)

The projection procedure itself has turned out to be a useful computational method
for computing points on the surface. The reader might want to look up [Lee00,
ABCO+01, PGK02a, PKG02, ABCO+03, FCOAS03, Lev03, PKKG03] for details on
the properties, extensions, and implementations of this approach. The method
detailed in the following section presents another view on the same idea and results
in simpler computations.

Surfaces from Normals and Weighted Averages
Inspired by MLS surfaces, we can also define the surface implicitly based on
normal directions and weighted averages. What makes the MLS projection procedure
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complex is the nonlinear optimization problem for computing the reference plane.
An alternative way of computing a projection is as follows (see Figure 4.14 and
[AA03a]). Given x, a tangent frame is computed in x. This tangent frame is used to
approximate the data with a locally weighted least squares polynomial. The inter-
section of the normal through q and the polynomial is the result x′ of the first
step. The procedure is then repeated starting from x′ yielding x′′, and so on, until
convergence.

The process is particularly simple when constant polynomials are used for the
approximation, because a constant approximation passes through the locally
weighted average a(x) of the points (Figure 4.15). In each step, a local normal approx-
imation n(x) (see Section 4.2.4) and the locally weighted average

a(x) =

∑N− 1
i = 0 θ(‖x − pi‖)pi
∑N− 1

i = 0 θ(‖x − pi‖)
(4.33)

are computed, and then

x′ = x − n(x)T(x − a(x)) n(x), (4.34)

repeating this computation until convergence is the projection operator. This simple
to implement (see Figure 4.16 for pseudocode) and stable version has been derived
independently by Amenta and Kil [AK04] as well as Alexa and Adamson [AA04b].
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Figure 4.14: An alternative constructive definition of a projection. Reference planes
are computed through x yielding the next point x′. The process is repeated until conver-
gence.
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Figure 4.15: If constant polynomial approximations are used, the approximation
passes through the locally weighted average of points a(q). A single step in the itera-
tion then becomes q′ = q − n(q)T(q − a(q)) n(q), and repeating this assignment is the
recommended projection operator. The stationary points of this operator also give rise to
an interpretation of the surface defined by the implicit function f (x) = n(x)(a(x)− x) = 0.

MLSProjection(x, ε)
x = weightedAverage(x);
do

n = localNormal(x);
a = weightedAverage(x);
f = n · (x − a);
x = x − f n;

while (| f | > ε);
return x;

Figure 4.16: Pseudocode for the projection operator. Note that x is first moved to the
locally weighted average of the points to make the normal computation more reliable.

This constructive definition also gives rise to an alternative interpretation of the
surface defined by an implicit function (see Figure 4.15). The implicit function
f : R

3 → R describes the distance of a point x to the weighted average a(x)
projected along the normal direction n(x):

f̂ (x) = n(x) · (a(x) − x). (4.35)
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Note that this interpretation does not allow analyzing the properties of the surface as

the sign of f̂ is undefined. Amenta and Kil [AK04] define the surface more rigo-
rously as a product space. This way they can show that the surface is smooth.
Figure 4.16 gives the pseudocode of the projection operator, which exploits the idea

that f̂ tends to zero as points get close to the surface.

If θ is locally supported one has to make sure to compute f̂ only in the support of the
weights. Computing the weighted average and the local tangent frame also allows to
one define boundaries of the surface in a natural way (see Figure 4.17). We inspect the
relative location of the weighted average a(x) in the points. For points far away from
the point set the distance ||x − a(x)|| increases, while we expect this distance to be
rather small for locations close to (or inside) the points. The main idea for defining
a boundary is to require ||x − a(x)|| to be less than a user-specified threshold. More
details can be found in Alexa and Adamson [AA04a].

4.2.7 CONCLUSION

The moving least squares method and its variants are a versatile approach for gen-
erating and finding points on a surface that is given by a set of sample points. The
methods presented here will be used throughout the book.

After looking at several reconstruction methods and this detailed look at one par-
ticular method that is of importance for many of the techniques presented later, as
well as being used in Pointshop, it is important to generate well-behaved samplings
of given surface models. This is described next.

aq

Hqn

q

Figure 4.17: Boundaries of the surfaces can be defined by evaluating the distance of
the weighted average a(q) to q.
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4.3 SAMPLING OF POINT MODELS

Jianhua Wu, Leif Kobbelt, and Mark Pauly

Point-based surface representations are truly discrete in the sense that they only
consist of a finite number of samples (position and/or normal). Since these samples
are supposed to represent a continuous surface, questions arise about the appropri-
ate sampling density to capture the relevant geometric details. Sampling techniques
for point models typically come in two flavors. Upsampling increases the number of
samples while downsampling decreases their number. If no metaknowledge about the
underlying surface is available, the positions of the new samples during upsampling
are determined based on some notion of surface smoothness. Downsampling usually
serves the purpose of data reduction, which implies that some application-dependent
criterion is required that rates the geometric significance of each sample.

In the literature, downsampling methods have received more attention than upsam-
pling. The reason for this is that point models are usually obtained from laser scan-
ning, which leads to rather dense point clouds. Hence the raw point data are already
a highly detailed model that has to be decimated for efficient processing and display.
On the other hand, upsampling becomes necessary whenever a given point model is
modified (e.g., by local deformation). In this case the local surface stretch can reduce
the sampling density below a critical threshold, which can be compensated by upsam-
pling. A general framework for upsampling is presented in Section 4.5 and upsam-
pling in the context of shape modeling is revisited in Section 5.3. The current section
focuses on downsampling techniques.

4.3.1 OVERVIEW

Purely point-based surface representations as obtained with one of the techniques
discussed in Chapter 3 correspond to piecewise constant interpolation functions, and
approximation theory tells us that the approximation error in this case depends on
first-order derivatives of the underlying continuous surface. Geometrically speaking,
the approximation error between a continuous surface and discrete set of points is
bounded by the (geodesic) distance between the points. In order to reduce the error
by a factor of two we have to increase the number of point samples by a factor
of four.

In order to fill the gaps in between the samples more efficiently, point-based
representations are most often extended to splat-based representations [ZPvBG01b]
where the surface is locally approximated by a little disk or ellipse. This is of
special interest in the context of rendering (see Chapter 6), where a disk-based
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representation allows for efficient algorithms. Since these disks provide a first-order
approximation to the surface (position and normal), the approximation error now
depends on second-order derivatives. In fact, just like with other piecewise linear
surface representations, we can use large splats in flat areas of the surface and a high
sampling density with smaller splats is only necessary in highly curved regions.
As a consequence, the approximation error can be reduced by a factor of two
by approximately doubling the number of splats, which is the same convergence
rate as with triangle meshes. The major difference, though, is that splat-based
representations do not define a continuous surface and hence each splat stays
an independent geometric object and the conceptual simplicity of point-based
representations is preserved (see Figure 4.18).

Even though splat-based representations are commonly used in practice, there is a
number of decimation schemes that only take the splat-center position into account.
The idea is to first generate a set of surface samples whose density is adapted to the
surface curvature. In a postprocessing step these samples are then converted into cir-
cular or elliptical splats by estimating their local normal orientation and splat size.
Such algorithms are usually very efficient but the results are not optimal in terms of
approximation quality (i.e., approximation error per number of splats). In contrast,
splat decimation techniques exploit the full geometry of a disk or ellipse in order to
find an optimal set splat covering the surface. The trade off is that splat decimation
techniques are computationally more involved.

4.3.2 DECIMATION AND RESAMPLING TECHNIQUES

Point-simplification Methods
Linsen [Lin01] and Alexa et al. [ABCO+03] adopted greedy schemes to iteratively
remove samples from the input point cloud yielding a subset of the input samples

Figure 4.18: Comparison of the different shape approximations: piecewise linear C0

polygons (left), piecewise constant C−1 points (center), and piecewise linear C−1 splats
(right). Splats provide the same approximation order as triangle meshes, but due to the
C−1 continuity they offer the same flexibility as pure point clouds.
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as output. Moenning and Dodgson [MD03] use fast-marching farthest point
sampling for point set simplification to generate the output samples. While these
methods are simple and efficient, their greedy algorithmic nature cannot guarantee a
globally uniform point distribution. Moreover, reliable error control is not supplied
in these methods and seems not trivial to achieve.

A systematic exploration of different approaches to point simplification was pro-
posed by Pauly et al. [PGK02a], where various established mesh-simplification
techniques have been adapted to simplify point-sampled geometry. Specifically,
these point-simplification algorithms include: clustering methods, which are fast
and memory efficient; iterative simplification, which puts more emphasis on high
surface quality; and particle simulation, which allows for intuitive control of the
resulting sampling distribution.

Clustering methods have been used in many computer graphics applications to
reduce the complexity of 3D objects. The standard volumetric strategy [RB93]
cannot adapt to nonuniformities in the sampling distribution and can easily join
unconnected parts of a surface for large grid cells. To alleviate these shortcomings,
Pauly et al. [PGK02a] use a surface-based clustering approach, where clusters are
built by collecting neighboring samples while regarding local sampling density.
Two general approaches are distinguished for building clusters (Figure 4.19): an
incremental approach, where clusters are created by region growing, and a hier-
archical approach that splits the point cloud into smaller subsets in a top-down
manner [BW00, SG01]. Both methods create a set {Ci} of clusters, each of which

Leaf node
= cluster

Split plane

C2

C1

v2

C0

(a) (b)

Centroid

Figure 4.19: (a) Clustering by incremental region growing, where “stray samples”
(black dots) are attached to the cluster with closest centroid. (b) Hierarchical clustering,
where the thickness of the lines indicates the level of the BSP tree (2D for illustration).
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is replaced by a representative sample, typically its centroid, to create the simplified
point cloud P′.
Clustering approaches attempt to group the input samples into patches that do not
exceed a given upper bound for their size (in terms of diameter) or variation (in
terms of normal cone angle or surface deviation in covariance analysis [PGK02a]).
For clustering by region growing, starting from a random seed point p0, a cluster C0

is built by successively adding nearest neighbors. This incremental region growing
is terminated when the size or the variation of the cluster reaches an upper bound.
The next cluster C1 is then built by starting the incremental growth with a new seed
chosen from the neighbors of C0 and excluding all points of C0 from the region grow-
ing. Due to fragmentation, this method creates many clusters that do not reach the
maximum size or variation bound, but whose incremental growth was restricted by
adjacent clusters. To obtain a more even distribution of clusters, the sample points of
all clusters that did not reach a minimum size and variation bound (typically half of
the maximum bound) are distributed to neighboring clusters (see Figure 4.19a).

Hierarchical clustering is a different method for computing the set of clusters recur-
sively by splitting the point cloud using a binary space partition. The point cloud P
is split if the size |P| is larger than the user-specified maximum cluster size or the
variation of the point set is too large. The split plane is defined by the centroid of
P and the eigenvector of the covariance matrix of P with the largest correspond-
ing eigenvalue [PGK02a]. Hence the point cloud is always split along the direction
of greatest variation according to the covariance analysis. If the splitting criterion is
not fulfilled, the point cloud P becomes a cluster Ci. As shown in Figure 4.19b, hier-
archical clustering builds a binary tree, where each leaf of the tree corresponds to a
cluster.

Iterative point-simplification techniques proposed by Pauly et al. [PGK02a] consecu-
tively reduce the number of points using a sequence of atomic decimation operators.
This approach is very similar to the mesh-based simplification methods for creating
progressive meshes [Hop96]. Decimation operators are usually arranged in a priority
queue according to an error metric that quantifies the error caused by the decimation.
The iteration is then performed in such a way that the decimation operation causing
the smallest error is applied first. Point-pair contraction, an extension of the com-
mon edge collapse operator, is used, which replaces two points p1 and p2 by a new
point p. An adaptation of the quadric error metric (QEM) presented for polygonal
meshes in Garland and Heckbert [GH97] is used to rate the contraction operations.

In order to adapt the above technique to the simplification of unstructured point
clouds the k-nearest neighbor relation is used to compose a dynamic topology for
point sets [PGK02a], since manifold surface connectivity is not available. To initialize
the error quadrics for every point sample p, a tangent plane Ei is estimated for every
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edge that connects p with one of its neighbors pi. This tangent plane is spanned by
the vector ei = p − pi and bi = ei × n, where n is the estimated normal vector
at p. After this initialization the point-cloud simplification works exactly like mesh
decimation [GH97] with the point p inheriting the neighborhoods of its ancestors
p1 and p2 and being assigned the error functional Qv = Qv1 + Qv2 . Figure 4.20 shows
an example of a simplified point cloud created by iterative point-pair contractions.

The third point-simplification method proposed by Pauly et al. [PGK02a] is the par-
ticle simulation approach that is adapted from the point repulsion algorithm for
polygonal meshes [Tur91]. The desired number of particles is randomly spread across
the surface and their positions are equalized using the same point repulsion algo-
rithm. The particle simulation is initialized by adding more samples in regions of
lower sampling density to ensure the uniformity of the initial sample distribution.
The same linear repulsion force as in [Tur91] is used with a finite radius of influence.
Point movement is restricted on the surface to ensure an accurate approximation of
the original surface. To do so, a displaced particle p is kept on the surface by simply

Figure 4.20: Iterative simplification of the Isis model from 187,664 (left) to 1,000 sam-
ple points (middle). The right image shows all remaining potential point-pair contractions
indicated as an edge between two points. Note that these edges do not necessarily form
a consistent triangulation of the surface.
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projecting it onto the tangent plane of the point p′ of the original point cloud
that is closest to p. Only at the end of the simulation, the full MLS projection (see
Section 4.2) is applied, which does not change the sampling distribution noticeably.

The three point-simplification methods mentioned above provide wide range
selections for high-quality point-sampling schemes. However, all cannot take an a
priori approximation error tolerance into account. In addition, their pure greedy
simplification produces results with small a posteriori error but also with nonuni-
form sampling density. Though this result can be postoptimized with the particle
simulation scheme that, alas, tends to increase the approximation error.

Splat-Decimation Methods
As we have noted before, all of the above downsampling methods do not take the full
splat geometry into account in the algorithmic design and hence require extra effort
to estimate the actual splat spatial extent. More recent downsampling schemes use the
complete geometry of elliptical splats (i.e., their outputs are no more pure point sets),
but rather sets of elliptical splats with spatial extent (see Figure 4.21). We refer to these
approaches as splat-decimation methods and comparisons (see Section 4.3.3) show
that by considering the whole splat geometry throughout the decimation procedures,
the resulting sampling quality can be largely improved.

Among these recent methods that can produce decimated surface splats directly, the
first-generation approaches [RL00, BWK02, Paj03] are mainly based on hierarchical

Figure 4.21: The original point model (left and middle, 352,000 points) is decimated
to 30,000 circular surface splats (right).
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clustering schemes. The input points are rearranged in a hierarchical spatial
partitioning data structure like octrees and splats are created for every node by ana-
lyzing the local surface properties. This technique is simple and fast but since there
is no optimization strategy involved, the results are usually overly conservative and
tend to contain lots of redundant splats.

To produce higher-quality sampling results than the above straightforward
hierarchical clustering approaches, Wu et al. [WZK05] have presented an iterative
greedy-point decimation scheme to create progressive splat representations for effi-
cient surface splatting (see Figure 4.22). Intuitively, this method that works directly
on C−1 piecewise linear surface splats functions as the counterpart of the well-known
progressive meshes [Hop96] in the C 0 piecewise linear polygonal meshes setting
and the iterative point simplification [PGK20a] in the C−1 piecewise constant points
setting. Its general procedures work in the following way. Given the input point set,
initial splats are first created for all point samples. Then all possible splat merge oper-
ators are arranged in a priority queue according to an error metric measuring errors
caused by respective operators with the top element having minimum error. Itera-
tive operations are usually performed repeatedly with applying the top operator and
updating possibly affected operator priorities in the queue until the desired number
of splats is reached.

As usual, the input is a set of point samples P = {pi}. Each output splat si is a general
3D ellipse given by its center ci, its unit normal vector ni, and two additional nonunit
vectors ui and vi defining its major and minor axes. In the first initial splat-generation
step, in order to analyze the local surface properties as well as the associated initial
splat si of a point sample pi, the k-nearest neighbors Nk(pi) have to be computed
beforehand. Then a least square plane H can be found for pi andNk(pi) defining the

Figure 4.22: Progressive splatting of Charlemagne model (600,000 points) from left to
right with 2,000, 10,000, 70,000 and 600,000 surface splats.
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normal ni of si, with center ci = pi. As all initial splats are set to be circles, initial ui

and vi can be any two orthogonal vectors parallel to H with same length ri,

ri = maxj ||(pj − ci) − nT
i (pj − ci) ni||, (4.36)

for all pj ∈ Nk(pi). Note that the above k-nearest neighbor relation is also used to
compose the supporting dynamic topology [PGK02a] during the decimation proce-
dure. An iterative splat merge operator Φ will merge two splats sl and sr associated
with endpoints pl and pr of a virtual edge e into one larger splat sm [WZK05]. In
the decimation, the initialization and update of the ordering queue of splat merger
operators are similar to the iterative point simplification in [PGK02a].

In order to utilize the full geometry of surface splats and to ensure similar approxi-
mation quality as that of the established mesh cases, two different error metrics mea-
suring distance deviation and normal deviation, respectively, are also generalized and
embedded into this splat decimation framework.

The first one, the L2 error metric, is based on Euclidean distance measurement. To be
able to compute the deviation error caused by a splat merge operator Φ with respect
to the original point set, an additional array of indices {fi} to the original points is
kept for each splat si and initialized with a single index {i} referring to the initial
point pi. When merging two splats, their index arrays will be united and assigned to
the new splat. Then for a merge operator Φ, to merge splat sl and sr to new splat sm,
the approximation error is defined as

εΦ = ‖e‖ .
∑

f∈{ fm}
|dist(pf, sm)|2, { fm} = { fl} ∪ {fr}. (4.37)

Note that the above error metric has been weighted by the edge length to penalize
merging two distant splats that otherwise would produce oversized splats.

Given the L2 error metric (Equation 4.37) and two splats sl and sr to be merged,
the new splat sm can be determined by applying principle component analysis (PCA
[Jol86]) to the point set Pm = {pf}, f ∈ {fm} in 3D directly rather than the projected
point set in 2D as in Pajarola [Paj03]. Afterward, there will be the average point p
as well as three real eigenvalues λ1 ≥ λ2 ≥ λ3 and the corresponding eigenvectors
e1, e2, e3. Then for sm, center cm = p, normal nm = e3, and two axes um and vm

will have direction e1 and e2, respectively, with a length ratio
√
λ1/λ2. The final axis

lengths are scaled simultaneously so that the elliptical splat em covers all points Pm in
2D when they are projected onto the splat plane (see Figure 4.23).

The L2,1 error metric measures the deviation of normal directions and is extended
from the original metric first presented in Cohen-Steiner et al. [CSAD04]. In this
case, the error computation is simpler and there is no need to keep the index array
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Figure 4.23: Splat merge operators according to L2 error metric (left) and L2,1 metric
(right), which will merge splats tl and tr into a new splat tm.

either. Given the splat merge operator Φ, the respective area |sl| and |sr| of two splats
sl and sr to be merged, similar to Equation (4.37), the edge-length weighted error is
calculated as

εΦ = ‖e‖ · (|sl| + |sr|) · ‖nl − nr‖2 . (4.38)

According to the L2,1 metric, the geometry of new splat sm is defined as center

cm =
|sl| · cl + |sr| · cr

|sl| + |sr|
; (4.39)

and normal

nm =
|sl| · nl + |sr| · nr

|sl| + |sr|
. (4.40)

The extent of splat sm is computed in the same way as for the L2 metric. The only
difference is that rather than projecting the point set Pm (which is not kept), n points
are uniformly sampled on both boundaries of splat sl and sr and projected to the splat
plane of sm to find the main axis directions and proper scaling (see Figure 4.23). With
these error metrics and splat merge operators, the proposed greedy splat decimation
framework [WZK05] is complete.

By investing more computation effort, the techniques of Wu and Kobbelt [WK04]
obtain highest quality of the decimated splat models. Exploiting the flexibility
brought by the point models without topology constraints, a global optimization
scheme has been applied in their method to compute an approximately minimal
set of splats that covers the entire surface while staying below a globally prescribed
maximum error tolerance. Compared to previous work in this area, this subsam-
pling scheme is able to obtain a significantly lower splat number for a given error
tolerance while still having high splatting quality (see Figure 4.24).
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F igure 4.24: Optimized subsampling of the Iphigenie (left, 352,000 points) using
30,181 circular splats. The error tolerance is set to 0.05% of the bounding box diago-
nal. The center figure is rendered with EWA-filtered splats and the right zoom-in figures
show the sample density and distribution.

The goal of the optimized subsampling algorithm is to to find a minimum set of
surface splats T = {sj} that approximates P with an error below some prescribed
tolerance ε. To initialize the algorithm along with k-nearest neighbors relations
[PGK02a, WK04], for each point sample pi, its local surface properties like nor-
mals ni and point sampling density ωi (proportional to the distance between pi and
its farthest k-nearest neighbor) have to be computed. Depending on the application,
the user can choose if circular or elliptical splats should be used. A circular splat sj

is given by its center cj, its normal vector nj, and its radius rj. For elliptical splats,
the radius rj is replaced by two additional vectors uj and vj to define the major and
minor axes.

In this optimized splat decimation algorithm [WK04], the splat subsampling
problem has been formulated into a minimum dominating set problem [CLRS01].



S E C T I O N 4 . 3 SAMPLING OF POINT MODELS 137

In order to ensure the error tolerance constraint, a new point-splat distance metric
also has been introduced. In other words, for a point sample pi, its distance to the
splat set T is computed by orthogonal projection onto the splats sj:

dist(pi, T) = dist(pi, sj) = |nT
j (pi − cj)| (4.41)

if
‖ (pi − cj) − nT

j (pi − cj) nj ‖2 ≤ rj
2 (4.42)

for circular splats or

(
uT

j (pi − cj)
)2

+
(

vT
j (pi − cj)

)2 ≤ 1 (4.43)

for elliptical splats. If pi projects into the interior of several splats, the minimum dis-
tance is chosen. If Equation (4.42) or (4.43) does not hold for any tj, dist(pi, T) = ∞
is set.

For a given set T of splats and an error tolerance ε, conditions in Equations (4.42)
and (4.43) imply a coverage relation Cε ⊂ P × T that includes all pairs (pi, sj) for
which Equation (4.42) or (4.43) holds and dist(pi, sj) ≤ ε. Then the surface patch
Qj = Cε(∗, sj) corresponding to a splat sj can be defined as the set of all samples pi for
which the relation (pi, sj) ∈ Cε holds. To measure the size of a patch, its approximative
area can be given by

Ωj : =
∑

pi∈Qj

ωi. (4.44)

The optimized subsampling task now can be formulated as a minimum dominat-
ing set problem for the two-colorable graph (P ∪ T,Cε) whose connectivity is
defined by the coverage relation Cε. Since the dominating set problem is known to be
NP-hard [CLRS01], Wu and Kobbelt have presented a three-step approximate opti-
mization algorithm to solve the problem [WK04].

The first step is to compute a maximum splat si for each input sample pi whose size
is limited by the prescribed error tolerance ε. The splats in this initial set are cen-
tered at pi in the sense that pi projects to the center ci. Starting from a seed point
pi, the splat si is grown by adding neighboring sample points in the order of their
projected distances (Equation 4.42) to pi. For each new point pj the signed dis-
tance hj = nT

i (pj − pi) is computed and the growing stops as soon as the interval
[hmin, hmax] becomes larger than 2 ε. The center of the splat is then set to

ci = pi +
hmin + hmax

2
ni, (4.45)

and the radius is set to

ri =
∥∥ (pj − ci) − nT

i (pj − ci) ni

∥∥, (4.46)
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where pj has the largest projected distance (Equation 4.42) before the prescribed
error tolerance is violated (see Figure 4.25).

Afterward, this maximum circular splat can optionally continue the growing
procedure into the minimum curvature direction to obtain an elliptical splat that
better adapts to the local anisotropic surface curvature while still keeping the error
tolerance. The (normalized) principal directions emin and emax are robustly estimated
by the shape operator of [CSM03]. The minor axis of the elliptical splat will have
the direction of emax and the growing continues in the emin direction. The growing
procedure is similar to the above circular case with the different point ordering of
increasing aspect ratios α (see Figure 4.26).

From the initial set of splats, an active subset that safely covers the whole surface is
selected by a greedy procedure. The selection criterion guarantees that neighboring
splats have sufficient overlap to provide a hole-free approximation of the input
surface S . The rank of the splats is computed according to their incremental surface

dj

pj pj
pi

dj
2ri ci

hmax

hmin

ni

pi

Figure 4.25: Growing a splat si initially centered at pi. Symbols ♦, �, and © stand for
conquered, front, and uncovered samples, respectively. The left figure shows a view
in tangent direction and the right figure is viewed in normal direction.

λ < 0

λ > 1

λ = 1

pk

ci

vi

ri

ui

Figure 4.26: A circular splat with center ci and radius ri is extended into an elliptical
splat with semi-axes ui and vi.
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area contribution Ωi (Equation 4.44). In each step the splat that adds the maximum
surface area is selected to the active set and the area contribution of the remaining
candidates is updated. Since the error tolerance ε has been taken into account in the
splat-generation step, any selection of splats sj such that the union of their corre-
sponding patches Qj completely covers P automatically satisfies the approximation
tolerance.

In the last phase, the greedy solution is further improved by a global relaxation
procedure. The idea is to iteratively replace subsets of splats by new sets that have
fewer elements or at least a better splat distribution as the greedy output based on
local decisions is usually redundant and has a disturbing nonuniformity of the splat
distribution [WK04]. The global optimization scheme exploits the fact that splat-
based surface representations do not have to respect any consistency requirements.
Hence splats can be added and removed in arbitrary order as long as they can preserve
a full hole-free coverage of the input samples.

The above global relaxation procedure actually mimics the behavior of repulsing
particles on the surface [Tur91]. The local movement of a splat particle si is achieved
by removing si from the active set and replacing it with another neighboring splat sj.
The choice of the new splat sj is controlled by a local relaxation force that is different
from related approaches [Tur91, PGK02a]. This force is derived by taking the com-
plete splat geometry into account and does not only consider the relation between
splat centers. In this procedure, two operations have been used to improve the splat
distribution and to remove redundant splats. In the first operation they iterate over
all active splats and check if there is another splat in the vicinity that has less over-
lap with its neighbors. In the second operation, they check for each splat if it can
be removed (i.e., if the hole resulting from its removal can be recovered by locally
“moving” the neighboring splats). Readers are recommended to refer to the original
paper, Wu and Kobbelt [WK04], for more details. Figure 4.27 shows the effects of the
above global relaxation procedure and once this step is finished, the final optimized
subsampling result can be generated.

Point Upsampling Techniques
All point-sampling methods we have introduced above belong to the class of down-
sampling techniques. On the other hand, point upsampling becomes necessary
whenever a given point model is modified (e.g., by local deformations during the
shape modeling (see Section 5.3). In this case, large deformations may cause strong
distortions in the distribution of sample points on the surface that can lead to
insufficient local sampling density.

To ensure a high surface quality for both rendering and approximation, Pauly
et al. [PKKG03] have presented a dynamical upsampling technique to insert new
point samples where the sampling density becomes too low. The basic idea is to first
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F igure 4.27: A female torso model (left, 171,000 sample points) is approximated by
422 circular splats after greedy selection (middle two). Global relaxation further reduces
the number of splats to 333 (right two) while not increasing the approximation error.
The figures show both EWA-filtered splats for approximation quality and smaller splats
for distribution quality. The error tolerance is ε = 0.47% of the bounding box diagonal.
Notice the improved splat distribution after the global relaxation step.

measure the surface stretch of point-sampled models after the deformation. Then
those largely distorted surface splats are split to add new samples and their positions
are determined by a relaxation filter (see Figure 4.33 later). Scalar function values
for the newly generated samples are achieved with another interpolation filter. More
details can be found in Section 5.3.

4.3.3 ANALYSIS AND COMPARISON

In this section, we will conduct comparative analysis of different representative point
decimators in order to provide users a practical guide for the selection of application-
specific downsampling techniques. Along with the progressive splatting algorithm
(denoted as PSP) [WZK05], the comparisons also include the other two typical
progressive point decimators, the level-of-details (LOD) point rendering [Paj03] and
the iterative point simplification (IPS) [PGK02a], and the single-resolution optimal
splat subsampling scheme (OSS) [WK04], respectively. We have to note that single
resolution means models of different resolution have to be generated and maintained
separately, and progressive means models of higher resolution can be easily generated
or transformed from lower resolution ones. In order to have a fair comparison, for
LOD, splats in the same octree levels will be collected, and for IPS, an extra step is nec-
essary to convert its point-based output to the splat representation. Our comparisons
focus on the two most relevant aspects, the quality and the speed, since flexible algo-
rithms always have to provide good trade-offs between speed and quality according
to the available computational power.
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Quality
The result quality of different methods is estimated in the following aspects:

• Error measurement captures the statistical distances [CRS98] between
decimated splat approximations and the original point model. Figure 4.29
(right) compares the three progressive splat decimators while in Figure 4.28,

Figure 4.28: Bunny model (see also Figure 4.30) decimated to similar number of splats by single-resolution OSS
(left, 2,577) and progressive PSP (right, 2,591) algorithms. Although PSP and OSS have quite close errors (0.103%
to 0.092%), being able to concentrate more splats on regions of high curvatures, OSS gives better splat shapes and
distribution than PSP.
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Figure 4.29: (Left ) Computation times for different point decimation methods where for PSP, OSS, and IPS, times
are measured for a simplification to 1% of the input model size and LOD is its whole structure creation time. (Right )
Error comparisons on bunny model (35,000 points) for three different progressive splat decimators.
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errors caused by the progressive PSP algorithm and discrete OSS scheme are
reported.

• Visual quality depends on the rendering effects as well as the splat shapes and
distribution (see Figures 4.28 and 4.30).

• Area ratio between the area sum of splat approximations and the mesh surface
area of the original point model (see Table 4.1). With the same number of splats
that can cover the whole surface (see Figure 4.30), the smaller the ratio, the
smaller the area of splats to be rasterized in the fragment shader of the GPU,
and the faster the rendering speed.

Considering all above three criteria in combination, it is not difficult to tell that,
among the three progressive point decimators, the PSP algorithm always performs
better than both the LOD and IPS. Especially on coarser scales, we find that because

Figure 4.30: Visual comparisons of LOD (top row ), IPS (top middle), PSP (bottom
middle), and OSS (bottom) where the bunny model (35,000 points) is approximated
with the same number of 415 (left), 2,591 (middle), and 11,588 (right) splats for LOD,
IPS, and PSP, and 419, 2,577, and 11,564 splats for OSS, respectively.
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Table 4.1: Area Ratio for Different Point Decimation Methods, Normalized to the Initial
Surface Area of the Triangle Mesh. This Factor Measures How Much Overdraw Occurs
in the Rasterization of the Splats.

nsplat PSP LOD IPS OSS

415 2.18 2.34 4.14 1.63

2,591 2.52 2.71 4.12 2.15

11,588 3.23 3.22 4.23 3.13

LOD merely adopts the octree space-partitioning scheme and IPS only considers
splat centers rather than whole splats, they could not produce as promising results
as PSP. In addition, the single-resolution OSS usually produces best quality due to its
global optimization but OSS cannot create progressive splat representations. In some
aspects (e.g., error measurement) the PSP method comes quite close to the best OSS
solution.

Speed
Computation times of different point decimation methods are shown and compared
in Figure 4.29 (left) as functions of input model size. No wonder that LOD runs fastest
as it has a quite simple algorithmic structure. Although both use the same greedy
framework, the PSP algorithm is slower than IPS, which has adopted the efficient
quadric error metric (QEM) [GH97], as it has to compose and solve least square
systems in each splat merge step. And it is not a surprise that the best-quality OSS
needs the most running time because of its complex global optimization techniques.
Nonetheless, since high computational costs have been traded with improved output
quality, and since all point decimation schemes are preprocessing procedures, the
amount of running time that has been reported is always endurable.

4.3.4 MULTIRESOLUTION REPRESENTATIONS

The point-sampling techniques can also lead to multiresolution representations for
point-based geometry. In this section, we will introduce two conceptual different
multiresolution representations. The first one is the progressive incremental repre-
sentations, which refer to a set of surface approximations with varying sampling res-
olution, thus describing a surface at different levels of coarseness [RL00, WZK05].
These multiresolution progressive representations work as the established multires-
olution topological hierarchies for the polygonal meshes [KCVS98] generated by mesh
simplification algorithms. And they have been used successfully in the context of
efficient rendering, surface compression, progressive transmission, and so on. The
second one is the multiscale hierarchical representations, which describe a surface
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at different levels of smoothness, without any reference to a particular sampling
distribution [PKG06]. These multiresolution hierarchical representations work as the
multiresolution geometric hierarchies for polygonal meshes [KCVS98] and are largely
motivated by the need for higher-level editing semantics, which allow for surface
modifications at different scales.

Progressive Incremental Representations
One early multiresolution progressive incremental representation for point models
is proposed with QSplat [RL00] where complete volumetric hierarchies of bound-
ing spheres are built for the rendering of large models. The construction algorithm
creates the hierarchy by splitting the set of vertices along the longest axis of its bound-
ing box, recursively computing the two subtrees, and finding the bounding sphere of
the two children spheres. During rendering, this bounding sphere hierarchy is tra-
versed with recursive criteria like visibility culling, scree-space area, curvatures, nor-
mals, and others. Once deciding to stop recursing, a splat is drawn to represent the
current sphere and when the traverse is over, all splats drawn will synthesize the final
rendering image.

More natural multiresolution progressive representations can be derived from the
progressive splat decimators [WZK05]. Specifically, the sequence of splat merge oper-
ators {Φi} can be recorded during the splat decimation procedure, and when the
decimation is stopped, a coarse base splat set TB will remain. Then similar to the
well-known progressive meshes [Hop96], the progressive splat format is composed
with the base splat set TB and a set of continuous detail operators {Ψi}, the straight-
forward inverses of the splat merge operators {Φi}. Each single detail operator Ψi is
the inverse of the corresponding splat merge operator Φi and will contain three splat
indices l, r, m, and the geometry of three splats sl, sr, sm. The data storage amounts to
48 bytes per operator with single floating point precision.

This incremental progressive format can be traversed in both directions. For refine-
ment, the splat of index m will be split and replaced with two smaller splats sl

and sr. For coarsification, two splats of respective indices l and r will be merged
and replaced with a larger splat sm. Note that by utilizing this progressive splats
format we can both increase and decrease the model resolution without any extra
data storage, and thus can produce splat models of arbitrary resolution. This will
also support efficient applications like progressive rendering and transmission of
surface splats. Figures 4.22 and 4.31 show examples of using the progressive rep-
resentations for progressive surface splatting.

Multiscale Hierarchical Representations
The multiscale hierarchical multiresolution representations are a set of successively
smoother approximations of the input point-sampled surface and each level of
the discrete multiscale representation is encoded as a normal displacement of its
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F igure 4.31: Progressive splatting of dragon model (438,000 points) from top to bot-
tom with 2,000, 6,000, and 20,000 splats.

immediate smoother approximation [PKG06]. The idea is derived from the general
framework of multiresolution modeling [KCVS98] for polygonal meshes into the
point setting where detail coefficients have to be encoded with respect to the
local frames. As discussed in Kobbelt et al. [KCVS98], normal displacement is also
used by Pauly et al. [PKG06] to perform the detail encoding. Thus, the formal
discrete definition of the hierarchical representations can be as the following: Let
P = {p1, . . . , pn} be a point cloud representing a surface S . Its discrete, point-based
multiscale hierarchical representation is a sequence of point clouds P = {P0, . . . ,Pk},
such that

• For all l ∈ {0, k−1}, the surface represented byP l approximatesS , andPk = P .
• |P l| = |P| = n, for all l ∈ {0, k}.
• For all pl

i ∈ P l and all l ∈ {1, k}, there exists a pl−1
i ∈ P l−1 such that
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pl
i = pl−1

i + dl−1
i · nl−1

i , (4.47)

where nl−1
i is the surface normal and dl−1

i a scalar-valued detail coefficient.

Thus, each sample pi ∈ P is represented by a point p0
i ∈ P0 plus a sequence of normal

displacement offsets d0
i , . . . , dk−1

i . To reconstruct the position of pl
i at a certain level l

the point p0
i is recursively displaced in normal direction:

pl
i = p0

i + d0
i n0

i + d1
i n1

i + . . . + dl−1
i nl−1

i . (4.48)

The inverse of the reconstruction operator is the decomposition operator that deter-
mines the detail coefficients of the normal displacement offset between two point
clouds. Figure 4.32 shows a discrete multiscale hierarchical representation of the Max
Planck model.
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Figure 4.32: Discrete multiscale representation. Top row: 3D surface model; bottom
row: 2D illustration.
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In order to compose the above multiscale hierarchical representations, we require
two main building blocks. The first is a fairing operator (i.e., a geometric low-pass
filter that generates successively smoother approximation levels of a given input
surface). For this purpose, the typical discrete fairing methods for polygonal meshes
(e.g., Gaussian smoothing techniques [Tau95]) can be generalized to smooth the
point-based geometry by replacing the one-ring neighborhood relation with a point
neighborhood relation based on k-nearest neighbors.

The second component is a decomposition operator (i.e., a method to encode each
level relative to the next smoother level using normal displacements to ensure
intuitive detail preservation). In fact, this is equal to computing or encoding the detail
coefficients between successive approximation levels. Two alternatives have been pro-
posed that include the bottom-up encoding by ray-shooting (i.e., to shoot a ray
from each sample in the smoother level and find the intersection point on the next
finer level), and the top-down encoding by projection (i.e., to orthogonally project a
sample on the finer level onto the surface of the next smoother level to create the
correspondence [PKG06]).

The possible surface-editing applications for multiscale hierarchical point repre-
sentations are diverse and may include multiscale spectral surface filtering, surface
morphing, and multiscale surface deformation. Figure 4.33 shows an example of
detail-preserving deformation.

4.3.5 CONCLUSION

The acquisition of point models (e.g., via laser scanning) usually yields highly
oversampled point models that cannot be processed efficiently. Hence, techniques for
the subsampling or decimation of point models are an important part of any point-
based processing pipeline. In this section we have discussed several such techniques,
starting with decimation methods for models consisting of points only. While this
representation is simple, it has the drawback of rather weak geometry approximation
capabilities. The more powerful splat-based representations are a popular extension
to pure point data for which suitable decimation techniques have been presented as
well. The last part of this section discussed the construction of multiresolution hier-
archies for splat models, which allow for efficient processing (Section 5.1), editing
(Sections 5.2 and 5.3), and level-of-detail rendering (Chapter 6).

Looking at the above methods from an implementation point of view it becomes clear
that almost all operations need efficient access to the (geodesic) neighbors of given
points or splats. Up to now, however, we have implicitly taken for granted that this
access is possible. A discussion of data structures providing the required access is the
topic of the next section.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.33: Multiscale versus single-scale modeling: (a) base surface, (b) surface with
detail, (c and e) single-scale deformation of (b), (d and f ) multiscale deformation of (a)
with subsequent normal displacement.

4.4 EFFICIENT DATA STRUCTURES

Renato Pajarola

4.4.1 OVERVIEW

In all applications and systems where large data volumes must be managed and
processed, the issue of efficient data organization and access methods has to be
addressed carefully. This is particularly the point when processing large 3D point
datasets (see also Chapter 5) that can reach sizes of several 100 million points or
more (see also Chapter 3). Hence, for the design and implementation of an efficient
3D point data structure, the following three pivotal questions should be asked:
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1. What classes of query requests to retrieve points must be supported?
2. What type of storage constraints are imposed to represent point splats?
3. What are the requirements for dynamic point insertions and deletions?

From traditional indexing problems we know that questions 1 and 2 may constitute
conflicting targets. In general, compactness of data is of paramount significance.
However, radical data reduction, compression, may not be desired if it comes at
the expense of query performance, or ease of use and implementation of the data
structure. Both aspects will be touched on in this section. In many cases we may
ignore question 3 as the point data to be visualized is static, and for now we will
concentrate on static point sets in this chapter. In addition, deformable objects
and particles are addressed in Chapter 7 and dynamic (video) point representation
in Section 8.1.

4.4.2 SPATIAL DATA ORGANIZATION

The goal of a spatial data structure is to index the space, meaning decompose it
into cells and provide a mapping between these and the space occupied by an object
[Nie89, GB90, Sam89b, NW97]. The query classes to be supported are spatial opera-
tions, such as intersection, containment, and distance, often coming in the form of a
search request asking for all objects overlapping a given region (range search) or con-
taining a given point (point search). In the context of 3D shape representation and
display, these typically constitute of ray-object intersection, a modified point search,1

and region (visibility) culling, a range search. Moreover, accessing different parts of
an object at different level of detail (LOD) is another type of spatial range search
methods to be supported as discussed in Section 4.4.3.

To index objects in 3D space, a spatial data structure can either organize the embed-
ded space or the content itself. In the former case we are generally speaking of a
space partitioning, in the latter of a data-partitioning index structure. While space
partitioning guarantees to decompose space into disjoint cells, data partitioning
usually generates fewer cells more tightly fitting around the data. Despite the fact
that we are dealing with point-sampled surface objects given by a point set P , these
splats are not zero-dimensional elements but do have a spatial, planar extent as out-
lined earlier. Thus, each splat pi ∈ P has an associated (elliptical) disk of radius ri.
In general, objects with spatial extent require clipping and referencing from multiple
cells in space partitioning or cause overlapping cells in data-partitioning approaches
[Sam89b, Sam89a, NW97].

As we will see, however, a pragmatic solution to this dilemma is to combine an
efficient space- or data-partitioning approach of the zero-dimensional points with

1 Stabbing query.
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aggregate bounding information on their spatial extent attributes. The basic idea
is to keep the cells of the spatial data structure disjoint and compact, and for each
bucket of points Bj = {p1j , . . . , pnj} corresponding to a cell j to store bounding vol-
ume attributes, such as, for example, the center of mass p̂j = 1/nj

∑
pij and bounding

sphere radius r̂j = max |p̂j − pij | + rij (see Figure 4.37 later). This allows the use of a
spatial data structure to effectively bucketize points, and provides means to quickly
find data buckets with potential candidates satisfying a spatial search query.

Effective bucketization improves spatial selectivity, which is important for coherent
memory access; points in the same bucket are likely to be accessed at the same time
when the corresponding region in space is queried. A basic spatial search query (e.g.,
find all points within region R) is carried out in that the cells of the spatial data struc-
ture are tested against the query region R. Given an intersection of cell j, its pointsBj

are then individually tested and reported if inside R.

For large point sets P , a bucketization P =
⋃m

j=1 Bj may still result in a large number
m of buckets, which may in turn have to be organized with respect to their attributes
(p̂j, r̂j). Hence, most spatial data structures employ some sort of subdivision of space
and organize the buckets themselves in a hierarchical data structure, with the leaf
nodes being the actual data buckets. The internal nodes represent cells of recursively
grouped data buckets.

It is advisable to avoid excessive recursive subdivision down to a single data element
per leaf node, and instead strive to have a bucket of up to k points per leaf of the
hierarchy. Therefore, leaf node j stores a bucket of data points Bj together with its
bounding sphere position p̂j and radius r̂j. An internal cell node j maintains some
reference to its child nodes (assume their indices being c1. . . ), and stores a tight
bounding sphere centered at p̂j = 1/m

∑
pi with radius r̂j = max |p̂j − pi| + ri from

aggregating the information over all m points pi covered by the subtree rooted at j.
Alternatively, a nested bounding sphere hierarchy can be constructed by considering
only the immediate child nodes, thus storing the center as p̂j = 1/k

∑
p̂ci and radius

r̂j = max |p̂j − p̂ci | + r̂ci (for child nodes i = 1. . . k).

Octrees
Hierarchical octree data structures [Sam84] are one of the most common choices to
handle large point sets (e.g., for interactive rendering) [CH02, BWK02, Paj03, HE03,
PSG04, SPL04, SP04]. Starting with a 3D bounding box cell, enclosing the entire data
space, each (internal) cell containing data is recursively subdivided into up to eight
nonempty octants. This recursion terminates if a cell contains less than a predeter-
mined number of points that are then forming the data bucket of this (leaf) cell. As
with quadtrees, there are two main strategies for performing the subdivision of one
cell into octants: (1) regular binary subdivision of all dimensions—region octree, and
(2) axis-aligned subdivision at an arbitrary point inside the cell—point octree. As
shown in Figure 4.34 this may result in different subdivision hierarchies depending
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F igure 4.34: Examples of regular region octree subdivision, binary in each dimension (upper row), versus adaptive
point octree subdivision at arbitrary split positions (lower row).

on the shape of the object and the point sample distribution. While the second
strategy is more adaptive to the data distribution and may produce fewer octree nodes
[Paj03], the first strategy has a simpler hierarchy structure and may require less infor-
mation to be maintained per node.

An octree over a set P of n points p1. . . n can efficiently be generated in O(n log n)
time. Below we outline a recursive top-down algorithm with tight bounding
sphere attributes and data bucket size of up to k points per leaf node.
Get_new_split_position() generates the (x, y, z) split coordinates, as a binary
subdivision of the current bounding box’s dimensions for a region octree or as the
mean or median over the current point set P . Get_octant() generates an octant
code (0 . . . 7) for any point pi with respect to the current split coordinates (x, y, z),
for example, z-order given by (piz > z) · 4 + (piy > y) · 2 + (pix > x).

Octree(P)
if |P| ≤ k then

return New leaf node(P)

psplit ← Get new split position(P)
for i = 1 to |P|

rsplit ← MAX(|psplit − pi| + ri, rsplit)
j ← Get octant(psplit, pi)
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Pj ← Pj ∪ pi

for j = 1 to 8
if Pj �= ∅ then

cj ← Octree(Pj)
return New octree node(psplit, rsplit, c1. . . 8)

In Pfister et al. [PZvBG00] a special-purpose octree-like data structure, based on
the layered depth cube (LDC) [LR98], has been proposed to store point data. The
LDC basically consists of three orthogonal, axis-aligned layered depth images (LDIs)
[SGwHS98] completely enclosing the modeled object as illustrated in Figure 4.35a.
This representation requires the 3D object to be resampled in a preprocess (i.e., by
orthographic ray casting along all coordinate axes). The resampling records all sur-
face intersections, including depth as well as shape and shade attributes (e.g., such
as normal and color). A hierarchical LDC-tree [PZvBG00] is then generated as fol-
lows. The initial LDC is subdivided into blocks with user-specified dimension b (i.e.,
consisting of LDIs with b2 image resolution). Subsampling by a factor of two and
combining up to eight nonempty blocks at each step, an octree is built bottom-up.
Figure 4.35b illustrates two levels of this LDC-octree hierarchy with b = 4.

K-d-trees
While octrees provide a simple hierarchical organization of space they can suffer from
the fact that in general points in 3D cannot evenly be subdivided into eight octants.
This may lead to an unbalanced and suboptimal data structure. In contrast, K-d-trees
[Sam89b, Sam89a, NW97] can guarantee a fully balanced hierarchical data structure.

Similar to a binary search tree, each node represents a split key along one particular
dimension. Starting with the bounding box enclosing all elements, in each recursion
the current cell is split along one dimension into two subregions enclosing an equal
number of elements. Instead of repeatedly cycling through the split dimensions, the

LDI 1 surfels
LDI 2 surfels

LDI 1

LD
I 2

(a) (b)

Figure 4.35: (a) Layered depth cube sampling based on orthogonal layered depth
images. (b) Two LDC-tree levels with empty blocks shown in white (shown in 2D).
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(a) (b) (c)

Figure 4.36: Comparison of a (a) regular region quadtree, (b) adaptive point quadtree,
and (c) 2D-tree split organization, for a bucket size of three.

best results are achieved by splitting the dimension of largest spatial extent at each
recursion step [DDG00].

Through the simple recursive binary subdivision of space, free choice of split key
and flexible split dimension, the K-d-tree can generate a balanced binary search tree
over a given set of input points. Figure 4.36 illustrates this advantage on the basis
of comparing the 2D analog of an octree, and the quadtree [Sam84], with a K-d-tree
(for k = 2). While a point octree may avoid empty cells and improve data distribution
over a region octree, the K-d-tree can achieve a better fill rate using a minimal number
of subdivisions.

A K-d-tree over an array of n points P[1. . . n] can efficiently be built in logarithmic
time as outlined below for a bucket size of k points. We assume that three additional
sorted arrays X ,Y ,Z of indices—only references to points in P—have initially been
generated. Each such array sorts the points (indices) according to the corresponding
coordinate axis. Thus X ,Y ,Z have the same dimension and store the same indices,
just in a different order. The recursive top-down K-d-tree construction algorithm
proceeds by finding the longest bounding box side of the current point set (refer-
enced by either X ,Y , orZ) in Dimension of largest extent(). The points referenced
by X ,Y ,Z are then equally subdivided with respect to the median coordinate of this
dimension. Tight bounding sphere attributes can be maintained during the recursive
subdivision procedure as indicated.

K-d-tree(P ,X ,Y ,Z)
m ← |X|
if m ≤ k then

return New leaf node(P ,X , m)
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cutdim ← Dimension of largest extent(P ,X ,Y ,Z)
median ← switch (cutdim)

x : X[m/2 + 1]
y : Y[m/2 + 1]
z : Z[m/2 + 1]

psplit ← P[median]xyz

x1 ← x2 ← y1 ← y2 ← z1 ← z2 ← 1
for i = 1 to m

rsplit ← MAX(|psplit − P[X[i]]xyz| + P[X[i]]r, rsplit)
if P[X[i]]cutdim < pcutdimsplit then
X1[x1] ← X[i] ; x1 ← x1 + 1

else if X[i] �= median then
X2[x2] ← X[i] ; x2 ← x2 + 1

if P[Y[i]]cutdim < pcutdimsplit then
Y1[y1] ← Y[i] ; y1 ← y1 + 1

else if Y[i] �= median then
Y2[y2] ← Y[i] ; y2 ← y2 + 1

if P[Z[i]]cutdim < pcutdimsplit then
Z1[z1] ← Z[i] ; z1 ← z1 + 1

else if Z[i] �= median then
Z2[z2] ← Z[i] ; z2 ← z2 + 1

left ← right ← NULL
if m/2 > 0 then

left ← K-d-tree (P ,X1,Y1,Z1)
if m/2 + 1 < m then

right ← K-d-tree (P ,X2,Y2,Z2)
return New K-d-tree node (psplit, rsplit, left, right)

Bounding Volume Hierarchies
Bounding volume hierarchies (BVHs) have extensively been used in rendering since
Clark and Rubin and Whitted [Cla76, RW80], to efficiently support spatial queries
such as visibility culling or ray-object intersections. While being a data-partitioning
approach to spatial indexing, unlike octrees and K-d-trees outlined above, a BVH
does not have to be space partitioned. Thus, it removes any constraints on spatial
subdivision and allows the use of more generic hierarchical organization of spatial
data. In fact, a completely random hierarchical grouping of elements could be used,
which, however, would not provide the necessary spatial selectivity critical to any
good spatial indexing scheme. The only requirement in a BVH is that in each node the
bounding volume (i.e., a bounding box or sphere) is known that encloses all elements
in this subtree.
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It is obvious that space-partitioning data structures can be extended to a BVH by just
generating the necessary bounding volume attributes at each node as shown earlier.
However, additional data-partitioning (but not space-partitioning), spatial packing,
and grouping strategies for 3D points can be used alternatively. This could range
from R-tree [Gut84] to k-means [Jai88] point-clustering techniques. An interesting
approach is to consider proximity-preserving linearization of space [Pea90, His91,
FR89] and exploit its implicit clustering properties [Jag90, ARR+97, Pas00, KF94].
Consequently, points are linearly ordered according to a one-dimensional spatial key.
Moreover, any bucketization and order-preserving hierarchical organization can be
used to generate the BVH (e.g., a binary search tree or B-tree). This principal of spatial
ordering and bucketization is also exploited in Pajarola et al. [PSL05] for accessing
and rendering large point sets from out of core.

A bounding volume hierarchy based on this space-linearization concept can be
formed with O(n log n) cost for a set P of n points with bucket size of k as follows.
We assume that the one-dimensional spatial key has previously been assigned to each
point. Given the current point setP , Get median spatial key and point() returns the
median spatial key and the corresponding point ∈ P , and Spatial key() provides the
spatial key of one point.

BoundingVolumeTree(P)
if |P| ≤ k then

return New leaf node(P)

(median, psplit)← Get median spatial key and point(P)
for i = 1 to |P|

rsplit ← MAX(|psplit − pi| + ri, rsplit)
if median > Spatial key(pi) then
P< ← P< ∪ pi

else
P≥ ← P≥ ∪ pi

left ← right ← NULL
if P< �= ∅ then

left ← BoundingVolumeTree(P<)
if P≥ �= ∅ then

right ← BoundingVolumeTree(P≥)
return New inner node(psplit, rsplit, left, right)

QSplat [RL00] is a hierarchical-point data structure based on a bounding sphere
hierarchy. While a K-d-tree-like construction algorithm is proposed in Rusinkiewicz
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and Levoy [RL00], other hierarchical organizations can be used as well as long as
the bounding sphere property is provided. In fact, due to the recursive quantization,
which is applied to the bounding volume attributes as discussed in more detail in
Section 4.4.4, the hierarchy actually has to preserve the nesting property as explained
earlier.

4.4.3 MULTIRESOLUTION AND LEVEL OF DETAILS

Level of detail (LOD) and (view-dependent) multiresolution-modeling techniques
have been established to adjust display quality and performance of large complex 3D
objects and scenes to available rendering resources [LRC+03]. As LOD point render-
ing is discussed in more detail in Chapter 6 we only concentrate on the data structure
aspects here.

As discussed earlier in this chapter, we know that each point p in fact represents a
circular or elliptical disk with major radius r, and aspect ratio η for the ellipse, ori-
ented with respect to the surface normal n. Given the point splat’s area A = π ·r ·ηr
and the viewpoint v, we can define the screen-space projected size of a point as
ε = f·A/d, with d = |p− v| and f ∈ [0, 1] being a correction factor taking the angular
difference between n and p− v into account [SPL04, SP04]. A basic LOD data struc-
ture can represent the 3D object at variable geometric complexity, thus using a vary-
ing number of LOD point splats. The fewer points used, the larger their splat size
A has to be. Therefore, for a constant projection ε the choice of LOD depends on the
distance d.

Besides computing specific LOD approximations (see also [PGK02b]), hierarchical
representations are generally used for adaptive LOD-based interactive rendering
(see also [PZvBG00, RL00, CH02, BWK02, Paj03, HE03, PSG04, GM04, SPL04,
SP04]). Therefore, each node’s attributes—to derive A and f—in the LOD hierarchy
must represent the aggregate information of all points in its subtree. While the
position is generally given by a median or mean aggregation (e.g., p̂ = 1/n

∑
pi),

the splat size and normal deviation are based on a maximum operator. The splat
size radius is commonly derived from a bounding sphere measure [Cla76, RW80]
(e.g., r̂ = ∀i max |p̂ − pi|+ri). For efficient visibility culling and estimation of visible
projected area, the normal cone concept [SAE93] is used to bound the angular

deviation of surface normals (e.g., n̂ = 1/n
∑

ni and θ̂ = ∀i max (∠(n̂, ni) + θi)).
Figure 4.37 illustrates this concept of maintaining bounding volume attributes.

4.4.4 EFFECTIVE REPRESENTATION

Due to their simplicity, missing any connectivity graph information, points are
of particular interest to represent objects and surfaces at high resolutions, using
very dense point samplings. The resulting large scale point sets ask for efficient
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Figure 4.37: Illustration of (a) a bounding sphere and (b) a bounding normal cone
formed from a group of three points.

representation formats. A major issue is the representation of the (minimal) point
attributes such as position, normal, color, and the splat size radius. Rounding within
the discrete sampling error, quantization and data compression are the general tech-
niques applied here.

Attribute Quantization
An effective representation has been presented in QSplat [RL00], which is based on
quantization and predictive encoding. The position p and radius r values of a point
are quantized to 1/13, relative to the diameter and radius of the parent node in the
BVH. This quantization proceeds recursively top-down, which prevents unwanted
propagation of quantization error. Given the parent’s values pP and rP, the child’s
values are pC = pP + (2/13 · (i, j, k)T − (1, 1, 1)T) · rP and rC = t · rP/13,2 with i, j, k, t
all being multiples of 1/13. Since not all 134 of the possible (i, j, k, t) values are valid,
a 13-bit lookup table is proposed to index the used ones.

The normals are quantized to 14 bits, corresponding to a 52 × 52 grid on each face
of a (warped) cube around the origin. Again a lookup table provides run-time access
to the quantized normal vectors. The bounding normal cone angle θ is quantized in
QSplat to 2 bits, representing the angles having a sin(θ) of 1/16, 4/16, 9/16, and 1.

In Pajarola [Paj03] the normals are quantized as illustrated in Figure 4.38. The pos-
itive space octant is uniformly subdivided as shown in Figure 4.38a: subdividing the
latitude angle into k values i = 1. . .k starting at the z-axis pole, and subdividing the

2 Rounded up with respect to center and radius quantization to always enclose the original sphere.
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Figure 4.38: (a) Illustration of normal quantization in the positive-space octant. A 9-bit
quantization leads to 31 subdivisions in latitude, resulting in (b) a well-sampled normal
space and (c) excellent shading results.

longitude angle into values j = 1. . . i according to the latitude i, rotating from the
x- to the y-axis. A (k2 + k)/2 lookup table stores the corresponding normal vectors
and a 3-bit octant code defines the normal coordinates’ signs. A 9-bit quantization3

of the positive normal space is shown in Figures 4.38b and c, which provides a well-
sampled normal space without shading artifacts.

Colors are quantized in QSplat [RL00] to 5-6-5 bits, respectively, for red, green,
and blue, but more savings could be achieved by also predicting colors from parent
nodes in the hierarchy. In color theory it is known that human perception indicates a
40 : 20 : 1 visual sensitivity to red, green, and blue [Hun93]. Therefore, quantization
could be adjusted accordingly to improve color coding.

Coordinate Compression
Further space reduction beyond quantization may be required to deal with very large
point sets. Compression of point coordinates has been proposed in the context of tri-
angle mesh compression in Devilliers and Gandoin [DG00, GD02b]. The approach
is based on a successive subdivision of a segment into two equal half segments, and
encoding the number of points contained in one of them. For coordinates quantized
to q bits this recursive subdivision stops after q steps when it reaches the quantiza-
tion accuracy, as the corresponding segment can only contain one distinct point. The
point coordinate is not explicitly encoded as the recursive binary subdivision down
to the quantization accuracy implicitly defines the position (i.e., as the center of that

3 k = 31 and �log2(k2 + k)� − 1 = 9.
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Figure 4.39: Recursive binary subdivision of 2D segments and encoding of remaining
number of elements in left half segment.

segment). At each step the number of points contained in one half segment (e.g., in
the left child) is encoded using the minimal number of bits. That is, given the current
segment contains n points, the number contained in one half segment can easily be
coded in �log2(n + 1)� bits,4 the number in the other half segment is given implicitly.

In higher dimensions the outlined approach only alternates the binary segment
subdivision among the dimensions in a fixed order as illustrated in Figure 4.39. It
also shows the resulting sequence of point numbers, and a simple �log2(n + 1)� bits
encoding. Using arithmetic coding [CNW87] and prediction error coding as sug-
gested in Devilliers and Gandoin [DG00, GD02b] further reduction can be achieved.

Controlling quantization and sampling density of a 3D surface S ,5 it is shown in
Botsch et al. [BWK02] that a very efficient compression of point coordinates can be
achieved using an encoding of the space occupancy of the surface. The bounding box
ofS is uniformly subdivided into 2q×2q×2q cells (q-bit coordinate quantization) (i.e.,
forming the leafs of a regular region octree subdivision). Furthermore, a sample point
pi is placed at each center of a cell that is intersected by the surface S , resulting in the
uniform sampling given the quantization. As only one sample point is defined by each
nonempty cell, all points pi can be recovered by identifying the nonempty cells.

An octree hierarchy is constructed bottom-up on the 2q × 2q × 2q cells by recursively
combining 2×2×2 blocks. This generates q successively coarser space-occupancy lev-
els of the surface S . To recover the space-occupancy information from a coarser to a
finer level, a byte code indicating for each cell which of its eight subcells is nonempty
is sufficient as illustrated in Figure 4.40a. Note that only the nonzero byte codes of
all nonempty cells need to be stored. Thus starting with the nonempty cell of the

4 log2(n + 1) bits can be achieved using arithmetic coding as in Devilliers and Gandoin [DG00].

5 Which may need resampling or subsampling of the original surface model S or its point set.
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Figure 4.40: (a) Four-bit codes to recover space occupancy on the next finer grid level
in two dimensions. (b) Hierarchical encoding of an 8 × 8 space-occupancy grid, with
zero-codes * not being stored explicitly.
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Figure 4.41: Breadth-first linear layout of a hierarchy using a branching-factor
attribute per node and optionally a first-child index.

bounding box ofS , a depth- or breadth-first traversal order of the octree’s byte codes,
skipping all emtpy cells, reconstructs the uniform point sampling of S . An example
in 2D is given in Figure 4.40b. Assuming that on average each nonempty cell corre-
sponds to four occupied cells on the next finer level, this approach encodes the point
positions pi with less than three bits per sample [BWK02].

Hierarchy Traversal
An efficient traversal of a hierarchical data structure can be achieved by
linearization of its elements into an array representation (see also [SPL04, SP04]).
This corresponds to replacing the parent-child pointer relation with array indexing
where each node is referenced by its position in the array of all nodes instead of by
a pointer. A breadth-first order linearization allows each nonleaf node to store the
array index of its first child and the branching factor as illustrated in Figure 4.41. In
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fact, the branching factor itself is sufficient—and requires very few bits—to describe
the hierarchy given a linear layout. This is useful for compact disk storage, however, at
run-time the first-child index should be reconstructed and kept in memory for effi-
cient traversal (i.e., allowing backtracking). This is also exploited in QSplat [RL00].

Given a regular region-octree hierarchy, the model-view-projection (MVP) can effi-
ciently be computed during the traversal of the hierarchy as shown in [BWK02] as a
number of vector additions. Let M be the MVP transformation matrix and p′ a point
derived from p by displacement of d. Then it holds that

Mp′ = M(p + d) = Mp + Md. (4.49)

Therefore, if we know the image p̂ = Mp we can find M(p + d) by adding a precom-

puted displacement vector d̂ = Mp to p̂. This can now be exploited by precomputing

for each frame all possible displacement vectors d̂l
1. . . 8 for each level l of the octree

hierarchy and its 8 child-node displacements (note also that d̂l+1
j = 2d̂l

j). Now that

each point is given by some sum p = proot +
∑k

i=1 di
ji

we get its image by

Mp = Mproot +
k∑

i=1

d̂i
ji . (4.50)

During octree traversal any single addition of a displacement image d̂i
j is reused for

all point samples in the subtree below the current node. Amortized for an average
branching factor of four, this leads to four scalar additions per point sample (plus
eventually two divisions for screen-space dehomogenization) [BWK02].

4.4.5 OUT-OF-CORE REPRESENTATION

An efficient representation is particularly important when manipulating and render-
ing datasets too big to fit into available physical main memory. Such an out-of-core
representation must increasingly take into account memory access coherency because
random access to memory locations in external memory is affecting performance
unequally worse compared to doing so in main memory.

Clustering
In the layered point clouds approach [GM04] the idea of spatial data partitioning and
organization is used to recursively cluster point data in a binary hierarchy. Starting
at the root, each node stores a uniform subsampling B, of size m, of all points P′
corresponding to this node and its descendants. The remaining points P′′ = P′ \B
are equally (spatially) subdivided among its two subtrees. Hence without duplica-
tion of data the hierarchy exactly represents the input point set P =

⋃
∀nodes jBj in
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log2 |P|/m LOD levels using data buckets of size m.6 Each node can be seen as a local
LOD refinement of its parent. The LOD information for each node j is determined
by its average sample spacing rj, corresponding to merging its points Bj with all par-
ents. Additionally, bounding sphere and normal cone attributes are computed for
each node.

The physical data are separated into a point-cloud repository and an index tree. The
index tree is assumed to have a small enough memory footprint to be stored in main
memory, depending on the choice of m, and each node references its point-cloud
bucket through a 32-bit index. The point-cloud repository sorts the data buckets by
a primary tree-level index key and a secondary Morton index key, thus combining
LOD and spatial ordering. Moreover, storage cost is reduced in Gobbetti and Marton
[GM04] by quantization of position and normal attributes as well as delta-predictive
entropy encoding.

Linear Memory Layout
The linearization of a hierarchical (multiresolution) data structure as outlined ear-
lier is itself a good starting point for an out-of-core data representation approach.
Any hierarchical point representation, such as QSplat [RL00], or octrees such as
in Botsch et al. [BWK02] or Confetti [PSG04], can be organized in a linear mem-
ory layout (array) and stored as such on disk. An out-of-core representation can
directly be achieved by memory mapping this file from disk, allowing the applica-
tion to traverse the hierarchy by accessing array elements. The operating system’s
virtual memory (VM) manager automatically takes care of which parts of the file
have to be loaded into main memory at any time through VM paging and swapping
mechanisms.

XSplat [PSL05] makes direct use of this approach and modifies the sequential point
tree (SPT) representation [DVS03] described in Section 6.5. It takes advantage of the
following two facts: (1) an SPT point is a self-contained LOD point that can indepen-
dently be evaluated for LOD and culling, and rendered; and (2) SPT points can be
processed for rendering in any desired order. Consequently, XSplat reorders all LOD
points as illustrated in Figure 4.42, lexicographically with respect to a layer number
and a spatial ordering index (i.e., the z-curve indexing). It then paginates the linear
data into blocks of fixed size that are used as basic LOD selection and culling units.
At run-time, the block header array—in main memory or separately mapped from
the file—can be scanned and evaluated by the application, and LOD point data are
accessed for rendering as required.

To avoid some of the major drawbacks of memory mapping (e.g., glitches in the frame
rate when data are not present and the application has to wait), and to support a

6 The terminal leaf nodes have less than m points in general.



S E C T I O N 4 . 4 EFFICIENT DATA STRUCTURES 163

S:

Blocks B: B0 B1 B2 ... Bm−1

l l + 1 ......

PaddingLayers

5 4 3 3 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 ... ... 0 0 0

z j
 +

 n
 −

 1

z j
 +

 n
 −

 2

z j
 +

 n
 −

 3

z j
 +

 n
 −

 2

z j
 +

 n
 −

 3

z j
 +

 n
 −

 3

z j
 +

 7

z j
 +

 5

z j
 +

 7

z j
 +

 2

z j
 +

 7

z j z j
 +

 1
1

z j
 +

 9

z j
 +

 7

z j
 +

 5

z j
 +

 2

S:

Layer numbers li

z j
 +

 3

z j
 +

 2

z j
 +

 1
 

z jz j

000

0 1 1

...

Hierarchy level 0

Level 1

Level 2

Level 3

Level 4

Level 5

zj + n − 1zj + n − 2

0 0 00

0 0 0 0

0

00 0

1

1

1 1

11

2

2

2

3

3 4

5

...

.........

... ... ...

zj + 3

zj + 1

zj + 5

zj + 2

zj + 7

z-indices zi

LOD layer numbers li

zj

(a)

(b)

(c)

Figure 4.42: (a) Indexing of hierarchical nodes according to layer numbers and z-curve index. (b) Linearized ordering
of hierarchy nodes into an array. (c) Blockification of on disk linearized LOD data.

client-server based remote rendering architecture, which requires more control over
the data loading, streaming QSplat [RL01b] has its own format, which is outlined
below.

Streaming
The definition of streaming we adopt here is to scan through and process data in a
strict sequential order; in other words, read point data from a source (stream), move
them through some processing stage, and eventually write them to a (new) destina-
tion. Representing points as a stream, and expressing a processing task as an opera-
tion on that stream, is a powerful out-of-core framework since the I/O streams can
be from/to external memory and processing only requires little data active in main
memory.

SPTs [DVS03] (Section 6.5) are basically a streaming point-rendering system. For
each frame, the sequence of points is scanned, passed from the CPU to the GPU,
and processed for LOD selection, culling, and finally display. In theory, SPTs could
directly be memory mapped from disk files, and hence support out-of-core render-
ing. However, the problem is that SPTs perform a very conservative selection on the
CPU; the range of points to be further processed is much larger than what is finally
displayed and no visibility culling is supported. Thus, the CPU touches many points
that will eventually be discarded by the GPU. In an out-of-core context this is critical
as the primary directive is to limit data access from external memory. To be more
useful, the SPT representation has to be extended in a way to allow fast (visibility and
LOD) culling of sizable chunks of point data on the CPU without having to touch
all points individually. One approach in this direction has been presented in Pajarola
et al. [PSL05].



164 FOUNDATIONS AND REPRESENTATIONS C H A P T E R 4

Streaming QSplat [RL01b] takes the linearized QSplat multiresolution hierarchy
[RL00] and partitions it into chunks of 1 KB. In addition to the basic LOD selec-
tion procedure, the depth-first traversal now also terminates when data in a subtree
of the LOD hierarchy are not (yet) available. A bit-mask on the rendering client indi-
cates which data portions are already available, and a two-bit code per data block
indicates if they are present, desired, requested, or not present. A prioritized queue
manages the data requests from the client and fetches the most urgent data from a
remote server. The client-side rendering algorithm of streaming QSplat, with its LOD
hierarchy traversal, is not a streaming data representation and processing approach in
the sense we outlined above. However, the server-to-client data request and transfer
system surely is.

A stream-processing concept and implementation framework not for rendering but
for general processing of point data has been proposed in Pajarola [Paj05]. The fun-
damental idea is to process data sequentially with only a very limited amount of data
active at any time, resembling a sliding window over the data stream as illustrated in
Figure 4.43. At any given time, only a small fraction of the entire dataset resides in
in-core memory while the remainder rests out of core.

Given a stream of points, each point pi is read once from the input stream, kept in an
active working setA (a FIFO queue) for some time, and then written to the output
stream. All data processing is limited to points in the working set A. Whenever a
new point pj is passed by the sweep-plane, it is added to the working setA. When the
smallest point pj−m ∈ A cannot possibly contribute to any operation on subsequent
points pi>j−m it can safely be written to the output stream. Since the active set A is

pj

pj − m

p1 pn

Sweep-directionΩp(p) Ω2(p) Ω1(p)Ω...(p)

Active set A Input streamOutput stream

y

x

z

Figure 4.43: Conceptual stream-processing pipeline: A point pi moves from right to
left through the staged stream operators Ω1. . . p.
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orders-of-magnitude smaller than the entire dataset, |A| = m� n, it can efficiently
be maintained in main memory even for very large datasets. Moreover, because input
and output are streams of points this directly leads to an out-of-core framework for
stream processing huge point sets.

In this stream-processing framework, a series of local operators Ω1. . . p can be
concatenated and applied in succession to a stream of points. In this context, each
operator Ωk also acts as a sequential FIFO queue buffer on the point stream. The
class of functions supported includes local operators that perform a nonrecursive
computation on a point and its locally (in space) restricted set of neighbors.

4.4.6 CONCLUSION

Processing and manipulating very large point datasets can be very resource intensive,
in particular with respect to memory consumption and CPU processing time. Oper-
ating on 3D point data frequently encompasses random access to and computations
on points coherently located in 3D space. Therefore, efficient spatial organization
and compact representation of point data, as well as techniques for out-of-core data
access, will significantly reduce the load on memory and CPU time cost. The spa-
tial data structures outlined in this section coherently maintain the point data such
that complex digital point-processing and -filtering operations, as discussed in the
following Section 4.5, can be implemented efficiently.

Moreover, hierarchical spatial data structures provide the basic framework for
most multiresolution representations that are chiefly used for interactive render-
ing of very large models (see Section 6.4). Most multiresolution data attributes can
readily be combined and integrated with a spatial data structure. The basic space
or data partitioning and hierarchical grouping properties of a spatial data structure
can be exploited to define different levels of detail of the represented 3D shape.

4.5 REAL-TIME REFINEMENT

Gaël Guennebaud, Loı̈c Barthe, and Mathias Paulin

4.5.1 OVERVIEW

As stated in Section 4.3, both downsampling and upsampling techniques can be
required by the processing of a point set. While Section 4.3 focuses on downsampling,
this section focuses on upsampling. Even though point-set refinement techniques
are necessary for high-quality rendering, multiresolution processing, modeling, etc.,
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they received little attention so far. One reason is certainly the lack of connectivity
information in point clouds that makes the neighborhood selection tedious and,
hence, the refinement process very unstable. This section presents a general refine-
ment framework for point-based geometry using a one-ring neighborhood selection
[GBP05, GBP04]. The choice of a small one-ring neighborhood is motivated by two
fundamental criteria. First, by comparison with subdivision surfaces on meshes, a
one-ring neighborhood is sufficient to provide C1 continuous interpolatory subdi-
vision schemes [ZSS96] or C2 continuous approximation schemes [Loo87, CC78,
Kob00]. Secondly, keeping the neighborhood as small as possible is an important
issue to maintain real-time performance as well as pertinent neighborhood selection.
Based on this general one-ring selection, a

√
3-like refinement interpolating both

points and normals and generating visually smooth surfaces at high rate is detailed.
For instance, in the context of high-quality rendering, the purpose of this refinement
procedure is to maintain a small screen space splat size by dynamically inserting new
points where the point set is not dense enough (Figure 4.44). Other refinement pos-
sibilities such as interpolation or approximation with MLS, Kobbelt’s

√
3, or Loop’s

subdivision schemes are also discussed.

General Settings
The refinement algorithm takes as input an initial point cloud P0 = {pi} defining a
smooth manifold surface where each point pi ∈ P0 is equipped with a normal ni and
a radius ri describing the local density. In other words, the algorithm takes as input a
set of splats. The radius of a point pi must be at least greater than the distance from
pi to the farthest neighbor of its natural first-ring neighborhood.

Figure 4.44: Illustration of the principle of the iterative refinement procedure.
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The general refinement procedure of a single point p first requires the computation of
a convenient one-ring neighborhoodN (p) of p (Section 4.5.2) that implicitly forms
a triangle fan. Next, this local topology allows us to decide where to insert new points.
At this step, different insertion strategies (dyadic,

√
3, . . . ) and smoothing operators

displacing the inserted points onto a smooth surface can be applied.

In a similar fashion to subdivision surfaces, the point set is iteratively refined, leading
to a sequence of point sets P0,P1, . . . , P l, . . . . For interpolatory refinements (such
as the

√
3-like refinement presented in Section 4.5.3), we have P l ⊂ P l+1 (only the

radius of points varies between two steps), and the refined point set P l+1 is the union
of the set P l itself and the set of points resulting from the local refinement of each
point p ∈ P l.

4.5.2 ONE-RING NEIGHBORHOOD SELECTION

The selection of a pertinent one-ring neighborhood is a critical step in the refine-
ment process. Indeed, it is from this selected set of points that new points are inserted
around the refined point p, and hence, the robustness of the refinement algorithm
directly depends on the quality of this neighbor selection. Unfortunately, common
neighborhood definitions, such as those presented previously in Sections 4.1 and 4.2,
suffer from several drawbacks. On the one hand, k-nearest neighbors–based methods
fix the number of neighbors while this number can vary significantly from one point
to another. On the other hand, an orthogonal projection of the nearest neighbors
onto the local tangent plane significantly reduces the accuracy. Indeed, the elevation
information, which is crucial when dealing with low local density and high curvature
areas, is lost.

For these reasons it is pertinent to use a more flexible neighborhood computation
procedure significantly improving the tolerance to undersampled and/or scattered
point sets. The computation of the neighborhoodN (p) of the point p is performed
using the three following steps.

Step 1: Coarse Selection
In order to accelerate further computations, let us start by computing the Euclidean
neighborhoodNr(p) of p as the indices of all points pi included in the ball of center
p and radius r:

Nr(p) = {i | pi ∈ P l, pi �= p, ‖p − pi‖ < r}. (4.51)

Next, according to the a priori knowledge about the current point cloud, this sub-
set can be reduced by applying several binary rules. For instance, the co-cone rule
[ABK98] states that two points p0, p1 can be neighbors only if p1 (respectively, p0) is
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in the complement of the double cone (co-cone) of apex p0 (respectively, p1), axis n0

(respectively, n1), and angle θcocone (see Figure 4.45a):

Ccocone(p0, p1) ⇔ Cos−1(

∣∣∣∣n0
T p1 − p0

‖p1 − p0‖

∣∣∣∣) < θcocone

and Cos−1(

∣∣∣∣n1
T p1 − p0

‖p1 − p0‖

∣∣∣∣) < θcocone. (4.52)

A typical choice for the angle θcocone is π4 . Another heuristic is to include a maximal
angle θnormal criterion between the point normals:

Cnormal(p0, p1) ⇔ Cos−1(n0
Tn1) < θnormal. (4.53)

This criterion allows us to separate very close pieces of surface as illustrated in

Figure 4.45a. Finally, a first approximation
~N (p) of the neighborhood is com-

puted with

~N (p) = {i ∈ Nr(p) |Ccocone(p, pi) and Cnormal(p, pi) and . . .} . (4.54)

Step 2: Geodesic Projection
The goal is now to simplify the final one-ring selection step via a projection of
the neighbor candidates onto the tangent plane of the refined point p. However,
in order to provide a more meaningful organization of the projected points, the
standard orthogonal projection is replaced by a projection based on the geodesic

(a) (b) (c)

Figure 4.45: (a) Top: definition of a co-cone; bottom: a condition on the angle between
normals can help to separate two close pieces of surface. (b) The relative positions and
orientations of the points p0 and p1 are such that the construction of a Bézier curve by
projection is inconsistent. (c) Given the position p0 and the two normals n0, n1, the point
p1 must be outside the yellow cone.
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distance between the current point p and its neighbors (Figure 4.46b). Because we
do not know the surface a priori, we can only compute a local approximation of the
distance along the surface. This is a reasonable approximation since the purpose is
just to improve the simple orthogonal projection and not to compute an accurate
geodesic distance.

A first approximation is given by the Euclidean distance. However, since the surface
normal is known at each point, a significantly more accurate approximation is given
by the length of a cubic Bézier curve B(u) interpolating the two points and their nor-
mals. Such a curve is defined by four control points b0, b1, b2, and b3. The two points
b0 and b3 define the extremities of the curve and must be respectively p0 and p1 while
the two others control the tangents of the curve and must only be in the respective
tangent plane of the points p0, p1. A solution easy to compute and providing a rea-
sonable shape is to take for b1 the projection of p1 onto the tangent plane of p0 moved
such that the length of the vector p0b1 is equal to the third of the Euclidean distance
between the two extremities p0, p1 (see Figure 4.46a). Let q(pi, x) be the orthogonal
projection operator, projecting the point x onto the tangent plane of pi:

q(pi, x) = x + nT
i (pi − x)ni. (4.55)

We also define ti, j as the pseudotangent vector going from pi toward pj as follows:

ti, j =
‖pj − pi‖

3

q(pi, pj) − pi

‖q(pi, pj) − pi‖
. (4.56)

Then b1 and b2 are simply given by:

b1 = p0 + t0, 1.
b2 = p1 + t1, 0.

(4.57)

n0 t0,1 n1

p0 = b0
p1 = b3 

t1,0

b1
b2

q1 pg
0 pg

1

p0

q0
p

p1

(b)(a)

Geodesi
c

projec
tio

n

Orthogonal
projection

Figure 4.46: (a) Construction of a cubic Bézier curve interpolating two point normals.
(b) Illustration of the geodesic projection against an orthogonal projection.
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Finally, because the exact computation of the length of a Bézier curve is too expensive
for our purpose, we’d rather use a sufficient approximation given by the length of the
control polygon:

g̃(p0, p1) =
2

3
‖p1 − p0‖ + ‖b2 − b1‖ . (4.58)

Note that a better approximation would be the average of the control polygon length
and the Euclidean distance, but an overestimation is actually better suited when deal-
ing with high-curvature areas.

Then, the geodesic projection p
g

i of a point pi onto the tangent plane of p is the

orthogonal projection moved such that the distance between p and p
g

i is equal to
the geodesic distance between p and pi:

p
g

i = p + g̃(p, pi)
q(p, pi) − p

‖q(p, pi) − p‖ . (4.59)

Compared to a simple orthogonal projection, the geodesic projection allows us to
correctly sort neighbors in the 2D domain even in case of high curvature, as illustrated
Figure 4.46b.

Finally, note that the construction by projection of a cubic Bézier curve interpolating
two point normals is not always consistent. Indeed, as illustrated in Figure 4.45b,
certain configurations of the positions and normals of the two boundary extremities
yield to an inconsistency with respect to the normal’s orientation (inside/outside).
This situation occurs when the point p1 is inside the infinite cone of apex p0 and axis
n0 + n1 (Figure 4.45c). In this case, a specific (global) treatment could be applied in
order to reestablish the normal consistency. However, this would mean that we try to
reconstruct a highly undersampled surface from an r-samplingP0 with r > 2 (see the
definition in Section 4.1) and, hence, it is more natural to consider that the points
p0 and p1 are not neighbors. Thus, we can add the following generic condition when

constructing
~N (p) (Equation 4.54):

Ccone(p0, p1) ⇔
∣∣∣∣(n0 + n1)T p1 − p0

‖p1 − p0‖

∣∣∣∣ > 1 + n0
Tn1 . (4.60)

Step 3: Fuzzy BSP Selection
The purpose of this last step is to select a pertinent one-ring neighborhood by apply-

ing a fuzzy BSP filtering on the set of points p
g

i , i ∈ ~N (p). Here, the intuitive idea is
to remove all neighbors that are strongly “behind” another one or slightly “behind”
two others. Inspired from the BSP neighborhood [Pau03], the notion of fuzzy dis-
criminant plane is defined by a badness value wij stating to what extent the neigh-
bor pi is “behind” the neighbor pj relatively to the current point p (see Figure 4.47).

The value of wij varies linearly from 0 to 1 as the angle βij = ̂pp
g

j p
g

i varies from
θ0 to θ1:
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Figure 4.47: Left: Computation of the badness value wij between two points. The other
pictures illustrate the blending of two fuzzy discriminant planes with different configu-
rations. The gradient represents the badness value wi = wi,0 + wi,1 produced by the two
points p0 and p1, at every point of the 2D space.

wij =
βij − θ0

θ1 − θ0
, (4.61)

and computations are simplified using the following approximation:

wij ≈
cos(βij) − cos(θ0)

cos(θ1) − cos(θ0)
. (4.62)

The value wij defines a scalar field where the isovalue v ∈]0, 1[ corresponds to a cone
of angle θ0(v − 1) + θ1v. In practice, these two angles must be chosen such that the

isovalue 0.5 defines a cone with an angle greater than π
2 (i.e., θ0+θ1

2 > π
2 ) in order

to provide a sufficient flexibility to the selection. A typical choice is θ0 = 3π
8 and

θ1 = 6π
8 .

Next, these fuzzy discriminant planes must be combined two by two (Figure 4.47). Let
Succi (respectively, Predi) be the set of successors (respectively, predecessors) of the

point pi, i ∈ ~N (p) such that Succi = {j ∈ ~N (p) | 0 < ̂p
g

i pp
g

j < π} (respectively, Predi =

{j ∈ ~N (p) | − π < ̂p
g

i pp
g

j < 0}). These definitions are illustrated Figure 4.48a. The

badness value wi, stating how the neighbor pi is “behind” the whole neighborhood of
p, is computed for each neighbor pi. Then wi is the sum of the two maximal badness
values involved by the successors and predecessor of pi:

wi = max
j∈Succi

(wij) + max
j∈Predi

(wij). (4.63)

This blending of two fuzzy planes is illustrated in Figure 4.47. Finally, as soon as a
neighbor pi has a badness value wi greater than 1 it is removed from the neighborhood
of p (Figure 4.48b) yielding the final one-ring neighborhoodN (p) (Figure 4.48c):

N (p) = {i|i ∈ ~N (p), wi < 1}. (4.64)
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Figure 4.48: (a) Definition of the successors and predecessors of the point pi. (b) Appli-
cation of the fuzzy BSP filtering on the neighborhood of the point p. (c) The filtered
neighborhood of p implicitly defines a triangle fan. (d ) Comparison with the original BSP
neighborhoods.

Figure 4.48d compares the result of the classical BSP neighborhoods against the fuzzy
approach.

Symmetric Version
Note that a naturally symmetric version of the neighborhood can easily be obtained
by avoiding the projection step (i.e., by taking p

g

i = pi). On one hand, the symmetric
property is very important for several operations, such as the analysis of the refine-
ment procedure. On the other hand, avoiding the geodesic projection significantly
reduces the robustness of the selection in case of low-sampling density or high cur-
vature. A simple solution is to use the nonsymmetric version for the first difficult
refinement steps and the symmetric one for the following steps.

4.5.3 REFINEMENT ALGORITHM

This section details the refinement of the current point p from its one-ring neigh-
borhoodN (p) computed with the method of the previous section. At this step, the
neighbors pi, i ∈ N (p) are sorted by increasing angles of their projection q(p, pi)
onto the tangent plane of p, so that this neighborhood implicitly forms a triangle fan
around p (Figure 4.48d).

√
3 Interpolation

In order to provide a visually smooth interpolating surface, the interpolation power
of Bézier triangles is combined with a

√
3 refinement strategy. In a

√
3 refinement

strategy new points are inserted close to the center of the selected triangle. Next these
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points are displaced onto a local smooth interpolating surface via the construction
of a cubic Bézier triangle B(u, v) interpolating the three points and their normals
(Figure 4.49a):

B(u, v) =
∑

i+j+k=3

bijk
3!

i!j!k!
uiv jw k , w = 1 − u − v. (4.65)

Given three points p0, p1, p2, and their respective normals n0, n1, n2, the nine control
points bijk of the patch (Equation 4.65) are computed as follows:

1. The three extremities b300, b030, b003 are respectively p0, p1, p2.
2. The positions of the six boundary control points (bijk, i + j + k = 3, i �= j �= k)

only depend on the two extremities of their respective boundary and are com-
puted in the same manner as for the cubic Bézier curves used to evaluate
geodesic distances (see the previous section). For instance:

b210 = p0 +
‖p1 − p0‖

3

q(p0, p1) − p0

‖q(p0, p1) − p0‖
= p0 + t0,1. (4.66)

3. The central point b111 is set to be close to quadratic polynomials by setting
b111 = c + 3

2 (a − c) where c is the center of gravity of the three input points and
a is the average of the six boundary control points.

This construction varies from the one of Vlachos et al. [VPBM01] only in one
point. The difference is that after projection, the boundary points bijk (i + j + k = 3,

b1
b2

pi

pi+1

b102

b201

b210

b012

b021

n1b120

b111

b´120b´210

p2

p1

p0

n0

p

(a) (b)

Figure 4.49: (a) Construction of the control polygon of a cubic Bézier triangle interpo-
lating three splats. (b) The “curved angle” between two point normals pi, pi+1 relative to
a third point p is specially useful for areas of high curvature. On this example there is a
ratio of two between the geometric angle and the “curved angle.”
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i �= j �= k) are displaced in order to avoid the introduction of flat area in the
reconstructed surface, especially in areas of high curvature.

Therefore, the smoothing operator φ is defined as the displacement of the center of
gravity onto the Bézier triangle. The position of the new point pnew is

pnew =
1

3
(p0 + p1 + p2) + φ(p0, p1, p2), (4.67)

where φ is the average of the six pseudotangent vectors:

φ(p0, p1, p2) =
1

6

2∑

i=0

ti, i+1 + ti, i+2. (4.68)

The normal of the new point is the cross product of the two tangent vectors at the
center of the Bézier triangle (u = v = 1

3 ):

∂B
∂u

( 1
3 , 1

3 ) = 7(p1 − p0) + b120 − b102 + b012 − b210 + 2(b021 − b201)

∂B
∂v

( 1
3 , 1

3 ) = 7(p2 − p0) + b102 − b120 + b021 − b201 + 2(b012 − b210).
(4.69)

Other attributes of the points, like the texture color, are simply linearly interpoled
from the three initial points.

Sampling Control
In order to avoid oversampling and/or redundancy, new points must not necessarily
be inserted at the center of each triangle. Relevant new points are those that optimize
the uniformity of the new neighborhood of p by taking into account the relative posi-
tion of neighbors and the new points ofP l+1−P l already inserted. Thus, the challenge
is to build a new neighborhoodN′(p) around p, corresponding to one refinement
step that must both fill holes and regularize the sampling.

First the setN′(p) is initialized with the indices of the points of P l+1, which can be
considered as newly inserted points; in other words, the points that are at a distance
from p smaller than λr with λ = 1/

√
3 (Figures 4.50a and b). The value of λ is set

according to the scale factor of a
√

3 refinement in the regular case [Kob00].

The refinement of p is complete as soon as the maximal angle between two con-
secutive points of N′(p) is smaller than a given threshold θc = π

2 . Hence, while
N′(p) is not complete, new points are inserted. To do so, three terms are defined
(Figures 4.50b and c):

• Y(p) is the set of points already inserted that are sufficiently close to p but not
close enough to be selected inN′(p):

Y(p) = {i | pi ∈ P l+1P l, λr < ‖pi − p‖ < r}. (4.70)
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(a) (b) (c) (d)
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Figure 4.50: Local refinement of the current point p. (a) The neighborhood of the point p before its own refinement.
Two of its neighbors have already been refined: new points are represented by squares. (b) Initialization of the new
neighborhoodN′(p) (in green). (c) Selection of a point to insert. (d) The new neighborhoodN′(p) is complete.

• D(p) is the discard space avoiding oversampling and redundancy. It is the
union of the spheres of radius 1

2λr centered on the points of Y(p):

D(p) = {x | i ∈ Y(p), ‖x − pi‖ <
1

2
λr}. (4.71)

• L(p) is the set of all possible new points; in other words, it is the set of points
resulting from the application of the smoothing operator (Equation 4.68) on
the center of gravity of all triangles of the implicit triangle fan formed by the
sorted neighborhoodN (p):

L(p) =

{
1

3
(p + pi + pi+1) + φ(p, pi, pi+1) | i ∈ N (p)

}
. (4.72)

The insertion procedure is the following:

While the neighborhoodN′(p) is not complete repeat.

1. Select the pair of consecutive points pj, pj+1 in N′(p) forming the maximal
angle (Figure 4.50b).

2. Select the new point inL(p) which best balances point sampling (Figure 4.50c).
A good candidate is the point pk ∈ L(p) such that the minimum of the two
angles p̂jppk and p̂kppj+1, is maximal.

3. If this point is not too close to an already inserted point (i.e., pk∉D(p)), then it
is inserted in P l+1 andN′(p). Otherwise no new point is inserted in P l+1 and
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the closest point to pk in Y(p) is inserted inN′(p) (Figure 4.50d). Thus, if the
samples are locally dense enough, no new point is inserted.

When this process terminates, the radius of the point p is updated according to its
new neighborhoodN′(p). The new radius r′ is set to the maximum distance between
p and the points ofN′(p): r′ = maxj∈N ′(p)(‖p− pj‖) (Figure 4.50d). The radius rj of
each new neighbor pj, j ∈ N ′(p) is set to the maximum of the four values: rj, ‖pj−p‖,
‖pj − pj−1‖, and ‖pj − pj+1‖.

However, the angle criterion used to determine whether the new neighborhood is
complete or not can be irrelevant in case of local high curvature (i.e., when the angle
between the normals of neighbors is too large). Hence, it is more relevant to use a
new angle measure taking into account the ratio of the Euclidean distance and the
geodesic distance between the two points. Following the geodesic distance approxi-
mation, the “curved-angle” α̃ (p, p0, p1) is defined as the sum of three angles taken
along the control polygon of the boundary curve interpolating p0, p1 (Figure 4.49b):

α̃ (p, p0, p1) = p̂0pb210 + ̂b210pb120 + b̂120pp1. (4.73)

Local versus Global Sampling Control
The strategy presented here uses the radius of the current point to locally equilibrate
the sampling density. Therefore, an originally denser region will remain denser than
another region after several refinement steps. A variant of this strategy is to use a
global radius to control the sampling (i.e., the radius of the largest splats). This leads
to a globally uniform sampling.

Smoothness and Robustness
In order to evaluate the robustness of the refinement method, it has been tested on
several irregularly downsampled models: for instance in Figure 4.51 the refinement
algorithm is applied to 3,500 points randomly selected from a set of 150,000 points
representing a statue of Isis. Figure 4.52 illustrates the use of the refinement on an
especially large hole. To fill this hole only the radius of points has been adjusted
such that they overlap the hole and the refinement algorithm has been applied sev-
eral times. In this case the alternate refinement strategy leading to a global uniform
sampling (see above) is especially useful. Figure 4.53 illustrates the usefulness of the
“geodesic projection” and the “curved angle” on a highly undersampled area. In
this example, the boundary of the David’s eye exhibits holes if these tools are not
used. Figure 4.54 illustrates the superiority in the reconstructed surface smoothness
of the

√
3 refinement algorithm over the butterfly mesh-based interpolatory subdivi-

sion scheme [ZSS96] (C1 surface but with large oscillations) and a dyadic refinement
method [GBP04](high-frequency oscillation artifacts). Even though some insights
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F igure 4.51: Illustration of the smooth reconstruction capabilities of the
√

3-like refinement procedure on the Isis
model irregularly sampled with 3,500 points (left). The right images focus on a particularly undersampled area; from
top to bottom: the initial sampling, after four, then six refinement steps.

Figure 4.52: Illustration of the hole-filling capability of the refinement algorithm. A large hole in the David’s hair is
filled by adjusting the radius of boundary points such that they are greater than the hole and applying the refinement
algorithm. The final image is obtained after eight refinement steps while the two others show intermediate steps.
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F igure 4.53: Illustration of the usefulness of the geodesic projection and the curved angle. Left: If they are both
disabled, high-curvature areas are not reconstructed (holes appear). The three other images are close views of the
refinement process when the geodesic projection and curved angle are enabled. Then from left to right: The initial
sampling, intermediate step, and final refinement step where the previous holes are smoothly reconstructed.

Figure 4.54: Right: The Igea model uniformly sampled by 600 points is refined to 150,000 points with various tech-
niques. Then, from left to right: The butterfly (after a meshing step), a dyadic refinement of point clouds [GBP04],
and the

√
3-like refinement. The last picture is rendered with reflexion lines showing normal and curvature variations.

are given in Guennebaud et al. [GBP05], the analysis of the limit surface continuity
remains an open problem.

4.5.4 REFINEMENT OF SHARP FEATURES

So far, we have assumed that the initial point cloud represents a smooth manifold sur-
face. In this section we show how to refine sharp creases and boundaries. A common
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and efficient way to handle sharp creases with point-based geometry is to use clipped
splats. Although clipped splats are sufficient for the rendering, geometry processing
requires, in addition, that splats share the same center. Thus, in our case, a crease
splat is a single point with two different normals and a corner splat has three differ-
ent normals.

Detection and Interpolation of Creases
Refining a crease requires first its detection and then its reconstruction. For the
detection step, let us remind that the interpolating operator is based on the com-
putation of tangent vectors t0,1 going from one point p0 toward another point p1

(Equation 4.56). Since points can now have multiple normals we have to distinguish
three cases to construct t0,1:

1. p0 has a unique normal: no change, t0,1 is obtained by projecting p1 onto the
tangent plane of p0.

2. p0 has two normals n1
0, n2

0, and p1 that satisfy the following condition:
∣∣∣∣v0

T p1 − p0

‖p1 − p0‖

∣∣∣∣ > cos(θedge), (4.74)

where v0 is the tangent vector of the edge curve: v0 =
n1

0×n2
0

‖n1
0×n2

0‖
. This condi-

tion defines a cone of apex p0, axis v0, and angle θedge. This allows us to test
whether the point p1 is on the crease or not. The choice for the value θedge actu-
ally depends on the status of p1. If p1 also represents an edge, then θedge is large
in order to ensure the connection of edges (e.g., 3π

8 ). Otherwise, the crease must
be extended only if p1 is very close to the edge, implying a small angle threshold
(e.g., π6 ).
In this case we take for:

t0,1 =






1
3‖p1 − p0‖v0 if v0

T(p1 − p0) > 0

− 1
3‖p1 − p0‖v0 otherwise.

(4.75)

3. If p0 has two normals and the condition (Equation 4.74) is not satisfied, then
the tangent vector t0,1 is computed by projecting p1 onto the two tangent planes
of p0. The closest projection to p1 is selected to define t0,1. In this case, the edge
will be blended with a smooth surface.

If p0 represents a corner (i.e., p0 has three different normals), the normal associated
to the farthest tangent plane from p1 is simply ignored and the point is treated as in
the case 2 or 3. Then six possibilities remain for the construction of an interpolating
curve between two points. From those, only three combinations (i.e., 2-2, 3-2, and
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F igure 4.55: Illustration of the refinement of sharp features. The three combinations
2-2, 3-2, 1-2 are explicitly shown.

1-2) involve a sharp crease (see Figure 4.55). When an edge is detected between two
points, it is reconstructed by a cubic Bézier curve B(u) built as in Equation (4.58)
with the tangent vectors computed as shown above. When a new point is inserted
on such a curve, its two normals must also be computed. However, a curve does not
define a surface, and the only requirements are that these normals must be orthog-

onal to the tangent vector ∂B
∂u

(u) of the curve and that normals must smoothly vary

from one extremity to the other. Hence, a reasonable solution is to linearly interpo-
late extremity normals and to take the closest orthogonal vectors to the curve (i.e.,

the projections of the interpolated normals onto the plane of normal ∂B
∂u

(u)). For

instance, the unnormalized normal n1(u) of a point B(u) that corresponds to the
extremity normals n1

0 and n1
1 is computed as follows:

ñ1(u) = (1 − u) · n1
0 + u · n1

1

n1(u) = ñ1(u) − ñ1(u)T ∂B

∂u
(u) · ∂B

∂u
(u). (4.76)

Application to the
√

3-like Refinement
However, since with a

√
3-like refinement strategy, new points are never directly

inserted between two points, a particular attention must be paid. With the mesh-
based

√
3 subdivision scheme Kobbelt [Kob00] proposes the insertion of two vertices

on each boundary and crease segment at each even refinement step only. Since no
connectivity information is stored, after two refinement steps, the crease (or bound-
ary) points will probably not be neighbors anymore so that no special treatment can
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be applied between them, and the crease will not be reconstructed. Since we cannot
wait for an even refinement step to detect and treat creases, the idea is to refine creases
early. At each odd refinement step, two new points are inserted on each detected and
reconstructed crease curve at respective positions 1/3 and 2/3. In order to avoid the
modification of the neighborhood selection at the next refinement step (even step),
such early inserted points are not taken into account in the neighborhood selection
procedure. Note that boundaries can be handled in the same manner except that a
boundary is detected only between two boundary points. Figure 4.56 shows an exam-
ple of the refinement of sharp creases with a

√
3-like strategy.

4.5.5 IMPLEMENTATION AND APPLICATIONS

Closest Point Query
As in a lot of point-based processing methods, a critical time-consuming part of the
refinement is the closest points query necessary to compute the Euclidean neighbor-
hoodNr(p) (Equation 4.51). To improve efficiency, points must be spatially sorted
into a data structure, like a K-d-tree or a 3D grid, with a fine granularity (see also
Section 4.4).

Moreover, the local refinement step of a single point p ∈ P l also requires us to find
the closest points already inserted into P l+1 (to compute the setsN′(p) and Y(p)).
Assuming that new points are sequentially inserted into a list of points, a solution is
to associate to each point p ∈ P l the indices of the first and last new points inserted
during its own refinement. These points are called the children of p. Thus, the set
of new points already inserted into P l+1 close to p is inferred from all children of all

Figure 4.56: Illustration of the refinement of creases.
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neighbors pi, i ∈ Nr(p) of p. This solution has the advantage that it naturally creates a
hierarchy of bounding spheres (a radius is associated with each point) that is also used
to perform efficient closest points queries with a very low memory consumption:
only the first index (three bytes) and the number of children (one byte) are stored.
In addition, the initial point set P0 has to be structured once with a classical static
data structure (e.g., a K-d-tree). A closest points query around the current point p at
a level l is done by performing a recursive traversal of the bounding spheres hierarchy
while the starting bounding spheres (points of the set P0) are found by performing
a closest points query using the initial data structure.

Progressive Rendering
A typical application of a refinement algorithm is real-time high-quality rendering.
Here, the refinement procedure is used on top of a splatting technique to maintain a
screen space splat size smaller than a given threshold (e.g., two pixels). The progres-
sive rendering algorithm presented in Guennebaud [GBP04, GBP05] is an extension
of classical multiresolution point-rendering systems (see Sections 4.5, 6.4, and 6.5).
A typical scenario is to store points in a coarse hierarchical data structure allowing to
select appropriate levels of detail according to the relative position of the view point.
Now, if a node of the hierarchy is an insufficiently dense leaf, then this node is split
and refined, yielding to the insertion of new points that are stored in a cache. The
memory cache is managed by a “last recently used” strategy (i.e., outdated generated
points are removed when the cache is full). Note that even though the data struc-
ture presented above already provides a dynamic and hierarchical partition of the
point model, its granularity is much too fine to be suitable for efficient LOD selec-
tion. Hence, it is preferable to use a second coarse hierarchical data structure such as
the dynamic tree presented in Guennebaud [GBP05].

Finally, in order to provide best performance, when the point cloud is relatively well
sampled and/or after a few refinement steps, a lot of expensive operations of the
refinement procedure can be safely optimized:

1. Approximate the “curved angle” by the simple geometric angle:
α̃(p, p0, p1) ≈ p̂0pp1.

2. Approximate the geodesic distance by the Euclidean distance:
g̃(p0, p1) ≈ ‖p1 − p0‖.

3. Approximate the position of a new point by the center of gravity during the
refinement process and apply the smoothing operator if and only if the new
point is effectively inserted.

In practice, these optimizations allow to significantly improve the performance of the
algorithm (by a speedup factor from 1.5 to 2).



S E C T I O N 4 . 5 REAL-TIME REFINEMENT 183

4.5.6 CONCLUSION

Even though the refinements algorithm has been presented with a
√

3-like
interpolatory refinement it is important to notice that several other strategies can
be placed on top of the one-ring neighborhood selection (Figure 4.57). For instance,
the smoothing operator can easily be replaced by an MLS projection operator (see

(a) (b) (c)

(d) (e) (f)

Figure 4.57: The Armadillo model (a) is downsampled to 10,000 points (b) and next upsampled with an MLS
operator (c), the approximating

√
3 rules (d), a hybrid interpolating/approximating

√
3 (e), and the interpolating

√
3-like

refinement (f ).
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Section 4.2 and Figure 4.57c). Note that, if the MLS operator is set to approximate
rather than interpolate the point cloud, initial points must first be duplicated and
projected onto the underlying MLS surface. The refinement is then used to sample
the MLS surface defined by the initial point set and hence either a dyadic or a

√
3

insertion strategy is relevant. MLS projection operators require both a second larger
neighborhood search and an orthogonal projection step reducing the reconstruction
capabilities when handling low-sampling density in regions of high curvature.

Other interesting refinements are classical approximating subdivision schemes.
Indeed, once the one-ring neighborhood is selected, subdivision rules of Loop’s
dyadic scheme [Loo87] or Kobbelt’s

√
3 [Kob00] can easily be applied (Figure 4.57d).

Since the selected triangle fans may overlap inconstantly we cannot yet guaranty the
continuity of the limit surface. However, these subdivision schemes provide highly
regular sampling and hence, in practice, after a few refinement steps the one-ring
neighborhood selection behaves as if it were guided by an explicit connectivity.

Finally, hybrid strategies can also be employed. For instance, using the
√

3-like inter-
polating refinement strategy for the first steps followed by the approximating

√
3 for

the last steps leads to a quasi-interpolating surface (Figure 4.57e). The main advan-
tages over the pure interpolating strategy is that the surface is slightly smoother and
the sampling more uniform.
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5 DIGITAL PROCESSING

INTRODUCTION

This chapter is devoted to the digital processing of point-sampled models. It
demonstrates the versatility of point sampled representations which combine the
simplicity of conventional image editing operations with the power of advanced
3D modeling methods. Section 5.1 starts with a variety of preprocessing methods,
such as model cleaning and filtering, that can be utilized to improve the quality
of 3D scan data. More advanced 3D editing, such as rubber stamping and tex-
turing, is presented in Section 5.2. This section also provides an overview of the
core functionality of PointShop3D, an open-source software accompanying this
textbook. The chapter concludes with advanced shape modeling operations like
deformations and CSG, that will be discussed in Section 5.3.

187
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5.1 PREPROCESSING AND FILTERING OF POINT
MODELS

Tim Weyrich and Markus Gross

5.1.1 OVERVIEW

With growing demand for realism in computer graphics and interactive techniques,
we experience a steady increase in the geometric complexity of digital 3D surface
models. Ab initio design of such shapes thus becomes increasingly time consum-
ing and expensive. Most designers, therefore, rely on 3D scanning devices to acquire
complex digital models from real-world objects. Accurate 3D acquisition also plays
an important role in reverse engineering, rapid prototyping, biomedicine, architec-
ture, cultural heritage acquisition, or the entertainment industry.

This diversity in application fields is reflected in a great variety of 3D imaging
techniques: CT and MRI scanners are widely used in medical and engineering appli-
cations to acquire volumetric representations of real-world objects. Optical devices,
such as laser range scanners or structured-light scanners, are primarily employed for
surface and appearance acquisition.

This latter class of scanning devices typically produces a dense set of surface points,
where each point samples a 3D position and possible additional attributes, such as
normal information, color, or material properties. A respective acquisition pipeline
and an exemplary scanner setup have been described in Sections 3.1 and 3.2. Depend-
ing on the specific acquisition method, the acquired data usually contain a number
of typical scanning artifacts as illustrated in Figure 5.1:

• Physical limitations of the sensor lead to noise in the acquired dataset.
Sample points can also be corrupted by quantization or motion artifacts. The
latter occur when the scanned object moves during the acquisition process, a
common problem when scanning humans or animals.

• Multiple reflections and heavy noise can produce off-surface points (outliers).
• Holes and undersampling in the model surface occur due to occlusion,

critical reflectance properties, constraints in the scanning path, or limited
sensor resolution.

• Many scanners tend to create displaced geometry when the scanned object is
textured.

The raw point-cloud data produced by the scanner thus need to be processed before
subsequent modeling operations can be performed. Commercial scanners are usually
equipped with rudimentary scan-cleaning software that uses built-in heuristics for
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F igure 5.1: Typical artifacts of raw scanner data. Top row : Holes due to sensor restric-
tions, noise, outliers. Bottom row : Low sampling density due to gracing sensor views,
low sampling density at delicate surface details, and holes due to critical reflectance
properties.

outlier removal and noise reduction. These are often difficult to control as they are
optimized for the specific scanner configuration.

More sophisticated data processing can only be applied by exporting the acquired
surface model from the proprietary scanner software, typically in the form of a
triangle mesh. However, if the aforementioned data imperfections have not been
successfully removed from the dataset, the meshing process itself is fragile and
can even introduce further artifacts. Therefore, postprocessing of scanned data
should be performed directly on the acquired point cloud, before sophisticated
surface reconstruction algorithms or advanced modeling operations are applied.

To this end, in Weyrich et al. [WPK+04] we propose a purely point-based scan-
cleaning toolbox, consisting of a selection of user-guided tools that address the
different scanning artifacts mentioned above. These include an eraser tool, low-pass
filters for noise removal, a set of outlier detection methods, and various resampling
and hole-filling tools.

Since many scan artifacts are strongly coupled, these tools should be applied in an
interleaved fashion. Identification of artifacts is difficult and often requires human
interpretation. Therefore, user guidance is a necessary prerequisite to achieve optimal
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results. All algorithms are specifically designed to support rapid feedback during an
interactive scan-cleaning session.

The toolbox has been integrated as a plug-in into Pointshop3D, an open-source 3D
editing tool for point-sampled surfaces [ZPKG02a, Poi]. In combination with a 3D
scanning front end, the plug-in bridges the gap between 3D acquisition and high-level
shape and appearance modeling, thus providing in a single application a complete
point-based content creation pipeline (Figure 5.2).

The remainder describes the toolbox and its constituents. Section 5.1.2 discusses
design criteria of the toolbox, while Section 5.1.3 presents the underlying techniques.
Sections 5.1.4 and 5.1.5 present the resulting set of interactive tools. It is explained
how the underlying techniques have been extended and combined to realize the
different tools. The integration of the tools in a common user interface is presented.

3D Acquisition

3D Content

Geometry
cleaning

Modeling

P
oi

nt
sh

op
3D

Figure 5.2: Geometry cleaning bridges the gap between 3D acquisition and higher-
level modeling. We present an interactive cleaning toolbox implemented within
Pointshop3D.
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5.1.2 AN INTERACTIVE APPROACH

The central motivation of the toolbox has been to open up modeling techniques
to be used for the cleaning of raw scan data. The modeling tools make extensive
use of basic techniques (Section 5.1.3), which are well known in the point graphics
community or adapted from triangle-based graphics, respectively.

The toolbox was designed to allow for the removal of typical scan artifacts, as depicted
in Figure 5.1. In order to support an efficient scan-cleaning process, three design goals
have been pursued:

1. Predictability: In order to allow a rapid workflow, it is important that each tool’s
effect is predictable under most circumstances. That is, if the user chooses a tool
for a certain purpose, the outcome should meet the user’s expectations.

2. Controllability: The range of application must be well controllable. Where pos-
sible, each tool should provide a set of parameters to tune its behavior.

3. Intuitive handling: The tools should rest upon intuitive editing metaphors. Any
parameters should correspond to meaningful traits.

Following these criteria, the goal has been to make the tools as powerful as possible.
However, making a tool powerful usually implies the use of higher-level automa-
tisms, which are likely to fail when applied to raw scanner data. This would contra-
dict predictability. Increasing the number of parameters to make the outcome more
controllable would lead to an unintuitive handling.

Accordingly, the final set of tools comprises operations of different complexity
(see Figure 5.3). Simpler, more robust tools allow for direct editing, especially in
the presence of severe scanning artifacts. More complex and powerful tools can be
applied at a later point in the scan-cleaning process, when a certain sampling quality
has already been achieved.

In order to address controllability, all tools provide an exhaustive set of parameters
that can be set using the user interface. Each tool comes with a set of reasonable
default parameters.

For most of the tools it makes sense to apply them locally. Consequently, they are
defined to work on a set of selected surfels.

Pointshop3D provides a selection mechanism. However, the Pointshop3D selection
tool requires a well-sampled surface and cannot e.g., select scattered points, as they
frequently appear in real-world scans. Hence, a volumetric brush has been introduced
to facilitate the selection of surfels in areas where no properly sampled surface exists.
The brush, box-shaped or ellipsoidal, can freely be moved in space, or, alternatively,
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MLS spray can
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Figure 5.3: The toolbox contains tools of different complexity. Higher complexity goes
with less interaction.

follow the object surface (see Figure 5.4). By resizing and rotating the brush, its shape
can be adapted to the local object geometry.

The brush is designed to follow the object surface even in poorly sampled regions.
This is achieved by analyzing the depth values of all surfels visible around the mouse
pointer. The brush’s depth is set to a robust mean of the different depth values.

All tools that support the volumetric selection can be applied to a set of surfels that
were selected in a separate step. Alternatively, they are simultaneously applied to all
points within the volumetric brush during navigation.

5.1.3 UNDERLYING TECHNIQUES

The presented toolbox internally utilizes a set of basic geometric modeling
techniques. This section describes the respective techniques and explains their
adaption to point clouds.
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F igure 5.4: The volumetric brush. (a) A box-shaped selector following the object
surface. (b) An ellipsoidal selector freely positioned in space.

Search Data Structures
Dealing with point clouds, there is no explicit connectivity information. This means
that all computations are based on spatial proximity between point samples instead of
geodesic proximity between mesh vertices. In this section we present two data struc-
tures for fast nearest-neighbor searches and range queries. A more elaborate descrip-
tion of search data structures can be found in Section 4.4.

A very well-known search data structure is the K-d-tree (e.g., [Ben75, FBF77, AM93]).
A K-d-tree can be searched efficiently in O(log n), while it takes time O(n log n) to
build it. Therefore, and because it is costly to maintain a K-d-tree after an insertion,
deletion, or displacement of points, it is suitable for static data only. If the same point
is queried more than once, it might be useful to cache the neighbors. In this case, a
nearest-neighbor graph is built, storing the nearest neighbors for each point.

For querying dynamic data a hash data structure similar to Teschner et al. [THM+03]
has been used. The coordinates of an arbitrary point in space are mapped to a cell. If
the cell size is chosen smaller or equal to the maximal query range, all points within
this range can be found by searching the adjacent cells to a query point (i.e., 27 cells
have to be queried). Note that also k-nearest-neighbor queries can be performed effi-
ciently if a maximal range can be given. However, while insertion of a point can be
done in O(1), querying takes O(q), where q is the maximum number of points in a
cell. In practice, with a sufficient number of cells q will be small.
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MLS Projection
To compute a smooth surface that approximates a set of scattered data points,
Levin [Lev01a] introduced a projection operator based on moving least squares
(MLS) optimization. Using this projection procedure, Alexa et al. [ABCO+01] pre-
sented a high-quality rendering algorithm for point set surfaces. An in-depth discus-
sion of the MLS method is provided in Chapter 4. Because the MLS method is crucial
for the following algorithms, we will briefly review it here.

Given an unstructured set of sample points, the MLS projection as used in the
cleaning toolbox takes a point x in space and projects it onto a polynomial that locally
approximates the underlying surface in the vicinity of x. This polynomial is computed
by first fitting a reference plane H using weighted least squares optimization. The
reference plane provides a local parameterization of the sample points, which is
used in a second least squares fit to compute a bivariate polynomial approximation.

Both the computation of the reference plane and the polynomial use a radially

symmetric Gaussian weight function ωi = e−‖xr−pi‖2/h2
, where xr is the projected

point of x onto H and h is a scaling factor. Since ωi drops quickly with increasing
distance, the least squares optimization is typically applied in a local neighborhood
around the point of interest. The scaling factor h can either be a global constant or
proportional to local sample spacing, estimated from a k-neighborhood as described
in Pauly et al. [PGK02a]. More details on the MLS method can be found in
Section 4.2.

Point Relaxation
In [Tur92], Turk uses particle simulation for resampling polygonal surfaces. Pauly
et al. [PGK02a] adapted this method to point-sampled surfaces.

To achieve a uniform distribution of the particles, neighbored particles are let to repel
each other. Every particle p exerts a force fi(p) on its neighbored particles pi. The
summation of all forces that act on a particle gives the resulting force. Finally, the
new positions of the particles are computed by explicit Euler integration.

The presented work uses the same repulsion force f as in Turk and Pauly et al. [Tur92,
PGK02a]:

fi(p) = k(r − ‖p − pi‖)
pi − p

‖pi − p‖ , (5.1)

where k is a force constant and r is the repulsion radius. For finding the nearest neigh-
bors within the radius r the hash data structure described above is used.

After each iteration, the particles are projected back onto the surface by applying
the MLS projection described above. In the cleaning toolbox, the particle simulation
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is performed locally for a selected region. To ensure that the selected surfels keep
within this region, for each selected surfel its n-nearest neighbors are computed, and
the neighbors that are not selected are added to a list. While these surfels repel the
selected surfels, their positions are fixed.

5.1.4 OUTLIER REMOVAL

Erroneous points outside the object surface are outliers that have to be removed.
However, it is hard to specify a general criterion to detect outliers, if the real object
surface is unknown. Noise further complicates the detection of outliers. In many
cases, the scan quality has to be judged by the user in order to tell a noisy surface
point from an outlier.

Weyrich et al. [WPK+04] developed an interactive tool for outlier removal incorpo-
rating the user into the outlier detection. The tool provides three outlier classification
heuristics that have to be weighted by the user to obtain an appropriate classification
(see Figure 5.5). Outliers are finally removed by applying a threshold to the resulting
outlier classification.

The threshold can be chosen manually. Alternatively, it is automatically set to discard
a certain percentage of the points. Outlier classification can be confined to the volu-
metric brush.

We now present the three underlying outlier criteria. All criteria deliver an estimator
χ(p) ∈ [0, 1] assigning the likelihood for a point sample p to be an outlier. To prevent
any bias from an intermediate surface representation, all criteria are based only on
analysis of p’s k-nearest neighborsNk(p).

Figure 5.5: Outlier classification. The three classifiers can be weighted using the
depicted sliders. Probable outliers, scheduled for removal according to the resulting clas-
sification and a given threshold, are rendered in red.
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Plane Fit Criterion
An intuitive criterion is the point’s deviation from a manifold approximating its
neighbors. The plane fit criterion considers a plane H that minimizes the squared
distances to p’s neighbors:

min
H

∑

q∈Nk(p)

dist(p, H)2 (5.2)

(see Figure 5.6). Let d be the distance of p to H, and d̄ the mean distance of points
fromNk(p) to H. The plane fit criterion is defined as

χpl(p) =
d

d + d̄
. (5.3)

Normalization by d̄ relates d to possible noise and surface deviations.

Instead of H, it would be possible to use higher-order approximations ofNk(p). The
plane fit criterion has been chosen to achieve a maximum of robustness.

Miniball Criterion
A point comparatively distant to the cluster built by its k-nearest neighbors is likely
to be an outlier. This observation leads to the following criterion.

For each point p consider the smallest enclosing sphere S aroundNk(p) [Wel91] (see
Figure 5.7). S can be seen as an approximation of the k-nearest-neighbor cluster.
Comparing p’s distance d to the center of S with the sphere’s diameter yields a measure
for p’s likelihood to be an outlier. Consequently, the miniball criterion is defined as

χmb(p) =
d

d + 2r/
√

k
. (5.4)

d

p

H

Figure 5.6: The plane fit criterion compares p’s distance d to a least squares plane H
with the average distance of its neighbors to H. p’s k-neighbors are denoted in blue.
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p

S

rd

Figure 5.7: The miniball criterion. A miniball S approximates the cluster of p’s neigh-
bors. The criterion compares p’s distance to S with the diameter of the sphere.

Normalization by
√

k compensates for the diameter’s increase with increasing
number of k-neighbors at the object surface.

Nearest-neighbor Reciprocity Criterion
This criterion is based on the following observation: potential outliers draw their
k-nearest neighbors from a larger vicinity than points in a well-sampled environment.
In particular, a “valid” point sample q may be in the k-neighborhood of an outlier,
but the outlier will most likely not be part of q’s k-neighborhood.

This relationship can be expressed by means of a directed graph G of k-neighbor
relationships (see Figure 5.8). Outliers are assumed to have a high number of
unidirectional exitant edges (i.e., asymmetric neighbor relationships). Consequently
the criterion considers the ratio between unidirectional and bidirectional exitant
edges in G.

The unidirectional neighbors are defined asNk,uni(p) = {q |q ∈ Nk(p), p ∉Nk(q)},
while the bidirectional neighbors build a setNk,bi(p) = {q |q ∈ Nk(p), p ∈ Nk(q)}.
The classifier is expressed as follows:

χbi(p) =
‖Nk, uni(p)‖

‖Nk, bi(p)‖ + ‖Nk, uni(p)‖ =
‖Nk, uni(p)‖

k
. (5.5)

Classification
The final outlier classification is computed using weights w1, . . . , w3,

∑
i wi = 1,

interactively defined by the user:

χ(p) = w1χpl(p) + w2χmb(p) + w3χbi(p) . (5.6)
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p

q0 q1

q2

q3

q4

Figure 5.8: Nearest-neighbor graph. Depicted are the five nearest-neighbor relations
for p and its five neighbors q0,. . . , q4. Note that only q2 shares a reciprocal neighbor
relationship with p.

As all outlier criteria are based on the k-nearest-neighbor graph, χpl, χmb, and χbi are
computed once and cached during the computation of χ.

Depending on the scanning technique, outliers may occur in small clusters. In this
case,χpl andχmb tend to fail to detect the clustered outliers correctly. In order to make
them suitable for clustered outliers, a maximum cluster size l can be defined by the
user. Subsequently, all k-nearest-neighbor queries will discard the first l neighbors,
returning the (l + 1)-st to (l + k)-th neighbor instead. This effectively increases the
robustness against clustered outliers while maintaining the basic functionality of the
outlier criteria.

Performance Evaluation
When applying the outlier removal tool, the three different elementary outlier criteria
show to be differently suited depending on the situation (see Figure 5.9). The plane fit
criterion is best suited to detect outliers in a noisy reconstruction of a smooth surface.
It produces poor results around small features and creases, as the orientation of the
fitted plane becomes instable. The miniball criterion proved to be more robust, even
around high-frequency details, but in contrast to the plane fit criterion, it shows a
poor outlier detection for points that hover close to a smooth surface.

In comparison with the previous two, the criterion based on nearest-neighbor
reciprocity shows the most robust outlier classification. It is equally sensitive around
smooth and detailed regions. However, it consistently yields erroneous outlier
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classifications around manifold borders (see Figure 5.10). Obviously, each criterion
is advantageous in different situations. The outlier removal tool allows us to confine
the outlier detection to certain areas for the model and to weight the criteria according
to the local situation.

(a) (b) (c) (d)

Figure 5.9: Three different outlier classifiers. Potential outliers marked in red. (a) Raw
scanned geometry. (b) Classification using the miniball criterion. (c) Plane fit criterion.
(d ) k-nearest-neighbor graph criterion. All criteria were thresholded to classify 7% of the
surfels as outliers.

Figure 5.10: The nearest-neighbor outlier criterion performs poor around manifold
borders.
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5.1.5 HOLE FILLING AND SMOOTHING

After outliers have been removed, there is usually still inherent noise in the surface
samples. Additional holes further complicate surface analysis and reconstruction.

Noise can be removed by applying a spatial low-pass filter to the 3D point data. Alter-
natively, noise can implicitly be handled during a surface reconstruction stage (see
Sections 4.1 and 4.3). Alexa et al., Carr et al., and Ohtake et al. [ABCO+01, CBC+01,
OBA+03] smooth surface by approximating the sample points. However, most auto-
matic surface reconstruction algorithms fail in the presence of severe noise.

In the past, various hole-filling techniques have been proposed to address this prob-
lem. These methods mostly use implicit representations to define the underlying sur-
face. Verdera et al. [VCBS03] extend image-inpainting techniques to 3D surfaces by
solving anisotropic partial differential equations defined on the surface. Carr et al.
[CBC+01] and Ohtake et al. [OBA+03] exploit the extrapolation properties of radial
basis functions to fill regions of sparse sampling. Davis et al. [DMGL02] propose a
method that applies a diffusion operator on the signed distance field of an incomplete
triangle mesh.

The remainder of this section presents noise removal and hole-filling tools of the
presented toolbox.

MLS Smoother
Smoothing is an elementary editing operation. It can be used for noise reduction,
to smooth out high-frequency details, such as small artifacts like spikes and ripples,
or to soften creases created during the editing process. Various smoothing operators
have been proposed, partly with feature-preserving properties.

Given the unpredictable quality of input data, it had been decided against locally
adapting filters, as they still tend to amplify scanning artifacts. Instead, a simple, more
robust filter based on MLS projection has been implemented, leaving the treatment
of features to the user’s control by confining the operation to the volumetric brush
selection.

The MLS smoother tool works by shifting point positions toward the corresponding
MLS surface. For each point p, its MLS projection p′ is computed. A user-adjustable
blending parameter α defines how far p is to be moved toward its “smoothed” posi-
tion p′. The point is finally set to

psmoothed = (1 − α)p + αp′. (5.7)

An associated normal is filtered analogously, blending the original normal with
the normal of the MLS surface. Parameterization of the MLS kernel function, as



S E C T I O N 5 . 1 PREPROCESSING AND FILTERING OF POINT MODELS 201

described in Section 5.1.3, allows the user to adjust the depth-pass characteristic of
the MLS projection.

An additional user parameter D allows to attenuate the tool’s effect toward the selec-
tion border. Within distance D to the border, α is weighted by a blending polynomial
to vanish at the border. A point’s distance to the border is defined as the distance to
its nearest neighbor outside the selection.

α is usually set to values within [0, 1], corresponding to strong or no smoothing,
respectively (see Figure 5.11b). Alternatively, following the concept of USM filter-
ing [Jai89], one may set α to negative values, corresponding to a detail (and noise)
enhancement (see Figure 5.11c). This is a useful feature, however, for larger absolute
values of α, surface self-penetration can occur.

(a) (b) (c)

Figure 5.11: The MLS smoother tool. (a) Fine surface details. (b) Smoothing with
α = 0.8. (c) Detail enhancement for α = −0.75.

(a) (b) (c)

Figure 5.12: Selective noise removal using the MLS smoother. (a) Noisy input surface.
(b) Smoothing of a subset of surfels, excluding high-frequency details. (c) Subsequently,
global smoothing of the model.
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Point Relaxation
Scanned models may contain regions of uneven point distribution. While some
editing operations may change the point distribution directly, raw scan data will
be unevenly sampled wherever point samples are missing due to scanning artifacts.
Merging of depth maps also produces an uneven point distribution. Most applica-
tions, however, would benefit from a uniform distribution of the surfels.

To achieve an even distribution of the surfels a particle simulation as described in
Section 5.1.3 is employed. The attributes of the relaxed surfels, such as the color, are
interpolated from the attributes of the k-nearest original surfel neighbors.

The particle simulation can also be used to close small holes, as the repelling force
will distribute the surfels over uncovered areas.

MLS Spray Can
Complementary to an eraser tool for point removal, the MLS spray can tool was
introduced in order to fill small holes in the geometry. It randomly creates points
inside the brush volume and projects them onto the MLS surface in the brush’s
vicinity.

A projected point p is added to the surface whenever the surrounding splat coverage
is below a certain threshold. The local coverage is estimated by determining the ratio
between the average distance d̄ of p to its k-neighbors and the mean splat radius r̄ of
its neighbors. p is added if

r̄

d̄
< 1. (5.8)

Consequently, the MLS spray can relies on valid splat radii. When importing a model,
initial splat radii are computed using a local surface analysis as proposed in Pauly
[Pau03], based on a Voronoi diagram of the point cloud (see also Section 4.1.2).

If a new point is added to the surface, its normal is adopted from the MLS surface.
All other surfel attributes (e.g., color and reflectance properties) are determined by
interpolating attributes from neighboring surfels.

Application of the spray can tool may result in a roughly uniform point distribution
(see Figure 5.14 later). Eventually, the point distribution has to be relaxed using the
point relaxation tool.

Volumetric Diffusion
While the MLS spray can tool introduced above is very effective for filling small holes,
it still remains a tedious process to create a complete watertight model when larger
and more complex holes occur in the acquired point cloud. This is frequently the
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case, however, as line-of-sight constraints, difficult surface reflectance properties, or
extensive noise and outlier removal, can lead to a highly incomplete representation of
the model surface (see also Figure 5.16 later). As previously stated, many automatic
hole-filling algorithms exist.

We extend the volumetric diffusion method by Davis et al. [DMGL02] to point-
sampled models by replacing the distance field estimation of Davis et al. [DMGL02]
by an MLS projection step as proposed in Pauly et al. [PKKG03]. The distance field
is computed on a regular 3D grid that encloses the model surface (see Figure 5.13a).
At each grid point we compute the signed distance to the MLS surface defined by
the given input point set. To efficiently represent this volumetric grid an octree data
structure similar to Frisken and Perry [FP03b] is used. This method makes use of
binary location codes to address octree cells, allowing for fast point location and effi-
cient neighborhood queries.

Memory and computation costs are further reduced by only representing the
distance field in a narrow band around the surface, similar to level-set methods
[OS88]. Holes in the distance field are detected using the classification method
of Davis et al. [DMGL02]. Distance values on the boundary of holes can then be
extrapolated by applying an iterative convolution operator until all holes of a user-
specified size are filled. More details on this diffusion process can be found in Davis
et al. [DMGL02].

(a) (b)

Figure 5.13: Volumetric diffusion. (a) Slices of the distance volume reveal the narrow
band. (b) The user interface of the automatic hole-filling tool allows us to fine-tune
the algorithm. The volumetric representation can be previewed before surface
reconstruction.
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To convert the distance field back to an explicit point-sampled representation the
tool either applies a contouring method similar to marching cubes [LC87], or uses a
particle simulation as described in Section 5.1.3. In the latter case, the MLS projection
that keeps the particles on the surface is replaced by a projection based on gradient
descent that moves particles to the zero-set of the signed distance field. Normals of the
newly generated points can also be directly estimated from the distance field gradient.

The user interface supports fine-tuning of the algorithm (see Figure 5.13b). Though,
using the default parameters, the automatic hole-filling tool is robust and easy to use.

Performance Evaluation
The hole-filling and smoothing tools have extensively been used to clean various
models acquired with different scanning technologies. They have been used with
models acquired by a CyberWare laser range scanner, a single-shot structured-light
scanner by 3Q Technologies Ltd., and a phase-shift structured-light scanner similar
to the system presented in Section 3.2. This section shows some exemplary situations
as they occur during the model-cleaning process.

The general experience is that the simpler, more interactive tools are typically used
at the beginning of the cleaning process, whereas the more complex, semi-automatic
tools are applied toward the end of the procedure.

It turns out that the simpler tools are often used in combinations to achieve a desired
effect. Figure 5.14 shows how the MLS spray can tool and point relaxation are used
to manually fill a hole in a surface.

A similar combination can be used to remove undesired bumps from a surface.
Figure 5.15 shows how the eraser, the MLS spray, point relaxation, and the MLS
smoother work together to remove a bump from a surface.

(a) (b) (c) (d) (e) (f)

Figure 5.14: Manual hole filling using the MLS spray can tool. (a) A poor scan of a computer mouse, containing a
hole in the surface. (b and c) Gradually filling the hole using the MLS spray can. (d ) Point relaxation improves the
point distribution. (e and f ) Versions of (c) and (d ) with reduced splat radii to reveal the point distribution.
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In combination with the selection tool, the MLS smoother can also be used to smooth
selected surface parts while preserving details (see Figure 5.12).

The robustness of the automatic hole-filling tool has been tested using a structured-
light scan of a furry toy reindeer (see Figure 5.16). Fur is one of the most diffi-
cult materials to be scanned with optical methods. Consequently, the scan shows
severe noise and a lot of outliers. Outlier removal leads to a very sparse object

(a) (b) (c) (d) (e)

Figure 5.15: Removal of an undesired bump. (a) Close-up of the original data. (b) The eraser is used to stamp out
a hole. (c) Using the MLS spray can, the hole is filled. (d ) Point relaxation redistributes points. (e) Locally applying
the MLS smoother, attenuating its strength toward the border of the hole. Note the smooth transition of the novel
surface to the noisy surrounding.

(a) (b) (c)

Figure 5.16: Robustness of the volumetric diffusion tool. (a) The furred object surface produces severe noise and
outliers. (b) After the outlier removal, only little object points are left. (c) The volumetric diffusion tool still reconstructs
a watertight model.
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(a) (b)

Figure 5.17: Egyptian sculpture scanned at the British Museum. (a) Input scan with
varying sampling density. (b) Application of the volumetric diffusion tool.

reconstruction. However, as shown in Figure 5.16, the hole-filling tool is still capable
of producing a watertight model. Only above the top of the model, the volumetric
diffusion had to be constrained in order to get a closed surface.

Figure 5.17 shows an application of the automatic hole-filling tool to a scan with
largely varying sampling density. The model has been scanned by INSIGHT [INS] at
the British Museum, London.

5.1.6 CONCLUSION

In this section we presented a cleaning toolkit for the postprocessing of raw scanner
data. It is entirely based on point-based modeling techniques, which are given at hand
in the form of simple, interactively controllable tools. We introduced the underlying
techniques and discussed the design principles leading to the presented set of tools.

The tools include an eraser tool, low-pass filters, and various resampling and
hole-filling tools. We propose three different outlier criteria that are incorporated
in an outlier detection tool. An adaption of the volumetric diffusion algorithm to
point-sampled data is used to build an automatic hole-filling tool.

We evaluated the toolbox, cleaning various objects acquired with different scanner
technologies. It proves to be versatile and well adaptable, as the tools can interactively
be recombined depending on the situation. Most operations are robust against
sampling artifacts and do not impose any topological constraints on the data. Future
experiences will show whether the toolbox has to be extended. Possible extensions
may be additional filter tools or the integration of texture synthesis into the MLS
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spray can. As a Pointshop3D plug-in the toolbox rounds off a point-based workflow
for the processing of scanned 3D surface data. The plug-in is part of the accompany-
ing CD-ROM.

5.2 3D EDITING AND PAINTING

Matthias Zwicker and Martin Wicke

5.2.1 OVERVIEW

In this section we show how to generalize 2D photo editing to make it amenable
to 3D point-sampled geometry. A point-based system for surface painting and edit-
ing, such as Pointshop3D [ZPKG02b], is aimed at similar applications as commercial
3D content-creation tools based on polynomials [Ali01], triangle meshes [ABL95,
Rig01], implicits [Ped95, PF01], or images [OCDD01]. However, by generalizing 2D
image pixels toward 3D surface pixels (or surfels [ST92, PZvBG00]), we strive to com-
bine the simplicity and effectiveness of 2D photoprocessing with the functionality of
3D geometry-based painting and editing.

The main challenges to the design of point-based 3D photo-editing tools are the
absence of local topology in combination with the irregularity of the sampling
patterns in point-based surfaces. We identify two key ingredients required for over-
coming these difficulties: interactive parameterization and dynamic resampling. For
instance, distortion minimal retexturing or surface carving both demand a flexi-
ble parameterization of the point cloud. In addition, points discretize geometry and
appearance attributes at the same rate. Thus, fine-grain surface detail embossing of
an existing object with a high-resolution depth map can lead to heavy aliasing and
requires a dynamic adaptation of the sampling rate.

Our editing framework originates from the motivation to provide a wide range
of editing and processing techniques for point-sampled 3D surfaces, similar to
those found in common photo-editing tools for 2D images. To give an overview
of our system we will first describe a typical photo-editing operation on an abstract
level. Then we will explain how these concepts can be transferred to surface editing,
commenting on the fundamental differences between images and surfaces. This will
serve as a motivation for the techniques and algorithms described in the following
sections.

A 2D image can be considered a discrete sample of a continuous image function,
which contains image attributes such as color or transparency. Implicitly, the dis-
crete image always represents the continuous image, and image-editing operations
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are performed directly on the discrete image. The continuous function can be
computed using a reconstruction operator whenever necessary. We describe a gen-
eral image-editing operation as a function of an original image and a brush image.
The brush image is used as a general tool to modify the original image. Depending
on the considered operation, it may be interpreted as a paintbrush or a discrete
filter, for example.

The editing operation involves the following steps. First, we need to specify a coor-
dinate transformation, or a parameterization, that aligns the image with the brush.
For example, the parameterization can be defined as the translation that maps the
pixel at the current mouse position to the center of the brush. Next, we have to
establish a common sampling grid for the image and the brush, such that there is a
one-to-one correspondence between the discrete samples. This requires a resampling
operation that first reconstructs the continuous image function and then samples
this function on the common grid. Finally, an editing operation combines the image
samples with the brush samples using the one-to-one correspondence established
before.

Our goal is now to generalize this procedure to irregular point-sampled surfaces,
as illustrated in Figure 5.18. Formally, we do this by replacing the discrete image by
a point-based surface. As summarized in Table 5.1, each point stores appearance
attributes, including color, transparency, or material attributes, and shape attributes,
such as position and normal. Let us now consider what effects the transition
from images to surfaces has on the individual operations involved in the editing
procedure.

Parameterization
For photo editing, the parameter mapping from brush to image coordinates is
usually specified by a simple, global 2D to 2D affine mapping, for example, as a
combination of translation, scaling, and rotation. Mapping a manifold surface onto
a 2D domain is much more involved, however. In a 3D editing system, the user
interactively selects subsets, or patches, of the surface that are parameterized on the
fly, as described in Section 5.2.3. In general, such a mapping exhibits distortions that
cannot be avoided completely. Hence we propose an efficient method that auto-
matically minimizes these distortions, and at the same time lets the user intuitively
control the mapping.

Resampling
Images are usually sampled on a regular grid, hence signal-processing methods can
be applied directly for resampling. However, the sampling distribution of surfaces is
in general irregular, requiring alternative methods for reconstruction and sampling.
We apply a scattered data approximation approach for reconstructing a continuous
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Figure 5.18: Overview of the framework for point-based surface editing.

function from the samples, as described in Section 5.2.4. We also present a technique
for resampling our modified surface function onto irregular point clouds. A great
benefit of our approach is that it supports adaptive sampling (i.e., works on a dynamic
structure). This allows us to concentrate more samples in regions of high textural or
geometric detail, while smooth parts can be represented by fewer samples.
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Table 5.1: Attributes of 3D Surface Points.

Attribute Abbreviation
Position pi

Normal ni

Color ci

Transparency αi

Material properties mi

Editing
Once the parameterization is established and resampling has been performed, all
computations take place on discrete samples in the 2D parameter domain. Hence,
we can apply the full functionality of photo-editing systems for texturing and
texture filtering. However, since we are dealing with texture and geometry, the
scope of operations is much broader. Additional editing operators include sculpting,
geometry filtering, and simplification. As will be described in Section 5.2.5, all of
these tools are based on the same simple interface that specifies a tool by a set of
bitmaps and few additional parameters. For example, a sculpting tool is defined by
a 2D displacement map, an alpha mask, and an intrusion depth.

5.2.2 INTERACTION MODES

We propose two user interaction schemes to manipulate the appearance attributes
of a point-sampled model: brush interaction and selection interaction.

Brush Interaction
In the brush interaction mode the user moves a brush device over the surface
and continuously triggers editing events, such as painting operations. The brush
is positioned using the mouse cursor and aligned with the surface normal at the
current interaction point. In terms of the editing framework described above, this
means that the parameterization is continuously and automatically recomputed
and resampling is performed for each editing event. A complete editing operation
is then performed using a fixed brush image. Brush interaction is illustrated in
Figure 5.19.

Selection Interaction
Here the user first selects a subset of the surface called a patch. He then defines the
parameter mapping by imposing correspondence constraints for a set of feature
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orthogonal projection
sample points

parameter plane

(a) (b) (c)

Figure 5.19: Brush interaction: (a) brush movement, (b) parameterization by orthogo-
nal projection onto the brush plane, and (c) painted surface. This figure is from Pauly’s
thesis [Pau03].

(a) (b) (c)

Figure 5.20: Selection interaction: (a) feature points in the parameter domain, (b)
corresponding feature points on the selected surface patch, and (c) textured surface.
This figure is from Pauly’s thesis [Pau03].

points. Based on this fixed parameterization, various editing operations can be
applied. Hence parameterization and resampling operators are evaluated once,
while different editing operators can be applied successively to the selected patch.
Selection interaction is illustrated in Figure 5.20.

5.2.3 SURFACE PARAMETERIZATION

This section describes two different methods to compute a parameterization for a
point-sampled surface patch. The two approaches correspond to the two interaction
schemes defined above. For brush interaction the parameter mapping will be
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computed by a simple orthogonal projection (Figure 5.19), while an optimization
method is applied for computing a constrained minimum distortion parameteri-
zation for selection interactions (Figure 5.20).

Parameterization by Projection
A simple method for computing a parameter mapping is to project the sample
points orthogonally onto a plane that represents the parameter domain. This plane
can either be specified by the user, or computed automatically according to the
distribution of the sample points (e.g., as a least squares fit). Using covariance
analysis (see Section 4.2), the normal vector of the parameter plane would then be
chosen as the eigenvector of the covariance matrix with smallest corresponding
eigenvalue. In general, such a mapping will exhibit strong distortions and disconti-
nuities, leading to inferior editing results as shown in Figure 5.21a. However, if the
surface patch is sufficiently small, distortions will be small too and no discontinu-
ities will occur. Thus, orthogonal projection is a suitable parameterization method
for brush interactions, where the parameter plane is defined by the surface normal
at the tool cursor and the surface patch is defined by the projection of the brush
onto the surface.

Constrained Minimum-distortion Parameterization
Often a user desires to perform sophisticated texturing operations, such as mapping
the image of a human face onto a point-based surface of a different face. To obtain
an intuitive mapping, a user needs to be able to specify the correspondence of

(a) (b)

Figure 5.21: Parameterization by orthogonal projection is not suitable for large
patches (a). The distortion visualization (b) exhibits large distortions. We color-code the
first derivative, or the stretch, of the parameterization. Red corresponds to maximum,
blue to minimum stretch. This figure is from Pauly’s thesis [Pau03].
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feature points. For example, the tip of the nose in the image should be mapped
onto the tip of the nose on the surface, etc. In this section, we present a param-
eterization algorithm that respects user-specified feature correspondences while
simultaneously minimizing distortions [Lev01b, ZPKG02b]. It is based on an opti-
mization approach using an objective function that penalizes both correspondence
errors and distortions. By discretizing the objective function we obtain a system of
linear equations that can be solved efficiently using conjugate gradient methods.

Objective Function We define a continuous parameterized surface by a mapping

P : Ω → SP ⊂ R
3, (5.9)

where Ω = [0, 1]×[0, 1] is the parameter domain. The mapping P is called a param-
eterization of the surface. For each parameter value u = (u, v) ∈ Ω it determines a
point

p = P(u) = (x(u), y(u), z(u))T ∈ SP (5.10)

on the surface SP. We will also use the inverse mapping U = P−1, which assigns
parameter coordinates u to each point on the surface p ∈ SP. We measure the
distortion of the parameter mapping using an energy functional

Cdist(P) =

∫

Ω
γ(u)du. (5.11)

Here, γ(u) is defined as the integral of the squared second derivative of the
parameterization in each radial direction at a parameter value u:

γ(u) =

∫ 2π

0

(
∂2

∂r2
Pu(θ, r)

)2

dθ, (5.12)

where we express the parameterization locally in polar coordinates:

Pu(θ, r) = P

(
u + r

[
cos(θ)

sin(θ)

])
. (5.13)

If γ(u) vanishes, the parameterization is arc length preserving (i.e., it defines a polar
geodesic map at u [O’N66, WW94]).

A user obtains fine control over the parameterization by specifying a set M of
feature correspondences, such that a point pj of the point cloud corresponds to a
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location uj in the parameter domain for j ∈ M. We incorporate these constraints
using a second energy functional:

Cfit(P) =
∑

j∈M

(
P(uj) − pj

)2
. (5.14)

We combine the two cost functions Cdist and Cfit into the objective function

C(P) = Cfit(P) + β · Cdist(P), (5.15)

where the parameter β allows the user to control the relative weight of the fitting
error and the distortion energy. We obtain the desired parameterization by com-
puting the minimum of the objective function. This requires the discretization of
the continuous formulation in Equation (5.15), which we describe next.

Discrete Formulation Given a surface patch with points {pi}, our goal is to assign
to each point pi a parameter coordinate ui, such that the objective function is mini-
mized. This means we are solving for the unknown discrete mapping U : pi �→ ui,
hence, we reformulate Equation (5.15) by substituting the unknown P for its
inverse U. For discretization of the distortion energy we construct piecewise linear
parameterizations along a set of normal sections as shown in Figure 5.22.

We approximate the second derivatives in Equation (5.12) as the difference of
the first derivatives between two neighboring segments on the normal section.

pl

vl

pi

ni

vα
pα

~vl

pβ

vβ

plane defining normal section

normal section

Φ

Figure 5.22: Normal section for discretizing second derivatives.
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In addition, the integral is replaced by a sum over the normal sections. This yields
the discrete objective function

C̃(U) =
∑

j∈M

(
pj − uj

)2
+ β

n∑

i = 1

∑

l∈Ni

(
dU(pi)

dvl
− dU(pi)

dṽl

)
, (5.16)

where n is the number of points in the patch, Ni specifies the set of normal sections,
and vl and ṽl are unit vectors on the surface representing the two segments of the
normal section.

Derivatives Along Normal Sections We compute the derivatives along the normal
sections dU(pi)/dvl and dU(pi)/dṽl as illustrated in Figure 5.22. At each point pi,
we collect a set Ni containing the indices of its k-nearest neighbors, typically k = 9.
For each neighbor pl, l ∈ Ni, we define a normal section as the plane Φ that is given
by the normal ni at pi and the vector vl = pi − pl. We then find two points and pα
and pβ, α, β ∈ Ni, such that the angles between vα = pα − pi and vβ = pβ − pi and
the plane Φ are minimal. In addition, the angles between vl and vα, and between
vl and vβ need to be bigger than 90◦. If we cannot find two points that satisfy these
criteria, the normal section crosses the boundary of the patch, and we ignore it.
This procedure is sufficient to handle patches with boundaries. Next, we compute
the intersection line of the plane Φ and the plane given by pi, pα, and pβ (see
Figure 5.22), which we call ṽl.

The derivative of the parameterization along vl is simply

dU(pi)

dvl
=

ui − ul

‖vl‖
. (5.17)

Likewise, we compute the derivative along ṽl by assuming a piecewise linear map-
ping on the triangle defined by the points pi, pα, pβ. This leads to a linear expression
of the form

dU(pi)

dṽl
= aiui + aαuα + aβuβ, (5.18)

where the coefficients ai, aα, aβ are determined by the points pi, pα, pβ, as
presented in detail in the papers by Levy and Mallet [LM98, Lev01b] and in
Zwicker’s thesis [Zwi03].

Nested Iteration Least Squares Solver The discrete objective function of Equation
(5.16) is now a sum of squared linear relations of the general form

C̃(U ) =
∑

j

∥∥∥∥∥bj −
n∑

i = 1

aj, iui

∥∥∥∥∥

2

=
∥∥b − Au

∥∥2
, (5.19)
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where u is a vector of all unknowns and the coefficients aj, i result from Equations
(5.17) and (5.18). We solve this linear least squares problem using normal equa-
tions and conjugate gradient methods [AMS90]. The convergence of such iterative
solvers can be further accelerated by efficient multilevel techniques. To this end, we
designed a hierarchical strategy as illustrated in Figure 5.23. In a top-down pass, we
contract the system by recursively clustering the unknowns. The clustering is driven

Simplify by
clustering

Simplify by
clustering

Simplify by
clustering

Set up
linear system

Set up
linear system

Set up
linear system

Set up
linear system

Solve
equations

Solve
equations

Solve
equations

Solve
equations

Figure 5.23: Spatial hierarchy for nested iteration. The top row shows the surface
point clusters color coded on the original point cloud. This figure is from Pauly’s thesis
[Pau03].
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by the spatial proximity of the corresponding surface points, and each cluster yields
one unknown on the current level. In a bottom-up pass, we solve Equation (5.19)
starting with the coarsest level. The solution is then prolonged by assigning it as an
initial value to the next higher resolution level. This process is repeated recursively
up to the original resolution.

5.2.4 RESAMPLING

Conceptually, a set of sample points and their attributes {pi, ni, ci, αi, mi}, as
in Table 5.1, represent a continuous surface. The resampling operator strives to
generate new samples {pi, ni, ci, αi, mi} of this continuous surface and its attributes.

Our resampling approach is based on a surface parameterization, which can be
computed, for example, with the methods described in Section 5.2.3. Resampling
consists of two separate steps. First, we reconstruct a smooth approximation of the
continuous surface, including all its shape and appearance attributes. The actual
sampling step then evaluates the continuous surface at new sampling locations, such
that a subsequent editing operation can be applied as described in Section 5.2.5.
We present a number of different strategies to determine the sampling locations at
the end of this section.

Reconstruction
The parameterization techniques presented in Section 5.2.3 determine a parameter
value ui for each 3D point pi in a patch. However, for surface resampling we need
a continuous mapping

P∗ : u ∈ Ω → [p, n, c, α, m] (u), (5.20)

which lets us evaluate all surface attributes at any point u in the parameter domain.
For this purpose, we define a local reconstruction kernel ri(ti) on the tangent plane
of each point. Here, ti denotes a parameterization of the tangent plane of point i,
which we determine as described in Section 4.2. We choose a Gaussian reconstruc-
tion kernel:

ri(ti) = gRi (ti) =
1

2π
√
|Ri|

e−
1
2 (ti)TR−1

i ti

. (5.21)

We also introduce local attribute functions [pi, ni, ci, αi, mi] (ti). For simplicity, all
these functions are constant (i.e., ni(ti) = ni, etc.) except for the surface position,
which is reconstructed linearly:

pi(ti) =
[

ui vi pi

][ ti

1

]
. (5.22)
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Here, ui and vi are orthogonal unit vectors on the tangent plane. By defining
mappings mi : ti → u from the local tangent planes to the global parameter domain,
we define the continuous surface and its attributes as

P∗(u) =
∑

i

[pi, ni, ci, αi, mi]
(

m−1
i (u)

)
ri

(
m−1

i (u)
)

∑
i ri

(
m−1

i (u)
) . (5.23)

We describe two different techniques to compute the mappings mi(ti):

• Mapping by optimization: Let us denote the set of the k-nearest neighbors
of point pi by Nk(pi). We introduce local tangent coordinates ti

l for points
l ∈ Nk(pi), which are given by orthogonally projecting the neighbors pl onto
the tangent plane of pi. We define the mapping mi as

mi(ti) = min
mi

∑

l∈Nk(pi)

(
ul −mi(ti

l)
)2

. (5.24)

We restrict the mappings to be affine, such that Equation (5.24) becomes a
linear least squares problem. We use this approach preferably with the min-
imum distortion parameterization described in Section 5.2.3.

• Mapping by projection: In the case of parameterization by projection
(Section 5.2.3), an alternative approach to compute the mappings mi(ti) is
to use the same projection to map the tangent planes to the parameterization
domain. This is also related to point-rendering approaches based on splatting
described in Section 6.1.

Sampling
We discuss three different strategies to determine the resampling locations. A user
selects one of them depending on the editing operation he or she wishes to perform
and on the detail that is represented in the original surface and the brush.

• Brush resampling: In this method, we use the original surface points as the
resampling grid. Hence we have to resample the brush, which is done using
the same reconstruction approach as described above. The advantage of this
method is that we do not have to insert any new surface points, and there is
no loss of detail in the original surface due to resampling.

• Surface resampling: In many operations, such as texture mapping, we want to
resample the surface to avoid any loss in texture quality. Therefore, the user
can choose to resample the surface at the sampling distribution of the brush.

• Adaptive resampling: If the sampling density of the surface or the brush varies
significantly, it occurs that in some areas in a patch the surface-sampling
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distribution is finer, and in others the brush-sampling density. In this case,
both of the above strategies fail to preserve detail of either the brush or the
surface. An adaptive resampling operator locally decides whether to use sam-
ples of the surface or the brush. The decision is based on the comparison of
the radii of the Gaussian reconstruction functions, since these radii directly
correspond to the local sampling density.

5.2.5 SURFACE EDITING

The resampling technique of Section 5.2.4 provides a one-to-one correspondence
between samples of the surface and samples of the brush. We can thus combine
corresponding samples by applying an editing operation such as painting, carving,
displacement mapping, or filtering.

Painting
Painting operations modify appearance attributes by alpha-blending corresponding
surface and brush samples. For example, the diffuse color of a surface sample can
be modified by alpha-blending it with the diffuse color of the corresponding brush
sample. Similarly, painting can be applied to other attributes such as transparency
or material reflectance properties.

Normal Displacements
We can also apply normal displacements to the positions of the surface samples.
The new position p′i is given as p′i = pi +di ·ni, where pi is the original position, di is
a scalar coefficient given by the corresponding brush sample, and ni is the surface
normal at pi. As illustrated in Figure 5.25 later, this type of editing operation is
particularly suitable for embossing or engraving.

Carving
Carving subtracts a shape specified by the brush from the surface in a fashion that
is similar to constructive solid geometry (CSG) operations described in Section 5.3.
The shape of the brush is given by a reference plane and the brush values di that are
interpreted as a distance from the reference plane. The reference plane is defined
by the surface position and normal at a user-specified location. The new sample
positions are then given by

p′i =

{
bi + di ·n ‖pi − bi‖ < di

pi otherwise
, (5.25)

where bi are points on the reference plane corresponding to the brush values di.
Further, n is the reference plane normal, corresponding to the surface normal at the
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(a) (b) (c)

Brush plane

di

ni

Original samples
New samples

bi

Original samples
New samples

n

Figure 5.24: Comparison between normal displacements and carving: (a) brush,
(b) normal displacement, and (c) carving.

user-specified location. The difference between displacement mapping and carving
is illustrated in Figure 5.24.

Filtering
For filtering operations the brush is interpreted as a discrete convolution matrix.
During filtering, the convolution is computed by multiplying and adding up corre-
sponding surface and brush values. We can, therefore, implement arbitrary discrete
linear filters by simply choosing the appropriate filter kernel values. Filters can be
applied to any surface attribute (e.g., color) normal or also distance from the ref-
erence plane for geometric offset filtering.

It is straightforward to combine the above operations with alpha-blending. Alpha-
blending computes a weighted average of the original surface sample and the mod-
ified sample (i.e., ξ′i = αi ·ξi + (1 − αi) · ξi). Here, αi is the alpha value stored in

the brush that controls the blending, ξi is the original surface attribute, ξi is the
surface attribute after one of the above operations has been applied, and ξ′i is the
output value. Alpha-blending allows us, for example, to generate smooth transi-
tions between modified and unaltered surface areas. These editing operations are
also described in more detail in Zwicker [Zwi03].

We illustrate the different editing operations in Figure 5.25. On the left we show
a texturing operation with alpha-blending, in the middle we depict displacement
mapping on a sphere, and the right image illustrates carving on a rough surface. All
these operations can be performed interactively with Pointshop3D [ZPKG02b]; in
other words, the user gets immediate visual feedback within tenths of a second
(depending on the brush size) on a PC-class computer (e.g., Pentium IV processor
at 2 GHz).
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(a) (b) (c)

Figure 5.25: Examples of surface painting (a), displacement mapping (b), and
carving (c).

5.2.6 PAINTING WITH VIRTUAL BRUSHES

Building upon the techniques discussed above, we now describe an approach to
paint on three-dimensional objects using a virtual paintbrush. A haptic input device
is used to control the brush, and makes it possible to give haptic feedback to the
user. To complete the interaction metaphor, a paint model controls the transfer
of attributes from brush to surface and vice versa. A more detailed description is
given in a paper by Adams et al. [AWD+04].

Additional to the resampling algorithms discussed above, a fast collision detection
algorithm is needed that allows us to give haptic feedback to the user, and evaluate
penetration depths for carving.

Brush Model
Contrary to Section 5.2.2, the virtual brush that is used to paint the model is not
an image, but it is another point-sampled object. In order to closely mimic a real
brush, the brush tip should be modeled as a deformable object. A simple mass-
spring skeleton with a geometrically defined point-sampled surface already offers a
sufficient amount of realism; however, more elaborate models can be used. Thus,
the brush model consists of two parts: a physical model that is used to simulate
deformation, and a surface model. We will now turn to the physical model; the
surface model will be treated in more detail in the next section.

Collision detection with the point-sampled model to be painted has to be fast in
order to fulfill the hard real-time requirements of haptic feedback. For a penalty-
based collision-handling method, it is sufficient to compute penetration depth for
all constituting points of the physical model (e.g., in a mass-spring system, the mass
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points). For any point p, penetration depth d(p) and penetration direction n(p)
with respect to a point-sampled model can be efficiently approximated using only
the Nk(p)-nearest-neighbor surfels si with center points pi and normals ni:

d(p) =
∑

i∈Nk(p)

wi ni · (pi − p), and (5.26)

n(p) =
∑

i∈Nk(p)

wi ni. (5.27)

The weights wi are defined such that they vanish for the neighboring point that is
farthest away:

wi =
dmax − di∑

j∈Nk(p) dmax − dj
, (5.28)

where di = ‖pi−p‖ and dmax = max di. This makes d(p) and n(p) a smooth function
of position. Using an acceleration structure for nearest-neighbor searches such as
described in Chapter 4, this type of collision query can be computed fast enough to
allow for haptic feedback. If the models to be painted are large, collision detection
can be computed on a simplified model.

The physical model of the brush takes the collision information as input and com-
putes the dynamic behavior of the brush, giving haptic feedback to the user if nec-
essary. The loop updating the haptic feedback has to run at 1 kHz. See Figure 5.26a
for an illustration. The brush dynamics loop is completely separated from the paint
transfer loop, in which the actual painting takes place.

(a) (b)

Figure 5.26: The two loops necessary for painting with a haptic device. (a) the
brush dynamics loop computes collision detection, deforms the physical model of the
brush accordingly, and gives haptic feedback to the user. (b) The paint transfer loop
computes surface deformation and performs the actual paint transfer.
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Paint Transfer
Paint transfer is computed between the surface of the brush and the surface of the
object to be painted. In our setting, both surfaces are point sampled. The brush
surface is geometrically deformed by the physical brush model. Then, a common
parameterization of brush surface and object surface is computed. In this common
domain, paint is transferred between the two surfaces. If necessary, the surfaces
are then resampled to be able to represent the new surface attributes accurately.
Figure 5.26b shows the paint transfer loop.

The common parameterization of the two surfaces is computed by orthogonal
projection (see Section 5.2.3). As already noted, this can lead to substantial dis-
tortions. Since the brush is typically small, this is not a problem in most cases.
In regions of high curvature, however, the distortion can become a problem. Here,
the physical brush model allows the brush to split, and each of the brush parts
is treated separately. This further reduces the size of the surface patches to be
parameterized. Figure 5.27 illustrates brush splitting. Instead of using only one
projection for parameterization, several projections are used. This greatly reduces
the distortion problems. Using this technique, parameterization by orthogonal
projection is a viable alternative to more costly approaches.

(a) (b)

Figure 5.27: In regions of high curvature, the brush splits in order to alleviate
problems with parameterization distortion. (a) A brush splitting in two parts on the
back of the dragon model. (b) Schematic of a split brush. Both parts are treated
independently, and two projections are used for parameterization.
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Once the brush surface and the object surface have a common parameterization,
bidirectional paint transfer is computed in the parameter domain. Therefore, both
the object surface and the brush surface samples are splatted into a planar paint
buffer. (Refer to Section 6.1 for more details on splatting). The paint buffer is an
image with a resolution defined by the sampling density of the brush or object,
whichever is higher. By carefully choosing the resolution of the paint buffer, we
can ensure that no detail present on either the object surface or the brush is lost.
The paint buffer contains not only colors, but also other paint attributes needed to
compute the paint transfer, like wetness, diffusion coefficients, and the penetration
depth of the brush at a specific point.

There are many possible choices for a paint model [AWD+04, BLL03, BSLM01,
BWL04]. These usually work on images, such that we can apply these models
directly to the paint buffer. The paint transfer is bidirectional, such that both the
brush and the surface are affected by the computation. Once the new paint dis-
tribution in the paint buffer is known, this information has to be remapped onto
object’s and brush’s surfaces and stored there. Since we now have an image (the
paint buffer) and the point-sampled object surface, we can use the resampling strat-
egy as described in Section 5.2.4. Since all necessary information is available in the
paint buffer, it is straightforward to do carving, embossing, or similar, geometry-
altering operations using the virtual brush. Figure 5.28 shows some 3D models
painted using a haptic interface.

5.2.7 CONCLUSION

In this section, we presented a versatile framework for appearance and shape
editing of point-based models. Our approach strives to generalize the function-
ality and ease of use of 2D image-editing tools to 3D surface editing. The
key ingredients of our technique comprise a flexible and powerful point-cloud
parameterization and a dynamic resampling scheme based on a continuous recon-
struction of the model surface. We described the implementation of various
painting and editing operations, such as texturing, filtering, carving, and dis-
placement mapping. In addition, we presented an extension of our system toward
an intuitive virtual paintbrush interface with haptic feedback. Our approach also
includes a physically motivated paint transfer simulation. The main limitation
of the framework presented in this section is that it is restricted to small-scale
modifications of the surface geometry. We introduce powerful shape-modeling
tools that enable more general modifications of object geometry in the next
section.
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(a) (b) (c)

(d) (e) (f)

Figure 5.28: Models painted using a haptic interface. (a–e) Different painted bunny
models. (f ) A painted dragon model.

5.3 SHAPE MODELING

Mark Pauly and Leif Kobbelt

5.3.1 OVERVIEW

Modeling the shape of 3D objects is one of the central techniques in geometry pro-
cessing. This section discusses two fundamental modeling approaches for point-
sampled geometry: Boolean operations and free-form deformation. While the
former are concerned with building complex objects by combining simpler shapes
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[Hof89], the latter defines a continuous deformation field in space to smoothly
deform a given surface [SP86] (see Figure 5.29).

Boolean operations are most easily defined on implicit surface representations, since
the required inside-outside classification can be directly evaluated on the underly-
ing scalar field. On the other hand, free-form deformation is a very intuitive mod-
eling paradigm for explicit surface representations. For example, mesh vertices or
NURBS control points can be directly displaced according to the deformation field.
For point-based representations, the hybrid structure of the surface model defined
in Chapter 4 can be exploited to integrate these two modeling approaches into
a unified shape-modeling framework. Boolean operations can utilize the approxi-
mate signed distance function defined by the MLS projection (see Section 4.2) for
inside-outside classification, while free-form deformations operate directly on the
point samples.

5.3.2 BOOLEAN OPERATIONS

A common approach in geometric modeling is to build complex objects by
combining simpler shapes using Boolean operations [Hof89] (see Figure 5.30).
In constructive solid geometry (CSG), objects are defined using a binary tree, where
each node corresponds to a union, intersection, or difference operation and each
leaf stores a primitive (e.g., sphere, cylinder, or cone). Operations such as ray trac-
ing, for example, are then implemented by traversing this tree structure. More com-
monly, surfaces are defined as boundary representations (BReps) of solids. Here
Boolean operations have to be evaluated explicitly, which requires an algorithm
for intersecting two surfaces. Computing such a surface-surface intersection can be
quite involved, however, in particular for higher-order surfaces (see for example
Kirshnan and Manocha [KM97]).

As will be demonstrated below, the MLS projection operator (see Section 4.2) can
be used both for inside-outside classification as well as for explicitly sampling the

Figure 5.29: Boolean operations (left) and free-form deformation (right).
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A ∩ BA − BA ∪ B

Figure 5.30: Boolean operations applied to a sphere A and a cylinder B: (a) union
A ∪ B, (b) difference A − B, (c) intersection A ∩ B. The bottom row illustrates the
sampling distribution.

intersection curve. The goal is to perform a Boolean operation on two orientable,
closed surfaces S1 and S2 that are defined by two point clouds P1 and P2, to
obtain a new point cloud P3 that defines the resulting surface S3. Since Boolean
operations typically produce sharp creases at the intersection of the two surfaces
S1 and S2, P3 consists of two subsets Q1 ⊆ P1 and Q2 ⊆ P2 plus a set of newly
generated sample points that explicitly represent the intersection curves. Thus, in
order to perform a Boolean operation for point-sampled geometry, the following
techniques are required:

• A classification predicate to determine the two sets Q1 and Q2.
• An algorithm to find samples on the intersection curve.
• A rendering method that allows the user to display crisp features curves using

point primitives.

Classification
The goal of the classification stage is to determine which points of P1 are inside or
outside the volume enclosed by the surface S2 and vice versa. For this purpose a
classification predicate ΩP is defined such that for x ∈ R

3,

ΩP(x) =

{
1 x ∈ V
0 x ∉V

, (5.29)
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where V is the volume bounded by the MLS surface S defined by the point
cloud P .

Let y ∈ S be the closest point on S from x. It is known from differential geometry
that, if S is continuous and smooth, the vector x − y is aligned with the surface
normal ny at y [dC76]. If surface normals are consistently oriented to point outward
of the surface, then (x−y) ·ny > 0 if and only if x ∉V . Since only a discrete sample
P of the surface S is given, the closest point y on S is replaced by the closest point
p ∈ P . Thus, x is classified as outside, if (x − p) · np > 0; in other words, if the
angle between x− p and the normal np at p is less than π/2 (see Figure 5.31, left).
This discrete test yields the correct inside-outside classification of the point x if the
distance ‖x− p‖ is sufficiently large with respect to the local sample spacing ηp at
p (see Chapter 4). If x is extremely close to the surface, the classification could fail,
as illustrated in the right image of Figure 5.31. In this case the exact closest point
is computed using the method described in Section 4.2.

Since for classification only an inside-outside test is of interest, the performance
can be significantly improved by exploiting local coherence: ΩP(x) = ΩP(x′) for all
points x′ that lie in the sphere around x with radius ‖x−p‖−ηp. Thus, the number
of closest point queries and MLS projections can be reduced drastically, in practice
up to 90%.

Given the classification predicate Ω, the subsets Q1 and Q2 can be computed as
shown in Table 5.2. As Figure 5.32 illustrates, the resulting inside-outside classifi-
cation is very robust and easily handles complex, nonconvex surfaces. Observe that
Boolean operations can easily create a large number of disconnected components
(i.e., can lead to a significant change in genus).

x xnp

p

p
y y npny

ny

Figure 5.31: Inside-outside test. For x very close to the surface, the closest point
p ∈ P can yield a false classification (right). In this case, x is classified by computing
the true closest point on the surface S.
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Table 5.2: Classification for Boolean Operations.

Q1 Q2

S1 ∪ S2 {p ∈ P1|ΩP2 (p) = 0} {p ∈ P2|ΩP1 (p) = 0}
S1 ∩ S2 {p ∈ P1|ΩP2 (p) = 1} {p ∈ P2|ΩP1 (p) = 1}
S1 − S2 {p ∈ P1|ΩP2 (p) = 0} {p ∈ P2|ΩP1 (p) = 1}
S2 − S1 {p ∈ P1|ΩP2 (p) = 1} {p ∈ P2|ΩP1 (p) = 0}

A ∩ B

A − B B − A

A ∪ B

Figure 5.32: Boolean operations of a blue dragon A and a white dragon B: (a) Union
A ∪ B, (b) intersection A ∩ B, (c) difference A − B, and (d ) difference B − A.

Intersection Curves
Taking the union of Q1 and Q2 will typically not produce a point cloud that accu-
rately describes the surface S3, since the intersection curve of the two MLS surfaces
S1 and S2 is not represented adequately. Therefore, a set of sample points that lie
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on the intersection curve is explicitly computed and added to Q1∪Q2, to obtain the
point cloud P3. First, all points inQ1 andQ2 are identified that are close to the inter-
section curve by evaluating the approximate distance function induced by the MLS
projection operator (see Section 4.2). From all closest pairs (q1 ∈ Q1, q2 ∈ Q2) of
these points a new sample q on the intersection curve is computed using a Newton-
type iteration. This is done as follows (see Figure 5.33a–d): Let r be the point on
the intersection line of the two tangent planes of q1 and q2 that is closest to both
points (i.e., that minimizes the distance ‖r−q1‖+‖r−q2‖). The point r is the first
approximation of q and can now be projected onto S1 and S2 to obtain two new
starting points q′1 and q′2 for the iteration. This procedure can be repeated itera-
tively until the points q1 and q2 converge to a point q on the intersection curve.
The sample point is discarded if the projection does not monotonically approach
the intersection curve, for instance, if either q′1 is farther away from S2 than q1 or
q′2 is farther away from S1 than q2.

Local-sampling density estimation is used to detect whether the sampling resolution
of the two input surfaces differs significantly in the vicinity of the intersection curve.

Intersection curve

Q1

Q2

(a) (b)

(c) (d)

q1
' q2

' r'

S1 S2

r

q1 q2

Figure 5.33: Sampling the intersection curve: (a) closest pairs of points in Q1 and
Q2, (b) first estimate r, (c) reprojection, and (d ) second estimate r′.
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To avoid a sharp discontinuity in sampling density, the coarser model is upsampled
in this area to match the sampling density of the finer model, using the dynamic
sampling method of Section 5.3.4.

Note that the above Newton scheme also provides an easy mechanism for adap-
tively upsampling the intersection curve. A simple subdivision rule can be eval-
uated to create a new starting point for the Newton iteration (e.g., the average
of two adjacent points on the curve). Applying the iteration then yields a new
sample on the intersection curve as illustrated in Figure 5.34. Figure 5.35 shows
union, intersection, and difference operations of the Max Planck model with a
spiral. The effect of dynamically upsampling the intersection curve is illustrated
for three levels of subdivision. Compared to other explicit surface representations,
such as polygonal meshes, the adaptive refinement of intersection curves requires no
complicated adaptations of the local connectivity graph. The implicit MLS surface
model automatically adapts to newly created sample points so that only updates
of the local search data structure are necessary. However, care needs to be taken
when evaluating the surface resulting from Boolean operations. To avoid smooth-
ing any sharp creases created by the intersection of two surfaces, MLS or other
surface-approximation operators should be evaluated on the different surface parts
separately. Alternatively, a feature-sensitive surface-approximation scheme should
be used such as the MLS extension proposed in Fleishman et al. [FCOS05].

Rendering Sharp Creases
The accurate display of the intersection curves requires a rendering technique that
can handle sharp creases and corners. For this purpose an extension of the surface-
splatting technique presented in Zwicker et al. [ZPvBG01b] can be used. In this
method, each sample point is represented by a surfel, an oriented-elliptical splat

(a) (b) (c)

Figure 5.34: Adaptive refinement of the intersection curve: (a) original intersection
curve, (b) new point inserted in region of high curvature, and (c) final, adaptively
sampled intersection curve.
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F igure 5.35: Upsampling the intersection curve to increase the accuracy of the
representation. Three levels of uniform refinement are shown in the top row. The
bottom row shows, from left to right, union, intersection, and difference operations
of two point-sampled surfaces.

that is projected onto the screen to reconstruct the surface in image space (see
also Chapter 6). A point on the intersection curve can now be represented by two
surfels that share the same center, but whose normals stem from either one of the
two input surfaces. During scan conversion, each of these surfels is then clipped
against the plane defined by the other to obtain a piecewise linear approximation
of the intersection curve in screen space (see Figure 5.35). Figure 5.36 shows an
example of a difficult Boolean operation of two identical cylinders that creates two
singularities. While the classification and intersection curve sampling work fine,
the rendering method produces artifacts. This is due to numerical instabilities,
since the clipping planes of two corresponding surfels are almost parallel. How-
ever, such cases are rare in typical computer graphics applications (e.g., digital
character design). As such, the algorithms for Boolean operations are less suited
for industrial manufacturing applications, where robust handling of degenerated
cases is of primary concern.
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F igure 5.36: A difficult Boolean difference operation that creates two singularities.

Particle-based Blending
As illustrated in Figures 5.30 and 5.32, Boolean operations typically produce sharp
intersections. In some applications it is more desirable to create a smooth blend
between the two combined surface parts. To smooth out the sharp creases created
by Boolean operations an adaptation of oriented particles [ST92] can be used. The
idea is to define interparticle potentials Φ(pi, pj) in such a way that the minimum
of the global potential function yields a smooth surface that minimizes curvature.
Summing up these potentials yields a particle’s total potential energy Ei. From this
potential energy one can derive the positional and rotational forces that are exerted
on each particle and compute its path of motion under these forces. Additionally,
an interparticle repulsion force is applied to equalize the particle distribution (see
also Section 4.3). All forces are scaled with a smooth fall-off function that measures
the distance to the intersection curve to confine the particle simulation to a small
area around the intersection curve without affecting other parts of the surface.
A detailed discussion on implementation issues of the particle simulation method
can be found in Keiser [Kei03].

Figure 5.37 shows the particle-based blending for the intersection of two planes,
where the degree of smoothness can be controlled by the number of iterations of
the simulation.
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(a) Initial configuration (b) 10 Iterations

(c) 20 Iterations (d) 50 Iterations

(e) 100 Iterations (f) 200 Iterations

Figure 5.37: Particle simulation to blend two intersecting planes. Gray particles
participate in the simulation, blue points indicate the fixed boundary.

In Figure 5.38, a more complex blending operation is shown. A union operation of
three tori has created numerous sharp intersection curves as shown in (a). These
can be blended simultaneously as illustrated in (b) using the particle simulation
described above. The same blending technique can of course also be applied to the
intersection and difference operations described in Section 5.3.2.

5.3.3 FREE-FORM DEFORMATION

Apart from composition of surfaces using Boolean operations, many shape design
applications require the capability to modify objects using smooth deformations.
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(a) (b)

Figure 5.38: Boolean union of three tori: (a) reconstruction with sharp feature curves,
and (b) feature curves have been blended using particle simulation.

These include bending, twisting, stretching, and compressing of the model
surface. The idea of free-form deformation is to define a space-warping function
F : R

3 → R
3 that deforms space and any embedded surface. Initially proposed in

Barr [Bar84] and Sederberg and Parry [SP86] many different methods have been
devised to specify the warping function F. A fairly general approach makes use
of the “handle” paradigm: the user first defines a deformable region χd ⊂ S on
the model surface and marks parts of this region as a control handle. The surface
can then be modified interactively by pushing, pulling, or twisting this handle.
More specifically, the user defines an affine transformation of the control handle
that together with the boundary of the deformable region imposes constraints
for the computation of the continuous deformation function. Depending on the
application, these constraints can include higher-order continuity, for example,
the transition from the rigid part to the deformable part should be C1 continuous
[BK04].

Deformation Functions
One simple technique to define the deformation function is based on a continuously
varying scale parameter t ∈ [0, 1] that measures the relative distance of a point from
the handle. The closer a point is to the handle, the stronger the deformation will be
for that point. More precisely, let χ1 ⊂ χd be the handle, also called one-region, and
χ0 = S −χd the zero-region, in other words, all points of the surface S that are not
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part of the deformable region. For both zero- and one-region distance measures
d0 and d1, respectively, are defined as

dj(p) =

{
0 p ∈ χj

minq∈χj
(‖p − q‖) p ∉χj

(5.30)

for j = 0, 1. From these distance measures the scale parameter t is computed as
t = β(d0(p)/(d0(p) + d1(p))), where β : [0, 1] → [0, 1] is a continuous blending
function with β(0) = 0 and β(1) = 1. Thus, t = 0 for p ∈ χ0 and t = 1 for p ∈ χ1.
Using this scale parameter, the position of a point p ∈ χd after the deformation
is determined as p′ = F(p, t), where F is a deformation function composed of a
translational and a rotational part. The deformation function can be written as
F(p, t) = FT(p, t) + FR(p, t), where

• FT(p, t) = p + t · v with v a translation vector, and
• FR(p, t) = R(a, t · α) · p, where R(a, α) is the matrix that specifies a rotation

around axis a with angle α.

Figure 5.39 shows a translational deformation of a plane, where the translation
vector is equal to the plane normal. This figure also illustrates the effect of different
choices of the blending function β. In Figure 5.40, two rotational deformations of
a cylinder are shown, while a combination of both translational and rotational
deformations is illustrated in Figure 5.45 later.

To perform a free-form deformation the user only needs to select the zero- and
one-regions and choose an appropriate blending function. She can then interac-
tively deform the surface by displacing the handle with a mouse or trackball device,
similar to Kobbelt et al. [KCVS98]. This gives the method great flexibility for han-
dling a wide class of free-form deformations, while still providing a simple and
intuitive user interface. The deformable region and the handle can be specified
using a simple paint tool that allows the user to mark points on the surface by
drawing lines, circles, rectangles, etc. and applying flood filling and erasure.

Computing the scale parameter t requires an estimate for the distance of a point
p ∈ χd to the zero- and one-regions. Since both of these regions are represented by
point sets, an approximation of dj(p) can be computed by searching for the closest
point in the respective region. This, however, yields a nonsmooth deformation field,
since the distance function to a point set has many discontinuities in its gradient.
A more practical approximation for the distance values can be obtained by com-
puting a weighted average of the distance to the k-nearest neighbors (all the figures
in this section use k = 20). While this approach yields smoother deformation fields,
it still cannot guarantee higher-order continuity.



S E C T I O N 5 . 3 SHAPE MODELING 237

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 5.39: Deformations of a plane for three different blending functions: (Left)
blending function, (middle) color-coded scale parameter, where blue indicates the
zero-region (t = 0) and red the one-region (t = 1), and (right) final textured surface.

A different scheme that provides such guarantees has been proposed in Botsch and
Kobbelt [BK05]. The editing metaphor is essentially the same; in other words, the
user specifies a deformable region and a control handle and deforms the surface by
applying an affine transformation to the handle. Since the method computes a space
deformation, it can be applied to point-sampled surfaces as well as any other explicit
surface representation. The displacements of the control handle define constraints
for a system of triharmonic radial basis functions (RBFs). Additional fix-point
constraints are specified on the boundary of the deformable region. Combining
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a1

a2

(a) (b) (c) (d)

Figure 5.40: Rotational deformations of a cylinder: (a) original, (b) color-coded scale
parameter, (c) rotation around axis a1, and (d) rotation around axis a2.

these constraints and selecting the constraint locations as RBF centers lead to a
symmetric linear system. The number of unknowns depends on the number of
constraints and is typically of order m =

√
n, where n is the size of the point

cloud. However, since the triharmonic radial basis function φ(r) = r3 has global
support, the system is dense and its solution has cubic complexity O(m3) = O(n1.5).
Thus, Botsch and Kobbelt [BK05] present an efficient method to solve the system
incrementally, using basis function precomputation to further enhance performance.
The final resulting displacement function supports C2 boundary constraints and
has optimal fairness as it is the solution of a constrained energy minimization.

Topology Control
An important issue in shape design using free-form deformation is the handling of
self-intersections. During deformation, parts of the deformable region can intersect
other parts of the surface, which leads to an inconsistent surface representation.
A solution to this problem requires a method for detecting and resolving such
collisions.

Collision Detection Similar to Boolean operations (Section 5.3.2), this requires an
inside-outside classification to determine which parts of the surface have penetrated
others. Thus, the classification predicate defined in Section 5.3.2 can be used for
computing collisions between the deformable region χd and the zero-region χ0.

First, the closest point q ∈ χ0 to each sample point p ∈ χd is computed. This
defines an empty sphere sp around p with radius ‖p−q‖. If the point p only moves
within this sphere during deformation, it is guaranteed not to intersect with the
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χ0

χd

p1

p2
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Figure 5.41: Temporal coherence for accelerating collision detection during defor-
mation. The points p1 and p2 can move within the spheres s1 and s2, respectively,
without the risk of an intersection with the zero-region.

zero-region (see Figure 5.41). So, in addition to exploiting spatial coherence as for
Boolean classification, this approach also exploits the temporal coherence induced
by the continuous change of deformation field during interactive editing. The clas-
sification predicate Ω has to be reevaluated only when p leaves sp, which at the same
time provides a new estimate for the updated sphere sp. Note that this method for
collision detection does not consider self-intersections of the deformable region χd.

Collision Handling There are different ways to respond to a detected collision.
The simplest solution is to undo the last deformation step and recover the surface
geometry prior to the collision. Alternatively, the penetrating parts of the surface
can be joined using a Boolean union operation to maintain the validity of the
surface. Figure 5.42 shows an editing session, where a deformation causes a self-
intersection. After performing a Boolean union, a sharp intersection curve is created
as shown in (d). In the context of free-form deformation it is often more desirable
to create a smooth transition between the two combined surface parts. Thus, the
particle simulation described in Section 5.3.2 can be used to blend the intersection
region.

5.3.4 DYNAMIC SAMPLING

Large deformations may cause strong distortions in the distribution of sample
points on the surface that can lead to an insufficient local-sampling density. To
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.42: Interactive modeling session with collision detection: (a–b) intermedi-
ate steps of the deformation, (c) collision detection, where the blue part has been
detected as self-intersecting, (d ) Boolean union with sharp intersection curve, and
(e–f ) particle-based blending with different fall-off functions.

prevent the point cloud from ripping apart and to maintain a high surface quality,
new samples have to be included where the sampling density becomes too low. This
requires a method for measuring the surface stretch to detect regions of insufficient
sampling density. Then new sample points have to be inserted and their position on
the surface determined. Additionally, scalar attributes (e.g., color values or texture
coordinates) have to be preserved or interpolated.

Measuring Surface Stretch
The first fundamental form known from differential geometry [dC76] can be used
to measure the local distortion of a surface under deformation. Let u and v be two
orthogonal tangent vectors of unit length at a sample point p. When applying a
deformation, the point p is shifted to a new position p′ and the two tangent vectors
are mapped to new vectors u′ and v′. Local stretching implies that u′ and v ′ might
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no longer be orthogonal to each other nor do they preserve their unit length. The
tangent vectors u′ and v ′ are conjugate diameters of the ellipse defined by xTQx = 1,
where

Q =

[
u′2 u′ · v ′

u′ · v ′ v ′2

]−1

. (5.31)

The eigenvalues λ1 and λ2 of this matrix yield the minimum and maximum stretch
factors and the corresponding eigenvectors e1 and e2 define the principal directions
into which this stretching occurs (see Figure 5.43).

The amount of this distortion can be measured by taking the ratio of the two eigen-
values of the matrix Q (local anisotropy) or by taking their product (local change
of surface area). When the local distortion becomes too strong, new samples have

Deformation Splitting Relaxation

u p
u'

v'

p'

λ1e1

λ2e2

v
Deformation

Figure 5.43: 2D illustration of local stretching after deformation and dynamic
resampling.
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(a) (b) (c)

Figure 5.44: Dynamic sampling, and deformation of a plane: (a) local stretching, blue
corresponds to zero stretch while red indicates maximum stretch, (b) surface after
resampling, and (c) sampling distribution.

to be inserted to reestablish the prescribed sampling density. These new samples
replace the existing point p and are positioned along the main axis of the ellipse
defined by Q (see Figure 5.44).

Filter Operations
Whenever a splitting operation is applied, both the geometric position and the
scalar function values for the newly generated sample points have to be determined.
Both these operations can be described as the application of a filtering operator:
a relaxation filter determines the sample positions, while an interpolation filter is
applied to obtain the function values.

Relaxation Introducing new sample points through a splitting operation creates
local imbalances in the sampling distribution. To obtain a more uniform sampling
pattern, a relaxation operator is applied that moves the sample points within the
surface (see Figure 5.44). Similar to Turk [Tur92] (see also Section 4.3), a sim-
ple point repulsion scheme is used with a repulsion force that drops linearly with
distance. This confines the radius of influence of each sample point to its local
neighborhood, which allows very efficient computation of the relaxation forces.
The resulting displacement vector is then projected into the points tangent plane
to keep the samples on the surface.

Interpolation Once the position of a new sample point p is fixed using the relax-
ation filter, the associated function values need to be determined. This can be
achieved using an interpolation filter by computing a local average of the function
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values of neighboring sample points. The relaxation filter potentially moves all
points of the neighborhood of p. This tangential drift leads to distortions in the
associated scalar functions. To deal with this problem a copy of each point that car-
ries scalar attributes is created and its position is fixed during relaxation. In par-
ticular, for each sample that is split a copy is maintained with its original data.
These points will only be used for interpolating scalar values, they are not part of
the current geometry description. Since these samples are dead but their function
values still live, they are called zombies. Zombies will undergo the same transforma-
tion during a deformation operation as living points, but their positions will not
be altered during relaxation. Thus, zombies accurately describe the scalar attributes
without distortions. Therefore, zombies are only used for interpolation, while for
relaxation only living points are considered. After an editing operation is completed,
all zombies will be deleted from the representation.

Figure 5.45 illustrates this dynamic resampling method for a very large deformation
that leads to a substantial increase in the number of sample points. While the initial
plane consists of 40,000 points, the final model contains 432,812 points, clearly
demonstrating the robustness and scalability of the method in regions of extreme
surface stretch.

Downsampling
Apart from lower sampling density caused by surface stretching, deformations can
also lead to an increase in sampling density, where the surface is squeezed. It might
be desirable to eliminate samples in such regions while editing, to keep the overall
sampling distribution uniform. However, dynamically removing samples also has
some drawbacks. Consider a surface that is first squeezed and then stretched back
to its original shape. If samples get removed during squeezing, surface information
such as color will be lost, which leads to increased blurring when the surface is
stretched again. Thus, instead of dynamic sample deletion, an optional garbage
collection can be performed at the end of the editing operation. To reduce the
sampling density, any of the simplification methods of Section 4.3 can be used.

5.3.5 CONCLUSION

The semi-implicit nature of point-based surface models has proven useful for
inside-outside tests required for Boolean modeling operations and collision detec-
tion. Adaptive sampling of sharp intersection curves, which is important for high
visual quality, can be implemented easily using an iterative procedure based on
MLS projections.

Point-based representations are also suitable for interactive shape deformations, in
particular when large edits require dynamic adaptations of the model discretization.



244 DIGITAL PROCESSING C H A P T E R 5

Zombie

New samples

Splitting Relaxation Interpolation Deletion of ZombiesDeformation

Figure 5.45: A very large deformation using a combination of translational and rota-
tional motion. The left column shows intermediate steps with the top image indi-
cating zero- and one-regions. Each point of the surface carries texture coordinates,
which are interpolated during resampling and used for texturing the surface with a
checkerboard pattern. The bottom row illustrates this interpolation process, where
the function values are indicated by vertical lines.

The trade-off between efficient query time and light-weight updates to the search
data structure used for nearest-neighbor computations is central in this context (see
Section 4.4). Caching of local neighborhood information can substantially improve
the performance, while still being conceptually simpler than consistent connectivity
updates required for dynamic remeshing.
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6 RENDERING

INTRODUCTION

This chapter presents an overview and detailed discussion of high-quality rendering
methods for point-sampled geometry. Section 6.1 starts with a review of the
fundamentals of surface splatting (EWA), one of the most widely used techniques
for advanced point rendering. Both the signal processing fundamentals are elabo-
rated and practical implementations are presented. Section 6.2 focuses on improve-
ments of point splatting as well as on implementations using state-of-the-art GPUs.
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Section 6.3 introduces ray tracing of MLS surfaces as an alternative for high-quality
point rendering. Rendering of very large point models is addressed in Section 6.4
where a multiresolution rendering algorithm is presented. A powerful acceleration
structure for hardware-accelerated, high performance point rendering concludes this
chapter with Section 6.5.

6.1 SPLATTING FUNDAMENTALS

Matthias Zwicker

6.1.1 OVERVIEW

Splatting is a simple and efficient technique for rendering high-quality images of
point-sampled surfaces. In contrast to the ray-tracing algorithms described in
Section 6.3, splatting is a forward-projection approach that uses a z-buffer algo-
rithm to resolve visibility. Splatting can efficiently process unstructured point-sets
without any additional acceleration structures such as spatial hierarchies, which are
often required in ray-tracing approaches. It is, however, straightforward to combine
splatting with hierarchical data structures, such as described in Section 4.4, to obtain
progressive or level-of-detail (LOD) rendering. In addition, splatting achieves high
image quality by including a principled texture antialiasing technique.

The basic idea of splatting is illustrated in Figure 6.1. A naive approach to point
rendering would perspectively project each 3D point to the image plane as in
Figure 6.1a, and assign the color of the point to the closest pixel. Obviously, this
leads to holes in the rendered image if the surface is not sampled with sufficient
density. On the other hand, if more than one point projects to the same pixel,
the rendering result is dependent on the order in which the points are projected.
Splatting, as shown in Figure 6.1b, solves these problems by distributing the color of
each projected point among its neighboring pixels. Each point is associated with a
footprint function ρi(x) that weighs the color contributions to the neighboring
pixels.1 Footprint functions are usually smooth, decay quickly with increasing
distance from the center, and have local support as indicated by the ellipses in
Figure 6.1b. The same fundamental approach is also popular for volume render-
ing [Wes90, MC98, MMC99, ZPvBG01a].

Let us denote an image by a function φ(x, y) of 2D image coordinates (x, y). To
simplify the notation, we assume the function is scalar-valued (i.e., it represents a

1 Early point-rendering algorithms used a different approach based on image space filtering [GD98,
PZvBG00].
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Figure 6.1: Point rendering by splatting. (a) Naive forward projection and rendering of point samples. (b) By splat-
ting footprint functions each point sample distributes its contribution among neighboring pixels.

grayscale image). For color images, we would simply use three independent channels,
for example, representing red, green, and blue color components. An image of a
point-sampled surface rendered with a splatting algorithm can be represented as

φ(x, y) =
∑

i

ciρi(x, y), (6.1)

where summation is over the indices i of all points {pi}of the surface, ρi are individual
footprint functions, and ci are grayscale values associated with each point.

Unfortunately, Equation (6.1) does not reproduce surfaces with constant values
ci ≡ c, which can lead to visible artifacts. Hence, we extend the basic splatting for-
mulation by normalizing Equation (6.1):

φ(x, y) =

∑
i ciρi(x, y)
∑

i ρi(x, y)
. (6.2)

This guarantees that constant surfaces are reproduced exactly, independent of the
footprint function.

Equation (6.2) suggests a two-pass algorithm for rendering, which is summarized in
Figure 6.2. In the first pass, we iterate over all points and compute their splat foot-
prints ρi and shaded values ci. The footprints are evaluated at each pixel, or raster-
ized, and their contributions are accumulated in a framebuffer. At each pixel (x, y),
the framebuffer stores the sum of the weighted contributions c(x, y) =

∑
i ciρi(x, y),
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splat_rendering(p[], c[], w[], z[]) {

for(all points i in p[]) {
rho_i = footprint(p[i]);
c_i = shade(p[i]);
rasterize(rho_i, c_i, c[], w[], z[]);

}
for(all pixels [x,y]) {

c[x,y] /= w[x,y];
}

}

Figure 6.2: Pseudocode of the splatting algorithm.

the sum of the weights w(x, y) =
∑

i ρi(x, y), and a depth value z(x, y) for z-buffering.
In the second pass, we iterate over all pixels and normalize the accumulated colors by
dividing by the sum of the weights.

At the core of the splatting algorithm described in this section is a thorough approach
to designing suitable footprint functions for high-quality rendering. We show that
splatting is best understood as a resampling process in terms of signal processing.
A point-based surface is interpreted as a discrete set of surface samples in 3D, which
is mapped to a new set of image samples located at pixel positions during rendering.
However, resampling is prone to visually disturbing aliasing artifacts if the resampled
surface does not obey the Nyquist limit of the discrete pixel grid. Much of this section
is dedicated to providing an understanding of these effects.

We review fundamental results from the signal-processing theory in Section 6.1.2
and explain aliasing in Section 6.1.3. We present a framework for ideal resampling
with antialiasing in Section 6.1.4. Completing the necessary background for the fol-
lowing sections, we summarize the characteristics of Gaussian filters in Section 6.1.5.
In Section 6.1.6, we describe how resampling with Gaussian filters can be applied
to splatting, and we present an efficient algorithm that is based on high-quality
antialiased footprint functions. We show results of our approach and compare it to
other texture-filtering techniques in Section 6.1.7.

6.1.2 SIGNAL-PROCESSING BASICS

While, conceptually, computer graphics often deal with continuous representations
of graphics models, in practice, computer-generated images are represented by a
discrete array of samples. Digital image synthesis [Gla95] involves the conversion
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between continuous and discrete representations, which requires reconstructing and
sampling multidimensional signals such as 2D textures, 3D point-sampled surfaces,
3D volume data, or animated image sequences. This may cause aliasing artifacts that
appear as visually disturbing effects including moiré patterns and jagged edges, or
flickering in animations.

The signal-processing theory precisely characterizes the relation between discrete and
continuous signals, where a discrete signal is a signal that is represented by individual
signal values, or samples, on a uniform grid. The main operations derived from this
theory are sampling, which is the conversion of a continuous signal into a discrete
signal, and reconstruction, which is the conversion of a discrete signal into a continu-
ous signal. The key tool in signal processing is the Fourier transform, which is applied
to represent continuous and discrete signals in the frequency domain. In this section,
we review basic definitions and results from the signal-processing theory and Fourier
analysis. We use these results in Section 6.1.3 to analyze the effects of sampling and
to understand the aliasing phenomenon. For a more detailed introduction to signal
processing we refer the reader to standard textbooks [DM84].

Linear Filtering, Convolution, and the Fourier Transform
A filter is an operator that takes a signal2 as an input and generates a modified signal
or a response as an output. The easiest class of filters to understand is linear space
invariant filters. Mathematically, a filter is L linear if

L{af + bg} = aL{f } + bL{g} (6.3)

for any two scalars a and b, and any two signals f : R → R and g : R → R. It is space
invariant if

f (x) = L{g(x)} ⇔ f (x − s) = L{g(x − s)} (6.4)

for any spatial shift s. A linear space invariant filter L is uniquely characterized by its
impulse response h(x) (i.e., its output resulting from an impulse input δ). The impulse
function δ is defined as

δ(x) = 0 if x �= 0 and

∫∞

−∞
δ(x)dx = 1. (6.5)

2 The term signal is synonymous to the term function.
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It can be shown that, as a consequence [Gla95], the response of a linear space
invariant filter to any input signal f (x) is given by the convolution of f (x) and h(x):

L{f (x)} =

∫∞

−∞
f (t)h(x − t)dt = ( f ⊗ h)(x). (6.6)

Convolution is as a linear operator on the signal, denoted by the symbol ⊗.

We can analyze the properties of a filter by computing its eigenfunctions and
eigenvalues. The eigenfunctions of linear space invariant filters are complex expo-
nentials, and the eigenvalues are given by the Fourier transform of its impulses
response, which is called its frequency response. The Fourier transform of a signal
f (x) is called the spectrum of the signal, denoted by F(ω). It is defined as

F(ω) =

∫∞

−∞
f (x)e−jωxdx, (6.7)

where ω is the angular frequency. Likewise, the inverse Fourier transform describes
the signal in terms of its spectrum:

f (x) =
1

2π

∫∞

−∞
F(ω)ejωxdω. (6.8)

We write f (x) ↔ F(ω) to relate the spatial and the frequency domain representation
of the signal. One of the most useful properties of the Fourier transform is that the
Fourier transform of the convolution of two signals is the product of their Fourier
transforms (i.e., f ⊗ g↔ FG) and vice versa (i.e., fg ↔ F ⊗ G/(2π)) [Gla95].

6.1.3 FREQUENCY ANALYSIS OF ALIASING

To study aliasing we interpret images, surface textures, point-sampled surfaces, or
volume data as multidimensional signals. In the following discussion, we will focus
on one-dimensional signals to clarify the explanations, implying that the same con-
cepts also hold in the multidimensional setting. We analyze the sampling of a con-
tinuous signal using the Fourier transform and frequency domain representations,
shown in Figures 6.3 and 6.4.

Sampling a continuous signal ac(x) is performed by multiplying it with an impulse
train iT(x) (Figure 6.3b), which is a sum of impulse distributed with uniform
spacing T:

iT(x) =
∑

n

δ(x/T − n). (6.9)
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Therefore, we obtain the discrete signal as a(x) = ac(x)iT(x). In the frequency
domain the spectrum of the discrete signal A(ω) is given by the convolution A(ω) =
Ac(ω)⊗ Iωs (ω). Here, Ac(ω) is the spectrum of the continuous signal ac(x). Further-
more, Iωs is the Fourier transform of the impulse train iT(x), which is another impulse
train Iωs (ω) = ωsiωs (ω). The sample distance in the frequency domain ωs is inversely
proportional to the sampling distance T in the spatial domain (i.e.,ωs = 2π/T). Since
multiplication in the spatial domain corresponds to convolution in the frequency
domain, the spectrum of the discrete signal consists of a superposition of replicas of
the spectrum of the continuous signal spaced at a distance ωs (Figure 6.3c).

To reconstruct the spectrum of the continuous signal, we have to eliminate all repli-
cas of Ac from A except the central one. This is achieved by multiplying A(ω) with
a box function Hωa (ω) = 1 for ω ≤ ωa and 0 otherwise, where ωa is the maxi-
mum frequency occurring in ac or Ac, respectively. Hωa is called an ideal low-pass
filter with cutoff frequency ωa (Figure 6.3d, right), since it passes low frequencies
ω ≤ ωa unchanged and suppresses high frequencies ω > ωa completely. In the spa-
tial domain, the impulse response of Hωa is a sinc function:

Hωa (ω)↔ hωa (x) = 2ωa
sin(2πωax)

2πωax
. (6.10)

Since the reconstructed spectrum A(ω)Hωa (ω) in Figure 6.3e is identical to the origi-
nal spectrum A(ω) (Figure 6.3a), the inverse Fourier transform perfectly reconstructs
the original signal (Figure 6.3e, left).

However, if the maximum frequency ωa in the spectrum of Ac is higher than half the
sampling distance in the frequency domain (i.e., ωa > ωs/2), the replicas overlap, as
shown in Figure 6.4c on the right.

In this case, it is impossible to reconstruct the original spectrum Ac from A. When
A is multiplied with the low-pass filter (see Figure 6.4d), high frequencies from the
replicas appear as low frequencies in the original spectrum (Figure 6.4e), which is
called aliasing: the high frequencies in the original signal masquerade, or alias, as low
frequencies in the reconstructed signal (Figure 6.4e, left).

Aliasing need not occur if the continuous input signal is band-limited to a band-
width ωa; in other words, it has no frequencies above ωa, or Ac(ω) = 0 for ‖ω‖≥ωa.
A continuous signal with bandwidth ωa can be reconstructed exactly if the sam-
pling frequency ωs is at least twice the bandwidth (i.e., ωs ≥ 2ωa). This fact is known
as the sampling theorem, and ωs = 2ωa is called the Nyquist frequency of the signal.
Equivalently, the frequency ωs/2 is also called the Nyquist limit of the sampling
grid. Sampling a signal that contains frequencies above the Nyquist limit produces
aliasing.
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6.1.4 RESAMPLING

Resampling is the process of transforming a sampled input signal from a source to a
destination domain, and representing the signal in the destination domain on a given
uniform sampling grid. In general, the sampling positions in the source domain are
not mapped to sampling positions in the destination domain in a one-to-one fashion.
Hence, resampling includes four steps. First, a continuous signal is reconstructed in
the source domain; second, the continuous signal is mapped from source to destina-
tion domain; third, the continuous signal in the destination domain is band-limited
to the Nyquist limit of the output sampling grid; and fourth, the band-limited signal
is sampled. By band-limiting the transformed signal before sampling, aliasing artifacts
due to the subsequent sampling step are avoided. Band-limiting before sampling is
also called prefiltering.

Resampling was first introduced to computer graphics by Paul Heckbert in the
context of texture mapping and image warping [Hec89]. In texture mapping, the
source domain is a texture image, the destination domain is the output image plane,
and the mapping from the source to the destination domain is a concatenation of a
2D to 3D parameterization of the texture onto a surface followed by perspective 3D
to 2D projection. Resampling procedures have also been applied to volume render-
ing [ZPvBG01a] and to ray tracing [Ige99]. We will describe a resampling algorithm
for point-based rendering in Section 6.1.6.

We illustrate the resampling procedure in the 1D setting in Figure 6.5. The general-
ization to higher dimensions is straightforward. Note also that we remove the restric-
tion that the input signal be sampled on a uniform grid. Therefore, we will not use
convolution, but a slightly more general approach to signal reconstruction.

Resampling consists of four steps:

1. In the first step, we reconstruct a continuous signal from the input samples.
The continuous input signal is a weighted sum of sample values ci and recon-
struction kernels ri in source space coordinates t:

f (t) =
∑

i

ciri(t). (6.11)

Here, the samples ci may be located at nonuniform sampling positions, and
the reconstruction kernels ri may be different for each sample. Hence,
Equation (6.11) does not correspond to a convolution. We show in Section 6.1.6
how to choose suitable kernels for surface splatting.

2. We denote the mapping from source to destination domain by x = m(t),
and t = m−1(x) is its inverse. Here, x denotes destination space coordinates.
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Figure 6.5: Resampling consists of four steps: reconstruction, warping, filtering, and
sampling.

Applying this mapping to the input function yields the continuous function in
the destination domain:

f ′(x) = (f ◦m−1)(x) = f (m−1(x)). (6.12)

3. Now f ′(x) is prefiltered using a low-pass filter h(x), resulting in the continuous
output function

f̄ ′(x) = (f ′ ⊗ h)(x) =

∫∞

−∞
f ′(ξ)h(x − ξ)dξ. (6.13)

4. Finally, the continuous output signal is sampled by multiplying it with an
impulse train i to produce the discrete output f̄ ′(x)i(x).



258 RENDERING C H A P T E R 6

This procedure suggests a multipass approach, in which we first reconstruct, then
warp, and convolve the input signal. However, we can avoid the explicit construction
of the continuous signal by reordering the above operations. We derive an expression
for the warped continuous output function by expanding the operations in reverse
order:

f̄ ′(x) =

∫∞

−∞
h(x − ξ)

∑

i

ciri(m−1(ξ))dξ

=
∑

i

ciρi(x), (6.14)

where

ρi(x) =

∫∞

−∞
h(x − ξ)ri(m−1(ξ))dξ. (6.15)

We call the warped and filtered reconstruction kernel ρi(x) a resampling filter, which
is expressed as a convolution in the destination space here. Equation (6.14) states that
we can first warp and filter each reconstruction kernel individually to construct the
resampling filters and then sum up the contributions of these filters in the destination
space. This allows us to implement an efficient resampling scheme for interactive
rendering as we show in Section 6.1.6.

6.1.5 GAUSSIAN FILTERS

Gaussian functions play an important role in many areas of applied mathematics, in
particular in statistics. For digital-signal processing they are attractive because they
provide a unique combination of reasonable spectral characteristics and analytical
properties. We start by introducing 1D Gaussians and analyzing their filter charac-
teristics. It is straightforward to generalize Gaussians to higher dimensions. In this
section, we summarize the properties of 2D filters that are prerequisite for our tech-
niques described in Section 6.1.6.

One-dimensional Gaussian Filters
A one-dimensional Gaussian function is defined as

gσ2 (x) =
1

σ
√

2π
e
− 1

2
x2

σ2 , (6.16)

where σ2 is called the variance, and σ the standard deviation. In this form, the Gaus-
sian is normalized to have a unit integral:

∫∞

−∞
gσ2 (x)dx = 1. (6.17)
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The Fourier transform of the 1D Gaussian is another Gaussian:

gσ2 (x)↔ Gσ2 (ω) = e−σ
2ω2/2 = σ

√
2πg1/σ2 (ω). (6.18)

However, note that the Gaussian in the frequency domain is not normalized to have
a unit integral.

Figure 6.6 illustrates the relation of 1D Gaussians in the spatial and the frequency
domain. A narrow impulse response in the spatial domain corresponds to a wide
response in the frequency domain, and vice versa. For comparison, we also show the
box function of an ideal low-pass filter in the frequency domain. Assuming that the
sampling grid has unit spacing, the cutoff frequency of the box is set to ω = 1/2.
Hence, the box filter band limits the signal to the Nyquist limit of the grid. Clearly,
choosing a suitable standard deviation for the Gaussian is a trade-off between blur-
riness and aliasing in the output signal (i.e., a trade-off between a deficiency of high
frequencies in the pass band and leakage in the stop band).3 For image-processing
applications, values between 1 < σ < 2 are often appropriate.

1

1

Spatial domain Frequency domain

−2 2−4 40 −2 2−4 40−1 1

−2 2−4 40−1 1

0.4

σ = 0.5

σ = 2
σ = 0.5

σ = 2

0.8

0.4

0.8 blurrying

aliasing
σ = 1

x

−2 2−4 40 x

ω

ω

Figure 6.6: Gaussians in 1D: the spatial domain representation is on the left, with the
corresponding frequency domain representation on the right.

3 The book by Glassner [Gla95] is a good reference for more details on filter design in computer graphics.
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Two-dimensional Gaussian Filters
It is straightforward to generalize Gaussians to higher dimensions. For our
applications, we are most interested in 2D Gaussians defined as

gV(x) =
1

2π
√
|V|

e−
1
2 xTV−1x. (6.19)

Here, V is the symmetric 2× 2 variance matrix, with |V| its determinant, and x is
a 2 × 1 column vector. As in 1D, the 2D Gaussian is normalized to unit integral
analogous to Equation (6.17). V is called the variance matrix because it plays the
role of the scalar variance σ2 of a 1D Gaussian. The variance matrix of 2D Gaussian
low-pass filters is usually chosen to be a 2×2 identity matrix for a balanced trade-off
between aliasing and blurriness.

The Fourier transform of a 2D Gaussian is again a 2D Gaussian, with a scaling factor
similar to the 1D case in Equation (6.18):

gV(x)↔ GV(ω) = e−
1
2ω

TVω = 2π
√
|V|gV−1 (ω). (6.20)

Gaussians offer a number of analytical properties that make them attractive as digital
filters for image synthesis. We summarize how linear mappings and convolution of
Gaussians can be evaluated efficiently.

A 2D linear mapping is defined as y = Mx, where M is a 2 × 2 matrix, and x and y
are column vectors. We apply this mapping to the 2D Gaussian in Equation (6.19) by
substituting x = M−1y, yielding

gV(M−1y) =
1

2π
√
|V|

e−
1
2 (M−1y)TV−1(M−1y)

=
|M|

2π
√
|MVMT|

e−
1
2 (M−1y)TV−1(M−1y)

= |M|gMVMT (y). (6.21)

Hence, under the linear mapping M, the Gaussian with variance matrix V is
transformed into a Gaussian with variance matrix MVMT. However, the transformed
Gaussian is not normalized to unit integral anymore, but it is scaled with the deter-
minant |M| (see also [Hec89]).

The convolution of two Gaussians is easily computed in the frequency domain, since
convolution in the spatial domain corresponds to multiplication in the frequency
domain [Hec89]. With Equation (6.20), we have
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(gV ⊗ gW)(x)↔ GV(ω) · GW)(ω) = e−
1
2ω

TVω · e− 1
2ω

TWω

= e−
1
2ω

T(V+W)ω

= GV+W(ω). (6.22)

Therefore, variances are added when two Gaussians are convolved:

(gV ⊗ gW)(x) = gV+W(x). (6.23)

6.1.6 SURFACE SPLATTING

Surface splatting renders point-sampled surfaces using a splatting approach as
introduced in Section 6.1, and it applies the resampling framework described in
Section 6.1.4 to compute antialiased splat footprints [ZPvBG01b]. The key to an
efficient implementation for interactive rendering is the use of Gaussian kernels for
reconstruction and low-pass filtering. The surface-splatting algorithm is illustrated
in Figure 6.7. It proceeds in the following steps, which are described in detail in this
section:

• First, we compute suitable 2D Gaussian reconstruction kernels associated with
the points of a 3D point-sampled surface. The 2D kernels will be defined on the
tangent plane (i.e., source space) at each point.

• Next, we map the Gaussian kernels to 2D image (i.e., destination) space. In con-
trast to Equation (6.12), each kernel will have its individual mapping function
from the corresponding tangent plane to image space.

• We then combine the projected reconstruction kernels with Gaussian low-pass
filters in image space to obtain antialised footprints, or resampling kernels.

• Finally, we sample the footprints at pixel locations in image space. The foot-
prints are weighted with the shaded color value of each point. We use a
z-buffering algorithm to restrict accumulation of resampling kernels (as in
Equation 6.14) to visible surface regions. This process is also called footprint
rasterization.

Tangent Space Reconstruction Kernels
Let us denote the 3D position of points of a point-sampled surface by column vectors
pi with elements (pi{x}, pi{y}, pi{z}). As shown in Section 4.2, we can compute a tangent
plane at each point, which is defined by two orthogonal vectors ui and vi. We use the
tangent vectors to specify a 2D parameterization of the tangent plane, and we denote
tangent coordinates by column vectors t = (t0, t1)T. Tangent coordinates t correspond
to 3D points Φ(t) as follows:

Φ(t) =
[

ui vi pi

][ t

1

]
. (6.24)
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Figure 6.7: Surface splatting overview.

As described in Section 4.3, we can compute ellipses on the tangent plane of each
point such that the union of all ellipses forms a watertight surface. We represent these
ellipses as quadratic forms in tangent coordinates:

tTRit = 1. (6.25)

Using this representation, we define Gaussian reconstruction kernels on the tangent
plane of each point as

ri(t) = gRi (t) =
1

2π
√
|Ri|

e−
1
2 tTR−1

i t. (6.26)

This choice of Gaussian reconstruction kernels is a heuristics. In terms of signal-
processing theory, Gaussian filters are an approximation of ideal low-pass filters.
When using Gaussians, we always strive to find an optimal balance between alias-
ing and blurriness. However, it is difficult to analyze Gaussians with nonuniform
sampling. The above construction is inspired by the use of Gaussians for uniform
reconstruction as described in Section 6.1.5. There, a typical choice for the variance
matrix is the identity matrix, such that the value of the exponent of the Gaussian
is −1/2 at the closest neighboring sample. Our approach is an approximation of this
behavior in the nonuniform case.

Projection to Image Space
We assume the position of points pi and their tangent vectors ui and vi are expressed
in a canonical camera coordinate system as shown in Figure 6.7. Here, the center of
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projection lies at the origin, and the plane z = 1 is the image plane.4 For notational
simplicity, let us denote the 2D image coordinates by x = (x, y). The mapping from
tangent to image coordinates is derived from Equation (6.24). Points on the tangent
plane are projected to the image plane by dividing by the z-coordinate:

x = mi(t) =




ui{x}t0+vi{x}t1+pi{x}
ui{z}t0+vi{z}t1+pi{z}

ui{y}t0+vi{y}t1+pi{y}
ui{z}t0+vi{z}t1+pi{z}


 . (6.27)

Unfortunately, it is not useful to apply the perspective projection as defined by
Equation (6.27) to Gaussian reconstruction kernels. The perspective projection of
a Gaussian results in a kernel that is not a Gaussian anymore and that cannot easily
be band-limited as in Equation (6.15). Therefore, we use an affine approximation of
the perspective projection. A linear Taylor series expansion of mi(t) at t = 0 is given by

x = m̃i(t) = mi(0) + Jit. (6.28)

Here, Ji is the Jacobian of mi(t) evaluated at t = 0:

Ji =
1

p2
i{z}

[
ui{x}pi{z} − pi{x}ui{z} vi{x}pi{z} − pi{x}vi{z}
ui{y}pi{z} − pi{y}ui{z} vi{y}pi{z} − pi{y}vi{z}

]
. (6.29)

We also denote the projection of point pi to the image plane by

p′i =

[
pi{x}/pi{z}
pi{y}/pi{z}

]
= mi(0). (6.30)

The inverse of Equation (6.28) is an affine approximation of the mapping from image
to tangent space:

t = m̃−1
i (x) = J−1

i (x − p′i). (6.31)

With Equation (6.31) and using Equation (6.21), we express the Gaussian reconstruc-
tion kernel in image space as

ri(J−1
i (x − p′i)) = ri

′(x − p′i) = |Ji|gJViJT (x − p′i). (6.32)

The main advantage of this equation is that it describes the image space reconstruc-
tion kernel, again, as a Gaussian. This will allow us to efficiently low-pass filter ren-
dered surfaces as shown in the next section.

4 Given that objects are initially specified in some local object coordinate system, object coordinates can
be converted to canonic camera coordinates using an appropriate linear transformation.
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Low-pass Filtering
We could use the Gaussian reconstruction kernels in image space given by
Equation (6.32) directly as the splat footprint functions. However, this would lead
to aliasing artifacts because the rendered signal would not be band-limited to the
Nyquist frequency of the pixel grid (as explained in Section 6.1.4). Instead, we rewrite
Equation (6.15) using the affine approximation m̃−1 from Equation (6.31):

ρi(x) =

∫

R
h(x − ξ)ri(J−1

i (ξ − p′i))dξ

=

∫

R
h(x − p′i − τ)ri

′(τ)dτ

= (r ′k ⊗ h)(x − p′i). (6.33)

Equation (6.33) shows that the resampling kernel can be expressed as a convolution
of a reconstruction kernel and a low-pass filter in image space. To obtain an explicit
expression for this resampling filter, we choose a Gaussian low-pass filter:

h(x) = gH(x) =
1

2π
√
|H|

e−
1
2 xTH−1x, (6.34)

where H is usually a 2 × 2 identity matrix. Using Gaussian reconstruction and low-
pass kernels, Equation (6.33) can be expanded to

ρi(x) =
1

|J−1
i |

(gJiRiJ
T
i
⊗ gH)(x − p′i)

=
1

|J−1
i |

gJiRiJ
T
i +H(x − p′i), (6.35)

where we used Equation (6.22) to evaluate the convolution. Finally, we substitute
Equation (6.35) into Equation (6.14) to obtain the rendered, band-limited surface:

f̄ ′(x) =
∑

i

ci
1

|J−1
i |

gJiRiJ
T
i +H(x − p′i). (6.36)

Here, the coefficients ci are shaded point samples. We use a scalar value to simplify
notation; in practice, three color channels are rendered independently. Shading can
be performed using any local illumination model. We also discuss more advanced
shading approaches in Section 6.2.
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Footprint Rasterization
Rasterization is the process of evaluating, or sampling, the footprint functions given
by Equation (6.35) at output pixel locations, and accumulating their contributions
in a framebuffer. We use a z-buffer to discard contributions from hidden surfaces.

Because Gaussian kernels have an infinite support, in theory, we have to evaluate
each kernel at each pixel. However, in practice this is not necessary since the values
of the Gaussians decrease quickly as we move away from their centers. Therefore,
we evaluate the kernels only in an area where the absolute value of their exponents
are smaller than a given threshold. Let us denote the inverse variance matrix of the
Gaussian resampling kernel in Equation (6.35) by

Qi = (JiRiJ
T
i + H)−1, (6.37)

and the value of its exponent by qi(x). We evaluate the kernel in the region

qi(x) =
1

2
(x − p′i)

TQi(x − p′i) <
1

2
r2, (6.38)

where r is the cutoff radius. Typically, r is chosen in the range 1 < r < 2 for surface
splatting. Larger values for r lead to smoother reconstructions, but can also cause
visual artifacts and slow down rendering speed. If r is chosen too small, discontinu-
ities or holes may appear in the rendered image.

We compute an axis-aligned bounding box of the area specified by Equation (6.38) to
efficiently evaluate the Gaussian kernel. The extents of the bounding box xmin, xmax,
and ymin, ymax are given by the solutions of the quadratic equations, illustrated in
Figure 6.8:
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Figure 6.8: Bounding-box calculations for the resampling kernel.
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xmin, xmax =

{
∂qi(x)

∂x
= 0, qi(x) =

1

2
r2

}
, (6.39)

and

ymin, ymax =

{
∂qi(x)

∂y
= 0, qi(x) =

1

2
r2

}
. (6.40)

With the discriminant ∆ = Qi{0,0}Qi{1,1} − Q2
i{0,1}, the solutions of Equation (6.39)

are given by

xmax, xmin = p′i{x} ± r

√
Qi{1,1}
∆

, (6.41)

and

ymax, ymin = p′i{y} ± r

√
Qi{0, 0}

∆
. (6.42)

We also need to evaluate the z-coordinate of the tangent plane at each pixel to perform
z-buffering. For efficiency reasons, we use the affine approximation of the mapping
from image to tangent coordinates as given in Equation (6.31) and combine it with
Equation (6.24) to determine a 3D point on the tangent plane:

Φ′(x) = Φ(m̃−1
i (x)) =

[
ui vi pi

][ m̃−1
i (x)

1

]
. (6.43)

Since the footprints usually cover only a few pixels in the image plane, this affine
approximation works well in practice. For fast incremental evaluation of
Equation (6.43), we note that Φ′(p′i)z = pi{z} and

∂Φ′(x)z

∂x
= ui{z}J

−1
i{0,0} + vi{z}J

−1
i{1,0}, (6.44)

and
∂Φ′(x)z

∂y
= ui{z}J

−1
i{0,1} + vi{z}J

−1
i{1,1}. (6.45)

In general, the depth complexity of point-sampled scenes we would like to render
will be greater than one. However, the summation of resampling kernels at each pixel
should be restricted to visible parts of the scene. Therefore, we apply an ε-z-buffering
scheme to determine visibility of individual splat contributions. The idea is that all
splat contributions within an ε-depth range should be considered part of the same
surface. The threshold ε should be chosen proportionally to the depth range spanned
by the footprint, for example,

ε = max

{∥∥∥∥(xmax − xmin)
∂Φ′(x)z

∂x

∥∥∥∥ ,

∥∥∥∥(ymax − ymin)
∂Φ′(x)z

∂y

∥∥∥∥
}

. (6.46)
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Our framebuffer stores depth values z(x, y), accumulated colors c(x, y), and kernel
weights w(x, y). Given a new splat contribution with depth znew, color cnew, and weight
wnew at pixel (x, y), the framebuffer is updated as follows:

• If |znew − z(x, y) < ε| the new value is considered part of the visible surface,
and its contributions are added to the current framebuffer values (i.e., c(x, y) =
c(x, y) + cnew, and w(x, y) = w(x, y) + wnew). If in addition znew < z(x, y), the
depth buffer is updated too (i.e., z(x, y) = znew).

• If znew < z(x, y) − ε the new value lies in front of the visible surface. Hence, its
values replace the current framebuffer values (i.e., z(x, y) = znew, c(x, y) = cnew,
and w(x, y) = wnew).

• Otherwise, the new contribution belongs to a hidden surface behind the visible
surface and, hence, is discarded.

We summarize the splat rasterization algorithm with ε-z-buffering in Figure 6.9.
This function should be called in a general splatting framework as described in
Section 6.1. The input of the rasterization algorithm is the point position pi and
tangent vectors ui and vi, the inverse of the Jacobian J−1

i (Equation 6.29), the conic
matrix Qi (Equation 6.37), the shaded color cnew, and the cutoff radius r. Raster-
ization updates the framebuffer arrays storing accumulated colors c(x, y), weights
w(x, y), and depth values z(x, y). We use efficient incremental computation of the
z-value and the exponent of the Gaussian kernel at each pixel.

6.1.7 RESULTS AND COMPARISON

In Figure 6.10, we illustrate the behavior of surface-splatting footprints in the image
plane in different situations. We visualize isocontours of the footprint functions at
qi(x) = 1/2. Note that the low-pass filter in the image plane always has the same shape.
It only depends on the output sampling grid, but it is independent of the mapping
function. Its variance matrix is an identity matrix, hence the visualized isocontour
is a unit circle. Under minification, as shown on the left in Figure 6.10, the foot-
print shape is dominated by the low-pass filter. Considering the variance matrix of
the resampling filter in Equation (6.35), this is intuitively clear: when the mapping is
minifying the input function, its Jacobian scales down the reconstruction filter, and
the variance matrix is dominated by the contribution of the low-pass filter. On the
other hand, the resampling filter is largely determined by the reconstruction filter
under magnification, as shown in the middle of Figure 6.10. In this case, the Jaco-
bian scales up the reconstruction filter, and the variance matrix of the resampling
filter is dominated by the enlarged reconstruction filter. Moreover, under anisotropic
minification-magnification, the Jacobian anisotropically scales the reconstruction fil-
ter, as shown on the right in Figure 6.10. The scaling guarantees that the resampling
filter is always wider than both the reconstruction and low-pass filter, so it is impos-
sible that the filter falls between samples of the output grid.
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rasterize(p[], u[], v[], inv_J[], Q[], c_new, r, c[], w[], z[]) {
x_p = p[0]/p[2];
y_p = p[1]/p[2];
Delta = Q[0,0]*Q[1,1]—*Q[0,1]*Q[1,0];
x_min = floor(x_p — r*sqrt(Q[1,1]/Delta));
x_max = ceil(x_p + r*sqrt(Q[1,1]/Delta));
y_min = floor(y_p — r*sqrt(Q[0,0]/Delta));
y_max = ceil(y_p + r*sqrt(Q[0,0]/Delta));
dzdx = u[2]*inv_J[0,0]+v[2]*inv_J[1,0];
dzdy = u[2]*inv_J[0,1]+v[2]*inv_J[1,1];
ddq = 2*Q[0,0];
dx = x_min—x_p;
epsilon = max(abs((x_max—x_min)*dzdx,abs((y_max—y_min)*dzdy)));

for(y = y_min; y <= y_max; y++) {
dy = y — y_p;
dq = 2*(dx*Q[0,0]+dy*Q[0,1]);
q = (Q[1,1]*dy+2*Q[0,1]*dx)*dy+Q[0,0]*dx*dx;
z_new = p[2]+dx*dzdx+dy*dzdy;

for(x = x_min; x< = x_max; x++) {
if(q < r*r) {
w_new = f*exp(—1/2*q);
if(z_xy < z[x,y]—epsilon) {
w[x,y] = w_new;
c[x,y] = c_new;
z[x,y] = z_new;

} else if(abs(z_new—z[x,y]) < epsilon) {
w[x,y] += w_new;
c[x,y] += c_new;
if(z_new<z[x,y]) z[x,y] = z_new;

}
}
q += dq; dq += ddq; z_xy += dzdx;

}
}

}

Figure 6.9: Pseudocode for splat rasterization.

We compare the image quality of different texture-filtering approaches in Figure 6.11.
The zebra texture has a resolution of 768 × 768 points and is rendered to an image
with 768 × 190 pixels. We first compare surface splatting to ellipse splatting, which
is based on the same splatting framework. However, ellipse splatting uses foot-
prints that are projected reconstruction kernels only (i.e., they do not include the
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Figure 6.10: The behavior of surface-splatting footprints in the image plane under mini-
fication (left), magnification (middle), and anisotropic minification-magnification (right).

low-pass filter). Because the rendered texture is not band-limited, disturbing aliasing
artifacts appear as shown in Figure 6.11b. We also compare surface splatting to bilin-
ear interpolation, which is a common approach for texturing in triangle render-
ing [WNDS99]. Similar to ellipse splatting, bilinear interpolation does not include a
low-pass filter and produces aliasing artifacts (Figure 6.11c). Trilinear interpolation,
or trilinear MIPmapping [WNDS99], improves upon bilinear interpolation by adding
a third interpolation step using prefiltered textures (so-called mipmaps). However,
prefiltering is isotropic and performed in a preprocess. In contrast, surface splatting
leads to anisotropic texture filtering. Because trilinear mipmapping filters textures
isotropically based on the worst-case direction, it exhibits overly blurred edges along
horizontal lines in Figure 6.11d.
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(a)

(b)

(c)

(d)

Figure 6.11: Image quality comparison of different texture-filtering approaches: (a) sur-
face splatting, (b) ellipse splatting, (c) bilinear interpolation, and (d ) trilinear interpolation
(mipmapping).

More results of surface splatting are shown in Figure 6.12, illustrating high-quality
texture filtering on arbitrary geometries.

6.1.8 CONCLUSION

We presented a splatting approach to point-based rendering that is based on a
signal-processing framework. This allowed us to derive a high-quality rendering algo-
rithm including anisotropic antialiasing. We achieved this by projecting reconstruc-
tion kernels to image space and analytically band-limiting each individual footprint
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(a) (b)

Figure 6.12: Surface-splatting examples: (a) Matterhorn digital elevation model with a
texture taken from a topographic map 4, 782, 011 points and (reproduced by permission
of swisstopo, BA067710), (b) cone and displacement mapped sphere with a checker-
board texture, 352, 467 points.

function. In addition, we showed how projection and low-pass filtering can be
evaluated efficiently using Gaussian kernels. We compared our results to conventional
texture mapping and demonstrated that our image quality is superior to isotropic
texture filtering, such as trilinear mipmapping. Because of its simplicity, our algo-
rithm is amenable to hardware implementation using programmable graphics pro-
cessors, which is the topic of the following section.

6.2 GPU SPLATTING

Mario Botsch and Leif Kobbelt

6.2.1 OVERVIEW

The last section introduced the fundamental surface-splatting approach, as it was
proposed in Zwicker et al. [ZPvBG01b]. The implementation of this algorithm was
purely CPU based, which on the one hand allows for high flexibility, but on the other
hand limits its performance to about 2 million splats/sec measured on a 3.0 GHz
Pentium4. To increase performance, Botsch et al. [BWK02] proposed a hierarchical
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rendering technique that is capable of up to 10 million splats/sec on the same
hardware. However, these two software-based methods put a high load on the main
CPU, which prevents it from doing other computationally expensive tasks besides
rendering.

In contrast, traditional triangle-mesh rendering is nowadays delegated completely
to the graphics hardware, since the specialized stream-processing design of current
graphics processors (GPUs) provides much higher performance compared to a CPU-
based solution. Compared to a 3.0 GHz Pentium4, which has a theoretical floating
point performance of 6 Gflops (billions of floating point operations per second),
NVIDIA GPUs increased their performance from 20 Gflops (NV35) to 53 Gflops
(NV40) and further up to 165 Gflops (G70) within three years [OLG+05]. Hence,
besides providing higher performance, the growth rate of GPUs is also faster: while
the CPU performance improves with a factor of about 1.5 per year, GPUs more than
double their performance during the same period.

However, due to the missing native support for splat primitives in today’s graphics
hardware and graphics libraries, exploiting the GPU’s hardware acceleration for
point-based rendering is not straightforward. Fortunately, GPUs became more and
more flexible during the last few years, thanks to the introduction of programmable
vertex and fragment shader units in 2001 and 2002, respectively. Moreover, the
latest GPU generation supports full floating-point precision throughout the whole
rendering pipeline, thereby allowing for high-quality rendering without discretiza-
tion artifacts. This increased flexibility finally enables the implementation of surface
splatting on the GPU, as we will show in this section.

We will first give a brief introduction to the OpenGL rendering pipeline and pro-
grammable shader models in Section 6.2.2, and afterward discuss the splat rendering
in three stages, which basically follows the description of Section 6.1. Rasterization
accounts for projecting splats into the image plane and determining the pixels covered
by them (Section 6.2.3). Shading refers to the evaluation of a lighting model—either
per splat or per pixel—combined with blending of overlapping neighboring splats
(Section 6.2.4). Antialiasing is performed by applying a combination of an object-
space reconstruction filter and a screen-space band-limiting prefilter (Section 6.2.5).

6.2.2 OPENGL AND GPU PROGRAMMING

When rendering 3D geometry into a 2D window, the underlying graphics library
performs the standard transformation, lighting, and rasterization operations that
can be found in any graphics textbook. We will focus on the OpenGL graphics
API [SWND03] because of its high availability and its independence of hardware
platforms as well as operating systems.
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The OpenGL geometry rendering pipeline is outlined in Figure 6.13. When
rendering a 3D model, the model-view transformation first maps its vertices from
model coordinates into the camera coordinate system, where the viewer is located at
the origin and looks down the negative z-axis. After performing lighting computa-
tions in camera space, the (homogeneous) projective mapping further transforms
vertices into normalized device coordinates (∈ [−1, 1]3), where clipping is done.
After dehomogenization by dividing each point by its homogeneous component,
the window-to-viewport mapping computes the vertices’ final 2D window position
(∈ [0, width − 1] × [0, height − 1]). These coordinate systems are also depicted in
Figure 6.14.

The projected primitives are then rasterized to window pixels using 2D homogeneous
coordinates. For each resulting pixel, texture mapping can be applied by computing
texture coordinates, fetching color values from textures, and combining them to the
pixel’s final color. Pixels that pass the fragment tests (scissor, stencil, alpha, and depth
test) can then optionally be alpha-blended, and their color and depth values are finally
written into the color buffer and depth buffer, respectively.

The dark boxes in Figure 6.13 depict which parts of the rendering pipeline can be cus-
tomized using vertex and fragment shaders. The input data for both kinds of shaders
consist of a small number of global read-only variables and data associated with
the currently processed vertex or fragment, respectively. The latter can, for instance,

Model-view
transform

Vertex shader

Geometry
data

Lighting

Rasterization
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Figure 6.13: Programmable shaders in the OpenGL rendering pipeline.
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Figure 6.14: Using the frustum and viewport transformations, 3D points are
mapped from camera coordinates over normalized device coordinates to 2D viewport
coordinates.

be 3D position, normal, color, or texture coordinates for a vertex, or 2D window
position, color, and texture coordinates for a fragment. In addition to that, fragment
shaders can read textures, which can therefore be used to store any kind of precom-
puted values. Notice that due to the parallel stream-processing design of GPUs each
vertex/fragment is processed individually (i.e., there is no way to access other vertices
sharing the same triangle or pixels neighboring to the current fragment).

The typical output of a vertex shader is the position after model-view and projec-
tion transformations and a color value resulting from lighting computations. There
are more optional output registers, like, for instance, texture coordinates or a point
size. Most of the output registers of a vertex shader are transferred to the input regis-
ters of fragment shaders, such that data can be passed between vertex and fragment,
for instance, by texture coordinates. The output of the fragment shader finally is the
fragment’s color and depth value.

Both vertex and fragment shaders use a rather small instruction set for their com-
putations, which is accessible through different programming languages. The most
low-level and, therefore, also the most efficient option, is assembler programs as pro-
vided by the ARB vertex program and ARB fragment program extensions. The
language Cg (“C for graphics”) provides higher-level shader programming
[FK03, MGAK03], as does the OpenGL shading language (GLSL) [Ros04], which
should be an integral part of any OpenGL implementation from version 2.0 on.

Performance Considerations
One of the reasons for employing point-based rendering techniques is the huge com-
plexity of today’s massive datasets, for instance, like those acquired by laser range
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scanning [LPC+00]. Such models easily contain several millions of triangles, which,
when projected onto the image plane, may cover only a few pixels. Because the rather
expensive triangle-rasterization setup does not pay off for pixel-sized triangles, ren-
dering massive triangle meshes becomes inefficient, such that in this case points (or
splats) seem to be the conceptually more suitable rendering primitive. However, also
when rendering complex point-based datasets, the following OpenGL performance
optimization techniques should be taken into account.

• Interleaved vertex arrays: In order to minimize the number of function calls of
the OpenGL API, the splat data (positions pi, normals ni, colors ci, radii ri,
etc.) should be stored in one large array. By this all the splats can be rendered
using just one call of glDrawArrays(). For better memory coherence the data
should additionally be arranged in an interleaved manner (i.e., in an array of
the form [p1, n1, c1, r1, p2, n2, c2, r2, . . . ]).

• Vertex buffer objects: In each frame all the splat data have to be transferred to
the GPU, which can easily become the performance bottleneck when rendering
massive models. In many situations these data are static, such that the can be
stored in the GPU’s efficient video memory. This functionality can be accessed
by the ARB vertex buffer object extension and effectively reduces data
transfer costs.

• Quantization: In order to reduce the consumption of GPU memory and to fur-
ther decrease transfer costs, the splat data should be stored in a compact for-
mat. A simple and transparent quantization method is to represent values of
bounded absolute value (like normal vectors) by 16-bit floating point numbers
on GPUs supporting this feature (NV half float), and colors by 4 bytes for
RGBA.

• Backface culling: For surface splats representing a closed 3D model, backfacing
splats can safely be discarded from rendering since they are always occluded
by front-facing surface parts. This can save rasterization and shading compu-
tations for about 40–50% of the splats. Backfacing splats can be detected in a
vertex shader based on the angle between their normal and the viewing ray,
and they are discarded by assigning them a homogeneous position at infinity
(w = 0).

• Precomputed lighting: Since lighting computations are performed for each splat,
they can also become too expensive if several light sources are used. A com-
mon simplification is to restrict to directional light sources and neglect the
viewer’s local position, such that the lighting no longer depends on posi-
tional information and hence becomes a function of surface normals only. For
static light sources this function can be precomputed and stored in a cubi-
cal texture map, such that complex lighting computations simplify to texture
fetches.
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• Shading language: While high-level shading languages are definitely more
convenient to use, low-level assembler-like shader programs obviously are more
efficient. Experiments showed that this performance gap can be quite signifi-
cant (a factor of about 2–5), which might partially also be due to the immatu-
rity of current drivers’ GLSL support. An alternative can be using Cg for shader
design, followed by a manual optimization of the Cg compiler’s output.

These general performance optimization techniques apply to all the splat-rendering
approaches discussed in the following, no matter how splats are represented,
rasterized, or shaded.

6.2.3 SPLAT RASTERIZATION

The first step in splat rendering is splat rasterization (i.e., determining which image
pixels are covered by the projected splats). Since there is no native support for splat
primitives in current graphics libraries, splats have to be represented by other drawing
primitives like points or triangles.

Polygonal Splats
The first option is to represent each splat by a triangle onto which a special elliptical
alpha-texture is mapped, such that each pixel within the splat ellipse is assigned a
positive alpha value and all fragments outside the splat are assigned a zero alpha
value. The OpenGL alpha test can then be used to efficiently discard all fragments
that do not belong to the splat (see Figure 6.15). This technique was used, for
instance, in Ren et al. and Pajarola et al. [RPZ02, PSG04]. Its obvious advantage
is that it requires very basic OpenGL functionality only (rendering of textured
triangles), which simplifies implementation and runs on older graphics hardware.

Texture

Mapping

Alpha

Test

Figure 6.15: Splats can be rasterized by mapping an elliptical alpha-texture onto a
triangle and setting up the alpha test to discard all fragments that do not belong to the
splat’s interior.
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Notice, however, that the number of triangle vertices to be stored and processed is
three times the number of splats in the model. When vertex arrays are to be used
for performance reasons (Section 6.2.2), all the data associated with each splat (nor-
mal, color, etc.) have to be attached to each of its three triangle vertices, such that the
total memory consumption is tripled. Since the original motivation for rendering
points instead of triangles was the inefficient triangle setup for large datasets, render-
ing splats as textured triangles should usually not be considered efficient, neither in
terms of memory consumption nor in terms of rendering performance.

Image-aligned Squares
For higher efficiency and more compact storage, splats should be rendered using one
OpenGL point for each splat only, in other words, by using

glDrawArrays(GL POINTS, &splats[0], splats.size());

As shortly mentioned in Section 6.2.2, an optional output of vertex shaders is the
point size, which, when set to s, causes an s × s image-space square to be rasterized,
centered at the current vertex’s projected position. Instead of squares, image-aligned
disks can be rendered by enabling point smoothing and alpha test:

glEnable(GL POINT SMOOTH);
glEnable(GL ALPHA TEST);
glAlphaFunc(GL GREATER, 0.5);

The screen-space size of the projected OpenGL point has to be adjusted in a vertex
shader to ensure that neighboring splats overlap in image space, such that a hole-
free rendering is guaranteed. The complicated exact projected splat size [ZRB+04]
is efficiently approximated by perspectively foreshortening the larger of the splat’s
ellipse radii r using the depth value of the splat center p in camera coordinates:

s = 2r · n

pz
· h

t − b
, (6.47)

where n, t, and b are the near/top/bottom parameters of the viewing frustum and h
denotes the height (in pixels) of the viewport (see Figure 6.14). In this formula the
term n/z corresponds to the projection onto the near plane, and h/(t − b) scales the
result from the near plane to image coordinates.

This simple splat-rasterization method was used in Dachsbacher et al. [DVS03],
since it is extremely efficient and allows for splat rates of about 80 million splats/sec
on current GPUs. On the downside, image-aligned squares or disks yield a rather
poor approximation of the exact projected splat’s shape, especially near the object’s
contour. Additionally, this method is not suitable for high-quality shading, because
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all pixels generated from one splat have the same depth value, which prevents correct
blending of overlapping splats (see Section 6.2.4).

Affinely Projected Point Sprites
A better approximation to the elliptical projected splat shape in the case of circular
object-space splats was presented in Botsch and Kobbelt [BK03]. One also starts by
adjusting the point size in a vertex shader in order to render image-space squares.
But in addition to the last method, for each of the squares’ pixels a fragment shader
determines whether or not it corresponds to the projection of a point inside or out-
side of the splat. Pixels outside the splat are then simply discarded using either the
alpha test or the KILL shader command, resulting in an elliptical splat rasterization
(see Figure 6.16).

The ARB point sprite extension can be used to achieve a parameterization of the
screen-space square over [−r, r]2, with r being the splat radius. For each of its pixels
(x, y) ∈ [−r, r]2, a depth offset δz from the splat center p can be computed as a linear

function depending on the camera-space normal vector n =
(

nx, ny, nz

)T
:

δz = −nx

nz
· x − ny

nz
· y. (6.48)

This depth offset can then be used to compute the 3D distance from the splat center:
the pixel (x, y) corresponds to a point inside the splat if

∥∥(x, y, δz)
∥∥ ≤ r.

One drawback of simple image-aligned points was the constant depth value per splat,
which prevents correct occlusion and causes blending artifacts. Hence, the depth

Figure 6.16: Adjusting the point size results in image-aligned squares to be rendered
at the splat’s center position (left). Computing the elliptical splat shape by an affine
approximation to the projection leads to much better rendering, especially at the object’s
contours (right).
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F igure 6.17: Local affine approximations to the projective mapping can cause holes for extreme viewing angles
(center ). These holes can be closed either by an affine approximation that correctly maps the outer splat contour or
by perspectively correct per-pixel ray casting (right).

offset δz should also be used to correct the pixel’s depth value. Starting from the
adjusted camera-space depth value z′ : = pz + δz, the frustum and viewport transfor-
mations yield the window-space depth buffer entry

zbuffer (x, y) =
1

z ′
· fn

f − n
+

f

f − n
. (6.49)

Compared to simple image-space squares or disks, the point-sprite method provides a
much better approximation, especially noticeable at object contours (see Figure 6.16).
However, notice that the depth offset δz is just an approximation, since it assumes a
parallel projection in Equation (6.48), neglecting the angle between the viewing ray
and the splat normal. This causes ellipses to become too thin when viewed under a flat
angle, which might result in holes in the rendered image (see Figure 6.17).

Perspectively Correct Rasterization
The affine approximations to the splat projection used in the original EWA splatting
[ZPvBG01b] and in the point-sprite approach [BK03] correctly transform the splat
center, but not its outer contour, which can cause small holes in the rendered image.
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The first approach proposed to handle these inaccuracies was the perspective accurate
splatting of Zwicker et al. [ZRB+04]. They switched to an affine approximation that
in contrast correctly transforms the outer contour of the splat, but has projective
errors in the splat’s interior. As Gaussians are closed under affine mappings, the use
of local affine approximations enables the full EWA-filtering framework as described
in Section 6.1. The drawback of this approach is its high computational complexity,
which limits rendering performance to about 6 million splats/sec.

A more efficient and perspectively correct rasterization technique was presented in
Botsch et al. [BSK04]. The main idea of this approach is to determine the 3D point
corresponding to a 2D pixel based on local ray casting. As another advantage over
point sprites besides the perspective correctness, this method also handles object-
space elliptical splats. A splat si is, therefore, represented by a center pi and two
orthogonal axes ui and vi, which are scaled according to their respective ellipse radii,
such that splats can be represented by their local coordinates (u, v):

si =
{

pi + u ui + v vi | u2 + v2 ≤ 1
}

. (6.50)

The elliptical splats si are again rendered using GL POINTS, and the larger of the
ellipse radii ri : = max {‖ui‖ , ‖vi‖} is used to compute the point size in a vertex
shader as described in the last subsections. Then, for each pixel (x, y) the exact cor-
responding 3D point q is computed by a local ray casting as described below. From
this point q the local parameters (u, v) are computed, and the pixel is rendered or
discarded if u2 + v2 ≤ 1 or > 1, respectively.

Looking at the OpenGL transformation pipeline in Figure 6.14, the first step in com-
puting q is to invert the window-to-viewport transformation, thereby mapping the
pixel (x, y) to a 3D point qn on the near plane:

qn =




x · r−l
w − r−l

2

y · t−b
h
− t−b

2

−n


 , (6.51)

where b/t/l/r are the bottom/top/left/right parameters of the viewing frustum, and
w/h denote the width/height of the viewport (see Figure 6.18).

Casting a ray from the origin (the eye) through the point qn and intersecting it with
the splat’s supporting plane yield the corresponding point q as the solution of the
3 × 3 system:

q = λqn = pi + u ui + v vi. (6.52)
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Figure 6.18: Splat projection and ray casting.

Using Cramer’s rule, computing the free parameters u, v, and λ simplifies to

λ = pT
i (ui × vi) / qT

n (ui × vi) ,

u = qT
n (pi × −vi) / qT

n (ui × vi) ,

v = qT
n (−ui × pi) / qT

n (ui × vi) ,

(6.53)

where all terms except qn do not depend on the current pixel (x, y), but are constant
per splat, and thus can be precomputed in the vertex shader.

Based on the local parameters, the pixel is discarded if u2 + v2 > 1. Otherwise, its
depth value is adjusted by inserting qz as z ′ in Equation (6.49). Since the 3D point q is
the exact preimage of the projective transform, this approach is actually perspectively
correct for each pixel.

6.2.4 SPLAT SHADING

After determining the pixels that are covered by the projected splats in the rasteri-
zation stage, the second step in splat rendering involves the lighting and shading of
surface splats.

Flat Shading
Since each splat is equipped with a normal vector (or with tangent axes from which a
normal can be computed), for given material and reflectance properties a local light-
ing model can be evaluated on a per-splat basis. This results in a constant color ci
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for each splat, similar to flat shading for polygonal meshes. However, since splats
correspond to a C−1 surface representation, and since neighboring splats mutually
intersect each other, simple flat shading leads to undesired shading discontinuities
(see Figure 6.19, center left).

Gouraud Shading
To achieve a smoother rendering, the shading discontinuities can be blurred by
Gaussian blending of the color values ci of neighboring overlapping splats (see
Section 6.1). Since lighting computations are still performed on a per-splat basis,
this blending of colors conceptually corresponds to Gouraud shading for polygonal
meshes (see Figure 6.19, center right).

To implement this kind of blending, each splat si is associated with a circular or ellip-
tical Gaussian weight function—the object-space reconstruction kernel ri (·). Dur-
ing rasterization the value of the projected reconstruction kernel ri

′ (x, y) at the pixel
(x, y) is computed based on the distance of the corresponding 3D point to the splat
center pi, or based on the local splat coordinates, leading to

Figure 6.19: The same torso dataset of 3,000 splats (left) rendered using flat shading (center left), Gouraud shading
(center right), and Phong shading (right).
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ri
′ (x, y) = ri

(∥∥x, y, δz
∥∥) (6.54)

for the point-sprite approach, and to

ri
′ (x, y) = ri

(√
u2 + v2

)
(6.55)

for the perspective correct ray casting. The final color value for pixel (x, y) is the
weighted average over all splats covering this pixel:

c (x, y) =

∑
i ri
′ (x, y) ci∑

i ri
′ (x, y)

. (6.56)

This per-pixel averaging can be implemented in OpenGL using two render passes.
First, additive alpha-blending is configured with separate blend functions for RBG
and alpha components (EXT blend func separate) by

glEnable(GL BLEND);
glBlendFuncSeparateEXT(GL SRC ALPHA, GL ONE, GL ONE, GL ONE);

Rendering the surface splats will then accumulate color values and weights in the RBG
and alpha components of the framebuffer as

(∑
i ri
′ ci ,

∑
i ri
′). For the final nor-

malization each pixel’s RBG components, therefore, have to be divided by its alpha
component. This can be achieved by binding the result of the first render pass as a
texture and rendering a window-sized rectangle with this texture mapped onto it.
This trick sends each pixel through the OpenGL pipeline again, such that a simple
fragment shader can perform the required per-pixel normalization, as proposed in
Botsch and Kobbelt and Guennebaud and Paulin [BK03, GP03]. If supported by the
GPU, this accumulation should be performed using floating-point render buffers and
floating-point textures in order to avoid color saturation and discretization artifacts
[BHZK05].

The missing component is a technique to restrict the blending to overlapping
neighboring splats belonging to the same surface sheet. The custom ε-depth test
employed in the CPU-based software renderer of Zwicker et al. [ZPvBG01b] has to
be simulated by another rendering pass, the so-called visibility splatting [RL00]. For
each frame, the visibility pass first renders the splats into the depth buffer only. Then
the blending pass renders all splats again, but this time computes lighting and accu-
mulates the resulting colors values using the additive alpha-blending as described
above. Notice that this pass does not update the z-buffer from the visibility pass and
adds a small offset ε to the fragments’ depth values, which causes all splats within an
ε-depth distance to be blended. The final normalization pass performs the required
division by the alpha component as described above. The results of the three render
passes are depicted in Figure 6.20, pseudocode is given in Figure 6.21.
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Figure 6.20: The three-pass splat blending using visibility splatting, blending, and normalization render passes.

// visibility splatting pass
glDepthMask(GL_TRUE);
glDisable(GL_BLEND);
bind_visibility_shaders();
glDrawArrays(GL_POINTS, &splats[0], splats.size());

// blending pass
glDepthMask(GL_FALSE);
glEnable(GL_BLEND);
bind_blending_shaders();
glDrawArrays(GL_POINTS, &splats[0], splats.size());

// normalization pass
glCopyTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, 0, 0, 0, 0, w, h);
bind_normalization_shaders();
draw_rectangle();

Figure 6.21: Pseudocode for the three-pass splat blending.

Phong Splatting
When comparing the different shading techniques in Figure 6.19, Gouraud shading
successfully removes the unwanted discontinuities of flat shading, but it also blurs
the image noticeably. For the rendering of triangle meshes it is well known that per-
pixel Phong shading yields results superior to Gouraud shading. Instead of computing
lighting for each vertex and linearly interpolating the resulting color values within
triangles, Phong shading interpolates vertex normals, followed by a per-pixel lighting
based on the resulting piecewise linear normal field.
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Hence, the key technique for high-quality point-based rendering is per-pixel Phong
shading for surface splats [ZPvBG01b, KV01, KV03a, BSK04]. But since the missing
connectivity information does not allow an interpolation of neighboring splats’ nor-
mal vectors in object-space, the piecewise linear normal field has to be constructed
in another way.

The Phong splatting approach of Botsch et al. [BSK04] explicitly assigns a linear
normal field ni (u, v) to each splat si instead of keeping its associated normal
vector constant. During (perspectively correct) rasterization, the normal field is
evaluated at each pixel based on the local splat parameters (u, v), and the normal
vector ni (u, v) is used for lighting computations. Since the resulting color values
ci (u, v) are still discontinuous between neighboring splats, they are accumulated
and blended using the same three-pass rendering technique as for Gouraud shad-
ing. The remaining question is how to compute the splats’ linear normal fields
ni (u, v).

The raw input data for a splat-based model usually is a set of surface samples p̂j with
associated normal vectors n̂j. Surface splats are then generated by least squares fitting
of ellipses (defined by centers pi and tangents ui, vi) to a small subset of sample points
p̂j ∈ Pi each, where Pi typically either consists of the sample p̂i and its k-nearest
neighbors or is constructed by a splat subsampling process (see Section 4.3).

In an analogous way the linear normal field ni (u, v) of the splat si is derived by a
least squares fitting to the sample normals n̂j associated with p̂j ∈ Pi. The normal
field is specified by a center normal n̄i and two scalar values αi and βi, such that the
(unnormalized) normal of a point q ∈ si with local parameters (u, v) is

ni (u, v) = n̄i + u αi ui + v βi vi (6.57)

i.e., the center normal is tilted along the tangential directions. Due to this construc-
tion the method works best if the tangential directions are roughly aligned to the
directions of minimum and maximum normal deviation of the sample normals
n̂j, i.e., to the principal curvature directions. If this is not already provided by the
geometry-fitting scheme, the directions ui and vi can be estimated by the eigenvec-
tors corresponding to the two smaller eigenvalues of the covariance matrix of sample
normals

∑
j n̂j n̂T

j .

For the normal fitting the sample normals n̂j are represented w.r.t. the local frame
spanned by the splat’s tangents (ui, vi) and its normal (uj × vj). Analogous to the
normal tilting of Equation (6.57), the third local frame coordinate of n̂j is set to 1,
such that each normal is actually represented by a point (x, y) on an offset tangent
plane with distance 1, similar to homogeneous coordinates (Figure 6.22).
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Figure 6.22: Normal vectors n are represented as homogeneous points (x, y, 1) on an
offset tangent plane.

If the center normal n̄i is represented by (x̄i, ȳi), and if (uj, vj) denote the parameter
values of the sample p̂j and (xj, yj) its local frame normal vector, then the normal
fitting can be written as a set of linear equations

(
x̄i

ȳi

)
+

(
uj αi

vj βi

)
=

(
xj

yj

)
∀p̂j ∈ Pi, (6.58)

which are solved for x̄i, ȳi, αi, and βi in the least squares sense. Since in the above
equations the x and y components are uncoupled, they can be further simplified to
the solution of two 2 × 2 linear systems:




|Pi|

∑
j uj

∑
j uj
∑

j u2
j








x̄i

αi



 =




∑

j xj

∑
j xj uj



 , (6.59)

and




|Pi|

∑
j vj

∑
j vj
∑

j v2
j








ȳi

βi



 =




∑

j yj

∑
j yj vj



 , (6.60)

where the summation is done over all p̂j ∈ Pi. The result of this fitting process is the
desired linear normal field ni (u, v), defined by center normal n̄i and two scalars αi

and βi.
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Phong splatting using precomputed normal fields yields a rendering quality that is
clearly superior to Gouraud shading due to reduced blurring and sharper highlights
(see Figures 6.19 and 6.23). Although additional normal fields have to be stored per
splat, the ratio of memory consumption to rendering quality is still improved by
Phong splatting, since it allows for high-quality shading even for very coarse models,
as long as the normal fields have been derived from dense point samples (like in splat
simplification, Section 4.3).

The main drawback of Phong splatting is the explicit precomputation of normal
fields, which works well for static geometries, but is not applicable when datasets are
dynamically deformed or resampled, like, for instance, in a shape-modeling applica-
tion (see Section 5.3).

Deferred Shading
There are basically two options to generate smoothly interpolated per-pixel normal
vectors. The first is the Phong splatting approach with its precomputed linear nor-
mal fields [BSK04], as discussed in the previous subsection. The second approach for
normal interpolation was proposed for the CPU-based EWA splatting [ZPvBG01b].
Instead of color values, normal vectors and material properties are splatted into
the framebuffer. This smoothly averages normals and colors of overlapping splats
over the pixels they cover, with weights depending on the respective EWA filter
kernels. In a final pass, deferred lighting is performed for each image pixel, based on

Figure 6.23: Comparison of Gouraud splatting (top closeup) and Phong splatting
(bottom closeup) for the chameleon model consisting of 100,000 splats.
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accumulated normal vectors and surface materials. The advantage of this approach
over Phong splatting is that it also works for dynamically changing geometries.

Recent GPU generations provide all the hardware features required to implement this
approach on the GPU. For instance, NVIDIA’s NV40 GPU provides floating point
precision at all necessary stages of the rendering pipeline (i.e., for shader arithmetic,
alpha-blending, textures, and render targets). In combination with multiple render
targets (ARB DRAW BUFFERS), which allow us to output up to four different RGBA
color values within a single rendering pass, these features enable the implementation
of accurate per-pixel deferred shading in the context of surface splatting, as demon-
strated in Botsch et al. [BHZK05].

After the visibility pass (see Figure 6.24, left), two render targets are used to splat and
accumulate normal vectors and material properties during the so-called attribute pass
(see Figure 6.24, center). The rasterization pixel shader performs the computations
outlined in Section 6.2.2, but instead of shading each accepted pixel, its (weighted)
normal vector and color value are written to the two render targets. These buffers and
the depth buffer are then used as textures for the normalization and shading pass, for
which a window-size rectangle is rendered to send each pixel through the OpenGL
pipeline again.

The shading pass (see Figure 6.24, right) corresponds to the normalization pass of
Gouraud shading, but it additionally performs per-pixel lighting computations. For
each pixel, an averaged normal and color can be computed by fetching the accu-
mulated values from the textures and normalizing them. From the depth texture,
the corresponding 3D position can be derived by inverting the viewing and projec-
tion mappings (see Figure 6.14). Having position, normal, and color information

Visibility
Splatting

Attribute
Blending

Normalization
Deferred Shading

Figure 6.24: The deferred shading approach splats and accumulates surface attributes
like colors and normals, followed by a normalization and shading pass.
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at hand then enables deferred per-pixel shading computations [DWS+88]. The
resulting Phong splatting again clearly improves the rendering quality over Gouraud
shading.

Notice that lighting computations are performed only once for each pixel of the
projected object. In contrast, nondeferred approaches incorporate lighting compu-
tations into the splat-rasterization process and perform a per-pixel blending of the
resulting colors instead. Due to the required mutual overlap of individual splats, this
multiplies the number of lighting computations by a factor of about 6–10 for typical
splat datasets.

Depending on the complexity of the employed shaders, saving these unnecessary
lighting computations yields noticeable performance improvements. The perfor-
mance of the deferred shading approach is in fact almost independent of the actual
surface shading. Incorporating more complex lighting computations into the raster-
ization pixel shader would in contrast significantly slow down the rendering, since
profiling tests indicate that the pixel stage is the bottleneck of the splat rendering.

In addition to this, deferred shading also provides a clear separation between the
splat rasterization process and the actual surface lighting or shading computations.
This greatly simplifies the development of custom shaders, as the carefully optimized
pixel shader for splat rasterization (Section 6.2.2) is left untouched. The deferred
shading approach thus allows for a simple yet highly efficient implementation of cus-
tom shaders, of which Figure 6.25 shows several examples.

Figure 6.25: From left to right : The Phong-shaded octopus model, the NPR-shaded renderings of the dinosaur
model, the Igea artifact, and the massive Lucy dataset from Botsch et al. [BHZK05]. All models are rendered with
shadow mapping enabled and hence require one additional visibility rendering pass for the shadow-map generation.
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Another important point to be considered is the precision of the render targets.
A standard framebuffer offers eight bits for each of the four RGBA components,
which as an additional constraint are clamped to [0, 1]. This leads to the frequently
observed shading artifacts due to color saturation or discretization artifacts. Recent
GPUs support the use of unclamped floating point values for render targets, which
effectively avoids these problems. This is especially important since in addition to
colors normal vectors also are accumulated, where noise due to discretization would
immediately lead to shading artifacts.

6.2.5 ANTIALIASING

In the original EWA surface splatting [ZPvBG01b], two components are mainly
responsible for high visual quality: per-pixel Phong splatting, which can be mapped
to the GPU as shown in the last section, and anisotropic antialiasing provided by the
EWA filter. It should be obvious that using no antialiasing technique at all, like in the
case of simple flat shading, results in severe aliasing artifacts, which is clearly depicted
in Figure 6.26, top left.

The EWA filter as described in Section 6.1 is composed of the projection r′i (x, y)
of the object-space reconstruction kernel ri (u, v) and a band-limiting screen-space

Figure 6.26: Without any filtering, both magnified and minified regions exhibit aliasing (top left). The object-space
reconstruction filter alone cannot avoid aliasing in minification regions (top right). FSAA reduces aliasing to some
degree, but the super-sampled image might still contain sampling artifacts (bottom left). The approximate EWA filter
band-limits the signal before it is sampled and successfully removes the aliasing problems (bottom right).
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prefilter h (x, y). As the required convolution is computationally quite involved, many
rendering approaches simply omit the screen-space filter and use the reconstruction
kernel only. However, while this technique successfully removes aliasing in magni-
fied regions, it cannot prevent aliasing in the case of minification when the size of
projected splats falls below one pixel (see Figure 6.26, top right).

An appealing idea might be to diminish aliasing artifacts by full-screen antialiasing
(FSAA), which is supported by any modern GPU. In general, FSAA redirects render-
ing to a higher resolution framebuffer in order to super-sample the image signal, and
then down-filters this buffer to the actual framebuffer resolution. However, even the
higher-resolution super-sampling buffer might suffer from aliasing, in which case a
high-resolution aliased image will be down-scaled to the framebuffer. The resulting
image will still contain alias artifacts, which are just shifted to a higher frequency
band (see Figure 6.26, bottom left).

In [BHZK05], Botsch et al. proposed a simple and efficient approximation of the
EWA filter. The footprint weight ρi (x, y) is computed as the maximum of the pro-
jected reconstruction filter r′i (x, y) and the prefilter h (x, y), instead of by a convolu-
tion of the two filters. For a pixel (x, y) the fragment shader computes a 3D radius

r3 (x, y) =
√

u2 + v2, corresponding to the 3D distance from the splat center (see
Section 6.2.3) and the (normalized) 2D distance r2 (x, y) to the projected splat center.
A given fragment is accepted if it lies within the union of the screen-space prefilter
and the projected reconstruction filter (see Figure 6.27); i.e., if

min
{

r2 (x, y) , r3 (x, y)
} ≤ 1, (6.61)

and its final footprint weight is computed as

ρi (x, y) = Gauss
(

min
{

r2 (x, y), r3 (x, y)
})

(6.62)

ρi (x, y) = max
{

r′i (x, y), h (x, y)
}

. (6.63)

This approximation to the EWA filter provides high-quality antialiasing in magni-
fied and minified regions (see Figure 6.26, bottom right). Its results are comparable
to those of the exact EWA filter, but in contrast the approximation is considerably
easier to compute. If the projected splat center is passed from the vertex shader to
the pixel shader, the screen-space filter requires a few additional instructions only
(Figure 6.27).

Notice that for this approach the minimum size of projected splats has to be bounded
to be at least 2 × 2 pixels in order to generate enough fragments for antialiasing
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Figure 6.27: Comparison of the original EWA filter and its approximation. In the left
column, three typical configurations of screen-size ratios between the projected recon-
struction filter and the screen-space filter are shown. The right column compares the
contours of the combined filter kernels.

purposes. This size restriction can easily be incorporated into the vertex shader.
Limiting the minimal projected splat size obviously generates more fragments, which
increases the average number of fragments contributing to each image pixel to about
15–30 for complex models with small projected splat sizes. As a consequence, the
acceleration offered by the deferred shading approach (Section 6.2.3) is even more
attractive in this case.

6.2.6 COMPARISON

The last section proposed several techniques for the three main components of a
GPU-accelerated surface-splatting system (i.e., rasterization, shading, and antialias-
ing). In order to compare complexity and performance of these methods, some
selected approaches are classified in Table 6.1.
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Table 6.1:

Rasterization Shading Antialiasing Splats/sec
EWA splatting [ZPvBG01b] Affine Deferred EWA 2M

Image-space squares — Flat — 83M

Point sprites [BK03] Affine Gouraud Object-space 27M

Persp. Accurate [ZRB+04] Accurate Gouraud EWA 5M

Phong splatting [BSK04] Correct Phong Object-space 6M

Deferred shading [BHZK05] Correct Deferred Approximate EWA 23M

The rendering performances were determined by rendering several point-based mod-
els with complexities ranging from 150,000 to 14,000,000 splats into a 512 × 512
window, using a 3.0GHz Pentium4 equipped with a NVIDIA GeForce 6800 Ultra
GPU. The performance for each model was computed based on three full 360◦ rota-
tions around the three coordinate axes in steps of 5◦, and the values given in Table 6.1
represent the averaged timings over all models. Notice that the GPU-based methods
exploit all the performance-optimization techniques described in Section 6.2.1 except
for quantization, and the shaders are implemented as ARB-assembler programs.

The deferred shading approach proposed in Botsch et al. [BHZK05] seems to rep-
resent the best trade-off between performance and rendering quality. Thanks to
the combination of perspectively correct rasterization, flexible and efficient deferred
shading, and approximate EWA filtering, this method yields the highest visual qual-
ity. At the same time this technique is almost as efficient as the high-performance but
midquality point-sprite approach.

6.2.7 CONCLUSION

The steadily increasing performance and programmability of modern graphics
hardware allow for efficient implementation of high-quality surface splatting. How-
ever, a major drawback is the need for the extra visibility splatting pass, which is caused
by the missing programmability of the depth test. As a consequence, since the splat
geometry has to be rendered twice, this effectively halves the rendering performance.

The deferred shading approach of Botsch et al. [BHZK05] has been implemented as
a Pointshop3D plug-in and can be found on the Pointshop 3D Web site.
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6.3 RAY TRACING OF POINT MODELS

Bart Adams and Anders Adamson

6.3.1 OVERVIEW

As discussed in the previous section, surface splatting has reached a mature state and
it is the preferred algorithm to interactively render point-sampled objects. Although
the state-of-the-art GPU algorithms produce high-quality images thanks to Phong
splatting and EWA antialiasing, more advanced shading effects such as shadows,
reflections, refractions, or even global illumination are hard to achieve. Also, sur-
face splatting becomes costly for complex models consisting of millions of splats. In
that sense, surface splatting can be compared to triangle rasterization, and thus shares
many of its advantages and disadvantages [WS05].

With the upcome of physics-based animation algorithms that employ point-sampled
surface representations (e.g., fracture (Section 7.2) or fluid (Section 7.3) animation),
there is a high demand for realistic image synthesis from point clouds using the
aforementioned complex shading effects. Computing these global effects eventually
requires ray tracing (see [Gla89] and [Shi00] for good introductions) (i.e., one should
be able to intersect a ray with the point-sampled surface in a consistent way).

One way to proceed could be to use the collection of splats as surface representa-
tion and intersect rays with the ellipses. The resulting surface is C−1 continuous
and piecewise linear, which causes severe artifacts especially under complex lighting
situations: the discontinuities are not only visible at the silhouettes, but they are also
magnified by shadows cast; the planar patches lead to obvious distortions of specular
reflections, and so on. Schaufler and Jensen [SJ00] overcome these problems by inter-
secting a cylinder around the ray with the splats and then computing the intersection
as a weighted average of splats whose centers are inside the cylinder. Although this
approach produces high-quality images, the resulting geometry depends on the par-
ticular rays used for intersecting the surface. Therefore, their ray-surface intersection
algorithm does not define a consistent surface. This can be problematic, for example,
when rendering subsequent frames of an animation sequence.

In Section 4.2 different variants of C∞ surface definitions were discussed. The most
popular one for ray-tracing point models is the definition of Adamson and Alexa
[AA03a, AA04a]. This implicit surface definition is consistent and it can be shown
to define smooth manifold surfaces from point clouds if certain natural sampling
criteria are fulfilled [AA03a]. Due to these properties and its ease of implementation,
several researchers have used this definition for ray-tracing point models [AA03a,
AA04a, WS05, AKP+05]. See Figure 6.28 for an example.
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F igure 6.28: Ray tracings of point models acquired with a structured-light scanner.
Both models are defined by approximately 200,000 points. Images taken from Adamson
and Alexa [AA03a].

In this section, the basic ray-surface intersection algorithm based on this surface def-
inition will be discussed. Together, we introduce extensions to handle sharp features
such as edges and corners and bounded, nonorientable surfaces. Custom-tailored
data structures are given together with various optimizations for static point clouds
as well as free-form deforming point-sampled surfaces. We conclude the section with
tips to efficiently implement the proposed algorithms.

6.3.2 RAY-SURFACE INTERSECTION ALGORITHM

Surface Definition
Given a set of pointsP = {pi ∈ R

3}, i ∈ {1, . . . , N}, sampled from a surface S , define
the neighborhood of P as the union of a set of balls centered at the points pi:

B =
⋃

i

Bi, Bi = {x | ‖x − pi‖ < rB, x ∈ R
3}. (6.64)

It is assumed thatB contains the surfaceS as well as the approximation Ŝ that will be
defined. For the approximation two functions will be defined on the neighborhood:
the weighted average and the normal direction. The weighted average a : B → B
maps each point x onto the weighted average of the contributing points. The normal
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direction n : B → R
3 assigns each point in the neighborhood of the points a normal.

Then, the approximating surface Ŝ is defined as

Ŝ = {x ∈ B | f (x) = n(x)T(x − a(x)) = 0}. (6.65)

As in most cases the points pi are equipped with normals ni, a commonly used defi-
nition of a and n is:

a(x) =

∑N
i=1 θ(‖x − pi‖/h)pi
∑N

i=1 θ(‖x − pi‖/h)
, n(x) =

∑N
i=1 θ(‖x − pi‖/h)ni

‖∑N
i=1 θ(‖x − pi‖/h)ni‖

, (6.66)

with h the support radius of the points. In the case the points do not carry surface
normals, one could either first compute per-point normals as discussed in Section 4.2
or define a different mapping n based on the weighted covariance directions in x as
discussed in Adamson and Alexa [AA03a].

Note that the summation is over all N points, but in practical implementations com-
pactly supported weight functions θ : R → R are used and, therefore, the summation
is limited to the neighborhood of the point x. Weight functions should be smooth,
positive, and monotonically decreasing (have negative first derivatives).

If compactly supported functions are used, θmust return zero at distance h, the radius
of support, in order to avoid discontinuities. Otherwise, a point sample entering the
radius of support would immediately contribute to both a(x) and n(x). To further
increase smoothness, it is desirable to have at least a zero first derivative at distance h.

A possible choice is to use a truncated Gaussian (Figure 6.29a):

θg(r) = θg(‖x − pi‖/h) =

{
e
− r2

σ2 if r < 1,

0 if r ≥ 1,
(6.67)

with σ a scaling parameter to ensure that the weights vanish sufficiently when
approaching r = 1 (typically, σ is taken in the range 0.2− 0.4). Note also that all
the higher-order derivatives get close to zero.

In practice the Gaussian is approximated by polynomial functions. A popular choice
is the compactly supported Wendland function (Figure 6.29b):

θw(r) = θw(‖x − pi‖/h) =

{
(1 − r)4(4r + 1) if r < 1,

0 if r ≥ 1.
(6.68)

Here, the first three derivatives of θw yield zero at distance h. The computation
requires only one addition, one subtraction, and four multiplications, which can be
performed more efficiently than evaluating θg.
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Figure 6.29: Weight functions. (a) truncated Gaussian θg (Equation 6.67, σ = 0.378);
θg(1.0) = 0.00091, θ′g(1.0) = −0.0127. For more accurate results a smaller σ has to be
chosen. (b) Wendland function θw (Equation 6.68); θw and its first three derivatives yield
zero at r = 1.

Remark 1 At first sight it seems that the function n defines the surface normal for
points x ∈ S . Alexa and Adamson [AA04b] prove, however, that in general this is
not true. They show how to compute exact surface normals analytically from the
implicit surface definition and it is shown that the exact surface normals in general
differ from n. However, the difference is very small and in practice people avoid the
computational complexity to compute exact surface normals and use n instead for
shading computations.

Remark 2 If points carry additional attributes such as color, similar formulas as
Equation (6.66) can be used to define the respective attributes at the surface.

Remark 3 Other surface definitions (such as Levin’s MLS surface definition, for
example [Lev98, Lev03]), could be used as well for ray-tracing point clouds. Often
these surface definitions include a polynomial fitting step and might, therefore, be
more robust in the presence of noise. In this section we will use the aforementioned
surface definition. However, most of the discussions can be easily generalized to apply
to other variants. We refer to Section 4.2 for more details on alternative point-based
surface definitions.

Ray-surface Intersections
Computing ray-surface intersections amounts to finding points on the ray where the
function f (x) as defined in Equation (6.65) evaluates to zero. We propose three alter-
natives for finding such points on the ray. All alternatives proceed in two steps. In a
first step, an initial guess or starting point r0 is computed. This point r0 is supposed
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to be close to the surface Ŝ . In a next step, starting from this point r0, the actual
intersection of the ray with the surface is constructed using, for example, an iterative
procedure.

We first describe how to find the initial starting point r0, before describing the three
different ray-surface intersection algorithms.

Finding an Initial Point Close to the Surface By definition, the surface must be
contained in B, the union of balls Bi associated with the sample points. Thus, B
defines a bounding volume of Ŝ . The intersection points of the ray with the spheres
Bi yield points close to the surface and can thus serve as initial starting points r0. Usu-
ally, the ray-sphere intersections are sorted front to back using the corresponding ray
parameters.

Finding all r0 amounts to locating all Bi intersected by the ray. Iterating over all balls
quickly becomes infeasible, as point models often consist of thousands or even mil-
lions of points. Therefore, the balls Bi should be stored in spatial data structures for
quick intersection testing. Three popular acceleration hierarchies used in this con-
text are octrees [AA03a], bounding sphere hierarchies [AA03b, AKP+05], and K-d-trees
[WS05]. A general overview on acceleration data structures for ray tracing can be
found in Glassner [Gla89] and Arvo and Kirk [AK89]. Examples of optimized accel-
eration hierarchies for static and deforming point models are given in Section 6.3.3.

Although the volume B effectively bounds the approximated surface Ŝ , it is often
too conservative: evaluating a compactly supported θ at the boundary ofB yields no
support at all. This could be corrected by moving some small ε intoB. However, per-
formance of the ray-surface intersection algorithm is improved if starting points r0

are used that are closer to Ŝ . Therefore, it is desirable to construct a different bound-
ing volume that more tightly encloses the given input data.

One popular choice is to down-scale the Bi to an amount where no holes arise (see
Figure 6.30a). The result is a tighter and more effective bounding volume for Ŝ that is
contained inB. Moreover, at intersection points with the down-scaled Bi, the weight
functions now have bigger support and f can be evaluated without running into
numerical problems.

If point normals are provided, it is also possible to use oriented-bounding boxes (see
Figure 6.30b). As Ŝ is expected to be close to the planes formed by the samples and
their normals, the boxes can be down-scaled in the normal direction. The union of
the boxes yields an even smaller bounding volume for Ŝ .

Starting with an adequate r0, we propose three ways to compute the actual ray-
surface intersection point. The first alternative uses an iterative planar approxima-
tion and intersection procedure. The second alternative uses sphere tracing and the
last alternative uses ray marching.
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pi

h
Bi

pi

h

ni

Bi 

Figure 6.30: Different choices for a bounding volume corresponding to a sample pi,
which contain a patch of Ŝ. The union of these boundings encloses Ŝ. (a) The support
radius is down-scaled, in order to provide a starting point r0 with sufficient support. (b)
A bounding box can be used if normals are provided. A plane normal to ni through pi

is supposed to approximate Ŝ close to pi. Therefore, a box that is down-scaled in the
normal direction still encloses Ŝ.

Approximating and Intersecting the Surface Given a point r0 ∈ B close to the
surface Ŝ , a local planar approximation to Ŝ is computed using n(r0) and a(r0)
(see Figure 6.31a):

P0 : n(r0)T(x − a(r0)) = 0. (6.69)

Intersecting the ray with the plane P0 yields a new point r1 (see Figure 6.31b)
which, in theory, should be closer to the surface than r0. Proceeding in the same way
(i.e., constructing and intersecting the planar approximation P1 from r1) yields a
new point r2 again closer to the surface. This procedure can then be iterated until
‖n(rj)T(rj − a(rj))‖ < ε, which means that rj is very close to the surface Ŝ and
can thus be considered as an intersection of the ray with the surface according to
Equation (6.65). Here, ε is a predefined error tolerance.

In the case where rays miss the surface, the sequence rj, rj+1, . . . does not converge to
a point on the surface, as rj starts to alternate on positions near the missed surface
patch. The iteration has to be stopped and the procedure has to be restarted with
the next location r0 resulting from intersecting the bounding volume. Otherwise,
following intersections would be ignored (see Figure 6.32a).
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Figure 6.31: Intersecting a ray with the implicit surface. First, a starting point r0 is com-
puted from which an average plane P0 : n(r0)T(x − a(r0)) = 0 is constructed. Next, the
ray is intersected with that planar approximation yielding a new point r1. This procedure
is repeated until convergence.

Bi

pi

Ŝ

Bi

pi

Ŝ

Figure 6.32: Special cases when intersecting the surface. (a) A ray missing Ŝ. Further
intersections are possible. (b) A ray hitting Ŝ close to the silhouette.

Special attention has to be paid if multiple intersections are contained in a single
Bi, which is the case at silhouettes (see Figure 6.32b). If r0 is chosen to be at the
front of the ray segment inside Bi, the procedure will converge to the relevant first
intersection.

Note that for this intersection procedure the starting point r0 does not have to lie
on the ray, nor does it have to lie in front of the actual intersection point. Therefore,
one could alternatively use the center pi of the intersected ball or even compute the
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intersection of the ray with a possible splat associated with pi. These choices are
motivated by the fact that the iteration procedure converges faster if the initial guess
r0 is closer to Ŝ , which should be the case for the point pi or the points on the splat
associated with pi. However, care should be taken at silhouettes as discussed above.

Sphere Tracing If the minimal distance d(x, Ŝ) of a point x to the surface Ŝ is known,
we can construct a sphere of radius d around x, which is assured not to contain Ŝ .
Then, we can move a step of size d in all directions, including the ray direction, with-
out penetrating Ŝ . If only a lower bound on d is available, we can move that distance
instead. Iteratively performing such conservative steps until convergence is known
as sphere tracing [Har96]. It can be applied to all implicit functions satisfying the
condition |f (x)| < d(x, Ŝ), Ŝ = f −1(0). Unfortunately, the surface definition given
above does not have this property. However, f (x) approximates d(x, Ŝ) very well, in
particular when coming close to Ŝ .

If normals are provided (i.e., n(x) is computed according to Equation 6.66), f (x)
approximates a signed distance to Ŝ . In that case, a sign change indicates a penetra-
tion. In order to find the intersection, we simply have to move the signed distance,
converging toward Ŝ from both sides.

If no normals are provided, the fact that Ŝ is locally orientable [AA04a] can be
exploited to still detect penetrations. We assume that the steps are small enough, not
to penetrate Ŝ more than once. Then, we simply have to orient successive normals
consistently:

n(rj+1) =

{
n(rj+1) if n(rj)Tn(rj+1) ≥ 0,

−n(rj+1) if n(rj)Tn(rj+1) < 0.
(6.70)

To ensure that we start to move in the direction of the ray, we flip n(r0) if f (r0) < 0.

Computing ray-surface intersections using sphere tracing is slightly slower than
applying the approximating and intersecting method. In contrast, it has the advan-
tage that the tracing can be continued throughout several Bi, as long as there is sup-
port for the weight function θ.

Ray Marching with Linear Intersection Interpolation Starting from the initial point
r0, one could step and compute f (rj) along the ray using fixed ray segments. A sign
change in f then indicates that the surface should pass between consecutive rj’s and
that an intersection point should lie somewhere on the ray between these evaluation
points. Wald and Seidel [WS05] apply this approach in their interactive point-based
ray-tracing framework. They use ray marching and compute several intersections
simultaneously using SIMD (single instruction multiple data) optimizations. A mul-
tiple of the data amount that can be processed in parallel should be chosen (e.g., eight
positions if four-way SIMD operations are available).
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After a penetration is detected, the point of intersection should be interpolated to
enhance precision. The two implicit values fj+1 = f (rj+1) and fj = f (rj) with differing

signs indicate the approximate distance to Ŝ . The resulting intersection point x from
linear interpolation is then x = (1 − α)rj + αrj+1, with α = |fj|/(|fj| + |fj+1|).

Handling Sharp Features
The given surface definition and accompanying surface intersection algorithm pro-
duce C∞ smooth manifold surfaces. Sometimes, however, sharp features such as
edges and corners are desired. Examples include objects obtained by Boolean oper-
ations (Section 5.3) or fragments obtained by fracturing (Section 7.2). Defining the
surface as in Equation (6.65) would smooth out all desired sharp features.

Fleishman et al. [FCOS05] propose an extension to Levin’s moving least squares sur-
face definition to handle sharp features (see Figure 6.33). They define a modified
projection operator that accounts for C1 discontinuities in the given point cloud.
The core of the algorithm is a method to guide neighborhood creation using a tech-
nique from robust statistics called the forward-search paradigm. Using this technique
they are able to locally classify regions of the point set to multiple outlier-free smooth
regions. This classification allows them to project points on a locally smooth region
rather than a surface that is smooth everywhere. By treating the points across the dis-
continuities as outliers, sharp features are easily defined. Their method is shown to
be robust in the presence of noise and outliers.

Figure 6.33: (a) Sharp edges are smoothed out. (b ) Using the technique of Fleishman
et al. [FCOS05] sharp features are preserved. Images taken from Fleishman et al.
[FCOS05].
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Pauly et al. [PKA+05] and Adams et al. [AKP+05] propose a way to ray trace point
models with sharp features when the location of the features is known a priori. This is
often the case in computer graphics applications such as when constructing Boolean
operations (Section 5.3) or when fracturing solids (Section 7.2). The idea here is to
store the points in separate collections (called surface sheets), and define surface clip-
ping or trimming relations between the surfaces that intersect. For example, when
computing the difference A − B of two solids A and B, the resulting solid consists of
a surface sheet SA, containing points of object A and a surface sheet SB, containing
points of object B. During ray tracing, both surfaces are intersected separately (i.e.,
only point neighborhoods within the same surface sheet are used), and the resulting
intersection point is trimmed if it lies outside the other surface. Pauly et al. [PKA+05]
show how a similar technique can be used to render sharp edges and corners for frac-
tured materials represented using point-based surfaces. Two examples of scenes ray
traced using this technique are given in Figure 6.34.

Handling Bounded, Nonorientable Surfaces
So far we assumed that the represented surface is a solid and thus unbounded and
globally orientable. Adamson and Alexa [AA04a] show how this surface definition
can be easily extended to handle bounded and possibly nonorientable surfaces (such
as the Klein bottle and Möbius strip in Figure 6.35).

Figure 6.34: (a) Sharp edges and corners in CSG models. Image taken from Adams et al. [AKP+05]. (b) Sharp
features in fragments of a fractured object. Image taken from Pauly et al. [PKA+05]. Both images are ray traced
using surface-surface clipping relations.
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F igure 6.35: Renderings of nonorientable, bounded surfaces represented by unstruc-
tured point sets. Images taken from Adamson and Alexa [AA04a].

Handling nonorientable surfaces is straightforward, as the surface definition
(Equation 6.65) is not altered when inverting n(x). The computation of n(x) is local
and inside a ball. With sufficiently small radii the normals can be oriented consis-
tently so that n(x) is indeed a smooth vector-valued function of x inside the ball.

To handle surfaces with boundaries, the surface definition of Equation (6.65) is
altered to

Ŝ = {x ∈ B | f (x) = n(x)T(x − a(x)) = 0 ∧ c(x) = ‖x − a(x)‖ < εc}. (6.71)

The added condition states that the point x should be within a small distance εc to the
average of its neighbor positions a(x). The value c(x) is called the off-center value of x.
The reasoning is that points on the surface should be surrounded by other points and,
therefore, c(x) is expected to be small. On the other hand, when x moves away from
the surface, the off-center value becomes larger. It is shown in Adamson and Alexa
[AA04a] that εc should be chosen relative to the radius rB of the spheres associated
with the points pi and that following bounds result in well-defined boundaries:

2

3
rB < εc <

1 + 4
√

3

9
rB. (6.72)
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6.3.3 OPTIMIZATIONS FOR STATIC AND DEFORMING
POINT CLOUDS

In this section various optimizations for static (i.e., point models that do not deform,
but only move rigidly with respect to the viewing position) and free-form deforming
point models are given.

Ray-tracing Static Point Clouds
Wald and Seidel [WS05] build on the work of Adamson and Alexa [AA03a] and intro-
duce various optimizations to achieve interactive frame rates. The performance is
increased due to the combination of an efficient surface-intersection algorithm and a
highly optimized K-d-tree acceleration structure. Interactive frame rates (on a single
PC) are obtained of 7–30 frames per second at 512×512 image resolution for models
consisting of over one million points.

The efficiency basically depends on a highly optimized K-d-tree that is built for the
points pi equipped with normals ni and radius of influence h. In order to optimally
place the split planes, they make use of the surface area heuristic (SAH). The goal
is to produce large voxels that are completely empty. This does not only reduce the
average number of voxels being traversed, it also encloses the surface as tightly as
possible, reducing the number of surface interrogations. The nonempty cells of the
K-d-tree are totally contained in B, the union of the balls Bi. When traversing the
K-d-tree, which can be done with few operations, the relevant ray segment is directly
provided as the intersections of the voxels. This segment can be sampled using ray
marching as described in Section 6.3.2.

To further tighten the nonempty K-d-cells, the following procedure is applied:

• The voxels are sliced into subcells: the average normal of the contained pi is
computed and used to construct a stack of equidistant slabs that are normal to
that direction.

• Each subcell is sampled randomly to estimate its minimum and maximum
implicit value.

• Only if these values have differing signs, the surface is expected to be contained
in the subcell. All the others are removed.

Removing subcells enables the split planes of the K-d-tree to be moved toward the
surface. In practice, 7–13 slices and 100–200 samples per cell have worked well. Two
scenes rendered interactively using this algorithm are shown in Figure 6.36.

Ray-tracing Deforming Surfaces
In this section a framework is discussed for accelerated ray tracing of free-form
deforming surfaces [AKP+05]. As opposed to Adamson and Alexa’s and Wald and
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F igure 6.36: Interactive ray tracing. (a) A scene consisting of 24 Iphigenias with a total
of 24 million points with Phong shading and shadows rendered at two frames per second
at 640 × 480 image resolution. (b) One Iphigenia rendered with precomputed global
illumination at four frames per second for a resolution of 400 × 600 pixels. Images taken
from Wald and Seidel [WS05].

Seidel’s work, which is designed for static point clouds (i.e., only rigid movements
are allowed), Adams et al. focus on free-form deforming point-sampled surfaces.
Although the discussed optimizations are used for surfaces resulting from a particu-
lar animation framework [MKN+04] (Section 7.1), they can easily be generalized to
fit in any animation method that applies the idea of an embedded surface (such as,
for example, the point-based shell animation framework of Wicke et al. [WSG05]).

The key idea is to use a bounding sphere hierarchy (for quick intersection finding),
which is updated in a lazy manner by looking at the deformation field only instead
of looking at the deformed surface. In the animation framework of Müller et al.
[MKN+04], the deformation field is defined at a relatively small number of simu-
lation nodes {pj}. These nodes are discrete point samples of the volume of the model
and the displacements from their original position completely define the deforma-
tion of the object’s surface. As the number of surface samples {si} is usually much
higher than the number of simulation nodes (usually up to two or three orders of
magnitudes), updating the bounding sphere hierarchy from the simulation nodes is
significantly faster than updating it from the surface points.

When deforming the material, the displacements of the surfels are determined from
spatially adjacent simulation nodes using a free-form deformation approach.
Initially, each surfel si is assigned a set of neighboring simulation nodes pj (see
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Figure 6.37, middle). After an animation step, the new position x′si
of si is computed

using a first-order accurate approximation of the displacements upj of the neighbor-
ing simulation nodes pj as [MKN+04]:

x′si
= xsi +

∑

pj

ω
hi
xsi , xpj

(upj + ∇Tupj dxsi , xpj
), (6.73)

where dx, y = y − x, ωh
x, y = ωh

x, y/
∑

y ω
h
x, y, and ωh

x, y is a smoothly decaying weight
function with support radius h (similar to the weight functions used in Section 6.3.2).

By decoupling the sampling of the simulation domain from the sampling of the
boundary surfaces, this method allows efficient animation of highly detailed mod-
els using the smooth displacement field u. This implicit spatial coherence can be
exploited for efficient updates of the bounding sphere hierarchy, as will be discussed
below.

The bounding sphere hierarchy is only built once for the undeformed object using
a top-down strategy similar to the one used in QSplat [RL00]. Instead of rebuilding
the hierarchy for each subsequent animation frame, it is updated dynamically from
the deformation field to conform with the deformed object similar to James and Pai
[JP04].

Updating the hierarchy requires computing new sphere centers and radii. Starting
from the initial sphere center xc and optimal radius R, the updated center x′c and
radius R′ are computed from the simulation nodes pj that define the displacements
of the surfels si bounded by the sphere (see Figure 6.37c). The update proceeds by
finding a new sphere position and radius so that the new sphere bounds the deformed

Simulation
nodes

Surfels
Bounding
sphere

(a) (b) (c)

Figure 6.37: Point-based animations. (a and b) The surfels are embedded in the
simulation domain defined by the simulation nodes. (c) Bounding sphere, which is
updated by looking at the deformation of the associated simulation nodes.



308 RENDERING C H A P T E R 6

surface. However, the update is done by only looking at the list of simulation nodes
associated with the sphere.

Center Update The displaced sphere center x′c is computed in the same manner as
the displaced surfel positions are computed:

x′c = xc +
∑

pj

ω
R
xc,xpj

(upj + ∇Tupj dxc,xpj
) (6.74)

≡ xc + uc. (6.75)

Radius Update The new radius R′ is conservatively estimated from the maximal
distance between the deformed surfels (Equation 6.73) and the new sphere center
(Equation 6.75) using basic linear algebra and the triangle inequality:

R′ = max
si

‖x′si
− x′c‖2 (6.76)

= max
si

‖(xsi − xc) +
∑

pj

ω
hi
xsi , xpj

(upj − uc) +
∑

pj

ω
hi
xsi , xpj

∇Tupj dxsi , xpj
‖2

≤ max
si

‖xsi − xc‖2 +
∑

pj

max
si

|asi, pj |‖upj − uc‖2 +
∑

pj

max
si

‖bsi, pj‖2‖∇Tupj‖F

≡ R +
∑

pj

AjUj +
∑

pj

Bj∇Uj, (6.77)

where asi, pj = ω
hi
xsi , xpj

, bsi, pj = ω
hi
xsi , xpj

dxsi , xpj
, and ‖∇Tupj‖F is the Frobenius norm of

the gradient of the displacement field. We can bring uc into the summation since the

weights ωhi
xsi , xpj

sum up to 1 by construction. The entries Aj and Bj remain constant

during the animation and can thus be precomputed once in the reference system.
Note that the center and radius updates have time complexity linear in the number of
simulation nodes associated with a bounding sphere, not in the number of bounded
surfels. This is important as the number of simulation nodes is typically much smaller
than the number of surfels. The radius update is always done with respect to the
initial (optimal) bounding spheres (i.e., the radius can both increase and decrease
over time). The sphere hierarchy thus maintains its tight fit even for highly elastic
materials that expand and shrink significantly during an animation.

The resulting ray-tracing algorithm is roughly two times faster than the naive algo-
rithm where each frame in the sequence is treated separately. Figure 6.38 shows exam-
ple frames of animation sequences rendered using this dynamic data structure.
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F igure 6.38: Top row : Three frames from the cannon ball armadillo sequence. Average rendering time
was 8.5 seconds per frame (compared to 18.5 seconds per frame when not using any coherence). The
armadillo is defined by 170,000 surface points and is animated using 453 simulation nodes. Bottom row : Three
frames from the gymnastic goblin sequence. Average rendering time was 6 seconds per frame (compared to
12.8 seconds per frame when not using any coherence). The goblin is defined by 100,000 surface points and is
animated using 502 simulation nodes. Images taken from Adams et al. [AKP+05].

6.3.4 IMPLEMENTATION TIPS

In this section we discuss some general tips that lead to a stable and efficient imple-
mentation of the above discussed ray-tracing algorithms.

Characteristics of the Weighted Covariance
If the covariance of the sample locations is used to compute n(x), one has to con-
sider that the results are only approximately normal to Ŝ , if x is close (i.e., within the
sampling density). Otherwise, completely undesired directions result. To cope with
this, one should use tight bounding volumes yielding r0 close to Ŝ . Alternatively, one
could use n(a(x)) instead of n(x). The resulting surface:

Ŝ ′ = {x ∈ B | f ′(x) = n(a(x))T(x − a(x)) = 0} (6.78)

is almost identical to Ŝ and the normal calculation is as stable as averaging the ni.
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Precomputing Neighborhoods
The heart of the ray-surface intersection algorithm consists of computing a weighted-
average position and weighted-average normal from the neighboring points in the
model. Thanks to the compactly supported weight functions, only the points within
a small query ball around the current iteration point rj need to be considered. As
the different rj are not known a priori, one has to perform a range query for each
intermediate intersection point to obtain the neighborhood around rj.

In case the scene remains static, references to all the potentially contributing samples
can be stored in every bounding volume element (such as a voxel or sphere). These
are the samples whose corresponding Bi intersect the bounding volume element. To
evaluate f (x) it is only necessary to determine the bounding volume element that
contains x and loop over the contained samples. During traversal of the data structure
this is usually known anyway.

Alternatively, the repeated neighborhood queries can be avoided by using the follow-
ing observation. Assume the intersection algorithm starts with the guess r0 that is
obtained either as the intersection of the ray with the bounding sphere correspond-
ing to a sample pi, or as the sample itself (which actually means r0 = pi), or as the
intersection of the ray with the splat associated with pi. In all cases, r0 is within a
bounded distance to the point pi. So it is possible to define a neighborhood for pi

that includes the neighborhood for r0. Now, the positions pi are known a priori, as
they define our point model, and thus neighborhoods for these points can be pre-
computed once before ray tracing. We can now use pi’s neighborhood for r0. If we
assume that the subsequent intersection points rj are all within a bounded distance
to pi (which is to be expected), we can use the same neighborhood during the whole
intersection algorithm avoiding neighborhood queries altogether. Results show that
using static neighborhoods of 10 to 16 points gives good results.

Adams et al. [AKP+05] go one step further and use this optimization even for deform-
ing point clouds: neighborhoods are computed once and reused for the deformed
surface in subsequent frames. This is only possible because the point models deform
elastically and, therefore, neighborhoods are assumed to stay roughly constant.

Minimizing Bounding Volume Overlap
When building spatial data structures it is necessary to know the extents of the object
to bound. Unfortunately, for implicit surfaces this is not a trivial task. Therefore, we
build conservative bounding volumes for patches of the surface. In Section 6.3.2 two
choices for such volumes are given that are located at the samples. In order to avoid
holes, the volumes should overlap sufficiently. On the other hand, the overlap should
be minimized as much as possible in order to improve performance. Indeed, a tighter
bounding volume for Ŝ reduces the number of rays to be examined and reduces the
number of invocations of the ray-surface intersection algorithm.
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If we consider samples equipped with normals, these conditions are similar to the
conditions desired for surface splatting (see Sections 4.3 and 6.1). In that context, Wu
and Kobbelt [WK04] propose an algorithm to construct splats from a dense point
cloud that satisfy the aforementioned conditions. If such adequate surfel splats are
available, they can be expanded in normal direction (e.g., a factor one-fifth of their
radius), to ensure all of the surface is contained. Instead of dealing with such cylin-
der caps, we propose to use oriented-bounding boxes for efficiency instead (refer to
Figure 6.30).

Choosing the Radius of Support
The radius of support h has significant impact on the performance of the compu-
tations, even if the bounding volumes only have minimal overlap: each evaluation
requires looping over all the contributing samples and computing the θi, a(x) and
n(x). Therefore, h should be chosen as small as possible. However, we have to make
sure the surface looks sufficiently smooth. Indeed, for small h the surface appears as
piecewise linear patches that are blended together. In practice, choosing the support
radius h so that the resulting neighborhoods consist of about 10 to 16 samples pro-
duces good results. Note that this criterion also works for irregularly sampled point
clouds. Wald and Seidel [WS05] state that even four samples are sufficient.

Minimizing Ray-surface Intersection Tests
As computing the intersection of the ray with the surface is rather time consum-
ing, it should be avoided as much as possible. Therefore, when implementing an
acceleration data structure such as an octree, K-d-tree, or bounding sphere hierar-
chy, it is important to make sure that the first intersection on the ray is found as
soon as possible. Adamson and Alexa [AA03a], for example, propose to first find
all ray-sphere intersections and then sort the spheres front to back and perform the
ray-surface intersection test for the nearest sphere first. This reduces the number
of ray-surface intersection tests significantly, as the closest intersection is expected
to be found in the nearest sphere.

Also, when tracing shadow rays, it is not important to find the closest intersection
point as any as intersection point will do to block the ray. This has been used, for
example, to increase performance in the framework of Adams et al. [AKP+05].

Speeding Up the Evaluation of f
Another interesting optimization was proposed by Wald and Seidel [WS05]. They
exchange the function f (x) = n(x)T(x − a(x)) for a simpler one. The goal here is to
find a function F(x) that defines the same surface (i.e., it has the same roots) but which
is simpler to intersect (i.e., less computations are needed for intersection testing).
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This can be done by multiplying f (x) with the denominators D1(x) =
∑N

i=1 θi and

D2(x) = ‖∑N
i=1 θini‖ of the expressions in Equation (6.66):

F(x) = D1(x)D2(x)f (x) (6.79)

= (D2(x)n(x))T(D1(x)x − D1(x)a(x)) (6.80)

=
( N∑

i=1

θini

)T(( N∑

i=1

θi

)
x −

N∑

i=1

θipi

)
, (6.81)

except for those x where D1(x) = 0 and D2(x) = 0 (for these points f (x) was unde-
fined anyway). It can be easily seen that F(x) has the same roots and signs as f (x) and,
therefore, defines the same surface. The main advantage is that there are no divisions
and no normalization anymore and, therefore, the intersection algorithm becomes
much more efficient.

However, although the implicit surface remains the same, F does not approximate a
distance field anymore, because a quadratic term was introduced. Ray marching with
linear intersection interpolating is the only method of the tracing strategies described
in Section 6.3.2 that can still be applied. The quality of the linear interpolation is con-
siderably reduced by this optimization, which requires the step size to be sufficiently
small. This is achieved by using extremely tight voxels, which only require very short
ray segments to be examined.

To further speed up the computation, a simple linear function (or hat filter) θh can
be used:

θh(r) = θh(‖x − pi‖/h) =

{
1 − r if r < 1,

0 if r ≥ 1.
(6.82)

However, this degrades the smoothness of the resulting surface.

6.3.5 CONCLUSION

Ray tracing of point-sampled surfaces is a relatively new research topic and only
a handful of papers tackle this at first sight as a difficult problem. However, the
surface definition proposed by Adamson and Alexa [AA03a] is very powerful and
moreover it is very straightforward and easy to implement a ray-surface intersec-
tion algorithm for point models based on this definition. Other researchers [WS05,
AKP+05] have picked up this work and propose various extensions and optimiza-
tions of the basic algorithm. The resulting algorithms have been used to visualize
various animation sequences including the animation of elastic and plastic solids
[AKP+05] (see Section 7.1), fracturing materials [PKA+05] (see Section 7.2), viscous
fluids [KAG+05] (see Section 7.3), and point-based shells [WSG05]. The sequences
show high-quality renderings of animated point-sampled surfaces including complex
shading effects such as shadows, reflections, and refractions.
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6.4 RENDERING OF VERY LARGE MODELS

Michael Wand

6.4.1 OVERVIEW

Point-based techniques can be used as a tool for rendering highly complex scenes,
(i.e., scenes consisting of a large amount of primitives). The basic idea is easy to
describe: instead of processing billions of primitives, only a small set of surface sam-
ple points are chosen to approximate the geometry. This sample set will be just dense
enough to provide a sample for each pixel in the image. Then in a second step, an
image is constructed using these sample points, hence neglecting most of the com-
plex geometry. To make this work, the sampling density is chosen so that one obtains
an approximately uniform distribution of points in the image plane. This guarantees
that a sufficient, uniform level of information is obtained for all parts of the image.

Following this approach, one can create images using a number of points being
roughly in the order of the number of image pixels, rather than being dependent on
the number of primitives the scene consists of. A precomputed multiresolution point
hierarchy will be employed to compute the sample sets in output-sensitive time (i.e.,
with time mostly dependent on the number of points needed only). Therefore, inter-
active walkthroughs of huge scenes consisting of vast amounts of geometric details
can be rendered efficiently.

The main advantage of such a point-based rendering approach is its generality.
Unlike other representations, the technique is applicable to virtually arbitrary scenes.
A prominent example is the case of landscape scenes with trees and vegetation. Such
scenes typically contain an exorbitant number of geometric primitives, which are
arranged in highly nonuniform mesh topologies. This leads to significant problems
for classic techniques such as simplification based on triangle hierarchies. Point-
based multiresolution rendering techniques work as well in these cases as on sim-
ple smooth meshes, making them currently probably the most successful rendering
techniques for such general classes of scenes.

This section of the book describes how to construct a point-based multiresolution
rendering algorithm for large scenes. It consists of three parts. First, the general
algorithmic approach and its variants are discussed. Second, a theoretical model of
the performance characteristics of such techniques is summarized. This is not done
for the sake of just being formal but will provide some interesting insights relevant
for practical implementations. Accordingly, this section will conclude with a list of
such recommendations. Lastly, a brief case study of one specific implementation is
described, showing that the approach works in practice.
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6.4.2 POINT-BASED MULTIRESOLUTION RENDERING

The Algorithm
As summarized above, the point-based multiresolution rendering algorithm consists
of two main steps: sample point selection and image reconstruction. The goal of the
first step is to create sample points that are more or less uniformly distributed
on the projections of the objects in the image plane.5 Obviously, such a set of
sample points depend on the current viewpoint and thus change whenever the view
position changes. To allow for interactive walkthroughs, precomputed hierarchical
data structures are employed to extract such sample sets efficiently (as described in
Section 4.4). The second step, image reconstruction, will then be performed using a
splatting technique as discussed in Sections 6.1 and 6.2.

Before these two steps can be examined more in detail, it is first necessary to look at
some properties of perspective projection.

Perspective Projection
How to create “uniformly distributed” sample sets in the image plane obviously
depends on the employed camera model. In the context of large scenes, typically
only a perspective type of camera model makes sense (e.g., an orthographic pro-
jection would be cluttered with lots of occluding details). For simplicity, a simple
planar perspective projection is considered here, which is the natural model for a
scene walkthrough. Figure 6.39a shows the setup. The camera is placed at a center of
projection and the image is created on an image plane. Each object point is projected
by intersecting the plane with a line through both the center of projection and the
object point. Only a rectangular part of the image plane will be shown on the screen.
Hence, a view frustum in space can be set up by four planes, defined by the center of
projection and the four sides of the image rectangle in the image plane. Only geom-
etry within the intersection of the four corresponding half spaces will project on the
screen; anything else can be neglected for rendering. Additionally, a near-clipping
plane in front of the center of projection is established. This fifth plane is necessary
because the mapping is singular (infinite magnification) at the center of projection.
Hence, all objects closer than a minimum distance will be excluded from rendering.
The distance of the near clipping plane will become important later on for analyzing
the efficiency of the rendering algorithm.

Given such a perspective projection, the projection factor can be defined: this is
the scale factor by which an infinitesimally small piece of surface is scaled when

5 In this context, a “uniform” sampling might still allow for some local variations, for example, to adapt the
sampling density to surface features such as curvature.
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being projected to the screen. For a planar perspective projection (as defined above),
the projection factor at a point p (within the view frustum) is given by (see also
Figure 6.39b)

prj (p) =
d2 |cos β|
z2 cos α

(6.83)

The projection factor is a product of multiple independent terms: The projected area
of a surface fragment drops quadratically with depth ( 1

z2 ). This term is called the depth
factor. Additionally, the projected area depends on the orientation of the surface. The
projected area is proportional to the cosine of the angle β between the surface normal
and a vector toward the viewer. This term is called the orientation factor. The third
factor, cos−1 α, is called the distortion factor. This factor leads to an increase of pro-
jected area if a surface fragment is visible in the outer regions of the image (rather
than close to the center). The effect is only significant for camera settings with rather
large viewing angles (“wide-angle lenses”), which is why it is often not taken into
account. Finally, everything is scaled by d2, which is just a constant accounting for
the distance to the image plane (or, equivalently, the scaling of the pixels). Addition-
ally, the projection factor is assumed to be zero outside the view frustum.

The goal is now to create sample sets with a density proportional to this projection
factor. Currently, no algorithm being based on a reasonably sized precomputed data
structure is known that can perform this task exactly without looking at every prim-
itive of the scene (which would of course contradict the goal of efficient large scene
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Figure 6.39: Perspective projection: (a) projection setup and (b) influence of orientation
and distance.
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rendering). Thus, an approximation strategy will be employed that will have to make
some compromises:

• The sampling density will not be exactly proportional to the depth factor but
allows variations up to a constant value. The same is true for the distortion
factor.

• The orientation factor will just be neglected.
• The sampling density will be increased in discrete steps only (thus allowing for

precomputed sample sets).
• View frustum culling will be performed only approximately.

The consequences of these approximations are discussed later, in Section 6.4.3. This
will prove to be a critical point. The approximation is the reason that the whole
approach works at all. At the same time it leads to some nonobvious trade-offs.

Selecting the Points
The sampling algorithm uses a precomputed multiresolution point hierarchy. The
hierarchical data storage will support two important tasks: a good approximation of
the depth factor and an approximate view frustum culling.

Data Structure Section 4.4.3 describes several different variants of multiresolution
point hierarchies based on a common idea: the space of the scene is partitioned into
hierarchical clusters. For each cluster, a representative point set are chosen. The res-
olution of the representation increases with hierarchy depth. In order to unify the
description here, using a multiresolution point hierarchy with the following proper-
ties is assumed (Figure 6.40a):

• The point hierarchy is an octree partition of the scene (similar results will also
hold for other hierarchical partitions of the scene with bounded node degree
and where the maximum diameters of the bounding boxes shrink exponentially
with recursion depth).

• The sample spacing in each node is proportional to the side length of the
bounding cube of the node. This means that within a closed surface, the max-
imum distance of a piece of surface to a sample point is no more than a fixed
fraction of the side length of the bounding cube. Setting the fraction to one
yields a data structure similar to QSplat; using a smaller fraction yields a data
structure similar to an LDC-tree (see Section 4.4). Due to the octree subdivi-
sion, the resolution will double at each hierarchy level (Figure 6.40a).

For a faithful representation of arbitrary geometry with points, the hierarchy would
need to have infinite depth. This is of course not realistic but there is a simple solution
to this problem: the scene to be simplified itself must have been described by some
set of original primitives. For conventional 3D models, these are typically triangles.
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Figure 6.40: (a) Schematic view of a multiresolution point hierarchy: the space is
partitioned using an octree hierarchy, and each node stores a precomputed set of
representative points. (b) Estimation of the traversal costs the box sizes increase expo-
nentially with depth, leading to logarithmic costs.

For geometry from 3D scanners, the representation could also be point-based itself,
such as elliptical splats obtained from some preprocessing of the raw data (density
estimation, normal estimation). The original geometry can now be included in the
hierarchy to limit the size of the data structure. Whenever more than a small number
of sample points from the same original primitive are necessary, the original primi-
tive is stored at this hierarchy level and no further sampling is done in deeper levels.
For example, if three points or more are representing a triangle, the original triangle
itself can be used at similar costs. This limits the recursion depth necessary. Due to
the exponential shrinkage of the point sets, one can expect (optimal) linear memory
consumption (in practice, for nonpathological scenes).

The Point-selection Algorithm The points are selected by a simple recursive proce-
dure, starting at the root node of the point hierarchy (see Figure 6.41 for pseudo-
code for this algorithm). First, the view frustum check is performed. This means, if
the current bounding cube does not intersect with the view frustum, the recursion
is terminated at this point. Otherwise, it must be checked whether the point reso-
lution already meets the resolution demands. If the projected sample spacing is not
larger than the desired point spacing in the image (typically, projected sample spac-
ing below one pixel), the traversal is stopped and the points in the current node are
projected to the image and rendered. If not, the algorithm is called recursively for all
child nodes.
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Procedure pointSelection(Node n, Camera c)
result := ∅
IF BoundingBox(n) ∩ viewFrustum(c) �= ∅ Then

zmin:= minimumDepth(BoundingBox(n), c)
αmax:= maximumAlpha(BoundingBox(n), c)
IF sampleSpacing(n) > requiredSampleSpacing(zmin,αmax) THEN

FOR all children m of n DO
result := result ∪ pointSelection(m, c)

ELSE
result := points(n)

ENDIF
ENDIF

Figure 6.41: Pseudocode for the hierarchy traversal algorithm. The procedure takes a node and the current camera
parameters as input and returns a set of points with approximate uniform density.

The projected sample spacing is computed by a conservative estimate of the on-screen
sampling density. First, the maximum sample spacing of the current node in object
space is determined. Then, the maximum depth and distortion factors are computed.
Next, the sample spacing is scaled accordingly and compared to the image pixel spac-
ing. Orientation is not taken into account; implicitly, a worst-case, orthogonal view
of all geometry is assumed. This procedure creates a conservative estimate: the point
density might be too large, but it does not fall below the optimal uniform density.

Image Reconstruction
After the point-selection procedure, a set of points are obtained that cover the pro-
jections of objects in the image plane approximately uniformly. Now it remains to
construct an image using this information. This procedure has just been described
(Sections 6.1 and 6.2). It is assumed that each point is associated with a small circle
or ellipse. The radii are chosen to reflect the sample spacing. For example, if the sam-
ple spacing of the computed point set in the image is guaranteed not to exceed two
pixels, circular splats of two-pixel diameter could be used. Alternatively, ellipses in
object space that cover the surfaces tightly at each level of resolution might be pro-
vided by the multiresolution hierarchy (Section 4.4). For rendering, the correspond-
ing splats are drawn using a z-buffer algorithm (or some variant of this technique).
Closer splats will overwrite splats that are farther away, yielding a closed surface with
correctly reconstructed visibility. A blending or interpolation scheme is typically used
to improve the image quality (Section 6.1).
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6.4.3 RENDERING COSTS, QUALITY, AND OPTIMIZATIONS

In this section, the performance characteristics of the described point-based
multiresolution rendering strategy are examined. The described algorithm still has
open parameters (such as the number of points in each octree node) and it is nonob-
vious how these affect the rendering performance. Additionally, it still must be deter-
mined how fast the new rendering strategy will be for scenes of varying complexity.
These questions should now be examined more in detail. Rendering costs are caused
by two factors: processing hierarchy nodes and processing points. The final render-
ing costs (including image reconstruction) will be proportional to both of these costs.
These two components of the rendering costs will now be examined subsequently.

Hierarchy Traversal
The key insight to bound the hierarchy traversal costs is the following. Boxes that are
selected by the algorithm show a projected point spacing corresponding to the pixel
spacing. In object space, this means that the side length of the box must be roughly
proportional to its depth (because of perspective foreshortening). As the bounding
box is a cube, this also applies to its depth. Let zmin be the minimum and zmax be the
maximum depth of a node selected for rendering. Then, zmax = zmin + c̄ ·zmin = c ·zmin

with a constant c̄ > 0 and c : = 1 + c̄. Roughly speaking, for the next box, behind
the previous one, its zmin value will be the zmax value of the previous box, and so on.
Overall, this leads to an exponentially rising series of z values zi = zi−1c = z0ci, with z0

(roughly) being the distance to the near clipping plane (see Figure 6.40b). This leads
to the following idea for bounding the number of hierarchy nodes extracted for ren-
dering [CDL+96, WFP+01, Wan04]. The counting of boxes starts at the near clipping
plane and covers the whole image with a constant number of boxes (this is possible, as
the projection of the boxes is of fixed size, corresponding to the number of pixels per
side length). Then, the next layer is added, with depth multiplied by a constant c. Each
layer of boxes will have an exponentially increasing depth. Therefore, (the traversal
costs grow at most logarithmically) with the size of the scene (the traversal must stop
at last at the constructed set of boxes). Taking some more (minor) technical details
into account, it can be shown [Wan04] that the hierarchy traversal costs are bounded
by O (log τ + h) where h is the height of the octree and τ is the relative depth range.
The height of the octree is a very small quantity in practice so that this term does not
have a significant impact on rendering performance. The relative depth range τ is the
ratio of the depth value of the farthest piece of geometry to the depth of the nearest
piece of geometry considered. This geometric quantity is always bound by the ratio
of the maximum scene diameter to the depth value of the near clipping plane. τ can
become very large. However, it affects the running time only logarithmically. Hence,
the size of the scene does not severely limit the rendering performance. This is a very
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important result, because otherwise the proposed technique would be of little use for
rendering large scenes.

Approximation Accuracy
Next, the point-processing costs are examined. These costs are directly linked to the
approximation accuracy of the approximate sample selection scheme. The less accu-
rate the (conservative) approximate sample selection algorithm chooses its sample
points, the more points are necessary to cover the image, and thus, the higher are the
point-processing costs.

The most important parameter affecting the accuracy is the “box size” (i.e., the num-
ber of points per box side length). The larger this value, the more points will be stored
in one node at fixed sample spacing, reducing adaptivity. Two sources of inaccuracy
are introduced. First, the view frustum culling is not precise. Nodes partially within
the field of view may contain points that are not visible on-screen, causing unwanted
overhead. Second, the sampling density will not strictly obey to depth and distortion
factors, as these factors vary throughout the spatial extends of the node. It can be
shown that the approximation accuracy for the depth factor is bounded by

ε(k) ≤
(

2
√

3k
tan αv/2

Ih
+ 1

)2

− 1. (6.84)

In this expression, k is the number of points per box side length, Ih is the vertical
image resolution, and αv is the vertical viewing angle. ε(k) is then the upper bound
for the deviation to the ideal sampling density; in other words, the sampling density
will not fall below the desired density and never exceed it by more than 1 + ε(k).

Similarly, the overestimation of the view frustum can be bounded. The projected
on-screen size of the boxes is roughly constant. Thus, the relative error in view-
frustum culling is fixed. This means that only a constant factor in running time is
lost (assuming that geometry is distributed roughly uniformly in the view frustum).
More specifically, this expected relative error can be bounded by

VF(k) ≤ 1 +
2
√

3kIh(1 + R) + 12k2

RI2
h

(6.85)

for a screen with aspect ratio R = width/height = Iw/Ih. The influence of the distor-
tion factor is usually rather small (see Wand [Wan04] for an analytic bound). All these
quantities grow quadratically with k. However, the asymptotic behavior is of minor
importance here as the fixed-image resolution renders arbitrary large values of k use-
less. More interesting is the value of these bounds for intermediate values of k, as
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Table 6.2: Overestimation of the Depth Factor, the Projected View-frustum Area, and
the Distortion Factor in Dependence of the Number of Sample Points per Box Side
Length at an Image Resolution of 640×480 Pixels and 60◦ Vertical-viewing Angle.

Points per box side k 2 4 8 16 32 64 128 256

Depth app., ε(k) 0.017 0.034 0.068 0.14 0.28 0.60 1.35 3.27

View frus. app., VF(k) 0.025 0.051 0.10 0.21 0.44 0.97 2.25 5.79

Distortion app., DF(k) 0.042 0.084 0.017 0.034 0.069 0.14 0.30 0.63

arising in typical applications. Table 6.2 shows a few example values of these bounds.
In practice, the dominant issue is the approximation accuracy for depth factor and
view frustum; at the chosen vertical viewing angle (60◦), the distortion factor is not
important. For moderate values of k, the overhead is bounded by reasonably small
constants. For k approaching the order of magnitude of the image resolution, the
overhead becomes more substantial. Please note that the table shows upper bounds
(upper bounds on the average overestimation in case of the view frustum). In prac-
tice, the overhead is typically smaller.

Sampling
Rendering performance is also affected by the choice of the (sub)sampling algorithm
that is used to create the multiresolution point sets in the inner nodes of the hierarchy
(different sampling strategies are discussed in detail in Section 4.3). A good sampling
strategy should minimize the overlap of the corresponding splats associated with the
sample points. The overlap must be minimized in object space as the view parame-
ters are not known at the time of precomputing the sampling. There are two general
sampling approaches: simple uniform sampling and adaptive sampling.

For uniform surface sampling, one can think of a small disk of constant radius
attached to each sample point within one node of the hierarchy. The oversampling can
then be quantified by the overlap of these discs. The optimum oversampling value for
a (locally) flat surface is 1.21, corresponding to the well-known tightest coverage of
the plane by circles [Wil79]. Such point sets can be approximated, for example, using
the point-repulsion technique described in Section 4.3. However, such a numerical
relaxation scheme is rather involved so that often simpler approximations are used.
Common are random and grid-based representations [BWK02, SD01b, WFP+01].
For example, an LDC-tree (Section 4.4) uses a variant of grid-based sampling by
ray-tracing geometry on regular grids from three orthogonal directions [PZvBG00].
In practice, it turns out that random sampling leads to oversampling factors of 8–20,
depending on the probability of surface holes one is willing to tolerate. Sampling
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techniques that partition space with a regular grid, allowing only one surface
sample from each grid cell, yield (empirical) oversampling ratios of 13.4 (unre-
stricted) and 3.45 (if points are quantized to grid cell centers). A very simple but
effective strategy is to start with a random sample and then remove all points that
are already “covered” by nearby neighbors (the empirical oversampling is 1.6, thus
already close to the optimum [Wan04]). Oversampling factors can be quite signifi-
cant. Consequently, employing a more elaborated sampling technique can substan-
tially speed up rendering.

Adaptive sampling schemes improve on uniform sampling by adapting the point
density to features such as curvature or color variance (see Sections 4.3 and 6.5 for
details), potentially providing substantial savings. Adaptive sampling can easily be
incorporated into the multiresolution rendering framework. Instead of storing point
clouds with fixed sample spacing in each node, the sample spacing is allowed to vary
according to surface features; it may exceed the base sample spacing in areas of little
variance. The hierarchy traversal algorithm still selects nodes according to the base
sample spacing, thus extracting fewer points in less important areas. Each sample
point must now be tagged with the space it represents to allow correct image recon-
struction later on. Storing little ellipses and using EWA surface splatting (Section 6.1)
for image reconstruction is a canonical choice for solving this problem.

There is another source of oversampling that is often not taken into account: the
octree hierarchy provides precomputed point clouds with point spacing increasing
in powers of two. Thus, in the worst case, the number of points that are chosen is
up to four times larger than the number needed. On the average, one could possibly
roughly expect all densities being demanded with similar probability, leading to an

oversampling factor of
∫ 2

1 s2ds = 2 1
3 . One can store multiple point clouds with varying

density in each node, for example m clouds with sample spacing a factor of
m√

2 apart.
This reduces this kind of oversampling, however, at the expense of more memory
usage (which is increased by a corresponding constant factor).

Orientation
Up to now, the orientation factor has been ignored completely. What does this mean
for oversampling? Assuming that all orientations of normals are equally likely, one
can show that the average oversampling due to ignoring orientation is only a fac-
tor of two (by integrating over the orientation factor on a sphere). Accounting for
back-face culling (i.e., assuming not to render back-facing surfaces), the factor is
four. This factor is a constant (which is why this strategy works at all) but not really
a small one. A simple improvement is storing normal cones in each hierarchy node
that bound the possible values of normal orientations (see Section 4.4). This infor-
mation can be used at least for back-face culling. Good estimates of orientation can be
expected for smooth surfaces and close views of such surfaces. However, for strongly
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simplified, irregular geometry (e.g., think of trees), useful bounds on orientation are
rarely obtained. Nevertheless, storing a normal cone at each hierarchy node and per-
forming a quick back-face culling check before rendering basically comes for free, so
there is little reason not to include this in an implementation.

Overall Rendering Time
Putting all the results above together, the overall asymptotic rendering time of point-
based multiresolution rendering is O(h + log τ + ā), where h is the octree height,
τ is the relative depth range, and ā is the estimated projected area (“estimated”
refers to the approximation of the projection factor). Assuming that geometry is
distributed uniformly within the extended view frustum extracted by the approxi-
mation algorithm and assuming uniform probabilities for surface normals, this esti-
mated projected area is expected to be in O(a) where a is the real projected area of the
scene for a given camera view. The height of the octree and the logarithmic additive
constant referring to scene depth are typically quite small in practice. Hence, the
rendering time is constant, being independent of the amount of details in the scene.
This is a giant leap in comparison to a simple plain z-buffer rendering approach with-
out a multiresolution data structure, where the rendering time grows linearly with
the amount or primitives in the scene. However, the rendering time of the point-
based approximation still depends linearly on the projected area, which, of course,
includes the projected area from occluded parts of the scene. Thus, for scenes with
much occlusion, a complementary occlusion-culling technique is needed. Most hier-
archical occlusion-culling techniques [COCK+01] can easily be incorporated into the
described hierarchy-traversal algorithm.

Image Quality Considerations
Of course, rendering performance is of no value if the rendering strategy does not
provide an acceptable level of image quality. Hence, is the result of the point-based
simplification really comparable to traditional rendering techniques even though
heavy simplifications take place? At this point, only the principle limits of the multi-
resolution approach are discussed. Other issues, such as aliasing and shading, are
discussed in Sections 6.1 and 6.2.

The basic idea of point-based simplification is to replace geometry by sample points.
Some volume in space (potentially containing arbitrarily complex geometry) will be
replaced by a sample point that only contains a fixed amount of information. Thus,
there is an inherent loss of information that can become visible in the image. This is
a general problem. It does not appear to be possible to represent the visual effect of
complex geometry with a constant amount of information [CDL+96] as both light
emission and transmission for different viewing angles can be arbitrarily compli-
cated. A classic example is a Venetian blind (Figure 6.42a). Such a geometric config-
uration shows a light transmission that is zero for most angles and close to one for
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F igure 6.42: Principal accuracy limits of point-based simplification. In practice, often
the opacity of simplified geometry is overestimated as subpixel occlusions cannot be
captured faithfully. (a) Venetian blind: highly direction-dependent occlusion [CDL+96].
(b) Example: point-based rendering of many distant trees. (c) Reference image computed
offline by distributed ray tracing.

a very small region in the angular domain. Furthermore, transfer through multiple
pieces of geometry is also nontrivial. For correct compositing, the subpixel occlusion
structure must be known. In general, an approximation, for example, by a simple
transparency value does not yield correct results (think of compositing two Venetian
blinds).

In practice, the color of a single sample point is usually considered to be constant as
well as the light transmission (there are refined techniques, such as statistical models;
see Section 8.2). The constant used for transparency has to be a conservative lower
bound to avoid holes in closed surfaces. This easily leads to a significant overesti-
mation of opacity and thus, strictly speaking, to wrong images. Nevertheless, ren-
derings often appear quite plausible, despite being wrong in a strict formal sense.
Figures 6.42b and c show an example: the opacity of the trees in the image is strongly
overestimated by the point-based rendering algorithm, as revealed by the reference
image created by (more expensive) stochastic ray tracing. Despite this, the depiction
appears plausible (at least as long as one does not know the true solution).

6.4.4 EXAMPLE IMPLEMENTATION

This subsection shows some renderings produced by an example implementation
of the point-based multiresolution rendering technique. The example scenes origi-
nally have consisted of triangle meshes and have been modeled using a scene graph
data structure that provides hierarchical instantiation. It allows the formation of
groups of objects and then a multiple “instantiation” of those groups in the scene
(i.e., the replication of groups using different geometric transformations). The scene
graph also allows hierarchical instantiation of groups of instances so that scenes of
high geometric complexity can be described with reasonable memory consumption.
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To apply the technique to precomputed point hierarchies, complete hierarchies are
treated as ordinary geometric primitives that can be inserted into higher-level hier-
archies. Using this technique, a very large “virtual” point hierarchy can be described
that appears to contain billions of primitives and multiresolution representations of
those. Please note that scene encoding is a significant problem. Finding an adequate
description of a large scene that is compatible with memory and bandwidth restric-
tions might often be a more serious problem than rendering itself, and hierarchical
instantiation is certainly not a general solution to this problem.

Figure 6.43 shows four application examples. The examples use octree hierarchies
with k = 48− 64 points per box side, which turned out to be optimal for the employed
hardware (GeForce 5650go, 1.5 GHz Pentium-M, rendering using DirectX 9 man-
aged vertex buffers). Using “large boxes” turned out to be critical for GPU-based
rendering. Submitting many small batches is very expensive on current GPUs due
to per-batch latency penalties [WH03]. As every node processed during rendering

(a)

(c)

(b)

(d)

Figure 6.43: Example renderings (640×480 pixels). Frame rates for a 1.5 GHz Pentium-M notebook with nVidia
GeForce FX 5650go graphics. (a) A landscape scene: 400 million triangles, frames per second; (b) a forest scene:
1015 triangles, 5–10 frames per second; (c) a stadium scene (105 million triangles), 10–20 frames per second; and
(d ) a herd of horses; 42 million triangles, 8–10 frames per second.
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corresponds to a new batch, the rendering costs for “small boxes” (i.e., a large number
of nodes) are completely dominated by latencies. For example, due to implementa-
tion limitations, scene (a) had to be rendered with smaller k (k = 24), which already
results in significantly reduced performance. All scenes employ a uniform (nonadap-
tive) sampling technique (the neighborhood heuristic that approximates an optimal
uniform sampling up to 30%). A single point cloud is stored per octree node (mul-
tiple resolution levels per hierarchy node are not employed). Image reconstruction
is done by simply drawing single pixels in a z-buffering (no EWA surface splatting).
Despite not employing all possible optimizations and using older hardware, interac-
tive results can already be achieved for vastly complex scenes.

Figure 6.43a shows a landscape scene consisting of 400 million primitives (encoded
by a scene graph by reusing six different tree models). The scene can be rendered at
about four frames per second. Figure 6.43b shows a more drastic example: using five
levels of 10×10 instantiations, six billion trees are encoded, amounting to about 1015

triangles. This scene can be rendered at about 10 Hz, permitting an interactive walk-
through. In comparison, a conventional z-buffer rendering without level-of-detail
processing would have taken about half a year (using the same graphics hardware).
Figures 6.43c and d show two more examples. The first is a rendering of a sports sta-
dium with 16,500 football fans, amounting to over one hundred million triangles.
Depending on the viewpoint, this scene can be displayed at frame rates of 10–20 Hz.
The second image shows a similar scene but with a herd of horses (42 million tri-
angles, 8–10 Hz). Due to the conceptual simplicity of the point-based approach, the
rendering technique can easily be generalized. For example, the fans in the stadium
and the herd of horses in the examples are actually animated; it is quite straightfor-
ward to generalize the described techniques to animated scenes [WH02].

6.4.5 CONCLUSION

Here is a list of conclusions and recommendations when using point-based rendering
techniques for large scenes in practice:

• Highly complex scenes can be rendered in real time: Using the hierarchical point-
based multiresolution rendering scheme described above, one can efficiently
render highly complex scenes with a virtually unlimited number of primitives.
The rendering time does not depend on the original level of detail; the geomet-
ric scene size (relative depth range) has only a minor influence.6 Rendering is
often more limited by memory constraints rather than rendering time.

6 The given results hold for most hierarchical techniques (LDC-trees, QSplat, and variants), as described
previously. The analysis presented here does not apply to linearized hierarchies, as described in the next
section.
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• Use big boxes: Oversampling costs caused by using (moderately) larger point
clouds per hierarchy node are quite reasonable in comparison to other sources
of oversampling. Large clouds facilitate an efficient GPU implementation as the
point cloud in every node can be submitted as one large batch. Thus, backed
up by the theoretical analysis, one can recommend employing “big boxes” for
GPU-based implementations. Hierarchies with few or even only one point per
node are not optimal for GPU-based rendering. However, this might be the
data structure of choice for various other applications, such as ray tracing or
other CPU-based rendering techniques.

• Sampling matters: Unfavorable sampling patterns are a major cause of oversam-
pling in practice. A well-designed sampling pattern can out perform an ad hoc
or random version by about an order of magnitude. Adaptive sampling can
decrease oversampling further. The quantization due to the hierarchy affects
oversampling as well; data structures with branching factors larger than those
of an octree are usually undesirable for this reason.

• Point rendering can be expensive: Hence, it should be used only when necessary.
If the original geometry is not point based, it should be included in the mul-
tiresolution hierarchy at the high levels of detail. This assures both a faithful
reproduction of the original data as well as the rendering algorithm to be never
worse than simple rasterization of the original primitives in terms of rendering
expenses.

The next section will describe how a point-based multiresolution rendering algo-
rithm can be implemented entirely on a programmable GPU with almost no CPU
intervention, and how to deal with the limitations of current graphics hardware by
modifying the multiresolution data structure that represents the scene.

6.5 SEQUENTIAL POINT TREES

Carsten Dachsbacher and Marc Stamminger

6.5.1 OVERVIEW

Point clouds are a very useful representation for level-of-detail approaches. Their lack
of topology information makes it easy to adapt the detail level by simply adding
or removing points. No costly updates of topology information, as they are for
example required for progressive meshes, are necessary. A typical example is the
QSplat method ([RL00] and Section 4.4). The bounding box hierarchy is traversed
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top-down, and any branch can be skipped or rendered as a single point without
considering neighboring branches, which makes the traversal efficient.

Nevertheless, due to its hierarchical nature, the top-down traversal of QSplat maps
very badly to a current GPU. QSplat has a very fine granularity in its level-of-detail
determination, and it generates the point cloud to be rendered point by point. As a
consequence, if the points are rendered by a GPU, they have to be rendered in “imme-
diate mode”, (i.e., every single point is sent to the GPU separately). Thus, most of the
power of current GPUs is unused, because the GPU is mainly waiting for new data.
This bottleneck gets worse (in terms of memory bandwith), if more data is stored
with every point (e.g., a normal, a color, a texure coordinate, etc.).

Memory traffic can be reduced by keeping all vertex data in video memory and only
generating and sending vertex indices. Furthermore, recent computer architectures
such as PCI Express provide much higher bandwidth. But current GPUs can still
render many more points than the QSplat traversal can provide. So with QSplat on
a current CPU roughly 10 million points can be generated per second, whereas a
current GPU can easily render 100 million points per second and more.

Ideally, the QSplat point selection should happen directly on the GPU. This would
solve the memory bandwidth problem, the computation power of the GPU can be
better used, and the CPU is available for other tasks (e.g., game AI or physics simu-
lation).

Sequential point trees [DVS03] achieve this goal by transforming the hierarchical
traversal of the QSplat-like hierarchy to a sequential process. We first define a simple
local point-selection criterion, with which we can decide for a single point of the
hierarchy whether QSplat would select this point for a particular view or not, without
having to look at its ancestors. We can then sequentially process all points and sort
out the ones to be rendered. This processing can already be done by the GPU, at the
cost that always all points have to be processed. The skipping of branches, that makes
QSplat efficient, is not possible yet.

However, we can rearrange the nodes of a hierarchical point tree to a sequential list,
so that all selected points are densely clustered in the list. This is demonstrated in
Figure 6.44, where the Buddha model is rendered with increasing viewing distance.
The bar below the Buddha visualizes the sequential point list with the selected points
in red and the unselected points in green. The red points always form a cluster of
varying size at the beginning of the list.

Furthermore, for any particular view, we can compute tight bounds on this cluster of
selected points easily. We can then restrict the processing by the GPU to this bounded,
yet sequential region. The majority of the points processed by the GPU is then also
rendered, which dramatically increases performance. The CPU load is very low, the
main process only has to compute the segment boundaries and pass them to the
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F igure 6.44: Continuous detail levels of a Buddha generated in vertex programs on the GPU. The colors denote
the LOD level used and the bars describe the selected amount of points selected for the GPU. CPU load is always
below 1%.

GPU. The selection of the points inside this segment and the rendering are then done
completely by the GPU, where the GPU can work at full power on the sequential data.
Overhead arises due to the points that are culled by the GPU, but in our examples
this fraction is in the range of only 10–40%. We thus achieve rates of about 60 million
effectively rendered points per second on a Radeon 9700 and about 80 million on a
GeForce 6800 GT, in each case with very low CPU load.

Note that our scenes are sets of objects. For each of the objects, a sequential point tree
as described in the following is generated. With instancing, the same point tree can
be rendered at different locations. This simple scene structure reflects the necessi-
ties of typical interactive applications, like games or rendering of outdoor scenes, for
example. The goal is to render each visible object at a level of detail that is an optimal
balance for the current point of view.

In the remaining chapter, we will first describe our local point-selection criterion.
We then show how we rearrange the tree to a list and how we can efficiently bound
the cluster of selected points. We then describe how additional error criteria, such as
texture information, can be included. Finally, we extend our algorithm to a hybrid
point and triangle representation, where for large, flat areas automatically the much
better suited triangle-rendering primitive is selected.

6.5.2 SEQUENTIALIZATION

We start with a bounding sphere hierarchy, as it is used for QSplat and described in
Section 4.4. QSplat traverses this hierarchy top-down. A bounding sphere is rendered,
if its projection to the image is smaller than a threshold ε, usually with one or two
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pixels. The size rp of the projection of a sphere (m, r) depends on the sphere’s radius
r and its distance d to the camera plane, which is the (maybe negative) z-coordinate
of the point in camera space: rp = Fr/d, where F is a scaling factor that accounts
for image resolution. If rp is above the threshold, the children bounding spheres are
considered recursively.

This selection procedure is hierarchical. Points within skipped branches are not
touched at all. If we want to switch to sequential processing, we need a local selection
criterion that can decide for a single point whether it is to be selected or not, without
knowing the history of the results of its ancestors.

In order to define such a local criterion, we first replace the hierarchical selection
criterion rp < ε by a similar, but for our purposes more intuitive, measure. We assume
that ε is constant to make the formulation clearer. The recursive test for a sphere (m, r)
checks whether rp = Fr/d < ε. We can rearrange this to d > Fr/ε. We call the right
side dmin. A sphere is now rendered if its camera distance d is larger than dmin (i.e.,
our new criterion is d > dmin). For now, dmin is just the scaled sphere radius, but
in later sections we will extend dmin so that it also contains texture information and
cannot be computed on the fly quickly. Thus we assume that dmin is stored with every
bounding sphere.

Second, if the tree nodes are processed sequentially without hierarchy information,
we need a nonrecursive test that also tests for every single point whether the current
point and none of its ancestors are to be selected. To this end, we add a dmax-parameter
to every node and use d ∈ [dmin, dmax] as a nonrecursive test. Intuitively, we test with
the lower bound whether the sphere is smaller than the threshold, and with the upper
bound we check whether the distance is already so large that also one of the ancestors
is selected; the dmax test thus replaces the recursive skip.

A first attempt for the selection of dmax is to use dmin of the direct parent or infinity
for the root node. So when going up the hierarchy the intervals don’t overlap and
neither a node nor its children are selected. Examples with a simple point hierarchy
and the node fronts selected by different values for d are shown in Figure 6.45.

The above approach assumes that d is the same for a bounding sphere and its children,
which is generally only approximately true. If we use the correct d, it can happen for
a sphere that d is just below dmin, but due to the different d for the children also above
some childrens’ dmax. These children are then incorrectly not selected, because it is
incorrectly assumed that the parent sphere has been rendered. The result is holes in
the rendering. We can account for this by increasing dmax by the distance between the
child’s and the parent’s center. The resulting interval overlap ensures that no holes
appear, but it also means that for some nodes both the node and some of its children
are selected. This results in overdraw and slightly reduced performance, but we did
not experience visible artifacts from it.
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Figure 6.45: Point hierarchy with [dmin, dmax]-intervals (upper left) and selected tree cuts for three different view
distances d.

Please note also that the accuracy threshold ε can easily be factored out, so that ε can
be varied on the fly.

For fast rendering with a GPU, the spheres of the hierarchy are now stored as an
array of point primitives. For every sphere, we store its center as a point coordi-
nate, radius r, and dmin and dmax are stored as additional attributes (e.g., texture
coordinates). Additionally, we can store colors, normals, or texture coordinates with
these points. A simple vertex program first projects all points to camera coordinates.
The z-coordinate of the camera coordinate gives us d, which is then compared with
the [dmin, dmax]-interval of the point. If this test fails, the point is moved to infinity
and thus culled. Otherwise a lighting computation is performed and the point is
transformed to clip coordinates. Furthermore, we have to compute the splat size for
the point, which is the radius of the sphere times a constant factor divided by d. The
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overhead for the interval test is only a few instructions. It slightly affects performance,
because point rendering is usually vertex bound (if we do not apply expensive splat-
ting techniques).

6.5.3 REARRANGEMENT

After transforming the recursive test to a simple distance-interval test, we store
the spheres in a nonhierarchical list, which is processed sequentially. At this step,
the [dmin, dmax] test allows for an important optimization: After sorting the list
by descending dmax, we can easily restrict the computation to a prefix of the list.
Figure 6.46 shows the sequential version of the point tree of Figure 6.45 (upper left).
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Figure 6.46: Conversion of the point tree of Figure 6.45 into a sequential point tree.
Upper left : The sequential point tree sorted by dmax. The diagrams show [dmin, dmax]
for every node. Upper right and bottom row : The same tree cuts as in Figure 6.45,
now within sequential point trees. The bars below denote the range that needs to be
processed for rendering.
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Furthermore, one can see the list points selected by a certain constant d. For d = 8,
only the first four points can contribute, because for all later points dmax < d. If we
decrease d, this boundary moves to the right.

Since the list is not sorted for dmin, a similar left bound is not easy to find. However,
this is not really critical, because it is known that in a tree with a branching factor of,
for example, four, only about one-fifth of the nodes are inner nodes, so the unselected
points at the beginning of the list are only a small fraction. We thus simply use 0 as
left bound.

In contrast to our assumption above, d is not constant for different points on an
object. In general, d can vary over an interval with the extend of the object as size. In
particular, if the camera is close to the object, this variation is significant in relation
to the camera distance.

The resulting effect on the point selection is visualized in Figure 6.47. For constant d
(left column), d defines a front in the point tree. In the sequential point tree list, this
front cuts the list into two halves. If d varies, the resulting vertex front is enclosed by
the vertex fronts defined by min{d} and max{d}. In the list, this results in a fuzzy
zone, where points are partially selected.

Thus, the entire algorithm goes as follows. First, a lower bound on d is computed
from a bounding volume of the object. We then search the first list entry with dmax ≤
min{d} by a binary search. The beginning of the list up to this entry is passed to
the GPU.
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Figure 6.47: Left : For constant view distance r, the vertex front cuts the sequential
point tree exactly. Right : If r varies, the border gets fuzzy.
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With this simple approach, we efficiently combine coarse and fine granularity culling.
The CPU does a first efficient preculling for dmax by selecting i and then passes the
segment boundaries [0, i] to the GPU (coarse granularity). The GPU processes the
segment (which is ideally stored in video memory) sequentially at maximum effi-
ciency and also does the fine granularity culling. The percentage of points culled by
the GPU depends on the variation of d over the object. In typical examples, this frac-
tion is 10–40%.

Also more sophisticated splatting techniques as described in Section 6.2 can be used
in combination with sequential point trees. However, the slower the splatting, the
smaller the advantage of our fast point selection. For expensive splatting techniques
such as perspective-correct splatting, the sequential point trees provide no perfor-
mance advantage, except for the fact that the CPU can be freed for other tasks.

Sequential point trees do not allow hierarchical visibility frustum culling within an
object. Visibility culling creates unpredictable point fronts that cannot be considered
during sorting.

6.5.4 BETTER ERROR MEASURES

Every node in our point-tree hierarchy represents a part of the object. As described
in Section 4.4, it stores a center point p̂, an average normal n̂, and a radius r̂ of a
bounding sphere around the center for the represented object part. The generation
of such hierarchies is detailed in Section 4.4.

Up to now, we assumed that, when rendering such a bounding sphere as a splat, the
error is proportional to the projected sphere radius. This assumption is reasonable,
but leaves room for improvement. In fact, our rearrangement scheme can handle
any error measure that can be coded into a [dmin, dmax] interval. In the following, we
present two extensions that can also be used to generate an improved geometric error
and also include color information.

Improved Geometric Error
In fact, a better error measure should be able to differentiate smooth regions that
can be well handled by a single disk and detailed regions or boundary regions, where
a disk is a bad approximation. In order to account for this, we define two different
errors, perpendicular and tangential error, that can appear when a disk approximates
a part of a surface. Both can be combined and coded to our [dmin, dmax] criterion.

Perpendicular Error The perpendicular error ep is the minimum distance between
two planes parallel to the disk that encloses the surrounding surface, and thus
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measures variance (see Figure 6.48, left). We compute this error bottom-up while
building the hierarchy. If i iterates overall children of a node, we can compute ep as

ep = max{((pi − p)Tn) + di} −min{((pi − p)Tn) − di}
with di = ri

√
1 − (ni

Tn)2.
(6.86)

During rendering, the perpendicular error projects into the image, resulting in an
image error ẽ p. ẽ p is proportional to the sine of the angle between the view vector v
and the disk normal n, and it decreases with 1/d and d = |v| : ẽ p = ep sin(α)/d and
α = (v, n). ẽ p captures the fact that errors along the silhouettes are less acceptable.

Tangential Error The tangential error measures whether the parent disk covers an
unnecessary large area, resulting in typical errors at surface edges (Figure 6.49). We
measure this by fitting a number of slabs of varying orientation around the projected
child disks. et is then the diameter of the disk minus the width of the tightest slab.
Negative et are clamped to zero. et is projected to image space as

ẽ t = et
cos(α)

d
. (6.87)

Combined Geometric Error Perpendicular and tangential error can be combined to
a single geometric error

eg = max
α
{ep sin α + et cos α} =

√
e2

p + e2
t . (6.88)
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Figure 6.48: As perpendicular error for a disk we use the distance between the two
planes parallel to the disk enclosing all children.
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et = 0
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Figure 6.49: The tangential error measures how well a parent disk approximates the
children’s disks in the tangent plane.

The image space counterpart ẽ g depends on the view distance d, but no longer on the
view angle: ẽ g = eg/r. This simplification is faster to compute, but also less adaptive.
The maximal error eg has the node’s bounding sphere’s diameter 2r as upper bound.
When setting eg to 2r we get the QSplat representation. Note that our error measure
can be used both for closed surfaces and for unstructured geometry, like trees.

This combined geometric error fits well with our [dmin, dmax] error criterion. For the
computation of dmin we just replace the sphere radius r by the geometric error eg. The
resulting point tree representation adapts point densities not only to view distance
d but also to local surface properties. Large, flat regions exhibit a small geometric
error eg and are thus rendered by large splats, whereas small splats are selected in
geometrically or visually complex areas. The effect can be seen in Figure 6.44, where
the different hierarchy levels are visualized with different colors.

Color, Texture, and Material
We can also use [dmin, dmax] to account for color. Every leaf point of the point hierar-
chy represents a part of an object, so an average color can be assigned. If the object is
textured, the texture color is also averaged and included in the point color. For inner
nodes in the hierarchy the color of the children is averaged.

With the color averaging we have to reconsider our error measure. In flat regions
we have small geometric error, but by rendering large splats the color and texture
detail are washed out. To avoid this, we increase the point’s error to the point’s diam-
eter when the color varies significantly. This enforces small splats and the blurring is
reduced to the error threshold ε. With this measure, point densities adapt to texture
detail, thus geometry is created to capture color detail.
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The averaging corresponds to an object space-filtering operation. Since due to the
above error criterion splats with texture detail all have roughly image size ε, this aver-
aging operation implicitly is similar to image space-texture filtering. The filtering
quality is not as good as sophisticated EWA-texture filtering (see Section 6.2), but
aliasing is well reduced.

6.5.5 HYBRID POINT-POLYGON RENDERING

Sequential point trees can be extended to hybrid point-polygon rendering in the spirit
of Cohen and Nguyen and Chohen et al. [CN01, CAZ01], where object parts are
rendered by polygons when this is the faster option (Figure 6.50 shows an example).
Rendering a triangle is probably the best solution as long as its longest side s has an
image size above our error threshold: s/d ≥ ε, where d is the viewing distance. In
this case, we need at least two splats to render the triangle, and no speed gain can be
expected. Thus, we can compute a dmax value for triangles: dmax = s/ε. If we render
all triangles that are closer to the viewer than their dmax, we can remove all points,
with a dmax smaller than the dmax of the original triangle, from the point list.

The goal is to do the triangle selection on the GPU, too. We thus sort all triangles
for decreasing dmax values. At rendering time, for every object an upper bound on

Figure 6.50: Left : With hybrid rendering small triangles are replaced by points (red).
Right : Hybrid rendering with normal lighting.
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d is computed, and, analogously to the point list, the beginning of the triangle list
with dmax > max{d} is passed to the GPU. A vertex program evaluates the condition
d < dmax for every vertex and puts the result into the alpha value of the vertex. Culling
is then done by an alpha test. By this, triangles with differently classified vertices are
rendered partially. Since this is a border case, the corresponding points are also ren-
dered and resulting holes are automatically filled. Note that by resorting the trian-
gle list, triangle strips are torn apart or triangle orders optimized for vertex caches
get lost.

Additionally, we have to adapt our point-tree structure, and this is surprisingly simple
with the [dmin, dmax] test. Once we know the dmax values for all triangles, we traverse
the point hierarchy. For all leaves, the dmin value for a point, which originally is zero,
is replaced by the dmax value of the corresponding triangle (minus an offset to obtain
the necessary overlap). The dmax values are propagated upward by updating dmin of
the inner nodes accordingly. This can create negative intervals with dmin > dmax. They
appear when large triangles obtain multiple sample points: in this case our algorithm
considers it more efficient to render the triangle instead of multiple sample points.
Because the render test will always fail, these points can simply be discarded. With this
simple procedure, the point-tree hierarchy is automatically reduced to a size where
point rendering is efficient.

6.5.6 IMPLEMENTATION AND RESULTS

An efficient implementation of sequential point trees of course requires a pro-
grammable geometry processing to perform the interval test and discarding point
primitives. Optimal performance is achieved if the geometry data reside inside video
memory to avoid slow bus transfers.

In Figure 6.51, we show a complex test scene with various models. The scene is ren-
dered on an ATI Radeon 9700 using sequential point trees without splatting, that
is with single-colored point primitives, for the statues and the trees. The ground,
sky, and other models are rendered as triangles. With our implementation, a Radeon
9700 GPU can process 77 million points per second, if the sequential point tree data
reside in video memory. After culling, 50 million points per second are rendered. All
objects are textured, where the textures contain surface colors and light map infor-
mation. The textures and geometry data are stored in the memory of the graphics
card. The frame rates are in the range of 36–90 frames per second, with a CPU load
of 5–15% on a 2.4 GHz Intel Pentium. As almost all work is offloaded to the GPU, the
performance is only bound by memory bandwidth and geometry-processing power.
Ideally, when the point sample data are stored in fast video memory, the number of
points processed per second depends on the number of vertex shader units and the
clock rate of the GPU.
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F igure 6.51: Garden of SIG-GRAPH sculptures.

6.5.7 CONCLUSION

Sequential point trees are an algorithm for continuous level-of-detail control that is
executed almost completely on the GPU. The algorithm is in the spirit of QSplat, but
the hierarchical traversal is replaced by sequential processing, which can be done on
the GPU with high efficiency. We extend the selection criterion of QSplat so that it
also considers local curvature, boundary points, and textures. On the downside, our
algorithm cannot gain efficiency by culling branches outside the view frustum. If the
sequential point-tree data structure fits into video memory, a point throughput can
be achieved that is an order of magnitude higher than a QSplat CPU implementation.
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mmueller@ageia.com Switzerland
Tel: +41 44 445 21 49 keiser@inf.ethz.ch
Fax: +41 44 445 2147 Tel: +41 44 632 74 37

Fax: +41 44 632 15 96

Pauly, Mark Wicke, Martin
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7 PHYSICS-BASED
ANIMATION

INTRODUCTION

Physically based animation using point-sampled representations has emerged
recently as a promising alternative to conventional finite element simulation. It
is inspired by so-called meshless methods, where the continuum is discretized
using unstructured point samples. This chapter will demonstrate that such methods
perform for a wide spectrum of material simulations including brittle fracture, elas-
tic and plastic deformations, and fluids. Section 7.1 gives an introduction to meshless
finite elements and demonstrates how they can be utilized to compute elastic and
plastic deformations. This method serves as a basis for the simulation of fracture

341
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using point-based surface representations in Section 7.2. It will be shown that the
surface can be conveniently resampled without the need to restructure it, as it is
required for triangle meshes. The chapter concludes with a discussion of methods
for fluid simulation. The particle nature of fluids makes them ideally suited for
point-based methods, but the proper reconstruction and animation of the fluid
surface remains a challenge.

Physics-based animation using point-sampled representations has emerged recently
as a promising alternative to conventional finite element method (FEM) simulation.
It is inspired by so-called meshless methods, where the continuum is discretized
using unstructured point samples. We will demonstrate that such methods allow
for a wide spectrum of material simulations including brittle fracture, elastic and
plastic deformations, and fluids. Such physical point representations are combined
with high-resolution, point-sampled surface geometry.

7.1 MESHLESS FINITE ELEMENTS

Matthias Müller-Fischer

7.1.1 OVERVIEW

In computer graphics static objects are most often represented by two-dimensional
surfaces only while their interior can safely be ignored. In this chapter, however, we
will discuss ways to animate deformable objects using points. In order to solve the
elasticity equations, the interior of an object needs to be modeled as well. The most
popular approaches in computer graphics to simulate volumetric deformable objects
are the use of mass spring systems or finite element meshes [NMK+05]. In recent
years, meshless point-based approaches have become popular, both in computational
sciences [BKO+96, Liu02, FM03] and in computer graphics [DC96, MKN+04].
Following the spirit of the book, we will discuss point-based approaches for the
simulation of the object’s volume. On the one hand, points will be used to represent
the volume and the elastic properties of the material. As Müller et al. [MKN+04]
we call these points phyxels as an abbreviation for physics element. In addition,
a different set of points (the surfels) can be used to represent the surface of the
deformable objects. These surfels passively follow the dynamic motion computed
on the phyxels (see Section 7.1.9).

In this section we will present the basic method proposed in Müller et al.
[MKN+04] for the simulation of elastic and plastic objects. This method is the basis
for the simulation of fracturing material described in the next section. In contrast
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to mass spring systems, the method is based on continuum elasticity theory. The
advantage of continuum-based approaches over simpler methods is the fact that
they converge to the continuous solution as the granularity of the discretization
goes to zero. In addition, the material stiffness is expressed in terms of Young’s
modulus E, which can be looked up in textbooks, in contrast to spring constants,
which have to be tuned for a specific mesh. Continuum elasticity theory would
cover an entire book in itself. Here we only explain the central ideas necessary
to understand the method and refer the interested reader to Chung [Chu96] for
more details on elasticity theory.

7.1.2 CONTINUUM ELASTICITY

Continuum elasticity theory describes the behavior of continuous (three-
dimensional) objects. Hereby, the three quantities displacement, strain, and stress play
a major role. In one-dimensional problems, these quantities are all one dimensional
and have intuitive interpretations. Figure 7.1 depicts a beam with cross-sectional
area A. When a force fn is applied perpendicular to the cross section, the beam with
original length l expands by ∆l. The stress σ is the force applied per area fn/A with
unit [N/m2] while the strain ε is the relative elongation of the beam∆l/l without unit.

Inside the beam, the displacement u varies linearly. It can be presented by a
one-dimensional function u(x) = x(∆l/l) as Figure 7.1 shows. The strain (i.e.,
the relative elongation of the material) can also be expressed in terms of the

l

fn

u(x)
∆l

fn / A = E∆l / l 

∆l

A

x

Figure 7.1: Hooke’s law for a beam. The force per area applied on the cross section
of area A (stress) is proportional to the relative elongation of the material (strain). The
constant of proportionality E is Young’s modulus. The displacement function u(x) defines
how far a material point originally at location x is moved to the right.
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displacement function as εconst = u(l)−u(0)
l

. This global expression, however, is only
correct for linear displacement functions. For general displacement functions, the
strain varies spatially. The strain at location x is then computed locally for an
infinitesimal element of length dx as ε(x) = u(x+dx)−u(x)

dx
. This yields the more

general expression ε(x) = d
dx

u(x) for one-dimensional problems.

Hooke’s law states that the strain depends linearly on the applied stress (i.e., fn/A =
E∆l/l or σ = Eε). This law is a good approximation of the behavior of so-called
Hookean materials near the equilibrium. The constant of proportionality E is called
Young’s modulus. For steel, E is in the order of 1011N/m2, while for rubber, it lies
between 107 and 108N/m2. A law that relates strain to stress like Hooke’s law is called
a constitutive law.

In three dimensions, continuum elasticity theory gets a bit more involved mathe-
matically. The concepts, however, are exactly the same as in the one-dimensional
case. A three-dimensional deformable object is typically defined by its undeformed
shape (also called equilibrium configuration, rest, or initial shape) and by a set of
material parameters that define how it deforms under applied forces. If we think
of the rest shape as a continuous connected subset Ω of R

3, then the coordinates
x ∈ Ω of a point in the object are called material coordinates of that point. In the
discrete case Ω is a discrete set of points that sample the rest shape of the object.

When forces are applied, the object deforms and a point originally at location x
(i.e., with material coordinates x) moves to a new location p(x), the spatial or world
coordinates of that point. Since new locations are defined for all material coordi-
nates x, p(x) is a vector field defined on Ω. Alternatively, the deformation can also
be specified by the displacement field, which, in three dimensions, is a vector field
u(x) = p(x) − x defined on Ω (see Figure 7.2).

The elastic strain ε is computed from the spatial derivatives of the displacement field
u(x) as in the one-dimensional case. However, in three dimensions the displacement
field has three components u = u(x) = (u, v, w)T and each component can be
derived with respect to one of the three spatial variables x, y, and z. Therefore, strain
cannot be expressed by a single scalar anymore. For example, at a single point
inside a three-dimensional object, the material can be stretched in one direction
and compressed in another one at the same time. Thus, strain is represented in
three dimensions by a symmetric 3 × 3 tensor:

ε =



εxx εxy εxz

εxy εyy εyz

εxz εyz εzz


. (7.1)
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(a)

u(x)

x

p(x)

(b)

x

~u(x)

~p(x)

xi

pi

(c)

xi

pi

ui

Figure 7.2: (a) A deformation is represented mathematically by a continuous vector
field u(x) that describes the displacement of each material point x. A point originally at
location x ends up at location p(x) = x + u(x) in the deformed shape. (b) In mesh-based
approaches, the displacement field u(x) is approximated within an element by a field
ũ(x) that interpolates the displacements of the corners of the element. (c) A mesh-free
point-based approach represents the displacement field by a set of discrete samples ui
defined at locations xi. Displacement vectors between these locations are interpolated
(e.g., with the moving least squares approach).

In computational sciences, several ways to compute the components of the strain
tensor from the spatial derivatives of the displacement field are used. Popular choices
in computer graphics are

εG =
1

2
(∇u + [∇u]T + [∇u]T∇u), (7.2)

and

εC =
1

2
(∇u + [∇u]T), (7.3)

where the symmetric tensor εG ∈ R
3×3 is Green’s nonlinear strain tensor (nonlinear

in the displacements) and εC ∈ R
3×3 its linearization, Cauchy’s linear strain tensor.

The gradient of the displacement field is a 3 × 3 matrix:

∇u =




u,x u,y u,z
v,x v,y v,z
w,x w,y w,z


, (7.4)

where the index after the comma represents a spatial derivative.

Now let us turn to the measurement of stress, the force per unit area applied to a
plane. In three dimensions, the force and the orientation of the plane it is applied to
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are both three-dimensional vectors. The stress relating the two, therefore, is expressed
by a symmetric 3 × 3 tensor:

σ =



σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


, (7.5)

with the following interpretation:

df

dA
= σ · nA. (7.6)

To get the force per area f/A with respect to a certain plain with normal nA, the stress
tensor is simply multiplied by nA.

Hooke’s law states that stress and strain are linearly related:

σ = Eε. (7.7)

Both stress and strain are symmetric tensors so they have only six independent coeffi-
cients. The quantity E relating the two can, thus, be expressed by a 6×6-dimensional
matrix. For isotropic materials (with equal behavior in all directions), Hooke’s law
has the following form:




σxx

σyy

σzz

σxy

σyz

σzx




=
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1 − 2ν 0 0

0 0 0 0 1 − 2ν 0

0 0 0 0 0 1 − 2ν







εxx

εyy

εzz

εxy

εyz

εzx




, (7.8)

where the scalar E is Young’s modulus describing the elastic stiffness and the scalar
ν ∈ [0 . . . 1

2 ) Poisson’s ratio, a material parameter that describes to which amount
volume is conserved within the material. Figure 7.3 shows the difference between
low- and high-volume conservation modeled via the Poisson’s ratio.

We now turn to the question of how to simulate a dynamic elastic object. To this end,
we apply Newton’s second law of motion f = mp̈ to each infinitesimal volumetric
element dV of the object. Since the mass of an infinitesimal element is not defined,
both sides of the equation of motion are divided by the volume dx · dy · dz of the
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F igure 7.3: The effect of Poisson’s ratio: the undeformed model (left) is stretched
using a Poisson ratio of zero (middle) and 0.49 (right).

element. This turns mass [kg] into density [kg/m3] and forces [N] into body forces
[N/m3]. We get

ρp̈ = f(x), (7.9)

where ρ is the density and f(x) the body force acting on the element at location x.

Figure 7.4 illustrates the forces that act on an element due to internal stress σ. Only
those forces acting on the faces perpendicular to the x-axis are shown. The forces act-
ing on the other faces of the element are computed analogously. According to Equa-
tion (7.6) the forces per unit area acting on the faces with normal [−1, 0, 0]T and
[1, 0, 0]T are −[σxx, σxy, σxz]T

x, y, z and [σxx, σxy, σxz]
T
x+dx, y, z, respectively. To get forces,

we multiply by the face area dy · dz. Finally, the body forces are the forces divided
by dV = dx · dy · dz. This yields f = ([σxx, σxy, σxz]

T
x+dx, y, z − [σxx, σxy, σxz]T)/dx =

[σxx,x, σxy,x, σxz,x]T for the body forces, where the comma denotes spatial derivatives.

If we take the forces acting on the other faces into account as well, we arrive at the
final expression for the body forces acting on an infinitesimal element due to internal
stresses:

fstress = ∇ · σ =



σxx,x + σxy,y + σxz,z
σyx,x + σyy,y + σyz,z
σzx,x + σzy,y + σzz,z


, (7.10)
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dx

dy

dz

σxx

σxy

σxz

dydz

σxx

σxy

σxz

dydz

x x + dx

Figure 7.4: The elastic forces acting on the faces of an infinitesimal cube due to internal
stresses. Only the forces acting on faces perpendicular to the x-axis are shown.

where, again, the commas represent a spatial derivative. We are now ready to
write down the entire partial differential equation (PDE) governing dynamic elastic
materials:

ρp̈ = ∇ · σ + fext, (7.11)

where fext are externally applied body forces such as gravity or collision forces. This
hyperbolic PDE describes the evolution of the world coordinates p of the elastic body
since ρ and fext are known quantities, σ depends on ε via the constitutive law, and ε,
in turn, is a function of the spatial derivatives of the displacements u(x) and, thus, of
the world coordinates p(x) = x + u(x).

A linear dependency of the stresses on the strains such as in a Hookean material is
called material linearity. A linear measure of strain such as Cauchy’s linear strain
tensor defined in Equation (7.3) is called geometric linearity. Only with both assump-
tions, material and geometric linearity, Equation (7.11) becomes a linear PDE. Lin-
ear PDEs are easier to solve because discretizing them via finite differences of finite
elements yields linear algebraic systems. However, for large deformations, the sim-
plification of geometric linearity causes significant visual artifacts (see [MG04]).

Linearizing Equation (7.11) is only useful in connection with implicit time integra-
tion because in that case, either a linear or a nonlinear system of equations needs to
be solved. However, in the explicit case it does not really matter whether the elastic
forces are a linear or nonlinear function of the displacements because they are eval-
uated explicitly at each time step.

7.1.3 MESHLESS DISCRETIZATION

In order to use the governing continuous PDE in a numerical simulation, the
volume of an object needs to be discretized into regions of finite size. In mesh-based
approaches, such as the finite element method (FEM), the volume is divided into
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disjoint volumetric primitives such as tetrahedra, which form a mesh. In contrast,
in mesh-free methods the volume is sampled at a finite number of point locations
without connectivity information and without the need of generating a volumetric
mesh (see Figure 7.2).

In a point-based mesh-free model, all the simulation quantities, such as location
xi, density ρi, deformation ui, velocity vi, strain εi, stress σi, and body force fi, are
carried by the physically simulated points—the phyxels. For each simulated phyxel
we have a position xi in body space, defining what we call the reference shape, and
their deformed locations xi + ui the deformed shape.

Smoothed particle hydrodynamics (SPH) is a popular method for solving PDEs on
point samples without connectivity. It was first proposed in the field of astronomy
for the simulation of star clusters [Mon92]. In computer graphics it has been used to
model highly deformable models [DC96] and fluids [MCG03]. One could also use
SPH to solve the governing Equation (7.11) on the phyxels. However, as we will see
later, the method is not accurate enough to get stable simulations of highly deforming
and freely rotating objects. Still, one important idea can directly be adopted, namely
how volumes and densities are assigned to the phyxels. In continuum mechanics,
quantities are measured per unit volume. It is, thus, important to know how much
volume each phyxel represents.

First, each phyxel is assigned a fixed mass mi that does not change through the
simulation. This mass is distributed in the neighborhood of the phyxel via a radially
symmetric scalar-kernel function ω(r, h), where r is the distance from the phyxel
position and h a cutoff distance after which the kernel is zero. The distance h is
also called the support of the kernel. In order to properly convert an attribute into
a body attribute the kernel needs to be normalized (i.e.,

∫
x ω(|x − x0|, h)dx = 1

with unit [1/m3]). Müller et al. [MKN+04] propose to use

ω(r, h) =

{
315

64πh9 (h2 − r 2)3 if r < h

0 otherwise
(7.12)

to distribute the masses of the particles. This normalized kernel can be evaluated effi-
ciently because r only appears squared. The density at phyxel i can then be computed
by smoothing the masses of all the phyxels as

ρi =
∑

j

mjωij, (7.13)

whereωij = ω(|xj−xi|, hi). Finally, the volume represented by phyxel i is simply given
by vi = mi/ρi. While the mass represented by a phyxel is fixed, the density and volume
vary when the reference positions of the phyxels change in case of plastic deformation
(Section 7.1.7).
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The masses mi and support radii hi need to be initialized before the simulation starts.
Here is a way to finding masses if the phyxels irregularly sample the initial volume.
For each phyxel i compute the average distance r̄i to its k (e.g., 10) nearest neighbors.
The support radius hi is chosen to be a multiple of (e.g., three times) r̄i. The masses
are initialized as mi = s r̄3

i ρ, where ρ is the material density and s is the same scaling
factor for all phyxels, chosen such that the ρi resulting from Equation (7.13) are close
to the material density ρ.

7.1.4 MOVING LEAST SQUARES INTERPOLATION

In order to compute strain, stress, and the elastic body forces, the spatial derivatives
of the displacement field ∇u are needed (see Equation 7.2). These derivatives can be
estimated from the displacement vectors uj of nearby phyxels.

The approximation of ∇u must be first-order accurate in order to guarantee zero
elastic forces for rigid body modes (global rotation and translation). Standard
SPH approximation does not have this property. A method that is first-order
accurate (i.e., that can reconstruct linear functions correctly) is the moving least
squares formulation [LS81] with a linear basis (see also Section 4.2). Let us con-
sider the x-component u of the displacement field u = (u, v, w)T. Using a Taylor
approximation, the continuous scalar field u(x) in the neighborhood of xi can be
approximated as

u(xi + ∆x) = ui + ∇u|xi · ∆x + O(||∆x||2), (7.14)

where ∇u|xi = (u,x, u,y, u,z)T at phyxel i. Given ui and the spatial derivatives ∇u at
phyxel i, the values uj at close phyxels j can be approximated as

ũj = ui + ∇u|xi · xij = ui + xT
ij∇u|xi , (7.15)

where xij = xj − xi. A measure of the error of the approximation is given by the sum
of the squared differences between the approximated values ũj and the known values
uj, weighted by the kernel given in Equation (7.12):

e =
∑

j

(ũj − uj)
2 ωij. (7.16)

The differences are weighted because only phyxels in the neighborhood of phyxel
i should be considered and, additionally, fade in and out smoothly. Substituting
Equation (7.15) into Equation (7.16) and expanding yields

e =
∑

j

(ui + u,x xij + u,y yij + u,z zij − uj)
2 ωij, (7.17)

where xij, yij, and zij are the x-, y-, and z-components of xij, respectively. Given
the positions of the phyxels xi and the sampled values ui the best candidates for
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the derivatives u,x, u,y, and u,z are the ones that minimize the error e. Setting the
derivatives of e with respect to u,x, u,y, and u,z to zero yields three equations for
the three unknowns:




∑

j

xijx
T
ijωij



∇u|xi =
∑

j

(uj − ui)xijωij. (7.18)

The 3× 3 system matrix M =
∑

j xijx
T
ijωij (the moment matrix) can be precomputed,

inverted, and used for the computation of the derivative of v and w as well. If M is
nonsingular we have the following formula for the computation of derivatives:

∇u|xi = M−1




∑

j

(uj − ui)xijωij



 . (7.19)

The components∇v|xi and∇w|xi are computed analogously using the same moment
matrix M−1. If the number of phyxels within the support radius h in the neighbor-
hood of phyxel i is less than four (including phyxel i) or if these phyxels are coplanar
or colinear M is singular and cannot be inverted. This only happens if the sampling
of the volume is too coarse. To avoid problems with singular or badly conditioned
moment matrices, safe inversion via SVD (singular value decomposition [PTVF92])
should be used.

7.1.5 UPDATING STRAINS AND STRESSES

With Equation (7.19) the spatial derivatives of the deformation field at the phyxel’s
location xi can be computed based on the displacement vectors uj of neighboring
phyxels j. Using Equations (7.2) and (7.7), the gradient of the displacement field,
Green’s strain εi, and the stress σi at phyxel i can all be computed from these
derivatives:

∇ui ←



∇u|Txi

∇v|Txi

∇w|Txi


 , εi =

1

2
(∇u + [∇u]T + [∇u]T∇u), σi ← E εi. (7.20)

7.1.6 COMPUTATION OF FORCES VIA STRAIN ENERGY

The last step before the set of phyxels can be animated is to derive internal elastic
forces for each phyxel based on the internal stresses. These forces could be derived
from Equation (7.10) by computing the divergence of the stress components. How-
ever, since the stresses σi are approximations of the real stresses and only available
at the discrete locations of the phyxels, the resulting forces would, in general, violate
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Newton’s first law actio = reactio (i.e., they would not conserve linear and angular
momentum). This, in turn, would introduce so-called ghost forces that cause linear
and angular accelerations of the entire object.

Another way to derive elastic forces is to compute them as the gradients of the strain
energy. Such forces automatically conserve both linear and angular momentum. The
strain energy is the potential energy stored in a deformed material. The body strain
energy (energy per unit volume) can be computed as

U =
1

2
σ · ε, (7.21)

where the product σ · ε is the componentwise dot product of all the components of
the tensors (i.e., σ ·ε = σxx ·εxx +σxy ·εxy +σxz ·εxz + . . . ). Intuitively, the strain energy
is the energy built up by moving against the stresses along the strains. The unit test
reveals stress [N/m2] times strain [1] equals energy per unit volume [Nm/m3].

A phyxel i and all its neighbors j that lie within its support radius hi can be consid-
ered a basic unit, analogous to a finite element in FEM (see Figure 7.5). Based on
Equation (7.21) we estimate the strain energy stored around phyxel i as

vi

ui

uj

εi σi

xj

xi

Ei

∇u fi

fjhi

x x + u

Figure 7.5: A basic unit in the point-based approach consists of a phyxel at xi and its
neighbors at xj within distance hi. The gradient of the displacement field ∇u is computed
from the displacement vectors ui and uj, the strain εi from ∇u, the stress σi from εi, the
strain energy Ui from εi, σi and the volume vi, and the elastic forces as the negative
gradient of Ui with respect to the displacement vectors.
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Ui = vi
1

2
(σi · εi), (7.22)

assuming that strain and stress are constant within the rest volume vi of phyxel i,
equivalent to using linear shape functions in FEM. The strain energy is a function of
the displacement vector ui of phyxel i and the displacements uj of all its neighbors.
Taking the derivative with respect to these displacements yields the forces acting at
phyxel i and all its neighbors j,

fj = −∇uj Ui = −viσi∇ujεi, (7.23)

as Figure 7.6 illustrates. The force acting on phyxel i turns out to be the negative sum
of all fj acting on its neighbors j. These forces conserve linear and angular momentum.

Using Equation (7.19), this result can be further simplified to the compact form

fi = −2vi(I + ∇ui)σidi = Fdi, (7.24)

fj = −2vi(I + ∇ui)σidj = Fdj, (7.25)

where

di = M−1



−
∑

j

xijωij



 (7.26)

dj = M−1(xijωij). (7.27)

The detailed derivation of these equations can be found in Müller [MKN+04]. Using
the definition of the vectors di and dj we get for the total internal forces:

Figure 7.6: Each phyxel receives one force component from being the center phyxel
and multiple force components from being a neighbor of other phyxels. The image shows
the neighborhoods of two phyxels in the reference configuration (left) and the deformed
configuration (right). The black and gray force components are induced by the left and
right neighborhoods, respectively.
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fi = FM−1



−
∑

j

xijωij



 , (7.28)

fj = FM−1(xijωij). (7.29)

The matrix product B = FM−1 is independent of the individual neighbor j and needs
to be computed only once for each phyxel i.

7.1.7 ANIMATION OF ELASTIC OBJECTS

We are now ready to write down the entire simulation algorithm. Of course, the Euler
integration steps in lines 20–23 could be replaced by any other (higher-order) explicit
scheme.

(1) forall phyxels i
(2) initialize xi, ui = 0, u̇i = 0, mi, ρi, vi,

(3) compute M−1
i =

(∑
j xijx

T
ijωij

)−1

(4) endfor
(5) loop
(6) forall phyxels i do fi = fext(xi + ui)
(7) forall phyxels i

(8) ∇ui = M−1
(∑

j(uj − ui)xijωij

)

(9) ∇vi = M−1
(∑

j(vj − vi)xijωij

)

(10) ∇wi = M−1
(∑

j(wj − wi)xijωij

)

(11) ∇ui = [∇ui,∇vi,∇wi]
T

(12) εi = 1
2 (∇u + [∇u]T + [∇u]T∇u)

(13) σi = Eεi

(14) Bi = −2vi(∇ui + I)σiM
−1
i

(15) forall neighboring phyxels j
(16) fj = fj + Bi(xijωij)
(17) fi = fi − Bi(xijωij)
(18) endfor
(19) endfor
(20) forall phyxels i
(21) u̇i = u̇i + ∆t fi/mi

(22) ui = ui + ∆t u̇i

(23) endfor
(24) render configuration {xi + ui}
(25) endloop



S E C T I O N 7 . 1 MESHLESS FINITE ELEMENTS 355

After initialization in lines 1–4 the simulation loop is started. From the displacement
vectors ui, the nine spatial derivatives of three scalar fields u, v, and w are approxi-
mated using the moving least squares method in lines 8–11. From these derivatives,
the strain and stress tensors are derived in lines 12 and 13. The forces acting at
the center phyxel and all its neighbors are then computed as the negative gradient
of the strain energy with respect to the displacements in lines 14–19. Finally, in
lines 20–23 explicit Euler integration yields the new velocities and displacements
of the phyxels.

7.1.8 PLASTICITY

So far, the set of phyxels returns completely to the rest shape (modulo rigid body
transformations) if the external forces are released. This way, they simulate a perfectly
elastic material. In contrast, a plastic material will store some of the deformation and
will remain in a deformed state even if the applied forces are released. An elegant
way of simulating plastic behavior is by using strain-state variables [OBH02]. Every

phyxel i stores a plastic strain tensor ε
plastic
i . The strain considered for elastic forces

εelastic
i = εi− εplastic

i is the difference between measured strain εi and the plastic strain.
Thus, in case the measured strain equals the plastic strain, no forces are generated.

Since ε
plastic
i is considered constant within one time step, the elastoplastic forces are

simply computed using Equations (7.24) and (7.25) with σi replaced by σelastic
i =

Eεelastic
i . The plastic strain is initialized with a zero 3 × 3 tensor. At every time step, it

is updated as follows:

εelastic ← ε − εplastic

if ||εelastic||2 > cyield then εplastic ← εplastic + ccreep · εelastic

if ||εplastic||2 > cmax then εplastic ← εplastic · cmax/||εplastic||2

First, the elastic strain is computed as the deviation of the actual strain from
the stored plastic strain. The plasticity model has three scalar parameters cyield,
ccreep, and cmax. If the two-norm of the elastic strain exceeds the threshold cyield,
the plastic strain absorbs part of it. If ccreep ∈ [0 . . . 1] is one, the elastic strain
is immediately and completely absorbed. Small values for ccreep yield slow plastic
flow in the material. The parameter cmax defines the maximum plastic strain an
element can store. If the two-norm of the plastic strain exceeds cmax, the plastic
strain is scaled down accordingly.

In contrast to mesh-based methods, the mesh-free approach is particulary useful
when the object deviates far from its original shape in which case the original mesh
connectivity is not useful anymore. Using a mesh-free method, the reference shape
can easily adapt to the deformed shape. However, changing the reference positions
of phyxels is dangerous: two phyxels from two different objects having reference
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positions xi and xj might move within each other’s support, even though their
actual positions xi + ui and xj + uj are far from each other. This large displacement
vector difference results in large strains, stresses, and elastic forces, causing the
simulation to crash. Therefore, if the reference shape is changed, both reference
shape and deformed shape need to be kept close to each other. There is a simple
way to achieve this, with which highly plastic materials can be modeled, as well as
melting and flow. After each time step, the deformation is completely absorbed by
the reference shape while the built-up strains are stored in the plastic strain-state
variable:

forall phyxels i do

ε
plastic
i ← ε

plastic
i − εi

xi ← xi + ui

ui ← 0
endfor
forall phyxels i do

update ρi,vi and M−1
i

endfor

This way, both reference shape and deformed shape are identical after each time step.
The strain is not lost, but stored in the plastic state variable. However, the original
shape information is lost and small errors can sum up over time. Thus, this latter
simulation method that changes the reference shape is only recommended for the
simulation highly plastic objects that deviate far from their original shape.

Figure 7.7: The model presented in this chapter represents both the physical volume
elements (phyxels in yellow) as well as the surface elements (surfels in blue) as point
samples. It allows the simulation of elastic, plastic, melting, and solidifying objects (from
left to right).
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7.1.9 PASSIVE SURFEL ADVECTION

Often, a coarse sampling of the volume of an object with phyxels is sufficient
to capture the object’s elastic behavior. However, for rendering, a more detailed
surface is needed. If this surface is represented by a set of surfels, the surfels
need to be advected along the displacement field of the phyxels. To this end, the
displacement vector usf l at a known surfel position xsf l is interpolated from the
displacements ui of nearby phyxels as

usf l =
1∑

i ω(ri, h)

∑

i

ω(ri, h)(ui + ∇uT
i (xsf l − xi)), (7.30)

where ω(ri, h) = ω(||xsf l − xi||, h) is the weighting kernel defined in Equation (7.12).
The ui are the displacement vectors of phyxels at xi within a distance h to xsf l.

If displacements are computed not only for the surfel center but also for the tips
of the tangent axes, the deformation of the surfel as well as a transformed normal
can be derived. Based on the elongations of the tangent axes, a surfel splitting and
merging scheme can be applied to maintain a high surface quality in the case of large
deformations (see Section 5.3.3 for details).

7.1.10 CONCLUSION

In this introductory chapter to physics-based animation, the basic concepts of
continuum elasticity have been discussed. The equation of motion in the contin-
uous case is a partial differential equation that has to be discretized in order to be
solved numerically. In contrast to the finite element method where volumes of finite
size are used, a meshless method discretizes continuous quantities on randomly
distributed point samples (phyxels). Elastic forces are computed on those phyxels
based on their displacements from the rest shape and the elastic properties of the
material. Given the elastic forces, the point cloud can be integrated in time like a
particle system.

The extension of the state of a phyxel by a strain-state variable allows the modeling of
plasticity resulting in objects that do not return to the rest state when external forces
are released. Finally, in order to enhance the visual quality of objects, the displacement
field of the phyxels is used to advect a highly detailed point-based surface.

Section 7.2 discusses extensions to this basic model that allow the simulation of frac-
turing material.
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7.2 ANIMATION OF FRACTURING MATERIAL

Richard Keiser and Mark Pauly

In the previous section, a framework for the animation of elastoplastic materials
has been described. Here we will discuss how this framework can be extended for
simulating fracturing solids [PKA+05]. Central to the method is a highly dynamic
surface- and volume-sampling method that supports arbitrary crack initiation, prop-
agation, and termination, while avoiding many of the stability problems of traditional
mesh-based techniques. Advancing crack fronts are modeled explicitly and associated
fracture surfaces are embedded in the simulation volume. When cutting through
the material, crack fronts directly affect the coupling between phyxels, requiring a
dynamic adaptation of the nodal shape functions. Complex fracture patterns of inter-
acting and branching cracks are handled using a small set of topological operations
for splitting, merging, and terminating crack fronts. This allows continuous prop-
agation of cracks with highly detailed fracture surfaces, independent of the spatial
resolution of the phyxels, and provides effective mechanisms for controlling fracture
paths. The method is applicable for a wide range of materials, from stiff elastic to
highly plastic objects that exhibit brittle and/or ductile fracture.

7.2.1 OVERVIEW

Physically, fracturing occurs when the internal stresses and the resulting forces are so
large that the interatomic bounds cannot hold the material together anymore. Frac-
turing has been studied extensively in the physics and mechanics literature. However,
due to the complexity of the problem, the studies and simulation usually deal only
with “simple” fractures, such as the creation or propagation of a single crack. In com-
puter graphics, we often trade physical accuracy for visual realism. By simplifying the
physical model, realistic animations of very complex fractures, such as the shattering
of glass into hundreds of pieces, can be achieved. However, changing the topology
of a simulated object is challenging for both the animation of the volume and the
surface. When a solid fractures, the surface needs to adapt to the cracks that prop-
agate through the volume of the solid. To achieve a high degree of visual realism,
cracks should be allowed to start anywhere on the surface and move in any direction
through the volume. Furthermore, cracks might branch into several cracks or differ-
ent cracks can merge to a single crack within the solid. While fracturing, not only
the topology of the surface changes, but also the discontinuities introduced by the
cracks in the volume have to be modeled accordingly to achieve physically plausible
fracture behavior.
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The fracturing characteristics depend on the material. We differentiate between
ductile and brittle fracture. While brittle material splits without experiencing sig-
nificant irreversible deformation (i.e., only elastic deformation), ductile material
experience some amount of plastic deformation before fracture [OBH02]. Two
examples for brittle and ductile materials are shown in Figures 7.8 and 7.9. A force
acting on the hollow stone sculpture in Figure 7.8 causes the model to explode.
Due to the simulated brittle material this results in a shattering of the object into
pieces. Figure 7.9 shows a ductile fracture of a highly plastic bubblegum-like mate-
rial that is deformed beyond recognition before splitting along a single complex
fracture surface.

Fracturing materials have been simulated using finite difference schemes [TF88],
mass-spring models [HTK98], constraint-based methods [SWB00], finite-element
methods (FEM) [OH99, MBF04], and meshless methods [BK0+96]. Meshless
methods have several advantages over finite element methods. Most importantly,
meshless methods avoid complex remeshing operations and the associated problems
of element cutting and mesh alignment sensitivity common in FEM. Maintaining
a conforming mesh can be a notoriously difficult task when the topology of the
simulation domain changes frequently [OP99]. Repeated remeshing operations can
adversely affect the stability and accuracy of the calculations, imposing undesirable
restrictions on the time step. Finally, meshless methods are well suited for han-
dling large deformations due to their flexibility when locally refining the sampling
resolution.

7.2.2 HISTORICAL BACKGROUND

In this section we will give a brief overview of fracturing methods in com-
puter graphics. Terzopoulos et al. [TPBF87] pioneered physics-based animation of
deforming objects using finite difference schemes to solve the underlying elasticity

Figure 7.8: Brittle fracture of a hollow stone sculpture. Forces acting on the interior cre-
ate stresses that cause the model to fracture and explode. Initial/final sampling: 4.3k/6.5k
phyxels, 249,000/310,000 surfels, 22 sec/frame.
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F igure 7.9: Highly plastic deformations and ductile fracture. The bubblegum-like mate-
rial is first deformed beyond recognition. It is then stretched until the stress in the mate-
rial is too high and it fractures along a complex fracture surface. Initial/final sampling:
2.2k/3.3k phyxels, 134,000/144,000 surfels, 2.4 sec/frame.

equations. This work has been extended in Terzopoulos and Fleischer [TF88] to
handle plastic materials and fracture effects. Mass-spring models [HTK98] and
constraint-based methods [SWB00] have also been popular for modeling fractures
in graphics, as they allow for easy control of fracture patterns and relatively simple
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and fast implementations. Recent efforts have focused on finite element methods
that directly approximate the equations of continuum mechanics [Chu96]. O’Brien
et al. were the first to apply this technique for graphical animation in their seminal
paper on brittle fracture [OH99]. Using element cutting and dynamic remeshing,
they adapt the simulation domain to conform with the fracture lines that are
derived from the principal stresses. O’Brien et al. [OBH02] introduce strain-state
variables to model plastic deformations and ductile fracture effects. Element split-
ting has also been used in virtual surgery simulation, where Bielser et al. [BGTG03]
introduced a state machine to model all configurations of how a tetrahedron can
be split. Müller et al. [MMDJ01] and Müller and Gross [MG04] demonstrate real-
time fracturing using an embedded boundary surface to reduce the complexity
of the finite element mesh. The virtual node algorithm of Molino et al. [MBF04]
combines the ideas of embedding the surface and remeshing the domain. Elements
are duplicated and fracture surfaces are embedded in the copied tetrahedra. This
allows more flexible fracture paths, but avoids the complexity of full remeshing
and associated time-stepping restrictions.

7.2.3 MODELING OF DISCONTINUITIES

We will start by discussing how the discontinuity can be modeled that is introduced
by a propagating crack into the domain of a simulated solid. For that, the so-called
visibility criterion [BLG94] can be used where phyxels are allowed to interact with
each other only if they are not separated by a surface. This is done by testing if a ray
connecting two phyxels intersects the boundary surface, similar to ray tracing (see
Section 6.3).

To see what happens when we use the visibility criterion we look at the discretiza-
tion ũ of the continuous displacement field u. This is typically approximated as
u(x) ≈ ∑i Φi(x)ui, where ui are the displacement vectors at the material coordi-
nates {xi} of the phyxels and Φi are shape functions associated with these coor-
dinates. For FEM, the Φi are constructed using a tessellation of the simulation
domain into nonoverlapping elements. Meshless methods require no such spatial
decomposition, but instead use techniques such as the moving least squares (MLS)
approximation [LS81] to define the shape functions based on the location of the
phyxels only. Given a complete polynomial basis b(x) = [1 x . . . xn]T of order n
and a weight function ωi, the meshless shape functions can be derived as

Φi(x) = ωi(x, xi)bT(x)[M(x)]−1b(xi), (7.31)

where [M(x)]−1 is the inverse of the moment matrix defined as

M(x) =
∑

i

ωi(x, xi)b(xi)bT(xi), (7.32)
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and ωi(x, xi) is the weight function of Equation (7.12). A detailed account on how
to construct shape functions for meshless methods can be found in Fries and
Matthies [FM03].

Figure 7.10a shows the weight and shape functions when using the visibility criterion.
The crack not only introduces a discontinuity along the crack surface, but also unde-
sirable discontinuities of the shape functions within the domain. The transparency
method proposed by Organ et al. [OFTB96] alleviates potential stability problems
due to these discontinuities. The idea is to make the crack more transparent closer to
the crack front. This allows partial interaction of phyxels in the vicinity of the crack
front. Suppose the ray between two phyxels xi and xj intersects a crack surface at a
point xs (Figure 7.10c). Then the weight function ωi (and similarly for ωj) is adapted
to ω′i(xi, xj) = ωi(‖xi − xj‖/hi + (2ds/(κhi))2), where ds is the distance between xs and
the closest point on the crack front, and κ controls the opacity of the crack surfaces.
Effectively, a crack passing between two phyxels lengthens the interaction distance of
the phyxels until eventually, in this adapted distance metric, the phyxels will be too
far apart to interact. As shown in Figure 7.10b this method avoids the discontinuities
of the shape functions within the domain and thus leads to increased stability.

Support of  xi

Crack

xi

xs
xj

ds

(c) (d)

(a) (b)

ωi ωiΦi Φi

ωi Φi

Figure 7.10: Comparison of visibility criterion (a) and transparency method (b) for an
irregularly sampled 2D domain. The effect of a crack, indicated by the horizontal white
line, on weight function ωi and shape function Φi is depicted for phyxel xi marked by
the cross. A schematic view of the transparency method is shown in (c) and the effect
of dynamic upsampling is illustrated in (d ).
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7.2.4 SURFACE MODEL

Introducing cuts into the model exposes interior parts of the solid that need to be
bounded by new surface sheets. Previous approaches based on FEM define fracture
surfaces using faces of the tetrahedral elements, which requires complex dynamic
remeshing to avoid unnaturally coarse crack surfaces [OH99]. To simplify the topo-
logical complexity and avoid stability problems during the simulation, mesh-based
approaches impose restrictions on where and how the material can fracture. These
restrictions can be lifted by embedding a surface and explicitly creating new fracture
surface sheets whenever the material is cut. Using a point-based representation as the
boundary of a 3D solid allows simple and efficient creation of these surface sheets,
since no explicit connectivity information needs to be maintained between surfels.
Sharp creases and corners are represented implicitly as the intersection of adjacent
surface sheets using the CSG method described in Section 6.3.2. The precise loca-
tion of crease lines is evaluated at render time (see Figure 7.17 later), avoiding costly
surface-surface intersection calculations during simulation.

A crack consists of a crack front and two separate surface sheets that are connected at
the front to form a sharp crease. The crack front itself is defined by a linear sequence
of crack nodes c1, . . . , cn that continuously add surfels to the fracture surfaces while
propagating through the material. For surface cracks the end nodes of the front lie on
a boundary surface or a fracture surface of a different crack. Interior cracks have cir-
cularly connected crack fronts; in other words, the two end nodes c1 and cn coincide
(see Figures 7.11 and 7.12 later).

To animate the boundary surface of the solid, the free-form deformation approach
described in Section 7.1.8 is used. To ensure that the displacement field is smooth
at the crack front, the transparency weights described above are also used in Equa-
tion (7.30). because the changes of the transparency weights are localized to a small
region around the crack front, only a small fraction of the weights needs to be updated
in every time step, leading to an efficient implementation.

7.2.5 CRACK INITIATION AND PROPAGATION

Crack initiation is based on the stress tensor σ (see Equation 7.8). A new crack is
created where the maximal eigenvalue of σ exceeds the threshold for tensile frac-
ture (opening mode fracture [And95b]). This condition is evaluated for all phyxels.
To allow crack initiation anywhere on the surface or in the interior of the model, a
stochastic scheme can be applied to initiate crack fronts. A random set of surface and
interior sample points are created and the stress tensor at these points is evaluated
using weighted averaging from adjacent phyxels. The inherent smoothing is usually
desired to improve the stability of the crack propagation. If a crack front is initiated
at one of these spatial locations, the fracture thresholds of all neighboring samples
are increased to avoid spurious branching.
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A new crack is initialized with three crack nodes, each of which carries two
surfels with identical position and radius but opposing normals. These surfels
form the initial crack surfaces that will grow dynamically as the crack propa-
gates through the solid (Figure 7.11). Crack propagation is determined by the
propagation vectors di = αiλi(ei × ti), where λi is the maximal eigenvalue of the
stress tensor at ci, and ei is the corresponding eigenvector. The vector ti approx-
imates the tangent of the crack front as ti = (ci+1 − ci−1)/‖ci+1 − ci−1‖, where
c0 = c1 and cn+1 = cn for surface cracks. The parameter αi depends on the
material and can be used to control the speed of propagation. The new posi-
tion of a crack node ci at time t + ∆t is then computed as ci + ∆tdi, where
∆t is the simulation time step. Additionally, the end nodes of surface cracks are
projected back onto the surface that they originated from using the projection
method described in Section 4.2. Since propagation alters the spacing of crack
nodes along the front, the sampling resolution of the crack nodes is adjusted

Projection

Projection

Propagation

Crack node

Crack front

di
ci

Resampling

Propagation

Figure 7.11: Front propagation and fracture surface sampling. The upper row shows
a top view of an opening crack, the lower part shows a side view of a single fracture
surface. After propagating the crack nodes ci according to di, end nodes are projected
onto the surface. If necessary, the front is resampled and new surfels are added to the
fracture surface sheets.
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Simulation nodes New simulation nodes Crack front Invisible node

Fracture surfacesReplicated surfelCrack initiationSurfels

Figure 7.12: Transparency weights for embedding surfels in the simulation domain.
The thickness of the lines indicates the influence of a phyxel on the displacement of
a surfel. During crack propagation, new surfels and phyxels are created using dynamic
resampling.

dynamically after each propagation step. If two adjacent crack nodes are farther
apart than the radius of their associated surfels, a new node is inserted using cubic
spline interpolation to determine the new node’s position. Redundant crack nodes
are removed when the distance to the immediate neighbors becomes too small.
Fracture surface sheets are sampled by inserting new surfels if the propagation
distance exceeds the surfel radius, indicating that a hole would appear in the sur-
face. This spatially (along the crack front) and temporally (along the propagation
vectors) adaptive sampling scheme ensures uniformly sampled and hole-free crack
surfaces (see Figure 7.11).

During crack propagation, the simulation is adjusted automatically to the newly
created fracture surfaces by adapting the shape functions using the transparency
method described above. The transparency weight ω′i(xi, xj) for a pair of phyx-
els is adapted by computing the intersection point on the fracture surface of the
ray connecting the two phyxels (Section 7.2.3) using the method described in
Section 6.3.2. The distance ds to the crack front is approximated as the short-
est Euclidean distance to the line segments defined by adjacent crack nodes. To
avoid stability problems with curved fracture surfaces, weights are allowed to only
decrease from one time step to the next.

7.2.6 TOPOLOGY CONTROL

The major challenge when explicitly modeling fracture surfaces is the efficient
handling of all events that affect the topology of the boundary surface and the simu-
lation domain. Apart from crack initiation, three fundamental events are sufficient to
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describe the often intricate constellations that occur during fracturing: termination,
splitting, and merging of crack fronts:

• A crack is terminated if the crack front has contracted to a single point.
• Splitting occurs when a crack front penetrates through a surface as shown in

Figure 7.13a. The signed distance of a crack node to a surface sheet can be
estimated using the method described in Section 4.2. A splitting event is ini-
tiated when a sign change occurs from one time step to the next. The front is
split at the edges that intersect the surface, discarding all nodes that are out-
side the solid, except the ones that are connected to an interior node. These

(a)

(b)

Figure 7.13: Topological events during crack propagation: (a) splitting and (b) merging. The top and bottom rows
show a cutaway view with one crack surface exposed. The sketches in the center rows show this fracture surface
in gray, end nodes of crack fronts are indicated by white dots.



S E C T I O N 7 . 2 ANIMATION OF FRACTURING MATERIAL 367

nodes become new end nodes by moving them to the intersection point with
the surface. As shown on the left in Figure 7.13a, a surface crack is split into two
new crack fronts that share the same crack surfaces (i.e., independently add
surfels to the same fracture surface sheets during propagation). An interior
crack becomes a surface crack after splitting, as illustrated on the right.

• A merging event is triggered when two surface end nodes of two crack fronts
meet by creating the appropriate edge connections (Figure 7.13b). Two sur-
face cracks are merged into a single surface crack (left), while a circular front
is created if the two end nodes are from the same crack front (right). Typically,
when cracks merge, their fracture surfaces create a sharp corner, so we maintain
separate fracture surface sheets that intersect to create a crease.

As can be seen in Figure 7.13, splitting and merging are dual to each other. The former
introduces two new end nodes, while the latter decreases the number of end nodes by
two. Similarly, crack initiation and termination are dual topological operations. Note
that the intersection of two crack fronts at interior nodes is handled automatically by
first splitting both fronts and then merging the newly created end nodes.

One useful technique to improve the stability of the simulation is snapping. Snapping
guarantees that problematic small features, such as tiny fragments or thin slivers,
do not arise. It works by forcing nodes very near other nodes or very near surfaces
to become coincident to ensure that any features present are of size comparable to
the local node spacing. Similar methods have been proven to guarantee topological
consistency with the ideal geometry in other settings [GM95]. Specifically, when a
front intersects a surface, the crack nodes that are within snapping distance d to the
surface are projected onto the surface. This avoids fragmenting the front into small
pieces that would be terminated anyway within a few time steps. Furthermore, fronts
are merged when the end nodes are within distance d by moving both end nodes
to their average position. This avoids small slivers of material to be created, which
would require a significant number of new phyxels to be added to the model (see
Section 7.2.7). Similarly, the intersection of two crack fronts can lead to multiple
splitting and merging events (Figure 7.14), which are combined into a single event
to avoid the overhead of creating and subsequently deleting many small crack fronts.
Snapping can also be applied to front termination, where a crack front is deleted when
all its nodes are within distance d from each other.

7.2.7 VOLUMETRIC SAMPLING

One of the main advantages of meshless methods lies in the fact that they support
simple and efficient sampling schemes. Initially, the volume V bounded by a sur-
face S is discretized by sampling V with phyxels as described in Section 7.1.3.
Similar to adaptive finite element meshing, we want a higher phyxel density
close to the boundary surface and fewer phyxels toward the interior of the solid.
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F igure 7.14: Crack merging. Four of a total 49 crack fronts merge in the center of the twisted bar to form a circular
crack front. Initial/final sampling: 2,000/3,000 phyxels, 29,000/144,000 surfels, 10 sec/frame.

An appropriate sampling of the phyxels can be computed, for example, using a
balanced octree hierarchy as shown in Figure 7.15. Starting from the bounding box
of S , a cell of the octree is recursively refined, if it contains parts of S . The final
number of phyxels is controlled by prescribing a maximum octree level at which
the recursive refinement is stopped. Given this adaptive decomposition, a phyxel
is created at each octree cell center that lies within V. To create a locally, more
uniform, distribution, samples are displaced within their octree cell by applying a
few iterations of point repulsion.

During simulation, the discretization of the simulation domain needs to be adjusted
dynamically. Without dynamic resampling, frequent fracturing would quickly
degrade the numerical stability of the simulation even for an initially adequately sam-
pled model. New phyxels need to be inserted in the vicinity of the crack surfaces and
in particular around the crack front. At the same time, strong deformations of the
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(a) (b) (c) (d)

Figure 7.15: Volumetric sampling: (a) octree decomposition, (b) initial adaptive octree sampling, (c) sampling after
local repulsion, where circles indicate 0.1 isovalue of weight function, and (d ) dynamic resampling during fracturing.

model can lead to a poor spatial discretization of the simulation volume, which also
requires a dynamic adaptation of the sampling resolution. This is particularly impor-
tant for highly plastic materials, where the deformed shape can deviate significantly
from its original configuration.

A simple local criterion can be used to determine undersampling at a phyxel xi. Let
Ωi =

∑
j ω
′
i(xi, xj)/ωi(xi, xj) be the normalized sum of transparency weights (see

Section 7.2.3). Without visibility constraints, Ωi is simply the number of phyxels in
the support of xi. During simulation Ωi decreases, if fewer neighboring phyxels are
found due to strong deformations, or if the transparency weights become smaller
due to a crack front passing through the solid. If Ωi drops below a threshold Ωmin,
�Ωmin−Ωi�new phyxels are inserted within the support radius of xi (see Figure 7.16),
similar to Desbrun and Cani [DC96].

The mass associated with xi is distributed evenly among the new phyxels and their
support radius is adapted to keep the overall material density constant. Note that
mass will not be strictly preserved locally in the sense that the mass distribution of
phyxels after fracturing will not precisely match the correct distribution according
to the separated volumes created by the fracture surface sheets. However, mass will
be preserved globally and the local deviations are sufficiently small to not affect the
simulation noticeably.

To prevent excessive resampling for phyxels very close to a fracture boundary, phyxel
splitting is restricted by prescribing a minimal phyxel support radius. Note that
resampling due to fracturing is triggered by the crack nodes passing through the
solid, similar to adapting the visibility weights (see Section 7.2.4). Performing these
checks comes essentially for free, since all the required spatial queries are already car-
ried out during visibility computation. Figures 7.15d and 7.17 illustrate the dynamic
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Figure 7.16: Dynamic resampling at the phyxel xi due to strong deformation (left) and fracturing (right).

Figure 7.17: Surfels are clipped to create sharp creases with dynamically created fracture surfaces, whose visual
roughness is controlled using 3D noise functions for bump mapping. The sampling of the simulation domain is shown
on the right, where green spheres denote resampled phyxels.

adaptation of the sampling rates when fracturing. The effect on the shape functions
is shown in Figure 7.10d.

7.2.8 FRACTURE CONTROL

By specifying material properties, the course of the simulation can be influenced.
However, often direct control over the fracture behavior is crucial, especially in pro-
duction environments and interactive applications where the visual effect is usually
more important than physical accuracy. By exploiting the explicit point-based repre-
sentation of the fracture surfaces, the fracture framework can be extended to support
precise control of where and how a model fractures. One possibility is to use a paint-
ing interface as described in Section 5.2.4 that allows fast prototyping of fracture
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simulations by prescribing fracture patterns directly on the object boundary. The
user can paint arbitrary networks of cracks on the surface and explicitly specify
stress thresholds for these cracks. Additionally, a propagation history can be used to
control the propagation of cracks through the material. The adjusted propagation

vector at time t is computed as the weighted average d
t
i = γdt−∆t

i + (1− γ)dt
i, where

γ ∈ [0, 1] is the history factor. A purely stress-based propagation is achieved for
γ = 0, while γ = 1 yields purely geometric cracks and fracture surfaces. Other possi-
bilities include volumetric textures for adjusting the fracture thresholds within the
material, and prescoring techniques, where the stress tensor is modified according
to an embedded level set function [MBF04]. Figure 7.18 shows an example of an
explicitly controlled fracture, using a combination of crack painting, propagation
history, and adaptive fracture thresholds.

Figure 7.18: Controlled fracture. While the sphere blows up it fractures along the prescribed smiley face. Initial/final
sampling: 4.6k/5.8k phyxels, 49,000/72,000 surfels, 6 sec/frame.



372 PHYSICS-BASED ANIMATION C H A P T E R 7

7.2.9 SIMULATION PIPELINE

Figure 7.19 shows a high-level overview of the simulation pipeline. An iteration
step starts with the detection of collisions between two or several objects. Collision
detection is based on the signed distance function of the boundary surfaces, see
Section 4.2. Interpenetrations are resolved by computing an approximate contact
surface that is consistent for both models [KMH+04]. The objects are separated by
computing penalty forces from the contact surface. After resolving collisions and
contacts, strains and stresses are computed as described in Section 7.1.2. Given the
distribution of stress, new crack fronts are initiated and existing cracks propagated,
and the spatial sampling of the fracture surfaces is adapted (Section 7.2.5). This stage
is followed by the dynamic resampling of the simulation domain (Section 7.2.7).
Finally, the forces are integrated (e.g., using an explicit leap-frog scheme) to obtain
the new displacements.

7.2.10 CONCLUSION

With the meshless framework described above, deformable objects with material
properties ranging from stiff elastic to highly plastic can be simulated. Extending
this framework for fracturing is straightforward and shows several advantages com-
pared to FEM simulation. Instead of maintaining a consistent volumetric mesh using
continuous cutting and restructuring of finite elements, the shape functions of the
phyxels are adjusted dynamically based on simple visibility constraints. The space dis-
cretization is continuously adapted using insertions of new phyxels. The simplicity of
this dynamic resampling of the simulation domain highlights one of the main ben-
efits of meshless methods for physics-based animation. Due to minimal consistency
constraints between neighboring nodes, dynamic resampling is efficient and easy to
implement, as compared to the far more involved remeshing methods used in FEM
simulations. Similarly, a point-based representation is built for the boundary surface,
which allows efficient dynamic sampling of fracture surfaces, and facilitates explicit
control of the object topology. A general limitation of the meshless approach is that

Collision
response

Strain/stress
computation

Fracture
handling

Dynamic
sampling

Time
integration

Figure 7.19: High-level overview of the meshless simulation pipeline.
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even very small fragments must be sampled sufficiently dense in order to obtain a
stable evaluation of the shape functions. This inflates the number of phyxels when an
object is fractured excessively, which slows down the computations.

7.3 FLUID SIMULATION

Martin Wicke, Richard Keiser, and Markus Gross

7.3.1 OVERVIEW

Fluids constitute a large part of our visual surroundings. A fluid is defined as a mate-
rial that cannot support shear stress in static equilibrium—it flows. This definition
spans a wide range of material properties. Smoke and fire, as well as clouds and other
natural phenomena based on the behavior of gases fall in the category of fluid simu-
lation, but also the simulation of liquids such as water, oil, or lava.

While visualization of gaseous fluids is usually performed using volume-rendering
techniques, liquids have a surface that needs to be extracted or tracked. The surface
of a liquid is highly volatile and subject to frequent changes in topology.

This section presents meshless simulation methods that can be used for fluid sim-
ulation and compares those to other established algorithms. One particle method,
smoothed particle hydrodynamics (SPH), will be considered in more detail. We will
then turn to the problem of surface tracking and reconstruction.

7.3.2 SIMULATION METHODS

There are two distinct methods to discretize a physics problem in order to simulate it:
Lagrangian and Eulerian methods. While Lagrangian methods discretize the material,
Eulerian methods discretize the space in which the material moves. In other words, in
a Langrangian simulation, the simulation elements move with the material, whereas
in a Eulerian setting, the material moves through the simulation elements, which are
fixed in space. Figure 7.20 illustrates the difference.

All Eulerian methods are mesh-based methods, for example the finite difference and
finite volumes methods [FW60, And95a]. The simulation grid is a disjoint set of vol-
ume elements that cover the simulation domain. The volume elements do not nec-
essarily form a regular grid, but for implementation and performance issues, this
is often the first choice. Since the discretization of space does not depend on the
material, it is easy for these algorithms to accommodate large deformations (such
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(b)(a) (c)

Figure 7.20: A 2D sphere of blue material discretized in a Eulerian mesh (a), Lagrangian mesh (b), and using parti-
cles (c). The Lagrangian elements discretize only the material, while the Eulerian elements discretize the embedding
space. Only the meshes define a disjoint partitioning of space.

as those occurring in flow simulations). Hence, this class of simulation algorithms
is well suited for fluid simulation, and they are still dominant in computer graphics
(some examples include [FM97, Sta99, FF01, LGF04, FOA03]).

Since the discretization of the simulation domain does not change with the material
shape, interface tracking and moving boundaries are problematic in Eulerian simu-
lations. Also, mass loss can occur due to numerical dissipation.

In contrast to the Eulerian approach, Lagrangian methods discretize the material that
is simulated, and the discretization moves during the simulation. Since each element
of the discretization represents a part of the material, mass loss is not an issue for
Lagrangian methods. Also complex moving boundaries and free surfaces are easier
to handle, since the discretization moves along with the material.

Most prominent in this class of algorithms are mesh-based finite element methods,
which are widely used in continuum mechanics. The numerical accuracy of these
methods highly depends on the aspect ratio of the mesh elements used to cover
the simulated material (most commonly tetrahedra). If the material undergoes large
deformations, the mesh quality degrades and remeshing is needed. Therefore, mesh-
based Lagrangian methods are rarely used for fluid simulation in computer graphics.

Particle methods are a Lagrangian discretization that do not require a mesh for
simulation. These methods work on a set of samples (particles), without defining
nearest-neighbor relationships. In practice, a set of neighbors are computed for each
particle in each time step. Strictly speaking, this is only an optimization, exploiting
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the fact that the interpolation functions used usually have local support, and thus
reducing the overall complexity from O(N2) to O(N log N) per time step, where N is
the number of particles. Although, technically, these neighborhoods define a mesh,
this mesh is not a disjoint partitioning of the domain, and explicit neighborhoods
need not be stored.

Smoothed particle hydrodynamics [Luc77, GM77] was the first particle method, and
is still the most popular in computer graphics. It was originally invented for astro-
physics applications, where the particle metaphor is obvious. In Section 7.3.3, SPH
will be discussed in detail.

Other methods include weakly coupled or spatially coupled particle systems. The for-
mer are popular methods for a wide range of special effects, like fire, clouds, or other
fuzzy gaseous objects [Ree83, SF95]; waves [Pea86, Gos90]; or even animal flock-
ing behavior [Rey87]. Here, particle behavior is usually determined by a procedural
and/or stochastical process. These techniques are fast and easy to control while pro-
ducing convincing animations for a large class of phenomena. They are, hence, ideally
suited for movie productions and especially games.

Spacially coupled particle systems compute forces between pairs of particles in order
to animate the particle system [Ton92]. Usually some potential is attached to each
particle, defining the occuring interaction forces as the negative gradient of the poten-
tial field at each particle’s position. Using functions like the Lennard-Jones potential
known from molecular dynamics or variations thereof, different material properties
can be modeled.

7.3.3 SMOOTHED PARTICLE HYDRODYNAMICS

The most popular particle method for fluid simulation in computer graphics is SPH.
In this section, its basic formulation as a method for function interpolation will be
derived. We will then go on to show how this framework can be applied to the prob-
lem of fluid simulation. For a more in-depth treatment of the topic, see Monaghan
[Mon05] or Liu and Liu [LL03].

Elements of the SPH method have already been used in the MLS approximation
described in Sections 7.1.3 and 7.1.4. SPH approximations are not first-order accu-
rate, and thus not suitable for modeling general elasticity. However, this property is
less critical for fluid simulation, and SPH is popular for its relatively low computa-
tional cost and good controllability.

In SPH, a number of particles represent the material, in our case, the fluid. Each par-
ticle carries mass, velocity, and other attributes. A kernel function ωh(d) describes
the influence of each particle on its surroundings, where the smoothing length h is a
constant of the particle, and d is the distance from the particle. In almost all cases,
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the smoothing length is constant over all particles, and does not change during the
simulation, yielding equal-sized particles that are much easier to handle algorithmi-
cally. The kernel function is generally defined to be a normalized and smooth func-
tion with local support, in particular ωh(d) = 0 ∀d > kh for some k.

Using the kernel, a continuous function A(x) can be smoothed to obtain A′(x):

A′(x) =

∫
ωh(‖x − x′‖) A(x′) dx′. (7.33)

If we turn to the discrete setting, the function A(x) is unknown, and only samples
Aj at the particle positions xj are accessible. Each particle represents a small volume
element Vj, which is related to the particles’ mass mj and density �j by

Vj =
mj

�j
. (7.34)

Thus, the integral in Equation (7.33) can be approximated by a sum over the particles.

A′(x) ≈
∑

j

ωh(‖x − xj‖) Vj Aj

=
∑

j

ωh(‖x − xj‖)
mj

�j
Aj = 〈A(x)〉.

(7.35)

We will call 〈A〉 the SPH approximation of the function A.

Note that the particle masses mj are constant during the simulation, however, the
densities �j are subject to change. Fortunately, the densities can be approximated by
substituting � for A in Equation (7.35):

〈�(x)〉 =
∑

j

ωh(‖x − xj‖) �j

mj

�j
=
∑

j

ωh(‖x − xj‖) mj. (7.36)

By defining �j : = 〈�(pj)〉, Equation (7.35) can be used to interpolate any function
from samples at the particle positions.

Approximations of Differential Operators in SPH
Differential operators can be directly applied to the SPH approximation 〈A〉. Since
the sample values Aj are constants, we can write

〈∇A(x)〉 =
∑

j

∇ωh(‖x − xj‖)
mj

�j
Aj, (7.37)

where the gradient ∇ωh(‖x− xj‖) can be rewritten in terms of the kernel derivative:
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∇ωh(‖x − xj‖) =
x − xj

‖x − xj‖
ω′h(‖x − xj‖). (7.38)

Similarly, a Laplace operator for A and a divergence operator for a vector-valued func-
tion A can be defined:

〈∆A(x)〉 =
∑

j

mj

�j
ω′′h(‖x − xj‖) Ai (7.39)

〈∇ · A(x)〉 =
∑

j

mj

�j
∇ωh(‖x − xj‖) · Aj. (7.40)

In a simulation, we mostly need SPH approximations at particle positions. We will
therefore introduce the following shorthand notation. For the kernel weight of a par-
ticle at xj with respect to xi, we write

ωij = ωh(‖xi − xj‖), (7.41)

and for any SPH approximation, evaluated at a point xi,

〈A〉i = 〈A(xi)〉. (7.42)

Stability
The above approximations are derived using approximations to the integral in
Equation (7.33). Their accuracy strongly depends on the distribution of particles
in the region of interest. In practice, larger values of h provide more sample points
and add stability to the simulation. This involves some computational cost and more
smoothing, which might not be desirable.

The gradient operator is especially sensitive to a bad distribution of particles. If the
distribution is not symmetric, Equation (7.37) can yield nonzero gradients even if the
samples Ai are constant. Noting that the gradient of any function remains unchanged
if we substract a constant function, we can rewrite the gradient approximation at the
sample points xi and obtain

〈∇A〉i =
∑

j

∇ωij

mj

�j
(Aj − Ai). (7.43)

Note that in order to compute the gradient, the constant field Ai is substracted every-
where. There are different methods to derive the above result; for a more general
derivation, see Monaghan [Mon05]. The same method can be applied to obtain a
better approximation to the divergence, yielding

〈∇ · A〉i =
∑

j

mj

�j
∇ωij · (Aj − Ai). (7.44)
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The approximations (7.43) and (7.44) are often superior to their counterparts (7.37)
and (7.40), especially at the boundaries of the sampled region or in regions with
high-density gradients.

The choice of interpolation kernel also influences the stability of the simulation. In
the paper introducing SPH, Gingold and Monaghan used Gaussian kernels [GM77].
These, however, do not have local support and are rarely used nowadays. At the same
time, Lucy used spline kernels [Luc77]. A good kernel has local support, is normal-
ized, and has smooth derivatives. Depending on the problem, other properties may be
desirable [MCG03]. Higher-order interpolation kernels that have positive and nega-
tive regions are problematic when the particles are not equidistant. An example for a
(3D) kernel function is given in Equation (7.12). For use in more or less dimensions
than three, the kernel has to be renormalized.

Fluid Simulation Using SPH
The motion of a fluid is determined by pressure forces, viscosity forces, and external
forces:

.
v =

fpressure

�
+

fviscous

�
+

fexternal

�
. (7.45)

Here, the time derivative
.
v is a material derivative; in other words, the change of v in

time when measuring v at the same point in the fluid, not the same point in space.
In a Lagrangian setting, such as SPH, material derivatives are easy to compute, since
the properties attached to the particles move along with the particles.

Pressure forces act against pressure differences:

fpressure = −∇P. (7.46)

The direct translation of Equation (7.46) into an SPH approximation yields a working
simulation, however, it cannot be guaranteed that linear and angular momentum
are conserved exactly. Especially in computer graphics, where the simulations often
use only a few particles to guarantee interactivity, this can be problematic. Several
symmetric (and thus momentum-preserving) pressure forces have been proposed.

The derivation from Monaghan [Mon05] shall be presented here. Instead of inter-

polating the pressure gradient using
fpressure

� = −〈∇P〉
� , the acceleration is interpolated

directly:
fpressure

� = −〈∇P
� 〉. It can be easily verified that

∇P

�
= ∇

(
P

�

)
+

P

�2
∇�. (7.47)
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Approximating this expression in SPH yields a symmetric term for the pressure force
at the particles:

fpressure(pi)

�i
= 〈∇P

�
〉i = 〈∇

(
P

�

)
+

P

�2
∇�〉i

=
∑

j

∇ωij mj

(
Pj

�2
j

+
Pi

�2
i

)
. (7.48)

The pressure is a function of the density and the thermal energy. The latter is often
ignored. A common choice for the pressure function is [Mon94]:

P = k(

(
�

�0

)γ
− 1). (7.49)

The parameter k is a measure for the incompressibility of the fluid. The higher
k is, the higher the forces to counteract the density difference will be. Monaghan
proposed γ= 7, whereas in computer graphics, a value of 1 is usually used [DC96,
MCG03]. Low values of gamma make the fluid more compressible. Substracting 1
in Equation (7.49) removes artifacts at free boundaries.

High values of k provoke high pressure forces and limit the time step that a
simulation can use. The speed of sound in the simulated medium is given by
c =
√
δP/δ�, and the maximum safe time step for numerical simulation according

to the Courant-Friedrichs-Lewy stability criterion is ∆t ≤ λh/c, where λ is the

Courant number. Thus, ∆tmax ∝
√

1/k. Viscosity further decreases the maximum
time step [Mon92, DC96].

In computer graphics, viscosity effects due to compression are usually neglected. The
viscosity force is often modeled after the viscosity term that applies to incompressible
fluids [MCG03]:

fviscous

�
= µ∇2v = µ∆v. (7.50)

This term can again be approximated using SPH:

fviscous(xi)

�i
= µ〈∆v〉i

= µ
∑

j

∆ωij

mj

�j
(vj − vi). (7.51)

There are other ways of defining viscosity forces, see for example Monaghan [Mon05].
If viscosity is only used for numerical stability, the best approach is sometimes to
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simulate an inviscid fluid and add artificial viscosity later. One type of artificial
viscosity is a variation of the XSPH technique [Mon92]. Here, after each time step,
the velocity of a particle i is modified in the direction of the average velocitiy of
its neighbors:

∆vi = ξ
∑

j

mj

�j
ωij (vj − vi). (7.52)

Original XSPH uses the corrected velocities v̂i = vi + ∆vi only for advection and
stores the originally computed velocities for integration. If v̂i is also used for inte-
gration, the desired viscosity effect is stronger. In Equation (7.52), 0 ≤ ξ ≤ 1 deter-
mines how strong artificial viscosity should be. This leads to better regularization
of the particles, at the cost of higher viscosity. Even high values of ξ do not incur
stability problems; on the contrary, stability increases as ξ gets closer to 1.

Algorithmic Summary
We now have all necessary ingredients to formulate a simple SPH fluid simulation
algorithm:

(1) loop

(2) forall particles i ∈ Ω

(3) find neighboring particles Ni ← {j ∈ Ω|ωij > 0}
(4) compute density �i ←

∑
j∈Ni

ωij mj

(5) compute pressure Pi ← k(
�i

�0
− 1)

(6) forall particles i ∈ Ω

(7) compute acceleration due to pressure forces

a
p

i ←
∑

j∈Ni
∇ωij mj

(
Pi/�

2
i + Pj/�

2
j

)

(8) compute acceleration due to viscosity forces
av

i ←
µ
�i

∑
j∈Ni

∆ωij
mj

�j
(vj − vi)

(9) forall particles i ∈ Ω

(10) integrate accelerations vi ← vi + ∆t (a
p

i + av
i )

(11) integrate velocities xi ← xi + ∆t vi

This algorithm needs three passes over the particles. In the first pass (steps
2 through 5), all densities and pressures in this time step are computed, which only
depend on the particles’ positions. The second loop computes the accelerations
on the particles (steps 6 through 8). In the third pass (steps 9 through 11) the
accelerations and velocities are integrated to obtain new positions of the particles.
In the above example, the velocity Verlet integration scheme is used. Note that in
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Verlet integration, velocities and positions are not in sync (i.e., the v and x that
are stored with the particles are half a time step apart). At the end of a time step

k, at simulation time t = k∆t, each particle stores xt and vt−1/2∆t. Technically, the
viscosity force is computed in an inconsistent state (with positions and velocities
from different times). In practice, this effect is not noticeable.

In step 3, the neighbors of a particle are computed. A particle j is considered a
neighbor of i if ωij > 0. Thus, if the kernels have local support, most of the particles
do not have to be considered in the inner loops. If the set of neighbors can be
stored with each particle, it does not need to be recomputed for steps 7 and 8.
In any case, appropriate acceleration structures such as hash grids or K-d-trees
greatly speed up the simulation. Figure 7.21 shows snapshots from a small-scale
simulation using the above algorithm.

7.3.4 SURFACE REPRESENTATION

So far, only the movement of the particles can be simulated. While this is sufficient
for measurements, in the context of computer graphics, the visual appearance of
the fluid is of interest.

For gaseous phenomena such as clouds or smoke, particles are often rendered as
semitransparent spheres with a volumetric texture. The texture of the spheres can be
chosen depending on density, temperature, or any other value from the underlying
simulation (see for example [FOA03, Har03]). For liquids, the interfaces are more
interesting. For nontransparent liquids, the interface is the only visible part of the
simulation, and for transparent liquids, the surface is important for diffraction and
reflection effects.

Figure 7.21: Snapshots from a small-scale SPH simulation. The particles are drawn as red spheres. The fluid
is pulled into a box by gravity.
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The easiest way to generate a surface around the particles is to use an implicit surface.
Every particle is assigned a potential, and the surface of the fluid is taken to be
an isosurface of the superposition of particle potentials [Bli82a]. Several variants
to this approach have been proposed, for example Zhu and Bridson [ZB05]. This
isosurface can be rendered directly (e.g., using ray tracing), or extracted using the
marching cubes algorithm or a variant thereof. The resulting triangle mesh can be
rendered with standard rendering algorithms—in the case of transparent liquids, ray
tracing is the preferred solution for high-quality images—while hardware rendering
can be used for simpler settings. See Figure 7.22 for an example of a ray-traced
extracted surface (from [MSKG05]).

Since the particle potentials have no notion of connected components, and the
potentials influence also distant particles, these simple isosurfaces do cause problems
during topological changes of the surface. See Figure 7.23 for an illustration.

In order to avoid these problems, level sets are often used [OS88, FF01]. Level sets
evolve an implicit function according to a velocity field given by the simulation.
A PDE is solved on a computational grid in order to animate the surface. In their
basic form, level sets suffer from severe volume loss, especially near detailed surface
features. Particle level sets are a combination of level sets with tracker particles,

(a) (b)

Figure 7.22: The particles from a particle simulation (a) and an isosurface of the particle potentials extracted
using marching cubes and ray traced (b).
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F igure 7.23: Artifacts occurring during topological changes using a purely implicit surface representation. Due
to the purely spatial influence of the particle’s potentials, the surface of the lower part is influenced by the
particles in the drop—it anticipates the drop’s arrival.

where the surface computed using level sets is corrected after each time step using
tracker particles spawned around the surface [EMF02, ELF05].

7.3.5 SURFACE TRACKING USING POINT SAMPLES

Instead, the surface can be represented by surfels (for a more detailed discussion of
this approach, see [KAG+05], Section 4). These surfels can then be rendered using
either splatting or ray tracing (see Sections 6.2 and 6.3, respectively).

By using an explicit surface representation that is only guided by an implicit function,
the advantages of explicit and implicit surfaces can be effectively combined. Splitting
and merging operations, trivial for an implicit surface representation, remain simple.
The unwanted effects of an implicit representation, like the artifacts due to long-
range influence of the particle potentials (see Figure 7.23) can be avoided. By
adding normal displacements of other means of detail encoding to the surface,
a highly detailed surface can be represented and maintained. This can be used
when modeling melting and freezing, or to reduce simulation complexity, when a
physical model is used for large-scale movement of the liquid, and a simpler model
generates the surface detail.

Initially, the surfels are samples of an implicit surface coating the particles. This
implicit surface is an isosurface of a potential function depending on the particle
positions alone. This potential function is called the particle potential function. Its
nature may vary, and good results are obtained using blobbies [Bli82a].
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In order to animate a surfel si, it is first moved using a first-order estimate of the
displacement field defined by its neighboring particles j (see also Section 7.1.3):

pt+1
i = pt

i +

∑
j ωh(‖pt

i − xt
j‖)
[

ut
j + ∇ut

j(xt
j − pt

i)
]

∑
j ωh(‖pt

i − xt
j‖)

. (7.53)

The gradient of the displacemtent field ∇u is estimated for each particle using an
MLS approximation. The surfel normal or tanges axes are also deformed.

Surface Potentials
After this first advection step, the surface is additionally deformed by minimizing a
number of surface potentials in order to obtain a smooth and well-sampled surface
at all times. There are four surface potentials: a guiding potential that pulls surfels
toward an implicit function defined by the particles, a smoothing potential that
prevents the typical bumpy surface structure of implicit functions, an attracting
potential that keeps the surface close to the particles, and a repulsion potential that
guarantees a well-sampled surface. Figure 7.24 shows the effect of these potentials.
The potentials are weighted and a simple Eulerian integration is used to move the
surfels to minimize the weighted sum of potential functions.

Guiding Potential Similar to Desbrun and Cani-Gascuel [DCG98], the surfels are
attracted to an isosurface of the particle potential function. Given a projection
operator that projects onto the implicit function, a surface potential measuring the
distance to the implicit function can be defined as

φ
guiding
si

=
1

2
‖ΓI(pi) − pi‖2. (7.54)

Figure 7.24: The effect of the different potential functions on the surface: (a) guiding potential, (b) smoothing
potential, and (c) attracting potential.
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ΓI is a projection operator that projects onto the isosurface with isovalue I of the
particle potential function.

Smoothing Potential The implicit surfaces defined in Blinn [Bli82a] and similar
approaches have the inherent property that the defined surface is “blobby.” As the
particle-sampling density increases, the blobbiness moves to higher frequencies and
eventually becomes unnoticeable. Since the surfels are pulled toward an implicit
surface, a smoothing potential to counteract the blobbiness is needed. This potential
measures the difference between the surfel position pi and its projection onto the
least squares plane defined by its neighbors, Ψ(pi):

φ
smoothing
si

=
1

2
‖Ψ(pi) − pi‖2. (7.55)

The forces introduced by this potential are constrained to act only normal to the
surface.

Attracting Potential Most physical interactions are computed on the particles alone.
For a realistic visual impression, it is, therefore, necessary to keep the surface as
close to the particles as possible. This is achieved using an attracting force pulling
the surfels toward their nearest particles. Writing this as a potential, we obtain

φ
attracting
si

=

∑
j ωh(‖xj − pi‖) ‖xj − pi‖2

2
∑

j ωh(‖xj − pi‖)
. (7.56)

Repulsion Potential The repulsion potential does not affect the movement of the
surface, but only the sampling of the surface with surfels. Using repulsive forces
between surfels if they are too close, a locally uniform sampling can be achieved.
For a given target surfel distance d, the potential is defined as follows:

φ
sampling
si

=
1

2

∑

j∈N (si)

(‖pi − pj‖ − d)2. (7.57)

The index j runs over all surfels in the neighborhood of si. All these surfels hold
‖pi − pj‖ < d, so that the forces introduced by this potential are never attracting.
The forces introduced by this potential are constrained to act only tangential to
the surface. It is easily possible to locally vary d to achieve graded sampling of the
surface, for example, for level of detail.

Topological Changes
Since our surface representation is not purely implicit, extra handling for topological
changes needs to be implemented. Topological changes are characterized by two
events: splitting and merging (Figure 7.25). In a particle setting, splitting occurs
when particles are separated by a large enough gap. This criterion carries over to the
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Split

Merge

Figure 7.25: Splitting: when the isovalue at a surfel position is too low, the surfel is
projected onto the minimum isovalue. Merging: if the isovalue is too high, the surfel
is projected onto the maximum isovalue.

particle potential function. When splitting between two groups of particles occurs,
there is a point between these groups where the potential function is lower than
a threshold Imin. This minimum isovalue can be used to define which minimum
distance between particles is needed in order to consider them separated. Conversely,
if particles are close together, there will be no point between them with a potential
lower than a threshold Imax.

This can be used to explicitly handle splitting and merging events. If the particle
potential at any surfel position is lower than Imin, the surfel is reprojected onto
the isosurface of the particle potential with isovalue Imin : pi ← ΓImin (pi). For
merging events, if the particle potential at the surfel position is too high, the surfel
is projected onto the isosurface for isovalue Imax : pi ← ΓImax (pi).

The surfels are free to move within the isorange [Imax, Imax] of the particle potential,
thus giving them the possibility to smooth out the blob artifacts in the isosurface
and avoid the anticipating effects seen in purely implicit surface representations.

Since the potential functions rely on surfel and particle neighborhood relations,
it is important to keep track of connected components. Flood-fill algorithms can
be used to tag connected components. All neighborhoods are then restricted to
the same connected component, such that different connected components cannot
influence each other.

7.3.6 CONCLUSION

A particle-based fluid simulation has both advantages and disadvantages over alter-
native approaches, most prominently Eulerian fluid simulation methods.
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In general, boundary conditions are easier to enforce in particle-based methods than
in Eulerian simulations. Due to the discretization of space, boundary conditions
in Eulerian simulation have to be aligned with the grid used to represent the
simulation domain. For performance reasons, these meshes are usually regular grids,
thus leading to artifacts when representing boundaries. Feldman et al. [FOK05]
solve the problem by using adaptive meshes to discretize the simulation domain.
Guendelman et al. [GSLF05] developed a method that couples a Eulerian fluid
simulation to thin shells. The same technique could also be used to represent
boundary conditions.

In particle-based simulations, the boundary condition can be applied to individual
particles. For two-way interaction between fluids and other objects, the forces or
impulses used to enforce the boundary conditions on the particles can be applied
to the boundary [MST+04].

Another practical difficulty in Eulerian fluid simulations is the surface representa-
tion. Usually, the interface is tracked in the velocity field by integration. However,
due to integration errors, the total volume of the fluid can change. In practice,
this leads to mass loss, especially in thin sheets that cannot be resolved by the
simulation grid. In contrast, in an SPH simulation, mass is carried by the particles,
thus mass preservation is guarantueed.

A major disadvantage of SPH simulation, especially for fluids like water, is the
inherent compressibility of the resulting material. In Eulerian simulations, it is
relatively easy to enforce incompressibility by solving a global linear system. An
analogous method exists for SPH simulation [KO96, PTB+03]. In practice, methods
that use an auxiliary grid to solve for a divergence-free velocity field [Har64, BR86,
ZB05] are more common.

Fluid simulation using particle methods is a topic of ongoing research. Until now, it
has been used mainly in interactive or real-time settings with relatively few particles.
Particle methods are relatively easy to implement, and the simple interaction with
objects simulated using different simulation methods is an advantage for example
in computer games. The surface tracking method discussed above, although not
suitable for real-time environments, offers tangible advantages over level-set meth-
ods. Still, large simulations with photorealistic results have for the most part been
left to Eulerian approaches, although recent work has produced results of visual
quality comparable to Eulerian simulations [ZB05]. Depending on the application
at hand, one should carefully choose which simulation method is most appropriate.

The next chapter will present selected applications of point-based representations
in computer graphics.
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8 SELECTED TOPICS

INTRODUCTION

This chapter contains a collection of selected topics and applications related to
point-based computer graphics. The chapter aims at demonstrating its versatility and
wide range of possible applications. Section 8.1 starts with point-sampled 3D video
representations, where 3D points generalize 2D video for the dynamic representation,
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compression, and display of 3-dimensional video. A second application, presented in
Section 8.2, includes the modeling and analysis of uncertainty in point clouds using
statistical methods. Section 8.3 discusses the utility of irregular point samples for
the visualization of irregular point data using so-called point glyphs. The final con-
tribution in Section 8.4 addresses the computation of global illumination effects in
point-sampled scenes and shows how such methods are employed in a production
environment.

8.1 POINT-SAMPLED 3D VIDEO

Stephan Würmlin and Markus Gross

8.1.1 MOTIVATION

This section concentrates on three-dimensional or free-viewpoint video systems and
shows that point samples—due to their unique spatio-temporal properties—feature
many advantages as compared to other descriptions. Examples include both offline
and online systems for capturing and resynthesizing 3D video objects. The final part
is devoted to an outlook to 3D video of dynamic scenes with possibilities for conve-
nient editing and authoring.

As one of the many promising emerging technologies for home entertainment and
spatio-temporal visual effects, 3D video acquires the dynamics and motion of a
scene during recording while providing the user with the possibility to change the
viewpoint at will during playback. Free navigation regarding time and space in
streams of visual data directly enhances the viewing experience and interactivity.
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Nowadays, such effects (e.g., freeze-and-rotate) are pervasive in feature films like
the Matrix trilogy, music videos, and commercials. Unfortunately, virtual viewpoint
effects have to be planned precisely in most existing systems and changes are no
more feasible after the scene has been shot, or involve a considerable amount of
manual editing. As an example, Digital Air’s Movia R© systems comprise high-speed,
high-definition digital cinema cameras that are placed accurately such that no soft-
ware view interpolation is needed. But as a consequence, postprocessing and editing
possibilities are restricted.

A key feature of 3D video is interactivity: A user should have the possibility to
choose an arbitrary viewpoint within a visual real-world scene. No formal defini-
tion of 3D video is available to date. We define it as geometrically calibrated and
temporally synchronized multiview video data. The broad field of 3D video can be
categorized according to spatial camera configurations and application domains.
While an arbitrary view configuration would permit all application domains, phys-
ical and algorithmic constraints typically lead to a reduced complexity of spatial
camera configurations. They are typically tailored to specific application domains
for 3D video and can be summarized as follows.

Three-dimensional television [MP04] marks a first line of recent research, aiming
at view-independent video for dynamic scenes but in a very limited viewing range
only. That is, users might experience changes in parallax but no fly-around effects are
possible. It can provide stereoscopic display (one view for each eye) to produce a 3D
impression for the viewer. Three-dimensional television is typically acquired using
either stereo video captured with two cameras, or by a number of densely arranged
cameras in parallel view. Dense means that the baseline between two cameras does
not exceed 50 cm. Such configurations can also be used for spatio-temporal video
effects with limited spatial scalability [ZKU+04].

The concept of free-viewpoint video [WLG04, CTMS03], on the other hand, allows
for truly free navigation in the spatial range of captured data (i.e., in the range cov-
ered by acquisition cameras). The scene is captured by a number of sparsely arranged
cameras in a convergent setup. Sparse stands for cameras with a baseline that is in
the range of 1 or 2 meters at an angle of 30◦. Additional information about the scene
geometry (e.g., disparity data) enables interactive and free navigation through the
scene. Figure 8.1 shows an example of a free-viewpoint video re-rendering from a
view in between the two original camera views [WLW+05].

Omnidirectional video [SM04] is an extension of the conventional planar 2D video
image plane toward other nonplanar videos (e.g., spherical, cubic, or cylindrical), like
in the static but well-known QuicktimeVR [Che95] application. User interactions are
limited to zoom and rotation around a predefined viewpoint. Video is captured at a
certain viewpoint into every direction.
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(a) (b) (c)

Figure 8.1: A 3D video re-rendering example: (a and c) synchronized video images from different viewpoints, and
(b) re-rendered intermediate view.

8.1.2 DYNAMIC POINT SAMPLES

A point-sampled representation for free-viewpoint video features many advantages
as compared to other descriptions. Firstly, it may be understood as a unified
representation—quite contrary to approaches based on mesh and texture infor-
mation that require handling of heterogeneous types of data (i.e., geometry and
images). Dynamic point samples can be seen as a natural generalization of 2D
video pixels toward 3D irregular point samples. Since the representation incorpo-
rates geometrical scene knowledge in terms of point-sample attributes we have to
deal with less acquisition cameras for even broader viewing ranges as compared to
purely image-based approaches in the spirit of light fields [LH96] or lumigraphs
[GGSC96].

Each point sample can also store the reference to a pixel in an input video camera.
This enables the use of efficient coding and compression schemes for free-viewpoint
video by exploiting the correspondence between pixels in input images and 3D point
samples. Consequently, when employed in 3D video, a dynamic point sample is
necessarily generated from an input device (e.g., a digital video camera). Hence, a
dynamic point sample can be seen as an extension to a traditional, static point sam-
ple or surfel (see Chapter 4). Figure 8.2 depicts the relationship between 2D pixels
and 3D dynamic point samples.

8.1.3 3D VIDEO RECORDING

A 3D video recorder is a system capable of recording, processing, and playing
three-dimensional video from multiple points of view. First, 2D video streams
are recorded from several synchronized digital video cameras and preprocessed
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Figure 8.2: Relationship between 2D pixels and 3D dynamic point samples.

images are stored to disk. An offline processing stage converts these images into
time-varying three-dimensional data and stores this 3D video to disk. We show
two encoding techniques, one building a hierarchical point-based data structure
and one that encodes the data in image space. The latter guides the way to the
usage of conventional video coding techniques for 3D video.

As opposed to a traditional 2D video recorder comprising only two stages—recording
and playback—a 3D video recorder features an additional stage: processing. It is clear
that recording and playing need to be carried out in real time. There are no hard real-
time constraints for the offline processing stage. Spending 60 times more time on
offline processing than on online decompression is still acceptable. A 3D replay appli-
cation in a broadcasting studio has stronger time constraints, since the replay needs
to be available for broadcast only 10–20 seconds after the live action. The ultimate
goal of a 3D video recorder is to process 3D information within these time limits.
A typical 3D video recording pipeline is depicted in Figure 8.3.

For prerecorded data, the 3D video player provides interaction features known
from video cassette recorders, like variable-speed forward, reverse, and slow motion.
However, high-quality slow motion requires additional point-based shape morphing
between consecutive frames, or the use of high-speed cameras. Three-dimensional
video playback can then be enhanced with novel 3D video effects such as freeze-and-
rotate and arbitrary scaling. The former can be realized easily by playing a sequence,
pausing, rotating the viewpoint, and continuing playback again. In case the system
is used for editing a 2D video from a 3D video sequence, the virtual camera path
and the frame increments can be configured in a script file. To this end, a 3D video
player typically implements a virtual trackball and, hence, arbitrary navigation and



394 SELECTED TOPICS C H A P T E R 8

F igure 8.3: The 3D video recording pipeline.

scaling are possible and follow the popular interaction metaphors from other graphics
renderers. Random access and decoding of individual frames of the 3D video is crucial
for all these effects and interaction metaphors. Furthermore, every frame should be
retrieved at different quality levels to accommodate different output devices.

Object-space Coding
Würmlin et al. [WLSG02] developed a 3D video-encoding approach that encodes
the reconstructed 3D video sequences with a time-varying, three-dimensional
hierarchical point-based data structure. A player software can then decode and
render the encoded 3D videos from hard disk in real time, providing the afore-
mentioned interaction features.

They use a hierarchical point-based data structure very similar to an octree with vary-
ing tree fanouts. Interframe coherence in object-space is not exploited and, hence,
every 3D video frame is represented by an independent tree. These trees, which rep-
resent the reconstructed 3D video frames, can be stored using a space efficient and
progressive representation. In order to achieve a progressive encoding, the tree is tra-
versed in a breadth-first manner. Hence, the upper-level nodes are encoded first, and
the nodes represent an averaged representation of the corresponding subtree. A suc-
cinct storage of the 3D representation can be achieved by considering separately the
different data types it contains [Dee95]. The connectivity of the tree, which needs
to be encoded without loss, is distinguished from the position of the points, color,
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and normal information. The number of allocated bits for storing these points can
be traded against visual quality and lossy encoding is acceptable.

To encode the connectivity of the tree the algorithm from Jacobson [Jac89] is fol-
lowed. Position information is encoded using a two-step process consisting of an
approximation and a refinement step by encoding the error using a Laplace quan-
tizer. The color data are encoded in YUV color space with a quantization scheme
using twice as much bits for the Y component than for the U and V components,
respectively. The normal vectors are encoded using quantized spherical coordinates.
The vectors are normalized before encoding and then a certain amount of bits is
allocated for each of the two angles. Table 8.1 summarizes the storage requirements
for the different data types per node and compares them to the initial data size.
For lossless encoding of the connectivity of the tree, a scheme is used that comes
close to the information theoretic bound. The indicated values for the remaining
data types are those that provided visually appealing results.

Figure 8.4 shows some example images from free-viewpoint video sequences encoded
with the object-space approach. Encoding takes approximately 1 second per 3D video
frame. Each frame leads to approximately 56,000 tree nodes and 48,000 significant
point samples for high-quality decoding and rendering. The employed shape-from-
silhouettes 3D reconstruction can lead to artifacts in regions occluded by all reference
images, especially visible between the legs and under the arms. Furthermore, the nor-
mals (flat-shaded images in Figure 8.4c) from the 3D reconstruction method are not
very precise due to the quality of the underlying surface representation (depth map
in Figure 8.4d).

The framework allows encoding 3D video sequences of humans at a total bit rate of
less than 7 megabits per second, the sequence running with 8.5 frames per second in

Table 8.1: Memory Requirements for One 3D Video Frame.

Name Data Type Raw (bits) Compressed (bits)
position float[3] 3 · 32 3 + 3 + 3

color char[3] 3 · 8 6 + 3 + 3

normal float[3] 3 · 32 8

noOfChildren unsigned char 8
2 + 1 + �lg 27�

children *PRkNode 27 · 32

Total 1,088 37
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(a) (b) (c) (d)

Figure 8.4: Images from object-space compressed 3D video sequences: (a and b) rendered views, (c) demon-
strate the reconstructed normals by flat-shading the view from (b) without colors, and (d) the corresponding
depth map.

normal playback with an average number of 45,000 point samples per frame. The
total size for a sequence of 30 seconds is typically less than 30 megabytes. Com-
pared to the memory requirements of the complete data structure, a compression
ratio of 64:1 is achieved. Note that consecutive frames in a 3D video sequence con-
tain a lot of redundant information (i.e., regions of the object remaining almost
static), or changes that could be efficiently encoded using temporal prediction and
motion compensation algorithms. However, efficient computation of 3D scene flows
is nontrivial.

Image-space Coding
Alternatively, the free-viewpoint video data can be organized and compressed in
image space [WLW+05]. To this end, an image-space representation and data for-
mat are used adopted by MPEG as an extension of the MPEG-4 AFX standard
[ISO05]. Note that in the standard, this representation is named Depth Image-
based Representations (DIBR) Version 2. Combined with suitable coding methods
it is capable of streaming and displaying sparse multiview video data from arbi-
trary viewpoints. It is based on the fundamental concept of storing all information
describing a scenes’ visual appearance in multichannel video images. Each pixels’
channels define different attributes of discrete point samples of observed surfaces.
These include color, position, and optional data needed for high-quality render-
ing. Multichannel multiview video compression can be implemented with standard
MPEG video coding tools and readily available video coding methods can thus be
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reused. Consequently, a complete free-viewpoint video system can be built using
only MPEG-standardized tools—to our knowledge the first of its kind. Figure 8.5
illustrates this image-space free-viewpoint video framework.

Similar to our object-space coding scheme, the image space free-viewpoint video cod-
ing scheme is based on a dynamic point cloud as underlying 3D data structure. Since
the point attributes are again separately stored and compressed, a referencing scheme
that allows for the unique identification between points and their attributes is neces-
sary. Using the camera images as building elements of the data structure, each point
is uniquely identified by its position in image space and its camera identifier.

Furthermore, looking separately at each camera image, only foreground pixels are
of interest—these contribute to the point cloud describing the 3D object. Thus,
the segmentation mask from the camera images is used as reference for all subse-
quent coding schemes. In order to avoid shifts and wrong associations of attributes
and points, a lossless encoding of the segmentation mask is required. This lossless
segmentation mask must be at the disposal of all encoders and decoders. However,
all pixel attributes can be encoded by a lossy scheme. Nevertheless, a lossless or almost
lossless decoding should be possible if all data are available.

A great variety of image and video coding methods are available today, and
more are under development. Of particular interest for 3D video systems are stan-
dard formats developed by MPEG and JPEG, since interoperable systems are tar-
geted. Würmlin et al. [WLW+05] selected a few standard codecs for an extensive

Figure 8.5: Overview of the image-space 3D video pipeline.
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evaluation of different coding methods for image-space coding of 3D video data,
namely MPEG-4 and JPEG-2000. They also present a novel progressive video coding
method for this representation [LWW+04] that fulfills all requirements for uncon-
strained free-viewpoint video playback as defined by MPEG.

Figure 8.6 shows rendered image-space FVV results using MPEG-4 and JPEG-2000
as coding methods at different bit rates. Per-camera target bit rates are devised of 128
and 512 kbps and the available rate is allocated such that color uses twice as much bits
than depth. The shape is encoded separately and accounts for approximately 25 kbps
per camera. The rendered images in Figure 8.6 are composed of two reference cam-
eras, so the total bit rates for these images are 306 and 1,074 kbps. MPEG-4 clearly
outperforms JPEG-2000 due to motion compensation and its shape-adaptive nature.
An extensive evaluation can be found in Würmlin [Wür04].

8.1.4 REAL-TIME 3D VIDEO

Würmlin et al. [WLG04] presented a real-time free-viewpoint video system based
on dynamic point samples. A differential update stream inserts, deletes, or updates
point samples on the fly in real time. It exploits the spatio-temporal coherence of
individual 2D video streams by interframe prediction of input changes in image
space. The prediction does not require expensive calculations like texture motion

(a) (b) (c) (d)

Figure 8.6: Rendered FVV images with different coding methods: (a) uncompressed data, (b) JPEG-2000 at total
bit rate of 512 kbps per camera, (c) MPEG-4 at total bit rate of 512 kbps per camera, and (d) MPEG-4 at total bit rate
of 128 kbps per camera.
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fields or 3D scene flows. While being conceptually simple the presented approach
effectively cuts down the number of expensive 3D shape computations. By using a
feedback loop that confines the number of active cameras, the acquisition process
is dynamically controlled and can be scaled smoothly from view dependence to
view independence. Moreover, virtual viewpoint- and resolution-driven sampling
allows smooth transitions between a subset of the reference cameras and adapts
to bandwidth or processing bottlenecks. The method features efficient rendering
from arbitrary spatio-temporal positions and supports multiple viewers. This free-
viewpoint video pipeline is designed and optimized for real-time applications and,
hence, performance and quality are traded off at multiple stages. Figure 8.7 depicts
a conceptual overview of this processing pipeline.

This real-time 3D video system is the enabling technology of the blue-c system
[GWN+03]. The blue-c system combines the qualities of total immersion experi-
enced in CAVE-like environments with simultaneous, real-time 3D video acqui-
sition and rendering from multiple cameras. This concept enables a number of
participants to interact and collaborate inside an immersive, virtual world, while
perceiving the photorealistic three-dimensional human inlays of their collaboration
partners in real time.

Figure 8.7: Conceptual components of the real-time 3D video processing pipeline.
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Differential Coding
The correspondence between the point samples and the pixels in the input video
camera allows for detecting changes in the input image and to propagate them to the
point samples. Consequently, a dynamic point sample can be generated, updated, and
deleted based on the changes in the camera image. The dynamic behavior of point
samples can be described with three basic operators:

• NEW generates new point samples after they have become visible in one of the
input cameras.

• KILL removes point samples from the representation once they vanish from the
view of the input camera.

• UPDATE corrects appearance and geometry attributes of point samples that are
already generated, but whose attributes have changed with respect to prior
frames of the input camera.

The time sequence of these operators creates a differential operator stream that
updates a 3D video data structure for a remote viewer. An INSERT operator results
from the reprojection of a pixel with color attributes from image space into three-
dimensional object space. Any real-time 3D reconstruction method that extracts
depth and normals from images can be employed for this purpose (e.g., the image-
based visual hull algorithm [MBR+00]). DELETE operators perform a lookup of
the reference point sample and eliminate it. UPDATE operators are generated by
all pixels that have been inserted in previous frames and that are still foreground
pixels. They can be divided into three categories. The detection of color changes
is performed during interframe prediction and leads to an UPDATECOL operator.
UPDATEPOS operators take care of geometry changes and are analyzed on spatially
coherent clusters of pixels in image space. If the differences to the previous depths
exceed a threshold, 3D information is recomputed for entire blocks of points.
Thus, the scheme proposes an efficient solution to the problem of uncorrelated
texture and depth-motion fields. Note that position and color updates can be
combined to an UPDATEPOSCOL operator. All other candidate pixels for updates
remain unchanged and no further processing is necessary. A simple image-space
interframe prediction mechanism is employed that derives the operators from the
original video images by only using two functions for pixel classification, namely
foreground/background segmentation and color differencing.

Results and Discussion
The current implementation of the real-time 3D video pipeline implemented in the
blue-c system is able to deal with up to 85,000 INSERT or UPDATEPOS operations or
more than 800,000 UPDATECOL and DELETE operations per second. A caching scheme
ensures that the computation time for the costly INSERT and UPDATEPOS operations
decreases logarithmically with the number of processed operations. The raw perfor-
mance is sufficient for processing objects with less than 30,000 points.
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(a) (b)

Figure 8.8: Bidirectional transmission of real-time 3D video data in the blue-c: (a) portal view, and (b) rendering
snapshot.

Figure 8.8 shows images of a bidirectional 3D video conference between two blue-c
portals and illustrates user interaction. The small image in the lower left corner
depicts an original camera view in the smaller portal. The big image in Figure 8.8a
provides insight into the main portal and shows the rendered 3D video image of
the other participant who can be controlled and viewed arbitrarily by the user. The
big image in Figure 8.8b shows a rendered snapshot in a similar session.

Due to performance reasons only a coarse silhouette representation is used for
3D reconstruction. This results in a rough 3D shape approximation of the person.
Temporarily visible geometry artifacts can be observed. These are due to the inher-
ent nature of the visual hull reconstruction method that is not capable of properly
reconstructing concave regions. During a live run of the blue-c system the mean
bit rate of a differential 3D video sequence is 2.6 Mbps at nine frames per second.
On average, more than 15,000 points were maintained in the 3D data structure. The
peaks in the short-term bit rate are strongly correlated to the movements of the per-
son and to the changes of the virtual viewpoint.

8.1.5 3D VIDEO OF DYNAMIC SCENES

Most of the systems presented earlier in this chapter are limited by the applied
reconstruction algorithms to the capture of foreground objects or even humans
only, and scalability in terms of camera configurations and data structures is not
addressed. Moreover, most of the underlying representations and processes are still
depth image based and typically do not allow for convenient editing. Waschbüsch
et al. [WWC+05] presented a scalable 3D video system that captures and processes
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dynamic scenes based on point samples. They envision a system where also editing
of the spatio-temporal streams is easy to perform. For this purpose, they rely on
view-independent 3D geometry streams, which allow for similar authoring and
editing techniques as carried out in common 3D content creation and modeling
tools. Inserting novel objects to a scene or adding spatio-temporal effects is becom-
ing straightforward with simple postprocessing methods, and one has no longer to
cope with the common limitations of image-based representations.

The 3D video-acquisition system consists of several so-called 3D video bricks that
are capturing high-quality depth maps from their respective viewpoints using calib-
rated pairs of stereo cameras (see Figure 8.9). The matching algorithm used for
depth extraction is assisted by projectors illuminating the scene with binary struc-
tured light patterns. Alternating projection of a pattern and its inverse allows for
concurrent acquisition of the scene texture using appropriately synchronized color
cameras.

The depth maps are postprocessed to optimize discontinuities, and the results from
different viewpoints are unified into a view-independent, point-based scene repre-
sentation consisting of Gaussian ellipsoids. During merging, outliers are removed
by ensuring photo consistency of the point cloud with all acquired images from the
texture cameras. Editing operations like compositing and spatio-temporal effects can
then be applied to the view-independent geometry. Novel viewpoints of the dynamic
scene are rendered using EWA splatting 6.1.

3D Video Brick

Acquisition Depth extraction Merging Editing/rendering

View-independent Scene Representation

Stereo
cams

Texture
cam

Projector

Multiple additional 3D video bricks...

Discontinuity
optimization

Stereo
matching

Photo
consistency

Spatio-temporal
effects

EWA volume
splatting

Compositing

Outlier
removal

Union

Figure 8.9: Overview of the scalable 3D video framework.
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Scalable 3D Video Bricks
The basic building blocks of the scalable 3D video setup are movable bricks
containing three cameras and a projector illuminating the scene with alternating
patterns. Two grayscale cameras are responsible for depth extraction, while a color
camera acquires the texture information of the scene. Figure 8.10 shows a single
brick prototype. The prototype setup operates with three bricks, each consisting of
a standard PC with a genlock graphics board (NVIDIA Quadro FX3000G), a pro-
jector synchronizing to the input signal (NEC LT240K), and cameras having XGA
resolution (Point Grey Dragonfly). The components are mounted on a portable
aluminum rig as shown in Figure 8.10. The system is complemented by a synchro-
nization microcontroller (MCU) connected to the cameras and the genlock-capable
graphics boards.

At a certain point in time, each brick can only capture depth information from a
particular fixed position. In order to span a wider range of viewpoints and reduce
occlusion effects, multiple movable bricks can be combined and individually oriented
to cover the desired working space as illustrated in Figure 8.11. Scalability of multi-
ple bricks is guaranteed, because overlapping projections are explicitly allowed by
the depth reconstruction and because the computation load of each brick does not
increase during real-time recording.

Simultaneous Texture and Depth Acquisition
Each brick concurrently acquires texture information with the color camera and
depth information using the stereo pair of grayscale cameras. Stereo vision generally

(a) (b) (c)

Figure 8.10: Scalable 3D video brick with cameras and projector (a), simultaneously acquiring textures (b), and
structured-light patterns (c).
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Figure 8.11: Configuration of the scalable 3D video prototype system.

requires a highly texturized scene to find good correlations between different views.
It generally fails in reconstructing simple geometry of uniformly colored objects
(e.g., white walls). As a consequence, artificial textures are added to the scene by
projecting structured-light patterns. Binary vertical stripe patterns are used with
randomly varying stripe widths. It supports strong and unique correlations in the
horizontal direction and is at the same time insensitive to vertical deviations that
may occur from inaccuracies in the camera calibration. To avoid untexturized shad-
ows, the scene is illuminated by patterns from all bricks at the same time.

Alternating projections of structured-light patterns and the corresponding inverses
enable simultaneous acquisition of the scene textures using an appropriately synchro-
nized texture camera as illustrated in Figure 8.12. Note that this camera does not see
the patterns emanating from the projector, but only a constant white light, which
preserves the original scene texture (see Figure 8.10). Since the patterns are changing
at a limited rate of 60 Hz (projector input frequency), flickering is slightly visible to
the human eye. Alternative solutions using imperceptible structured light [CNGF04]
do not show any flickering, but require faster, more sensitive, and, therefore, more
expensive cameras for reliable stereo depth extraction.

Each brick acquires the scene geometry using a depth from stereo algorithm. Depth
maps are computed for the images of the left and right grayscale cameras by search-
ing for corresponding pixels. To reduce occlusion problems between the views, the



S E C T I O N 8 . 1 POINT-SAMPLED 3D VIDEO 405

Sequentially
projected patterns

Exposure of
stereo cameras

Exposure of
texture camera

Figure 8.12: Camera exposure with inverse pattern projection.

cameras are mounted at a small horizontal baseline of 20 cm. Depth is acquired by
space-time stereo [ZCS03], which exploits time coherence to correlate the stereo
images and computes disparities with subpixel accuracy. However, because corre-
lation algorithms assume continuous surfaces, some artifacts arise at depth dis-
continuities. For moving scenes, discontinuities in image space are extended into
the temporal domain, making correlation computation even more difficult. Hence,
adaptive correlation windows covering multiple time steps are only employed in
static parts of the images that can be detected by comparing successive frames.
Remaining errors can be smoothed out with a discontinuity optimization tech-
nique based on color segmentation and disparity extrapolation.

To model the resulting three-dimensional scene, a view-independent, point-based
data representation is used. By merging all reconstructed views into a common
world-reference frame, a convenient and scalable representation is achieved: addi-
tional views can be added very easily by back-projecting their image pixels. To be
able to handle noise due to inaccurate 3D reconstruction or camera calibration every
point is modeled by a three-dimensional Gaussian ellipsoid. After back-projection,
the point model still contains outliers and falsely projected samples. Some points
originating from a specific view may look wrong from extrapolated views due to
reconstruction errors, especially at depth discontinuities. In the 3D model, they
may cover correct points reconstructed from other views, disturbing the overall
appearance of the 3D video. Thus, those points are removed by checking the whole
model for photo consistency with all texture cameras. The final model can then be
rendered by using EWA splatting 6.1, which can be extended by view-dependent
blending.
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Results and Discussion
For the results presented here, a dynamic scene is recorded with the setup consisting
of three sparsely placed bricks covering an overall viewing angle of 70◦ horizontally
and 30◦ vertically. Figure 8.13 shows novel views of the acquired scene in Figure 8.10,
rendered from the reconstructed 3D model.

The re-renderings have an appealing look with a high-quality texture. Acquisition
noise is smoothed out by the blending method. Even highly detailed geometry like
the folds in the tablecloth can be reconstruced. However, there are still some artifacts
at silhouettes that could be reduced by using matting approaches as done by Zitnick
et al. [ZKU+04]. Some remaining outliers are also visible in the images. They could
be reduced using a combination of multiple outlier removal algorithms 5.1 and by
enforcing time coherence in the whole reconstruction pipeline. This system is able
to acquire a large viewing range with a relatively low amount of cameras. To support
increasingly large ranges, the system is scalable up to full spherical views. To fully
cover 360◦ in all dimensions about 8 to 10 3D video bricks are needed.

The view-independent data model provides possibilities for novel effects and 3D
video editing. Once the three-dimensional information is available, selection and
compositing issues become straightforward and can be easily implemented using spa-
tial clustering or bounding box algorithms. Such tasks are much harder to achieve on
both conventional 2D video and view-dependent 3D video approaches based on light
fields or depth maps only. Some example effects are shown in Figure 8.14, and more
can be found in Waschbüsch [WWC+05].

Figure 8.13: Rerenderings of the 3D video from novel viewpoints.



S E C T I O N 8 . 2 STATISTICAL REPRESENTATION 407

a) b)

Figure 8.14: Special effects: (a) actor cloning, and (b) motion trails.

8.1.6 CONCLUSION

This section showed some application scenarios for point-sampled 3D video. Due to
their unique spatio-temporal properties, point samples feature many advantages as
compared to other descriptions, like triangle meshes. Point samples can be employed
as a basic primitive for both offline and online free-viewpoint systems for capturing
and resynthesizing objects only or complex scenes.

8.2 STATISTICAL REPRESENTATIONS

Aravind Kalaiah and Amitabh Varshney

8.2.1 MOTIVATION

Computer graphics has traditionally assumed crisp representations of geometry.
Thus, each point and each triangle’s location are assumed to be known accurately
and precisely. Recent advances in 3D model-acquisition technologies, such as laser
scanning, have led us to a stage where we can now scan more accurately (at submicron
levels) as well as at great distances (even entire cities, in some cases). This has led to
the emergence of massive and highly detailed 3D point-cloud data. Such large point-
cloud datasets have inspired new research directions in their representation and ren-
dering by leveraging statistical tools and techniques.
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As the point-cloud datasets grow in complexity, density, and richness of their
representation, the importance of any one point is diminished among many.
Further, as the spacing between the acquired samples reaches the same order of
magnitude as the limits of acquisition precision, crisp representations of geometry
become redundant, or worse, misleading. Statistical, or nondeterministic, repre-
sentations of geometry provide a valuable alternative to the traditional models
of representation. The central idea in the statistical representation of points is to
represent the aggregate shape of a collection of points as a probability distribu-
tion. Statistical representation of points lends itself naturally to a multiresolution
representation by building probability distributions over a hierarchy of points. It
also provides a graceful transition from crisp representations of points to those
with uncertainty. Finally, it lends itself to efficient transmission and rendering on
modern graphics processors (GPUs).

8.2.2 RELATED WORK

Various chapters of this book have already covered much of the related point-based
representations. Here we focus on related work in the context of fuzzy geometry and
the connections between statistics and graphics.

Fuzzy geometry has its origins in the very first paper on fuzzy sets [Zad65] where the
notion of their convexity was explored. Since then an impressive body of literature
has covered a number of fuzzy-set properties including geometric properties (such as
proximity, medial axis, and convexity), topological properties (such as connectedness
of topological spaces, relationship to mathematical morphology, and adjacency), and
metric properties (such as area, perimeter, and diameter). The interested reader can
refer a series of survey articles on these by Rosenfeld [Ros84, Ros98].

Some of the earliest work in computer graphics that involves statistical distribu-
tions and their uses includes Fournier et al.’s [FFC82] stochastic procedural mod-
eling, Reeve’s [Ree83] particle systems, and Cook’s [Coo86] distributed ray tracing.
Recent work includes stochastic displacement mapping [SBCR05], stereological tex-
tures [JDR04], and photon mapping [Jen01]. Most of this work however does not
involve statistical representations of given 3D objects. A notable exception is recent
work by Pauly et al. [PMG04] that elegantly incorporates uncertainty of point sam-
ples into a unified representation of shape.

8.2.3 STATISTICAL POINT GEOMETRY

Statistical models can efficiently represent data coherence and patterns [DHS01].
Principal component analysis (PCA) [DHS01] is one of the simplest methods
of statistical analysis, and yet is powerful enough to model an adequate class of
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point-cloud distributions. In addition, a PCA-based ellipsoidal representation is
compact and simple enough to be used for efficient rendering and transmission.

Principal Component Analysis
The principal component analysis of a set of points, P = {pi|i = 0, . . . , N − 1},
in a d-dimensional space gives us the mean µ, an orthogonal frame Ψ, and the
standard deviation σ of the data [DHS01]. The terms µ and σ are d-dimensional
vectors and we refer to their i-th component as µi and σi respectively, where σi ≥ σj

if i > j. The frame Ψ consists of d vectors with the i-th vector referred to as Ψi.
In a three-dimensional space we simply refer to the individual components by the
x, y, z subscripts (for example, µ = (µx,µy,µz)). In our case, the input is a set of N
points with three attributes: spatial position x, normal n, and color c. We refer to
the mean, standard deviation, and the frame of the position attribute of the points
by µ(x), σ(x), and Ψ(x), respectively. We determine these values through a PCA
analysis of the (x, y, z) values of the points. This gives us an anisotropic Gaussian
distribution centered at µ(x), aligned along the directions Ψx(x), Ψy(x), and Ψz(x),
with the standard deviation along these directions being σx(x), σy(x), and σz(x),
respectively. Such a distribution can be effectively visualized as an oriented ellipsoid
with intercepts proportional to σx(x), σy(x), and σz(x) (see Figures 8.15a and b).

(a) (b)

Figure 8.15: (a) The nodes at the midlevel resolution of the hierarchy built for the
David’s head model. Each ellipsoid in this figure represents an anisotropic Gaussian
distribution of the geometry with their intercepts being their corresponding standard
deviation σ(x). The ellipsoids are colored by their mean color, µ(c). (b) Scaling the ellip-
soids by a factor γ = 3.5 ensures that the geometry is represented up to a confidence
index (CI ) of at least 99.7% (i.e., the ellipsoids enclose at least 99.7% of the cumulative
Gaussian distribution of the statistical points).



410 SELECTED TOPICS C H A P T E R 8

We refer to the mean, variance, and the basis of other attributes such as normal
and color with the appropriate term in parentheses (e.g., µ(n), Ψ(n), and σ(n) for
the normal).

PCA for Multiple Attributes
PCA analysis is straightforward for spatial coordinates of points that admit
well-defined distance metrics, such as the Euclidean. Generalization of PCA to other
point attributes such as normals, colors, and textures is possible, but requires extra
care due to nonlinearities in defining distances in these other spaces. Let us consider
PCA for point normals as an example.

The unit normals can be considered as points on a unit sphere. Therefore, PCA
of normals can be viewed as performing PCA directly in a spherical geometry.
Another possibility is to use the logarithmic map approach as outlined by Buss and
Fillmore [BF01] as follows. Consider a set of point normals ni = (θi, φi), ∀i = 0, . . . ,
N− 1. Here the normals are represented by their angles (θ,φ)∈ ([0, π], (−π, π]).
We can compute the mean normal using weighted averages on spheres based on
least squares minimization that respects spherical distances by using the logarith-
mic map and its inverse, the exponential map. We represent the mean normal by
its angles, µ(n) = (µ(θ),µ(φ)). The next step in the PCA analysis is the computa-
tion of the covariance matrix. This requires us to define the difference ni − µ(n)
between a normal and the mean normal. The difference in the normal space can be
represented by the difference vector between the 2D coordinates of the mean nor-
mal and the i-th normal in the logarithmic space defined on the plane tangent to
the unit sphere centered at the mean normal µ(n) = (µ(θ),µ(φ)) [BF01]. The rest
of the PCA analysis proceeds as usual. The eigenanalysis of the covariance matrix
gives us the eigenvectors and the variances of the Gaussian distribution along these
vectors.

The geometry of color and texture spaces is more involved since it involves per-
ceptual assessments. In absence of a clear consensus on the correct way to carry
out a perceptually meaningful PCA analysis in the space of color or textures, one
possibility is to simply treat these additional point attributes in the same way as
spatial coordinates and perform the straightforward PCA analysis for them. In such
a case, the (r, g, b) color values are treated as points in a three-dimensional space
and a PCA in this space gives us its mean, µ(c), principal components, Ψ(c), and
the standard deviations, σ(c). Another possibility is to convert the RGB color space
to a more perceptually uniform color space, such as the hue, saturation, and value
(HSV), and then carry out the PCA analysis.

We have discussed above how one can perform PCA independently for the attribute
spaces of location, orientation, color, and textures. This has several advantages for
real-time rendering that we will discuss later. However, the approach of carrying
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out PCA independently for every attribute has the disadvantage that it does not
decorrelate across the attribute spaces. One possibility is to address this by per-
forming PCA in the unified space of all the attributes. Consider a PCA analysis
of the points, pi = (xi, yi, zi, θi, φi, ri, gi, bi), ∀i = 0, . . . , N − 1, in the 8D
space of position (3D), normal (2D), and color (3D). This requires computing the
mean and the covariance matrix in the unified 8D space. One can use the Buss
and Fillmore [BF01] approach to compute the normal components of the mean
and the difference vectors used in the 8D eigenanalysis. Performing PCA in the
unified space of all attributes is more effective at representing the data, especially
at lower resolutions, but suffers from increased computations and storage required
for 8D eigenanalysis. The covariance analysis done here can also be used for the
pointsimplification technique discussed in Section 4.3.2.

Statistical Hierarchies
A variety of hierarchical schemes may be used to organize points [Sam05]. These
include spatial hierarchies such as octrees and K-d-trees, as well as bounding
volume hierarchies such as bounding spheres. Some of these are discussed in
Section 4.4. Statistical hierarchies represent data at different levels of detail by using
either a spatial or a bounding volume hierarchy. Points that are classified as belong-
ing to a single node of the hierarchy are then collectively represented by their PCA
parameters. As discussed above, these PCA parameters could be computed inde-
pendently on an attribute-by-attribute basis or in a unified space of all attributes.
Hierarchies built from isotropic nodes, such as regular grids, octrees, and bound-
ing spheres, require less storage per node and are faster to traverse. Anisotropic
hierarchies, such as K-d-trees and ellipsoidal hierarchies, approximate the under-
lying data distributions more succinctly. Similar observations hold for statistical
hierarchies. Kalaiah and Varshney report binary hierarchies based on two-means
clustering [KV05] superior to those based on octrees [KV03b].

The distortion of a partitioning is defined as the sum of the distances of the points
from the partition’s mean [DHS01]. A partitioning scheme that aims to represent
the constituent points well would strive to reduce the distortion under some appro-
priate distance metric. The approach of k-means clustering achieves this in a natu-
ral fashion. Consider the case for k = 2. Kalaiah and Varshney [KV05] initialize the
two starting means (centers) for the k-means algorithm by doing a PCA over the
points and choosing µ(x) + σx(x)

2 Ψx(x) and µ(x) − σx(x)
2 Ψx(x) as the initial guesses.

This is a reasonable assumption since the data vary maximally along Ψx(x). The
k-means clustering algorithm then iterates over the twin steps of partitioning the
point set according to the proximity of each point to the two means and then updating
the two means according to this partitioning. Figure 8.16 illustrates three iterations
of the clustering algorithm. Pauly et al. [PGK02a] use a geometric method to sepa-
rate the point set for their point-based simplification hierarchy (see Section 4.3.2).
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(a) (b) (c)

Figure 8.16: These figures illustrate three iterations of the clustering algorithm used for
spatial partitioning of a set of points. Successive iterations reduce the distortion between
the original set of points and the cluster centers (shown as blue crosses).

They separate along the principal direction Ψx(x) with the separating plane passing
through the mean µ(x). A similar strategy is used by Brodsky and Watson [BW00]
for hierarchical mesh partitioning. This approach is equivalent to the first iteration
of the clustering scheme. The subsequent iterations then successively reduce the dis-
tortion. One can stop iterating when the difference in the average distortion between
two successive iterations is sufficiently small or when the number of iterations is more
than an upper bound. This clustering step can be made more efficient using the tech-
nique proposed by Kanungo et al. [KMN+02]. The hierarchical partitioning may be
terminated for nodes that have less than a user-specified number of points (say 30).

Distance Metrics
Choosing the distance metric is a crucial issue when building a hierarchy over points.
The Euclidean distance metric is a good metric in most instances and also produces a
balanced hierarchy. However, it has a tendency to merge disjoint parts of the surface if
they are close enough. The Mahalanobis distance metric [DHS01] can address this by
warping the space such that distances along the local normal direction computed by
PCA are weighed higher than the distances along the tangential directions. Consider a
PCA node defined by the pair (µ(x), Ψ(x)). The Mahalanobis distance ξ(p0) between
a point p0 (with a spatial attribute x0) and µ(x) is given by ξ(p0) = ‖S(x) T(x) x0‖2 ,
where T(x) is the affine transformation matrix that transforms x0 to the coordi-

nate frame Ψ(x), and S(x) scales the result by
(

1
σx(x)

, 1
σy(x)

, 1
σz(x)

)
. This is shown in

Figure 8.17.

The Mahalanobis distance metric generally leads to partitions that most would clas-
sify as being more natural and intuitive. This is because the Mahalanobis distance
metric measures distances respecting the local anisotropy of the partitions that the
Euclidean metric cannot. Still, the Mahalanobis metric remains a heuristic for parti-
tioning, although generally a better one than the Euclidean metric. When the surface
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is too complex to be neatly partitioned into two clearly disjoint surfaces, the use of the
Mahalanobis distance metric can produce an imbalanced partitioning. Here one can
use a hybrid strategy: first try a k-means clustering based on the Mahalanobis metric,
and if that partitioning turns out to be imbalanced, switch to a Euclidean distance-
based partitioning. Figure 8.18 illustrates the Lucy model at various resolutions of
the hierarchy.

(a) (b) (c) (d)
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Figure 8.17: (a) The Mahalanobis distance. (c) The partitioning of the sphere and plane model of (b) obtained by a
partitioning plane-based approach while (d ) is the partitioning obtained by the Mahalanobis distance-based approach.
The partitions have been rendered by the ellipsoids corresponding to their respective PCA attributes.

Figure 8.18: The Lucy model at various resolutions. Each ellipsoid in this figure represents an anisotropic Gaussian
distribution of the geometry with their intercepts being their corresponding standard deviation σ(x). The ellipsoids
are colored by their mean color, µ(c).



414 SELECTED TOPICS C H A P T E R 8

Classification and Quantization
Compact representation of a hierarchy is essential for reducing the geometry
bandwidth required for its transmission and rendering. Compression methods for
meshes can reconstruct the original geometry up to a given level of quantiza-
tion [Dee95, IS00, TR98, TG98]. Such methods have been extended for progressive
compression and reconstruction [AD01, COLR99, GD02a, TGHL98]. Higher com-
pression rates can be obtained by using representations that approximate the given
input without necessarily trying to reproduce the original samples [KSS00], with
spectral compression [KG00], or with view-dependent quantization [HV01].

Classification and quantization are two powerful techniques that can be used to effi-
ciently encode the coherence in the statistical parameters of a point hierarchy. In
the PCA hierarchy discussed above, the standard deviations σ exhibit a high level
of coherence. Classification based on a k-means clustering algorithm on the standard
deviations (σ(x), σ(n), and σ(c)) can be used to generate a lookup table with a small
number of representative variances. Kalaiah and Varshney [KV05] use only 12 bits
each for σ(x) and σ(n), and 6 bits for σ(c). They quantize µ(x) in 32 bits using a
10-11-11 quantization, where the dimension of minimum width uses a 10-bit quan-
tization. The value of µ(c) is encoded in 16 bits using a 5-6-5 quantization of its red,
green, and blue values [RL00].

Quantization of a coordinate frame (such as Ψ(x), Ψ(n), or Ψ(c)) can be carried
out by quantizing the quaternion coefficients representing its rotation from the
principal axes. However, this gives equal weights to each of the three axes of the
frame. In practice, encoding the normal (Ψ(n)) more carefully could be justified
on the grounds that it is the primary influence on the appearance, at least for
isotropic illumination models. One possibility is to, therefore, quantize θ and φ

angles representing Ψ(n) in more bits, say 8 and 10, and the third angle ω that will
fix the entire frame Ψ(n) in fewer bits, say 6. Thus, the frame Ψ(n) can be quantized
into 24 bits. We refer the reader to Kalaiah and Varshney [KV05] for the details
of fast decoding of the encoded frame. Overall, each node can be represented with
13 bytes of spatial and normal information with 4 extra bytes required for color.
A complete single-precision floating-point representation would have required
96 bytes. Figure 8.19 illustrates the effectiveness of this method.

8.2.4 STATISTICAL RENDERING

The statistical hierarchy is used in identifying an appropriate set of nodes represent-
ing a view-dependent level of detail. Each node of the hierarchy provides a set of
statistical parameters that govern the generation of a set of well-distributed points.
These points are used for the final rendering.
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Figure 8.19: (a) A node is quantized into 13 bytes for the spatial and normal information.
Four extra bytes are used for the optional color information. The breakdown is shown
in bits. (b) View-dependent rendering on a 512×512 window from about 191,000 unen-
coded nodes and about 824,000 generated points. (c) The same rendering from encoded
nodes. We encode each node to 17 bytes using quantization and classification. Notice
that there is little difference between rendering with encoded and unencoded data.

Statistical Regeneration of Points
Each node of the statistical hierarchy gives a probability distribution of the points
that it represents. For a PCA-based hierarchy, the distribution is Gaussian:

p(x) =
1

(2π)d/2
∣∣∑∣∣1/2

e−(x−µ)T
∑−1(x−µ), (8.1)

where d is the dimensionality of the attribute and
∑

is the covariance matrix of
the attribute values. Points respecting this distribution can be generated using a 3D
extension of the Box-Muller transform [BM58, SG69, WLH97]:
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where r0, r1, and r2 are uniformly distributed random numbers in (0, 1], [0, 1], and

[−1, 1], respectively, and τ=
√
−2 ln(r0). Normals for points can be generated by

using the 2D Box-Muller transform to sample the logarithmic map plane discussed
by Buss and Fillmore [BF01], and then using the exponential map to revert them back
to the surface of a sphere.

Working with a unified representation of location, orientation, and color (as dis-
cussed in Section 8.2.3), will require us to generate Gaussian random numbers in
an 8D space. We can do this by first sampling points uniformly on a 8D hyper-
sphere [Ma172] and then radially distort them according to a Gaussian distribution
of unit variance. We can then use these Gaussian numbers and distort them according
to the 8D PCA parameters of the node (mean, standard deviation, and basis). Note
that the points generated this way have the proper position and color attributes. How-
ever, the normals are still in the 2D Lie space. We convert these values to normals in
3D by using the logarithmic map with respect to the mean (µ(θ),µ(φ)) [BF01].

The above scheme for sampling assumes that all the variances are nonzero. However,
in practice one often finds several nodes with one or more zero variances. An easy
way to deal with such special cases of zero variances of σi(x) is to simply set a mini-
mum threshold value (say of the order 10−15). This allows a uniform treatment of all
ellipsoids (even if they vanish along some dimensions).

Quasirandom Sampling
Regeneration of points satisfying a certain probability distribution requires uni-
formly distributed random numbers as an input. Usually such random numbers are
generated using a pseudorandom number generator. However, as seen in Figure 8.20a
the distribution of pseudorandom numbers does not cover the space equally. In other
words, they have a high discrepancy owing to the independent sampling of each
pseudorandom number [Nie92]. Quasirandom numbers generated from algebraic
sequences such as the Sobol sequence [PFTV03] have a low discrepancy as succes-
sive random numbers are aware of the random numbers that were generated earlier
and hence are placed so as to minimize the discrepancy (see Figure 8.20b). Quasi-
random numbers have been used successfully in computer graphics, for instance,
in the Monte Carlo integration for global illumination [Kel96]. Another nice prop-
erty of the quasirandom numbers generated from algebraic sequences is that smaller
sequences are a strict subset of larger sequences. This allows a one-time precompu-
tation of a sufficiently large quasirandom number sequence, from which one can use
a suitable subset as needed based on view and display parameters.

To determine how many quasirandom samples are needed to render a given sta-
tistical node, we set up an empirical test-bed that links the number of generated
points to the screen-space dimensions of the node. This is similar in spirit to the
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(a) (b)

Figure 8.20: (a) Eight hundred points generated in a two-dimensional space from a
pseudorandom sequence while (b) shows 800 points generated using quasirandom
numbers. Quasirandom numbers are preferable since they show low discrepancy that
results in a more uniform distribution.

randomized z-buffer idea by Wand et al. [WFP+01]. It is easy to empirically establish
a relationship between σ(x) and the number of points to be generated to completely
cover the projection of an ellipsoid with dimensions of γ×σ(x). The multiplicative
factor of γ is important here. The Gaussian distribution never really goes to zero and
one will have to generate an infinite number of points to cover the entire distribu-
tion. However, it can be shown that the region enclosed by γ = 3.5 has a confidence
index (CI) of at least 99.7% (i.e., it covers at least 99.7% of the distribution). Hence,
we limit ourselves to generating enough points so that the screen-space area occu-
pied by this enclosed region is covered. At render time we estimate the z-distance
of the mean µ(x) from the camera and estimate the dimensions on the screen to
be �Fσ(x)/z�, where F is the distance between the center of projection and the
view plane. We use this to index the table for determining the number of points to
generate. A representative sampling table appears in Kalaiah and Varshney [KV05].

Client-server Rendering
Statistical representations are well suited for rendering over a client-server setup,
including a GPU-CPU system, or remote rendering. In a client-server setting the
server sends the statistical nodes to the client that generates points based on the prob-
ability distribution parameters specified in the node. This is shown in Figure 8.21.

Transmission to the client involves two phases: the initial startup phase and the per-
frame update phase. In the startup phase the client receives initialization information
about the geometry, such as the classification and quantization parameters for all the
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attributes of the statistical nodes. This information is used in the update phase to
decode and render the statistical nodes. We present two scenarios in client-server
rendering: on-demand and view-dependent rendering. In on-demand rendering the
user selects a subset of the model using a refinement window. The client requests
the server to update the nodes in that window. The server sends back the encoded
statistical information of the refined nodes (see Figure 8.22). This framework is better
suited for remote rendering over low-bandwidth communication channels.

Decode
(per node)

Quantization &
classification
information

Position

Client

T&L Rasterize

Display
RasterizeT&L

RasterizeT&L

Normal

Normal

Color

Position
Normal

Color

Color

Position

Statistical rep.

Server

Tree-cut management

network / sys. bus 

Figure 8.21: Client-server rendering. The server selects the level of detail to be used for rendering in a view-
dependent manner. The nodes of the appropriate level of detail are transmitted to the client, which is either the
graphics card or a remote-rendering device. The client renders each node by generating points and their attributes
from the statistical information of the node.

(a) (b) (c) (d) (e)

Figure 8.22: On-demand rendering. Rendering of PCA nodes on a remote PC with (a) square splats and (b) with
quasirandom sampling. The client selects a refinement window in (c). (d and e) The rendering of the refined nodes
with square splats and quasirandom sampling, respectively. The figures show that quasirandom sampling conveys
more information for the same number of nodes. However, (the software rendering at the client) was twice as slow.
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Our view-dependent rendering algorithm is similar to the ones used for
view-dependent rendering of triangle meshes. An appropriate level of detail in the
hierarchy is maintained as a level cut across the hierarchy tree or a tree cut. Thus, in
regions where higher detail is desired the tree cut is close to the leaves of the hierarchy
and in regions of low detail the cut is closer to the root. The level of detail is updated
at each frame depending on the proximity of the object to the user (see Figure 8.23).

GPU Considerations
Statistical hierarchies of points can be used for rendering on modern graphics pro-
cessors (GPUs). Rendering the nodes of a statistical hierarchy requires their decod-
ing and generation of points. Both of these can be easily implemented using vertex
shaders. Ongoing improvements in the programmability of the GPUs will further
ease the mapping of rendering of statistical hierarchies of points.

Decoding a PCA node requires communicating the values of σ, µ, and Ψ for each of
the attributes from the CPU to the GPU. We currently send raw values of σ(x), σ(n),
σ(c) as well as µ(x), µ(n), and µ(c) from the CPU to the GPU without any classifi-
cation or quantization since the requisite support for their decoding is currently not
available on GPUs. To decode the frames Ψ(x), Ψ(n), and Ψ(c) we send the values of
the sine and cosine of their respective θ, φ, and ψ values. The latest GPUs do allow
sine and cosine computations at the vertex shaders and on such GPUs we only need
to send the angles.

(a) (b)

Figure 8.23: Figure (a) shows the means of the nodes of the tree cut during view-dependent rendering. Figure (b)
shows the rendering of the model using quasirandom sampling at the GPU.
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Quasirandom sequences are highly appropriate for GPU-based generation of points.
We can generate a 3D quasirandom sequence of, say, 500 points, and store it on the
GPU as the vertex coordinates of a unit Gaussian distribution in a vertex array range
(VAR). We also store an equal number of 2D quasirandom numbers as normals of
the VAR vertices. During rendering, the PCA attributes of the node are sent as texture
coordinates and the function glDrawArrays( ) is invoked to render the required
number of (generated) points from the VAR array. The GPU delivers the quasiran-
dom numbers to the vertex shaders as a sequence of normal and vertex coordinates.
For each incoming vertex at the vertex shader, we reconstruct the PCA information
of the node, use the quasirandom numbers to determine the attributes of the point,
and let the GPU rasterize them. Since OpenGL is a state machine the PCA param-
eters that we send before the invocation of glDrawArrays( ) are available for all
the generated points. Hence, we only send the PCA attributes to the GPU once for
each node as opposed to sending them for every generated point. We, however, have
the computational overhead of decoding the PCA attributes for each sample point.
Overall, we are able to achieve a 30% speedup in the rendering time compared to the
strategy of sampling points at the CPU. This speedup is mainly due to the reduced
bus bandwidth and the SIMD nature of the shaders.

8.2.5 CONCLUSION

The rise in the power and resolution of modern-day three-dimensional scanning has
diminished the relative importance of the individual points. This section discusses a
statistical model that represents the point geometry as a probability distribution. One
of the advantages of this model is that it efficiently scales to a hierarchical representa-
tion that can represent the point geometry from the coarsest to the finest resolution.
The statistical model can be efficiently stored using classification and quantization
and it can be rendered with good quality using quasirandom sampling. The statisti-
cal model extends easily for remote rendering on resource-constrained devices.

8.3 VISUALIZATION OF ATTRIBUTED 3D POINT
DATASETS

Guido Reina, Thomas Klein, and Thomas Ertl

8.3.1 MOTIVATION

Since the available computational power is steadily growing, more and more science
areas rely on simulations of ever-growing problem sizes producing a respectively
huge amount of data output. Simulation and experimental measurement in life
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sciences, physics, chemistry, materials, and thermodynamics yield large and often
also time-dependent datasets. Interactive visualization is the key service that facili-
tates the analysis of such datasets and thus enables the researchers in those fields to
quickly assess and compare the results of a simulation or measurement, verify and
improve their models, and in so doing coming ever closer to understanding how
dynamic processes work. An example for such large supercomputer simulations is
the galaxy formation calculations done by the VIRGO Supercomputing Consor-
tium [VIR05]. Figure 8.24 shows a rendering of such a simulation dataset. It is the
result of a multibody simulation consisting of 134 million data elements and shows
a snapshot from a simulation of the matter distribution in the early universe.

The main challenge in visualizing such datasets is two-fold. First, containing the nec-
essary storage capacity and the bandwidth requirements caused by the sheer data
size, and second, reducing the processing load caused by the visualization itself. The
approach that will be described here aims for distributing the load between the avail-
able computational units by leveraging the parallel processing power of the GPU for
the actual rendering, thus freeing up the CPU for the data-processing groundwork.

(a) (b)

Figure 8.24: Rendering of a galaxy formation simulation dataset containing 134 million data points: (a) point splat-
ting, and (b) high-dynamic range rendering of the same dataset using high-precision floating point blending and a
local tone-mapping operator.
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Point-based methods have been in use in visualization for a long time. There are
numerous examples where points were used as a rendering primitive, including scat-
ter plots, as are widely used in information visualization [Cle85, PKH04], or splat-
ting techniques that are common in volume visualization [Wes90, LH91, MMC99,
ZPvBG01a]. Due to space restrictions, these methods will not be discussed here.
Instead this section will focus on the more specific topic of application-tailored
point-based methods for GPU-based glyph visualization.

Scattered 3D Data
Scattered data, in the context of this section, are defined as a set of discrete attributed
points which, unlike typical visualization datasets and the point-sampled geometry
data discussed in Chapters 3 through 6, do not contain any topological informa-
tion since they are not part of a sampled surface or manifold. Often it is possible to
infer connectivity in a dataset in order to be able to use traditional visualization tech-
niques, such as direct or indirect volume rendering, relying on interpolation to derive
the assumed continuity. A typical approach would be to generate an unstructured
grid based on a Voronoi tesselation. In the datasets in question, however, there is no
implicitly defined grid structure or continuity and neither is it reasonable to impose
these properties because of the strictly discrete nature of the data points. In fact, those
points do not represent coordinates where continuous values are sampled, but dis-
tinct entities with attributes such as spatial extent and simulation-pertinent proper-
ties like particle type, impulse, orientation, age, etc. Therefore, in the following, we
like to refer to the data elements not as points but as individual particles that can be
represented by application-specific glyphs.

Multiple Levels of Semantic Density
The semantic density of a particle (i.e., the number and diversity of associated
attributes) varies depending on the origin of the data. This can be either physical
attributes captured from measurements of real objects, or properties derived from
the physical model underlying a numerical simulation. In the simplest case this
information will comprise only a spatial position. However, if the generation pro-
cess yields more attributes for the particles, like a certain shape and spatial extent,
there is the need to include such information in the visualization as well. If the
glyph representing the particle is not infinitely small, it can also exhibit an ori-
entation, but to display this orientation, an anisotropic shape or surface quality
is needed that allows the user to perceive this orientation. In the following sec-
tions different primitives will be described that allow for an increasing number of
attributes to be displayed making use of different kinds of glyph representations.
Starting with the description of a generic framework for point-based glyph ren-
dering in Section 8.3.2 the discussion will be continued by multiple sections on
different glyphs appropriate for the visualization of particles of varying semantic
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density. Section 8.3.3 describes the visualization of isotropic particles as found in
most multibody simulations, Section 8.3.4 deals with oriented ellipsoidal particles
used in tensor field visualization, and Section 8.3.5 details the rendering of dipole
glyphs for the visualization of nanoscale simulations in thermodynamics.

Complex Primitives
The rendering of complex glyphs for a large number of particles naturally is a
performance problem, since the processing power for generating and the bandwidth
for transmitting polygonized complex primitives to the GPU are limited. This is
especially problematic when dealing with dynamic or time-dependent data. Thus,
the challenge is to minimize the amount of data that has to be transferred from
the CPU to the graphics processor. The second general goal is to minimize process-
ing on the CPU by shifting as much computational load as possible to the GPU.
The most bandwidth-efficient geometric primitive being the point, it is straightfor-
ward to use a parameterized representation of the different shapes and render just
a single, attributed point primitive. As will be shown in the following for simple,
unshaded isotropic shapes it may be sufficient to use basic point-splatting tech-
niques or precalculated texture sprites (see Section 6.2.2); anisotropic and shaded
surfaces, however, require more elaborate GPU processing. This is accomplished by
working with implicit surface representations directly in the vertex-processing units
and fragment-processing units of the GPU which, in addition, allows for per-pixel
surface precision and shading. This choice is further supported by the currently
very short product life cycle of GPUs, leading to the creation of more optimized
GPUs with ever-increasing parallelism and processing power. The algorithms that
will be shown in the remainder of this section can directly benefit from such inno-
vation, since in the past a speedup between 100 and 700% for complex shaders has
been observed when switching from one generation of GPUs to the next.

8.3.2 A FRAMEWORK FOR POINT GLYPH VISUALIZATION

In Section 4.4 methods for efficient storage and access of points and their attributes
have been discussed. The framework used for implementing the different particle-
rendering methods discussed in this section is based on a generic and flexible render-
ing infrastructure for large, time-dependent particle datasets [HE03] and employs
a hierarchical organization of the data, similar to the bounding volume hierarchies
described in Section 4.4.2.

The data hierarchy is depicted in Figure 8.25a. At the lowest level it contains the
raw particle data used as input for the visualization. For each consecutive hierarchy
level i, a number of elements of the next lower level i + 1 are grouped into a cluster.
This process is repeated until only a single cluster remains, which defines the root
of the tree (level 0). For each cluster node a representative particle is generated
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Figure 8.25: The hierarchical data structure used in the framework (a) and a representation using relative coordi-
nates (b) where same hues refer to the same hierarchy levels.
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that summarizes the elements contained therein. These representatives are stored
in parallel to the cluster hierarchy. A cluster node always contains pointers to its
subcluster nodes as well as to the representatives of the subclusters, but no pointer to
its own representative. Level 0 and level n are exceptions to the structure since level 0
contains only the root cluster and level n contains no cluster nodes at all. Using flat
data structures (see Section 4.4.5) for storing the particles and the representatives
enables us to take advantage of OpenGL Vertex Arrays to transfer the data in large
contiguous chunks. Such a hierarchy can be generated, for example, by the repeated
application of a PCA-split with subsequent aggregation of subclusters.

During rendering the hierarchy is traversed and for each level either the represen-
tative points are rendered or the recursion is continued by descending deeper into
the hierarchy by visiting the subclusters on the next level. Criteria used to steer
the recursion process could be the projected screen size of the cluster representa-
tive, user-specified error thresholds, the relative contribution to the final color of a
pixel, or the available time budget for rendering a single frame while still ensuring
interactivity.

To minimize the space requirements for storing the particle cloud and to further
reduce the bandwidth requirements for transferring the data to the GPU, the
framework allows the user to store the positional data using relative coordinates and
make use of the cluster information to calculate the absolute coordinates. Thus, less
accuracy is needed for storing the relative coordinates since the clusters of higher
levels have logarithmically decreasing extent. Reconstruction of the correct absolute
coordinates from the quantized values (see Section 4.4.4) can be easily accomplished
on the GPU. Using the float coordinate of the cluster center this reduces to scaling by
the cluster extent and offsetting by the cluster origin, as shown in Figure 8.25b.

8.3.3 VISUALIZATION OF ISOTROPIC PARTICLES

The primary goal for the rendering framework [HE03] used is to enable interactive
exploration of extremely large point datasets without resorting to volume-rendering
techniques and the subsequent loss of detail. This application is geared especially
toward datasets originating from cosmological multibody simulation and SPH sim-
ulation datasets. For this purpose, particles as well as clusters are represented either
as transparent disks or hollow spheres. This is justified by the assumption that the
geometry of a distant star can be approximated as isotropic. Both types of primi-
tives are prerendered into a texture and output as point sprites supported by most
modern graphics hardware. Since display resolution is relatively low compared to the
immense number of particles, a high number of stars will be rendered into the same
framebuffer pixel. Therefore, blending is used to achieve the optical impression of
such densely packed clusters with hundreds of stars.
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Rendering
Several considerations have to be made about the brightness of the particles and how
to achieve a consistent rendering output [HE03]. The overall goal is to minimize
popping artifacts during the adaptive rendering by ensuring that all cluster represen-
tatives offer sufficient visual continuity to allow them to replace the cluster children
on the fly without changing the overall visual appearance. The following rules are
applied:

• If a particle is smaller than the pixel it must occupy, its brightness will be accord-
ingly attenuated in a vertex program.

• A single point representing a cluster of particles must have an area that matches
the extents of the cluster.

• The radiant flux Φ of a cluster representative must match the total radiant flux
of all its children, so its brightness has to be adjusted according to the relation
of the areas covered by the children and the area of the cluster representative:

Φ =

∑
φiAi

Acluster
. (8.3)

Since at the time of the original publication by Hopf and Ertl [HE03] only eight-bit
framebuffers were available, it has to be ensured that the resulting radiant flux
Φ does not exceed the representable range, otherwise the particle size has to be
increased beyond its original extents to be able to correctly emit enough radiance.
Even with all these precautions taken, blending operations can still cause over-
flows in the framebuffer. Due to the fact that large particle cloud datasets have an
extremely high overdraw, the utilized dynamic range is severely limited and much
contrast is lost. Therefore, user interaction was required to adjust the brightness.
Another problem of the original particle representation is that it allows single points
to have a big screen-space footprint for compensating high radiance, even if they
were not cluster representatives.

As we like to think about each particle as a small star in a huge environment, it would
be more appropriate if the objects representing stars were always at most two or three
pixels in size. Cluster representatives, on the other hand, cannot be limited in size
because visual continuity has to be preserved. Removing the sizing rules from the
vertex program and replacing them with a constant size meant that the irradiance of
a single point could not be represented with eight-bit precision. Fortunately, mod-
ern GPUs like the NVIDIA GeForce 6800 series feature a complete 32-bit precision
floating-point-rendering pipeline. Working with floating-point precision allows us
to work with a greater numerical range to improve the rendering quality of the orig-
inal work. Unfortunately, the current generation of graphics cards supports at most
16-bit floating-point precision blending. However, this still provides a much higher
relative precision and data range.
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Using tone mapping [RSSF02] makes it possible to dynamically adapt to the
properties of the current image and rescale its brightness for optimum contrast
on output, which is still limited to eight bits per channel. That way the user does
not need to adjust any parameters of the visualization to explore the fine details of a
dataset. Figure 8.24 shows two renderings of a 134 million point galaxy simulation
dataset. The left image was generated using the original point-splatting algorithm
described in Hopf and Ertl [HE03]. The right image shows the result of the ren-
dering algorithm that takes the high dynamic range of the input data into account.

8.3.4 VISUALIZATION OF ANISOTROPIC PARTICLES ON THE GPU

The simplest closed anisotropic particle shape that can be described analytically is
the ellipsoid. It also is an intuitive glyph widely used in tensor field visualization.
Examples are the visualization of the strain tensor in engineering or geomechanics
applications or the visualization of diffusion tensor imaging data in the medical
setting [SZF+91, PB96]. Furthermore, ellipsoids have been used as a modeling
primitive [BK02] for the representation and efficient transmission of geometrical
models. In this section we will concentrate on the use of ellipsoidal glyphs for the
visualization of symmetric tensor fields that originate, for example, as diffusion
tensors from MRI measurements. However, the method presented here is not
limited to this application.

Figure 8.26 shows an example of a diffusion tensor MRI dataset of the human brain
visualized using ellipsoid glyphs. The dataset contains about 1.4 million tensors.

Figure 8.26: Visualization of a diffusion tensor MRI dataset of the human brain with a combination of glyphs and
volume rendering. On a NVIDIA GeForce 7800 GTX using a 5122 viewport, these images can be rendered at about
40 frames per second; 230 frames per second can be achieved by rendering only the glyphs.
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Of these only approximately 9,000 glyphs corresponding to tensors of highly linear
diffusion are shown, since they correspond to white matter neuronal pathway struc-
tures that are of special interest in this setting. Additional color coding was done
according to the fractal anisotropy of the diffusion tensors. In order to provide some
context of the spatial relationship, the glyph visualization is combined with a semi-
transparent volume ray casting of the same data. The image to the right shows a
detailed view of a central part of the brain, known as the corpus callosum. This part
is especially rich in nerve fibers since it connects the left and right hemispheres of
the brain.

Diffusion tensors are typically represented by symmetric 3× 3 matrices. Since a sym-
metric matrix A has three real eigenvalues and a corresponding orthonormal system
of eigenvectors, it can be factored into a diagonal matrix Ω of its eigenvalues and a
rotation matrix R of the eigenvector basis (i.e., A = RΩRT). Thus, the eigenvalues and
eigenvectors of A can be identified with the shape parameters of an ellipsoid, where
the absolute values of the eigenvalues correspond to the length of principal axes of
the ellipsoid and the eigenvector system specifies its orientation with respect to the
standard basis.

Traditionally, the resulting ellipsoid representations are rendered either using ray
tracing or by tessellating them into a triangle mesh subsequently rendered using
the graphics processor. But rendering several hundred thousands of tensor glyphs
at interactive rates is a performance problem because there is a lot of geometry data
involved. Even when OpenGL display lists or vertex arrays are employed, the frame
rates that can be achieved for reasonably smooth tessellated ellipsoids are far from
being interactive. Furthermore, since it is often not possible to select or filter the data
directly on the GPU (e.g., for time-dependent datasets), it is not possible to store
the data in video memory. Instead, they have to be transferred to the GPU for every
rendered frame.

A first approach for rendering perspectively correct ellipsoidal shapes that does not
depend on tessellated geometry was presented by Gumhold [Gum03]. However, this
approach differs from the point-based method [KE04] that will be described in the
following, as it uses quadrilateral splats as the basis for the rendering. The presented
approach instead reduces the amount of information that has to be transferred over
the graphics bus to the GPU to the necessary minimum to avoid this potential bot-
tleneck. The required geometric data per-rendered ellipsoid are broken down to the
vertex position and few additional per-vertex attributes of a single OpenGL point
primitive in exchange of higher vertex processing and rasterization effort. In the
following sections the GPU-based ellipsoid rendering algorithm will be described,
which allows the computation of the perspectively correct projection of a Phong-
shaded ellipsoidal shape from this data.
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Particle Representation
Each ellipsoid is represented by the center point pi of the glyph, the spatial extent
given by a vector hi of the lengths of its principal axes, and a quaternion qi describing
the orientation of the local coordinate system spanned by the principal axes. These
three properties can be easily encoded into the 3D vertex position, the normal vector,
and the four element vertex color attributes of a single GL_POINT primitive. Thus, no
more than ten floating point values, or 40 bytes, per ellipsoid have to be transferred
over the system bus to the GPU. Of course, this number can be further reduced if
relative coordinates and quantized values are used (see Section 8.3.2).

The boundary surface of an ellipsoid can be represented implicitly by the quad-
ratic form

{
x| ‖M−1

i (x − pi) ‖2 = 1
}

, (8.4)

where Mi = QiHi is a symmetric, positive definite matrix given by the scaling matrix
Hi = 1

2 diag(hi) and the rotation matrix Qi = R(qi) that describes the orientation with
respect to the local coordinate system of the ellipsoid. Thus, an affine mapping
Mix + pi from the local parameter space of the ellipsoid—in the case of tensor glyphs
spanned by the eigensystem of the tensor—to the world coordinate system can be
defined.

Rendering the Implicit Geometry
In this section a brief outline of the rendering algorithm will be given. For each
ellipsoid an OpenGL point primitive is rendered, either by specifying the above
described properties using immediate mode OpenGL calls or using vertex arrays for
reduced CPU overhead. The actual rendering of the particle shapes takes place in a
combination of a vertex and a fragment program. Since only a single point primitive
is drawn, the screen-space footprint covered by the perspective projection of the ellip-
soid’s shell has to be determined and the screen-space size of the rendered base point
has to be adapted accordingly. This is done in the vertex program, by projecting the
ellipsoids’ bounding box into clip-space. Since OpenGL points are always square, the
final point size is defined by the longer edge of the axis-aligned rectangle enclosing
the projection. This is clearly a drawback of the presented approach, because many
fragments have to be considered in the following steps that could be excluded if a
non-axis-aligned rectangular area were used. But in fact this is only a problem if the
ellipsoid projects to a rather large, non-axis-aligned screen area. In many applica-
tions where large numbers of objects have to be rendered, including ours, the num-
ber of pixels that are covered by a single object is often quite small. In addition, all
values that are needed in the fragment program and remain constant for all fragments
covered by the respective ellipsoid are precomputed in the vertex program. Passing
these as vertex attributes, they get automatically replicated for each fragment of the
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rasterized point by the linear interpolation of vertex attributes. Precomputing as
many values as possible reduces the rasterization cost (i.e., the operation count) in
the subsequent fragment program.

The next steps are implemented in the fragment program. First, a ray-casting
approach is used to compute the resulting shape of the ellipsoid’s 2D projection
according to the current view parameters. For each fragment covered by the rasterized
point primitive a ray x = pv + λd from the eye point through the object-space posi-
tion on the view plane of the rasterized fragment is computed. Since the origin of the
eye ray in object space is constant for all fragments of the projection it has to be com-
puted only once per ellipsoid, which is also done in the vertex program. In contrast,
the ray direction d has to be computed for each fragment separately. Because only a
single point is rendered it is not possible, for example, to exploit the linear interpo-
lation of vertex attributes during the rasterization for the computation of d, as it is
done in Gumhold [Gum03]. Instead d has to be computed from the current viewing
parameters given by the model-view-projection matrix available as a fragment state
variable by unprojecting the 2D screen-space coordinates of the fragments.

All fragments of the point splat can be classified to lie either inside or outside the
silhouette of the projection by intersecting the eye rays with the implicit represen-
tation of the ellipsoid. Intersecting a straight line with an ellipsoid is not difficult,
but it is even simpler when working in the local coordinate system of the ellipsoid.
Since all necessary transformations are affine, and therefore preserve straight line seg-
ments, it is quite obvious to transform the eye ray into object space and do a simple
ray-sphere intersection computation. Then, the actual intersection computation is
straightforward. Inserting the ray equation into the object-space expression ‖x‖= 1
of the ellipsoid yields the condition

dTdλ2 + 2pT
v dλ + pT

v pv − 1 = 0 (8.5)

which only then has real solutions if the determinant

D = (pT
v d)2 − dTd(pT

v pv − 1) (8.6)

is greater or equal to zero. Depending on the sign of D the fragment is either discarded
(i.e., killed) or the intersection point and the ellipsoid normal necessary for shading
the resulting pixel are computed. Solving Equation (8.5) for the actual intersection
parameter

λs =
−pT

v d −
√

(pT
v d)2 − dTd(pT

v pv − 1)

dTd
(8.7)

allows us to compute the intersection point s = pv +λsd, and since the whole compu-
tation is taking place in the local parameter space of the ellipsoid, the position vector
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of this point is also identical to the normalized surface normal. With this information
per-fragment correct Phong lighting of the ellipsoid surface can be computed. There
are only two things missing: the light vector pointing from the point of intersection
to the light source position and its reflection about the surface normal. Both can be
computed with only a few instructions in the fragment program.

As a last step, the correct depth sorting of the rendered objects has to be ensured. For
each fragment, the correct depth value has to be computed and written to the z-buffer.
Thereto the point of ray-surface intersection s is transformed to world space and the
modelview and projection transforms are applied accordingly. After that, perspective
division and depth-range mapping yield the corrected depth value for the fragment
that allows for the correct depth sorting of both the ellipsoid glyphs and traditionally-
rendered geometry.

Deferred Shading
Since for large numbers of objects the depth complexity is often very high (i.e., there
is much occlusion taking place), it is beneficial to defer the shading of the glyphs as
long as possible. Doing the shading only once per pixel can save a huge amount of
per-pixel computations.

Therefore, instead of computing the shading for each fragment directly in the afore-
mentioned fragment program, the world-space position and normal of the intersec-
tion point are stored into offscreen render buffers using, for example, the OpenGL
ARB_draw_buffers and EXT_framebuffer_object extensions and an additional
shading pass is done that computes the actual color values for the pixels. This can be
achieved by rendering a screen-sized polygon using a fragment program that fetches
the intersection parameters from textures bound to the respective render buffers of
the first render pass. Of course, the shading computation is only meaningful for pixels
that are actually covered by a glyph. But this can be easily accomplished by using an
alpha mask, for example.

8.3.5 VISUALIZATION OF COMPLEX GLYPHS ON THE GPU

The ellipsoid-based representation works very well for relatively simple particles with
only few parameters, like in tensor visualization. However, in other application areas,
where more attributes are available per particle, more advanced glyphs are required.
Thermodynamics researchers, for example, work with molecules of different com-
plexity in molecular dynamics simulations. One particular aspect of research in this
area is the simulation of the mechanism of droplet formation in gases for mono-, di-,
and quadrupolar molecules. With ellipsoid particles, it is not possible to repre-
sent all parameters of such molecules. Specifically, one cannot tell one end of the
longest principal axis from the other. Furthermore, the (even symbolic) geometry
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of a dipole is quite unlike an ellipsoid barring acceptance of this visualization by
the involved researchers. To remedy, a specialized glyph for this specific case can be
implemented [RE05].

Particle Representation
The shape of the new application-tailored glyph is borrowed from the classic ball-
and-stick representation that is widely used in chemistry. Since thermodynamicists
usually visualize di- and quadrupoles in the same style, the final representation
consists of two Lennard-Jones centers with adjustable radii r1, r2 and an adjustable
distance d between them (see Figure 8.27a). Some dipolar molecules might not
necessarily have visually distinguishable radii, and thus it might not be possible to
distinguish one end from the other. So we opted for adding a cylindrical bar magnet
with adjustable radius along the distance axis to represent the dipole polarity by
color and the charge by the cylinder’s radius r3. The cylinder length l is currently just
set in proportion to the two spheres, but could be used to encode another attribute
of the molecule as well. The resulting glyph additionally shows the distance between
the Lennard-Jones centers and the value of the charge magnitude.

Rendering
To render the dipole glyphs, we take a similar approach as for the ellipsoids. To
simplify the ray casting of the surfaces in the fragment program, all calculations are

(a)

r1r2

r3

d

l
(b)

1 5432

PN

PFCF
CN

Figure 8.27: (a) The different parameters of the dipole glyph. (b) The five possible
cases to hit a cylinder.
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performed in the local coordinate system of each glyph, thus zeroing out several
variables in the generic surface representation. This simplified surface can be
described as
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Note that this geometry still contains an infinitely long cylinder. So we need two
additional planes to confine the cylinder to a defined length. The different stages of
the algorithm are quite similar to the algorithm described in Section 8.3.4. Then,
similarly to Section 8.3.4, a combination of a vertex and a fragment program is used
to compute the shape and the shading of the glyph from the implicit representa-
tion given by Equation (8.8). The actual computation differs only in the following
aspects. First, the size of the point primitive is calculated from the projection of a
bounding box enclosing the two spheres and adjusted by the projection of the axis
of the cylinder extended by its radius.

In the fragment program the eye ray x = pv+λd passing through the current fragment
is computed and intersected with the five surfaces representing the glyph. This yields
six significant values for the ray parameter λ, namely the two nearest hits for the
spheres, both intersections with the infinite cylinder boundary, and two intersections
for the cylinder caps. These have to be sorted in order to decide whether a surface has
been hit, and which one. According to Figure 8.27, there are five different cases that
have to be considered:

1. λCF > λCN > λPF > λPN Sphere/Kill
2. λCF > λPF > λCN > λPN Cylinder
3. λPF > λCF > λCN > λPN Cylinder
4. λPF > λCF > λPN > λCN Cap
5. λPF > λPN > λCF > λCN Sphere/Kill

Then, the conditions λPF < λCN and λCF < λPN can be used to distinguish whether
the cylinder is missed and then either the sphere has to be intersected or the frag-
ment has to be discarded if none of the spheres was hit. To detect the nearest cap,
we use λCN < λPN. This works well except for the case when the eye ray is parallel to
the cylinder’s axis, which can cause floating point specials for the intersection cal-
culations. This can be avoided, for example, by checking if the distance from the
intersection with the nearest cap plane PN to the intersection of the cylinder axis
and PN is smaller than the cylinder radius. If this condition is fulfilled, we can be
sure that the cap is hit. Another problem is floating-point special values resulting
from the square-root operation needed to solve the quadratic equations, and the
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invalid lambda values resulting from roots with negative discriminant are replaced by
values that lie beyond the far clipping plane. Once the correct intersection is found,
the corresponding color is selected and Phong shading is applied. An example for this
rendering style can be seen in Figure 8.28.

In this figure you can see two droplets at low pressure in void, at a temperature of
160 K. The left droplet consists of methane molecules (color-coded red) that quickly
start to evaporate because the droplet’s boiling point is 111.55 K. The right droplet
consists of ethane (color-coded green) in stable fluid state; the molecules exhibit two
Lennard-Jones centers but no polarity. These droplets collide at a speed of about
200 m/s. With the point-based visualization, researchers can interactively explore
simulations of this size, while the straightforward polygon-based approach they used
before did not scale beyond several thousand molecules. One interesting effect that
can be observed easily in this simulation—but cannot be deduced without visualiz-
ing the dataset—is the fact that the methane molecules form a thin coating around
the ethane droplet and the excess molecules evaporate. It can also be seen that the
surface tension makes the droplet return to its spherical form after the force of the
impact has dissipated.

Figure 8.28: Visualization of the methane-ethane collision simulation dataset with 82,000 molecules rendered
with the dipole glyph shader. The ethane molecules are shown in green. On a NVIDIA GeForce 7800 GTX using a
5122 viewport, these images can be rendered at about 42 frames per second.
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8.3.6 CONCLUSION

In this chapter an approach has been presented that allows the rendering of complex
glyphs directly on the GPU. The aim of this approach is to minimize the amount of
data transmitted from the CPU to the GPU, reducing the load on the graphics bus and
the CPU. However, this advantage has to be traded for a higher processing load on the
GPU, but fortunately the high parallelism and short product cycle of GPU technology
allows for higher performance improvements than can be expected for the CPU and,
more importantly, the graphics bus. Using recent generations of graphics hardware,
the presented algorithms allow the user to interactively explore large, time-dependent
simulations containing several hundreds of thousands of semantically dense particles
using complex application-specific glyph representations.
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8.4 POINT CLOUDS AND BRICK MAPS FOR MOVIE
PRODUCTION

Per Christensen

8.4.1 MOTIVATION

Collections of 3D point data (point clouds) are getting used more and more as a
tool for movie production. It is useful to compute data once and write them out as
point clouds. The data can then be reused later—either directly as written or in some
manipulated form.
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In the past, such data were often generated as 2D textures, which have some
desirable properties such as MIP mapping, tiling, and efficient caching. But 2D tex-
tures are either tied to the screen parameterization (in which case they are view
dependent and can’t be reused for different views of the same scene) or tied
to the surface parameterization (which requires that the surfaces must have a
parameterization).

Three-dimensional point clouds are often more efficient, flexible, and user friendly
than 2D textures. They are independent of the viewing direction, surface type, and
parameterization. Point clouds truly add another dimension to the process of data
generation and reuse. However, point clouds are unstructured and, therefore, not
mipmapped, tiled, or cache friendly.

We have introduced a data format called brick map that combines the best properties
of 3D point clouds and 2D textures: a 3D representation independent of the surface
type and parameterization, and also mipmapped, tiled, and cacheable.

Here we first briefly describe Pixar’s RenderMan renderer and point-cloud API,
and show some examples where it can be advantageous to store data as 3D point
clouds. We then describe the use of point clouds for the calculation of subsurface
scattering, approximate ambient occlusion, and global illumination, and show how
computation of a radiosity point cloud can speed up photon-mapping global illu-
mination. Next is a description of brick maps: how to generate them and look up
data in them, how to efficiently cache the bricks, and how to render and ray trace
brick maps as geometry. Armed with the powerful tool of brick maps, we then
describe how to compute single-bounce and multibounce global illumination in
very complex scenes. In the end, we look at the generation and use of volume data
and provide a conclusion.

Some of the methods described in this section are used in everyday movie production
at Pixar and elsewhere; other methods are new and promising but have not yet been
adopted in production.

8.4.2 PIXAR’S RENDERMANTM

Most of the images in this section are rendered with Pixar’s RenderMan renderer
(PRMan). PRMan is used for rendering all of Pixar’s movies, for example, Toy Story,
The Incredibles, and Cars. PRMan is also used for rendering special effects in movies
such as Terminator 2, Jurassic Park, Star Wars episodes 1–3, the Harry Potter and The
Lord of the Rings movies, and many more.

The rendering algorithm used by PRMan tessellates all surfaces into micropolygons.
Each micropolygon can be thought of as a surface element. The micropolygons are
shaded and composited into a 2D image. More details about PRMan and its rendering
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algorithm can be found in Cook et al., Upstill, Apodaca and Gritz, and Christensen
et al. [CCC87, Ups90, AG00, CLF+03].

Instead of only generating a 2D image as output, it is simple to augment the rendering
algorithm to also write out 3D data for each micropolygon, for example, the shaded
color or some other shading results that may prove useful later on. Each micropoly-
gon is approximated as a microdisk—a surfel.

As a part of the PRMan package we also provide an application programmer’s inter-
face (API) for point-cloud files. The API makes it simple to read and write point-
cloud files in PRMan’s format. This makes it possible to write stand-alone programs
to process and manipulate point clouds, for example, to compute subsurface scatter-
ing or approximate ambient occlusion.

8.4.3 BAKING 3D INFORMATION AS POINT CLOUDS

The term baking is often used to describe the computation and storage of data for
later reuse. Baking data as view-independent 2D textures require a (u, v) parame-
terization of the surfaces. Some surfaces such as subdivision surfaces, implicit sur-
faces, and dense polygon meshes do not have an inherent parameterization, so they
have to be manually assigned parameter values. This can be cumbersome. Also, the
(u, v) ranges can be irregular, for example, the “pinched” areas around the poles
of a sphere. In contrast, 3D point clouds have a natural, simple, and ever-present
parameterization—3D position (x, y, z).

We distinguish between two types of point clouds: surface point clouds and volume
point clouds. Surface point clouds contain data associated with surfaces, and each
data point typically contains a surface normal along with the position, radius, and
stored data. Surface data points are often referred to as surfels [PZvBG00]. Volume
point clouds contain data associated with volumes, so the data points don’t have
normals.

Example 1: Baking Specular Reflections
Let’s look at an example of 3D baking of surface data. Figure 8.29a shows a Fiat 500L
“Topolino” with reflective paint. This model is from early preproduction ray-tracing
tests fortheDisneyPixarmovieCars[DP06].Thecarismodeledassubdivisionsurfaces
and is surrounded by a sphere with an environment map. The image shows reflection
of the environment map and interreflections on the car, for example, the reflection of
the eyes in the hood. During rendering of this image, the reflection and interreflection
data were baked out to a surface point cloud. The point cloud contains approx-
imately 850,000 points, each point containing position (three floats), unit normal
(two spherical coordinates—each a short integer), radius (one float), and reflection
color (three floats). Some of these points are shown in Figure 8.29b. The point cloud
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(a)

(b) (c)

Figure 8.29: Baked reflection on a Fiat Topolino: (a) original image, (b) surface points with reflection data,
(c) surface points with reflection data rendered as disks. (Copyright c© Disney/Pixar.)

is also shown in Figure 8.29c with the data points rendered as disks. The density of
the point cloud is determined by the image resolution and micropolygon tessellation
rate (shading rate).

Now that the reflection data have been baked they can be reused. Since reflection data
are view dependent they cannot be reused for other viewing directions—we would
get images with the reflections in the wrong locations, similar to Figure 8.29c. How-
ever, we can re-render the same image without shooting any reflection rays at all.
Furthermore, the point-cloud data can be postprocessed. A useful example of this is
blurring the reflections by low-pass filtering the point data. Such blurring is much
cheaper than computing glossy reflections using ray tracing.

Example 2: Baking Ambient Occlusion
The previous example showed baking of reflection data. Another quantity that is
often baked is ambient occlusion—a representation of how much of the hemisphere
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(a) (b)

Figure 8.30: Ambient occlusion: (a) surface point with high ambient occlusion, and (b) surface point with no
ambient occlusion.

above each point is occluded by geometry [ZIK98, Lan02]. Figure 8.30 shows two
examples of ambient occlusion. In 8.30a most of the hemisphere above the point is
covered by geometry, and hence the ambient occlusion is high and the point is rather
dark. In Figure 8.30b none of the hemisphere above the point is covered by geometry,
and hence the ambient occlusion is low and the point is bright. Ambient occlusion
is quite time consuming to compute since it involves shooting lots of rays, so baking
and reusing it is a good idea.

Figure 8.31a shows the Topolino car on a plane with baked ambient occlusion values.
Now the ambient occlusion can be re-rendered fast—just looking up the baked 3D
data is much faster than recomputing the ambient occlusion. Since ambient occlusion
is view independent, it can even be re-rendered from a different viewpoint, as shown
in Figure 8.32. Furthermore, if the car is deforming (e.g., squashing or stretching), the
data can be reused if the deformed car has associated undeformed reference geometry,
and if the difference between the correct occlusion on the deformed car and the baked
occlusion from the undeformed car is deemed sufficiently small.

Example 3: Baking Diffusely Reflected Direct Illumination
Direct illumination can be expensive to compute, for example, due to many light
sources and ray-traced shadows. Likewise, the surface reflection properties can be
surprisingly expensive to compute due to procedural textures, dozens of texture
maps, and very complex and general shaders. Figure 8.33 shows an example of a
directly illuminated scene with a single light source and purely diffuse reflection.
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(a)

(b) (c)

Figure 8.31: Baked ambient occlusion on a Fiat Topolino: (a) original image, (b) surface points with ambient
occlusion data, and (c) surface points with ambient occlusion data rendered as disks.

(b)(a)

Figure 8.32: Re-rendering of the Fiat Topolino using ambient occlusion from a point-cloud file: (a) ambient
occlusion, and (b) ambient occlusion times diffuse color.
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F igure 8.33: Monstropolis city block rendered with direct illumination from the sun and diffuse reflection.
(Copyright c© Disney/Pixar.)

The scene geometry is from the Pixar movie Monsters, Inc. [DP01]: a city block of
Monstropolis with many individually modeled buildings, trees, cars, etc. The scene
consists of 36,000 high-level primitives, mostly NURBS patches and subdivision sur-
faces. The shaders have been changed from the original for these tests. In this image
large parts of the scene are completely black since no direct light reaches them.

For these tests, the objects were manually divided into 40 groups: each street, build-
ing, and car is a group and has a separate point-cloud file. Rendering at resolution
1,024× 768 resulted in 39 million data points being generated. The points were stored
in 40 point-cloud files with a total size of 1.3 GB (uncompressed). Figure 8.34 shows
all the baked points. The points are so dense that this image looks quite similar to the
rendered image in Figure 8.33.

Figure 8.35 shows a more detailed view of two of the point clouds. The point cloud
for the car contains 686,000 points (file size 22 MB uncompressed), and the point
cloud for the building, tree, and two lampposts contains 2.1 million points (68 MB).

We can reuse the stored reflected illumination values for later re-rendering of this
scene. However, as mentioned already, the raw, unorganized point-cloud file format
has the drawback that when data are needed from it, the entire point cloud has to be
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F igure 8.34: Monstropolis point clouds with diffusely reflected direct illumination.

(a) (b)

Figure 8.35: Point clouds with diffusely reflected direct illumination: (a) car, and (b) building with a tree and two
lampposts (partial view).
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read or the entire point cloud must be stored in memory. This can be prohibitive for
complex scenes with many huge point-cloud files, such as in this example. We will
return to this issue in Section 8.4.8.

8.4.4 SUBSURFACE SCATTERING

Subsurface scattering is an important effect for realistic rendering of translucent
materials such as skin, flesh, fat, fruits, milk, marble, and many others. Subsurface
scattering is light that enters a material, is scattered one or more times inside the mate-
rial, and then leaves the material. Subsurface scattering is responsible for effects like
color bleeding inside materials and the diffusion of light across shadow boundaries.
The photograph in Figure 8.36 shows an example of some real translucent objects.

Subsurface scattering is used on computer-generated characters like Gollum in The
Lord of the Rings trilogy and Dobby in Harry Potter and the Chamber of Secrets. Seeing
the light scattered through, for example, the ears and nose, adds subtle but signifi-
cant realism. The subsurface scattering on those two movie characters was computed
using a precursor to the method described here; that method used a z-buffer instead
of point clouds.

Figure 8.36: Translucent grapes and leaves. (Photo by Wayne Wooten.)
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Figure 8.37 illustrates a simple example of computed subsurface scattering. The scene
consists of a teapot made of a uniform, diffuse material. The teapot is illuminated by
two area lights. There is no subsurface scattering in the first image, so the parts of the
teapot that are not directly illuminated are completely black. In the second image,
the material of the teapot has subsurface scattering with a relatively short mean path
length, so the light can penetrate thin parts such as the handle, knob, and spout, but
very little light makes it through the teapot body. In the third image, the mean path
length is longer, so more light can penetrate the material and even the teapot body is
brighter.

We use point clouds for the computation of subsurface scattering. The first pass is the
generation of a point cloud containing transmitted direct illumination values: For
each micropolygon generated during rendering we write out the position, normal,
radius, and transmitted radiance. The next step takes that point cloud as input and
computes subsurface scattering results in the form of another point cloud; in this
point cloud the point colors represent the light that has been scattered through the
volume. The final step is to render an image with the subsurface scattering results.

Step 1: Baking Transmitted Direct Illumination
In the first step, the object is rendered with direct illumination, and we bake out the
light that is transmitted through the surface. We will use the translucent teapot as
the main example in this section. The rendered image looks like Figure 8.37a. The
point-cloud file has approximately 170,000 points with transmitted radiance values
and is shown in Figure 8.38.

(a) (b) (c)

Figure 8.37: Teapots with varying degrees of subsurface scattering: (a) no subsurface scattering, (b) some sub-
surface scattering, and (c) strong subsurface scattering.
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F igure 8.38: Point cloud with transmitted illumination values.

In this example, the illumination is direct illumination from two area lights, but it
could just as well be high dynamic range illumination from an environment map or
global illumination of the teapot.

Step 2: Diffusion Simulation
The subsurface scattering is approximated as a volume diffusion process; this
computation is done using a stand-alone program that reads one point-cloud file and
generates another. The subsurface scattering properties of the material can be speci-
fied in three equivalent ways: by specifying a material name from a built-in table of
data values; by specifying the reduced scattering coefficients, absorption coefficients,
and index of refraction; or by specifying the diffuse color (BRDF albedo), diffuse
mean free-path lengths, and index of refraction. The diffusion approximation follows
the dipole method described by Jensen et al. [JMLH01, JB02] and Hery [Her03].

The algorithm proceeds as follows. First the scattering properties are converted to
diffuse albedo, diffuse mean free-path length, and index of refraction if they are not
already in that form. Then we read the input point-cloud file with the baked transmit-
ted direct illumination data, and organize the points into an octree, as described in
Section 4.4. Each octree node contains information about the centroid of the points
in it, the sum of the point areas, and the sum of the power (transmitted radiance
times area) of the points. Each node also contains eight pointers to its child nodes.
Furthermore, leaf nodes also contain a pointer to a list of the points in it. Then we
loop over all the points in the point cloud. For each point, we traverse the octree from
its root. If an octree node is deemed sufficiently small and far away from the point,
we compute the dipole approximation from the node centroid. If not, we recurse to
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the children of the node. When a leaf node is reached, the dipole approximation is
computed from each of the points in that node.

The result is a point cloud with a subsurface scattering color at every point.
Figure 8.39 shows the subsurface scattering values for the teapot example.

Step 3: Rendering Subsurface Scattering
We are now finally ready to render an image with subsurface scattering. The subsur-
face scattering is looked up in the computed subsurface scattering point cloud and
the resulting image is shown in Figure 8.40 without and with direct illumination. If
desired, one can of course multiply the subsurface color by a texture and also add
specular highlights, etc.

Extensions
The example above had a uniform albedo and uniform diffuse mean free-path length.
It is simple to multiply the transmitted radiance by a varying diffuse surface color
prior to baking it. For another effect, we can also specify varying albedos and dif-
fuse mean free-path lengths for the diffusion simulation. This means that the diffu-
sion parameters vary over the surface and can give a nice and textured appearance.
This requires that the albedo and diffuse mean free paths are baked as data in the
point-cloud file along with the transmitted radiance. A few examples are shown in
Figure 8.41.

The diffusion approximation described above cannot take blocking internal geom-
etry into account. But sometimes we would like to fake the effect of reduced sub-
surface scattering near blocking geometry, for example, in skin regions near a bone.

Figure 8.39: Point cloud with subsurface scattering values.
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F igure 8.40: Subsurface scattering without and with direct illumination.

Figure 8.41: Subsurface scattering with varying albedo. (Mushroom image by Dylan Sisson.)

This can be done by baking negative illumination values on the internal geometry;
these negative values will then make the nearby regions darker.

Figure 8.42 shows three images of a thin translucent box with varying degrees of
blocking by a torus embedded in the box. See Hery [Her03] for more discussion and
examples of blocking geometry.

8.4.5 POINT-BASED APPROXIMATE AMBIENT OCCLUSION

The standard method for computing ambient occlusion is quite time consuming
since it requires tracing of many rays [Lan02]. But there is a faster way to compute
ambient occlusion—a method that does not involve ray tracing, but only operates
on a point cloud. The computed ambient occlusion values are not entirely correct



448 SELECTED TOPICS C H A P T E R 8

(a) (b) (c)

Figure 8.42: Subsurface scattering with blocking geometry: (a) no blocking, (b) blocking by torus with color
(-2 -2 -2), and (c) blocking by torus with color (-5 -5 -5).

since some occlusion will be overestimated, but for many applications the speed of
the point-based approximate computation will make up for the incorrectness.

The computation method is similar to the methods used for efficient n-body simula-
tion in astrophysics and electrostatics [App85, BH86, Gre87] and clustering in global
illumination [SAG94, CLSS97]. The difference from the n-body problem is that grav-
ity and electrostatic forces are independent of direction (they are isotropic) and can
simply be combined using the superposition principle, while occlusion does depend
on direction (it is anisotropic) and the superposition principle does not apply.

Our method is similar to that of Bunnell [Bun05] in that both methods approximate
the surfaces of the scene with disks. The biggest differences are that we use clustering
and spherical harmonics and that our algorithm is not implemented on a GPU.

The input is a point cloud of surface data; each point consists of a position, normal,
and radius (or, equivalently, area). We treat each data point as a disk. The occlu-
sion contributed by a disk at position pi with area Ai and normalized normal ni to a
point pj with normalized normal nj is

oij = Ai

(dij · ni)+ (dji · nj)+

r2
ij + Ai/π

, (8.9)

where rij = |pj − pi| is the distance between pi and pj, dij = (pj − pi)/rij is the normal-
ized direction from pi to pj, and dji = −dij is the opposite direction. Note that we use
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the clamped dot product ( · )+, which is 0 if the dot product is negative. This is to
ensure that disks below the horizon at pj do not contribute occlusion to pj, and that
back sides of surfaces don’t occlude (although the latter choice is a matter of taste).

For efficient calculation, we don’t want to compute the occlusion from every single
point to every other point. So we group nearby points together in clusters and treat
them as a single point if they are sufficiently far away.

We first construct an octree by recursively dividing the points, as described in
Section 4.4 and Chapter 6. The subdivision stops when an octree node contains
only a few points (e.g., less than 10). We then represent the projected area of the
points/disks in each node, as viewed from different directions, using spherical har-
monics Ylm [PFTV03, RH01b].

The projected front-side area of a single disk as seen from direction d is Ai(d · ni)+.
The coefficients of the spherical harmonic representation of the projected front-side
area of a disk are

clm =

∫π

θ= 0

∫ 2π

φ= 0
Ai (d · ni)+ Ylm(θ,φ) sin θ dθ dφ, (8.10)

where θ and φ are spherical coordinates (the azimuth and polar angle, respectively)
and d = (sin θ cosφ, sin θ sinφ, cos θ).

Like Ramamoorthi and Hanrahan [RH01b] we found that using just the first nine
spherical harmonics (Y00, Y1, −1 . . . 1, Y2, −2 . . . 2) gives sufficient accuracy. (If backsides
are allowed to occlude, we use the absolute value of the dot product, |d · ni|. In this
case, the coefficients of the three spherical harmonics with l = 1 are always zero due
to the symmetry of the absolute dot product and the antisymmetry of those three
spherical harmonics.) The projected area of a leaf octree node is represented with
nine coefficients that are the sums of the coefficients for the disks in that node. For a
nonleaf node, the coefficients are the sums of the coefficients of its child nodes.

To compute the occlusion at a point pj, we recursively traverse the octree from its root.
If pj is inside the octree node bounding box or if the projected area of the cluster is
larger than a user-specified maximum solid angle ωmax, we go to the child nodes.
When a leaf node is reached, we compute the disk-to-point occlusion for the disks in
the node. If a nonleaf node is deemed acceptable, we use the projected area from the
spherical harmonics representation. With this approach, the occlusion is computed as
disks from nearby points and as clusters for more distant points. Theωmax parameter
provides a simple time versus quality trade-off.

Figure 8.43 shows a comparison between ray-traced ambient occlusion and three
examples of approximate ambient occlusion computed from a point cloud. Notice
that with the raw approximate occlusion some areas are overoccluded, as shown
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(a) (b)

(c) (d)

Figure 8.43: Fiat Topolino with ambient occlusion: (a) ray-traced ambient occlusion, (b) point-based approximate
ambient occlusion, (c) point-based approximate ambient occlusion with reduced overocclusion, and (d ) point-based
approximate ambient occlusion with maximum distance 100.

in Figure 8.43b. At the root of this problem is that we treat the occlusion as if it could
be simply added using the superposition principle as, for example, gravity and elec-
trostatic forces. But in reality some geometry might block other geometry, and such
blocked geometry should not contribute to the occlusion. For example, a point on
the ground receives occlusion not only from the car body, but also from the car inte-
rior, engine, and suspension. We can reduce this problem by dividing the hemisphere
into n parts and only allowing each part to occlude by at most 1/n. This is shown in
Figure 8.43c. Furthermore, we can choose to attenuate occlusion from distant objects;
an example of this is shown in Figure 8.43d. The point-based computation of approx-
imate occlusion is typically three to eight times faster than ray-traced computation.
For this scene, the ray-traced ambient occlusion in Figure 8.43a took 18.5 minutes
to render while the point-based approximate ambient occlusion in Figure 8.43c took
7 minutes.
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8.4.6 POINT-BASED APPROXIMATE GLOBAL ILLUMINATION

The point-based approximate ambient occlusion method can be extended to
compute one or more bounces of diffuse indirect illumination. Diffuse indirect
illumination is responsible for color-bleeding effects. The first work on extending
ambient occlusion with fast, approximate global illumination was done by Garcia
et al. [GSIK01] and Méndez et al. [MSC03].

First we bake a point cloud of diffusely reflected direct illumination. This is the same
data type as in the Monstropolis example in Section 8.4.3; however, here we will use
another example: the Cornell box with spheres shown in Figure 8.44a. In many cases it
is sufficient to generate a rather sparse point cloud like the one shown in Figure 8.44b.

Then we read those data points in, create an octree, and represent the power (radiosity
times area) from each octree node using 27 spherical harmonics coefficients—9 for
each of the three color bands. The same hierarchical algorithm that was used for
approximate ambient occlusion is also used for color bleeding. A point-based color-
bleeding computation takes only a few seconds for a simple scene such as the Cornell
box with 100,000 points, and it is often more than an order of magnitude faster than
computing a decent solution using ray tracing and shader evaluation at the ray hit
points. The resulting point cloud is shown in Figure 8.45.

(a) (b)

Figure 8.44: Cornell box with diffusely reflected direct illumination: (a) rendered image, and (b) point cloud.
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F igure 8.45: Cornell box point cloud with approximate single-bounce global illumina-
tion values.

The point-based approximate approach will often compute too much color
bleeding, just as there is often too much ambient occlusion. And colors from near
and far objects in the same direction will be mixed. However, as Figure 8.46 shows,
in some cases this is not too objectionable. The main visible difference for this
scene is that the areas under the spheres are a bit too bright in the approximate
solution.

Extending this method to handle multiple bounces is simple, but requires that we also
store the diffuse surface colors in the point clouds. The workflow then is as follows.
Bake diffusely reflected direct illumination and diffuse colors. Run the approximate
global illumination algorithm to compute indirect illumination values, then multiply
the computed indirect illumination values by the diffuse color at each point, run the
approximate global illumination algorithm again, and so on.

Discussion
The point-based approximate global illumination computation is much faster than
the standard ray-tracing method. The speed is due to the fact that there is no tessel-
lation, no ray tracing, and no shaders involved in the computation.
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(a) (b)

Figure 8.46: Cornell box with single-bounce global illumination: (a) ray-traced global illumination, and (b) point-
based approximate global illumination.

8.4.7 PHOTON MAPS AND RADIOSITY POINT CLOUDS

The photon-mapping method [Jen96, Jen01] is a popular global illumination method
that can compute caustics, multiple bounces of diffuse indirect illumination (color
bleeding), and multiple scattering in participating media. It can handle reasonably
complex scenes since the photon maps are independent of the representation of the
geometry.

The original photon-mapping method consists of three passes: photon tracing, pho-
ton map sorting, and rendering. A significant speed optimization can be obtained
by augmenting the second pass to estimate the irradiance at the photon positions
[Chr99]. This irradiance estimation is quick, and makes the rendering five to seven
times faster for typical scenes without degrading the image quality. A further opti-
mization is to store the local diffuse surface color with each photon, and estimating
radiosity instead of irradiance at the photon positions [Chr02]. Estimating radiosity
takes no more time than estimating irradiance (only a few extra multiplications per
photon), but makes it faster to compute the indirect illumination, especially if the
scene has complex shaders and many textures.



454 SELECTED TOPICS C H A P T E R 8

Step 1: Photon Tracing
In the photon-tracing step, photons are emitted from the light sources and traced
through the scene using Monte Carlo simulation. When a photon hits a diffuse sur-
face, it is stored in the global photon map—a point cloud containing the following
data: position, surface normal, photon incident direction, photon power, and option-
ally diffuse surface color. If the photon came from a specular reflection or refraction,
it is also stored in a caustic photon map. If the scene contains participating media,
photons can also be scattered in the media; the scattering positions of such photons
are stored in a volume photon map.

In the following example we focus on diffuse global illumination of surfaces and only
consider the global photon map. Figure 8.47a shows a simple test scene, an orange
interior with approximately one million polygons. This image only contains direct
illumination and ray-traced specular reflections. Figure 8.47b shows a global photon
map for the room; the photon map contains 500,000 photons.

Step 2: Photon Map Sorting and Radiosity Estimation
In the second step the photons in the photon map are sorted into a K-d-tree
(K-d-trees are described in Section 4.4). We also estimate the radiosity at all or some
of the photon positions. Each radiosity estimate is computed by locating the near-
est photons, adding up their power, dividing by the area they cover, and multiplying
by the diffuse surface color. As part of this computation, an approximate radius is

(a) (b)

Figure 8.47: Orange interior: (a) rendered with traditional ray tracing (direct illumination and specular reflections),
and (b) photon map (photon powers shown).
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determined at each photon position; this radius is determined from the area covered
by the nearest photons divided by the number of nearest photons. The use of this
radius will become apparent later.

The result of this step is a new point cloud with position, normal, radius, and radiosity
data. Figure 8.48 shows the scene rendered using the radiosity values.

The point positions divide the surfaces into a Voronoi diagram with constant
radiosity inside each Voronoi cell. These radiosity values can be visualized directly
for a rough estimate of the global illumination in the scene, as in Figure 8.48, or
can be used as the basis for a high-quality rendering of the global illumination, as
discussed below.

Step 3: Rendering
For high-quality rendering, the diffuse indirect illumination is computed by shoot-
ing rays to sample the hemisphere above each point. This particular use of distribu-
tion ray tracing [CPC84] is often called final gathering [Rei92]. Final gathering is a
time-consuming computation, but it is made much more efficient by interpola-
tion of the computed diffuse indirect illumination results using irradiance gradients

Figure 8.48: Orange interior with radiosity estimates.
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F igure 8.49: Orange interior with global illumination: direct illumination, specular
reflection, and diffuse indirect illumination.

[WRC88, WH92]. At the ray hit points we look up the precomputed radiosity of the
nearest photon with a suitable surface normal. Figure 8.49 shows the orange interior
rendered with global illumination using the radiosity estimates shown above.

Discussion
The photon map method (including the extensions used in this section) is limited by
memory: It can only run efficiently if the entire photon map fits in memory at the
same time as all the geometry, a texture cache, etc. However, Section 8.4.10 describes
a method to handle photon map global illumination in very complex scenes with
huge photon maps.

8.4.8 BRICK MAPS

Point clouds are generated as unorganized collections of data points. In order to read
in these 3D data more efficiently (i.e., on demand and at the appropriate resolution),
we have introduced a 3D mipmap representation [Wil83] called a brick map—a tiled,
adaptive octree suitable for caching. The brick map representation can be used for
both surface and volume data, and is independent of the parameterization of the
surface. This is convenient if the surface doesn’t have an inherent parameterization.
The brick map format is inspired by the adaptive octrees used by DeBry et al.
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[DGPR02] and Benson and Davis [BD02]. The tiling, caching, and filtering aspects
are 3D generalizations of the handling of standard 2D textures in PRMan.

A brick always has 83 voxels in our implementation. We call the brick dense if
most of the brick voxels contain data, and sparse otherwise. There are two types of
brick maps: brick maps for surface data and brick maps for volume data. Surface
data points have associated normals, and to avoid mixing, for example, data from
the two sides of one surface, we divide the points into six groups depending on
the dominant direction of the normal (+x, −x, +y, −y, +z, and −z). Each of the
six groups is stored in a separate octree. Volume data points do not have surface
normals, so one octree is sufficient.

Figure 8.50 shows an example of a brick map of surface data. The figure shows the
three coarsest levels of a brick map of a textured surface. The coarsest brick map level
consists of a single brick, the second level consists of up to 23 bricks, the third level
contains up to 43 bricks, etc. All the bricks in this figure are sparse.

Figure 8.51 shows an example of a brick map of volume data. The volume data rep-
resent a marble volume texture, and all the bricks are dense.

Advantages of the Brick Map Representation
The brick map format combines the best properties of 3D point clouds and 2D
textures:

• The brick map is independent of the original surface type: it doesn’t mat-
ter whether the surface is a polygon mesh, a collection of NURBS patches, a
subdivision surface, or whatever.

Level 0 Level 1 Level 2

Figure 8.50: Brick map of a textured surface.
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Level 0 Level 1 Level 2

Figure 8.51: Brick map of a marble volume texture.

• No 2D surface parameterization is necessary. This is an advantage since
specifying a 2D parameterization for surfaces, such as subdivision surfaces,
implicit surfaces, and dense polygon meshes, can be cumbersome.

• Brick maps automatically adapt to the data density and variation. If, for exam-
ple, a fairly smooth 3D texture has only one small region with a lot of detail,
there will only be many bricks in that one small region. This is in contrast to
traditional 2D textures where the entire texture has to have high resolution if
just a small part of it has a lot of detail.

• The mipmap representation is suitable for efficient filtering at various scales.
• Bricks are ideal for caching. This makes it possible to deal efficiently with huge

brick maps—even collections of brick maps much larger than the available
memory.

• The user can specify the required accuracy when the brick map is created. This
makes it simple to trade-off data precision versus file size.

Creating a Brick Map
Given a set of points with associated radii, data, and possibly normals, we want to
create a brick map representation of the data. We do this in three steps.

First, the bounding volume of the entire dataset is found. Then, as mentioned already,
we divide the data points into seven groups, depending on their normals: one group
for points with no normal, and one group for each of the six major directions. Data
for points with normals close to 45◦ are assigned to two (or even three) groups. This
is to facilitate fast lookups: given a normal we can just look up in a single octree.
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The second step is to store each data group in a sparse octree structure. The octree
nodes and bricks are created on the fly as data points are inserted. Each octree node
consists of nine pointers: eight pointers to child nodes and one pointer to a brick.
For each data point p, we first compute a small volume Vp based on its position and
radius. For each octree node, starting at the appropriate root, the data are recursively
inserted into the bricks of those octree nodes that Vp overlaps. When a point’s data are
inserted into a brick, we determine which brick voxels the point volume overlaps, and
add the data values to the data in those voxels. When added, the data are multiplied
by a weight (Vp ∩ Vv)/Vp that indicates how large a fraction of the point volume Vp

overlaps the voxel volume Vv. We also increase the voxel weights.

When all the data have been inserted, we proceed to the third step. First, the data
values in all voxels are divided by the weight of the voxel. We then determine the
data variation of all 2 × 2 × 2 voxel groups of the brick. If the voxel group data
variation is smaller than a user-specified maximum error, we eliminate the data in
those eight voxels. If all voxel data in a brick are eliminated, that entire brick can be
eliminated. If any voxel data of the brick survive, we write the remaining voxel data
of the brick to disk. Empty voxels are not written; this saves a lot of disk space for
sparse brick maps. We don’t write the weights either, since all data have already been
divided by their weights.

To reduce the peak memory use during brick map construction, we construct and
write out one octant of each octree at a time. Furthermore, brick voxels and voxel data
are dynamically allocated and enlarged as needed during construction—this way, we
avoid allocating 512 voxels for sparse bricks.

Figure 8.52 shows the five coarsest levels of the brick map constructed for the ambient
occlusion data on the Fiat Topolino.

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 8.52: Brick map of ambient occlusion data on the Fiat Topolino.
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Looking Up in a Brick Map
Given a position, normal, and filter size, we want to find the interpolated value of the
data at that point—smoothed as appropriate for the given filter size.

We first determine which one of the seven octrees to look up in based on the lookup
normal. Then we construct a lookup volume Vl from the lookup point position and
filter size. The lookup volume is an axis-aligned box (i.e., not necessarily a cube).
Then, we recursively traverse the octree, starting at the root and visiting all children
that the lookup volume overlaps (usually just one child, but it can be up to eight
children). This recursive traversal continues until the node contains voxels of approx-
imately the same size as the lookup volume or a leaf node has been reached.

When we have reached the appropriate level in the octree, we determine which voxels
overlap the lookup volume. We increment the lookup result by the voxel data multi-
plied by the fractional overlap of Vv and Vl (i.e., (Vl ∩ Vv)/Vl). Empty voxels do not
contribute to the lookup results.

If the lookup volume overlaps a neighbor octree branch that does not have as much
detail as the branch that contains the lookup point p, we use the data at the available
resolution. The weights of the data are still determined by the ratio of the overlap
volume and the (fine or coarse) voxel volume. More information about lookups that
overlap different levels of detail can be found in Benson and Davis [BD02].

Generally the lookup volume size will fall between two levels in the octree. In this
case, we can choose to look up in both levels and linearly interpolate the resulting
values; this ensures smooth transitions between different resolutions.

Figure 8.53 shows the result of re-rendering the Fiat Topolino by looking up the
ambient occlusion in the brick map. These images are indistinguishable from the
re-rendered images using the point cloud (see Figure 8.32) but use much less mem-
ory since the bricks are read on demand and stored in a fixed-size cache.

Brick Map Caching—3D Texture on Demand
Bricks are read from disk on demand and cached in memory. If the cache lookups
are coherent, the cache has a high hit rate and caching is very efficient. Note that
even though the individual bricks can be sparse, the cache slots need to have space
for all 83 potential voxels in a brick since the same cache slot may be filled later with a
dense brick. Our cache uses a least-recently used (LRU) replacement strategy. In our
implementation, the brick map cache size can be selected by the user. The default
size is 10 MB, corresponding to a capacity of 1,574 bricks if the brick data consist of
three floats per voxel.

Brick Map Rendering
In addition to using the brick map data as textures to color surfaces, we can also
render the brick maps directly. This has appealing properties since the brick map is
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(a) (b)

Figure 8.53: Re-rendering of the Fiat Topolino using ambient occlusion from a brick map: (a) ambient occlusion,
and (b) ambient occlusion times diffuse color.

an inherent level-of-detail representation of the geometry. Since the bricks are stored
in a fixed-size cache and only loaded on demand, we can render very, very complex
scenes with this approach. As an extreme example, imagine a complex object defined
as a very dense polygon mesh or a large collection of NURBS patches. Even if the
object only covers a single pixel in the image, we still have to read the entire object
definition into memory—and must keep it there until we are certain we won’t need it
anymore. In contrast, if the object is represented as a brick map, only the very coarsest
brick will be read in.

The appropriate brick map level is determined from the screen size of the object.
A reasonable convention is to choose the brick map level such that the brick voxels
are approximately the size of an image pixel. Figure 8.54 shows a direct rendering of
the Fiat Topolino ambient occlusion brick map at three different sizes, hence using
different levels of the brick map.

Brick Map Ray Tracing
In addition to rendering directly visible brick maps, we can also ray trace them. The
appropriate brick map level is determined from the ray differential. The ray differ-
ential describes the difference between a ray and its (real or imaginary) neighbor
rays. Ray differentials were introduced for specular reflection by Igehy [Ige99] and
extended to diffuse reflection by Suykens and Willems [SW01]. More information
about the use of ray differentials can also be found in Christensen et al. [CLF+03].
We choose the brick map level where the brick voxels are approximately the size of
the ray differential cross section.
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F igure 8.54: Direct rendering of the Fiat Topolino ambient occlusion brick map at three
different sizes.

The ray-brick intersection test can be done in several ways. A brute-force approach
simply tests for intersection with each of the (up to 512) nonempty voxels in the brick.
This is in fact the most efficient approach for bricks with very few nonempty voxels.
For denser bricks it is more efficient to recursively subdivide the brick into octants
and test the octants for intersection before recursing. The recursion stops after at
most three levels when we reach the level of individual voxels. A voxel grid-stepping
approach similar to Bresenham’s [Bre65] line-drawing algorithm is also possible.
Figure 8.55 shows ray tracing of the Fiat Topolino brick map using three different
levels of the brick map.

Discussion
The description here of brick map construction and lookups is a more up-to-date
version of the description in Christensen and Batali [CB04]. One major difference
is that we now divide brick maps for surface data into six separate octrees instead
of dealing with incoherent normals at the brick voxel level. We have also changed
from box-shaped bricks (with a shape that followed the aspect ratio of the bounding
box of the point cloud) to enforcing cubic bricks. The advantage is that each data
point now typically gets inserted into fewer voxels since the volume we assign to each
point is also cubic. We also improved the lookups to allow noncubic lookup volumes
(i.e., anisotropic filtering).

An interesting area of future work would be to develop a brick map API and an inter-
active tool for editing brick maps.
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F igure 8.55: Direct rendering and ray-traced reflection of the Fiat Topolino ambient
occlusion brick map at three different sizes. (Ray-traced reflection at bottom.)

8.4.9 SINGLE-BOUNCE GLOBAL ILLUMINATION

Tabellion and Lamorlette [TL04] presented a method for computing single-bounce
global illumination. Their method is implemented in the PDI/Dreamworks propri-
etary in-house renderer and was first used in the production of the movie Shrek 2.
It is exciting that global illumination is finally being used for mainstream computer-
generated movie production.

Their method bakes diffusely reflected direct illumination into 2D surface textures.
It then samples the hemisphere above each point using final gathering and irradiance
interpolation (similar to the photon map description in Section 8.4.7) and uses the
2D texture values at the ray hit points. Here we present a similar, but easier to use,
workflow based on point clouds and brick maps.

Step 1: Baking Diffusely Reflected Direct Illumination
The first step in this method is to bake the diffusely reflected direct illumination as in
the Monstropolis example in Section 8.4.3. However, we need to ensure that points
are being baked out for every surface that should bleed color onto the surfaces that are
visible in the final image—even surfaces are not themselves visible in the final image.
To ensure this, we zoom out to include the entire scene in the view. We also need to
ensure that all surfaces are rendered, even if they are obscured by other objects or are
facing away from the camera. The result is a collection of point clouds similar to the
ones in Figures 8.34 and 8.35.
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In the Monstropolis example, the point-cloud files now have a total size of
4.5 GB—more than the memory of our current desktop PC. So the point clouds
obviously wouldn’t fit if we were to read them all in.

The point clouds can be manipulated independently after they are generated. If, for
example, we want more color bleeding from an object, we could load the point cloud
into an interactive 3D paint package and increase some or all of the colors.

Step 2: Generating Brick Maps
The next step is to generate a brick map for each of the direct illumination point
clouds. In the Monstropolis example, there are 40 point clouds and 40 corresponding
brick maps. Figure 8.56 shows two of the brick maps; these correspond to the two
point clouds in Figure 8.35.

The total size of the 40 brick map files is 230 MB—a significant reduction from the
4.5 GB for the point-cloud files. We call this collection of brick maps a brick atlas of
diffusely reflected direct illumination.

Step 3: Rendering
Figure 8.57 shows a final gather rendering of the entire scene. We look up in the brick
atlas of diffusely reflected direct illumination at the final gather ray hit points. Note

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 8.56: Brick maps for a car and a building.
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F igure 8.57: Monstropolis city block with single-bounce global illumination: direct illumination from the sun and sky,
and indirect illumination computed using final gathering and the brick atlas of diffusely reflected direct illumination.
(Copyright c© Disney/Pixar.)

the high quality of the indirect illumination in the shaded areas, for example, the
houses on the left side of the street. There is also subtle color bleeding from the red
car onto the street. Rendering this image took 5.6 hours on a 2 GHz Apple G5 with
2 GB memory and required 429 million final gather rays and 3.8 million shadow
rays. During rendering, the scene was divided into 636,000 surface patches, which
corresponds to 325 million triangles at maximum tessellation rate. The brick cache
size was set to 100 MB, corresponding to around 13,600 brick slots in the cache. There
were 2.7 billion brick cache lookups with a hit rate of 99.8%.

Discussion
The method presented here is easier to use than Tabellion and Lamorlette’s method
since it does not require parameterized surfaces and the appropriate texture resolu-
tion is chosen automatically.

8.4.10 THE RADIOSITY ATLAS FOR GLOBAL ILLUMINATION

Photon mapping provides a more general global illumination method with multiple
bounces of global illumination. Here we extend the optimized photon-mapping
method discussed in Section 8.4.7 to enable it to handle more complex scenes.
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Step 1: Photon Tracing
In the first step, we divide the objects into groups, just as in the previous section.
Each group gets a separate photon map. Let’s look at the Monstropolis scene again.
Photon tracing results in 52 million photons stored in total. Figure 8.58 shows the
photon maps for the Monstropolis scene. For clarity, the figure only shows 0.1%
of the photons in the photon maps. We call a collection of photon maps a photon
atlas.

Figure 8.59 shows two of the photon maps for the Monstropolis scene in more
detail. Both the photon powers and the diffuse surface colors are shown. The photon
map for the car contains 76,000 photons, while the photon map for the building
contains 2.2 million photons. The photon powers get a green tint when refracted
through the windshield. Also notice the red and blue diffusely reflected photons
on the building.

Step 2: Photon Map Sorting and Radiosity Estimation
As in Section 8.4.7, we sort the photons and precompute the radiosity at each photon
location. We do this independently for each photon map. Figure 8.60 shows two of
the radiosity point clouds for the Monstropolis scene.

Figure 8.58: Coarse photon atlas for the Monstropolis scene. The photon powers are
shown.
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Photon powers Diffuse surface colors

Figure 8.59: Photon maps for the car and building.



468 SELECTED TOPICS C H A P T E R 8

F igure 8.60: Radiosity point clouds for the car and building.

Step 3: Generating Brick Maps
The next step is to compute a brick map representation of each of the radiosity point
clouds. We call this collection of radiosity brick maps a radiosity brick atlas or simply
a radiosity atlas.1 Two of the radiosity brick maps are shown in Figure 8.61.

Figure 8.62 shows the entire scene rendered with radiosity from the radiosity atlas.
This image gives a rough indication of the global illumination in the scene, but it is
far too noisy for use in a movie.

Step 4: Rendering
Figure 8.63 shows a final gather rendering of the scene. This image was computed
using the radiosity atlas. The image is very similar to the single-bounce image
in Figure 8.57, but a bit brighter due to the multiple bounces of illumination.
Rendering this image took 5.7 hours on a 2 GHz Apple G5. It required the shooting
of 413 million final gather rays and 3.8 million shadow rays. There were 3.4 billion
brick cache lookups with a hit rate of 99.9%.

1 The radiosity terminology denotes that the data in the point clouds and brick maps are radiosities; it does
not imply that they have been computed with a finite element radiosity method.
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Figure 8.61: Radiosity brick maps for the car and building.

Figure 8.62: The Monstropolis scene rendered with radiosity from the radiosity atlas.
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F igure 8.63: Monstropolis city block with global illumination: direct illumination from the sun and sky, and indirect
illumination computed using final gathering and the radiosity atlas. (Copyright c© Disney/Pixar.)

Discussion
As shown in this section, the use of radiosity brick maps allows us to extend the
photon-mapping method to compute multibounce global illumination in very com-
plex scenes. The radiosity-atlas method presented here is a slight extension of the
irradiance-atlas method introduced by Christensen and Batali [CB04].

It is our hope that this method, along with the method presented in Section 8.4.9,
will contribute to more widespread use of global illumination in movie production.

8.4.11 VOLUME DATA

The previous sections have been concerned with data on surfaces. However, point
clouds and brick maps are also immensely useful for volume data. This section
shows an example of the computation of illumination in a volume.
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Step 1: Baking Volume Data
Computing illumination and light scattering in a nonhomogeneous volume can
be very time consuming. The computation can be accelerated significantly by
precomputing the volume scattering coefficients and direct illumination at sam-
ple points in the volume.

Figure 8.64a shows a point cloud of turbulent smoke density values. The data have
been generated by a ray marcher that computes the smoke density and writes it
out for each ray step. But the data could come from a number of other sources as
well. Figure 8.64b shows a point cloud of illumination values inside a cube. The
cube is illuminated by a spotlight, and there is a sphere inside the cube casting a
shadow. Each point cloud has around 1.2 million data points.

Step 2: Generating Brick Maps
These point clouds are then converted to volume brick maps using the same algo-
rithm as for surface brick maps. These brick maps are shown in Figure 8.65. The
bricks are dense since there are data points in the entire volume.

(a) (b)

Figure 8.64: Volume point clouds: (a) turbulent smoke density, and (b) direct illumination by spotlight.
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Level 0 Level 1 Level 2 Level 3

Figure 8.65: Volume brick maps of smoke density and direct illumination values.

Step 3: Rendering
Now we can render the illuminated smoky volume using ray marching and brick
map lookups along the way. Each ray is marched from the camera through the
volume in small steps. At each step we attenuate the contribution of the follow-
ing steps (depending on the local smoke density) and add the contribution of the
illumination from the light source being scattered in this little part of the volume.
The resulting image is shown in Figure 8.66.

Discussion
This example does not take into account that the light from the spotlight gets
attenuated as it passes through the smoke before it is scattered toward the camera.
In order to compute that effect, the most efficient approach is to ray march through
the volume starting at the spotlight and store the attenuated illumination value for
each ray step.

Another application of volume point clouds is for photon map global illumination
in volumes. Details about this are described in Jensen and Christensen [JC98].
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F igure 8.66: Illuminated smoky volume.

8.4.12 CONCLUSION

The production of computer-generated movies and special effects requires tools
that can handle very complex scenes and very large datasets. Recently 3D point
data are being used more and more in movie production. In this section I have
provided an overview of some of the current methods that use 3D point data, and
have also described some new methods that seem promising.

Point clouds are used for storing information independent of the view direction,
surface type, and surface parameterization. They are used for subsurface scattering
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and can be used for fast, approximate ambient occlusion and global illumination.
Photon maps and radiosity point clouds are other examples of useful point clouds.

Point clouds are simple to generate but not ideal for reading back in. In contrast,
brick maps combine the best properties of 3D point clouds and 2D textures, and
are much more suitable for reading large datasets than point clouds are. Brick maps
can also be rendered and ray traced directly, providing a new geometric primitive
that is inherently well suited to level-of-detail representation of objects. Brick maps
are useful for storing any kind of surface data, for example, global illumination
values. Using a radiosity (brick) atlas enables global illumination computation in
very complex scenes.

More details about point clouds, brick maps, ambient occlusion, global illumina-
tion, and subsurface scattering, as well as scene files and shader examples, can be
found in the PRMan application notes. Another good source of information is the
SIGGRAPH 2003 RenderMan course notes [Bat03].

Copyright
All images from Monsters, Inc. and Cars are copyright c© Disney Enterprises, Inc.
and Pixar Animation Studios.
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Scene-adapted structured light. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, pages 611–619, 2005.

[KSS00] Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. Progressive
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color bleeding. In Proceedings of the Spring Conference on Computer
Graphics SCCG 2003, 2003.

[MSKG05] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross,
Particle-based fiuid-fluid interaction, pages 237–244, 2005.

[MST+04] Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger,
and Markus Gross. Interaction of fluids with deformable solids. In
Proceedings of Computer Animation and Virtual Worlds, pages 159–171,
2004.

[MTSA97] Y. Matsumoto, H. Terasaki, K. Sugimoto, and T. Arakawa. A portable
three-dimensional digitizer. In Proceedings of the International Conference
on 3D Digital Imaging and Modeling (3DIM), pages 197–204, 1997.

[Mur91] Shigeru Muraki. Volumetric shape description of range data using “Blobby
Model.” In Computer Graphics, SIGGRAPH 1991 Proceedings,
22(4):227–235, July 1991.

[MYR+01] Brain S. Morse, Terry S. Yoo, Penny Rheingans, David T. Chen, and
K. R. Subramanian. Interpolating implicit surfaces from scattered surface
data using compactly supported radial basis functions. In Shape Modeling
International 2001, pages 89–98, Genova, Italy, May 2001.

[MYW05] Talya Meltzer, Chen Yanover, and Yair Weiss. Globally optimal solutions for
energy minimization in stereo vision using reweighted belief propagation.
In Proceedings of the International Conference on Computer Vision, pages
428–435, 2005.

[Nie89] Jürg Nievergelt. 7 ± 2 criteria for assessing and comparing spatial data
structures. In Proceedings of the 1st Symposium on the Design and
Implementation of Large Spatial Databases, vol. 409 of Lecture Notes in
Computer Science, pages 3–27. Springer-Verlag, New York, NY, 1989.

[Nie92] Harald Niederreiter. Random number generation and quasi–Monte Carlo
methods. Society for Industrial and Applied Mathematics, 1992.

[Nie04] Gregory M. Nielson. Radial Hermite operators for scattered point-cloud
data with normal vectors and applications to implicitizing polygon mesh
surfaces for generalized CSG operations and smoothing. In Proceedings of
IEEE Visualization, pages 203–210, Austin, TX, 2004.

[NMK+05] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and
Mark Carlson. Physically based deformable models in computer graphics.
Eurographics 2005 State-of-the-Art Report (STAR), 2005.

[NN94] Shree Nayar and Yasuo Nakagawa. Shape from focus. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 16(8):824–831, August
1994.



500 BIBLIOGRAPHY

[NRD05] Diego Nehab, Szymon Rusinkiewicz, and James Davis. Improved subpixel
stereo correspondences through symmetric refinement. In Proceedings of
the International Conference on Computer Vision, pages 557–563, 2005.

[NRDR05] Diego Nehab, Szymon Rusinkiewicz, James Davis, and Ravi Ramamoorthi.
Efficiently combining positions and normals for precise 3D geometry.
In ACM Transactions on Graphics, SIGGRAPH 2005 Proceedings,
24(3):536–543, 2005.

[NSI99a] Ko Nishino, Yoichi Sato, and Katsushi Ikeuchi. Appearance compression
and synthesis based on 3D model for mixed reality. In Proceedings of IEEE
ICCV 1999, pages 38–45, September 1999.

[NSI99b] Ko Nishino, Yoichi Sato, and Katsushi Ikeuchi. Eigen-texture method:
Appearance compression based on 3D model. In Proceedings of Computer
Vision and Pattern Recognition, pages 618–624, June 1999.

[NW97] Jürg Nievergelt and Peter Widmayer. Spatial data structures: Concepts and
design choices. In Marc van Kreveld, Jürg Nievergelt, Thomas Roos, and
Peter Widmayer, eds., Algorithmic Foundations of Geographic Information
Systems, Summerschool, Udine, vol. 1340 of Lecture Notes in Computer
Science, pages 153–197. Springer-Verlag, New York, NY, 1997.

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter
Seidel. Multilevel partition of unity implicits. ACM Transactions on
Computer Graphics, SIGGRAPH 2003 Proceedings, 22(3):463–470, 2003.

[OBH02] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical
modeling and animation of ductile fracture. ACM Transactions on Graphics,
SIGGRAPH 2002 Proceedings, pages 291–294, 2002.

[OBS03] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. A multiscale
approach to 3D scattered data interpolation with compactly supported
basis functions. In Proceedings of Shape Modeling International 2003,
page 153, May 2003.

[OCDD01] Byong Mok Oh, Max Chen, Julie Dorsey, and Fredo Durand. Image-based
modeling and photo editing. In Computer Graphics, SIGGRAPH 2001
Proceedings, pages 433–442, 2001.

[OFTB96] D. Organ, M. Fleming, T. Terry, and Ted Belytschko. Continuous meshless
approximations for nonconvex bodies by diffraction and transparency.
Computational Mechanics, 18:1–11, 1996.

[OH99] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and
animation of brittle fracture. In Computer Graphics, SIGGRAPH 1999,
Proceedings, pages 287–296. ACM Press, 1999.

[OK93] Masatoshi Okutomi and Takeo Kanade. A multiple-baseline stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
15(4):353–363, April 1993.



BIBLIOGRAPHY 501

[OLG+05] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
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[WLSG02] Stephan Würmlin, Edouard Lamboray, Oliver G. Staadt, and Markus
Gross. 3D video recorder. In Proceedings of Pacific Graphics 2002,
pages 325–334. IEEE Computer Society Press, 2002.

[WLW02] Cliff Woolley, David Luebke, and Benjamin Watson. Interruptible
rendering. In SIGGRAPH 2002 Technical Sketches, page 205, 2002.
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[Wür04] Stephan Würmlin. Dynamic Point Samples as Primitives for Free- viewpoint
Video. Ph.D. thesis, 2004.

[WW94] William Welch and Andrew Witkin. Free-form shape design using
triangulated surfaces. In Computer Graphics, SIGGRAPH 1994
Proceedings, pages 247–256, 1994.
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signal strength, 55
subpixel variance, 55–56
toolbox for, 191
See also Geometry reconstruction

Artifacts
aliasing, 250
illustrated, 189
as strongly coupled, 189
in topological changes, 383

Artificial viscosity, 380
Attracting potential, 385
Attributes

3D surface points, 210
multiple, PCA for, 410–11
pass, 288
PCA, 420
quantization, 157–58

Audience, this book, 2

B
Backface culling, 275
Baking

ambient occlusion, 438–39
diffusely reflected direct illumination,

439–43, 463–64
specular reflections, 437–38
transmitted direct illumination,

444–45
volume data, 471

Basis functions, 100–101
Best surfels, 57–58
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Bidirectional Reflectance Distribution
Functions (BRDFs), 28

parametric, 67
tabular, 68

Bidirectional Surface-Scattering
Distribution Function (BSSRDF),
85

Binary Gray codes, 33, 49
Binary thresholding, 72
Blending

functions, 102
functions, deformations, 237
particle-based, 233–34
three-pass splat, 284

Blue-c system, 399
Boolean operations, 226–34

applied to sphere, 227
classification, 227–29
difference, 233
illustrated, 226, 229
intersection curves, 229–31
particle-based blending, 233–34
rendering sharp creases, 231–32
See also Shape modeling

Bounded, nonorientable surfaces, 303–4
Bounding sphere hierarchies, 298, 307
Bounding volume hierarchies (BVHs),

154–56
based on space-linearization

concepts, 155
use, 154

Bounding volume overlap, 310–11
Brick maps, 456–62

advantages, 457–58
ambient occlusion data, 459
caching, 460
creating, 458–59
defined, 456
format, 456–57
generating, 464, 468, 471
illustrated, 464
looking up, 460
point clouds, 435–36
radiosity, 469
ray tracing, 461–62
rendering, 460–61
of textured surface, 457
of volume texture, 458
voxels, 457

Brush interaction, 210, 211
Brush model, 221–22

Brush resampling, 218
Bucketization, 150

C
Calibration, 51–53

in data acquisition process, 70–71
extrinsic, 52
intrinsic camera, 52
intrinsic projector, 52
luminous projector, 52–53
patterns, 51–52
turnable axis, 52

Carving, 219–20
Circular splat, 138
Client-server rendering, 417–19

on-demand, 418
view-dependent, 419

Clipping, 303
Closest point query, 181–82
Clustering

hierarchical, 130
methods, 129, 130
out-of-core representation, 161–62

Collision detection, 221, 238–39
accelerating, 239
interactive modeling session with, 240

Collision handling, 239
Combined geometric error, 335–36
Complex glyph visualization, 431–34

particle representation, 432
rendering, 432–34
See also Glyph visualization

Compression
coordinate, 158–60
query performance and, 149

Computed tomography (CT), 20
Constitutive law, 344
Constrained minimum-distortion

parameterization, 212–17
derivatives along normal sections, 215
discrete formulation, 214–15
nested iteration least squares solver,

215–17
objective function, 213
See also Surface parameterization

Constructive solid geometry (CSG),
4, 226

Continuum elasticity, 343–48
defined, 343
displacement, 343, 344–46

strain, 343, 346–48
stress, 343, 346–48
See also Meshless finite elements

Convolution, 252
Coordinates

compression, 158–60
world, 344

Cracks
elements, 363
front, 363, 364
initiation, 363–65
intersection, 367
merging, 367, 368
propagation, 365
splitting, 366–67
termination, 366
See also Fracturing material

animation
Creases

detection, 179–80
interpolation, 179–80
refinement, 178–81
sharp, rendering, 231–32

Culling, 338
backface, 275
view frustum, 320
visibility, 334

Curves, intersection, 229–31
Cutoff radius, 265

D
Data acquisition process, 70–77

alpha mattes, 72–74
calibration, 70–71
environment mattes, 72, 77
HDR images, 72
object images, 71
opacity hull construction, 74–76
radiance images, 71
reference images, 71
reflectance fields, 76
reflectance images, 71–72
surface light fields, 76
See also Point-based 3D

photography
Data-partitioning index structure, 149
Decimation

speed, 143
splat, 132–39

Decomposition operator, 147
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Deferred shading, 287–90, 431
for custom shader implementation,

289
defined, 287
illustrated, 288
per-pixel, 289
See also Splat shading

Defocus, shape from, 41
Deformations, 4

for blending functions, 237
combination translational/rotational

motion, 244
free-form, 234–39
functions, 235–38
of plane, 242
translational, of plane, 236

Delaunay filtering, 104–5
Density volumes, 9
Depth factor, 315
Depth Image-based Representations

(DIBR), 396
Depth maps, 402
Differential coding, 400
Differential operators, 376–77
Diffuse reflectance model, 58
Diffusion simulation, 445–46
Diffusion tensors, 428
Digital processing, 187–244

editing and painting, 207–25
introduction, 187
preprocessing/filtering, 188–207
shape modeling, 225–44

Discontinuities, modeling, 361–62
Displacement mapping, 12–13
Distance function, 105
Distance metrics, 412–13
Distortion factor, 315
Dividing cubes, 15
Downsampling, 127, 243
Dynamic resampling, 370
Dynamic sampling, 239–43

downsampling, 243
filter operations, 242–43
of plane, 242
surface stretch measurement, 240–42

E
Editing, 210

carving, 219–20
filtering, 220

normal displacements, 219
painting, 219
steps, 208
surface, 219–20

Effective representation, 156–61
Efficient data structures, 148–65

conclusion, 165
effective representation, 156–61
multiresolution, 156
out-of-core representation, 161–65
overview, 148–49
spatial data organization, 149–56

Elastic objects, animation, 354–55
Elliptical weighted average (EWA)

splatting, 79, 279
Environment mattes, 72, 77

acquisition, 77, 92
defined, 72

Epipolar geometry, 27
Epipolar lines, 27
Eraser tool, 206
Error measurement, 141–42, 334–37
Error metric, 44–45
Errors

combined geometric, 335–36
geometric, 334–36
perpendicular, 334–35
tangential, 335

Euclidean distance, 134, 169
Euler integration, 354, 355
Extrinsic calibration, 52

F
Feature detection, 29
Filtering, 220

brush interpretation, 220
low-pass, 264

Filters
defined, 251
EWA, 292, 293
Gaussian, 258–61
ideal low-pass, 255
interpolation, 242–43
operations, 242–43
relaxation, 242
resampling, 258

Final gathering, 455
Finite difference schemes, 359
Finite element method (FEM)

simulation, 342, 348, 359

Flat shading, 281–82
Fluids, 373

incompressibility, 379
viscosity, 379–80

Fluid simulation, 373–87
conclusion, 386–87
Eulerian methods, 373–74
Lagrangian methods, 373
mesh-based FEM, 374
methods, 373–75
overview, 373
particle methods, 374–75
smoothed particle hydrodynamics,

375
with SPH, 378–80
surface representation, 381–83
surface tracking, 383–86
See also Physics-based animation

Focus, shape from, 41
Forward-search paradigm, 302
Fourier transform, 252
Fracture control, 370–71

illustrated, 371
importance, 370

Fracturing material animation, 358–73
conclusion, 372–73
constraint-based methods, 359
crack initiation/propagation, 363–65
discontinuities modeling, 361–62
finite difference schemes, 359
finite-element methods (FEM), 359
fracture control, 370–71
fracturing characteristics, 359
historical background, 359–61
mass-spring models, 359
meshless methods, 359
overview, 358–59
simulation pipeline, 372
surface model, 363
topology control, 365–67
volumetric sampling, 367–70
See also Physics-based animation

Fragment shaders, 274, 278
Free-form deformation, 234–39

functions, 235–38
illustrated, 226
performing, 236
topology control, 238–39
See also Shape modeling

Free-viewpoint video, 391, 395
Frequency analysis, 252–55
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Frequency domain
representation, 252
sample distance, 255

Frequency response, 252
Full-screen antialiasing (FSAA), 291
Fuzzy BSP selection, 170–72
Fuzzy geometry, 408
Fuzzy sets, 408

G
Gaussian filters, 258–61

one-dimensional, 258–59
two-dimensional, 260–61
See also Filters

Gaussian reconstruction kernels, 262
General splatting framework, 267
Geodesic projection, 168–70
Geometric hierarchies, 144
Geometric linearity, 348
Geometry

constructive solid (CSG), 226
epipolar, 27
fuzzy, 408
point-sampled, 20–48
sample-based representations, 9–10
statistical point, 408–14

Geometry reconstruction, 53–58
artifact removal, 54–56
gray code, 53–54
phase shifting, 53–54
view merging, 56–58

Global illumination
point-based, 451–52
radiosity atlas for, 465–70
single-bounce, 463–65

Global registration, 47–48
Glyph visualization, 420–35

anisotropic particles, 427–31
complex, on GPU, 431–34
conclusion, 435
framework, 423–25
hierarchical data structure, 424
isotropic particles, 425–27
motivation, 420–23
primitives, 423

Gouraud shading, 282–84
GPU

anisotropic particle visualization on,
427–31

complex glyph visualization on,
431–34

GPU splatting, 271–93
antialiasing, 290–92
comparison, 292–93
conclusion, 293
OpenGL and, 276
overview, 271–72
splat rasterization, 276–81
splat shading, 281–90
See also Splatting

Gradient flow, 105
Gray codes

binary, 34, 49
example, 34
in geometry reconstruction, 53–54
low-resolution, 33

Guiding potential, 384–85

H
Hidden-surface algorithms, 10
Hierarchical clustering, 130
Hierarchical instantiation, 324
Hierarchical partitioning, 412
Hierarchies

bounding sphere, 298, 307
bounding volume (BVHs), 154–56
geometric, 144
precomputed, 325
statistical, 411–12
topological, 143
traversal, 160–61

Hierarchy traversal algorithm, 318,
319–20

High-resolution reflectance function, 87
Hole filling, 200

automatic, 206
manual, 204

Hooke’s law, 343, 344
Hoope’s approach, 121
Hue, saturation, and value (HSV), 410
Hybrid point-polygon rendering,

337–38

I
ICP (iterative closest point), 42–47, 51

correspondences, 42
error metric, 44–45
matching, 43–44

minimization, 45
point selection, 43
point-to-plane metric, 45
rejection, 44
stages, 42–43
weighting, 44

Ideal low-pass filter, 255
Image-aligned squares, 277–78
Image caches, 10
Image-order algorithms, 10–11
Images

HDR, 72
layered depth (LDIs), 152
object, 71
PCA, 78
radiance, 71
reconstruction, 318
reference, 71
reflectance, 71–72

Image-space 3D video
coding, 396–98
pipeline, 397
See also 3D video

Image-space coding, 396–98
Implicit surface methods, 98–103

algorithm basis, 98
basis functions, 100–101
indicator function, 101
MLS/MPU with local functions,

101–3
voxel-based, 99–100
See also Surface reconstruction

Implicit surfaces
from points and offset points, 119–20
from points and tangent frames,

121–26
Impulse response, 251
Indicator functions, 101
Initial alignment, 41–42
Inside-outside test, 228
Interaction modes, 210–11

brush, 210, 211
selection, 210–11

Interactive parameterization, 207
Interpolation√

3, 172–74
of creases, 179–80
filter, 242–43
of functional data, 111–17
kernel, 378
linear intersection, 301–2
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MLS, 350–51
trilinear, 269

Intersection curves, 229–31
adaptive refinement, 231
point representation, 232
sampling, 230
sampling density, 230–31
unsampling, 232

Intrinsic camera calibration, 52
Intrinsic projector calibration, 52
Isotropic particles

blending and, 425
rendering, 426–27
visualization, 425–27

Iterative point simplification (IPS), 140
Iterative simplification, 129, 130

K
K-d-trees, 152–54, 298

L
Lambertian surfaces, 40–41
Lambertian texture, 61–62
Large model rendering, 313–27

approximation accuracy, 320–21
big boxes use, 327
conclusion, 326–27
costs, quality, and optimizations,

319–24
example implementation, 324–26
expense, 327
hierarchy traversal, 319–20
image quality considerations,

323–24
orientation, 322–23
oversampling, 322
overview, 313
point-based multiresolution, 314–18
in real time, 326
sampling, 321–22, 327
time, 322

Layered depth cube (LDC), 77, 152
Layered depth images (LDIs), 10, 152
Layered point clouds, 161
Least squares

fitting, 114–17
nested iteration, 215–17

Level of details (LOD), 248
approximations, 156

point clouds for, 327
point rendering, 156

Level-set method, 107
Level sets, 382
Levenberg-Marquardt method, 63
LIDAR (light detection and ranging), 38
Light fields, 10, 76, 79–82
Light-stripe scanners, 35–36

characteristics, 36
defined, 35
depth extraction, 36
illustrated, 35
optimization, 35
See also Triangulation-based 3D

scanners
Light transport model, 82–85

discussion, 85
illumination environment and, 84

Linear intersection interpolation, 301–2
Linear operator, 252
Line hull, 39
Local-sampling density estimation, 230
Low-cost scanner, 49–66

accuracy, 64–65
calibration, 51–53
conclusion, 66
geometry reconstruction, 53–58
overview, 49
performance, 65
results, 63–65
system illustration, 50
system overview, 49–51
texture reconstruction, 58–63

Low-pass filters, 206, 264
Low-resolution reflectance function, 86
Lumigraph interpolation, 82
Luminous projector calibration, 52–53
Lumitexels, 51

M
Magnetic resonance imaging (MRI), 20
Mahalanobis distance metric, 412–13
Marching cubes algorithm, 15
Mass-spring models, 359
Matching, 43–44
Matching cost function, 26
Material linearity, 348
Mattes

alpha, 72–74
environment, 72, 77, 92

Max Planck model, 231
Memory mapping, 162
Merging, 21
Meshless discretization, 348–50
Meshless finite elements, 342–57

conclusion, 357
continuum elasticity, 343–48
elastic objects animation, 354–55
forces computation, 351–54
meshless discretization, 348–50
MLS interpolation, 350–51
overview, 342–43
passive surfel advection, 357
plasticity, 355–56
strains/stresses updating, 351
See also Physics-based animation

Micropolygons, 14, 15–16
Miniball criterion, 196–97
Minimization, 45
MLS-based surface representations,

109–26
approximation of functional data,

111–17
conclusion, 126
interpolation of functional data,

111–17
normals, 118–19
notation and terms, 110–11
overview, 109–10
from points and offset points, 119–20
from points and tangent frames,

121–26
See also Moving least squares (MLS)

Model-view-projection (MVP), 161
Moving least squares (MLS), 4, 116–17

defined, 112
illustrated, 117
interpolation, 350–51
MPU and, 102–3
optimization, 194
projection, 194
representations, 95
smoother tool, 200–201
spray can, 202
surface representations, 109–26
surfaces, 122–23

Moving surface cache, 14
Multibackground matting, 73
Multibaseline stereo, 24
Multilevel partition of unity (MPU),

102–3
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Multiresolution representations, 143–47
multiscale hierarchical, 143, 144–47
progressive incremental, 143, 144
See also Sampling

Multiscale hierarchical representations,
143, 144–47

composing, 147
defined, 143, 144–45
discrete, 146
point clouds sequence, 145–46
single-scale modeling versus, 148

Multiview stereo, 36–37

N
Nearest-neighbor reciprocity

criterion, 197
Nested iteration

least squares solver, 215–17
spatial hierarchy, 216

Newton’s first law, 352
Noise

removal, 200
scan, 20
selective removal, 201

Nonrecursive test, 330
Normal displacements, 219
Normalization pass, 283
Normalized cross-correlation

(NCC), 26
Normals

direction, estimating, 118
estimation, 97–98
MLS-based surface representations,

118–19
in point constraint generation, 119
surfaces from, 123–26
unit, 410

Nyquist frequency, 255
Nyquist limit, 255, 256

O
Object-order algorithm, 10–11, 13
Object-space coding, 394–96
Occlusion/shadow test, 60–61
Octrees, 150–52, 298
Omnidirectional video, 391
On-demand rendering, 418
One-dimensional Gaussian filters,

258–59

One-ring neighborhood selection,
167–72

coarse selection, 167–68
defined, 167
geodesic projection, 168–70
symmetric version, 172

Opacity hulls
construction, 74–76
as textures, 76
as view-dependent representation, 75

OpenGL, 272–76
backface culling, 275
fragment shaders, 274, 278
geometry rendering pipeline, 273
interleaved vertex arrays, 275
performance considerations, 274–76
precomputed lighting, 275
quantization, 275
shading language, 276
vertex arrays, 425
vertex buffer objects, 275
vertex shaders, 274, 277

Optimal splat subsampling (OSS), 140
discrete, 142
single-resolution, 143

Organization, this book, 3–5
Outlier removal, 195–99

miniball criterion, 196–97
nearest-neighbor reciprocity

criterion, 197
performance classification, 198–99
plane fit criterion, 196
threshold, 195

Outliers, 56, 58
classification, 195, 197–98
classifiers, 199

Out-of-core representation, 161–65
clustering, 161–62
linear memory layout, 162–63
streaming, 163–65

P
Painting, 219

with haptic device, 222
paint transfer, 223–24
with virtual brushes, 221–24

Paint transfer, 223–24
Parameterization, 208

constrained minimum-distortion,
212–17

derivative of, 215
interactive, 207
by projection, 212
surface, 211–17

Parameter mapping, 208
Parametric surfaces, 12
Particle-based blending, 233–34
Particle potential function, 383
Particles

anisotropic, 427–31
isotropic, 425–27
semantic density, 422–23
simulation, 129, 382, 387

Partitioning
distortion, 411
hierarchical mesh, 412

Partition of unity, 117
Passive stereo, 26–30

characteristics, 30
defined, 23
See also Triangulation-based 3D

scanners
Patches, 210
Performance

evaluation, 204–6
low-cost scanner, 65
outlier classification, 198–99

Perpendicular error, 334–35
Perspective projection, 314–16

depth factor, 315
distortion factor, 315
illustrated, 315

Phase-shifting code, 33
Phong lighting, 431
Phong splatting, 284–87

defined, 285
drawback, 287
Gouraud splatting comparison, 287
precomputed normal fields, 287

Phong texture, 63
Photometric stereo, 40
Photon maps, 453–56

passes, 453
sorting, 454–55, 466–67

Photon tracing, 454, 466
Physics-based animation, 341–87

fluid simulation, 373–87
fracturing material, 358–73
introduction, 341–42
meshless finite elements, 342–58
point-sampled representations, 342
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Phyxels
center, 353, 355
defined, 342
fixed mass assignment, 349
masses, finding, 350
resampling, 369
sampling, 368
state, extension, 357

Pixar’s RenderMan, 436–37
Plane fit criterion, 196
Plasticity, 355–56
Point-based 3D photography, 66–93

data acquisition process, 70–77
hardware setup, 69–70
overview, 66
point-sampled data structure, 77–79
previous work, 66–68
relighting, 82–93
surface light fields, 79–82
surface-reluctance fields, 68
system overview, 68–69

Point-based approximate ambient
occlusion, 447–50

Point-based graphics
early history, 9–16
growth, 1–2
point set generation, 109
potential, 2
ray tracing, 294–312
renaissance, 15–16

Point-based multiresolution rendering,
314–18

algorithm, 314
image reconstruction, 318
perspective projection, 314–16
point selection, 316–18

Point clouds
baking 3D information as, 437–43
datasets, 408
deforming, ray-tracing, 305–9
generation, 456
for LOD approaches, 327
motivation, 435–36
optimizations, 305–9
radiosity, 453–56, 468
static, ray-tracing, 305
subsurface scattering, 443–47
three-dimensional, 436

Points
to display continuous surfaces, 14
implicit surfaces from, 119–26

on intersection curve, 232
lack of connectivity, 5–6
observations, 5–6
offset, 119–20
primitives, 1, 5–6
in purest form, 5
relaxation, 202
representation, 10
selection, 43, 316–18
statistical regeneration, 415–16
upsampling techniques, 139–40
Voronoi diagram of, 104

Point-sampled 3D video, 390–407
conclusion, 407
dynamic point samples, 392
of dynamic scenes, 401–6
interactivity, 391
motivation, 390–91
real-time, 398–401
recording, 392–98

Point-sampled data structure, 77–79
Point-sampled models, 19
Point-selection algorithm, 317–18
Pointshop3D, 190

defined, 2
selection mechanism, 191

Point-simplification methods, 128–32
Point trees, conversion, 332
Poisson’s ratio, 346, 347
Polygonal splats, 276–77
Postprocessing

in 3D acquisition pipeline, 22
repulsion, 385

Potentials
attracting, 385
guiding, 384–85
smoothing, 385
surface, 384–85

Power crust algorithm, 105–6
Precomputed neighborhoods, 310
Prefiltering, 256
Primitives

complex, 423
prerendered, 425
smooth, 13–14

Principle component analysis (PCA),
78, 408, 409–11

attributes, 420
components, visualization, 91
nodes, decoding, 419

Procedural modeling, 11–12

Progressive incremental
representations, 143, 144

defined, 143
derivation, 144
incremental, 144
QSplat, 144

Progressive rendering, 182
Progressive splatting, 133
Projection

geodesic, 168–70
to image space, 262–63
MLS, 194
parameterization by, 212
perspective, 314–16
splat, 281

Q
QImaging QICAM cameras, 69
QSplat, 16, 144, 327

color quantization, 158
CPU implementation, 339
effective representation, 157
point selection, 328
streaming, 163, 164
top-down traversal, 328

Quadric error metric (QEM), 143
Quantization

attribute, 157–58
color, 158
of coordinate frame, 414
OpenGL, 275
in statistical point geometry, 414

Quasirandom sampling, 416–17

R
Radial basis functions, 112–14

constraint locations as, 128
defined, 112
illustrated, 113
triharmonic, 237

Radiosity atlas, 465–70
brick map generation, 468
photon map sorting, 466–67
photon tracing, 466
radiosity estimation, 466–68
rendering, 468

Radiosity point clouds, 453–56,
468

Range images, 9
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Rasterization
defined, 265
footprint, 265–67
splat, pseudocode, 268

Ray casting, 281
Ray marching, 301
Ray-surface intersection algorithm,

295–304
bounded, nonoriented surfaces,

303–4
intersection procedure, 300–301
intersections, 297–302
ray intersection, 299, 300
sharp features, 302–3
surface definition, 295–97
surface intersection, 300

Ray tracing, 294–312
bounding volume overlap, 310–11
brick map, 461–62
center update, 308
conclusion, 312
deforming surfaces, 305–9
implementation tips, 309–12
interactive, 306
overview, 294–95
point cloud optimizations, 305–9
point models, illustrated, 295
precomputed neighborhoods, 310
radius of support, 311
radius update, 308
ray-surface intersection algorithm,

295–304
ray-surface intersection tests, 311
shadow, 311
static point clouds, 305
weighted covariance, 309

Real-time 3D video, 398–401
conceptual components, 399
differential coding, 400
differential update stream, 398
as enabling technology, 399
results, 400–401
See also 3D video

Rectification, 27
Recursive test, 330, 332
Refinement, 165–81√

3 interpolation, 172–74
algorithm, 172–78
applications, 181–82
conclusion, 183–84
general settings, 166–67

global sampling control, 176
implementation, 181–82
iterative procedure, 166
local sampling control, 176
one-ring neighborhood selection,

167–72
overview, 165–66
sampling control, 174–76
of sharp features, 178–81
smoothness and robustness, 176–78

Reflectance fields, 68
Reflectance function, 76

high-resolution, 87
low-resolution, 86
measured, 90

Reflectance sampling, 60–61
Reflective Gaussian, 88
Refractive Gaussian, 88
Registration

in 3D model acquisition pipeline, 21
global, 47–48

Rejection, 44
Relative depth range, 319
Relaxation filter, 242
Relighting, 82–93

light transport model, 82–85
surface reflectance field examples,

89–93
surface reflectance field rendering,

85–88
Rendering, 247–339

brick maps, 460–61
client-server, 417–19
complex glyph visualization, 432–34
framework, 425
hybrid point-polygon, 337–38
introduction, 247–48
isotropic particles, 426–27
OpenGL pipeline, 273
point-based multiresolution, 314–18
progressive, 182
radiosity atlas, 468
sharp creases, 231–32
single-bounce global illumination,

464–65
statistical, 414–20
subsurface scattering, 446–47
surface light fields, 79–80
surface reflectance fields, 85–88
very large models, 313–27

RenderMan, 436–37

Representations
effective, 156–61
frequency domain, 252
multiresolution, 143–47
multiscale hierarchical, 143, 144–47
out-of-core, 161–65
progressive incremental, 143, 144
sample-based, 9–10
splat-based, 128
surface, 109–26
surface, MLS-based, 109–26

Repulsion potential, 385
Resampling, 208–9, 217–19, 256–58

adaptive, 218–19
brush, 218
dynamic, 370
filter, 258
illustrated, 257
locations, 218
phyxels, 369
reconstruction, 217–18
steps, 256–57
surface, 218

REYES algorithm, 14
Robustness

automatic hole-filling tool, 205
refinement, 176–78
volumetric diffusion tool, 205

Rotation
full, 46
as nonlinear function, 45

S
Sample-based representations, 9–10
Sampling, 127–47

adaptive, 209, 322
analysis and comparison, 140–43
conclusion, 147
control, 174–76
decimation techniques, 128–40
decoupling, 307
downsampling, 127
dynamic, 239–43
global control, 176
intersection curve, 230
large model, 321–22, 327
local control, 176
multiresolution representations,

143–47
overview, 127–28
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phyxels, 368
point-simplification methods,

128–32
quality, 141–43
quasirandom, 416–17
reflectance, 60–61
resampling techniques, 128–40
signal frequencies above Nyquist

limit, 255
speed, 143
stability, 46
upsampling, 127
volumetric, 367–70

Scan alignment, 41–48
global registration, 47–48
ICP, 42–47
initial, 41–42

Scanning, single-light-stripe, 24
Scattered 3D data, 422
Search data structures, 193
Selection

coarse, 167–68
fuzzy BSP, 170–72
interaction, 210–11
points, 316–18

Semantic density levels, 422–23
Sequential point trees, 327–39

conclusion, 339
error measures, 334–37
function, 328
hierarchical visibility frustum calling

and, 334
hybrid point-polygon rendering,

337–38
implementation and results, 338
overview, 327–29
rearrangement, 332–34
sequentialization, 329–32

Shade trees, 12
Shading, 40

deferred, 287–90, 431
flat, 281–82
pass, 288
splat, 281–90

Shadows
detection, 59
removal, 59–60

Shape from defocus, 41
Shape from focus, 41
Shape modeling, 225–44

Boolean operations, 226–34

conclusion, 243–44
dynamic sampling, 239–43
free-form deformation, 234–39
overview, 225–26

Sharp features, handling, 302–3
Shepard’s interpolation method,

112, 117
Signal-processing, 250–52
Silhouettes, 75
Simplification

iterative, 129, 130
iterative point (IPS), 140
point-based, 323
third-point, 131, 132

Single-bounce global illumination,
463–65

baking diffusely reflected direct
illumination, 463–64

brick map generation, 464
rendering, 464–65

Single-light-stripe scanning, 24
Smoothed particle hydrodynamics

(SPH), 349, 373, 375–81
advantage, 387
algorithmic summary, 380–81
approximation, 376
background, 375
differential operators,

approximations, 376–77
fluid simulation, 378–80
particle representation, 375
smoothing length, 375–76

Smoothing, 200–206
length, 375
with MLS smoother tool, 200–201
potential, 385

Smoothness, 176–78
Space-carving methods, 39
Space partitioning, 149
Space-warping function, 235
Spatial coordinates, 344
Spatial data organization, 149–56

bounding volume hierarchies, 154–56
goal, 149
K-d-trees, 152–54
octrees, 150–52

Spatial selectivity, 150
Specular reflections, 437–38
Sphere tracing, 298, 301
Splat-based representations, 128
Splat projection, 281–90

Splat rasterization, 276–81
affinely projected sprites, 278–79
image-aligned squares, 277–78
perspectively correct, 279–81
polygonal splats, 276–77
pseudocode, 268

Splats
circular, 138
circular object-space, 278
decimation methods, 132–39
elliptical, 280
extent of, 135
generation, 139
growing, 138
maximum, computation, 137
merge operators, 135
polygonal, 276–77
projection, 281
subsampling, 136

Splat shading, 281–90
deferred, 287–90
flat, 281–82
Gouraud, 282–84
Phong, 284–87
See also Shading

Splatting, 14
algorithm, 249–50
antialiasing and, 14–15
EWA, 79, 279
footprint rasterization, 265–67
fundamentals, 248–71
general framework, 267
GPU, 271–93
illustrated, 249
low-pass filtering, 264
overview, 248–50
Phong, 284–87
progressive, 133, 145
projection to image space, 262–63
pseudocode, 250
results and comparison, 267–70
surface, 261–67
tangent space and reconstruction

kernels, 261–62
visibility, 283

Sprites, 9, 278–79
Stability, 377–78

interpolation kernel and, 378
sampling, 46

Standard deviation, 258
Statistical hierarchies, 411–12



524 INDEX

Statistical point geometry, 408–14
classification and quantization, 414
defined, 408–9
distance metrics, 412–13
hierarchies, 411–12
for multiple attributes, 410–11

Statistical rendering, 414–20
client-server, 417–19
GPU considerations, 419–20
quasirandom sampling, 416–17
regeneration of points, 415–16

Statistical representations, 407–20
conclusion, 420
motivation, 407–8
point geometry, 408–14
related work, 408
rendering, 414–20

Strain energy, 352
Strains, 343

built-up, 356
elastic, 355
forces computation via, 351–54
linear measure, 348
measured, 355
plastic, 355
as symmetric tensors, 346
updating, 351

Streaming, 163–65
Stream-processing pipeline, 164
Stresses, 343

linear dependency, 348
as symmetric tensors, 346
updating, 351

Structured-light systems, 24
characteristics, 35
defined, 31–32
Gray code, 33
illustrated, 32
phase-shifting code, 33
stripes, 32
temporal, 33
See also Triangulation-based 3D

scanners
Structure from motion (SfM), 37
Subsampling

algorithm, 136
optimal splat (OSS), 140, 142, 143

Subsurface scattering, 443–47
baking transmitted direct

illumination, 444–45
with blocking geometry, 448

diffusion simulation, 445–46
illustrated, 444
rendering, 446–47
use of, 443

Subvolumes, 15
Sum of absolute differences (SAD), 26
Sum of squared differences (SSD), 26
Surface area heuristic (SAH), 305
Surface clipping, 303
Surface editing, 209, 219–20
Surface evolution methods, 106–8
Surface light fields, 76, 79–82

examples, 80–82
illustrated, 81
rendering, 79–80

Surface parameterization, 211–17
constrained minimum-distortion,

212–17
by projection, 212

Surface potentials, 384–85
Surface reconstruction, 96–109

conclusion, 108–9
evolution methods, 106–8
implicit methods, 98–103
normal estimation, 97–98
overview, 96–97
Voronoi methods, 103–6
voxel-based methods, 99–100

Surface reflectance fields, 68, 76
data structure, 79
examples, 89–93
high-resolution illumination,

89–92
low-resolution illumination, 89
rendering, 85–88

Surface representation, 109–26
fluid simulation, 381–83
surface reconstruction versus, 109

Surface resampling, 218
Surfaces

boundaries, 126
bounded, nonorientable, 303–4
defining, 295–97
deforming, ray-tracing, 305–9
implicit, 119–26
Lambertian, 40–41
MLS, 122–23
model, fracturing material

animation, 363
from normals and weighted averages,

123–26

parametric, 12
particles, repulsing, 139

Surface sheets, 303
Surface splatting, 261–67

examples, 271
footprint rasterization, 265–67
low-pass filtering, 264
projection to image space, 262–63
results and comparison, 267–70
tangent space reconstruction kernels,

261–62
Surface stretch

illustrated, 241
local, 240–41
measurement, 240–42

Surface tracking, 383–86
surface potentials, 384–85
topological changes, 385–86

Surfels, 342
clipped, 370
passive advection, 357
splitting and merging, 357

T
Tangential error, 335
Textured fins, 76
Texture reconstruction, 58–63

Lambertian texture, 61–62
Phong texture, 63
reflectance sampling, 60–61
shadow removal, 59–60

Textures, 9
diffuse, 61
Lambertian, 61–62
opacity hulls as, 76
Phong, 63

Time of flight, 38–39
Toolbox, 206–7

central motivation, 191
design goals, 191
Pointshop3D integration, 190
tool complexity, 192
underlying techniques, 192–95

Topological hierarchies, 143
Topology control, 238–39

collision detection, 238–39
collision handling, 239
fracturing material animation,

365–67
Triangulation-based 3D scanners, 23–38

active stereo, 30–35
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advantages/disadvantages, 24–26
difficulties for large scenes, 25–26
flexible working volume, 24
illustrated, 23
light stripe, 35–36
low complexity and cost, 24
multiview techniques, 26–27
passive stereo, 26–30
precision scales with camera

resolution, 25
sensitivity to shiny/translucent

objects, 25
structure from motion (SfM), 37
two-line-of-sight problem, 25

Trilinear MIPmapping, 269
Trimming relations, 303
Turntable axis calibration, 52
Two-dimensional Gaussian filters,

260–61

U
Upsampling

defined, 127
point, 139–40

V
Variance, 258
Verlet integration, 380–81

Vertex array range (VAR), 420
Vertex arrays, 425
Vertex shaders, 274, 277
View-dependent rendering

algorithm, 419
View frustum, 314, 320
View merging, 56–58

best surfels, 57–58
bounded projective nearest

neighbors, 57
See also Geometry reconstruction

View planning, 21–22
Viscosity, 379–80
Visibility criterion, 361, 362
Visibility culling, 334
Visibility splatting, 283
Visual hull, 83
Visual quality, 142
Volume data, 470–73

baking, 471
brick map generation, 471
rendering, 472

Volumetric diffusion, 202–4
illustrated, 203
point-sampled models, 203

Volumetric sampling, 367–70
Voronoi methods, 103–6

advantages/disadvantages, 106
algorithms, 104

defined, 112
Delaunay filtering, 104–5
diagram of points, 104
distance function and gradient

flow, 105
power crust, 105–6
See also Surface reconstruction

Voxel-based surface methods, 99–100
Voxel coloring, 39
Voxels, 305
VRIP, 39

W
Weighted averages, 123–26
Weighted covariance, 309
Weight functions, 297
Weighting, 44
World coordinates, 344

X
XSplat, 162

Z
Z-buffer, 10, 318, 417
Zombies, 243
Z-point brush, 14
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About the CD-ROM

This book is accompanied by a CD-ROM that contains a library of source code to
implement the techniques and demonstrations found in this book. The CD-ROM
library is designed to be relatively easy to read and includes copious comments and
demonstration programs. Online support materials for this book such as updates,
errata, and additional features will be made available at the companion site for this
book: http://textbooks.elsevier.com/9780123706041.

SOFTWARE LICENSE

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY. BY
COPYING OR OTHERWISE USING THIS SOURCE CODE, YOU ARE DEEMED
TO HAVE AGREED TO THE TERMS AND CONDITIONS OF THIS LICENSE
AGREEMENT.

All material on this CD-ROM falls under the GPL and LGPL licenses. These licenses
are included on the CD-ROM. Each source file contains explicit information about
its specific type of license. More information can also be found at:

http://www.gnu.org/licenses/

For legal reasons we are not permitted to add the Pointshop3D executable to the CD.
It can be downloaded from the Pointshop3D web site at:

http://graphics.ethz.ch/pointshop3d/
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