
Hans-Georg Stark
Wavelets and Signal Processing

Hans-Georg Stark

Wavelets and Signal
Processing

An Application-Based Introduction

With 67 Figures and 7 Tables

123

Professor Dr. Hans-Georg Stark
FH Aschaffenburg - University of Applied Sciences
FB Ingenieurwissenschaften
Würzburger Str. 45
63743 Aschaffenburg
Germany
hans-georg.stark@fh-aschaffenburg.de

Library of Congress Control Number: 2005921923

ISBN 3-540-23433-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer. Violations are liable to prosecution under the German
Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Typesetting: By the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: medionet AG, Berlin
Printed on acid-free paper 7/3142/YL - 5 4 3 2 1 0

To Fabi and Paula

Preface

“The idea of this book arose in a conversation with H. A. Bethe, who
remarked that a little book about modern field theory which contained
only memorable results would be a good thing”1.

As a graduate student working in theoretical physics, in particular des-
perately needing a readable and compact treatment of quantum field theory,
I came across a beautifully written book: “PCT, Spin and Statistics and all
that” [35].

Here we are dealing with signal processing instead of quantum field theory
and the present book does not claim to reach a level of clarity and deep-
ness comparable to the respective achievement in [35]. Nevertheless, the basic
intention of this book perfectly is described by the above quotation when re-
placing “field theory” with “wavelet analyis”: It should provide a quick and
readable introduction to the wavelet topic for anyone interested in learning
about wavelets and/or working with them and hopefully will contain only
memorable results.

What does the profile of the “ideal reader” of this little book look like? The
largest portion of the covered material should be readable for anyone with an
elementary technical background and familiar with basic notions of calculus
like integrals and complex numbers. Thus these parts should be accessible for
readers with an engineering or science education on a bachelor level who are
interested in a short and compact introduction into wavelet applications. The
target group includes academia and (in particular) practitioners in industry.

Some parts of the book are of interest mainly for readers with a specializa-
tion on, e.g., electrical engineering or communications engineering. For these
parts basic familiarity with notions from signal analysis like Fourier transforms
and digital filtering will be helpful. Elementary information about these topics
is collected in the appendix.

There are some excellent introductory books on wavelets and wavelet ap-
plications mainly focussing on the discrete wavelet transform (cf., e.g. [38]).
1 Quotation from the preface of [35]

VIII Preface

This book will contain a fairly large part dealing with the continuous trans-
form, since in my opinion the continuous transform provides a very intuitive
insight into the essence of wavelet techniques and since the continuous version
is close to the Fourier transform, a standard tool in engineering.

As with all books, selection and presentation of the material reflect the au-
thor’s view of the topic. My hope is that after reading the book the reader will
have gained an intuitive insight into what wavelets are. This insight should
then provide a basis on which to decide, whether wavelets are interesting for
the particular needs of the reader and, if yes, how he or she wants to apply
them. Therefore this book is intended to serve as an introductory guide to the
topic.
Moreover, the wavelet story is a story about a fascinating and exciting scien-
tific development. If this fascination can be felt during reading, this is among
the best I can hope for.

It is a pleasure to thank Eva Hestermann-Beyerle and Monika Lempe from
Springer-Verlag for their patience and professional support. Their comments
had substantial influence on sharpening the profile of this book. The work
reported on in section 4.2 would not have been possible without the collab-
oration and support of Gernod Laufkötter, Andreas Divivier and Thomas
Goseberg, my friends and colleagues at tecmath AG. I am very grateful for
the opportunity to work with them.

Dr. Hans-Jürgen Stahl checked the English of chap. 1, a copyeditor from
Springer-Verlag did so with the complete manuscript. I am indebted to both
for valuable hints which helped me to improve spelling and style.

Aschaffenburg, spring 2005 Hans-Georg Stark

Contents

1 Introduction . 1
1.1 Signals and Signal Processing . 1
1.2 Local Analysis . 2

1.2.1 Transforms . 2
1.2.2 Fourier Transform . 3
1.2.3 Short Time Fourier Transform (STFT) 4
1.2.4 Wavelet Transform . 4
1.2.5 Visualization . 7
1.2.6 Fourier vs. Wavelet Transform - A Comparison

Experiment . 9
1.3 A Roadmap for the Book . 11

2 Continuous Analysis . 13
2.1 The Short Time Fourier Transform (STFT) 14

2.1.1 Definition, Computation and Reconstruction 14
2.1.2 Phase Space and Localization Parameters 18
2.1.3 Implementation with MATLAB and Visualization 19

2.2 The Continuous Wavelet Transform (CWT). 21
2.2.1 Definition, Computation and Reconstruction 21
2.2.2 Wavelet Examples . 26
2.2.3 Implementation with MATLAB and Visualization 29
2.2.4 Application: Detection of Signal Changes 32

2.3 Case Studies . 33
2.3.1 Analysis of Sensor Signals . 33
2.3.2 Analysis and Classification of Audio Signals 36

2.4 Notes and Exercises . 40

3 The Discrete Wavelet Transform . 43
3.1 Redundancy of the CWT and the STFT 43
3.2 The Haar-System . 45

3.2.1 Continuous-Time Functions . 46

X Contents

3.2.2 Sequences . 49
3.3 Generalization to Daubechies-Wavelets . 53

3.3.1 From Filters to Functions . 56
3.3.2 Transfer Properties . 59

3.4 Multiscale Analysis . 60
3.4.1 One-Dimensional Signals . 61
3.4.2 Two-Dimensional Signals (Images) 65
3.4.3 Implementations with the MATLAB Wavelet Toolbox . . 69
3.4.4 Generalization: Biorthogonal Filters 73

3.5 A Unifying Viewpoint: Basis Systems . 75
3.5.1 One-Dimensional Signals . 76
3.5.2 Two-Dimensional Signals . 79
3.5.3 Computation and Visualization with MATLAB 81

3.6 Case Studies . 81
3.6.1 Energy Compaction and Compression 81
3.6.2 Denoising a Sensor Signal / Real-Time Properties of

the Algorithm. 88
3.7 Notes and Exercises . 91

4 More Applications . 95
4.1 The Transform Compression Scheme . 95

4.1.1 The General Procedure . 97
4.1.2 Entropy Coders . 99
4.1.3 Optimal Quantization and Examples 108
4.1.4 MATLAB Implementation . 113

4.2 Wavelet-Based Similarity Retrieval in Image Archives 116
4.3 Notes and Exercises . 123

5 Appendix . 125
5.1 Fourier Transform and Uncertainty Relation 125
5.2 Discrete Fourier Transform (DFT) . 128
5.3 Digital Filters . 130
5.4 Solutions to Selected Problems . 134

5.4.1 Problems from Sect. 2.4 . 134
5.4.2 Problems from Sect. 3.7 . 138
5.4.3 Problems from Sect. 4.3 . 142

5.5 Notations and Symbols . 146

References . 147

Index . 149

1

Introduction

1.1 Signals and Signal Processing

Wavelet analysis had its origins in the mid-eighties. From the very begin-
ning it was driven by application needs: The desire to analyze seismic signals
more sensitively than with Fourier techniques led to the first appearance of
the continuous wavelet transform formula. In parallel it turned out that the
new technique could be applied successfully to certain problems in theoretical
physics as well as in pure mathematics. For one of the earliest collections of
research and survey papers documenting the state of the art the reader is
referred to [6].

It soon turned out that wavelet analysis successfully could be applied to
many types of signal processing problems: In signal analysis the detection
of discontinuities or irregularities was tackled with wavelets. The analysis of
medical signals like electrocardiograms of the heart is one of the first reported
examples of discontinuity detection (see [6]). For more applications, like the
analysis of sensor signals in robotics, cf. sect. 2.3.1.

Signal compression is another impressive example of wavelet applications.
JPEG 2000, the present version of the international standard on still image
compression is based on wavelet techniques (see, e.g., [36]).

Wavelet applications both in signal analysis and signal compression shall
be described in more detail in later sections. This chapter serves as a brief in-
troduction to the main features of the wavelet transform by comparing wavelet
transform with Fourier transform, the standard tool of signal analysis. For that
purpose we shall work out the common aspects of wavelet and Fourier trans-
forms and point out the main differences. For understanding the following
section, the knowledge of the Fourier transform is not a necessary prerequi-
site. On the other hand, of course, it would be useful, if the reader already
had some experience with applications of the Fourier transform. Basic facts
about the Fourier transform are collected in the appendix, sections 5.2 and
5.3.

2 1 Introduction

Mathematical symbols, used throughout this book, are explained upon
their first appearance. They are collected in sect. 5.1 of the appendix.

1.2 Local Analysis

In this section we will deal with signals which may be represented by a function
f(t) depending on time t. We shall assume that t is a continuously varying
parameter; thus f(t) is called a “continuous-time signal”.

We shall try to transform f(t) into a representation, which encorporates
the desired information about the signal as compactly as possible. The Fourier
transform (cf. sections 1.2.2 and 1.2.3) supplies information about the con-
tribution of certain frequencies to the signal, the wavelet transform (cf. sect.
1.2.4) indicates whether details of a certain size are present in a signal and
quantifies their respective contribution. Both transforms are called “local” if
they not only globally measure frequencies and detail sizes, respectively, but
also indicate where they are located in the signal f(t).

There are many applications for the kind of signal information described
above – we explicitly mention signal classification and data compression. These
applications are described in more detail later, in the subsections below we
indicate how frequencies and detail sizes may be measured. Furthermore, we
will work out the aspects which are common to both transforms and illuminate
the respective differences. The transform results shall be visualized and we
will give an example which serves as an illustration for the above-mentioned
compactness of the respective signal representations.

The purpose of this chapter is to introduce the ideas underlying Fourier
and wavelet transforms, respectively. For more - in particular for mathematical
- details the reader is referred to the following chapters.

1.2.1 Transforms

All transforms of the signal f(t) described in this section share a common com-
putation principle: The signal is multiplied with a certain “analysis function”
and integrated about the time domain. In a symbolic notation the prescription
for performing a transform reads

f(t)
transform−→

+∞∫
−∞

f(u)g(u)du (1.1)

The “analysis function” g(u) characterizes the chosen transform. In general
it may be a complex function, the overline denotes the complex conjugate
entity. g(u) in a certain way depends on the parameters, i.e. frequencies or
detail sizes, to be measured (see below). Thus, by the computation principle
given above the transformed entity will depend on these parameters. In other

1.2 Local Analysis 3

words: the transformed entity again will be a function. These functions we
shall denote with “transform” or “transformed signal”.

Another common aspect of all transforms discussed in this section is in-
vertibility: From the transformed signal the original signal f(t) may be re-
constructed. This is essential for understanding the comparison experiment
carried out in sect. 1.2.6.

1.2.2 Fourier Transform

The parameter relevant for the Fourier transform is the circular frequency ω,
the analysis function reads gω(u) = ejuω . Thus the transformed signal is a
function depending on ω and it is denoted with f̂(ω):

f̂(ω) =

+∞∫
−∞

f(u)gω(u) du (1.2)

Figure 1.1 illustrates the above computation recipe by plotting both curves
required for computing f̂(π). The signal is shown as a solid curve, the real part
of the analysis function gπ(u) = ejuπ is dashed. Obviously, it is an harmonic
oscillation with circular frequency ω = π.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

u

f(u)

Re(g
π
(u))

Fig. 1.1. Fourier transform: signal and analysis function

Why does f̂(π) measure the appearance of ω = π in the signal? The
qualitative argument is as follows: If in some time interval the signal oscillates
with circular frequency ω = π, the signal and the analysis function have a

4 1 Introduction

constant mutual phase shift in this interval and therefore provide a nonzero
contribution to f̂(π).

Yet there is no possibility to localize the appearance of the circular fre-
quency: If (the absolute value of) f̂(π) is “large”, we only know that the
signal contains the circular frequency π, but we do not know where it ap-
pears, since the analysis function extends over the whole real axis. The only
label parameterizing the analysis function is circular frequency.

1.2.3 Short Time Fourier Transform (STFT)

This transform sometimes also is called “Windowed Fourier Transform”
(WFT). The STFT looks for the appearance of the circular frequency ω
at a certain time t. The corresponding analysis function reads: g(ω,t)(u) =
ejuωw(u − t). Here w(u) is a “window function”, usually centered about the
origin (for an example see below). In the expression w(u − t) this window is
shifted to the desired time t.

Now the transformed signal depends on ω and t! Since it also will depend
on the shape of the window function, it is denoted with f̂w(ω, t):

f̂w(ω, t) =

+∞∫
−∞

f(u)g(ω,t)(u) du (1.3)

For a box window w of width 2, centered symmetrically about 0, ω = π and
t = 8, the computation principle is illustrated in Fig. 1.2. Again the dashed
curve shows the real part of the analysis function g(π,8)(u); it is obviously now
localized at t = 8, since w(u − 8) denotes the box window, shifted by 8 units
to the right.

In general, the analysis function will be localized at the respective “analysis
time” t . Therefore the transform provides not just global information about
the appearance of a certain circular frequency, but in addition the time of this
appearance.

The procedure described so far has a disadvantage: If in the above example
one is interested in small details of the signal around t = 8, the corresponding
frequency of the analysis function must be increased. As an example Fig. 1.2
is redrawn for ω = 6π in Fig. 1.3.

Obviously the window width is constant and non-adaptive: If one is inter-
ested in very tiny signal details (high frequencies) in only a small neighborhood
of t = 8, eventually signal parts, which actually are “not of interest”, also will
be analyzed. Zooming into small details - analogously to a microscope - is not
supported.

1.2.4 Wavelet Transform

The wavelet transform has such a zooming property. In contrast to the Fourier
transform, the wavelet transform does not look for circular frequencies but

1.2 Local Analysis 5

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

u

f(u)

Re(g
(π,8)

(u))

Fig. 1.2. STFT: signal and analysis function for ω = π

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

u

f(u)

Re(g
(6π,8)

(u))

Fig. 1.3. STFT: signal and analysis function for ω = 6π

rather for detail sizes a at a certain time t. Instead of detail sizes we also will
speak of “scale factors”, both notions will be used equivalently. As mentioned
already, high frequencies correspond to small details and vice versa, thus, when
comparing wavelet with Fourier transforms we have to take into account that
frequencies and detail sizes are inversely proportional to each other: There
exists a constant β such that

6 1 Introduction

a =
β

ω
. (1.4)

We shall now briefly indicate, how the wavelet transform is computed.
Consider a (real or complex) analysis function g, oscillating around the

u-axis (mathematically:
+∞∫
−∞

g(u) du = 0) and decreasing rapidly for u → ±∞.

Such a function is called a “wavelet”. In eq. 1.4, relating scale factors with
frequencies, the constant β depends on g.

Starting from g consider the following family of functions: g(a,t)(u) =
1√
a
g
(

u−t
a

)
. The members of this family are generated from g by shifting the

function to t followed by shrinking (a < 1) or dilating (a > 1) the width of
the function. The wavelet transform now reads:

Lgf(a, t) =

+∞∫
−∞

f(u)g(a,t)(u) du (1.5)

For the “Haar-wavelet”

g(u) =

⎧⎨
⎩

1 0 ≤ u < 1
2−1 1

2 ≤ u < 1
0 else

the computation of Lgf(a, t) with a = 1
2 and t = 8 is illustrated in Fig. 1.4.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

u

f(u)

g((u−t)/a)

Fig. 1.4. Wavelet transform: signal and analysis function for a = 1
2

The reader may note that the Haar-wavelet, originally situated in the
interval [0, 1) now has been shifted to the right by 8 units and its width has

1.2 Local Analysis 7

shrunk by the factor 1
2 , corresponding to the chosen values of t and a. For

a = 1
4 and t = 8 we obtain Fig. 1.5.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

u

f(u)

g((u−t)/a)

Fig. 1.5. Wavelet transform: signal and analysis function for a = 1
4

Compare Figs. 1.4 and 1.5 with Figs. 1.2 and 1.3 and note that the wavelet
transform shows the desired zooming property in contrast to the STFT: When
searching for smaller and smaller details (higher and higher frequencies) with
the wavelet transform, the corresponding analysis function is oscillating faster
and is contracted.

1.2.5 Visualization

Both the STFT f̂w(ω, t) and the wavelet transform Lgf(a, t) are functions
depending on two variables. A suitable visualization of these functions is of
essential importance in signal analysis. A wide-spread graphical representation
of two-dimensional functions is the use of contour lines. In signal analysis
one usually prefers the visualization of the absolute values of the respective
transforms by gray values. High values are coded with bright, low values with
dark gray values.

Figure 1.6 shows such a visualization for the STFT (above) and the wavelet
transform (below). As a signal in both cases the “chirp” f(t) = sin(t2) has
been used.

The chirp is an harmonic oscillation sin(ωt), whose circular frequency in-
creases with t: ω = t. The linear increase of frequency is clearly visible with
the STFT (see the upper part of Fig. 1.6).

Since (cf. eq. 1.4) detail size a and frequency ω are inversely proportional
with respect to each other, for the wavelet transform one would expect a

8 1 Introduction

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

f(t)=sin(t2). Parameters: δ
x
=5,k

min
=1,δ

k
=1,k

max
=50,σ=0.2

t

ω

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

f(t)=sin(t2). Scale parameters: a
start

=1,δ
a
=1,a

stop
=150.

t

a

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 1.6. Above: STFT of the chirp-signal f(t) = sin(t2). Below: Wavelet transform
of the chirp-signal f(t) = sin(t2).

behavior corresponding to a hyperbola (i.e. proportional to 1
t). The lower

part of Fig. 1.6 shows exactly this behavior.
Since the STFT depends on t and ω, the gray value coding of the STFT has

been performed on the t-ω-plane. This plane is also called “phase plane”, the
corresponding gray value coding “phase space representation” of the STFT.
Analogously the t-a-plane is called “scale plane” and the corresponding gray
value coding of the wavelet transform “scale space representation” of the
wavelet transform.

1.2 Local Analysis 9

1.2.6 Fourier vs. Wavelet Transform - A Comparison Experiment

In a certain sense, the zooming property of the wavelet transform ensures
that characteristic features of the analyzed signal on a certain scale are well
represented by the transform values corresponding to this scale factor, i.e. not
distributed among other scale factors. Moreover, these transform values will
be localized at the respective signal parts, where the above-mentioned features
are present. These concentration properties - both with respect to scale and
time - may be formulated mathematically in a more rigorous way; the purpose
of this section is, to give a plausibility argument for the above statement by
performing a comparison experiment with the Fourier transform.

The signal displayed in Fig. 1.7 is a section from the beginning of an
audio signal. Roughly in the middle, the sudden start of sound clearly can be
recognized.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 1.7. “Attack-signal”

Such signals (“attack-signals”) shall locally, i.e. in a small neighborhood of
the point, where the sound starts, contain high frequencies, equivalently, there
will be drastic changes on a small scale. In such a situation the zooming prop-
erty of the wavelet transform should be advantageous when compared with
the Fourier transform. To confirm this conjecture, the following experiment
has been carried out:

1. Compute the Fourier transform of the signal, keep those 4% of the val-
ues of the transformed signal, having the largest absolute values. Put the
remaining transform values equal to zero and reconstruct the signal from
this modified transform (remember that, as stated in sect. 1.2.1, all trans-
forms discussed here are invertible).

10 1 Introduction

2. Perform the same procedure with the wavelet transform instead of the
Fourier transform.

The results of the experiment are shown in Fig. 1.8. The dashed curve shows
the result of the Fourier-reconstruction, the wavelet-reconstruction is dis-
played by +-symbols, the solid line represents the original signal. When com-
paring with Fig. 1.7, observe that the curves show an enlarged section of the
signal from Fig. 1.7 in a neighborhood of the point where the sound starts.

3680 3700 3720 3740 3760 3780 3800 3820 3840
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Fig. 1.8. “Attack-signal”: reconstructions

Obviously, when using the Fourier transform, the suppression of 96% of the
transform signal values - namely those transform signal values having lower
absolute values than the retained ones - leads to a global smoothing (low
pass filtering) and therefore the local peaks during the attack phase are not
reproduced any more. In contrast, applying the same suppression procedure
to the wavelet transform does not disturb the reproduction of these peaks.
This is a clear indication for the above-mentioned concentration properties of
the wavelet transform values.

As a final remark we should indicate that the original signal was not rep-
resented as a continuous-time signal, but it was discretely sampled. For such
signals there exist variants of the continuous formulae 1.2 and 1.5, respec-
tively, with which the above experiment has been carried out. These “discrete
transforms” shall be described in later sections.

Moreover, as with any wavelet transform application, the result of the
above experiment depends on the chosen wavelet g. The results displayed in
Fig. 1.8 have been obtained using the db4-wavelet described in a later section.

1.3 A Roadmap for the Book 11

1.3 A Roadmap for the Book

The topics sketched in this introduction will be described in more detail in
chap. 2. Questions like “what is an optimal window function for the Short
Time Fourier Transform?” or “how may visualizations as displayed in Fig. 1.6
be accomplished?” will be treated there. Moreover, we will indicate how the
original signal may be reconstructed from the respective transforms.
This is of crucial importance for applications like signal compression: There,
transforms of the original signal usually are computed in a first step. Subse-
quently these transforms are modified in such a way that the required storage
space for the transformed signal is reduced considerably. Finally, in the “de-
compression” step the signals are reconstructed from the modified transforms.
In chap. 2 also a brief survey is given of typical signal analysis applications
of the Short Time Fourier Transform and the wavelet transform, respectively.
Two industrial case studies are described in more detail. Section 2.4 contains
some exercises. Partly these exercises will be of “paper-and-pen-type”, but
they also will consist in writing computer programs.

As a programming platform we use the tool MATLAB, which is wide-
spread and a de-facto-standard in the engineering community. Of course it is
possible to use the book just as a reference guide to wavelet techniques without
performing any programming. For readers interested in using the software
described in this book and in developing their own programs, however, the use
of MATLAB will be a prerequisite. Readers having already some familiarity
with programming languages and looking for a compactly written introduction
to MATLAB are referred to [12]. This book provides a very nice and efficient
description of MATLAB’s main features. It is written in German; if this turns
out to be an obstacle, reference [30] is highly recommended.
The MATLAB software which is discussed in this book and has been written
by the author may be downloaded from

www.springeronline.com/de/3-540-23433-0

Most of it requires only the basis version of MATLAB. Some programs, how-
ever, make use of the MATLAB Wavelet Toolbox, a collection of wavelet-
related signal processing algorithms. Its use is described in the user’s guide
[24], which is not just a software handbook. It is moreover a beautifully written
introduction to wavelet techniques. Since in the author’s opinion MATLAB
together with the wavelet toolbox will turn out to be a standard software
platform for wavelet-related signal processing, the present book also will pro-
vide a short introduction to the most important components of the MATLAB
Wavelet Toolbox.

In chapters 1 and 2, respectively, signals are considered to be continuous-
time signals, even though computerized versions of the algorithms described
there necessarily involve a discretization. A different perspective is given in
chap. 3: Here from the very beginning signals are discrete sequences of num-
bers and the wavelet transform described there is designed for such sequences.

12 1 Introduction

The corresponding notions, wavelet constructions, signal transform and re-
construction formulae are given in this chapter. Most important for practical
applications is the existence of fast algorithms both for transformation and re-
construction. They are also described in this chapter together with MATLAB
implementations. Thereafter again applications and case studies are presented.
In this context we shall also comment on real-time properties of fast wavelet
algorithms. Section 3.7 provides exercises.

Chapter 4 is devoted to a more detailed description of some additional
applications of the wavelet transform. First we shall focus on the most popular
application, namely data compression. Subsequently, an application related to
retrieving images from database management systems is described. Again at
the end of this chapter some exercises are presented.

As far as mathematics is concerned, we assume some familiarity of the
reader with basic calculus like integral calculus and complex numbers. We
shall give no rigorous proofs of mathematical statements, rather we want
to provide some intuitive insight into the essence of these statements and
their practical meaning. More mathematical details related to background
and applications of wavelets are collected in the appendix. It is intended to
support the reader, if he or she feels that some additional information would
be helpful to understand the main body of the text. Moreover, the appendix
contains solutions to selected problems from the exercises and provides a list
of frequently used symbols and notations.

2

Continuous Analysis

In chap. 1 we introduced local transforms of continuous-time signals. These
transforms now will be studied in more detail. In particular the concept of
phase space localization will lead to the selection of a proper window function
for the STFT.

Moreover, we will sketch fast algorithms and their implementation in
MATLAB for computing both the STFT and the continuous wavelet trans-
form. For both transforms reconstruction formulae will be provided.

Finally two industrial case studies are presented. The first case study deals
with applications of the wavelet transform and the STFT, respectively, to the
analysis of signals occurring at a (light) arc welding process. The second case
study describes, how the above transforms may be used for classifying audio
signals occurring at certain inspection procedures in the automotive indus-
try. Readers primarily interested in applications may first study the definition
parts in sections 2.1.1 and 2.2.1, respectively, then skip the rest of these sec-
tions and proceed directly to sections 2.2.2, 2.2.4 and 2.3.

Throughout this section the continuous-time signal to be analyzed shall be
denoted with f(t). For completeness we also require f(t) to have finite energy
(cf. sect. 5.1). As noted there, essentially all practically relevant signals fulfill
this requirement.

When numerical algorithms and applications enter the picture, we will
not deal with continuous-time signals any more. Instead, we shall con-
sider sequences obtained by sampling the continuous-time signal f(t) for
t = 0, TS, 2TS, . . . , (N − 1)TS . Here TS denotes the “sampling distance” and
the sequence elements are denoted with fk := f(kTS) (k = 0, . . . , N−1). Note,
that in the engineering community also f [k] is used instead of fk. Putting ev-
erything together, we shall adhere to the following notation:

f = {fk}N−1
k=0 = {f(kTS)}N−1

k=0 (2.1)

We shall use the symbol f both to represent either a continuous-time
signal or a discretely sampled signal. The actual meaning always shall be

14 2 Continuous Analysis

clear from the respective context. Our notations concerning discretely sampled
signals are completed with the definitions for the sampling rate νS and the
corresponding circular frequency ωS :

νS :=
1

TS
(2.2)

ωS :=
2π

TS
(2.3)

2.1 The Short Time Fourier Transform (STFT)

2.1.1 Definition, Computation and Reconstruction

Definition

As described in sect. 1.2.3, the STFT performs a local frequency analysis
by shifting a window function w to time t and subsequently computing the
Fourier transform (cf. eq. 5.1) of the product of the signal and the window:

f̂w(ω, t) =

+∞∫
−∞

f(u)w(u − t)e−jωu du (2.4)

As indicated, this formula is also valid when the window function is
complex-valued. In this case, the overline denotes complex conjugation. The
subscript w in the expression f̂w(ω, t) indicates the dependency of the trans-
formed signal on the chosen window function w.

Using the Fourier transform correspondence pairs introduced in sect. 5.1,
eq. 2.4 also may be written as

f(t)w(t − τ) ◦ − • f̂w(ω, τ) (2.5)

This equation is the key both for designing a fast algorithm for computing
the STFT and for reconstructing the signal from the STFT.

For the rest of this section basic knowledge of Fourier transforms and
the discrete Fourier transform as provided in the appendix, sections 5.1 and
5.2, respectively, is required. Readers primarily interested in applications may
proceed from here to sect. 2.3.1 and then continue with sect. 2.2.1.

Computation

Given a sampled signal {f(kTS)}N−1
k=0 (cf. eq. 2.1), the task is to compute a

sampled version of the STFT, i.e. to compute the sequence {f̂w(ω, kTS)}N−1
k=0 .

2.1 The Short Time Fourier Transform (STFT) 15

It will turn out, that a fast algorithm can be given for suitably sampled ω-
values. We describe now both the algorithm and the restrictions under which
it is valid.

Assume f and w to be band-limited and let ωf
max and ωw

max denote the
maximum frequencies of f and w, respectively (cf. sect. 5.2). Analogously,
let ωmax denote the maximum frequency of f(t)w(t − τ). Then, as implied
already by the notation, ωmax indeed does not depend on τ and, moreover,

ωmax ≤ ωf
max + ωw

max. (2.6)

Without going into details, we mention that this inequality essentially is
a consequence from the fact that the spectra of f and w are convolved with
each other.

Now define ωS corresponding to eq. 2.3 and assume that the sampling is
such that the inequality

ωS > 2(ωf
max + ωw

max). (2.7)

is fulfilled. Then eq. 2.6 implies that ωS > 2ωmax. Thus, the Shannon
condition 5.12 is fulfilled for f(t)w(t − τ). Correspondence pair 2.5 together
with theorem 5.1 then leads to the following

Fast algorithm for the computation of f̂w(ω, t):

1. Define the frequency sampling

ωk =
k

N
ωS (k = 0, . . . , mN) (2.8)

where

mN =
{

N
2 (N even)
N−1

2 (N odd)
(2.9)

2. For τ = 0, TS, 2TS, . . . , (N − 1)TS perform the following steps:
a) Define the sequence {f(kTS)w(kTS − τ)}N−1

k=0 and compute
its DFT via the FFT-algorithm. Let the DFT be denoted
with {Gk}N−1

k=0 .

b) Then
f̂w(ωk, τ) = TSGk (k = 0, . . . , mN). (2.10)

Some comments are in place:

1. Usually the sampled signal – in particular the sampling rate ωS – is given.
Thus, if the Shannon condition 5.12 is true for f , eq. 2.7 implies that ωw

max

should be as small as possible in order to avoid distortions by aliasing
effects (cf. sect. 5.2).

16 2 Continuous Analysis

2. The remarks made after theorem 5.1 apply also here. Since finitely sam-
pled signals never are band-limited in the strict sense, at least the spectra
of f and w must be “sufficiently small” outside the respective intervals
[−ωf

max, ωf
max] and [−ωw

max, ωw
max] such that eq. 2.10 is approximately

true.

Reconstruction

In this subsection we shall consider the question how to reconstruct the orig-
inal continuous-time finite-energy signal f(t) from the transformed signal
f̂w(ω, τ). Again we start from correspondence pair 2.5.

Applying the Fourier inversion formula 5.2 to 2.5 we obtain

f(t)w(t − τ) =
1
2π

+∞∫
−∞

f̂w(ω, τ)e+jωt dω

Multiplying this equation on both sides with w(t−τ) and integrating with
respect to τ we obtain for the left-hand side:

+∞∫
−∞

f(t)|w(t − τ)|2 dτ = f(t)

+∞∫
−∞

|w(t − τ)|2 dτ

= f(t)

+∞∫
−∞

|w(u)|2 du

In proceeding from the first to the second line the substitution u = t − τ
has been made.

For the right-hand side we obtain

1
2π

+∞∫
−∞

+∞∫
−∞

f̂w(ω, τ)w(t − τ)e+jωt dωdτ

Equating both sides and resolving for f(t) we finally obtain the “continu-
ous STFT reconstruction formula”

f(t) =

+∞∫
−∞

+∞∫
−∞

f̂w(ω, τ)w(t − τ)e+jωt dωdτ

2π
+∞∫
−∞

|w(u)|2 du

(2.11)

Note that the denominator of this formula does only depend on the chosen
window function w. Thus it may be precomputed and stored. But even then

2.1 The Short Time Fourier Transform (STFT) 17

for practical applications the usefulness of eq. 2.11 is limited. For sampled sig-
nals and the corresponding STFT the numerical approximation of the double
integral in the numerator by some quadrature formula leads to an unaccept-
able computational effort.
Instead, assume that the sampling {f(kTS)}N−1

k=0 (cf. eq. 2.1) of a continuous-
time finite energy signal f(t) is given, which fulfills eq. 2.7. Assume, moreover,
that the algorithm described in eqs. 2.8 – 2.10 has been performed, resulting
in the computation of

f̂w(ω, τ) (τ = 0, TS, . . . , (N − 1)TS ; ω = 0,
1
N

ωS , . . . ,
mN

N
ωS)

with mN given by eq. 2.9.
Then we use the correspondence pair eq. 2.5 again to reconstruct

{f(kTS)}N−1
k=0 as follows:

Fast STFT-reconstruction:

1. For a given τ define with ωk = k
N ωS (k = 0, . . . , mN) the se-

quence Gk := 1
TS

f̂w(ωk, τ)(k = 0, . . . , N − 1), where the coeffi-
cients Gk(k = mN + 1, . . . , N − 1) result from

GN−1
!= G1, GN−2

!= G2, . . .

(cf. sect. 5.2).
2. Then apply the inverse DFT (eq. 5.14) to this sequence, resulting

in the sequence {f(kTS)w(kTS − τ)}N−1
k=0 . Schematically:

{Gk}N−1
k=0

IDFT−→ {f(kTS)w(kTS − τ)}N−1
k=0 (2.12)

3. Perform the steps above for a suitable subset {τi}I
i=1 of τ -values,

such that τ1 = 0, τI = (N − 1)TS and w(kTS − τi) is nonzero for
any kTS in the interval [τi, τi+1]. Then on these intervals f(kTS)
may be reconstructed by dividing the sequence obtained above
through w(kTS − τi).

We remark that the signal can be recovered by performing steps 1 and
2 above for every τ -value. Step 3 aims at reducing the computational effort,
since the IDFT-computation needs to be carried out only for a subset of τ -
values.

MATLAB-implementations of the STFT-algorithms presented in this sec-
tion are discussed in sect. 2.1.3.

18 2 Continuous Analysis

2.1.2 Phase Space and Localization Parameters

In this section we adopt and deepen the viewpoint on the STFT described in
sect. 1.2.3. The concept of localization parameters introduced in sect. 5.1 will
lead us to the choice of a certain window function w.

Thus first we rewrite the STFT-formula 2.4 as

f̂w(ω, t) =

+∞∫
−∞

f(u)g(ω,t)(u) du (2.13)

where

g(ω,t)(u) = ejuωw(u − t) (2.14)

(cf. sect. 1.2.3). Assume that the window function has the following local-
ization parameters (for the corresponding definitions cf. eqs. 5.6 – 5.9):

tw = 0, ωw = 0, ∆tw, ∆ωw.

Then it is an easy exercise to verify that the localization parameters of
g(ω,t) read

tg(ω,t) = t, ωg(ω,t) = ω, ∆tg(ω,t) = ∆tw, ∆ωg(ω,t) = ∆ωw.

The corresponding cells in the phase plane (cf. sect. 5.1) are drawn in Fig.
2.1.

�t

�

ω ∆ωw

∆tw

Fig. 2.1. Cells in phase plane, occupied by w (solid) and g(ω,t) (dashed) , respec-
tively.

Thus, the transition w = g(0,0) → g(ω,t) corresponds to a pure shift of the
cell in the phase plane. Shape and size remain unchanged!

Obviously, an optimal resolution both in time and frequency can be
reached if ∆tw and ∆ωw both are as small as possible. Having the fast STFT-
algorithm 2.8 – 2.10 in mind, we remark that condition 2.6 is another strong
argument for having an as small as possible ∆ωw-value.

2.1 The Short Time Fourier Transform (STFT) 19

Because of the Heisenberg uncertainty principle 5.10 ∆tw and ∆ωw cannot
both get arbitrarily small. Therefore the optimal choice with respect to time
and frequency resolution is the Gauss-function g given in 5.11. It minimizes
the product ∆tw∆ωw.

The STFT with the corresponding window

w(t) =
1
4
√

π
e−

t2
2 . (2.15)

is also called “Gabor transform”.

2.1.3 Implementation with MATLAB and Visualization

For this section we assume the reader to have basic familiarity with MAT-
LAB. In particular, knowledge of matrix and vector manipulations and func-
tions like fft(f) (computation of the DFT of the sequence f) and ifft(F)
(computation of the IDFT of the sequence F) is required.

We turn now to a short description of a MATLAB-implementation of the
STFT-algorithm 2.8 – 2.10. Subsequently, the implementation of the recon-
struction algorithm leading to 2.12 is discussed.

The corresponding MATLAB-m-files have been tested with MATLAB 6.5,
release 13 and may be downloaded from the URL given in sect. 1.3.

Fast STFT-Computation

The algorithm is implemented in the function mystft.
A prototype call of this function reads

[t,y,matrix]=mystft(signal,T,stept,ommin,stepom,ommax,text);

We first give a short explanation of the input parameters. The string text
allows for a comment to be included in the title of the graphics generated
by the function. The sampled signal is represented by the vector signal, T
denotes the sampling distance, ommin, stepom, ommax are minimum index,
stepwidth and maximum index in the frequency sampling 2.8, for which the
desired f̂w(ω, t)-values are computed. Thus, in particular, the user must take
care of the restriction

ommax ≤ mN

with mN defined by 2.9. N denotes the signal length. In order to reduce
the computing effort, stept was introduced. For, e.g., stept=3, steps 2a) and
2b) of the algorithm are performed only for every 3rd value of the time vector
t=(0:(N-1))*T. The f̂w(ω, t)-values for intermediate times are obtained by
replicating the last computed values.

As a result of the algorithm the computed f̂w(ωk, ti)-values are stored in
the matrix matrix, with k numbering rows and i numbering columns. This

20 2 Continuous Analysis

matrix is visualized as, e.g., in Fig. 1.6 using the imagesc-function. Together
with the signal y and the time vector t it is returned by the function.

The basic computation and replication code is listed below:

%Loop for increasing time
for index=1:stept:N,

y=feval(window,(t-t(index))/sigma).*signal;
column=conj((fft(y))’);
column=column(ommin:stepom:ommax);
ifill=min(stept,N-index+1);
for i=1:ifill,

matrix(:,index+i-1)=column;
end

end

The window function must be provided as a function file, its name is stored
in the string window, sigma denotes an additional user control of the window
width.

Fast STFT-Reconstruction

The corresponding function reads myistft.
A prototype call:

[t,reco,matrix]=myistft(matrix,T,stept);

Here matrix denotes the result of an STFT-computation with mystft.
Since for the reconstruction algorithm the complete frequency sampling 2.8 is
required, in the preceding mystft-call only the signal, the sampling distance
and the time increment should be specified, since the complete frequency
sampling then is computed by default. Moreover, for the STFT-computation
and the reconstruction obviously the same window function and corresponding
width must be used, mystft and myistft request these entities from the user.

stept denotes the length of the reconstruction intervals in multiples of the
sampling time T (cf. step 3 of the reconstruction algorithm). It is recommended
to choose it identical with the time step parameter in the preceding mystft-
call, provided the shifted window-values do not vanish on this interval (cf.
step 3 of the reconstruction algorithm).

Thus a typical dialogue is as follows:

>> [t,y,matrix]=mystft(signal,.017,10);
Enter window (in quotes): ’gauss’
Window width: 1
>> [t,recostft,matrix]=myistft(matrix,.017,10);
Enter window (in quotes): ’gauss’
Window width: 1
>>

For more implementation details the reader is referred to the source file.

2.2 The Continuous Wavelet Transform (CWT) 21

2.2 The Continuous Wavelet Transform (CWT)

2.2.1 Definition, Computation and Reconstruction

Definition

The (continuous) wavelet transform has been listed already in sect. 1.2.4,
formula 1.5. We shall now give the precise formulation using the symbol ψ for
the wavelet in accordance with the general use (cf., e.g., [7]).

Choose a finite energy function ψ(t) fulfilling the “admissibility condition”

cψ := 2π

∞∫
−∞

|ψ̂(ω)|2
|ω| dω < ∞. (2.16)

Any finite energy function satisfying 2.16 will be called a “wavelet”. Then
the “continuous wavelet transform” (CWT) of the signal f(t) is denoted with
Lψf(a, t) and reads

Lψf(a, t) =
1√
cψ

1√|a|

∞∫
−∞

ψ

(
u − t

a

)
f(u) du (a �= 0), (t ∈ R). (2.17)

Again, the overline denotes complex conjugation if ψ(t) is complex valued.
Some remarks might be appropriate here:

1. When comparing formula 2.17 with formula 1.5, note that in the latter
formula for simplicity reasons the constant factor 1√

cψ
, related to the

admissibility condition 2.16, has been omitted.
2. For practically relevant wavelets admissibility condition 2.16 is fulfilled,

when

+∞∫
−∞

ψ(t) dt = 0. (2.18)

Thus, as stated in sect. 1.2.4, ψ will oscillate around the t-axis, since the
contributions of positive and negative function values to the total area,
bounded by the function graph and the t-axis, must cancel each other.
Since, moreover, ψ(t) is of finite energy, for t → ±∞ the function ψ(t)
will decrease rapidly. Both facts taken together explain the term “wavelet”
for the function ψ(t). The “Haar-wavelet” has already been mentioned in
sect. 1.2.4. In sect. 2.2.2 it once more will be treated together with further
wavelet examples.

22 2 Continuous Analysis

3. As explained in sect. 1.2.4, the CWT 2.17 is a kind of multiresolution
analysis, since Lψf(a, t) provides information about signal details of size
≈ a. Correspondingly, a will be called “detail size” or “scale factor”. As
noted in 1.2.4, scale factors and frequencies are inversely proportional to
each other. Since the proportionality constant in eq. 1.4 depends on the
wavelet, the correct relation reads

a =
βψ

ω
. (2.19)

Readers mainly interested in applications may skip the rest of this section
and proceed from here to sect. 2.2.2 and then to sect. 2.2.4.

The rest of this section and sect. 2.2.3 require basic knowledge of Fourier
transforms and the discrete Fourier transform (cf. appendix, sections 5.1 and
5.2, respectively).

Equation 2.17 may be rewritten as a convolution: With

ψa(t) := ψ

(−t

a

)
(2.20)

we obtain

Lψf(a, t) =
1√
cψ

1√|a|

∞∫
−∞

ψa(t − u)f(u) du.

Then from the convolution theorem (eq. 5.5) we may conclude that

Lψf(a, t) ◦ − • 1√
cψ

1√|a| ψ̂a(ω)f̂(ω). (2.21)

Similarly to eq. 2.5 in the STFT-case, eq. 2.21 is the key both for a
fast CWT-computation-algorithm and for reconstructing the signal from the
CWT.

Computation

Given a sampled signal {f(kTS)}N−1
k=0 (cf. eq. 2.1), we will describe now an

algorithm to compute a sampled version of the CWT. As a result, we will
compute the sequence {Lψf(a, kTS)}N−1

k=0 for a �= 0. We describe now both
the algorithm and the restrictions under which it is valid.

Assume f and ψ to be band-limited and let ωf
max, ωψ

max and ωψa
max denote

the maximum frequencies of f , ψ and ψa, respectively (cf. sect. 5.2). Analo-
gously, let ωmax denote the maximum frequency of Lψf(a, t). Then it is not
hard to show that

ωψa
max =

1
|a|ω

ψ
max.

2.2 The Continuous Wavelet Transform (CWT) 23

Now assume that the sampling is such that the Shannon condition 5.12 is
valid both for f(t) and ψa(t), i.e.

ωS > 2 max
(

ωf
max,

1
|a|ω

ψ
max

)
. (2.22)

Then the Shannon condition automatically is satisfied for Lψf(a, t):

ωS > 2ωmax. (2.23)

This is true, since by 2.21 the spectrum of Lψf(a, t) will vanish if the
spectrum of ψa(t) or the spectrum of f(t) vanishes. Therefore

ωmax = min
(

ωf
max,

1
|a|ω

ψ
max

)
and 2.22 then implies 2.23.
Thus, if 2.22 is valid, the spectra of f(t), ψa(t) and Lψf(a, t) can be

computed with the DFT as described in theorem 5.1, eq. 5.16. This leads to
the following

Fast algorithm for the computation of Lψf(a, t) (a �= 0):

1. Define the sequence {ψa(kTS)}N−1
k=0 , where ψa is defined in eq.

2.20.
2. Compute the DFT of this sequence resulting in a se-

quence {Ak}N−1
k=0 . Moreover, compute the DFT {Fk}N−1

k=0 of
{f(kTS)}N−1

k=0 .
3. Apply the IDFT to the product sequence 1√

cψ|a|{FkAk}N−1
k=0 to

obtain {Lψf(a, kTS)}N−1
k=0 . Schematically:

1√
cψ|a|

{FkAk}N−1
k=0

IDFT−→ {Lψf(a, kTS)}N−1
k=0 . (2.24)

We conclude this section with some remarks:

1. The algorithm can be performed for any scale factor a �= 0. Practically
relevant are positive scale factors; for the sampling considered here, one
usually takes a = TS, 2TS, . . . , (N − 1)TS .

2. Again, usually the sampling distance TS is given a priori. Thus for small
scale factors one must be aware that eq. 2.22 is not valid any more. There-
fore the algorithm inevitably will lead to distortions for a → 0.

3. In analogy to the STFT-algorithm, the remarks made after theorem 5.1
apply also here. Since finitely sampled signals never are band-limited in
the strict sense, again “maximum frequencies” must be understood such
that the respective spectra are sufficiently small outside [−ωf

max, ωf
max]

and [−ωψ
max, ωψ

max], respectively.

24 2 Continuous Analysis

Reconstruction

In this subsection we shall consider the question how to reconstruct the orig-
inal continuous-time finite-energy signal f(t) from the CWT Lψf(a, t). Simi-
larly to the STFT-case we start from the correspondence pair eq. 2.21.

An easy calculation shows how the Fourier transform of ψa(t) may be
expressed in terms of the Fourier transform of ψ. Inserting the result in the
correspondence pair 2.21 one obtains

Lψf(a, t) ◦ − •
√

|a|
cψ

ψ̂(ωa)f̂(ω). (2.25)

Recall (cf. sect. 5.1) that this relation is only a shorthand notation for

+∞∫
−∞

Lψf(a, t)e−jωt dt =

√
|a|
cψ

ψ̂(ωa)f̂(ω). (2.26)

The detailed calculations in the following procedure are left to the reader.
We shall only write down the basic steps and the ideas behind them:

1. Multiply both sides of eq. 2.26 with

ψ̂(ωa)
|a| 32√cψ

.

and integrate with respect to a. Recalling definition 2.16 of cψ, the purpose
of this procedure is to eliminate all terms depending on ψ̂ on the right-
hand side.
After the multiplication and integration procedure, the new right-hand
side will read

1
2π

f̂(ω).

Equating this with the corresponding new left-hand side, we obtain a
formula which computes f̂(ω) from the CWT Lψf(t, a).

2. Applying now the Fourier inversion formula 5.2 to both sides we end up
with the desired reconstruction formula. It reads

f(t) =
2π√
cψ

∞∫
−∞

∞∫
−∞

Lψf(a, u)
1√|a|ψ

(
t − u

a

)
duda

a2
(2.27)

With the same reasoning as for the STFT reconstruction formula 2.11
we note that the above reconstruction integral is only of limited practical
relevance if sampled signals and the corresponding CWT are given.

2.2 The Continuous Wavelet Transform (CWT) 25

Instead - in analogy to the STFT procedure - one may obtain a reconstruc-
tion algorithm essentially by reversing the steps of the computation algorithm
given above.

Assume that the sampling {f(kTS)}N−1
k=0 (cf. eq. 2.1) of a continuous-time

finite energy signal f(t) is given such that eq. 2.22 is fulfilled. Assume, more-
over, that the algorithm described above has been performed. Thus after eval-
uating eq. 2.24, the sequence

{Lψf(a, kTS)}N−1
k=0 .

is given.
Then we use the correspondence pair eq. 2.21 again to reconstruct

{f(kTS)}N−1
k=0 as follows:

Fast CWT-reconstruction:

1. Compute the sequence {ψa(kTS)}N−1
k=0 , where ψa is defined in

eq. 2.20 and compute the corresponding DFT denoted with
{Ak}N−1

k=0 .
2. Compute the DFT of the sequence {Lψf(a, kTS)}N−1

k=0 . Let us
denote it with {Bk}N−1

k=0 .
3. Compute the sequence {Fk}N−1

k=0 where

Fk =
√

cψ|a|Bk

Ak
. (2.28)

4. Then apply the inverse DFT (eq. 5.14) to this sequence, resulting
in the sequence {f(kTS)}N−1

k=0 . Schematically:

{Fk}N−1
k=0

IDFT−→ {f(kTS)}N−1
k=0 (2.29)

Note that eq. 2.28 requires Ak to be nonzero for all k. If this is not the
case, steps 1 – 3 must be repeated for suitable a-values, such that {Fk}N−1

k=0

completely may be recovered before computing 2.29.
Nevertheless, if the scale factor a is such that Ak �= 0 (k = 0, . . . , N − 1),

the algorithm described above leads to a recovery of the sampled signal from
the corresponding CWT from a single a-value! This is an indication for the fact
that the information stored in the Lψf(a, t)-coefficients is highly redundant.
We will reduce this redundancy later (cf. chap. 3).

MATLAB-implementations of the CWT-algorithms presented in this sec-
tion are discussed in sect. 2.2.3.

26 2 Continuous Analysis

2.2.2 Wavelet Examples

As mentioned in sect. 2.2.1, most practically relevant wavelets satisfy the ad-
missibility condition 2.16 if relation 2.18 is fulfilled. Generalizing this relation
we shall construct “wavelets ψ(t) with M vanishing moments” (cf. eq. 2.31).

The practical implications of condition 2.31 will be illustrated below.

Construction principle

Let Φ(t) denote a piecewise smooth function being M -times differentiable and
satisfying some additional slight technical restrictions. Define the wavelet ψ(t)
by

ψ(t) :=
dMΦ

dtM
(t). (2.30)

Then one may show that ψ(t) has M vanishing moments, i.e.

+∞∫
−∞

ψ(t)tm dt = 0 (m = 0, 1, . . . , M − 1). (2.31)

The interested reader is encouraged to prove this in the exercises.

M = 1: The Haar-wavelet

Consider

ΦH(t) =

⎧⎨
⎩

t 0 ≤ t < 1
2

1 − t 1
2 ≤ t < 1

0 else

The corresponding wavelet is called “Haar-wavelet” and reads

ψH(t) :=
dΦH

dt
(t) =

⎧⎨
⎩

1 0 ≤ t < 1
2−1 1

2 ≤ t < 1
0 else

(2.32)

Condition 2.31 for the Haar-wavelet reads

+∞∫
−∞

ψH(t) dt = 0.

2.2 The Continuous Wavelet Transform (CWT) 27

M = 2: The Mexican-hat-wavelet

Here

ΦMH(t) = − 2√
3
π− 1

4 e−
t2
2

The corresponding wavelet is called “Mexican-hat-wavelet” and reads

ψMH(t) :=
d2ΦMH

dt2
(t) =

2√
3
π− 1

4 (1 − t2)e−
t2
2 (2.33)

Condition 2.31 for the Mexican-hat-wavelet reads

+∞∫
−∞

ψMH(t) dt =

+∞∫
−∞

ψMH(t)t dt = 0.

Plots

Both wavelets treated so far are shown in Fig. 2.2. The wavelets are plotted
as solid lines, the respective Φ-functions are dashed.

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

ψ
H
(t)

Φ
H
(t)

ψ
MH

(t)

Φ
MH

(t)

Fig. 2.2. Haar-wavelet and Mexican-hat-wavelet (below).

Practical implications of the vanishing moments condition

When for a given scale a and a given time t the CWT

28 2 Continuous Analysis

Lψf(a, t) =
1√
cψ

1√|a|

∞∫
−∞

ψ

(
u − t

a

)
f(u) du

is computed, only those u-values will contribute, where ψ
(

u−t
a

)
is nonzero.

Assume that these values constitute an interval I(a,t). Now assume that ψ(t)
has M vanishing moments and the signal f(u) on I(a,t) may be modeled by a
polynomial of degree k with k < M . Then one may show that Lψf(a, t) = 0.
Again, the interested reader may work on the proof in the exercises.

This result can be interpreted as follows: Assume that every “smooth” part
of the signal may be represented by a certain polynomial and signal changes
are modeled by switching the polynomial to a new one. In other words: The
signal is modelled by piecewise polynomial functions. Then signal changes
will be well localized by the CWT provided the wavelet ψ(t) has enough
vanishing moments. The reason is that in the smooth parts the CWT will
vanish if the number of vanishing moments is large enough and the CWT will
be concentrated around the time values, where signal changes (i.e. changes in
the polynomials) occur.

This is illustrated in Fig. 2.3. Here the signal consists of two differ-
ent straight lines (i.e. polynomials of degree k = 1) connected together at
t = 5000. Recall (see above) that the Mexican-hat-wavelet has 2 vanishing
moments, whereas the Haar-wavelet only has 1 vanishing moment. Thus, one
expects that respective CWT should be better concentrated around the con-
nection time for the Mexican-hat-wavelet than for the Haar-wavelet. This is
clearly visible in Fig. 2.3. Note also that the Haar-wavelet leads to nonzero
CWT values in the “smooth” signal parts in contrast to the Mexican-hat-
wavelet.

The Morlet-wavelet

We close this section with the “Morlet-wavelet” which was among the first
wavelets to be explored for signal analysis purposes [11].

It is complex valued and reads

ψM (t) = π− 1
4 (e−jαt − e−

α2
2)e−

t2
2 (α = π

√
2

ln 2
). (2.34)

Since the corresponding wavelet transform LψM f(a, t) will be a complex-
valued function, it may be decomposed into absolute value and phase corre-
sponding to

LψM f(a, t) = |LψM f(a, t)|ejΦM (a,t). (2.35)

For possible applications of the phase function ΦM (a, t) the reader is re-
ferred to sect. 2.2.4.

2.2 The Continuous Wavelet Transform (CWT) 29

1000 2000 3000 4000 5000 6000 7000 8000

0

2

4

1000 2000 3000 4000 5000 6000 7000 8000

50

100

150

200

1000 2000 3000 4000 5000 6000 7000 8000

50

100

150

200

Signal

CWT with Haar−Wavelet

CWT with Mexican−hat−Wavelet

Fig. 2.3. Top: Signal. Middle: CWT with the Haar-wavelet. Bottom: CWT with
the Mexican-hat-wavelet.

2.2.3 Implementation with MATLAB and Visualization

At the beginning of sect. 2.1.3 some preliminary statements concerning MAT-
LAB have been made. They apply also to this section and will not be repeated
here.

In this section we shall describe MATLAB-implementations both of the
CWT-algorithm leading to 2.24 and of the corresponding reconstruction al-
gorithm leading to 2.29. Again, the respective MATLAB-m-files have been
tested with MATLAB 6.5, release 13 and may be downloaded from the URL
given in sect. 1.3.

Fast CWT-computation

The corresponding function file reads mycwt. A sample function call is shown
in the next line:

[t,y,matrix]=mycwt(signal,T,start,step,stop,comment);

Analogously to mystft the vector signal denotes the sampled signal, T the
sampling distance, the string comment is included in the title of the graphics
generated by the function. The parameters start,step and stop denote min-
imum index, increment and maximum index of the scale factors for which the
CWT is computed, measured in multiples of T. Thus in MATLAB-notation
the resulting scale values are given by the vector (start:step:stop)*T.

As a result of the algorithm the computed Lψf(ai, kTS)-values are stored
in the matrix matrix, with k numbering columns and i numbering rows. The
ai-values are the entries of the above vector containing the scale values. This

30 2 Continuous Analysis

matrix again is visualized as, e.g., in Fig. 1.6 using the imagesc-function.
Since for complex-valued wavelets the phase plot of this matrix might be of
interest (cf. sect. 2.2.4), the function allows both for a visualization of the
absolute value of matrix and of its phase.

The basic computation code is listed below

%Initializations of scale factors and Fourier transform
a=(start:step:stop)*T;
rows=length(a);
yhat=fft(y);

%Matrix-Initialization
matrix=zeros(ze,n);

%Loop for increasing scale factors
for i=1:rows,

psi_scale=conj(feval(wav,-t./a(i)));
psi_scale_hat=fft(psi_scale);

%Time translation such that minimal time=0
trans=exp((-j*t(1)*(0:(N-1))*oms/N));
%Fourier transform of wavelet transform;
conv_hat=((yhat.*psi_scale_hat).*trans)/sqrt(a(i));

matrix(i,:)=ifft(conv_hat);
end

The wavelet must be provided as a function file, whose name is stored in
the string wav.

The code should be fairly self-explanatory for a reader used to MATLAB-
notation and having worked through sect. 2.2.1. A comment on the time
translation vector trans should be added, however.

As mentioned in sect. 2.2.1 the CWT will be computed for the sampled
time values 0, TS, 2TS, . . . , (N − 1)TS. Thus, in particular, all time values will
be ≥ 0. On the other hand, the computation of

ψa(t) := ψ

(−t

a

)

is required. This implies that for wavelets, which are zero for t < 0 ψa(t)
will vanish for t > 0, thus in particular for the above time sampling. The
Haar-wavelet 2.32 is a simple example for such a wavelet. Therefore in mycwt
the time vector t is designed such that t = 0 corresponds to the middle of the
signal. Hence, the resulting CWT must be shifted with respect to the time
domain such that after te shift the smallest t-value corresponds to t = 0. In
the Fourier domain this time shift may be realized by a multipication with

2.2 The Continuous Wavelet Transform (CWT) 31

phase factors, which are collected in the vector trans. In the definition of this
vector oms denotes the sampling circular frequency.

Fast CWT-reconstruction

The reconstruction algorithm is implemented in the function file myicwt. A
prototype call to this function reads

[t,reco,matrix]=myicwt(matrix,T,start,step,stop);

matrix is the result from a preceding call of mycwt, T again denotes the
sampling distance. As with the mycwt-function from the respective input pa-
rameters the scale vector a=(start:step:stop)*T is constructed. The en-
tries of these vectors are scanned in order to select a component ai such
that the sequence {Ak}N−1

k=0 resulting from applying the DFT to the sequence
{ψai(kTS)}N−1

k=0 is nonzero for all k (cf. computation step 2.28 in the recon-
struction algorithm). If such an ai does not exist, the program will not work
properly!

It is recommended to choose the scale-related input parameters start,
step and stop identical to the respective parameters in the preceding mycwt-
call. Thus, a typical dialogue reads:

>> [t,y,matrix]=mycwt(y,.01,1,1,200,’’);
Enter wavelet (in quotes): ’mex_hat’
>> [t,reco,matrix]=myicwt(matrix,.01,1,1,200);
Enter wavelet (in quotes): ’mex_hat’

Note that obviously both in the mycwt- and the myicwt-call the same
wavelet must be selected! In both functions the name of the wavelet function
file is requested from the user. The reconstructed signal is stored in the vector
reco.

A note on the MATLAB Wavelet Toolbox

The MATLAB Wavelet Toolbox [24] provides the cwt-function in order to
perform a CWT. Below a typical function call is shown:

matrix=cwt(y,1:1:200,’mexh’);

The meaning of the respective parameters should be clear from the dis-
cussion above. Note that the start-, step- and stop-parameters from above
must be merged to an input vector of the kind start:step:stop. Note also
that the chosen wavelet must be specified by a corresponding input string, in
the above example ’mexh’ selects the Mexican-hat-wavelet 2.33.

As with all other features of the MATLAB Wavelet Toolbox the CWT
also may be invoked from a graphical user interface which is launched by the
wavemenu-command.

The other local transforms treated in this chapter (STFT, inverse STFT,
inverse CWT) are not supported by the MATLAB Wavelet Toolbox.

32 2 Continuous Analysis

2.2.4 Application: Detection of Signal Changes

In sect. 2.2.2 we modeled signals by piecewise polynomial functions. “Smooth”
parts of the signal corresponded to time intervals, where the signal was rep-
resented by a fixed polynomial. The time values where two different polyno-
mials are connected corresponded to “signal changes”. In this section we will
consider a more subtle example and discuss CWT-experiments with varying
wavelets.

The model signal reads

f(t) =
{

cos(t − π) t < π
cos(2t − 2π) t ≥ π

Obviously, the first derivative df
dt (t) is continuous, whereas the second

derivative is discontinuous at t = π. Thus, we have a kind of “hidden” signal
change occurring not in the signal itself but in some higher derivative.

In the first experiment we computed the CWT of this signal with the
complex Morlet-wavelet 2.34. Figure 2.4 visualizes the phase ΦM (a, t) of
LψM f(a, t) (cf. eq. 2.35).

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

Testsignal. Scale parameters: a
start

=1,δ
a
=1,a

stop
=100.

t

a

1 1.5 2 2.5 3 3.5 4

0.02

0.04

0.06

0.08

0.1

Fig. 2.4. CWT of the testsignal with the Morlet-wavelet 2.34, Phase plot.

The time where the signal change occurs is localized very clearly by straight
lines converging to t = π. This qualitative behavior of the phase representation
(convergence to points of signal changes) has been reported already very early
(cf. the article of A. Grossmann, R. Kronland-Martinet and J. Morlet in [6]).

In chap. 3 we will introduce the famous family of Daubechies wavelets [7].
For a more detailed treatment we refer to this chapter. Here we only remark

2.3 Case Studies 33

that the members of this family are numbered with dbn (n = 1, 2, 3, . . .).
An important aspect for signal analysis purposes is that dbn-wavelets have n
vanishing moments (cf. eq. 2.31)!

Figure 2.5 shows the wavelet transform of the above signal with the db2-
wavelet for three increasing scale factors (cf. figure caption; TS denotes the
sampling distance).

1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

f

db2−wavelet

−1
0
1

x 10
−6

d1

−10
−5

0
5

x 10
−6

d2

1 1.5 2 2.5 3 3.5 4
−4
−2

0
2
4

x 10
−5

d3

Fig. 2.5. Top: Signal. Below: Wavelet transforms for a = TS , a = 2TS , a = 4TS

(from above). Wavelet: db2.

Figure 2.6 shows the same results using the db4-wavelet.
The figures confirm the qualitative behavior mentioned already in sect.

2.2.2: With increasing number of vanishing moments the respective wavelet
transforms tend to be better localized around significant signal changes. Cor-
respondingly, the vanishing in “smooth” signal regions is more pronounced
for wavelets with a large number of vanishing moments.

Related to this is the fact that the dbn-wavelets tend to be “smoother”
with increasing n. We will not stress these topics here; for an easy-to-read
summary the reader is referred to [24].

2.3 Case Studies

2.3.1 Analysis of Sensor Signals

All signals discussed in this section were recorded in the sensor of a robot,
carrying out a (light) arc welding process. The arc itself is used as a sensor
measuring the distance from the welding tool to the workpiece.

34 2 Continuous Analysis

1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

f

db4−wavelet

−2
0
2

x 10
−7

d1

−5

0

5

x 10
−7

d2

1 1.5 2 2.5 3 3.5 4

−2

0

2
x 10

−6

d3

Fig. 2.6. Top: Signal. Below: Wavelet transforms for a = TS , a = 2TS , a = 4TS

(from above). Wavelet: db4.

The results described in the following paragraphs have been obtained with
the MATLAB-functions mystft and mycwt (cf. sections 2.1.3 and 2.2.3, re-
spectively).

STFT-application

The first example to be presented is the STFT analysis of such a signal. Here
the welding robot performs an oscillatory motion which is transversal to the
welding seam. Without going into details of the technology we mention that
the frequency of this oscillation at t ≈ 3 sec should get doubled from ν ≈ 3 Hz
to ν ≈ 6 Hz.

The sensor signal is shown in the upper part of Fig. 2.7.
It obviously is heavily corrupted with noise. The lower part of Fig. 2.7

shows the absolute values of the respective STFT signal. The STFT is coded
with gray values as described in sect. 1.2.5. To simplify evaluation, the STFT
was represented on the t-ν-plane in contrast to Fig. 1.6, where it was repre-
sented on the t-ω-plane.

Obviously, the frequency doubling mentioned above clearly is localized
with the STFT. Moreover, the STFT shows how the corruption with noise
leads to additional high-frequency components in the signal.

The window function used for the STFT-computation was the Gaussian
window 2.15. Thus, actually the Gabor transform of the signal was computed.

CWT-applications

Before discussing further examples of sensor signals occurring at an arc weld-
ing process, we remark that we will analyze signals stemming from three differ-

2.3 Case Studies 35

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

2

Sensor Signal. Parameter: δ
x
=5,k

min
=20,δ

k
=1,k

max
=200,σ=1.0

t

ν

0 2 4 6 8 10 12 14

2

4

6

8

10

12

Fig. 2.7. STFT example: Signal (above) and STFT (below). Here the Gabor-
window (eq. 5.11) has been used.

ent technologies, the details of which cannot be explained here. We only note,
that they are denoted with the abbreviations “MSG”, “MAG” and “WIG”,
respectively. Apart from their differences they share a common property: usu-
ally the sensor performs an oscillatory motion transversally to the welding
seam. For test purposes this oscillation may be switched off (third signal in
Fig. 2.9). All time- and scale-values in the plots below are measured in seconds.

The result of the CWT analysis of the MAG- and MSG-signals, respec-
tively, is depicted in Fig. 2.8. As expected, it shows bright stripes at scale
factors associated to the wavelengths of the respective oscillations.

This remains true also for the three WIG-signals; the results of their re-
spective CWT analysis are shown in Fig. 2.9. Note in particular the lack of the
corresponding stripe for the third signal, where the oscillation was switched
off.

Visual inspection alone does not reveal noticeable differences between the
various technologies. Yet CWT analysis clearly indicates a difference: WIG-
signals show bright peaks at scale a ≈ 6 sec. Indeed, a posteriori one might
isolate corresponding “peak groups” when inspecting the signals from Fig. 2.9.
This indicates that there exists a corresponding correlation in WIG-signals in
contrast to MSG- and MAG-signals. Note that this correlation is present, even
if the oscillation is switched off (cf. third signal in Fig. 2.9).

This example illustrates that the multiscale investigation of a signal, per-
formed by the CWT, may offer valuable information concerning relevant pa-
rameters of the respective process behind the signal.

36 2 Continuous Analysis

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

MAG−signal. Scale parameters: a
start

=2,δ
a
=2,a

stop
=500.

t[sec]

a[
se

c]

0 5 10 15 20 25 30

1

2

3

4

5

6

7

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

MSG−signal. Scale parameters: a
start

=2,δ
a
=2,a

stop
=500.

t[sec]

a[
se

c]

0 2 4 6 8 10

1

2

3

4

5

6

7

Fig. 2.8. Above: CWT of a MAG-signal. Below: CWT of a MSG-signal.

As a final remark we note that the wavelet used in the transforms visualized
in Figs. 2.8 – 2.9 was the Morlet-wavelet 2.34.

2.3.2 Analysis and Classification of Audio Signals

In this section we describe the analysis of acoustic signals recorded during
certain inspection procedures in the automotive industry1. In some applica-
1 The material presented in this subsection results from a cooperation with AUDI

AG, a major German car manufacturer. It is published with kind permission.

2.3 Case Studies 37

Fig. 2.9. CWT of three WIG-signals.

38 2 Continuous Analysis

tions such a signal may indicate the presence or absence of a defect; thus in
this context it is used for diagnosis purposes. An example is described in [18].
In other cases the recorded signal simply should sound “pleasant” in order
to fulfil comfort requirements. Both cases have in common that a human lis-
tener can discriminate “good” from “bad” signals. In the present section we
describe the first steps towards a trainable classification scheme, based on a
local analysis of such signals. This classification procedure should in principle
be able to perform the above-mentioned discrimination of a human listener
automatically. In order to compare the results of both techniques we used the
CWT and the STFT.

We sketch now the classification procedure.
First the local transform is sampled on a grid of discrete values both with

respect to time and scale (CWT) or time and frequency (STFT). For the CWT
the sampling is illustrated in Fig. 2.10; in the upper half a typical acoustic
signal is displayed.

0 0.5 1 1.5

−0.05

0

0.05

0.1

Acoustic Signal. Scale parameters: a
start

=1,δ
a
=10,a

stop
=1000.

t

a

0 0.5 1 1.5

0

0.05

0.1

0.15

0.2

t
1
 t

2
 t

3

a
1

a
2

a
3

a
4

Fig. 2.10. CWT of an acoustic signal. Sampling for 3 time and 4 scale values.

In the next step from the sampled transform values a pattern vector is
derived which serves as an input to the subsequent classification procedure.
The classificator may be trained with “good” signals, leading to a geometrical
description of the “good class” in the space of pattern vectors2. A given signal
then is classified based on a certain notion of distance to that class.

Figure 2.11 shows some first classification results. Without going into de-
tails we mention that 15 signals were presented to the system. The first 5
2 For an introduction to the basic principles of pattern recognition refer to, e.g.,

[37]

2.3 Case Studies 39

signals were “good”; in the figure they are denoted by io01.mat, ..., io05.mat.
All other signals were “bad”. For a signal to be qualified as “good” it must
reach the maximum score of 9 in the bar graphs. The upper result was ob-
tained with a CWT, the lower result with a STFT, the respective wavelets or
window functions are indicated in the title line of the plots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9
Classification results. CWT (Morlet−wavelet).

iO
0
1.mat

iO
0
2.mat

iO
0
3.mat

iO
0
4.mat

iO
0
5.mat

niO
0
1.mat

niO
0
2.mat

niO
0
3.mat

niO
0
4.mat

niO
0
6.mat

niO
0
7.mat

niO
0
8.mat

niO
0
9.mat

niO
1
0.mat

niO
1
1.mat

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9
Classification results. STFT with Gauss−window (Gabor−transform).

iO
0
1.mat

iO
0
2.mat

iO
0
3.mat

iO
0
4.mat

iO
0
5.mat

niO
0
1.mat

niO
0
2.mat

niO
0
3.mat

niO
0
4.mat

niO
0
6.mat

niO
0
7.mat

niO
0
8.mat

niO
0
9.mat

niO
1
0.mat

niO
1
1.mat

Fig. 2.11. Classification results of acoustic signals.

The results indicate that both transforms are useful in the context of
our investigation, but the wavelet transform presumably leads to a clearer
separation of “good” from “bad”. Note that the Fourier-based procedure leads

40 2 Continuous Analysis

to some misclassifications (false-positives): The “bad” signals nio01.mat and
nio06.mat, respectively, are classified as “good”.

We finally remark that the results presented above were obtained with lin-
early sampled scale values (CWT) or frequency values (STFT), respectively.
An option for future developments is the use of logarithmically sampled scales
or frequencies. The resulting notions of “octaves” and “voices per octave” (for
a short survey of these topics cf., e.g., [38]) proved to be successful when ana-
lyzing speech or music. Here we investigated signals resulting from a technical
process, nevertheless the classification of these signals should perform similar
to the human ear. In [4] a mathematical model of the cochlea, a spiral-like
organ which is essential for hearing, is given, which relates the perception
of the human ear to the CWT and incorporates a logarithmic response to
frequencies!

2.4 Notes and Exercises

Notes

For supplementary reading on the topics treated in this chapter the reader is
referred to the bibliography. References [7] and [20] provide a thorough dis-
cussion of the mathematical foundations of the CWT. In particular, decay
properties of the CWT, essential for quantifying its concentration property
on the “important” signal regions are investigated. The STFT originally was
introduced by D. Gabor [10]. The book [17] provides a nice overview on this
topic. Short and comprehensive reviews of the CWT and STFT are also con-
tained in [1] and [34].

Exercises

1. a) Assume that the Fourier transform correspondence pair

y(t) ◦ − • ŷ(ω)

is given. Show that then

y(t)tm ◦ − • jm dmŷ

dωm
(ω). (2.36)

Hint: Start from

ŷ(ω) =

+∞∫
−∞

y(t)e−jωt dt

and differentiate both sides with respect to ω.

2.4 Notes and Exercises 41

b) Again assume that the Fourier transform correspondence pair

y(t) ◦ − • ŷ(ω)

is given. Show that then

dmy

dtm
(t) ◦ − • (jω)mŷ(ω). (2.37)

Hint: Start from

y(t) =
1
2π

+∞∫
−∞

ŷ(ω)e+jωt dω

and differentiate both sides with respect to t.
2. Given T with T > 0, the “box-window” of width T is defined as

w(t) =
{

1 −T
2 ≤ t ≤ T

2
0 else

Compute the respective localization parameters 5.6 – 5.9.
3. Consider a signal which may be represented by an integrable function f(t)

and denote the first integral with F (t). Show that the CWT computed
with the Haar-wavelet ψH defined in eq. 2.32 for a > 0 reads

LψHf(a, t) =
1√

cψH a

(
2F
(
t +

a

2

)
− F (t) − F (t + a)

)
.

This analytical result provides the possibility to check the fast CWT-
algorithm described in sections 2.2.1 and 2.2.3:
Choose a sample function f(t) such that F (t) is known. Now choose the
a-discretization and the t-discretization from sect. 2.2.1 and compute with
MATLAB the matrix LψH f(ai, tk) using the above expression. Now vi-
sualize the absolute value with imagesc and compare the result with the
visualization obtained from mycwt.
Note that, when gray value coding is used, imagesc automatically maps
the lowest matrix value to black and the highest to white. Thus for vi-
sualization the factor cψH , which only plays the role of a global intensity
factor, may be omitted when computing LψH f(ai, tk).

4. Show that ψ(t) = dM Φ
dtM (t) has M vanishing moments. Steps:

a) Show that ψ̂(ω) = (jω)M Φ̂(ω) using 2.37.
b) Show that ψ(t)tm ◦ − • jm dmψ̂

dωm (ω) using 2.36.

c) Conclude that dmψ̂
dωm (0) = 0 (m = 0, . . . , M − 1) and relate this to the

moment condition 2.31.

42 2 Continuous Analysis

5. Assume that the wavelet ψ has M vanishing moments. Assume, moreover,
that f(t) is piecewise polynomial and the degree of the respective poly-
nomials is below M . Show that then Lψf(a, t) = 0 for “suitable” t and a.
For the precise formulation refer to the section on practical implications
of the vanishing moments condition (page 27 and following pages).

6. Try to implement your own MATLAB functions for computing the CWT
and the STFT, respectively. For assistance refer to sections 2.1.1, 2.1.3,
2.2.1 and 2.2.3.

3

The Discrete Wavelet Transform

3.1 Redundancy of the CWT and the STFT

The local transforms treated in chap. 2 map a continuous-time signal f(t)
to functions of two variables: The STFT f̂w(ω, t) and the CWT Lψf(a, t),
respectively. Thus the transformed signal in a certain sense is “larger” than
the original signal.

This statement may be made more precise by restricting ourselves to the
practically relevant case of a sampled signal and by applying the CWT to such
a signal. The arguments in this introductory section correspondingly may be
extended also to the STFT.

The sampled signal reads

f = {fk}N−1
k=0 = {f(kTS)}N−1

k=0 (3.1)

(cf. eq. 2.1). It may be represented as a row vector of N real numbers.
Applying the fast CWT-algorithm on page 23 for the scale factors a1, . . . , aM

to this vector we obtain the CWT-values

Lψf(ai, kTS) (k = 0, . . . , N − 1; i = 1, . . . , M).

They may be arranged as an M × N -matrix with i numbering rows and
k numbering columns. In fact, all CWT-images discussed so far are visual-
izations of this matrix! Thus the original signal was represented by N real
numbers whereas the transform is represented by MN numbers (which even
may be complex, if the wavelet ψ is complex). Storing and transmitting the
transformed signal on a computer network therefore requires roughly M times
of the corresponding capacities for the original signal!

As we have seen in capter 2, this additional amount of data may be useful
when analyzing the signal, i.e., looking for signal changes, dominant scales
and/or frequencies etc. When performing such signal analysis tasks, the re-
construction formulae of sect. 2.2.1 usually are not needed. They only serve as

44 3 The Discrete Wavelet Transform

an indication that no signal information is “lost”, when applying the CWT.
The application discussed in chap. 4 is signal compression. Here the wavelet
transform can be taken as the first step in a compression procedure and this
step has the following desirable properties:

1. If the original signal consists of N real values, the transformed signal also
should consist of only N real values!

2. The transformed signal values after certain manipulations should allow
for a representation with as few bits as possible. We shall not discuss the
details here, they will be treated in chap. 4.

3. In the “decompression step” the signal should then be reconstructed from
the N manipulated transform values!

Thus, for signal compression purposes we have a different intention; the task
may be formulated as follows:

Is it possible to find wavelets ψ such that the CWT of f is computed
on a discrete subgrid of the t-a-plane only, resulting in (roughly) N
transform values Lψf(ai, tk) such that the original row vector f may
be reconstructed from these values?

An inspection of the fast CWT-reconstruction algorithm described on page
25 shows the redundancy of the CWT Lψf(a, t). If the scale factor a and the
wavelet ψ are chosen such that in formula 2.28 Ak �= 0 for all k, then the
sampled signal {f(kTS)}N−1

k=0 may be recovered by formula 2.29. The left part
of Fig. 3.1 illustrates this situation: For recovering f not all values of the
transform (i.e., the M ×N -matrix mentioned above) are needed; instead, one
single row corresponding to the chosen a-value suffices. In the figure the matrix
is visualized by the rectangular area, the selected row by the horizontal line.
Similarly, for the STFT applied to f under proper conditions it suffices to pick
out a single column from the corresponding N × N -matrix of STFT values
in order to reconstruct f . This can be concluded by inspecting the STFT-
reconstruction algorithm – in particular eq. 2.12 – and is illustrated in the
right part of Fig. 3.1.

In both cases only N transform values are needed to recover the original
signal f , which is a strong indication for the fact that the information stored
in the full CWT-matrix or STFT-matrix, respectively, is redundant.

In fact this is true: Mathematically two different CWT-transform values
Lψf(a1, t1) and Lψf(a2, t2) are related with each other by the “reproducing
kernel condition”. An analogous statement holds for the STFT. For details
refer to, e.g., [20].

The task formulated above, i.e., selecting a proper discrete subset of the t-
a-plane for the CWT (of the t-ω-plane for the STFT, respectively) such that
f completely can be reconstructed from the respective transform values on
these subsets only, can be solved. In the general case it leads to the notion

3.2 The Haar-System 45

t

a

t

ω

Fig. 3.1. Left: Under certain conditions the sampled signal f may be reconstructed
from the corresponding CWT-matrix by selecting one suitable scale factor. Right:
Under certain conditions the sampled signal f may be reconstructed from the cor-
responding STFT-matrix by selecting one suitable time value.

of “frames” [7], for wavelets the most popular version is the “discrete wavelet
transform” (DWT) described in this chapter. In contrast to the situation
illustrated in the left part of Fig. 3.1 the DWT will be a real “multiresolution
analysis” of the signal, since the DWT-values will not be computed for a single
scale factor only.

In the next section we shall discuss the simplest version of such a transform.
We shall work out the aspects, which may be generalized and describe the
general DWT-procedure in sect. 3.3. Section 3.4 is devoted to fast algorithms
and related implementations with the MATLAB Wavelet Toolbox. In sect.
3.5 we will adopt a viewpoint on the developed techniques, which serves as
a preparation for the compression procedures described in chap. 4. In sect.
3.6 some further applications are discussed, notes and exercises finally are
collected in sect. 3.7.

Throughout this chapter we will consider sampled signals as defined in eq.
3.1. As indicated there, the k-th signal value for simplicity reasons mostly will
be denoted with fk instead of f(kTS). Thus, sampled signals are represented
as finite sequences of numbers as indicated in table 5.2 (cf. sect. 5.5). They
are always assumed to be sampled with a sampling distance TS, even if this
is not written down explicitly.

For simplicity in the next sections we shall assume that

TS = 1. (3.2)

The results obtained there may be extended to an arbitrary sampling
distance TS very easily and we shall indicate how.

3.2 The Haar-System

In this section we shall develop the DWT for the Haar-wavelet (cf. eq. 2.32). It
will turn out that the resulting transform is linked to the corresponding CWT

46 3 The Discrete Wavelet Transform

as defined in eq. 2.17. Since the CWT can be applied only to a continuous-
time signal f(t), whereas we start from a discretely sampled signal as defined
in eq. 3.1, it will be necessary to construct a continuous-time signal f(t) from
the discretely sampled signal {fk}N−1

k=0 . We shall show in the first subsection
how this can be done and how to develop the DWT for f(t). It will turn out
that the notion of continuous-time signals may be omitted and the DWT may
be formulated in a purely discrete manner, i.e., for sequences of numbers. The
resulting facts and notions are collected in the second subsection.

As stated already after eq. 2.1, in order to keep notation simple we shall use
the symbol f both to represent either a continuous-time signal or a discretely
sampled signal. The actual meaning always shall be clear from the context.
In sect. 3.2.1 we shall introduce some more continuous-time functions, which
are uniquely connected with sequences. Here the same convention holds.

3.2.1 Continuous-Time Functions

Consider the following discretely sampled signal of length 8:

f = {fk}7
k=0 = {8, 4, 6, 8, 9, 7, 2, 4} (3.3)

Moreover, we need the following function, which is called “scaling func-
tion”:

φH(t) :=
{

1 0 ≤ t < 1
0 else (3.4)

We shall see later that to each wavelet for which a DWT may be con-
structed, there belongs a unique scaling function. This explains the index H
in the above expression, since the scaling function defined by 3.4 belongs to
the Haar-wavelet ψH (cf. eq. 2.32). We shall see later how this relation may
be formulated mathematically.

The scaling function is used to build a continuous-time signal f(t) from
the sequence {fk}:

f(t) :=
7∑

k=0

fkφH(t − k). (3.5)

The top row of Fig. 3.2 shows the sequence {fk} (left) and the corre-
sponding function f(t) (right). It is a superposition of shifted versions of the
scaling function 3.4, each multiplied with the corresponding sequence element.
Thus, the continuous-time signal f(t) will be piecewise constant on intervals
of length one, it is discontinuous at the sampling times.

In the next step we shall construct a “coarser version” f1 of the sequence
f by computing the arithmetic mean of neighboring sequence elements as
indicated below:

3.2 The Haar-System 47

0 2 4 6 8

0

5

10

k
0 2 4 6 8

0

5

10

t

−1 0 1 2 3 4

0

5

10

k
0 2 4 6 8

0

5

10

t

0 2 4 6 8

−2

0

2

t
−1 0 1 2 3 4

−2

0

2

k

Sequences Functions

Fig. 3.2. f , f1 and d1 represented as sequences (left) and functions (right).

f1 = {f1
k}3

k=0 =
{

f0 + f1

2
,
f2 + f3

2
,
f4 + f5

2
,
f6 + f7

2

}
= {6, 7, 8, 3}. (3.6)

Obviously this computation step leads to a length of f1, which is half of
the length of the original signal f . From this new sequence we shall construct a
corresponding continuous-time signal f1(t), which again is piecewise constant,
but now on intervals of length 2! Thus it covers the same time interval as f(t).
Similarly to the procedure described for f(t) it is constructed from rescaled
and shifted versions of the scaling function, multiplied with the corresponding
sequence elements:

f1(t) :=
3∑

k=0

f1
kφH

(
t

2
− k

)
. (3.7)

Both the sequence f1
k and the corresponding continuous-time function

f1(t) are shown in the second row of Fig. 3.2. The coarsening procedure
described above for sequences leads to an analogous procedure for the cor-
responding continuous-time signals: f1(t) is obtained from f(t) by combining
two neighboring steps of width 1 into one step of width 2. The new step height
is obtained from the two former step heights by computing the arithmetic
mean.

48 3 The Discrete Wavelet Transform

The right plot in the third row of Fig. 3.2 shows the difference signal of
f(t) and f1(t), which we shall call d1(t):

d1(t) := f(t) − f1(t). (3.8)

This signal also is called “detail signal”. The reason is that, by definition,
it represents the signal contributions which are needed to recover the original
signal f(t) from the coarsened version f1(t).

An inspection of the plot shows that on the intervals [0, 2], [2, 4], [4, 6]
and [6, 8] the detail signal is of mean zero: A step of a certain height and
width 1 is followed by a step of the same magnitude and width, but with
inverted sign. This is an immediate consequence of the coarsening procedure
discussed above, leading from f(t) to f1(t). The Haar-wavelet (cf. eq. 2.32)
was displayed in the upper part of Fig. 2.2. It consists of exactly two steps
of width 1

2 and the same magnitude but with inverted sign. Therefore, d1(t)
can be written as a superposition of shifted Haar-wavelets, whose width is
doubled and which are multiplied with a proper factor. These factors can be
obtained directly by inspecting the graph of d1(t):

d1(t) = 2ψH

(
t

2

)
− ψH

(
t

2
− 1
)

+ ψH

(
t

2
− 2
)
− ψH

(
t

2
− 3
)

.

We shall formulate this relation in a slightly more general fashion. Define
the sequence

d1 := {d1
k}3

k=0 = {2,−1, 1,−1}. (3.9)

Then d1(t) may be written down similarly to f1(t) (cf. eq. 3.7). But here
we expand with respect to ψH instead of φH and the expansion coefficients
are given by the sequence {d1

k} instead of {f1
k}:

d1(t) =
3∑

k=0

d1
kψH

(
t

2
− k

)
. (3.10)

The sequence {d1
k}3

k=0 is displayed in the left plot in the third row of Fig.
3.2. We obtained it by defining and investigating the continuous function d1(t).
It is important to realize that this sequence also can be obtained directly from
the original discrete signal {fk}7

k=0.

{d1
k}3

k=0 =
{

f0 − f1

2
,
f2 − f3

2
,
f4 − f5

2
,
f6 − f7

2

}
= {2,−1, 1,−1}. (3.11)

Note the similarity of this prescription to eq. 3.6!
We are now ready to formulate the connection of the coarsening and de-

tailing procedure discussed so far to the CWT as defined in eq. 2.17:

3.2 The Haar-System 49

LψH f(2, 2k) =

√
2

cψH

d1
k (k = 0, . . . , 3). (3.12)

The reader is invited to check this in the exercises.
It should be clear how the results and formulae of this section may be

extended to a general discrete signal of length N . Note that via eq. 3.12 the
CWT-values for the Haar-wavelet may be computed by a simple summation
formula as given by eq. 3.11, i.e., without evaluating and approximating the
integral in formula 2.17! But, as we have seen, in this way we obtain LψH f(a, t)
only for a = 2 and t = 2k (k = 0, 1, . . .).

We conclude this section with a collection of the results.

Fast algorithm for the computation of the CWT with the Haar-
wavelet:

1. Start from the discrete signal {fk}, the Haar-wavelet ψH (cf. 2.32)
and the corresponding scaling function φH (cf. 3.4). Define the
continuous-time signal f(t) as in 3.5.

2. Compute the sequences {f1
k} and {d1

k} as in eqs. 3.6 and 3.11,
respectively.

3. Then the CWT with the Haar-wavelet, applied to f(t), for a = 2
and t = 2k (k = 0, 1, . . .) may be evaluated via eq. 3.12.

4. f(t) can be reconstructed as follows: Define the coarsened signal
f1(t) and the detail signal d1(t) as in eqs. 3.7 and 3.10, respec-
tively. Then f(t) = f1(t) + d1(t).

This procedure is a one-step-version of the “discrete wavelet transform”
(DWT), carried out with the Haar-wavelet. We note already here that the
computation may be iterated, starting with f1(t) instead of f(t). This explains
why we speak of a one-step-version. We shall describe the iteration procedure
in some more detail later.

In Fig. 3.3 we visualize the subset of the t-a-plane, on which the CWT-
values are computed via the DWT. Note that f(t) may be reconstructed from
the CWT-values on this subset together with the coarsened signal f1(t)!

3.2.2 Sequences

The computation procedure given in eq. 3.6, leading from {fk} to {f1
k}, may

be represented by the diagram shown in Fig. 3.4. The top row symbolizes the
input sequence {fk} (cf. 3.3), the bottom row the output sequence {f1

k}.
Sequence f1 is obtained as follows: The elements of the input sequence

pointing toward a certain element of the output sequence with an arrow are
multiplied with the corresponding numbers and added at the node, where
the arrows meet. Thus, e.g. f1

0 = f0
1
2 + f1

1
2 . The diagram illustrates the

50 3 The Discrete Wavelet Transform

t

a

�

�

2

0 2 4 6 8

� � � � �

Fig. 3.3. One-step-version of the DWT: Subset of the t-a-plane.

� �

� � � �

f1
1 = 7f1

0 = 6

f0 = 8 f1 = 4 f2 = 6 f3 = 8

�

�
�

�
�

���

1
2

1
2

�

�
�

�
�

���

1
2

1
2

Fig. 3.4. Visualization of eq. 3.6.

computation of the first two elements of {f1
k}. It is clear how to proceed with

the remaining elements.
Comparing Fig. 3.4 with Fig. 5.6 we conclude that the computation of f1

may be written as

f1 = Hf. (3.13)

As explained in sect. 5.3 (cf. in particular eqs. 5.17 and 5.20) the sequence
f1 is obtained from f by a two-step procedure: First a digital filter with coef-
ficients

{
h0 = 1

2 , h1 = 1
2

}
is applied, subsequently the signal is downsampled,

i.e., only every second sequence element is kept. This procedure is denoted
with the symbol H , note in particular, that the number of sequence elements
(the length of the signal) is divided by two.

The computation of sequence d1 was illustrated in eq. 3.11. It is now
obvious that similarly to above we may write

d1 = Gf. (3.14)

Again G denotes filtering followed by subsampling, but now the corre-
sponding filter coefficients read

{
g0 = 1

2 , g1 = − 1
2

}
.

Equations. 3.13 and 3.14 act on sequences only. The corresponding continuous-
time signals f1(t) and d1(t), respectively, are not needed at all. But if we want

3.2 The Haar-System 51

to reconstruct the discrete signal f = {fk} from these sequences by the scheme
described on page 49 (cf. in particular step 4 of this scheme), we must intro-
duce the continuous-time functions f1(t) and d1(t) in order to recover the
continuous-time signal f(t). From this signal the original discrete signal then
may be recovered by properly evaluating the corresponding expansion formula
3.5. We will show now that this is not necessary. Instead, it will be possible
to recover the original sequence by applying dual filters as described in sect.
5.3.

We start from sequence {f1
k}3

k=0 (cf. eq. 3.6) and compute a new sequence
{F 1

k }7
k=0 as illustrated in Fig. 3.5.

� �

� � � �

f1
0 = 6 f1

1 = 7

3 3

�
�

�
�

���

�
�

�
�

���

7
2

� �

7
2

1
2

1
2

1
2

1
2

Fig. 3.5. Computation of the first four elements of H∗f1.

The computation of F 1
0 , . . . , F 1

3 is indicated in the diagram, the remaining
elements are computed analogously. Thus finally we obtain

{F 1
k }7

k=0 =
{

3, 3,
7
2
,
7
2
, 4, 4,

3
2
,
3
2

}
.

The interpretation of diagram 3.5 is similar to diagram 3.4. The difference
is that now the input sequence is symbolized by the bottom row and the
output sequence by the top row. Obviously the length of the input sequence
is doubled.

The indicated procedure is exactly the application of a dual filter as ex-
plained in sect. 5.3 (cf. Fig. 5.7). Thus we may write compactly

F 1 = H∗f1, (3.15)

where the filter coefficients associated to the dual filter H∗ read{
h0 = 1

2 , h1 = 1
2

}
.

Analogously, starting from {d1
k}3

k=0 (cf. eq. 3.11) we may compute

D1 = G∗d1, (3.16)

where the filter coefficients associated to the dual filter G∗ read{
g0 = 1

2 , g1 = − 1
2

}
. The reader may verify that

52 3 The Discrete Wavelet Transform

{D1
k}7

k=0 =
{

1,−1,−1
2
,
1
2
,
1
2
,−1

2
,−1

2
,
1
2

}
.

Adding both sequences we obtain

{(F 1 + D1)k}7
k=0 =

{
4, 2, 3, 4,

9
2
,
7
2
, 1, 2

}
=

1
2
{fk}7

k=0.

Thus, apart from the factor 1
2 , we have reconstructed the original dis-

crete signal {fk} by adding sequences F 1 and D1. Remembering that both
sequences were obtained by applying dual filters we rewrite this equation as

f = 2(H∗f1 + G∗d1). (3.17)

This is the announced reconstruction formula: We obtain the original se-
quence directly from sequences f1 and d1, respectively, by applying dual fil-
ters! Thus the discrete signal may be reconstructed without intermediately
computing the corresponding continuous-time signal f(t). Remembering that
f1 = Hf and d1 = Gf (cf. eqs. 3.13 and 3.14) we may rewrite 3.17 even more
compactly:

2(H∗H + G∗G) = Id. (3.18)

The Id-symbol denotes the identity, leaving sequences unchanged.
We finally summarize the results.

One-step-version of the DWT with the Haar-wavelet
Let {fk} denote the original discrete signal. H and G denote filters
with subsampling and coefficients{

h0 =
1
2
, h1 =

1
2

}

and {
g0 =

1
2
, g1 = −1

2

}
,

respectively. H∗ and G∗ denote the corresponding dual filters.

1. Decomposition
a) Compute the sequences f1 = Hf and d1 = Gf .
b) f1 then is a coarser version of the original signal, d1 stores

the details needed to recover f .
2. Reconstruction

a) Compute and add the sequences H∗f1 and G∗d1.
b) Multiply the resulting sequence with 2.

3.3 Generalization to Daubechies-Wavelets 53

Let us close this section with some concluding remarks:

1. The considerations of this section were carried out with the example signal
3.3 but may be generalized to arbitrary discrete signals of length N .

2. The procedure formulated above is purely discrete, i.e., does not rely on
continuous-time signals. Thus it suffices for digital signal processing pur-
poses.
The relation to the CWT may be established by introducing the continuous-
time signal f(t) corresponding to eq. 3.5 and considering eq. 3.12.

3. In order to simplify terminology, we shall speak of H, H∗, G, G∗ as “fil-
ters”. From the respective symbol it will be clear that we actually mean
filtering combined with down- or upsampling, respectively.

3.3 Generalization to Daubechies-Wavelets

Before generalizing the results of the preceding section to wavelets different
from the Haar-wavelet we slightly modify the filters H, H∗, G, G∗ introduced
above. Let us assume that the corresponding coefficients read{

h0 =
√

2
2

, h1 =
√

2
2

}
(3.19)

and {
g0 =

√
2

2
, g1 = −

√
2

2

}
, (3.20)

instead of the values used so far. This means that we multiply each of
the filters with

√
2 without changing the symbols. Then the reconstruction

equation 3.18 gets even more simple:

H∗H + G∗G = Id. (3.21)

Correspondingly, the final multiplication with 2 in the reconstruction pro-
cedure (step 2 b in the scheme on page 52) can be omitted.

Decomposition and reconstruction usually are represented by the diagrams
in eq. 3.22.

f
G−→ d1

H
⏐�

f1

f�⏐
⊕ G∗←− d1

H∗�⏐
f1

(3.22)

The left diagram represents decomposition, the right diagram reconstruc-
tion. The ⊕-symbol denotes the addition of the input sequences G∗d1 and
H∗f1.

54 3 The Discrete Wavelet Transform

We summarize the results obtained so far:

1. Starting from coefficients 3.19 and 3.20, respectively, we constructed filter
pairs H, H∗ and G, G∗ such that

∑
k

hk =
√

2 (3.23)

∑
k

gk = 0 (3.24)

H∗H + G∗G = Id (3.25)

Note that, though never mentioned explicitly, eqs. 3.23 - 3.24 obviously
are satisfied.

2. Given a discrete signal f = {fk} a one-step-version of a DWT may be
performed as indicated in eq. 3.22.

3. Defining the continuous-time signal f(t) =
∑

k fkφH(t− k), the sequence
d1 = {d1

k} is related to the the CWT of f(t), carried out for the Haar-
wavelet ψH , similarly to eq. 3.12. Note that with coefficients 3.20 this
equation must be modified to

LψH f(2, 2k) =

√
1

cψH

d1
k (3.26)

since, as explained above, the original g-coefficients were multiplied with√
2.

For simplicity and future reference we shall denote this connection be-
tween a purely discrete viewpoint (signals are sequences) and a continuous
viewpoint (signals are continuous-time functions) by

(H, G) ↔ (φH , ψH). (3.27)

The dual filters (H∗, G∗) are omitted in this shorthand notation, since
they are uniquely related to (H, G).

In sect. 2.2.2 we noted that the Haar-wavelet has only one vanishing mo-
ment. We also gave arguments there that for signal analysis purposes it is
desirable to have as many vanishing moments as possible: For a signal which
may be modeled by piecewise polynomial functions we noted that the CWT
vanishes, if the wavelet has M vanishing moments and the highest degree k of
the polynomials satisfies k < M . So the CWT is concentrated around signal
regions which can not be modeled in this way. This is important for detect-
ing and localizing signal changes. It moreover is useful for a property called
“energy compaction” [38], a basic prerequisite for applying wavelets to signal
compression. Later we shall discuss related examples 1.
1 For the vanishing moments condition refer to eq. 2.31. The practical implications

of this condition are discussed in more detail on pages 27 – 29. For an illustration
refer to Fig. 2.3.

3.3 Generalization to Daubechies-Wavelets 55

Therefore it is a natural question to ask if the procedure given above can
be generalized:

Is it possible to develop a one-step DWT, i.e., to design filters satis-
fying eqs. 3.23 – 3.25, which are related to a scaling function φ and
a wavelet ψ as indicated in 3.27, such that ψ has more vanishing
moments than ψH?

This problem has been solved completely by Ingrid Daubechies [7]. She
showed that equations 3.23 – 3.25 together with additional restrictions on the
filter coefficients, reflecting in particular the vanishing moments condition,
lead to a family of filters and corresponding scaling functions and wavelets.
This family usually is called the “family of Daubechies-wavelets” and each
member of this family is labelled by a natural number n = 1, 2, 3,
It turns out that for each member of this family it is sufficient to specify
only the filter coefficients of H . The coefficients of G then can be computed
according to eq. 3.28, in particular the number of g-coefficients will be identical
with the number of h-coefficients. Analogously, it will be sufficient to specify
the corresponding scaling function φ, since then ψ also is determined (cf. eq.
3.29). For a given n the scaling functions and wavelets are denoted with dbn,
the related filters will have 2n coefficients.

After these preliminaries concerning notation and basic properties of the
family of Daubechies-wavelets we can give the answer to the question from
above:

dbn-wavelets have n vanishing moments!

In Table 3.1 we indicate the coefficients for the first three members of the
family.

Table 3.1. Filter coefficients related to Daubechies-wavelets for n = 1, 2, 3.

n {hk}

1 {hk}1k=0 =
{√

2
2

,
√
2

2

}
2 {hk}3k=0 =

{
1−√

3

4
√

2
, 3−√

3

4
√

2
, 3+

√
3

4
√

2
, 1+

√
3

4
√

2

}
3 {hk}5k=0 = {0.332671, 0.806892, 0.459878, −0.135011, −0.085441, 0.035226}

The corresponding g-coefficients may be computed according to

gk = (−1)kh1−k (3.28)

(cf. [7]).

56 3 The Discrete Wavelet Transform

The simplest member of the family of Daubechies-wavelets is db1. The cor-
responding scaling function and wavelet are given by the Haar-scaling function
φH and the Haar-wavelet ψH , respectively. Indeed, the related filters have 2
coefficients (cf. eqs 3.19 and eqs 3.20) and the g-coefficients satisfy the rela-
tions g0 =

√
2

2 = h1 and g1 = −
√

2
2 = −h0 in accordance with eq. 3.28.

Likewise, for n = 2 eq. 3.28 implies

{gk}1
k=−2 =

{
1 +

√
3

4
√

2
,−3 +

√
3

4
√

2
,
3 −√

3
4
√

2
,

√
3 − 1
4
√

2

}
,

as easily may be verified. Relations 3.23 and 3.24 are also immediately
checked for n = 2.

The wavelets may be computed from the respective scaling functions by
the “scale-equation” (cf. [7]):

ψ(t) =
√

2
∑

k

gkφ(2t − k). (3.29)

Again this relation is easily verified for the Haar-wavelet. With coefficients
3.20 the equation may be simplified as follows:

ψH(t) =
√

2
1∑

k=0

gkφH(2t − k)

=
√

2

(√
2

2
φH(2t) −

√
2

2
φH(2t − 1)

)
= φH(2t) − φH(2t − 1).

Indeed (cf. Fig. 2.2) the Haar-wavelet is composed from two shrunk ver-
sions of the scaling function on the intervals [0, 1

2) and [12 , 1), respectively, the
latter one with inverted sign.

3.3.1 From Filters to Functions

In the preceding section we specified the filter coefficients for the first three
members of the family of Daubechies-wavelets. But up to now only for db1, i.e.,
for the Haar-system, we know both the filter coefficients and the corresponding
wavelet and scaling function.

In this section we describe an iterative procedure (“cascade algorithm”),
which enables us to compute the scaling function φ(t) for any member dbn of
the familiy of Daubechies-wavelets, provided the h-coefficients are given [8].
The corresponding wavelet results from 3.29.
We shall give a detailed description of the procedure for the Haar-system, i.e.,
for db1. So the H∗-filter mentioned below belongs to the coefficients 3.19. The
generalization to arbitrary dbn then should be obvious.

3.3 Generalization to Daubechies-Wavelets 57

1. Define the sequence e = {ei} with

ei =
{

1 i = 0
0 else

Represent this sequence by a piecewise constant continuous-time function
as follows:
a) Subdivide the t-axis in intervals of length 1 such that t = 0 is the center

of one of these intervals. Denote this interval with I0 and the neigh-
boring intervals with Ii (i = 1, 2, 3, . . .) and Ii (i = −1,−2,−3, . . .),
respectively.

b) Represent the sequence e = {ei} by a continuous-time function e(t),
where

e(t) =
{

1 t ∈ I0

0 else

The top row of Fig. 3.6 shows the sequence e = {ei} and the related
function e(t).

2. Now compute the sequence e1 =
√

2H∗e, i.e., apply a dual filter similarly
as in Fig. 3.5, where the coefficient values are replaced by 1 instead of 1

2
and in the bottom row we insert the sequence values ek. The resulting
sequence is represented by the left graph in the second row of Fig. 3.6. In
particular, we have e1

0 = e1
1 = 1.

Similarly to above, a continuous-time function e1(t) is associated to this
sequence with the following differences: The length of the intervals used
for subdividing the t-axis is now 1

2 instead of 1. Moreover

e1(t) =

⎧⎨
⎩

e1
0 = 1 t ∈ I0

e1
1 = 1 t ∈ I1

0 else

This function is represented by the right graph in the second row of Fig.
3.6.

3. Continue the steps described above, i.e., compute e2 =
√

2H∗e1, e3 =√
2H∗e2, Associate the coresponding continuous-time functions e2(t),

e3(t), . . . where each function is piecewise constant on intervals, whose
length is divided by two when proceding from ei(t) to ei+1(t).
Sequence e2 = {e2

k} and the corresponding continuous-time function e2(t)
are shown in the last row of Fig. 3.6

Figure 3.6 shows how the “initial estimates” e(t), e1(t), e2(t), . . . converge
to the correct scaling function φH(t) defined in eq. 3.4.

Likewise, for general n, the procedure described above leads to an approx-
imative scheme for computing the dbn-scaling function. The quality of the
approximation is controlled by the number of iterations. As mentioned above,
the corresponding wavelet may be obtained from eq. 3.29.

58 3 The Discrete Wavelet Transform

−2 0 2 4
−0.5

0

0.5

1

1.5

−1.5 −0.5 0.5 1.5
−0.5

0

0.5

1

1.5

−2 0 2 4
−0.5

0

0.5

1

1.5

 −1.25 −0.25 0.75 1.75
−0.5

0

0.5

1

1.5

−2 0 2 4
−0.5

0

0.5

1

1.5

 −1.125 −0.125 0.875 1.875
−0.5

0

0.5

1

1.5

Cascade algorithm: Sequences Cascade algorithm: Functions

Fig. 3.6. e, e1, e2 represented as sequences (left) and functions (right). The grid
lines in the function plots indicate the respective subdivision of the t-axis.

For the db2-case this is illustrated in Fig. 3.7. The approximation e1(t)
corresponding to the first iteration is displayed in the upper left diagram.
The reader may verify that the values of the nonzero step heights are given
by the corresponding coefficients from Table 3.1, multiplied with

√
2. The

lower left diagram shows the wavelet approximation derived from e1(t); the
approximations to scaling function and wavelet after 7 iterations are displayed
in the upper right and lower right diagrams.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

φdb2. Number of iterations: 1.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1
ψdb2. Number of iterations: 1.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

φdb2. Number of iterations: 7.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−1.5

−1

−0.5

0

0.5

1

ψdb2. Number of iterations: 7.

Fig. 3.7. Iterative construction of db2-scaling function and wavelet. One iteration
(left), 7 iterations (right).

3.3 Generalization to Daubechies-Wavelets 59

We note an “improvement in smoothness”: The db1-wavelets and scal-
ing functions are discontinuous, whereas in the db2-case both functions are
continuous. Still these functions look rather rugged and in fact higher order
dbn-wavelets and scaling functions get smoother. Mathematically this state-
ment can be made precise using the notion of “regularity” [24], it is illustrated
in Fig. 3.8 for db5.

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−0.2

0

0.2

0.4

0.6

0.8

1

φdb5. Number of iterations: 7.

−4 −3 −2 −1 0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

ψdb5. Number of iterations: 7.

Fig. 3.8. db5: scaling function and wavelet after 7 iterations.

So, in fact, for increasing n we not only obtain wavelets with an increasing
number of vanishing moments but also wavelets with increasing regularity.
Both properties are desirable for signal analysis purposes2.

3.3.2 Transfer Properties

For any dbn-filter the H-symbol actually denotes the application of a digital
filter H with the coefficients {hk}, followed by a subsampling procedure (cf.
sect. 5.3, Fig. 5.5). For the G-symbol and the corresponding coefficients {gk}
analogous conventions hold.

From a digital signal processing viewpoint it is quite instructive to study
the frequency response of H and G, respectively. In this section we shall con-
sider only the amplitude response, the phase response will be investigated
later. Frequency response, amplitude response and phase response are defined
in eqs. 5.18 and 5.19, respectively. For a short summary of these topics the
reader is referred to sect. 5.3.
2 We remind the reader to the comparison of db2 with db4 shown in Figs. 2.5 and

2.6, respectively.

60 3 The Discrete Wavelet Transform

For db1 to db4 the amplitude response of the coresponding H and G-
filters are shown in Fig. 3.9. The graphs are arranged in clockwise order with
db1 displayed in the upper left diagram. In each diagram both the amplitude
responses of H (solid) and G (broken) are plotted.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
db1, amplitude response (H: solid, G: broken)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
db2, amplitude response (H: solid, G: broken)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
db4, amplitude response (H: solid, G: broken)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
db3, amplitude response (H: solid, G: broken)

Fig. 3.9. Amplitude response of db1-db4 filters (clockwise from above left).

The plots indicate that the respective H-filters exhibit a low-pass charac-
teristic, whereas the G-filters are high-pass filters. Moreover, obviously with
increasing n the respective filter performance improves: The cutoff frequen-
cies are more sharply localized and transmission as well as suppression of the
respective frequency ranges works better and better.

This improvement in filter behavior corresponds to the discussion in the
preceding section, where we demonstrated, how wavelets and scaling functions
belonging to the filters “improve” when n is increased.

3.4 Multiscale Analysis

Let us assume that for a certain n the corresponding dbn-filter coefficients are
given. So we have a pair of filters (H, G) whose coefficients satisfy eqs. 3.23 –

3.4 Multiscale Analysis 61

3.25. For a discretely sampled signal f a one-step-version of a DWT can be
carried out as depicted in eq. 3.22.

In this section we shall show how this procedure may be iterated, leading
to a multiscale analysis of f . It will turn out that the algorithm in a quite
straightforward manner may be generalized to two-dimensional signals. So we
will extend the DWT-techniques to image processing.

3.4.1 One-Dimensional Signals

Let us first consider the decomposition component of eq. 3.22. Starting from
f , the signals f1 and d1 are computed by applying the filter pair (H, G) to f .
We may repeat this procedure beginning with f1 and obtaining f2 and d2. If
we proceed in this way, i.e., if we apply (H, G) successively to f2, f3, . . ., after
J steps the signal is decomposed as indicated by the left diagram of eq. 3.30.

f
G−→ d1

H
⏐�

f1 G−→ d2

H
⏐�
...

fJ−1 G−→ dJ

H
⏐�

fJ

f�⏐
⊕ G∗←− d1

H∗�⏐
⊕ G∗←− d2

H∗�⏐
...

⊕ G∗←− dJ

H∗�⏐
fJ

(3.30)

Usually fJ is called “approximation signal”, the remaining signals dj (j =
1, . . . , J) “detail signals”. Remember that fJ results from a repeated applica-
tion of a low-pass filter, whereas for the detail signals the final computation
step always is high-pass filtering. Below we shall discuss these signals in more
detail and show some examples.

Note that in each filtering step the signal length is divided by 2, which
may be represented as in Fig. 3.10.

From this diagram it is obvious that there exists an upper limit for the
number of decomposition steps J : If the original signal is of length 2L, the
maximum value of J will be L.

Since each decomposition step may be inverted as indicated in the right
diagram of eq. 3.22, a J-step DWT-decomposition of f is inverted by the algo-
rithm shown in the right diagram of eq. 3.30. Again, the ⊕-symbol represents
addition of the respective input sequences.

Equation 3.26, establishing the link from sequences to continuous-time
functions may be generalized to a J-step DWT as follows:
Defining the continuous-time signal f(t) =

∑
k fkφ(t − k), the correspond-

62 3 The Discrete Wavelet Transform

f

���H ���G

f1
d1

step 1
���H ���G

f2
d2

step 2
���H ���G

...
...

Fig. 3.10. J-step DWT-decomposition of a signal f

ing CWT-values for a = 2j and t = 2jk (with integer k) can be computed
according to

Lψf(2j, 2jk) =

√
1
cψ

dj
k (j = 1, . . . , J). (3.31)

Again, (φ, ψ) denote scaling function and wavelet, associated to filters
(H, G) as discussed above.

Similarly to Fig. 3.3 the above subset of the t-a-plane is visualized in Fig.
3.11 for J = 3. It is clear how to extend this subgrid for general J . This
plot explains why the J-step-DWT decomposition also is called “multiscale
analysis”.

t

a

�

�

2

4

8

0 2 4 6 8

� � � � �

� � �

� �

Fig. 3.11. 3-step-version of the DWT: Subset of the t-a-plane.

Note that from Fig. 3.10 it follows that a J-step DWT leaves the total num-
ber of data unchanged: Applying a J-step-DWT to the N sequence elements of

3.4 Multiscale Analysis 63

the original signal f = {fk}N−1
k=0 , we obtain the sequences fJ , dJ , dJ−1, . . . , d1,

where the total number of data resulting from adding the lengths of these
sequences, again3 will be N . Moreover, the decomposition part of eq. 3.30
provides a fast4 algorithm for computing wavelet transform values via the se-
quences dj . Thus, when comparing with the situation visualized in Fig. 3.1, we
conclude that the J-step-DWT leads to a simple and quick algorithm for com-
puting wavelet transforms without redundancy on a subgrid of the t-a-plane,
which takes into account varying scale factors in contrast to the discretized
CWT.

Up to now (cf. eq. 3.2) we assumed TS = 1. As announced on page 45 the
extension to an arbitrary sampling distance TS is very simple: Looking at Fig.
3.11 replace on the t-axis the labels 0, 2, 4, 6, . . . by 0, 2TS, 4TS, 6TS, . . . and
correspondingly on the a-axis the labels 0, 2, 4, 8, . . . by 0, 2TS, 4TS, 8TS,
So, e.g.,

Lψf(4TS, 4TS) =

√
1
cψ

d2
1.

Examples

In Fig. 3.12 the result of a 2-step DWT with db1-filters is displayed. From
above, the signal f , the detail signals d1 and d2 and the approximation signal
f2 are shown.

Figure 3.13 shows the results of the same transform, but performed with
db2-filters instead of db1.

The results are in accordance with the properties of dbn-filters collected
in sections 3.3 and 3.3.1. Since the db2-wavelet is smoother and has more
vanishing moments than the db1-wavelet, one expects the db2-detail signals to
be better concentrated around significant signal changes than the db1-detail-
signals. Since f has a regular appearance, i.e., significant signal changes are
lacking, this simply means that detail signal values should be rather small.
Obviously this is true for both filter types and indeed the db2-detail signals
are closer to zero than the corresponding db1-detail signals.

The concentration property discussed above has another useful conse-
quence. Remember that the signal can be reconstructed from approximation
and detail signals by the reconstruction part of eq. 3.30. Therefore - due to
the concentration property - the J-step-DWT is a method to concentrate the
full information stored in the signal in few significant coefficients. In Figs. 3.12
and 3.13 these coefficients basically are the sequence elements of f2 and the
concentration mechanism works more efficiently for db2 than for db1. This
3 To be precise, for arbitrary N the total number of transformed data can be slightly

larger than N . Refer to sect. 3.4.3 for a short discussion.
4 In fact, since the algorithm reduces to discrete filtering, the number of operations

needed for computing the dj-sequences increases linearly with N .

64 3 The Discrete Wavelet Transform

0 10 20 30 40 50 60 70

−2

0

2

2−step−DWT with db1

0 10 20 30 40 50 60 70

−2

0

2

0 10 20 30 40 50 60 70

−2

0

2

0 10 20 30 40 50 60 70

−2

0

2

f

d1

d2

f2

Fig. 3.12. 2-step DWT with db1.

0 10 20 30 40 50 60 70

−2

0

2

2−step−DWT with db2

0 10 20 30 40 50 60 70

−2

0

2

0 10 20 30 40 50 60 70

−2

0

2

0 10 20 30 40 50 60 70

−2

0

2

f

d1

d2

f2

Fig. 3.13. 2-step DWT with db2.

concentration feature is called “energy compaction” [38] and a basic prereq-
uisite for data compression. We will return to it in chap. 4.
In Fig. 3.14 it is illustrated with histograms. The top figure shows the his-
togram of f computed as follows: Take the smallest and the largest sequence
element and subdivide the interval between these values in 20 equally spaced
bins. Now for each bin count the number of sequence elements whose values
are contained in it. For the transformed signal we proceeded as follows: Merge
sequences f2, d2 and d1 into one sequence, then continue as described for f . In
this way we obtained the db1-histogram (bottom left) and the db2-histogram

3.4 Multiscale Analysis 65

(bottom right). First we note that both histograms are more sharply peaked
(with the largest peak around zero) than the histogram of the original signal.
This is in accordance with our discussion from above concerning the concen-
tration features of the J-step-DWT in general. Moreover, the db2-histogram
is more sharply peaked than the db1-histogram, which also matches our ex-
pectation.

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

12
Histogram of signal values

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14
Histogram of transformed values (db1)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25
Histogram of transformed values (db2)

Fig. 3.14. Above: Histogram of the original signal. Below left: Histogram of the
transformed signal (db1); below right: Histogram of the transformed signal (db2).

3.4.2 Two-Dimensional Signals (Images)

Until here, the signals considered were sequences, usually recorded as a time
series. Digital images, in contrast, are represented as matrices

f = {fmn} (m = 0, . . . , M − 1; n = 0, . . . , N − 1). (3.32)

Similarly to the 1-d-case, f denotes the matrix, fmn the element in row
m and column n. M and N denote the total number of rows and columns,
respectively. Since f represents a picture, fmn will be called the “pixel” in
row m and column n. The image is generated by representing each pixel by
a gray value such that dark corresponds to small and bright to large pixel

66 3 The Discrete Wavelet Transform

values5. An example is shown in the upper part of Fig. 3.15, here M = 240
and N = 320.

The filters discussed so far transformed sequences into sequences. They can
be extended to images by applying them to rows, or columns, respectively. The
kind of application is indicated by a corresponding index. So, e.g., the filter
Hr is defined as follows: Starting with the original digital image f a new
image Hrf is generated by filtering every row of f separately with H . From
the defining equation 5.20 it follows that

(Hrf)mn =
∑

k

hk−2nfmk. (3.33)

Note that, since the length of a sequence is divided by 2 when applying
H , correspondingly the length of the rows, i.e., the number of columns, will
be divided by two when applying Hr. As an example, the lower part of Fig.
3.15 shows Hrf , the original f is displayed in the upper part. Here we used
the db2-H-filter with coefficients given in Table 3.1. Completely analogously,
the symbol Hc is used if H is applied to columns. Correspondingly, in this
case the number of rows will be divided by 2.

It should be clear now, how to apply the remaining filters, i.e., the G-filter
and the dual filters H∗ and G∗, to rows or columns, respectively, and how to
denote this.

Given a digital image f , a one-step-DWT is defined by applying all four
possible combinations resulting from filtering along rows and columns with H
and G, respectively:

f → {HrHcf, HrGcf, GrHcf, GrGcf} (3.34)

Note that, for example, HrHcf will have a total number of pixels, which
is divided by 4, when compared with the total number of pixels of f . The
reason is that the number of columns and the number of rows is divided by
2. The same reasoning applies to the remaining images HrGcf, GrHcf and
GrGcf . Therefore, if we add the number of pixels of all generated images, we
see that - as in the one-dimensional case - the total number of data remains
unchanged, when a one-step-DWT is applied6.

The images HrGcf, GrHcf and GrGcf , are called “horizontal”, “vertical”
and “diagonal” detail signals, respectively. To motivate this terminology we
consider HrGcf , the argument for the other images is completely analogous.
Applying Gc to f , i.e., applying G to the columns of f , means that we compute
the wavelet transform of each column. As we have seen, we compute a signal,
5 We shall restrict ourselves to this kind of images, also called “gray-level images”.

The techniques developed in this section easily can be adapted to other colormaps
and to colored images. For a survey on image representations refer to, e.g., [14].

6 Analogously to the remarks made in the footnote on page 63, the total number
of transformed data can be slightly increased. Refer to sect. 3.4.3 for a short
discussion.

3.4 Multiscale Analysis 67

H
r
−filtering with db2

100 200 300

50

100

150

200

50 100 150

50

100

150

200

Fig. 3.15. Above: Original image. Below: Result of applying H (here: db2) to each
row.

68 3 The Discrete Wavelet Transform

which basically “reacts” on signal changes. In other words: We look along the
columns for signal changes. On the other hand, horizontal edges will give rise
to signal changes when scanning columns, therefore the image HrGcf will
react on horizontal edges. Moreover, since (cf. eq. 3.26) the wavelet transform
is computed for scale 21, the horizontal detail signal HrGcf also is denoted
with d1h.
Completely analogously, vertical and diagonal detail images react on corre-
spondingly directed edges and therefore GrHcf is denoted with d1v, GrGcf
with d1d. We finally remark that - analogously to the 1-d-case treated above -
the low-pass filtered image HrHcf is called “approximation signal”, denoted
with f1.

Usually the four subimages {f1, d1h, d1v, d1d} generated by a one-step-
DWT are arranged like (

f1 d1h

d1v d1d

)
(3.35)

Figure 3.16 shows a one-step-DWT carried out with Haar-filters. The re-
sulting subimages are arranged as in eq. 3.35.

Original

50 100 150 200 250

50

100

150

200

250

One−step−DWT with db1

50 100 150 200 250

50

100

150

200

250

Fig. 3.16. Left: Original image. Right: Result of the one-step-DWT (here: db1).

In particular for horizontal edges, the above-mentioned directional sensi-
tivity of the detail signal may be verified.

Again, analogously to the procedure described in sect. 3.4.1, a “multiscale
analysis” of a digital image f can be performed by applying a one-step-DWT
3.34 successively to f1, f2 = HrHcf

1, f3 = HrHcf
2, Thus the equivalent

of eq. 3.30 reads

3.4 Multiscale Analysis 69

f

GrHc−→ d1v

HrGc−→ d1h

GrGc−→ d1d

HrHc

⏐⏐⏐⏐�
f1

GrHc−→ d2v

HrGc−→ d2h

GrGc−→ d2d

HrHc

⏐⏐⏐⏐�
...

fJ−1

GrHc−→ dJv

HrGc−→ dJh

GrGc−→ dJd

HrHc

⏐⏐⏐⏐�
fJ

f�⏐⏐⏐⏐
⊕

H∗
r G∗

c←− d1h

G∗
rH∗

c←− d1v

G∗
rG∗

c←− d1d

H∗
r H∗

c

�⏐⏐⏐⏐
⊕

H∗
r G∗

c←− d2h

G∗
rH∗

c←− d2v

G∗
rG∗

c←− d2d

H∗
r H∗

c

�⏐⏐⏐⏐
...

⊕
H∗

r G∗
c←− dJh

G∗
rH∗

c←− dJv

G∗
rG∗

c←− dJd

H∗
r H∗

c

�⏐⏐⏐⏐
fJ

(3.36)

Again, the left diagram represents decomposition, the right diagram re-
construction. The symbol ⊕ now denotes addition of matrices rather than
sequences. Generalizing the representation from eq. 3.35, the result of a two-
step-DWT, for example, can be represented as⎛

⎝ f2 d2h

d2v d2d d1h

d1v d1d

⎞
⎠ (3.37)

So, if we continue to decompose the original of Fig. 3.16, we obtain a
decomposition as shown in the right part of Fig. 3.17.

3.4.3 Implementations with the MATLAB Wavelet Toolbox

In this section we give a short description of functions contained in the
MATLAB Wavelet Toolbox, which implement the J-step-DWT for 1-d and
2-d-signals, respectively. Related functions which make use of the toolbox-
procedures have been tested with MATLAB 6.5, release 13 and may be down-

70 3 The Discrete Wavelet Transform

50 100 150 200 250

50

100

150

200

250

Two−step−DWT with db1

50 100 150 200 250

50

100

150

200

250

Fig. 3.17. Left: One-Step-DWT (cf. Fig. 3.16). Right: Two-Step-DWT, obtained
by decomposing the upper left subimage of the one-step-DWT.

loaded from the URL given in sect. 1.3. Again, as mentioned earlier, a basic
understanding of MATLAB-syntax is required.

1-d-functions

The decomposition part of the one-dimensional J-step-DWT (cf. eq. 3.30) is
implemented in the toolbox-function wavedec. A prototype function call reads

[f_trans,L] = wavedec(f,J,’dbn’);

The original signal is stored in the vector f, the result of the transform in
the vector f_trans. The latter is organized as follows :

d1

Length: L(3)

f2

Length: L(1)

d2

Length: L(2)

Here for illustration purposes J = 2 was chosen, refer also to Fig. 3.10.
As indicated, the lengths of the individual subsequences are stored in the
components of “book-keeping-vector” L. Thus, e.g., in MATLAB-notation d2

may be extracted from f_trans as follows:

d_2=f_trans((L(1)+1):(L(1)+L(2)));

Note that, if N denotes the length of the original signal, then in our example

L(1) ≈ N

4
, L(2) ≈ N

4
, L(3) ≈ N

2
.

3.4 Multiscale Analysis 71

The reason for the approximate equality is that N not necessarily is a power
of two; moreover, for dbn-filters with n > 1 the treatment of signal boundaries
requires the subsequences to be slightly longer than the fractions computed
above. As an illustration we include the following MATLAB-dialogue, demon-
strating a 2-step-DWT with a signal of length 1367:

>> f=rand(1367,1);
>> [f_trans,L]=wavedec(f,2,’db2’);
>> sum(L(1:3))

ans =
1373

>> [f_trans,L]=wavedec(f,2,’db3’);
>> sum(L(1:3))

ans =
1376

We see that f_trans in general will be slightly longer than f and this
“lengthening effect” increases with filter length.

So the book-keeping-vector is essential for the correct handling of the in-
dividual subsequences merged in the vector f_trans. It is clear, therefore,
that it is an important input into the toolbox function waverec implementing
the reconstruction part of the one-dimensional J-step-DWT (cf. eq. 3.30). A
prototype call reads

f = waverec(f_trans,L,’dbn’);

Note that the decomposition depth J needs not to be specified, since it
follows immediately from the length of the book-keeping-vector L, generated
by the preceding decomposition.

2-d-functions

The decomposition part of the two-dimensional J-step-DWT (cf. eq. 3.36)
is implemented in the toolbox-function wavedec2. A prototype function call
reads

[f_trans,L] = wavedec2(f,J,’dbn’);

Here the original image is stored in the matrix f with M rows and N columns.
The result of the transform is stored in the vector f_trans, which is organized
as follows :

d1df1 d1h d1v

72 3 The Discrete Wavelet Transform

Here for illustration purposes J = 1 was chosen, refer also to eq. 3.35.
Subsequence f1, for example, contains all pixels belonging to the approxima-
tion image, but arranged as a vector obtained by scanning the approximation
image row by row. Similarly the remaining subsequences are constructed.

Instead of a book-keeping-vector in te 2-d-case a “book-keeping-matrix” L
is generated, which stores the matrix dimensions of the approximation signal
and the detail signals as follows: L has 2 columns, the first row provides the
number of rows and of columns, respectively, for f1. The second row provides
the dimensions of d1h, d1v and d1d (which are all equal). Similarly for J > 1
subsequent rows of L are generated.

The MATLAB-dialogue shown below illustrates the use of this function
for an image with M = N = 16:

>> f=rand(16,16);
>> [f_trans,L]=wavedec2(f,2,’db1’);
>> L(1:3,:)

ans =
4 4
4 4
8 8

>> length(f_trans)

ans =
256

>> [f_trans,L]=wavedec2(f,2,’db2’);
>> L(1:3,:)

ans =
6 6
6 6
9 9

>> length(f_trans)

ans =
387

Note that – analogously to the 1-d-case – with increasing filter order the
transformed signal will be larger than the original! Since the transformed sig-
nal is stored in a vector, where the boundaries of the individual subsequences
may be determined from L, these subsequences can be extracted using L. To
build the corresponding image, however, they must be rearranged to a matrix!

3.4 Multiscale Analysis 73

Let’s continue the example from above with the task to extract the detail
image d1d:

>> lower=L(1,1)*L(1,2)+3*L(2,1)*L(2,2)+2*L(3,1)*L(3,2)+1;
>> upper=L(1,1)*L(1,2)+3*L(2,1)*L(2,2)+3*L(3,1)*L(3,2);
>> d1d=f_trans(lower:upper);
>> d1d=reshape(d1d,L(3,1),L(3,2));
>> size(d1d)

ans =
9 9

As in the 1-d-case the signal can be reconstructed from f_trans, provided
the “building recipe” of f_trans is known, which is stored in L. Thus the
toolbox function waverec2 implementing the reconstruction part of the two-
dimensional J-step-DWT (cf. eq. 3.36) may be envoked as follows:

f = waverec2(f_trans,L,’dbn’);

dbn-coefficients

In sect. 3.3 we summarized the properties of dbn-filters without specifying
how to compute the corresponding h-coefficients. Of course, there exists an
algorithm for that purpose (cf., e.g., [20]).

In the MATLAB Wavelet Toolbox the function wfilters does the job.
So, e.g.,

h=wfilters(’dbn’);

returns the h-coefficients belonging to dbn-filters in the vector h. The
maximum value of n is 45.

3.4.4 Generalization: Biorthogonal Filters

As noted in the appendix, symmetric filters have a linear phase response,
which reduces signal distortion. For more details the reader is referred to sect.
5.3. Phase response is defined in eqs. 5.18 – 5.19, examples for symmetric
filters are shown on page 132.

From Table 3.1, we conclude that the h-coefficients belonging to db1 are
symmetric, for n = 2 and n = 3, however, this is not true. In fact, all dbn-
filters with n > 1 are not symmetric, therefore we cannot expect linear phase
response for these filters. Figure 3.18 illustrates this fact by plotting phase
responses for db1 and db2. Similarly to Fig. 3.9 the phase responses of H and
G are plotted as solid and broken lines, respectively.

So the question arises, if filters maintaining the “good” properties of dbn
with n > 1 and being symmetric can be constructed. This problem has been

74 3 The Discrete Wavelet Transform

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
db1, phase response (H: solid, G: broken)

0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

4
db2, phase response (H: solid, G: broken)

Fig. 3.18. Left: Phase response for db1. Right: Phase response for db2.

solved by A. Cohen [5]. For an easy-to-read summary see [24]. We shall briefly
report the main results for the 1-d-case. The generalization to 2-d-signals then
is obvious.

It turns out that eq. 3.27 representing the correlation between discrete
filters and wavelets needs to be extended as follows:

(H, H̃, G, G̃) ↔ (φ, φ̃, ψ, ψ̃). (3.38)

The generalization of eq. 3.25 reads

H̃∗H + G∗G̃ = Id. (3.39)

In other words: We have a pair of wavelets and scaling functions, respec-
tively, associated to a corresponding pair of high- and low-pass filters, such
that a single decomposition step is performed by applying H and G̃. This
step may be inverted by applying the dual filters H̃∗ and G∗, respectively,
and adding the results. So the J-step-transform 3.30 now may be represented
as

f
G̃−→ d1

H
⏐�

f1 G̃−→ d2

H
⏐�
...

fJ−1 G̃−→ dJ

H
⏐�

fJ

f�⏐
⊕ G∗

←− d1

H̃∗�⏐
⊕ G∗

←− d2

H̃∗�⏐
...

⊕ G∗←− dJ

H̃∗�⏐
fJ

(3.40)

The generalization of this equation to 2-d-signals is straightforward.

3.5 A Unifying Viewpoint: Basis Systems 75

In image compression biorthogonal wavelet filters are of particular impor-
tance: The lossless mode of the JPEG 2000 still image compression standard
[36] uses a biorthogonal filter pair H, H̃ with 9 and 7 coefficients, respectively.
The values are listed below:

Table 3.2. Filter coefficients of the biorthogonal 9-7-filter pair.

{hk} {h̃k}
h−4 = 0.026748757411

√
2

h−3 = −0.016864118443
√

2

h−2 = −0.078223266529
√

2

h−1 = 0.266864118443
√

2

h0 = 0.602949018236
√

2

h1 = 0.266864118443
√

2

h2 = −0.078223266529
√

2

h3 = −0.016864118443
√

2

h4 = 0.026748757411
√

2

h̃−3 = −0.045635881557
√

2

h̃−2 = −0.028771763114
√

2

h̃−1 = 0.295635881557
√

2

h̃0 = 0.557543526229
√

2

h̃1 = 0.295635881557
√

2

h̃2 = −0.028771763114
√

2

h̃3 = −0.045635881557
√

2

Note the symmetry of the filters! The corresponding G-filters are con-
structed similarly to eq. 3.28.

We end this section with a plot of amplitude and phase response of H
(solid) and G (broken), respectively (both having 9 coefficients).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
9 coefficients: Amplitude response (H: solid, G: broken)

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
9 coefficients: Phase response (H: solid, G: broken)

Fig. 3.19. Left: Amplitude response of H (solid) and G (broken); both filters have
9 coefficients. Right: Corresponding phase response.

3.5 A Unifying Viewpoint: Basis Systems

Earlier in this book (cf. sect. 1.2.6) we presented a qualitative comparision
of the Fourier transform with the wavelet transform. In this section we shall

76 3 The Discrete Wavelet Transform

consider the discrete versions, i.e., the DFT and the J-step-DWT, and dis-
cuss an aspect which both transforms have in common. It is shown that both
transforms are expansions of the signal with respect to certain “basis sys-
tems” and these systems provide insight into the qualitative differences of
both transforms.

Apart from sect. 3.6.1, the material covered in this section is not required
for the rest of the book. So it may be skipped if the reader mainly is interested
in a quick and application-oriented wavelet introduction.

3.5.1 One-Dimensional Signals

Let us start with a one-dimensional discretely sampled signal of length N :

f = {fk}N−1
k=0 . (3.41)

We introduce N sequences, called “natural basis system”, as follows:

φ0
natural = {1, 0, 0, . . . , 0}

φ1
natural = {0, 1, 0, . . . , 0}

...
...

...
φN−1

natural = {0, 0, 0, . . . , 1}
(3.42)

Then f may be expanded as follows:

f = f0φ
0
natural + f1φ

1
natural + . . .

=
N−1∑
i=0

fiφ
i
natural (3.43)

Note that in these formulae the summation of sequences is defined by ele-
mentwise addition! For N = 4 the natural basis system φ0

natural, . . . , φ
3
natural

is plotted in the left column of Fig. 3.20.
Thus, when starting with the basis system 3.42, the signal values fk may

be viewed as expansion coefficients when expanding the signal with respect to
this basis. It is a well known fact from linear algebra that basis systems are
not unique: There exist other basis systems φ0, . . . , φN−1 such that

f =
N−1∑
i=0

ciφ
i (3.44)

with proper expansion coefficients c0, . . . , cN−1.
In fact, the IDFT 5.14 provides such a change of basis systems. Define the

following sequences, called “Fourier basis”:

3.5 A Unifying Viewpoint: Basis Systems 77

φ0
Fourier = 1√

N
{1, 1, 1, . . . , 1}

φ1
Fourier = 1√

N
{e j2π1·0

N , e
j2π1·1

N , e
j2π1·2

N , . . . , e
j2π1·(N−1)

N }
φ2

Fourier = 1√
N
{e j2π2·0

N , e
j2π2·1

N , e
j2π2·2

N , . . . , e
j2π2·(N−1)

N }
...

...
...

φN−1
Fourier = 1√

N
{e j2π(N−1)·0

N , e
j2π(N−1)·1

N , e
j2π(N−1)·2

N , . . . , e
j2π(N−1)·(N−1)

N }
(3.45)

Then 5.14 may be rewritten as follows:

f =
1√
N

(F0φ
0
Fourier + F1φ

1
Fourier + . . .)

=
1√
N

N−1∑
i=0

Fiφ
i
Fourier . (3.46)

In other words: When expanding f with respect to the Fourier basis system
φ0

Fourier , . . . , φ
N−1
Fourier, the corresponding expansion coefficients are given by

Fi√
N

, where Fi denotes the i-th DFT-coefficient computed according to eq.
5.13.

For N = 4 the Fourier basis system is plotted in the middle column of Fig.
3.20. Note that the sequences belonging to the Fourier basis are complex! The
plots show the real part of the respective basis sequences.

Now assume that a certain dbn-wavelet and a decomposition depth J has
been chosen and perform a J-step-DWT corresponding to eq. 3.30. Assume
that fJ , dJ , . . . , d1 are arranged as indicated in Fig. 3.10 and merge these
sequences into a new sequence called f̃ . For J = 2 the procedure is indicated
below:

(f2 d2 d1)︸ ︷︷ ︸
f̃

(3.47)

Expanding f̃ with respect to the corresponding natural basis system we
may write

f̃ =
∑

i

f̃iφ̃
i
natural, (3.48)

where f̃i denotes the i-the element of the sequence f̃ . Now decompose each
basis sequence φ̃i

natural into subsequences corresponding to the preceding J-
step-DWT decomposition. Again, we indicate the procedure for J = 2:

(f2
φ d2

φ d1
φ)︸ ︷︷ ︸

φ̃i
natural

(3.49)

78 3 The Discrete Wavelet Transform

Apply the reconstruction part of eq. 3.30 to fJ
φ , dJ

φ , . . . , d1
φ and denote the

reconstructed sequence with φi
wavelet. Then from eq. 3.48 it follows that

f =
∑

i

f̃iφ
i
wavelet. (3.50)

So similarly to the DFT-case (eq. 3.46) a J-step-DWT may be viewed as
a change of basis: Now the signal is expanded with respect to the wavelet
basis instead of the Fourier basis and the expansion coefficients are given by
the entries of the transformed sequences fJ , dJ , . . . , d1. This is in complete
analogy to the DFT where the expansion coefficients were given by the DFT-
values. In contrast to the DFT-case, however, the wavelet basis is not unique:
Obviously, the basis sequences φi

wavelet (i = 0, 1, . . .) depend on both the
chosen wavelet and the chosen decomposition depth J .

For N = 4 a wavelet basis system is plotted in the right column of Fig.
3.20. As mentioned above, this system depends on the chosen wavelet as well
as on the chosen decomposition depth J . Here db1, i.e., the Haar-wavelet with
the corresponding filters, and J = 1 were selected.

0 2 4
−0.5

0

0.5

1

1.5

φ
natural

0 2 4
−0.5

0

0.5

1

1.5

0 2 4
−0.5

0

0.5

1

1.5

0 2 4
−0.5

0

0.5

1

1.5

0 2 4
−1

0

1

Real(φ
Fourier

)

0 2 4
−1

0

1

0 2 4
−1

0

1

0 2 4
−1

0

1

0 2 4

−1

0

1

φ
wavelet

0 2 4

−1

0

1

0 2 4

−1

0

1

0 2 4

−1

0

1

Fig. 3.20. Basis systems for N = 4. Left column: φk
natural. Middle column:

Re(φk
F ourier). Right column: φk

wavelet. From above: k = 0, . . . , 3.

From this figure, together with the above computations, we collect the
following observations:

3.5 A Unifying Viewpoint: Basis Systems 79

The signal f = {fk} may be expanded with respect to 3 different
basis systems:
The natural basis is “strictly local” in the sense that the correspond-
ing basis sequences are nonzero at exactly one position, the expansion
coefficients are given by the original signal values fk.
The Fourier basis is “global” in the sense that the corresponding
basis sequences may be nonzero at all positions, the expansion coef-
ficients are proportional to the DFT-values Fk.
The wavelet basis is “local” in the sense that the corresponding basis
sequences are concentrated around several positions, the expansion
coefficients are given by the entries of the sequences fJ , dJ , . . . , d1.
Thus, in a sense, the wavelet basis system interpolates between the
strictly local natural basis and the global Fourier basis.

We will return to this qualitative difference in the behavior of the transform
later (cf. sect. 3.6.1 and chap. 4).

3.5.2 Two-Dimensional Signals

What we have done for one-dimensional signals may be extended easily to the
2-d-case. We shall not bother the reader with detailed formulae but rather
sketch the basic facts in eqs. 3.51 – 3.53 below.

As in sect. 3.4.2 the signal will be a matrix f = {fmn} with m numbering
rows and n numbering columns.

Expanding the signal with respect to the natural basis we obtain:

f =
∑
mn

fmnφmn
natural (3.51)

Here the matrices φmn
natural are nonzero at exactly one pixel position.

The expansion of f with respect to the Fourier basis reads:

f =
∑
mn

Amnφmn
Fourier (3.52)

Here the expansion coefficients Amn are proportional to Fmn, i.e., the
values of the two-dimensional DFT7. The matrices φmn

Fourier may be nonzero
at all pixel positions.

Finally, we may expand f with respect to a wavelet basis:

f =
∑
mn

f̃mnφmn
wavelet (3.53)

7 In sect. 5.2 the DFT was defined only for sequences. We remark that it may be
extended to matrices by applying the DFT row- and columnwise. For details refer
to, e.g. [33].

80 3 The Discrete Wavelet Transform

Here the expansion coefficients f̃mn result from merging the outcome of
a two-dimensional J-step-DWT into one matrix analogously to eq. 3.37. The
matrices φmn

wavelet may be nonzero at several pixel position. Note that, as in
the 1-d-case, the wavelet basis system will depend on the chosen dbn and
decomposition step J .

We compare the qualitative differences of the basis systems in Fig. 3.21,
where we used a gray value coding for the displayed matrices, with black rep-
resenting the smallest value and white the largest. For the Fourier basis matrix
the real part is displayed, for matrices belonging to natural and wavelet bases,
respectively, absolute values are shown. Note that the respective features of
the basis systems, recorded on page 79 for the one-dimensional case, obviously
are valid also for 2-d-signals.

φ
natural
 (3,5)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Re(φ
Fourier
(3,5))

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

φ
Wavelet
123 . J=2. Wavelet:db2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 3.21. Selected basis matrices for 16 × 16-images. Above left: A natural basis
matrix, above right: Real part of a Fourier basis matrix, below: A wavelet basis
matrix (db2, J = 2).

3.6 Case Studies 81

3.5.3 Computation and Visualization with MATLAB

Again, for this section basic familiarity with MATLAB is required. We shall
discuss implementations generating the basis systems discussed above. The
corresponding MATLAB-m-files have been tested with MATLAB 6.5, release
13 and may be downloaded from the URL given in sect. 1.3. Note that the
m-files discussed in this section require the MATLAB Wavelet Toolbox!

As we have seen, for one-dimensional signals of length N each basis system
is constructed by specifying N basis sequences φ0, . . . , φN−1. The function
bases1d returns the three systems discussed in sect. 3.5.2 and visualizes the
respective subsets φ0, . . . , φkmax by the sample call

[phi_natural,phi_Fourier,phi_wavelet]=bases1d(kmax,N);

Here 0 ≤ kmax ≤ N − 1 must be satisfied and phi_natural, for example,
is a N ×N -matrix with the sequences φ0

natural, . . . , φ
N−1
natural arranged rowwise.

Likewise, the sequences constituting the Fourier and the wavelet basis system,
respectively, are collected in the matrices phi_Fourier and phi_wavelet.
Figure 3.20 was created with this function.

For quadratic images, i.e., N × N -images, representative basis matrices
may be selected, plotted and returned with bases2d. A sample call reads

[phi_natural,phi_Fourier,phi_wavelet]=bases2d;

The selection of phi_natural and phi_Fourier, respectively, is done by
specifying the index pair mn corresponding to formulae 3.51 and 3.52. The
selection of phi_wavelet is slightly more complicated since the toolbox func-
tions wavedec2 and waverec2 are used, which reshape the outcome of a two-
dimensional J-step-DWT as a vector (cf. sect. 3.4.3). Figure 3.21 was created
with this function.

3.6 Case Studies

3.6.1 Energy Compaction and Compression

In this section more examples for the energy compaction property discussed
above (cf. Figs. 3.12 – 3.14) are presented. Recall that “energy compaction”
means that, after applying a J-step-DWT to the signal f , a large portion of the
transformed signal values will be close to zero. In other words: The information
stored in the signal will be concentrated in relatively few significant transform
values. It is obvious that this property is essential for signal compression and
we shall discuss a näıve compression model.

The DFT also shows energy compaction. Therefore, the sample signals
we discuss will be transformed both with the DFT and the J-step-DWT and
characteristic features of both transforms will be worked out.

82 3 The Discrete Wavelet Transform

One-dimensional signals

The top graph of Fig. 3.22 shows an acoustic signal. It was sampled with
a sampling rate νS = 8192 Hz (for the definition of the sampling rate refer
to Table 5.2). The length of the signal f is N = 73113. For completeness
we mention that f represents the first 9 seconds of G.F. Händel’s famous
“Hallelujah”-choir from the “Messiah”-oratory.

For the rest of this section we shall denote with F the sequence F = {Fk} of
DFT-values (cf. eq. 5.13), the outcome fJ , dJ , dJ−1, . . . , d1 of a J-step-DWT
will be merged into a sequence f̃ as shown in eq. 3.47.

0 1 2 3 4 5 6 7 8

x 10
4

−1

0

1
From above: Original, truncated original, Fourier and wavelet reconstructions.

0 1 2 3 4 5 6 7 8

x 10
4

−1

0

1

0 1 2 3 4 5 6 7 8

x 10
4

−1

0

1

0 1 2 3 4 5 6 7 8

x 10
4

−1

0

1

Fig. 3.22. From above: Plot of f , fp, fp
F ourier and fp

wavelet. Parameters: p = 1%.
J = 5, db20.

As before (cf. Fig. 3.14) we illustrate energy compaction with histograms.
Similarly to the procedure described already, we compute the respective his-
tograms of f , F and f̃ as follows: Take the smallest and the largest absolute
value of the corresponding sequence elements and subdivide the interval be-

3.6 Case Studies 83

tween these values in 100 equally spaced bins. Now for each bin count the
number of sequence elements, whose absolute values are contained in it.

The result of this procedure is shown in Fig. 3.23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2000

4000

6000
From above: Histograms of original, Fourier and wavelet coefficients.

0 100 200 300 400 500 600 700 800
0

1

2
x 10

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5000

10000

15000

Fig. 3.23. Histograms of f , F and f̃ (from above). Wavelet parameters as in Fig.
3.22.

We see that both transforms lead to histograms which are sharply peaked
close to zero. Obviously, the “main information content” of the original sig-
nal is stored in relatively few significant values. For completeness we mention
that the parameters belonging to the J-step-DWT were J = 5 (decomposi-
tion depth) and db20 (chosen wavelet). Observe that the histograms of both
transforms are in sharp contrast to the histogram of the original, which is
relatively uniform on its range of data!

We note already here (for more details refer to sect. 4.1.2) that for com-
pression purposes the following properties are necessary/desirable:

84 3 The Discrete Wavelet Transform

Transform the original signal such that

1. The transform is invertible (necessary condition) and
2. The histogram of the transform values is sharply peaked (desir-

able condition). In fact, the achievable compression rate of the
procedure described in 4.1.2 will increase if the histogram is con-
centrated more and more on only few values.

Obviously the DFT and the J-step-DWT fulfill both requirements. In order
to provide a feeling for the respective degree of energy compaction, when
compared with the original, the following experiment was carried out (refer
also to sect. 1.2.6):

1. Choose a percentage value p (0 < p ≤ 100).
2. Starting from the histogram of the J-step-DWT f̃ compute a truncated

version f̃p and a corresponding reconstruction fp
wavelet as follows:

a) Sort the sequence elements f̃k in descending order with respect to
their absolute values. The resulting list we denote with l = {lk}. Now
choose a limit f̃ limit such that the absolute values of the first p% of
l-entries are above or equal to f̃ limit, the rest below.

b) Then

f̃p
k =

{
f̃k if |f̃k| ≥ f̃ limit

0 else

In other words: If the absolute value of a given transform coefficient
belongs to the percentage p of transform coefficients having the largest
absolute values, it is retained, otherwise it is “deleted”, i.e., put equal
to zero.

c) Compute fp
wavelet by applying the reconstruction part of eq. 3.30 to

f̃p = {f̃p
k}.

3. Proceed analogously with the DFT leading to the truncated transform
sequence F p = {F p

k } and to the corresponding reconstruction fp
Fourier by

applying the IDFT (eq. 5.14) to F p.
4. Proceed analogously with the original leading to the truncated version fp.

The truncated signals fp, fp
Fourier and fp

wavelet will be such that their re-
spective histograms are much more concentrated at zero than the histograms
from Fig. 3.23: They are obtained from the latter by putting all coefficients
with absolute values below the respective limits from above in the “zero-bin”.
Corresponding to the remarks made on page 84 therefore their compression
performance will increase. We note already here that p provides a rough esti-
mate for the achievable compression rate if fp, f̃p or F p are coded and stored
as described in sect. 4.1.2 [1].

How are the signals fp, fp
Fourier and fp

wavelet distorted when compared
with the original f? As we have seen in the section before, the signal may

3.6 Case Studies 85

be expanded with respect to the natural basis (eq. 3.43), the Fourier basis
(eq. 3.46) or the wavelet basis (eq. 3.50) with expansion coefficients fi, Fi√

N

and f̃i, respectively. The truncation procedure from above means that in these
expansions all contributions from basis sequences whose expansion coefficients
are mapped to zero will vanish. Then by the strict locality of the natural basis
system only p percent of fp will be nonzero. On the other hand, this will not
be true for the Fourier basis, due to its global nature, therefore fp

Fourier might
have nonzero entries everywhere. As stated before, the locality8 of the wavelet
basis system will lead to an “intermediate behavior”: For small p-values one
may expect that some parts of fp

wavelet will be zero, but the “nonzero-portion”
will be larger than for fp.

These facts are illustrated in Fig. 3.22. Here from above f , fp, fp
Fourier

and fp
wavelet are plotted with p-value and wavelet parameters indicated in the

caption. It is clear that a sudden change from zero loudness to sound and
vice versa will not be pleasing to the listener. Note that fp will be zero over
99% of the playing time! Thus a “compression” resulting from the truncation
procedure discussed above with p = 1% will lead to unacceptable results.
Nevertheless, the basic mechanisms responsible for losses in signal quality
when compressing it by concentrating histograms can be illustrated with these
examples.

For compressing audio signals it turns out that the use of “Coiflets” (a
variant of dbn-wavelets which ensures a close match of the approximation
signal fJ with the original f) is promising [38]. Moreover, the desired con-
centration process of histograms should result from a “perceptually lossless
quantization procedure” (see also sect. 4.3), which is more involved than the
simple truncation procedure from above9.

Two-dimensional signals

The experiment described above in complete analogy was carried out also
for images. The terminology will be the same, i.e., the original image is de-
noted with f , F and f̃ denote the corresponding two-dimensional DFT and
J-step-DWT, respectively10. Again, fp, fp

Fourier and fp
wavelet denote the re-

constructions resulting from transforms which were truncated in exactly the
same way as described above. All images are subject to gray level coding, i.e.:
zero is coded as black, the largest value as white.

The upper left subimage of Fig. 3.24 shows the original. The number
of rows and columns of the corresponding pixel matrix were M = 240 and
8 For the notions of strictly local, global or local behavior, which are used here we

refer the reader to page 79.
9 The successful MP3-compression scheme of audio signals combines the “discrete

cosine transform”, a variant of the DFT, with perceptually lossless quantization.
10 The matrices F and f̃ were introduced in sect. 3.5.2, pages 79 ff.

86 3 The Discrete Wavelet Transform

Original

50 100 150 200 250 300

50

100

150

200

Reconstruction from 10% largest pixels

50 100 150 200 250 300

50

100

150

200

Reconstruction from 10% largest Fourier coefficients

50 100 150 200 250 300

50

100

150

200

Reconstruction from 10% largest wavelet coefficients

50 100 150 200 250 300

50

100

150

200

Fig. 3.24. In clockwise order from above left: Plot of f , fp, fp
wavelet and fp

F ourer.
Image dimensions: 240 × 320. Percentage: p = 10%. J = 4, db4.

N = 320, respectively. Figure 3.25 implies that the transforms lead to a con-
centration in the respective histograms, which is even more drastic than for
1-d-signals.

The remarks made before concerning locality of the respective basis sys-
tems apply also here. In particular, note that the chosen percentage of p = 10%
implies that exactly 90% of fp will be black, since the corresponding pixels
are mapped to zero. The locality properties of the respective basis matrices
(cf. Fig. 3.21) are reflected in the corresponding reconstructions: The global
periodicity of Fourier-basis matrices leads to flickering artifacts in fp

Fourier .
The locality of wavelet-basis matrices leads to regions in fp

wavelet which are of
near constant intensity (they correspond to regions in the audio signal having
constant loudness), whereas the zooming property of the wavelet transform
(refer also to sect. 1.2.6) ensures that details like edges are relatively well re-
produced. The visual reception here is different from listening: As explained
before, changing from constant loudness to meaningful sound will be unaccept-
able to the listener, whereas changing from smoothened regions to detailed
regions will not be so disturbing for the observer.

3.6 Case Studies 87

0 50 100 150 200 250
0

1

2
x 10

4 From above: Histograms of original, Fourier and wavelet coefficients.

0 1 2 3 4 5 6 7

x 10
6

0

5

10
x 10

4

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10
x 10

4

Fig. 3.25. Histograms of f , F and f̃ (from above). Wavelet parameters as in Fig.
3.24.

MATLAB Implementations

The truncation procedure described above is implemented in the functions
CompAudioToolbox (one-dimensional signals) and CompImageToolbox (two-
dimensional signals), respectively. These functions require the MATLAB
Wavelet Toolbox and have been tested with MATLAB 6.5, release 13. They
may be downloaded from the URL given in sect. 1.3.

Prototype function calls read

[ytrek,yfrek,ywtrek]=CompAudioToolbox(y);

and

[rek_pix,rek_ft,rek_wt]=CompImageToolbox(y);

respectively. The original signal is denoted with y, in the one-dimensional
case the reconstructions fp, fp

Fourier and fp
wavelet are stored in ytrek, yfrek

and ywtrek, analogously in the two-dimensional case these matrices are de-
noted with rek_pix, rek_ft and rek_wt.

88 3 The Discrete Wavelet Transform

All required parameters (percentage p, requested dbn-wavelet, decompo-
sition depth J) must be provided in a user dialogue.

3.6.2 Denoising a Sensor Signal / Real-Time Properties of the
Algorithm

Removing noise is a standard topic in signal processing. Usually noise is at-
tributed to high frequency components of the signal, which correspond to
small detail sizes when performing a wavelet analysis (cf. eq. 1.4). Therefore
the idea is to remove high frequency/small detail components such that un-
derlying signal structures, which may be obscured by noise, are preserved and
will emerge from the denoising process.

We have seen that a J-step-DWT 3.30 performs a multiscale analysis of
a signal f in the sense that details up to ≈ TS2J are removed from fJ ,
whereas the detail signals dJ , dJ−1, . . . , d1 store contributions from decreasing
detail sizes in a way that makes it possible to recover f completely from
fJ , dJ , dJ−1, . . . , d1 by the reconstruction part from eq. 3.30. Therefore, a
J-step-DWT seems to be a good candidate for denoising by the following
three-step-procedure:

1. Perform a J-step-DWT.
2. Threshold detail signals corresponding to scales, which may be attributed

to noise.
3. Reconstruct with manipulated detail signals.

Due to the pioneering work of D.L. Donoho and his collaborators (see,
e.g. [9]) for certain noise models thresholding prescriptions for detail signal
coefficients can be given, which remove the noise without disturbing impor-
tant signal features. For a brief survey of these techniques refer to [1], the
MATLAB Wavelet Toolbox contains related functions [24]. From the section
before, where data compression was linked to thresholding, we see that de-
noising and compression are based on the same basic properties of the DWT,
namely multiscale analysis and energy compaction.

In this section we shall illustrate denoising by a crude example. The pur-
pose is to demonstrate the transfer properties of wavelet filters (see sect. 3.3.2)
and to work out an aspect important for practical applications.

Let us again consider the sensor signal f from Fig. 2.7. Remember that
this signal was recorded during an oscillatory process whose frequency changes
from ν ≈ 3 Hz to ν ≈ 6 Hz at t ≈ 3 sec. Figure 2.7 shows that this transition
may be recognized from the STFT, but f is obviously heavily corrupted with
noise, which is reflected by nonzero high-frequency contributions.

In sect. 3.3.2 we saw that each H-filtering step in a J-step-DWT 3.30
corresponds to low-pass filtering. Since low-pass filtering removes high fre-
quency components (small details) of f , one expects that fJ , which results
from applying J low-pass filtering steps, will be a smoothened version of

3.6 Case Studies 89

f and the degree of smoothing will increase with J . Note, however, that
the length of fJ will be equal to the length of f , divided by 2J , due to
subsampling in every decomposition step! Therefore, a smoothened version
fJ,smooth of f is obtained by applying the reconstruction part of eq. 3.30
to fJ , dJ,smooth, dJ−1,smooth, . . . , d1,smooth, where the entries of all dj,smooth-
sequences are zero. Referring to the three-step-procedure from above, we apply
a “brute-force-thresholding” by mapping all detail coefficients to zero, regard-
less of the respective level j, i.e., the respective scale sizes.

For J = 2, for example, the denoised signal f2,smooth is computed as
follows:

f −→ H −→ H −→ H∗ −→ H∗ −→ f2,smooth. (3.54)

In Fig. 3.26 we show the resulting f2,smooth together with its STFT (cf.
sect. 2.1.3). Here db1-filters were chosen, i.e., the Haar-wavelet was used.
Figure 3.27 shows the same results for db20-filters instead of db1-filters.

0 2 4 6 8 10
−0.5

0

0.5

1

Parameters: J=2, L=1 (db1)

t

ν
[H

z]

0 2 4 6 8 10

5

10

15

Fig. 3.26. Denoising the sensor signal from Fig. 2.7 with J=2 and L = 1 (db1).

Comparing both figures with the original and its STFT (Fig. 2.7) we see
that both procedures lead to very satisfying results: The frequency transition
is now clearly visible in the STFT-plot and may even be localized by visual
inspection of the denoised signals. Moreover, as is to be expected, the suppres-
sion of high frequencies works better with increasing order of dbn (see Fig.

90 3 The Discrete Wavelet Transform

0 2 4 6 8 10

−0.5

0

0.5

1

Parameters: J=2, L=39 (db20)

t

ν
[H

z]

0 2 4 6 8 10

5

10

15

Fig. 3.27. Denoising the sensor signal from Fig. 2.7 with J=2 and L = 39 (db20).

3.9). Also the smoothness of the denoised signals improves with increasing
order of dbn in perfect accordance with the corresponding wavelet properties
(cf. sect. 3.3.1).

This simple example shows the potential of wavelet methods for denoising
signals. Denoising a sensor signal can be important for obtaining reliable in-
formation from the sensor. Here, the signal stems from a light arc sensor of
a welding robot and is needed for obtaining the actual distance of the weld-
ing tool from the welding seam. This distance information is of fundamental
importance for controlling the position of the welding tool. In these kinds of
applications a desirable feature of denoising is to compute the denoised signal
“online”: As soon as the k-th signal value fk is recorded, the corresponding
value fJ,smooth

k of the denoised signal should be available.
An online feature as defined above cannot be realized with wavelet filters.

As an example we choose db1 and J = 2. The filter coefficients read {h0, h1}
and we illustrate the two-fold H-filtering from eq. 3.54 by extending Fig. 5.6
to two decomposition steps (Fig. 3.28).

The diagram is plotted for TS = 1. For a general sampling time TS we will
have a minimum delay time of 3TS in order to compute the f2

k -values11. The
reason for this delay is that the coefficient h1 of the db1-filter is “non-causal”:
11 Observe that this delay time will be a minimum value since addition and multi-

plication also consume processor resources.

3.7 Notes and Exercises 91

� �

� � � �

�

f1
1f1

0

f0 f1 f2 f3

�

�
�

�
�

���

h0
h1

�

�
�

�
�

���

h0
h1

f2
0

�

											

h0
h1

Fig. 3.28. Two-fold H-application for a filter with coefficients {h0, h1}.

In order to compute , e.g., f1
0 , the “future signal value” f1 is needed and this

delay propagates from decomposition step to decomposition step.
In fact, it is not hard to obtain a general delay formula. With L denoting

the number of non-causal filter coefficients (i.e., the number of hk-coefficients
with k > 0) the minimum delay tdelay reads

tdelay = TSL(2J − 1). (3.55)

Indeed, for db1 with L = 1 and J = 2 we obtain the delay time read off
from Fig. 3.28.

Note that there is a tradeoff between “denoising quality” and delay time!
A dbn-H-filter has L = 2n − 1 non-causal coefficients. We saw in Figs. 3.26
and 3.27, respectively, that the features of the denoised signal improve with
increasing n, but this improvement corresponds to a deterioration of online-
capability. The corresponding L-vaues are given in the figure captions.

3.7 Notes and Exercises

Notes

There are numerous wavelet topics not treated at all in this book. We expli-
clitly mention wavelet packets and multiwavelets and encourage the reader
to consult the references. The application-oriented reader might prefer [38],
[24] or [1]. Readers interested in research are referred to [7], [20], [26], [3] or
[23]. In reference [22] an exhaustive discussion of wavelet applications in sig-
nal processing is given. The two-dimensional J-step-DWT developed in sect.
3.4.2 is not the only way to define a discrete wavelet transform for images.
“Isotropic wavelets”, as constructed by P. Maaß, are an alternative approach.
For a review refer to [21].

92 3 The Discrete Wavelet Transform

Another topic not covered in this book is the lifting scheme developed for
the DWT. It addresses in particular implementations of the decomposition and
reconstruction algorithm, which very efficiently reduce storage and computing
time requirements. The lifting scheme is described in [16].

Exercises

1. Verify eq. 3.12 in the following steps:
a) Sketch 1√

|a|ψH

(
u−t

a

)
for a = 2 and t = 2k (k = 0, . . . , 3).

b) Decompose f(t) in the form f(t) = f1(t) + d1(t) and show that
LψH f1(2, 2k) = 0 (k = 0, . . . , N − 1).

c) Show that LψH d1(2, 2k) =
√

2
cψH

d1
k (k = 0, . . . , N − 1).

2. Compute frequency response, amplitude response and phase response for
the Haar-filter H with coefficients{

h0 =
√

2
2

, h1 =
√

2
2

}
.

These transfer functions are defined in eqs. 5.18 and 5.19, respectively.
Compute these quantities also for the corresponding G-filter with coeffi-
cients {

g0 =
√

2
2

, g1 = −
√

2
2

}
.

3. For N = 4, db1 and J = 1 compute the one-dimensional wavelet basis

φ0
wavelet, φ

1
wavelet, φ

2
wavelet, φ

3
wavelet.

Steps:
a) Choose the natural basis

φ̃0
natural, φ̃

1
natural, φ̃

2
natural, φ̃

3
natural

and decompose each of these sequences analogously to eq. 3.49, where
the decomposition for J = 2 was sketched.

b) For each basis sequence φ̃i
natural apply the reconstruction part of eq.

3.30 to the corresponding decomposition. For the coefficients belong-
ing to the dual filters H∗ and G∗, respectively, cf. 3.19 and 3.20!

4. Some MATLAB-exercises.
a) Develop a MATLAB-function with the following prototype call:

transfers(coeff);

Here the row-vector coeff is constructed as follows:
coeff=[coefficients, lower, upper].

3.7 Notes and Exercises 93

The vector coefficients stores the hk-coefficients of a dbn-H-filter,
lower denotes the lowest, upper the highest k-value. As an example,
for db1 we have coeff=[0.7071, 0.7071, 0, 1.0000]. The vector
coefficients can be obtained by the MATLAB Wavelet Toolbox
function wfilters (cf. sect. 3.4.3), note that for a dbn-filter lower=0
and upper=2*n-1.
Then transfers should compute and plot the corresponding ampli-
tude and phase transfer functions (cf. eq. 5.18). Furthermore, the gk-
coefficients should be determined according to eq. 3.28 and their trans-
fer functions also should be computed and plotted.

b) Develop a MATLAB-function with the following prototype call:
out=imdec(original,J,’dbn’);

Here the matrix original stores a gray level image, J denotes the
decomposition depth of a J-step-DWT and dbn chooses the dbn-filters.
Then out should store the output matrix arranged as indicated in eq.
3.37 (see also Fig. 3.17). The function should invoke the MATLAB
Wavelet Toolbox function wavedec2 with specification given in sect.
3.4.3.

c) (Involved!) Develop your own MATLAB-function realizing the itera-
tive construction and plotting of scaling function φ and wavelet ψ,
when the filter coefficients {hk} are given. The procedure (“cascade
algorithm”) is described in sect. 3.3.1.

Solutions to these problems can be found in folders Filters (a), TwoDim
(b) and WaveIter (c). These folders may be downloaded the URL given
in sect. 1.3.

5. (Involved!) In order to solve the problem formulated below we have to
extend theorem 5.1 from sect. 5.2.
Let {f(kTS)} be a sampling of a band-limited finite energy signal f(t) such
that the Shannon condition 5.12 is fulfilled. Then not only the spectrum
f̂(ω) and the DFT are related by eq. 5.16, moreover, the continuous-time
signal f(t) may be recovered completely from the sample values {f(kTS)}:

f(t) =
∑

k

f(kTS)φSh(t − kTS). (3.56)

Here, the Shannon interpolation function is defined as follows:

φSh(t) =
sin
(
π
(

t
TS

))
π
(

t
TS

) . (3.57)

In what follows, denote with φ(t) the Shannon interpolation function
φSh(t) for TS = 1, i.e.

φ(t) =
sin(πt)

πt
. (3.58)

94 3 The Discrete Wavelet Transform

Show that

φ(t) =
√

2
∑

k

hkφ(2t − k) where hk =
φ(k

2)√
2

. (3.59)

Steps:
a) Show that

φ̂(ω) =
{

1 |ω| ≤ π
0 else

Hint: Use reconstruction formula 5.2!
b) Show that the maximum frequency ωmax belonging to φ(t) satisfies

the Shannon condition 5.12 for TS = 1
2 .

c) Put f(t) = φ(t) and write down eq. 3.56 for TS = 1
2 .

Supplementary information:
Remember that wavelet and scaling function are related by eq. 3.29, which
is called a “scale-equation”. It may be shown that the scaling function
fulfills a similar scale equation:

φ(t) =
√

2
∑

k

hkφ(2t − k).

As an example, the reader may verify this relation for the Haar-wavelet
and the corresponding filter coefficients {hk}.
Then from eq. 3.59 follows that φ, as defined in eq. 3.58, may be viewed
as a scaling function related to the above filter coefficients. These filters
in turn lead to a general J-step-DWT 3.30. In contrast to dbn-wavelets,
however, the coefficient set

{hk} =

{
φ(k

2)√
2

}

will be infinite! Thus, any implementation on a computer necessarily will
lead to truncation errors.

4

More Applications

In this chapter we shall consider two DWT-applications: data compression
and the use of wavelets for automatic indexing of images in image databases.

In the next section the general structure of the transform compression
scheme is presented. We shall sketch the basic components and in particular
will focus on the mechanism responsible for distortions when compressing
data. In sect. 4.1.3 we describe a procedure for reducing these distortions.
This procedure is implemented in MATLAB.

Section 4.2 is devoted to wavelet applications for image databases.

4.1 The Transform Compression Scheme

Any data compression scheme aims at reducing storage requirements. The
data considered in this section are digital images1, which are represented as
matrices

f = {fmn} (m = 0, . . . , M − 1; n = 0, . . . , N − 1) (4.1)

(cf. sect. 3.4.2). Here, M and N denote the number of rows and columns,
respectively, the matrix entries fmn are called “pixels”. If a single pixel re-
quires b bits of storage, the digital image f will require Sf bits of storage,
where

Sf = NMb. (4.2)

Instead of storage we shall also use the phrase “file size” from now on. So
the file size of the original image f is computed according to eq. 4.2.
1 Note, however, that this restriction is made only for keeping notation consistent.

The presented algorithms and techniques are also applicable to one-dimensional
signals, i.e., sequences f = {fk}N−1

k=0 .

96 4 More Applications

To motivate the need of compression techniques, we start with a simple
example. A wide-spread image format is the “SIF-format” with a resolution
of M = 352 rows and N = 288 columns. It is used, for example, in low-cost
web-cameras. A true-color image requires 24 bits for each pixel. So a true
color image f recorded with SIF resolution will have a file size Sf computed
as

Sf = 352 × 288 × 24 bits = 2433024 bits.

Note that the SIF-resolution is rather poor! It is clear that with increasing
resolution demands the volume of digitized images will increase drastically.

It is not only consumption of disk space which causes problems when
processing digital images or video sequences. Downloading images from the
internet, transmitting images over local or wide area networks will be ex-
tremely time consuming if the data volume is too large. Therefore, there is an
urgent need for compression techniques leading to a reduced amount of data
with only small or even insignificant distortions of the compressed images.

We close these introductory remarks by defining compression rate, for-
mulating the goal of an effective compression procedure and introducing two
commonly used distortion measures.

Every compression procedure transforms the original image f to a signal
f c with reduced file size. The “compression rate” measures this reduction and
is defined as

C =
Sf

Sfc

. (4.3)

We shall not restrict ourselves to lossless compression procedures. So in
general from f c a signal will be recovered (“decompressed”), which we shall
denote with fdec. This signal should be “close” to the original f in a suitable
sense (see below). Therefore, an efficient compression scheme is characterized
by a large compression rate combined with only small signal distortions:

Compression goal: C � 1 where fdec ≈ f. (4.4)

The following distortion measures give a precise meaning to fdec ≈ f :
The “norm distance” of fdec with respect to f is defined as follows:

‖fdec − f‖ =
√∑

mn

(fmn − fdec
mn)2. (4.5)

It is clear that a lossless compression procedure will lead to ‖fdec−f‖ = 0.
Another quantity, frequently used in particular in the engineering com-

munity [36], is the “peak-signal-to-noise-ratio” (PSNR), which is measured in
Dezibel and reads

4.1 The Transform Compression Scheme 97

PSNR(f, fdec) = 10 log10

(
MN(2b − 1)2

‖fdec − f‖2

)
[dB]. (4.6)

Here, as mentioned above, M and N denote the number of rows and
columns, respectively, b is the number of bits required for storing a single
pixel of the original f , ‖fdec−f‖ denotes the norm distance introduced in eq.
4.5.
For readers familiar with the notion of signal energy we give a short explana-
tion of the phrase “peak-signal-to-noise-ratio”: When considering gray scale
images with a resolution of b bits per pixel, 2b − 1 will be the maximum in-
tensity value of a pixel. Thus the above fraction relates the maximum energy,
which may be stored in a M × N -image to the energy stored in the error
signal fdec − f . This error signal may be attributed to noise, coming from the
compression procedure.

Summarizing, an efficient compression scheme in the sense of eq. 4.4 will
tend to minimize ‖fdec−f‖, or, equivalently, maximize PSNR(f, fdec), at the
same time keeping the compression rate C large.

A widespread compression procedure is the “transform compression scheme”
and we shall describe its basic components in the next section.

4.1.1 The General Procedure

A “transform compression scheme” is a three-step-procedure as sketched be-
low:

Compression: f −→ T
fT

−→ Q
fQ

−→ EC −→ f c
(4.7)

Decompression: fdec ←− T−1 fQ−1

←− Q−1 fEC−1

←− EC−1 ←− f c (4.8)

The processing steps T , Q and EC must be chosen and adapted to each
other such that requirement 4.4 for an efficient compression scheme is fulfilled.
They are explained below:

1. T denotes a linear invertible transform

f ↔ fT .

fT again will be a matrix of the same2 size M × N as the original f . In
this section we shall consider the J-step-DWT 3.36, since it is included
in the actual JPEG 2000 standard for still image compression [36]. The
remaining components of a transform compression scheme, however, work

2 For reasons explained in sect. 3.4.3 this only approximately will be true, if fT is
generated by a J-step-DWT.

98 4 More Applications

with any linear and invertible transform. In the “old” version of the JPEG
still image compression standard [39], for example, fT resulted from a
blockwise application of the “discrete cosine transform” (DCT) [39].
In Fig. 4.1 we display both fT -variants. The result of a J-step-DWT again
is arranged as indicated in eq. 3.37. Here J = 2 was chosen.

DCT DCT DCT

· · ·

d1v d1d

d1h

d2v d2d

f2
d2h

Fig. 4.1. Transformed images fT for JPEG “old” (left) and JPEG 2000 (right).

As indicated already in sect. 3.4.4, JPEG 2000 recommends the use of a
biorthogonal filter pair H, H̃ with 9 and 7 coefficients, respectively.

2. Q denotes “quantization”. Here intervals of the values of fT -entries are
represented by a single value (a so called “symbol”) Sj . If the intervals
have constant length, the quantization is called “uniform”. An example is
shown in Fig. 4.2. Every fT -entry is subject to such a quantization leading
to a matrix fQ of size M × N .
Since the map [qj , qj+1) → Sj is many-to-one, quantization is a lossy
step. In fact, the “reconstruction error” fdec−f actually is a quantization
error, since quantization is the only lossy step at transform compression.
Thus in eq. 4.8 the symbol Q−1 does not denote exact inversion of the
qantization step Q but rather is a suitable prescription, to choose a value
in the interval [qj , qj+1), when Sj is given.
Note that the truncation prescription discussed in sect. 3.6.1 (see page
84) actually is a quantization, representing the interval (−f̃ limit, f̃ limit)
by the symbol 0.

3. EC denotes an “entropy coder”, which encodes the symbol matrix fQ

with as few bits as possible resulting in the compressed signal f c.
Note that, whichever way the entropy coder is implemented, entropy cod-
ing is invertible, therefore the transition from fQ to f c and vice versa is
lossless:

fQ ↔ f c.

4.1 The Transform Compression Scheme 99

�

�

fT
mn

fQ
mn

qj qj+1

Sj

Fig. 4.2. A uniform quantization rule.

Moreover, the actual file size reduction is performed in this step and the
purpose of the preceding steps is to generate a histogram of the symbols
{Sj} such that entropy coding may be applied effectively. Basic notions
of entropy coding are introduced below, for a review of entropy coding
schemes see [36], [21].

Finally we note that the three-step-scheme depicted in equations 4.7 and
4.8, respectively, is oversimplified. Certain “modes” of JPEG 2000 do not show
a strict separation of quantization and entropy coding. Rather, these steps are
merged to an entangled procedure [36]. Moreover, compression efficiency can
be increased by combining quantization with run length coding [1]. There
exist many more variants of transform compression which will enable high
compression rates at low distortion.

Nevertheless, in this section we shall stay with the three-step-scheme 4.7,
since it allows for a systematic investigation of quantization errors (cf. sect.
4.1.3). The reader should keep in mind, however, that real implementations of
compression schemes are more involved and we refer to the quoted references
for more detailed information.

4.1.2 Entropy Coders

Let us assume that a quantization has been performed leading to n symbols.
Therefore, after quantization, the quantized matrix fQ will have entries with
values taken from the set {S1, . . . , Sn}.

Assume that ni denotes the number of Si-occurrences in fQ and denote
with

pi =
ni

MN
(4.9)

100 4 More Applications

the corresponding relative frequency. Then the symbols Si (i = 1, . . . , n)
will occur with relative frequencies pi (i = 1, . . . , n) satisfying

n∑
i=1

pi = 1. (4.10)

The “entropy” of fQ is defined as [36]

H(p1, . . . , pn) = −
n∑

i=1

pi log2 pi (4.11)

H satisfies the inequalities

0 ≤ H(p1, . . . , pn) ≤ log2 n. (4.12)

We explicitly note two important facts: The upper bound will be reached
for

p1 = p2 = . . . = pn =
1

MN
, (4.13)

the lower bound for

pi =
{

1 i = k
0 i �= k

(4.14)

Both equations illustrate an important aspect of entropy: If all symbols
occur with equal frequency (eq. 4.13), H will reach its maximum; if actually
only symbol Sk occurs in fQ (eq. 4.14), H will reach its minimum. This may
be generalized by the following observation:

H measures the concentration properties of the histogram counting
the occurrences of the symbols Si (i = 1, . . . , n). If the histogram is
flat, H will be large, if the histogram is sharply peaked, i.e., concen-
trated around relatively few symbols, H will be small.

For storing and processing fQ on a digital computer, we need a “binary
code”, i.e., an invertible map of the symbols to sequences of two-valued bits.
Usually the two possible values of a bit are represented as 0 and 1, respectively.
A binary sequence representing a symbol will be called a “codeword”. The
length of the codeword representing symbol Si we denote with li.

A binary coding of three symbols is shown in Table 4.1. As in this example,
the length of the codewords in general may vary, a code with this property is
called “variable length code”.

We saw above that each symbol Si will appear in fQ with a relative fre-
quency pi resulting from eq. 4.9. So we can compute an “average codeword
length” l corresponding to

4.1 The Transform Compression Scheme 101

Table 4.1. A binary code for three symbols.

Symbol codeword

S1 1
S2 01
S3 00

l =
n∑

i=1

pili. (4.15)

A fundamental theorem of information theory [29] states that for an arbi-
trary binary code the following inequality will be true:

l ≥ H(p1, . . . , pn). (4.16)

Thus, the entropy computed according to eq. 4.11 is a lower bound for
the average codeword length and a binary code, which has the property that
l ≈ H(p1, . . . , pn), is called “entropy codec”. Such codecs3 also are called
“optimal codecs”, since it is not possible to represent the symbols (in the
average) by shorter codewords.

We shall see below that algorithms for entropy coders can be given, so we
may extract a “compression recipe” from what we have collected so far:

1. Try to reduce entropy by choosing a transform T such that the
histogram of fT

mn-values is concentrated about relatively few val-
ues (cf., e.g., Fig. 3.25).

2. Try to reduce entropy even more by applying a proper quantiza-
tion rule such that the histogram of fQ

mn-values is sharper peaked
than the fT

mn-histogram.
3. Apply an entropy codec to fQ resulting in the compressed signal

f c.
As a consequence, the compression rate C defined in eq. 4.3 may
be estimated as

C ≈ b

H(p1, . . . , pn)
. (4.17)

The reason is that the file size of Sfc of f c may be estimated
as Sfc = MNl ≈ MNH(p1, . . . , pn), whereas the file size of the
original reads Sf = MNb (cf. eq. 4.2, b denotes the number of
bits needed to store a pixel of the original image).

3 The term “codec” is composed from coding and decoding stressing code invert-
ibility.

102 4 More Applications

We shall now sketch two entropy codecs frequently used in image com-
pression. Both algorithms are described in, e.g., [36]. The reader may consult
[36] also for further related references.

The Huffman-codec

Given the symbols {S1, . . . , Sn} and the corresponding relative frequencies
{p1, . . . , pn} the algorithm constructs a binary tree, whose leaves correspond
to the symbols. The construction proceeds as follows:

1. Define the “leaves” of the tree by putting all symbols in a row. Instead of
leaf we will use the term “node” from now on. Each node will be labelled
with the corresponding relative frequency pi.

2. Merge the two nodes with the smallest probabilities (“children”) into one
node (“parent”), labelled with the sum of the two relative frequencies.
Represent the merging process by a graph connecting both children with
the parent node.

3. Repeat step 2 with the parent node(s) generated so far and the remaining
leaves.

4. Stop, when the last node has been generated by the merging process.
This node is called “root”, obviously it will be labelled with 1, since it
corresponds to the sum over all relative frequencies.

5. Code each symbol by the path from the root to the corresponding leaf,
thereby coding each “left turn” with 0, each “right turn” with 1.

We illustrate the procedure by constructing the Huffman code for the
symbol string ABBC.
The relative frequencies read

pA =
1
4
, pB =

1
2
, pC =

1
4

The tree-building process discussed above may be illustrated as follows:

C
1

A
1

B
2

2

4

4.1 The Transform Compression Scheme 103

Note that here the nodes are labelled with absolute rather than relative
frequencies. This makes no difference, the root node for this example then
necessarily is labelled with 4.

The resulting code reads:

Table 4.2. Huffman code for ABBC.

Symbol codeword

C 00

A 01

B 1

We finally check that for this example the average codeword length is
determined by the entropy.

The entropy is computed as

H(pA, pB, pC) = −1
4

log2

(
1
4

)
− 1

2
log2

(
1
2

)
− 1

4
log2

(
1
4

)
= 1.5

The coded string reads 011100. Therefore, the average codeword length
results from

lHuffman =
6
4

= 1.5

So indeed the Huffman code reaches the lower bound from eq. 4.16.
Obviously each Huffman code will lead a “codebook” associating to each

symbol the corresponding codeword as in Table 4.2. So the minimum length of
each codeword will be 1 and therefore, regardless of the symbol probabilities,
the average codeword length of an arbitrary Huffman code will fulfill

lHuffman ≥ 1. (4.18)

On the other hand, the symbol probabilities {p1, . . . , pn} may be such that
entropy satisfies

H(p1, . . . , pn) < 1. (4.19)

In fact, if in a transform compression scheme the transform T is a J-step-
DWT, or a two-dimensional DFT, after quantization the resulting histogram
may be so sharply concentrated (cf. Fig. 3.25) such that eq. 4.19 will hold.

104 4 More Applications

In this case obviously Huffman coding cannot be optimal, since it will not
reach the lower bound from eq. 4.16. Any coding scheme reaching this bound,
therefore necessarily will associate the symbol string stored in fQ completely
to a binary codeword. Below we shall describe such a coding procedure.

Arithmetic Coding

Given the symbols {S1, . . . , Sn} and the corresponding relative frequencies
{p1, . . . , pn} the algorithm will code the given symbol string (in a transform
compression scheme this string may result, e.g., from a rowwise scan of fQ)
by a binary sequence, which we shall call “string codeword” below. We will
describe now the procedure.

1. Start : Subdivide the interval [0, 1) into non-overlapping intervals of length
pi (i = 1, . . . , n). Associate each symbol Si with the correponding subin-
terval.

2. Selection: Select the subinterval corresponding to the first symbol of the
string.

3. Expansion: Decompose the selected interval into subintervals associated
to the individual symbols completely analogously to step 1.

4. Repeat selection and expansion until the last symbol of the string has been
processed. In this way we will obtain a final interval [u, o). Now choose
a number in this interval such that its binary expansion4 is as short as
possible. This binary expansion will be the string codeword.

Again we shall illustrate the procedure by determining the arithmetic code
of ABBC with relative frequencies

pA =
1
4
, pB =

1
2
, pC =

1
4
.

Start :
B A C

0 1
2

3
4

1

Selection:
B A C

0 1
2

3
4

1

Expansion:
B A C

1
2

5
8

11
16

3
4

4 Readers not familiar with computing the binary expansion of a decimal number
q with 0 ≤ q < 1 are referred to sect. 4.3, eq. 4.35, for an example.

4.1 The Transform Compression Scheme 105

Selection:
B A C

1
2

5
8

11
16

3
4

Expansion:
B A C

1
2

18
32

19
32

5
8

Selection:
B A C

1
2

18
32

19
32

5
8

Expansion:
B A C

1
2

34
64

35
64

18
32

Selection:
B A C

1
2

34
64

35
64

18
32

We obtain the final interval

[u, o) =
[
35
64

,
18
32

)
.

The binary expansion of u = 35
64 reads .100011. Analogously, the binary

expansion of o = 18
32 is given by .1001.

So the string codeword representing ABBC reads 100011. The average code-
word length is computed as

lAC =
6
4

= 1.5

Here, obviously arithmetic coding and Huffman coding both are optimal,
since their respective average codeword lengths are given by the entropy (see
above).

We shall now consider the following string:

A B . . .B︸ ︷︷ ︸
n−1 times

(4.20)

106 4 More Applications

The string will have a total number of n symbols and therefore the relative
frequencies read

pA =
1
n

, pB =
n − 1

n
.

If n is large enough, entropy will fulfill H(pA, pB) < 1 and we shall inves-
tigate how arithmetic coding performs.

To do so, we need the following result: Arithmetic coding of the symbol
string 4.20 will lead to the final interval [u, o), where

u =
1
n

(
1 −
(

1 − 1
n

)n−1
)

, o =
1
n

. (4.21)

To prove this, we consider Table 4.3, where we start with u = 0 and o = 1.
Each selection will update u, o and the width of the actual interval; in the
table these updates are tracked.

Table 4.3. Arithmetic coding of string 4.20.

Symbol u o Interval width

A 0 1
n

1
n

B 1
n2

1
n

n−1
n2

B 1
n2 + n−1

n3
1
n

(n−1)2

n3

B 1
n2 + n−1

n3 + (n−1)2

n4
1
n

(n−1)3

n4

...
...

...
...

Thus finally

u =
1
n2

(
1 +

n − 1
n

+
(n − 1)2

n2
+ . . . +

(n − 1)n−2

nn−2

)

=
1
n2

(
1 +
(

1 − 1
n

)
+
(

1 − 1
n

)2

+ . . . +
(

1 − 1
n

)n−2
)

=
1
n2

1 − (1 − 1
n

)n−1

1
n

=
1
n

(
1 −
(

1 − 1
n

)n−1
)

From the second to the third line we used the geometrical expansion for-
mula

4.1 The Transform Compression Scheme 107

n∑
k=0

qk =
1 − qn+1

1 − q
(q �= 1).

As an example we study the symbol string ABBBBBBB with relative frequen-
cies

pA =
1
8
, pB =

7
8
.

The entropy reads

H(pA, pB) = −1
8

log2

(
1
8

)
− 7

8
log2

(
7
8

)
= 0.5436

From eq. 4.21 the boundaries of the final interval are computed as:

[u, o) =
[

185
2437

,
1
8

)
The binary expansion of u = 185

2437 is given by .000100110110111100001001.
Correspondingly, o = 1

8 is expanded as .001.
From both expansions we obtain for the string codeword the binary se-

quence 00011.
Therefore the average codeword length reads

lAC =
5
8

= 0.6250

In contrast, since the Huffman code encodes A with 1 and B with 0 (or vice
versa), we have

lHuffman = 1.

So arithmetic coding will be much closer to the lower bound from eq. 4.16
than Huffman coding.

Since the intervals generated throughout the coding procedure are nested,
decoding works as follows: Subdivide the interval [0, 1) as described above
and determine the subinterval containing the number associated with the
string codeword. The corresponding symbol will be the first element of the
decoded symbol string. Then take this interval, subdivide it again, and again
determine the subinterval containing the above number. This will produce
the second element of the decoded string. Proceed in this way and produce
the next symbols. Since this process will not terminate, the total number of
symbols must be transmitted in order to stop the decoding process after the
last symbol.

108 4 More Applications

4.1.3 Optimal Quantization and Examples

We return now to the transform compression scheme described in eqs. 4.7 and
4.8. In sect. 4.1.1 we saw that signal distortions exclusively can be attributed
to quantization and in this section we shall investigate how quantization dis-
tortion may be reduced.

Given the original f , we are interested in the distortion of the decom-
pressed signal fdec. We saw above that entropy coding is reversible, therefore
we may combine equations 4.7 and 4.8 such that we obtain fdec from f as
follows:

Compression: f −→ T −→ Q −→ Q−1 −→ T−1 −→ fdec

(4.22)

The “norm distance”

D := ‖fdec − f‖ (4.23)

of fdec with respect to f , which was introduced in eq. 4.5, measures dis-
tortion. A high D-value corresponds to large, a low D-value to small signal
distortion. What are the paramaters, D depends on?

In Fig. 4.2 we saw that a quantization rule corresponds to a piecewise
constant function, which uniquely is determined when the quantization pa-
rameters qj and the levels Sj on the respective intervals [qj , qj+1) are known.
This function will be called “quantization function”. Then we observe the
following:

Assume that there are n + 1 quantization parameters q1, . . . , qn+1.
Assume moreover that there exists a prescription, how the levels Si

are computed from the quantization parameters (for an example see
below). Furthermore, assume that a certain choice of the transform T
has been made. Then distortion as determined in eqs. 4.22 and 4.23
will depend only on the quantization parameters:

D = D(q1, . . . , qn+1) (4.24)

In this section we shall use the following prescription to compute the levels
(“symbols”) Sj:

Sj =
qj + qj+1

2
(j = 1, . . . , n) (4.25)

The quantization function is constructed as follows: On the intervals
[qj , qj+1) (j = 1, . . . , n) the function value will be Sj (j = 1, . . . , n), on
[qn+1,∞) the function will remain on Sn, on (−∞, q1) the function value

4.1 The Transform Compression Scheme 109

is S1. So after quantization the matrix elements of fQ will have values5 taken
from the symbol set S1, . . . , Sn.

As mentioned in the preceding section, rowwise scanning of fQ will pro-
duce a symbol string, where each Si will appear with a relative frequency pi.
Since the symbols uniquely are computed from the quantization parameters
as in eq. 4.25, the resulting entropy H (cf. eq. 4.11) actually will depend on
these parameters:

H = H(q1, . . . , qn+1) (4.26)

Distortion is minimized, if q1, . . . , qn+1 are chosen such that D(q1, . . . , qn+1)
is minimized. On the other hand, eq. 4.17 tells us that at the same time
H(q1, . . . , qn+1) should be kept as small as possible in order to obtain a large
compression rate C. So, the overall optimization goal may be formulated as
follows:

Determine q1, . . . , qn+1 such that the target function t(q1, . . . , qn+1)
is minimized, where

t(q1, . . . , qn+1) = λD(q1, . . . , qn+1) + (1 − λ)H(q1, . . . , qn+1) (4.27)

The parameter λ is called “distortion weight”, (1−λ) correspondingly
“entropy weight”.

So, the target function is a weighted average of distortion and entropy and
it depends on the choice of λ, which of the conflicting “sub-goals” (distortion
reduction vs. compression efficiency) is favored.

It is clear that there is no simple analytical expression for t. The optimiza-
tion goal formulated above, therefore, must be solved numerically. A numeric
procedure always will start from an initial set (q0

1 , . . . , q0
n+1) and iteratively

will produce (qk
1 , . . . , qk

n+1) (k = 1, 2, . . .) converging to the desired values
(q1, . . . , qn+1), where t is minimal. In sect. 4.1.4 we briefly indicate which
procedure has been used.

Before discussing Figs. 4.3 – 4.5, where results of numeric optimization are
displayed, we make two remarks:

1. The initial set is computed according to

q0
1 = min

mn
(fT

mn) < q0
2 < . . . < q0

n+1 = max
mn

(fT
mn) (4.28)

5 For completeness we mention that in eq. 4.22 we shall omit dequantization Q−1.
Thus, the inverse transform T−1 directly will be applied to fQ. Since Sj is com-
puted according to eq. 4.25, actually we perform a dequantization by selecting
the midpoints of each quantization interval [qj , qj+1).

110 4 More Applications

with q0
j+1 − q0

j = q0
n+1−q0

1
n (j = 1, . . . , n). So we take the smallest and the

largest element of the transformed image fT (cf. eq. 4.7) and subdivide the
resulting interval in n subintervals of equal length. Therefore the initial
quantization will be uniform (cf. sect. 4.1.1).

2. For T we choose a J-step-DWT. Thus, the transformed image fT is con-
structed as depicted in the right diagram in Fig. 4.1 for J = 2. We shall
allow for separate quantization rules for the approximation signal fJ and
the detail signals. So, in general the numbers of quantization levels for the
approximation image fJ and the detail signals, respectively, will differ.

The upper row of Fig. 4.3 shows the original f (left) and the decompressed
image fdec (right). The lower left diagram displays the quantization function
for the approximation signal fJ , the lower right diagram the quantization
function for the detail signals. Here four quantization levels were chosen for
the approximation signal, three quantization levels for the detail signals, re-
spectively. The figure shows the results for the uniform start quantization.

Original

100 200 300

50

100

150

200

N
app

: 4, N
details

: 3, J: 2, db2, PSNR: 15.39dB, bpp: 0.3019.

100 200 300

50

100

150

200

0 200 400 600 800

0

200

400

600

800

−200 0 200

−200

−100

0

100

200

300

Fig. 4.3. Original (above left) and reconstruction (above right) for start quantiza-
tion. Below left: Uniform initial quantization of approximation signal, Below right:
Uniform initial quantization of detail signals.

4.1 The Transform Compression Scheme 111

It is clear that due to the low number of quantization levels distortion will
be large. Distortion was measured by the PSNR (cf. eq. 4.6) (remember that
large distortion corresponds to a low PSNR-value). Since entropy estimates
the average codeword length of a symbol, H also is displayed. It is specified
as the number of “bits per pixel” (bpp). The respective values in Fig. 4.3 are
PSNR(f, fdec) = 15.39 dB and H = 0.3019 bpp. The original was represented
with b = 8 bits per pixel. So, we have an estimated compression rate of
C = b

H = 26.5.
Before discussing Figs. 4.4 and 4.5, we note that the respective subimages

are arranged as in Fig. 4.3. Moreover, PSNR- and bpp-values are determined
analogously.

Figure 4.4 shows the results obtained when starting from the initial quan-
tization from Fig. 4.3 and stopping after 60 iterations. In the target function
4.27 λ = 1 was chosen, i.e., the entropy weight was zero. So we only aimed at
minimizing distortion without taking entropy into account.

Original

100 200 300

50

100

150

200

N
app

: 4, N
details

: 3, J: 2, db2, PSNR: 18.20dB, bpp: 0.3139.

100 200 300

50

100

150

200

0 200 400 600 800

0

200

400

600

800

−200 0 200

−200

−100

0

100

200

300

Fig. 4.4. Original (above left) and reconstruction (above right) after 60 function
evaluations, entropy weight: 0. Below left: Resulting non-uniform quantization of
approximation signal, Below right: Resulting non-uniform quantization of detail sig-
nals.

112 4 More Applications

Obviously, the visual impression of fdec is much better now than in Fig. 4.3.
This is reflected also by the PSNR: Now we have PSNR(f, fdec) = 18.20 dB.
As expected, the bpp-value is slightly larger than in Fig. 4.3: It reads H =
0.3139 bpp corresponding to an estimated compression rate C = b

H = 25.5.
Note that the resulting quantization functions deviate from uniform quanti-
zation both for the approximation image and the detail signals!

In the final example we again started from the initial quantization from
Fig. 4.3 and stopped after 60 iterations. But now in the target function 4.27
λ = 0 was chosen, i.e., the distortion weight was zero. So we only aimed at
minimizing entropy (maximizing compression rate) without taking distortion
into account. The results are displayed in Fig. 4.5.

Original

100 200 300

50

100

150

200

N
app

: 4, N
details

: 3, J: 2, db2, PSNR: 15.19dB, bpp: 0.1572.

100 200 300

50

100

150

200

0 200 400 600 800

0

200

400

600

800

−200 0 200

−200

−100

0

100

200

300

Fig. 4.5. Original (above left) and reconstruction (above right) after 60 function
evaluations, entropy weight: 1. Below left: Resulting non-uniform quantization of
approximation signal, Below right: Resulting non-uniform quantization of detail sig-
nals.

Indeed now a low bit-per-pixel-value is obtained: We have H = 0.1572 bpp
corresponding to an estimated compression rate C = b

H = 50.9! But for the
PSNR-value we now obtain PSNR(f, fdec) = 15.19 dB. So it decreased with
respect to the initial quantization. As expected, the decompressed image fdec

deteriorates when compared with the initial quantization. It is instructive to

4.1 The Transform Compression Scheme 113

study the quantization curves. Above we saw that low entropy values corre-
spond to sharply concentrated histograms. Such histograms can be reached by
generating wide quantization intervals. The corresponding symbols then will
appear frequently leading to concentrated histograms. Compare the quanti-
zation curves for the detail signals in Fig. 4.3 and Fig. 4.5, respectively! Here
this broadening effect is clearly visible. Note also that the original 4-level-
quantization of the approximation signal has turned basically to a 3-level
quantization, i.e., essentially only three symbols remained! This again is in
accordance with the above remarks about histogram concentration.

4.1.4 MATLAB Implementation

In this section we briefly describe a MATLAB implementation of the quanti-
zation optimization outlined in the preceding section. The related functions
require at minimum the MATLAB Wavelet Toolbox and have been developed
and tested with MATLAB 6.5, release 13. They may be downloaded from the
URL given in sect. 1.3. Again, as mentioned earlier, a basic understanding of
MATLAB-syntax is required.

Quantization optimization is invoked by the following prototype function
call:

[q_approx_signal,q_detail_signal]=optshell(f);

The original image matrix is stored in f. It must be provided as a M ×N -
matrix with double-entries. The parameters characterizing the transform
T are selected interactively. These are decomposition depth J and selected
wavelet string ’dbn’, where n = 1, 2, . . . (refer to sect. 3.4.3). Moreover, for
the approximation signal and the detail signals the respective number of quan-
tization levels (“symbols”) must be specified. The respective initial quantiza-
tion parameters are then computed corresponding to eq. 4.28. In this formula
fT must be replaced by the approximation image fJ in order to obtain the
start quantization of the approximation signal; for the start quantization of
the detail signals a corresponding replacement has to be done. The quan-
tization parameters qi resulting from optimization are returned in vectors
q_approx_signal and q_detail_signal for approximation signal and detail
signals, respectively.

As mentioned in the preceding section, beginning from the start quanti-
zation iteratively new quantization parameters are computed such that the
resulting values of the target function 4.27 are essentially descending towards
a minimal value (if it exists). The function optshell allows for choosing from
two iteration methods. One method is the “Nelder-Mead” algorithm [19]. It is
implemented in the MATLAB-built-in function fminsearch, which is invoked
if Nelder-Mead is selected. The other method which can be selected, is the
“Quasi-Newton” algorithm [2]. The selection invokes the function fminunc,
which implements this algorithm. This function requires the installation of the

114 4 More Applications

MATLAB Optimization Toolbox. It therefore cannot be used if the MATLAB
Optimization Toolbox is not available.

Figures 4.3 – 4.5 were obtained by invoking fminsearch. Below we show
a result invoking fminunc. Here we chose five quantization levels for the ap-
proximation signal, four quantization levels for the detail signals. Figure 4.6
shows the results for the uniform start quantization.

Original

100 200 300

50

100

150

200

N
app

: 5, N
details

: 4, J: 1, db2, PSNR: 16.99dB.

100 200 300

50

100

150

200

0 100 200 300 400

0

100

200

300

400

−200 −100 0 100
−200

−100

0

100

Fig. 4.6. Original (above left) and reconstruction (above right) for start quantiza-
tion. Below left: Uniform initial quantization of approximation signal, Below right:
Uniform initial quantization of detail signals.

Figure 4.7 shows the results after a certain number of iterations. As in
Fig. 4.4, entropy weight was set to zero. Referring to the target function
4.27, therefore, we aimed at reducing distortion without taking entropy into
account.

The visual improvement corresponds to a clear improvement in PSNR-
values: In Fig. 4.6 we have PSNR(f, fdec) = 16.99 dB, in Fig. 4.7 PSNR(f, fdec) =
19.87 dB was obtained. The bpp-values were as follows: For Fig. 4.6 H =
1.6637 bpp was measured, corresponding to an estimated compression rate
C = b

H = 4.81. In Fig. 4.7 we have H = 0.7182 bpp corresponding to a
compression rate C = b

H = 11.14.

4.1 The Transform Compression Scheme 115

Original

100 200 300

50

100

150

200

N
app

: 5, N
details

: 4, J: 1, db2, PSNR: 19.87dB.

100 200 300

50

100

150

200

0 100 200 300 400

0

100

200

300

400

−200 −100 0 100
−200

−100

0

100

Fig. 4.7. Original (above left) and reconstruction (above right) after optimization
run, entropy weight: 0. Below left: Resulting non-uniform quantization of approxi-
mation signal, Below right: Resulting non-uniform quantization of detail signals.

Thus, in this experiment not only distortion was reduced, optimization
even lead to an improved compression performance!

We close this section with some general remarks concerning the optimiza-
tion implementation. As stated above, the numerical procedures discussed in
this section iteratively will produce quantization parameters such that the
corresponding target function values will be descending, hopefully towards a
local minimum situated in a neighborhood of the start quantization. Since no
a-priori-information about the “shape” of the target function t(q1, . . . , qn+1)
(cf. eq. 4.27) is given, it is not guaranteed that such a minimum exists. If it
exists, it is not guaranteed that it will be reached within reasonable comput-
ing time. So, one usually limits the maximum number of iterations and will
be satisfied if, within this number of iterations, the target function value will
decrease reasonably. In sect. 4.3 we shall make some final comments on the
optimization subject.

116 4 More Applications

4.2 Wavelet-Based Similarity Retrieval in Image
Archives

In this section we report on an industrial project performed by the author
at tecmath AG. The work has been published in [31, 32]. In the following we
summarize the main results.

Conventional digital image database management systems usually are
structured as follows: Each stored image file is described by a text document,
which contains administrative data like date and time of image capture. More-
over, this document includes well-defined terms and phrases describing image
contents. When a user of the database queries for images related to a certain
topic, he or she might enter corresponding keywords. These keywords can then
be used for query mechanisms like, e.g., full text retrieval. So the result of the
research will lead to a list of documents, whose content description parts con-
tain the keywords. The retrieved documents are linked to the corresponding
images, which then may be inspected.

It is well known that a verbal description of images often is inadequate,
since the description stored in the database management system might not
match the expectations of the user. Moreover, it is not possible to “present” an
example image to the system and to look for all images “similar” to the pre-
sented image when conventional image archives as described above are used.
Image database management systems allowing for such retrieval mechanisms
are called “content-based access systems” (CBA-systems). It is clear that in
view of multimedia technology CBA-systems are of growing importance. In
order to build systems “looking for similar images”, it is necessary to give a
precise meaning to the notion of “similarity” and we shall describe a simple
model based on a J-step-DWT.

As a preparation, we shall explore in some more detail, how a J-step DWT
of an image may be used for measuring the appearance of edges.

Remember that the result of a J-step DWT of an image (cf. eq. 3.36)
usually is arranged as indicated in eq. 3.37. As an example consider the original
f shown in Fig. 4.8.

A 7-step-DWT, performed with db2 is visualized in Fig. 4.9. The detail
signals djh, djv , djd (j = 1, . . . , 7) clearly confirm the directional sensitivity
mentioned in sect. 3.4.2: Since the original shows a damped periodic pattern
of horizontal stripes, vertical and diagonal detail signals are close to zero.

Moreover, we note that the detail signals will “react” in particular for
j-values such that the associated scale factors 2j (measured in pixels) ap-
proximately correspond to stripe width6. The reaction may be measured by
computing the detail signal variance7. This number estimates the average de-
viation of the detail signal from its mean value and therefore will be large for
6 As an example consider d3h in Fig. 4.9
7 We remind the reader that the variance σ2 of a data set {y1, . . . , yn} is computed

as follows: σ2 = 1
n−1

∑n

i=1
(yi − y)2, where y = 1

n

∑n

i=1
yi.

4.2 Wavelet-Based Similarity Retrieval in Image Archives 117

Period: 16 Pixels

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Fig. 4.8. 512 × 512-Original. Stripe width: 16 pixels.

detail signals with large oscillations about their mean. For a J-step-DWT we
shall denote variances with

σ2
1h, σ2

1v, σ2
1d, . . . , σ

2
Jh, σ2

Jv, σ2
Jd. (4.29)

For three test images with increasing stripe width a 7-step-DWT with the
db2-wavelet has been performed. The corresponding σ2

jh-values are plotted in
Fig. 4.10.

The reader may confirm that indeed the maximum of these values belongs
to such a j-value that the corresponding scale factor 2j is approximately equal
to the respective stripe width.

In addition, scale-dependent anisotropy-measures are defined as follows:

aj =
σ2

1v

σ2
1h

(j = 1, . . . , J) (4.30)

They indicate, if structures of size ≈ 2j are preferably vertically (aj > 1)
or horizontally (aj < 1) oriented.

118 4 More Applications

7−step−DWT. Wavelet: db2

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Fig. 4.9. 7-step-DWT of the image displayed in 4.8. Wavelet: db2.

Summarizing, the following procedure is suggested:

Given an image f , define the “pattern vector”

xf =
(
σ2

1h, σ2
1v, σ2

1d, a1, . . . , σ
2
Jh, σ2

Jv, σ2
Jd, aJ

)
. (4.31)

The entries σ2
jh indicate whether preferably horizontally oriented

structures of size ≈ 2j (in pixels) are present in f . Analogously, the
remaining variances are interpreted. Moreover, the entries aj indicate
anisotropy as stated above.
Two images f1 and f2 are considered to be “similar”, if xf1 is close
to xf2 in a suitable sense (see eq. 4.32).

The “distance” of two pattern vectors xf1 and xf1 , extracted from the
original images f1 and f2, respectively, is measured by the norm ‖xf1 − xf2‖,
which is computed as follows (see also eq. 4.5):

4.2 Wavelet-Based Similarity Retrieval in Image Archives 119

Period: 4

100 200 300 400 500

100

200

300

400

500

Period: 16

100 200 300 400 500

100

200

300

400

500

Period: 64

100 200 300 400 500

100

200

300

400

500

0 5 10
0

0.1

0.2

0.3

0.4

0 5 10
0

1

2

3

4

0 5 10
0

10

20

30

40

50

Fig. 4.10. Top row: Original images with (from left) a stripe width of 4, 16 and
64 pixels, respectively. Below: corresponding plots of σ2

1h, . . . , σ2
7h resulting from a

7-step-DWT with the db2-wavelet.

‖xf1 − xf2‖ =

√√√√ 4J∑
i=1

(xf1
i − xf2

i)2. (4.32)

Here xf1
i (i = 1, . . . , 4J) denotes the i-th entry of the pattern vector xf1 ,

correspondingly xf2
i is defined.

Based on this similarity measure, in [31], [32] a digital image archive is
proposed that allows for retrieving images “similar” to a presented image.
In the rest of this section we describe archiving and retrieval procedures and
discuss examples8.

When entering an image f into the database management system, in ad-
dition to manual input of descriptive and/or administrative data the pattern
vector xf is computed, stored and linked to the image.

When querying the database for images similar to a presented image g
(similarity retrieval), the following steps are performed:

8 Figures 4.11 – 4.13 published with kind permission of tecmath AG.

120 4 More Applications

1. Compute the pattern vector xg.
2. Generate an “answer list” by sorting the stored images fi such that

‖xg − xf1‖ ≤ ‖xg − xf2‖ ≤ ‖xg − xf3‖ ≤ . . . (4.33)

3. Present the answer list f1, f2, f3, . . . to the user.

An example is shown in Fig. 4.11

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

Fig. 4.11. Similarity retrieval.

Here, the top row shows (from left) g and fi, analogously the bottom row
shows from left fi+1 and fi+2. The user may scroll through this list starting
with f1. This is the situation displayed here: Rowwise from left to right images
g, f1, f2 and f3 are shown.

The test archive underlying Fig. 4.11 consists of ≈ 300 images. The archive
exhibits a large variety concerning image contents: The images show natural
scenes, have been recorded in a television-studio, result from medical applica-
tions (magnetic resonance imaging) and so on. A result of a query for magnetic
resonance images similar to a given image g is shown in Fig. 4.12. It again
shows g, f1, f2 and f3 which are arranged as in Fig. 4.11.

4.2 Wavelet-Based Similarity Retrieval in Image Archives 121

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Fig. 4.12. Another retrieval result.

It is clear that there might be top-ranked images among the first positions
of the answer set, which are not relevant for the user. In this case the retrieval
iteratively can be improved by “relevance feedback” [28]. We describe now the
procedure, again the given image will be denoted with g.

1. Let the user qualify the first positions of the answer list as “relevant” or
“irrelevant”. Denote with fmis the “most misleading” irrelevant image,
i.e., the irrelevant image having the topmost position in the answer list.
Furthermore, denote with Arel the set of relevant images.

2. Start a new similarity retrieval run by replacing pattern vector xg with
xnew computed according to

xnew =
xg

‖xg‖ − xfmis

‖xfmis‖ +
∑

fi∈Arel

xfi

‖xfi‖ . (4.34)

3. Inspect the newly generated answer list and proceed with step 1, if nec-
essary.

In formula 4.34, for example, ‖xg‖ is computed according to

122 4 More Applications

‖xg‖ =

√√√√ 4J∑
i=1

(xg
i)2

(cf. eq. 4.32). Analogously the other norm quantities are determined.
This procedure has been implemented in the system. Based on the retrieval

result from Fig. 4.12 relevance feedback has been carried out. To generate the
new retrieval run images f1 and f4 (not shown in Fig. 4.12) have been marked
as relevant. This can be verified by checking the corresponding tick boxes in
the answer list. So in this example fmis = f2.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Fig. 4.13. Improvement by relevance feedback.

The newly generated answer list is displayed in Fig. 4.13 with g, f1, f2

and f3 as arranged before. Obviously the result indeed improves retrieval
performance with respect to similarity.

We close this section with some final comments. Of course, given two
images f and g, it would be possible to measure their similarity by putting
the raw data, i.e., the matrix elements fmn and gmn, directly into formula
4.5. The reason for using pattern vectors xf and xg instead, is reduction of
computing time. If the images, for example, are stored in SIF-format (i.e.,

4.3 Notes and Exercises 123

352×288) the sum in 4.5 has to be taken over 101376 summands. In contrast,
when choosing, e.g., J = 4, the pattern vectors will have 16 components.
So the sum in formula 4.32 extends over only 16 summands. Obviously, it
is a necessary prerequisite that the pattern vectors capture image features
essential for similarity. Moreover, the computing effort to obtain the pattern
vector from the original must be low. This is true for the two-dimensional
J-step-DWT 3.36. The effort for computing this transform will increase only
linearly with the number of matrix elements of the original. On a PC-platform
with a Pentium II processor a similarity retrieval run on the test archive
described above (consisting of ≈ 300 images) required only a few seconds.

4.3 Notes and Exercises

Notes

The Huffman-codec first was published in [13]. It is the entropy coding scheme
supported by the “baseline version” of the “old” JPEG still image compression
standard. JPEG 2000 uses a special variant of the arithmetic coding scheme.
This variant in particular allows for encoding symbol strings “online”: It is
not necessary to read the total string before the string codeword is produced.
Moreover, a progressive transmission mode, i.e., image transmission with bet-
ter and better resolution, is supported. In [40] a realization of an arithmetic
coder on the basis of a field programmable gate array (FPGA) is described.
The coder is adapted to a J-step-DWT.

“Rate-distortion-theory” [15] states that for a given distortion any com-
pression scheme will produce a bpp-value bounded below by a function called
“rate-distortion-function”, which may be computed theoretically. Thus, meth-
ods like the optimization procedure from sect. 4.1.3 implement a practical
approach to this theoretical limit. The reader should keep in mind, however,
that the optimization algorithm described above primarily is intended as an
easily accessible tool for illustrating basic facts of coding like the tradeoff of
distortion reduction vs. compression efficiency. So it mainly serves didactic
purposes.

In sect. 3.6.1 we already mentioned the need for “perceptually lossless
quantization”. This means that one looks for quantization functions such that
all elements of a quantization interval [qi, qi+1) are visually indistiguishable
(this applies accordingly also to audio compression). It is still an open issue to
define a quantitative measure for “perceptual similarity” of images. Distortion
measures like the PSNR are widely used, but in order to decide on quantization
errors on a physiological basis, it still is common practice to present images
(or audio signals) to human “judges”. Thus, automatic optimizers like the one
described in sect. 4.1.3 are only one step in a complex testing and adaptation
scenario.

For additional reading about similarity retrieval and content-based access
to multimedia archives the reader is referred to [25],[27].

124 4 More Applications

Exercises

1. Construct a Huffman code for the symbol string ABCCDDEE and com-
pare the resulting average codeword length lHuffman with the entropy
H(pA, pB, pC , pD, pE).

2. For generating a codeword with the arithmetic coder it will be necessary
to convert a decimal number q with 0 < q < 1 to its binary representation.
For q = 0.7 the algorithm is demonstrated below.

0.7 ∗ 2 = 1.4 → .1
0.4 ∗ 2 = 0.8 → .10
0.8 ∗ 2 = 1.6 → .101
0.6 ∗ 2 = 1.2 → .1011
0.2 ∗ 2 = 0.4 → .10110
0.4 ∗ 2 = 0.8 → .101100

...
...

(4.35)

So the binary expansion of 0.7 reads .10110 where the overline denotes
the periodic pattern to be repeated infinitely.
Write a MATLAB-function (sample call: DecBinConv(q,n)), which reads
a decimal number q with 0 < q < 1 and successively displays the single
bits of its binary expansion on the screen! Use the algorithm sketched in
eq. 4.35 and limit the maximum number of displayed digits to n.

3. Determine the arithmetic code for the symbol string ABCCDDEE and
compare the resulting average codeword length lAC with the entropy
H(pA, pB, pC , pD, pE).
Hint: To determine the selected intervals MATLAB’s number format
format rat is useful. It displays numbers as fractions of small integers.

4. Write a MATLAB-function with sample call
ArithBound(str,symb,freq);
String str is the input string. It consists of symbols which are stored in
the string symb. Each element of symb appears in str with a frequency,
which is a corresponding element of array freq.
Then the function should display the binary expansions of boundaries of
the final interval produced by arithmetic coding of str on the screen! For
computing the binary expansion use function DecBinConv sketched above.
As an example, the coding of ABBC could be invoked by
ArithBound(’ABBC’,’BAC’,[2 1 1]); (cf. page 104).

5

Appendix

5.1 Fourier Transform and Uncertainty Relation

In this section basic definitions and facts concerning Fourier transform are
recalled. The main purpose is to provide the Fourier transform notions re-
quired for understanding the material covered in chap. 2. For more detailed
information and for a deeper introduction to the topic the reader is referred,
e.g., to [34].

Let f(t) denote a continuous-time signal. Moreover, assume that f(t) is a
finite-energy-signal. This means that the following relation holds:

+∞∫
−∞

|f(t)|2 dt < ∞.

For any practically relevant signal the finite energy assumption is fulfilled.
Then the “Fourier transform” is defined as follows:

f̂(ω) =

+∞∫
−∞

f(t)e−jωt dt (5.1)

Thus, the Fourier transform is a function depending on the real variable ω,
called the “frequency”. f̂(ω) again is a finite energy function on the frequency
domain. It sometimes also is called “spectrum” of f(t).

The signal may be reconstructed from its spectrum:

f(t) =
1
2π

+∞∫
−∞

f̂(ω)e+jωt dω (5.2)

Equations 5.1 and 5.2 establish a one-to-one correspondence between a
signal and its Fourier transform. A useful notation for this fact is to connect
both entites to a “correspondence pair”:

126 5 Appendix

f(t) ◦ − • f̂(ω) (5.3)

Now let f(t) and g(t) denote two finite energy signals, such that the “con-
volution” of f with g, defined by

(f ∗ g)(t) :=

+∞∫
−∞

f(u)g(t − u) du (5.4)

leads to a function f ∗ g, which also has finite energy. Then the “convolution
theorem” states that

(f ∗ g)(t) ◦ − • f̂(ω)ĝ(ω). (5.5)

Thus, convolution in the time domain corresponds to the product of the re-
spective spectra in the frequency domain! The convolution theorem is used in
sections 2.2.1 and 2.2.3, respectively, for developing a reconstruction formula
for the CWT and a fast algorithm for the computation of the CWT.

As a simple example illustrating Fourier transforms consider the function

χT (t) =
{

1 −T
2 ≤ t ≤ T

2
0 else

It easily may be verified that its Fourier transform reads χ̂T (ω) =
sin(ωT

2)
ω
2

.

Figure 5.1 shows plots of χT (t) and χ̂T (ω)
T , respectively, for T = 1 and

T = 6.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

t

−15 −10 −5 0 5 10 15
−0.5

0

0.5

1

1.5

ω

Fig. 5.1. Above: χ1(t) (solid) and χ6(t) (dashed). Below: Corresponding Fourier

transforms χ̂1(ω) (solid) and χ̂6(ω)
6

(dashed).

5.1 Fourier Transform and Uncertainty Relation 127

Obviously the behavior of the function and its Fourier transform is in a
certain sense complementary: To a function, which is “wide spread” in the
time domain, belongs a Fourier transform, which is “narrow” in the frequency
domain and vice versa. This rather qualitative statement shall now be sharp-
ened.

Given a finite energy signal f(t), denote with E its total energy, i.e., E :=
+∞∫
−∞

|f(t)|2 dt. Then define the following “localization parameters”:

tf :=
1
E

+∞∫
−∞

t|f(t)|2 dt (5.6)

∆tf :=

√√√√√ 1
E

+∞∫
−∞

(t − tf)2|f(t)|2 dt (5.7)

ωf :=
1

2πE

+∞∫
−∞

ω|f̂(ω)|2 dω (5.8)

∆ωf :=

√√√√√ 1
2πE

+∞∫
−∞

(ω − ωf)2|f̂(ω)|2 dω (5.9)

tf indicates where on the time domain f(t) is located, ∆tf provides in-
formation about how f(t) is localized around tf : For large ∆tf -values f(t)
will be wide spread around tf , for small ∆tf -values f(t) will be narrowly
concentrated around tf . The same arguments apply to f̂(ω), ωf and ∆ωf .

Both aspects may be unified by representing f in the t-ω-plane (“phase
plane”, cf. sect. 1.2.5). Here f(t) essentially “lives” in a rectangular region
with area ∆tf∆ωf as indicated in Fig. 5.2.

�
t

tf

�
ω

ωf ∆ωf

∆tf

Fig. 5.2. Cell in phase plane, occupied by f .

128 5 Appendix

The “Heisenberg uncertainty relation” then tells us that this area cannot
be arbitrarily small:

∆tf∆ωf ≥ 1
2

(5.10)

This relation is of fundamental importance. It’s consequences reach from
quantum mechanics to signal analysis. Indeed, Werner Heisenberg discovered
that this relation led to the famous uncertainty principle, stating that position
and momentum of an elementary particle never together can be measured with
arbitrary precision. In signal analysis, relation 5.10 implies that no window
function can be chosen, which is arbitrarily sharply concentrated both in time
and frequency domain.

Fortunately, there exists a function whose localization parameters yield
the lower bound in the inequality 5.10: Let g(t) be defined as in eq. 5.11

g(t) :=
1
4
√

π
e−

t2
2 . (5.11)

Then

∆tg∆ωg =
1
2

5.2 Discrete Fourier Transform (DFT)

Starting from a correspondence pair as given in eq. 5.3 we shall now consider
the following task:
Choose a “sampling distance” TS and denote the corresponding circular
frequency with ωS := 2π

TS
. Assume now that f is known only for t =

. . . ,−2TS, TS , 0, TS, 2TS, . . ., i.e., the data form a sequence {f(kTS)}. For sim-
plicity we also will use the symbol fk instead of f(kTS). An example could be
a sampled acoustic signal on your computer or your CD-player. Is it possible
to gain some information about the spectrum f̂(ω) from that sequence? Pro-
vided certain restrictions are met, which will be given below, the answer will
be “yes”.

We shall assume that the finite energy signal f(t) is “band-limited”, i.e.,
f̂(ω) = 0 outside some finite frequency interval. Let the “maximum frequency”
ωmax > 0 be defined such that [−ωmax, ωmax] is the smallest possible interval
outside of which f̂(ω) vanishes. A band-limited function will be said to satisfy
the “Shannon condition” if

ωS > 2ωmax. (5.12)

Now consider a finitely sampled signal of length N , i.e., a sequence
{fk}N−1

k=0 . Then the “discrete Fourier Transform” (“DFT”) reads

5.2 Discrete Fourier Transform (DFT) 129

Fk =
N−1∑
l=0

fle
− j2πlk

N (k = 0, 1, . . . , N − 1) (5.13)

The original data {fk}N−1
k=0 may be recovered from the DFT-sequence

{Fk}N−1
k=0 by the “inverse discrete Fourier Transform” (“IDFT”):

fk =
1
N

N−1∑
l=0

Fle
j2πlk

N (k = 0, 1, . . . , N − 1) (5.14)

Before explaining how the DFT is related with f̂(ω), we make two remarks:

1. There exists a fast algorithm for computing the DFT, namely the famous
“Fast Fourier Transform” (“FFT”).

2. If the sampled signal {fl}N−1
l=0 is real-valued, the following relation holds:

FN−k = Fk (k = 1, . . . , N − 1)

As mentioned already, the overline denotes complex conjugation. From
this relation follows that the DFT-sequence {Fk}N−1

k=0 is completely deter-
mined if roughly the first half of the sequence is known. To be precise:
{Fk}N−1

k=0 is completely determined, provided the coefficients Fk are known
for k = 0, . . . , mN with

mN =
{

N
2 (N even)
N−1

2 (N odd)
(5.15)

The following theorem establishes the announced relation between {Fk}N−1
k=0

and f̂(ω):

Theorem 5.1. Let f(t) be a band-limited finite energy signal with f(t) = 0
for t < 0 and t > (N − 1)TS. Let {f(kTS)}N−1

k=0 be a finite sampling of the
signal such that

ωS =
2π

TS

satisfies the Shannon condition 5.12. Define the frequency sampling

ωk =
k

N
ωS (k = 0, . . . , mN).

Now compute the DFT-sequence corresponding to eq. 5.13 with fl =
f(lTS). Then we have

f̂(ωk) ≈ TSFk (k = 0, . . . , mN). (5.16)

We close this section with some remarks

130 5 Appendix

1. Since the DFT may be computed very quickly with the FFT-algorithm,
relation 5.16 provides a fast algorithm for computing the continuous spec-
trum f̂(ω) at the ωk-values given above.

2. If f(t) is nonzero only on the interval [0, (N − 1)TS], band limitation
strictly cannot be fulfilled [34]. This means that the Shannon condition
must be understood such that f̂(ω) is “sufficiently small” outside the
interval [−ωmax, ωmax].
If this is not the case, one has to be aware that, in particular for high
ωk-values, the estimation of f̂(ωk) via eq. 5.16 leads to distortions by
“aliasing”. This explains, why in eq. 5.16 the ≈-symbol was used instead
of strict equality.

3. Readers interested in more details of the topics covered in this section are
referred to textbooks on digital signal processing and its mathematical
foundations, respectively. Examples are included in the bibliography ([33],
[34]).

5.3 Digital Filters

Filtering

In this section we shall introduce basic notions of digital filtering. This section
is intended only for providing first principles and, particularly, for fixing the
notation. For more details on the topic the reader is referred to, e.g., [33]. We
shall consider only discretely sampled signals using the same conventions as
in sect. 5.2.

A digital filter generates from a discretely sampled signal f = {fk} a new
signal Hf = {(Hf)k}. Usually this process is visualized as shown below:

� �Hf Hf

Fig. 5.3. A digital filter.

The filter is characterized by a finite set of “filter coefficients” {hi} and
the new discrete signal Hf is computed as follows:

(Hf)k =
∑

k

hi−kfi. (5.17)

It is useful to visualize eq. 5.17 as in Fig. 5.4. Here the filter is specified
by three filter coefficients {h−1, h0, h1}.

5.3 Digital Filters 131

�

� � � � �

(Hf)i

fi−2 fi−1

�
�

�
�

���

fi

�

fi+1

�
�

�
�

���

fi+2

h−1 h0
h1

Fig. 5.4. Visualization of eq. 5.17 for a filter with coefficients {h−1, h0, h1}.

The top row symbolizes the input sequence {fk}, the bottom row the
output sequence {(Hf)k}. The computation of the i-th element of the output
sequence is illustrated as follows: The elements of the input sequence, which
point toward the i-th element of the output sequence with an arrow, are
multiplied with the corresponding filter coefficients and added at the node,
where the arrows meet. Thus in our case (Hf)i = fi−1h−1 + fih0 + fi+1h1.

For completeness we note that a filter of this kind is called FIR-filter [33],
provided h1 = h2 = h3 = . . . = 0. Since we allow also for nonzero values of
these coefficients, we shall consider the general case of “non-causal filters”1:
If, e.g., h1 �= 0 the output signal value corresponding to time iTS may not be
computed before time (i + 1)TS since we need also the “future value” fi+1.
Moreover, we also note that the indexing of the filter coefficients is slightly
different from engineering standard [33], but this does not affect the main
aspects of the transfer functions discussed below.

The transfer properties of a filter are determined by the corresponding
“frequency response”:

H(Ω) =
∑

k

hke−jkΩ (0 ≤ Ω < π) (5.18)

The spectrum of Hf , as measured, e.g., by the DFT (cf. sect. 5.2), is ob-
tained from the spectrum of f by a multiplication with the frequency response.
Details shall be omitted here, again we refer the interested reader to [33]. The
frequency response is a complex quantity. We may decompose it with respect
to absolute value and phase, thus obtaining “amplitude response” A(Ω) and
“phase response” Φ(Ω):

H(Ω) = A(Ω) ejΦ(Ω). (5.19)

Again, without going into details we note here that the amplitude response
A(Ω) is responsible for transmitted or suppressed frequencies. Moreover, it is
desirable to have a phase response Φ(Ω), which is linear with respect to Ω,
since in this case the filtering process leads to a reduced signal distortion.
1 This feature is of relevance for online-applications, see sect. 3.6.2.

132 5 Appendix

Without proof we remark that “symmetric filters” lead to linear phase re-
sponse. Here symmetry is defined as follows: If the number of coefficients is
odd, then the coefficient must be symmetric with respect to the center co-
efficient. If the number of coefficients is even, then the coefficients must be
symmetric with respect to the “center line” separating the first half from the
second half. For example, filters with coefficients {h−1, h0, h1} = {−1, 2,−1}
or {h0, h1, h2, h3} = {1, 2, 2, 1}, respectively, both are symmetric.

As stated above, the main purpose of this section is to introduce the basic
notions and to fix the notation. Examples related to amplitude and frequency
response, repectively, are given in sect. 3.3.

Filtering with subsampling

“Subsampling” a sequence means that only every second sequence element is
kept from the original sequence. This process usually is represented by a box
containing a ↓ 2-symbol (cf. Fig. 5.5 below). Obviously at this step the length
of the original sequence is divided by two.

The graphical representation of a filtering process and a subsequent down-
sampling procedure is shown in Fig. 5.5.

� � �Hf Hf ↓ 2
Hf

Fig. 5.5. A digital filter followed by downsampling.

Thus, the new sequence obtained after filtering and downsampling is de-
noted with Hf = {(Hf)k}. Mathematically it is computed as follows:

(Hf)k =
∑

k

hi−2kfi. (5.20)

For a sequence {fk}3
k=0 of length 4 and a filter with coefficients {h0, h1}

the process is visualized in Fig. 5.6.
The procedure discussed so far leads to sequences with half as many entries

as the original sequence, where each new sequence element is computed as a
linear combination of the original sequence elements.

Filtering with upsampling, dual filters

We will need also the complementary procedure: From a given sequence a
new sequence will be generated with twice as may elements as the original,

5.3 Digital Filters 133

� �

� � � �

(Hf)1(Hf)0

f0 f1 f2 f3

�

�
�

�
�

���

h0
h1

�

�
�

�
�

���

h0
h1

Fig. 5.6. Filtering with downsampling: Visualization of eq. 5.20 for a filter with
coefficients {h0, h1}. The element of Hf omitted by the downsampling procedure is
indicated with dotted lines.

the new sequence elements also will be linear combinations of the old sequence
elements.

We again start with a set of filter coefficients {hi}. Remember that we may
associate a filtering and subsampling procedure, denoted with H , as described
above. The “dual filter” H∗, applied to a sequence, will produce a sequence,
whose length will be doubled, as compared with the length of the original
sequence. The simplest way to introduce H∗ is a proper visualization. For the
case of three filter coefficients {h−1, h0, h1} it is given in Fig. 5.7.

� � �

� � � � �

f−1 f0 f1

(H∗f)−2 (H∗f)−1

�
�

�
�

���

�
�

�
�

���

(H∗f)0

� � �

(H∗f)1

�
�

�
�

���

�
�

�
�

���

(H∗f)2

h−1 h−1h0 h0 h0
h1h1

Fig. 5.7. Visualization of a dual filter H∗ with coefficients {h−1, h0, h1}.

The interpretation is very simple: Imagine the diagram of Fig. 5.6 written
down for three filter coefficients {h−1, h0, h1} and invert it. This means that
now the top row represents the new sequence, the bottom row the original.
Again, if arrows meet at an element of the new sequence, the respective old
sequence elements must be multiplied with the corresponding filter coefficients
and added. Thus, e.g., (H∗f)−1 = f−1h1 + f0h−1. It is clear from Fig. 5.7
that the signal length is doubled at this process.

The summation formula associated with dual filters looks as follows:

134 5 Appendix

(H∗f)k =
∑

k

hk−2ifi. (5.21)

5.4 Solutions to Selected Problems

5.4.1 Problems from Sect. 2.4

1. a) Given y(t) ◦ − • ŷ(ω) we have

ŷ(ω) =

+∞∫
−∞

y(t)e−jωt dt.

Differentiating this equation on both sides with respect to ω we obtain

dŷ

dω
(ω) =

d

dω

⎛
⎝ +∞∫
−∞

y(t)e−jωt dt

⎞
⎠

=

+∞∫
−∞

y(t)
de−jωt

dω
dt

=

+∞∫
−∞

y(t)(−jt)e−jωt dt

Here on the right-hand side we interchanged differentiation and inte-
gration, which may be justified.
Iterating this process we obtain

dmŷ

dωm
(ω) =

+∞∫
−∞

y(t)(−jt)me−jωt dt.

Recalling definition 5.1 of the Fourier transform, we conclude that

y(t)(−jt)m ◦ − • dmŷ

dωm
(ω).

This may be rewritten as

y(t)tm ◦ − • jm dmŷ

dωm
(ω),

which is the desired result.

5.4 Solutions to Selected Problems 135

b) Proceed analogously as above starting with

y(t) =
1
2π

+∞∫
−∞

ŷ(ω)e+jωt dω.

2. In order to compute all localization parameters ŵ(ω) is needed. Therefore
we insert

w(t) =
{

1 −T
2 ≤ t ≤ T

2
0 else

in eq. 5.1 and obtain

ŵ(ω) =

+∞∫
−∞

w(t)e−jωt dt =

+ T
2∫

−T
2

e−jωt dt

=

+T
2∫

−T
2

(cos(ωt) − j sin(ωt)) dt = 2

+ T
2∫

0

cos(ωt) dt

=
2 sin

(
ωT
2

)
ω

Here we applied the fact that cos(ωt) is an even and sin(ωt) an odd func-

tion. Moreover, E =
+∞∫
−∞

|w(t)|2 dt = T . Then from eq. 5.6 follows that

tw =
1
E

+∞∫
−∞

t|w(t)|2 dt =
1
T

+T
2∫

−T
2

t dt

= 0

Similarly, eq. 5.8 implies that

ωw =
1

2πE

+∞∫
−∞

ω|ŵ(ω)|2 dω =
1

2πT

+∞∫
−∞

4 sin2
(

ωT
2

)
ω

dω

= 0

136 5 Appendix

Here we made use of the fact that
4 sin2(ωT

2)
ω is an odd function.

From eq. 5.7 we obtain

∆tw =

√√√√√ 1
E

+∞∫
−∞

(t − tw)2|w(t)|2 dt

=

√√√√√√ 1
T

+ T
2∫

−T
2

t2 dt =

√√√√√ 2
T

+ T
2∫

0

t2 dt

=
T

2
√

3

Finally, eq. 5.9 implies

∆ωw =

√√√√√ 1
2πE

+∞∫
−∞

(ω − ωw)2|ŵ(ω)|2 dω

=

√√√√√ 1
2πT

+∞∫
−∞

4 sin2

(
ωT

2

)
dω

= ∞

3. We start with ψH as defined in eq. 2.32. For computing the CWT 2.17 with
the Haar-wavelet, we first evaluate the expression ψH

(
u−t

a

)
, considered

as a function of u. Since the Haar-wavelet is real-valued and we assume
a > 0 this leads to

ψH

(
u − t

a

)
= ψH

(
u − t

a

)

=

⎧⎨
⎩

1 0 ≤ u−t
a < 1

2−1 1
2 ≤ u−t

a < 1
0 else

=

⎧⎨
⎩

1 t ≤ u < t + a
2−1 t + a

2 ≤ u < t + a
0 else

Inserting this result in formula 2.17 we obtain

5.4 Solutions to Selected Problems 137

∞∫
−∞

ψH

(
u − t

a

)
f(u) du =

t+ a
2∫

t

f(u) du −
t+a∫

t+a
2

f(u) du

= F
(
t +

a

2

)
− F (t) − F (t + a) + F

(
t +

a

2

)

Thus

LψH f(a, t) =
1√
cψa

(
2F
(
t +

a

2

)
− F (t) − F (t + a)

)
.

4. For any wavelet ψ the correspondence pair ψ(t)tm ◦ − • jm dmψ̂
dωm (ω) (cf.

problem 1) will be true.
When, moreover, ψ is such that ψ(t) = dM Φ

dtM (t) for some suitable function
Φ(t), in addition

ψ(t) =
dMΦ

dtM
(t) ◦ − • (jω)M Φ̂(ω) = ψ̂(ω)

(cf. problem 1). Combining both relations we conclude that

ψ(t)tm ◦ − • jm dm

dωm

(
(jω)M Φ̂(ω)

)
(m = 0, . . . , M − 1).

A moment integral (cf. eq. 2.31) reads
+∞∫
−∞

ψ(t)tm dt. Rewriting it as

+∞∫
−∞

ψ(t)tm dt =

+∞∫
−∞

ψ(t)tme−j0t dt

and recalling definition 5.1 of the Fourier transform we conclude that
it is identical to the Fourier transform of ψ(t)tm, evaluated for ω = 0.
Therefore

+∞∫
−∞

ψ(t)tm dt = jm dm

dωm

(
(jω)M Φ̂(ω)

)∣∣∣∣
ω=0

(m = 0, . . . , M − 1).

If Φ̂(0) and derivatives Φ̂′(0), Φ̂′′(0), . . . , Φ̂M−1(0) exist and are finite,

dm

dωm

(
(jω)M Φ̂(ω)

)∣∣∣
ω=0

= 0 (m = 0, . . . , M − 1).

Therefore
+∞∫
−∞

ψ(t)tm dt = 0 (m = 0, . . . , M − 1).

138 5 Appendix

5. Let f(t) satisfy the assumption made on page 27 and following pages: On
I(a,t) it may be written as a polynomial of degree k with k < M :

f(u) =
k∑

m=0

amum (u ∈ I(a,t)).

Then

∞∫
−∞

ψ

(
u − t

a

)
f(u) du =

k∑
m=0

am

∞∫
−∞

umψ

(
u − t

a

)
du

=
k∑

m=0

am

∞∫
−∞

(t + au)mψ(u) du

︸ ︷︷ ︸
0

1
a

Proceeding from the first to the second line we substituted u′ = u−t
a as

a new variable of integration. The vanishing of the integrals follows from
expanding (t + au)m with the binomial expansion formula and from the
vanishing moments condition.
So finally we obtain Lψf(a, t) = 0.

5.4.2 Problems from Sect. 3.7

1. We consider 1√
2
ψH

(
u−2k

2

)
. From eq. 2.32 follows that for k = 0, . . . , 3

ψH

(
u − 2k

2

)
=

⎧⎨
⎩

1 0 ≤ u−2k
2 < 1

2

−1 1
2 ≤ u−2k

2 < 1
0 else

=

⎧⎨
⎩

1 2k ≤ u < 2k + 1
−1 2k + 1 ≤ u < 2k + 2
0 else

Thus, this function will be nonzero only on the interval [2k, 2k + 2). On
the other hand, on [2k, 2k + 2) the function f1(t) will be constant with
value f2k+f2k+1

2 . Therefore

LψH f1(2, 2k) =
1√
cψH 2

∞∫
−∞

ψH

(
u − 2k

2

)
f1(u) du

=
1√
cψH 2

f2k + f2k+1

2

2k+2∫
2k

ψH

(
u − 2k

2

)
du = 0

5.4 Solutions to Selected Problems 139

On [2k, 2k +2) the function d1(t), however, will take the following values:

d1(t) =

⎧⎨
⎩

f2k−f2k+1
2 2k ≤ u < 2k + 1

− f2k−f2k+1
2 2k + 1 ≤ u < 2k + 2

0 else

=

⎧⎨
⎩

d1
k 2k ≤ u < 2k + 1

−d1
k 2k + 1 ≤ u < 2k + 2

0 else

Therefore

LψH d1(2, 2k) =
1√
cψH 2

∞∫
−∞

ψH

(
u − 2k

2

)
d1(u) du

=
1√
cψH 2

⎛
⎜⎜⎜⎜⎜⎝d1

k

2k+1∫
2k

ψH

(
u − 2k

2

)
du

︸ ︷︷ ︸
1

−d1
k

2k+2∫
2k+1

ψH

(
u − 2k

2

)
du

︸ ︷︷ ︸
−1

⎞
⎟⎟⎟⎟⎟⎠

=
1√
cψH 2

2d1
k

=
2√
cψH

d1
k

2. Inserting
{
h0 =

√
2

2 , h1 =
√

2
2

}
in eq. 5.18 we obtain

H(Ω) =
∑

k

hke−jkΩ =
√

2
2

(1 + e−jΩ) (0 ≤ Ω < π).

Observe that

(1 + e−jΩ) = (ej Ω
2 + e−j Ω

2)e−j Ω
2 = 2 cos

(
Ω

2

)
e−j Ω

2 .

So, H(Ω) may be written as follows:

H(Ω) =
√

2 cos
(

Ω

2

)
e−j Ω

2 .

Comparing with eq. 5.19 we may directly read off amplitude and phase
response:

140 5 Appendix

A(Ω) =
√

2 cos
(

Ω

2

)
, Φ(Ω) = −Ω

2
.

Note that amplitude and phase response associated with the Haar-filter
have been depicted in Figs. 3.9 and 3.18, respectively!
The transfer functions of the g-filter are computed analogously.

3. As an example we consider the computation of φ0
wavelet. We start with

the natural basis sequence φ̃0
natural = {1, 0, 0, 0}. In analogy to eq. 3.49

where the decomposition of such a natural basis sequence was sketched
for J = 2, we decompose this sequence into two subsequences according
to

φ̃0
natural = {{1, 0}︸ ︷︷ ︸

f1
φ

, {0, 0}︸ ︷︷ ︸
d1

φ

}

We now apply the reconstruction part of eq. 3.30 for J = 1 to these
sequences. The coefficients belonging to the dual filters H∗ and G∗, re-
spectively, are given by 3.19 and 3.20.
As an example, the computation of H∗f1

φ may be visualized as follows
(see also Fig. 3.5):

� �

� � � �

1 0

1√
2

1√
2

�
�

�
�

���

�
�

�
�

���

0

� �

0

1√
2

1√
2

1√
2

1√
2

Similarly we obtain G∗d1
φ = {0, 0, 0, 0}. Adding both sequences leads to

φ0
wavelet =

{
1√
2
,

1√
2
, 0, 0

}
.

As a final example we illustrate the computation of φ4
wavelet. Here we start

with

φ̃4
natural = {{0, 0}︸ ︷︷ ︸

f1
φ

, {0, 1}︸ ︷︷ ︸
d1

φ

}

and obtain G∗d1
φ via

5.4 Solutions to Selected Problems 141

� �

� � � �

0 1

0 0

�
�

�
�

���

�
�

�
�

���

1√
2

� �

− 1√
2

1√
2

1√
2

− 1√
2

− 1√
2

Here H∗f1
φ = {0, 0, 0, 0}. Adding both sequences results in

φ4
wavelet =

{
0, 0,

1√
2
,− 1√

2

}
.

Correspondingly, φ2
wavelet and φ3

wavelet are computed.
4. For solutions to problems 4a)-c) we refer the reader to the folders men-

tioned on page 93.
As an example we include the solution to problem 4a):

function []=transfers(a)

close all;
if (size(a,1)>size(a,2)),

a=a’;
end

%Extraction of h-coefficients
uh=a(size(a,2)-1); oh=a(size(a,2));
h=a(1:(size(a,2)-2));

%Computation of g-coefficients
ug=1-oh; og=1-uh; index=length(a)-2;
sign=(-1)^(ug); g=sign*h(index);
for i=(ug+1):og,

index=index-1;
sign=-sign;
g=[g,sign*h(index)];

end

%Plots
do=input(’Step size: ’);
om=0:do:pi;
H=h*exp(-j*(uh:oh)’*om);
G=g*exp(-j*(ug:og)’*om);

142 5 Appendix

figure(1); plot(om,abs(H),’k-’,om,abs(G),’k--’);
title(...);
figure(2); plot(om,angle(H),’k-’,om,angle(G),’k--’);
title(...);

5. Applying reconstruction formula 5.2 to

φ̂(ω) =
{

1 |ω| ≤ π
0 else

we obtain

1
2π

∞∫
−∞

φ̂(ω)ejωt dω =
1
2π

π∫
−π

ejωt dω

=
1
π

π∫
0

cos(ωt) dω =
sin(πt)

πt

= φ(t)

with φ(t) as defined in eq. 3.58. Thus, obviously the maximum frequency
ωmax belonging to φ(t) is given by ωmax = π.
Choosing the sampling distance TS = 1

2 we obtain for the corresponding
sampling circular frequency ωS = 2π

TS
= 4π. Thus, obviously

ωS > 2ωmax.

Comparing with eq. 5.12 we conclude that the Shannon condition is ful-
filled when sampling φ(t) with TS = 1

2 . The corresponding sample values
read {φ (k

2

)} and the reconstruction equation 3.56 implies that

φ(t) =
∑

k

φ

(
k

2

)
φSh

(
t − k

2

)
=
∑

k

φ

(
k

2

)
sin(π(2t − k))

π(2t − k)

=
√

2
∑

k

φ
(

k
2

)
√

2
φ(2t − k)

5.4.3 Problems from Sect. 4.3

1. Given the string ABCCDDEE we compute relative frequencies, entropy, tree
and code as follows:

5.4 Solutions to Selected Problems 143

Relative frequencies:

pA = pB =
1
8
, pC = pD = pE =

1
4

Entropy:

H(pA, pB, pC , pD, pE) = −2
8

log2

(
1
8

)
− 3

4
log2

(
1
4

)
= 2.25

Tree:

A
1

B
1

C
2

D
2

E
2

2 4

8

4

Code:

Table 5.1. Huffman code for ABCCDDEE.

Symbol codeword

A 000

B 001

C 01

D 10

C 11

Average codeword length:

lHuffman =
3 + 3 + 2 + 2 + 2 + 2 + 2 + 2

8

=
18
8

= 2.25

144 5 Appendix

So in this example the Huffman code reaches the lower bound from eq.
4.16.

2. We show here a solution which is slightly more general than the solution
to the original problem: The produced digits are stored in a string which
is returned by the function.

function out=DecBinConv(q,n)

%Preparations
q=2*q;
out=num2str(floor(q));
q=q-floor(q);
k=1;

%Conversion loop
while((q~=0)&(k<n)),

q=2*q;
out=strcat(out,num2str(floor(q)));
q=q-floor(q);
k=k+1;

end

3. To generate the string codeword we start with the following subdivision
of the unit interval [0, 1):

A B C D E[
0, 1

8

) [
1
8 , 1

4

) [
1
4 , 1

2

) [
1
2 , 3

4

) [
3
4 , 1
)

Selections and subsequent expansions lead to the following list of selected
intervals:

A
[
0 1

8

)
B
[

1
64 , 1

32

)
C
[

5
256 , 3

128

)
C
[

21
1024 , 11

512

)
D
[

43
2048 , 87

4096

)
D
[

173
8192 , 347

16384

)
E
[

1387
65536 , 347

16384

)
E
[

138
6517 , 347

16384

)
So the final interval reads

[u, o) =
[

138
6517

,
347

16384

)
.

Computing the respective binary expansions we obtain

5.4 Solutions to Selected Problems 145

u = .000001010110101111000000000011001001000111111000101100011

o = .00000101011011

So, finally, the string codeword reads 0000010101101011111. From this
the average codeword length may be computed:

lAC =
19
8

= 2.375

4. Again we show here a solution, which is slightly more general than the
solution to the original problem: The binary expansions of the interval
boundaries are returned by the function.

function[lowerbin,upperbin]=ArithBound(str,symb,freq)

%Preliminaries
format rat;
format compact;
freq=[0,cumsum(freq)/sum(freq)]; disp(’Start: ’), disp(freq),
n=length(str);
lower=0; upper=1;

%String-loop
k=1;
while(k<=n),

%Expansion
expanded=lower+freq*(upper-lower);

m=1;
while(str(k)~=symb(m)),

m=m+1;
end
%Selection
lower=expanded(m); upper=expanded(m+1);
disp(symb(m)), disp([lower upper]),

k=k+1;
end

lowerbin=DecBinConv(lower,100);
upperbin=DecBinConv(upper,100);

146 5 Appendix

5.5 Notations and Symbols

In this section frequently used symbols and notations are collected. The first
column describes the meaning, the corresponding symbol used throughout
this book is given in the second column. The third column displays alternative
symbols used particularly in the engineering community.

Table 5.2. Symbols and Notations

Explanation Symbol in this text Alternative symbol

Set of real numbers R
Set of complex numbers C
Continuous-time signal f(t)
Wavelet ψ(t)
Imaginary unit j i
Complex conjugate of a
complex number α α α∗

Fourier transform of f(t) f̂(ω) Ff(ω)

Fourier transform pair f(t) ◦ − • f̂(ω)
Sampling distance TS

Sampling rate νS = 1
TS

Sampling circular frequency ωS = 2π
TS

Sequence of numbers f = {fk} f = {f [k]}

References

1. W. Bäni (2002) Wavelets, eine Einführung für Ingenieure. Oldenbourg,
München

2. C.G. Broyden (1970) The Convergence of a Class of Double-Rank Minimization
Algorithms. Journal Inst. Math. Applic. 6: 76–90

3. C.S. Burrus, R.A. Gopinath, H. Guo (1998) Introduction to Wavelets and
Wavelet Transforms, A Primer. Prentice-Hall, Upper Saddle River (NJ)

4. C.K. Chui (1997) Wavelets: A Mathematical Tool for Signal Analysis. SIAM,
Philadelphia

5. A. Cohen (1992) Ondelettes, analyses multirésolution et traitement numérique
du signal. Ph. D. Thesis, University of Paris IX, Dauphine

6. J.M. Combes et al (eds) (1989) Wavelets, Time-Frequency Methods and Phase
Space. Springer, Berlin Heidelberg New York

7. I. Daubechies (1992) Ten Lectures on Wavelets. SIAM, Philadelphia
8. I. Daubechies (1989) Orthonormal Bases of Wavelets with Finite Support -

Connection with Discrete Filters. In: J.M. Combes et al (eds) Wavelets, Time-
Frequency Methods and Phase Space. Springer, Berlin Heidelberg New York

9. D.L. Donoho (1995) De-Noising by Soft-Thresholding. IEEE Trans. on Inf. The-
ory 41: 613–627

10. D. Gabor (1946) Theory of Communication. J. Inst. Electr. Engrg. 93(III):
429–457

11. P. Goupillaud, J. Morlet, A. Grossmann, (1984/1985) Cycle-Octave and Related
Transforms in Seismic Signal Analysis. Geoexploration 23: 85–102

12. F. Grupp, F. Grupp (2002) MATLAB 6 für Ingenieure. Oldenbourg, München
13. D. Huffman (1952) A Method for the Construction of Minimum Redundancy

Codes. Proceedings of the IRE 40: 1098–1101
14. B. Jaehne (1995) Digital Image Processing. Springer, Berlin Heidelberg New

York
15. N.S. Jayant, P. Noll (1984) Digital Coding of Waveforms. Prentice-Hall, Upper

Saddle River (NJ)
16. A. Jensen, A. laCour-Harbo (2001) Ripples in Mathematics - The Discrete

Wavelet Transform. Springer, Berlin Heidelberg New York
17. G. Kaiser (1993) A Friendly Guide to Wavelets. Birkhäuser, Boston Basel Berlin
18. M. Kobayashi (1996) Listening for Defects: Wavelet-Based Acoustical Signal

Processing in Japan. SIAM News 29, No. 2

148 References

19. J.C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright (1998) Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Jour-
nal of Optimization 9:112–147

20. A.K. Louis, P. Maaß, A. Rieder (1997) Wavelets, Theory and Applications.
Wiley, New York

21. P. Maaß, H.-G. Stark (1994) Wavelets and Digital Image Processing. Surveys
on Mathematics for Industry 4: 195–235

22. S. Mallat (1998) A Wavelet Tour of Signal Processing. Academic Press, New
York (NY)

23. Y. Meyer (1993) Wavelets, Algorithms and Applications. SIAM, Philadelphia
24. M. Misiti Y. Misiti, G. Oppenheim, J.-M. Poggi (2000) Wavelet Toolbox for

Use with MATLAB - User’s Guide. The MATH WORKS Inc.
25. A.H.H. Ngu, Q.Z. Sheng, D.Q. Huynh, R. Lei (2000) Combining Multi-visual

Features for Efficient Indexing in a Large Image Database. The VLDB Journal
9:1–15

26. Y. Nievergelt (2001) Wavelets Made Easy. Birkhäuser, Boston Basel Berlin
27. S. Santini, R. Jain (1997) Similarity is a geometer. Multimedia Tools Appl.

5:277-306
28. G. Salton, C. Buckley (1990) Improving Retrieval Performance by Relevance

Feedback. Journal of the ASIS 41:288–297
29. C.E. Shannon (1948) A Mathematical Theory of Communication. Bell System

Technical Journal 27
30. K. Sigmon (1994) MATLAB Primer. Chapman & Hall/CRC, Boca Raton Lon-

don New York Washington D.C.
31. H.-G. Stark (1996) On Image Retrieval with Wavelets. International Journal of

Imaging Systems and Technology 7:200–210
32. H.-G. Stark (1997) Wavelets und Bildarchive. at – Automatisierungstechnik

45:577–584
33. S.D. Stearns, R.A. David (1996) Signal Processing Algorithms in MATLAB.

Prentice Hall, Upper Saddle River (NJ)
34. W. Strampp, E.V. Vorozhtsov (2004) Mathematische Methoden der Signalver-

arbeitung. Oldenbourg, München
35. R.F. Streater, A.S. Wightman (1980) PCT, Spin and Statistics and All That.

Benjamin/Cummings, Reading (MA), London, Amsterdam
36. T. Strutz (2000) Bilddatenkompression, Grundlagen, Codierung, MPEG,

JPEG. Vieweg, Braunschweig
37. J.T. Tou, R.C. Gonzalez, (1974) Pattern Recognition Principles. Addison-

Wesley Publishing Company, Reading (MA)
38. J.S. Walker (1999) A Primer on Wavelets and Their Scientific Applications.

Chapman & Hall/CRC, Boca Raton London New York Washington D.C.
39. G.K. Wallace (1991) The JPEG Still Picture Compression Standard, Comm. of

the ACM 34: 31–44
40. D. Ziener (2002) FPGA-Implementierung eines arithmetischen Codierers.

Diploma Thesis, Aschaffenburg University of Applied Sciences

Index

Admissibility condition, 21
Approximation signal, 61
Arithmetic coding, 104

Bits per pixel, 111
bpp, 111

Cascade algorithm, 56
Cochlea, 40
Coiflets, 85
Compression

bit per pixel (bpp), 111
compression rate, 96
näıve scheme, 84
peaked histograms, 84
transform compression scheme, 95

CWT, 4, 21
fast algorithm, 23
reconstruction, 24
transform, 21
visualization, 7

Daubechies-wavelets, 53
Denoising, 88
Detail signal, 61

diagonal details, 66
horizontal details, 66
vertical details, 66

DFT, 128
Digital filtering, 130
Discrete Fourier transform, 128
Distortion measures

norm distance, 96
PSNR, 96

DWT, 43
one-dimensional signals, 61
real-time properties, 88
two-dimensional signals, 68

Energy compaction, 64, 81
Entropy, 100
Entropy coding, 99

Fourier transform
continuous transform, 3, 125
discrete Fourier transform, 128
uncertainty relation, 128

Gabor transform, 19

Huffman coding, 102

Iterative optimization
Nelder-Mead, 114
Quasi-Newton, 114

JPEG, 98
JPEG 2000, 75, 98

progressive mode, 123

Local analysis, 2
Localization parameters, 127

MATLAB, 11
Optimization Toolbox, 114
STFT functions
myistft, 20
mystft, 19

150 Index

wavelet functions
CompAudioToolbox, 87
CompImageToolbox, 87
bases1d, 81
bases2d, 81
mycwt, 29
myicwt, 31
optshell, 113

Wavelet Toolbox, 11
cwt, 31
wavedec, 70
wavedec2, 71
waverec, 71
waverec2, 73
wfilters, 73

Multiscale analysis, 60

Norm distance, 96

Pattern recognition, 38
Pattern vector, 38, 118
Peak-signal-to-noise-ratio, 96
Phase plane, 8, 127

localization parameters, 127
Phase space representation, 8
PSNR, 96

Quantization
non-uniform, 111
optimal, 108
perceptually lossless, 85, 123
uniform, 99

Rate-distortion-function, 123
Reconstruction from sampled signals,

93
Relevance feedback, 121

Sampling circular frequency, 146
Sampling distance, 13, 146
Sampling rate, 146
Scale plane, 8
Scale space representation, 8
Shannon sampling condition, 128

reconstruction from sampled signals,
93

spectrum estimation, 129
Short time Fourier transform (STFT),

4, 14
fast algorithm, 15

Signal
continuous-time, 2, 125, 146
discrete (sampled), 13, 43, 128, 146
finite-energy, 125

Signal analysis, 1
Signal classification, 36
Signal compression, 1
Similarity retrieval, 116
Spectrum estimation, 129
STFT, 4, 14

Transfer function
amplitude response, 131
biorthogonal filters, 75
dbn-filters, 60, 74
frequency response, 131
phase response, 131

Uncertainty relation, 128

Vanishing moments condition, 26
practical implications, 27

Variance, 116

Wavelet transform
continuous transform (CWT), 4, 21
discrete transform (DWT), 43

Wavelets
admissibility condition, 21
biorthogonal wavelets, 73
Coiflets, 85
Daubechies-wavelets, 53
dbn-wavelets, 55
generation by derivation, 26
Haar-wavelet, 26
mexican-hat-wavelet, 27
Morlet-wavelet, 28
vanishing moments, 26

WFT, 4, 14
Windowed Fourier transform (WFT), 4,

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

