

Numerical Issues in
Statistical Computing
for the Social Scientist

MICAH ALTMAN

JEFF GILL

MICHAEL P. McDONALD

A JOHN WILEY & SONS, INC., PUBLICATION

Numerical Issues in
Statistical Computing
for the Social Scientist

ii

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Nicholas I. Fisher,
Iain M. Johnstone, J. B. Kadane, Louise M. Ryan, David W. Scott,
Adrian F. M. Smith, Jozef L. Teugels;
Editors Emeriti: Vic Barnett, J. Stuart Hunter, David G. Kendall

A complete list of the titles in this series appears at the end of this volume.

Numerical Issues in
Statistical Computing
for the Social Scientist

MICAH ALTMAN

JEFF GILL

MICHAEL P. McDONALD

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright c© 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail:
permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Altman, Micah.
Numerical issues in statistical computing for the social scientist / Micah Altman, Jeff

Gill, Michael P. McDonald.
p. cm.—(Wiley series in probability and statistics)

Includes bibliographical references and index.
ISBN 0-471-23633-0 (acid-free paper)
1. Statistics–Data processing. 2. Social sciences–Statistical methods–Data processing.

I. Gill, Jeff. II. McDonald, Michael P., 1967–III. Title. IV. Series.

QA276.4.A398 2004
519.5–dc21 2003053470

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to

Contents

Preface xi

1 Introduction: Consequences of Numerical Inaccuracy 1

1.1 Importance of Understanding Computational Statistics 1

1.2 Brief History: Duhem to the Twenty-First Century 3

1.3 Motivating Example: Rare Events Counts Models 6

1.4 Preview of Findings 10

2 Sources of Inaccuracy in Statistical Computation 12

2.1 Introduction 12

2.1.1 Revealing Example: Computing the Coefficient
Standard Deviation 12

2.1.2 Some Preliminary Conclusions 13

2.2 Fundamental Theoretical Concepts 15

2.2.1 Accuracy and Precision 15

2.2.2 Problems, Algorithms, and Implementations 15

2.3 Accuracy and Correct Inference 18

2.3.1 Brief Digression: Why Statistical Inference Is Harder
in Practice Than It Appears 20

2.4 Sources of Implementation Errors 21

2.4.1 Bugs, Errors, and Annoyances 22

2.4.2 Computer Arithmetic 23

2.5 Algorithmic Limitations 29

2.5.1 Randomized Algorithms 30

2.5.2 Approximation Algorithms for Statistical Functions 31

2.5.3 Heuristic Algorithms for Random Number Generation 32

2.5.4 Local Search Algorithms 39

2.6 Summary 41

v

vi CONTENTS

3 Evaluating Statistical Software 44

3.1 Introduction 44
3.1.1 Strategies for Evaluating Accuracy 44
3.1.2 Conditioning 47

3.2 Benchmarks for Statistical Packages 48
3.2.1 NIST Statistical Reference Datasets 49
3.2.2 Benchmarking Nonlinear Problems with StRD 51
3.2.3 Analyzing StRD Test Results 53
3.2.4 Empirical Tests of Pseudo-Random Number Generation 54
3.2.5 Tests of Distribution Functions 58
3.2.6 Testing the Accuracy of Data Input and Output 60

3.3 General Features Supporting Accurate and Reproducible Results 63
3.4 Comparison of Some Popular Statistical Packages 64
3.5 Reproduction of Research 65
3.6 Choosing a Statistical Package 69

4 Robust Inference 71

4.1 Introduction 71
4.2 Some Clarification of Terminology 71
4.3 Sensitivity Tests 73

4.3.1 Sensitivity to Alternative Implementations
and Algorithms 73

4.3.2 Perturbation Tests 75
4.3.3 Tests of Global Optimality 84

4.4 Obtaining More Accurate Results 91
4.4.1 High-Precision Mathematical Libraries 92
4.4.2 Increasing the Precision of Intermediate Calculations 93
4.4.3 Selecting Optimization Methods 95

4.5 Inference for Computationally Difficult Problems 103
4.5.1 Obtaining Confidence Intervals

with Ill-Behaved Functions 104
4.5.2 Interpreting Results in the Presence

of Multiple Modes 106
4.5.3 Inference in the Presence of Instability 114

5 Numerical Issues in Markov Chain Monte Carlo Estimation 118

5.1 Introduction 118
5.2 Background and History 119
5.3 Essential Markov Chain Theory 120

CONTENTS vii

5.3.1 Measure and Probability Preliminaries 120
5.3.2 Markov Chain Properties 121
5.3.3 The Final Word (Sort of) 125

5.4 Mechanics of Common MCMC Algorithms 126
5.4.1 Metropolis–Hastings Algorithm 126
5.4.2 Hit-and-Run Algorithm 127
5.4.3 Gibbs Sampler 128

5.5 Role of Random Number Generation 129
5.5.1 Periodicity of Generators and MCMC Effects 130
5.5.2 Periodicity and Convergence 132
5.5.3 Example: The Slice Sampler 135
5.5.4 Evaluating WinBUGS 137

5.6 Absorbing State Problem 139
5.7 Regular Monte Carlo Simulation 140
5.8 So What Can Be Done? 141

6 Numerical Issues Involved in Inverting Hessian Matrices 143

Jeff Gill and Gary King

6.1 Introduction 143
6.2 Means versus Modes 145
6.3 Developing a Solution Using Bayesian Simulation Tools 147
6.4 What Is It That Bayesians Do? 148
6.5 Problem in Detail: Noninvertible Hessians 149
6.6 Generalized Inverse/Generalized Cholesky Solution 151
6.7 Generalized Inverse 151

6.7.1 Numerical Examples of the Generalized Inverse 154
6.8 Generalized Cholesky Decomposition 155

6.8.1 Standard Algorithm 156
6.8.2 Gill–Murray Cholesky Factorization 156
6.8.3 Schnabel–Eskow Cholesky Factorization 158
6.8.4 Numerical Examples of the Generalized

Cholesky Decomposition 158
6.9 Importance Sampling and Sampling Importance Resampling 160

6.9.1 Algorithm Details 160
6.9.2 SIR Output 162
6.9.3 Relevance to the Generalized Process 163

6.10 Public Policy Analysis Example 163
6.10.1 Texas 164
6.10.2 Florida 168

CONTENTS ix

9 Spatial Regression Models 219

James P. LeSage

9.1 Introduction 219
9.2 Sample Data Associated with Map Locations 219

9.2.1 Spatial Dependence 219
9.2.2 Specifying Dependence Using Weight Matrices 220
9.2.3 Estimation Consequences of Spatial Dependence 222

9.3 Maximum Likelihood Estimation of Spatial Models 223
9.3.1 Sparse Matrix Algorithms 224
9.3.2 Vectorization of the Optimization Problem 225
9.3.3 Trade-offs between Speed and Numerical Accuracy 226
9.3.4 Applied Illustrations 228

9.4 Bayesian Spatial Regression Models 229
9.4.1 Bayesian Heteroscedastic Spatial Models 230
9.4.2 Estimation of Bayesian Spatial Models 231
9.4.3 Conditional Distributions for the SAR Model 232
9.4.4 MCMC Sampler 234
9.4.5 Illustration of the Bayesian Model 234

9.5 Conclusions 236

10 Convergence Problems in Logistic Regression 238

Paul Allison

10.1 Introduction 238
10.2 Overview of Logistic Maximum Likelihood Estimation 238
10.3 What Can Go Wrong? 240
10.4 Behavior of the Newton–Raphson Algorithm under Separation 243

10.4.1 Specific Implementations 244
10.4.2 Warning Messages 244
10.4.3 False Convergence 246
10.4.4 Reporting of Parameter Estimates and Standard Errors 247
10.4.5 Likelihood Ratio Statistics 247

10.5 Diagnosis of Separation Problems 247
10.6 Solutions for Quasi-Complete Separation 248

10.6.1 Deletion of Problem Variables 248
10.6.2 Combining Categories 248
10.6.3 Do Nothing and Report Likelihood Ratio

Chi-Squares 249
10.6.4 Exact Inference 249

x CONTENTS

10.6.5 Bayesian Estimation 250
10.6.6 Penalized Maximum Likelihood Estimation 250

10.7 Solutions for Complete Separation 251
10.8 Extensions 252

11 Recommendations for Replication and Accurate Analysis 253

11.1 General Recommendations for Replication 253
11.1.1 Reproduction, Replication, and Verification 254
11.1.2 Recreating Data 255
11.1.3 Inputting Data 256
11.1.4 Analyzing Data 257

11.2 Recommendations for Producing Verifiable Results 259
11.3 General Recommendations for Improving the Numeric

Accuracy of Analysis 260
11.4 Recommendations for Particular Statistical Models 261

11.4.1 Nonlinear Least Squares and Maximum Likelihood 261
11.4.2 Robust Hessian Inversion 262
11.4.3 MCMC Estimation 263
11.4.4 Logistic Regression 265
11.4.5 Spatial Regression 266

11.5 Where Do We Go from Here? 266

Bibliography 267

Author Index 303

Subject Index 315

Preface

Overview

This book is intended to serve multiple purposes. In one sense it is a pure research
book in the traditional manner: new principles, new algorithms, and new solu-
tions. But perhaps more generally it is a guidebook like those used by naturalists
to identify wild species. Our “species” are various methods of estimation requir-
ing advanced statistical computing: maximum likelihood, Markov chain Monte
Carlo, ecological inference, nonparametrics, and so on. Only a few are wild; most
are reasonably domesticated.

A great many empirical researchers in the social sciences take computational
factors for granted: “For the social scientist, software is a tool, not an end in
itself” (MacKie-Mason 1992). Although an extensive literature exists on statis-
tical computing in statistics, applied mathematics, and embedded within various
natural science fields, there is currently no such guide tailored to the needs of
the social sciences. Although an abundance of package-specific literature and a
small amount of work at the basic, introductory level exists, a text is lacking
that provides social scientists with modern tools, tricks, and advice, yet remains
accessible through explanation and example.

The overall purpose of this work is to address what we see as a serious defi-
ciency in statistical work in the social and behavioral sciences, broadly defined.
Quantitative researchers in these fields rely on statistical and mathematical com-
putation as much as any of their colleagues in the natural sciences, yet there is
less appreciation for the problems and issues in numerical computation. This book
seeks to rectify this discrepancy by providing a rich set of interrelated chapters on
important aspects of social science statistical computing that will guide empirical
social scientists past the traps and mines of modern statistical computing.

The lack of a bridging work between standard statistical texts, which, at most,
touch on numerical computing issues, and the comprehensive work in statisti-
cal computing has hindered research in a number of social science fields. There
are two pathologies that can result. In one instance, the statistical computing
process fails and the user gives up and finds less sophisticated means of answer-
ing research questions. Alternatively, something disastrous happens during the
numerical calculations, yet seemingly reasonable output results. This is much
worse, because there are no indications that something has failed, and incorrect
statistical output becomes a component of the larger project.

xi

xii PREFACE

Fortunately, many of the most common problems are easy to describe and
easier still to avoid. We focus here to a great extent on problems that can occur
in maximum likelihood estimation and nonlinear regression because these are,
with the exception of simple linear models, the methods most widely used by
social scientists. False convergence, numerical instability, and problematic like-
lihood surfaces can be diagnosed without much agony by most interested social
scientists if they have specific advice about how to do so. Straightforward com-
putational techniques such as data rescaling, changes of starting values, function
reparameterization, and proper use of analytic derivatives can then be used to
reduce or eliminate many numerical problems. Other important and recent sta-
tistical approaches that we discuss are ecological inference, logistic regression,
Markov chain Monte Carlo, and spatial analysis.

Starters

In this book we introduce the basic principles of numerical computation, outlines
the optimization process, and provides specific tools to assess the sensitivity of
the subsequent results to problems with these data or model. The reader is not
required to have an extensive background in mathematical statistics, advanced
matrix algebra, or computer science. In general, the reader should have at least
a year of statistics training, including maximum likelihood estimation, modest
matrix algebra, and some basic calculus. In addition, rudimentary programming
knowledge in a statistical package or compiled language is required to understand
and implement the ideas herein.

Some excellent sources for addressing these preliminaries can be found in the
following sources.

• Introductory statistics. A basic introductory statistics course, along the lines
of such texts as: Moore and McCabe’s Introduction to the Practice of Statis-
tics (2002), Moore’s The Basic Practice of Statistics (1999), Basic Statistics
for the Social and Behavioral Sciences by Diekhoff (1996), Blalock’s well-
worn Social Statistics (1979), Freedman et al.’s Statistics (1997), Ame-
miya’s Introduction to Statistics and Econometrics (1994), or Statistics for
the Social Sciences by Sirkin (1999).

• Elementary matrix algebra. Some knowledge of matrix algebra, roughly at
the level of Greene’s (2003) introductory appendix, or the first half of the
undergraduate texts by either Axler (1997) or Anton and Rorres (2000).
It will not be necessary for readers to have an extensive knowledge of
linear algebra or experience with detailed calculations. Instead, knowledge
of the structure of matrices, matrix and vector manipulation, and essential
symbology will be assumed. Having said that, two wonderful reference
books that we advise owning are the theory book by Lax (1997), and the
aptly entitled book by Harville (1997), Matrix Algebra from a Statisticians
Perspective.

PREFACE xiii

• Basic calculus. Elementary knowledge of calculus is important. Helpful,
basic, and inexpensive basic texts include Kleppner and Ramsey (1985),
Bleau (1994), Thompson and Gardner (1998), and for a very basic intro-
duction, see Downing (1996). Although we avoid extensive derivations, this
material is occasionally helpful.

Programming

Although knowledge of programming is not required, most readers of this book
are, or should be, programmers. We do not mean necessarily in the sense of
generating hundreds of lines of FORTRAN code between seminars. By program-
ming we mean working with statistical languages: writing likelihood functions
in Gauss, R, or perhaps even Stata, coding solutions in WinBUGS, or manip-
ulating procedures in SAS. If all available social science statistical solutions were
available as point-and-click solutions in SPSS, there would not be very many
truly interesting models in print.

There are two, essentially diametric views on programming among academic
practitioners in the social sciences. One is emblemized by a well-known quote
from Hoare (1969, p. 576): “Computer programming is an exact science in that
all the properties of a program and all the consequences of executing it in any
given environment can, in principle, be found out from the text of the program
itself by means of purely deductive reasoning.” A second is by Knuth (1973): “It
can be an aesthetic experience much like composing poetry or music.” Our per-
spective on programming agrees with both experts; programming is a rigorous
and exacting process, but it should also be creative and fun. It is a reward-
ing activity because practitioners can almost instantly see the fruits of their
labor. We give extensive guidance here about the practice of statistical pro-
gramming because it is important for doing advanced work and for generating
high-quality work.

Layout of Book and Course Organization

There are two basic sections to this book. The first comprises four chapters and
focuses on general issues and concerns in statistical computing. The goal in this
section is to review important aspects of numerical maximum likelihood and related
estimation procedures while identifying specific problems. The second section is
a series of six chapters outlining specific problems that center on problems that
originate in different disciplines but are not necessarily contained within. Given
the extensive methodological cross-fertilization that occurs in the social sciences,
these chapters should have more than a narrow appeal. The last chapter provides a
summary of recommendations from previous chapters and an extended discussion
of methods for ensuring the general replicability of one’s research.

The book is organized as a single-semester assignment accompanying text.
Obviously, this means that some topics are treated with less detail than in a

xiv PREFACE

fully developed mathematical statistics text that would be assigned in a one-year
statistics department course. However, there is a sufficient set of references to
lead interested readers into more detailed works.

A general format is followed within each chapter in this work, despite widely
varying topics. A specific motivation is given for the material, followed by a
detailed exposition of the tool (mode finding, EI, logit estimation, MCMC, etc.).
The main numerical estimation issues are outlined along with various means
of avoiding specific common problems. Each point is illustrated using data that
social scientists care about and can relate to. This last point is not trivial; a
great many books in overlapping areas focus on examples from biostatistics, and
the result is often to reduce reader interest and perceived applicability in the
social sciences. Therefore, every example is taken from the social and behavioral
sciences, including: economics, marketing, psychology, public policy, sociology,
political science, and anthropology.

Many researchers in quantitative social science will simply read this book
from beginning to end. Researchers who are already familiar with the basics
of statistical computation may wish to skim the first several chapters and pay
particular attention to Chapters 4, 5, 6, and 11, as well as chapters specific to the
methods being investigated.

Because of the diversity of topics and difficulty levels, we have taken pains to
ensure that large sections of the book are approachable by other audiences. For
those who do not have the time or training to read the entire book, we recommend
the following:

• Undergraduates in courses on statistics or research methodology, will find
a gentle introduction to statistical computation and its importance in Sec-
tion 1.1 and Chapter 2. These may be read without prerequisites.

• Graduate students doing any type of quantitative research will wish to
read the introductory chapters as well, and will find Chapters 3 and 11
useful and approachable. Graduate students using more advanced statistical
models should also read Chapters 5 and 8, although these require more
some mathematical background.

• Practitioners may prefer to skip the introduction, and start with Chapters 3,
4, and 11, as well as other chapters specific to the methods they are using
(e.g., nonlinear models, MCMC, ecological inference, spatial methods).

However, we hope readers will enjoy the entire work. This is intended to be a
research work as well as a reference work, so presumably experienced researchers
in this area will still find some interesting new points and views within.

Web Site

Accompanying this book is a Web site: <http://www.hmdc.harvard.edu/
numerical issues/>. This site contains links to many relevant resources,

PREFACE xv

including bibliographies, discussion-lists, benchmark data, high-precision libraries,
and optimization software.

In addition, the Web site includes links to all of the code and data used in this
book and not otherwise described in detail, in order to assist other scholars in
carrying out similar analyses on other datasets.

Debts and Dedications

We would like to thank the support of our host institutions: Harvard University,
University of Florida, and George Mason University. All three of us have worked
in and enjoyed the Harvard–MIT Data Center as a research area, as a provider of
data, and as an intellectual environment to test these ideas. We also unjammed
the printer a lot and debugged the e-mail system on occasion while there. We
thank Gary King for supporting our presence at the center.

The list of people to thank in this effort is vast. We would certainly be
remiss without mentioning Chris Achen, Bob Anderson, Attic Access, Neal Beck,
Janet Box–Steffensmeier, Barry Burden, Dieter Burrell, George Casella, Suzie De
Boef, Scott Desposato, Karen Ferree, John Fox, Charles Franklin, Hank Heitowit,
Michael Herron, Jim Hobert, James Honaker, Simon Jackman, Bill Jacoby, David
James, Dean Lacey, Andrew Martin, Michael Martinez, Rogerio Mattos, Ken
McCue, Ken Meier, Kylie Mills, Chris Mooney, Jonathan Nagler, Kevin Quinn,
Ken Shotts, Kevin Smith, Wendy Tam Cho, Alvaro Veiga, William Wei, Guy
Whitten, Jason Wittenberg, Dan Wood, and Chris Zorn (prison rodeo consultant
to the project). A special thanks go to our contributing authors, Paul Allison,
Gary King, James LeSage, and Bruce McCullough, for their excellent work, tire-
less rewriting efforts, and general patience with the three of us. Special thanks
also go to our editor, Steve Quigley, as well, since this project would not exist
without his inspiration, prodding, and general guidance.

Significant portions of this book, especially Chapters 2, 3, and 11, are based
in part upon research supported by National Science Foundation Award No.
11S-987 47 47.

This project was typeset using LATEX and associated tools from the TEX world
on a Linux cluster housed at the Harvard–MIT Data Center. We used the John
Wiley & Sons LATEX style file with the default computer modern font. All of this
produced very nice layouts with only moderate effort on our part.

C H A P T E R 1

Introduction: Consequences
of Numerical Inaccuracy

1.1 IMPORTANCE OF UNDERSTANDING
COMPUTATIONAL STATISTICS

How much pollution is bad for you? Well-known research conducted from 1987 to
1994 linked small-particle air pollution to health problems in 90 U.S. cities. These
findings were considered reliable and were influential in shaping public policy.
Recently, when the same scientists attempted to replicate their own findings,
they produced different results with the same data—results that showed a much
weaker link between air pollution and health problems. “[The researchers] re-
examined the original figures and found that the problem lay with how they used
off-the-shelf statistical software to identify telltale patterns that are somewhat
akin to ripples from a particular rock tossed into a wavy sea. Instead of adjusting
the program to the circumstances that they were studying, they used standard
default settings for some calculations. That move apparently introduced a bias in
the results, the team says in the papers on the Web” (Revkin, 2002).

Problems with numerical applications are practically as old as computers: In
1962, the Mariner I spacecraft, intended as the first probe to visit another planet,
was destroyed as a result of the incorrect coding of a mathematical formula (Neu-
mann 1995), and five years later, Longley (1967) reported on pervasive errors in the
accuracy of statistical programs’ implementation of linear regression. Unreliable
software is sometimes even expected and tolerated by experienced researchers.
Consider this report on the investigation of a high-profile incident of academic
fraud, involving the falsification of data purporting to support the discovery of
the world’s heaviest element at Lawrence Berkeley lab: “The initial suspect was
the analysis software, nicknamed Goosy, a somewhat temperamental computer
program known on occasion to randomly corrupt data. Over the years, users had
developed tricks for dealing with Goosy’s irregularities, as one might correct a
wobbling image on a TV set by slapping the side of the cabinet” (Johnson 2002).

In recent years, many of the most widely publicized examples of scientific
application failures related to software have been in the fields of space exploration

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

1

2 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

and rocket technology. Rounding errors in numerical calculations were blamed
for the failure of the Patriot missile defense to protect an army barracks in
Dhahran from a Scud missile attack in 1991 during Operation Desert Storm
(Higham 2002). The next year, the space shuttle had difficulties in an attempted
rendezvous with Intelsat 6 because of a round-off error in the routines that
the shuttle computers used to compute distance (Neumann 1995). In 1999, two
Mars-bound spacecraft were lost, due (at least in part) to software errors—one
involving failure to check the units as navigational inputs (Carreau 2000). Numer-
ical software bugs have even affected our understanding of the basic structure
of the universe: highly publicized findings suggesting the existence of unknown
forms of matter in the universe, in violation of the “standard model,” were later
traced to numerical errors, such as failure to treat properly the sign of certain
calculations (Glanz 2002; Hayakawa and Kinoshita 2001).

The other sciences, and the social sciences in particular, have had their share of
less publicized numerical problems: Krug et al. (1988) retracted a study analyz-
ing suicide rates following natural disasters that was originally published in the
Journal of the American Medical Association, one of the world’s most prestigious
medical journals, because their software erroneously counted some deaths twice,
undermining their conclusions (see Powell et al. 1999). Leimer and Lesnoy
(1982) trace Feldstein’s (1974) erroneous conclusion that the introduction of
Social Security reduced personal savings by 50% to the existence of a sim-
ple software bug. Dewald et al. (1986), in replicating noted empirical results
appearing in the Journal of Money, Credit and Banking, discovered a number of
serious bugs in the original authors’ analyses programs. Our research and that of
others has exposed errors in articles recently published in political and social sci-
ence journals that can be traced to numerical inaccuracies in statistical software
(Altman and McDonald 2003; McCullough and Vinod 2003; Stokes 2003).

Unfortunately, numerical errors in published social science analyses can be
revealed only through replication of the research. Given the difficulty and rarity
of replication in the social sciences (Dewald et al. 1986; Feigenbaum and Levy
1993), the numerical problems reported earlier are probably the tip of the iceberg.
One is forced to wonder how much of the critical and foundational findings in a
number of fields are actually based on suspect statistical computing.

There are two primary sources of potential error in numerical algorithms pro-
grammed on computers: that numbers cannot be perfectly represented within the
limited binary world of computers, and that some algorithms are not guaranteed
to produce the desired solution.

First, small computational inaccuracies occur at the precision level of all sta-
tistical software when digits beyond the storage capacity of the computer must be
rounded or truncated. Researchers may be tempted to dismiss this threat to valid-
ity because measurement error (miscoding of data, survey sampling error, etc.)
is almost certainly an order of magnitude greater for most social science appli-
cations. But these small errors may propagate and magnify in unexpected ways
in the many calculations underpinning statistical algorithms, producing wildly
erroneous results on their own, or exacerbating the effects of measurement error.

BRIEF HISTORY: DUHEM TO THE TWENTY-FIRST CENTURY 3

Second, computational procedures may be subtly biased in ways that are hard
to detect and are sometimes not guaranteed to produce a correct solution. Ran-
dom number generators may be subtly biased: random numbers are generated by
computers through non-random, deterministic processes that mimic a sequence
of random numbers but are not genuinely random. Optimization algorithms, such
as maximum likelihood estimation, are not guaranteed to find the solution in the
presence of multiple local optima: Optimization algorithms are notably suscepti-
ble to numeric inaccuracies, and resulting coefficients may be far from their true
values, posing a serious threat to the internal validity of hypothesized relation-
ships linking concepts in the theoretical model.

An understanding of the limits of statistical software can help researchers
avoid estimation errors. For typical estimation, such as ordinary least squares
regression, well-designed off-the-shelf statistical software will generally produce
reliable estimates. For complex algorithms, our knowledge of model building
has outpaced our knowledge of computational statistics. We hope that researchers
contemplating complex models will find this book a valuable tool to aid in making
robust inference within the limits of computational statistics.

Awareness of the limits of computational statistics may further aid in model
testing. Social scientists are sometimes faced with iterative models that fail to
converge, software that produces nonsensical results, Hessians that cannot be
inverted, and other problems associated with estimation. Normally, this would
cause researchers to abandon the model or embark on the often difficult and
expensive process of gathering more data. An understanding of computational
issues can offer a more immediately available solution—such as use of more accu-
rate computations, changing algorithmic parameters of the software, or appropri-
ate rescaling of the data.

1.2 BRIEF HISTORY: DUHEM TO THE TWENTY-FIRST CENTURY

The reliability of scientific inference depends on one’s tools. As early as 1906,
French physicist and philosopher of science Pierre Duhem noted that every
scientific inference is conditioned implicitly on a constellation of background
hypotheses, including that the instruments are functioning correctly (Duhem 1991,
Sec. IV.2). The foremost of the instruments used by modern applied statisticians
is the computer.

In the early part of the twentieth century the definition of a computer to statis-
ticians was quite different from what it is today. In antiquated statistics journals
one can read where authors surprisingly mention “handing the problem over to
my computer.” Given the current vernacular, it is easy to miss what is going on
here. Statisticians at the time employed as “computers” people who specialized
in performing repetitive arithmetic. Many articles published in leading statistics
journals of the time addressed methods by which these calculations could be
made less drudgingly repetitious because it was noticed that as tedium increases
linearly, careless mistakes increase exponentially (or thereabouts). Another rather

4 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

prescient development of the time given our purpose here was the attention paid
to creating self-checking procedures where “the computer” would at regular inter-
vals have a clever means to check calculations against some summary value as
a way of detecting errors (cf. Kelley and McNemar 1929). One of the reasons
that Fisher’s normal tables (and therefore the artificial 0.01 and 0.05 significance
thresholds) were used so widely was that the task of manually calculating normal
integrals was time consuming and tedious. Computation, it turns out, played an
important role in scholarship even before the task was handed over to machines.

In 1943, Hotelling and others called attention to the accumulation of errors
in the solutions for inverting matrices in the method of least squares (Hotelling
1943) and other matrix manipulation (Turing 1948). Soon after development of
the mainframe computer, programmed regression algorithms were criticized for
dramatic inaccuracies (Longley 1967). Inevitably, we improve our software, and
just as inevitably we make our statistical methods more ambitious. Approximately
every 10 years thereafter, each new generation of statistical software has been
similarly faulted (e.g., Wampler 1980; Simon and LeSage 1988).

One of the most important statistical developments of the twentieth century
was the advent of simulation on computers. While the first simulations were
done manually by Buffon, Gosset, and others, it was not until the development
of machine-repeated calculations and electronic storage that simulation became
prevalent. In their pioneering postwar work, von Neumann and Ulam termed
this sort of work Monte Carlo simulation, presumably because it reminded them
of long-run observed odds that determine casino income (Metropolis and Ulam
1949; Von Neumann 1951). The work was conducted with some urgency in the
1950s because of the military advantage of simulating nuclear weapon designs.
One of the primary calculations performed by von Neumann and his colleagues
was a complex set of equations related to the speed of radiation diffusion of fissile
materials. This was a perfect application of the Monte Carlo method because it
avoided both daunting analytical work and dangerous empirical work. During
this same era, Metropolis et al. (1953) showed that a new version of Monte
Carlo simulation based on Markov chains could model the movement of atomic
particles in a box when analytical calculations are impossible.

Most statistical computing tasks today are sufficiently routinized that many
scholars pay little attention to implementation details such as default settings,
methods of randomness, and alternative estimation techniques. The vast majority
of statistical software users blissfully point-and-click their way through machine
implementations of noncomplex procedures such as least squares regression,
cross-tabulation, and distributional summaries. However, an increasing number
of social scientists regularly use more complex and more demanding comput-
ing methods, such as Monte Carlo simulation, nonlinear estimation procedures,
queueing models, Bayesian stochastic simulation, and nonparametric estimation.
Accompanying these tools is a general concern about the possibility of knowingly
or unknowingly producing invalid results.

In a startling article, McCullough and Vinod (1999) find that econometric
software packages can still produce “horrendously inaccurate” results (p. 635)

BRIEF HISTORY: DUHEM TO THE TWENTY-FIRST CENTURY 5

and that inaccuracies in many of these packages have gone largely unnoticed
(pp. 635–37). Moreover, they argue that given these inaccuracies, past inferences
are in question and future work must document and archive statistical software
alongside statistical models to enable replication (pp. 660–62).

In contrast, when most social scientists write about quantitative analysis, they
tend not to discuss issues of accuracy in the implementation of statistical mod-
els and algorithms. Few of our textbooks, even those geared toward the most
sophisticated and computationally intensive techniques, mention issues of imple-
mentation accuracy and numerical stability. Acton (1996), on the other hand,
gives a frightening list of potential problems: “loss of significant digits, itera-
tive instabilities, degenerative inefficiencies in algorithms, and convergence to
extraneous roots of previously docile equations.”

When social science methodology textbooks and review articles in social sci-
ence do discuss accuracy in computer-intensive quantitative analysis, they are
relatively sanguine about the issues of accurate implementation:

• On finding maximum likelihood: “Good algorithms find the correct solution
regardless of starting values. . . . The computer programs for most stan-
dard ML estimators automatically compute good starting values.” And on
accuracy: “Since neither accuracy nor precision is sacrificed with numer-
ical methods they are sometimes used even when analytical (or partially
analytical) solutions are possible” (King 1989, pp. 72–73).

• On the error of approximation in Monte Carlo analysis: “First, one may sim-
ply run ever more trials, and approach the infinity limit ever more closely”
(Mooney 1997, p. 100).

• In the most widely assigned econometric text, Greene (2003) provides an
entire appendix on computer implementation issues but also understates
in referring to numerical optimization procedures: “Ideally, the iterative
procedure should terminate when the gradient is zero. In practice, this step
will not be possible, primarily because of accumulated rounding error in
the computation of the function and its derivatives” (p. 943).

However, statisticians have been sounding alarms over numerical computing
issues for some time:

• Grillenzoni worries that when confronted with the task of calculating the
gradient of a complex likelihood, software for solving nonlinear least
squares and maximum likelihood estimation, can have “serious numeri-
cal problems; often they do not converge or yield inadmissible results”
(Grillenzoni 1990, p. 504).

• Chambers notes that “even a reliable method may perform poorly if not care-
ful checked for special cases, rounding error, etc. are not made” (Chambers
1973, p. 9).

• “[M]any numerical optimization routines find local optima and may not find
global optima; optimization routines can, particularly for higher dimensions,

6 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

‘get lost’ in subspaces or in flat spots of the function being optimized”
(Hodges 1987, p. 268).

• Beaton et al. examine the famous Longley data problem and determine:
“[T]he computationally accurate solution to this regression problem—even
when computed using 40 decimal digits of accuracy—may be a very poor
estimate of regression coefficients in the following sense: small errors
beyond the last decimal place in the data can result solutions more different
than those computed by Longley with his less preferred programs” (Beaton
et al. 1976, p. 158). Note that these concerns apply to a linear model!

• The BUGS and WinBUGS documentation puts this warning on page 1 of
the documentation: “Beware—Gibbs sampling can be dangerous!”

A clear discrepancy exists between theoreticians and applied researchers: The
extent to which one should worry about numerical issues in statistical computing
is unclear and even debatable. This is the issue we address here, bridging the
knowledge gap difference between empirically driven social scientists and more
theoretically minded computer scientists and statisticians.

1.3 MOTIVATING EXAMPLE: RARE EVENTS COUNTS MODELS

It is well known that binary rare events data are difficult to model reliably
because the results often greatly underestimate the probability of occurrence
(King and Zeng 2001a). It is true also that rare events counts data are difficult
to model because like binary response models and all other generalized linear
models (GLMs), the statistical properties of the estimations are conditional on
the mean of the outcome variable. Furthermore, the infrequently observed counts
are often not temporally distributed uniformly throughout the sample space, thus
produce clusters that need to be accounted for (Symons et al. 1983).

Considerable attention is being given to model specification for binary count
data in the presence of overdispersion (variance exceeding the mean, thus violat-
ing the Poisson assumption) in political science (King 1989; Achen 1996; King
and Signorino 1996; Amato 1996; Londregan 1996), economics (Hausman et al.
1984; Cameron and Trivedi 1986, 1990; Lee 1986, Gurmu 1991), and of course,
statistics (McCullagh and Nelder 1989). However, little has been noted about
the numerical computing and estimation problems that can occur with other rare
events counts data.

Consider the following data from the 2000 U.S. census and North Carolina
public records. Each case represents one of 100 North Carolina counties, and we
use only the following subset of the variables.

• Suicides by Children. This is (obviously) a rare event on a countywide
basis and refers almost strictly to teenage children in the United States.

• Number of Residents in Poverty. Poverty is associated directly with other
social ills and can lower the quality of education, social interaction, and
opportunity of children.

MOTIVATING EXAMPLE: RARE EVENTS COUNTS MODELS 7

• Number of Children Brought Before Juvenile Court. This measures the
number of first-time child offenders brought before a judge or magistrate
in a juvenile court for each of these counties.

Obviously, this problem has much greater scope as both a sociological question
and a public policy issue, but the point here is to demonstrate numerical com-
puting problems with a simple but real data problem. For replication purposes
these data are given in their entirety in Table 1.1.

For these we specified a simple Poisson generalized linear model with a log
link function:

g−1(θ)︸ ︷︷ ︸
100×1

= g−1(Xβ) = exp[Xβ]

= exp[1β0 + POVβ1 + JUVβ2]

= E[Y] = E[SUI]

in standard GLM notation (Gill 2000). This basic approach is run on five com-
monly used statistical packages and the results are summarized in Table 1.2.
Although there is some general agreement among R, S-Plus, Gauss, and
Stata, SAS (Solaris v8) produces estimates substantively different from the
other four.1 Although we may have some confidence that the results from the
four programs in agreement are the “correct” results, we cannot know for sure,
since we are, after all, estimating unknown quantities. We are left with the trou-
bling situation that the results are dependent on the statistical program used to
generate statistical estimates.

Even among the four programs in agreement, there are small discrepancies
among their results that should give pause to researchers who interpret t-statistics
strictly as providing a measure of “statistical significance.” A difference in the
way Stata handles data input explains some of the small discrepancy between
Stata’s results and R and S-Plus. Unless specified, Stata reads in data
as single precision, whereas the other programs read data as double precision.
When we provide the proper commands to read in data into Stata as double
precision, the estimates from the program lie between the estimates of R and
S-Plus. This does not account for the difference in the estimates generated by
Gauss, a program that reads in data as double precision, which are in line with
Stata’s single-precision estimates.

This example highlights some of the important themes to come. Clearly, incon-
sistent results indicate that there are some sources of inaccuracy from these data.
All numerical computations have limited accuracy, and it is possible for partic-
ular characteristics of the data at hand to exacerbate these effects; this is the
focus of Chapter 2. The questions addressed there are: What are the sources of
inaccuracy associated with specific algorithmic choices? How may even a small
error propagate into a large error that changes substantive results?

1Note that SAS issued warning messages during the estimation, but the final results were not accom-
panied by any warning of failure.

8 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

Table 1.1 North Carolina 2000 Data by Counties

Juvenile/ Juvenile/
County Suicide Poverty Court County Suicide Poverty Court

Alamance 0 14,519 47 Johnston 1 15,612 45
Alexander 0 2,856 70 Jones 0 1,754 81
Alleghany 0 1,836 26 Lee 0 6,299 87
Anson 0 4,499 49 Lenoir 0 9,900 17
Ashe 0 3,292 56 Lincoln 0 5,868 14
Avery 0 2,627 58 Macon 0 4,890 70
Beaufort 0 8,767 71 Madison 0 3,756 58
Bertie 0 4,644 26 Martin 0 3,024 74
Bladen 0 6,778 66 McDowell 1 5,170 86
Brunswick 1 9,216 19 Mecklenburg 0 63,982 1
Buncombe 0 23,522 52 Mitchell 1 2,165 50
Burke 0 9,539 33 Montgomery 0 4,131 69
Cabarrus 0 9,305 36 Moore 0 8,524 25
Caldwell 0 8,283 29 Nash 1 11,714 22
Camden 0 695 60 New Hanover 0 21,003 62
Carteret 0 6,354 13 Northampton 1 4,704 54
Caswell 0 3,384 67 Onslow 1 19,396 42
Catawba 0 12,893 51 Orange 0 16,670 6
Chatham 0 4,785 79 Pamlico 0 1,979 26
Cherokee 0 3,718 68 Pasquotank 2 6,421 74
Chowan 0 2,557 46 Pender 0 5,587 10
Clay 0 1,000 20 Perquimans 0 2,035 35
Cleveland 0 12,806 41 Person 0 4,275 82
Columbus 0 12,428 2 Pitt 0 27,161 27
Craven 1 11,978 12 Polk 0 1,851 20
Cumberland 2 38,779 73 Randolph 1 11,871 42
Currituck 0 1,946 61 Richmond 0 9,127 9
Dare 0 2,397 75 Robeson 1 28,121 64
Davidson 1 14,872 55 Rockingham 0 11,767 4
Davie 0 2,996 72 Rowan 0 13,816 44
Duplin 0 9,518 69 Rutherford 0 8,743 32
Durham 2 29,924 53 Sampson 1 10,588 71
Edgecombe 0 10,899 34 Scotland 0 7,416 18
Forsyth 1 33,667 57 Stanly 0 6,217 83
Franklin 1 5,955 84 Stokes 0 4,069 16
Gaston 0 20,750 59 Surry 0 8,831 24
Gates 0 1,788 15 Swain 1 2,373 56
Graham 0 1,559 37 Transylvania 0 2,787 78
Granville 0 5,674 85 Tyrrell 0 967 11
Greene 0 3,833 40 Union 1 10,018 38
Guilford 1 44,631 77 Vance 0 8,806 7
Halifax 1 13,711 8 Wake 5 48,972 80
Harnett 0 13,563 39 Warren 0 3,875 48
Haywood 1 6,214 21 Washington 0 2,992 43
Henderson 0 8,650 30 Watauga 0 7,642 63
Hertford 1 4,136 56 Wayne 0 15,639 42
Hoke 0 5,955 76 Wilkes 0 7,810 23
Hyde 0 897 81 Wilson 0 13,656 31
Iredell 1 10,058 28 Yadkin 2 3,635 3
Jackson 0 5,001 5 Yancey 0 2,808 65

MOTIVATING EXAMPLE: RARE EVENTS COUNTS MODELS 9

Table 1.2 Rare Events Counts Models in Statistical Packages

R S-Plus SAS Gauss Stata

Intercept Coef. −3.13628 −3.13678 0.20650 −3.13703 −3.13703
Std. err. 0.75473 0.75844 0.49168 0.76368 0.76367
t-stat. −4.15550 −4.13585 0.41999 −4.10788 −4.10785

Poverty/1000 Coef. 0.05264 0.05263 −1.372e-04 0.05263 0.05269
Std. err. 0.00978 0.00979 1.2833-04 0.00982 0.00982
t-stat. 5.38241 5.37136 −1.06908 5.35881 5.36558

Juvenile Coef. 0.36167 0.36180 −0.09387 0.36187 0.36187
Std. err. 0.18056 0.18164 0.12841 0.18319 0.18319
t-stat. 2.00301 1.99180 −0.73108 1.97541 1.97531

In this example we used different software environments, some of which
required direct user specification of the likelihood function, the others merely
necessitating menu direction. As seen, different packages sometimes yield differ-
ent results. In this book we also demonstrate how different routines within the
same package, different version numbers, or even different parameter settings can
alter the quality and integrity of results. We do not wish to imply that researchers
who do their own programming are doing better or worse work, but that the more
responsibility one takes when model building, the more one must be aware of
issues regarding the software being used and the general numerical problems that
might occur. Accordingly, in Chapter 3 we demonstrate how proven benchmarks
can be used to assess the accuracy of particular software solutions and discuss
strategies for consumers of statistical software to help them identify and avoid
numeric inaccuracies in their software.

Part of the problem with the example just given is attributable to these data.
In Chapter 4 we investigate various data-originated problems and provide some
solutions that would help with problems, as we have just seen. One method of
evaluation that we discuss is to check results on multiple platforms, a practice
that helped us identify a programming error in the Gauss code for our example
in Table 1.2.

In Chapter 5 we discuss some numerical problems that result from implement-
ing Markov chain Monte Carlo algorithms on digital computers. These concerns
can be quite complicated, but the foundational issues are essentially like those
shown here: numerical treatment within low-level algorithmic implementation.
In Chapter 6 we look at the problem of a non-invertible Hessian matrix, a seri-
ous problem that can occur not just because of collinearity, but also because of
problems in computation or data. We propose some solutions, including a new
approach based on generalizing the inversion process followed by importance
sampling simulation.

In Chapter 7 we investigate a complicated modeling scenario with important
theoretical concerns: ecological inference, which is susceptible to numerical inac-
curacies. In Chapter 8 Bruce McCullough gives guidelines for estimating general

10 INTRODUCTION: CONSEQUENCES OF NUMERICAL INACCURACY

nonlinear models in economics. In Chapter 10 Paul Allison discusses numerical
issues in logistical regression. Many related issues are exacerbated with spatial
data, the topic of Chapter 9 by James LeSage. Finally, in Chapter 11 we pro-
vide a summary of recommendations and an extended discussion of methods for
ensuring replicable research.

1.4 PREVIEW OF FINDINGS

In this book we introduce principles of numerical computation, outline the opti-
mization process, and provide tools for assessing the sensitivity of subsequent
results to problems that exist in these data or with the model. Throughout, there
are real examples and replications of published social science research and inno-
vations in numerical methods.

Although we intend readers to find this book useful as a reference work and
software guide, we also present a number of new research findings. Our purpose is
not just to present a collection of recommendations from different methodological
literatures. Here we actively supplement useful and known strategies with unique
findings.

Replication and verification is not a new idea (even in the social sciences), but
this work provides the first replications of several well-known articles in polit-
ical science that show where optimization and implementation problems affect
published results. We hope that this will bolster the idea that political science
and other social sciences should seek to recertify accepted results.

Two new methodological developments in the social sciences originate with
software solutions to historically difficult problems. Markov chain Monte Carlo
has revolutionized Bayesian estimation, and a new focus on sophisticated soft-
ware solutions has similarly reinvigorated the study of ecological inference.
In this volume we give the first look at numerical accuracy of MCMC algo-
rithms from pseudo-random number generation and the first detailed evaluation
of numerical periodicity and convergence.

Benchmarks are useful tools to assess the accuracy and reliability of computer
software. We provide the first comprehensive packaged method for establishing
standard benchmarks for social science data input/output accuracy. This is a
neglected area, but it turns out that the transmission of data across applications
can degrade the quality of these data, even in a way that affects estimation. We
also introduce the first procedure for using cyclical redundancy checks to assess
the success of data input rather than merely checking file transfer. We discuss
a number of existing benchmarks to test numerical algorithms and to provide
a new set of standard benchmark tests for distributional accuracy of statistical
packages.

Although the negative of the Hessian (the matrix of second derivatives of
the posterior with respect to the parameters) must be positive definite and hence
invertible in order to compute the variance matrix, invertible Hessians do not exist
for some combinations of datasets and models, causing statistical procedures to

PREVIEW OF FINDINGS 11

fail. When a Hessian is non-invertible purely because of an interaction between
the model and the data (and not because of rounding and other numerical errors),
this means that the desired variance matrix does not exist; the likelihood func-
tion may still contain considerable information about the questions of interest.
As such, discarding data and analyses with this valuable information, even if
the information cannot be summarized as usual, is an inefficient and potentially
biased procedure. In Chapter 6 Gill and King provide a new method for apply-
ing generalized inverses to Hessian problems that can provide results even in
circumstances where it is not usually possible to invert the Hessian and obtain
coefficient standard errors.

Ecological inference, the problem of inferring individual behavior from aggre-
gate data, was (and perhaps still is) arguably once the longest-standing unsolved
problem in modern quantitative social science. When in 1997 King provided
a new method that incorporated both the statistical information in Goodman’s
regression and the deterministic information in Duncan and Davis’s bounds, he
garnered tremendous acclaim as well as persistent criticism. In this book we
report the first comparison of the numerical properties of competing approaches
to the ecological inference problem. The results illuminate the trade-offs among
correctness, complexity, and numerical sensitivity.

More important than this list of new ideas, which we hope the reader will
explore, this is the first general theoretical book on statistical computing that is
focused purely on the social sciences. As social scientists ourselves, we recognize
that our data analysis and estimation processes can differ substantially from those
described in a number of (even excellent) texts.

All too often new ideas in statistics are presented with examples from biology.
There is nothing wrong with this, and clearly the points are made more clearly
when the author actually cares about the data being used. However, we as social
scientists often do not care about the model’s implications for lizards, beetles,
bats, coal miners, anchovy larvae, alligators, rats, salmon, seeds, bones, mice,
kidneys, fruit flies, barley, pigs, fertilizers, carrots, and pine trees. These are
actual examples taken from some of our favorite statistical texts. Not that there
is anything wrong with studying lizards, beetles, bats, coal miners, anchovy
larvae, alligators, rats, salmon, seeds, bones, mice, kidneys, fruit flies, barley,
pigs, fertilizers, carrots, and pine trees, but we would rather study various aspects
of human social behavior. This is a book for those who agree.

C H A P T E R 2

Sources of Inaccuracy in
Statistical Computation

2.1 INTRODUCTION

Statistical computations run on computers contain inevitable error, introduced
as a consequence of translating pencil-and-paper numbers into the binary lan-
guage of computers. Further error may arise from the limitations of algorithms,
such as pseudo-random number generators (PRNG) and nonlinear optimization
algorithms. In this chapter we provide a detailed treatment of the sources of
inaccuracy in statistical computing. We begin with a revealing example, then
define basic terminology, and discuss in more detail bugs, round-off and trunca-
tion errors in computer arithmetic, limitations of random number generation, and
limitations of optimization.

2.1.1 Revealing Example: Computing the Coefficient Standard Deviation

Not all inaccuracies occur by accident. A Microsoft technical note1 states, in
effect, that some functions in Excel (v5.0–v2002) are inaccurate by design.
The standard deviation, kurtosis, binomial distributions, and linear and logistic
regression functions produce incorrect results when intermediate calculations,
calculations that are hidden from the user to construct a final calculation, yield
large values. Calculation of the standard deviation by Microsoft Excel is a
telling example of a software design choice that produces inaccurate results. In
typical statistics texts, the standard deviation of a population is defined as

s =

√√√√√√
n∑

i=1

(xi − x̂)

n − 1
. (2.1)

Mathematical expressions do not necessarily imply a unique computational
method, as sometimes transformations of the expression yield faster and more

1Microsoft Knowledge base article Q158071.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

12

INTRODUCTION 13

Table 2.1 Reported Standard Deviations for Columns of Data in Excel

Significant Digits

2 7 8 9 10 15

1 1000001 10000001 100000001 1000000001 100000000000001
2 1000002 10000002 100000002 1000000002 100000000000002
1 1000001 10000001 100000001 1000000001 100000000000001
2 1000002 10000002 100000002 1000000002 100000000000002
1 1000001 10000001 100000001 1000000001 100000000000001
2 1000002 10000002 100000002 1000000002 100000000000002
1 1000001 10000001 100000001 1000000001 100000000000001
2 1000002 10000002 100000002 1000000002 100000000000002
1 1000001 10000001 100000001 1000000001 100000000000001
2 1000002 10000002 100000002 1000000002 100000000000002

Reported: 0.50 0.50 0.51 0.00 12.80 11,86,328.32
Correct: 0.50 0.50 0.50 0.50 0.50 0.50

tractable programming. In this case, the textbook formula is not the fastest way to
calculate the standard deviation since it requires one pass through data to compute
the mean and a second pass to compute the difference terms. For large datasets,
a numerically naive but mathematically equivalent formula that computes the
standard deviation in a single pass is given by√√√√√√√n

n∑
i=1

x2
i −

(
n∑

i=1

x

)2

n(n − 1)
. (2.2)

Microsoft Excel uses the single-pass formula, which is prone to severe round-
ing errors when n

∑n
i=1 x2

i − (
∑n

i=1 x)2 requires subtracting two large numbers.
As a consequence, Excel reports the standard deviation incorrectly when the
number of significant digits in a column of numbers is large. Table 2.1 illustrates
this. Each column of 10 numbers in Table 2.1 has a standard deviation of pre-
cisely 1/2, yet the standard deviation reported by Excel ranges from zero to
over 1 million.2

2.1.2 Some Preliminary Conclusions

The inaccuracies in Excel are neither isolated nor harmless. Excel is one of the
most popular software packages for business statistics and simulation, and the
solver functions are used particularly heavily (Fylstra et al. 1998). Excel exhibits

2Table 2.1 is an example of a statistics benchmark test, where the performance of a program is
gauged by how well it reproduces a known answer. The one presented here is an extension of Simon
and LeSage (1988).

14 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

similar inaccuracies in its nonlinear solver functions, statistical distribution, and
linear models (McCullough and Wilson 1999, 2002). Excel is not alone in its
algorithm choice; we entered the numbers in Table 2.1 into a variety of statistical
software programs and found that some, but not all, produced errors similar in
magnitude.

The standard deviation is a simple formula, and the limitations of alternative
implementations is well known; Wilkinson and Dallal (1977) pointed out failures
in the variance calculations in statistical packages almost three decades ago. In
our example, the inaccuracy of Excel’s standard deviation function is a direct
result of the algorithm choice, not a limitation of the precision of its underlying
arithmetic operators. Excel’s fundamental numerical operations are as accurate
as those of most other packages that perform the standard deviation calcula-
tion correctly. By implementing the textbook equation within Excel, using the
“average” function, we were able to obtain the correct standard deviations for
all the cases shown in Table 2.1. Excel’s designers might argue that they made
the correct choice in choosing a more time-efficient calculation over one that is
more accurate in some circumstances; and in a program used to analyze massive
datasets, serious thought would need to go into these trade-offs. However, given
the uses to which Excel is normally put and the fact that internal limits in
Excel prohibit analysis of truly large datasets, the one-pass algorithm offers no
real performance advantage.

In this case, the textbook formula is more accurate than the algorithm used by
Excel. However, we do not claim that the textbook formula here is the most
robust method to calculate the standard deviation. Numerical stability could be
improved in this formula in a number of ways, such as by sorting the differences
before summation. Nor do we claim that textbook formulas are in general always
numerically robust; quite the opposite is true (see Higham 2002, pp. 10–14).
However, there are other one-pass algorithms for the standard deviation that
are nearly as fast and much more accurate than the one that Excel uses. So
even when considering performance when used with massive datasets, no good
justification exists for choosing the algorithm used in Excel.

An important concern is that Excel produces incorrect results without warn-
ing, allowing users unwittingly to accept erroneous results. In this example, even
moderately sophisticated users would not have much basis for caution. A standard
deviation is requested for a small column of numbers, all of which are similarly
scaled, and each of which is well within the documented precision and magnitude
used by the statistical package, yet Excel reports severely inaccurate results.
Because numeric inaccuracies can occur in intermediate calculations that pro-
grams obscure from the user, and since such inaccuracies may be undocumented,
users who do not understand the potential sources of inaccuracy in statistical com-
puting have no way of knowing when results received from statistical packages
and other programs are accurate.

The intentional, and unnecessary, inaccuracy of Excel underscores the fact
that trust in software and its developers must be earned, not assumed. However,
there are limits to the internal operation of computers that ultimately affect all

FUNDAMENTAL THEORETICAL CONCEPTS 15

algorithms, no matter how carefully programmed. Areas that commonly cause
inaccuracies in computational algorithms include floating point arithmetic, ran-
dom number generation, and nonlinear optimization algorithms. In the remainder
of this chapter we discuss the various sources of such potential inaccuracy.

2.2 FUNDAMENTAL THEORETICAL CONCEPTS

A number of concepts are fundamental to the discussion of accuracy in statistical
computation. Because of the multiplicity of disciplines that the subject touches
on, laying out some terminology is useful.

2.2.1 Accuracy and Precision

For the purposes of analyzing the numerical properties of computations, we must
distinguish between precision and accuracy. Accuracy (almost) always refers to
the absolute or relative error of an approximate quantity. In contrast, precision
has several different meanings, even in scientific literature, depending on the
context. When referring to measurement, precision refers to the degree of agree-
ment among a set of measurements of the same quantity—the number of digits
(possibly in binary) that are the same across repeated measurements. However,
on occasion, it is also used simply to refer to the number of digits reported in
an estimate. Other meanings exist that are not relevant to our discussion; for
example, Bayesian statisticians use the word precision to describe the inverse
of the variance. In the context of floating point arithmetic and related numerical
analysis, precision has an alternative meaning: the accuracy with which basic
arithmetic operations are performed or quantities are stored in memory.

2.2.2 Problems, Algorithms, and Implementations

An algorithm is a set of instructions, written in an abstract computer language
that when executed solves a specified problem. The problem is defined by the
complete set of instances that may form the input and the properties the solution
must have. For example, the algorithmic problem of computing the maximum of
a set of values is defined as follows:

• Problem: Find the maximum of a set of values.
• Input: A sequence of n keys k1, . . . , kn of fixed size.
• Solution: The key k∗, where k∗ ≥ ki for all i ∈ n.

An algorithm is said to solve a problem if and only if it can be applied to
any instance of that problem and is guaranteed to produce a correct solution to
that instance. An example algorithm for solving the problem described here is to
enter the values in an array S of size n and sort as follows:

16 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

MaxSort(S)
for i = 1 to {n}-1 {

for j ={i+1} to 2 {
if A[j] < A[j-1] {

t = A[j-1]
A[j-1]=A[j]
A[j]=A[j-1]

}
}

}
return (A[n]);

This algorithm, called a bubble sort, is proven to produce the correct solution
for all instances of the problem for all possible input sequences. The proof of
correctness is the fundamental distinction between algorithms and heuristic algo-
rithms, or simply heuristics, procedures that are useful when dealing with difficult
problems but do not provide guarantees about the properties of the solution pro-
vided. Heuristics may be distinguished from approximations and randomized
algorithms. An approximation algorithm produces a solution within some known
relative or absolute error of the optimal solution. A randomized algorithm pro-
duces a correct solution with some known probability of success. The behavior of
approximation and randomized algorithms, unlike heuristics, is formally provable
across all problem instances.

Correctness is a separate property from efficiency. The bubble sort is one of
the least efficient common sorting methods. Moreover, for the purpose of finding
the maximum, scanning is more efficient than sorting since it requires provably
fewer operations:

MaxScan(S)
m = 1
for i = 2 to n {

if A[m] < A[i] {
m=i

}
}
return (A[m]);

Note that an algorithm is defined independent of its implementation (or pro-
gram), and we use pseudocode here to give the specific steps without defining
a particular software implementation. The same algorithm may be expressed
using different computer languages, different encoding schemes for variables
and parameters, different accuracy and precision in calculations, and run on dif-
ferent types of hardware. An implementation is a particular instantiation of the
algorithm in a real computer environment.

Algorithms are designed and analyzed independent of the particular hard-
ware and software used to execute them. Standard proofs of the correctness of

FUNDAMENTAL THEORETICAL CONCEPTS 17

particular algorithms assume, in effect, that arithmetic operations are of infi-
nite precision. (This is not the same as assuming that the inputs are of infinite
length.) To illustrate this point, consider the following algorithm for computing
the average of n of numbers:

SumSimple(S)
x=0
for i = 1 to n {

x = x + S[i]
}
x = x/n;
return(x);

Although this is a correct and efficient algorithm, it does not lend itself particu-
larly well to accurate implementation in current standard computer languages. For
example, suppose that the input S[i] was produced by the function S[i] = i−2;
then x grows in magnitude at every iteration while S[i] shrinks. In cases like
this, implementations of the SumSimple algorithm exhibit significant round-off
error, because small numbers added to large numbers tend to “drop off the end”
of the addition operator’s precision and fail to contribute to the sum (see Higham
2002, pp. 14–17). (For a precise explanation of the mechanics of rounding error,
see Section 2.4.2.1.)

Altering the algorithm to sort S before summing reduces rounding error and
leads to more accurate results. (This is generally true, not true only for the
previous example.) Applying this concept, we can create a “wrapper” algorithm,
given by

SumAccurate(S)
Sort(S)
return(SumSimple(S));

Concerning the overall purpose of accuracy in computer implementations,
Wilkinson (1994) claims that “[t]he results matter more than the algorithm.” There
is certainly some truth in this simplification. Implementation matters. A particular
algorithm may have been chosen for asymptotic performance that is irrelevant to
the current data analysis, may not lend itself easily to accurate implementation, or
may elide crucial details regarding the handling of numerical errors or boundary
details. Both algorithm and implementation must be considered when evaluating
accuracy.

To summarize, an algorithm is a procedure for solving a well-defined problem.
An algorithm is correct when given an instance of a problem, it can be proved
to produce an output with well-defined characteristics. An algorithm may be
correct but still lead to inaccurate implementations. Furthermore, in choosing
and implementing algorithms to solve a particular problem, there are often trade-
offs between accuracy and efficiency. In the next section we discuss the role of
algorithms and implementations in inference.

18 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

2.3 ACCURACY AND CORRECT INFERENCE

Ideally, social scientists would like to take data, y, that represent phenomena
of interest, M , and infer the process that produced it: p(M|y). This inverse
probability model of inference is, unfortunately, impossible. A weaker version,
where priors are assumed over parameters of a given model (or across several
models of different functional forms), is the foundation of Bayesian statistics (Gill
2002), which gives the desired form of the conditional probability statement at
the “cost” of requiring a prior distribution on M .

Broadly defined, a statistical estimate is a mapping between

{data, model, priors, inference method} ⇒ {estimates},

or symbolically,

{X, M, π, IM} ⇒ e.

For example, under the likelihood model,3 we assume a parameterized statis-
tical model M ′ of the social system that generates our data and hold it fixed, we
assume noninformative priors. According to this inference model, the best point
estimate of the parameters is

B∗ = Max∀BL(B|M ′, y) (2.3)

where L(B|M ′, y) ∝ P(B|M ′, y). Or, in terms of the more general mapping,

{y, M ′, maximum likelihood inference} ⇒ {B∗}.

While the process of maximum likelihood estimation has a defined stochastic
component, other sources of error are often ignored. There is always potential
error in the collection and coding of social science—people lie about their opin-
ions or incorrectly remember responses to surveys, votes are tallied for the wrong
candidate, census takers miss a household, and so on. In theory, some sources
of error could be dealt with formally in the model but frequently are dealt with
outside the model. Although we rarely model measurement error explicitly in
these cases, we have pragmatic strategies for dealing with them: We look for
outliers, clean the data, and enforce rigorous data collection procedures.

Other sources of error go almost entirely unacknowledged. That error can be
introduced in the act of estimation is known but rarely addressed, even informally.
Particularly for estimates that are too complex to calculate analytically, using
only pencil and paper, we must consider how computation may affect results. In

3There is a great deal to recommend the Bayesian perspective, but most researchers settle for the
more limited but easily understood model of inference: maximum likelihood estimation (see King
1989).

ACCURACY AND CORRECT INFERENCE 19

such cases, if the output from the computer is not known to be equivalent to e,
one must consider the possibility that the estimate is inaccurate. Moreover, the
output may depend on the algorithm chosen to perform the estimation, parameters
given to that algorithm, the accuracy and correctness of the implementation of
that algorithm, and implementation-specific parameters. Including these factors
results in a more complex mapping4:

{X,M, π, IM, algorithm, algorithm parameters, implementation,

implementation parameters} ⇒ output.

By algorithm we intend to encompass choices made in creating output that
are not part of the statistical description of the model and which are independent
of a particular computer program or language: This includes the choice of math-
ematical approximations for elements of the model (e.g., the use of Taylor series
expansion to approximate a distribution) and the method used to find estimates
(e.g., nonlinear optimization algorithm). Implementation is meant to capture all
remaining aspects of the program, including bugs, the precision of data storage,
and arithmetic operations (e.g., using floating point double precision). We discuss
both algorithmic and implementation choices at length in the following sections
of this chapter.

Ignoring the subtle difference between output and estimates may often be
harmless. However, as we saw at the beginning of this chapter, the two may
be very different. Features of both the algorithm and its implementation may
affect the resulting output: An algorithm used in estimation, even if implemented
correctly and with infinite accuracy, may produce output only approximating
the estimates, where the closeness of the approximation depends on particu-
lar algorithmic parameters. An algorithm may be proved to work properly only
on a subset of the possible data and models. Furthermore, implementations of
a particular algorithm may be incorrect or inaccurate, or be conditioned on
implementation-specific parameters.

The accuracy of the output actually presented to the user is thus the dis-
similarity (using a well-behaved dissimilarity measure) between estimates and
output5:

accuracy = distance = D(e, output). (2.4)

The choice of an appropriate dissimilarity measure depends on the form of the
estimates and the purpose for which those estimates are used. For output that is a
single scalar value, we might choose log relative error (LRE) as an informative

4Renfro (1997) suggests a division of problem into four parts: specification, estimator choice, estima-
tor computation, and estimator evaluation. Our approach is more formal and precise, but is roughly
compatible.
5Since accurate is often used loosely in other contexts, it is important to distinguish between compu-
tational accuracy, as discussed earlier, and correct inference. A perfectly accurate computer program
can still lead one to incorrect results if the model being estimated is misspecified.

20 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

measure, which can be interpreted roughly as the number of numerically “correct”
digits in the output:

LRE = − log10

∣∣∣∣output − e

e

∣∣∣∣ . (2.5)

When e = 0, LRE is defined as the log absolute error (LAE), given by

LRE = − log10 |output − e|. (2.6)

A number of measures of other measures of dissimilarity and distance are com-
monly used in statistical computation and computational statistics (see
Chapter 4; Higham 2002, Chap. 6; and Gentle 2002, Sec. 5.4).

Accuracy alone is often not enough to ensure correct inferences, because of
the possibility of model misspecification, the ubiquity of unmodeled measurement
error in the data, and of rounding error in implementations (Chan et al. 1983).
Where noise is present in the data or its storage representation and not explicitly
modeled, correct inference requires the output to be stable. Or as Wilkinson
puts it: “Accuracy is not important. What matters is how an algorithm handles
inaccuracy. . . ” (Wilkinson 1994).

A stable program gives “almost the right answer for almost the same data”
(Higham 2002, p. 7). More formally, we can define stability in terms of the
distance of the estimate from the output when a small amount of noise is added
to the data:

S = D(e, output′) where output′ = output(. . . , Y ′, . . .), Y ′ ≡ Y + �Y.

(2.7)
Results are said to be stable where S is sufficiently small.
Note that unstable output could be caused by sensitivity in the algorithm,

implementation, or model. Any error, from any source, may lead to incorrect
inferences if the output is not stable.

Users of statistical computations must cope with errors and inaccuracies in
implementation and limitations in algorithms. Problems in implementations in-
clude mistakes in programming and inaccuracies in computer arithmetic. Prob-
lems in algorithms include approximation errors in the formula for calculating a
statistical distribution, differences between the sequences produced by pseudo-
random number generators and true random sequences, and the inability of
nonlinear optimization algorithms to guarantee that the solution found is a global
one. We examine each of these in turn.

2.3.1 Brief Digression: Why Statistical Inference Is Harder in Practice
Than It Appears

Standard social science methods texts that are oriented toward regression, such as
Hanushek and Jackson (1977), Gujarati (1995), Neter et al. (1996), Fox (1997),

SOURCES OF IMPLEMENTATION ERRORS 21

Domain
Knowledge

Statistics

Mathematical
Theory of

Optimization

Data Collection
Procedures

Correct Inferences

Numerical
Analysis

Fig. 2.1 Expertise implicated in correct inference.

Harrell (2001), Greene (2003), and Montgomery et al. (2001), discuss how to
choose a theoretically appropriate statistical model, derive the likelihood function
for it, and draw inferences from the resulting parameter estimates. This is a
necessary simplification, but it hides much of what is needed for correct inference.
It is tacitly understood that domain knowledge is needed to select an appropriate
model, and it has begun to be recognized that knowledge of data collection is
necessary to understand whether data actually correspond to the variables of the
model.

What is not often recognized by social scientists [with notable exceptions,
such as Renfro (1997) and McCullough and Vinod (2000)] is the sophistication
of statistical software and the number of algorithmic and implementation choices
contained therein that can affect one’s estimates.6

In this book we show that knowledge of numerical analysis and optimization
theory may be required not only to choose algorithms effectively and implement
them correctly, but even to use them properly. Thus, correct inference sometimes
requires a combination of expertise in the substantive domain, statistics, computer
algorithms, and numerical analysis (Figure 2.1).

2.4 SOURCES OF IMPLEMENTATION ERRORS

Implementation errors and inaccuracies are possible when computing practically
any quantity of interest. In this section we review the primary sources of errors
and inaccuracy. Our intent in this chapter is not to make positive recommenda-
tions. We save such recommendations for subsequent chapters. We believe, as
Acton (1970: p. 24) has stated eloquently in a similar if more limited context:

6This fact is recognized by researchers in optimization. For example, Maros (2002) writes on the wide
gap between the simplicity of the simplex algorithm in its early incarnations and the sophistication
of current implementations of it. He argues that advances in optimization software have come about
not simply through algorithms, but through an integration of algorithmic analysis with software
engineering principles, numerical analysis of software, and the design of computer hardware.

22 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

“The topic is complicated by the great variety of information that may be known
about the statistical structure of the function [problem] At the same time,
people . . . are usually seeing a quick uncritical solution to a problem that can be
treated only with considerable thought. To offer them even a hint of a panacea
. . . is to permit them to draw with that famous straw firmly grasped.” Thus, we
reserve positive recommendations for subsequent chapters, which deal with more
specific computational and statistical problems.

2.4.1 Bugs, Errors, and Annoyances

Any computer program of reasonable complexity is sure to have some program-
ming errors, and there is always some possibility that these errors will affect
results. More formally, we define bugs to be mistakes in the implementation
of an algorithm—failure to instruct the computer to perform the operations as
specified by a particular algorithm.

No statistical software is known to work properly with certainty. In limited
circumstances it is theoretically possible to prove software correct, but to our
knowledge no statistical software package has been proven correct using formal
methods. Until recently, in fact, such formal methods were widely viewed by
practitioners as being completely impractical (Clarke et al. 1996), and despite
increasing use in secure and safety critical environments, usage remains costly
and restrictive. In practice, statistical software will be tested but not proven
correct. As Dahl et al. (1972) write: “Program testing can be used to show the
presence of bugs, but never to show their absence.”

As we saw in Chapter 1, bugs are a recurring phenomenon in scientific applica-
tions, and as we will see in Chapter 3, serious bugs are discovered with regularity
in statistical packages. In addition, evidence suggests that even experienced pro-
grammers are apt to create bugs and to be overconfident of the correctness of
their results. Bugs in mathematically oriented programs may be particularly dif-
ficult to detect, since incorrect code may still return plausible results rather than
causing a total failure of the program. For example, in a 1987 experiment by
Brown and Gould [following a survey by Creeth (1985)], experienced spread-
sheet programmers were given standardized tasks and allowed to check their
results. Although the programmers were quite confident of their program correct-
ness, nearly half of the results were wrong. In dozens of subsequent independent
experiments and audits, it was not uncommon to find more than half of the
spreadsheets reviewed to be in error (Panko 1998). Although we suspect that
statistical programs have a much lower error rate, the example illustrates that
caution is warranted.

Although the purpose of this book is to discuss more subtle inaccuracies in sta-
tistical computing, one should be aware of the potential threat to inference posed
by bugs. Since it is unlikely that identical mistakes will be made in different
implementations, one straightforward method of testing for bugs is to reproduce
results using multiple independent implementations of the same algorithm (see
Chapter 4). Although this method provides no explicit information about the bug

SOURCES OF IMPLEMENTATION ERRORS 23

itself, it is useful for identifying cases where a bug has potentially contaminated a
statistical analysis. [See Kit and Finzi (1995) for a practical introduction to soft-
ware testing.] This approach was used by the National Institute of Standards and
Technology (NIST) in the development of their statistical accuracy benchmarks
(see Chapter 3).

2.4.2 Computer Arithmetic

Knuth (1998, p. 229) aptly summarizes the motivation of this section: “There’s a
credibility gap: We don’t know how much of the computer’s answers to believe.
Novice computer users solve this problem by implicitly trusting in the computer
as an infallible authority; they tend to believe that all digits of a printed answer
are significant. Disillusioned computer users have just the opposite approach;
they are constantly afraid that their answers are almost meaningless.”

Researchers are often surprised to find that computers do not calculate numbers
“exactly.” Because no machine has infinite precision for storing intermediate
calculations, cancellation and rounding are commonplace in computations. The
central issues in computational numerical analysis are how to minimize errors in
calculations and how to estimate the magnitude of inevitable errors.

Statistical computing environments generally place the user at a level far
removed from these considerations, yet the manner in which numbers are handled
at the lowest possible level affects the accuracy of the statistical calculations. An
understanding of this process starts with studying the basics of data storage and
manipulation at the hardware level. We provide an overview of the topic here; for
additional views, see Knuth (1998) and Overton (2001). Cooper (1972) further
points out that there are pitfalls in the way that data are stored and organized on
computers, and we touch on these issues in Chapter 3.

Nearly all statistical software programs use floating point arithmetic, which
represents numbers as a fixed-length sequence of ones and zeros, or bits (b),
with a single bit indicating the sign. Surprisingly, the details of how floating
point numbers are stored and operated on differ across computing platforms.
Many, however, follow ANSI/IEEE Standard 754-1985 (also known, informally,
as IEEE floating point) (Overton 2001). The IEEE standard imposes considerable
consistency across platforms: It defines how floating point operations will be exe-
cuted, ensures that underflow and overflow can be detected (rather than occurring
silently or causing other aberrations, such as rollover), defines rounding mode,
and provides standard representations for the result of arithmetic exceptions, such
as division by zero. We recommend using IEEE floating point, and we assume
that this standard is used in the examples below, although most of the discussion
holds regardless of it.

Binary arithmetic on integers operates according to the “normal” rules of arith-
metic as long as the integers are not too large. For a designer-chosen value of the
parameter b, the threshold is > 2b−1 −1, which can cause an undetected overflow
error. For most programs running on microcomputers, b = 32, so the number
2,147,483,648 (1 + 232−1 − 1) would overflow and may actually roll over to −1.

24 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

A floating point numbering system is a subset of the real number system where
elements have the form y = ±m×βe−t . Each numbering system is characterized
by the following quantities: a base (β), an exponent range (e, emin ≤ e ≤ emax),
a precision (t), a sign, and a mantissa (m, 0 ≤ m ≤ βt − 1). For a particular y,
only m, e, and a sign are stored.

In IEEE floating point, which uses base 2, one can think of each number as
being represented by a single bit for the sign, a sequence of t bits for the mantissa,
and an exponent of length e bits. As noted, guard bits are used during floating
point operations to detect exceptions and to permit proper rounding, but they are
not stored once an operation is completed. Under this definition, some numbers
(e.g., the number 2) can be represented by more than one pattern of bits. This is
dealt with by normalizing the mantissa.7 Under IEEE standard double-precision
floating point, β = 2, t = 53, and −1021 ≤ e ≤ 1024 (for single precision,
t = 24 and −125 ≤ e ≤ 128).

Some numbers cannot be exactly represented using this scheme. An example
is the number 0.1, which has an infinitely repeating binary representation using
this technique. The infinitely repeating floating point transformation of 0.1 must
be represented somehow, leading to either rounding or truncation errors at the
last stored bit.

The relative error of representation is bounded by machine epsilon (or machine
precision), εM . Machine epsilon is defined as the distance between 1.0 and the
next floating point number. It is equal to β1−t and is sometimes confused with
other things, such as rounding error, the smallest quantity that can be represented,
or with the smallest floating point number, which when added to 1.0 produces a
different result.8

Floating point arithmetic is not exact even if the operands happen to be repre-
sented exactly. For example, when floating point numbers are added or subtracted,
their exponents are first normalized: The mantissa of the smaller number is
divided in two while increasing its exponent until the two operands have the
same exponent. This division may cause low-order bits in the mantissa of the
smaller number to be lost.

Operations in floating point representation are susceptible not only to rounding
and overflow, but to underflow as well—when a number is smaller than the
smallest value capable of being represented by the computer. As Knuth (1998,
p. 229) points out, a consequence of the inaccuracies in floating point arithmetic
is that the associative law sometimes breaks down:

(a ⊕ b) ⊕ c �= a ⊕ (b ⊕ c), (2.8)

where ⊕ denotes the standard arithmetic operators. Furthermore, as Higham
(2002, Sec. 2.10) notes, limits on precision can interfere with the mathematical

7The remaining denormalized bit patterns are then used to represent subnormal numbers between
the machine epsilon and 1.0, with reduced precision (see Higham 2002, p. 37).
8The smallest quantity that when added to 1.0 produces a different result is actually smaller than the
machine precision because of subnormal numbers. In other words, the smallest number that can be
added does not have full precision.

SOURCES OF IMPLEMENTATION ERRORS 25

properties of functions. While many elementary functions can be calculated effi-
ciently to arbitrary degrees of precision, the necessity of reporting the final results
at a fixed precision yields inexact results that may not have all of the mathemat-
ical properties of the true function. The requirements of preserving symmetries,
mathematical relations and identities, and correct rounding to the destination
precision can conflict, even for elementary functions.

Floating point underflow drives the general principle that one should not test
two floating point numbers for equality in a program, but instead, test that the
difference is less than a tolerance value (Higham 2002, p. 493):

tol : |x − y| ≤ tol. (2.9)

Manipulating numbers in floating point arithmetic, such as adding the squares
of a large and a small number, may propagate or accumulate errors, which may in
turn produce answers that are wildly different from the truth. If two nearly equal
numbers are subtracted, cancellation may occur, leaving only the accumulated
rounding error as a result, perhaps to be further multiplied and propagated in
other calculations (Higham 2002, p. 9).

2.4.2.1 Floating Point Arithmetic Example
Consider the following calculation:

i = 1000000000 + 2 − 0.1 − 1000000000.

(We assume here that operations are executed from left to right, as appears,
but see below concerning the reproducibility of floating point calculations for
further complications.) How does this floating point operation work using (single-
precision) floating point arithmetic?9

First, the operand 100000000 must be represented in floating point. We do
this by taking the binary expansion

(100000000)10 = (111011100110101100101000000000)2, (2.10)

normalizing it,

(1.11011100110101100101000000000)2 × 229, (2.11)

and truncating to 23 points following the decimal:

(1.11011100110101100101000)2 × 229.

9The number of bits used to store each floating point number is sometimes referred to as precision.
A single-precision floating point number is typically stored using 32 bits. A double-precision number
uses double the storage of a single-precision number.

26 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

From this we can see that 100000000 has an exact representation in floating
point. No rounding occurred in the representation. Similarly, the number 2 is
represented exactly by

(1.000000000000000000000)2 × 21.

The number 0.1 is more tricky, because it has an infinite binary expansion:

(0.1)10 = (0.0001100110011 . . .)2.

Expanded to 24 significant digits, normalized, and rounded in binary (the last
digit in the mantissa would be zero without rounding), we obtain

(0.1)10 ∼= (1.10011001100110011001101)2 × 2−4. (2.12)

Next, we add and subtract pairs of numbers. The general method for adding
and subtracting is given by the following:

1. Align the significands by shifting the mantissa of the smaller number.
2. Add or subtract the significands.
3. Perform a carry on the exponent if necessary.
4. Normalize the result, and round the result if necessary.

[In addition, correct carrying and rounding, as well as overflow and underflow
detection, require the use of additional guard bits during the calculation. These
are not important for this particular example. In practice, IEEE implementation
handles these and other subtle rounding issues correctly. Floating point arith-
metic libraries that do not support the IEEE standard, such as those supplied on
older mainframe computers, generally do not handle these issues correctly and
should be avoided for statistical computation where possible. For more detail,
see Overton (2001).]

We start with the first pair:

(1.11011100110101100101000)2 × 229

+ (1.00000000000000000000000)2 × 21,

which is aligned to

(1.11011100110101100101000)2 × 229

+ (0.00000000000000000000000)2 × 229

and then added and renormalized for the following result:

(1.11011100110101100101000)2 × 229.

In effect, the number 2 has simply been dropped from the calculation. The
same thing occurs when we subtract the quantity 0.1. Finally, when we subtract

SOURCES OF IMPLEMENTATION ERRORS 27

1000000000, we obtain

(1.11011100110101100101000)2 × 229

−(1.11011100110101100101000)2 × 229

(0.00000000000000000000000)2 × 20

So in single-precision floating point

i = 1000000000 + 2 − 0.1 − 1000000000 = 0.

In contrast, when we perform these operations in a different order, we may
obtain a completely different result. Consider the following order:

j = 1000000000 − 1000000000 + 2.0 − 0.1.

The first two quantities cancel out, leaving zero as a remainder. The next step is

(1.00000000000000000000000)2 × 21

−(1.10011001100110011001101)2 × 2−4.

Aligned, this yields

(1.00000000000000000000000)2 × 21

−(0.00001100110011001100110)2 × 21

(1.11100110011001100110011)2 × 20

Thus, we have an example of the violation of the associative law of
addition:

1000000000 − 1000000000 + 2 + 0.1 ∼= 1.9

and

1000000000 − 1000000000 + 2 + 0.1
�= 10001000000000 + 2 + 0.1 − 1000000000.

There are three important lessons to take from this example. First, rounding
errors occur in binary computer arithmetic that are not obvious when one con-
siders only ordinary decimal arithmetic. Second, as discussed in general terms
earlier in this chapter, round-off error tends to accumulate when adding large
and small numbers—small numbers tend to “drop off the end” of the addition
operator’s precision, and what accumulates in the leftmost decimal positions is
inaccurate. Third, subtracting a similar quantity from the result can then “cancel”
the relatively accurate numbers in the rightmost decimal places, leaving only the
least accurate portions.

28 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

2.4.2.2 Common Misconceptions about Floating Point Arithmetic
Higham (2002, p. 28) observes that researchers familiar with these basics of
floating point arithmetic may still harbor some misconceptions that could lead to
overconfidence and suggests guidelines (p. 27). We summarize these here:

• Misconception: Floating point errors can overwhelm a calculation only if
many of them accumulate.
Fact: Even one error, when propagated through the calculation, can cause
wildly inaccurate results.

• Misconception: A short computation free from cancellation, underflow,
and overflow must be accurate.
Fact: Even a simple computation can be subject to rounding error.

• Guideline: Minimize the size of intermediate quantities relative to the final
solution. (Attempt to keep calculations at the same scale throughout.)

• Guideline: Avoid subtracting quantities contaminated by error.

In addition, Higham (2002) notes researchers, misconceptions that could lead
to underconfidence in their results. Sometimes, albeit rarely, rounding errors can
help a computation, such that a computed answer can be more accurate than any
of the intermediate quantities of the computation.

The moral is that a careful examination of the accuracy of each numerical
algorithm, as a whole, is necessary for one to have the correct degree of confi-
dence in the accuracy of one’s results. Of course, a simple awareness of this is
not enough to make one’s results more accurate. Thus, in Chapters 3 and 4 we
discuss various ways of testing and improving the accuracy of arithmetic.

2.4.2.3 Floating Point Arithmetic and Reproducibility
In addition to accuracy, one should be concerned with the reproducibility of
floating point calculations. Identical software code can produce different results
on different operating systems and hardware. In particular, although the IEEE
754 standard for floating point arithmetic (see Overton 2001) is widely honored
by most modern computers, systems adhering to it can still produce different
results for a variety of reasons.

Within the IEEE standard, there are a number of places where results are not
determined exactly. First, the definition of extended-precision calculations specify
only a minimum precision. Second, the standard (or at least, some interpretations
of it) allows for the destination registers used to store intermediate calculations
to be defined implicitly by the system and to differ from the precision of the
final destination. Hence, on some systems (such as many Intel-based computers),
some intermediate calculations in a sequence are performed at extended precision
and then rounded down to double precision at the end. (There is some question
whether this practice complies with the IEEE standard.) Third, IEEE does not
completely specify the results of converting between integer and floating point

ALGORITHMIC LIMITATIONS 29

data types. (This type of conversion is referred to as casting in some programming
languages.) So variables defined as integers and later used in a floating point
calculation can cause results to differ across platforms.

Compiler optimizations may also interfere with replication of results. In many
programming languages, the compiler will rearrange calculations that appear on
the same line, or are in the same region of code, to make them more accurate
and/or to increase performance. For example, in the programming language C
(using gcc 2.96), the result of

i =1000000000.0+2.0+0.1-1000000000.0;

is not identical to

i =1000000000.0;
i+=2.0;
i+=0.1;
i-=1000000000.0;

using the default settings, although the expressions are mathematically identical,
and the ordering appears to be the same. Compilers may also invoke the use of
extended intermediate precision as preceding, or fused, multiply–add operations
(a hardware operation that allows efficient combination of adds and multiplies
but has different rounding characteristics on hardware platforms that support
these features). Although some compilers allow such optimizations to be disabled
explicitly, many optimizations are applied by default. Differences among com-
pilers and among the hardware platforms targeted by the compiler can cause the
same code to produce different results when compiled under different operating
systems or run on different hardware.

2.5 ALGORITHMIC LIMITATIONS

The problems discussed earlier were related to limits in implementation. For
example, had all the steps in the summation been followed without mistake
and with infinite precision, in the summation algorithm described earlier [the
algorithm labeled SumSimple(S) in Section 2.2.2], the results would have
been exactly equal to the theoretical quantity of interest. This is not the case with
all algorithms. In this section we discuss the limitations of algorithms commonly
used in statistical computations. These limited algorithms usually fall into one of
the following four categories:

1. Randomized algorithms return a correct solution with some known proba-
bility, p, and an incorrect solution otherwise. They are used most commonly
with decision problems.

2. Approximation algorithms, even if executed with infinite precision, are
proved only to yield a solution that is known to approximate the quantity
of interest with some known (relative or absolute) error.

30 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

3. Heuristic algorithms (or, simply, heuristics) are procedures that often
work in practice but provide no guarantees on the optimality of their results.
Nor do they provide bounds on the relative or absolute error of these results
as compared to the true quantities of interest. Heuristics are most often used
when the problem is too difficult to be solved with other approaches.

4. Local search algorithms comprise practically all general nonlinear opti-
mization algorithms. Local search algorithms are guaranteed only to provide
locally optimal solutions.

2.5.1 Randomized Algorithms

Randomized algorithms are rarely used in statistical computation but are a good
example of how a perfect implementation may still yield incorrect results. The
classic example of a randomized algorithm is Rabin’s (1980) test for primality:

• Problem: Determine whether a particular number is prime.
• Input: An odd number n > 4.
• Solution: Return “true” if n is prime, “false” otherwise.

which is given in pseudocode by

Rabin(n)
for i=1 to i {

a = random(2..n-2)
if n is not strongly pseudoprime to the base a {

return false
}

}
return true;

This algorithm is based on the idea of a pseudoprime number. Fermat’s (other)
theorem states that a positive number n is prime if for every smaller prime number
a greater than 1,

an−1 = 1 mod n. (2.13)

This theorem is readily provable, unlike its famous cousin, and it has been proven
that there are infinitely many pseudoprimes (Sierpinski 1960).

For example, 11 is prime because for every prime less than 11 and greater
than 1 there is some positive integer k such that an−1/n = k:

a an−1/n k

2 (211−1 − 1)/11 93
3 (311−1 − 1)/11 5,368
5 (511−1 − 1)/11 887,784
7 (711−1 − 1)/11 25,679,568

ALGORITHMIC LIMITATIONS 31

Of course, when an−1 �= 1 mod n, then n is not prime. The number n is strongly
pseudoprime to a (1 < a < n − 1) for arbitrary numbers s and t (t odd) if the
condition

n − 1 = 2s t (2.14)

holds, and
(at − 1) mod n = 0. (2.15)

So by this definition, although 341 is not prime (31 × 11 = 341), it is strongly
pseudoprime to the base a = 2 since for s = 2 and t = 85:

2s = n − 1

t
,

at

n
= 1.13447584245361e + 23).

See McDaniel (1989) and Jaeschke (1993), as well as the references in Rotkiewicz
(1972) for more details.

As important, Rabin’s algorithm never returns a false negative, but returns
a false positive with p ∼= 1 − 4−i . In practice, i is set such that the risk of a
false negative is negligible. Therefore, although there is only a 0.75 probability
that a positive result is really a prime on a single iteration, changing the base
and rerunning provides arbitrarily high levels of reliability and is still faster than
many competing (deterministic) algorithms for large numbers.

2.5.2 Approximation Algorithms for Statistical Functions

Some algorithms yield only approximations to the quantities of interest. Approx-
imation algorithms are frequently used in the field of combinatorial optimization.
For many combinatorial optimization problems, exact algorithms for finding the
solution are computationally intractable, and approximations are used in their
stead, if available. For example, linear programming, the minimization of m

continuous variables subject to n linear inequality constraints, is computation-
ally tractable. But integer linear programming, where each of the m variables
is an integer, is computationally intractable.10 Where available, approximation
algorithms are sometimes used, even if the solutions produced by them are only
guaranteed to be within a given percentage of the actual minimum (see, e.g.,
Hochbaum et al. 1993).

A milder form of approximation error is truncation error, the error introduced
by using a finite series as an approximation for a converging infinite series. Use
of infinite series expansion is very common in function evaluation. A similar
form of truncation error can stem from using an asymptotic series expansion,
which inherently limits the number of terms that can contribute to the accuracy

10Integer linear programming is NP-complete. Roughly, this means that no algorithm exists that is
guaranteed to compute an exact answer to any legal instance of the problem in time less than kn,
For a precise definition of tractability, and comments on the tractability of integer programming, see
Papadimitrious (1994).

32 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

of an approximation (Acton 1970). As Lozier and Olver (1994) point out in their
extensive review of software for evaluating functions, before the construction
(implementation) of software there are two stages. First, one must choose a suit-
able mathematical representation of the function of interest, such as asymptotic
expansions, continued fractions, difference and differential equations, functional
identities, integral representations, and Taylor series expansions. Second, one
must choose a particular approach to evaluating the representations, such as
through Chebyshev series, polynomial and rational approximations, Padé approx-
imations, or numerical quadrature. Such methods are described in Kennedy and
Gentle (1980), Thisted (1988), Lange (1999), and Press et al. (2002).

Consider a very simple method of approximating derivatives, the forward
difference method, which is the common method used in statistical packages
today:

f ′(x) = f (x + δ) − f (x)

δ
. (2.16)

Even without rounding error the algorithm introduces truncation error of the
form

1

2
δ2f ′′(x) + 1

6
δ3f ′′′(x) + · · · .

This error is sometimes sufficient to cause failures in difficult nonlinear opti-
mization problems, as discussed in Chapter 8.

2.5.3 Heuristic Algorithms for Random Number Generation

Random numbers are fundamental to many types of mathematical simulation,
including Monte Carlo simulation, which has become increasingly popular in
the social sciences. Random numbers are also used in subsampling techniques,
resampling techniques such as jackknife and the bootstrap (Efron 1982; Hall
1992; Shao and Tu 1995), and to pick starting parameters and search direc-
tions for some nonlinear optimization algorithms. A number of problems have
been traced to inadequate random number generators, some occurring as early as
1968 (Knuth 1998), and poor generators continue to be used, recommended, and
invented anew (L’Ecuyer 1994). Inadequate random number generators can cause
problems beyond the fields of statistical and physical simulation. For example,
computer-savvy gamblers have been known to exploit poor random number
generators in gaming (Grochowski 1995), and an otherwise secure encryption
implementation has been defeated for similar reasons (Goldberg and Wanger
1996). Peter Neumann (1995) reports on a variety of software system errors
related to random number generators. We provide an overview of the topic here
and a discussion of appropriate choice of generators for Monte Carlo and MCMC
simulation in Chapter 5. For an extensive treatment of the design of PRNGs, see
Gentle (1998) and Knuth (1998).

The numbers provided by computer algorithms are not genuinely random.
Instead, they are pseudo-random number generators (PRNGs), deterministic

ALGORITHMIC LIMITATIONS 33

processes that create a sequence of numbers. Pseudo-random number genera-
tors start with a single “seed” value (specified by the user or left at defaults)
and generate a repeating sequence with a certain fixed length or period p. This
sequence is statistically similar, in limited respects, to random draws from a uni-
form distribution. However, a pseudo-random sequence does not mimic a random
sequence completely, and there is no complete theory to describe how similar
PRNG sequences are to truly random sequences. In other words, no strict defini-
tion of approximation error exists with regard to PRNGs. This is a fundamental
limitation of the algorithms used to generate these sequences, not a result of
inaccuracy in implementation.

2.5.3.1 Examples of Generators
The earliest PRNG, and still in use, is the linear congruential generator (LCG),
which is defined as

LCG(a, m, s, c) ≡
x0 = s,

xn = (axn−1 + c) mod m. (2.17)

All parameters are integers, and exact integer arithmetic is used—correct imple-
mentation of this algorithm is completely accurate. The sequence generates a
sequence of numbers between [0, m − 1] which appear uniformly distributed in
that range. Note that in practice, x is usually divided by m.

Much of the early literature on PRNGs concerned finding good values of a,
m, and c for the LCG. This is still an extremely popular generator, and modern
versions of it very frequently use the choice of m and a attributed to Lewis et al.
(1969), xn = (16807xn−1) mod 231 − 1. Even with these well-tested parameter
values, the generator is now considered a comparatively poor one, because it
has a short period, constrained by its modulus, and exhibits a lattice structure in
higher dimensions (Marsaglia 1968).

For poor choices of a, m, and c, this lattice structure is extreme. The infamous
RANDU generator, which was widely used in early computing and from which
many other generators descended, is simply an LCG with values of 65,539,
231, and 0. Although the sequence produced appears somewhat random when
subsequent pairs of points are two dimensions (Figure 2.2), the lattice structure
is visually obvious when triples of the sequence are plotted in three dimensions,
as in Figure 2.3. [See Park and Miller (1988) for a discussion.]

Other variations of congruential generators include multiple recursive genera-
tors, lagged Fibonnaci generators, and add with carry generators. Many variants
of each of these types exist, but the simplest forms are the following:

• Multiple recursive generators (MRGs) take the form

xn = (a1xn−1 + · · · + akxn−k) mod m.

34 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

x

y

z

Fig. 2.2 RANDU generator points plotted in two dimensions.

x

y

z

Fig. 2.3 RANDU generator points plotted in three dimensions.

ALGORITHMIC LIMITATIONS 35

• Lagged Fibonnaci generators take the form

xn = (xn−j + xn−k) mod m.

• Add with carry generators take the form

xn = (xn−j + xn−k + cn) mod m,

where c1 = 0 and cn = 0 if xn−j +xn−k+cn−1 < m and cn = 1 otherwise.

Any of these generators, using appropriately chosen parameters for initializa-
tion, are likely to be better than the standard LCG in terms of both period length
and distributional properties. [For a new class of recursive generators with long
periods, see L’Ecuyer and Panneton (2000).] Still, each has limitations that may
cause errors in simulation. Combined generators (see below) are good insurance
against such defects, but even these may, in theory, result in periodicity effects
for simulations that demand a large number of random numbers, as we show in
Chapter 5 for Markov chain Monte Carlo methods.

A newer class of PRNGs, nonlinear generators, are promising because they
appear to eliminate defects of previous PRNGs, although they are slower and less
thoroughly tested and less well understood. One of the simplest examples is the
inversive congruential generator, which is completely free of lattice structure:

xn = (ax−1
n−j + c) mod m. (2.18)

Some nonlinear generators, such as Blum et al. (1986), are intended for cryp-
tographic applications and are extremely difficult to distinguish from true ran-
dom sequences but are painfully slow for simulation purposes. Others, like the
Mersenne twister (Matsumoto and Nishimura 1998), a variant of generalized
feedback shift registers (see Lewis and Payne 1973) and variations of the inver-
sive congruential generators (Eichenauer and Lehn 1986), are reasonably fast on
today’s computers but still much slower than congruential generators.

2.5.3.2 Combinations and Transformations
A judicious combination of generators can improve both the period and the
distributional properties of the resulting sequence. An early technique (Maclaren
and Marsaglia 1965), still in use, is to use one LCG to shuffle the output of
another. The resulting stream has a longer period and a better lattice structure.
Another combined generator, described by Wichmann and Hill (1982), combines
three LCGs with carefully chosen moduli and coefficients to yield a generator
with a period of 1012 and reasonable randomness properties:

WHi =
(

LCG(a1, m1, s1)i

m1
+ LCG(a2, m2, s2)i

m2
+ LCG(a3, m3, s3)i

m3

)
mod 1

mi = 30269, 30307, 3023, ai = 171, 172, 170

36 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

Blind combination of multiple generators is not guaranteed to yield good
results. Another approach to combining generators, originated by Collings (1987),
is more straightforward. Collings compounds generators by maintaining a pool
of k separate generators of different types and intermixing the results. A separate
generator is used to generate a number i from [1, k], and the ith generator is
used to provide the next number in the sequence. This can greatly extend the
period and can overcome serious distributional flaws in individual generators. If
the periods of each generator used in the pool are p, the period of the combined
generator is roughly p2.

All of the PRNGs discussed are designed to generate uniformly distributed
random numbers. Sampling of random numbers from other distributions is usually
done by applying a transformation to a uniformly distributed PRNG. Two of the
simpler techniques for such transformation are the inverse cumulative distribution
function (CDF) method and the rejection method.

The inverse CDF method applies the transformation X = P −1
X (U), where U is

uniformly distributed in (0,1) and PX is a univariate continuous CDF. When P −1
X

exists and is easy to compute, this is the most straightforward way of generating
random numbers from nonuniform distributions.

The rejection method can be used where the inverse CDF is inapplicable and
is straightforward to apply to multivariate distributions. Intuitively, it involves
drawing a bounding box (or other bounding region) around the integral probabil-
ity density function, uniformly sampling from the box, and throwing away any
samples above the integral. More formally, the method is as follows:

1. Choose a distribution Y that resembles the distribution of x, from which it
is easy to generate variates and that covers (or “majorizes”) the probability
density function of the desired distribution pX such that C × py(x) ≥
px(x), ∀x for some constant C.

2. Generate u from a uniform distribution on (0,1) and y from Y .
3. If u ≤ px(y)/[c×py(y)], return y as the random deviate; otherwise, repeat

from step 2.

2.5.3.3 Criteria for Building Pseudo-Random Number Generators
For simulation or sampling results to be accurate, a PRNG should satisfy three
criteria: long period, independence, and uniform distribution. In addition, all
require a truly random “seed” to produce independent sequences (Ripley 1990;
Gentle 1998; Knuth 1998).

First, a PRNG should have a long period. The recommended minimum length
of the period depends on the number of random numbers (n) used by the simula-
tion. Knuth (1998) recommends p > 1000n, while Ripley (1990) and Hellekalek
(1998) recommend a more conservative p � 200n2. Conservatively, PRNGs
provided by most packages are inadequate for even the simplest simulations.
Even using the less conservative recommendation, the typical period is wholly
inadequate for computer-intensive techniques such as the double bootstrap, as
McCullough and Vinod (1999) point out.

ALGORITHMIC LIMITATIONS 37

Second, a PRNG should produce numbers that are very close to independent in
a moderate number of dimensions. Some PRNGs produce numbers that are appar-
ently independent in one dimension but produce a latticelike structure in higher
dimensions. Even statistically insignificant correlation can invalidate a Monte
Carlo study (Gentle 1998). The identification of simple forms of serial correla-
tion in the stream is an old and well-understood problem (Coveyou 1960), but see
Chapter 5 for a discussion of problems that may arise in more complex simulation.

Third, the distribution of draws from the generator must be extremely close
to uniform. In practice, we do not know if a PRNG produces a distribution that
is close to uniform. However, as Hellekalek (1998) observes, any function of a
finite number of uniformly distributed variables whose results follow a known
distribution can suffice for a test of a PRNG. Good tests, however, constitute
prototypes of simulation problems and examine both the sequence as a whole
and the quality of subsequences (Knuth 1998).11 Users should be cautioned that
tests of random number generators are based on the null hypothesis that the
generator is behaving adequately and may not detect all problems (Gentle 1998).
Therefore, empirical tests should always be combined with theoretical analysis of
the period and structure of the generator (Gentle 1998; Hellekalek 1998; Knuth
1998; L’Ecuyer and Hellekalek 1998).

Fourth, to ensure independence across sequences, the user must supply seeds
that are truly random. In practice, statistical software selects the seed automati-
cally using the current clock value, and users rarely change this. As encryption
researchers have discovered, such techniques produce seeds that are not com-
pletely random (Eastlake et al. 1994; Viega and McGraw 2001), and much better
solutions are available, such as hardware generators (see below).

Finally, for the purpose of later replication of the analysis, PRNG results
must be reproducible. In most cases, reproducibility can be ensured by using
the same generator and saving the seed used to initialize the random sequence.
However, even generators that are based on the same PRNG algorithm can be
implemented in subtly different ways that will interfere with exact reproduction.
For example, Gentle (2002, pp. 251, 357) notes that the Super-Duper PRNG
implementations differ sufficiently to produce slightly different simulation results
in R and S-Plus.

In addition, more care must be used in parallel computing environments. Wher-
ever multiple threads of execution sample from a single generator, interprocessor
delays may vary during a run, affecting the sequence of random numbers received
by each thread. It may be necessary to record the subsequences used in each
thread of the simulation to ensure later reproducibility (Srinivasan et al. 1999).

If these conditions are met, there remains, inevitably, residual approxima-
tion error. This approximation error can also cause Monte Carlo algorithms to
converge more slowly with PRNGs than would be expected using true random
draws and may prevent convergence for some problems (Traub and Woznakowski

11Behavior of short subsequences is particularly important for simulations using multiple threads of
execution. Entacher (1998) shows that many popular random number generators are inadequate for
this purpose.

38 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

1992). Since the error of a PRNG does not dissipate entirely with sample size,
traditional analysis of simulations based on asymptotic assumptions about sam-
pling error overstates the accuracy of the simulation (Fishman 1996, Chap. 7). In
other words, the accuracy of simulations cannot be increased indefinitely simply
by increasing the number of simulations.

Developers of PRNG algorithms stress that there is no single generator that is
appropriate for all tasks. One example of this is a set of “good” PRNGs that were
discovered to be the source of errors in the simulation of some physical processes
(Ferrenberg 1992; Selke et al. 1993; Vattulainen et al. 1994). PRNGs should
be chosen with characteristics of the simulation in mind. Moreover, prudent
developers of simulations should reproduce their results using several generators
of different types [Gentle 1998; Hellekalek 1998; Knuth 1998; but see L’Ecuyer
(1990) for a more optimistic view].

2.5.3.4 Hardware Random Number Generation
If true randomness must be ensured, random numbers can be generated through
physical processes. A number of these hardware random generators or “true”
random number generators (TRNGs) are inexpensive and suitable for use in
personal computers.

Hardware generators are typically many orders of magnitude slower than
PRNGs. (As of the time this book was written, the less expensive generators, pro-
duce roughly 10,000 random bytes per second.) Thus they are more often used
in cryptographic applications, which require small amounts of extremely high
quality randomness, than in Monte Carlo simulation. However, even the slowest
generators can be used to provide high-quality seeds to PRNGs or to run many
of the Monte Carlo simulations used by social scientists, if not for large MCMC
computations. With forethought, large numbers of random bits from hardware
random number generators can be stored over time for later use in simulation.

Moreover, the availability and speed of these generators have increased dra-
matically over the last few years, putting hardware random number generation
within reach of the social scientist. We list a number of hardware random number
generators and online sources for random bits in the Web site associated with
this book. Several of the most widely available are:

• The Intel 800 series chip set (and some other series) contains a built-in
hardware random number generator that samples thermal noise in resistors.
Note that although many of these chip sets are in wide use in workstations
and even in home computers, programming effort is needed to access the
generator.

• The /dev/random pseudo-device, part of the Linux operating system, is
a source of hardware entropy that can be used by any application software.
This device gathers entropy from a combination of interkeystroke times and
other system interrupts. In addition, the gkernel

<http://sourceforge.net/projects/gkernel/>

ALGORITHMIC LIMITATIONS 39

driver can be used to add entropy from Intel’s TRNG to the device entropy
pool.

• Random.org and Hotbits are two academic projects supplying large
numbers of hardware-generated random bits online (Johnson 2001).

Some caution is still warranted with respect to hardware random number gen-
erators. Often, the exact amount of true entropy supplied by a hardware device
is difficult to determine (see Viega and McGraw 2001). For example, the raw
thermal noise collected by the Intel generator is biased, and firmware postpro-
cessing is applied to make the results appear more random (Jun and Kocher
1999). Typically, some forms of TRNG hardware generation are subject to envi-
ronmental conditions, physical breakage, or incorrect installation. Although most
hardware generators check their output using the FIPS 140-1 test suite when the
device starts up, these tests are not nearly as rigorous as those supplied by stan-
dard test suites for statistical software (see Chapter 3). Therefore, some testing
of the output of a random number generator is warranted before using it for the
first time.

2.5.4 Local Search Algorithms

We discuss search algorithms and how to choose them in more detail in
Chapters 4 and 8. In Chapter 3 we show that modern statistical packages are
still prone to the problems we describe, and in Chapter 10 we discuss some
aspects of this problem with respect to nonlinear regression. The purpose of this
section is to alert researchers to the limitations of these algorithms.

Standard techniques for programming an algorithm to find a local optimum of
a function, which may or may not be the global optimum, typically involve exam-
ining the numerically calculated or analytic gradients of the likelihood function
at the current guess for the solution, and then use these to determine a direction
to head “uphill.”

Like other algorithms, bugs and floating point inaccuracies may cause prob-
lems for nonlinear optimization algorithms, and poorly scaled data can exacerbate
inaccuracies in implementation. Thus, numerical inaccuracies may prevent the
location of local optima, even when the search algorithm itself is mathematically
correct.

More important, nonlinear optimization algorithms suffer from a deeper limi-
tation, that of finding the global optimum. The conditions for global optima for
some classes of problems are known (e.g., quadratic functions). However, as one
well-known set of practitioners in the field wrote: “Virtually nothing is known
about finding global extrema in general” (Press et al. 1988, p. 290), and 14 years
later wrote: “Finding a global extremum is, in general, a very difficult problem”
(Press et al. 2002, p. 393). In addition, as Gentle (2002, p. 18) points out, the
presence of multiple local optima may also raise conceptual problems concerning
the estimation criterion itself. (See Chapter 4 for a discussion of inference in the
presence of multiple optima.)

40 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

Techniques for finding global optima involve some degree of guesswork, or
heuristics: Either the algorithm guesses at initial values for parameters and pro-
ceeds to find a local optimum from there, or it perturbs a local optimum in
an attempt to dislodge the search from it. Alternatively, the problem itself is
redefined in terms of local optima: Gentle (2002, Sec. 10.1) notes that in hierar-
chical clustering analysis, because of the computational difficulty, the definition
of clusters is “merely what results from a specified algorithm.”

For many nonlinear optimization problems, solving for the global optimum is
provably computationally intractable (Garey and Johnson 1979). Furthermore, it
has been proved that there is “no free lunch” for optimization—all optimizers
must perform no better than random search (or better than any other heuristic)
when averaged over all possible optimization problems (Wolpert and Macready
1997). These theorems apply to such popular black-box optimization techniques
as neural networks, genetic algorithms, and simulated annealing. In addition,
some of these methods raise other practical problems that render their theoretical
properties invalid in all practical circumstances (see Chapter 4). In other words,
all practical optimization algorithms are limited, and to choose or build an algo-
rithm wisely, one needs to use specific knowledge about the structure of the
particular problem to be solved by that algorithm.

In the absence of mathematical proofs of global optimality, prudent researchers
may attempt to ascertain whether the solution given by the optimization algo-
rithms are, in fact, global and whether the model is well specified. Although there
are no guaranteed methods, a number have been developed:

• Finch et al. (1989) describe a test of global optimality, similar to grid search
techniques, which is based on an evaluation of the local maximum likeli-
hood function from randomly selected starting points. Veall (1990) describes
another way of testing the hypothesis, using a similar set of local optima.
Unlike a grid search, these tests provide a way to formally test the hypothesis
that the optimum found is global.

• Derigs (1985) has developed a technique, which he uses for discrete opti-
mization, of testing for global optima given an external, analytically derived
upper bound for a function.

• Den Haan and Marcet (1994) describe a technique for testing the accu-
racy of complex econometric simulation results, through examination of
the distribution of the residuals.

• White (1981,1982) has developed a test for misspecification of the max-
imum likelihood models based on the divergence between covariance
matrices computed from the Hessian and from the cross-product of first
derivatives (respectively).

We discuss these tests in more detail in Chapter 4. These tests are not in wide
use and to our knowledge have not been incorporated into any statistical software
package.

SUMMARY 41

2

200

160

120

4 6 8 10

bx

b
y

Fig. 2.4 BoxBOD data.

2.5.4.1 Optimization Example
The dual problems of numerical accuracy and algorithmic limitations are illus-
trated by a simple problem, first described in Box et al. (1978) and later
incorporated into the NIST StRD test suite for optimization (see Chapter 3).
The following data were collected (Figure 2.4): y represents biological oxygen
demand (BOD) in mg/L, and x represents incubation time in days. The hypoth-
esized explanatory model was

y = β1(1 − exp [−β2x]) + ε.

Figure 2.5 shows the contours for the sum-of-squared residuals for this model
with respect to the data. (These contours are shown in the area very close to the
true solution—a luxury available only after the solution is found.) Computing
the parameters that best fit these data is not straightforward.

The contours illustrate some of the difficulty of discovering the solution. If
one’s initial starting values fall outside the top right quadrant, an iterative search
algorithm is unlikely to be able to discover the direction of the solution. Further-
more, in the lower left quadrant there appears to be a small basin of attraction
that does not include the real solution.

2.6 SUMMARY

We have discussed three types of error that affect statistical computing:

• Bugs are simple mistakes in implementing an otherwise correct algorithm.
There are generally no tests that will prove the absence of bugs. However,
comparing the results from multiple independent implementations of the
same algorithm is likely to reveal any bugs that affect those particular
results.

42 SOURCES OF INACCURACY IN STATISTICAL COMPUTATION

b1

b
2

−600 −400 −200 0 200 400 600

1.5

1.0

0.5

0.0

−0.5

5
2

2

2

51

1

2

e+05

e+05

e+05
e+05

e+05

e+
05

e+
05

e+05
e+05

50000 50000

50000

5000

10000

Fig. 2.5 BoxBOD SSR contours.

• Inaccuracies in implementation occur primarily because the arithmetic used
by computers is not the perfect symbolic arithmetic used in algorithms.
Particularly, when numerical algorithms are implemented using standard
floating point arithmetic, rounding and truncation errors occur. These errors
can accumulate during the course of executing the program, resulting in
large differences between the results produced by an algorithm in theory,
and its implementation in practice.

• Algorithmic limitations occur when the algorithm itself is not designed
to compute the quantity of interest exactly. These limitations can be of
different sorts. Algorithms for computing statistical distributions are often
designed as approximations—even if executed with infinite precision, the
algorithm will still yield an error that is only “close” to the desired solution.
Other algorithms, such as those used in pseudo-random number genera-
tion, are heuristic algorithms for finding the solution to nonlinear opti-
mization and are limited to finding local optima, although users of them
often treat the results as if they were computed with respect to the global
optimum.

Other pathological problems have also been reported, the sum of which tends
to erode trust in statistical computing. For example, Yeo (1984) found that by
simply reordering the input of data to SAS, he was able to get a noticeably
different regression result.

After reading this chapter, one may be tempted to trust no computational
algorithm. A more critical view of statistical computations is perhaps better than

SUMMARY 43

blind trust, but the lesson here is not as fatalistic as it may seem. The remain-
der of the book provides a variety of techniques for discovering inaccuracy and
ameliorating it. The underlying theme of this chapter and book is that careful
consideration of the problem, and an understanding of the limitations of comput-
ers, can guide researchers in selecting algorithms that will improve the reliability
of the inference they wish to make.

C H A P T E R 3

Evaluating Statistical Software

3.1 INTRODUCTION

Statistical software packages are collections of computer algorithms designed to
facilitate statistical analysis and data exploration. Statistical software is a critical
tool used in the vast majority of quantitative and statistical analysis in many
disciplines. Without training in computer science, social science researchers must
treat their package of choice as a black box and take it as a matter of faith that
their software produces reliable and accurate results.

Many statistical software packages are currently available to researchers. Some
are designed to analyze a particular problem; others support a wide range of fea-
tures. Commercial giants such as SAS and SPSS, and large open-source packages
such as R offer thousands of commonly used data manipulation, visualization,
and statistical features. Although software may be distinguished by its features,
less obviously, packages also differ significantly in terms of accuracy and relia-
bility. These differences may make the difference between results that are robust
and replicable and results that are not.

In this chapter we discuss strategy for evaluating the accuracy of computer
algorithms and criteria for choosing accurate statistical software that produce
reliable results. We then explore the methodology for testing statistical software
in detail, provide comparisons among popular packages, and demonstrate how
the choice of package can affect published results. Our hope is that this chapter
leads social scientists to be more informed consumers of statistical software.

3.1.1 Strategies for Evaluating Accuracy

In an ideal world, we would be able to compute formal bounds on the accuracy
and stability of every estimate generated by a computer program. For some
distribution functions, and many individual computations in matrix algebra, it is
possible to derive analytical bounds on the accuracy of those functions, given
a particular implementation and algorithm. Methods such as interval arithmetic
can be used to track the accumulated round-off errors across a set of calculations
(Higham 2002). Unfortunately, the statistical models that social scientists are

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

44

INTRODUCTION 45

interested in estimating are typically too complex for bounds to be either derivable
or informative. There are some specialized exceptions, such as the accuracy of
linear regression in the presence of rounding error (Polasek 1987), and some
bounds on Newton’s method (Higham 2002, Sec. 25.2).

Furthermore, in an ideal world, all statistical computation would follow uni-
form standards for the best practices for treatment of data, choice of algorithm,
and programming techniques. Best practices for many common analyses used
by social scientists are discussed in Chapters 7 to 10. Unfortunately, these best
practices are often ignored, even in large commercial statistical packages. While
best practices can improve accuracy and stability, Chapter 2 explains why per-
fect accuracy and stability cannot be guaranteed for all algorithms, particularly
random numbers generators and nonlinear optimization algorithms.

What can one do to assess or ensure the accuracy and stability of one’s
estimation procedure when formal bounds are not known? There are three general
heuristics that can help identify potential computational problems:

1. Test benchmark cases. Correct estimates can sometimes be computed,
exactly or to a known level of accuracy, for a particular model and set
of test data. Artificial models and data, such as the standard deviation
example in Chapter 2, may be constructed specifically to exploit known
weaknesses in statistical algorithms. The estimates generated by a particular
algorithm and implementation can then be compared to these known results.
Discrepancies are an indication of potential computation problems. The
NIST (National Institute of Standards and Technology) tests for accuracy
of statistical software (Rogers et al. 2000) and other benchmark tests, such
as those presented in this chapter, are examples of this approach.

Benchmarks are useful and should be employed on publicly distributed
software wherever feasible. However, benchmarks have three significant
limitations. First, even for artificial data, benchmarks may be very expen-
sive to create because of the amount of computation necessary to ensure
accuracy. Second, realistic benchmarks, for which estimates can be cal-
culated with known accuracy, are sometimes impossible to create. Third,
benchmark testing can detect some inaccuracies but is valid only for the
model and data tested. The performance of an algorithm for different models
and data remains unknown. One can only hope that inaccuracy is unlikely
where these models and data used in the tests are sufficiently similar to
models and data being analyzed.

2. Use separate information to confirm results or necessary/sufficient con-
ditions for results. In any statistical analysis, the researcher should always
apply substantive knowledge of the model, data, and phenomena being ana-
lyzed to check that the results are plausible. Implausible results should be
held up to extensive scrutiny.

Besides this higher-level “gut check,” there may be other techniques
that can be used to confirm (or disconfirm) results. For example, esti-
mates produced by maximum likelihood search algorithms may be checked

46 EVALUATING STATISTICAL SOFTWARE

by examining likelihood profiles and other diagnostics (see Chapter 8).
Probabilistic tests may be applied to disconfirm the identification of a global
optimum (see Chapter 4).

3. Use sensitivity analysis. One popular approach is to replicate the analysis
keeping the data and model the same, but using many different algorithms,
algorithmic parameters (such as starting values), and implementations (e.g.,
different PRNGs and/or different optimization software). If results disagree,
one should investigate (applying the other techniques) until it is clear which
set of results should be discarded. This is highly recommended where multiple
implementations and algorithms are available. The effort required to create
alternatives where none presently exist, however, can be prohibitively high.

A second popular and complementary approach is to replicate the anal-
ysis while perturbing the input data and to observe the sensitivity of the
estimates to such perturbations. Sensitivity or pseudoinstability is not a
measure of true computational stability, because values for the correct esti-
mates are unknown. This has the advantage of drawing attention to results
that cannot be supported confidently given the current data, model, and
algorithm/implementation, and unlike the first method, is easy to imple-
ment. We discuss this in more detail in Chapter 4.

These two sensitivity tests can be combined fruitfully, as we show in
Chapter 7. A potential drawback of the second method is that pseudoin-
stability detected by perturbing the data could be due to problems in the
algorithm/implementation but may also be due to the interaction of model
and data. For example, the results of a linear regression, running on data
that is “almost” multicollinear, can be highly unstable with respect to very
small amounts of noise in the data, even if the regression calculations are
performed exactly (without numerical inaccuracy). The instability will not
be reflected in the standard errors of the estimate. These can be arbitrarily
small, even in the presence of multicollinearity (Beaton et al. 1976).

Combining the two methods can help to separate the portions of pseu-
doinstability due to model. By running multiple implementations/algorithms
on the same sets of perturbed data, if one implementation is more stable
than the other, the difference in pseudostability is a result of implementation
and algorithm, not model and data, which are kept fixed by construction.

Note that the size and form of the noise is not what serves to differ-
entiate numerical problems from model and data problems—even simple
uniform noise at the level of machine round-off can affect analyses purely
because of model and data problems. It is the combination of perturbations
and varying implementations that allows one to gain some insight into
sources of sensitivity. Nevertheless, regardless of the cause of sensitivity,
one should be cautious if the conclusions are not pseudostable with respect
to the amount of noise that is reasonably thought to be in the data.

These three approaches cannot be used to prove the accuracy of a particu-
lar method but are useful in drawing attention to potential problems. Further

INTRODUCTION 47

experimentation and analysis may be necessary to determine the specific cause
of the problem. For example, if two software packages disagree on the estimates
for the same model and data, the discrepancy could be a result of several factors:

• Implementation issues. One or both programs has a bug, one performs
(some) calculations less accurately, or the results from each are condi-
tioned on different implementation-level parameters (e.g., a difference in a
convergence tolerance setting).

• Algorithmic issues. One or both programs may use an algorithm for which
the required conditions are not met by the particular model and data. Algo-
rithms may afford different levels of approximation error. Or the results
are conditioned on different values for algorithm-specific parameters (e.g.,
starting values for local optimization algorithms).

• Data and model issues. The problem is ill-conditioned. (We discuss ill-
conditioning in the next section.)

With the exception of standard software bugs from programming error, it is not
obvious whether the programmer or end user is at fault for ignoring these issues.
Users of statistical software should pay close attention to warning messages, diag-
nostics, and stated limitation of implementations and algorithms. Often, however,
software developers fail to provide adequate diagnostics, informative warning
messages, or to document the computational methods used and their limitations.
Users should also examine data for outliers, coding errors, and other problems,
as these may result in ill-conditioned data. However, users often have no a priori
knowledge that a particular set of data is likely to cause computational problems
given the algorithm and implementation chosen by the programmer.

3.1.2 Conditioning

Conditioning is worth discussing in more detail because while conditioning is
often mentioned, its precise meaning is sometimes not generally well understood
by social scientists.

Following Higham 2002 (Secs. 1.5-1.6): The most general definition of con-
ditioning is “the sensitivity of the model to perturbations of the data” (p. 9).
Condition numbers are used to represent the conditioning of a problem with
respect to a particular set of inputs. For example, if a scalar function f (·) is twice
differentiable, a useful way to define the relative condition number of f (·) is

c(x) =
∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ . (3.1)

When defined in this way, the accuracy of the estimate is 1

c(x) × backward error, (3.2)

1These definitions and the example of log(x) below are both suggested by Higham (2002).

48 EVALUATING STATISTICAL SOFTWARE

where backward error is defined as the minimum |�x| for which our computation
of y, ỹ satisfies

ỹ = f (x + �x). (3.3)

This is a formalization of the notion that the accuracy of the estimate is
a function of the model, data, and the computational procedure. The condition
number is a particularly useful formalization inasmuch as it is easier to derive the
backward error of a computational method than its overall accuracy or stability.

Although conditioning is an important factor in the accuracy of any com-
putation, social scientists should not assume that all computational inaccuracies
problems are simply a matter of conditioning. In fact, a computation method with
a large backward error will yield inaccurate results even where the problem itself
is well conditioned.

Moreover, the conditioning of the problem depends on data, model, algorithm,
and the form of perturbation. There is no such thing as data that is well condi-
tioned with respect to every model. Although it might appear tempting to use
condition number estimators produced by standard statistical software (such as
MATLAB) to calculate condition numbers for a particular dataset, the results are
bound to be misleading because the formulas used by these estimators are tailored
to specific types of problems in linear algebra, such as matrix inversion. These
formulas may be inappropriate when used to estimate the conditioning of another
type of problem or computation procedure. Consider a simple example, using the
condition number formula above: x = 1 is ill-conditioned for the function log(x)

but is well conditioned for the function ex .
In an example drawn from optimization, Higham (2002) shows that the accu-

racy of Newton’s method depends on the condition of the Jacobian at the solution
as well as the accuracy of the Jacobian and residual calculations, not (as one might
naively assume) solely on the condition number of the data matrix.2

3.2 BENCHMARKS FOR STATISTICAL PACKAGES

Longley (1967) provided the most dramatic early demonstration that mainframe
computers may not accurately reproduce estimates of a regression, whose solution
was known. As a result, regression algorithms were resigned to avoid the flaws
exposed by Longley. Following Longley, investigations of software inaccuracy
and how to detect it have resurfaced regularly (e.g., Wilkinson and Dallal 1977;
Wampler 1980; LeSage and Simon 1985; Simon and LeSage 1988, 1990), as our
statistical methods have become more complex, and our software, more ambi-
tious. Recently, software has been critically evaluated yet again (McCullough
1998, 1999a,b; McCullough and Vinod 1999; Altman and McDonald 2001).

2However, the conditioning of the data matrix will affect the conditioning of the residual calculation
problem, as will the method of calculating the residual and the function being evaluated. In this case,
a standard condition number can be informative, but more generally, such as shown in the previous
example, does not necessarily shed light on conditioning for a specific problem.

BENCHMARKS FOR STATISTICAL PACKAGES 49

As increasingly complex algorithms are implemented on statistical software,
benchmarks serve as an important means to identify and correct potential flaws
that may lead to inaccurate results in real applications.

In Chapter 2 we explain why the computer algorithms on which statistical
software are built contain unavoidable numerical inaccuracies. Unfortunately,
comprehensively testing statistical packages for all numerical inaccuracies is
practically impossible given the amount of time that is required to investigate
all algorithms.

In lieu of an exhaustive analysis of a statistical program, benchmarks serve
as a basis for assessing their degree of numerical accuracy. Benchmarks are
problems—models and data—with known answers that can be compared to
the estimates produced by statistical packages. Here we describe three sets of
benchmarks, each corresponding roughly to a source of inaccuracy as described
in Chapter 2: floating point approximation error, inaccuracies in distribution
functions, and inaccuracies in pseudo-random number generation. In addition,
we benchmark an overlooked source of inaccuracy: basic processes of data
input and export.

3.2.1 NIST Statistical Reference Datasets

The Statistical Engineering and Mathematical and Computational Sciences Divi-
sions of the National Institute of Standards and Technology’s (NIST) Information
Technology Laboratory maintains a set of benchmark problems called the Statis-
tical Reference Datasets (StRD), which are accompanied by certified values for a
variety of statistical problems. These datasets provide benchmarks for assessing
the accuracy of univariate descriptive statistics, linear regression, analysis of vari-
ance, and nonlinear regression (Rogers et al. 2000). The collection includes both
generated and experimental data of varying levels of difficulty and incorporate
the best examples of previous benchmarks, such as Simon and LeSage (1988)
and Longley (1967). Since the release of the StRD, numerous reviewers have
used them to assess the accuracy of software packages, and vendors of statistical
software have begun to publish the test results themselves.

To gauge the reliability of a statistical package using the StRD, one loads
the data into a program, runs the specified analysis, and compares the results
to the certified values. Good performance on the StRD provides evidence that
a software package is reliable for tested algorithms, but of course, provides no
evidence for untested algorithms.

For each tested algorithm, the StRD contain multiple problems designed to
challenge various aspects of the algorithm. The benchmark problems are named
and assigned three levels of difficulty: low, average, and high. Although the
degree of accuracy of the algorithm generally corresponds to the level of diffi-
culty of the problem, the numerical difficulty of a problem is not independent
of the particular algorithm used to solve it. In some cases software packages
will fail spectacularly for low-difficulty problems but pass higher-level problems
successfully.

50 EVALUATING STATISTICAL SOFTWARE

Each StRD problem is composed of data generated by actual research or of
data generated using a specific numeric function. For each problem, data are
accompanied by values certified to be correct. For real-world data, the certified
values are calculated on a supercomputer using the FORTRAN computer language.
For data generated, the certified values are known quantities. The data, together
with the algorithms and methodology to compute the certified values, can be
found at the NIST Web site: <http://www.itl.nist.gov>.

As an example, consider the first and “easiest” univariate descriptives statistics
problem, which are descriptive statistics for the digits of a familiar number, π .
StRD provides π to 5000 digits of accuracy, and each digit serves as one of
5000 observations. The mean, standard deviation, and the one-observation lag
autocorrelation coefficient are generated for the digits of π with a FORTRAN
program at a very high precision level. Details of the formulas used to generate
these descriptive statistics are available in the archive. The certified values of
these descriptive statistics are then rounded to 15 significant digits, and are made
available so that the performance of a statistical package’s univariate statistics
algorithms may be evaluated.

These 5000 observations are read into a statistical software package, and the
same descriptive statistics are generated to verify the accuracy of the algorithm.
For example, Stata correctly returned the certified values for the π-digits prob-
lem. We thus have confidence that Stata’s univariate statistics algorithms are
accurate in reproducing this one benchmark problem. We have nothing to say
about untested algorithms, and indeed, most statistical packages are able to solve
this problem correctly, even though some were unable to return correctly results
close to the certified values for many other univariate statistics problems.

Although StRD tests are well documented and relatively easy to apply, some
care is warranted in their application:

1. As we discuss in more detail below, some software packages may truncate
the values in the data on first loading it—causing the results of subsequent
tests to be inaccurate. In this case, the inaccuracy in data input may be
attributed incorrectly to the statistical algorithm rather to than the data
input process.

2. A software package may fail to display results with full internal precision
or may truncate the values when they are exported into another program
for analysis.

3. A software package may present errors in a graph or other visualization
results even where the internal values are correct (see, e.g., Wilkinson 1994).

4. Often, a statistical package will provide multiple tools for computing the
same quantity. Different tools, even within the same package, can pro-
vide different results. The Microsoft Excel standard deviation example
in Chapter 2 shows how estimates from a built-in function may also be
generated through other spreadsheet functions, which may yield different
results. In other packages, even a substitution of x2 for x × x may yield
differences in performance on the benchmark tests.

BENCHMARKS FOR STATISTICAL PACKAGES 51

5. For some benchmark tests, the StRD problem requires a function to be
coded in the language of the statistical package. While NIST datasets
include sample code to implement StRD problems, the syntax of statis-
tical packages, like programming languages, have syntactic differences in
precedence, associativity, and function naming conventions that can lead
the same literal formula to yield different results. For example, “−22” will
be interpreted as “−(22)” in many statistical and computer languages, such
as R (R Development Core Team 2003) and Perl (Wall et al. 2000), but
would be interpreted as (−2)2 in a language such as smalltalk (Gold-
berg 1989), which uses uniform precedence and left associativity, and in
FORTRAN (ANSI 1992), which among its more complex evaluation rules,
assigns exponentiation higher precedence than unary minus (e.g., Goldberg
1989; ANSI 1992). Furthermore, an expression such as “−234 ×5× log(6)”
might be interpreted in many different ways, depending on the associativ-
ity of the exponentiation operator, the relative precedence of unary minus,
multiplication, and exponentiation, and the meaning of log (which refers
to the natural log in some languages and to the base 10 log in others).
When in doubt, we recommend consulting the language reference manual
and using parentheses extensively.

3.2.2 Benchmarking Nonlinear Problems with StRD

In addition to the issues just discussed, there are three important aspects of nonlin-
ear algorithms that must be taken into consideration when performing benchmark
tests: the vector of starting values passed to the search algorithm, the options that
may affect the performance of the solver, and the type of solver used.

3.2.2.1 Starting Values
As described in Chapters 2, 4, and 8, nonlinear optimization is iterative. Every
nonlinear optimization algorithm begins a set of starting values that are initially
assigned, explicitly or implicitly, to the parameters of the function being optimized.
The algorithm evaluates the function and then computes gradients (or other quan-
tities of interest, such as trust regions) as appropriate so as to generate a new set
of test values for evaluation until the convergence/stopping criteria are met.

Ideally, a nonlinear algorithm finds the global optimum of a function regardless
of the starting values. In practice, when evaluating a function with multiple
optima, solvers may stop at a local optimum, some may fail to find any solution,
and some may succeed in finding a false (numerically induced) local optimum.
An algorithm will generally find the global optimum if the starting values are
“close” to the real solution, but may otherwise fail.

The StRD provides three sets of values to use as starting points for the search
algorithm: start I is “far” from the certified solution, start II is “near” the certified
solution, and start III is the certified solution itself. In addition, a nonlinear
problem may be tested using the default starting values provided by the statistical
package itself, which is often simply a vector of zeros or ones.

52 EVALUATING STATISTICAL SOFTWARE

3.2.2.2 Options
Statistical packages usually offer the user more flexibility in specifying computa-
tional details for nonlinear optimization than for other types of analysis covered
by the StRD. For example, a particular package may allow one to change the
method by varying the following (see Chapter 4 for a more thorough treatment
of these options):

1. The convergence/stopping criterion, such as the number of iterations
2. The convergence tolerance/stopping level
3. The algorithm for finding the optimum, such as Gauss–Newton
4. The method for taking derivatives

In Chapter 8 we provide an example of the accuracy of the Excel 97 nonlinear
solver in estimating the StRD nonlinear benchmark labeled “Misra1a.” This bench-
mark problem is a real-world analysis encountered in dental research and may fool
an algorithm because the function to be solved is relatively flat around the certified
solution. McCullough demonstrates how changing the options described above dra-
matically affects the estimates produced by Excel97—in some cases Excel97
does not even find the correct first digit—and further suggests useful diagnostic
tests to identify when a solver may have stopped short of the true optimum.

The lesson is that nonlinear and maximum likelihood solvers may not find the
true solution simply using the defaults of the program. Often, default options are
chosen for speed over accuracy, because speedier algorithms typically perform no
worse than more accurate, and slower, algorithms for easy problems and because
the market for statistical software provides incentives to value speed and features
over accuracy (see Renfro 1997; McCullough and Vinod 2000). For difficult
problems, the defaults are not to be trusted blindly.

3.2.2.3 Solver
The type of solver used can affect the outcomes of the benchmarks. Statisti-
cal packages may offer nonlinear solvers tailored specifically to nonlinear least
squares, maximum likelihood estimation (MLE), and constrained maximum like-
lihood estimation. These solvers will generally not yield identical results for the
same StRD problems.

The nonlinear benchmark problems in the StRD are formulated as nonlinear
least squares problems. Formally, nonlinear regression problems can simply be
reformulated more generally as maximum likelihood problems, under the assump-
tions that data themselves are observed without error, the model is known, and the
error term is normally distributed (see Seber and Wild 1989). In practice, how-
ever, nonlinear least squares solvers use algorithms that take advantage of the
more restricted structure of the original problem that maximum likelihood solvers
cannot.3 Furthermore, reformulation as a MLE problem requires the additional

3For a detailed discussion of the special features of nonlinear regression problems, see Bates and
Watts (1988). Most solvers dedicated to nonlinear least squares fitting use the Levenberg–Marquardt

BENCHMARKS FOR STATISTICAL PACKAGES 53

estimation of a sigma parameter for the variance of the errors. For these reasons,
although MLE solvers are not fundamentally less accurate than nonlinear least
squares solvers, the former will tend to perform worse on the StRD test problems.

3.2.2.4 Discussion
Starting values, solver, and computational options should be reported along
with the results of nonlinear benchmarks. The set of options and starting val-
ues that represent the most “realistic” portrayal of the accuracy of a statistical
package, in practice, is the subject of some debate. McCullough (1998) recom-
mends reporting two sets of test results for nonlinear regression problems. He
reports the results for the default options using start I and also reports results
using an alternative set of options, derived through ad hoc experimentation.4 He
reports results using start II values only if a program was unable to provide any
solution using start I values. On the other hand, it is common for statistical soft-
ware vendors to report results based on a tuned set of options using the easier
start II values.

Clearly, a package’s accuracy depends primarily on the circumstances in
which it is used. Sophisticated users may be able to choose good starting val-
ues, attempt different combinations of options in search of the best set, and
carefully scrutinize profile plots and other indicia of the solution quality. Users
who are unfamiliar with statistical computation, even if they are experienced
researchers, may simply use default algorithms, options and starting values sup-
plied by the statistical software, and change these only if the package fails to
give any answer. These erroneous results can even find their way into publica-
tion. (See Chapter 1 for examples of published research that were invalidated by
naive use of defaults.) For this reason, when used with defaults, it is important
that a software package not return a plausible but completely inaccurate solution.
Warning messages, such as failure to converge, should be provided to alert users
to potential problems.

3.2.3 Analyzing StRD Test Results

The accuracy of the benchmark results can be assessed by comparing the values
generated by the statistical software to the certified values provided with the
benchmark problems. The StRD reports certified values to 15 significant digits.
A well-designed implementation will be able to replicate these digits to the same
degree of accuracy, will document the accuracy of the output if it is less, or will
warn the user when problems were encountered.

Following NIST recommendations, if a statistical software package produced
no explicit warnings or errors during verification of a benchmark problem, the
accuracy of the results is measured by computing the log relative error (LRE),

algorithm [see Moré (1978) for a description], which is used much less commonly in MLE estimation.
See Chapters 4 and 8 for further discussion of these algorithms.
4See Chapter 7 for systematic methods for varying starting values and other optimization parameters.

54 EVALUATING STATISTICAL SOFTWARE

given by

LRE =
{

− log10(j (x − c)/(c)j) when c �= 0

− log10(j × j) when c = 0.
(3.4)

As mentioned in Chapter 2, the latter case is termed the log absolute error (LAE).
When the test value x = c, the LRE (and LAE) is undefined, and we signify the
agreement between the test and certified values to the full 15 significant digits
by setting LRE equal to 15.

The LRE is a rough measure of the correct significant digits of a value x

compared to the certified value c. LRE values of zero or less are usually con-
sidered to be completely inaccurate in practice, although technically, a statistical
package that produced estimates with LREs of zero or less may provide some
information about the solution. Often, where a single benchmark problem has
many coefficients, reviewers of the software report the worst LRE for the set
under the assumption that researchers are interested in minimizing the risk of
reporting even one false value. However, for models used to make substantive
predictions, inaccurate estimation of coefficients with minuscule predictive effect
may be of little consequence.

3.2.4 Empirical Tests of Pseudo-Random Number Generation

A pseudo-random number generator (PRNG) is a deterministic function that
mimics a sequence of random numbers but is not truly random and cannot be
guaranteed as such. All PRNGs produce a finite sequence of numbers and have
regularities of some sort. PRNGs cannot be made to fit every imaginable dis-
tribution of simulation well enough—for some transformation or simulation, the
regularities in a PRNG are problematic.

Various statistical tests can be applied to the output of a PRNG or a generator
to detect patterns that indicate violations of randomness. Strictly speaking, a
PRNG cannot be proved innocent of all patterns but can only be proved guilty
of non-randomness. When a generator passes a wide variety of tests, and more
important, the tests approximately model the simulation in which the PRNG will
be used, one can have greater confidence in the results of the simulation.

Most tests for PRNG follow a simple general three-part methodology:

1. Using the given PRNG and a truly random seed value, generate a sequence
s of length N . A minimum length for N may be dictated by the test statistic
used in step 2.

2. Compute a test statistic t (s) on s.
3. Compare t (s) to E[t (s)] under the hypothesis that t (s) is random. The

comparison is usually made with a threshold value, an acceptance range,
or a p-value.

In typical hypothesis testing, failure to accept the null is not proof of the truth
of a rival hypothesis because there are an infinite number of alternative, untested

BENCHMARKS FOR STATISTICAL PACKAGES 55

hypotheses that may be true. In this case, the hypothesis being tested is that the
PRNG is random, and the null hypothesis is that it is not. No test can prove that
the generator is random, because a single test does not guarantee that a PRNG
will be assessed similarly with regard to another test. A test for randomness may
only prove the null hypothesis that the generator is not random. Failure to accept
the null is evidence, not proof, of the hypothesis that the PRNG is indeed random.

It is important to note that tests such as these examine only one aspect of
pseudo-random number generation: the distributional properties of the sequence
created. As discussed in Chapter 2, there are two other requirements for correct
use of PRNGs: adequate period length and truly random seed values. Further-
more, parallel applications and innovative simulation applications require special
treatment.

In practice, a variety of tests are used to reveal regularities in known classes
of PRNGs and capture some behavior of the sequence that is likely to be used by
researchers relying on the PRNGS in their simulations. Some test statistics are
based on simple properties of the uniform distribution, while other test statistics
are designed explicitly to detect the types of structure that PRNG are known to be
prone to produce. In addition, “physical” model tests, such as ISING model and
random-walk tests, use PRNGs to duplicate well-known physical processes. Good
physical tests have the structure of practical applications while providing a known
solution. Two examples of common tests illustrate this general methodology.

3.2.4.1 Long-Runs Test
The long-runs test, a part of the Federal Information Processing Standard for
testing cryptographic modules, is a relatively weak but simple test that sequence
is distributed uniformly. It is defined on the bits produced by a PRNG, as follows:

1. Generate a random sequence of 20,000 bits.
2. Compute the distribution of all runs of lengths l in s. (A run is defined as

a maximal sequence of consecutive bits of either all ones or all zeros.) The
test statistic t (s) is the number of runs of l > 33.

3. The test succeeds if t = 0.

3.2.4.2 Birthday Spacings Test
The birthday spacings test is performed on the set of integers produced by a
PRNG. It examines the distribution of spacing among “birthdays” randomly
drawn from a “year” that is n days long. Note that it tests only the distribu-
tion of the members of the set and does not test the ordering of the members. It
is part of the DIEHARD test suite and proceeds roughly as follows:

1. Generate a sequence s of integers in [1,n], for n ≥ 218, of length m.
2. Compute a list of birthday spacings, |Si − Si+1|. Let t (s) be the number of

values that occur more than once in this sequence.
3. t (s) is asymptotically distributed as Poisson, with mean m3/4n, and a χ2

test provides a p-value.

56 EVALUATING STATISTICAL SOFTWARE

3.2.4.3 Standard Test Suites
Although there is no single industry-standard set of random number generation
tests for statistical software, a number of test suites are available:

• The Federal Information Processing Standard (FIPS 140-1) for crypto-
graphic software and hardware used with unclassified data (FIPS 1994)
specifies four tests that an embedded PRNG must pass (runs, long runs,
monobit, and poker). Although adequate for generating small cryptographic
keys, the tests specified, are not extensive enough for statistical applications.

• Donald Knuth (1998) describes several empirical tests (including birthday
spacings, coupon collector, collisions, frequency, gap, permutation, and
serial correlations tests). No software is provided for these tests, but the
tests described are reasonably straightforward to implement.

• George Marsaglia’s (1996) DIEHARD software implements 15 tests, includ-
ing birthday spacings, permutations, rank tests, monkey tests, and runs
tests, among others. [Many of these tests are discussed more thoroughly
in Marsaglia (1984, 1993).] In part because of its widespread availability,
this test suite has been featured in numerous software reviews and has been
adopted by a number of major software vendors.

• The NIST Statistical Test Suite for Random and Pseudo-random Number
Generators for Cryptographic Applications (Rukhin et al. 2000) is one of
the most recent and thorough test suites to emerge. It includes tests selected
from the sources above, plus compression, complexity, spectral, and entropy
tests.

• The Scalable Library for Pseudo-random Number Generation Library (i.e.,
SPRNG) (Mascagni and Srinivasan 2000), while designed primarily as a
set of functions for generating pseudo-random numbers for parallel appli-
cations, contains tests specifically for parallel PRNGs that are not included
in any of the other test collections (see below).

• The TESTU01 suite (L’Ecuyer and Simard 2003), proposed initially in
1992 by L’Ecuyer (1992), has recently been released to the public. This
test suite encompasses almost all of the FIPS, Knuth, Marsaglia, and NIST
tests noted above and adds many others. In practice, this appears to be the
most complete and rigorous suite available (McCullough 2003).

The DIEHARD suite remains the easiest suite to run and has been used widely
in software reviews in recent years. However, this venerable suite has been super-
seded by the TESTU01 set of benchmarks.5

5As of mid-2003, Marsaglia had announced that development had started on a new version of
DIEHARD. This new version is being developed at the University of Hong Kong by W.W. Tsang
and Lucas Hui with support from the Innovation and Technology Commission, HKSAR Government,
under grants titled “Vulnerability Analysis Tools for Cryptographic Keys” (ITS/227/00) and “Secure
Preservation of Electronic Documents” (ITS/170/01). The preliminary version examined provided
two additional tests and allowed some of the parameters of existing tests to be varied. Based on this
preliminary version, we still recommend TESTUO1 over DIEHARD.

BENCHMARKS FOR STATISTICAL PACKAGES 57

In addition, although the SPRNG tests are designed for parallel generators,
one does not need parallel hardware to run them. Many of the tests are simply
designed to detect correlations among multiple streams extracted from a single
generator. Moreover, the SPRNG suite includes a physical ISING model test that
can be run to evaluate serial PRNG performance, which is not available from
any other package.

Empirical tests, such as those just described, should be considered an essential
complement for, but not a replacement of, theoretical analysis of the random
number algorithm. In addition, new tests continue to be developed (see, e.g.,
Marsaglia and Tsang 2002).

3.2.4.4 Seed Generation
Recall that PRNGs are initialized with a set of random seed values, and from
these seeds, generate a repeating pseudo-random sequence with fixed length p,
the period of the generator. The seed used for initialization must be truly random.
Non-random seeds may lead to correlations across multiple sequences, even if
there is no intrasequence correlation.6

The PRNG supplied by a statistical package should always provide the user with
a method to set the seed for the generator, although many packages also offer to
set the seed automatically. Although it is possible to collect adequate randomness
from hardware and from external events (such as the timing of keystrokes), many
commonly used methods of resetting seeds, such as by using the system clock, are
inadequate (Eastlake et al. 1994; Viega and McGraw 2001). The tests described
previously are designed only to detect intrasequence correlations and will not reveal
such problems with seed selection. Statistical packages that offer methods to select
a new seed automatically should make use of hardware to generate true random
values, and should thoroughly document the method by which the seed is generated.

3.2.4.5 Period Length
Even with respect to generators that pass the tests just described, it is generally
recommended that the number of random draws used in a simulation not exceed
a small fraction of the period (conservatively, p � 200n2, where n is the number
of random draws used in the simulation being run). The tests we just described do
not measure the period of the generator, so it is essential that a statistical package
documentation include the period of the PRNGs. According to documentation,
many of the random number generators provided by statistical packages still
have periods of t < 232, which is adequate only for small simulations. Modern
PRNG algorithms have much longer periods. Even the simple multiply-with-carry
generator has a period of 260. See Chapter 2 for more detail.

3.2.4.6 Multiple Generators
Developers of random number generation algorithms recommend the use of mul-
tiple generators when designing new simulations. A statistical package should

6Non-random seeds may make a sequence easier to predict—an important consideration in cryptog-
raphy (see Viega and McGraw 2001).

58 EVALUATING STATISTICAL SOFTWARE

provide the user with several generators of different types. Although some pack-
ages are now doing just this, it remains common for a package to provide a single
generator.

3.2.4.7 Parallel Applications
Most PRNGs and tests of randomness are designed to operate within a single
thread of program execution. Some statistical applications, however, such as
parallelized MCMC, use multiple processors simultaneously to run different parts
of the simulation or analysis. These parallel applications can pose problems for
random number generation.

Use of standard PRNGs in a parallel application may lead to unanticipated
correlations across random draws in different threads of the simulation. Typi-
cally, single-threaded PRNGs are split in one of three ways to support multiple
streams of execution: (1) each thread may run its own PRNG independently
using a different seed; (2) the PRNG can be executed in a single thread, with the
other threads of the simulation drawing from it as needed; or (3) with the other
threads being assigned systematically every ith random draw. However, this sec-
ond scheme can lead to irreproducible results in another way, because variations
in interprocessor timings across runs will result in different threads receiving
different partitions of the sequence on each run (Srinivasan et al. 1998). This
means that the simulation results may be different on each run, even using the
same initial seeds. Recording all subsequences in each processor, and replaying
these exactly during replication, will eliminate this problem.

These methods can lead to statistical problems, either because of intersequence
correlation inherent in the PRNG or because a method inadvertently transforms
long-run intrasequence correlations into short-run correlations. (These long-run
correlations would not normally be a problem in single-threaded simulation if the
number of draws were limited to a fraction of the period of the generator, as rec-
ommended previously.) For parallel applications, the SPRNG library (discussed
previously) is a good source of tests and generators.

3.2.5 Tests of Distribution Functions

There are often multiple ways of evaluating a function for a particular statisti-
cal distribution that are often not solvable analytically. Different mathematical
characterizations, evaluation algorithms, and implementations can yield results
with wildly different accuracy. A method that produces results accurate to only
three or four digits may be sufficient for significance tests but be entirely inade-
quate for simulation or when used as part of a likelihood function. A particular
approach to approximation that works well in the center of a distribution may
not be accurate in the tails, or vice versa.

Despite the importance of accurate statistical distributions for simulation and a
number of common nonlinear models, there is no standard set of benchmarks for
statistical distributions. Previous investigations of the statistical packages have
noted frequent inaccuracies in common distribution functions (Knüsel 1995, 1998,

BENCHMARKS FOR STATISTICAL PACKAGES 59

2002; McCullough 1999a,b), and McCullough (1998) has outlined a benchmark-
ing methodology, but no standard set of benchmark exists.

Although no widely accepted set of benchmarks exists, there are a number of
libraries and packages that may be used to calculate common statistical distribu-
tion with a high degree of accuracy:

• Knüsel’s ELV package (1989) is a DOS program that computes the uni-
variate normal, Poisson, binomial, both central and noncentral gamma, χ2,
beta, t , and F distributions. Distributions are computed to six significant
digits of accuracy for probabilities of nearly 10−100. The ELV package is
designed as an interactive application and is quite useful as such. However,
source code is not provided, so it cannot be used as a programming library,
and support for the DOS platform in general is dwindling.

• Brown et al.’s (1998) DSTATTAB package computes a similar set of distri-
butions to approximately eight digits of accuracy. DSTATTAB is available
both as an interactive program and as a set of libraries that can be used by
other programs.

• Moshier’s (1989) Cephes library provides double-precision statistical dis-
tribution functions and quadruple-precision arithmetic and trigonometric
functions, as well as others.

• A number of symbolic algebra packages, such as Mathematica (Wolfram
1999) and MATLAB, have the ability to compute a variety of functions,
including statistical distribution functions, using “arbitrary precision” arith-
metic (computation to a specified number of digits). Using this capability
may produce highly accurate results for benchmark purposes, but may be
relatively slow.

Constructing a set of tests for distributions of interest is relatively straightfor-
ward using these libraries. First, generate a set of p-values (and other distribution
parameter values, as appropriate) across the region of interest for simulation, sta-
tistical analysis, or likelihood function. Second, use one of the aforementioned
high-precision libraries to compute the correct value of the distribution for each
p-value in the test set. Third, use the statistical package being tested to calculate
the same distribution value using the same set of p-values. Finally, calculate the
LREs (as described earlier) for the results produced by the statistical package.

A complementary strategy is to use the inverse functions to discover points
where f (x) �= f −1(f (x)). Rather than searching at random, one might use a
black box optimization heuristic, such as simulated annealing, to look for partic-
ularly large discrepancies, by finding local solutions to maxx |f (x)−f −1(f (x))|.

As discussed earlier, we believe that inaccurate and missing results should be
distinguished in benchmark tests. Some statistical packages document that their
distribution functions are valid for particular ranges of input and return missing
values or error codes when asked to compute answers outside this range of input.
We consider this acceptable and treat these results as missing, not as LREs of
zero in our benchmarking analysis.

60 EVALUATING STATISTICAL SOFTWARE

Using this general methodology, we create a set of benchmarks for five of the
most commonly used statistical distributions: the normal distribution, the central
t , F , χ2, and gamma. These tests are archived at ICPSR7 as Publication Related
Archive Dataset 1243, and are also available from the Web site that accompanies
this book. To our knowledge, this is the first and only set of benchmarks avail-
able for this purpose. In particular, we generate a set of p-values at regular and
random intervals along { [1e-12,1-1e-12],0,1 }. We use Knüsel’s (1989) package
to generate reference values and checked these against identical computations
using Brown et al.’s (1998) high-precision libraries. We calculate correct values
for a number of central inverse distribution for those p-values (to five significant
digits) and the corresponding p-values for those inverse values. Where distri-
butions required ancillary parameters, we generate these at regular intervals in
[1e-4,1e6], constrained by the legal range for the particular parameter.

Our benchmark is meant to probe only some key aspects of the accuracy of a
statistical package. It is not comprehensive, and some applications may require
accuracy in distributions that we do not test, or beyond the p (or other parameter
range) that is covered by our procedure. For example, Knüsel (1995, 1998, 2002)
and McCullough (1999a,b) clearly examine a number of areas we do not: the
extreme tails t < 10−12 (inaccuracies are reported for some distributions at very
extreme tails, e.g., 10−70), a number of discrete distributions, and a number of
noncentral distributions. We believe our benchmarks are adequate for most normal
use of a statistical package, but users with nonlinear models or simulations should
use the libraries described previously to construct tests that better reflect their
particular needs.

3.2.6 Testing the Accuracy of Data Input and Output

In the course of our research, we performed benchmark tests on over a dozen dif-
ferent packages and versions of packages. An unexpected lesson from our testing
is that loading data into a statistical software package from text or binary files—
a seemingly straightforward operation—may produce unexpected results. Most
errors were obvious, but a few were subtle and caused statistical packages to
fail the benchmarks. Once we diagnosed and corrected the problem, what initially
appeared as inaccuracies of algorithms were revealed as inaccuracies of data input.

All statistical software packages are able to store a finite amount of data,
either because of internal restrictions on the number of records and columns
that a statistical packages is able to handle, or simply because of limited system
resources, such as available hard disk space. Most statistical packages’ storage
limitations are documented, but in some cases they are not, and instead of pro-
viding a warning message when storage limits are reached, some of the packages
silently truncated records, columns, and precision.

We create a simple set of benchmarks to detect inaccuracies in data input and
output, the first benchmark of its kind, to our knowledge. To test the performance

7URL: <http://www.icpsr.umich.edu>.

BENCHMARKS FOR STATISTICAL PACKAGES 61

Table 3.1 Results of Data Input Tests

Input Exceeded Exceeded Maximum
Package Precision Maximum Records Columns or Variables

1 Silent truncation Memory error Memory error
2 Silent truncation Silent truncation Silent truncation
3 Silent truncation (No maximum record limit) Hung the program
4 Silent rounding (No maximum record limit) Empty data file
5 Silent truncation Memory error Specific warning

of statistical programs in reading data, we create a small set of computer-
generated data matrices, each with an unusually large number of rows, columns,
or significant digits. We encode these matrices as tab-delimited flat ASCII text
files and then use these data matrices to test error detection systematically in data
loading. We consider a package to have “passed” the test as long as it reports
when truncation or a related error occurred.

The results of our tests on recent versions of five major commercial packages
are presented in Table 3.1. Since this book is not intended as a review of statistical
packages, we have the software packages presented as “anonymous” in Table 3.1.
Although the versions of the package were current at the time of testing, these
results will undoubtedly be out of date by the time of publication. All packages
reduced the precision of input data without warning, failing the data input tests.
A number of packages failed to warn users when entire rows or columns of data
were deleted.

Statistical packages should provide warnings when data are read improperly,
even though we speculate that astute users will detect truncations of rows or
columns by comparing descriptive statistics to known results for these data. In rare
cases concerning original data, descriptive statistics may not be known a priori.
In other cases, as we have found in reproducing published research (Altman and
McDonald 2003), even astute users may “lose” cases from their replication data.

Although not as damaging as missing cases or variables, silent truncation of
data precision may cause inaccuracies in later calculations and lead to results
that are not replicable. McCullough suggests that “users of packages that offer
single-precision storage with an option of double-precision storage should be
sure to invoke the double-precision option, to ensure that the data are correctly
read by the program” (McCullough 1999b, p. 151). This recommendation does
not alleviate all precision issues; because some packages truncate whereas others
round; reading the same data into packages using the same precision may still
produce small differences.

Truncation or rounding data precision errors are unlikely to be detected by
the user. Even if precomputed descriptive statistics are available, precision errors
may be hidden by the limited numbers of digits displayed in the output of a
statistical package. Moreover, descriptive statistics are not designed specifically
to detect data alterations, and multiple errors can “compensate” to produce an
identical statistic, even when the data have been altered.

62 EVALUATING STATISTICAL SOFTWARE

3.2.6.1 Methods for Verifying Data Input
Essentially, what is needed is a function f (·) that maps each sequence of numbers
(or more commonly, blocks of bits) to a single value:

f : {i0, i1, . . . , in} → c. (3.5)

To verify the data we would need to compute f once, when creating the matrix
initially, then recompute it after the data have been read into our statistics pack-
age. For robust verification, we should choose f (·) such that small changes in
the sequence are likely to yield different values in f (·). In addition, f (·) should
be straightforward and efficient to compute.

The simplest candidate for our function is a checksum, which is a function of
the form

f ({i0, . . . , in}) =
∑

i mod K. (3.6)

Although such checksums are simple to compute, they are, unfortunately, a weak
form of verification. For example, checksums cannot detect when two blocks of
the sequence have been transposed.

A more powerful test is provided by cyclic redundancy checks (CRCs). CRC
functions treat the input as one large number, each bit of which represents a term
in a long polynomial, and then take the remainder from a polynomial division of
that number:

f ({i0, . . . , in}) = (i0 × X0 + · · · + in × Xn) mod p P. (3.7)

Here P is often known as the generator polynomial and is often chosen to be

+X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1.

(3.8)

Cyclic redundancy checks provide a powerful way to detect unintentional data
corruption, and can be computed very quickly. These checks are used in most
digital communication algorithms and are a more sophisticated version of the
checksum. A CRC computes the remainder in the ratio of two polynomials, the
numerator of which is a function of the data to be validated. The polynomi-
als’ design ensures that reasonable errors are detected. [See Ritter (1986) for a
description of CRCs and Binstock and Rex (1995) for implementations.] In par-
ticular, a well-designed CRC will detect all one-, two-, and three-bit errors with
certainty. It will also detect multiple-bit error patterns with probability (1−1/2n),
where n is the number of bits in the checksum. We use a 32-bit checksum, so
the detection probability is actually >99.99999%.

Note that CRCs are designed to detect unintentional corruption of the data
and can be fooled intentionally. To prevent intentional tampering, a strong cryp-
tographic hash algorithm such as, MD5 (Rivest 1992) should be used for f (·).8
8TheMD5 algorithm pads the input stream and then divides it into blocks. Each block is processed
three times using a variety of bitwise functions, and the results are combined with the preceding
block.

GENERAL FEATURES SUPPORTING ACCURATE AND REPRODUCIBLE RESULTS 63

CRCs and other verification functions are used routinely to detect changes
in files, but they have not, to our knowledge, been used previously to verify
the integrity of a data matrix within a statistics program. Computing verification
functions on the input data files (not the data matrix) will not detect the truncation
errors listed in Table 3.1, because the files themselves are intact.9 On the other
hand, computation of CRCs (or any other verification function) on the data matrix
in standardized form and from within a program can be used to generate a
distinctive signature for the data that can verify that the data matrix has been
read accurately into another program. In other words, all previous applications
of checksums in statistical software tested the integrity of file transfer but did
not test the integrity of information transfer.

We have developed a small C library to compute CRCs on in-memory vectors
of floating point numbers (see the dedicated Web page for this text). This library
is usable from any other program that supports external libraries and may be used
to verify that a data matrix has been read consistently across these programs. In
addition, our library allows different checksums to be generated for representa-
tions of the vectors at various levels of precision. This allows the author of a
data collection to generate checksums for different storage lengths (e.g., float,
double-precision), or based on the accuracy of measurement instruments.

3.3 GENERAL FEATURES SUPPORTING ACCURATE
AND REPRODUCIBLE RESULTS

Benchmarks can test only a small portion of the functionality of any statistical
software package and reflect only on the precise version of the software under
which the benchmarks are run. To have continuing faith in the reliability of a
package, one must ask: Does the manufacturer of the package regularly test it
for accuracy? Does the manufacturer document the algorithms used to compute
statistical analyses and other quantities of interest?

In addition, benchmarks capture only a small portion of what aids a researcher
in producing accurate and reproducible results. For example, ensuring accurate
results may require augmenting the package with high-precision libraries. And
reproducing an analysis may require running programs written in a previous ver-
sion of the package. So when evaluating a statistical package, researchers should
ask: Does the programming language support good programming practices, such
as object-oriented design? Are the internal procedures of the package available for
inspection and extension? Can the package make use of external libraries written
in standard programming languages such as C, C++, and Java? How easy is it
to use this package as part of a larger programming and data analysis environ-
ment? Does the package maintain backward compatibility across versions? Do
programs written in previous versions of the package’s syntax produce results
identical to the original?

9Stata includes an internally callable function for creating checksums of data files, but it does not
compute checksums on the data matrix per se and thus could not be used to detect truncation errors.
It is functionally equivalent to an external checksum.

64 EVALUATING STATISTICAL SOFTWARE

Furthermore, all software has bugs, and statistical software is no exception.
Probably for commercial reasons, bug reports by commercial statistical software
companies are typically not published, or even archived, making them difficult
to cite in academic writing. To gather bug reports, we searched the Web sites of
manufacturers of statistical software and searched the documentation and notes
accompanying the software installation. Judging from available bug reports, most
bugs in statistical software are unlikely to affect inference because they cause
the program to fail outright, behave in an obviously incorrect manner, or affect
a nonstatistical program function such as printing. Still, there are enough serious
bugs reported in relatively recent versions of commonly used statistical software
to warrant caution. Some examples culled from bug reports follow:

• In a recent version of a major commercial statistics package, t-statistics
reported for maximum likelihood estimations were one-half of the correct
values.

• A recent version of a second major commercial package produced incor-
rect results for regressions involving variables with long names, performed
exponentiation incorrectly, and committed other statistical errors.

• A recent version of a third major commercial statistical package calculated
t-tests incorrectly, and incorrectly dropped cases from cross-tabulations.

These are only samples of publicly reported and acknowledged problems,
chosen to illustrate a point: Bugs in major statistical packages are serious enough
to affect research. Users of statistical software are well advised to stay abreast
of the latest updates to their programs and to seek out packages from publishers
who fix bugs quickly, notify users of them actively, and maintain good records.

3.4 COMPARISON OF SOME POPULAR STATISTICAL PACKAGES

To illustrate the wide variation in accuracy across major commercial packages, we
summarize accuracy benchmark results as published in software reviews (Knüsel
1995, 1998; McCullough 1999a,b; McCullough and Vinod 1999; Vinod 2000;
Altman & McDonald 2001). All of these studies use the software benchmarking
methodology described above.10 Table 3.2 counts the number of packages out
of those tested that produced “reliable” results overall. Eleven packages were
reviewed, although some did not support or were not tested for every category.
For purposes of this table, we define reliable to mean that the package passes
all the benchmarks described above, or provided clear error messages whenever
inaccurate results were presented in the benchmarks.

Table 3.2 hides a vast amount of detail but reveals a number of patterns.
With the exception of pseudo-random number generation, most packages were

10DIEHARD results were not published in Altman and McDonald (2001) but were computed.
Table 3.2 also incorporates these previously unpublished results.

REPRODUCTION OF RESEARCH 65

Table 3.2 Number of Packages Failing Statistical Accuracy Benchmark Tests

StRD Benchmark Tests

Univariate Linear Nonlinear
Statistics ANOVA Regression Regression

Low difficulty 0/11 0/6 0/11 4/11
Medium difficulty 0/11 3/6 2/11 4/11
High difficulty 4/11 1/6 2/11 5/11

Accuracy of Distributions Random Number Generation

Central 0/9 Failed > 1 DIEHARD test 5/9
Tails 4/9 Period ≤ 231 7/9
Extreme Tails 2/9 Single generator only 8/9

evaluated as accurate for most common tasks. However, a significant number
of packages perform poorly on difficult nonlinear models and in the tails of
statistical distributions. In addition, most of the packages tested did not provide
robust random number generation capability: Periods were typically short, only
a single generator was provided, and many generators failed distribution tests.

Care must be used to distinguish between differences among implementations
of a particular algorithm and differences between algorithms used to compute the
same quantity of interest. We expect that new versions of software will be made
more accurate as implementations are improved and better algorithms found.
Software writers have a responsibility not only to make improvements, but also
to document the range of acceptable conditions for running their software and the
accuracy that may be expected from it. Furthermore, as improvements are made,
facilities should be provided to replicate the results from previous versions.

We note in closing this section that software companies update their programs
continually and that any published investigation of their operation will necessar-
ily be dated. Many software companies have become aware of the benchmarks
since these reviews were published and have updated their software to pass the
benchmark tests. We strongly suspect that if these benchmarks were tests with
updated versions of these packages, many of the problems reported (and perhaps
all of the problems reported with PRNGs, because these are easiest to remedy)
will have been ameliorated. Still, we think that caution is warranted, especially
as statistical methods continue to advance and continue to push packages into
new areas of analysis.

3.5 REPRODUCTION OF RESEARCH

Benchmark tests are designed to exploit specific weaknesses of statistical software
algorithms, and it may reasonably be argued that benchmarks do not reflect the
situations that researchers will commonly encounter. Inaccuracies and implemen-
tation dependence is not simply an abstract issue. Here, we present an example

66 EVALUATING STATISTICAL SOFTWARE

drawn from a published article that illustrates some of the problems that can be
caused by inaccurate statistical packages.

Our reproduction is of Nagler’s (1994) skewed logit, or scobit, model, which
offers a reexamination of Wolfinger and Rosenstone’s (1980) seminal work on
voter turnout, focusing on their conclusion drawn from a probit model that early
closing dates of voter registration have a greater negative impact on people with
less education.11 Eschewing the assumption of typical binary choice models that
the greatest sensitivity to change in the right-hand-side variables occurs at 0.5
probability of choice, Nagler develops a generalization of the logit that allows the
steepest slope of the familiar logit probability density function to shift along the
[0,1] interval, a model he calls scobit. Armed with the scobit model, Nagler rees-
timates the Wolfinger and Rosenstone probit model using the SHAZAM statistical
program, and contrary to the earlier findings, estimates no statistically significant
interactive relationship between registration closing dates and education.

Nagler follows Burr (1942) in adding an additional parameter to the familiar
logit distribution. The log likelihood of the Scobit estimator is given by

log L =
N∑

i=1

(1 − yi) log[F(−Xiβ)] +
N∑

i=1

yi log[1 − F(−Xiβ)], (3.9)

where F(−Xiβ) represents what Nagler refers to as the Burr-10 distribution:

F(−Xiβ) = (1 + e(Xiβ))−α. (3.10)

In this setup, logit is a special case of the scobit model, when α = 1. Scobit
is an attractive example here because unlike logit, its functional form is not
proved to be single peaked. There may be multiple local maxima to the log-
likelihood function of the Scobit estimator, particularly if nonlinear terms, such
as interaction terms, appear in the linear Xiβ.

We encountered difficulties in our replication of scobit that do not necessarily
relate to numerical accuracy issues but might be misconstrued as such if not
accounted for. In our replication we found discrepancies in the selection of cases
for the analysis. Evidence suggested that the original data provider had corrected
errors in the original data subsequent to Nagler’s. Fortunately, Nagler achieved a
verification data set for his personal use and made these data available to us for the
analysis presented here. We also discovered errors in the published derivatives for
the scobit model which if undetected could lead to further numerical computation
problems. For a full discussion, see Altman and McDonald (2003).12

We reproduce Nagler’s analysis using SHAZAM, Stata, and Gauss statistical
packages. The program and results file using SHAZAM v6.2 were generously
supplied to us by Nagler. We ran the original program on the most recent version

11Nagler generously supplied the original SHAZAM code and data used in his analysis as well as the
original output.
12Also see Achen (2003) for a discussion of the drawbacks of model generalization in Scobit.

REPRODUCTION OF RESEARCH 67

of SHAZAM then available (v9.0), on a Linux platform. In addition, we reproduced
the analysis on Stata v6.0 running on Windows and Gauss v3.2.43 running
on a HP-Unix platform. We chose Stata because scobit is implemented as
a built-in function scobit within that program and Gauss because of its early
popularity among political methodologists.

In describing the NIST benchmarks earlier, we note that starting values for the
MLE may affect the performance of optimization routines. We found evidence
here, too. Stata’s implementation of scobit uses logit estimates as starting
values for the scobit model. Using this methodology, Stata finds a credible
maximum to the likelihood function. By default, Gauss assigns a vector of
zeros as starting values if no other starting values are provided by the user,
and scobit would not converge using these defaults. When we followed the
lead of Stata to provide a vector of logit results, Gauss converged, albeit
slowly. Gauss provides a number of different maximum-likelihood algorithms:
the steepest descent method, BFGS (Broyden, Fletcher, Goldfarb, Shannon), DFP
(Davidson, Fletcher, Powell), Newton–Raphson, BHHH (Berndt, Hall, Hall, and
Hausman), and the Polak–Ribiere conjugate gradient method (Aptech 1999). In
our analysis we used the default Gauss algorithm, BFGS. (See Chapters 4 and
8 for descriptions of these algorithms.) SHAZAM provides BFGS and DFP, but
Nagler did not specify which was used for his analysis.

Different optimization routines may find different maxima. One important
option, described previously, for many optimization routines is the choice be-
tween analytic gradients, often requiring painstaking coding by the user, or
internally generated numerical approximations. Nagler’s (1994) original imple-
mentation of scobit in SHAZAM uses a numerical approximation for the gradient
and Hessian. Stata’s implementation employs an analytic gradient and Hessian.
For Gauss’s maxlik package, we code an analytic gradient and use a numeric
approximation for the Hessian.

The results of our replication analysis are presented in Table 3.3. When we
simply plug the same program and data used in the original analysis into a later
version of SHAZAM, we find a surprisingly statistically strong interactive rela-
tionship between registration closing date and education, stronger than reported
in the original output. (No errors or warnings were issued by any of the pack-
ages used.) When we estimate the model using Stata and Gauss we find
a much weaker interactive relationship than originally published. Most of the
reported coefficients are the same, and the log likelihood at the reported solution
is consistent across packages. The exception is “Closing Date.” The estimated
coefficient reported by Gauss is much different from the coefficients reported
by the other programs, although the variable itself is not statistically significant.

Although the three programs generally appear to agree with the original Nagler
analysis in locating the same optimum, we find disagreement among the statistical
software packages in the estimate of the standard errors of the coefficients. The
original SHAZAM standard errors are roughly a tenth smaller, and the newer version
reports standard errors roughly a third smaller than those reported by Stata and
Gauss. These discrepancies in the standard errors are not simply a choice of

68 EVALUATING STATISTICAL SOFTWARE

Table 3.3 Comparison of Scobit Coefficient Estimates Using Four Packages

SHAZAM Stata Gauss
Published Verification Verification Verification

Constant −5.3290 −5.3290 −5.3289 −5.3486
(0.3068) (0.2753) (0.3326) (0.3340)

Education 0.3516 0.3516 0.3516 0.3591
(0.1071) (0.0788) (0.1175) (0.1175)

Education2 0.0654 0.0654 0.0654 0.0647
(0.0135) (0.0097) (0.0146) (0.0145)

Age 0.1822 0.1822 0.1822 0.1824
(0.0098) (0.0102) (0.0107) (0.0108)

Age2 −0.0013 −0.0013 −0.0013 −0.0013
(0.0001) (0.0001) (0.0001) (0.0001)

South −0.2817 −0.2817 −0.2817 −0.2817
(0.0239) (0.0209) (0.0313) (0.0314)

Gov. election 0.0003 0.0003 0.0003 0.0004
(0.0219) (0.0178) (0.0313) (0.0314)

Closing date −0.0012 −0.0012 −0.0012 −0.0006
(0.0088) (0.0065) (0.0095) (0.0095)

Closing date × education −0.0055 −0.0055 −0.0055 −0.0058
(0.0038) (0.0028) (0.0042) (0.0042)

Closing date × education2 0.0002 0.0002 0.0002 0.0003
(0.0004) (0.0003) (0.0005) (0.0005)

α 0.4150 0.4150 0.4151 0.4147
(0.0324) (0.0330) (0.0341) (0.0342)

Log likelihood −55,283.16 −55,283.16 −55,283.16 −55,283.17
No. of observations 98,857 98,857 98,857 98,857

analytic or numeric to calculate the Hessian, which in turn is used to calculate
standard errors, as our reproduction on SHAZAM andGauss both use a numerically
calculated Hessian. We note further that the numerical calculation of Gauss is
close to the analytic calculation of Stata, leading us to speculate that numerical
inaccuracies are present in SHAZAM’s numerical approximation of the Hessian.
However, lacking access to the internals of each optimization package, we cannot
state this finding with certainty. These discrepancies in standard error estimates
have a pattern here, but in replication analysis of other research, we discovered that
in some cases SHAZAM’s estimates of standard errors were larger, and sometimes
they were smaller than Stata and Gauss, while those two software packages
consistently produced the same estimates (Altman and McDonald 2003).

Although we experimented with a variety of computation options within
SHAZAM, the results could not be made to match the originals or those of the
other package. However, given that Stata and Gauss confirm Nagler’s original
findings with his original data, and that all three programs confirm the substan-
tive results when using a corrected version of the source data, we have some
confidence that the original results are valid.

CHOOSING A STATISTICAL PACKAGE 69

This case study shows that substantive conclusions may be dependent on the
software used to do an analysis. Ironically, in this case, if the original author
had performed his analysis on the most recent version of the computing plat-
form he chose, he would have failed to discover an interesting result. We cannot
say how extensive this problem is in the social sciences because we cannot
replicate all research. If benchmarking serves as a guide, we are reasonably con-
fident that most simple analysis, using procedures such as descriptive statistics,
regression, ANOVA, and noncomplicated nonlinear problems, is reliable, while
more complex analysis may be require the use of computational algorithms that
are unreliable.

We have chosen this particular case study because the complexity of its func-
tional form may tax statistical software. As one researcher confided, a lesson may
be to keep implementing a model on different software until one gets the answer
one wants. Of course, the correct answer should be the one desired. Evidence of
implementation dependence is an indicator of numeric inaccuracies and should
be investigated fully by researchers who uncover them.

3.6 CHOOSING A STATISTICAL PACKAGE

Social scientists often overlook numerical inaccuracy, and as we have demon-
strated, this may have serious consequences for inference. Fortunately, there are
steps that researchers can follow to avoid problems with numerical accuracy. In
much research, especially that involving simple statistical analysis, descriptive
statistics, or linear regression, it may only be necessary to choose a package
previously tested for accuracy and then to apply common sense and the standard
diagnostics. In other research, especially that involving complex maximum likeli-
hood estimation or simulation, one is more likely to encounter serious numerical
inaccuracies.

A number of packages now publish the results of numerical benchmarks in
their documentation, and benchmarks of accuracy are becoming a regular compo-
nent of statistical software reviews. Be wary of software packages that have not
been tested adequately for accuracy or that do not perform well. Choose regularly
updated software that buttresses itself with standard tests of accuracy and relia-
bility, but be aware that standard benchmarks are limited and that performance
may change across versions.

Choose statistical software that provides well-documented algorithms, includ-
ing any available options. The documentation should include details on where
algorithms may be inaccurate, such as in the tails of distribution functions. Prefer-
ence should be given to software that generates warning messages when problems
are encountered, or fails to produce an estimate altogether, over software that
does not provide warning messages. These messages, too, should be carefully
documented.

When using a new model or a new statistical package, researchers can use
methods discussed in this chapter to apply standard benchmarks to new software,

70 EVALUATING STATISTICAL SOFTWARE

or create their own. For those that wish to run their own tests or benchmarks,
we suggest:

• Use the benchmark presented in this chapter to verify that data are properly
input into a program.

• Use the NIST and SPRNG tests for pseudo-random number generators.
• Use the resources listed in this chapter for tests of the accuracy of distribu-

tion functions.
• Use the NIST StRD benchmarks for univariate statistics, regression,

ANOVA, and nonlinear regression; keeping in mind that the nonlinear
benchmarks may be used for maximum likelihood search algorithms but
are not designed specifically for them.

We have found that statistical packages that allow calls to external libraries are
friendlier to do-it-yourself benchmarks. Those that provide an open source are
even more agreeable, as users can code and substitute their own algorithms, such
as a pseudo-random number generator, and compare performance. [Of course, one
must be alert to the limitations of borrowed code. As Wilkinson (1994) cautions,
such code may not be designed for accuracy, and even published examples of
high-precision algorithms may not contain complete error-handling logic.] In
addition, alert users of open-source software are able to identify and diagnose
bugs and other inaccuracies, too, and thus serve to increase the reliability of the
software package.

Unfortunately, most statistical software packages do not make their code
available for inspection, for the obvious reason that creating and maintaining a
statistical software package is a costly enterprise and companies need to recover
costs. Notable exceptions are Gauss, which exposes some, but not all, of its
source code, and R, which is “open source.” Other statistical software packages
must be treated like a black box, and we can imagine that some consumers of
statistical software are happy with this arrangement, because they are social, not
computer, scientists. Still, the free market dictates that supply will meet demand.
Paying attention to the concepts discussed in this chapter and book increases
demand for numerically accurate statistical software, which will result in more
reliable social science research.

C H A P T E R 4

Robust Inference

4.1 INTRODUCTION

In the preceding chapters we have discussed the manner in which computational
problems can pose threats to statistical inference, and how to choose software
that avoids those threats to the greatest extent possible. For linear modeling and
descriptive statistics, choosing a reliable statistic package (see Chapter 3) and
paying attention to warning messages usually suffices. In this chapter we discuss
some advanced techniques that can be used in hard cases, where one suspects
that software is not providing accurate results. In chapters subsequent to this, we
examine the best practices for accurate computing of specific types of problems,
such as stochastic simulation (Chapter 5), common nonlinear model specifications
(Chapter 8), misbehaved intermediate calculations (Chapter 6), spatial economet-
ric applications (Chapter 9), and logistic regression (Chapter 10).

This chapter can also be thought of as addressing a variety of computational
threats to inference, both algorithmic and numerical. Some of these threats are
illustrated in Figure 4.1, which shows an artificial likelihood function and some of
its characteristics, such as flat regions, multiple optima, discontinuities, and non-
quadratic behavior that can cause standard computational strategies to yield incor-
rect inference. In the following sections we discuss how to deal with these problems.

4.2 SOME CLARIFICATION OF TERMINOLOGY

Robustness evaluation is the systematic process of determining the degree to
which final model inferences are affected by both potential model misspecifi-
cation by the researcher through assumptions and the effect of influential data
points. Global robustness evaluation performs this systematic analysis in a for-
mal manner to determine the range of the inferences that can be observed given
the observations. Conversely, local robustness uses differential calculus to deter-
mine the volatility of specific reported results. It is important to remember that
undesirable instability can be the result of data characteristics (Guttman et al.
1978) or model specification (Raftery 1995).

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

71

72 ROBUST INFERENCE

Early convergence
(implementation limitations

and algorithm choice)

B

L(
B

|M
, X

)

Numerically induced
discontinuities

(implementation limitations)

Convergence to local optimum
(algorithmic limitations)

Estimation of confidence interval
around optimum

(algorithm choice)

[--]

Fig. 4.1 Some computational threats to inference in finding maximum likelihood estimates.

Classical robustness analysis centers on the linear model’s sensitivity to poten-
tially influential outliers, with the idea that one should mitigate this effect.
Researchers sometimes actually incorporate robustness into model specifications
as part of the initial setup (Lange et al. 1989; Marı́n 2000). The literature is vast,
including Andrews et al. (1972), Huber (1972, 1973, 1981), Andrews (1974),
Hampel (1974), Hampel et al. (1986), Barnett and Lewis (1978), Belsley et al.
(1980), Cook and Weisberg (1982), Emerson and Hoaglin (1983), Rousseeuw
and Leroy (1987), and Hamilton (1992).

Interestingly, there is a common misuse of the word ‘robust’ that is generally
tolerated. The appropriate term for analyzing outlier effects is actually “resis-
tance,” in the sense of a model’s ability to resist (or not) the influence that these
values exert. In contrast, robustness is concerned directly with the model’s abil-
ity to absorb violations of the underlying assumptions. [See the classic text by
Hoaglin et al. (1983) for additional contrasts.] For instance, it is well known that
the linear regression model is not very resistant to outliers in the x-axis direction
but is robust to mild levels of heteroscedasticity. We are, however, sometimes
not terribly concerned with the distinction inasmuch as robustness occurs increas-
ingly with rising sample size. However, in other instances it is important to find
and scrutinize outliers, and many authors provide detailed guides, including Kit-
igawa and Akaike (1982), Polasek (1984, 1987), Pettit and Smith (1985), and
Liseo, et al. (1996).

The most thorough treatment of robustness is done in the Bayesian liter-
ature because these authors often have to go to great lengths to justify their
prior assumptions (Berger 1984, 1990; Kass et al. 1989; Kadane and Srinivasan

SENSITIVITY TESTS 73

1996). As just mentioned, a common distinction for Bayesians is between global
robustness, which systematically changes the prior specification to see the effect
on the posterior, and local robustness, which looks at the rate of change of pos-
terior inferences for infinitesimal perturbations of the prior (Sivaganesan 2000).
The global approach is discussed in general terms by Berger (1985), Wasser-
man (1992), O’Hagan (1994), and Gill (2002), for specific classes of priors by
West (1984) and Moreno (2000), and in detail with the principal method of
using contamination priors by a small number of authors: Berger and Berliner
(1986), Moreno and González (1990), Moreno and Cano (1991), Moreno and
Pericchi (1991, 1993), Moreno et al. (1996). Details about local robustness are
given in Cuevas and Sanz (1988), Gelfand and Dey (1991), Ruggeri and Wasser-
man (1993), Sivaganesan (1993), Bose (1994a,b), Delampady and Dey (1994),
Gustafson and Wasserman (1995), Berger and O’Hagan (1988), Dey and Micheas
(2000), and Gustafson (2000).

Sensitivity analysis is the process of changing various model assumptions and
parameters in some ad hoc but intuitive way to observe subsequent implications
on inferences. If reasonably large changes in the model assumptions have a
negligible effect on calculated quantities, this is evidence of low sensitivity. On
the other hand, mild changes in model assumptions and parameters that produce
dramatic changes in inferences are certainly a cause for alarm. This process is
differentiated from robustness analysis because it is necessarily smaller in scope
and usually limited to a few areas of concern. Sensitivity is also a central concern
among Bayesians, for similar reasons (Leamer 1978, 1984, 1985; Lavine 1991a,b;
Zellner and Moulton 1985; Weiss 1996).

In Section 4.3 we discuss how to test a given model analysis for possible sen-
sitivity to computational details. This is followed in Section 4.4 by an overview
of techniques for performing more accurate analyses. In Section 4.5 we dis-
cuss methods of inference that can be used in the face of obvious, and perhaps
unavoidable, computational problems.

4.3 SENSITIVITY TESTS

Recall from Chapter 2 that sensitivity analyses are valuable because of their
wide applicability and ease of use. Sensitivity analysis can be performed on
the data and model being analyzed without extensive formal analysis or custom
programming. Sensitivity analysis can draw attention to potential problems in
algorithm, implementation, or model. There are several common approaches.

4.3.1 Sensitivity to Alternative Implementations and Algorithms

From the theoretical standpoint typically presented in textbooks, statistical esti-
mates are determined entirely by model and data and are not dependent on
algorithmic or implementation programming. This assumption is often true in
practice, but is not guaranteed to hold. Gill et al. (1981; p. 319) recommend a
simple heuristic test to determine if model and data are sensitive to programming

74 ROBUST INFERENCE

issues by varying the conditions under which an estimate is generated: by varying
the program used, the operating system and hardware environment, algorithm
options, and even substituting new programming code, where possible. The
production of different estimates serve as an indication of algorithm or imple-
mentation dependence.

The variety of existing statistical software packages indicates the demand
for statistical computing solutions. General-purpose programs such as Excel,
Gauss, S-Plus, R, SAS, SHAZAM, SPSS, and Stata provide users with a
common set of basic statistical tools. Some offer more tools than others, and
specialized programs such as BUGS, E-Views, Limdep, and Rats exist for
specific applications. Moreover, multiple implementations of the same statistical
program are often available on different computing platforms, including MacOS,
Windows, Unix, and Linux. Different programs will often have options that allow
users control over some aspects of the implementation of an algorithm, and often
these programs do not commonly share the same scope of options or default
options. Some programs, such as R, are open source and allow users the greatest
option control by allowing users to substitute their own programming code where
they see fit. Others, such as Gauss, S-Plus, and Stata, expose the source
code used for some methods but provide the core of the program in opaque
binary format only.

4.3.1.1 Varying Software Packages
Most general-purpose statistical software packages include heavily used mod-
els such as regression, and nonlinear models, including probit and logit. As the
demand for more sophisticated models has increased, statistical software compa-
nies have keep pace with the state of the discipline by implementing new models
as they are published. For open-source programs, new models may also be avail-
able in software archives produced by their authors. Most statistical packages
that implement maximum likelihood solvers also allow users to program custom
nonlinear models. With such a wide range of models, it is often not difficult for
users with proficiency in more than one statistical software package to estimate
a model with their data on multiple statistical packages.

The variety of statistical software packages provides the opportunity to conduct
the crudest sensitivity test: inputting data and model into different statistical
programs and observing the results. Differing results are an indication of some
form of programming issues that affect the estimation.

The software sensitivity test is “crude” in that it treats statistical software as
a black box and does not identify the cause of the discrepancies. As we dis-
cuss in Chapters 2 and 3, differences between the results produced by different
packages may be attributable to differences in the underlying algorithms, differ-
ences in the implementation of algorithms, formula parsing, and/or data input,
ill-conditioning of the data with respect to the model, or a combination of any
of these factors.

Sophisticated programs allow users more control over the algorithm used in
estimation and features of its implementation. When the implementation and

SENSITIVITY TESTS 75

algorithm are sufficiently well documented and under the user’s control, the user
can contrast the results of estimation using different algorithms, or using the
same algorithm on different platforms. On the other hand, when such details are
hidden, the user may still witness that the estimation produces different results
when run in different packages but may not be able to determine why this is so.

Sensitivity to changing software packages may be caused by software bugs, but
they may also reveal data sensitivity to the numeric computation issues discussed
in Chapter 2. The computation issues involved may depend on the type of model
being estimated and the algorithms used to estimate it.

For PRNGs, algorithm sensitivity tests may reveal inadequate randomness or
period of a PRNG. When random numbers are generated, a small amount of
disagreement in results is natural, especially in simulations where simulation
variance alone will inevitably cause differences. If results disagree substantively
across alternatives, however, one should investigate until one clearly understands
which set of results should be discarded.

For nonlinear optimizers, changing default options may identify multiple local
optima in the function to be solved and is generally a good idea when such
multiple optima are suspected to exist.

Sometimes the same program may be implemented on two or more computing
platforms, such as Linux, Windows, and Unix. This provides the opportunity to
examine sensitivity to underlying operating system architecture. Assuming that
the statistical package, in fact, uses the same code on each platform, operating
system sensitivity may be a consequence of the way in which different computing
platforms subtly handle underlying computations. In rare circumstances it may
even be a consequence of a bug, although more often such differences are due
to subtle differences between implementations of floating point operations or
numerical library functions.

What does a sensitivity test reveal? When results are confirmed, a researcher
may have greater confidence that the results are not sensitive to the issues dis-
cussed here. However, there is always the remote possibility that two results
generated through one of these tests are both incorrect. When results differ, the
researcher is faced with a conundrum: Which answer is the “truth”? In this case,
the researcher should ask: Is one implementation known to be more accurate than
another? Is one algorithm better suited for the type of problem being analyzed?
What diagnostics are available?

If the researcher is not sure of the answer to these questions, we suggest
reading on, as in the next section we discuss another sort of sensitivity test that
may shed light on the numerical accuracy of an algorithm. In subsequent sections
we discuss methods for directly improving the accuracy of your results and how
to deal with threats to inference caused by numerical problems.

4.3.2 Perturbation Tests

Perturbation tests replicate the analysis of interest while changing the input data
to a small extent. The purpose is to observe the subsequent sensitivity of the

76 ROBUST INFERENCE

estimates to such perturbations. Noticeably large changes in the resulting infer-
ences are a sign that the original model depends greatly on the unique structure
of this particular dataset. Note that sensitivity, as defined here, is not a mea-
sure of true computational stability, because values for the correct estimates are
unknown.

In addition, these tests can be used in combination with alternative computing
implementations such as different packages or different hardware platforms. This
approach has the potential to separate out the portions of pseudoinstability that
are due to both model and computation. By running multiple implementations
and algorithms on the same sets of perturbed data, the differences in software
and hardware implementation plus algorithms are highlighted since the model
and underlying data are fixed.

The magnitude and distributional form of the perturbations is not always
important: Even the basic approach of using uniform disturbances, “noise,” can
identify model and data problems. However, it is important to gauge the pertur-
bations relative to known or suspected levels of measurement error that exist in
the data at hand.

4.3.2.1 Perturbation Strategy
An exploratory test for sensitivity of a given problem to measurement and esti-
mation error is to introduce small random perturbations to these data, on the
order of the measurement error of the instruments used to collect it, and recal-
culate the estimate. This technique is analogous to bootstrapping. However, in
bootstrapping the sample selection is randomly perturbed, but individual obser-
vations are not, whereas in our strategy the sample selection is not perturbed but
the individual observations are.

Perturbation tests were first used for assessing numerical accuracy by Beaton
et al. (1976), who develop a stability index based on it. Gill et al. (1981, particu-
larly Sec. 8.3.3) recommend a similar method, although it is informally described
and suggested as a pragmatic method for gauging whether a program was stable.
Also, whereas Beaton et al. perturb only the explanatory variables in the model,
Gill et al. do not distinguish among the inputs to the computation.

To see how these perturbations affect the estimation process, consider two
likelihood functions: a standard form based on the observed data 	(θ, x), and
an identical specification but with perturbed data 	p(θ, xp). Here p denotes an
individual perturbation scheme: p = [p1, p2, . . . , pn] ∈ Rn applied to the data:
x = [x1, x2, . . . , xn] ∈ Rn. Thus we can show that comparing the two likelihood
functions is analogous to comparing an unweighted likelihood function 	(θ, x) =∑

i 	i(θ, xi) to a weighted version 	p(θ, xp) = ∑
i pi	i(θ, xi). Or we could

define the unperturbed likelihood function to be one in which there are null
perturbations or weights: 	p0(θ, xp0) = ∑

i p0i	i(θ, xi), where p0 is simply a
vector of 1’s. This setup gives us two maximum likelihood vectors to compare:
θ̂ and θ̂p.

In this context, our approach is to evaluate the range of θ̂ produced by multiple
samples of xp generated by random production of p disturbances across different

SENSITIVITY TESTS 77

datasets, x. The idea builds on the mechanical approach of Cook (1986), who
looks for maximizing and minimizing perturbances, and roughly follows a simpler
test of logistic regression given by Pregibon (1981). Lawrence (1988) applies
Cook’s method to develop diagnostics for linear regression.

In addition, although this evaluation methodology does not require that the
likelihood function be statistically well-behaved, it does have a natural inter-
pretation for well-behaved maximum likelihood estimations. If the likelihood
function for an MLE is well behaved, there is a simple mapping between per-
turbations of data and perturbations of the model. For example, small normally
distributed noise added to the data should induce a corresponding small mean
shift in the likelihood curve (St. Laurent and Cook 1993).

Cook (1986) continues on to define the likelihood displacement :

LDp = −2
[
	p(θ, xp) − 	(θ, x)

]
, (4.1)

which measures the statistical influence that different perturbation schemes have
on the estimation process. Not surprisingly, it can be shown that LDp defines a
large-sample confidence region distributed χ2

k , where k is the number of param-
eters specified (Cox and Hinkley 1974; Cook and Weisberg 1982).

If the likelihood surface is steeply curved (in the multidimensional sense) at
a MLE solution, then clearly we will see large values of LDp for even small
perturbation schemes. Contrary to intuition, a sharply spiked likelihood function
in this way across every dimension is not a sign of a reliable result, it indicates a
fragile finding that is heavily dependent on the exact form of the data observed.
This is because the change in the likelihood function is not due to different values
for the estimate (where sharp curvature is desired), it is due to changes in the data
(perturbations) where sharp changes indicate serious sensitivity of the likelihood
function to slightly different data: a model that is “nonresistant.”

Cook also ties this curvature definition back to the idea of statistical reliability
by a geometric interpretation. Define pa = p0 + av, where a ∈ R and v is a
unit-length vector. The interpretation of pa is as a line that passes through p0 in
the direction of the vector v, where a gives the n-dimensional placement relative
to p0. The geometric curvature of LDpa in the direction of the vector v starting
at p0 is given by

Cp = 2|(�v)′H−1(�v)|, (4.2)

where � is the k ×n matrix given by �ij = ∂2	p0(θ̂ , xp)/∂θ̂ip0j (i.e., evaluated
at the MLE and p0) and H is the standard Hessian matrix. Cook (1986, p. 139)
suggests calculating the maximum possible curvature by obtaining the v vector
that maximizes (4.2): Cmax = MaxvCv, which gives the greatest possible change
in the likelihood displacement. Other strategies include perturbing in one direction
at a time as a means of understanding which dimensions (i.e., parameters) are
more sensitive than others.

Recent work by Parker et al. (2000) formalizes a variant of this idea, which
they call Monte Carlo arithmetic. Essentially, they replicate an analysis while

78 ROBUST INFERENCE

randomly perturbing (in the form of random rounding) all calculations. This
approach is more widely applicable than formal analysis (which can be prac-
tically impossible to apply to complex problems). Even where formal analy-
sis is possible, Parker et al. show that MCA can also yield tighter practical
bounds. They argue that this is a very successful “idiot light” for numerical
inaccuracy.

4.3.2.2 Perturbations and Measurement Error
Perturbations can be considered in a manner similar to measurement error. The
effects of measurement error on statistical models have been known for quite
some time in a number of contexts (Wald 1940; Nair and Banerjee 1942; Reiersol
1950; Durbin 1954; Madansky 1959) and are well-studied today (Fedorov 1974;
Schneeweiss 1976; Fuller 1987, 1990; Stefanski 1989; Wong 1989; Gleser 1992;
Cragg 1994; Carrol et al. 1995, 1999; Jaccard and Wan 1995; Buonaccorsi 1996;
Schmidt and Hunter 1996; Sutradhar and Rao 1996; Zhao and Lee 1996; Gelfand
et al. 1997; Lewbel 1997; Mukhopadhyay 1997; Wang and Wang 1997; DeShon
1998; Li and Vuong 1998; Marais and Wecker 1998; Skinner 1998; Cheng and
Van Ness 1999; Iturria et al. 1999). Essentially there are two problems: zero
and nonzero mean measurement error. The nonzero case leads obviously and
immediately to biased coefficients in the opposite direction of the data bias. That
is, in a linear model, multiplying some nontrivial δ > 1 to every case of an
explanatory variable, X, implies that larger increases in this variable are required
to provide the same effect on the outcome variable, thus reducing the magnitude
of the coefficient estimate. Another way of thinking about this is that a 1-unit
change in X now has a smaller expected change in Y. This effect is also true for
GLMs where there is the additional complexity of factoring in the implications
of the link function (Carroll et al. 1995).

Zero mean measurement error is the more important and more common situa-
tion. Furthermore, the effects found for zero mean measurement error also apply
to nonzero mean measurement error in addition to the effects discussed above.
Here we shall make our points primarily with the linear model, even though
many solutions are certainly not in this group, purely to aid in the exposition.

Suppose that the true underlying (bivariate for now, k = 2) linear model
meeting the standard Gauss–Markov assumptions is given by

Y
(n×1)

= X β,
(n×k)(k×1)

(4.3)

but X and Y are not directly observable where we instead get X∗ and Y∗ accord-
ing to

Y∗ = Y + ξ and X∗ = X + ν, (4.4)

where ξ ∼ N (0, σ 2
ξ) and ν ∼ N (0, σ 2

ν), and σ 2
ξ and σ 2

ν are considered “small.”
It is typically assumed that ξ and ν are independent both of each other and of X
and Y. These are standard assumptions that can also be generalized if necessary.

SENSITIVITY TESTS 79

Let’s look first at the ramifications of substituting in the error model for Y:

(Y∗ − ξ) = Xβ + ε

Y∗ = Xβ + (ε + ξ). (4.5)

Since ξ has zero mean and is normally distributed by assumption, the effect
of measurement error is to attenuate the overall model errors but not to violate
any assumptions. That is, measurement error in Y falls simply to the regression
residuals. Therefore, there is now simply a composite, zero mean error term:
ε∗ = ε + ξ . Unfortunately, the story is not quite so pleasant for measurement
error in X. Doing the same substitution now gives

Y = (X∗ − ν)β + ε

= X∗β + (ε − βν). (4.6)

Although this seems benign since ν is zero mean, it does in fact lead to a cor-
relation between regressor and disturbance, violating one of the Gauss–Markov
assumptions. This is shown by

Cov[X∗, (ε − βν)] = Cov[(X + ν), (ε − βν)]

= E[(X + ν)(ε − βν)]

= E[Xε − Xβν + νε − βν2]

= −βσ 2
ν . (4.7)

To directly see that this covariance leads to biased regression coefficients, let
us now insert the measurement error model into the least squares calculation:

β̂1 = Cov[(X + ν), Y]

Var[X + ν]
= E[XY + νY] − E[X + ν]E[Y]

E[(X + ν)2] − (E[X + ν])2

= E[XY] − E[X]E[Y] + E[νY] − E[ν]E[Y]

E[X2] + 2E[Xν] + σ 2
ν − (E[X])2 − 2E[X]E[ν] − (E[ν])2

= Cov(X, Y) + E[νY]

Var(X) + 2 Cov(X, ν) + σ 2
ν

, (4.8)

where we drop out terms multiplying E[ν] since it is equal to zero. Recall that
ν is assumed to be independent of both X and Y, and note that things would
be much worse otherwise. So the 2 Cov(X, ν) term in the denominator and the
E[νY] term in the numerator are both zero. Thus σ 2

ν is the only effect of the
measurement error on the slope estimate. Furthermore, since this is a variance and
therefore nonnegative, its place in the denominator means that coefficient bias

80 ROBUST INFERENCE

will always be downward toward zero, thus tending to diminish the relationship
observed. In extreme cases this effect pulls the slope to zero, and one naturally
implies no relationship.

Of course, the discussion so far has considered only the rather unrealistic
case of a single explanatory variable (plus the constant). Regretfully, the effects
of measurement error worsen with multiple potential explainers. Consider now
a regression of Y on X1 and X2. The true regression model expressed as in
(4.3) is

Y = β0 + X1β1 + X2β2 + ε, (4.9)

and assume that only X1 is not directly observable and we get instead X∗ = X+ν

with the following important assumptions:

ν ∼ N (0, σ 2
ν) Cov(X1, ν) = 0

Cov(ν, ε) = 0 Cov(ν, X2) = 0.
(4.10)

Now as before, substitute in the measurement error component for the true com-
ponent in (4.9):

Y = β0 + (X1 − ν)β1 + X2β2 + ε

= β0 + X1β1 − β1ν + X2β2 + ε

= β0 + X1β1 + X2β2 + (ε − β1ν). (4.11)

It should be intuitively obvious that problems will emerge here since β1 affects
the composite error term, leading to correlation between regressor and disturbance
as well as heteroscedasticity.

To show more rigorously that this simple measurement error violates the
Gauss–Markov assumptions, we look at the derivation of the least squares coef-
ficient estimates. For the running example with two explanatory variables, the
normal equations are n

∑
Xi1

∑
Xi2∑

Xi1
∑

X2
i1

∑
Xi1Xi2∑

Xi2
∑

Xi1Xi2
∑

X2
i2




β̂0

β̂1

β̂2

 =


∑

Yi∑
Xi1Yi∑
Xi2Yi

 . (4.12)

So the 3 × 3 inverse matrix of X′X is

det(X′X)−1


∑

X2
i1

∑
X2

i2 −∑
Xi1Xi2

∑
Xi1Xi2∑

Xi1Xi2
∑

Xi2 −∑
Xi1

∑
X2

i2∑
Xi1

∑
Xi1Xi2 −∑

X2
i1

∑
Xi2,

SENSITIVITY TESTS 81∑
Xi2

∑
Xi1Xi2 −∑

Xi1
∑

X2
i2

n
∑

X2
i2 −∑

Xi2
∑

Xi2∑
Xi1

∑
Xi2 − n

∑
Xi1Xi2∑

Xi1
∑

Xi1Xi2 −∑
Xi2

∑
X2

i1∑
Xi2

∑
Xi1 − n

∑
Xi1Xi2

n
∑

X2
i1 −∑

Xi1
∑

Xi1

 ,

where

det(X′X) = n
(∑

X2
i1

∑
X2

i2 −
∑

Xi1Xi2

∑
Xi1Xi2

)
+
∑

Xi1

(∑
Xi1Xi2

∑
Xi2 −

∑
Xi1

∑
X2

i2

)
+
∑

Xi2

(∑
Xi1

∑
Xi1Xi2 −

∑
X2

i1

∑
Xi2

)
.

Using β̂ = (X′X)−1X′Y, and paying attention only to the last coefficient estimate,
we replace Xi1 with Xi1 + ν:

β̂2 = det(X′X)−1
[(∑

(Xi1 + ν)
∑

(Xi1 + ν)Xi2 −
∑

(Xi1 + ν)2
∑

Xi2

)
×
(∑

(Xi1 + ν)Yi

)
+
(∑

(Xi1 + ν)
∑

Xi2

− n
∑

(Xi1 + ν)Xi2

) (∑
Xi2Yi

)
+
(
n
∑

(Xi1 + ν)2

−
∑

(Xi1 + ν)
∑

(Xi1 + ν)
) (∑

X2
i2

)]
, (4.13)

where the same adjustment with ν would have to be made to every Xi1 term in the
determinant above as well. The point here is to demonstrate that the measurement
error in X1 can have a profound effect on the other explanatory variables, the
extent of which is now obvious only when looking at the full scalar calculation
of the coefficient estimate β̂2, even in just a linear model example.

An easier but perhaps less illustrative way to show this dependency is with
the handy formula

β̂2 = β−1 − β−2β21

1 − r2
21

, (4.14)

where: β−1 is this same regression leaving out (jackknifing) X1, β−2 is the
regression leaving out X2, β21 is a coefficient, and r2

21 is the R2 measure obtained

82 ROBUST INFERENCE

by regressing X2 on X1. What this shows is that the extent to which the variable
with measurement error “pollutes” the coefficient estimate of interest is governed
by the linear association between these explanatory variables, and the only time
that measurement error in X1 will not have an effect is when there is no bivariate
linear relationship between X2 and Y or no bivariate linear relationship between
X1 and X2.

Although we have made these points in a linear model context, corresponding
effects of measurement are also present in the generalized linear model and are
more complicated to analyze, due to the link function between the systematic
component and the outcome variable. In generalized linear models, the additive,
systematic component is related to the mean of the outcome variable by a smooth,
invertible function, g(·), according to

µ = Xβ where E(Y) = g−1(µ). (4.15)

This is a very flexible arrangement that allows the modeling of nonnormal,
bounded, and noncontinuous outcome variables in a manner that generalizes the
standard linear model (McCullagh and Nelder 1989; Gill 2000; Fahrmeir and Tutz
2001). Using the link function we can change (4.11) to the more general form

E(Yi) = g−1 (β0 + β1(Xi1 − ν) + β2Xi2 + εi

)
= g−1 (β0 + X1β1 + X2β2 + (ε − β1ν)

)
, (4.16)

which reduces to the linear model if g(·) is the identity function. Common forms
of the link function for different assumed distributions of the outcome variable
are g(µ) = log(µ) for Poisson treatment of counts, g(µ) = −1/µ for modeling
truncation at zero with the gamma, and logit (log[µ/1 − µ]), probit [�−1(µ)],
or cloglog [log(− log(1 − µ))] for dichotomous forms.

By including a link function, we automatically specify interactions between
terms on the right-hand side, including the term with measurement error. To see
that this is true, calculate the marginal effect of a single coefficient by taking the
derivative of (4.16) with regard to some variable of interest. If the form of the
model implied no interactions, we would obtain the marginal effect free of other
variables, but this is not so:

∂Yi

∂Xi2
= ∂

∂Xi2
g−1 (β0 + X1β1 + X2β2 + (ε − β1ν)

)
= (g−1)′

(
β0 + β1Xi1 + β2Xi2 + (ε − β1ν)

)
β2. (4.17)

The last line demonstrates that the presence of a link function requires the use
of the chain rule and therefore retains other terms on the right-hand side in
addition to β2: With the generalized linear model we always get partial effects
for a given variable that are dependent on the levels of the other explanatory
variables. Furthermore, here we also get partial effects for X2 that also depend
on the measurement error in X1.

SENSITIVITY TESTS 83

In this section we have analyzed measurement error effects in detail and
demonstrated that outcome variable measurement error is benign, and explanatory
variable measurement error is dangerous. Perturbations are essentially researcher-
imposed measurement error. Having discussed the deleterious modeling problems
with measurement error, we advise against intentionally including data perturba-
tions in published estimates, although some researchers have explicitly modeled
known data measurement error using an approach similar to perturbation analysis
(Beaton et al. 1976). Instead, the perturbations act like unintended, but completely
known measurement error that provide a means of testing the behavior of esti-
mators and algorithms. That is, models that react dramatically to modest levels
of measurement error are models that one should certainly be cautious about
(particularly in the social sciences).

In summary, perturbation may introduce bias, but if the problem is well-
conditioned and the algorithm and implementation accurate, the bias should be
small. Moreover, any bias introduced by perturbations should be the same when
the same model and perturbed data are used in different implementations. So if
two implementations of the same model show marked differences in pseudosta-
bility with respect to similar perturbation analyses, the root cause is asserted to
be computational and not statistical.1

4.3.2.3 Some Ramifications of Perturbed Models
Using the core idea of random perturbation, we can assess whether results are reli-
able, whether they are consistent with respect to small perturbations of the data.
This methodology complements standard diagnostic plots in two ways. First, one
can use the strictly numerical results as an unambiguous check: Simply evaluate
whether the range of results across input perturbations still fits the original sub-
stantive conclusions about the results. Second, this methodology may sometimes
reveal numerical problems that may be missed in standard diagnostic plots.

With regard to input perturbation, what is considered “small” for any particular
case is a matter of subjective judgment. There is an obvious lower limit: Pertur-
bations of the data that are at the level below the precision of the machine should
not be expected to cause meaningful changes in output. The upper limit on pertur-
bations is less clear, but should be bounded by the accuracy of data measurement.

In many of the social sciences, measurement error certainly dominates machine
precision as a source of input inaccuracy. Many of the significant digits of macro
data are reported as rounded, for example, to thousands. Introducing perturbations
to the rounding error of these data is a tractable problem to solve.

Sometimes data are bounded, which introduces complications to perturbations.
The simplest way of avoiding the bounding problem is to truncate any illegal
value generated by perturbations to the constraint, but this introduces mass at the
boundary points.

1This approach is complementary to the one proposed by Judge et al. (2002). Their approach uses
instrumental variables, where available, to reduce the effects of measurement error. Our approach
provides a diagnostic of the results, sensitivity to it.

84 ROBUST INFERENCE

Choosing the number of perturbed datasets to generate is also something of
an art. The extant literature does not specify a particular number of samples
that is guaranteed to be sufficient for all cases. Parker (1997) and Parker et al.
(2000) use as many as 100 and as few as four samples in their Monte Carlo
arithmetic analysis. Parker (1997) also shows that in all but pathological cases,
the distribution of the means of coefficients calculated under random rounding
are normal, which suggests that 30 to 50 samples should be adequate. Moreover,
since the perturbation technique can be replicated indefinitely, one can simply
rerun the analysis, increasing the number of samples, until the variance across
replications is acceptable for the substantive problem at hand.

4.3.3 Tests of Global Optimality

Another sensitivity “test” involves noting the responsiveness of a search algo-
rithm to starting values. Researchers who analyze complex functions are probably
already aware that a poor choice of starting values may lead the search algorithm
horribly astray: for example, leading the search algorithm onto a discontinuity
with no maximum. Here, we briefly explain the problem that multiple optima
poses to a search algorithm, discuss some strategies for selecting starting val-
ues that might reveal a global optimum, and explore some tests that have been
proposed to identify if a global optima has been found.

4.3.3.1 Problem—Identifying the Global Optimum
Once an algorithm reaches convergence, how certain can a researcher be that
the optimum reached is truly the global and not merely a local optimum? If the
maximization function is globally concave, the local optimum and the global
optimum are the same (Goldfeld and Quandt 1972; Gill et al. 1981; Nocedal
and Wright 1999). Unfortunately, if the function is known to have several local
optima, there is no known way of guaranteeing that a global optimum will be
found in a finite amount of time (Veall 1990, p. 1460). Commonly used search
algorithms can get stuck at a local optimum, thereby missing the true global
maximum. Searching the entire parameter space for global optimum is often too
computationally intensive, especially when there are a large number of right-
hand-side variables in the equation to be estimated.

Multiple optima may exist more frequently than most political scientists real-
ize. Consider this example from Goldfeld and Quandt (1972, pp. 21–22):

Yi = a + a2xi + ui where ui is iid N
(

0, σ 2
)

. (4.18)

This simple nonlinear equation has three local optima. Fortunately, such heav-
ily used models as the binomial and ordered probit and logit (but not multinomial
probit) have been shown to have globally concave log-likelihood functions (Pratt
1981). In general, however, log-likelihood functions are not guaranteed to be
concave and can have many unbounded local optima (e.g., Barnett 1973).2

2Even those functions identified by Pratt are not guaranteed to be concave when nonlinear terms
such as interaction terms are included in the linear form of the equation.

SENSITIVITY TESTS 85

In addition, if the log-likelihood function is not concave, the log likelihood
may not be a consistent estimator, even at the global maximum (Haberman
1989).

Even if a function has a unique optimum, an optimization algorithm may not
be able to find it. If the curvature of the function around the global maximum
is “flat,” less than the precision of the computer on which the estimation is
performed, the algorithm can fail to find the global optimum (Gill et al. 1981,
p. 300). Since small errors may be propagated and magnified, it is not inconceiv-
able that an observed local optima may be purely a consequence of numerical
inaccuracies. Ultimately, the solution provided by search algorithms will depend
on the shape of the machine representation of the function, not the theoretical
shape.

Researchers employing increasingly sophisticated maximum likelihood func-
tions with multiple local optima should find these statements troubling. Simply
programming an equation, plugging in data, and letting the software find a solu-
tion will not guarantee that the true global optimum is found, even if the “best”
algorithm is used. Knowing when a function has reached its true maximum is
something of an art in statistics. Although feasibility can be a reality check for
a solution, relying solely on the expected answer as a diagnostic might bias
researchers into unwittingly committing a type I error, falsely rejecting the null
hypothesis in favor of the hypothesis advocated by the researcher. Diagnostic
tests are therefore needed to provide the confidence that the solution computed
is the true solution.

4.3.3.2 Proposed Diagnostic Tests for Global Optimality
Search algorithms depend on the starting point of their search. A poor choice of
starting values may cause a search algorithm to climb up a discontinuity of the
function and either break down completely or never find convergence. In other
cases the search algorithm may settle at a local optimum far from the global
optimum. The choice of good starting values can be critical to finding the global
optimum.

One popular method used to choose good starting values is first to esti-
mate a simple model that is both well behaved and comparable (sometimes
nested within) to the model to be estimated and then use the solution from
the simple model as the starting values for the parameters of the more complex
model.

Locating a set of starting values that produce a solution may lull the unwitting
researcher into a false sense of security. Although a search algorithm that fails
to find a solution sends a clear warning message that something has gone wrong,
one that produces a seemingly reasonable solution does not alert the user to
potential problems. Researchers who might search for alternative starting values,
and know that their function breaks down in certain regions, may in the course of
avoiding trouble fail to perform a thorough search of the parameter space for the
starting values that lead to the true global optimum. “There may be a temptation,
one suspects, to choose alternative sets of starting values fairly close to either

86 ROBUST INFERENCE

the initial set or the solution, easing computational difficulties but making it less
likely that another maximum would be found if it existed” (Veall 1990, p. 1459).

One diagnostic commonly used to determine if the global maximum of a
function has been found is to conduct an exhaustive search of the parameter
space around the suspected global maximum of the function. The parameter
space may be either deterministically or randomly searched. If the evaluation
of the function at an alternative parameter vector yields a higher value for the
function, the researcher knows immediately that the global optimum has not
been found. The vector of parameters generated may also be used as starting
values for the search algorithm, to see if it settles back at the suspected global
optimum.

The reliability of this method of searching the parameter space depends on
the proportion of the parameter space that can be searched, which may be quite
small for unconstrained functions with a large number of variables. So an effective
search across the parameter space should select alternative starting values in such
a manner as to attempt to climb the function from different “sides” of the basin
of attraction (the region of the parameter space that leads to an optimum). For
example, if all the starting values are smaller than the solution found by the
search algorithm, the researcher should try starting values that are all greater
than the solution. If alternatively, the starting values consistently locate either
the candidate optimum or another local optimum, the researcher can be more
confident that the solution is the global maximum.

Strategies for finding starting values that lead to a global optimum have been
formalized in tests for global optimality. Finch et al. (1989) propose selecting
random starting values and using the distribution of the value of the likelihood
function at their associated convergence points as a way to gauge the probability
that an optimum, which may be local or global, has not been observed. Drawing
on a result presented by de Haan (1981), Veall (1990) suggests that by using a
random search and applying extreme asymptotic theory, a confidence interval for
the candidate solution can be formulated.

The intuition behind Finch et al.’s statistic is to estimate the number of unob-
served basins of attraction through the number of basins of attraction observed.
The greater the number of basins of attraction observed, the lower the probability
that a global optimum has been located. The statistic is first attributed to Turing
(1948), and Starr (1979) provides a later refinement:

V2 = S

r
+ 2D

r (r − 1)
. (4.19)

Here V2 is the probability that a convergence point has not been observed, and r

is the number of randomly chosen starting points. S is the number of convergence
points that were produced from one (a single) starting value, and D is the number
of convergence points that were produced from two (double) different starting
values. Starr’s result is further generalizable for triples and higher-order observed
clumping of starting values into their basins of attraction, but Finch et al. assert
that counting the number of singles and doubles is usually sufficient.

SENSITIVITY TESTS 87

Finch et al. (1989) demonstrate the value of the statistic by analyzing a
one-parameter equation on a [0, 1] interval for r = 100. Although the statis-
tic proposed by (4.19) is compelling, their example is similar to an exhaustive
grid search on the [0, 1] interval. The practicality of computing the statistic for
an unbounded parameter space with a high degree of dimensions for a compu-
tationally intensive equation is not demonstrated. However, the intuition behind
the statistic is still sound. If multiple local optima are identified over the course
of a search for good starting values, a researcher should not simply stop once an
apparent best fit has been found, especially if there are a number of local optima
that have basins of attraction that were identified only once or twice.

The second method of parameter searching begins from the location of the
candidate solution. A search for the global optimum is conducted in the param-
eter space surrounding the candidate solution, either deterministically (e.g., grid
search) or randomly. As with the search for starting values, there is no good
finite number of parameter vectors or bounds on the parameter space that will
guarantee that the global optimum will be identified.

This is particularly true for the grid search approach. The grid search is best
applied when the researcher suspects that the search algorithm stopped prema-
turely at a local optimum atop a flat region around the global maximum, a
situation that Gill and King (2000) refer to as locating the highest piece of “bro-
ken glass on top of a hill.” In this case the grid search neighborhood has a
clear bound, the flat region around the candidate solution, that the researcher can
employ in searching for the global maximum.

Drawing on a result presented by de Haan (1981), Veall (1990), suggests that
by using a random search and applying extreme asymptotic theory, a confidence
interval for the candidate solution can be formulated. According to Veall (1990,
p. 1460) the method is to randomly choose a large number, n, of values for
the parameter vector using a uniform density over the entire parameter space.
Call the largest value of the evaluated likelihood function L1 and the second
largest value L2. The 1 − p confidence interval for the candidate solution, L

′
, is

[L1, L
p], where

Lp = L1 + L1 − L2

p−1/α − 1
(4.20)

and α = k/2, where k is a function that depends on n such that k(n) → 0, as
k(n), n → ∞ (a likely candidate is k = √

n).
As Veall (1990, p. 1461) notes, the bounds on the search of the parameter

space must be large enough to capture the global maximum, and n must be large
enough to apply asymptotic theory. In Monte Carlo simulations, Veall suggests
that 500 trials are sufficient for rejecting that the local optimum identified is not
the a priori global optimum. This procedure is extremely fast because only the
likelihood function, not the model, is calculated for each trial. As with starting
value searches, researchers are advised to increase the bounds of the search area
and the number of trials if the function to be evaluated has a high degree of
dimensionality, or a high number of local optimum have been identified.

88 ROBUST INFERENCE

4.3.3.3 Examples: BoxBOD and Scobit
In practice, can these proposed diagnostic tests work? The example cases in the
aforementioned articles are usually quite simplistic, with one or two right-hand-
side variables. The practicality of these tests is not shown when a high number
of right-hand-side variables are present. To put these tests through their paces,
we program these tests for two examples. One by Box et al. (1978, pp. 483–87),
which we treat in detail in Chapter 2, we refer to here as BoxBOD. This equation
is selected because it is known to have multiple optima, and some maximizer
algorithms may become stuck at a local rather than a global optimum. The second
example is Nagler’s (1994) scobit model, discussed in Chapter 3.

In our evaluation of the scobit, we ran the model hundreds of times. We found
that the estimation procedure was slowed by the nearly 100,000 observations in
the 1984 Current Population Survey dataset, which the scobit model is run in
conjunction with. To speed our analysis, we subset these data. What we found,
however, was that the scobit model had significant convergence problems with the
small dataset. Sometimes the maximum likelihood optimization program would
fail to converge, and when it did converge, it failed to converge at the same point.
Here, we investigate the properties of the scobit model using a small dataset of
2000 observations.

To evaluate random starting values, we select a lower and upper bound of
starting values for each coefficient. We then randomly select starting values in the
given range. In practice, any distribution may be used to select starting values, but
in our examples we choose starting values using a uniform distribution, because
we want to choose starting values near the extreme ends of the ranges with a
relatively high probability. The practical limit of the number of random starting
vectors of coefficients is determined by the complexity of the equation to be
estimated. For a small number of observations and a relatively simple likelihood
function, such as BoxBOD, MLE analysis is quick. Thus, a large number of
random starting values can be tested. For a function like scobit, a smaller number
of random start values is more practical, as the more complex likelihood function
and higher number of observations slows the speed of the search algorithm.

We implement the two tests for global optima discussed above, which we call
the Starr test, as described by Finch et al. (1989), and the Veall test (Veall 1990).
For the Starr test, we calculate the probability that an optimum, local or global,
remains unobserved. For the Veall test, we simply provide an indicator if the
observed highest optimum is outside the 95% confidence interval for the global
optimum, which we report as a “1” if the observed highest optimum is outside
the 95% confidence interval for the global optimum.

The implementation of the Starr test reveals a computational complexity that
is unrecognized in the literature but must have been addressed in programming.
In our many replications, the MLE often settles on a mean log-likelihood value
of −2.1519198649, which thanks to high-precision estimation on a supercom-
puter by NIST, we know to be the global optimum. However, at the eleventh
digit to the right of the decimal and beyond the reported log likelihood, the log
likelihood varies across runs. Finch et al. (1989) are silent on how these distinct

SENSITIVITY TESTS 89

log likelihoods should be treated. We suspect that they counted these optima as
one optimum. However, it may be possible that the optimizing algorithm has
settled on two distinct local optima that are coincidentally near the same height
of the likelihood function.

So we should distinguish among distinct multiple optima, even when the dif-
ference among their log likelihoods is small, if they imply substantially different
estimates. To do this, we calculate the Euclidean distance between pairs of esti-
mated coefficients. If the distance is small, we determine that the log likelihoods
are drawn from the same optima. We identify distances less than 0.1 to be distinct
solutions, but in practice this tolerance level will depend on the number of coef-
ficients and the values of estimates that the researcher is concerned about. We
consider the case of three (or generally, more) optima in n-dimensional space,
where two may be less than the critical value from the third, but more than the
critical value from each other, as two distinct optima.

The results of our two tests of global optimum for the two example cases
are presented in Table 4.1. For each model, we present the number of starting
coefficient vectors that we used, the number of successful convergences, the Starr
probability that an optimum has not been observed, and the Veall test. We run
these tests for 10, 50, and 100 starting coefficient vectors.

For the BoxBOD model, the search algorithm has mild convergence difficul-
ties. While the search algorithm finds a convergence point for all 10 random
starting values, it finds convergence for 42 of 50 and 95 of 100 random starting
values. The Veall test of global optimality indicates that at least one of these con-
vergence points is outside the 95% confidence interval for the global optimum.
Among these convergence points, two unique optima are identified in 10 and 50
runs of random starting values, three in 100 runs. Accordingly, the Starr test for
global optimality expresses a positive probability that another optimum may exist.

Table 4.1 Results of Tests for Global Optima

Number of
Starting Coefficient Vectors

10 50 100

BoxBOD

Successful convergences 10 42 95
Distinct optima 2 2 3
Veall 1.000 1.000 1.000
Starr 0.010 0.024 0.210

Scobit

Successful convergences 4 32 71
Distinct optima 4 32 71
Veall 1.000 1.000 1.000
Starr 1.000 1.000 1.000

90 ROBUST INFERENCE

For the scobit model, the search algorithm has greater difficulty in reaching
convergence. In only four of 10, 32 of 50, and 71 of 100 times does the algorithm
find convergence. The Veall test for global optimum indicates that at least one
of these convergence points is outside the 95% confidence interval for the global
optimum. Every instance of convergence is distinct from another—for 10, 50,
and 100 runs—and the Starr test accordingly indicates that another optimum is
possible.

The scobit example merits further discussion. Even though every convergence
point is unique, if only one run was performed successfully, and a researcher
did nothing further, there would have been indications that the search algorithm
encountered difficulty in converging. For example, at the end of each run, the
Hessian is non-invertible, and no standard errors are produced (see Chapter 6).
Among the runs that exceed the maximum number of iterations, the log likelihood
is often given as an imaginary number, or infinity.

Among the multiple convergence points of the scobit example, many report
the same log likelihood (to eight or fewer digits), but the coefficients are still
“far” from one another, sometimes varying over 1000 percent from one another.
Thus, the likelihood surface is flat in a broad region around the optimum. What
should we do in this circumstance? One possible solution is to gather more
data, and for this instance, we can do exactly that because we have subset these
original data. Our discussion in Chapter 3 indicates that different programs have
difficulty in producing consistent estimates for the full scobit dataset, which
includes nearly 100,000 observations. We witness similar results reported here
for subsets of these data as large as 50,000 observations. Scobit appears to be a
fragile model, nonresistant to data issues in “small” datasets such as the National
Election Survey. In other circumstances where scobit estimates are generated,
we recommend that careful attention be is paid to all aspects of the numerical
algorithms underpinning the resulting estimates.

Although the Veall test indicated for all of our runs that an optimum out-
side the 95% confidence interval for the global optimum has been found, the
usefulness of this test should not be discounted. The Veall and Starr tests are
complementarity. If the range of starting values are tight around the attraction of
basin for an optimum, the Veall test will probably capture the optimum within
the 95% confidence interval, and fail to reject that the optimum has not been
found. In calibrating our analysis we encountered this result and increased the
range of our starting values as a consequence.

For these complex likelihood functions, there is a trade-off between increasing
the range of the starting values and the performance of the search algorithm.
Often, there is a “core” region, which may contain multiple basins of attraction,
where the search algorithm will find a convergence point. Outside this region,
the likelihood surface is convex, and the search algorithm will merrily iterate
away toward infinity. This behavior requires careful monitoring, which can be
problematic for automated procedures such as ours. Thus, some experimentation
is required to find the right range of starting values such that the global optimum
may be identified without causing the search algorithm to break down.

OBTAINING MORE ACCURATE RESULTS 91

4.3.3.4 Examining Solution Properties
The preceding tests for global optima rely on evaluation of the likelihood func-
tion. Another class of diagnostic tests examine the properties of an optimum to
determine if it is the global optimum.

As we have seen, many methods for finding optima declare convergence when
the gradients are close to zero and the Hessian is positive definite. Computational
methods may also look at local properties near the solution, such as decrease in
the change of step size, little relative change in parameters, sum of squares, or
likelihood (Bates and Watts 1988, p. 49). None of these properties distinguish
a local from a global solution. But there are other properties that under certain
conditions are necessary conditions for a global optimum but are not neces-
sary conditions for a local solution. These properties provide the basis for two
additional tests.

Den Haan and Marcet (1994) describe a technique for testing the accuracy of
complex econometric simulation results, through examination of the distribution
of the residuals. They note that in many economic models, the solution will have
the property that the expectation of the cross product of the residuals from the
estimation and any arbitrary function will be zero: E[ut−1 × h(xt)] = 0. They
use this observation, along with a choices of h and a distribution for E[. . .], to
form a test of global optimality.

Gan and Jiang (1999) note that White’s misspecification test can alternatively
be interpreted as a test of global optimality. Any global root to the likelihood
function must satisfy (∂	/∂θ)2 + (∂2	/∂θ2) ≈ 0. If this does not hold for a
given solution, either the model is misspecified or the solution given for the
log-likelihood problem is not global.

4.4 OBTAINING MORE ACCURATE RESULTS

Inasmuch as there is a trade-off between speed and accuracy, we may choose to
perform many analyses with less accuracy than it is possible to obtain. However,
when statistical software fails (e.g., reporting that a Hessian was not invertible,
as in Chapter 6), or sensitivity tests indicate potential problems, one may want to
replicate the analysis with special attention to numerical accuracy. Furthermore,
many practitioners will want to replicate preliminary results using high levels of
numerical analysis prior to submitting them for final publication.

We assume that most social scientists will have neither the time nor the incli-
nation to write their own libraries of high-precision statistical functions, matrix
algebra subroutines, or optimizers. For those who wish to pursue this route, we
recommend such texts as Kennedy and Gentle (1980), Thistead (1988), Nocedal
and Wright (1999), and Higham (2002). [See also Press et al. (2002) for an
introduction to a broad spectrum of numerical computing, although it lacks the
attention to accuracy of the books just mentioned.]

Instead, in this section we discuss three approaches to increasing the accuracy
of a statistical analysis that can be applied easily to a wide variety of models:
utilizing specialized libraries for computing statistical functions and for matrix

92 ROBUST INFERENCE

algebra, increasing the precision of intermediate calculations, and choosing appro-
priate optimization algorithms. In addition to these general techniques, there are a
variety of specialized techniques for dealing with individual functions and mod-
els. We discuss the techniques that are most applicable to popular social science
models in Chapters 5, 6, 8, 9, and 10.

4.4.1 High-Precision Mathematical Libraries

If the mathematical functions, distributions, or linear algebra operations sup-
plied by a statistical package are not sufficiently accurate, an option may exist
to replace them with more accurate substitutes. Most statistical packages allow
users to supply user-defined functions if they are written within the statistical
programming environment provided by the package. In addition, many packages
permit users to call external libraries, written in other languages, such as C or
FORTRAN, or even to “overload” (dynamically replace) functions supplied by
the package.

There are a variety of popular libraries available for high-performance comput-
ing. NIST’s “Guide to Available Mathematical Software (GAMS)” [first described
in Boisvert et al. (1985)] is a good place to start. GAMS is a large online guide to
and repository of mathematical and statistical libraries that points to many differ-
ent libraries (available online at <http://math.nist.gov/>). In addition,
the Web archive accompanying Lozier and Olver’s (1994) catalog of methods for
evaluating special functions also has an online extended bibliography referring
to dozens of high-performance libraries and algorithms. (This is available from
<http://math.nist.gov/mcsd/Reports/2001/nesf>.)

Some individual code libraries of particular interest include:

• Brown et al.’s (1998) DSSTAB package computes a similar set of distribu-
tions to approximately eight digits of accuracy. DSSTAB is available both
as an interactive program and as a set of libraries that can be used by other
programs.

• Moshier’s (1989) Cephes library provides double-precision statistical dis-
tribution functions and quadruple-precision arithmetic and trigonometric
functions, as well as other functions.

• The journal Transactions on Mathematical Software, which is published
by the Association for Computing Machinery (ACM), has a large archive
of software implementing each algorithm described in print. This includes
many high-precision distribution functions and other functions of mathe-
matical interest. The archive is available from <http://www.acm.org/
calgo/>.

• LAPACK is a very popular, high-quality FORTRAN library for solving sys-
tems of simultaneous linear equations, least squares solutions, eigenvalue
problems, and singular-value problems. It is built on BLAS, which provides
vector and matrix operations (see, Lawson, et al. 1979; Dongarra et al. 1990;
Dongarra and Walker 1995).

OBTAINING MORE ACCURATE RESULTS 93

• The Gnu Scientific Library (see Galassi, et al. 2003) is written in C++ and
provides BLAS support for matrix and vector operations, as well as accurate
implementations of FFTs, pseudo- and quasirandom number generation, and
special mathematical functions (among other features). It is available from
<http://www.gnu.org/software/gsl/gsl.html>.

• The previously mentioned Scalable Library for Pseudo-Random Number
Generation Library (SPRNG) and TESTU01 suite (discussed in Chapter 3)
provides a set of high-quality functions for generating pseudo-random
numbers.

Even when using a high-precision library, care should be exercised when
examining the results, and users should consult the documentation for limitations
on the intended use (such as a range of input parameters) for individual functions
supplied in it.

4.4.2 Increasing the Precision of Intermediate Calculations

Accumulated rounding errors in intermediate calculations, although not the sole
source of inaccuracy in statistical computation (see Chapter 2), contribute to it
heavily. Numerical accuracies can interact with optimization algorithms, causing
false convergence (or lack of convergence) when inaccuracy causes the function
surface to falsely appear to be discontinuous or completely flat. A straightfor-
ward, although computationally expensive way of ameliorating this major source
of inaccuracy is to use multiple-precision arithmetic—in essence calculating fun-
damental arithmetic operations to an arbitrary number of digits. Furthermore,
where intermediate chunks of the problem being solved can be described and
solved in closed form, rounding error can be eliminated entirely.

4.4.2.1 Multiple-Precision Software
In almost all computer hardware, and in almost all standard programming lan-
guages, the precision of arithmetic of built-in operations is limited. There are,
however, multiple-precision software libraries that allow calculations to be per-
formed above the precision of the built-in operators. [The first such library was
due to Brent (1978).] These libraries can perform calculations beyond 1000 dec-
imal digits of precision, given sufficient computing resources, such as available
memory and storage space.

A common approach to implementing multiple-precision numbers is to use
arrays to represent numbers in the standard floating point form (as described
above), with the base and mantissa of each number spread across elements of the
array. Modern FORTRAN libraries that support multiple precision are described in
Smith (1988, 2001) and Bailey (1993). The GMP (Gnu Multiple Precision) library
is also available in C++ and is open source (http://www.gnv.org/). A
number of commercial software packages also support multiple-precision arith-
metic. These include most of the computer algebra systems: Mathematica,
Maple, MuPad, and Yacas. The popular MATLAB computing environment also
supports multiple-precision computations.

94 ROBUST INFERENCE

Some sophisticated systems such as Mathematica support arbitrary pre-
cision. Rather than specifying a high but fixed level of multiple precision for
a set of calculations, the system tracks the precision and accuracy of all input
parameters and subsequent operations. The user specifies the desired precision
of the function being evaluated, and the system then adjusts the precision of
each intermediate calculation dynamically to ensure that the desired precision (or
maximum precision given the precision of the inputs) is obtained. If, for some
reason, the user’s precision goal cannot be met, the system warns the user of the
actual level of accuracy associated with the results.

There is a considerable trade-off between accuracy and efficiency using mul-
tiple-precision techniques. Computing answers to several times the normal pre-
cision of built-in operators may multiply execution time by a factor of 100 or
more (see, e.g., Bailey et al. 1993). Still, multiple-precision arithmetic packages
can be a practical way of improving the accuracy of standard statistical analyses.

4.4.2.2 Computer Algebra Systems
A way of avoiding rounding and truncation errors is to use computer algebra
systems. Computer algebra is a set of mathematical tools for computing the
exact solution of equations, implemented in such programs as Maple (Kofler
1997) and Mathematica (Wolfram 2001).

Computer algebra uses symbolic arithmetic—it treats all variables and quanti-
ties as symbols during intermediate calculations. Symbolic algebra is limited both
by the tractability of the problem to closed-form solution and by the efficiency of
algorithms to perform it. If a problem cannot be solved in closed form, it cannot
be solved within a computer algebra system. Other problems, such as the solution
of large systems of linear equations, although theoretically analytically tractable,
are hundreds or thousands of times slower to solve using current modern algebra
algorithms than by using numerical approaches. [For a thorough introduction to
computer algebra systems, see von zur Gathen and Gerhard (1999).] Although
symbolic algebra may rarely be a tractable approach for an entire estimation,
it can be used judiciously to simplify numerical computation and reduce error.
For example:

• Many algorithms for solving nonlinear optimization problems require
derivatives. By default, they approximate these derivatives numerically (see
Chapter 8). A symbolic algebra program can be used to calculate the exact
formula for the derivative.

• Symbolic manipulation may be used to rationalize input data, or functional
constants, enabling further calculations to be performed without additional
rounding error.

• Symbolic manipulation may be used to simplify expressions, including the
likelihood function.

• Numeric integration is susceptible to both approximation error and round-
ing error. If possible, symbolic integration, yields a function that can be
evaluated directly, with no approximation error and reduced rounding errors.

OBTAINING MORE ACCURATE RESULTS 95

Table 4.2 Accuracy of BoxBOD Estimates Using Mathematica

Digits of Precision B1 Estimate B2 Estimate

NIST certified results 213.80940889 0.54723748542
10 (reduced precision) 213.775 0.547634
16 (default) 213.808 0.547255
30 213.809 0.547237
30 (plus input rationalization) 213.80940889 0.54723748542

4.4.2.3 Combining CAS and MP
Many computer algebra systems, such as Mathematica, Maple, and Yacas,
combine symbolic algebra and multiple-precision arithmetic capabilities. This
can be a powerful combination for solving statistical problems accurately. For
example, McCullough (2000) reports that when operating at high levels of pre-
cision, there was no statistical package that was as accurate and reliable as
Mathematica.

Table 4.2 demonstrates the effect of multiple-precision arithmetic and sym-
bolic computing. To create the table we used Mathematica’s NonLinear-
Regression procedure to solve the NIST Strd BoxBOD benchmark (see Table 4.2)
while varying the levels of arithmetic precision used by the operators.3 At a
reduced precision, results are accurate to the fourth digit. As working preci-
sion is increased, the results become increasingly accurate. Rationalizing the
input data yields more accuracy still—in fact, it produces the correct, certified
result.

4.4.3 Selecting Optimization Methods

Nonlinear optimization is essential to estimating models based on nonlinear
regression or maximum likelihood. Most statistical packages implement some
form of unconstrained optimization algorithm for solving general nonlinear
problems. (Constrained optimization often requires extensions of fundamen-
tal unconstrained algorithms, whereas nonlinear least squares is often solved
with specializations.)

All practical general nonlinear algorithms are iterative. Given a set of starting
values for variables in the model, the algorithm generates a sequence of iterates.
This sequence terminates either when the algorithm converges to a solution (a
local optimum or stationary point of the function) or when no further progress
can be made. The determination that an algorithm has failed to progress involves
comparisons of differences in gradients and objective functions at various points.
So numerical precision is an important limiting factor on the ability of an algo-
rithm to confirm progress. In addition, ad hoc practical considerations, such as a

3Note that Mathematica’s definition of precision is compatible with (but not identical to) precision
as it was used in Chapter 3. For the sake of replication, in the table we list the levels of precision
as identified in Mathematica.

96 ROBUST INFERENCE

limit on the maximum number of iterations allowed, are also used in practice to
determine if the algorithm has failed to progress.

The types of nonlinear optimization problems that social scientists most com-
monly encounter involve the maximization of a single function of continuous
variables. Most commonly this function is unconstrained, twice differentiable,
not computationally expensive, and has associated gradients that can be com-
puted directly or approximated through differences. In addition, the datasets that
social scientists tend to use are small enough that they can be kept in main mem-
ory (RAM) during computation. Optimization of such problems is discussed in
detail in Chapter 8, and we present only a few recommendations and general
precautions in this section and review alternatives for difficult problems.

The class of algorithms designed specifically to solve this problem are based
on computing gradients and using the information in the gradient to inform the
search. Most of these algorithms involve one of two fundamental search strate-
gies: line search and trust region. Line search algorithms use gradient information
to choose a search direction for the next iteration, and then choose a step length
designed to optimize the search in that direction. Trust region algorithms essen-
tially reverse these steps by choosing a length first and then a direction. In
particular, trust region methods choose a region radius, construct an approximate
model of the behavior of the function within the multidimensional region defined
by that radius, and then choose an appropriate direction along which to search
within that region.

Steepest descent and conjugate gradient methods use only the gradient infor-
mation and do not compute a Hessian, so they are sometimes used to save
memory on large problems. Steepest descent is the simplest of the line search
methods, moving along the negative of the gradient direction at every step. It is
however, very slow on difficult problems and can be less accurate than quasi-
Newton methods. Conjugate gradient methods use search directions that combine
gradient directions with another direction, chosen so that the search will follow
previously unexplored directions. They are typically faster than steepest descent
but susceptible to poor scaling and less accurate than quasi-Newton methods.

Newton’s method converges much more rapidly than steepest descent when in
the neighborhood of the solution. The basic Newton’s method forms a quadratic
model (using a Taylor series expansion) of the objective function around the
current iterate. The next iterate is then the minimizer of the quadratic model
approximation. This approach requires the Hessian of the approximation function
to be computable and to be positive definite (see Chapter 6 for details), which in
turn requires that starting values be “close enough” to the optimum. In addition,
the computation of the Hessian at each iteration is often expensive.

Various hybrids and fixes have been attached to Newton’s method to deal
with this problem. The most popular, quasi-Newton methods address both these
problems by building an approximation to the Hessian based on the history of
gradients along each step of the algorithm. This approximation of the Hessian is
less expensive to compute and can be adjusted to be positive definite, even when
the exact Hessian is not.

OBTAINING MORE ACCURATE RESULTS 97

4.4.3.1 Recommended Algorithms for Common Problems
For the unconstrained, continuous, differentiable, moderate-sized problem
described above, the quasi-Newton method proposed by Broyden, Fletcher, Gold-
farb, and Shannon (BFGS) is generally regarded as the most popular method
(Nocedal and Wright 1999, p. 194) and as the method most likely to yield best
results (Mittelhammer et al. 2000, p. 199). The algorithm is, in theory, at least
as accurate as other competing line search algorithms, both as to scaling of input
and to deviations from quadratic shape in the likelihood function. In practice,
it has very often proved to be more accurate than popular alternatives, such as
conjugate gradient, steepest descent, and DFP (Fletcher 1987, pp. 68–71, 85–86;
Nocedal and Wright 1999, pp. 200, 211). (See Chapters 7 and 8 for examples of
real-world models where the choice of optimization method strongly affects the
estimates generated.)

A promising extension of BFGS has emerged from the work of Ford and
Moghrabi (1994). They use the BFGS formula but replace the vectors used in
it. The new vectors are determined by interpolating curves over the gradients
of several previous iterations. In limiting testing, incorporation of this additional
information improves the performance and accuracy of the original algorithm.
However, this approach has not yet been tested extensively, and does not, to our
knowledge, appear as yet in any commercial statistical packages.

A good statistics package should provide more than one type of optimization
algorithm, even for the unconstrained case. A package should offer a trust region
algorithm in addition to BFGS and may offer another algorithm specifically for
nonlinear regression:

• Trust region algorithms may be able to find solutions where BFGS fails
because they do not necessarily rely on the Hessian to find a search direc-
tion (Fletcher 1987, p. 95; Kelley 1999, p. 50). BFGS can fail to converge
when the Hessian is excessively nonpositive definite in the region of the
starting values. Unlike BFGS, however, trust region algorithms are sensitive
to scaling.

• Nonlinear least squares regression is a special case of unconstrained opti-
mization. Because of the structure of the nonlinear least squares problem, the
Jacobian matrix is a good approximation of the Hessian matrix, especially
near the solution. The Gauss–Newton and Levenberg–Marquardt variants
of the line search and trust region algorithms discussed above take advan-
tage of this structure to reduce computing expense and speed convergence.
One should be aware, however, that these algorithms do not work partic-
ularly well for cases where the solution has large residuals. So a hybrid
approach using one of these algorithms with BFGS (or other Newton or
quasi-Newton algorithm) as a fallback is usually recommended (Dennis
and Schnabel 1982, pp. 225, 233; Fletcher 1987, pp. 114–17; Nocedal and
Wright 1999, p. 267)

Unfortunately, however, some algorithms persist in statistical packages for
what seem to be historical reasons. For example, the BHHH optimization

98 ROBUST INFERENCE

algorithm (Berndt et al. 1974) is offered in some econometrics packages, although
it is generally ignored by modern optimization researchers. Another example, the
downhill simplex method, invented by Nelder and Mead (1965), is most appro-
priate where derivatives are absent, but is sometimes seen in statistical routines
being applied to differentiable functions, possibly because of its brevity and
appearance in the popular Numerical Recipes library.4

4.4.3.2 Cautions: Scaling and Convergence
One important source of difficulty in common optimization practice is scaling. In
unconstrained optimization, a problem is said to be poorly scaled if changes in
one independent variable yield much larger variations in the function value than
changes in another variable. (Note that scaling resembles, but is not identical to,
conditioning, which refers to the change in function value as all inputs change
slightly. See Chapter 2 for a discussion of conditioning.) Scaling is often a result
of differences in measurement scale across variables, although such differences
are neither necessary nor sufficient for a problem to be poorly scaled. A problem’s
scaling is affected by changing the measurement units of a variable.

Poor scaling results in two types of problems. First, some algorithms, such
as gradient-based descent methods, conjugate gradient methods, and trust region
methods, are affected directly by scaling level. Other algorithms, such as New-
ton and quasi-Newton algorithms (of which BFGS is a member) are not directly
affected and are said to be scale-invariant, Second, even scale-invariant algo-
rithms, however, are susceptible to rounding problems in their implementations,
and the likelihood of rounding problems often becomes greater when problems
are poorly scaled, since poor scaling can lead indirectly to the addition or sub-
traction of quantities of widely different magnitudes. So, in practice, it is best to
rescale poorly scaled problems even when using scale-invariant algorithms. (Note
that some software packages offer automatic rescaling as an optimization option.
Although potentially convenient, we suggest using the techniques described in
Chapter 3 to gauge the reliability of the package when this option is enabled.
In the course of our testing of a variety of statistical packages, for example,
we found cases, particularly in Microsoft Excel, in which the automatic scaling
routines used in the program actually led to less accurate optimization results.)

Convergence criteria are another common source of difficulty in the use of
optimization software. We note some precautions here and discuss convergence
criteria selection and convergence diagnostics in detail in Chapter 8 (See also
Chapter 10 for examples of how a poor choice of stopping rule can cause false
convergence, and thus incorrect estimates, in logistic regressions.)

Three precautions are warranted with respect to algorithm convergence. First,
software packages often offer convergence criteria that do not distinguish between
lack of algorithmic progress (such as lack of change in the objective function)
and true convergence (in which the gradients of the function are tested for

4The Nelder–Mead algorithm is intended for optimization of noisy functions. In such problems,
gradients cannot be used. Nelder–Mead performs well in practice for such problems, although it
possesses no particularly good theoretical convergence properties (Kelley 1999, p. 168).

OBTAINING MORE ACCURATE RESULTS 99

sufficiency). Second, some algorithms, such as Nelder–Mead, are not globally
convergent. Even using the proper convergence criterion, these algorithms must
be started within the neighborhood of the solution to be effective. Choosing a
steepest descent, trust region, or quasi-Newton algorithm can lead to convergence
from starting conditions under which Newton, inexact Newton, Nelder–Mead, or
conjugate gradient methods would fail to find a solution. Finally, even with the
correct convergence criterion, globally convergent algorithms such as modified
Newton and quasi-Newton methods5 convergence criteria will stop at a local
optimum (or, technically, a stationary point).

4.4.3.3 Implementation of Optimization Algorithms
When choosing an optimization algorithm, one should remember that both algo-
rithm and the implementation thereof are vitally important to finding an accurate
solution. We will not review the distinction between implementation and algo-
rithm in this chapter, as we discussed it thoroughly in Chapter 2. Note, however,
that numerical issues such as round-off error can cause a theoretically scale
invariant and globally convergent algorithm to fail.

Note also that because of the sophistication of optimization algorithms, and the
many variations available for the standard algorithms, implementation is espe-
cially likely to encompass critical design choices. Often, the developers of a
particular software package will expose some of these choices or even param-
eterize them for the user to control. Thus, it is not uncommon for software
packages to offer choices over algorithm family, line search method, derivative
evaluation, and convergence/stopping criteria. Even with such choices, however,
many important implementation choices remain subterranean.

A comparison by Maros and Khaliq (2002) is especially revealing: They note
that a commercial implementation of the simplex algorithm for solving linear
systems (distributed by Wang in 1969) was a logically correct implementation
of the basic algorithm which comprised only 30 lines of code, whereas modern
implementations are typically 1000 times as long. Striking differences remain
among modern implementations of optimization algorithms. Nonlinear optimiza-
tion algorithms show similar variations in implementation. For example, the
simulated annealing algorithm in Press et al. (2002) consists of approximately 50
lines of code, whereas the popular public domain library for simulated annealing
(and algorithmic variants) due to Ingber (1989) is approximately 12,000 lines.

4.4.3.4 Optimization of More Difficult Nonlinear Problems
In optimization, provably “there is no free lunch”; all algorithms perform equally
well (or poorly) across the set possible objective function. Thus, explicitly
or implicitly, successful optimization, exploits some of the structure of the
function that one wants to optimize (Wolpert and Macready 1997) The algo-
rithms described above were designed to exploit the structure of well-behaved,

5Technically, BFGS has thus far been proved to be globally convergent only under limited assump-
tions (see Nocedal and Wright 1999).

100 ROBUST INFERENCE

continuous, nonlinear functions. When the objective function does not have these
characteristics, these algorithms will not be effective.

When a problem does not fit into the intended domain of the algorithms
available in a statistical package, we strongly recommend searching for a more
appropriate algorithm rather than attempting to shoehorn a problem to fit a
particular package. For example, some constrained optimization problems can
sometimes be transformed into unconstrained problems through the use of bar-
rier functions (such as logarithms). This converts the constraints into continu-
ous unconstrained variables with values that approach infinity as the original
constraint is approached. This new function can then be optimized using an
unconstrained optimization algorithm. This is not recommended. Converting the
constrained problem into an unconstrained problem in this way can make the
problem ill-conditioned, which can lead to inaccurate solutions. Native treatment
of constrained problems (e.g., through Lagrangian methods) are more efficient,
robust, and accurate (see Nocedal and Wright 1999).

Good catalogs of specialized optimization algorithms for different categories
of problems include Moré and Wright (1993) and its online successor, and the
online guides in Mittelmann and Spellucci (2003). These resources can read-
ily be accessed at <http://www.ece.northwestern.edu/OTC/> and
<http://plato.asu.edu/guide.html> (respectively).

Whereas some specialized algorithms are designed to exploit the structure of a
particular type of function, black box heuristics take the opposite approach. Black
box algorithms (some of which are technically heuristics) gain their sobriquet by
avoiding, as much as possible, explicit assumptions about the function being opti-
mized. [For example, black box algorithms make use only of function evaluations
(rather than derivatives, etc.) and can be applied to any function with at least
some hope of success.] Their popularity comes from their wide applicability,
and their practical success in a broad range of very difficult problems, especially
discrete (combinatoric) optimization problems, for which specialized algorithms
are unavailable. The most popular of the black box optimization algorithms—
simulated annealing, genetic algorithms, and artificial neural networks—all draw
upon analogies to physical processes in their design. See Aarts and Lenstra (1997)
and Michalewicz and Fogel (1999) for good introductions, and Kuan and White
(1994) or Gupta and Lam (1996) for specific application to common problems
such as missing data estimation and financial prediction.

Simulated annealing (SA) exploits an analogy between the way in which
molten metal freezes into a minimum-energy crystalline structure (the anneal-
ing process) and the search for a function optimum. SA was first modeled by
Metropolis et al. (1953) and popularized in Kirkpatrick et al. (1983). At each
iteration, simulated annealing randomly generates a candidate point (or set of
points) within a local neighborhood of the current solution. The probability of
moving from the current solution to one of the candidate points is a function of
both the difference in the value of the objective function at each point and a tem-
perature parameter. At high temperatures, candidate points that are “worse” than
the current solution can be selected as the solution in the next iterate. This helps

OBTAINING MORE ACCURATE RESULTS 101

the algorithm to avoid local optima. At each iteration, the temperature is reduced
gradually so that the probability of heading downhill becomes vanishingly small.

SA first made its appearance in social science in the field of finance and has
since appeared in economics, sociology, and recently, political science, showing
considerable success on problems too difficult for standard optimization meth-
ods in these fields (Ingber 1990; Ingber et al. 1991; Goffe et al. 1992, 1994;
Carley and Svoboda 1996; Cameron and Johansson 1997; Altman 1998). [For
an elementary introduction, see Gill (2002 Chap. 11).] Recently, a number of
the statistical packages commonly used by social scientists have incorporated
simulated annealing, notably R and GaussX.

Genetic algorithms (GAs) are a form of algorithm inspired by analogies
between optimization (and adaptation) and the evolution of competing genes.
The classic GA is attributed to Holland (1975), but GAs have become part of a
wider field of “evolutionary computation” combining Holland’s work with con-
temporaneous independent work by Rechenberg (1973) and Schwefel (1977), and
Fogel et al. (1967).

In a genetic algorithm, one starts with a population comprising a set of candi-
date solutions to the optimization problem. Each solution is encoded as a string
of values. At each iteration each member of the population is subject, at random,
to mutation (an alteration of the solution vector) and hybridization (a reshuf-
fling of subsequences between two solutions). In addition, each round undergoes
selection, where some solutions are discarded and some are duplicated within
the population, depending on the fitness (function evaluation) of that member.
Research in social science that makes use of GA techniques for optimization is
just now beginning to appear (Dorsey and Mayer 1995; Altman 1998; Sekhon
and Mebane 1998, Everett and Borgatti 1999; Wu and Chang 2002), although
similar techniques are popular in agent-based modeling.

Artificial neural networks (ANNs) are inspired by a simplified model of the
human brain. The model was first proposed by McCulloch and Pitts (1943) but
was not applied to optimization until much later (Hopfield 1982; Hopfield and
Tank 1985; Durbin and Wilshaw 1987; Peterson and Soderberg 1989). An ANN
is a network of elementary information processors called neurons or nodes. Each
node has a set of inputs and outputs, and each node processes its inputs with a
simple but usually nonlinear activation function to determine whether to “fire,”
or activate its outputs. Nodes are connected together via synapses, which are
weighted so that the output of one neuron may be attenuated or amplified before
becoming the input of another neuron. Connections among nodes may be arbi-
trarily complex, but they are often simplified through the use of layering. Finally,
ANNs are “trained” to solve a particular problem by feeding instances, known
as the training set, of the problem in as initial inputs to an ANN, observing the
resulting final output, and then iteratively adjusting the synapses and activation
functions until the ANN produces correct outputs for all (or most) of the inputs
in the training set.

Although ANNs can be used for function optimization (see Aarts and Lenstra
1997), they are primarily used directly to generate predictions, as an alternative

102 ROBUST INFERENCE

to fitting an explicit function. In the latter context they have become relatively
popular in social science (Tam and Kiang 1992; Kuan and Liu 1995; Hill et al.
1996; Semmler and Gong 1996; Nordbotten 1996, 1999; West et al. 1997; Beck
et al. 2000; King and Zeng 2001b.) Some critics warn, however, of the prevalence
of overfitting in neural network applications and, the difficulty of explanation-
oriented interpretation of neural network results [but see Intrator and Intrator
(2001)] and note that far simpler statistical models can perform comparably (or
better) on some problems to which neural nets have been applied (Schumacher
et al. 1996; Nicole 2000; Paik 2000; Xianga et al. 2000).

While black box optimization methods such as simulated annealing and genetic
optimization can be applied across an astounding domain of optimization prob-
lems, this flexibility comes with a number of important drawbacks. The black
box approach is both a strength and a weakness—by assuming next to nothing
about the problem structure, black box algorithms can often make progress where
algorithms that require derivatives (or other types of structure) would simply fail.
On the other hand, where a problem does have an exploitable structure, these
algorithms take little advantage of it. In particular, although obscured by some
advocates, the following limitations will come as no surprise to those who take
the “free lunch” theorem to heart:

• SAs, GAs, and ANNs are extremely sensitive to algorithmic parameters and
implementation details (Michalewicz and Fogel 1999; Mongeau et al. 2000;
Paik 2000).

• Although the proofs of convergence associated with SAs, GAs, are vaguely
reassuring, they do not offer much practical guidance. With appropriate cool-
ing schedules and selection rules (respectively), SAs and GAs both converge
to the global function optimum. Convergence proofs, however, are either
completely nonconstructive or yield only asymptotic convergence results
(with respect to the most general class of continuous nonlinear functions)
(Lundy and Mees 1986; Eiben et al. 1991; Locatelli 2000). For example,
with proper cooling, the probability that SA reaches the optimum at each
iteration approaches 1 asymptotically as iterations approach infinity. Unfor-
tunately, asymptotic convergence results such as these generally guarantee
only that the algorithm achieves the right answer in infinite time and does
not imply that the intermediate results improve over iterations monotoni-
cally. (Given that most of the objective functions are implemented using
finite-precision arithmetic, simply enumerating all possible combinations of
function value input would take only finite time and guarantee the optimum
with certainty.)

• Similarly, while ANNs are often touted as being able to approximate any
function to any degree desired, the same can be said of spline regression,
polynomial regression, and other fitting techniques. In these other tech-
niques, susceptibility to overfitting is a cost of flexibility (Schumacher et al.
1996; Paik, 2000). Furthermore, the ability to approximate a particular type
of function also depends critically on the structure of the network. In fact, a

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 103

common type of neural network is statistically equivalent to logistic regres-
sion (Schumacher et al. 1996). Finally, “optimal” training of networks is
computationally intractable in general (Judd 1990), and practical training
methods run the risk of getting trapped in local optima (Michalewicz and
Fogel 2000).

• ANNs, SAs and GAs use convergence criteria that are neither sufficient nor
necessary for convergence to either global or local optima (Michalewicz
1999; Locatelli 2000; Mongeau et al. 2000; Paik 2000). In contrast, quasi-
Newton algorithms can make use of information in gradients to determine
whether necessary/sufficient conditions for a local optimum have been met.

For example, if a problem satisfies the requirements for BFGS, BFGS will be
more efficient than simulated annealing. More important, for most such problems,
convergence properties and the convergence criteria will yield either (efficient)
arrival at a local optimum or an unambiguous declaration of failure. SA is only
asymptotically convergent, and the convergence criteria used in practice fail to
distinguish true convergence from simple lack of progress.

These limitations notwithstanding, the popularity of black box optimization
algorithms is, in large part, a direct result of their astounding success across
a remarkable variety of difficult problems. Although they should be used with
skill, and the results should be examined carefully, they often work well where
standard optimization algorithms fail miserably.

4.5 INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS

Nonlinear statistical models may be ill behaved in at least three basic ways
that affect the resulting estimates. First, the neighborhood around the function
optimum may be highly nonquadratic. Second, the objective function may have
multiple optima. Third, poor scaling, ill conditioning, and/or inaccuracy in algo-
rithmic calculations can lead to general instability.

These are serious problems when they occur, in that the resulting conclusions
are dubious, and worse yet, the user may not be aware of any problem. When
the neighborhood around the optimum is nonquadratic, confidence intervals cal-
culated in the standard way will yield wildly incorrect results because standard
errors are calculated from the square root of the diagonals of the negative inverse
of the Hessian (second derivative matrix) at the MLE solution. The Hessian (dis-
cussed extensively in Chapter 6) measures the curvature around the numerically
determined likelihood optimum. Suppose that rather than having the classical
quadratic form, typically displayed in econometric texts, there are modal features
like those displayed in Figure 4.1. Then the calculation of t-statistics and con-
fidence intervals that use standard errors from the Hessian calculation will be
wrong.

Multiple optima present a special challenge. If there is one dominant optimum
of interest and other obvious suboptima, the problem is merely to make sure

104 ROBUST INFERENCE

that root-finding algorithms do not satisfice on one of the local solutions. If
there are multiple optima that compete as a final solution, special caution is
warranted and it is important to fully describe the posterior surface with HPD
intervals (explicated below) or other thorough procedures. In such cases, relying
simplistically on point estimates and standard errors gives a deceptive view of
the posterior results because it assumes unimodality and symmetry.

General numerical accuracy counts in this context as well as in those described in
Chapter 1.4. Consider an algorithm that exaggerates or understates the magnitude
of standard errors around the found mode, as well as one that is sufficiently unreli-
able to produce different values on different runs, under the same circumstances or
with slightly varied conditions. Not only will the inferred statistical reliability be
misguided, but the user may have no indication that this circumstance has occurred.

4.5.1 Obtaining Confidence Intervals with Ill-Behaved Functions

Posterior/likelihood results may be nonnormal and nonquadratic around the
mode(s). Most of the time this occurs because of small sample size and model
complexity, or perhaps both. In this section we review some of the tools for
describing and possibly correcting for these sorts of problems. The primary
problem is that most standard calculations for coefficient standard errors and
confidence intervals make assumptions about the shape of the posterior, such
as symmetry and unimodality. In the more traditional sense, significance levels
can be seriously misleading if calculated under incorrect t or normal distribution
assumptions.

4.5.1.1 Wald versus LR Intervals
One of the most common methods of generating confidence regions is simply to
use the t-statistic or, more generally, the Wald interval (Engle 1984). As discussed
in detail in Chapter 8, for the standard constraints of the form h(θ) = r, the 95%
Wald interval from the MLE values θ̂ from the log-likelihood function 	(X, θ)

is given by values of h(θ̂) such that

(h(θ̂) − r)′
[

∂h(θ)

∂θ ′

∣∣∣∣
θ̂

(
∂2	(X, θ)

∂θ∂θ ′

∣∣∣∣
θ̂

)−1
∂h(θ)′

∂θ ′

∣∣∣∣
θ̂

]−1

(h(θ̂) − r) ≤ χ2
k,1−αs2

(4.21)

for selected (1 − α)- and k-dimensional θ (Amemiya 1985, Sec. 4.5.1; McCul-
loch and Searle 2001, Sec. 5.5). The distributional assumption is an asymptotic
property under the null assumption that h(θ) − r = 0.6 Once θ̂ is determined,
this calculation proceeds directly for the parametric form, 	(X, θ). Consider what

6It is sometimes also useful for GLM results to report the Wald confidence intervals on the mean
response point vector: X, which is straightforward (Myers and Montgomery 1997; Myers et al. 2002,
Chap. 7).

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 105

happens, though, if θ̂ is reported with inaccuracy or if the derivative and matrix
algebra calculations are stored with inadequate numerical precision. The final
calculation is the product of a 1×k vector with a k×k matrix and a k×1 vector,
so there are many intermediate values to store. As discussed in Chapter 2 and
illustrated elsewhere, such rounding and truncating decisions “ripple” through
subsequent calculations. As a specific case, Long (1997, p. 98) reminds us that
if an estimation quantity such as this is hand-calculated from typically rounded
reported values (either in published form or from a regression printout), the
results can be very misleading. Furthermore, if the curvature at the mode is
nonquadratic, the underlying justification for this procedure is flawed since the
second derivative calculation in (4.21) will not meet the conditions required.
[See Serfling (1980) for details]. Harmful deviations include flat areas, “broken
glass,” asymmetry, and other pathologies. The Wald test also has the drawback
that it is not invariant under reparameterization, unlike the two other classical
tests, likelihood ratio and Rao—but this is not of direct concern here.

When such problems arise, the likelihood ratio test (LRT) can be used as
a replacement for the Wald test (one may want to use it for other reasons as
well, such as its simplicity). Likelihood ratio intervals are more robust than Wald
intervals because they are less reliant on the shape of the likelihood surface. If
the constraints are simple, such as θ = 0 or some other constant for a subset of
the vector, the restricted likelihood is calculated simply by using these constant
values for the restricted coefficients and letting the others be determined by
estimation. In the case of more complex, nonlinear constraints, it is necessary
to take the derivative of 	(X, θ) − ϒ ′h(θ) and set it equal to r, where ϒ is
the Lagrange multipliers to produce the restricted log-likelihood value: 	(X, θ r).
This is often avoided in practice with the specification of simple restrictions. The
likelihood ratio interval is given by values of h(θ̂) such that

−2
(
	(X, θ r) − 	(X, θ̂)

)
≤ χ2

k,1−α. (4.22)

This is more flexible in one sense since the gradient and Hessian calculations are
not required, but it is also asymptotically justified by the second (quadratic) term
in a Taylor series expansion (Cox and Hinkley 1974, Sec. 9.3; Lehmann 1999,
Sec. 7.7). Therefore, ill-behaved likelihood surfaces that result from small-sample
problems are also suspect, although the direct implications are not as extreme as
with the Wald statistic.

4.5.1.2 Bootstrapped Corrections
Alternative methods for obtaining confidence intervals exist for the worried
(and persistent) researcher. One method is to bootstrap the sample in such
a way as to obtain a reasonable standard error and impose a normal or t-
distribution. The general idea is to produce a 1 − α confidence interval of the
form θ̂ ± z1−α/2ŝe, where ŝe is the bootstrap calculation of the standard error.
More generally, from Efron and Tibshirani (1993), generate B bootstrap samples
of the data: x∗1, x∗2, . . . , x∗B , and for each sample, b = 1, 2, . . . , B, calculate

106 ROBUST INFERENCE

Z∗
b = (θ̂∗

b − θ̂)/ŝe
∗
b. Here θ̂∗

b is the bth bootstrap calculation of θ̂ with associated
bootstrap standard error ŝe

∗
b. These Z∗

b are then ordered and the desired quantiles
for a specific α-level are picked out: [Z∗

α/2, Z
∗
1−α/2]. That is, for B = 1000, Z∗

α/2
is the 25th ordered replicate and Z∗

1−α/2 is the 975th ordered replicate. So the

bootstrap-t confidence interval is [θ̂ − Z∗
1−α/2ŝe, θ̂ − Z∗

α/2ŝe], using ŝe from the
original calculation.

This is elegant and well grounded in standard theory, (Efron 1979; Bickel
and Freedman 1981; Freedman 1981; Hinkley 1988; Hall 1992; Shao and Tu
1995), but in practice some problems appear. The empirical construction means
that outliers can have a tremendous and unwanted effect. This basic procedure
is also not transformation invariant and is only first-order accurate: errors in
probability matching for the interval go to zero on the order of 1/

√
n. Efron and

Tibshirani (1993, Chap. 14) develop the bias-corrected and accelerated (BCa)
version, which is slightly more complicated to produce but is now invariant to
transformations and second-order accurate: Errors in probability matching for
the interval got to zero on the order of 1/n. Unfortunately, BCa is not uniformly
better than the straight bootstrap t-test or other alternatives (Loh and Wu 1991;
DiCiccio and Tibshirani 1987).

Other relevant work includes the bootstrap calibration confidence set of Loh
(1987, 1988, 1991); the Bayesian bootstrap (Rubin 1981; Stewart 1986; Lo 1987;
Weng 1989); the weighted likelihood bootstrap, which extends the Bayesian boot-
strap (Newton and Raftery 1994); various performance aspects with economic
data (Horowitz 1997); and special considerations for longitudinal settings (Runkle
1987; Datta and McCormick 1995; Ferretti and Romo 1996). Recently, Davison
et al. (1986a, b), and Hinkley (1988), and Davison and Hinkley (1988, 1997) have
added extensions to enhance the reliability bootstrap estimates for likelihoods.

4.5.2 Interpreting Results in the Presence of Multiple Modes

Standard econometric theory states that in general we should worry primarily
about the distinction between posterior7 inferences based on a t-distribution due
to limited sample size and others that can comfortably be calculated on normal
tail values. Greene (2003), for instance, distinguishes between “Finite Sample
Properties of the Least Squares Estimator” and “Large Sample Properties of the
Least Squares and Instrumental Variables Estimators.” The extension to general-
ized linear models uses this same distinction in measuring coefficient reliability
by tail values under the null hypothesis. Suppose, however, that this limitation
to two forms is not a reasonable assumption.

There are essentially two types of problems. Some empirically observed like-
lihood functions are multimodal because of the small-sample effects or poorly
implemented simulation studies. In these cases the theoretical likelihood dis-
tribution is asymptotically normal and unimodal (usually, t) as sample sizes

7We continue to term coefficient sampling distributions and Bayesian posteriors as just posteriors
since the former is based on uniform prior assumptions whether the researcher knows it or not.

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 107

increase [see Berger and O’Hagan (1988) and O’Hagan and Berger (1988) for
a Bayesian view] but does not display these characteristics with the problem
at hand. Conversely, some likelihood/posterior forms are inherently multimodal,
such as the multinomial probit specifications (see McFadden and Ruud 1994),
Bayesian mixture models (Gelman et al. 1995, Chap. 16; Cao and West 1996),
mixtures of bivariate normals (Johnson 1996), and Cauchy log-likelihood func-
tions with small samples (Brooks and Morgan 1995), just to name a few. In the
second example it is obvious that a point estimate badly misses the point of the
intended analysis.

As pointed out in Section 4.3.3.1, it is easy to envision substantively important
general functions that are multimodal. The primary reason that this can be a
“problem” is that most empirical researchers are accustomed to unimodal like-
lihood functions or posteriors. Because this is almost always a safe assumption
with commonly specified models such as linear forms, many GLMs, log-linear
specifications, and others, it is easy to become lulled into the belief that this is
not something to worry about when specifying more complex or more particu-
laristic models.

One type of multimodal posterior that can result from certain economic models
is the m − n poly-t parametric forms, which result from the ratio of m to n

multivariate t-distributed densities (Dreze and Richard 1983; Bauens and Richard
1985; Oh and Berger 1993).

4.5.2.1 Example of Induced Multimodality
Brown and Oman (1991) give a simple example where the researcher controls
a parameter ξ in an experimental setting and observes its effect on an outcome
variable of interest Y . The distribution of Y conditional on ξ is given by

Y = h(ξ) + ε where E[ε] = 0, Var[ε] = γ, (4.23)

where predictions of future values of ξ are given by inverting this distribution
through estimates ĥ and γ̂ . The prediction distribution of ξ is then

f (ξ) = (Y − ĥ(ξ))′γ̂ −1(Y − ĥ(ξ)). (4.24)

If ĥ is nonlinear in ξ , this distribution can be multimodal and Brown and Oman
give a specific case from Brown (1982) where the posterior has three modes in the
allowable range resulting from a quadratic form of ĥ, shown here in Figure 4.2.
Also shown is a 95% asymptotic critical level, with the dotted line indicating the
difficulty in making inferential claims in the standard manner of finding the mode
and measuring the curvature around it. This is really a marking of the highest
posterior density interval described below and in Chapter 6.

The inferential problem that arises here is what mode we consider to be most
important. In the standard econometric setup, unimodality stems directly from
the model assumptions, and this problem never arises (by design). The resulting
confidence region in this particular case is the discontinuous interval determined

108 ROBUST INFERENCE

10

20

30

40

f(
)

−2.0 −1.0 0 1.0

∋

∋

Fig. 4.2 Posterior for ĥ Quadratic in ε.

by the points where f (ε) falls below the horizontal line in Figure 4.2, which is
Brown’s estimate of the region that contains the lowest 95% of the density (the
concern is with calibration and with the goal of minimizing ε). How should we
interpret such interval estimations? Should one area be preferred over the other?
It is entirely possible that multimodal states are consistent with the data and the
model and should therefore not by ignored simply by picking one mode, which
might be only slightly more prominent than others.

Recall that the likelihood principle (Birnbaum 1962) shows that all necessary
sample information that can be used for estimating some unknown parameter is
contained in the likelihood function: a statement about the most likely value of
the parameter given the observed data.8 Once the data are observed, and there-
fore treated as given, all the available evidence for estimating θ̂ is contained in
the (log) likelihood function, 	(θ |X), allowing one to ignore an infinite num-
ber of alternates (Poirer 1988, p. 127). So the shape of this likelihood function
contains the relevant information, whether or not it is unimodal. What does this
say about multimodal forms? Clearly, summarizing likelihood information with
a point estimate given by the highest mode is consistent with the likelihood prin-
ciple, but providing no other information about the likelihood surface conceals
the level of certainty provided by this point estimate alone. In such cases we rec-
ommend describing the likelihood surface or posterior distribution to the greatest
extent possible as a means of telling readers as much as possible in a succinct
format.

Furthermore, a multimodal posterior often causes problems for standard mode-
finding algorithms that become satisfied with suboptimal mode solutions. This
means that the choice of starting points becomes very important. It is possible
to change the inferential conclusions dramatically by picking very good or very

8The Bayesian approach uses this same likelihood function (albeit with the addition of a prior
distribution on the unknown parameters (Gill 2002). Thus every point in this section also pertains
to posterior summary.

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 109

bad starting points. One solution is to “grid up” the posterior space and map
out the approximate region of the largest mode (if that is the ultimate goal),
but this becomes very difficult and computationally expensive with large dimen-
sions. Oh and Berger (1993) suggest using importance sampling (described in
detail in Chapter 6) from mixture distributions to describe fully these sorts of
posterior forms, with the advantage that simulation work helps describe features
that are difficult to visualize. One helpful strategy is the use of product grids
(Naylor and Smith 1982, 1988a,b; Smith et al. 1985, 1987), which involves
reparameterizing the posterior distribution into a form that is recognizable as
a polynomial times a normal form. The advantage of this approach is that the
new form can be “orthogonalized” (to some extent) and numerical integration
becomes easier.

4.5.2.2 Highest Posterior Density Intervals
The last few sections have identified problems that can occur so as to seri-
ously affect the quality of inference. In this section we argue that a posterior (or
likelihood) summary procedure which describes features that would be missed
by standard reporting mechanisms is justified as a standard procedure in social
science inference.

The standard Bayesian method for describing multimodal posteriors (or others,
for that matter) is the highest posterior density (HPD) interval. For marginal
distribution summaries this is a noncontiguous interval of the sample space for
the parameter of interest, and for joint distribution summaries this is a region in
the multidimensional sample space. Marginal HPD intervals are easier to display
and discuss, and therefore this is the norm. It is important to note that while
HPDs are a Bayesian creation, the core idea does not depend on any Bayesian
assumption and non-Bayesian treatments, highest density regions (HDRs), are
just as easily constructed and interpreted.

More specifically, the 100(1 − α)% HPD interval is the subset of the support
of the posterior distribution for some parameter, ξ , that meets the criteria

C = {ξ : π(ξ |x) ≥ k}, (4.25)

where k is the largest number that guarantees

1 − α =
∫

ξ :π(ξ |x)>k

π(ξ |x) dξ (4.26)

(Bernardo and Smith 1994, p. 395). This is the smallest possible subset of the
sample space where the probability that ξ is in the region is maximized at the
chosen 1 − α level. Unlike the more common confidence interval, the Bayesian
approach is to treat ξ like the random quantity as opposed to the interval.
Figure 4.3 shows a 95% HPD interval for a bimodal density where k and C

from (4.25) are labeled. The figure illustrates the utility of an HPD interval as
opposed to a confidence interval where one starts at the mean and marches out a

110 ROBUST INFERENCE

k

C

Fig. 4.3 HPD region and corresponding density.

certain number of standard errors in both directions.9 In the example here, with
two poles, one mode, and two antimodes, the standard confidence interval would
include the low-density region in the middle and exclude regions on either end
that had higher density than this “valley.” Hyndman (1996) presents a number
of alternative ways to display HPD intervals.

HPD intervals can also be used in more integrative ways. Joseph et al. (1995)
show how sample size determination is really a Bayesian process since it requires
the use of prior assumptions before collecting the prescribed data. They develop
a method that ties desired HPD coverage to alternative sample sizes with the
following alternative criteria:

• Average coverage criterion. Fix the desired total width of the HPD interval
(w) and find the minimum sample size (n) that gives the expected coverage
probability (averaging over the sample) of 1 − α:∫ (∫ a(x,n)+w

a(x,n)

π(ξ |x, n) dξ

)
f (x) dx ≥ 1 − α, (4.27)

where a(x, n) is the lower limit of the HPD interval.
• Average length criterion. Now suppose that we want to fix the coverage

probability and find the minimum sample size for an average total HPD
width (w):∫ a(x,n)+w(x,n)

a(x,n)

π(ξ |x, n) dξ = 1 − α such that
∫

w(x, n)f (x) dx ≤ w,

(4.28)

where w(x, n) is the average function.
9The Bayesian version of a confidence interval is the credible interval, where the same approach
is taken but the interpretation is different since parameters are assumed to possess distributional
qualities rather than being fixed.

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 111

• Worst outcome criterion. A more conservative approach is to require simul-
taneous limits for both coverage probability and width over possible sample
characteristics, minimizing n:

inf
x

(∫ a(x,n)+w

a(x,n)

π(ξ |x, n) dξ

)
≥ 1 − α, (4.29)

where the infimum is taken over the support of x.

These are straightforward for HPD intervals that are contiguous but obvi-
ously require more care in the case of noncontiguous intervals since the multiple
integrals need to be done separately.

As an example of routine reporting of HPD intervals, Wagner and Gill (2004)
extend Meier’s standard model of the education production function by making it
an explicitly Bayesian design, creating priors from Meier’s previous work (Meier
and Smith 1995; Smith and Meier 1995; Meier et al. 2000) as well as from his
detractors. This is a linear model with modestly informed priors, a random effects
component, and an interaction term, according to the specification:

Y [i] ∼ N (λ[i], σ 2),

λ[i] = β0 + β1x1[i] + · · · + βkxk[i] + ε[i]

ε[i] ∼ N (0.0, τ)

β[i] ∼ N (0.0, 10)

(4.30)

for i = 1 · · · n, from a pooled panel dataset of over 1000 school districts in Texas
for a seven-year period (the last term includes interacted data). The outcome vari-
able is the standardized-test pass rate for the district, and the covariates include
demographics, class size, state funding, teacher salary, and experience. The cen-
tral theoretical interest is whether the education bureaucracy is the product or
cause of poor student performance, and Meier measures bureaucracy as the total
number of full-time administrators per 100 students and lag the variable so as to
create a more likely causal relationship.

The following semi-informed normal priors are derived by Wagner and Gill
directly from the conclusions in Smith and Meier (1995):

βconstant ∼ N (0.0, 10) βlag of student pass rate ∼ N (−0.025, 10)

βlag of bureaucrats ∼ N (0.0, 10) βlow-income students ∼ N (0.23, 10)

βteacher salaries ∼ N (0.615, 10) βteacher experience ∼ N (−0.068, 10)

βgifted classes ∼ N (0.0, 10) βclass size ∼ N (−0.033, 10)

βstate aid percentage ∼ N (0.299, 10) βfunding per student ∼ N (0.0, 10)

βclass size × teacher salaries ∼ N (0.0, 10).

112 ROBUST INFERENCE

Table 4.3 Posterior Summary, Interaction Model

Posterior Posterior 95% HPD
Explanatory Variable Mean SE Interval

Constant term 4.799 2.373 [0.165: 9.516]
Lag of student pass rate 0.684 0.008 [0.667: 0.699]
Lag of bureaucrats −0.042 0.261 [−0.557: 0.469]
Low-income students −0.105 0.006 [−0.117: −0.094]
Teacher salaries 0.382 0.099 [0.189: 0.575]
Teacher experience −0.066 0.046 [−0.156: 0.025]
Gifted classes 0.096 0.021 [0.054: 0.138]
Class size 0.196 0.191 [−0.180: 0.569]
State aid percentage 0.002 0.004 [−0.006: 0.010]
Funding per student (×1000) 0.049 0.175 [−0.294: 0.392]
Class size × teacher salaries −0.015 0.007 [−0.029: −0.002]

Posterior standard error of τ = 0.00071

The model is estimated (for analytical convenience) with WinBUGS and the
results are given in Table 4.3. Here all of the 95% HPD intervals are contiguous,
although it would be easy simply to list out the interval set if this were not so.
Most important, notice that this presentation of coefficient estimate (posterior
mean here; see Chapter 6), standard error, and interval summary has a very com-
fortable and familiar feeling even though this is a fully Bayesian model reporting
density regions instead of confidence intervals or p-values. Furthermore, it is
straightforward to scan down the column of HPD intervals and judge statistical
reliability by the conventional interpretation of zero being included in the interval
(although Bayesians typically consider other posterior characteristics as well).

4.5.2.3 Simulation Methods for Producing HPD Intervals
Sometimes the integral in (4.26) can be difficult to calculate analytically. In these
cases it is often possible to obtain the HPD interval via standard Monte Carlo
simulation. The general procedure is to generate a large number of simulated
values from the (possibly multidimensional) posterior of interest, sort them, then
identify the k threshold of interest. Sometimes it is also difficult to sample directly
from the posterior of interest, and in these cases importance sampling can by used,
as described in Chapter 6.

The following pseudo-code implements this process.

sorted.vals = sort(rand.draw(my.posterior,n=100000))
posterior.empirical.cdf = running.sum(sorted.vals)
k = sorted.vals[length(posterior.empirical.cdf
[posterior.empirical.cdf < 0.05])]

This code:

• Generates 100,000 values from the posterior of interest (possibly with
importance sampling) and sorts these draws

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 113

• Creates an “empirical CDF” by creating a running sum along the sorted
values (i.e., [1,2,3] becomes [1,3,6])

• Sorts k by the value corresponding to the vector position of the empirical
CDF value of 0.05 (for a 95% HPD interval, the other size is done similarly)

The point is to determine the “altitude” whereby 5% of the values are below
and 95% are above, regardless of position. The second advantage of this method
is that higher-dimensional problems can be addressed with only slightly more
trouble, whereas these can often be difficult analytical integration problems.

4.5.2.4 Problems with High Dimensions
Multimodal distributions present much greater challenges in higher dimensions
because the important features of the likelihood surface might not “line up” with
the axis when taking marginals. As a result, important or interesting characteris-
tics of the multimodality can get lost when considering marginals alone.

As an example, consider the bimodal, three-dimensional likelihood surface
in Figure 4.4, which is a mixture of two multivariate normals, N (µ1, �1) and
N (µ2,�2), according to

f (x) = (2π)−
1
2 k

(
|�1|− 1

2 p exp

[
−1

2
(x − µ1)�

−1
1 (x − µ1)

′
]

+ ∣∣�2
∣∣− 1

2 (1 − p) exp

[
−1

2
(x − µ2)�

−1
2 (x − µ−1

2)′
])

, (4.31)

where p is the proportion of the first component and 1 − p is the propor-
tion of the second component. We consider here only a bivariate mixture, for
graphic simplicity. This is a well-studied model (Fryer and Robertson 1972), and
the maximum likelihood estimation process is relatively straightforward (Day
1969; Dick and Bowden 1973; Hosmer 1973a, b; Ganesalingam and McLachlan
1981). Mixture models can also be accommodated in a Bayesian setting (Smith
and Makov 1978; Ferguson 1983; Titterington et al. 1985; Escobar and West
1995). Here we consider a slightly different problem where the posterior distri-
bution is found to be bivariate normal rather than the assumed population data.
The distribution in (4.31) is now a joint bivariate form between µ1 and µ2:
π(µ1, µ2).

How would one choose to describe this joint distribution beyond giving (4.31)
with the parameters identified? What summary values are useful?10 Clearly, the
position of the highest mode along with the curvature around this model is not
sufficient to inform readers fully what the distribution looks like. Notice from the
contour plot in Figure 4.4 that the two high-density regions intersect at density
levels between 0.01 and 0.05. This is an important feature because it describes
the ridge structure evident in the wireframe plots.

10Haughton (1997) reviews standard and specialized software solutions to the problem of coefficient
estimation for finite mixture distributions.

114 ROBUST INFERENCE

−8

−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

Contours at (0.01, 0.05, 0.10)

Fig. 4.4 Posterior views of π(µ1,µ2).

Unfortunately, marginalization of this density loses some of the structural
information because the axes do not line up well. In fact, if we look at the
marginal posteriors from this density, much of the valley seems to disappear,
particularly for µ1. So HPD intervals of the full set of marginal densities do not
contain the same information as the complete joint distribution. This is observable
in Figure 4.5, where the sense of bimodality is almost gone for µ1 and observable
but indeterminant for µ2.

There are several solutions to this problem. First, one could present the results
graphically in higher dimensions such that important features are evident. Second,
it is possible to use Givens rotations or the Household transformations (Thistead
1988, Chap. 3). Unfortunately, figuring out the rotations of the axes that give the
most informative picture is difficult in higher dimensions and usually requires
considerable trial and error. One way to get an idea of where such features exist
in complex posteriors is to run the EM algorithm from many starting points and
observe the location and structure of the modes.

4.5.3 Inference in the Presence of Instability

Occasionally, despite following all of the recommendations discussed in this
chapter, one may not be sure whether one’s answers are accurate: Perturbation
tests may continue to show sensitivity to noise, or different platforms may give
you substantively different answers. Despite one’s best attempts to research the
properties of each algorithm and software package used, and to examine all
relevant diagnostics, a set of competing solutions or a range of possible answers
may still exist. What can be done when faced with several competing answers?

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 115

a = 0.1

a = 0.05

a = 0.01

a = 0.1

a = 0.05

a = 0.01

−12 −9 −6 −3 0 3 6 9 12

(a)

−12 −9 −6 −3 0 3 6 9 12

(b)

Fig. 4.5 Marginal posteriors for (a) µ1 and (b) µ2.

There is no simple answer to this question. Implicitly or explicitly, one must
make a judgment about the tractability of the problem, the costs of further efforts
put toward obtaining a better solution, and the plausibility of current solutions.

Some researchers might object (and in our experience, have objected): “If
two different algorithms or implementations give different results, at least one is
simply wrong. It makes no sense to use estimates based on incorrect calculations,
so do more work to figure out how to do the calculations correctly.”

We understand this response, and it contains some truth. If different programs
yield different answers, to identify the sources of the discrepancy we recommend:
examining diagnostics, applying sensitivity tests, utilizing more accurate external
libraries (where possible), extending the precision of the arithmetic operators,
and selecting the best algorithms available. If varying answers persist, we suggest
that these variations should be reflected in the reported level of uncertainty of
estimates.

116 ROBUST INFERENCE

The problem of selecting an implementation/algorithm is analogous to that of
selecting a model. In model selection, there is simply no way of being absolutely
certain that the correct model has been found. In social science, there are often a
number of models that have some degree of plausibility, and some support from
the data. Lacking decisive evidence for rejecting them, one has three choices:
First, decline to report any estimates and collect more data, in the hope that new
data will help to resolve the issue. Second, pick the most ‘plausible’ model and
ignore the rest. Third, acknowledge that several models are plausible, and use
some method to combine estimates across models.

The first approach is sometimes best but often prohibitively expensive. Worse,
one may need to make decisions based on the current data immediately, before
any opportunities to collect more data occur. Or, when one is trying to explain
historical evidence, it may not be possible to collect more data at all.

The second approach is, we think, fairly common, but often mistaken. Ignoring
other plausible models misrepresents uncertainty over the state of the world and
leads to poorer estimates than incorporating the estimates from these other models
(Hoeting et al. 1999).

Often, the third option is most appropriate: incorporate in your estimates a
very wide range of, or even all of, the plausible models. One simple technique
for doing this is to include Leamer bounds in the reported analysis (Leamer
1978, 1983; Leamer and Leonard 1983; Klepper and Leamer 1984). Leamer pro-
poses reporting the extreme bounds for coefficient estimates observed during the
specification search. In particular, coefficients with Leamer bounds that strad-
dle zero should be regarded with some suspicion, even if they are statistically
reliable in the final product. Recent use of this approach is found in Levine
and Renelt (1992), Western (1995), Ades and DiTella (1997), Akhand (1998),
and Smith (2003). Unfortunately, Leamer bounds require a great deal of self-
regulated researcher honesty. In the process of model building, it is not uncom-
mon to specify many different models, some of which provide wildly different
coefficients for variables of prime interest. We suspect that many researchers
would rationalize as follows: “Those were really just accidents, I’m not going to
record.” Of course, all aspects of the model development process require self-
imposed honesty, but this is one that would not be checked by replication by
others.

A second means of incorporating more widely encompassing results is the use
of Bayesian model averaging. Raftery, in particular, has advocated the idea of
reducing arbitrariness in social science model selection by using the Bayesian
inference paradigm to average across model results, thus obtaining a metaresult
that incorporates a broader perspective (Raftery 1995, 1996; Raftery et al. 1997;
Volinsky et al. 1997). For an accessible introduction, see Bartels (1997) and
Hoeting (1999). These methods can be applied directly to estimates produced by
different packages or algorithms. If one cannot obtain a definitive answer, we
recommend using these methods.

Some scholars might object that the analogy is flawed and that model selec-
tion differs from algorithm selection in important ways. They might offer two

INFERENCE FOR COMPUTATIONALLY DIFFICULT PROBLEMS 117

objections: that it is not possible even in theory to prove that a particular model
is correct in an absolute sense but that one should be able to prove an algo-
rithm correct; and that, in practice, distinguishing between competing models
can require that more data be obtained, which may be prohibitively expensive or
even impossible.

We believe that such objections have force but are not determinative. Proving
an algorithm correct is often possible, but not always. Sometimes, like proving a
model correct, it is impossible (or not within practical reach). Moreover, proving
a complex statistical implementation correct is generally almost always beyond
the ability of current software engineering practice.

In addition, global optimization of difficult nonlinear problems, which is
required to solve many models, is generally computationally intractable (see
Chapter 2). If the problem is big enough and is not well behaved, it is usually
possible to find a local solution, but practically impossible to verify that a global
solution has been reached. That is, although theoretically possible to do, it can
be proved to take more time to accomplish than the expected age of the universe.
In practice, we sometime have to contend with finite limits to our computational
resource, just as we sometimes have to contend with limits to our ability to
collect data.

Finally, it should be recognized that model uncertainty and implementation
uncertainty are intertwined. Simpler statistical models will have more straightfor-
ward computational requirements and introduce less uncertainty over algorithmic
and implementation choice. As Achen (2003) notes, simpler (less generalized)
models may be less brittle and require significantly fewer data to estimate suc-
cessfully. Complex statistical models impose additional costs due to the increased
algorithmic and implementation uncertainty required in estimating them. This
computationally driven uncertainty must be incorporated in the results presented
using such models if the best choice is to be made among competing models.

To summarize, computational algorithm and implementation selection are anal-
ogous to model selection, although generally a milder problem. Every effort
should be made to find an accurate solution, and generally, with reasonable effort,
an accurate solution will be forthcoming. However, in some circumstances it will
be impossible, or prohibitively expensive, to determine which of a set of solu-
tions is correct. When this occurs, one should incorporate in the estimates the
results from all plausible computations.

C H A P T E R 5

Numerical Issues in Markov Chain
Monte Carlo Estimation

5.1 INTRODUCTION

This chapter is focused exclusively on numerical reliability and accuracy for
Markov chain Monte Carlo (MCMC) techniques used in modern Bayesian esti-
mation. Many of the issues discussed, however, apply equally to simulation
work in other areas. Notably, this chapter provides the first detailed look at
the qualitative effects of pseudo-random number generation and machine round-
ing/truncating on the convergence and empirical reliability of Markov chain
Monte Carlo estimation.

The chapter begins with a detailed review of Markov chain Monte Carlo theory
and a particular focus on conditions necessary for convergence. The starting
point is first principles followed by the major theoretical background required to
consider problems that might occur in reaching the desired stationary distribution.
We then demonstrate in detail that the period of the underlying pseudo-random
number generator can have disastrous effects on the path of the Markov chain.
This discussion is new to the literature. As illustrations, the example of the slice
sampler and a discussion of the potential problem in WinBUGS are provided.
Also highlighted is another potential pitfall: the absorbing state problem caused
by machine rounding and truncating. The primary contribution of this chapter
is to provide evidence that low-level numerical concerns affect MCMC analysis
and that these problems are rarely discussed in either applied or theoretical work.

Thus far we have addressed important numerical issues for the standard and
traditional process of computer-based estimation of linear models, descriptive
statistics, and maximum likelihood functions. This is the first chapter that addresses
a fundamentally different type of estimation process based on stochastic simulation.
As different as these two methods are, there are some strikingly similar concerns
about numerical accuracy in intermediate calculations. Some contrasts exist, how-
ever, inasmuch as standard likelihood inference tends to be mostly worried about
problems with numerical derivatives (i.e., mode finding), while Bayesian inference
generally seeks to estimate integral quantities based on the posterior distribution.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

118

BACKGROUND AND HISTORY 119

Aside from the obviously contrasting basic calculus procedures, there is much
more of a need for making inferences based on simulations in Bayesian work.
Consequently, sources of inaccuracy that are relatively small and may even be
ignored in a mode-finding context can be greatly magnified purely because of the
large-n iterative nature of Monte Carlo procedures.

The use of modern stochastic simulation with Markov chains in Bayesian
statistics begins after 1990 (Gelfand and Smith’s review essay essentially initi-
ates this era), and is therefore a relatively young subject to statisticians and others.
Although a great deal of work has been done to assess numerical accuracy of cal-
culations in standard likelihoodist statistical computing, the subject of Chapters
1 to 4, there is currently almost no published work that analyzes the effect of
well-known general numerical computing problems for MCMC. Specifically, do
unwanted round-off and truncation in register arithmetic affect the necessary theo-
retical characteristics of the Markov chain? Does the necessarily periodic method
of generating pseudo-random numbers on computers affect the convergence of
Markov chains? We seek to answer these types of questions in this chapter.

5.2 BACKGROUND AND HISTORY

A persistent and agonizing problem for those developing Bayesian models in most
of the twentieth century was that it was often possible to get an unreasonably
complicated posterior from multiplying realistic priors with the appropriate like-
lihood function. That is, the mathematical form exists, but quantities of interest
such as means and quantiles cannot be calculated directly. This problem shunted
Bayesian methods to the side of mainstream statistics for quite some time. What
changed this state was the publication of Gelfand and Smith’s 1990 review essay
that described how similar problems had been solved in statistical physics with
Markov chain simulation techniques.

Markov chain Monte Carlo is a set of iterative techniques where the val-
ues generated are (eventually) from the posterior of interest (Gill 2002). So the
difficult posterior form can be described empirically using a large number of
simulated values, thus performing difficult integral calculations through compu-
tation rather than calculation. The result of this development was a torrent of
papers that solved many unresolved Bayesian problems, and the resulting effect
on Bayesian statistics can easily be characterized as revolutionary.

Markov chains are a type of stochastic process where the next value depends
probabilistically only on the current value of the series. In general, it is possible to
set up such a chain to estimate multidimensional probability structures, the desired
posterior distribution, by starting a Markov chain in the appropriate sample space
and letting it run until it settles into the desired target distribution. Then, when it
runs for some time confined to this particular distribution of interest, it is possible
to collect summary statistics such as means, variances, and quantiles from the
values simulated. The two most common procedures are the Metropolis–Hastings
algorithm and the Gibbs sampler, which have been shown to possess desirable
theoretical properties that lead to empirical samples from the target distribution.

120 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

There are now quite a few volumes that provide high-level descriptions of
MCMC estimation, including Gelman et al. (1995), Gamerman (1997), Carlin
and Louis (2000), Congdon (2001), and Gill (2002). There are also an increasing
number of advanced books on MCMC, such as those of Tanner (1996), Robert
and Casella (1999), Chen et al. (2000), and Liu (2001).

5.3 ESSENTIAL MARKOV CHAIN THEORY

In this section we provide the technical background necessary to understand
the implications of numerical accuracy on the reliability of estimation with
Markov chain Monte Carlo methods. A portion of the theory in this section
is rather abstract and perhaps new to some social scientists. Consistent with ear-
lier chapters, the primary goal here is to relate standard Markov chain theory with
the numerical problems that can arise from finite register arithmetic in computer
implementations.

5.3.1 Measure and Probability Preliminaries

Define H as the set defining the support of θ , a random variable of interest
with individual points denoted with subscripts: θi, θj , θk, � is a σ -algebra
of subsets of H that is assumed to be generated by a countable collection of
these subsets of H , having elements (events) denoted A,B, C, Thus (H, �)

is the measurable space for θ , called the state space. Following standard notation
we use f, g, h, . . . to denote real-valued measurable functions defined on �.
Also define M as the full collection of signed measures on (H, �), where by
convention λ and µ denote elements of the measurable space. It is also useful
to be specific about the sign, where the class of positive measures is given by
M+ = {λ ∈ M : λ(H) > 0). Signed measures will be important later in this
chapter when asserting Markov chain convergence.

Now define a transition kernel K(θ,A), which is the general mechanism for
describing the probability structure that governs movement of the Markov chain
from one state to another. This means that K(θ,A) is a defined probability
measure for all θ points in the state space to the set A ∈ �: a mapping of the
potential transition events to their probability of occurrence (Robert and Casella
1999, p. 141; Gill 2002, p. 303). More formally, K is a nonnegative σ -finite
kernel on the state space (H, �) that provides the mapping H ×� → R+ if the
following conditions are met:

1. For every subset A ∈ �, K(•, A) is measurable.
2. For every point θi ∈ H , K(θi, •) is a measure on the state space.
3. There exists a positive �⊗� measurable function, f (θi , θj), ∀θi, θj ∈ H

such that
∫

k(θi, dθj)f (θi, θj) < ∞.

All of this is simply to assert that the transition kernel behaves nicely as a
probability mechanism for determining the path of the Markov chain.

ESSENTIAL MARKOV CHAIN THEORY 121

A stochastic process is a set of observed θ [t] (t ≥ 0) on the probability
space (�,F, P), where the superscript t denotes an order of occurrence and
� is the relevant, nonempty outcome space with the associated σ -algebra F
and probability measure P (Doob 1990; Billingsley 1995; Ross 1996). Thus the
sequence of �-valued θ [t] random elements given by t = 0, 1, . . . defines the �-
valued stochastic process (although typically R-valued, with some restrictions)
(Karlin and Taylor 1981, 1990; Hoel et al. 1987). Note that the labeling of the
sequence T : {θ [t=0], θ [t=1], θ [t=2], . . . } implies consecutive even-spaced time
intervals; this is done by convention, but not necessity.

Define at time n the history of the stochastic process as the increasing series
of sub-σ -algebras defined by F0 ⊆ F1 ⊆ · · · ⊆ Fn, where θ is measurable on
each. An H -valued stochastic process, θt ; t ≥ 0, with transition probability P

and initial value θ0 is a Markov chain if at the (n + 1)th time,

P(θn+1|Fn) = P(θn+1|θn), ∀n ≥ 0. (5.1)

[See Zhenting and Qingfeng (1978, Chap. 6) for some mathematical nuances.] In
plainer words, for Markov chains the only component of the history that matters
in determining movement probabilities at the current step is the current realization
of the stochastic process. Therefore, for a given event A in � and Markov chain
at time t − 1,

P(θ [t] ∈ A|θ [0], θ [1], . . . , θ [t−2], θ [t−1]) = P(θ [t] ∈ A|θ [t−1]). (5.2)

This is the Markovian property, which defines a Markov chain from within the
general class of stochastic processes.

5.3.2 Markov Chain Properties

Certain properties of the chain and the measure space are necessary by assump-
tion or design to ensure useful results for statistical estimation. These are now
given. The following section is somewhat more abstract and theoretical than
previous discussions. This is necessary to facilitate the subsequent presentation
of numerical pathologies. For more introductory treatments, see Gelman et al.
(1995), Gamerman (1997), or Gill (2002).

5.3.2.1 ψ-Irreducibility
Colloquially, a set, A, is irreducible if every point or collection of points in
A can be reached from every other point or collection of points in A, and a
Markov chain is irreducible if it is defined on an irreducible set. More formally,
first define ψ as a positive σ -finite measure on (H, �) with A ∈ � such that
ψ(A) > 0. For the transition kernel K(θ,A), if every positive ψ-subset, A′ ⊆
A, can be reached from every part of A, then A is called ψ-communicating.
More important, when the full state space H is ψ-communicating, this kernel
is ψ-irreducible. It is usually convenient to assume that ψ-irreducible here is

122 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

maximally ψ-irreducible, meaning that for any other positive σ -finite measure
on (H, �), ψ ′, it is necessarily true that ψ > ψ ′. See Meyn and Tweedie (1993,
pp. 88–89) for some additional but not critical details.

5.3.2.2 Closed and Absorbing Sets
We say that a nonempty set A ∈ � is obtainable from the state θ for the Markov
chain defined at time n by the kernel Kn if

Kn(θ, A) > 0 for some n ≥ 1, (5.3)

and unobtainable if

Kn(θ, A) = 0 for all n ≥ 1. (5.4)

This set A is called closed for K if Ac is not obtainable from A:

Kn(θ, Ac) = 0 for all θ ∈ A and all n ≥ 1. (5.5)

The condition absorbing (Revuz 1975) is more restrictive than closed:

K(θ,A) = K(θ,�) = 1 for all θ ∈ A, (5.6)

since it is possible under the closed condition but impossible under the absorbing
condition that

K(θ,A) = K(θ,�) �= 1 for some θ ∈ A. (5.7)

That is, a closed set can have subsets that are unavailable but an absorbing state
fully communicates with all its subsets.

5.3.2.3 Homogeneity and Periodicity
A Markov chain is said to be homogeneous at step n if the transition probabilities
at this step do not depend on the value of n. We can also define the period of a
Markov chain, which is simply the length of time to repeat an identical cycle of
chain values. It is important to the underpinnings of the basic theories to have
a chain that does not have such a defined cycle, that is, one where the only
length of time for which the chain repeats some cycle of values is the trivial case
with cycle length equal to 1. Such a chain is called an aperiodic Markov chain.
Obviously, a periodic Markov chain is nonhomogeneous because the cycle of
repetitions defines transitions, at specified points, based on time.

5.3.2.4 Recurrence
A homogeneous ψ-irreducible Markov chain on a closed set is called recurrent
(sometimes called persistent) with regard to a set, A, which is a single point
or a defined collection of points (required for the bounded-continuous case) if

ESSENTIAL MARKOV CHAIN THEORY 123

the probability that the chain occupies each subset of A infinitely often over
unbounded time is 1. More informally, when a chain moves into a recurrent
state, it stays there forever and visits every substate infinitely often. A recurrent
Markov chain is positive recurrent if the mean time to return to A is bounded;
otherwise, it is called null recurrent (Doeblin 1940).

Unfortunately, given unbounded and continuous state spaces, we have to work
with a slightly more complicated version of recurrence. If there exists a σ -finite
probability measure P on the measure space H such that an ψ-irreducible Markov
chain, θn, at time n has the property P(θn ∈ A) = 1, ∀A ∈ H where P > 0,
it is Harris recurrent (Harris 1956; Athreya and Ney 1978). This is necessary
because in the continuous case an aperiodic, ψ-irreducible chain with an invariant
distribution on an unbounded continuous state space that is not Harris recurrent
has a positive probability of getting stuck forever in an area bounded away from
convergence, given a starting point there. So the purpose of the Harris definition
is to avoid worrying about the existence of a pathological null set in Rk .

Fortunately, all of the standard MCMC algorithms implemented on (naturally)
finite-state computers are Harris recurrent (Tierney 1994). From this point on we
will use recurrent generically to mean the simpler definition of recurrent for
closed or discrete sets and Harris recurrent for unbounded continuous sets.

5.3.2.5 Transience
First define for a set A the expected number of visits by chain θn to A in the limit
ηA = ∑∞

n=1 I(θn∈A), which is just a summed indicator function that counts hits.
Both transience and recurrence can be defined in terms of the expectation for ηA:

• The set A is uniformly transient if ∃M < ∞ � E[ηA] ≤ M ∀θ ∈ A. A
single state in the discrete state space case is transient if E[ηθ] < ∞.

• The set A is recurrent if E[ηA] = ∞ ∀θ ∈ A. A single state in the discrete
state space case is recurrent if: E[ηθ] = ∞.

The important and relevant theorem is given (with proof) by Meyn and
Tweedie (1993, 182-83) as well as by Nummelin (1984, p. 28):

Theorem. If θn is a ψ-irreducible Markov chain with transition kernel K(θ,A),
it must be either transient or recurrent, depending on whether it is defined on a
transient or recurrent set A.

Proof. This is a direct consequence of Kolmogorov’s zero-one law. Proof details
are given in Billingsley (1995, p. 120).

Thus the chain is either recurrent and we know that it will eventually settle
into an equilibrium distribution, or it is transient and there is no hope that it will
converge accordingly.

We can also define the convergence parameter of a kernel rK as the real
number 0 ≤ R < ∞ on a closed set A such that

∑∞
0 rnKn < ∞ for every 0 ≤

124 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

r < R and
∑∞

0 rnKn = ∞ for every R ≥ r . It turns out that for ψ-irreducible
Markov chains there always exists a finite R that defines whether or not the kernel
for this Markov chain is R-transient if the first condition holds, and R-recurrent
if the second condition holds.

5.3.2.6 Stationarity
Define π(θ) as the stationary distribution of the Markov chain for θ on the state
space H , with transition probability P(θi, θj) to indicate the probability that
the chain will move from arbitrary point θi to arbitrary point θj . The station-
ary distribution (sometimes called the invariant distribution) is then defined as
satisfying∑

θi

π t (θi)P (θi , θj) = πt+1(θj) discrete state space

∫
πt (θi)P (θi , θj)dθi = πt+1(θj) Continuous state space. (5.8)

The multiplication by the transition kernel and evaluating for the current point
(the summation step for discrete sample spaces and the integration step for contin-
uous sample spaces) produces the same marginal distribution, π(θ) = π(θ)P . So
the marginal distribution remains fixed when the chain reaches the stationary dis-
tribution and we can drop the superscript designation for iteration number. Once
the chain reaches the stationary distribution (also called the invariant distribu-
tion, equilibrium distribution, or limiting distribution), its movement is governed
purely by the marginal distribution, π(θ) forever. It turns out (fortunately) that
an ψ-irreducible, aperiodic Markov chain is guaranteed to have exactly one sta-
tionary distribution (Häggström 2002, p. 37). This, in fact, provides the core
theoretical motivation for estimation with MCMC; if the stationary distribution
of the Markov chain is the posterior distribution of interest, we are certain even-
tually to get samples from this posterior.

5.3.2.7 Ergodicity
The fundamental result from Markov chain theory that drives the use of MCMC
is the ergodic theorem. If a chain is positive (Harris) recurrent and aperiodic on
some state A, it is ergodic (Tweedie 1975). Ergodic Markov chains have the
important property

lim
n→∞|P n(θi , θj) − π(θj)| = 0 (5.9)

for all θi , and θj in the subspace (Norris 1997, p. 53). Therefore, the chain has
converged to its limiting distribution and all future draws are from the identical
marginal distribution. Furthermore, once a specified chain is determined to have
reached its ergodic state, sample values behave as if they were produced by the
posterior of interest from the model. Ergodicity is not the only way to demonstrate
convergence, but it is by far the most straightforward (Meyn and Tweedie 1994a).

ESSENTIAL MARKOV CHAIN THEORY 125

Ergodicity provides a condition for convergence but does not itself provide a
bound on the time required to reach convergence to the stationary distribution.
It turns out that there are different “flavors” of ergodicity that provide faster
convergence if the Markov chain being implemented is known to have such
properties. A Markov chain with stationary distribution π at time t , positive
constant r ∈ (0, 1), and a nonnegative, real-valued function of θ , f (θ), such
that there is a geometric decrease in t of the total variation distance between
P n(θi, θj) and π(θj) [i.e., less than or equal to f (θ)rt] is geometrically ergodic
(Nummelin and Tweedie 1978; Chan 1993; Roberts and Tweedie 1994; Meyn
and Tweedie 1994b; Down et al. 1995). Mengersen and Tweedie (1996) give
conditions where a simple type of Metropolis–Hastings chain is geometrically
ergodic:

• Random walk chain. Metropolis–Hastings candidate jumping values are
selected by an offset from the current state according to a simple additive
scheme, θ ′ = θ + f (τ), where τ is some convenient random variable form
with distribution f (·).

Mengersen and Tweedie also demonstrate that certain other Metropolis–
Hastings derivatives are not geometrically ergodic (1996, p. 106). Roberts and
Polson (1994) and Chan (1989, 1993) show that the Gibbs sampler is geomet-
rically ergodic, partially justifying its widespread appeal. Detailed proofs and
associated conditions are provided by Athreya et al. (1996). So ergodicity, in
particular geometric ergodicity, is an attractive property of the Markov chain if
it is present because one knows that convergence will occur in a “reasonable”
period.

A stronger form of ergodicity is uniform ergodicity, which replaces the function
f (θ) in geometric ergodicity with a positive constant. Only some Gibbs samplers
and other MCMC implementations have been shown to have this more desirable
property. Another simple Metropolis–Hastings variant that has this property is:

• Independence chain. Metropolis–Hastings candidate jumping values are
selected from a convenient form as in the random walk chain, but ignor-
ing the current position completely, θ ′ = f (τ), and generating potential
destinations completely on the f (·) distribution. This is uniformly ergodic
provided that f (·) is chosen such that the importance ratio π(θ)/f (θ) is
bounded (Mengersen and Tweedie 1996, p. 108).

Uniform ergodicity is obviously another desirable property, but certainly not
one that can be ensured.

5.3.3 The Final Word (Sort of)

So to map the logical path here. Homogeneity and ψ-irreducibility on a closed set
give recurrence. Positive recurrence and aperiodicity give ergodicity: convergence

126 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

Stationary

Aperiodic

y-IrreducibleState spaces, A

Chains, qn

Distributions, p(q)

*Discrete or bounded continuous: E [hA] = ∞ ∀q ∈ A. Continuous: P(qn ∈ A) = 1, ∀A ∈ H
where P > 0 (Harris).
Positive recurrence: mean return time to A is bounded.

Closed

y-Irreducible

Homogeneous

Positive
recurrent*

Ergodic

Fig. 5.1 Conditions leading to ergodicity and stationarity.

for a Markov chain to the posterior of interest (empirical averages converge to
probabilistic averages) (Athreya et al. 1996; Brémaud 1999, p. 110). This means
that we can then collect samples from the simulations and calculate various
posterior quantities empirically.

Figure 5.1 gives a graphic overview of these conditions where the path of
arrows denotes necessary preconditions (rather than necessary implications). Note
the centrality of recurrence (generally defined) in this process. This figure also
distinguishes between properties associated with state spaces and properties asso-
ciated with Markov chains themselves.

5.4 MECHANICS OF COMMON MCMC ALGORITHMS

In this section we review three commonly used procedures for constructing Markov
chains for statistical inference. Each produces valid inferences if set up correctly,
and recommended use of one over the others is usually problem dependent.

5.4.1 Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm comes from statistical physics (Metropolis
et al. 1953), but has proved to be enormously useful in general statistical esti-
mation (Hastings 1970; Peskun 1973; Chib and Greenberg 1995).

Suppose that we want to simulate θ , a J -dimensional parameter vector, from
the posterior distribution π(θ) with support known. At the ith step in the chain, we
will draw θ ′

j , j = 1 :J from a multivariate candidate generating distribution
over this same support: θ ′. This candidate generating distribution (also called
jumping, proposal, or instrumental) is picked to be easy to sample from. One
convenient possibility is a multivariate normal or t-distribution centered at the
current value of the θj ’s in the process and using the empirical variance from
past iterations: for each θj : s2

θj
(and specify s2

θj
= 1 as a starting value). This

MECHANICS OF COMMON MCMC ALGORITHMS 127

requires, of course, that the posteriors of interest have support over the entire
real line, but π(θ) can usually be transformed so that simulation occurs on the
more convenient metric.

It must be possible to determine qt (θ |θ ′) and qt (θ
′|θ) for the candidate gen-

erating distribution. Under the original constraints of Metropolis et al. (1953),
these two conditionals needed to be equal (symmetry), although we now know
that this is not necessary and have the more flexible restriction of reversibility.
That is, the detailed balance equation (also called reversibility) must be true to
ensure that π(θ) is an invariant distribution:

K(θ ′, θ)π(θ ′) = K(θ , θ ′)π(θ),

where K(θ ′, θ) is the kernel of the Metropolis–Hastings algorithm going from θ

to θ ′. Sometimes K(θ ′, θ) is labeled as A(θ ′, θ) and called the actual transaction
function from θ to θ ′ to distinguish it from a(θ ′, θ) below. The acceptance ratio
is now defined as

a(θ ′, θ) = qt (θ
[t]|θ ′)

qt (θ
′|θ [t])

π(θ ′)
π(θ [t])

. (5.10)

The subsequent decision that produces the (t + 1)st point in the chain is proba-
bilistically determined according to

θ [t+1] =
{

θ ′ with probability P [min(a(θ ′, θ), 1)]

θ [t] with probability 1 − P [min(a(θ ′, θ), 1)].
(5.11)

In the case of symmetry in the candidate generating density, qt (θ |θ ′) = qt (θ
′|θ),

the decision simplifies to a ratio of the posterior density values at the two points.
These steps can be summarized for a single scalar parameter of interest accord-

ing to (5.11) with the following steps:

1. Sample θ ′ from q(θ ′|θ), where θ is the current location.
2. Sample u from u[0 : 1].
3. If a(θ ′, θ) > u, accept θ ′.
4. Otherwise, keep θ as the new point.

The algorithm described by these steps also has desirable convergence prop-
erties to the distribution of interest (Roberts and Smith 1994).

5.4.2 Hit-and-Run Algorithm

The hit-and-run algorithm is a special case of the Metropolis–Hastings algorithm
that separates the move decision into a direction decision and a distance decision.
This makes it especially useful in tightly constrained parameter space because we
can tune the jumping rules to be more efficient. As it turns out, this directional
flexibility is also helpful when there are several modes of nearly equal altitude.

128 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

The algorithm proceeds according to the following steps. From an arbitrary
point θ t at time t :

Step 1: Generate a multidimensional direction, Drt , on the surface of a
J -dimensional unit hypersphere from the distribution f (Dr|θ [t]).

Step 2: Generate a signed distance, Dst , from density g(Ds|Drt , θ).
Step 3: Set the candidate jumping point to: θ ′ = θ [t] + DstDrt and

calculate:

a(θ ′, θ [t]) = π(θ ′|X)

π(θ [t]|X)
.

Step 4: Move to θ [t+1] according to

θ
[t+1]
j =

{
θ ′ with probability P [min(a(θ ′, θ [t]), 1)]

θ [t] with probability 1 − P [min(a(θ ′, θ [t]), 1)].

This algorithm requires the following assumptions:

• For all Dri , f (Dr|θ [t]) > 0.
• g(Ds|Dr, θ) must be strictly greater than zero and have the property

g(Ds|Dr, θ) = g(−Ds| − Dr, θ).

• A new form of the detailed balance equation is required:

g(||θ [t] − θ ′||)a(θ ′, θ [t])π(θ [t]|X) = g(||θ ′ − θ [t]||)a(θ [t], θ ′)π(θ ′|X).

Subject to these conditions, this is an ergodic Markov chain with stationary
distribution π(θ |X) (Chen and Schmeiser 1993). Typically, f (Dr|θ [t]) is chosen
to be uniform, but other forms are possible if necessary. In addition, the a(θ ′, θ [t])

criterion can be made much more general. One advantage to this algorithm over
standard M-H is that g(Ds|Dr, θ) is also very flexible if disengaged from the
direction decision, which makes the method very tunable.

5.4.3 Gibbs Sampler

The Gibbs sampler is a transition kernel created by a series of full conditional
distributions. It is a Markovian updating scheme based on these conditional prob-
ability statements. Define the posterior distribution of interest as π(θ), where θ is
a J -length vector of coefficients to estimate, the objective is to produce a Markov
chain that cycles through these conditional statements moving toward and then
around this distribution.

ROLE OF RANDOM NUMBER GENERATION 129

The set of full conditional distributions for θ are denoted ��� and defined by
π(���) = π(θi |θ−j) for j = 1, . . . , J , where the notation θ−j indicates a specific
parametric form from ��� without the θj coefficient. We can now define the Gibbs
sampler according to the following steps:

1. Choose starting values: θ [0] = [θ [0]
1 , θ

[0]
2 , . . . , θ

[0]
J].

2. At the t th step starting at t = 1, complete the single cycle by drawing
values from the J conditional distributions given by

θ
[t]
1 ∼ π(θ1|θ [t−1]

2 , θ
[t−1]
3 , . . . , θ

[t−1]
J−1 , θ

[t−1]
J)

θ
[t]
2 ∼ π(θ2|θ [t]

1 , θ
[t−1]
3 , . . . , θ

[t−1]
J−1 , θ

[t−1]
J)

θ
[t]
3 ∼ π(θ3|θ [t]

1 , θ
[t]
2 , . . . , θ

[t−1]
J−1 , θ

[t−1]
J)

...

θ
[t]
J−1 ∼ π(θJ−1|θ [t]

1 , θ
[t]
2 , θ

[t]
3 , . . . , θ

[t−1]
J)

θ
[t]
J ∼ π(θJ |θ [t]

1 , θ
[t]
2 , θ

[t]
3 , . . . , θ

[t]
J−1).

3. Increment t and repeat until convergence.

The Gibbs sampler has very attractive theoretical properties that make it
extremely useful across a wide range of applications. Since the Gibbs sampler
conditions only on values from its last iteration, it has the Markovian property
of depending only on the current position. The Gibbs sampler is a homogeneous
Markov chain: the consecutive probabilities are independent of n, the current
length of the chain. This should be apparent from the algorithm above; there
is nothing in the calculation of the full conditionals that is dependent on n. As
mentioned previously, the Gibbs sampler has the true posterior distribution of

parameter vector as its limiting distribution: θ [i] d−−−−−→
i=1→∞

θ ∼ π(θ) since it is

ergodic, first proved in the original Geman and Geman (1984) paper for finite
state spaces and subsequently in more general settings (Chan 1993; Roberts and
Polson 1994). Furthermore, the Gibbs sampler converges very quickly relative
to other algorithms since it is geometrically ergodic.

5.5 ROLE OF RANDOM NUMBER GENERATION

The purpose of Section 5.4 was to highlight and summarize the detailed work-
ings of the most popular methods for obtaining posterior samples with MCMC.
It should be obvious from the discussion that all these methods (and many
others being variations on those described) rely on being able to sample (i.e.,
generate) random quantities from specific distributions. The Metropolis–Hastings
algorithm needs to draw samples from the candidate generating distribution and

130 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

from a random uniform distribution on [0 : 1]. The hit-and-run distribution needs
to generate uniformly (typically) on the J -dimensional unit hypersphere and a
signed distance from some specified density (often gamma) and from a random
uniform distribution on [0 :1]. The Gibbs sampler only needs to generate values
from conditional distributions on each step, but there must be J values generated
for a 1 ×J coefficient vector at each step. Therefore, random number generation
is a key component of MCMC algorithms.

Random number generation is an important but understudied aspect of applied
statistical computing, at least at the high end of implementation complexity
(Marsaglia 1985), including Markov chain Monte Carlo implementations. We
know from a vast foundational literature that serious problems can be caused
by poorly written algorithms: Good (1957), Butcher (1961), Kronmal (1964),
Coveyou and MacPherson (1967), Downham and Roberts (1967), Gorenstein
(1967), Marsaglia (1968), Whittlesey (1969), Downham (1970), Toothill et al.
(1971), Learmonth and Lewis (1973), Dieter (1975), Dudewicz (1975, 1976),
McArdle (1976), Atkinson (1980), Morgan (1984), Krawczyk (1992), Gentle
(1998), McCullough (1999a), and McCullough and Wilson (1999). In much the
same way that the famously flawed but widely used RANDU algorithm from IBM
was used for quite some time although it had received quite a lot of criticism in
this literature (Coveyou 1960; Fishman and Moore 1982; Hellekalek 1998), it can
also be difficult to generate random numbers with specialized non-random prop-
erties such as specified correlations (Hurst and Knop 1972; Kennedy and Gentle
1980; Gentle 1990; Anderson and Louis 1996; Malov 1998; Falk 1999). (We treat
the issue briefly here. See Chapter 2 for a detailed discussion, and Chapter 3 for
tests that can be used to evaluate the quality of random number generation.)

Random numbers generated on computers have two characteristics that make
them not truly random. First, the process is wholly discrete in that they are created
from a finite binary process and normalized through division. Therefore, these
pseudo-random numbers are necessarily rational. However, truly random num-
bers on some defined interval are irrational with probability 1 since the irrationals
dominate the continuous metric. This is a very minor technical consideration
and not one worth really worrying about (especially because there is no good
solution). Second, while we call these values random or more accurately pseudo-
random numbers, they are not random at all since the process the generates them
is completely deterministic (Jagerman 1965; Jansson 1966). The point is that the
algorithms create a stream of values that is not random in the indeterminant sense
but still resembles a random process. The utility of these deterministic streams is
the degree to which they lack systematic characteristics (Coveyou 1960). These
characteristics are the time it takes to repeat the stream exactly (the period) and
repeated patterns in lagged sets within the stream.

5.5.1 Periodicity of Generators and MCMC Effects

The reason we care about homogeneity and aperiodicity, as described in
Section 5.3, is that these conditions are required for the ergodic theorem, which

ROLE OF RANDOM NUMBER GENERATION 131

establishes eventual convergence to the stationary distribution of interest. Because
all MCMC computational implementations draw from target distributions using
pseudo-random number generators, we should be concerned about the effect of
the patterns and period of the generator, which is something that cannot be
avoided. Obviously, some implementations are better (longer periods) than oth-
ers, but virtually no work has been done thus far to analyze real and potential
implications in the MCMC environment.

Since all pseudo-random generators are necessarily periodic, in a sense all
software implementations of Markov chains produce non-ergodic Markov chains.
More precisely, a Markov chain run indefinitely in a software implementation is
non-ergodic because all pseudo-random number generators have periods. Since
every underlying random generator cycles, technically the subsequent chain val-
ues are neither homogeneous nor aperiodic.

To see this in more detail, start with the transition kernel K(θ,A) that satisfies
the minorization condition:

Kt0(θ, A) ≥ βs(θ)ν(A), ∀θ,A ∈ �

where t0 ∈ I ≥ 1, β an arbitrary positive constant, ν ∈ M+ a measure, and s(θ) ∈
� a function. A sequence of T nonempty disjoint sets in �, [A0, A1, . . . , AT −1],
is called a t-cycle for this kernel if ∀i = 0, 1, . . . , T − 1, and all θ ∈ �:

K(θ,Ac
j) = 0 ∀j = i + 1 (mod T) (5.12)

(Nummelin 1984, p. 20). That is, there is actually a deterministic cycle of sets
generated because the full range of alternative sets occur with probability zero:
K(θ,Ac

j).
The question that remains is whether the periodicity imposed by the generator

matters in finite sample implementations. Suppose that a Markov chain is run for
m iterations with an underlying pseudo-random number generator that has period
N > m. If at step m it is possible to assert convergence and collect a sample for
empirical summary of the posterior equal to n such that m + n < N , the period
of the random number generator is immaterial because no values were repeated
deterministically. Two obvious complications arise from this observation: (1) it
might not be possible to assert convergence yet, and (2) it might not be possible
to obtain reasonable m and n iterations whereby m + n < N .

How real a problem is this in common implementations of MCMC algorithms?
Currently, two software approaches dominate applied work: user-friendly appli-
cations coded in WinBUGS and more involved, but flexible, solutions written
in C++. The pseudo-random number generator for WinBUGS is a linear con-
gruential generator (discussed in Chapter 2), and this is also true for almost all
system-supplied rand() functions in C++ libraries. The linear congruential gen-
erator is a simple and fast generator of uniform integers (which are then scaled
for other purposes) described in Chapter 2.

The period for WinBUGS is 231 = 2, 147, 483, 648, which seems quite large
at first. The period for C++ solutions depends on the value that the user sets for

132 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

RANDMAX in the declarations, which determines the maximum possible period
obtainable (although it may be lower; see Press et al. 2002). Although RANDMAX
can be set as high as 232, it is often set as low as 32,767 either by the user or
by the default settings of the programming libraries accompanying the compiler.

As noted previously, the PRNG periodicity problem is exacerbated in MCMC
implementations because standard algorithms require more than a single random
draw at each time t . For instance, the Gibbs sampler requires one for each
parameter defined by the series of full conditional distributions. Therefore, for
100 parameters (not unreasonable in some literatures), the period of 2 billion
given above is reduced to 20 million. Although this exceeds common use, it
does not exceed all conceivable use.

Needless to say, incautious coding in C++ and other programming languages
can lead to poor periodicity and other problems. [See the discussion in Park and
Miller (1988).] Open-source alternatives to the default generators abound and
are easy to find. These include algorithms such as KISS, mother-of-all, RANROT,
and the multiple recursive generator. George Marsaglia (personal communica-
tion) notes that much can be learned about generator reliability by running
the same simulation setup with several different generators to see if consis-
tent answers result. In general, high-quality implementations are careful to pay
attention to this low-level, but critical consideration. For instance, the Scythe
open-source C++ library for a MCMC suite of programs, written by Andrew Mar-
tin and Kevin Quinn (<http://scythe.wustl.edu/>), uses the excellent
Mersenne twister generator (Matsumoto and Nishimura 1998).

It should also be noted that there are two general classes of random number
generators available: Standard PRNGs as discussed here and in Chapter 2, and
those used by cryptographers. The latter eschew repeating patterns but at the
cost of higher complexity and lower efficiency. This “crypto-strength” level of
randomness is available, however, for extremely sensitive MCMC applications
(see Schneier 1994).

5.5.2 Periodicity and Convergence

The question we address here is whether or not convergence to the stationary
distribution is possible without asserting strict ergodicity of the Markov chain.
This is a necessity since ergodicity is a property that depends on aperiodicity.

Return to the abstract measurable space (H, �) with events A, B,C, . . . in H ,
real-valued measurable functions f, g, h, . . . on �, and signed measure M+ with
elements λ and µ. First, define an appropriate norm operator. The elementary
form for a bounded signed measure, λ, is

||λ|| ≡ sup
A∈�

λ(A) − inf
A∈�

λ(A), (5.13)

which is clearly just the total variation of λ. Second, assume that K is R-
recurrent given by probability measure P , and the stationary distribution is
normed such that π(h) = 1 for h on �. In addition, assume also that θn is

ROLE OF RANDOM NUMBER GENERATION 133

R-recurrent (discrete or bounded continuous space) or Harris R-recurrent (contin-
uous unbounded space) Markov chain. If K has period p ≥ 2, then by definition
the associated Markov chain cycles between the states {A0, A1, A2, . . . , Ap−1}.
We can also define the ψ-null set : � = {A0 ∪ A1 ∪ · · · ∪ Ap−1}c, which defines
the collection of points not visited in the p-length iterations.

Let the (positive) signed measures λ and µ be any two initial distributions of
the Markov chain at time zero, and therefore before convergence to any other
distribution. Nummelin (1984, Chap. 6) shows that if θn is aperiodic, then

lim
n→∞||λP n − µP n|| = 0. (5.14)

This is essentially Orey’s (1961) total variation norm theorem applied to an
aperiodic, recurrent Markov chain. [Orey’s result was more general but not any
more useful for our endeavors; see also Athreya and Ney (1978, p. 498) for
a proof.] But wait a minute; we know that any ψ-irreducible and aperiodic
Markov chain has one and only one stationary distribution, and ψ-irreducibility is
implied here by recurrence. Therefore, we can substitute into (5.14) the stationary
distribution π to get

lim
n→∞||λP n − π || = 0, (5.15)

which gives ergodicity. This shows in greater detail than before the conditions
by which convergence in distribution to the stationary distribution is justified.

How does this help us in the absence of aperiodicity? Suppose now that K

has period p ≥ 2, and λ(Ai) = µ(Ai) ∀i, plus λ(�) = µ(�) = 0. Then in this
modified situation Nummelin also shows that we again get the form in (5.14).
So the first price we pay for getting some form of convergence is a set of mild
restrictions on the initial distributions relative to the cycled states. However, the
second step above does not help us replace µP n with π .1 Suppose, instead, we
require that µP n = π . This is equivalent to starting the Markov chain out already
in its stationary distribution. If we could do that, the periodic form improves
from the (5.14) form to the (5.15) from, and the chain operates in the stationary
distribution just as if it were ergodic. This works because a Markov chain started
in its stationary distribution remains in this distribution.

Starting the chain in the stationary distribution is often not that difficult. In fact,
its particularly easy for the Metropolis–Hastings algorithm because the stationary
distribution is given explicitly. In other cases, this can be done by applying one
form of the accept–reject method [a simple trial method based on testing candidate
values from some arbitrary instrumental density; see Robert and Casella (1999,
p. 49)] until a random variable from the stationary distribution is produced, then
run the chain forward from there. Also, it is often the case that the time to get
the accept–reject algorithm to produce a random variable from the stationary
distribution will be shorter than any reasonable burn-in period.

1Or λP n either, as an appeal to symmetry for that matter since the choice of λ and µ is arbitrary here.

134 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

There is a secondary issue, however. Convergence to stationarity is distinct
from convergence of the empirical averages, which are usually the primary sub-
stantive interest (Gill 2002, p. 411). Consider the limiting behavior of a statistic
of interest, h(θ), from an aperiodic Harris recurrent Markov chain. We typically
obtain empirical summaries of this statistic using the partial sums, such as

h = 1

n

n∑
i=1

h(θi). (5.16)

The expected value of the target h is Ef h(θ), so by the established properties
of Harris recurrent Markov chains (Brémaud 1999, p. 104), it is known that∑n

i=1 h(θi)/n → Ef h(θ) as n → ∞. Equivalently, we can assert that

1

n

n∑
i=1

h(θi) − Ef h(θ) −→
n→∞ 0. (5.17)

We can also consider the true distribution of h(θ) at time n (even if it is not
observed directly) from a chain with starting point θ0. The interest here is in
Eθ0h(θ), where the expectation is with respect to the distribution of θn conditional
on θ0. In the next step add and subtract this term on the left-hand side of (5.17)
to obtain[

1

n

n∑
i=1

h(θi) − Eθ0h(θ)

]
−
[
Ef h(θ) − Eθ0h(θ)

]
−→
n→∞ 0. (5.18)

The second bracketed term is obviously the difference between the expected value
of the target h(θ) in the true distribution at time n and the expected value of h(θ)

in the stationary distribution. Given a geometrically ergodic Markov chain, this
quantity converges geometrically fast to zero since ‖Ef h(θ) − Eθ0h(θ)‖ ≤ kδn

for a positive k, and a δ ∈ (0 : 1). Now the first bracketed term is the difference
between the current empirical average and its expectation at time n. Except at
the uninteresting starting point, these are never nonasymptotically equivalent, so
even in stationarity, the empirical average has not converged. This is not bad
news, however, since we know for certain by the central limit theorem that

1
n

∑n
i=1 h(θi) − Eθ0h(θ)

σ/
√

n

d→ N (0, 1). (5.19)

Therefore, as
√

n δn → 0, convergence to stationarity proceeds at a much faster
rate and does not bring along convergence of empirical averages.

So what really matters for periodicity imposed by the pseudo-random number
generator is whether the cycle affects the result in (5.19). It is well known that
the central limit theorem holds for sequences of random variables provided that
the serial dependence is “relatively weak’ (Lehmann 1999) and the sequence has

ROLE OF RANDOM NUMBER GENERATION 135

bounded variance. Several features of the MCMC process help this result. First,
sampling truly does occur from an infinite population, even if this population
exists only in the theoretical sense. Second, it is relatively easy to verify that
the posterior distribution of interest does not have unbounded variance, even
if there is an improper prior. Third, because of the Markovian property, the
relatively weak condition should be met in all but the worst circumstances, and
even in those it is easy to assess serial correlations with graphical and analytical
summaries (WinBUGS makes this very easy).

So the net result of this section is that the long periodicity of high-quality
generators does not generally affect the quality of MCMC output. There are two
caveats, however. First, given models with a large number of parameters (say, ≥
100) and the need for long chains, one should be particularly careful to scrutinize
the output and should certainly try different generators. Second, generators with
notably bad characteristics in terms of low periodicity and serial patterns (e.g.,
RANDU) should be avoided at all costs. The example in the following section
demonstrates the problem with ignoring this last admonition.

5.5.3 Example: The Slice Sampler

Sometimes, introducing an additional variable into the Markov chain process
can improve mixing or convergence. The general strategy is to augment a k-
dimensional vector of coefficients, θ ∈ ���, with (at least) one new variable, u ∈ U,
such that the (k+1)-dimensional vector on ���×U space has good chain properties.
The slice sampler variant of this approach has many good theoretical properties,
such as geometric convergence, thus making it one of the more common auxiliary
variable methods.

Start with the unconditional posterior (from u) distribution of θ given as
π(θ), where conditioning on the data is notationally suppressed. Define π(u|θ)

and therefore the joint posterior distribution by π(θ , u) = π(u|θ)π(θ). It must be
possible to articulate π(u|θ), but only convenient forms are typically considered.2

Two conditional transition kernels are required: one that updates θ , P [θ → θ ′|u],
and one that updates u, P [u → u′|θ]. In the case of Gibbs sampling these
correspond to the conditionals: π(θ ′|u) and π(u′|θ), and the algorithm proceeds
by cycling back and forth where the additional within-θ steps are implied. Thus
the Gibbs sampling process recovers the marginal of interest: π(θ). The two-step
nature of the process ensures that the stationary process remains π(θ) since the
detailed balance equation is maintained:∑

u

π(u′|θ)π(θ)P [θ → θ ′|u)] =
∑
u

π(θ ′|u)π(u)P [θ → θ ′|u)],

and we can therefore run the chain in this fashion and simply discard the u values
after convergence has been asserted.

2Actually, the Metropolis–Hastings algorithm is already an auxiliary variable process since the
candidate generating distribution is auxiliary to the distribution of interest.

136 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

The slice sampler for a two-parameter estimation vector starts by stipulating
the two marginals and the joint distribution as uniforms in the following way:

u[j+1]|θ [j] ∼ U(0, π(θ [j]) θ [j+1]|u[j] ∼ U(θ : π(θ [j+1]) > u[j+1]) (5.20)

at time j . Here it is necessary that the target distribution be expressed as a product
of the marginals: π(θ) = ∏

π(θi). So the auxiliary variable(s) is sampled from a
uniform bounded by zero and the θ ; these θ are, in turn, sampled from a uniform
bounded below by the auxiliary variable(s).

As a rudimentary but instructive example (Robert and Casella 1999) suppose
that we have f (x) ∝ exp(−x2/2) and wish to generate samples. Set up a uniform
such that

u|x ∼ U [0, exp(−x2/2)], x|u ∼ U [−
√

−2 log(u),
√

−2 log(u)]

to make this u the auxiliary variable with easy sampling properties. This example
is interesting because although we could sample a more difficult and realistic
distribution with this procedure, sampling a nonnormalized normal provides an
easy post hoc test.

Now run a Gibbs sampler according to the conditionals defined, as imple-
mented in R:

N <- 64000; x.vals <- 0; u.vals <- 0
for (i in 2:N) {

u.vals <- c(u.vals,runif(1,0,exp(-0.5*x.vals[(i-1)]^2)))
x.vals <- c(x.vals,runif(1,-sqrt(-2*log(u.vals[i])),

sqrt(-2*log(u.vals[i]))))
}

One can see from Figure 5.2 that this process clearly produces a normal sample
even though only uniform random variables are sampled. This implementation
of the slice sampler can be loosely considered as an MCMC version of the
Box–Müller algorithm (1958).

However, suppose that we substitute the standard pseudo-random generator
in R with an intentionally poor alternative. Linear congruential generators are of
the form

xn+1 = (axn + b) (mod m), (5.21)

where selection of the constants a, b, and m is critical. In fact, the period can
be quite short if these are not chosen wisely. [See the survey in Park and Miller
(1988) for particular choices.] Early literature on congruential generators showed
that the period is maximized if (Hull and Dobell 1962; Knuth 1998):

• m and b have no common factors other than 1.
• a − 1 is a multiple of every prime that factors m.
• If 4 is a factor of m, then 4 is a factor of a − 1.

ROLE OF RANDOM NUMBER GENERATION 137

x-Value

D
en

si
ty

−4 −2 0 2 4 −4 −2 0 2 4

4

2

0

−2

−4

0.4

0.3

0.2

0.1

0.0

Theoretical quantile

(a) (b)

S
am

pl
e

qu
an

til
e

Fig. 5.2 Slice sampler without numerical problems: (a) histogram and density overlay; (b) normal
Q-Q plot.

The now famously flawed RANDU algorithm used for decades by IBM main-
frames is produced by setting a = 65,539, b = 0, and m = 231. The problem
with RANDU is that it defines iterative triples which are evident when graphed in
three dimensions. [See the figures of Fishman 1996, p. 620.]

Press et al. (2002) point out that a superbly bad choice for m is 32,767 (an
ANSI recommendation notwithstanding!). So replace the random number gener-
ator used previously with the R code:

lcg.rand <- function(seed,n) {
m <- 32767; a <- 1103515245; c <- 12345
out.vec <- NULL; new <- seed
while (length(out.vec) < n) {

new <- (new*a + c) %% m
out.vec <- c(out.vec, new/m)

}
return(out.vec)

}

and run the slice sampler again. This produces a sample with slightly heavier tails
than the intended normal and which is only slightly noticeable with a histogram
or normal quantile plot. To show this effect more clearly, we set m = 9, which
is a stunningly bad choice since 9 is a factor of 1,103,515,245. The slice sampler
then produces the output in Figure 5.3. Clearly, poor choices for the constants
can be disastrous.

5.5.4 Evaluating WinBUGS

By far the most common method of MCMC estimation is the high-quality and free
package from the Community Statistical Research Project at the MRC Biostatis-
tics Unit and the Imperial College School of Medicine at St. Mary’s, London,
WinBUGS (<http://www.mrc-bsu.cam.ac.uk/bugs/>). Therefore, it

138 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

x-Value

D
en

si
ty

−2 −1 0 1 2 −3 −2 −1 0 1 2 3

2

1

0

−1

−2

0.4

0.3

0.2

0.1

0.0

Theoretical quantiles
(a) (b)

S
am

pl
e

qu
an

til
e

Fig. 5.3 Slice sampler with numerical problems: (a) histogram and density overlay; (b) normal
Q-Q plot.

is certainly worth looking in detail at the random number generation process
used by this package. The algorithm used by WinBUGS (and its Unix-based
cousin BUGS) is a multiplicative congruential generator :

xn+1 = axn (mod m), (5.22)

which is a linear congruential generator with b = 0. Lewis et al. (1969) proposed
this method with a = 75 = 16,807 and m = 231 = 2,147,483,647, and Park
and Miller (1988) showed that this is the optimal choice. Unfortunately, as Press
et al. (2002) point out, the standard algorithm with this choice of m cannot be
directly coded in a high-level language (WinBUGSis written in MODULA-2) since
the required products would produce overflow on 32-bit registers. The authors of
WinBUGShave used Schrage’s (1979) workaround for this problem. This solution
starts with defining

q = �m/a� r = m (mod a),

where � � indicates the floor function (integer component). Thus the Park and
Miller optimal values are q = 127,773 and r = 2836. The Schrage algorithm
produces new pseudo-random values according to

xn+1 = axn mod(m)

=
{

a(xn (mod q)) − r�xn/q� if greater than zero

a(xn (mod q)) − r�xn/q� + m otherwise.
(5.23)

It turns out that this algorithm has minor problems with serial correlation. In
particular, the ratio difference between a and m means that very small random
numbers will by necessity produce subsequent values that are guaranteed to be
less than the current sample average. This is not a big issue except that it points
toward the potential for other unknown problems. Press et al. (2002) also notes
that this generator also fails the χ2 uniformity test for generated sample sizes

ABSORBING STATE PROBLEM 139

slightly over 1 million. This generator is known to fail many of the more rigorous
tests described in Chapter 3.

There is another issue with WinBUGSthat is more operational than algorithmic.
Whenever a new model is checked for syntax, the random seed is set to the default
value, 9876543210. So if a user is comparing a set of subsequent models, these
models will be run with exactly the same stream of random draws. The designers
thought that this was a useful feature because it allows for direct comparison of
alternative specifications, starting points, and system options. However, if there
is a reason that the user needs to have different streams, the seed should be reset
manually. [See Mihram and Mihram (1997) for ideas; see also Chapter 2 for a
solution to this problem that uses hardware random number generators.]

Does this default seed option mean that the Markov chain moves determinis-
tically in exactly the same way for a given model? The answer, surprisingly, is
yes. If the same starting values are given and the same random seed is used, one
can exactly replicate the path of the chain in WinBUGS. However, because of
the Markovian property, if different starting points are given, an entirely differ-
ent deterministic path is produced. Consider the Gibbs sampler in this context.
The draws are from full conditional distributions, conditioned on all the other
parameter values at each substep. Therefore, a different starting point produces
a unique series of conditionals.

5.6 ABSORBING STATE PROBLEM

In Chapters 1 and 2 it was shown that all computational calculations necessitate
rounding and truncating errors as a result of finite-precision arithmetic. Some
time ago in a seminal work, Tierney (1994, p. 1722) raised an alarm about the
consequences of numerical computing for the behavior of Markov chains. His
concern was that machine rounding could introduce an absorbing state for the
chain that would prevent convergence to the true stationary distribution even if
it is a Markov chain algorithm with all of the appropriate theoretical properties
for convergence. In other words, it is possible that due to the software imple-
mentation of the kernel, an ergodic Markov chain can be prevented from finding
and exploring the posterior distribution as intended.

Robert and Casella (1999, p. 425) distinguish between trapping sets, which
require a very large number of iterations before the chain escapes, and absorbing
sets, which can never escape. Both of these are problematic, with the latter being
far worse, of course. The central problem can be explained by the example of a
simple Metropolis–Hastings algorithm. Suppose that the chain defined by kernel
K enters a trapping set A such that the values produced by the instrumental
distribution have the following Metropolis–Hastings characteristics:

• At an arbitrary step sample θ ′ from q(θ ′|θ), where θ ∈ A.
• θ ′ relative to A has the following probabilities:

P(θ ′ ∈ A) = 1 − ε, P (θ ′ ∈ Ac) = ε.

140 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

• Sample u from u[0 :1].
• If a(θ ′, θ) > u, move to θ ′; otherwise, remain.

Here we assume that ε is very small such that A is a trapping set requiring a
large number of generated u values to obtain the condition that the Metropolis–
Hastings acceptance ratio defined in (5.10), a(θ ′, θ), is greater than a generated
u. This means that the chain will be trapped in A for a long time. Now if a(θ ′, θ)

for all θ ∈ A falls below the uniform random number generator’s smallest pos-
sible value, A is now an absorbing state because there cannot be a u < a(θ ′, θ)

giving a successful jump.
Young et al. (1998) find a related problem that is equally distressing but eas-

ily observed. In their example, if a Gibbs sampler for estimating probability
parameters returns a conditional probability value outside [0 :1], corresponding
coefficient estimates will go to infinity or negative infinity. This “degeneracy”
in the estimates is easy to detect and they recommend setting deliberate bounds
on the parameters as part of the estimation process. This will not work well,
however, if the estimates sit at the bounds cycle after cycle.

This discussion should not be interpreted as asserting that absorbing states are
necessarily bad in all settings. After all, the desired stationary distribution is itself
an absorbing state. The problem is actually that an absorbing state produced by
machine round-off will not be the desired posterior distribution, and this problem
is therefore fatal to the estimation enterprise.

Tierney (1994) also notes a related problem. It is possible to specify posterior
forms that are reasonably stable near the mode but unstable in the tails. Often,
this is the result of effects such as inliers (very small values on the original
metric that go to huge negative values on the logged scale). Since it is relatively
common to work with log posteriors densities, care should be exercised to ensure
that this problem does not occur by analytically or diagrammatically looking at
suspect regions. Fortunately, this problem is easy to detect since the unbounded
values will ruin empirical averages in an obvious way.

5.7 REGULAR MONTE CARLO SIMULATION

Finally, it should be noted that problems from the pseudo-randomness of gen-
erated values do not affect MCMC procedures alone, and there is obviously
quite a lot in common (Ripley 1987; Gelman 1992; Monahan 2001). In fact,
regular Monte Carlo simulation for calculation of volumes and statistics are also
sensitive to poor performance of the generating mechanism, albeit in a differ-
ent manner. Fishman (1996) points out that “Regardless of whether or not one
employs variance-reducing techniques, the statistical integrity of every Monte
Carlo sampling experiment depends on the availability of an algorithm for gener-
ating random numbers, or more precisely, for generating sequences of numbers by
relatively stringent standards can be regarded as indistinguishable from sequences
of truly random numbers.”

SO WHAT CAN BE DONE? 141

As Fishman’s quote indicates, a central concern with MC applications is the
amount of simulation error that is introduced by the numerical process and the
process for accounting for it not to overstate the accuracy of simulation results.
Stern (1997) emphasizes, albeit tangentially, how important the iid assumption
can be in simulation studies. Obviously, the quality of the underlying PRNG
affects such high-level econometric studies. So alternative generators are often
evaluated by the extent to which imposed inaccuracies add to the asymptotically
declining simulation error term (Rubinstein 1981).

To explain standard Monte Carlo simulation briefly, suppose that we had
a probability function, f (x), that was difficult to express or manipulate but
for which we could generate samples on an arbitrary support of interest: [a:b]
(which may also be multidimensional). A typical quantity of interest is I [A, B] =∫ B

A
f (x)h(x) dx. This is the expected value of some function, h(x), of x dis-

tributed f (x). If h(x) = x, I [A,B] is the calculation of the mean of x over [A:B].
A substitute for analytically calculating this quantity is to randomly generate n

values of x from f (x) and calculate Î [A,B] = (1/n)
∑n

i=1 h(xi). So we replace
analytical integration with summation from a large number of simulated values,
rejecting values outside of [A:B]. The utility of this approach is that by the strong
law of large numbers, Î [A,B] converges with probability 1 to the desired value,
I [A,B]. A second useful feature is that although Î [A, B] now has the simulation
error mentioned above, this error is easily measured by the empirical variance of
the simulation estimate: Var(Î [A,B]) = 1/n(n − 1)

∑n
i=1(h(xi) − Î [A,B])2.

Note that the researcher fully controls the simulation size, n, and therefore
the simulation accuracy of the estimate. Also, because the central limit theo-
rem applies here as long as Var(I [A, B]) is finite, credible intervals can eas-

ily be calculated by [95%lower, 95%upper] = [Î [A,B] − 1.96
√

Var(Î [A,B]),

Î [A,B] + 1.96
√

Var(Î [A,B])], or simply by reporting the 0.025 and 0.075
empirical quantiles from the simulation sample.

Although a great deal of the literature on Monte Carlo methods is concerned
with variance reduction, readers often have no idea what an individual study has
done with regard to simulation error and other concerns (Ripley 1987). Kennedy
and Gentle (1980, p. 235) note that “Frequently one sees in articles in the statis-
tics journals reports of ‘Monte Carlo studies’ that fail to supply any details of the
study; only the ‘results’ are given. Since the results are realizations of pseudo-
random processes, however, the reader of the article may be left wondering about
the magnitude of the pseudo-standard errors and, indeed, about the effect of the
‘pseudo’ nature of the process itself.” This statement is certainly no less accurate
with regard to MC studies in social science journals, and the situation may even
be worse.

5.8 SO WHAT CAN BE DONE?

We have identified several potential pitfalls in MCMC simulation that are sub-
stantially understudied. This is the first systematic look at the effects of numerical

142 NUMERICAL ISSUES IN MARKOV CHAIN MONTE CARLO ESTIMATION

(in)accuracy from the computer implementation of standard algorithms. Markov
chain Monte Carlo is a fairly new enterprise, and particularly so in the social
sciences, so it is quite useful to understand some of the low-level issues inherent
in the process.

There are just a few recommendations here that can improve the quality of
MCMC estimations. In the spirit of earlier chapters, they are listed next.

• Unless you are interested in replicating a previously run Markov chain
exactly, it is recommended that the random seed be changed. This is trivial
in both WinBUGSand C++ implementations.

• Never trust the default random number generator provided with C or C++
compilers. Open-source code for alternatives is readily available (see
Chapter 2).

• Be aware that periodicity matters on very long runs with many parameters.
That is, the chain is not technically ergodic, and for these applications values
will be repeated. Start the chain out on its stationary distribution if possible.
Since the empirical averages are still a concern, run the chain from multiple
starting points, all in the stationary distribution and merge.

• Problems with absorbing states can be difficult to detect and solve. With the
Metropolis–Hastings algorithm, one sign of an absorbing state is a chain
that rejects many candidate points or perhaps only accepts points that are
extremely close (this can include oscillating chains). Since this could be due
to scale and convergence, it is important to know where posterior modes are
relative to the potential absorbing state. Gelman et al. (1995) recommend
running the EM algorithm at dispersed points around the sample space as a
means of detecting modes. Tierney (1994) recommends solving the problem
by truncating the sample space away from the absorbing state but including
the material posterior density regions. Although this obviously provides the
desired numerical accuracy, it can be difficult in practice since it involves
understanding the mathematical structure of the posterior.

• Finally, treat pseudo-random number generators as what they really are: just
imitations of the real thing. Therefore, layering complexity through MCMC
methods on top of bad simulated values creates bad inferences.

In summary, the message is not at all unlike that of other chapters in this book;
do not treat this estimation process as one would linear regression on a “point-
and-click” package. That is, these methods require considerably more care in
setup, vigilance in process, and caution in analysis.

C H A P T E R 6

Numerical Issues Involved
in Inverting Hessian Matrices
Jeff Gill and Gary King

6.1 INTRODUCTION

In the social sciences, researchers typically assume the accuracy of generalized
linear models by using an asymptotic normal approximation to the likelihood
function or, occasionally, by using the full posterior distribution. Thus, for stan-
dard maximum likelihood analyses, only point estimates and the variance at the
maximum are normally seen as necessary. For Bayesian posterior analysis, the
maximum and variance provide a useful first approximation (but see Chapter 4
for an alternative).

Unfortunately, although the negative of the Hessian (the matrix of second
derivatives of the posterior with respect to the parameters and named for its
inventor in slightly different context, German mathematician Ludwig Hesse) must
be positive definite and hence invertible so as to compute the variance matrix,
invertible Hessians do not exist for some combinations of datasets and models, so
statistical procedures sometimes fail for this reason before completion. Indeed,
receiving a computer-generated “Hessian not invertible” message (because of
singularity or nonpositive definiteness) rather than a set of statistical results is a
frustrating but common occurrence in applied quantitative research. It even occurs
with regularity during many Monte Carlo experiments where the investigator is
drawing data from a known statistical model, due to machine effects.

The Hessian can be noninvertible for both computational reasons and data rea-
sons. Inaccurate implementation of the likelihood function (see Chapters 2 and 3),
inaccurate derivative methods (see Chapter 8), or other inappropriate choices in
optimization algorithms can yield noninvertible Hessians. Where these inaccura-
cies cause problems with Hessians, we recommend addressing these inaccuracies
directly.

If these methods aren’t feasible, or don’t work, which often happens, we pro-
vide an innovative new library for doing generalized inverses . Moreover, when
a Hessian is not invertible for data reasons, no computational trick can make
it invertible, given the model and data chosen, because the desired inverse does

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

143

144 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

not exist. The advice given in most textbooks for this situation is to rethink the
model, respecify it, and rerun the analysis (or in some cases get more data). For
instance, in one of the best econometric textbooks, Davidson and MacKinnon
(1993, pp. 185–86) write: “There are basically two options: Get more data, or
estimate a less demanding model If it is not feasible to obtain more data,
then one must accept that the data one has contain a limited amount of infor-
mation and must simplify the model accordingly. Trying to estimate models that
are too complicated is one of the most common mistakes among inexperienced
applied econometricians.” The point of this chapter is to provide an alternative
to simplifying or changing the model, but the wisdom of Davidson and MacKin-
non’s advice is worth emphasizing in that our approach is appropriate only when
the more complicated model is indeed of interest.

Respecification and reanalysis is important and appropriate advice in some
applications of linear regression because a noninvertible Hessian has a clear sub-
stantive interpretation: It can only be caused by multicollinearity or including
more explanatory variables than observations (although even this simple case
can be quite complicated; see Searle 1971). As such, a noninvertible Hessian
might indicate a substantive problem that a researcher would not be aware of
otherwise. It is also of interest in some nonlinear models, such as logistic regres-
sion, where the conditions of noninvertibility are also well known. In nonlinear
models, however, noninvertible Hessians are related to the shape of the posterior
density, but how to connect the problem to the question being analyzed can often
be extremely difficult.

In addition, for some applications, the textbook advice is disconcerting, or
even misleading, because the same model specification may have worked in
other contexts and really is the one from which the researcher wants estimates.
Furthermore, one may find it troubling that dropping variables from the specifi-
cation substantially affects the estimates of the remaining variables and therefore
the interpretation of the findings (Leamer 1973).

The point developed in this chapter is that although a noninvertible Hessian
means the desired variance matrix does not exist, the likelihood function may
still contain considerable information about the questions of interest. As such,
discarding data and analyses with this valuable information, even if the infor-
mation cannot be summarized as usual, is an inefficient and potentially biased
procedure.

In situations where one is running many parallel analyses (say, one for each
U.S. state or population subgroup), dropping only those cases with noninvert-
ible Hessians, as is commonly done, can easily generate selection bias in the
conclusions drawn from the set of analyses. Here, restricting all analyses to the
specification that always returns an invertible Hessian risks other biases. Simi-
larly, Monte Carlo studies that evaluate estimators risk severe bias if conclusions
are based (as usual) on only those iterations with invertible Hessians.

Rather than discarding information or changing the questions of interest when
the Hessian does not invert, we discuss some methods that are sometimes able to
extract information in a convenient format from problematic likelihood functions

MEANS VERSUS MODES 145

or posterior distributions without respecification.1 This has always been possible
within Bayesian analysis, by using algorithms that enable one to draw directly
from the posterior of interest. However, the algorithms, such as those based on
Monte Carlo Markov chains or higher-order analytical integrals, are normally
much more involved to set up than calculating point estimates and asymptotic
variance approximations to which social scientists have become accustomed,
and so they have not been adopted widely. Our approach can be thought of as
Bayesian, too, although informative prior distributions need not be specified; we
focus only on methods that are relatively easy to apply. Although a sophisticated
Bayesian analyst could figure out how to elicit information from a posterior with
a noninvertible Hessian without our methods in particular instances, we hope
that our proposals will make this information available to many more users and
may even make it easier for those willing to do the detailed analysis of particular
applications. In fact, the methods we discuss are appropriate even when the
Hessian does invert and in many cases may be more appropriate than classical
approaches. We begin in Section 6.2 by providing a summary of the posterior
that can be calculated, even when the mode is uninteresting and the variance
matrix is nonexistent. The road map to the rest of the chapter concludes that
motivating section.

6.2 MEANS VERSUS MODES

When a posterior distribution contains information but the variance matrix cannot
be computed, all hope is not lost. In low-dimensional problems, plotting the
posterior is an obvious solution that can reveal all relevant information. In a good
case, this plot might reveal a narrow plateau around the maximum, or collinearity
between two relatively unimportant control variables (as represented by a ridge
in the posterior surface). Unfortunately, most social science applications have
enough parameters to make this type of visualization infeasible, so some summary
is needed. [Indeed, this was the purpose of maximum likelihood estimates, as
opposed to the better justified likelihood theory of inference, in the first place;
see King 1989].

We propose an alternative strategy. We do not follow the textbook advice
by asking the user to change the substantive question they ask, but instead, ask
the researcher to change their statistical summary of the posterior so that useful
information can still be elicited without changing their substantive questions,
statistical specification, assumptions, data, or model. All available information
from the model specified can thus be extracted and presented, at which point one
may wish to stop or instead respecify the model on the basis of substantive results.

In statistical analyses, researchers collect data, specify a model, and form the
posterior. They then summarize this information, essentially by posing a question

1For simplicity, we refer to the objective function as the posterior distribution from here on, although
most of our applications will involve flat priors, in which case, of course, the posterior is equivalent
to a likelihood function.

146 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

about the posterior distribution. The question answered by the standard maximum
likelihood (or maximum posterior) estimates is: What is the mode of the posterior
density and the variance around this mode?

In cases where the mode is on a plateau or at a boundary constraint, or
the posterior’s surface has ridges or saddlepoints, the curvature will produce a
noninvertible Hessian. In these cases, the Hessian also suggests that the mode
itself may not be of use even if a reasonable estimate of its variability were
known. That is, when the Hessian is noninvertible, the mode may not be unique
and is, in any event, not an effective summary of the full posterior distribution.
In these difficult cases, we suggest that researchers pose a different but closely
related question: What is the mean of the posterior density and the variance
around the mean?

When the mode and mean are both calculable, they often give similar answers.
If the likelihood is symmetric, which is guaranteed if n is sufficiently large, the
two are identical, so switching questions has no cost. Indeed, the vast majority
of social science applications appeal to asymptotic normal approximations for
computing the standard errors and other uncertainty estimates, and for these the
mode and the mean are equal. As such, for these analyses, our proposals involve
no change of assumptions.

If the maximum is not unique, or is on a ridge or at the boundary of the
parameter space, the mean and its variance can be found, but a unique mode and
its variance cannot. At least in these difficult cases, when the textbook suggestion
of substantive respecification is not feasible or if it is not desirable, we propose
switching from the mode to the mean.

Using the mean and its variance seems obviously useful when the mode or
its variance do not exist, but in many cases when the two approaches differ
and both exist, the mean would be preferred to the mode. For an extreme case,
suppose that the posterior for a parameter θ is truncated normal with mean 0.5,
standard deviation 10, and truncation is on the [0, 1] interval (cf. Gelman et al.
1995, p. 114, Prob. 4.8). In this case, the posterior, estimated from a sample of
data, will be a small segment of the normal curve. Except when the unit interval
captures the mode of the normal posterior (very unlikely given the size of the
variance), the mode will almost always be a corner solution (0 or 1). In contrast,
the mean posterior will be some number within (0,1). In this case, it seems
clear that 0 or 1 does not make good single-number summaries of the posterior,
whereas the mean is likely to be much better.

In contrast, when the mean is not a good summary, the mode is usually
not satisfactory either. For example, the mean will not be very helpful when
the likelihood provides little information at all, in which case the result will
effectively return the prior. The mean will also not be a very useful summary for
a bimodal posterior, since the point estimate would fall between the two humps
in an area of low density. The mode would not be much better in this situation,
although it does at least reasonably characterize one part of the density.

In general, when a point estimate makes sense, the mode is easier to compute,
but the mean is more likely to be a useful summary of the full posterior. We

DEVELOPING A SOLUTION USING BAYESIAN SIMULATION TOOLS 147

believe that if the mean were as easy to compute as the mode, few would choose
the mode. We thus hope to reduce the computational advantage of the mode over
the mean by proposing some procedures for computing the mean and its variance.

6.3 DEVELOPING A SOLUTION USING BAYESIAN
SIMULATION TOOLS

When the inverse of the negative Hessian exists, we compute the mean and its
variance by importance resampling. That is, we take random draws from the
exact posterior in two steps. We begin by drawing a large number of random
numbers from a normal distribution, with mean set at the vector of maximum
posterior estimates and variance set at the estimated variance matrix. Then we use
a probabilistic rejection algorithm to keep only those draws that are close enough
to the correct posterior. These draws can then be used directly to study some
quantity of interest, or they can be used to compute the mean and its variance.

When the inverse of the negative Hessian does not exist, we suggest two sep-
arate procedures to choose from. One is to create a pseudovariance matrix and
use it, in place of the inverse, in our importance resampling scheme. In brief,
applying a generalized inverse (when necessary, to avoid singularity) and general-
ized Cholesky decomposition (when necessary, to guarantee positive definiteness)
together often produce a pseudovariance matrix for the mode that is a reasonable
summary of the curvature of the posterior distribution. (The generalized inverse
is a commonly used technique in statistical analysis, but to our knowledge, the
generalized Cholesky has not been used before for statistical purposes.) Surpris-
ingly, the resulting matrix is not usually ill conditioned. In addition, although this
is a “pseudo” rather than an “approximate” variance matrix (because the thing
that would be approximated does not exist), the calculations change the resulting
variance matrix as little as possible to achieve positive definiteness. We then take
random draws from the exact posterior using importance resampling as before,
but using two diagnostics to correct problems with this procedure.2

Our solution is nothing more than a way to describe the difficult posterior
form using importance sampling, which is a standard tool for Bayesians because
they often end up with posterior forms that are difficult to describe analytically.
This method of using a convenient candidate distribution and then accepting or
rejecting values depending on their resemblance to those produced by the real
posterior is supported by a large body of theoretical work starting with Ott (1979),
Rubin (1987a), and Smith and Gelfand (1992). Recent discussions of the theoret-
ical validity as well as properties of importance sampling are given by Geweke
(1989), Gelman et al. (1995), Robert and Casella (1999), and Tanner (1996).
Before continuing, it is also important to note that this proposed solution uses
simulation but is not estimation based on Markov chain Monte Carlo analysis.

2This part of our method is what most separates it from previous procedures in the literature that
sought to find a working solution based on the generalized inverse alone (Riley 1955; Marquardt
1970; Searle 1971).

148 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.4 WHAT IS IT THAT BAYESIANS DO?

We are certainly “borrowing” from the Bayesian perspective: mean summaries
and statistical summary through simulation. However, philosophically we are not
requiring that one subscribe to the tenants of Bayesian inference: stipulation of
prior distributions for unknown parameters, a belief that these parameters should
be described distributionally conditional on the data observed and posteriors based
on updating priors with likelihoods.

The essence of Bayesian inference is encapsulated in three general steps:

1. Specify a probability model for unknown parameter values that includes
some prior knowledge about the parameters if available.

2. Update knowledge about the unknown parameters by conditioning this
probability model on observed data.

3. Evaluate the fit of the model to the data and the sensitivity of the conclu-
sions to the assumptions.

The second step constitutes the core of this process and is accomplished
through Bayes’ law:

posterior probability ∝ prior probability × likelihood function

π(θ |D) = p(θ)L(θ |D)∫
�

p(θ)L(θ |D) dθ

∝ p(θ)L(θ |D),

where D is a generic symbol denoting the observed data at hand. A consequence
is that π(θ |D) is a model summary that obviously retains its distributional sense.
This is useful because it allows a more general look at what the model is assert-
ing about parameter location and scale. It also pushes one away from simply
describing this posterior with a point estimate and standard error for each param-
eter since this could miss some of the important features of the posterior shape.
These additional features can include multimodality, skewness, and flat regions.

The Bayesian reporting mechanisms include the credible interval (computed
exactly like the non-Bayesian confidence interval) and the highest posterior den-
sity (HPD) interval. The HPD interval contains the 100(1−α)% highest posterior
density and therefore meets the criteria C = {θ : π(θ |x) ≥ k}, where k is the
largest number assuring that 1 − α = ∫

θ :π(θ |x)>k
π(θ |x) dθ . This is the region

where the probability that θ is in the region is maximized at 1 −α, regardless of
modality.

Bayesian statistical methods have some distinct advantages over conventional
approaches in modeling social science data (Poirer 1988; Western 1998, 1999),
including overt expression of model assumptions, an exclusive focus on proba-
bility-based statements, direct and systematic incorporation of prior knowledge,
and the ability to “update” inferences as new data are observed. Standard Bayesian

PROBLEM IN DETAIL: NONINVERTIBLE HESSIANS 149

statistical references include Box and Tiao (1973), Berger (1985), Bernardo and
Smith (1994), and Robert (2001).

Our solution to the noninvertible Hessian problem is technically not at all
Bayesian since there is no stipulation of priors and no treatment of posteriors
as general conditional distributions in this Bayesian sense. We do, however, use
this distributional treatment as an interim process since the importance sampling
step samples from the difficult posterior as a complete distribution. Since the
point estimate and subsequent standard errors are reported, it is essentially back
to a likelihoodist result in summary. The key point from this discussion is that
researchers do not need to subscribe to the Bayesian inference paradigm to find
our techniques useful.

We next describe in substantive terms what is “wrong” with a Hessian that is
noninvertible (Section 6.5), describe how we create a pseudovariance matrix (in
Section 6.7), with algorithmic details and numerical examples, outline the concept
of importance resampling to compute the mean and variance (in Section 6.9). We
give our alternative procedure in Section 6.11.1, an empirical example (Section
6.10), and other possible approaches (in Section 6.11).

6.5 PROBLEM IN DETAIL: NONINVERTIBLE HESSIANS

Given a joint probability density f (y|θ) for an n × 1 observed data vector y and
unknown p × 1 parameter vector θ , denote the n × p matrix of first derivatives
with respect to θ as

g(θ |y) = ∂ ln[f (y|θ)]/∂θ ,

and the p × p matrix of second derivatives as

H = H(θ |y) = ∂2 ln[f (y|θ)]/∂θ ∂θ ′.

Then the Hessian is H, normally considered to be the estimate

E[g(θ |y)g(θ |y)′] = E[H(θ |y)].

The standard maximum likelihood or maximum posterior estimate, which we
denote as θ̂ , is obtained by setting g(θ |y) equal to zero and solving, analytically
or numerically. When −H is positive definite in the neighborhood of θ̂ , the theory
is well known and no problems arise in application. This occurs the vast majority
of the time.

The problem described as “a noninvertible Hessian” can be decomposed into
two distinct parts. The first problem is singularity, which means that (−H)−1 does
not exist. The second is nonpositive definiteness, which means that (−H)−1 may
exist but its contents do not make sense as a variance matrix. (A matrix that is pos-
itive definite is nonsingular, but nonsingularity does not imply positive definite-
ness.) Statistical software normally describes both problems as noninvertibility

150 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

because their inversion algorithms take computational advantage of the fact that
the negative of the Hessian must be positive definite if the result is to be a vari-
ance matrix. This means that these programs do not bother to invert nonsingular
matrices (or even to check whether they are nonsingular) unless it is established
first that they are also positive definite.

We first describe these two problems in single-parameter situations, where
the intuition is clearest but where our approach does not add much of value
(because the full posterior can easily be visualized). We then move to more
typical multiple-parameter problems, which are more complicated but where we
can help more. In one dimension, the Hessian is a single number measuring
the degree to which the posterior curves downward on either side of the max-
imum. When all is well, H < 0, which indicates that the mode is indeed at
the top of the hill. The variance is then the reciprocal of the negative of this
degree of curvature, −1/H, which, of course, is a positive number, as a variance
must be.

The first problem, singularity, occurs in the one-dimensional case when the
posterior is flat near the mode—so that the posterior forms a plateau at best or a
flat line over (−∞, ∞) at worst. Thus, the curvature is zero at the mode and the
variance does not exist, since 1/0 is not defined. Intuitively, this is as it should
be since a flat likelihood indicates the absence of information, in which case any
point estimate is associated with an (essentially) infinite variance (to be more
precise, 1/H → ∞ as H → 0).

The second problem occurs when the “mode” identified by the maximization
algorithm is at the bottom of a valley instead of the top of a hill [g(θ |y) is zero
in both cases], in which case the curvature will be positive. (This is unlikely in
one dimension, except for seriously defective maximization algorithms, but the
corresponding problem in high-dimensional cases of saddlepoints, where the top
of the hill for some parameters may be the bottom for others, is more common.)
The difficulty here is that −1/H exists, but it is negative (or in other words, is
not positive definite), which obviously makes no sense as a variance.

A multidimensional variance matrix is composed of variances, which are the
diagonal elements and must be positive, and correlations that are off-diagonal
elements divided by the square root of the corresponding diagonal elements.
Correlations must fall within the [−1, 1] interval. Although invertibility is an
either/or question, it may be that information about the variance or covariances
exist for some of the parameters but not for others.

In the multidimensional case, singularity occurs whenever the elements of H
that would map to elements on the diagonal of the variance matrix, (−H)−1,
combine in such a way that the calculation cannot be completed because they
would involve divisions by zero. Intuitively, singularity indicates that the vari-
ances to be calculated would be (essentially) infinite. When (−H)−1 exists, it is a
valid variance matrix only if the result is positive definite. Observe that (−H)−1

is a positive definite matrix if for any nonzero p × 1 vector x, x′(−H)−1x > 0.
Nonpositive definiteness occurs in simple cases either because the variance is
negative or the correlations are exactly −1 or 1.

GENERALIZED INVERSE 151

6.6 GENERALIZED INVERSE/GENERALIZED
CHOLESKY SOLUTION

The alternative developed here uses a generalized inverse, then a generalized
Cholesky decomposition [if necessary when the generalized inverse of (−H)

is not positive definite], and subsequent refinement with importance sampling.
The generalized inverse is produced by changing the parts of −H that get
mapped to the variances so that they are no longer infinities. The generalized
Cholesky adjusts inappropriate terms that would get mapped to the correlations
(by slightly increasing variances in their denominator) to keep them within the
required range of [−1, 1]. So the pseudovariance matrix is calculated as V′V,
where V = GCHOL(H−), GCHOL(·) is the generalized Cholesky, and H− is
the generalized inverse of the Hessian.

The result of this process is a pseudovariance matrix that is in most cases
well conditioned in that it is not nearly singular. Actually, this generalized
inverse/generalized Cholesky approach is closely related to, but distinct from,
the quasi-Newton Davidson–Fletcher–Powell (DFP) method. The difference is
that the DFP method uses iterative differences to converge on an estimate of
the negative inverse of a nonpositive definite Hessian. [See Greene (2003) for
details.] However, the purpose of the DFP method is computational rather than
statistical and therefore does not include our importance sampling step. Note that
this method includes a default such that if the Hessian is really invertible, the
pseudovariance matrix is the usual inverse of the negative Hessian.

6.7 GENERALIZED INVERSE

The literature on the theory and application of the generalized inverse is vast
and spans several fields. Here we summarize some of the fundamental principles.
[See Harville (1997) for further details.] The procedure begins with a generalized
inverse procedure to address singularity in the −H matrix. This process resembles
a standard matrix inversion to the greatest extent possible. The standard inverse
A−1 of A meets five well-known conditions:

1. HA−1A = A
2. A−1AA−1 = A−1

3. (AA−1)′ = A−1A
4. (A−1A) = AA−1

5. A−1A = I

(where conditions 1 to 4 are implied by condition 5). However, the Moore–Pen-
rose generalized inverse matrix, A− of A, meets only the first four conditions
listed above. Any matrix, A, can be decomposed as

A
(p×q)

= L
(p×p)

D
(p×q)

U
(q×q)

where D =
[

Dr×r 0
0 0

]
, (6.1)

152 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

and both L (lower triangular) and U (upper triangular) are nonsingular (even given
a singular A). The diagonal matrix Dr×r has dimension and rank r corresponding
to the rank of A. When A is nonnegative definite and symmetric, the diagonals
of Dr×r are the eigenvalues of A. If A is nonsingular, positive definite, and
symmetric, as in the case of a proper invertible Hessian, Dr×r = D (i.e., r =
q) and A = LDL′. The matrices L, D, and U are all nonunique unless A is
nonsingular.

By rearranging (6.1) we can diagonalize any matrix as

D = L−1AU−1 =
[

Dr×r 0
0 0

]
. (6.2)

Now define a new matrix, D
−, created by taking the inverses of the nonzero

(diagonal) elements of D:

D
− =

[
D−

r×r 0
0 0

]
. (6.3)

If DD
− = Iq×q, we could say that D

− is the inverse of D. However, this is not
true:

DD
− =

[
Dr×r 0

0 0

] [
D−

r×r 0
0 0

]
=
[

1 0
0 0

]
.

Instead, we notice that

DD
−

D =
[

1 0
0 0

] [
Dr×r 0

0 0

]
=
[

Dr×r 0
0 0

]
= D.

So D
− is a generalized inverse of D because of the extra structure required. Note

that this is a generalized inverse, not the generalized inverse, since the matrices
on the right side of (6.1) are nonunique. By rearranging (6.1) and using (6.3)
we can define a new q × p matrix: G = U−1

D
−L−1. The importance of the

generalized inverse matrix G is revealed in the following theorem.3

Theorem. (Moore 1920). G is a generalized inverse of A since AGA = A.

The new matrix G necessarily has rank r since the product rule states that the
result has rank less than or equal to the minimum of the rank of the factors, and
AGA = A requires that A must have rank less than or equal to the lowest rank of
itself or G. Although G has infinitely many definitions that satisfy the Theorem,
any one of them will do for our purposes: for example, in linear regression, the

3The generalized inverse is also sometimes referred to as the conditional inverse, pseudo inverse,
and g-inverse.

GENERALIZED INVERSE 153

fitted values, defined as XGX′Y, with G as the generalized inverse of X′X, X as
a matrix of explanatory variables, and Y as the outcome variable, are invariant
to the definition of G. In addition, we use our pseudovariance only as a first
approximation to the surface of the true posterior, and we will improve it in our
importance resampling stage. Note, in addition, that AG is always idempotent
[GAGA = G(AGA) = GA], and rank(AG) = rank(A). These results hold
whether or not A is singular.

Moore (1920) and (apparently unaware of Moore’s work) Penrose (1955)
reduced the infinity of generalized inverses to the one unique solution given
above by imposing four reasonable algebraic constraints, all met by the standard
inverse. This G matrix is unique if the following hold:

1. General condition: AGA = A
2. Reflexive condition: GAG = G
3. Normalized condition: (AG)′ = GA
4. Reverse normalized condition: (GA)′ = AG

The proof is lengthy, and we refer the interested reader to Penrose (1955).
There is a vast literature on generalized inverses that meet some subset of the
Moore–Penrose condition. A matrix that satisfies the first two conditions is called
a reflexive or weak generalized inverse and is order dependent. A matrix that sat-
isfies the first three conditions is called a normalized generalized inverse. A
matrix that satisfies the first and fourth conditions is called a minimum norm
generalized inverse.

Because the properties of the Moore–Penrose generalized inverse are intu-
itively desirable, and because of the invariance of important statistical results
to the choice of generalized inverse, we follow standard statistical practice by
using this form from now on. The implementations of the generalized inverse in
Gauss and Splus are both the Moore–Penrose version.

The Moore–Penrose generalized inverse is also easy to calculate using QR
factorization. QR factorization takes the input matrix, A, and factors it into the
product of an orthogonal matrix, Q, and a matrix, R, which has a triangular lead-
ing square matrix (r) followed by rows of zeros corresponding to the difference
in rank and dimension in A:

A =
[

r
0

]
.

This factorization is implemented in virtually every professional-level statistical
package. The Moore–Penrose generalized inverse is produced by

G =
[
r−10

]
Q′,

where 0 is the transpose of the zeros’ portion of the R matrix required for
conformability.

154 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.7.1 Numerical Examples of the Generalized Inverse

As a means of motivating a simple numerical example of how the generalized
inverse works, we develop a brief application to the linear model where the X

′
X

matrix is noninvertible because X is singular. In this context, the generalized
inverse provides a solution to the normal equations (Campbell and Meyer 1979,
p. 94), and both the fitted values of Y and the residual error variance are invari-
ant to the choice of G (Searle 1971, pp. 169–71). We use the Moore–Penrose
generalized inverse.

Let

X =


5 2 5
2 1 2
3 2 3

2.95 1 3

 Y =


9

11
−5
−2


(Our omission of the constant term makes the numerical calculations cleaner but
is not material to our points.) Applying the least squares model to these data (X
is of full rank) yields the coefficient vector

b̂ = (X′X)−1X′Y = (222.22, −11.89, −215.22)′,

fitted values,

Ŷ = Xb̂ = (11.22, 2.11, −2.78, −2.00)′,

and variance matrix

∑
=
 57283.95 −1580.25 −56395.06

−1580.25 187.65 1491.36
−56395.06 1491.36 55550.62

 .

What we call the standardized correlation matrix, a correlation matrix with stan-
dard deviations on the diagonal, is then

Cs =
239.34 −0.48 −0.99

−0.48 13.69 0.46
−0.99 0.46 235.69

 .

Now suppose that we have a matrix of explanatory effects that is identical to
X except that we have changed the bottom left number from 2.95 to 2.99:

X2 =


5 2 5
2 1 2
3 2 3

2.99 1 3

 .

GENERALIZED CHOLESKY DECOMPOSITION 155

Using the same Y outcome vector and applying the same least squares calculation
now gives

b̂2 = (1111.11, −11.89, −1104.11)′

and

Ŷ = (11.22, 2.11, −2.78,−2.00)′.

However, the variance–covariance matrix reacts sharply to the movement toward
singularity as seen in the standardized correlation matrix:

Cs =
1196.70 −0.48 −0.99

−0.48 13.70 0.48
−0.99 0.48 1193.00

 .

Indeed, if X3 = 2.999, X′X is singular (with regard to precision in Gauss and
Splus) and we must use the generalized inverse. This produces

b̃3 = GX′Y = (1.774866, −5.762093, 1.778596)′

and

Ŷ = XGX′Y = (11111.11, −11.89, −11104.11)′.

The resulting pseudovariance matrix (calculated now from Gσ 2) produces larger
standard deviations for the first and third explanatory variables, reflecting greater
uncertainty, again displayed as a standardized correlation matrix:

Cs =
11967.0327987 −0.4822391 −0.9999999

−0.4822391 13.698 0.4818444
−0.9999999 0.4818444 11963.3201730

 .

6.8 GENERALIZED CHOLESKY DECOMPOSITION

We now describe the classic Cholesky decomposition and recent generalizations
designed to handle nonpositive definite matrices. A matrix C is positive defi-
nite if for any x vector except x = 0, x′Cx > 0, or in other words, if C has
all positive eigenvalues. Symmetric positive definite matrices are nonsingular,
have only positive numbers on the diagonal, and have positive determinants for
all principal leading submatrices. The Cholesky matrix is defined as V in the
decomposition C = V′V. We thus construct our pseudovariance matrix as V′V,
where V = GCHOL(H−), GCHOL(·) is the generalized Cholesky described
below, and H− is the Moore–Penrose generalized inverse of the Hessian.

156 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.8.1 Standard Algorithm

The classic Cholesky decomposition algorithm assumes a positive definite matrix
and symmetric variance matrix (C). It then proceeds via the matrix decomposition

C
(k×k)

= L
(k×k)

D
(k×k)

L′
(k×k)

. (6.4)

The basic Cholesky procedure is a one-pass algorithm that generates two output
matrices which can then be combined for the desired “square root” matrix. The
algorithm moves down the main diagonal of the input matrix determining diag-
onal values of D and triangular values of L from the current column of C and
previously calculated components of L and C. Thus the procedure is necessar-
ily sensitive to values in the original matrix and previously calculated values in
the D and L matrices. There are k stages in the algorithm corresponding to the
k-dimensionality of the input matrix. The j th step (1 ≤ j ≤ k) is characterized
by two operations:

Dj,j = Cj,j −
j−1∑
	=1

L2
j,	D	,	 (6.5)

and

Li,j =
Ci,j −

j−1∑
	=1

Lj,	Li,	D	,	

/Dj,j , i = j + 1, . . . , k, (6.6)

where D is a positive diagonal matrix so that on completion of the algorithm,
its square root is multiplied by L to give the Cholesky decomposition. From this
algorithm it is easy to see why the Cholesky algorithm cannot tolerate singular
or nonpositive definite input matrices. Singular matrices cause a divide-by-zero
problem in (6.6), and nonpositive definite matrices cause the sum in (6.5) to be
greater than Cj,j , causing negative diagonal values. Furthermore, these problems
exist in other variations of the Cholesky algorithm, including those based on svd
and qr decomposition. Arbitrary fixes have been tried to preserve the mathemati-
cal requirements of the algorithm, but they do not produce a useful result (Fiacco
and McCormick 1968, Matthews and Davies 1971; Gill et al. 1974).

6.8.2 Gill–Murray Cholesky Factorization

Gill and Murray (1974) introduced, and Gill et al. (1981) refined, an algorithm
to find a nonnegative diagonal matrix, E, such that C + E is positive definite and
the diagonal values of E are as small as possible. This could easily be done by
taking the greatest negative eigenvalue of C, λ1, and assigning E = −(λ1 + ε)I ,
where ε is a small positive increment. However, this approach (implemented in
various computer programs, such as the Gauss “maxlike” module) produces E

GENERALIZED CHOLESKY DECOMPOSITION 157

values that are much larger than required, and therefore the C+E matrix is much
less like C than it could be.

To see Gill et al.’s (1981) approach, we rewrite the Cholesky algorithm pro-
vided as (6.5) and (6.6) in matrix notation. The j th submatrix of its application
at the j th step is

Cj =
[
cj,j c′

j

cj Cj+1

]
, (6.7)

where cj,j is the j th pivot diagonal, c′
j is the row vector to the right of cj,j ,

which is the transpose of the cj column vector beneath cj,j , and Cj+1 is the
(j +1)th submatrix. The j th row of the L matrix is calculated by: Lj,j = √

cj,j ,
and L(j+1):k,j = c(j+1):k,j /Lj,j . The (j + 1)th submatrix is then updated by

C∗
j+1 = Cj+1 − cj c′

j

L2
j,j

. (6.8)

Suppose that at each iteration we defined Lj,j = √
cj,j + δj , where δj is a small

positive integer sufficiently large so that Cj+1 > cjc′/L2
j,j . This would obviously

ensure that each of the j iterations does not produce a negative diagonal value
or divide-by-zero operation. However, the size of δj is difficult to determine and
involves trade-offs between satisfaction with the current iteration and satisfaction
with future iterations. If δj is picked such that the new j th diagonal is just barely
bigger than zero, subsequent diagonal values are greatly increased through the
operation of (6.8). Conversely, we don’t want to be adding large δj values on
any given iteration.

Gill et al. (1981) note the effect of the cj vector on subsequent iterations and
suggest that minimizing the summed effect of δj is equivalent to minimizing the
effect of the vector maximum norm of cj , ‖cj‖∞, at each iteration. This is done
at the j th step by making δj the smallest nonnegative value satisfying

‖cj‖∞β−2 − cj,j � δj (6.9)

where

β = max


max(diag(C))

max(notdiag(C))
√

k2 − 1

εm,

where εm is the smallest positive number that can be represented on the computer
used to implement the algorithm (normally called the machine epsilon) (see
Chapter 4). This algorithm always produces a factorization and has the advantage
of not modifying already positive definite C matrices. However, the bounds in
(6.9) have been shown to be nonoptimal and thus provide C + E that is again
farther from C than necessary.

158 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.8.3 Schnabel–Eskow Cholesky Factorization

Schnabel and Eskow (1990) improve on the C+E procedure of Gill and Murray
by applying the Gerschgorin circle theorem to reduce the infinity norm of the E
matrix. The strategy is to calculate δj values that reduce the overall difference
between C and C + E. Their approach is based on the following theorem (stated
in the context of our problem):

Theorem. Suppose that C ∈ R
k with eigenvalues λ1, . . . , λk , and define the

ith Gerschgorin bound as

Gi (lower,upper) =

Ci,i −
n∑

j=1
j �=i

|Ci,j |, Ci,i +
n∑

j=1
j �=i

|Ci,j |

 .

Then λi ∈ [
G1 ∪ G2 ∪ · · · ∪ Gk

]
, ∀λ1≤i≤k.

But we know that λ1 is the largest negative amount that must be corrected, so
the process suggested by the theorem simplifies to the following decision rule:

δj = max

(
εm, max

i
(Gi (lower))

)
. (6.10)

In addition, we do not want any δj to be less than δj−1 since this would cause
subsequent submatrices to have unnecessarily large eigenvalues, so a smaller
quantity is subtracted in (6.8). Adding this condition to (6.10) and protecting
the algorithm from problems associated with the machine epsilon produces the
following determination of the additional amount in Lj,j = √

cj,j + δj :

δj = max
(
εm,−Cj,j + max(‖aj‖, (εm)1/3 max(diag(C)), Ej−1,j−1

)
. (6.11)

The algorithm follows the same steps as that of Gill–Murray except that the
determination of δj is done by (6.11). The Gerschgorin bounds, however, pro-
vide an order-of-magnitude improvement in ‖E‖∞. We refer to this Cholesky
algorithm based on Gerschgorin bounds as the generalized Cholesky since it
improves the common procedure, accommodates a more general class of input
matrices, and represents the “state of the art” with regard to minimizing ‖E‖∞.

6.8.4 Numerical Examples of the Generalized Cholesky Decomposition

Suppose that we have the positive definite matrix

�1 =
 2 0 2.4

0 2 0
2.4 0 3

 .

GENERALIZED CHOLESKY DECOMPOSITION 159

This matrix has the Cholesky decomposition:

chol(�1) =
1.41 0 1.70

0 1.41 0
0 0 0.35

 .

Now suppose that we have a very similar but nonpositive definite matrix that
requires the generalized Cholesky algorithm. The only change from the input
matrix above is that the values on the corners have been changed from 2.4
to 2.5:

�2 =
 2 0 2.5

0 2 0
2.5 0 3

 .

This matrix has the generalized Cholesky decomposition

GCHOL(�2) =
1.41 0 1.768

0 1.41 0
0 0 0.004


So the generalized Cholesky produces a very small change here so as to obtain a
positive definite input matrix. This reflects the fact that this nonpositive definite
matrix is actually very close to being positive definite. Now suppose that we
create a matrix that is deliberately very far from positive definite status:

�3 =
 2 0 10

0 2 0
10 0 3


This matrix has the Cholesky decomposition

GCHOL(�3) =
1.41 0 7.071

0 1.41 0
0 0 0.008


The effects are particularly evident when we square the Cholesky result:

GCHOL(�3)
′GCHOL(�3) =

 2 0 10
0 2 0

10 0 50

 ,

so the diagonal of the E matrix is very large: [8, 6, 11].

160 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.9 IMPORTANCE SAMPLING AND SAMPLING
IMPORTANCE RESAMPLING

The algorithm called sampling importance resampling (SIR) or simply impor-
tance resampling is a Monte Carlo simulation technique used to draw random
numbers directly from an exact (finite sample) posterior distribution. The original
idea comes from Rubin (1987a, pp. 192–94), but see also Wei and Tanner (1990),
Tanner (1996), and Gill (2002). For social science applications, see King (1997)
and King et al. (1998). The primary requirement for effective implementation of
the algorithm is the specification of a reasonable approximation to the exact (but
inconvenient) posterior. If this requirement is not met, the procedure can take
excessively long to be practical or can miss features of the posterior distribution.
Also, while the approximating distribution is required, it need not be normalized.
So there is a lot of flexibility in this choice.

A common choice for the approximation distribution, based on flexibility and
convenience, is the multivariate normal distribution. Sometimes the multivariate
t distribution is substituted when the sample size is small or there is general
concern about the tails. Using the normal or t-distribution should be relatively
uncontroversial for our purposes here, since the algorithm in applied cases for
which the asymptotic normal approximation was assumed appropriate from the
start, and for most applications it probably would have worked except for the
failed variance in the original matrix calculation. So this first approximation
retains as many of the assumptions of the original model as possible. However,
other distributions can easily be used if that seems necessary.

Using either the normal or t-distribution, the mean is set at θ̂ , the vector of
maximum likelihood or maximum posterior estimates. Recall that this vector of
point estimates was reported by the computer program that failed before it failed
the variance calculation. For the normal this is simple: Set the variance equal to
our pseudovariance matrix. For the t , the pseudovariance is required that there be
an adjustment by the degrees of freedom to yield the appropriate scatter matrix.

6.9.1 Algorithm Details

The basic idea of importance resampling is to draw a large number of sim-
ulations from the approximation distribution, decide how close each is to the
target posterior distribution, and keep those close with higher probability than
for those farther away. The main difficulty is in determining an approximation
distribution that somewhat resembles the difficult posterior. So we use normal
or t-distributions centered at the posterior mean and the pseudovariance matrix
calculated as V′V, where V = GCHOL(H−), GCHOL(·) is the generalized
Cholesky, and H− is the generalized inverse of the Hessian.

Denote θ̃ as one random draw of θ from the approximating distribution,
and use it to compute the importance ratio: the ratio of the posterior P(·) to
the normal approximation, where both are evaluated at θ̃ : P(θ̃ |y)/N(θ̃ |θ̂, V′V).
Then keep θ̃ , as if it where a random draw from the posterior, with probability

IMPORTANCE SAMPLING AND SAMPLING IMPORTANCE RESAMPLING 161

proportional to this ratio. The procedure is repeated until the desired (generally
large) number of simulations have been accepted.

Suppose that we wish to obtain the marginal distribution for some parameter
θ1 from a joint distribution: f (θ1, θ2|X). If we actually knew the parametric form
for this joint distribution, it would be straightforward to integrate out the second
parameter analytically over its support as shown in basic texts:

f (θ1|X) =
∫

f (θ1, θ2|X) dθ2. (6.12)

However, in many settings this is not possible, and more involved numerical
approximations are required. Suppose that we could posit a normalized condi-
tional posterior approximation density of θ2, f̂ (θ2|θ1, X), that would often be
given a normal or t form, as mentioned above. The trick that this approximation
gives is that an expected value formulation can be substituted for the integral
and repeated draws used for numerical averaging. Specifically, the form for the
marginal distribution is developed as

f (θ1|X) =
∫

f (θ1, θ2|X) dθ2

=
∫

f (θ1, θ2|X)

f̂ (θ2|θ1, X)
f̂ (θ2|θ1, X) dθ2

= Eθ2

[
f (θ1, θ2|X)

f̂ (θ2|θ1, X)

]
. (6.13)

The fraction

f (θ1, θ2|X)

f̂ (θ2|θ1, X)
, (6.14)

called the importance weight, determines the probability of accepting sampled
values of θ2. This setup provides a rather simple procedure to obtain the estimate
of f (θ1|X). The steps are summarized as follows:

1. Divide the support of θ1 into a grid with the desired level of granularity
determined by k: θ

(1)
1 , θ

(2)
1 , . . . , θ

(k)
1 .

2. For each of the θ
(i)
1 values along the k-length grid, determine the density

estimate at that point by performing the following steps:

(a) Simulate N values of θ̂2 from f̂ (θ2|θ(i)
1 , X).

(b) Calculate f (θ
(i)
1 , θ̂2n|X)/f̂ (θ̂2n|θ(i)

1 , X) for i = 1 to N .

(c) Use (6.13) to obtain f (θ
(i)
1 |X) by taking the means of the N ratios just

calculated.

162 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

−3 −2 −1 0 1 2 3

Support of the target distribution

D
en

si
ty

A

A + B

T(2) Approximation distribution

Target distribution

Fig. 6.1 Importance sampling illustration.

The user controls the level of accuracy of this estimate by increasing the
granularity of the grid and the number of draws per position on that grid. In addi-
tion, this procedure can also be used to perform standard numerical integration,
provided that a suitable normalized approximation function can be found (albeit
somewhat less efficiently than standard algorithms; see Gill 2002, Chap. 8). These
considerations make importance sampling a very useful and very common tool
in applied mathematics.

The importance sampling algorithm is illustrated in Figure 6.1, where the
importance ratio calculation is shown for an arbitrary point along the x-axis.
The approximation distribution is t with two degrees of freedom and the target
distribution is a contrived problematic form. The point indicated is accepted into
the sample with probability A/(A + B), which can be viewed as the quality of
the approximation at this point.

6.9.2 SIR Output

The resulting simulations can easily be displayed with a histogram to give the full
marginal distribution of a quantity interest (see Tanner 1996; King et al. 2000)
or just a parameter of the model. Taking the sample average and sample standard
deviation of the simulations can be used to compute the mean and standard error
or full variance matrix of the parameters if these common summaries are desired.
The computed variance matrix of the means will almost always be positive def-
inite, as long as enough simulations are drawn such that there are sufficient
elements of the mean vector and variance matrix (normally, one would want at
least one order of magnitude more than that number). It is also possible, how-
ever, that the resulting variance matrix will be singular even when based on many
simulations if the likelihood or posterior contains exact dependencies among the
parameters. But in this case, singularity in the variance matrix (as opposed to the
Hessian) poses no problem, since it is already on the variance–covariance metric
(inverted), and the only problem is that some of the correlations will be exactly 1
or −1, which can actually be very informative substantively, and standard errors,
for example, will still be available.

PUBLIC POLICY ANALYSIS EXAMPLE 163

One diagnostic often used to detect a failure of importance resampling is when
many candidate values of θ̃ are rejected due to low values of the importance ratio.
In this case the procedure will take a very long time, and to be useful a better
approximation is certainly needed. Here, the long run time indicates a problem,
and letting it run longer may eventually yield sufficient sample size. However,
this can be very frustrating and time consuming from a practical point of view.
There is a danger here, though: if the approximation distribution entirely misses a
range of values of θ that have posterior density systematically different from the
rest. Since the normal has support over (−∞,∞), the potential for this problem
to occur vanishes as the number of simulations grows. Therefore, one check is
to compute a very large number of simulations with an artificially large variance
matrix, such as the pseudovariance matrix multiplied by a positive factor, which
we label F . This works since obviously the coverage is more diffuse. Like all
related simulation procedures, it is impossible to cover the full continuum of
values that θ can take, and the procedure can miss subtle features such as pinholes
in the surface, very sharp ridges, or other eccentricities.

6.9.3 Relevance to the Generalized Process

The importance sampling procedure cannot be relied on completely in our case,
since we know that the likelihood surface is nonstandard by definition of the
problem. The normal approximation requires an invertible Hessian. The key to
extracting at least some information from the Hessian via the derived pseudovari-
ance matrix is determining whether the problems are localized or, instead, affect
all the parameters. If they are localized, or the problem can be reparameterized so
that they are localized, some parameters effectively have infinite standard errors,
or pairs of parameters have perfect correlations. The suggestion here is to perform
two diagnostics to detect these problems and to alter the reported standard errors or
covariances accordingly. For small numbers of parameters, using profile plots of
the posterior can be helpful, and trying to isolate the noninvertibility problem in a
distinct set of parameters can be very valuable in trying to understand the problem.

To make the normal or t-approximation work more efficiently, it is generally
advisable to reparameterize so that the parameters are unbounded and approxi-
mately symmetric. This strategy is pretty standard in this literature and normally
makes the maximization routine work better. This can be broadly used; for
example, instead of estimating σ 2 > 0 as a variance parameter directly, one
could estimate γ , where σ 2 = eγ , since γ can take on any real number.

6.10 PUBLIC POLICY ANALYSIS EXAMPLE

This real-data example looks at public policy data focused on poverty and its
potential causes, measured by state at the county level (FIPS). The data high-
light a common and disturbing problem in empirical model fitting. Suppose that
a researcher seeks to apply a given model specification to multiple datasets for
the purpose of comparison: comparing models across 50 U.S. states, 25 OECD

164 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

countries, 15 EU countries, or even the same unit in some time series. Nor-
mally, if the Hessian fails to invert for a small number of the cases, generally
the researcher respecifies the model for nonsubstantive, technical reasons, even
though some other specification may be preferred for substantive reasons. If
the researcher respecifies only the problem cases, differences among the results
are contaminated by investigator-induced omitted variable bias. Otherwise, all
equations are respecified in an effort to get comparable results, in which case
the statistical analyses differs from the original substantive question posed. Obvi-
ously, neither approach is satisfactory from a substantive research perspective.

It is important to note, prior to giving the empirical example, that we do not
extract, fabricate, or simulate information from the likelihood function that does not
exist. That is, the culpable dimension will be given an infinite variance posterior,
reflecting a complete lack of information about its form. What the algorithm does
accomplish is the recovery of information on the other dimensions that otherwise
would not be available to researchers. Therefore, a model that would have been
dismissed as nonidentified for purely data reasons can now be partially recovered.

6.10.1 Texas

The example here uses data from the 1989 county-level economic and demo-
graphic survey for all 2276 nonmetropolitan U.S. counties (“ERS Typology”)
organized hierarchically by state such that each state is a separate unit of anal-
ysis with counties as cases. The U.S. Bureau of the Census, U.S. Department
of Agriculture, and state agencies collect these data to provide policy-oriented
information about conditions leading to high levels of rural poverty. The dichoto-
mous outcome variable indicates whether 20% or more of the county’s residents
live in poverty (a standard measure in this field). The specification includes the
following explanatory variables:

• Govt: a dichotomous factor indicating whether various government activ-
ities contributed a weighted annual average of 25% or more labor and
proprietor income over the three preceding years.

• Service: a dichotomous factor indicating whether service-sector activities
contributed a weighted annual average of 50% or more labor and proprietor
income over the three preceding years.

• Federal: a dichotomous factor indicating whether federally owned lands
make up 30% or more of a county’s land area.

• Transfer: a dichotomous factor indicating whether income from transfer
payments (federal, state, and local) contributed a weighted annual average
of 25% or more of total personal income over the preceding three years.

• Population: the log of the county population total for 1989.
• Black: the proportion of black residents in the county.
• Latino: the proportion of Latino residents in the county.

This model provides the results given in Table 6.1.

PUBLIC POLICY ANALYSIS EXAMPLE 165

Table 6.1 Logit Regression Model: Nonsingular Hessian, Texas

Standard Results Without Federal Importance Sampling

Parameter Est. Std. Err. Est. Std. Err. Est. Std. Err.

Black 15.91 3.70 16.04 3.69 15.99 3.83
Latino 8.66 1.48 8.73 1.48 8.46 1.64
Govt 1.16 0.78 1.16 0.78 1.18 0.74
Service 0.17 0.62 0.20 0.63 0.19 0.56
Federal −5.78 16.20 — — −3.41 17.19
Transfer 1.29 0.71 1.17 0.69 1.25 0.63
Population −0.39 0.22 −0.39 0.22 −0.38 0.21
Intercept −0.47 1.83 −0.46 1.85 −0.51 1.68

A key substantive question is whether the black fraction predicts poverty lev-
els even after controlling for governmental efforts and the other control variables.
Since the government supposedly has a lot to do with poverty levels, it is impor-
tant to know whether they are succeeding in a racially fair manner or whether
there is more poverty in counties with larger fractions of African Americans.
That is, whether the hypothesized effect is due to more blacks being in poverty
or more whites and blacks in heavily black counties being in poverty would be
interesting to know but is not material for our substantive purposes.

We analyze these data with a standard logistic regression model, so P(Yi =
1|Xi) = [1 + exp(Xiβ)]−1, where Xi is a vector of all our explanatory variables
for case i. Using this specification, 43 of the U.S. states produce invertible Hes-
sians and therefore available results. Rather than alter our theory and search for
a new specification driven by numerical and computational considerations, we
apply our approach to the remaining state models. From this 43:7 dichotomy,
a matched pair of similar states is chosen for discussion here, where one case
produces a (barely) invertible Hessian with the model specification (Texas) and
the other is noninvertible (Florida). These states both have large rural areas,
similar demographics, and similar levels of government involvement in the local
county economies, and we would like to know whether the black fraction predicts
poverty in similar fashions.

The logit model for Texas counties (n = 196) produces the results in the first
pair of columns in Table 6.1. The coefficient on the black fraction is very large,
and statistically reliable, thus supporting the racial bias hypothesis. It turns out
that the variable Federal is problematic in these models and as noted below,
actually prevents estimation using the Florida data. The second pair of columns
reestimates the Texas model without the Federal variable, and the results for
the black fraction (and the other variables) are mostly unchanged. In contrast to
the modes and their standard deviations in the first two sets of results, the final
pair of columns gives the means and their standard deviations by implementing
our importance resampling but without the need for a pseudovariance matrix
calculation. The means here are very close to the modes, and the standard errors

166 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

in the two cases are very close as well, so the importance resampling in this
(invertible) case did not generate important differences.

Below is the Hessian from this estimation, which supports the claim that the
variable Federal is a problematic component of the model. Note the zeros and
very small values in the fourth row and column of H .

H =

0.13907100 0.00971597 0.01565632 0.00000000
0.00971597 0.00971643 0.00000000 0.00000000
0.01565632 0.00000000 0.01594209 0.00000000
0.00000000 0.00000000 0.00000000 0.00000003
0.01165964 0.00022741 0.00305369 0.00000000
1.27113747 0.09510282 0.14976776 0.00000044
0.01021141 0.00128841 0.00170421 −0.00000001
0.03364064 0.00211645 0.00246767 0.00000000

0.01165964 1.27113747 0.01021141 0.03364064
0.00022741 0.09510282 0.00128841 0.00211645
0.00305369 0.14976776 0.00170421 0.00246767
0.00000000 0.00000044 −0.00000001 0.00000000
0.01166205 0.10681518 0.00136332 0.00152559
0.10681518 11.77556446 0.09904505 0.30399224
0.00136332 0.09904505 0.00161142 0.00131032
0.00152559 0.30399224 0.00131032 0.01222711

To see this near singularity implied by this Hessian, Figure 6.2 provides a
matrix of the bivariate profile contour plots for each pair of coefficients from
the Texas data, with contours at 0.05, 0.15, . . . , 0.95 where the 0.05 contour line
bounds approximately 0.95 of the data, holding all other parameters constant at
their maxima. These easy-to-compute profile plots are distinct from the more
desirable but harder-to-compute marginal distributions: Parameters not shown
are held constant in the former but integrated out in the latter. In these data,
the likelihood is concave at the global maximum, although the curvature for
Federal is only slightly greater than zero. This produces a near-ridge in the
contours for each variable paired with Federal, and although it cannot be seen
in the figure, the ridge is gently sloping around the maximum value in each
profile plot, thus allowing estimation.

The point estimates and standard errors correctly pick up the unreliability
of the Federal coefficient value by giving it a very large standard error, but
as is typically the case, the graphed profile contours reveal more information.
In particular, the plot indicates that distribution of the coefficient on Federal
is quite asymmetric, and indeed, very informative in the manner by which the
probability density drops as we come away from the near ridge. The modes and
their standard errors, in the first pair of columns in Table 6.1, cannot reveal this
additional information. In contrast, the importance resampling results reveal the
richer set of information. For example, to compute the entries in the last two
columns of Table 6.1, we first took many random draws of the parameters from

7.
0

8.
0

9.
0

10
.0

Latino

B
la

ck

13 245

Government

La
tin

o

–1
.5

–0
.50.
5

1.
5

Service

G
ov

er
nm

en
t

–1
50

–1
00–5
00

Federal

S
er

vi
ce

1.
0

2.
0

3.
0

4.
0

Transfer

F
ed

er
al

–2
0

2
4

6
8

10
–0

.4
0

–0
.3

0

–0
.2

0

2
3

4
5

6
1

2
3

4
5

7
–1

.5
–1

.0
–0

.5
0.

0
0.

5
1.

0
–1

50
–1

00
–5

0
0

50
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Population

T
ra

ns
fe

r

F
ig

.
6.

2
C

on
to

ur
pl

ot
m

at
ri

x,
Te

xa
s

da
ta

.

167

168 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

their exact posterior distribution. If instead of summarizing this information with
their means and standard deviations, as in Table 6.1, we presented univariate
or bivariate histograms of the draws, we would reveal all the information in
Figure 6.2. In fact, the histograms would give the exact marginal distributions
of interest (the full posterior, with other parameters integrated out) rather than
merely the profile contours as shown in the figures, so the potential information
revealed, even in this case where the Hessian is invertible, could be substantial.
We do not present the histograms in this example because they happen to be
similar to the contours in this particular dataset.

Note that although logit is known to have a globally concave likelihood surface
in theory, actual estimates are not strictly concave, due to numerical impreci-
sion. In the present data, the Hessian is barely invertible, making the likelihood
surface sensitive to numerical imprecision. As it turns out, there are at least
two local maxima on the marginal likelihood for Federal and thus potential
attractors. The statistical package Gauss found a solution at −11.69 and the pack-
age R at −5.78 (reported). This discrepancy is typical of software solutions to
poorly behaved likelihood functions, as algorithmic differences in the applied
numerical procedures have different intermediate step locations. The difference
in the results here is not particularly troubling, as no reasonable analyst would
place faith in either coefficient estimate for Federal, given the large reported
standard error. Note also that Govt and Service fall below conventional sig-
nificance threshold levels as well. Our primary concern with Federal is that it
alone prevents the Florida model (Section 6.10.2) from producing conventional
results.

6.10.2 Florida

We ran the same specification used in Texas for Florida (33 counties), provid-
ing the maximum likelihood parameter estimates in Table 6.2 and the following
Hessian, which is now noninvertible. The standard errors are represented in the
table with question marks since standard estimates are not available.

Table 6.2 Logit Regression Model: Singular Hessian, Florida

Standard Results Without Federal Importance Sampling

Parameter Est. Std. Err. Est. Std. Err. Est. Std. Err.

Black 5.86 ??? 5.58 5.34 5.56 2.66
Latino 4.08 ??? 3.21 8.10 3.97 2.73
Government −1.53 ??? −1.59 1.24 −1.49 1.04
Service −2.93 ??? −2.56 1.69 −2.99 1.34
Federal −21.35 ??? −20.19 ∞
Transfer 2.98 ??? 2.33 1.29 2.98 1.23
Population −1.43 ??? −0.82 0.72 −1.38 0.47
Intercept 12.27 ??? 6.45 6.73 11.85 4.11

PUBLIC POLICY ANALYSIS EXAMPLE 169

H =

0.13680004 0.04629599 0.01980602 0.00000001
0.04629599 0.04629442 0.00000000 −0.00000004
0.01980602 0.00000000 0.01980564 0.00000000
0.00000001 −0.00000004 0.00000000 0.00000000
0.05765988 0.03134646 0.01895061 0.00000000
1.32529504 0.45049457 0.19671280 0.00000000
0.02213744 0.00749867 0.00234865 0.00000000
0.00631444 0.00114495 0.00041155 0.00000002

0.05765988 1.32529504 0.02213744 0.00631444
0.03134646 0.45049457 0.00749867 0.00114495
0.01895061 0.19671280 0.00234865 0.00041155
0.00000000 0.00000000 0.00000000 0.00000002
0.05765900 0.57420212 0.00817570 0.00114276
0.57420212 12.89475788 0.21458995 0.06208332
0.00817570 0.21458995 0.00466134 0.00085111
0.00114276 0.06208332 0.00085111 0.00088991

Consider first Figure 6.3, which provides the same type of matrix of the bivari-
ate profile plots for each pair of coefficients for the Florida data, like Texas with
contours at 0.1, 0.2, . . . , 0.9. The problematic profile likelihood is clearly for
Federal, but in this case the modes are not unique, so the Hessian is not invert-
ible. Interestingly, except for this variable, the posteriors are very well behaved
and easy to summarize. If one was forced to abandon the specification at this
point, this is exactly the information that would be lost forever. The loss is espe-
cially problematic when contrasted with the Texas case, for which the contours
do not look a lot more informative, but we were barely able to get an estimate.

Here is the key trap. A diligent data analyst using classical procedures with
our data might reason as follows:

• The Texas data clearly suggest racial bias, but no results are available in
Florida with the same specification.

• Follow the textbook advice and respecify by dropping Federal and rerun-
ning the model for both Texas and Florida (these results are in both Tables 6.1
and 6.2).

• Note that the new results for black reveal a coefficient for Florida that
is only a third of the size it was in Texas and only slightly larger than its
standard error.

Now the contrast with the previous results is striking: a substantial racial bias
in Texas and no evidence of such in Florida. However, with this approach it is
impossible to tell whether these interesting and divergent substantive results in
Florida are due to omitted variable bias rather than true political and economic
differences between the states.

What can our analysis do? One reasonable approach is to assume that the
(unobservable) bias that resulted from omitting Federal in the Florida speci-
fication would be of the same degree and direction as the (observable) bias that

–1
001020

Latino

B
la

ck

–2–1012

Government

La
tin

o

–6–4–202

Service

G
ov

er
nm

en
t

–2
50

–1
50–5

050

Federal

S
er

vi
ce

02 134

Transfer

F
ed

er
al

–5
0

5
10

15
20

–1
.6

–1
.4

–1
.2

–1
5

–1
0

–5
0

5
10

15
–3

–2
–1

0
1

2
–6

–4
–2

0
2

–2
50

–1
50

–5
0

0
50

–1
0

1
2

Population

T
ra

ns
fe

r

F
ig

.
6.

3
C

on
to

ur
pl

ot
m

at
ri

x,
Fl

or
id

a
da

ta
.

170

ALTERNATIVE METHODS 171

would occur by omitting the variable in the Texas data. Therefore, one can easily
estimate the bias in Texas by omitting Federal. This is done in the second pair
of columns in Table 6.1, and the results suggest that there is no bias introduced
since the results are nearly unchanged from the first two columns. Although this
seems like a reasonable procedure (and one that most analysts have no doubt
tried at one time or another), it is of course based on the completely unverifiable
assumption that the biases are the same in the two states. With the present data,
this assumption is false, as our procedure now shows.

We now recover the information lost in the Florida case by first applying our
generalized inverse and generalized Cholesky procedures to the singular Hes-
sian to create a pseudovariance matrix. We then perform importance resampling
using the multivariate normal, with the mode and pseudovariance matrix, as the
first approximation. We use a t-distribution with three degrees of freedom as
the approximation distribution so as to be as conservative as possible since we
know from graphical evidence that one of the marginal distributions is problem-
atic. The last two columns of Table 6.2 give the means and standard deviations
of the marginal posterior for each parameter. We report ∞ for the standard
error of Federal to emphasize the lack of information. Although the data
and model contain no useful information about this parameter, the specification
did control for Federal, so any potentially useful information about the other
parameters and their standard errors are revealed with our procedure without the
potential for omitted variable bias that would occur by dropping the variable
entirely.

The results are indeed quite informative. They show that the effect of Black
is indeed smaller in Florida than in Texas, but the standard error for Florida is now
almost a third of the size of the coefficient. Thus, the racial bias is clearly large
in both states, although larger in Texas than Florida. This result thus precisely
reverses the conclusion from the biased procedure of dropping the problem-
atic Federal variable. Of course, without the generalized inverse/generalized
Cholesky technique, there would be no results to evaluate for Florida at all.

6.11 ALTERNATIVE METHODS

6.11.1 Drawing from the Singular Normal

In this section we describe another procedure for drawing the random numbers
from a different approximating density: the truncated singular normal. The key
idea is to draw directly from the singular multivariate density with a nonin-
vertible Hessian. It should be true that the generalized Cholesky procedure will
work better if the underlying model is identified, but numerical problems lead to
apparent nonidentification. However, the singular normal procedure will perform
better when the underlying model would have a noninvertible Hessian even if
one were able to run it on a computer with infinite precision.

Again consider the matrix of second derivatives, H, along with a k×1 associ-
ated vector of maximum likelihood estimates, θ̂ . Again, the matrix (−H)−1 does

172 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

not exist due either to nonpositive definiteness or to singularity (r ≤ k). Suppose
that one can actually set some reasonable bounds on the posterior distribution of
each of the k coefficient estimates in θ̂ . These bounds may be set according to
empirical observation with similar models, as a Bayes-like prior assertion (Hath-
away 1985; O’Leary and Rust 1986; McCullagh and Nelder 1989; Geyer 1991;
Wolak 1991; Geyer and Thompson 1992; Dhrymes 1994, Sec. 5.11). Thus, we
assume that θ ∈ [g, h], where g is a k × 1 vector of lower bounds and h is a
k × 1 vector of upper bounds.

The goal now is to draw samples from the distribution of θ̂ : θ̂ ∼
N(θ , (−H)−1) ∝ e−T/2, truncated to be within [g, h], and where T = (θ̂ −
θ)′H(θ̂ − θ). Note that the normal density does not include an expression for the
variance–covariance matrix—only the inverse (i.e., the negative of the Hessian),
which exists here. We thus decompose T as follows:

T = (θ̂ − θ)′H(θ̂ − θ)

= (θ̂ − θ)′U′LU(θ̂ − θ), (6.15)

where U′LU is the spectral decomposition of H; rank(H) = r ≤ k; H has r

non-zero eigenvalues, denoted d1, . . . , dr ; U is k × k and orthogonal and hence
(U)−1 = U′; and L = diag(L1, 0), where L1 = diag(d1, . . . , dr). Thus, the L
matrix is a diagonal matrix with r leading values of eigenvalues and n−r trailing
zero values.

Now make the transformation A = U(θ̂ − [h + g]/2), the density for which
would normally be A ∼ N(U(θ − [h + g]/2), (−L)−1). This transformation
centers the distribution of A at the middle of the bounds, and since L is diagonal,
it factors into the product of independent densities. But this expression has two
problems:

• (−L)−1 does not always exist.
• A has complicated multivariate support (a hypercube not necessarily parallel

with the axes of the elements of A), which is difficult to draw random
numbers from.

We now address these two problems. First, in place of L, we use L∗ defined
such that L∗

i = Li if Li > 0 and L∗
i is equal to some small positive value

otherwise (where the subscript refers to the row and column of the diagonal
element). Except for the specification of the support of A that we consider next,
this transforms the density into

A ∼ N(U′θ , (−L∗)−1)

=
∏
i

N(Ui(θi − [hi + gi]/2,−1/L∗
i). (6.16)

ALTERNATIVE METHODS 173

Second, instead of trying to draw directly from the support of A, we draw from a
truncated density with support that is easy to compute and encompasses the support
of A (but is larger than it), transform back via θ̂ = U′A+ (h+g)/2, and accept the
draw only if θ̂ falls within its (easy to verify) support, [g, h]. The encompassing
support we use for each element in the vector A is the hypercube [−Q,Q], where
the scalar Q is the maximum Euclidean distance from θ to any of the 2k corners of
the hyperrectangle defined by the bounds. Since by definition θ ∈ [g, h], we should
normally avoid the sometimes common pitfall of rejection sampling—having to
do an infeasible number of draws from A to accept each draw of θ̂ .

Now the principle of rejection sampling is satisfied here: that we can sample
from any space (in our case, using support for A larger than its support) as long
as it fully encompasses the target space and the standard accept–reject algorithm
operates appropriately. If −H were positive definite, this algorithm would return
random draws from a truncated normal distribution. When −H is not positive
definite, it returns draws from a singular normal, but truncated as indicated.

So now we have draws of θ̂ from a singular normal distribution. We then repeat
procedure m, which serves to provide draws from the enveloping distribution that
is used in the importance sampling procedure. That is, we take these simulations
of θ̂ and accept or reject according to the importance ratio. We keep going until
we have enough simulated values.

6.11.2 Aliasing

The problem of computational misspecification and covariance calculation is well
studied in the context of generalized linear models, particularly in the case of the
linear model (Albert 1973). McCullagh and Nelder (1989) discuss this problem
in the context of generalized linear models where specifications that introduce
overlapping subspaces due to redundant information in the factors produce intrin-
sic aliasing. This occurs when a linear combination of the factors is reduced to
fewer terms than the number of parameters specified. McCullagh and Nelder
solve the aliasing problem by introducing suitable constraints, which are linear
restrictions that increase the dimension of the subspace created by the factors
specified. A problem with this approach is that the suitable constraints are nec-
essarily an arbitrary and possibly atheoretical imposition. In addition, it is often
difficult to determine a minimally affecting, yet sufficient set of constraints.

McCullagh and Nelder also identify extrinsic aliasing, which produces the
same modeling problem but as a result of data values. The subspace is reduced
below the number of factors because of redundant case-level information in the
data. This is only a problem, however, in very low sample problems atypical of
political science applications.

6.11.3 Ridge Regression

Another well-known approach to this problem in linear modeling is ridge regres-
sion, which essentially trades the multicollinearity problem for introduced bias.

174 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

Suppose that the X′X matrix is singular or nearly singular. Then specify the
smallest scalar possible, ζ , that can be added to the characteristic roots of X′X
to make this matrix nonsingular. The linear estimator is now defined as

β̂(θ) = (X′X + ζ I)−1X′y.

There are two very well known problems with this approach. First, the coeffi-
cient estimate is by definition biased, and there currently exists no theoretical
approach that guarantees some minimum degree of bias. Some approaches have
been suggested that provide reasonably small values of ζ based on graphical
methods (Hoerl and Kennard 1970a,b), empirical Bayes (Efron and Morris 1972;
Amemiya 1985), minimax considerations (Casella 1980, 1985), or generalized
ridge estimators based on decision-theoretical considerations (James and Stein
1961; Berger 1976; Strawderman 1978). Second, because ζ is calculated with
respect to the smallest eigenvalue of X′X, it must be added to every diagonal of
the matrix: X′X+ζ I. So by definition the matrix is changed more than necessary
(in contrast to the Schnabel–Eskow method). For a very important critique, see
Smith and Campbell (1980) along with the comments that follow.

6.11.4 Derivative Approach

Another alternative was proposed by Rao and Mitra (1971). Define δθ as an
unknown correction that has an invertible Hessian. Then (ignoring higher-order
terms in a Taylor series expansion of δθ)

f (x|θ) = H(θ) δθ . (6.17)

Since H(θ) is singular, a solution is available only by the generalized inverse:

δθ = H(θ)−f (x|θ). (6.18)

When there exists a parametric function of θ that is estimable and whose first
derivative is in the column space of H(θ), there exists a unique, maximum
likelihood estimate of this function, φ(θ̂), with asymptotic variance–covariance
matrix:

φ(θ̂)H(θ0)
−φ(θ̂). (6.19)

The difficulty with this procedure is finding a substantively reasonable version of
φ(θ̂). Rao and Mitra’s point is nevertheless quite useful since it points out that
any generalized inverse has a first derivative in the column space of H(θ).

6.11.5 Bootstrapping

An additional approach is to apply bootstrapping to the regression procedure so
as to produce empirical estimates of the coefficients, which can then be used to

ALTERNATIVE METHODS 175

obtain subsequent values for the standard errors. The basic procedure (David-
son and MacKinnon 1993, pp. 330–31; Efron and Tibshirani 1993, pp. 111–12)
is to bootstrap from the residuals of a model where coefficients estimates are
obtained but where the associated measures of uncertainty are unavailable or
unreliable.

The steps for the linear model are given by Freedman (1981):

1. For the model y = Xβ + ε, obtain β̂ and the centered residuals ε∗.
2. Sample size n with replacement m times from ε∗ and calculate m replicates

of the outcome variable by y∗ = Xβ̂ + ε∗.

3. Regress the m iterates of the y∗ vector on X to obtain m iterates of β̂.
4. Summarize the coefficient estimates with the mean and standard deviation

of these bootstrap samples.

The generalized linear model case is only slightly more involved since it is
necessary to incorporate the link function and the (Pearson) residuals need to be
adjusted (see Shao and Tu 1995, pp. 341–43).

Applying this bootstrap procedure to the problematic Florida data where the
coefficient estimates are available but the Hessian fails, we obtain the standard
error vector: [9.41, 9.08, 1.4, 2.35, 25.83, 1.43, 11.86, 6.32] (in the same order as
Table 6.2). These are essentially the same standard errors as those in the model
dropping Federal except that the uncertainty for Population is much higher.
This bootstrapping procedure does not work well in non-iid settings (it assumes
that the error between y and Xβ̂ is independent of X) and it is possible that
spatial correlation that is likely to be present in FIPS-level population data is
responsible for this discrepancy.

An alternative bootstrapping procedure, the paired bootstrap, generates m sam-
ples of size n directly from (yj , xj) together to produce y∗, X∗ and then generates
β̂ values. While the paired bootstrap is less sensitive to non-iid data, it can pro-
duce simulated datasets (the y∗, X∗) that are very different from the original data
(Hinkley 1988).

6.11.6 Respecification (Redux)

Far and away the most common way of recovering from computational prob-
lems resulting from forms of collinearity is respecification. Virtually every basic
and intermediate textbook on linear and nonlinear regression techniques gives
this advice. The respecification process can vary from ad hoc trial error strate-
gies to more sophisticated approaches based on principal components analysis
(Krzanowski 1988). Although these approaches often work, they force the user
to change their research question due to technical concerns. As the example in
Section 6.10 shows, we should not be forced to alter our thinking about a research
question as a result of computational issues.

176 NUMERICAL ISSUES INVOLVED IN INVERTING HESSIAN MATRICES

6.12 CONCLUDING REMARKS

The purpose of this chapter is twofold. The first objective is to illuminate the cen-
tral role of the Hessian in standard likelihood-based estimation. The second objec-
tive is to provide a working solution to noninvertible Hessian problems that might
otherwise cause researchers to discard their substantive objectives. This method is
based on some established theories, but is new as a complete method. Currently,
the generalized inverse/generalized Cholesky procedure is implemented in King’s
EI software (<http://gking.harvard.edu/stats.shtml>), and the R
and Gauss procedures are freely available at <http://www.hmdc.harvard.
edu/numerical issues/>.

So what can a frustrated practitioner do? We have given several alternatives
to the standard (albeit eminently practical) recommendation to respecify. Our
new method is intended to provide results even in circumstances where it is
not usually possible to invert the Hessian and obtain coefficient standard errors.
The usual result is that the problematic coefficient has huge posterior variance,
indicating statistical unreliability. This is exactly what should happen: A model
is produced and poor contributors are identified.

Although the likelihood estimation process from a given dataset may have
imposing problems, the data may still contain revealing information about the
question at hand. The point here is therefore to help researchers avoid giving up
the question they posed originally and instead, to extract at least some of the
remaining information available. The primary method we offer here is certainly
not infallible, nor are the listed alternatives. Therefore, considerable care should
go into their use and interpretation.

C H A P T E R 7

Numerical Behavior
of King’s EI Method

7.1 INTRODUCTION

The ecological inference (EI) problem occurs when one attempts to make infer-
ences about the behavior of individuals (or subaggregates) from aggregate data
describing group behavior. Ecological inference problems abound in the social
sciences and occur frequently in voting rights litigation, where the voting pat-
terns of individual members of racial groups are inferred from election returns
aggregated into voting precincts. The problem is that information is lost in aggre-
gation, and patterns observed in aggregate data may not correspond to patterns in
subaggregate (individual) data (Robinson 1950). As King puts it, “. . . there is no
way to make certain inferences about individual level behavior from aggregate
data alone” (King 1997, p. 36).

Ecological inference is claimed to be the “longest standing, hitherto unsolved
problems in quantitative social science” (King 1997). The problem is easy to
define but difficult to solve. In the simplest case, a 2 × 2 table represents the
unknown quantities one wishes to estimate, wherein only the table marginals are
known. In voting rights litigation, for example, the election returns and racial
characteristics of a given voting precinct are known. Because of the secret ballot,
however, the number (or percentage) of black and white voters that voted for
the black and white candidates are unknown. Ecological inference is to estimate
these unknown quantities, which are used in this context to determine the degree
of racially polarized voting—how often voters of a racial group vote only for
candidates of their same racial type.

Interest is not just confined to voting and race. Other social scientists have used
ecological regression methods to make claims about individual-level behavior.
For instance, Gove and Hughes (1980) test a variant of Durkheim’s hypothesis by
asking whether living alone is related to suicide and alcoholism. That is, aggre-
gate statistics exist on living arrangements, suicides, and (slightly less reliably)
alcoholism. However, individual data can be difficult to obtain (for physiological
as well as psychological reasons). Historians have a parallel interest in ecological

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

177

178 NUMERICAL BEHAVIOR OF KING’S EI METHOD

inference because they often want to conjecture about individual behavior in the
past that can only be observed as aggregates. Smith (1972) wants to understand
the linkage between social class status and voting for Perón in the 1946 election.
Obviously, one cannot go back in time and survey people during or immediately
after the election, and surviving voters may not be a random sample (or voters
may not even remember their vote correctly). So here there is no other alternative
but to make some ecological claim.

Two approaches to solving the ecological inference problem were proposed in
the 1950s. Goodman (1953) was the first to propose a linear regression solution
to the ecological inference problem. “Goodman’s regression” was adopted by the
U.S. Supreme Court in Thornburg v. Gingles (1986) as a standard for evaluating
racially polarized voting, and continues to be used in voting rights litigation. The
drawback of linear regression is that it may produce nonsensical results outside
the logical bounds of the table marginals, such as turnout rates above 100%. A
second approach is to bound quantities of interest with information from the table
marginals (Duncan and Davis 1953). This approach provides 100% confidence
intervals (assuming zero measurement error) since the bounds are deterministic
mathematical results, not statistical findings. Unfortunately, these intervals are
sometimes too wide to be practically informative.

In 1997, King provided a new method that incorporates both the statistical
information in Goodman’s regression and the deterministic information in Duncan
and Davis’s bounds. This method has come to be known as EI (after King’s pop-
ular software program of the same name). The method continues to be extended,
both statistically and in its practical applications (e.g., King et al. 1999).

Early solutions to the ecological inference problem were relatively simple. In
contrast, recent solutions to the ecological inference problem are theoretically
detailed and computationally elaborate. King (1997) has proposed a solution to
the ecological inference problem that purport to produce more accurate (and real-
istic) estimates of the true individual values but with considerably more elaborate
computations.

Although much of the attention has been positive, King’s solution has been criti-
cized by a number of authors (Tam Cho 1998; Ferree 1999; Freedman et al. 1999;
Herron and Shotts 2003a & b; McCue 2001). It is unfortunate but not unusual—
in social science that computational issues tend to be mentioned in passing. For
example, although the software that King distributes to compute his EImodel con-
tains many numerically sophisticated features, King devotes only two out of the
nearly 350 pages in his book to computational details (see King 1997, App. F).

Debate over computational details are not uncommon when new statistical
methods are introduced, but such debate is less often documented. The history
of statistical and mathematical approaches to ecological inference is particularly
noteworthy for generating controversy. From the early debates between those
advocating the method of bounds (Duncan and Davis 1953) and those support-
ing Goodman’s (1953) linear regression solution, to recent exchanges between
King (1999) and Freedman et al. (1998, 1999), strongminded controversy over
assumptions and implications has been common.

ECOLOGICAL INFERENCE PROBLEM AND PROPOSED SOLUTIONS 179

The focus here is on computation; this work explicitly examines the numerical
properties of the leading proposed solution to the EI problem. In this chapter
we provide a detailed examination of the numerical behavior of King’s (1997)
approach to ecological inference. We analyze the performance of this approaches
in solving the ecological inference problem through sensitivity analysis. A data
perturbation technique is used to evaluate the pseudostability of this technique
across identical datasets. The results illuminate the trade-offs among correctness
complexity and numerical sensitivity.

7.2 ECOLOGICAL INFERENCE PROBLEM
AND PROPOSED SOLUTIONS

Formally, the ecological inference problem is typically described using a 2 × 2
table. More general R × C tables may also be constructed, but in practice the
estimation problem is sufficiently complex that solutions are not reliable unless
more information can be brought to bear on the problem.

The notation follows that of King (1997, p. 31) in formalizing the ecological
inference problem in terms of an ecological inference problem of inferring from
aggregate data in an election precinct, i, the proportion of blacks and whites who
voted or did not vote. In King’s notation:

• Ti: proportion of voting-age population turning out to vote
• Xi : proportion of voting-age population who are black
• βb

i : proportion of voting-age blacks who vote
• βw

i : proportion of voting-age whites who vote

These quantities are presented in a 2 × 2 table in Table 7.1.
The first wave of proposed solutions to the ecological inference problem

occurred in the 1950s, with research by Duncan and Davis (1953) and Goodman
(1953). Goodman (1953) proposed a simple linear regression model to solve the
ecological inference problem, that generalized the accounting identity implied by
Table 7.1, and which is still used frequently today:

Ti = βb
i Xi + βw

i (1 − Xi). (7.1)

Contemporaneously, but independently, Duncan and Davis (1953) proposed that
the logical bounds of the allocation of aggregate data to the subaggregates pro-
vides a range of possible solutions. For example, suppose that 75 blacks and 25
whites live in an election precinct (all of whom vote), and that the black candi-
date receives 75 votes and the white candidate 25. It is not necessarily true that
all blacks voted for the black candidate, even though the numbers are equivalent.
We know that black voters cast anywhere from [50, 75] of the votes for the
black candidate, and that white voters cast anywhere from [0, 25] of the votes
for the black candidate. Both black and white voters may have cast anywhere

180 NUMERICAL BEHAVIOR OF KING’S EI METHOD

Table 7.1 Simplified Notation for Ecological
Inference Problem

Race of
Voting-Age Voting Decision

Person Vote No Vote

Black βb
i 1 − βb

i Xi

White βw
i 1 − βw

i 1 − Xi

Ti 1 − Ti

from [0, 25] of the votes for the white candidate. Also important, the allocation
of votes to one candidate depends on the number of votes allocated to the other
candidate. Intuitively, these feasible values lie on a line implied by the solution
for βw

i and βb
i in (7.1). King (1997, p. 81) summarizes the feasible values for all

precincts into a tomography plot, which portrays these values of allocated votes
within all precincts (as percentages rather than absolute numbers) as lines that
crisscross the unit square.

Neither approach produces entirely satisfactory results. Goodman’s regression
ignores the obvious proportion bounds, [0, 100]%, and those logically deduced by
Duncan and Davis. Duncan and Davis bounds provide only a narrower possible
range of solutions, without inferential analysis in accompaniment.

King (1997) proposes combining the normality assumptions of Goodman’s
regression with the Duncan and Davis method of bounds. Strictly speaking, King
assumes that βw

i and βb
i are distributed as truncated bivariate normal distri-

bution over the unit square, conditional on up to two vectors of covariates.
King’s solution is also computationally complicated by its use of a generous
amount of Bayesian-style simulation in lieu of closed-form solutions to transform
variables.

7.3 NUMERIC ACCURACY IN ECOLOGICAL INFERENCE

In this section the heuristic sensitivity tests discussed in Chapter 4 are applied
to applications of King’s solution to the ecological inference problem. Examples
drawn from King’s (1997) book, A Solution to the Ecological Inference Problem,
and from a study of split-ticket voting appearing in American Political Science
Review (Burden and Kimball 1998) are employed.

Accuracy is a concern for all statistical algorithms and software, and the solu-
tions to the ecological inference problem that we investigate in this chapter are
no exception. Like most computer-intensive statistical programs, King’s solution
is potentially vulnerable in four areas. First, the program uses floating point arith-
metic, so is potentially susceptible to floating point inaccuracies. Second, King’s
solution makes extensive use of the cumulative bivariate normal distribution,

NUMERIC ACCURACY IN ECOLOGICAL INFERENCE 181

which can be difficult to compute accurately, particularly in the tails of the dis-
tribution. Third, the solution relies on solving a nonlinear constrained maximum
likelihood problem, and despite assurances that convergence occurs “almost every
time” and that the results are robust to local minima if any exist (King 1997,
pp. 310–11), no formal proof is provided that the likelihood function is globally
concave. So one cannot rule out the possibility that the search algorithm will set-
tle at a local optimum. Fourth, King’s solution uses simulation to reparameterize
some of the variables, which requires a generous quantity of Pseudo-random
numbers.

Fortunately, because King supplies the source code to his solution, it is pos-
sible to substitute alternative methods for computing some aspects of it (such as
PRNGs) and to automate the replication of analysis under numerous combina-
tions of input, options, and methods. The latter feature is of particular importance
when the analysis required running thousands of replications, which at times took
months of continuous computer time to complete.

The purpose is to test the sensitivity of King’s solution to floating point error,
to errors in the calculation of the bivariate normal distribution function, to search
algorithm choice, and to Pseudo-random number generation (see Chapter 2).
This discussion also applies the perturbation and sensitivity analyses described
in Chapter 4, which highlight numerical problems and sensitivity to measure-
ment error. To examine platform dependence, we ran different versions of the
program on HP-Unix and Windows, as these operating systems may vary the
underlying binary arithmetic computations. To test the accuracy of the bivariate
normal distribution function used by EI , we substitute EI’s function with a
quadruple-precision function based on an extension of Drezner and Wesolowsky
(1989). An expert in this area, Allan Genz, supplied a quadruple-precision func-
tion based on an extension of Drezner and Wesolowsky (1989). After porting
this function to Gauss and integrating it into King’s program, the areas of
previous instability were tested. These were greatly improved, although not
eliminated. The more accurate function has now been incorporated into a new
version of King’s programs as an option. This approach to removing numer-
ical inaccuracies may prove fruitful for sophisticated consumers of statistical
software.

To test the sensitivity of the estimation to the maximum likelihood algo-
rithm, automation of the variation of the numerous algorithm options available
in Gauss was constructed. Finally, a test for sensitivity to variations of default
maximum likelihood search options was performed. Throughout, the sensitivity
of the estimates was observed in the various circumstances as indications of
numerical inaccuracies severe enough to caution inference from the examples
investigated.

During the course of the analysis, and in part because of it, the programs
distributed by King have undergone revision. The replication runs sometimes
required long periods of time to complete, and it has happened that a new version
of the program became available even as computers were incrementing through
replications. New versions of the program will certainly be available after this

182 NUMERICAL BEHAVIOR OF KING’S EI METHOD

chapter is in print. Readers should therefore understand that many, if not all of
the problems identified herein have already been fixed and incorporated in EI .
The purpose at hand is not to critique EI but to demonstrate the techniques used
to identify and solve problems with implementations of algorithms.

7.3.1 Case Study 1: Examples from King (1997)

The analysis begins by evaluating the computational behavior of King’s
EI program using examples from King’s (1997) book, A Solution to the Ecolog-
ical Inference Problem. The replication files that King archived also contained
many of the details of the original analysis that he performed using the original
version of the EI program. These data and Gauss programs used to replicate
the tables in King’s book are available as Inter-university Consortium for Polit-
ical and Social Research (ICPSR) publication replication archive as Study 1132.
The discussion follows naming conventions in the replication files to identify
the seven examples analyzed here: CEN1910, FULTON, KYCK88, LAVOTE,
MATPROII, NJ, and SCSP. Selected results for these replications are presented
in the first column of Table 7.2: the log-likelihood of the estimated solution and
the estimated coefficients and standard errors for βb and βw. In turn, the tests
and results of the accuracy of King’s ecological inference solution algorithm to
floating point arithmetic and platform sensitivity are presented.

Also included here are the effects of variations in Pseudo-random number
generation that necessarily occur. For the record, runs under “HP-Unix” were
created under HP-Unix 10.10 K900, running Gaussv.3.2.43, with CML v.1.0.41,
plus EI v.1.0 and EI v.1.63 installed. The “Windows” system is a Pentium II
running Windows 95 Sr2 and EzI v.2.23.

In this section we provide only an overview of the tests, for a full discussion of
these and other sensitivity tests that we employ here, see Chapter 4. In interpreting
the results of the analysis, it is important to caution readers that these data
perturbations are diagnostic sensitivity tests. They are not classical statistical
tests, although many can be interpreted within a statistical framework.

7.3.1.1 Perturbation Analysis
As described in Chapter 4, the intuition behind this test is straightforward: one
should be wary of knife-edge results. If a small amount of noise introduced to
the inputs of an analysis cause dramatic variations in the resulting estimates, one
should suspect that the software used is particularly sensitive to numerical error
or that the model is ill-conditioned with respect to these data, or both. Since
this use of perturbations represents a sensitivity analysis and not a statistical test,
there is no significance threshold or confidence interval directly associated with
variations in estimates. As a rule of thumb, however, one should exercise caution
when small amounts of noise lead to estimates that are outside the confidence
intervals one would otherwise report.

To test for the sensitivity of EI to input perturbations for each of King’s seven
examples, we performed 100 perturbed replications of EI . For each precinct, Xi

Ta
bl

e
7.

2
A

na
ly

si
s

of
N

um
er

ic
C

om
pu

ta
ti

on
P

ro
pe

rt
ie

s
of

K
in

g’
s

E
co

lo
gi

ca
l

In
fe

re
nc

e
So

lu
ti

on

Pe
rt

ur
ba

tio
n

O
pt

io
n

A
na

ly
si

s
V

ar
ia

tio
n

A
na

ly
si

s
PR

N
G

Pl
at

fo
rm

an
d

V
er

si
on

O
ri

gi
na

l
E
I

v1
.6

3
E
I

v1
.6

3
A

na
ly

si
s

V
ar

ia
tio

n
A

na
ly

si
s

R
ep

lic
at

io
n

C
as

e
A

na
ly

si
s

M
in

–M
ax

M
ea

n
M

in
–M

ax
M

ea
n

E
I

v1
.6

3
E
I

v1
.0

E
I

v1
.6

3
E
z
I

v2
.2

3

C
E

N
19

10
L

L
24

49
23

16
–2

40
2

23
59

24
48

–2
44

8
24

48
24

48
24

48
24

48
24

48
(n

=
10

40
)

β
b

0.
63

83
0.

63
65

–0
.6

54
7

0.
64

35
0.

63
48

–0
.6

36
4

0.
63

57
0.

63
55

0.
63

63
0.

63
6

0.
63

57
St

d.
er

ro
r

0.
00

82
0.

00
41

–0
.0

55
0

0.
00

88
0.

00
38

–0
.0

05
0

0.
00

44
0.

00
5

0.
00

43
0.

00
47

0.
00

42
β

w
0.

94
97

0.
94

05
–0

.9
50

8
0.

94
77

0.
95

06
–0

.9
51

2
0.

95
08

0.
95

09
0.

95
06

0.
95

7
0.

95
08

St
d.

er
ro

r
0.

00
34

0.
00

17
–0

.0
22

9
0.

00
37

0.
00

16
–0

.0
02

1
0.

00
18

0.
00

21
0.

00
18

0.
00

19
0.

00
17

FU
LT

O
N

L
L

59
1.

5
36

5.
2–

37
3.

4
36

8.
9

36
5.

0–
36

9.
4

36
9.

0
37

0.
3

36
9.

37
37

0.
3

58
9.

2
(n

=
28

9)
β

b
0.

57
05

0.
40

70
–0

.4
17

4
0.

41
26

0.
35

24
–0

.4
14

1
0.

40
70

0.
42

62
0.

41
49

0.
42

66
0.

57
23

St
d.

er
ro

r
0.

00
52

0.
01

09
–0

.0
15

3
0.

01
29

0.
01

18
–0

.0
33

2
0.

01
47

0.
02

01
0.

01
28

0.
01

94
0.

00
46

β
w

0.
04

28
0.

40
79

–0
.4

22
8

0.
41

49
0.

41
15

–0
.5

57
0

0.
42

83
0.

38
29

0.
40

96
0.

38
21

0.
03

85
St

d.
er

ro
r

0.
01

22
0.

02
57

–0
.0

36
1

0.
03

04
0.

02
78

–0
.0

78
2

0.
03

46
0.

04
74

0.
03

02
0.

04
58

0.
01

08
K

Y
C

K
88

L
L

19
8.

6
22

.5
4–

64
.1

2
47

.8
7

Fa
ta

l
er

ro
rs

73
.7

44
.9

73
.7

21
4.

8
(n

=
11

8)
β

b
0.

42
16

0.
49

67
–0

.5
43

3
0.

52
01

—
0.

51
58

0.
52

58
0.

52
3

0.
52

12
St

d.
er

ro
r

0.
1

0.
08

63
–0

.1
26

9
0.

10
57

—
0.

11
44

0.
11

03
0.

11
98

0.
15

81
β

w
0.

77
03

0.
75

56
–0

.7
71

8
0.

76
35

—
0.

76
34

0.
76

28
0.

76
3

0.
76

32
St

d.
er

ro
r

0.
00

71
0.

00
60

–0
.0

09
5

0.
00

76
—

0.
00

82
0.

00
79

0.
00

85
0.

01
13

L
A

V
O

T
E

L
L

64
87

32
03

–3
28

3
32

37
32

94
–6

48
6

53
61

36
21

32
95

36
21

68
12

(n
=

32
62

)
β

b
0.

62
59

0.
62

30
–0

.6
28

2
0.

62
59

0.
62

47
–0

.6
30

7
0.

62
65

0.
62

66
0.

62
61

0.
62

68
0.

62
51

St
d.

er
ro

r
0.

00
16

0.
00

62
–0

.0
09

3
0.

00
75

0.
00

16
–0

.0
13

7
0.

00
46

0.
00

94
0.

00
8

0.
00

91
0.

00
16

β
w

0.
70

68
0.

70
55

–0
.7

07
4

0.
70

65
0.

70
47

–0
.7

06
9

0.
70

62
0.

70
62

0.
70

63
0.

70
61

0.
70

67
St

d.
er

ro
r

0.
00

06
0.

00
23

–0
.0

03
4

0.
00

27
0.

00
06

–0
.0

05
0

0.
00

17
0.

00
34

0.
00

29
0.

00
33

0.
00

06

(C
on

ti
nu

ed
ov

er
le

af
)

183

Ta
bl

e
7.

2
(C

on
ti

nu
ed

)

Pe
rt

ur
ba

tio
n

O
pt

io
n

A
na

ly
si

s
V

ar
ia

tio
n

A
na

ly
si

s
PR

N
G

Pl
at

fo
rm

an
d

V
er

si
on

O
ri

gi
na

l
E
I

v1
.6

3
E
I

v1
.6

3
A

na
ly

si
s

V
ar

ia
tio

n
A

na
ly

si
s

R
ep

lic
at

io
n

C
as

e
A

na
ly

si
s

M
in

–M
ax

M
ea

n
M

in
–M

ax
M

ea
n

E
I

v1
.6

3
E
I

v1
.0

E
I

v1
.6

3
E
z
I

v2
.2

3

M
A

T
PR

O
II

L
L

41
2.

6
39

3.
9–

41
2.

0
40

3.
3

41
1.

2–
41

2.
6

41
2.

0
41

1.
2

41
1.

2
41

1.
2

41
2.

6
(n

=
26

8)
β

b
0.

59
22

0.
33

09
–0

.8
34

4
0.

60
22

0.
59

01
–0

.6
08

5
0.

59
97

0.
61

15
0.

60
71

0.
61

23
0.

59
24

St
d.

er
ro

r
0.

04
4

0.
04

43
–0

.2
33

4
0.

07
66

0.
03

84
–0

.0
55

3
0.

04
47

0.
05

41
0.

04
68

0.
05

4
0.

03
7

β
w

0.
81

43
0.

74
73

–0
.8

87
3

0.
81

13
0.

80
97

–0
.8

14
9

0.
81

22
0.

80
88

0.
81

01
0.

80
86

0.
81

42
St

d.
er

ro
r

0.
01

25
0.

01
26

–0
.0

67
3

0.
02

17
0.

01
09

–0
.0

15
7

0.
01

27
0.

01
54

0.
01

33
0.

01
53

0.
02

4
N

J
L

L
10

43
10

07
–1

03
4

10
20

10
43

–1
04

3
10

43
10

43
10

43
10

43
10

43
(n

=
49

3)
β

b
0.

06
27

0.
05

59
–0

.0
76

1
0.

06
67

0.
06

43
–0

.0
69

5
0.

06
63

0.
06

11
0.

06
42

0.
06

16
0.

06
29

St
d.

er
ro

r
0.

00
97

0.
00

81
–0

.0
11

1
0.

00
96

0.
01

22
–0

.0
17

5
0.

01
44

0.
00

95
0.

01
42

0.
00

95
0.

01
05

β
w

0.
37

91
0.

37
42

–0
.3

80
8

0.
37

82
0.

37
75

–0
.3

78
7

0.
37

83
0.

37
95

0.
37

87
0.

37
94

0.
37

9
St

d.
er

ro
r

0.
00

23
0.

00
19

–0
.0

02
6

0.
00

22
0.

00
28

–0
.0

04
1

0.
00

33
0.

00
22

0.
00

33
0.

00
22

0.
00

24
SC

SP
L

L
53

39
52

22
–5

30
5

52
70

50
94

–1
74

80
00

43
09

00
56

57
53

37
56

57
56

88
(n

=
31

85
)

β
b

0.
12

67
0.

03
58

–0
.1

28
1

0.
11

39
0.

01
98

–0
.2

57
2

0.
09

46
0.

11
62

0.
11

97
0.

11
56

0.
11

39
St

d.
er

ro
r

0.
00

41
0.

00
38

–0
.0

52
9

0.
01

13
0.

00
15

–0
.1

34
0

0.
02

63
0.

02
88

0.
01

09
0.

02
78

0.
04

24
β

w
0.

17
86

0.
17

71
–0

.2
62

2
0.

19
08

0.
05

48
–0

.2
77

0
0.

20
82

0.
18

83
0.

18
41

0.
18

88
0.

19
04

St
d.

er
ro

r
0.

00
38

0.
00

35
–0

.0
48

7
0.

01
04

0.
00

14
–0

.1
23

4
0.

02
42

0.
02

65
0.

01
0.

02
56

0.
03

91

184

NUMERIC ACCURACY IN ECOLOGICAL INFERENCE 185

and Ti are perturbed a small amount, distributed uniformly in [−0.025, 0.025].
(These runs were performed under HP-Unix.) Typically, the form of the pertur-
bation in this type of analysis is usually either uniform noise, as in Beaton et al.
(1976), Gill et al. (1981), and Parker et al. (2000), or normal, as in St. Lau-
rent and Cook (1993). (For a detailed discussion of these tests, see Chapter 4.)
However, the proportional data used as the input to an EI analysis complicates
the perturbation. Both types of perturbations can yield proportions outside of the
legal [0, 1] interval.

The easiest way to avoid perturbing values outside their legal range is to
truncate any illegal value to the constraint, and this was the initial approach.
This approach accumulates mass at the boundary points, although in the analysis
only a handful of observations were affected by this truncation scheme. In later
analyses two alternative methods of treating this problem were implemented.
One approach is a resampling scheme, which rejects and resamples any draws
that result outside the legal bounds, The second approach is a set of “shrinking”
truncated noise distributions, made symmetric to avoid biasing the data, and
shrunk to fall within the bounds for all noise draws. A consequence of the
latter approach is that observations closest to the [0,1] constraint are effectively
subject to less noise—those at the boundaries being subject to no noise at all.
Six additional combinations of uniform and normal, truncated, resampled, and
shrinking noise are compared, at levels both above and below that in the initial
run. There is no substantive difference among the results of these six schemes.
Although this is gratifying, in that the results are not sensitive to the exact form
of noise used, it still warrants caution that the form of noise may matter for other
problems.

The degree of perturbation sensitivity is gauged by comparing the results of
these replications with the original published results found in King’s replication
files. The maximum, minimum, and mean values of the log-likelihood and the
coefficients and standard errors of βb and βw across the 100 perturbations of
these data for each example are presented in the second column of Table 7.2. In
Chapter 4 there is a discussion on how introducing noise induces attenuation bias
and may lower the magnitude of estimates coefficients. Despite this issue, for the
replications of CEN1910, LAVOTE, and NJ, perturbations have a small effect
on βb and βw, causing variations of only approximately 1% from the results
published in King (1997). For FULTON the perturbation range is larger but is
within the original confidence intervals for the parameters.

In three cases, MATPROII, KYCK88, and SCSP, results seem overly sen-
sitive to perturbations. MATPROII’s βb varies by much as 50% of its possible
range. The same is true for the coefficient βb in KYCK88. The sensitivity to
perturbations observed suggests that numeric stability, data issues, or both are
present in these examples.

MATPROII and KYCK88 are instructive examples of the difficulty in parsing
numeric stability issues with data issues. For both examples, the Duncan–Davis
bounds for βb are mostly uninformative, as presented in tomography plots in King
(1997, pp. 204, 229). The values of βb for individual precincts can fall practically

186 NUMERICAL BEHAVIOR OF KING’S EI METHOD

anywhere within the [0, 1] bound. In addition, the likelihood function is not
sharply peaked in βb for these two examples. In particular, for KYCK88, King
shows (p. 389) that a ridge exists on the likelihood surface for βb. Perturbing
these data will have a much greater effect than other examples on the shape
of the likelihood function, and thus one cannot say how much of the variation
observed across replication runs is a matter of numeric stability or a feature of
the data.

Numeric issues are more pronounced in the presence of data issues. As dis-
cussed in Chapters 4 and 6, numerical accuracy along a flat likelihood surface
requires accurate calculations to a high level of precision. In situations such as
these, it is recommended that researchers use the most accurate algorithms and
software available. There is evidence that King attempted alternative computa-
tional strategies, as reflected by the fact that the original log-likelihood, reported
in King’s replication files, exceeds that of the perturbation runs. Oddly, as the
platform analysis below shows, it was often not possible to replicate, without per-
turbation, the original log-likelihood using the original version of the software,
or the original platform.

SCSP is given in Chapter 11 of King’s book (1997, pp. 215–25). King’s diag-
nostics again point toward the presence of aggregation bias, citing the negative
coefficient on βb estimated by Goodman’s regression and further analysis of
“truth” (which, of course, would not normally be available to researchers). The
sensitivity of βb and βw to perturbations is less than with the other problematic
examples, but the estimates for the two beta parameters still vary by about 10%
of the possible range.

These results show that for some, but not all, examples there was sensitivity
of results to data perturbations. This is perhaps the most troubling case, since if
EI always worked, there would be little need for alarm, and if it always failed,
researchers would probably be aware of the potential problems and be on guard.
These results show that for cases where EI diagnostics indicate potential diffi-
culties, such as the presence of aggregation bias, researchers should be cautious,
not only because the assumptions of the model may be violated, but also because
the EI program itself may be prone to numerical inaccuracies.

7.3.2 Nonlinear Optimization

Standard mathematical solutions to numerical problems are analytical abstrac-
tions and therefore invariant to the optimization method used. In practice, this
is often not the case. Nonlinear optimization can be performed using a number
of different algorithms. Although the use of BFGS (Broyden, Fletcher, Goldfarb,
Shannon) is recommended as a good initial choice (see Chapter 4) for the types
of problems that social science researchers are most likely to encounter, no opti-
mization algorithm uniformly dominates all others, and most of those offered
by statistics packages are not presumptively invalid. However, some implemen-
tation options, such as forward differences, are clearly less accurate than the
alternatives.

NUMERIC ACCURACY IN ECOLOGICAL INFERENCE 187

Here, we make an extensive investigation into the sensitivity of EI estimates
to optimization method. The intuition behind this sensitivity test is to determine
how dependent estimates are on the estimation process used. If the results of
an analysis are strongly dependent on the choice of method, the author should
provide evidence defending that choice.

To explore EI’s sensitivity to changes in optimization method, we return to
the examples, varying only the options to the constrained maximum likelihood
(CML) Gauss library to vary across 40 combinations of optimization (secant)
method, step (line search) method, and numerical derivative methods. Note that
the claim here is not that all of these optimization methods are necessarily equally
appropriate for EI but that there is no justification given for using a particular
one. If a particular method is most appropriate, it should be documented, along
with the reasons for its choice and diagnostics for confirming its success. Note
also that for the most part, the versions of EI examined herein simply adopted
the default options of the CML package and that many of these defaults (such as
the use of forward differences in earlier versions) are not set solely with accuracy
and robustness in mind.

As with the previous perturbation analyses, the results include the minimum,
maximum, and mean values across the 40 replications. In a small number of
runs for each of the datasets, CML failed to converge properly, almost invariably
because the maximum number of iterations had been exceeded. These results
are excluded in the analysis presented in the third column of Table 7.2. In two
cases, MATPROII and NJ, EI estimates are robust to the optimization algorithm
used to perform the constrained maximum likelihood estimation. In two other
cases, CEN1910 and LAVOTE, the ranges of the estimates of standard errors
do not cover the published results, even through the estimated coefficients and
log-likelihood values are generally near the published results.

In the remaining three cases, the estimates are sensitive to the optimization
method. For KYCK88, the CML algorithm encountered fatal errors and the
search algorithm was halted prematurely. For FULTON, every variation of the
search algorithm does not find the published maximum; the log-likelihood never
reaches the value of the published results and the range of the coefficients does
not cover the published results. For SCSP, EI’s estimate of βb and βw varied by
roughly 25% of the possible [0 : 1] range. Even more dramatically, the estimate
of log-likelihood varied by a factor of over 1000.

Again, there is sensitivity to the optimization method for some but not all of
King’s examples. The recommendation is again for researchers to pay special
attention to optimization methods by trying different configurations, especially
when EI diagnostics point to problems with the model itself.

7.3.3 Pseudo-Random Number Generation

King performs CML estimation on a transformation of the variables and then uses
simulation rather than analytical methods to transform estimated coefficients into
the coefficients of interest to ecological inference (see King 1997, pp. 145–49).

188 NUMERICAL BEHAVIOR OF KING’S EI METHOD

These simulations require a number of pseudo-random numbers to be generated,
on the order of the number of simulations requested times the number of precincts
in the analysis. In addition, Gauss’s CML solver may make use of pseudo-
random numbers to add randomness to the search algorithm.

At the time of the analysis, Gauss’s PRNG failed a number of diagnostic
tests for randomness. Subsequently, a new version of Gauss was released that
addressed all the failures we noted (Altman and McDonald 2001). King’s example
cases require hundreds of thousands of random numbers to produce final esti-
mates, which far exceeds the maximum suggested for Gauss’s updated PRNG.
To test if these theoretical failings had an observable effect, EIwas reconfigured
here to use a better generator, Marsaglia and Zaman (1993) KISS generator, and
then replicated King’s results using this new generator. These results are pre-
sented in the fourth column of Table 7.2. The table reports some good news:
The change of generators had no discernible effect on the estimates (except for
FULTON, which apparently is a consequence of the search algorithm settling on
a local optima), despite Gauss’s poor native PRNG.

7.3.4 Platform and Version Sensitivity

At the time of writing, the most recent versions of EI and EzIwere used. We
also obtained the original version of King’s EI program, which was used to
produce the results in his book, and to replicate, as far as possible, the origi-
nal computing environment, although the exact version of Gauss used by King
is no longer available. We tested the sensitivity of the results to version and
platform by replicating King’s original analysis on these different versions and
platforms. To be precise, for the HP-Unix replications we use versions 1.0 and
1.63 of EI, Gauss v3.2.43, and its constrained maximum likelihood (CML)
algorithm v1.0.41, all on a system running the current version of HP-Unix.
For the Windows replications, the EzI v2.23 package was run on Windows
2000.

The results of the analysis are presented in the fourth, fifth, and sixth columns
of Table 7.2. First, the “null” results: For NJ, the three replications across ver-
sions and platform are consistent with the published results. The log-likelihood
for CEN1910 and two of the MATPROII EI replications are slightly smaller
than the published results, which may explain the small differences in parameter
estimates in these cases. Sizable differences in the log-likelihood for LAVOTE
EI replications do not appear to greatly affect the parameter estimates. Neither do
those replications for SCSP, where EzI and EI v1.63 find solutions with higher
log-likelihoods than published.

Enough version and platform sensitivity is observed to change substantive
results in FULTON. Recall that this example is particularly tricky, as the per-
turbation, optimization option, and PRNG analyses all encountered difficulty in
replication. Here EzI is able to replicate the published results closely, but not
exactly. CML in the GaussEI replications settles at a local optimum and fails
to replicate.

CASE STUDY 2: BURDEN AND KIMBALL (1998) 189

These results lead to more than mild concern. As the FULTON and LAVOTE
examples demonstrate, these discrepancies are not problems with EI or EzI per
se, but rather, are more likely to be a result of differences between Gauss’s
implementation on HP-Unix and Windows operating systems than a direct result
of the small differences in EI code between these two platforms. Ironically,
although the published results are from the EI version of the program, the
EzI replications are more faithful to the published results in these two examples,
whereas the Gauss replications are not. In four examples; FULTON, KYCK88,
LAVOTE, and SCSP, note that the CML search algorithm converged at a higher
local optimum in the EI v1.63 replications than in the v1.0 replications, indicat-
ing, at least in some small part, improvement of the overall EI algorithm over
time. However, these results show evidence of implementation dependence across
the platform and version of King’s ecological inference solution. Users of the
program should use the most current version of EI and all programs in general,
and if concerned about implementation dependence, should run the analysis on
the EI and EzI versions of the program.

7.4 CASE STUDY 2: BURDEN AND KIMBALL (1998)

In the December 2001 issue of the American Political Science Review, the edi-
tor publicly withdrew an offer to publish an accepted manuscript written by
Tam Cho and Gaines (2001) that critiqued the article published by Burden and
Kimball (1998), focusing especially on the numerical accuracy of King’s (1997)
EI program, used in Burden and Kimball’s analysis:1 “Because of inaccuracies
discovered during the prepublication process, ‘Reassessing the Study of Split-
Ticket Voting,’ by Wendy K. Tam Cho and Brian J. Gaines, previously listed as
forthcoming, has been withdrawn from publication.” (p. iv). This unusual deci-
sion by the American Political Science Review editor was prompted by flawed
replication of Burden and Kimball’s analysis by Tam Cho and Gaines, who claim
that rerunning Burden and Kimball’s EzI analysis yields substantively different
results. Unfortunately, they unwittingly changed the case selection rule across
runs and did not provide evidence for numerical inaccuracy. In the replication
of both Burden and Kimball’s analysis and Tam Cho and Gaines’s reanalysis,
it was discovered that there were execution bugs and usability issues related to
option parameters in EzI , which probably contributed further to the errors made
by Tam Cho and Gaines. This is an interesting case study because it shows that
even the most careful and thoughtful of authors can inadvertently make serious
numerical computing errors.

More recently, King’s iterative procedure for applying ecological inference to
R×C tables, and Burden and Kimball’s use of it, have been criticized for logical

1Tam Cho and Gaines’s original unpublished paper, along with responses and replication data,
are available in the replication archive of the Inter-university Consortium for Political and Social
Research, as replication data set 1264, available as ftp://ftp.icpsr.umich.edu/pub/
PRA/outgoing/s1264/.

190 NUMERICAL BEHAVIOR OF KING’S EI METHOD

and statistical inconsistency (Ferree 1999; Herron and Shotts 2002). It is true also
that casual use of ecological inference coefficients in second-stage regression
analyses can lead to serious problems.2

In this chapter we do not provide a theoretical or practical justification for
using larger than 2 × 2 tables, which King states should only be used in special
circumstances not established by Burden and Kimball (Adolph and King 2003),
but focus only on the computational issues involved in producing such inferences.
The investigation confirms that Burden and Kimball ignore computational issues,
especially with respect to simulation-induced variation of estimates, and as a
consequence underestimate the uncertainty of the estimates in their analysis.

Burden and Kimball (1998), using King’s method to study split-ticket vot-
ing, is one of the first applications of King’s method to appear independently in
print. Burden and Kimball’s (1998) aggregate data represent the percentage of
people who voted for the two major party presidential and congressional candi-
dates in 1988 congressional districts. From this, the authors wish to estimate the
percentage that split their tickets among candidates from different parties, which
they refer to as Bush and Dukakis splitters. Since typically fewer people vote in
congressional than in presidential races (i.e., roll-off), Burden and Kimball must
estimate a two-stage EImodel, which essentially produces ecological inference
estimates for a 2 × 3 table.

In the first stage, Burden and Kimball estimate the percentage of roll-off among
the two types of ticket splitters. This estimate of the number of people who did
not vote in the congressional election is removed from the analysis through an
iterative application of EI . In the second stage, Burden and Kimball use the first-
stage estimates to estimate rates of ticket splitting. Burden and Kimball (1998)
seek to estimate a 2 × 3 table of aggregate data, whereas King’s examples are
2×2 tables. King’s solution is designed for a 2×2 table, but he recommends and
provides in his EI program a multistage approach to solving the more general
2 × C case (row × column), which involves iteratively applying the estimation
to data analyzed through a previous 2 × 2 estimation (see King 1997, Sec. 8.4
and Chap. 15).

The algorithm differs for one- and two-stage models in a way that has impor-
tant consequences for the current analysis. In the discussion of PRNGs above,
note that King’s method uses simulation to solve otherwise intractable analytic
computations when transforming the maximum likelihood estimates into quanti-
ties of interest. Unless the PRNG seed is held constant, no two runs of the program
will produce the same precinct-level beta parameters at the first stage, even though
the maximum likelihood optimizer should settle on the same optimum. This is
called simulation variance (i.e., from Monte Carlo error) and should not be con-
fused with numerical inaccuracies of the program. Furthermore, because PRNGs
are deterministic processes, they are not equivalent to true random draws from a

2Herron and Shotts also have a forthcoming paper (2003a) whose main point is a proof that using
point estimates from the EI model as outcome variables in a second-stage regression model is wrong,
usually having logically incompatible residual assumptions. The authors also provide a simple test
based on bivariate linear regression.

CASE STUDY 2: BURDEN AND KIMBALL (1998) 191

distribution. As a consequence, increasing the number of simulations only reduces
simulation variance up to a point and does not guarantee that the results will not
be slightly biased. (See Chapter 2 for a discussion of these issues.)

These random perturbations of the first stage are carried through to the second
stage, where the beta parameters of the first stage are used to estimate the beta
parameters of the second stage. This is, in effect, similar to the previous pertur-
bation analysis. In the second stage, the maximum likelihood optimum should
vary as a consequence of the perturbations introduced through simulation at the
first stage. The beta parameters of the second stage will be affected by both
the simulation variance at the first stage which affects the maximum likelihood
optimization, and the simulation variance at the second stage. This method of
estimation suggests that a simple heuristic test of numeric accuracy of the two-
stage method is to run the program multiple times and note large variations in
the second-stage results.

A total of 195 replications of Burden and Kimball’s analysis on HP-Unix
(EI) and Windows (EzI) platforms are summarized in Table 7.3. The original
results were run on the Windows version of King’s program, EzI , Version 1.21.
Although replication data are available for Burden and Kimball’s research at
the ICPSR publication archive as Study 1140, special EI replication files are not
available, so one is unable to view some of the details of the original runs, as
done here with King’s examples. The published results presented in Table 7.3
are drawn directly from the Burden and Kimball (1999) article.

As with the previous case study of examples from King (1997), we employ
heuristic tests to examine the stability of results to perturbing data, changing
default options, and running the analysis on different operating platforms. In
this case-study we pay further special attention to two options that may explain
why the original version of EI produces results different from the current ver-
sion. One option controls the type of cumulative bivariate normal distribution
algorithm used by EI , and the other controls the method EI uses to invert the
Hessian. This additional analysis illustrates the benefit of changing options when
available to identify sources of numerical inaccuracy.

7.4.1 Data Perturbation

The analysis is presented in Table 7.3. At a first blush, EI produces approxi-
mately deterministic first-stage estimates; all first-stage replications, where the
analysis only varies the version and some important default settings, the CML
search algorithm consistently finds the same optimum for each configuration.
Point estimates of the beta parameters fluctuate around the point estimate of the
standard error, as is expected with simulation variance.

The test for the numeric stability of the original and current versions of EI is
accomplished by adding 1% simulated measurement error to Ti , which in this
case is the House election turnout divided by the presidential turnout. The results
are presented in Table 7.3 in the section “Perturbation Analysis”. Apparently, the
CML algorithm finds different optima and greater variation in the point estimates,

Ta
bl

e
7.

3
B

ur
de

n
an

d
K

im
ba

ll
R

ep
lic

at
io

n

Fi
rs

t-
St

ag
e

E
st

im
at

es
Se

co
nd

-S
ta

ge
E

st
im

at
es

L
og

-
D

uk
ak

is
B

us
h

L
og

-
β

b
β

b
L

ik
el

ih
oo

d
Sp

lit
te

rs
Sp

lit
te

rs
L

ik
el

ih
oo

d

B
ur

de
n

an
d

K
im

ba
ll

pu
bl

is
he

d
re

su
lts

W
in

do
w

s
E
z
I

W
in

do
w

s
E
z
I

v1
.2

1
N

ot
re

po
rt

ed
0.

19
8

0.
33

1
N

ot
re

po
rt

ed
(0

.0
07

)
(0

.0
06

)
H

P-
U

ni
x (2

5
re

pl
ic

at
io

ns
)

E
I

v1
.0

(v
1.

0)
cd

fb
vn

se
tti

ng
[0

.9
71

1–
0.

97
13

]
[0

.8
66

4–
0.

86
66

]
−6

71
.9

[0
.2

18
5–

0.
22

14
]

[0
.3

09
4–

0.
31

21
]

[0
49

4.
4–

49
6.

8]
(v

1.
0)

H
es

si
an

se
tti

ng
[0

.0
00

8–
0.

00
10

]
[0

.0
00

6–
0.

00
08

]
[0

.0
06

0–
0.

00
82

]
[0

.0
05

7–
0.

00
78

]
E
I

v1
.6

3
(v

1.
63

)
cd

fb
vn

se
tti

ng
[0

.9
30

4–
0.

93
14

]
[0

.9
00

6–
0.

90
13

]
10

57
[0

.2
12

5–
0.

21
81

]
[0

.3
22

0–
0.

32
69

]
[0

49
4.

4–
49

6.
8]

(v
1.

63
)

H
es

si
an

se
tti

ng
[0

.0
02

4–
0.

00
32

]
[0

.0
02

1–
0.

00
27

]
[0

.0
06

8–
0.

00
88

]
[0

.0
05

9–
0.

00
78

]
(v

1.
0)

cd
fb

vn
se

tti
ng

[0
.9

27
1–

0.
94

52
]

[0
.8

88
6–

0.
90

41
]

10
34

[0
.2

07
4–

0.
21

34
]

[0
.3

14
5–

0.
32

22
]

[0
49

5.
8–

50
7.

9]
(v

1.
63

)
H

es
si

an
se

tti
ng

[0
.0

34
4–

0.
04

88
]

[0
.0

29
4–

0.
04

16
]

[0
.0

06
5–

0.
00

92
]

[0
.0

06
3–

0.
00

85
]

(v
1.

63
)

cd
fb

vn
se

tti
ng

[0
.8

98
4–

0.
91

58
]

[0
.9

13
8–

0.
92

86
]

10
57

[0
.2

09
1–

0.
21

78
]

[0
.3

29
0–

0.
33

74
]

[0
49

0.
4–

49
8.

9]
(v

1.
0)

H
es

si
an

se
tti

ng
[0

.0
18

6–
0.

02
74

]
[0

.0
15

9–
0.

02
34

]
[0

.0
07

2–
0.

00
99

]
[0

.0
05

9–
0.

00
89

]
(v

1.
0)

cd
fb

vn
se

tti
ng

[0
.9

40
4–

0.
94

11
]

[0
.8

92
2–

0.
89

28
]

10
34

[0
.2

12
9–

0.
21

70
]

[0
.3

17
8–

0.
32

30
]

[0
49

4.
3–

49
9.

9]
(v

1.
0)

H
es

si
an

se
tti

ng
[0

.0
02

0–
0.

00
26

]
[0

.0
01

7–
0.

00
23

]
[0

.0
06

1–
0.

00
88

]
[0

.0
05

6–
0.

00
80

]

192

Pe
rt

ur
ba

tio
n

an
al

ys
is

(2
5

re
pl

ic
at

io
ns

)
E
I

v1
.0

[0
.8

27
1–

0.
99

43
]

[0
.8

46
9–

0.
98

92
]

[−
64

5.
3–

10
45

]
[0

.1
79

1–
0.

22
11

]
[0

.2
97

1–
0.

34
67

]
[4

90
.7

–5
05

.1
]

[0
.0

01
2–

0.
04

51
]

[0
.0

01
1–

0.
03

85
]

[0
.0

06
4–

0.
00

94
]

[0
.0

05
7–

0.
00

84
]

E
I

v1
.6

3
[0

.9
01

6–
0.

95
55

]
[0

.8
79

7–
0.

92
55

]
[9

39
.4

–9
96

.5
]

[0
.2

07
5–

0.
21

70
]

[0
.3

11
8–

0.
32

98
]

[4
92

.8
–5

03
.6

]
[0

.0
02

2–
0.

06
35

]
[0

.0
01

9–
0.

05
42

]
[0

.0
07

2–
0.

02
03

]
[0

.0
06

7–
0.

01
76

]
W

in
do

w
s
E
z
I

(5
re

pl
ic

at
io

ns
)

E
I

v2
.3

(v
2.

3)
cd

fb
vn

se
tti

ng
[0

.9
02

6–
0.

91
22

]
[0

.9
16

9–
0.

92
50

]
10

60
[0

.2
01

5–
0.

20
94

]
[0

.3
24

0–
0.

32
94

]
[4

94
.6

–5
02

.0
]

(v
2.

3)
H

es
si

an
se

tti
ng

[0
.0

36
6–

0.
03

91
]

[0
.0

31
2–

0.
03

34
]

[0
.0

08
0–

0.
00

92
]

[0
.0

07
1–

0.
00

80
]

(v
1.

0)
cd

fb
vn

se
tti

ng
[0

.9
06

0–
0.

91
69

]
[0

.9
16

9–
0.

92
50

]
10

57
[0

.2
04

8–
0.

23
88

]
[0

.3
24

6–
0.

35
34

]
[4

96
.5

–5
01

.5
]

(v
2.

3)
H

es
si

an
se

tti
ng

[0
.0

33
8–

0.
04

01
]

[0
.0

28
9–

0.
03

43
]

[0
.0

07
4–

0.
07

87
]

[0
.0

05
8–

0.
06

66
]

(v
2.

3)
cd

fb
vn

se
tti

ng
[0

.8
83

7–
0.

88
42

]
[0

.9
40

7–
94

12
]

10
60

[0
.1

91
7–

0.
20

00
]

[0
.3

29
8–

0.
33

19
]

[5
00

.7
–5

01
.7

]
(v

1.
0)

H
es

si
an

se
tti

ng
[0

.0
02

0–
0.

00
26

]
[0

.0
01

7–
0.

00
23

]
[0

.0
06

9–
0.

00
86

]
[0

.0
05

5–
0.

00
69

]
(v

1.
0)

cd
fb

vn
se

tti
ng

[0
.8

83
8–

0.
88

41
]

[0
.9

40
8–

0.
94

11
]

10
57

[0
.1

97
5–

0.
19

91
]

[0
.3

29
8–

0.
33

15
]

[5
01

.2
–5

01
.7

]
(v

1.
0)

H
es

si
an

se
tti

ng
[0

.0
01

5–
0.

00
17

]
[0

.0
01

3–
0.

00
14

]
[0

.0
07

4–
0.

00
87

]
[0

.0
05

9–
0.

00
70

]

193

194 NUMERICAL BEHAVIOR OF KING’S EI METHOD

as expected when the likelihood function is perturbed. The analysis also indi-
cates that changes to EI have reduced the sensitivity of the first-stage estimates
to perturbations of data. The original version of EI v1.0 shows considerable sen-
sitivity to perturbations, with large swings in the value of the log-likelihood and
point estimates of the coefficients, while EI v1.63 shows roughly a threefold
decrease in the sensitivity of EI’s point estimates to perturbation. Further, for
no replication did the constrained maximum likelihood procedure fail to con-
verge or find an optimum far from that found in the unperturbed replications of
EI v1.63.

The value of the second-stage log-likelihood varies across the perturbed
datasets, but the optima are close to one another, again indicating stability. The
second-stage point estimates show stability within the range of their simulation
variance, even where the first-stage estimates show greater sensitivity to pertur-
bations. Yet again, perturbation analysis of the second-stage estimates suggests
that improvements in King’s program have led to a threefold decrease in the
sensitivity of the second-stage estimates to perturbations.

7.4.2 Option Dependence

In this section we analyze option dependence by investigating two changes in
EI that are potential sources of it: changes to the cumulative bivariate nor-
mal distribution algorithm (cdfbvn) and method of inverting the Hessian. The
procedure is to force the program to use the methods from EIVersion 1.0 by
changing global variables and assess how these changes affect estimation. Here
25 replications are run for each setting, to account for variation due to simulation
variance.

The cumulative bivariate normal distribution algorithm is an important fac-
tor in determining the shape of the likelihood function for the EImethod. The
“shape” of the likelihood function determines not only the location of the mode of
posterior, but also the Hessian matrix, which is the curvature around this mode
as measured by the second derivative of the likelihood function at the modal
value. The importance of the Hessian matrix is that it produces, by inversion, the
variance–covariance matrix of the coefficient estimate. King recognizes that this
process is not always straightforward and provides options for users to choose
six different methods of calculating the cumulative bivariate normal distribution
with the Ecdfbvn option, which is referred to as cdfbvn (i.e., cumulative
density function, bivariate normal). The original default cdfbvn is a fast algo-
rithm, but subject to inaccuracies for small values, while the current default
represents a trade-off between accuracy and speed. King once recommended
the use of the current default (King 1998, p. 8), although he now provides a
more accurate version as a consequence of the investigation into the accuracy of
the function.

A second source of option dependence is the method used to represent the
inverse of a nonpositive definite Hessian. (The version of this routine that became
available after this chapter was drafted is both more accurate and faster; see

CASE STUDY 2: BURDEN AND KIMBALL (1998) 195

Chapter 6.) In all of these replications the first-stage estimation results in a
Hessian that is not positive definite. In these circumstances the program uses
specialized methods to find a “close” Hessian that is invertible. The program
attempts a number of methods in sequence and exits on execution of the first
successful method. As new versions of the program have been developed, new
techniques have been devised to handle situations when the Hessian is not posi-
tive definite. The sequence of methods applied when the default method fails has
also changed. In early versions of the program, such as the one used by Burden
and Kimball, the first specialized method that the program will attempt is doc-
umented as a “wide-step procedure” or “quadratic approximation with falloff”
(King 1998, p. 10). In later versions of EI, the program attempts a generalized
inverse Cholesky alternative proposed by Gill and King (see Chapter 6).

A summary of the results are presented in Table 7.3. There is ample evidence
that Tam Cho and Gaines were correct in their suspicions: Replication of Bur-
den and Kimball is indeed dependent on the version and option settings of EI.
The range of first- and second-stage beta parameters do not overlap between
EI v1.0 and v1.63 using their default settings. It is possible to tease out what has
changed between the two versions by changing the option settings for cdfbvn
and the method of inverting the Hessian. Changing the defaults alters the first-
and second-stage estimates outside the range of simulation variance. For example,
using EI (v1.63) default settings, the range of βb across the 25 replications is
[0.9304–0.9314], whereas when using EI v1.63 set at the original (v1.0) method
of inverting the Hessian, βb is [0.8984–0.9158]. The range of the second-stage
estimates does not overlap for either Dukakis or Bush splitters.
EI v1.63 estimates come closest to agreeing with EI v1.0 estimates when

cdfbvn option is set to the v1.0 setting. The value of the log-likelihood is also
different depending on whether cdfbvn option is set to v1.0 or v1.63, suggesting
that the shape of the likelihood function is dependent on the cumulative bivariate
normal distribution algorithm.

It is also observed that the cdfbvn option setting interacts strangely with
the Hessian option setting. When both are set to either v1.0 or v1.63, the range
of the simulation variance narrows to fluctuations at the third significant digit.
When the options are mismatched across versions, fluctuations are greater and
occur at the second significant digit.

7.4.3 Platform Dependence

Burden and Kimball performed their original research using EzI v1.21. Unfortu-
nately, EzI v1.21 is no longer available, even from the author, so here EzI v2.3
is used in platform dependence analysis. EzI uses a Windows interface that can-
not be automated, so the analysis performs only 5 EzI replications, compared to
the 25 EI replications in Section 7.4.2.

When EzI is run on Windows, the results are within simulation variance
of Burden’s and Kimball’s original results. However, when we run a purport-
edly identical analysis using a corresponding version of EI on Linux, using the

196 NUMERICAL BEHAVIOR OF KING’S EI METHOD

same algorithmic options, the results are significantly different. These results are
presented in the bottom four rows of Table 7.3. Again note option dependence in
EzI , just as done with the analysis of EI in Section 7.4.2. Estimates for Bush
splitters overlap only slightly using EzI v2.3 with the EI v1.0 and EI v1.63
settings. Only using the EI v1.0 setting is it possible to replicate the published
Burden and Kimball results within simulation variance.

7.4.4 Discussion: Summarizing Uncertainty

Burden and Kimball take the EzI estimates from one run of the program and
use these point estimates as an outcome variable in regression analysis. This
procedure is known as EI-R, and Burden and Kimball’s use is the subject of
debate (Ferree 1999; Adolph and King 2003; Herron and Shotts 2003b) cen-
tering on the uncertainty of EI point estimates and the resulting inconsistency
of using these estimates as a dependent variable in a subsequent regression.
(See also Chapter 4 and for a discussion of this issue in the context of data
perturbations.) Here, focus is on another source of error in the estimates, that
of implementation dependence, and the consequence on Burden and Kimball’s
inference.

Table 7.4 replicates Table 6 of Burden and Kimball (1999). The uncertainty of
simulation variance, along with the uncertainty of platform dependence, is seen
by replicating two runs of EzI v2.3 on Windows and two runs of EI v1.63 on
both HP-Unix and Linux operating systems. The table shows that even though the
standard errors for the two EzI runs are in general agreement with the published
results, the coefficients vary simply across the two Windows runs. This variation
is due to the aforementioned simulation variance that occurs within both stages of
the EI analysis performed by Burden and Kimball. On this issue alone, Burden
and Kimball (and all researchers who use point estimates from one model as a
dependent variable in another) underestimate the uncertainty of their coefficients
(Adolph and King 2003; Herron and Shotts 2003b).

Table 7.4 Summarizing Uncertainty in Burden and Kimball

Democratic Spending Ballot
Incumbent Ratio Format South

Windows
Run 1 0.111 (0.015) 0.331 (0.020) −0.027 (0.008) 0.056 (0.009)
Run 2 0.106 (0.015) 0.337 (0.121) −0.031 (0.008) 0.062 (0.009)

HP-Unix
Run 1 0.106 (0.014) 0.324 (0.020) −0.025 (0.008) 0.056 (0.008)
Run 2 0.106 (0.014) 0.322 (0.020) −0.024 (0.007) 0.053 (0.009)

Linux
Run 1 0.089 (0.026) 0.374 (0.039) −0.021 (0.013) 0.055 (0.015)
Run 2 0.089 (0.026) 0.377 (0.038) −0.021 (0.012) 0.051 (0.015)

Published values 0.107 (0.015) 0.350 (0.021) −0.032 (0.008) 0.065 (0.008)

CONCLUSIONS 197

When looking at variation across platforms, there is even greater variation
in coefficients and standard errors. For example, the coefficient for Democratic
incumbent ranges from 0.089 in the Linux runs, to 0.106 in the HP-Unix runs, to
a maximum of 0.111 in the Windows runs. The estimates for standard errors also
vary: from 0.026 in the Linux runs to 0.015 in the Windows runs. In practice,
these standard errors are normally related to the degree of simulation variance.
Here they are not, which suggests to us that these differences across statistical
packages are due to something more than simulation variance. On this issue of
implementation dependence, Burden and Kimball again underestimate the uncer-
tainty of their EI-R regression estimates.

How might one summarize the uncertainty of the estimates across computing
platforms? It is possible to approach the problem by concluding that one set
of estimates are the true estimates and that the others are wrong, caused by
numerical inaccuracies. The problem is that lacking the truth, it is not possible to
assess which set of estimates are the “true” values, so this approach is unfruitful.

A second approach is that one could assume that the estimates derived from
the different platforms come from “draws” from some underlying distribution
of implementation dependence, perhaps a normal distribution, and then use this
distribution to characterize the uncertainty of the estimates. This approach is
more attractive, and if one knew the distribution, perhaps one could construct an
adjustment to the coefficients and standard errors to account for the uncertainty.
[See Adolph and King (2003) and Herron and Shotts (2003a) for a method in
the context of EI -R.] Unfortunately, this distribution is unavailable as well, so
this approach is also unfruitful.

The best that one can do is to provide ranges, as done here, to the coeffi-
cients and standard errors, and hold that any of these are equally valid measures.
This approach is similar to one involving Leamer bounds (Leamer 1978, 1983),
described in Chapter 4, and is equally valid when observing varied estimates
across different statistical software packages. It is doubtful that most researchers
will go the extra step of capturing platform and software implementation depen-
dence in their analysis in the manner done here. Still, because such dependence
was observed, EI analysis may be susceptible to additional uncertainty due to
platform dependence, and more generally, complex models may be susceptible
to similar implementation dependence. When observed, it is recommended that
researchers include results from different implementations in their analyses and
report ranges so that this uncertainty can be better measured.

7.5 CONCLUSIONS

The ecological inference problem stands out in social science methodological
research because it has shown to be substantively important and there is still
no definitive solution. Given the complexity and popularity to King’s solution,
detailed evaluation of its numerical properties is easily justified. Numerical sen-
sitivity analysis gives us the opportunity to take specific case studies and test

198 NUMERICAL BEHAVIOR OF KING’S EI METHOD

their sensitivity to numeric and non-numeric noise, and to implementation and
algorithmic specific options.

The extensive analysis of the EI solutions in this chapter serves as an example
of the battery of diagnostic tests that researchers may put their own programs
through. We draw from our experience some practical recommendations. Using
the recommended, most numerically accurate options may help reduce computa-
tional problems, but does not guarantee success. King’s admonishments to users
of his EI program should be well-heeded: Researchers should carefully scruti-
nize all available diagnostic tools available to them, and apply common sense.
However, although researchers can avoid some of these problems by carefully
scrutinizing standard statistical diagnostics, additional diagnostic sensitivity tests,
and an understanding of how statistical computations work may still be needed
to avoid problems in complex estimations.

The results suggest that both data and numerical issues play a role in enabling
reliable estimates. Estimated results will be less stable when a problem is ill-
conditioned, and where there are numerical inaccuracies in implementation. In
these cases, researchers should pay special attention to numerical issues, as correct
inference may be dependent on the choice of platform, implementation, and
options used.

C H A P T E R 8

Some Details of Nonlinear
Estimation
B. D. McCullough

8.1 INTRODUCTION

The traditional view adopted by statistics and econometrics texts is that in order
to solve a nonlinear least squares (NLS) or nonlinear maximum likelihood (NML)
problem, a researcher need only use a computer program. This point of view main-
tains two implicit assumptions: (1) one program is as good as another, and (2) the
output from a computer is always reliable. Both of these assumptions are false.

Recently, the National Institute of Standards and Technology (NIST) released
the “Statistical Reference Datasets” (StRD), a collection of numerical accuracy
benchmarks for statistical software. It has four suites of tests: univariate sum-
mary statistics, one-way analysis of variance, linear regression, and nonlinear
least squares. Within each suite the problems are graded according to level of
difficulty: low, average, and high. NIST provides certified answers to 15 digits
for linear problems and 11 digits for nonlinear problems. Complete details can be
found at <http://www.nist.gov/itl/div898/strd>. [For a detailed
discussion of these tests, see Chapter 2.]

Nonlinear problems require starting values, and all the StRD nonlinear prob-
lems come with two sets of starting values. Start I is far from the solution and
makes the problem difficult to solve. Start II is near the solution and makes the
problem easy to solve. Since the purpose of benchmark testing is to say some-
thing useful about the underlying algorithm, start I is more important, since the
solver is more likely to report false convergence from start I than from start II.
To see this, consider two possible results: (A) that the solver can solve an easy
problem correctly, and (B) that the solver can stop at a point that is not a solution
and nonetheless declare that it has found a solution. Clearly, (B) constitutes more
useful information than (A).

The StRD nonlinear suite has been applied to numerous statistical and
econometric software packages, including SAS, SPSS, S-Plus, Gauss, TSP,
LIMDEP, SHAZAM, EViews, and several others. Some packages perform very
well on these tests; others exhibit a marked tendency to report false convergence

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

199

200 SOME DETAILS OF NONLINEAR ESTIMATION

(i.e., the nonlinear solver stops at a point that is not a minimum and nevertheless
reports that it has found a minimum). Thus, the first point of the traditional view
is shown to be false: some packages are very good at solving nonlinear prob-
lems, and other packages are very bad. Even the packages that perform well on
the nonlinear suite of tests can return false convergence if not used carefully, so
the second point of the traditional view is shown to be false. Users of nonlinear
solvers need some way to protect themselves against false results. In this chapter
we offer useful guidance on the matter.

In Section 8.2 we present the basic ideas behind a nonlinear solver. In
Section 8.3 we consider some details on the mechanics of nonlinear solvers.
In Section 8.4 we analyze a simple example where a nonlinear solver produces
several incorrect answers to the same problem. In Section 8.5 we offer a list of
ways that a user can guard against incorrect answers and Monte Carlo evidence
on profile likelihood. Wald and likelihood inference are compared in Section 8.6.
In Section 8.7 we offer conclusions, including what to look for in a nonlinear
solver.

8.2 OVERVIEW OF ALGORITHMS

On the kth iteration, gradient-based methods for finding the set of coefficients β̂

that minimize a nonlinear least squares function1 take the form

β̂k+1 = β̂k + λkdk, (8.1)

where β = [β1, β2, . . . , βm]′ is the vector of parameters to be estimated. The
objective function is the sum of squared residuals, denoted S(β̂). From some
selected vector of starting values, β0, the iterative process proceeds by taking a
step of length λ in some direction d . Different choices for λ and d give rise to
different algorithms. The gradient methods are based on d = Wg, where g is the
gradient of the objective function and W is some matrix. (See Chapter 4 for a
discussion of other algorithms, including nongradient methods.)

One approach to choosing λ and d is to take a linear approximation to the
objective function

F(β̂k + λ) ≡ Fk + g′
kλ. (8.2)

This leads to the choice W = I , where I is the identity matrix and yields
d = −gk , thus producing the algorithm known as steepest descent. While it
requires numerical evaluation of only the function and the gradient, it makes no
use of the curvature of the function (i.e., it makes no use of the Hessian). Thus
the steepest descent method has the disadvantage that it is very slow: The steepest
descent method can require hundreds of iterations to do what other algorithms
can do in just several iterations.

Another approach to choosing λ and d is to take a quadratic approximation
to the objective function. Then a first-order Taylor expansion about the current

1In the remainder of this section we address nonlinear least squares directly, but much of the
discussion applies, mutatis mutandis, to nonlinear maximum likelihood.

OVERVIEW OF ALGORITHMS 201

iterate yields

F(βk + dk) ≈ F(βk) + g′
kdk + 1

2d ′
kHkdk, (8.3)

where gk and Hk are the gradient and Hessian, respectively, at the kth iteration.
An associated quadratic function in dk can be defined as

h(λ) = g′
kdk + 1

2d ′
kHkdk. (8.4)

A stationary point of the quadratic function, dk , will satisfy

Hkdk = −gk. (8.5)

When the direction dk is a solution of the system of equations (8.5), dk is
the Newton direction. If, further, the step length is unity, the method is called
Newton’s method. If the step length is other than unity, the method is a modified
Newton method. The Newton method is very powerful because it makes full use
of the curvature information. However, it has three primary defects, two of which
are remediable.

The first remediable problem is that the Newton step, λ = 1, is not always
a good choice. One reason for choosing λ to be other than unity is because if
λ ≡ 1, β̂k+1 is not guaranteed to be closer to a solution than β̂k . One way around
this is to project a ray from β̂k and then search along this ray for an acceptable
value of λ; this is called a line search. In particular, solving

min
λ>0

f (β̂k + λdk) (8.6)

produces an exact line search. Because this can be computationally expensive,
frequently an algorithm will find a value λ that roughly approximates the min-
imum; this is called an inexact line search. Proofs for some theorems on the
convergences of various methods require that the line search be exact.

The second problem is that computing first derivatives for a method that
only uses gradient information is much less onerous than also computing second
derivatives for a method that explicitly uses Hessian information, too. Analytic
derivatives are well known to be more reliable than their numerical counterparts.
However, it is frequently the case that the user must calculate and then code these
derivatives, a not insubstantial undertaking. When the user must calculate and
code derivatives, the user often relies, instead, solely on numerical derivatives
(Dennis 1984, p. 1766). Some packages offer automatic differentiation, in which
a specialized subroutine calculates analytic derivatives, automatically, thus easing
appreciably the burden on the user. See Nocedal and Wright (1999, Chap. 7) for a
discussion of automatic derivatives. Automatic differentiation is not perfect, and
on rare occasions the automatic derivatives are not numerically efficient. In such
a case, it may be necessary to rewrite or otherwise simplify the expressions for
the derivatives. Of course, it is also true that user-supplied analytic derivatives
may need rewriting or simplification.

202 SOME DETAILS OF NONLINEAR ESTIMATION

The third and irremediable problem with the Newton method is that for points
far from the solution, the matrix Hk in (8.5) may not be positive definite. In such
a case the direction does not lead toward the minimum. Therefore, other methods
have been developed so that the direction matrix is always positive definite. One
such class of methods is the class of quasi-Newton methods.

The quasi-Newton methods have a direction that is the solution of the follow-
ing system of equations:

Bkdk = −gk, (8.7)

where Bk+1 = Bk+Uk , where Uk is an updating matrix. B0 often is taken to be the
identity matrix, in which case the first step of the quasi-Newton method is a steep-
est descent step. Different methods of computing the update matrix lead to dif-
ferent algorithms [e.g., Davidson–Fletcher–Powell (DFP) or Broyden–Fletcher–
Goldfarb–Shannon (BFGS)]. Various modifications can be made to ensure that
Bk is always positive definite. On each successive iteration, Bk acquires more
information about the curvature of the function; thus, an approximate Hessian is
computed, and users are spared the burden of programming an analytic Hessian.
Both practical and theoretical considerations show that this approximate Hessian
is generally quite good for the purpose of obtaining point estimates (Kelley 1999,
Sec. 4); whether this approximate Hessian can be used for computing standard
errors of the point estimates is another matter entirely.

Let β∗ represent the vector that minimizes the sum-of-squared residuals, and
let H ∗ be the Hessian at that point. There do exist theorems which prove that
Bk → H ∗ when the number of iterations is greater than the number of parameters
(see, e.g., Bazaara et al. 1993, p. 322, Th. 8.8.6). Perhaps on the basis of such
theorems it is sometimes suggested that the approximate Hessian provides reliable
standard errors (e.g., Bunday and Kiri 1987; Press et al. 2002, p. 398). However,
the assumptions of such theorems are restrictive and quite difficult to verify
in practice. Therefore, in practical situations it is not necessarily true that Bk

resembles Hk (Gill et al. 1981, p. 120). In fact, the approximate Hessian should
not be used as the basis for computing standard errors. To demonstrate this
important point, we consider a pair of examples from Wooldridge (2000). For both
examples the package used is TSP v4.5, which employs automatic differentiation
and offers both the quasi-Newton method BFGS and a modified Newton–Raphson
method.

The first example (Wooldridge 2000, p. 538, Table 17.1) estimates a probit
model with “inlf” as the outcome variable [both examples use the dataset from
Mroz (1987)]. The PROBIT command with options HITER = F and HCOV =
FNB uses the BFGS method to compute point estimates and prints out standard
errors using both the approximation to the Hessian and the Hessian itself, as well
as the OPG (outer product of the gradient) estimator from the BHHH (Berndt
et al. 1974) method for purposes of comparison. [Exactly the same point estimates
are obtained when Newton’s method is used.] The algorithm converged in 13
iterations. The results are presented in Table 8.1.

OVERVIEW OF ALGORITHMS 203

Table 8.1 Probit Results for Mroz Data (Outcome Variable “inlf”)

Standard Errors Based ona :

Variable Coef. Approx. Hessian Hessian OPG

C 0.270 0.511 (0.53) 0.509 (0.53) 0.513 (0.53)
NWIFEINC −0.012 0.005 (−2.51) 0.005 (−2.48) 0.004 (−2.71)
EDUC 0.131 0.025 (5.20) 0.025 (5.18) 0.025 (5.26)
EXPER 0.123 0.019 (6.61) 0.019 (6.59) 0.019 (6.60)
EXPERSQ −0.002 0.001 (−3.15) 0.001 (−3.15) 0.001 (−3.13)
AGE −0.053 0.008 (−6.26) 0.008 (−6.24) 0.009 (−6.12)
KIDSLT6 −0.868 0.118 (−7.35) 0.119 (−7.33) 0.121 (−7.15)
KIDSGE6 0.036 0.045 (0.81) 0.043 (0.83) 0.042 (0.86)
a t-Statistics in parentheses.

Table 8.2 Tobit Results for Mroz Data (Dependent Variable “hours”)

Standard Errors Based ona :

Variable Coef. Approx. Hessian Hessian OPG

C 965.3 0.415 (2327.1) 446.4 (2.16) 449.3 (2.14)
NWIFEINC −8.814 0.004 (−2101.2) 4.459 (−1.98) 4.416 (−1.99)
EDUC 80.65 0.020 (4073.7) 21.58 (3.74) 21.68 (3.72)
EXPER 131.6 0.016 (8261.5) 17.28 (7.61) 16.28 (8.10)
EXPERSQ −1.864 0.001 (−3790.1) 0.538 (−3.47) 0.506 (−3.68)
AGE −54.41 0.007 (−7978.7) 7.420 (−7.33) 7.810 (−6.97)
KIDSLT6 −894.0 0.105 (−8501.6) 111.9 (−7.99) 112.3 (−7.96)
KIDSGE6 −16.22 0.036 (−454.7) 38.64 (−0.42) 38.74 (−0.42)
at-Statistics in parentheses.

As can be seen by examining the t-statistics, all three methods of computing
the standard error return similar results. The same cannot be said for the second
example, in which Tobit estimation is effected for the same explanatory variables
and “hours” is the outcome variable (Wooldridge 2000 p. 544, Table 17.2). This
time, the BFGS method converges in 15 iterations. Results are presented in
Table 8.2.

Observe that the approximate Hessian standard errors are in substantial dis-
agreement with the standard errors produced by the Hessian, the latter being
about 1000 times larger than the former. In contrast to the approximate Hes-
sian standard errors, the OPG standard errors, are in substantial agreement with
the Hessian standard errors. It can be deduced that for the probit problem, the
likelihood surface is very well behaved, as all three methods of computing the
standard error are in substantial agreement. By contrast, the likelihood surface
for the tobit problem is not so well behaved.

Thus far, all the algorithms considered have been for unconstrained optimiza-
tion. These algorithms can be applied to nonlinear least squares, but it is often

204 SOME DETAILS OF NONLINEAR ESTIMATION

better to apply specialized nonlinear least squares algorithms. The reason for this
is that in the case of nonlinear least squares, the gradient and the Hessian have
specific forms that can be used to create more effective algorithms. In particular,
for NLS the gradient and Hessian are given by

g(β̂) = J (β̂)′f (β̂) (8.8)

H(β̂) = J (β̂)′J (β̂) + Q(β̂), Q(β̂) =
n∑

i=1

fi(β̂)Gi(β̂), (8.9)

where J (β̂) is the Jacobian matrix, f (β̂) is the vector of residuals, and Gi is the
ith contribution-to-the-Hessian matrix.

These specialized methods are based on the assumption that Q(β̂) can
be neglected (i.e., that the problem is a small-residual problem). By small-
residual problem is meant that ||f (β∗)|| is smaller than the largest eigenvalue
of J ′(β∗)J (β∗). If, instead, they are of the same size, there is no advantage to
using a specialized method.

One specialized method is the Gauss–Newton method, which uses J ′J as
an approximation to the Hessian; this is based on the assumption that Q(β̂) is
negligible. In combination with a line search, it is called damped Gauss–Newton.
For small residual problems, this method can produce very rapid convergence;
in the most favorable case, it can exhibit quadratic convergence, even though it
uses only first derivatives. Its nonlinear maximum likelihood analog is called the
BHHH method. Another specialized method is the Levenberg–Marquardt method,
which is an example of a trust region algorithm. The algorithms discussed so
far compute a direction and then choose a step length. A trust region method
first computes a step length and then determines the direction of the step. The
nonlinear maximum likelihood analogue is the quadratic hill-climbing method of
Goldfeld et al. (1966).

Finally, we note that mixed methods can be very effective. For example, use
a quasi-Newton method, with its wider radius of convergence, until the iterate is
within the domain of attraction for the Newton method, and then switch to the
Newton method.

8.3 SOME NUMERICAL DETAILS

It is important to distinguish between an algorithm and its implementation. The
former is a theoretical approach to a problem and leaves many practical details
unanswered. The latter is how the approach is applied practically. Two different
implementations of the same algorithm can produce markedly different results.
For example, a damped quasi-Newton method only dictates that a line search be
used; it does not specify how the line search is to be conducted. The Newton–
Raphson method only dictates that second derivatives are to be used; it does not
specify how the derivatives are to be calculated: by forward differences, central
differences, or analytically.

SOME NUMERICAL DETAILS 205

Consider the forward difference approximation to the derivative of a uni-
variate function: f ′(x) = (f (x + h) − f (x))/h + R(h), where R(h) is the
remainder. This contrasts sharply with the central difference approximation:
f ′(x) = (f (x + h) − f (x − h))/2h + R(h). For the function f (x) = x3, it
is easy to show that the remainder for the forward difference is 3x2 + 3xh + h2,
whereas for the central difference it is only 3x2 + h2. Generally, the method of
central differences produces smaller remainders, and thus more accurate deriva-
tives, than the method of forward differences. Of course, with analytic derivatives
the remainder is zero.

Another crucial point that can lead to different results is that the iterative
process defined by (8.1) needs some basis for deciding when to stop the iterations.
Some common termination criteria are:

• |SSRk+1 − SSRk| < εs ; when the successive change in the sum of squared
residuals is less than some small value.

• maxi[|β̂k+1
i − β̂k

i |] < εp; when the largest successive change in some coef-
ficient is less than some small value.

• ||g(β̂k)|| < εg; when the magnitude of the gradient is less than some small
value.

• g′H−1g < ε; this criterion involves both the gradient and the Hessian.

The first three criteria are scale dependent; that is, they depend on the units
of measurement. There do exist many other stopping rules, some of which are
scale-independent versions of the first three criteria above. The important point
is that termination criteria must not be confused with convergence criteria.

Convergence criteria are used to decide whether a candidate point is a min-
imum. For example, at a minimum, the gradient must be zero and the Hessian
must be positive definite. A problem with many solvers is that they conflate con-
vergence criteria and stopping rules (i.e., they treat stopping rules as if they were
convergence criteria). It is obvious, however, that while the stopping rules listed
above are necessary conditions for a minimum, none or even all of them together
constitutes a sufficient condition. Consider a minimum that occurs in a flat region
of the parameter space: Successive changes in the sum-of-squared residuals will
be small at points that are far from the minimum. Similarly, parameters may not
be changing much in such a region. In a flat region of the parameter space, the
gradient may be very close to zero, but given the inherent inaccuracy of finite-
precision computation, there may be no practical difference between a gradient
that is “close to zero” and one that is numerically equivalent to zero.

Finally, the user should be aware that different algorithms can differ markedly
in the speed with which they approach a solution, especially in the final itera-
tions. Algorithms such as the (modified) Newton–Raphson that make full use of
curvature information, converge very quickly. In the final iterations they exhibit
quadratic convergence. At the other extreme, algorithms such as steepest descent
exhibit linear convergence. Between these two lie the quasi-Newton methods,
which exhibit superlinear convergence. To make these concepts concrete, define

206 SOME DETAILS OF NONLINEAR ESTIMATION

Table 8.3 Comparison of Convergence Rates

Steepest Descent BFGS Newton

1.827e-04 1.70e-03 3.48e-02
1.826e-04 1.17e-03 1.44e-02
1.824e-04 1.34e-04 1.82e-04
1.823e-04 1.01e-06 1.17e-08

hk = βk − β∗, where β∗ is a local minimum. The following sequences can be
constructed:

• Linear: ||hk+1||/||hk|| ≤ c hk+1 = O(||hk||)
• Superlinear: ||hk+1||/||hk|| → 0 hk+1 = o(||hk||)
• Quadratic: ||hk+1||/||hk||2 ≤ c hk+1 = O(||hk||2)

Nocedal and Wright (1999, p. 199) give an example for the final few iter-
ations of a steepest descent, BFGS, and Newton algorithm, all applied to the
same function. Their results are presented in Table 8.3. Observe that the Newton
method exhibits quadratic convergence with the final few steps: e-02, e-04, and
e-08. Conversely, steepest descent is obviously converging linearly, whereas the
quasi-Newton method BFGS falls somewhere in between. These rates of con-
vergence apply not only to the parameters but also to the value of the objective
function (i.e., the sum-of-squared residuals or the log likelihood). In the lat-
ter case, simply define hk = log Lk − log L∗, where log L∗ is the value at the
maximum.

Because quadratic convergence in the final iterations is commonly found in
solutions obtained by the Newton method, if a user encounters only superlinear
convergence in the final iterations of a Newton method, the user should be espe-
cially cautious about accepting the solution. Similarly, if a quasi-Newton method
exhibits only linear convergence, the user should be skeptical of the solution.

8.4 WHAT CAN GO WRONG?

A good example is the Misra1a problem from the nonlinear suite of the StRD
when it is given to the Microsoft Excel Solver. Not only is it a lower-difficulty
problem it is a two-parameter problem which lends itself to graphical exposition.
The equation is

y = β1(1 − exp(−β2x)) + ε (8.10)

with the 14 observations given in Table 8.4.
The Excel Solver is used to minimize the sum-of-squared residuals, with

Start I starting values of 500 for β1 and 0.0001 for β2. The Excel Solver

WHAT CAN GO WRONG? 207

Table 8.4 Data for Misra1a Problem

Obs. y x Obs. y x

1 10.070 77.60 8 44.820 378.40
2 14.730 114.90 9 50.760 434.80
3 17.940 141.10 10 55.050 477.30
4 23.930 190.80 11 61.010 536.80
5 29.610 239.90 12 66.400 593.10
6 35.180 289.00 13 75.470 689.10
7 40.020 332.80 14 81.780 760.00

offers various options. The default method of derivative calculation is forward
differences, with an option for central differences. The default algorithm is
an unspecified “Newton” method, with an option for an unspecified “Conju-
gate” method. On Excel97 the default convergence tolerance (“ct”) is 0.001,
although whether this refers to successive changes in the sum-of-squared resid-
uals, coefficients, or some other criterion is unspecified. There is also an option
for “automatic scaling,” which presumably refers to recentering and rescaling the
variables—this can sometimes have a meliorative effect on the ability of an algo-
rithm to find a solution (Nocedal and Wright 1999, pp. 27, 94). Using Excel97,
five different sets of options were invoked:

• Options A: ct = 0.001 (Excel97 default)
• Options B: ct = 0.001 and automatic scaling
• Options C: ct = 0.0001 and central derivatives
• Options D: ct = 0.0001 and central derivatives and automatic scaling
• Options E: ct = 0.00001 and central derivatives and automatic scaling

For each set of options, the Excel Solver reported that it had found a solution.
(Excel97, Excel2000, and ExcelXP all produced the same answers.) These
five solutions are given in Table 8.5, together with the certified values from
NIST. The correct digits are underlined. For example, solutions A and B have no
correct digits, while solutions C and D each have the first significant digit correct.2

Solution E has four correct digits for each of the coefficients and five for the SSR.
Additionally, for each of the six points the gradient of the objective function at
that point is presented in brackets. These gradient values were produced in three
independent ways: via the nonlinear least squares command in TSP, taking care
to note that TSP scales its gradient by SSR/(n − 2); by implementing equation
(8) in package R, which can produce J (β̂) and f (β̂); and programming from
first principles using Mathematica. All three methods agreed to several digits.
A contour plot showing the five solutions as well as the starting values (labeled
“S”) is given in Figure 8.1.

2The significant digits are those digits excluding leading zeros.

208 SOME DETAILS OF NONLINEAR ESTIMATION

Table 8.5 “Solutions” for the Misra1a Problem Found by Excel Solvera

β̂1 β̂2 SSR

NIST 238.94212918 0.00055015643181 0.12455138894
[−1.5E-9] [−0.00057]

Solution A 454.12442033 0.00026757574438 16.725122137
(8 iterations) [0.23002] [420457.7]

Solution B 552.84275702 0.00021685528323 23.150576131
(8 iterations) [0.16068] [454962.9]

Solution C 244.64697774 0.00053527479056 0.16814681493
(31 iterations) [−0.00744] [−0.00011]

Solution D 241.96737442 0.00054171455690 0.15384239922
(33 iterations) [0.09291] [37289.6]

Solution E 238.93915212 0.00055016470282 0.12455140816
(37 iterations) [−5.8E-5] [−23.205]

aAccurate digits underlined, component of gradient in brackets.

300 400 500 600

6e−04

5e−04

4e−04

3e−04

2e−04

1e−04

A

B

CD
E

S
12800

6400

1600
800

400

100

800

1600

3200

6400

12800

400

100
25

3200

Fig. 8.1 SSR contours for Misra1A.

It is also useful to consider the trace of each “solution” as well as the trace
of an accurate solution produced by the package S-Plus v6.2, which took 12
iterations to produce a solution with 9, 9, and 10 digits of accuracy for β1, β2,
and SSR, respectively. Of import is the fact that the S-Plus solver employs
a Gauss–Newton algorithm, and this is a small-residual problem. The final five
sum-of-squared residuals, as well as the difference of each from its final value,
are given in Table 8.6.

WHAT CAN GO WRONG? 209

Table 8.6 Convergence of Solutions

A B C D E S-Plus

SSR

18.649 29.133 0.17698 0.8774 0.1538 5770.4200
18.640 28.966 0.17698 0.5327 0.1367 1242.3170
18.589 27.670 0.16900 0.3972 0.1257 1.1378420
18.310 27.026 0.16900 0.2171 0.1246 0.1245559
16.725 23.151 0.16815 0.1538 0.1245 0.1245514

Differences

1.924 5.982 0.00883 0.7236 0.0293 5770.2954
1.915 5.815 0.00883 0.3789 0.0122 1242.1924
1.864 4.519 0.00085 0.2434 0.0012 1.0132906
1.585 3.875 0.00085 0.0633 0.0001 0.0000045
0.000 0.000 0.00000 0.0000 0.0000 0.0000000

Several interesting observations can be made about the Excel Solver solu-
tions presented in Table 8.5. First, only solution E might be considered a correct
solution, and even the second component of its gradient is far too large.3 Solu-
tions A and B have no accurate digits. Observe that the gradient of solution
C appears to be zero, but examining the sum-of-squared residuals shows that
the gradient obviously is “not zero enough” (i.e., 0.1681 is not nearly small
enough). The gradient at solution E is not nearly zero, but it clearly has a smaller
sum-of-squared residuals than that of solution C, so despite its larger gradient,
may be preferred to solution C. This demonstrates the folly of merely examining
gradients (and Hessians); examination of the trace can also be crucial.

The Excel Solver employs an unspecified Newton algorithm, with an unknown
convergence rate. Rather than assume that this method is quadratically conver-
gent, let us assume that it is superlinearly convergent. Examining Table 8.6, all the
Excel solutions exhibit linear convergence, even solution E, for which hk+1 ≈
0.1hk . In particular, examining the trace of solution C shows that the Solver is
searching in a very flat region that can be characterized by at least two plateaus.
Even though each component of the gradient appears to be zero, the trace does not
exhibit the necessary convergence, so we do not believe point C to be a solution.

Figure 8.2a does not show sufficient detail, and some readers may think,
especially given the gradient information provided in Table 8.6, that point C
is a local minimum. It is not, as shown clearly in Figure 8.2b.

We have just analyzed five different solutions from one package. It is also
possible to obtain five different solutions from five different packages, something
Stokes (2003) accomplished when trying to replicate published probit results. It
turned out that for the particular data used by Stokes, the maximum likelihood
estimator did not exist. This did not stop several packages from reporting that

3The determination of “too large” is made with benefit of 20–20 hindsight (see Section 5.1).

210 SOME DETAILS OF NONLINEAR ESTIMATION

235 240 245

0.000530

0.000535

0.000540

0.000545

0.000550

0.000555

0.000560

0.000565

C

D

E

244.60 244.62 244.64 244.66 244.68 244.70

0.00053520

0.00053525

0.00053530

0.00053535

0.00053540

0.00053545

0.00053550

C

100
75

50
25

10

0.15

0.25

0.25

5

5

10
25

50
0.17

0.169

0.1685
75

0.168

0.1690.17

0.1681

0.1684

0.1683

0.1685

0.1682

(a)

(b)

Fig. 8.2 Comparison of SSR Contours.

their algorithms had converged to a solution—a solution that did not exist! His
paper is instructive reading.

8.5 FOUR STEPS

Stokes was not misled by his first solver because he did not accept its output
uncritically. In fact, critically examining its output is what led him to use a second
package. When this produced a different answer, he knew that something was
definitely wrong. This was confirmed by the different answers from his third,

FOUR STEPS 211

fourth, and fifth packages. With his first package, Stokes varied the algorithm,
the convergence tolerance, starting values, and so on. This is something that
every user should do with every nonlinear estimation. Suppose that a user has
done this and identified a possible solution. How might he verify the solution?
McCullough and Vinod (2004) recommend four steps:

1. Examine the gradient. Is ||g|| ≈ 0||?
2. Inspect the sequence of function values. Does it exhibit the expected rate

of convergence?
3. Analyze the Hessian. Is it positive semidefinite? Is it ill conditioned?
4. Profile the objective function. Is the function approximately quadratic?

Gill et al. (1981, p. 313) note that if the first three conditions hold, very prob-
ably a solution has been found, regardless of whether the program has declared
convergence. The fourth step justifies the use of the usual t-statistics for coef-
ficients reported by most packages. These t-statistics are Wald statistics and, as
such, are predicated on the assumption that the objective function, in this case the
sum-of-squares function, is approximately quadratic in the vicinity of the mini-
mum. If the function is not approximately quadratic, the Wald statistic is invalid
and other methods are more appropriate (e.g., likelihood ratio intervals); this
topic is addressed in detail in Section 8.6. The easy way to determine whether the
objective function is approximately quadratic is to profile the objective function.
Each of these four steps is discussed in turn.

8.5.1 Step 1: Examine the Gradient

At the solution, each component of the gradient should be zero. This is usually
measured by the magnitude of the gradient, squaring each component, summing
them, and taking the square root of the sum. The gradient will be zero only
to the order of the covariate(s). To see this, for the Misra1a problem, multiply
the y and x vectors by 100 and 10, respectively. The correct solution changes
from β∗

1 = 238.94212918, β∗
2 = 0.00055015643181, SSR = 0.12455138894 to

β∗
1 = 23894.212918, β∗

2 = 0.0000055015643181, SSR = 1245.5138894, and
the gradient changes from [−1.5E-9, −0.000574] to [1.5E-7, −57.4]. The moral
is that what constitutes a zero gradient depends on the scaling of the problem.
See Gill et al. (1981, Secs. 7.5 and 8.7) for discussions of scaling. Of course, a
package that does not permit the user to access the gradient is of little use here.

8.5.2 Step 2: Inspect the Trace

Various algorithms have different rates of convergence. By rate of convergence
we mean the rapidity with which the function value approaches the extremum as
the parameter estimates get close to the extremal estimates. As an example, let β∗
be the vector that minimizes the sum of squares for a particular problem. If the
algorithm in question is Newton–Raphson, which has quadratic convergence, then

212 SOME DETAILS OF NONLINEAR ESTIMATION

as β̂k → β∗ the sum-of-squared residuals will exhibit quadratic convergence, as
shown in Table 8.3.

Suppose, then, that Newton–Raphson is used and the program declares con-
vergence. However, the trace exhibits only linear convergence in its last few
iterations. Then it is doubtful that a true minimum has been found. This type
of behavior can occur when, for example, the solver employs parameter con-
vergence as a termination criterion and the current parameter estimate is in a
very flat region of the parameter space. Then it makes sense that the estimated
parameters are changing very little, and neither is the function value when the
solver ceases iterating. Of course, a solver that does not permit the user to access
the function value is of little use here.

8.5.3 Step 3: Analyze the Hessian

As in the case of minimizing a sum-of-squares function, the requirement for a
multivariate minimum, is that the gradient is zero and the Hessian is positive
definite (see Chapter 6 for additional details). The easiest way to check the Hes-
sian is to do an eigensystem analysis and make sure all that the eigenvalues are
positive. The user should be alert to the possibility that his package does not
have accurate eigenroutines. If the developer of the package does not offer some
positive demonstration that the package’s matrix routines are accurate, the user
should request proof.

In the case of a symmetric definite matrix (e.g., the covariance matrix), the
ratio of the largest eigenvalue to the smallest eigenvalue is the condition number.
If this number is high, the matrix is said to be ill conditioned. The consequences of
this ill conditioning are threefold. First, it indicates that the putative solution is in
a “flat” region of the parameter space, so that some parameter values can change
by large amounts while the objective function changes hardly at all. This situation
can make it difficult to locate and to verify the minimum of a NLS problem (or
the maximum of a NML problem). Second, this ill conditioning leads to serious
cumulated rounding error and a loss of accuracy in computed numbers. As a
general rule, when solving a linear system, one digit of accuracy is lost for every
power of 10 in the condition number (Judd 1998, p. 68). A PC has 16 digits. If
the condition number of the Hessian is on the order of 109, the coefficients will
be accurate to no more than seven digits. Third, McCullough and Vinod (2003)
show that if the Hessian is ill conditioned, the quadratic approximation fails to
hold in at least one direction. Thus, a finding in step 3 that the Hessian is ill
conditioned implies automatically that Wald inference will be unreliable for at
least one of the coefficients.

Of course, a package that does not permit the user to access the Hessian
(perhaps because it cannot even compute the Hessian) is of little use here.

8.5.4 Step 4: Profile the Objective Function

The first three steps were concerned with obtaining reliable point estimates.
Point estimates without some measure of variability are meaningless, so reliable

FOUR STEPS 213

standard errors are also of interest. The usual standard errors produced by non-
linear routines, the t-statistics, are more formally known as Wald statistics. For
their validity they depend on the objective function being quadratic in the vicin-
ity of the solution (Box and Jenkins 1976). Therefore, it is also of interest to
determine whether, in fact, the objective function actually is locally quadratic at
the solution. To do this, profile methods are very useful.

The essence of profiling is simplicity itself. Consider a nonlinear problem
with three parameters, α, β, and θ , and let α̂∗, β̂∗, and θ̂∗ be the computed
solution. The objective function (log L for MLE, SSR for NLS) has value f ∗ at
the solution. For the sake of exposition, suppose that α̂∗ = 3 with a standard error
of se(α) = 0.5 and that a profile of α is desired. For plus or minus some number
of standard deviations, say four, choose several values of α (e.g., α1 = 1.0, α2 =
1.5, α3 = 2.0, . . . , α7 = 4.0, α8 = 4.5, α9 = 5.0). Fix α = α1, reestimate the
model allowing β and θ to vary, and obtain the value of the objective function
at this new (constrained) extremum, f1. Now fix α = α2 and obtain f2. The
sequence of pairs {αi, fi} traces out the profile of α̂. If the profile is quadratic,
Wald inference for that parameter is justified.

Visually, it is easier to discern deviations from linear shape than deviations
from quadratic shape. The following transformation makes it easier to assess the
validity of the quadratic approximation:

τ(α) = sign(α − α̂∗)
√

S(α) − S(α̂∗)/s, (8.11)

where s is the standard error of the estimate.4

A plot of τ(αi) versus αi will be a straight line if the quadratic approximation
is valid. Now, let the studentized parameter be

δ(αi) = αi − α̂∗

se(αi)
. (8.12)

A plot of τ(αi) versus δ(αi) will be a straight line with unit slope through the
origin.

As a concrete example, consider profiling the parameter β1 from the StRD
Misra1a problem, the results of which are given in Table 8.7. Figure 8.3 shows
the plot of SSR versus β1 to be approximately quadratic and the plot of τ(β1)

versus β1 to be a straight line. Many packages plot τ versus the parameter instead
of τ versus δ. Usually, it is not worth the trouble to convert the former to the
latter, although, on occasion, it may be necessary to achieve insight into the
problem.

Profile methods are discussed at length in Bates and Watts (1988, Sec. 6) and
in Venables and Ripley (1999, Sec. 8.5). Many statistical packages offer them
(e.g., SAS and S-Plus). Many econometrics packages do not, although Gauss
is an exception. What a user should do if he or she finds that Wald inference is
unreliable is the subject of the next section.

4For NML, replace the right-hand side of (8.11) with sign(α − α̂∗)
√

2(log L∗ − log L).

214 SOME DETAILS OF NONLINEAR ESTIMATION

Table 8.7 Results of Profiling β1

i β1 δ(β1) SSR τ(β1)

9 244.3561 2.0 0.1639193 1.947545
8 243.0026 1.5 0.1469733 1.469780
7 241.6491 1.0 0.1346423 0.986010
6 240.2956 0.5 0.1271061 0.496118
5 238.9421 0.0 0.1245514 0.000000
4 237.5886 −0.5 0.1271722 -0.502497
3 236.2351 −1.0 0.1351700 -1.011463
2 234.8816 −1.5 0.1487542 -1.527035
1 233.5280 −2.0 0.1681440 -2.049382

234 236 238 240 242 244

b1

(a)

(b)

234 236 238 240 242 244

b1

0.16

0.15

0.14

0.13

2

1

0

−1

−2

S
S

R
t
(b

1)

Fig. 8.3 Profiles of (a) β1 versus SSR and (b) β1 versus τ(β1).

WALD VERSUS LIKELIHOOD INFERENCE 215

8.6 WALD VERSUS LIKELIHOOD INFERENCE

It is commonly thought that Wald inference and likelihood ratio (LR) inference
are equivalent (see, e.g., Rao 1973, p. 418). As noted earlier, the Wald interval
is valid only if the objective function is quadratic. However, the LR interval is
much more generally valid. In the scalar case, the 95% Wald interval is given by

θ̂ ± 1.96se(θ̂), (8.13)

and the LR interval is given by{
θ, 2 ln

L(θ̂)

L(θ)
≤ 3.84

}
. (8.14)

The Wald interval is exact if

θ̂ − θ

se(θ̂)
∼ N(0, 1), (8.15)

whereas the LR interval is exact as long as there exists some transformation g(·)
such that

g(θ̂) − g(θ)

se(g(θ̂))
∼ N(0, 1) (8.16)

and it is not necessary that the specific function g(·) be known, just that it exists.
Consequently, when the Wald interval is valid, so is the LR interval, but not
conversely. Thus, Gallant’s (1987, p. 147) advice is to “avoid the whole issue
as regards inference and simply use the likelihood ratio statistic in preference to
the Wald statistic.”5

The assertion that the LR intervals are preferable to the Wald intervals merits
justification. First, a problem for which the profiles are nonlinear is needed. Such
a problem is the six-parameter Lanczos3 problem from the StRD, for which the
profiles were produced using the package R (Ihaka and Gentleman, 1996), with
the “profile” command from the MASS library of Venables and Ripley (1999).
These profiles are presented in Figure 8.4. None of the profiles is remotely linear,
so it is reasonable to expect that LR intervals will provide better coverage than
Wald intervals. To assess this claim, a Monte Carlo study is in order.

Using the NIST solution as true values and a random generator with mean
zero and standard deviation equal to the standard error of the estimate of the
NIST solution, 3999 experiments are run. For each run, 95% intervals of both
Wald and LR type are constructed. The LR intervals are computed using the
“confint.nls” command, which actually only approximates the likelihood ratio

5Also see Chapter 4 for alternatives to LR intervals that can be used to interpret results when the
likelihood function has multiple modes.

216 SOME DETAILS OF NONLINEAR ESTIMATION

0.05

6

4

2

0

−2

−4

−6

0.10 0.15 0.20

b4 b5 b6

b1 b2 b3

0.4 0.6 0.8 1.0 1.2 0.7 0.8 0.9 1.0 1.1 1.2

2.6 2.8 3.0 3.2 3.4 3.6 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 4.9 5.0 5.1 5.2

t

6

4

2

0

−2

−4

t
6

4

2

0

−2

−4

t

4

2

0

−2

−4

−6

t

4

2

0

−2

−4

−6

t

6

4

2

0

−2

−4

t

Fig. 8.4 Profiles for Lanczos3 parameters.

Table 8.8 Monte Carlo Resultsa

Errors Test b1 b2 b3 b4 b5 b6

Normal Wald 91.725 92.125 92.650 92.300 92.550 92.875
LR 94.200 94.125 94.275 94.175 94.200 94.275

t (10) Wald 92.550 93.200 93.250 92.875 93.200 93.275
LR 95.025 94.975 94.800 94.975 94.825 94.825

χ2(3) Wald 92.700 93.300 93.275 93.500 93.075 93.450
LR 95.275 95.250 95.550 95.425 95.625 95.475

aCoverage for 95% confidence intervals.

interval. The proportion of times that an interval contains the true parameter is
its coverage. This setup is repeated for each of three types of error: normal,
Student’s t with 10 degrees of freedom (rescaled), and chi-square with 3 degrees
of freedom (recentered and rescaled). The results are presented in Table 8.8. As
can be seen, for each type of error and for each parameter, the LR interval
provides substantially better coverage than the Wald interval.

CONCLUSIONS 217

8.7 CONCLUSIONS

Software packages frequently have default options for their nonlinear solvers. For
example, the package may offer several algorithms for nonlinear least squares,
but unless the user directs otherwise, the package will use Gauss–Newton. As
another example, the convergence tolerance might be 1E-3; perhaps switch-
ing the tolerance to 1E-6 would improve the solution. It should be obvious
that “solutions” produced by use of default options should not be accepted
by the user until the solution has been verified by the user (see McCullough
1999b).

Although many would pretend otherwise, nonlinear estimation is far from
automated, even with today’s sophisticated software. There is more to obtain-
ing trustworthy estimates than simply tricking a software package into declar-
ing convergence. In fact, when the software package declares convergence, the
researcher’s job is just beginning—he has to verify the solution offered by the
software. Software packages differ markedly not only in their accuracy but also
in their ability to verify potential solutions. A desirable software package is one
that makes it easy to guard against false convergence. Some relevant features are
as follows:

• The user should be able to specify starting values.
• For nonlinear least squares, at least two algorithms should be offered: a

modified Newton and a Gauss–Newton; a Levenberg–Marquardt makes a
good third. The NL2SOL algorithm (Dennis et al. 1981) is highly regarded.
For unconstrained optimization (i.e., for nonlinear maximum likelihood), at
least two algorithms should be offered: a modified Newton and the BFGS.
Again, the Bunch et al. (1993) algorithm is highly regarded.

• For nonlinear routines, the user should be able to fix one parameter and
optimize over the rest of the parameters, in order to calculate a profile (all
the better if the program has a “profile” command).

• The package should either offer LR statistics or enable the user to write
such a routine.

• For routines that use numerical derivatives, the user should be able to supply
analytic derivatives. Automatic differentiation is very nice to have when
dealing with complicated functions.

• The user should be able to print out the gradient, the Hessian, and the
function value at every iteration.

Casually perusing scholarly journals, and briefly scanning those articles that
conduct nonlinear estimation, will convince the reader of two things. First, many
researchers run their solvers with the default settings. This, of course, is a recipe
for disaster, as was discovered by a team of statisticians working on a large
pollution study (Revkin 2002). They simply accepted the solution from their
solver, making no attempt whatsoever to verify it, and wound up publishing an

218 SOME DETAILS OF NONLINEAR ESTIMATION

incorrect solution. Second, even researchers who do not rely on default options
practically never attempt to verify the solution. One can only wonder how many
incorrect nonlinear results have been published.

Acknowledgments

Thanks to P. Spelluci and J. Nocedal for useful discussions, and to T. Harrison
for comments.

C H A P T E R 9

Spatial Regression Models
James P. LeSage

9.1 INTRODUCTION

With the progress of geographical information system (GIS) technology, large
samples of socioeconomic demographic information based on spatial locations
such as census tracts and zip-code areas have become available. For example,
U.S. Bureau of the Census information at the tract level is now available cov-
ering a period of 40 years, adjusted to reflect the census 2000 tract boundaries.
GIS software also allows survey information and other spatial observations that
contain addresses or extended zip codes to be translated to map coordinates
through geocoding. In this chapter we discuss computational issues associated
with regression modeling of this type of information.

9.2 SAMPLE DATA ASSOCIATED WITH MAP LOCATIONS

9.2.1 Spatial Dependence

Spatial dependence in a collection of sample data implies that cross-sectional
observations at location i depend on other observations at locations j �= i. For-
mally, we might state that

yi = f (yj), i = 1, . . . , n, j �= i. (9.1)

The dependence typically involves several cross-sectional observations j that are
located near i on a map. Spatial dependence can arise from theoretical as well
as statistical considerations.

From a theoretical viewpoint, consumers in a neighborhood may emulate each
other, leading to spatial dependence. Local governments might engage in com-
petition that leads to local uniformity in taxes and services. Pollution can create
systematic patterns over space, and clusters of consumers who travel to a more
distant store to avoid a high-crime zone would also generate these patterns.
Real estate appraisal practices that place reliance on nearby homes sold recently

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

219

220 SPATIAL REGRESSION MODELS

would be one example of a theoretical motivation for spatial dependence in the
underlying data-generating process.

Spatial dependence can arise from unobservable latent variables that are spa-
tially correlated. Consumer expenditures collected at spatial locations such as
Census tracts exhibit spatial dependence, reflecting that local customs and prac-
tices influence consumption patterns in addition to economic factors such as
income and education. For example, one observes spatial patterns of tobacco con-
sumption that are not explained by income and education levels alone. It seems
plausible that unobservable characteristics that are difficult to quantify such as
the quality of life and locational amenities may also exhibit spatial dependence.
To the extent that this type of influence is an important factor determining vari-
ation in the social–economic demographic variables we are modeling, spatial
dependence is likely to arise.

9.2.2 Specifying Dependence Using Weight Matrices

There are several ways to quantify the structure of spatial dependence between
observations, but a common specification relies on an n×n spatial weight matrix
W with elements Wij > 0 for observations j = 1 · · · n sufficiently close (as
measured by some distance metric) to observation i.

Note that we require knowledge of the location associated with the obser-
vational units to determine the closeness of individual observations to other
observations. Sample data that contain address labels could be used in conjunc-
tion with GIS or other dedicated software to measure the spatial proximity of
observations. Assuming that address matching or other methods have been used
to produce latitude–longitude coordinates for each observation in map space, we
can rely on a Delaunay triangularization scheme to find neighboring observations.
To illustrate this approach, Figure 9.1 shows a Delaunay triangularization cen-
tered on an observation located at point A. The space is partitioned into triangles
such that there are no points in the interior of the circumscribed circle of any
triangle. Neighbors could be specified using Delaunay contiguity defined as two
points being a vertex of the same triangle. The neighboring observations to point
A that could be used to construct a spatial weight matrix are B, C, E, and F .

One way to specify the spatial weight matrix W would be to set column
elements associated with neighboring observations B, C, E, F equal to 1 in
row A. This would reflect that these observations are neighbors to observation
A. Typically, the weight matrix is standardized such that row sums equal unity,
producing a row-stochastic weight matrix. The motivation for this will be clear
in a moment.

An alternative approach would be to rely on neighbors ranked by distance
from observation A. We can simply compute the distance from A to all other
observations and rank these by size. In the case of Figure 9.1 we would have
a nearest neighbor E; the nearest two neighbors E, and C; the nearest three
neighbors E, C, D; and so on. Again, we could set elements WAj = 1 for
observations j in row A to reflect any number of nearest neighbors to observation

SAMPLE DATA ASSOCIATED WITH MAP LOCATIONS 221

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

A

B
C

D

EF

G

x-coordinates

y-
co

or
di

na
te

s

Fig. 9.1 Delaunay triangularization.

A, and transform to row-stochastic form. An important point is that computing
the distance of each observation to all other observations is computationally
intensive, whereas use of Delaunay triangle algorithms allow construction of a
spatial weight matrix for a sample of 60,000 census tracts in about 2 seconds.

The spatial weight matrix can be used to specify the structure of spatial depen-
dence yi = f (yj) in our spatial regression model. To see the role of W in
determining the spatial dependence structure of the model, consider the case
where observations 2, 4, and 5 are neighbors to observation 1. This would lead to

y1 = ρ
[

0 1
3 0 1

3
1
3 0 0 · · · 0

]
y + X1β + ε1

= ρ
[

1
3y2 + 1

3y4 + 1
3y5

]
+ X1β + ε1, (9.2)

where X1 denotes the first row of a typical n×k matrix of explanatory variables,
β is an associated k × 1 parameter vector, and ε1 is the first row of an n × 1
disturbance vector, ε. We assume a normal, constant variance disturbance, ε ∼
N (0, σ 2In). The term created by multiplying the first row of W times the vector
y is often called a spatial lag, and ρ represents a scalar parameter to be estimated
along with β and σ 2. Of course, every observation in the n observation vector
y is modeled as spatially dependent on nearby observations defined by nonzero
values in the corresponding rows of the spatial weight matrix W . This approach

222 SPATIAL REGRESSION MODELS

to regression modeling of spatial dependence, known as the spatial autoregressive
(SAR) model, can be written in the alternative forms

(In − ρW)y = Xβ + ε

y = ρWy + Xβ + ε (9.3)

y = (In − ρW)−1Xβ + (In − ρW)−1ε,

where In denotes an identity matrix of order n. The second expression for the
SAR model makes it clear why Wii = 0, as this precludes an observation yi

from predicting itself directly. It also provides a rationale for the use of row-
stochastic W , which makes each observation yi a function of the spatial lag Wy,
an explanatory variable representing an average of spatially neighboring values.
We need not treat all neighboring relationships in an equal fashion; neighbors
could be weighted by distance, length of adjoining property boundaries, or any
number of other schemes that have been advocated in the literature on spatial
regression relationships (see Bavaud 1998).

[It is also possible to estimate spatial autoregressive models with limited
dependent variables. Methods for estimating logit, probit, and tobit variants of
spatial autoregressive models are available in the collection of algorithms refer-
enced at the end of the chapter and are discussed in LeSage (2000).]

We can extend the model in (9.3) to a spatial Durbin model (SDM) that allows
for explanatory variables from neighboring observations, created by WX̃:

(In − ρW)y = Xβ + WX̃γ + ε

y = ρWy + Xβ + WX̃γ + ε

y = (In − ρW)−1Xβ + (In − ρW)−1WX̃γ + (In − ρW)−1ε,

(9.4)

where the matrix X̃ is equal to X with the constant term excluded. The (k−1)×1
parameter vector γ measures the marginal impact of the explanatory variables
from neighboring observations on the outcome variable y. Multiplying X̃ by
W produces spatial lags of the explanatory variables that reflect an average of
neighboring observations’ X-values.

Another model that has been used is the spatial error model (SEM):

y = Xβ + u

u = ρW + ε

y = Xβ + (In − ρW)−1ε.

(9.5)

Here, the spatial dependence resides in the disturbance process u, as in the case
of serial correlation in time series regression models.

9.2.3 Estimation Consequences of Spatial Dependence

In some applications the spatial structure of the dependence may be a subject of
interest or provide a key insight. In other cases it may be a nuisance similar to

MAXIMUM LIKELIHOOD ESTIMATION OF SPATIAL MODELS 223

serial correlation in time series models. In either case, inappropriate treatment
of sample data with spatial dependence can lead to inefficient and/or biased and
inconsistent estimates.

For the SAR and SDM models, least squares estimates for β are biased and
inconsistent. To see this, note that we can define Z = [Wy X] and γ = [ρ β]′
and consider the least squares estimate γ̂ = (Z′Z)−1Z′y. We cannot show unbi-
asedness in the estimates γ because the matrix Z is not fixed in repeated sampling.
The presence of neighboring values Wy in the matrix Z creates a situation similar
to that found in simultaneous equation models from econometrics, where least
squares estimates are biased and inconsistent.

For the case of the SEM model, least squares estimates for β are unbi-
ased but inefficient, and the associated least squares measures of dispersion are
biased, leading to bias in inferences drawn using conventional t-statistics from
least squares.

By way of summary, there are numerous examples where social scientists
use least squares to examine election returns, performance on standardized tests
by school district or schools, voting behavior of congressional representatives,
household behavior by census tract, and so on. These samples of cross-sectional
spatially distributed observations are highly likely to exhibit spatial dependence,
creating at best biased inferences regarding the importance of various explanatory
variables and at worst biased and inconsistent estimates.

In the next section we discuss maximum likelihood estimation of the SAR,
SDM, and SEM models that are capable of producing unbiased estimates in the
face of spatial dependence. One approach to testing for the problem of spatial
dependence would be to compare least squares estimates to maximum likelihood
estimates from SAR, SDM, or SEM models, which nest least squares as a special
case. If the parameter ρ measuring spatial dependence is significantly different
from zero, least squares estimates will probably deviate greatly from the spatial
regression models.

9.3 MAXIMUM LIKELIHOOD ESTIMATION OF SPATIAL MODELS

Maximum likelihood estimation of the SAR, SDM, and SEM models described
here involves maximizing the log-likelihood function (concentrated for β and
σ 2) with respect to the parameter ρ. In the case of row-stochastic spatial weight
matrices W , the parameter ρ is restricted to the interval (−1/λmin, 1/λmax), where
λmin < 0 and λmax > 0 represent the minimum and maximum eigenvalues of the
spatial weight matrix (see, e.g., Sun et al., 1999, Lemma 2).

For the case of the SAR model, we have

ln L = C + ln|In − ρW | − (n/2) ln(e′e)
e = eo − ρed

eo = y − Xβo

ed = Wy − Xβd

(9.6)

224 SPATIAL REGRESSION MODELS

βo = (X′X)−1X′y

βd = (X′X)−1X′Wy,

where C represents a constant not involving the parameters. This same approach
can be applied to the SDM model by simply defining X = [X WX̃] in (9.6).

The SEM model has a concentrated log likelihood taking the form

ln L = C + ln|In − ρW | − (n/2) ln(e′e)

X̃ = X − ρWX

ỹ = y − ρWy

β� = (X̃′X̃)−1X̃ỹ

e = ỹ − X̃β�.

(9.7)

The computationally troublesome aspect of this is the need to compute the
log determinant of the n × n matrix (In − ρW). Operation counts for computing
this determinant grow with the cube of n for dense matrices. While W is a
n × n matrix, in typical problems W will be sparse. For a spatial weight matrix
constructed using Delaunay triangles between n points in two dimensions, the
average number of neighbors for each observation will equal 6, so the matrix will
have 6n nonzeros out of n2 possible elements, leading to 6/n as the proportion
of nonzeros.

9.3.1 Sparse Matrix Algorithms

A sparse matrix is one that contains a large proportion of zeros. As a concrete
example, consider the spatial weight matrix for a sample of 3107 U.S. counties
used in Pace and Barry (1997). This matrix is sparse since the largest number
of neighbors to any county is eight and the average number of neighbors is
four. To understand how sparse matrix algorithms conserve on storage space
and computer memory, consider that we only need record the nonzero elements
along with an indication of their row and column position. This requires a 1 × 3
vector for each nonzero element, consisting of a row index, a column index,
and the element value. Since nonzero elements represent a small fraction of
the total 3107 × 3107 = 9,653,449 elements in the weight matrix, we save
on computer memory. For our example of the 3107 U.S. counties, only 12,429
nonzero elements were found in the weight matrix, representing a very small
fraction (about 0.4%) of the total elements. Storing the matrix in sparse form
requires only three times 12,429 elements, or more that 250 times less computer
memory than would be needed to store 9,653,449 elements.

In addition to storage savings, sparse matrices result in lower operation counts
as well, speeding computations. In the case of nonsparse (dense) matrices, matrix
multiplication and common matrix decompositions such as the Cholesky require
O(n3) operations, whereas for sparse W these operation counts can fall as low

MAXIMUM LIKELIHOOD ESTIMATION OF SPATIAL MODELS 225

as O(n �=0), where n �=0 denotes the number of nonzero elements. As an example,
suppose that we store the sparse matrix information in an nz×3 matrix sparseM,
where nz represents the number of nonzero elements in the matrix. The c-
language code loop needed to carry out the matrix-vector multiplication Wy

needed to form the spatial lag vector in our SAR model is shown below.

// do W*y matrix times vector multiplication
for(i=1; i<nz; i++){

ii = (int) sparseM[i][1];
jj = (int) sparseM[i][2];
val = sparseM[i][3];
Wy[ii] = Wy[ii] + val*y[jj];

}

Here the vectors Wy, y, and the matrix sparseM all begin at 1 rather than the
traditional zero-based position used by the c-language. Note that for each of the
nz nonzero elements in W , we require (1) indexing into the matrix sparseM, (2) a
scalar multiplication operation, and (3) an accumulation, bringing the operation
count to nz. For the case of our 3107 × 3107 matrix W , this would be 12,429
operations, which is in stark contrast to dense matrix multiplication that would
require 31073 = 2.9993e + 010 operations.

As a concrete example of the savings, we consider computing the largest and
smallest eigenvalues, λmin and λmax, needed to set the feasible range on ρ in the
SAR, SDM, and SEM estimation problems. This required 45 minutes in the case
of the 3107 × 3107 matrix using nonsparse algorithms, and less than 1 second
using sparse matrix algorithms.

Pace and Barry (1997) suggested using direct sparse matrix algorithms such
as the Cholesky or LU decompositions to compute the log determinant over a
grid of values for the parameter ρ restricted to the interval 0, 1. They rule out
negative values for ρ, arguing that these are of little practical interest in many
cases. This accelerates the computations slightly because the time required to
compute eigenvalues is eliminated.

9.3.2 Vectorization of the Optimization Problem

This still leaves the problem of maximizing the log likelihood over the grid of
values for ρ, which can be solved without optimization algorithms using a vector
evaluation of the SAR or SDM log-likelihood functions. Using a grid of q values
of ρ in the interval [0, 1), we can write the log-likelihood function as a vector
in ρ:

ln L(β, ρ1)

ln L(β, ρ2)
...

ln L(β, ρq)

 ∝


ln |In − ρ1W |
ln |In − ρ2W |

...

ln |In − ρqW |

− (n/2)


ln (φ(ρ1))

ln (φ(ρ2))
...

ln (φ(ρq))

 , (9.8)

226 SPATIAL REGRESSION MODELS

where φ(ρi) = e′
oeo − 2ρie

′
deo + ρ2

i e′
ded . [For the SDM model, we replace X

with [X WX̃] in (9.6).] Given the vector of log-likelihood function values, one
can simply find the associated value of ρ where the vector obtains a maximum.
A finer grid can be constructed around this optimizing value to increase the
numerical precision of the resulting estimate.

Note that the SEM model cannot be vectorized and must be solved using
more conventional optimization methods such as a simplex algorithm. Since the
optimization problem is univariate, involving only the parameter ρ, this does not
present any problems. Further, the grid of values for the log determinant over
the feasible range for ρ can be used to speed evaluation of the log-likelihood
function during optimization with respect to ρ. This is accomplished by storing
values for the log determinant in a table and using table lookup when evaluating
the likelihood function rather than computing the log determinant for each value
of ρ used in the optimization search.

The computationally intense part of this approach is still calculating the log
determinant, which takes 18 seconds for the 3107 U.S. county sample and
746 seconds for a sample of 60,611 observations representing all 1990 cen-
sus tracts in the continental United States. These times were based on a grid of
100 values from ρ = 0 to 1 using sparse matrix algorithms in MATLAB ver-
sion 6.1 on a 1200-megahertz Athalon computer. Note that if the optimum ρ

occurs on the boundary (i.e., 0), this indicates the need to consider negative
values of ρ.

A final aspect of the estimation problem is determination of measures of
dispersion for the estimates that can be used for inference. An asymptotic variance
matrix based on the Fisher information matrix shown below for the parameters
θ = (ρ, β, σ 2) can be used to provide measures of dispersion for the estimates
of ρ, β, and σ 2:

[I (θ)]−1 = −E

[
∂2L

∂θ ∂θ ′

]−1

. (9.9)

For problems involving a small number of observations, we can use analytical
expressions for the theoretical information matrix presented in Anselin (1988).
This approach is computationally impossible when dealing with large problems
involving thousands of observations. The expressions used to calculate terms in
the information matrix involve operating on very large matrices that would take
a great deal of computer memory and computing time. In these cases we can
evaluate the numerical Hessian matrix using the maximum likelihood estimates
of ρ, β, and σ 2 and our sparse matrix representation of the likelihood. Given
the ability to evaluate the likelihood function rapidly, numerical methods can be
used to compute approximations to the gradients shown in (9.9).

9.3.3 Trade-offs between Speed and Numerical Accuracy

There are trade-offs between numerical accuracy and speed in a number of the
operations required to solve the estimation problem. First, one can ignore the

MAXIMUM LIKELIHOOD ESTIMATION OF SPATIAL MODELS 227

eigenvalue calculations needed to set bounds on the feasible interval for ρ, or
set an iterative convergence criterion for the algorithm used to compute these
eigenvalues that will increase speed at the cost of accuracy. For row-stochastic
weight matrices, the maximum for ρ takes on a theoretical value of unity, and
a minimum value for ρ of 0 or −1 would be reasonable in many applications.
Positive spatial dependence reflected by ρ > 0 can be interpreted as spatial clus-
tering of values for y at similar locations in geographic or map space. Larger
values near 1 reflect increased clustering. Negative spatial dependence repre-
sented by ρ < 0 would represent a situation where dissimilar numerical values
tend to cluster in geographic space, whereas ρ = 0 indicates a situation where
numerical values are arranged in a haphazard fashion on the map. Unlike con-
ventional correlation coefficients, spatial correlation or dependence measured by
ρ can, theoretically, take on values less than −1. However, spatial clustering
of dissimilar numerical values reflected by negative values of ρ tends to be of
less interest in applied problems than does spatial clustering of similar values.
An implication of this is that values of ρ less than −1 are rarely encountered in
applied practice.

Viewing ρ as a spatial correlation coefficient suggests that excessive accuracy
in terms of decimal digits may not be necessary. This suggests another place
where speed improvements can be made at the cost of accuracy. Changing the
grid over ρ values from increments of 0.01 to a coarse grid based on 0.1 incre-
ment reduces the 746-second time needed for a 60,611-observation sample to 160
seconds. Spline interpolation of the log determinant values for a very fine grid
based on a 0.0001 increment can be computed in 0.03 second, and the gener-
ally smooth nature of the log determinant makes these very accurate. Following
this line of reasoning, numerous methods have been proposed in the literature
that replace direct calculation of the log determinant with approximations or
estimates. For example, Barry and Pace (1999) propose a Monte Carlo log deter-
minant estimator, Smirnov and Anselin (2001) provide an approach based on a
Taylor series expansion, and Pace and LeSage (2003) suggest using a Chebyshev
expansion to replace the Taylor expansion, demonstrating improved accuracy.
LeSage and Pace (2001) report experimental results indicating that the Barry and
Pace (1999) Monte Carlo estimator achieves robustness that is rather remarkable.
As an illustration of the speed improvements associated with these approaches,
the Monte Carlo log determinant estimator required only 39 seconds to compute
the log determinant for the 60,611-observation census tract sample, which com-
pares favorably with 746 seconds, or 160 seconds in the case of the coarse grid
over ρ for this sample.

A final place where accuracy and speed trade-offs exist is in the level of
precision used to compute the numerical Hessian required to construct measures
of inference such as asymptotic t-statistics. Small changes in the tolerance used to
compute numerical differences from 1e-05 to 1e-08 can increase the time required
by 50%. Use of a log determinant approximation computed and stored for a grid
of values can be used with table lookup to speed the numerous log-likelihood
function evaluations required to compute the numerical Hessian.

228 SPATIAL REGRESSION MODELS

Ultimately, questions regarding these trade-offs between speed and accuracy
depend on the specific problem at hand. For exploratory work, where changes
are made to the model specification, the sample size of observations used, or
the spatial weight matrix structure, one might rely on fast methods that trade off
accuracy in the estimates. A switch to more accurate methods would typically
be used to produce final estimation results that will be reported.

9.3.4 Applied Illustrations

We illustrate the speed versus accuracy trade-off as well as the importance of
proper handling of data where spatial dependence is present. A sample of 10,418
census blocks in the state of Ohio were used to establish a regression relation-
ship between 1998 expenditures on tobacco, measured as the log budget share of
all expenditures and explanatory variables from the 1990 census. There may be
spatially local phenomena that contribute to smoking behavior that are not easily
measured by census variables. If so, we would expect to find a statistically sig-
nificant value for the parameter ρ, indicating the presence of spatial dependence.
This would also suggest that least squares estimates of the relationship between
the explanatory variables and expenditures on tobacco would result in different
inferences than those from a spatial autoregressive model.

The explanatory variables used were a constant term; four variables on educa-
tion [measuring (1) the proportion of population with less than 8 years’ education,
(2) the proportion with less than a high school education, (3) the proportion with a
college degree, and (4) those with a graduate or professional degree]; the propor-
tion of the census block population that was female; the proportion of population
that was born in the state; and the proportion living in the same house at the
time of the 1990 census and in 1985. The outcome and explanatory variables
were logged to convert the proportions to normally distributed magnitudes and
to facilitate interpretation of the estimated coefficients. Given the double-log
transform, we can interpret the estimated parameters as elasticities. For example,
a coefficient of −1 on college graduates would indicate that a 10% increase in
college graduates is associated with a 10% lower budget share for expenditures
on tobacco.

Least squares estimates are reported in Table 9.1 alongside those from an SAR
model. The first point to note is that the estimate for ρ was equal to 0.4684, with
a large t-statistic, indicating the presence of spatial dependence in the pattern
of expenditures on tobacco. Comparing the R-squared statistic of 0.6244 from
the least squares model to 0.7237 for the SAR model, we find that about 10%
of the variation in tobacco expenditures is accounted for by the spatially lagged
explanatory variable.

The least squares coefficient estimates appear to be biased toward overstating
the sensitivity of tobacco expenditures to all variables except “females,” where the
two models produce similar estimates. Since least squares ignores spatial depen-
dence, it attributes spatial variation in tobacco expenditures to the explanatory
variables, leading to estimates that overstate their importance. Another difference

BAYESIAN SPATIAL REGRESSION MODELS 229

Table 9.1 Model of Tobacco Expenditures at the Census Block Level

Variable OLS t-Statistic SAR t-Statistic

Constant −4.7301 −247.36 −2.5178 −134.30
0–8 years’ education 0.8950 27.93 0.6118 22.60
<12 years’ education 0.9083 32.26 0.5582 23.75
College degree −1.0111 −29.41 −0.5991 −20.15
Graduate or professional degree −1.1115 −25.86 −0.9059 −24.53
Females 0.3536 10.89 0.3547 12.92
Born in state −0.0536 −2.61 −0.0158 −0.90
Same house in 1985 and 1990 −0.6374 −47.76 −0.4877 −42.53
ρ — — 0.4703 135.00
σ 2 0.0170 — 0.0125 —
R2 0.6244 — 0.7239 —

Table 9.2 Comparison of Exact and Approximate Estimates

SAR SAR
Variable Exact t-Statistic Approx. t-Statistic

Constant −2.5178 −134.30 −2.5339 −134.18
0-8 years’ education 0.6118 22.60 0.6138 22.67
<12 years’ education 0.5582 23.75 0.5608 23.86
College degree −0.5991 −20.15 −0.6021 −20.24
Graduate or professional degree −0.9059 −24.53 −0.9074 −24.57
Females 0.3547 12.92 0.3547 12.92
Born in state −0.0158 −0.90 −0.0160 −0.92
Same house in 1985 and 1990 −0.4877 −42.53 −0.4888 −42.61
ρ 0.4703 135.00 0.4669 133.76
σ 2 0.0125 — 0.0125 —
R2 0.7239 — 0.7237 —

between the least squares and SAR estimates involves the importance of persons
‘born in the state,’ which is negative and significantly different from zero in the
OLS model, but not significant in the SAR model.

Table 9.2 illustrates the difference between estimates based on the Barry and
Pace (1999) Monte Carlo estimator for the log determinant and exact solution of
the estimation problem using sparse matrix algorithms. The time required for the
exact solution was 426 seconds, whereas the approximate solution took 9 seconds.
The estimates as well as t-statistics are identical to two decimal places in nearly
all cases, and we would draw identical inferences from both sets of estimates.

9.4 BAYESIAN SPATIAL REGRESSION MODELS

One might suppose that application of Bayesian estimation methods to SAR,
SDM, and SEM spatial regression models where the number of observations is

230 SPATIAL REGRESSION MODELS

very large would result in estimates nearly identical to those from maximum like-
lihood methods. This is a typical result when prior information is dominated by a
large amount of sample information. Bayesian methods can, however, be used to
relax the assumption of normally distributed constant-variance disturbances made
by maximum likelihood methods, resulting in heteroscedastic Bayesian variants
of the SAR, SDM, and SEM models. In these models, the prior information
exerts an impact, even in very large samples. The true benefits from applying
a Bayesian methodology to spatial problems arise when we extend the conven-
tional model to relax the assumption of normally distributed disturbances with
constant variance.

9.4.1 Bayesian Heteroscedastic Spatial Models

We introduce a more general version of the SAR, SDM, and SEM models that
allows for nonconstant variance across space, as well as outliers. When dealing
with spatial datasets one can encounter what have become known as enclave
effects, where a particular region does not follow the same relationship as the
majority of spatial observations. As an example, suppose that we were exam-
ining expenditures on alcohol at the census block level similar to our model of
tobacco expenditures. There may be places where liquor control laws prohibit
sales of alcohol, creating aberrant observations or outliers that are not explained
by census variables such as education or income. This will lead to fat-tailed
errors that are not normally distributed, but more likely to follow a Student’s-t
distribution.

This extended version of the SAR, SDM, and SEM models involves introduc-
tion of nonconstant variance to accommodate spatial heterogeneity and outliers
that arise in applied practice. Here we can follow LeSage (1997, 2000) and
introduce a set of variance scalars (v1, v2, . . . , vn), as unknown parameters that
need to be estimated. This allows us to assume that ε ∼ N(0, σ 2V), where
V = diag(v1, v2, . . . , vn). The prior distribution for the vi terms takes the form
of an independent χ2(r)/r distribution. The χ2 distribution is a single-parameter
distribution, where this parameter is labeled r . This allows estimation of the
additional n parameters vi in the model by adding the single parameter r to our
estimation procedure.

This type of prior was used in Geweke (1993) to model heteroscedasticity
and outliers in the context of linear regression. The specifics regarding the prior
assigned to the vi terms can be justified by considering that the prior mean is
equal to unity and the variance of the prior is 2/r . This implies that as r becomes
very large, the terms vi will all approach unity, resulting in V = In, the traditional
assumption of constant variance across space. On the other hand, small values of
r lead to a skewed distribution that permits large values of vi that deviate greatly
from the prior mean of unity. The role of these large vi values is to accommo-
date outliers or observations containing large variances by downweighting these
observations. Note that ε ∼ N(0, σ 2V) with V diagonal implies a generalized
least squares (GLS) correction to the vector y and explanatory variables matrix
X. The GLS correction involves dividing through by

√
vi , which leads to large

BAYESIAN SPATIAL REGRESSION MODELS 231

vi values functioning to downweight these observations. Even in large samples,
this prior will exert an impact on the estimation outcome.

A formal statement of the Bayesian heteroscedastic SAR model is

y = ρWy + Xβ + ε

ε ∼ N(0, σ 2V) V = diag(v1, . . . , vn)

π(β) ∼ N(c, T)

π(r/vi) ∼ IIDχ2(r)

π(1/σ 2) ∼ �(d, ν),

(9.10)

where we have added a normal-gamma conjugate prior for β and σ , a diffuse
prior for ρ, and the chi-squared prior for the terms in V . The prior distributions
are indicated using π .

With very large samples involving upward of 10,000 observations, the normal-
gamma priors for β, σ should exert relatively little influence. Setting c to zero
and T to a very large number results in a diffuse prior for β. Diffuse settings for
σ are d = 0 and ν = 0. For completeness, we develop the results for the case of
a normal-gamma prior on β and σ .

In contrast to the case of the priors on β and σ , assigning an informative prior
to the parameter ρ associated with spatial dependence would exert an impact
on the estimation outcomes even in large samples. This is due to the impor-
tant role played by spatial dependence in these models. In typical applications
where the magnitude and significance of ρ is a subject of interest, a diffuse prior
should be used. It is possible, however, to rely on an informative prior for this
parameter.

9.4.2 Estimation of Bayesian Spatial Models

An unfortunate situation arises with this extension in that the addition of the
chi-squared prior greatly complicates the posterior distribution. Assume for the
moment, diffuse priors for β and σ . A key insight is that if we knew V , this prob-
lem would look like a GLS version of the previous constant-variance maximum
likelihood problem. That is, conditional on V , we would arrive at expressions
similar to those in our earlier model, where the y and X are transformed by divid-
ing through by:

√
diag(V). We rely on a Markov Chain Monte Carlo (MCMC)

estimation method that exploits this fact.
MCMC is based on the idea that a large sample from the posterior distribution

of our parameters can be used in place of an analytical solution when this is
difficult or impossible (see Chapter 5). We designate the posterior using p(θ |D),
where θ represents the parameters and D the sample data. If the samples from
p(θ |D) were large enough, we could approximate the form of the posterior
density using kernel density estimators or histograms, eliminating the need to
know the precise analytical form of this complicated density. Simple statistics

232 SPATIAL REGRESSION MODELS

can be used to construct means and variances based on the sample from the
posterior.

The parameters β, V , and σ in the heteroscedastic SAR model can be estimated
by drawing sequentially from the conditional distributions of these parameters,
a process known as Gibbs sampling because of its origins in image analysis
(Geman and Geman 1984). It is also labeled alternating conditional sampling,
which seems a more accurate description. Gelfand and Smith (1990) demonstrate
that sampling from the sequence of complete conditional distributions for all
parameters in the model produces a set of estimates that converge in the limit to
the true (joint) posterior distribution of the parameters. That is, despite the use
of conditional distributions in our sampling scheme, a large sample of the draws
can be used to produce valid posterior inferences regarding the joint posterior
mean and moments of the parameters.

9.4.3 Conditional Distributions for the SAR Model

To implement this estimation method, we need to determine the conditional dis-
tributions for each parameter in our Bayesian heteroscedastic SAR model. The
conditional distribution for β follows from the insight that given V , we can rely
on standard Bayesian GLS regression results to show that

p(β|ρ, σ, V) ∼ N(b, σ 2B)

β = (X′V −1X + σ 2T −1)−1(X′V −1(In − ρW)y + σ 2T −1c)

B = σ 2(X′V −1X + σ 2T −1)−1.

(9.11)

We see that the conditional for β is a multinormal distribution, from which it is
easy to sample a vector β.

Given the other parameters, the conditional distribution for σ takes the form
(see Gelman et al. 1995)

p(σ 2|β, ρ, V) ∝ (σ 2)−(n/2+d+1) exp

[
−e′V −1e + 2ν

2σ 2

]
(9.12)

e = (In − ρW)y − Xβ, (9.13)

which is proportional to an inverse gamma distribution with parameters (n/2)+d

and e′V −1e+2ν. Again, this would be an easy distribution from which to sample
a scalar value for σ .

Geweke (1993) shows that the conditional distribution of V given the other
parameters is proportional to a chi-square density with r +1 degrees of freedom.
Specifically, we can express the conditional posterior of each vi as

p

(
e2
i + r

vi

∣∣∣∣β, ρ, σ 2, v−i

)
∼ χ2(r + 1), (9.14)

BAYESIAN SPATIAL REGRESSION MODELS 233

where v−i = (v1, . . . , vi−1, vi+1, . . . , vn) for each i and e is as defined in (9.13).
Again, this represents a known distribution from which it is easy to construct a
sequence of scalar draws.

Finally, the conditional posterior distribution of ρ takes the form

p(ρ|β, σ, V) ∝ |In − ρW |(s2(ρ))−(n−k)/2

s2(ρ) = ((In − ρW)y − Xb(ρ))′V −1((In − ρW)y

− Xb(ρ))/(n − k)

b(ρ) = (X′X)−1X′(In − ρW)y.

(9.15)

A problem arises here in that this distribution is not one for which estab-
lished algorithms exist to produce random draws. Given the computational power
of today’s computers, one can produce a draw from the conditional distribu-
tion for ρ in these models using univariate numerical integration on each pass
through the sampler. A few years back, this would have been unthinkable, as
numerical integration represented one of the more computationally demanding
tasks.

To carry out numerical integration efficiently, we use logs to transform the
conditional posterior in (9.15), and the Barry and Pace (1999) Monte Carlo esti-
mator for the log determinant term, along with the vectorized expression for
s(ρ)2 = φ(ρi) = e′

oeo − 2ρie
′
deo + ρ2

i e′
ded . This produces a simple numerical

integration problem that can be solved rapidly using Simpson’s rule. We arrive at
the entire conditional distribution using this numerical integration approach and
then produce a draw from this distribution using inversion.

To see how inversion works, consider that we could arrange the distribution
of ρ values in a vector sorted from low to high. There would be a large number
of similar (or identical) ρ values in the vector near the mode of the distribution
and only a few similar values at the beginning and end of the vector representing
the two tails of the distribution. This is because the vector reflects the frequency
of ρ values in the conditional distribution. Suppose that the vector of ρ values
representing the conditional distribution contained 1000 values. A uniform draw
from the set of integers between 1 and 1000 can be used to index into the vector
representing the conditional distribution to select a ρ value. Values selected in this
fashion reflect draws by inversion from the conditional distribution of ρ. Since
values near the modal value will represent a majority of the values in the vector,
these will most often be the resulting value drawn for ρ, as they should be.

Keep in mind that on the next pass through the MCMC sampler, we need
to integrate the conditional posterior again. This is because the distribution is
conditional on the changing values for the other parameters (vi, β, σ) in the
model. New values for the parameters produce an altered expression for s2 in
the conditional distribution for ρ, as well as a new value for the log determinant.
Nonetheless, given that we have computed the log determinant over a grid of ρ

values and stored these values for table lookup during sampling, this part of the
integration problem can be carried out rapidly.

234 SPATIAL REGRESSION MODELS

It should be noted that an alternative approach to sampling from the conditional
distribution using a Metropolis–Hastings algorithm is described in LeSage (2000),
where a normal or Student’s t is recommended as the proposal distribution.

9.4.4 MCMC Sampler

By way of summary, an MCMC estimation scheme involves starting with arbi-
trary initial values for the parameters, which we denote β0, σ 0, V 0, and ρ0. We
then sample sequentially from the following set of conditional distributions for
the parameters in our model (see Chapter 5 for details).

1. p(β|σ 0, V 0, ρ0), which is a multinormal distribution with mean and vari-
ance defined in (9.11). This updated value for the parameter vector β we
label β1.

2. p(σ |β1, V 0, ρ0), which is chi-square distributed with n + 2d degrees of
freedom, as shown in (9.13). Note that we rely on the updated value of the
parameter vector β = β1 when evaluating this conditional density. We label
the updated parameter σ = σ 1 and note that we will continue to employ
the updated values of previously sampled parameters when evaluating the
next conditional densities in the sequence.

3. p(vi |β1, σ 1, v−i , ρ
0), which can be obtained from the chi-square distribu-

tion shown in (9.14). Note that this draw can be accomplished as a vector,
providing greater speed.

4. p(ρ|β1, σ 1, V 1), which we sample using numerical integration and inver-
sion. It is possible to constrain ρ to an interval such as (0,1) using rejection
sampling. This simply means that we reject values of ρ outside this inter-
val. Note also that it is easy to implement a normal or some alternative
prior distribution for this parameter.

We now return to step 1, employing the updated parameter values in place of
the initial values β0, σ 0, V 0, and ρ0. On each pass through the sequence we col-
lect the parameter draws which are used to construct a joint posterior distribution
for the parameters in our model. As already noted, Gelfand and Smith (1990)
demonstrate that MCMC sampling from the sequence of complete conditional
distributions for all parameters in the model produces a set of estimates that
converge in the limit to the true (joint) posterior distribution of the parameters.
Another point to note is that the parameter draws can be used to test hypotheses
regarding any function of interest involving the parameters.

9.4.5 Illustration of the Bayesian Model

To illustrate the Bayesian model, we use the same Ohio census block-level data
sample but use the log budget share of expenditures on alcohol as the outcome
variable. A set of 2500 draws were made from the conditional posterior distri-
butions of the model, with the first 500 draws discarded to allow the sampling

BAYESIAN SPATIAL REGRESSION MODELS 235

scheme to settle into a steady state. Tests for convergence of the sampler were
based on longer runs, involving up to 10,000 draws, that produced estimates
identical to two decimal places to those from 2500 draws. The hyperparameter r ,
representing our prior concerning heteroscedasticity, was set to a small value of
7, reflecting a prior belief in nonconstant variance for this model. Diffuse priors
were used for all other parameters in the model.

It happens that census blocks in urban entertainment areas exhibit large mag-
nitudes for the vi estimates, indicating that census demographics associated with
these blocks do not account for the budget share of alcohol expenditures. Of
course, expenditures need not take place in the same location where people
reside, so use of census block sociodemographic characteristics is unlikely to
model adequately the spatial pattern of these expenditures.

Maximum likelihood estimates for the parameters of the SAR model are pre-
sented in Table 9.3 along with those from the Bayesian heteroscedastic spatial
SAR model. The first point to note is that the spatial correlation parameter ρ

is much higher for the robust Bayesian model that accommodates nonconstant
variance. Aberrant observations will distort the spatial pattern in the outcome
variable, making it more difficult to estimate the extent of spatial dependence in
the data.

The estimates indicate that low levels of education are associated with lower
expenditures for alcohol, since the coefficients on education of less than eight
years and less than high school are both negative and significant. In contrast, col-
lege graduates and professionals are positively associated with expenditures on
alcohol. Women exert a negative influence on alcohol consumption, as might be
expected. A difference between the maximum likelihood and Bayesian estimates
is that a higher proportion of population ‘born in the state’ is positive and sig-
nificant in the case of maximum likelihood and negative and insignificant for the
Bayesian model. Another difference can be found in the estimate for ‘females,’
which is higher in the Bayesian model.

Table 9.3 Estimates for the Spatial Alcohol Expenditures Model

SAR SAR
Variable ML t-Statistic Bayesian t-Statistic

Constant −3.1861 −4591.83 −2.6146 −65.07
0-8 years’ education −0.1210 −15.31 −0.1215 −19.07
<12 years’ education −0.1447 −20.81 −0.1219 −23.47
College degree 0.1324 15.69 0.1280 20.57
Graduate or professional degree 0.1372 12.98 0.1166 15.43
Females −0.0707 −8.85 −0.0989 −14.35
Born in state 0.0093 1.85 −0.0029 −0.80
Same house in 1985 and 1990 0.1038 31.68 0.1063 44.49
ρ 0.3279 548.01 0.4453 52.62
σ 2 0.0010 — 0.0003 —
R2 0.4976 — 0.5001 —

236 SPATIAL REGRESSION MODELS

Fig. 9.2 Map of large vi estimates.

A final point is that the lower coefficient estimate for ρ in the maximum
likelihood results leads to a slight overstatement of the influence of education for
those with less than 12 years as well as college and graduate/professionals.

A map of Ohio with the census blocks where the estimates for vi exceeded
a value of 4 is shown in Figure 9.2. There were 87 values where this was
true, reflecting a variance four times that assumed by the homoscedastic maxi-
mum likelihood model. Although this represents a small fraction of the 10,418
census blocks used as observations, these 87 values exhibit a distinct spa-
tial pattern. Figure 9.2 indicates that these aberrant observations exist primar-
ily in the eight large metropolitan areas of Ohio: Akron, Canton, Cincinnati,
Cleveland, Columbus, Dayton, Toledo, and Youngstown–Warren. This should
not be surprising in that entertainment venues in these urban areas reflect places
where alcohol expenditures are high. The practical impact of this is that the
Bayesian estimates place less weight on observations from these urban areas.
Large vi estimates lead to downweighting the associated observations, as noted
earlier.

9.5 CONCLUSIONS

The use of sparse matrix algorithms along with estimates or approximations
to the troublesome log determinant of an n × n by n matrix that appears in the

CONCLUSIONS 237

likelihood allow large spatial estimation problems to be carried out in a reasonable
amount of time. Because Bayesian models also rely on the likelihood, many of
the computational advances described here for maximum likelihood estimation
can also be applied to Bayesian estimation. In this connection it should be noted
that it took only 342 seconds to produce 2500 draws for the problem involving
10,514 census block observations. This time is based on using the Barry and
Pace (1999) Monte Carlo estimator for the log determinant as well as univariate
numerical integration of the conditional distribution for ρ on every pass through
the sampler. This timing result is based on using MATLAB version 6.1 on a
1200-megahertz Athalon processor. Use of c-language functions that interface
with MATLAB reduced this time to 228 seconds.

Another issue discussed was the trade-off between computational speed and
accuracy. One can analyze the impact of: (1) using approximations, (2) changing
tolerances, and (3) placing reasonable restrictions or bounds on parameter values
during optimization. Flexible software algorithms should allow users to change
these aspects of the program so that exploratory work might be carried out using
faster but less accurate versions of the algorithm. Public-domain algorithms for
use with MATLAB that take this approach are available at <http://www.
spatial-econometrics.com>, along with c-language functions that can
be used in conjunction with MATLAB or as stand-alone functions.

C H A P T E R 10

Convergence Problems
in Logistic Regression
Paul Allison

10.1 INTRODUCTION

Anyone with much practical experience using logistic regression will have occa-
sionally encountered problems with convergence. Such problems are usually both
puzzling and exasperating. Most researchers haven’t a clue as to why certain
models and certain data sets lead to convergence difficulties. For those who do
understand the causes of the problem, it is often unclear whether and how the
problem can be fixed.

In this chapter we explain why numerical algorithms for maximum likelihood
estimation of the logistic regression model sometimes fail to converge and con-
sider a number possible solutions. Along the way, we look at the performance of
several popular computing packages when they encounter convergence problems
of varying kinds.

10.2 OVERVIEW OF LOGISTIC MAXIMUM
LIKELIHOOD ESTIMATION

We begin with a review of the logistic regression model and maximum likelihood
estimation of its parameters. For a sample of n cases (i = 1, . . . , n) there are
data on a dichotomous outcome variable yi (with values of 1 and 0) and a vector
of explanatory variables xi (including a 1 for the intercept term). The logistic
regression model states that

Pr(yi = 1|xi) = 1

1 + exp(−βxi)
, (10.1)

where β is a vector of coefficients. Equivalently, the model may be written in
logit form:

ln

[
Pr(yi = 1|xi)

Pr(yi = 0|xi)

]
= βxi . (10.2)

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

238

OVERVIEW OF LOGISTIC MAXIMUM LIKELIHOOD ESTIMATION 239

Assuming that the n cases are independent, the log-likelihood function for this
model is

	(β) =
∑

i

βxiyi −
∑

i

ln[1 + exp(βxi)]. (10.3)

The goal of maximum likelihood estimation is to find a set of values for β

that maximize this function. One well-known approach to maximizing a function
such as this is to differentiate it with respect to β, set the derivative equal to
0, and then solve the resulting set of equations. The first derivative of the log
likelihood is

∂	(β)

∂β
=
∑

i

xiyi −
∑

i

xi ŷi , (10.4)

where ŷi is the predicted value of yi :

ŷi = 1

1 + exp(−βxi)
. (10.5)

The next step is to set the derivative equal to 0 and solve for β:∑
i

xiyi −
∑

i

xi ŷi = 0. (10.6)

Because β is a vector, (10.6) is actually a set of equations, one for each of
the parameters to be estimated. These equations are identical to the “normal”
equations for least squares linear regression, except that by (10.5), ŷi is a non-
linear function of the xi’s rather than a linear function.

For some models and data (e.g., “saturated” models), the equations in (10.6)
can be solved explicitly for the ML estimator β̂. For example, suppose that there
is a single dichotomous x variable such that the data can be arrayed in a 2×2 table,
with observed cell frequencies f11, f12, f21, and f22. Then the ML estimator of
the coefficient of x is given by the logarithm of the cross-product ratio:

β̂ = ln
f11f22

f12f21
. (10.7)

For most data and models, however, the equations in (10.6) have no explicit
solution. In such cases, the equations must be solved by numerical methods,
of which there are many. The most popular numerical method is the Newton–
Raphson algorithm. Let U(β) be the vector of first derivatives of the log likeli-
hood with respect to β, and let I(β) be the matrix of second derivatives. That is,

U(β) = ∂	(β)

∂β
=
∑

i

xiyi −
∑

i

xi ŷi

I(β) = ∂2	(β)

∂β∂β ′ =
∑

i

xix′
i ŷi (1 − ŷi).

(10.8)

240 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

The vector of first derivatives U(β) is called the gradient, while the matrix of
second derivatives I(β) is called the Hessian. The Newton–Raphson algorithm
is then

βj+1 = βj − I−1(βj)U(βj), (10.9)

where I−1 is the inverse of I. Chapter 6 showed what can go wrong with this
process as well as some remedies.

To operationalize this algorithm, a set of starting values β0 is required. Choice
of starting values is usually not critical for solving the problem above; usually,
setting β0 = 0 works fine. (Note, however, that when Newton–Raphson and
similar algorithms are used to solve other types of problems, starting values may
be quite important; see Chapters 4 and 8.) The starting values are substituted
into the right-hand side of (10.9), which yields the result for the first iteration,
β1, These values are then substituted back into the right-hand side, the first and
second derivatives are recomputed, and the result is β2. The process is repeated
until the maximum change in each parameter estimate from one iteration to the
next is less than some criterion, at which point we say that the algorithm has
converged. Once we have the results of the final iteration, β̂, a by-product of
the Newton–Raphson algorithm is an estimate of the covariance matrix of the
coefficients, which is just −I−1(β̂). Estimates of the standard errors of the coef-
ficients are obtained by taking the square roots of the main diagonal elements of
this matrix.

10.3 WHAT CAN GO WRONG?

A problem that often occurs in trying to maximize a function is that the function
may have local maxima, that is, points that are larger than any nearby point but
not as large as some more distant point. In those cases, setting the first derivative
equal to zero will yield equations that have more than one solution. If the starting
values for the Newton–Raphson algorithm are close to a local maximum, the
algorithm will probably iterate to that point rather than the global maximum.
Fortunately, problems with multiple maxima cannot occur with logistic regression
because the log likelihood is globally concave, meaning that the function can have
at most one maximum (Amemiya 1985).

Unfortunately, there are many situations in which the likelihood function has
no maximum, in which case we say that the maximum likelihood estimate does
not exist. Consider the set of data on 10 observations in Table 10.1.

For these data it can be shown that the ML estimate of the intercept is zero.
Figure 10.1 shows a graph of the log likelihood as a function of the slope “beta”.
It is apparent that although the log likelihood is bounded above by zero, it does
not reach a maximum as beta increases. We can make the log likelihood as
close to zero as we choose by making beta sufficiently large. Hence, there is no
maximum likelihood estimate.

This is an example of a problem known as complete separation (Albert and
Anderson 1984), which occurs whenever there exists some vector of coefficients

WHAT CAN GO WRONG? 241

Table 10.1 Data Exhibiting
Complete Separation

x y x y

−5 0 1 1
−4 0 2 1
−3 0 3 1
−2 0 2 1
−1 0 5 1

0

−1

−2

−3

−4

−5

−6

−7

0 1 2 3 4 5
b

Lo
g-

lik
el

ih
oo

d

Fig. 10.1 Log-likelihood as a function of the slope under complete separation.

b such that yi = 1 whenever bxi > 0 and yi = 0 whenever bxi < 0. In other
words, complete separation occurs whenever a linear function of x can generate
perfect predictions of y. For our hypothetical dataset, a simple linear function
that satisfies this property is 0 + 1(x). That is, when x is greater than 0, y = 1,
and when x is less than 0, y = 0.

A related problem is known as quasi-complete separation. This occurs when
there exists some coefficient vector b such that bxi ≥ 0 whenever yi = 1 and
bxi ≤ 0 whenever yi = 0, and when equality holds for at least one case in each
category of the outcome variable. Table 10.2 displays a dataset that satisfies this
condition. What distinguishes this dataset from the preceding one is that there are
two additional observations, each with x values of 0 but having different values
of y.

The log-likelihood function for these data, shown in Figure 10.2, is similar in
shape to that in Figure 10.1. However, the asymptote for the curve is not 0 but a

242 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

Table 10.2 Data Exhibiting
Quasi-Complete Separation

x y x y

−5 0 1 1
−4 0 2 1
−3 0 3 1
−2 0 2 1
−1 0 5 1

0 0 0 1

0

−1

−2

−3

−4

−5

−6

−7

−8

−9

1 2 3 4 5
b

Lo
g-

lik
el

ih
oo

d

Fig. 10.2 Log-likelihood as a function of the slope: quasi-complete separation.

number that is approximately −1.39. In general, the log-likelihood function for
quasi-complete separation will not approach zero, but some number lower than
that. In any case, the curve has no maximum, so again, the maximum likelihood
estimate does not exist.

Of the two conditions, complete and quasi-complete separation, the latter is far
more common. It most often occurs when an explanatory variable x is a dummy
variable, and for one value of x, either every case has the event y = 1 or every
case has the event y = 0. Consider the following 2 × 2 table:

y

1 0

1 5 0
x

0 15 10

BEHAVIOR OF THE NEWTON–RAPHSON ALGORITHM UNDER SEPARATION 243

If we form the linear function c = 0 + (1)x, we have c ≥ 0 when y = 1 and
c ≤ 0 when y = 0. Further, for all the cases in the second row, c = 0 for both
values of y. So the conditions of quasi-complete separation are satisfied.

To get some intuitive sense of why this leads to nonexistence of the maximum
likelihood estimator, consider equation (10.7), which gives the maximum likeli-
hood estimator of the slope coefficient for a 2 × 2 table. For our quasi-complete
table, that would be

β̂ = ln

[
5 × 10

15 × 0

]
. (10.10)

But this is undefined because there is a zero in the denominator. The same
problem would occur if there were a zero in the numerator because the logarithm
of zero is also undefined. If the table is altered to read

y

1 0

1 5 0
x

0 0 10

there is complete separation, with zeros in both the numerator and the denomi-
nator.

So the general principle is evident: Whenever there is a zero in any cell of
a 2 × 2 table, the maximum likelihood estimate of the logistic slope coefficient
does not exist. This principle also extends to multiple explanatory variables: For
any dichotomous explanatory variable in a logistic regression, if there is a zero in
the 2×2 table formed by that variable and the outcome variable, the ML estimate
for the regression coefficient will not exist.

This is by far the most common cause of convergence failure in logistic
regression. Obviously, it is more likely to occur when the sample size is small.
Even in large samples, it will frequently occur when there are extreme splits
on the frequency distribution of either the outcome or explanatory variables.
Consider, for example, a logistic regression predicting whether a person had
some rare disease whose overall prevalence is less than 1 in 1000. Suppose
further that the explanatory variables include a set of seven dummy variables
representing different age categories. Even if the sample contained 20,000 cases,
it would hardly be surprising if no one had the disease for at least one of the age
categories, leading to quasi-complete separation.

10.4 BEHAVIOR OF THE NEWTON–RAPHSON ALGORITHM
UNDER SEPARATION

We just saw that when there are explicit formulas for the maximum likelihood
estimate and there is either complete or quasi-complete separation, the occurrence

244 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

of zeros in the formulas prevents computation. What happens when the Newton–
Raphson algorithm is applied to data exhibiting either kind of separation? That
depends on the particular implementation of the algorithm. The classic behavior is
this: At each iteration, the parameter estimate for the variable (or variables) with
separation gets larger in magnitude. Iterations continue until the fixed iteration
limit is exceeded. At whatever limit is reached, the parameter estimate is large
and the estimated standard error is extremely large. If separation is complete, the
log likelihood will be reported as zero.

10.4.1 Specific Implementations

What actually happens depends greatly on how the algorithm is implemented. To
determine how available software handles complete and quasi-complete separa-
tion, I tried estimating logistic regression models for the datasets in Tables 10.1
and 10.2 using several popular statistical packages. For some packages (SAS,
Stata), more than one command or procedure was evaluated. Keep in mind
that these tests were run in September 2002 using software versions that were
available to me at the time. Results are summarized in Table 10.3. What follows
is a detailed discussion of each of the headings in this table.

10.4.2 Warning Messages

Ideally, the program should detect the separation and issue a clear warning
message to the user. In their classic paper on separation in logistic regression,
Albert and Anderson (1984) proposed one “empirical” method that has been

Table 10.3 Performance of Packages under Complete and Quasi-Complete
Separation

Warning False Report LR
Messagesa Convergence Estimates Statistics

Comp. Quasi. Comp. Quasi. Comp. Quasi. Comp. Quasi.

GLIM * * * *
JMP A A * * * * * *
LIMDEP * * * *
Minitab * *
R A A * * * *
SAS GENMOD A * * * * *
SAS LOGISTIC C C * *
SAS CATMOD A A * * * *
SPSS C * *
Stata LOGIT C C *
Stata MLOGIT * * * *
Systat C * * *
aC, clear warning; A, ambiguous warning.

BEHAVIOR OF THE NEWTON–RAPHSON ALGORITHM UNDER SEPARATION 245

implemented in PROC LOGISTIC in SAS software (SAS Institute 1999). It has
the following steps:

1. If the convergence criterion is satisfied within eight iterations, conclude
that there is no problem.

2. For all iterations after the eighth, compute the probability of the observed
response predicted for each observation, which is given by

ŷi = 1

1 + exp[(2yi − 1)β̂xi]
.

If the probability predicted is 1 for all observations, conclude that there is
complete separation and stop the iterations.

3. If the probability of the observed response is large (≥ 0.95) for some obser-
vations (but not all), the examine estimated standard errors for that iteration.
If they exceed some criterion, conclude that there is quasi-complete sepa-
ration and stop the iteration.

The check for complete separation is very reliable, but the check for quasi-
complete separation is less so. For more reliable checks of quasi-complete
separation, methods based on linear programming algorithms have been proposed
by Albert and Anderson (1984) and Santner and Duffy (1986).

When the dataset in Table 10.1 was used with PROC LOGISTIC, it printed
the message

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not
exist.

WARNING: The LOGISTIC procedure continues in spite of
the above warning. Results shown are based
on the last maximum likelihood iteration.
Validity of the model fit is questionable.

For quasi-complete separation, the message was

Quasicomplete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of

the above warning. Results shown are based
on the last maximum likelihood iteration.
Validity of the model fit is questionable.

Although PROC LOGISTIC came close to the ideal, most other software left
much to be desired with regard to detection and warnings. SPSS did a good job
for complete separation, presenting the following warning:

246 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

Estimation terminated at iteration number 21 because a
perfect fit is detected. This solution is not unique.
Warning \# 18582 Covariance matrix cannot be computed.
Remaining statistics will be omitted.

But SPSS gave no warning message for quasi-complete separation. For com-
plete separation, the LOGIT command in STATA gave the message

outcome = x>-1 predicts data perfectly

For quasi-complete separation, the message was

outcome = x>0 predicts data perfectly except for x==0
subsample: x dropped and 10 obs not used

For complete separation, Systat produced the message

Failure to fit model or perfect fit

but said nothing in the case of quasi-complete separation.
Several other programs produced warning messages that were ambiguous or

cryptic. SAS CATMOD marked certain coefficient estimates with # and said that
they were “regarded to be infinite.” JMP identified some coefficient estimates as
“unstable.” R said that some of the fitted probabilities were numerically 0 or 1.
For quasi-complete separation, the GENMOD procedure in SAS reported that the
negative of the Hessian matrix was not positive definite. Finally, several programs
gave no warning messages whatsoever (GLIM, LIMDEP, Stata MLOGIT, and
Minitab).

10.4.3 False Convergence

Strictly speaking, the Newton–Raphson algorithm should not converge under
either complete or quasi-complete separation. Nevertheless, the only program
that exhibited this classic behavior was Minitab. No matter how high I raised
the maximum number of iterations, this program would not converge. With the
exception of SAS LOGISTIC and Stata LOGIT (both of which stopped the
iterations once separation had been detected), the remaining programs all reported
that the convergence criterion had been met. In some cases (GLIM, R, SPSS, and
Systat) it was necessary to increase the maximum iterations beyond the default
to achieve this apparent convergence.

Lacking information on the convergence criterion for most of these programs,
I do not have a definite explanation for the false convergence. One possibility
is that the convergence criterion is based on the log likelihood rather than the
parameter estimates. Some logistic regression programs determine convergence
by examining the change in the log likelihood from one iteration to the next.
If that change is less than some criterion, convergence is declared and the iter-
ations cease. Unfortunately, as seen in Figures 10.1 and 10.2, with complete
or quasi-complete separation the log-likelihood may change imperceptibly from

DIAGNOSIS OF SEPARATION PROBLEMS 247

one iteration to the next, even as the parameter estimate is rapidly increasing in
magnitude. So to avoid the false appearance of convergence, it is essential that
convergence be evaluated by looking at changes in the parameter estimate across
iterations rather than changes in the log-likelihood.

The explanation is a bit more complicated with the SAS GENMOD proce-
dure, however. SAS documentation is quite explicit that the criterion is based on
parameter estimates, not on the log-likelihood (SAS Institute 1999). But GEN-
MOD uses a modified Newton–Raphson algorithm that performs a line search at
each step to stabilize its convergence properties. In most cases this improves the
rate of convergence. However, if the likelihood cannot be improved along the
current Newton step, the algorithm returns the current parameter values as the
updated values and therefore determines that the convergence criterion has been
met (G. Johnston 2002 personal communication).

Whatever the explanation, the combination of apparent convergence and lack
of clear warning messages in many programs means that some users are likely
to be misled about the viability of their parameter estimates.

10.4.4 Reporting of Parameter Estimates and Standard Errors

Some programs do a good job of detecting and warning about complete separation
but then fail to report any parameter estimates or standard errors (SPSS, STATA
LOGIT). This might seem sensible since nonconvergent estimates are essentially
worthless as parameter estimates. However, they may still serve a useful diag-
nostic purpose in determining which variables have complete or quasi-complete
separation.

10.4.5 Likelihood Ratio Statistics

Some programs (SAS GENMOD, JMP) report optional likelihood-ratio chi-square
tests for each coefficient in the model. Unlike Wald chi-squares, which are essen-
tially useless under complete or quasi-complete separation, the likelihood ratio
test is still a valid test of the null hypothesis that a coefficient is equal to zero.
Thus, even if a certain parameter cannot be estimated, it may still be possible to
judge whether or not it is significantly different from zero.

10.5 DIAGNOSIS OF SEPARATION PROBLEMS

We are now in a position to make some recommendations about how the statistical
analyst should approach the detection of problems of complete or quasi-complete
separation. If you are using software that gives clear diagnostic messages (SAS
LOGISTIC, STATA LOGIT), one-half of the battle is won. But there is still a
need to determine which variables are causing the problem and to get a better
sense of the nature of the problem.

The second step (or the first step with programs that do not give good warning
messages) is to carefully examine the estimated coefficients and their standard

248 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

errors. Variables with nonexistent coefficients will invariably have large param-
eter estimates, typically greater than 5.0, and huge standard errors, producing
Wald chi-square statistics that are near zero. If any of these variables is a
dummy (indicator) variable, the next step is to construct the 2 × 2 table for
each dummy variable with the outcome variable. A frequency of zero in any
single cell of the table implies quasi-complete separation. Less commonly, if
there are two diagonally opposed zeros in the table, the condition is complete
separation.

Once you have determined which variables are causing separation problems, it
is time to consider possible solutions. The potential solutions are somewhat dif-
ferent for complete and quasi-complete separation, so I will treat them separately.
I begin with the more common problem of quasi-complete separation.

10.6 SOLUTIONS FOR QUASI-COMPLETE SEPARATION

10.6.1 Deletion of Problem Variables

In practice, the most widely used method for dealing with quasi-complete sep-
aration is simply to delete from the model any variables whose coefficients did
not converge. I do not recommend this method. If a variable has quasi-complete
separation with the outcome variable, it is reasonable to suppose that the variable
has a strong (albeit noninfinite) effect on the outcome variable. Deleting variables
with strong effects will certainly obscure the effects of those variables and is also
likely to bias the coefficients for other variables in the model.

10.6.2 Combining Categories

As noted earlier, the most common cause of quasi-complete separation is a
dummy predictor variable such that for one level of the variable, either every
observation has the event or no observation has the event. For those cases in
which the problem variable is one of a set of variables representing a single
categorical variable, the problem can often be solved easily by combining cate-
gories. For example, suppose that marital status has five categories: never married,
currently married, divorced, separated, and widowed. This variable could be
represented by four dummy variables, with currently married as the reference
category. Suppose further that the sample contains 50 persons who are divorced
but only 10 who are separated. If the outcome variable is 1 for employed and 0
for unemployed, it’s quite plausible that all 10 of the separated persons would be
employed, leading to quasi-complete separation. A natural and simple solution is
to combine the divorced and separated categories, turning two dummy variables
into a single dummy variable.

Similar problems often arise when a quantitative variable such as age is divided
into a set of categories with dummy variables for all but one of the categories.
Although this can be a useful device for representing nonlinear effects, it can
easily lead to quasi-complete separation if the number of categories is large and

SOLUTIONS FOR QUASI-COMPLETE SEPARATION 249

the number of cases within some categories is small. The solution is to use a
smaller number of categories or perhaps to revert to the original quantitative
representation of the variable.

If the dummy variable represents an irreducible dichotomy such as sex, this
solution is clearly not feasible. However, there is another simple method that
often provides a very satisfactory solution.

10.6.3 Do Nothing and Report Likelihood Ratio Chi-Squares

Just because maximum likelihood estimates do not exist for some coefficients
because of quasi-complete separation, that does not mean that they do not exist
for other variables in the logistic regression model. In fact, if one leaves the
offending variables in the model, the coefficients, standard errors, and test statis-
tics for the remaining variables are still valid maximum likelihood estimates. So
one attractive strategy is just to leave the problem variables in the model. The
coefficients for those variables could be reported as +∞ or −∞. The standard
errors and Wald statistics for the problem variables will certainly be incorrect,
but as noted above, likelihood ratio tests for the null hypothesis that the coeffi-
cient is zero are still valid. If these statistics are not available as options in the
computer program, they can be obtained easily by fitting the model with and
without each problem variable, then taking twice the positive difference in the
log-likelihoods.

If the problem variable is a dummy variable, the estimates obtained for the
other variables have a special interpretation. They are the ML estimates for
the subsample of cases that fall into the category of the dummy variable, in
which observations differ on the outcome variable. For example, suppose that the
outcome variable is whether or not a person smokes cigars. A dummy variable
for sex is included in the model, but none of the women smoke cigars, producing
quasi-complete separation. If sex is left in the model, the coefficients for the
remaining variables (e.g., age, income, education) represent the effects of those
variables among men only. (This can easily be verified by actually running the
model for men only.) The advantage of doing it in the full sample with sex as a
covariate is that one also gets a test of the sex effect (using the likelihood ratio
chi-square) while controlling for the other predictor variables.

10.6.4 Exact Inference

As mentioned previously, problems of separation are most likely to occur in
small samples and/or when there is an extreme split on the outcome variable. Of
course, even without separation problems, maximum likelihood estimates may
not have good properties in small samples. One possible solution is to abandon
maximum likelihood entirely and do exact logistic regression. This method was
originally proposed by Cox (1970) but was not computationally feasible until the
advent of the LogXact program and, more recently, the introduction of exact
methods to the LOGISTIC procedure in SAS.

250 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

Exact logistic regression is designed to produce exact p-values for the null
hypothesis that each predictor variable has a coefficient of zero, conditional on
all the other predictors. These p-values, based on permutations of the data rather
than on large-sample chi-square approximations, are essentially unaffected by
complete or quasi-complete separation. The coefficient estimates reported with
this method are usually conditional maximum likelihood estimates, and these may
not be correct when there is separation. In that event, both LogXact and PROC
LOGISTIC report median unbiased estimates for the problem coefficients. If the
true value is β, a median unbiased estimator βu has the property

Pr(βu ≤ β) ≥ 1
2 , Pr(βu ≥ β) ≥ 1

2 , (10.11)

Hirji et al. (1989) demonstrated that the median unbiased estimator is generally
more accurate than the maximum likelihood estimator for small sample sizes.

I used PROC LOGISTIC to do exact estimation for the data in Tables 10.1
and 10.2. For the completely separated data in Table 10.1, the p-value for the
coefficient of x was 0.0079. The median unbiased estimate was 0.7007. For the
quasi-completely separated data in Table 10.2, the p-value was 0.0043 with a
median unbiased estimate 0.9878.

Despite the attractiveness of exact logistic regression, it is essential to empha-
size that it is computationally feasible only for quite small samples. For example,
I recently tried to estimate a model for 150 cases with a 2:1 split on the outcome
variable and five explanatory variables. The standard version of LogXact was
unable to handle the problem. An experimental version of LogXact using a
Markov chain Monte Carlo method took three months of computation to produce
the p-value to three decimal places for just one of the five explanatory variables.

10.6.5 Bayesian Estimation

In those situations where none of the preceding solutions is appropriate, a natural
approach is to do Bayesian estimation with a prior distribution on the regression
coefficients (Hsu and Leonard 1997; Kahn and Raftery 1996). In principle, this
should be accomplished easily with widely available software such as WinBUGS.
However, my very limited experience with this approach suggests that the results
obtained are extremely sensitive to the choice of prior distribution.

10.6.6 Penalized Maximum Likelihood Estimation

As this chapter was nearing the final stages of the editorial process, I learned of
a very promising new method for dealing with separation. Firth (1993) proposed
the use of penalized maximum likelihood estimation to reduce bias in logistic
regression in small samples. Heinze and Schemper (2002) have shown that this
method always yields finite estimates of parameters under complete or quasi-
complete separation. Their simulation results indicate that these estimates have
relatively little bias, even under extreme conditions. In fact, the bias is appreciably

SOLUTIONS FOR COMPLETE SEPARATION 251

less than that found for median unbiased estimates associated with exact logistic
regression. Unlike exact logistic regression, penalized maximum likelihood is
computationally feasible even for large samples.

Firth’s procedure replaces the gradient vector U(β) in equation (10.6) with

U(β∗) =
∑

i

xiyi −
∑

i

xi ŷi −
∑

i

hixi (0.5 − ŷi),

where hi is the ith diagonal element of the “hat” matrix and W = diag{ŷi (1−ŷi)}.
Once this replacement is made, the Newton–Raphson algorithm of equation (10.9)
can proceed in the usual way. Standard errors are also calculated as usual by tak-
ing the square roots of the diagonal elements of −I(β∗)−1. However, Heinze
and Schemper (2002) point out that Wald tests based on the standard errors for
variables causing separation can be highly inaccurate (as with conventional max-
imum likelihood). Instead, they recommend chi-square tests based on differences
between penalized log likelihoods.

The penalized maximum likelihood method has been implemented in a macro
for the SAS system (Heinze 1999) and a library for S-PLUS (Ploner 2001).
Using the SAS macro, I estimated models for the data in Tables 10.1 and 10.2.
For the data with complete separation (Table 10.1), the parameter estimate was
0.936, with a p-value of 0.0032 (based on a penalized likelihood ratio chi-square).
For the data with quasi-complete separation (Table 10.2), the parameter estimate
was 0.853 with a p-value of 0.0037. These estimates and p-values are similar to
those reported in Section 10.6.4 using the exact method with median unbiased
estimation.

10.7 SOLUTIONS FOR COMPLETE SEPARATION

It is fortunate that complete separation is less common than quasi-complete sep-
aration, because when it occurs, it is considerably more difficult to deal with. For
example, it is not feasible to leave the problem variable in the model because
that makes it impossible to get maximum likelihood estimates for any other
variables; nor will combining categories for dummy variables solve the problem.
Exact logistic regression may be useful with small samples and a single predictor
variable causing complete separation. But it is not computationally feasible for
larger samples and cannot produce coefficient estimates for any additional pre-
dictor variables. That is because the permutation distribution is degenerate when
one conditions on a variable, causing complete separation. Bayesian estimation
may be a feasible solution, but it does require an informative prior distribution
on the problem parameters, and the results may be sensitive to the choice of that
distribution.

The one approach that seems to work well in cases of complete separation
is the penalized maximum likelihood method described in Section 10.6. As in
the case of quasi-complete separation, this method produces finite estimates that

252 CONVERGENCE PROBLEMS IN LOGISTIC REGRESSION

Table 10.4 Ordered Data Exhibiting Complete Separation

x 1 2 3 4 5 6 7 8 9 10 11 12

y 1 1 1 1 2 2 2 2 3 3 3 3

have good sampling properties, with only a modest increase in the computational
burden over conventional maximum likelihood. Furthermore, unlike exact logistic
regression, it yields estimates for all predictor variables, not just the one with
complete separation.

10.8 EXTENSIONS

In this chapter we have focused entirely on problems of nonconvergence with
binary logistic regression. But it is important to stress that complete and quasi-
complete separation also lead to the nonexistence of maximum likelihood esti-
mates under other “link” functions for binary outcome variables, including the
probit model and the complementary log-log model. For the most part, soft-
ware treatment of data with separation is the same with these link functions as
with the logit link. The possible solutions that I described for the logistic model
should also work for these alternative link functions, with one exception: The
computation of exact p-values is available only for the logit link function.

Data separation can also occur for the unordered multinomial logit model;
in fact, complete and quasi-complete separation were first defined in this more
general setting (Albert and Anderson 1984). Separation problems can also occur
for the ordered (cumulative) logit model, although to my knowledge, separation
has not been defined rigorously for this model. Table 10.4 displays data with
complete separation for a three-valued, ordered outcome variable.

These data could be modified to produce quasi-complete separation by adding
a new observation with x = 5 and y = 1. PROC LOGISTIC in SAScorrectly
identifies both of these conditions and issues the same warning messages that we
saw earlier.

C H A P T E R 11

Recommendations for Replication
and Accurate Analysis

11.1 GENERAL RECOMMENDATIONS FOR REPLICATION

The furthering of science depends on reproducible results regardless of the spe-
cific field. Without the ability to reproduce research, science is reduced to a
matter of faith, faith that what is published is indeed the truth. Without the abil-
ity to reproduce research, we cannot “stand on the shoulders of giants” to further
expand our knowledge of the world. We have noted throughout this book where
research results may depend on the computational algorithms used in the analy-
sis. Here, we discuss, as a way to summarize our findings, the implications for
reproducing research.

A widely accepted component of publication is that research findings should
be replicable and that references to data and analysis must be specific enough to
support replication (Clubb and Austin 1985; Feigenbaum and Levy 1993; King
1997). Many journals in social science specifically require that sufficient detail
be provided in publications to replicate published results.1 Additionally, several
government organizations, such as the National Science Foundation, require that
data resulting from funded projects be made available to other users (Hildreth and
Aborn 1985; Sieber 1991). Recently, in recognition of the role of social science
analyses in public policy, and despite some protest in the academic community,
the Freedom of Information Act was expanded to include research data produced
using public funding (National Research Council 2002). Although a debate con-
tinues over whether data sharing should be mandated, all sides agree that some

1Information gathered from the “Contributors” section of the 1997 edition of many journals show
that the exact terms of the requirement to share data vary in principle and in practice. Science,
Nature, American Economic Review, Journal of the American Statistical Association, Journal of the
American Medical Association, Social Science Quarterly, Lancet, American Political Science Review,
and the various journals published by the American Psychological Association explicitly document
in submission guidelines that a condition of publication is the provision of important data on which
the article is based. The Uniform Requirements for Manuscripts Submitted to Biomedical Journals
has, arguably, the weakest policy, stating simply that the editor may recommend that important data
be made available.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

253

254 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

form of replaceability is essential, and at a minimum, a researcher should be
able to reproduce published results. What is not widely realized is that even the
simplest verifications of previous results are surprisingly difficult.

In research for this book, we reproduced over a half-dozen previously pub-
lished research articles whose data are derived from public sources. We expected
reproduction to be simple and straightforward, but we found that it is surpris-
ingly difficult and were not always successful, even in consultation with the
original authors. This is disquieting, especially in light of how infrequently repli-
cations are performed and the disincentives for seasoned scholars to perform
them (Feigenbaum and Levy 1993).

Some troubles with replication lie in the publication process. Dewald et al.
(1986) attempted to replicate a complete year’s run of articles from the Journal
of Money, Credit and Banking and found that inadvertent errors in published
empirical articles are commonplace. We, too, have found examples of publication
errors that prevented faithful replication. In one case we discovered that an entire
table of results was the victim of a publication error (Altman and McDonald
2003). Undoubtedly there are errors in this book, so we should be careful to call
the kettle black. But acceptance of a manuscript is not the end of the publication
process; researchers should pay careful attention to proofing their publications to
reduce the occurrence of publication errors.

Issues of statistical computing presented in this book suggest that even without
publication errors, replication may fail. In Chapter 2 we discuss how differ-
ences in the procedures for computing even simple statistical quantities, such
as the standard deviation, may lead to wildly different results. In Chapter 3 we
demonstrate that as a consequence of inaccurate statistical computation, statistical
packages may produce results that differ from the truth for descriptive statistics,
analysis of variance, linear regression, and nonlinear models. In Chapters 5, 7,
and 8 we show how complex statistical models are particularly sensitive to the
computational procedures used to estimate them. In this chapter we discuss the
concepts we have covered and place them in the context of reproduction of
research.

11.1.1 Reproduction, Replication, and Verification

There are various ways of “reproducing” previous research. For clarity we adopt
the nomenclature of the Committee on National Statistics (quoted by Herrnson
1995; p. 452): A researcher attempts to replicate a finding when she performs an
identical analysis of the data used in the original article but taken from the original
data sources. Replication may be a time-intensive process, so a researcher might
instead verify published results by performing the same analysis on data provided
by the original researcher. Once a finding has been reproduced, a researcher
might wish to perform a secondary analysis of the original data by reanalyzing
it using a different model or additional variables. To this we add independent
reproduction, the process of performing the same analysis on theoretically similar
data.

GENERAL RECOMMENDATIONS FOR REPLICATION 255

Table 11.1 Tasks Involved in Reproducing Research

Recreating Inputting Analyzing Data
Data from Data into a Using Original

Original Sources Software Program Methodology

Replication Yes Yes Yes
Verification — Yes Yes
Secondary analysis — Yes —
Independent reproduction — — Yes

Table 11.1 presents a typology of three fundamental tasks that are performed
in reproducing quantitative analysis: recreating these original data, loading these
original data into a software package for analysis, and analyzing data using the
original methodology. Surprisingly, reproduction of research is at risk for each
of the three tasks.

11.1.2 Recreating Data

Data are not immutable. Sometimes data are revised when scoring errors, or
errors in methodology are uncovered. Sometimes, but not always, data versions
are documented. For example, a careful reading of the National Election Survey
(NES) Cumulative Data File codebook reveals that the data file has undergone
several revisions. Two major version changes stand out: interviews were dropped
from the 1990 and 1992 panel studies because it is believed that an interviewer
faked his 1990 interviews, and the 1996 NES was reweighted after its release
because of an error discovered in the sample design for that year (Miller and the
American National Election Studies 1999).

Data sets are stored in repositories or archives, such as the Inter-University
Consortium for Political and Social Research (ICPSR) and are often available
for electronic download. ICPSR maintains a publication-related archive where
authors may store and make publicly available verification datasets. Data archives
are invaluable for the preservation of research data and the replication of research.
A canonical data source is the original, root data source. Many of the data sets
available at ICPSR are canonical; others are redistributions of data available
from other canonical sources, such as the U.S. Bureau of the Census. Ideally,
a data repository should not only make available the most recent version of a
canonical data source, but should further provide access to all previous versions.
Unfortunately, typically this is not the current practice; ICPSR, for example,
provides no access to previous versions of data.

The unavailability of previous versions of data may affect the ability of
researchers to replicate research. During the course of our replications of Nagler
(1994), presented in Chapter 3, we discovered that data contained in the 1984
Current Population Survey Voter Supplement File, published by the Bureau of
the Census, has undergone undocumented version changes that made it impossi-
ble for even the original author to replicate the published research (Altman and

256 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

McDonald 2003). Fortunately, the author kept a private archive of these data,
which made it possible to verify the results.2

The complexity of statistical data can create challenges for replication. Data
structure, analysis units, aggregations, relationships among variables, and condi-
tions of the measurement process can make appropriate use and reuse of data
difficult (see David 1991; Robbin and Frost-Kumpf 1997). Use of data docu-
mentation standards such as the Data Documentation Initiative Specification, and
systems that support them, such as the Virtual Data Center (Altman et al. 2001),
can aid in later use and replication. (The Virtual Data Center is freely available
from <http://thedata.org> and provides all the functionality necessary to create
and maintain an on-line data archive.)

To guarantee verification and replication of research, researchers should doc-
ument data, carefully using a documentation standard. We recommend that re-
searchers archive a verification database either on their own or through a service
such as ICPSR’s publication-related archive. This step may be enough for verifica-
tion but may not be sufficient for replication. Researchers should document carefully
all the steps necessary to recreate their data. We have found that providing computer
programs to construct a dataset is particularly helpful in verification and replica-
tion. We also recommend that when constructing a verification dataset, researchers
include any unique case identifiers, such as respondent identification numbers, so
that the cases of a verification file and a replication file may be compared.

11.1.3 Inputting Data

Surprisingly, inputting data into a statistical software package is not necessarily a
straightforward process. Measurement error occurs when the precision level of a
statistical software package is exceeded. Observations may be silently truncated
when the storage capacity of observations and variables is exceeded. It is possible
that users will identify variable locations and formats incorrectly. Any of these
errors may prevent the reproduction of research.

As we explain in Chapter 2, computer representations of numbers do not
necessarily match pencil-and-paper representations. Truncation and rounding at
the precision level of the computer software may introduce small measurement
errors; but for most ordinary analysis, these small errors are practically invisible to
the researcher and are of not great concern. For more complex analysis, reading
a double-precision variable into a program as a single-precision variables, or
worse, as an integer, may prevent reproduction of research. Where possible,
researchers creating a verification dataset should document precision levels of
variables carefully, and researchers reproducing research should note precision
levels carefully when inputting data into their statistical software program.

Statistical software programs may also truncate observations or variables (rows
or columns) of large datasets. Programs either have hard limitations on the number

2Ironically, the substantive results of the research were overturned when estimating a model using
the verification dataset and the most recent version of the software used in the analysis. We exactly,
replicated the published results closely but not using the most of these data and of the program.

GENERAL RECOMMENDATIONS FOR REPLICATION 257

of records and columns they can handle or are simply limited by system resources.
In Chapter 3 we read test data into statistical software packages and noted where
programs encountered difficulty in reproducing data internally. We found that
although storage limitations are usually documented, when the limitations are
reached statistical programs will sometimes truncate columns or rows silently with-
out notifying the user. A missing variable may be obvious, but a missing observation
may go undetected, which could, in turn, affect reproduction of research.

Common programming errors occur when incorrectly identifying where a col-
umn for a variable begins and ends, using the wrong delimiter when reading in
delimited data, or specifying the wrong data format when reading formatted data.
Care should be taken in programming, especially when relying on a statistical
software program’s “wizard” to guess at variable locations and formats. Some-
times misspecified data locations and formats will cause a statistical program to
produce error messages. Sometimes summary statistics will reveal errors. But
this is not always the case.

We recommend that when inputting a dataset into a statistical software program,
researchers at least run simple diagnostics, such as a generating summary statistics,
to verify that data have been read in properly. Supplying means, frequencies of
values, and the number of observations of variables in a verification dataset will aid
those who reproduce research to verify that data have indeed been read in properly
when they create diagnostic summary statistics. Such methods of verification are
weak, however. Thus we recommend that when researchers produce data to archive
or share with others, they use the data-level CRC methods described in Chapter 3
to ensure the integrity of the data with respect to data input.

11.1.4 Analyzing Data

Once data are loaded into a statistics program, a researcher is ready to attempt
to reproduce research. There are two aspects of recreating a model, specifying
and implementing a model. Both have pitfalls that may be avoided with some
prudent foresight.

11.1.4.1 Specifying a Model
The first step of analysis is to interpret correctly the model used by the researcher.
For familiar models such as linear regression, perhaps all that is needed is to list
the components of the model, in this case the explanatory and outcome variables.
For more complex models, such as those employing maximum likelihood, a
researcher attempting to reproduce research must know the functional form of
the model and exactly how the model was applied to the data (see Chapter 3).

When researchers create datasets intended to support verification, they often
neglect to document the answers to such questions as: How was the model spec-
ified in the relevant statistical programming language? Which variables from the
data were entered into the model, and how were these data coded or recoded?
What are the rules for selecting observations for analysis? Archiving the pro-
gramming code used to run the analysis is a positive step toward reproducibility,

258 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

but this may not be enough. Statistical software programs may differ in their
syntax and in subtle but important details, such as the precedence of operators or
the exact specification of parameters to statistical functions. These idiosyncrasies
may raise barriers against researchers who use software different from that of the
original author. Even if the same software is used in the verification, the syntax
of the statistical programming language may change over time. Mechanisms to
allow a statistical software program to declare a legacy syntax and operate under
it are rare.3

We recommend that researchers who create a verification dataset provide the
programs used to generate the research. But as this may not be enough, we
recommend that researchers explicitly write out the model being estimated, using
parentheses and brackets where necessary to identify precedence clearly. Since
syntax for variable transformation and case selection may be idiosyncratic to
the version of the statistical software program, we recommend that researchers
document these steps of their analysis.

11.1.4.2 Implementation
There are often many ways to solve the same problem, and there is no guaran-
tee that algorithms to solve a particular problem are the same across statistical
software packages. Nor do programs that implement the same algorithms neces-
sarily implement them in an identical manner. Methods for computing statistical
distributions, generating random numbers, and finding the optima of nonlinear
functions may vary across statistical packages and programming languages, and
as a consequence may produce varied results (see Chapter 3).

Many packages offer users a variety of options, and these options and their
defaults will not generally be consistent across statistical packages. Options may
govern the choice of algorithm, implementation, or aspects of both. Even famil-
iar procedures such as regression may offer implementation-specific options; for
example, the regress command in Stata (v 6.0) has four options for calculat-
ing the standard error of the coefficients. Maximum likelihood algorithms have
even more options. There are over 400 different combinations of algorithmic
options and over a dozen continuous parameters that can be used to control the
behavior of the MLE solver in Gauss (v 4.0). Since these options can affect
results, any option used in the estimation, even the default, should be noted in
the documentation accompany the replication dataset.

Optimization search algorithms typically simply climb “uphill” until a max-
imum is found. They are prone to stop when they find a local optimum of

3Stata is a notable exception. The Stata “version” command allows the programmer to declare
that the program should be run with a particular version of the Stata language syntax and imple-
mentation. For example, although Stata upgraded its random number generators in v6.0, the old
PRNG algorithms were preserved and are still used when a program explicitly declares itself to
use v5.0 syntax. The programming language PERL supports a more common and limited version
of version declaration. A PERL program may require a particular version of the language to run.
However, in this case, the designers of PERL assumed that the requirements were always minimum
requirements and that any version at newer than the stated requirement is also accepted.

RECOMMENDATIONS FOR PRODUCING VERIFIABLE RESULTS 259

multiple-peaked likelihood functions or even fail to converge altogether (see
Chapters 2, 4, and 8). The reported local optimum may depend on where the
search algorithm started its uphill climb. Researchers should provide the vector
of starting coefficients used find their published solution, even if they use the
default, because defaults may not be consistent across software packages.

Monte Carlo analysis has its own set of consideration for reproduction of
research. There are many types of pseudorandom number generators (PRNGs)
that are known to differ in their performance (see Chapter 2 for details), and
some are known to work rather poorly. Poor choices of generators can, as shown
in Chapter 5, limit the accuracy of the simulation, or worse, yield biased results.
Further, because PRNGs are deterministic functions, the output can be recreated
exactly by using the same seed value. Thus, we recommend that the documen-
tation accompanying Monte Carlo analysis use a high-quality PRNG and report
the generator and initial seed values used.

11.2 RECOMMENDATIONS FOR PRODUCING
VERIFIABLE RESULTS

Some guidelines are needed to aid researchers in creating replication datasets
and accompanying documentation. Our experiences with testing the StRD bench-
marks, which are essentially a series of replications, and our experiences with
replicating two published sources, provide some lessons that researchers can use
to create their own replication datasets. We summarize them in a checklist of
replication guidelines:

1. The model being estimated should be written out explicitly using standard
mathematical notation and using parentheses and brackets where necessary
to identify precedence clearly.

2. The original data that produced the results should be made available. If
the data are drawn from other sources, such as data found at the ICPSR
archive, these sources should be noted.

3. All variables constructed from nonarchived data should be accompanied by
a list of rules used to create the variables.

4. If possible, each observation in the replication dataset should include a
unique identifier. If a unique identifier is available in a dataset used to
construct the replication dataset, the unique identifier from the original
dataset should be provided.

5. The precision of variables used in the analysis should be noted. The choice
between single- and double-precision storage can affect results because
floating point numbers do not have a true binary representation.

6. Any transformations made to the data should be documented. This includes
selection criteria used to subset the data, any recalculation of variables, the
construction of any new variables, and aggregation.

260 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

7. Descriptive statistics should be made available to help researchers ascertain
the integrity of the data as read into their own programs. We recommend
that a standard of calculating and reporting cyclical redundancy checks on
the internal data matrix be applied to ensure the integrity of the data.

8. The statistical software and operating system and hardware platform used
to analyze the data should be noted, including the version number and the
version numbers of any accompanying libraries used in the estimation.

9. Note for maximum likelihood estimation (and similar problems): (a) the
selection of algorithms (b) the values for all the control parameters used
(even if these are the default values in the current version), and (c) starting
values for the coefficient vector.

10. Where random numbers are used in the analysis, (a) note which algorithm
was used to generate the random sequence, and (b) provide the seed value
used.

11. Report the method for calculating the standard errors (or other measures of
uncertainty), including the method for calculating the variance–covariance
matrix if this was used in calculation of the standard errors.

11.3 GENERAL RECOMMENDATIONS FOR IMPROVING
THE NUMERIC ACCURACY OF ANALYSIS

The recommendations above are a guide to reproducing research, but what can
researchers do to ensure that their results are accurate before publication? For
commonly used statistical analysis, choosing a statistically accurate software
package and applying common sense in interpreting the results and standard
diagnostics is probably enough. In other research, especially that involving com-
plex maximum likelihood estimation or simulation, it may be necessary to repeat
certain portions with different techniques and to track down all the implications
of particular methods. Here we provide recommendations to improve numerical
accuracy. We start with the steps that we believe to be most generally applicable,
and finish with steps geared toward numerically intensive models:

1. Trust, but verify. Most packages correctly solve routine statistical analyses,
such as univariate statistics, linear regression, and many simple nonlinear regres-
sion models. Choose software that is regularly updated, uses well-documented
algorithms, and buttresses itself with standard tests of accuracy and reliability.
A number of packages now publish the results of numerical benchmarks in their
documentation, and benchmarks of accuracy are becoming a more regular part
of statistical software reviews. Be wary of software packages that are not tested
regularly for accuracy or that do not perform well.
2. Check for substantive and statistical plausibility. Examine results to ensure
that they make sense and fit these data. Check for evidence of misspecification,
outliers, or other signs of measurement or coding errors. These precautions have

RECOMMENDATIONS FOR PARTICULAR STATISTICAL MODELS 261

two benefits. First, by checking for substantive and statistical plausibility, one
is less likely to be misled if numerical accuracy affects the model. Second, if
estimation is susceptible to numerical inaccuracy, cleaning data and considering
respecification of the model may eliminate numerical inaccuracy and improve
the overall analysis.
3. Test complex or problematic models for accuracy. In problematic cases where
a model gives implausible results or where complex models or simulations are
used, especially for the first time, researchers should test explicitly for numerical
accuracy. Ideally, when implementing a new model, a researcher should create a
comprehensive set of tests whose answers are known. Sometimes these tests may
be generated through Monte Carlo simulation by solving the problem in closed
form or by using multiple-precision arithmetic in programs such as Maple or
Mathematica.
4. Apply sensitivity tests to complex models. Indications of numerical inaccuracy
for a model may be found in the sensitivity of results to data perturbations, option
variation, and variations in software and platforms used in estimation.
5. Choose an optimization algorithm suited to your estimation problem. Compu-
tational problems are often exacerbated by attempting to force a recalcitrant
model into a limited statistical software application. Seek out documentation of
the algorithms supplied by your statistical package. If your problem exceeds the
capabilities of the software, seek a more appropriate algorithm rather than mod-
ifying your model. (See Chapter 4 for a discussion of optimization algorithms.)
6. Incorporate all sources of uncertainty in your estimates. The most common
computational techniques for generating point estimates and confidence regions
assume a single mode of likelihood that is approximately locally quadratic.
Nonquadratic and/or multiple modes violate these assumptions and can cause
reported confidence intervals to be much too narrow. We strongly recommend
that rather than simply reporting standard errors, one use bootstrapping and/or
highest-posterior-density regions to provide full information about the distri-
bution of the posterior. Moreover, computational implementation selection is
analogous to model selection, although generally a milder problem. Although
every effort should be made to find an accurate solution, multiple plausible com-
putational strategies will sometimes continue to yield different results. In this
case one should summarize the uncertainty that stems from the continued exis-
tence of these competing computational solutions. Bayesian model averaging
and Leamer bounds, both discussed in Chapter 4, are two techniques for doing
just that.

11.4 RECOMMENDATIONS FOR PARTICULAR
STATISTICAL MODELS

11.4.1 Nonlinear Least Squares and Maximum Likelihood

Even with infinite precision, nonlinear optimization algorithms may fail to find an
optimum (see Chapter 2). The likelihood function for common statistical models

262 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

may have multiple optima (Chapters 4 and 8) or no optimum at all (Chapter 10),
either as a consequence of the functional form of the equation to be solved or as
a consequence of numerical issues.

There are a number of methods to find an optimum of a nonlinear problem,
and as we have seen repeatedly, two implementations of even the same algo-
rithms may find different solutions to the same problem. One should choose a
statistical package that allows one to vary optimization algorithms, supply ana-
lytical derivatives, and otherwise control the nonlinear and maximum likelihood
solver, such as modifying convergence criteria and starting values. We recom-
mend using analytic derivatives where possible, and where not, using central
differences rather than forward differences for numerical derivatives, as central
differences are generally more accurate (see Chapter 8).

How can we one be confident that a local optimum is the global optimum,
or even if it is an optimum at all? In Chapter 4 we provide tests that estimate
the probability that a local optimum is the global optimum, given the number
of local optima identified. In Chapter 8 we recommend four steps that may be
taken to diagnose if an optimum identified by a solver is a false convergence
point (i.e., not a true optimum):

1. Verify that the gradient is indeed zero while keeping in mind that this may
be a function of the scaling of the data.

2. Examine the trace or note how the solver converged. If the solver converged
much too slowly relative to the expected algorithmic rate of convergence,
it is likely that the function is in a flat region of the objective function and
may have stopped short of the true solution.

3. Check the Hessian for positive definiteness. (These flat regions may also
pose problems to algorithms that invert the Hessian, a topic we describe
in the next section; checking the Hessian for positive definiteness will
diagnose this problem also.)

4. Profile the objective function, as this information provides the shape of the
function around the estimated solution.

If multiple optima are identified, and these modes compete as the global
optimum, or the shape of the likelihood function is nonsymmetric around the
optimum, we recommend in Chapter 4 a method of summarizing the highest
posterior density (HPD) to describe the uncertainty of the estimates.

11.4.2 Robust Hessian Inversion

Every practitioner has experienced the frustration of an estimation being aborted
because the Hessian was not invertible (sometimes whether they knew the cause
or not). Noninvertible Hessians may signal limitations in data or in numerical
methods, and it is advisable to be on one’s guard for both. The alternatives have
not generally been clear, and the standard recommendation of respecification is
often unsatisfactory on theoretical grounds.

RECOMMENDATIONS FOR PARTICULAR STATISTICAL MODELS 263

Since the Hessian can be noninvertible for both specification reasons and data
reasons, it is important to have several alternatives for dealing with this problem.
Some strategies we have recommended include:

• Consider a more accurate implementation of the likelihood by identifying
actual or potentially degenerate regions of the sample space (see Chapters 2
and 3).

• Use more accurate libraries for statistical distributions used in the likelihood.
These include some of the standard references and those given in the SIAM
libraries (again, see Chapters 2 and 3).

• Specify the analytical derivative such that the gradient function is part of
the software’s estimation process (this is discussed in Chapter 8).

• Change the optimization algorithm (across a set of algorithms suited to the
problem) and observe whether or not it makes a difference. This may be
a sign of numerical instability or it may be a sign of problems with the
specified parametric form (see Chapters 9 and 10).

If these methods aren’t feasible or don’t work, which often happens, we pro-
vide an innovative new library for doing generalized inverses. This computes an
invertible approximation to the Hessian that is guaranteed to be invertible. This
can produce estimates when everything else fails and the results are informative.
The standard cautions still apply to interpreting the results, and you should follow
examine diagnostics carefully and use sensitivity tests as described in Chapters 4
and 8. We also strongly recommend that in addition to reporting standard errors
you describe all relevant portions of the posterior distribution of parameters using
HPDs (Chapter 4).

11.4.3 MCMC Estimation

In some ways Markov chain Monte Carlo estimation is distinct as an estima-
tion process because it uses a nonindependent sequence of user-generated values
according to some transition kernel. The two primary reliability concerns, which
are entirely unique to MCMC work in this context, are mixing and convergence.
Convergence is the state whereby the chain has reached its stationary distribution
such that all future values are samples from the target distribution. Therefore, until
the Markov chain has converged, the generated values are not useful for estima-
tion purposes. Mixing refers to the rate with which the chain moves through the
support of the posterior, which we care about after convergence so as to establish
that the empirical quantities used for inference are adequately representative of the
actual posterior. These are two very serious concerns, and a lack of appropriate
attention by the researcher is almost guaranteed to produce nonsensical results.

In other ways, Markov chain Monte Carlo estimation depends on numeri-
cal concerns that affect other, more familiar estimation processes. The quality
of the underlying pseudorandom number generator is critical, as demonstrated
in Chapter 5. Chapters 2 and 3 discuss how to select generators, such as the

264 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

Mersenne twister, that have extremely long periods and good distributional prop-
erties, and how to generate truly random seeds automatically for these generators
using physical sources of randomness.

It is important to run the chain for a reasonably long period of time, just as
in standard Monte Carlo simulation. Also, as we have said many times over the
preceding pages, it is important to evaluate and consider carefully default values
provided by the software. These include the starting values, the random number
seed, and various tuning parameters, such as the form of the candidate-generating
distribution in the Metropolis–Hastings algorithm and its descendants.

In this volume we have clearly focused on the second set of problems: Those
that affect MCMC work also affect other numerical estimation methods. This is
primarily because the problems of mixing and convergence are very well studied
in the MCMC literature. This work can be segmented into the following typology:

• Analytical determination. There is a lengthy and at times frustrated liter-
ature that seeks to use statistical and general probabilistic theory to bound
convergence times of chains built on specific transition kernels. The goal is
to determine in advance the total variation distance to the target distribution
with some specified tolerance. Fortunately, all standard MCMC algorithms
converge at a rate related to how close the second-largest eigenvalue of the
transition matrix (discrete state spaces) or kernel density (continuous state
spaces) is to 1. So sometimes this is a very productive enterprise; see Amit
(1991, 1996), Frigessi et al. (1993), Rosenthal (1993, 1995a,b), Frieze, et al.
(1994), Ingrassia (1994), Meyn and Tweedie (1994b), Roberts and Polson
(1994), and Roberts and Smith (1994).

• Empirical diagnostics. The most common way to worry about conver-
gence is to use one of many diagnostics that evaluate some property of
an observed Markov chain and make inferential claim about a lack of
convergence. That is, these diagnostics typically look for evidence of non-
convergence rather than convergence, in much the same way that hypothesis
testing makes assertions about a lack of statistical reliability. The well-
known variants are given in Gill (2002), various essays in Gilks et al.
(1996), Gamerman (1997), and Carlin and Louis (2000).

• Perfect sampling. The revolutionary approach of Propp and Wilson (1996)
is still emerging as a feasible general method for setting up MCMC estima-
tion. The key idea is to use “coupling from the past” to produce a sample
from the exact stationary distribution. Currently, this idea works well only
for discrete state spaces, but there is a lot of working going on at this time
to generalize the principle. See the recent works by Häggström (2000),
Häggström and Nelander (1999), Hobert et al. (1999), Kendall and Moller
(2000), Casella et al. (2001), and Corcoran and Tweedie (2002).

• Mixture-improving algorithms. Mixing problems can be discouraging.
High correlation between the parameters of a chain tends to give slow
convergence, whereas high correlation within a single-parameter (autocor-
relation) chain leads to slow mixing and possibly individual nonconvergence

RECOMMENDATIONS FOR PARTICULAR STATISTICAL MODELS 265

to the limiting distribution because the chain will tend to explore less space
in finite time. Chains that mix poorly take longer to converge, and once they
have converged take longer to fully describe the stationary distribution.
Some solutions involve adding instrumental variables such as the slice
sampler described in Chapter 5. Useful references include Asmussen et al.
(1992), Gilks and Roberts (1996), and Brooks and Roberts (1999).

This is a very active research area with a steady stream of new developments.
The second set of problems are the focus of Chapter 5. Our primary concern

there was the effect of necessarily periodic pseudorandom number generation on
ergodicity. We provide evidence for mild concern in models with many param-
eters that are believed to require a very large number of iterations. Perhaps of
greater everyday concern is the possibility of absorbing states that result from
inaccuracies in the parametric form of the posterior distribution. In cases with
relatively complex mathematical forms, it seems warranted to spend the time
to determine analytically whether or not a Markov chain can wander into such
regions. Naturally, this task becomes more complex with higher dimensions.

Perhaps our strongest concern here is with the poor performance of default
pseudorandom number generators in common implementations of C, C++, and
FORTRAN libraries. We recommend that researchers never use the standard fur-
nished random number procedures, but instead, expend the relatively little effort
required to download, test, and use a more sophisticated and reliable alternative.

We noted as well that problems from the pseudo-randomness of generated
values do not affect MCMC procedures alone. In fact, regular Monte Carlo
simulation for calculation of volumes and statistics are also sensitive to poor
performance of the random number generating mechanism, albeit in a different
manner.

11.4.4 Logistic Regression

Logistic regression (or logit) is used with great frequency in sociology and other
branches of social science. These models are almost always estimated through
MLE. Despite its ubiquity, many practitioners are unaware that MLE approaches
to logit models need not have a solution: There are many cases in which the
likelihood function for the logit model has no optimum. For example, for any
dichotomous explanatory variable in a logistic regression, if there is a zero in the
2 × 2 table formed by that variable and the outcome variable, the ML estimate
for the regression coefficient will not exist. (This can occur when there are
extreme splits on the frequency distribution of either the outcome or explanatory
variables.)

Crude stopping rules, still used by some statistics packages, can cause con-
vergence to be falsely reported in this case, although the estimates returned are,
in fact, meaningless. Even within the same statistics package, one routine for
computing logit may give appropriate warnings while another reports false con-
vergence. In Chapter 10 we describe how to detect false convergence in logit and

266 RECOMMENDATIONS FOR REPLICATION AND ACCURATE ANALYSIS

how to deal with this (e.g., by combining categories, using computing logistic
regression exactly, or using penalized maximum likelihood estimation).

11.4.5 Spatial Regression

With the progress of geographical information system (GIS) technology, large
samples of socioeconomic demographic information based on spatial locations
such as census tracts and zip-code areas has become available. In Chapter 9
we discuss computational issues associated with regression modeling combined
demographic and spatial data of information.

Both MLE and Bayesian estimation methods can be applied to spatial regres-
sion models. Bayesian methods are preferable because they can be used to relax
the assumption of normally distributed constant variance disturbances made by
maximum likelihood methods.

Estimating these models is greatly aided by the use of sparse matrix algorithms.
There are, however, trade-offs between computational speed and accuracy, com-
prising use of approximations, tolerance values, and bounding parameter values
during optimization. Methods and software are discussed in Chapter 9.

11.5 WHERE DO WE GO FROM HERE?

We have focused substantially on the negative consequences of ignoring numeri-
cal issues in statistical computing. When things go amiss, it is sometimes obvious:
Hessians do not invert, Markov chains do not converge, or maximum likeli-
hood software gives ridiculous results. In these cases, if one knew nothing about
numerical methods, it would be necessary either to change the model (which is
not preferred, because this involves retheorizing the substantive problem, and one
usually has a specific theory to test) or to get more data (which is not preferred,
because it is often expensive and time consuming, or often even impossible). An
understanding of numerical methods provides another, better option—fix the real
problem, or at least gain insights into it.

One hundred years ago, researchers could never have imagined the advent
of computing technology or the revolution it would bring to the field of statis-
tics. One hundred years hence, we imagine that researchers looking back at the
methods discussed in this book will find them “quaint.” But even a century ago,
researchers such as Duhem (1906) were concerned with a timeless question: What
are the limits of the instruments we use to measure and form inferences about
the world we study?

Knowledge of the limitations of our research tools helps us avoid making
incorrect inferences. However, often this knowledge is inaccessible to social
scientists because it is specific to statisticians or computer scientists. We hope
that this book bridges the gap not only among these disciplines, but also among
the many disciplines within the social sciences that commonly use statistical
software.

Bibliography

Aarts, E. H. L. and Lenstra, J. K. (eds.) (1997). Local Search in Combinatoric Optimiza-
tion. New York: John Wiley & Sons.

Achen, C. H. (1996). Implicit Substantive Assumptions Underlying the Generalized Event
Count Estimator. Political Analysis 6, 155–74.

Achen, C. H. (2003). Toward a New Political Methodology: Microfoundations and ART.
Annual Review of Political Science, 5, 423–450.

Acton, F. S. (1970). Numerical Methods That Work. New York: Harper & Row.

Acton, F. S. (1996). Real Computing Made Real. Princeton, NJ: Princeton University
Press.

Ades, A. and Di Tella, R. (1997). National Champions and Corruption: Some Unpleasant
Interventionist Arithmetic. Economic Journal 107, 1023–42.

Adolph, C. and King, G. (2003). Analyzing Second-Stage Ecological Regressions: Com-
ment on Herron and Shotts. Political Analysis 11, 65–76.

Akhand, H. A. (1998). Central Bank Independence and Growth: A Sensitivity Analysis.
Canadian Journal of Economics 31, 303–17.

Albert, A. (1973). The Gauss–Markov Theorem for Regression Models with Possible
Singular Covariances. SIAM Journal on Applied Mathematics 24, 182–87.

Albert, A. and Anderson, J. A. (1984). On the Existence of Maximum Likelihood Esti-
mates in Logistic Regression Models. Biometrika 71, 1–10.

Altman, M. (1998). Modeling the Effect of Mandatory District Compactness on Partisan
Gerrymanders. Political Geography 17, 989–1012.

Altman, M. and McDonald, M. P. (2001). Choosing Reliable Statistical Software. PS:
Political Science and Politics XXXIV, 681–87.

Altman, M. and McDonald, M. P. (2003). Replication with Attention to Numerical Accu-
racy. Political Analysis 11, 302–307.

Altman, M., Andreev, L., Diggory, M., King, G., Sone, A., Verba, S., Kiskis, D. L.,
and Krot, M. (2001). A Digital Library for the Dissemination and Replication
of Quantitative Social Science Research. Social Science Computer Review 19(4),
458–71.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

267

268 BIBLIOGRAPHY

Amato, T. W. (1996). On Difference Equations, Probability Models and the “Generalized
Event Count” Estimator. Political Analysis 6, 175–212.

Amemiya, T. (1981). Qualitative Response Models: A Survey. Journal of Economic Lit-
erature 19, 1483–536.

Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.

Amemiya, T. (1994). Introduction to Statistics and Econometrics. Cambridge, MA: Har-
vard University Press.

Amit, Y. (1991). On Rates of Convergence of Stochastic Relaxation for Gaussian and
Non-Gaussian Distributions. Journal of Multivariate Analysis 38, 82–99.

Amit, Y. (1996). Convergence Properties of the Gibbs Sampler for Perturbations of Gaus-
sians. Annals of Statistics 24, 122–40.

Anderson, J. E. and Louis, T. A. (1996). Generating Pseudo-random Variables from
Mixture Models by Exemplary Sampling. Journal of Statistical Computation and
Simulation 54, 45–53.

Andrews, D. F. (1974). A Robust Method for Multiple Linear Regression. Technometrics
16, 523–31.

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and Tukey,
J. W. (1972). Robust Estimates of Location. Princeton, NJ: Princeton University
Press.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht, The Nether-
lands: Kluwer Academic Publishers.

ANSI (American National Standards Institute and Computer and Business Equipment
Manufacturers Association) (1992). American National Standard for Programming
Language, FORTRAN, Extended. ANSI X3.198-1992: ISO/IEC 1539: 1991(E). New
York: American National Standards Institute.

Anton, H. and Rorres, C. (2000). Elementary Linear Algebra, 8th ed. New York: John
Wiley & Sons.

Asmussen, S., Glynn, P. W., and Thorisson, H. (1992). Stationary Detection in the
Initial Transient Problem. ACM Transactions on Modeling and Computer Simulation
2, 130–57.

Aptech Systems, Inc. (1999). Maximum Likelihood (Application Module) Software Man-
ual. Maple Valley, WA: Aptech Systems, Inc.

Athreya, K. B. and Ney, P. (1978). A New Approach to the Limit Theory of Recurrent
Markov Chains. Transactions of the American Mathematical Society 245, 493–501.

Athreya, K. B., Doss, H., and Sethuraman, J. (1996). On the Convergence of the Markov
Chain Simulation Method. Annals of Statistics 24, 69–100.

Atkinson, A. C. (1980). Tests of Pseudo-random Numbers. Applied Statistics 29, 164–71.

Axler, S. J. (1997). Linear Algebra Done Right. New York: Springer-Verlag.

Bailey, D. H. (1993). Algorithm 719: Multiprecision Translation and Execution of FOR-
TRAN Programs. ACM Transactions on Mathematical Software 19, 288–319.

Bailey, D. H., Krasny, R. and Pelz, R. (1933). Multiple Precision, Multiple Vortex Sheet
Roll-Up Computation. In Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, Vol. 1. Philadelphia, PA: SIAM Press. pp. 52–6.

BIBLIOGRAPHY 269

Barnett, V. (1973). Comparative Statistical Inference. New York: John Wiley & Sons.

Barnett, V. and Lewis, T. (1978). Outliers in Statistical Data. New York: John Wiley &
Sons.

Barry, R. and Pace, R. K. (1999). A Monte Carlo Estimator of the Log Determinant of
Large Sparse Matrices. Linear Algebra and Its Applications 289, 41–54.

Bartels, L. M. (1997). Specification Uncertainty and Model Averaging. American Journal
of Political Science 41, 641–74.

Bates, D. M. and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications.
New York: John Wiley & Sons.

Bauens, W. and Richards, J. F. (1985). A 1-1 Poly-t Random Variable Generator with
Application to Monte Carlo Integration. Journal of Econometrics 29, 19–46.

Bavaud, F. (1998). Models for Spatial Weights: A Systematic Look. Geographical Anal-
ysis 30, 153–71.

Bazaraa, M., Sherali, H., and Shetty, C. (1993). Nonlinear Programming: Theory and
Algorithms, 2nd Edition. New York: Wiley & Sons.

Beaton, A. E., Rubin, D. B., and Barone, J. L. (1976). The Acceptability of Regres-
sion Solutions: Another Look at Computational Accuracy. Journal of the American
Statistical Association 71, 158–68.

Beck, N., King, G., and Zeng, L. (2000). Improving Quantitative Studies of International
Conflict: A Conjecture. American Political Science Review 94, 21–36.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics. New York:
John Wiley & Sons.

Berger, J. O. (1976). Admissible Minimax Estimation of a Multivariate Normal Mean
with Arbitrary Quadratic Loss. Annals of Statistics 4, 223–26.

Berger, J. O. (1984). The Robust Bayesian Viewpoint. In Robustness of Bayesian Analysis,
J. B. Kadane (ed.). Amsterdam: North-Holland, pp. 63–144.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. New
York: Springer-Verlag.

Berger, J. O. (1990). Robust Bayesian Analysis: Sensitivity to the Prior. Journal of Sta-
tistical Planning and Inference 25, 303–28.

Berger, J. and Berliner, L. M. (1986). Robust Bayes and Empirical Bayes Analysis with
ε-Contaminated Priors. Annals of Statistics 14, 461–86.

Berger, J. O. and O’Hagan, A. (1988). Ranges of Posterior Probabilities for Unimodal
Priors with Specified Quantiles. In Bayesian Statistics 3, J. M. Bernardo, M. H.
DeGroot, D. V. Lindley, and A. F. M. Smith (eds.). Oxford: Oxford University
Press, pp. 45–65.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. New York: John Wiley
& Sons.

Berndt, E., Hall, R., Hall, B. and Hausman, J. (1974). Estimation and Inference in Non-
linear Structural Models. Annals of Economic and Social Measurement 3/4, 653–65.

Bickel, P. J. and Freedman, D. A. (1981). Some Asymptotic Theory for the Bootstrap.
Annals of Statistics 9, 1196–1217.

270 BIBLIOGRAPHY

Billingsley, P. (1995). Probability and Measure, 3rd ed. New York: John Wiley & Sons.

Binstock, A. and Rex, J. (1995). Practical Algorithms for Programmers. Boston, MA:
Addison-Wesely.

Birnbaum, A. (1962). On the Foundations of Statistical Inference. Journal of the American
Statistical Association 57, 269–306.

Blalock, H. (1979). Social Statistics. New York: McGraw-Hill.

Bleau, B. L. (1994). Forgotten Calculus: A Refresher Course with Applications to Eco-
nomics and Business. New York: Barrons Educational Series.

Blum, L., Blum, M., and Shub, M. (1986). A Simple Unpredictable Pseudo-random
Number Generator. SIAM Journal on Computing 15, 364–83.

Boisvert, R. F., Howe, S. E., and Kahaner, D. K. (1985). GAMS: A Framework for the
Management of Scientific Software. ACM Transactions on Mathematical Software
11, 313–55.

Bose, S. (1994a). Bayesian Robustness with Mixture Classes of Priors. Annals of Statistics
22, 652–67.

Bose, S. (1994b). Bayesian Robustness with More Than One Class of Contaminations.
Journal of Statistical and Inference 40, 177–87.

Box, G. E. P. and Jenkins, G. (1976). Time Series Analysis: Forecasting and Control.
San Francisco: Holden-Day.

Box, G. E. P. and Müller, M. E. (1958). A Note on Generation of Normal Deviates.
Annals of Mathematical Statistics 28, 610–11.

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. New
York: John Wiley & Sons.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experiments: An
Introduction to Design, Data Analysis, and Model Building. New York: John Wiley
& Sons.

Brémaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
New York: Springer-Verlag.

Brent, R. P. (1978). ALGORITHM 524MP, a Fortran Multiple Precision Arithmetic Pack-
age. ACM Transactions on Mathematical Software.

Brockett, P. L., Cooper, W. W., Golden, L. L., and Xia, X. (1997). A Case Study
in Applying Neural Networks to Predicting Insolvency for Property and Casualty
Insurers. Journal of the Operational Research Society 48, 1153–62.

Brooks, S. P. and Morgan, J. T. (1995). Optimisation Using Simulated Annealing. The
Statistician 44, 241–57.

Brooks, S. P. and Roberts, G. O. (1999). Convergence Assessment Techniques for Markov
Chain Monte Carlo. Statistics and Computing 8, 319–35.

Brown, P. J. (1982). Multivariate Calibration. Journal of the Royal Statistical Society,
Series B 44, 287–321.

Brown, P. and Gould, J. (1987). Experimental Study of People Creating Spreadsheets.
ACM Transactions on Office Information Systems 3, 258–72.

Brown, P. J. and Oman, S. D. (1991). Double Points in Nonlinear Calibration. Biometrika
78, 33–43.

BIBLIOGRAPHY 271

Brown, B. W., Gutierrez, D., Lovato, J., Spears, M., and Venier, J. (1998). DSTATTAB
v 1.1. (computer program). Houston: University of Texas.

Bunch, D. S., Gay, D. M., and Welsch, R. E. (1993). Algorithm 717: Subroutines for
Maximum Likelihood and Quasi-likelihood Estimation of Parameters in Nonlinear
Regression Models. ACM Transactions on Mathematical Software 19, 109–30.

Bunday, B. D. and Kiri, V. A. (1987). Maximum Likelihood Estimation: Practical Merits
of Variable Metric Optimization Methods. Statistician 36, 349–55.

Buonaccorsi, J. P. (1996). Measurement Error in the Response in the General Linear
Model. Journal of the American Statistical Association 91, 633–42.

Burden, B. and Kimball, D. C. (1998). A New Approach to the Study of Ticket Splitting.
American Political Science Review 92, 533–44.

Burr, I. (1942). Cumulative Frequency Functions. Annals of Mathematical Statistics 13,
215–32.

Butcher, J. C. (1961). A Partition Test for Pseudo-random Numbers. Mathematics of Com-
putation 15, 198–99.

Cameron, A. C. and Johansson, P. (1997). Count Data Regression Using Series Expan-
sions: With Applications. Journal of Applied Econometrics 12, 203–23.

Cameron, A. and Trivedi, P. (1986). Econometric Models Based on Count Data: Com-
parisons and Applications of Some Estimators and Tests. Journal of Applied Econo-
metrics 1, 29–54.

Cameron, A. and Trivedi, P. (1990). Regression Based Tests for Overdispersion in the
Poisson Model. Journal of Econometrics 46, 347–64.

Campbell, S. L. and Meyer, C. D., Jr. (1979). Generalized Inverses of Linear Transfor-
mations. New York: Dover Publications.

Cao, G. and West, M. (1996). Practical Bayesian Inference Using Mixtures of Mixtures.
Biometrics 52, 1334–41.

Carley, K. M. and Svoboda, D. M. (1996). Modeling Organizational Adaptation as a
Simulated Annealing Process. Sociological Methods and Research 25, 138–48.

Carlin, B. P. and Louis, T. A. (2000). Bayes and Empirical Bayes Methods for Data
Analysis, 2nd ed. New York: Chapman & Hall.

Carreau, M. (2000). Panel Blames NASA Chiefs in Mars Mess; Design Flaw in Polar
Lander Cited. Houston Chronicle, March 29, Section A, Page 1.

Carroll, R. J., Ruppert, D., and Stefanski, L. A. (1995). Measurement Error in Nonlinear
Models. London: Chapman & Hall.

Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric Regression in the
Presence of Measurement Error. Biometrika 86, 541–44.

Casella, G. (1980). Minimax Ridge Regression Estimation. Annals of Statistics 8, 1036–56.

Casella, G. (1985). Condition Numbers and Minimax Ridge Regression Estimators. Jour-
nal of the American Statistical Association 80, 753–58.

Casella, G., Lavine, M., and Robert, C. P. (2001). Explaining the Perfect Sampler. Amer-
ican Statistician 55, 299–305.

Chambers, J. M. (1973). Fitting Nonlinear Models: Numerical Techniques. Biometrika
60, 1–13.

272 BIBLIOGRAPHY

Chan, K. S. (1989). A Note on the Geometric Ergodicity of a Markov Chain. Advances
in Applied Probability 21, 702–3.

Chan, K. S. (1993). Asymptotic Behavior of the Gibbs Sampler. Journal of the American
Statistical Association 88, 320–26.

Chan, T. F., Golub, G. H., and LeVeque, R. J. (1983). Algorithms for Computing Sample
Variance: Analysis and Recommendations. Statistician 37, 242–47.

Chen, M–H., and Schmeiser, B. (1993). Performance of the Gibbs, Hit–and–Run, and
Metropolis Samplers. Journal of Computational and Graphical Statistics 2, 251–72.

Chen, M–H., Shao, Q–M., and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian
Computation. New York: Springer-Verlag.

Cheng, C., and Van Ness, J. W. (1999). Statistical Regression with Measurement Error.
London: Edward Arnold.

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis–Hastings Algorithm.
American Statistician. 49, 327–35.

Clarke, E. M., Wing, J. M., Alur, R., Cleaveland, R., Dill, D., Emerson, A., Garland, S.,
German, S., Guttag, J., Hall, A., Henzinger, T., Holzmann, G., Jones, C., Kurshan,
R., Leveson, N., McMillan, K., Moore, J., Peled, D., Pnueli, A., Rushby, J., Shankar,
N., Sifakis, J., Sistla, P., Steffen, B., Wolper, P., Woodcock, J., and Zave, P. (1996).

Formal Methods: State of the Art and Future Directions. ACM Computing
Surveys 28, 626–43.

Clubb, J. M. and Austin, E. W. (1985). Sharing Research Data in the Social Sciences.
In Sharing Research Data, S. E. Fienberg, M. E. Martin, and M. L. Straf (eds.).
Washington, DC: National Academy of Sciences.

Collings, B. J. (1987). Compound Random Number Generators. Journal of the American
Statistical Association 82, 525–27.

Congdon, P. (2001). Bayesian Statistical Modeling. New York: John Wiley & Sons.

Cook, R. D. (1986). Assessment of Local Influence. Journal of the Royal Statistical Society
48, 133–69.

Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. New York:
Chapman & Hall.

Cooper, B. E. (1972). Computing Aspects of Data Management. Applied Statistics 21,
65–75.

Corcoran, J. N. and Tweedie, R. L. (2002). Perfect Sampling from Independent Metropo-
lis–Hastings Chains. Journal of Statistical Planning and Inference 104, 297–314.

Coveyou, R. R. (1960). Serial Correlation in the Generation of Pseudo-random Numbers.
Journal of the Association for Computing Machinery 7, 72–74.

Coveyou, R. R. (1970). Random Numbers Fall Mainly in the Planes (review). ACM Com-
puting Reviews, 225.

Coveyou, R. R. and MacPherson, R. D. (1967). Fourier Analysis of Uniform Ran-
dom Number Generators. Journal of the Association for Computing Machinery 14,
100–119.

Cox, D. R. (1970). Analysis of Binary Data. London: Chapman & Hall.

BIBLIOGRAPHY 273

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. New York: Chapman &
Hall.

Cragg, J. G. (1994). Making Good Inferences from Bad Data. Canadian Journal of Eco-
nomics 28, 776–99.

Creeth, R. (1985). Micro-computer Spreadsheets: Their Uses and Abuses. Journal of
Accountancy 159, 90–93.

Cuevas, A. and Sanz, P. (1988). On Differentiability Properties of Bayes Operators. In
Bayesian Statistics 3, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M.
Smith (eds.). Oxford: Oxford University Press, pp. 569–77.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Structured Programming. San
Diego, CA: Academic Press.

Datta, S. and McCormick, W. P. (1995). Bootstrap Inference for a First-Order Autore-
gression with Positive Innovations. Journal of American Statistical Association 90,
1289–300.

David, M. H. (1991). The Science of Data Sharing: Documentation. In Sieber, J. E. (Ed.)
Sharing Social Science Data. Newbury Park, CA: Sage Publications.

Davidson, R. and MacKinnon, J. G. (1984). Convenient Specification Tests for Logit
and Probit Models. Journal of Econometrics 25, 241–62.

Davidson, R. and MacKinnon, J. G. (1993). Estimation and Inference in Econometrics.
Oxford: Oxford University Press.

Davison, A. C. and Hinkley, D. V. (1988). Saddle Point Approximations in Resampling
Methods. Biometrika 75, 417–31.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application.
Cambridge: Cambridge University Press.

Davison, A. C., Hinkley, D. V., and Schechtman, E. (1986a). Efficient Bootstrapping
Simulations. Biometrika 73, 555–66.

Davison, A. C., Hinkley, D. V., and Worton, B. J. (1986b). Bootstrap Likelihood Meth-
ods. Biometrika 79, 113–30.

Day, N. E. (1969). Estimating the Components of a Mixture of Normal Distributions.
Biometrika 56, 463–74.

de Haan, L. (1981). Estimation of the Minimum of a Function Using Order Statistics.
Journal of the American Statistical Association 76, 467–69.

Delampady, M. and Dey, D. K. (1994). Bayesian Robustness for Multiparameter Prob-
lems. Journal of Statistical Planning and Inference 50, 375–82.

Den Haan, W. J. and Marcet, A. (1994). Accuracy in Simulations. Review of Economic
Studies 61, 3–18.

Dennis, J. E., Jr. (1984). A User’s Guide to Nonlinear Optimization Algorithms. Proceed-
ings of the IEEE 72, 1765–76.

Dennis, J. E., Jr. and Schnabel, R. B. (1982). Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Philadelphia: SIAM Press.

Dennis, J. E., Jr., Gay, D. M., and Welsch, R. E. (1981). ALGORITHM 573: NL2SOL–
An Adaptive Nonlinear Least-Squares Algorithm. ACM Transactions on Mathemat-
ical Software 7, 369–83.

274 BIBLIOGRAPHY

Derigs, U. (1985). Using Confidence Limits for the Global Optimum in Combinatorial
Optimization. Operations Research 22, 1024–49.

DeShon, R. P. (1998). A Cautionary Note on Measurement Error Correlations in Structural
Equation Models. Psychological Methods 3, 412–23.

Dewald, W. G., Thursby, J. G., and Anderson, R. G. (1986). Replication in Empirical
Economics: The Journal of Money, Credit and Banking Project. American Economic
Review 76, 587–603.

Dey, D. K. and Micheas, A. (2000). Ranges of Posterior Expected Losses and ε-Robust
Actions. In Robust Bayesian Analysis, D. R. Insua and F. Ruggeri (eds.). New York:
Springer-Verlag, pp. 71–88.

Dhrymes, P. J. (1994). Topics in Advanced Econometrics, Volume II: Linear and Nonlinear
Simultaneous Equations. New York: Springer-Verlag.

DiCiccio, T. J. and Tibshirani, R. J. (1987). Bootstrap Confidence Intervals and Bootstrap
Approximations. Journal of the American Statistical Association 82, 163–70.

Dick, N. P. and Bowden, D. C. (1973). Maximum Likelihood Estimation for Mixtures
of Two Normal Distributions. Biometrics 29, 781–90.

Diekhoff, G. M. (1996). Basic Statistics for the Social and Behavioral Sciences. Upper
Saddle River, NJ: Prentice Hall.

Dieter, U. (1975). Statistical Interdependence of Pseudo-random Numbers Generated by
the Linear Congruential Method. In Applications of Number Theory to Numerical
Analysis, S. K. Zaremba (ed.). San Diego, CA: Academic Press, pp. 287–318.

Doeblin, W. (1940). Éléments d’une théorie générale des chaînes simples constantes de
Markoff. Annales Scientifiques de l’Ecole Normale Superieure 57, 61–111.

Dongarra, J. J. and Walker, D. W. (1995). Software Libraries for Linear Algebra Com-
putations on High Performance Computers. SIAM Review 47, 151–80.

Dongarra, J. J., Du Croz, J., Duff, S., and Hammarling, S. (1990). Algorithm 679: A Set
of Level 3 Basic Linear Algebra Subprograms. ACM Transactions on Mathematical
Software 16, 18–28.

Doob, J. L. (1990). Stochastic Processes. New York: John Wiley & Sons.

Dorsey, R. E., and Mayer, W. J. (1995). Genetic Algorithms for Estimation Problems
with Multiple Optima Non-differentiability, and Other Irregular Features. Journal of
Business and Economic Statistics 13, 53–66.

Down, D., Meyn, S. P., and Tweedie, R. L. (1995). Exponential and Uniform Ergodicity
of Markov Processes. Annals of Probability 23, 1671–91.

Downham, D. Y. (1970). The Runs Up and Test. Applied Statistics 19, 190–92.

Downham, D. Y. and Roberts, F. D. K. (1967). Multiplicative Congruential Pseudo-
random Number Generators. Computer Journal 10, 74–77.

Downing, D. D. (1996). Calculus the Easy Way, 3rd ed. New York: Barrons Educational
Series.

Dreze, J. H. and Richard, J. F. (1983). Bayesian Analysis of Simultaneous Equation
Systems. In Handbook of Econometrics, Z. Griliches and M. Intriligator (eds.).
Amsterdam: North-Holland, pp. 369–77.

BIBLIOGRAPHY 275

Drezner, Z. and Wesolowsky, G. O. (1989). On the Computation of the Bivariate Normal
Integral. Journal of Statistical Computation and Simulation 35, 101–17.

Dudewicz, E. J. (1975). Random Numbers: The Need, the History, the Generators. In A
Modern Course on Statistical Distributions in Scientific Work, Volume 2, G. P. Patil,
S. Kotz, and J. K. Ord (eds.). Boston: D. Reidel, pp. 25–36.

Dudewicz, E. J. (1976). Speed and Quality of Random Numbers for Simulation. Journal
of Quality Technology 8, 171–78.

Duhem, P. (1906). The Aim and Structure of Physical Theory (1991 translation, with
commentary). Princeton, NJ: Princeton University Press.

Duncan, O. D. and Davis, B. (1953). An Alternative to Ecological Correlation. American
Sociological Review 18, 665–66.

Durbin, J. (1954). Errors in Variables. International Statistical Review 22, 23–32.

Durbin, R. and Wilshaw, D. (1987). An Analogue Approach to the Traveling Salesman
Problem Using an Elastic Net Method. Nature 326, 689–91.

Eastlake, D., Crocker, S., and Schiller, J. (1994). Randomness Recommendations for
Security. IETF RFC 1750.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics
7, 1–26.

Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

Efron, B. and Morris, C. (1972). Limiting the Risk of Bayes and Empirical Bayes
Estimators. Part II: The Empirical Bayes Case. Journal of the American Statistical
Association 67, 130–39.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York:
Chapman & Hall/CRC.

Eiben, A. E., Aarts, E. H. L., and Van Hee, K. M. (1991). Global Convergence of
Genetic Algorithms: An Infinite Markov Chain Analysis. In Proceedings of the First
International Conference on Parallel Problem Solving from Nature 4, 12. Berlin:
Springer-Verlag.

Eichenaver, J. and Lehn, J. (1986). A Nonlinear Congruential Pseudorandom Number
Generator. Statistische Hefte 27, 315–26.

Emerson, J. D. and Hoaglin, D. C. (1983). Resistant Lines for y versus x. In Under-
standing Robust and Exploratory Data Analysis, D. C. Hoaglin, F. Mosteller, and
J. Tukey (eds.). New York: John Wiley & Sons, pp. 129–65.

Engle, R. F. (1984). Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econo-
metrics. In Handbook of Econometrics 2, Z. Griliches and M. Intriligator (eds.).
Amsterdam: North-Holland, pp. 775–826.

Entacher, K. (1998). Bad Subsequences of Well-Known Linear Congruential Pseudoran-
dom Number Generators. ACM Transactions on Modeling and Computer Simulation
8, 61–70.

Escobar, M. D. and West, M. (1995). Bayesian Density Estimation and Inference Using
Mixtures. Journal of the American Statistical Association 90, 577–88.

276 BIBLIOGRAPHY

Everett, M. G. and Borgatti, S. P. (1999). The Centrality of Groups and Classes. Journal
of Mathematical Sociology 23, 181–201.

Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized
Linear Models, 2nd ed. New York: Springer-Verlag.

Falk, M. (1999). A Simple Approach to the Generation of Uniformly Distributed Ran-
dom Variables with Prescribed Correlations. Communications in Statistics, Part B,
Simulation and Computation 28, 785–91.

Fedorov, V. V. (1974). Regression Problems with Controllable Variables Subject to Error.
Biometrika 61, 49–56.

Feigenbaum, S. and Levy, D. M. (1993). The Market for (Ir)Reproducible Econometrics.
Social Epistemology 7, 215–32.

Feldstein, M. S. (1974), Social Security, Induced Retirement and Capital Accumulation.
Journal of Political Economy 82, 905–26.

Ferguson, T. S. (1983). Bayesian Density Estimation by Mixtures of Normal Distributions.
In Recent Advances in Statistics, H. Rizvi and J. Rustagi (eds.). New York: Academic
Press, pp. 287–302.

Ferree, K. (1999). Iterative Approaches to R × C Ecological Inference Problems: Where
They Can Go Wrong. Presented at Summer Methods Conference, July 1999, College
Station, TX. <http://www.polmeth.ufl.edu/papers/99/ferre99.
pdf>.

Ferrenberg, A. (1992). Monte Carlo Simulations: Hidden Errors from “Good” Random
Number Generators. Physical Review Letters 69, 3382–84.

Ferretti, N. and Romo, J. (1996). Unit Root Bootstrap Tests for AR(1) Models. Biometrika
83, 849–60.

Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. New York: John Wiley & Sons.

Finch, S. J., Mendell, N. R., and Thode, H. C., Jr. (1989). Probabilistic Measures of
Adequacy of a Numerical Search for a Global Maximum. Journal of the American
Statistical Association 84, 1020–23.

FIPS (1994). Security Requirements for Cryptographic Modules. Federal Information Pro-
cessing Standards Publication 140–1. Springfield, VA: U.S. Department of Com-
merce/National Technical Information Service.

Firth, D. (1993). Bias Reduction of Maximum Likelihood Estimates. Biometrika 80,
27–38.

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications. New York:
Springer-Verlag.

Fishman, G. S. and Moore, L. R. (1982). A Statistical Evaluation of Multiplicative Con-
gruential Random Number Generators with Modulus 231−1. Journal of the American
Statistical Association 77, 129–36.

Fletcher, R. (1987). Practical Methods of Optimization, 2nd ed. New York: John Wiley
& Sons.

Fogel, L. J., Owens, A. J. and Walsh, M. J. (1967). Artificial Intelligence Through Simu-
lated Evolution. New York: John Wiley & Sons.

BIBLIOGRAPHY 277

Ford, J. A. and Moghrabi, I. A. (1994). Multi-step Quasi-Newton Methods for Optimiza-
tion. Journal of Computational and Applied Mathematics 50, 305–23.

Fox, J. (1997). Applied Regression Analysis, Linear Models, and Related Methods. Thou-
sand Oaks, CA: Sage Publications.

Freedman, D. A. (1981). Bootstrapping Regression Models. Annals of Statistics 9,
1218–28.

Freedman, D., Pisani, R., and Purves, R. (1997). Statistics, 3rd ed. New York: W.W.
Norton.

Freedman, D. A., Klein, S. P., Ostland, M., and Roberts, M. R. (1998). Review of A
Solution to the Ecological Inference Problem, by Gary King. Journal of the American
Statistical Association 93, 1518–22.

Freedman, D. A., Ostland, M., Roberts, M. R., and Klein, S. P. (1999). Response to
King’s Comment. Journal of the American Statistical Association 94, 355–57.

Frieze, A., Kannan, R., and Polson, N. G. (1994). Sampling from Log-Concave Distri-
butions. Annals of Applied Probability 4, 812–37.

Frigessi, A., Hwang, C.-R., Sheu, S. J., and Di Stefano, P. (1993). Convergence Rates
of the Gibbs Sampler, the Metropolis Algorithm, and Other Single-Site Updating
Dynamics. Journal of the Royal Statistical Society, Series B 55, 205–20.

Fryer, J. G. and Robertson, C. A. (1972). A Comparison of Some Methods for Estimating
Mixed Normal Distributions. Biometrika 59, 639–48.

Fuller, W. A. (1987). Measurement Error Models. New York: John Wiley & Sons.

Fuller, W. A. (1990). Prediction of True Values for Measurement Error Model. In Sta-
tistical Analysis of Measurement Error Models and Applications, P. Brown and W.
Fuller (eds.). Contemporary Mathematics 112, 41–57. Providence, RI: American
Mathematical Society.

Fylstra, D., Lasdon, L., Watson, J., and Waren, A. (1998). Design and Use of the
Microsoft Excel Solver. Interfaces 28, 29–55.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., and Rossi, F. (ed.)
(2003). Gnu Scientific Library Reference Manual, 2nd ed. Bristol, United Kingdom:
Network Theory Ltd.

Gallant, A. R. (1987). Nonlinear Statistical Models. New York: John Wiley & Sons.

Gamerman, D. (1997). Markov Chain Monte Carlo. New York: Chapman & Hall.

Gan, L. and Jiang, J. (1999). A Test for Global Maximum. Journal of the American
Statistical Association 94, 847–54.

Ganesalingam, S. and McLachlan, G. J. (1981). Some Efficiency Results for the Estima-
tion of the Mixing Proportion in a Mixture of Two Normal Distributions. Biometrics
37, 23–33.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W.H. Freeman.

Gelfand, A. E. and Dey, D. K. (1991). On Bayesian Robustness of Contaminated Classes
of Priors. Statistical Decisions 9, 63–80.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating
Marginal Densities. Journal of the American Statistical Association 85, 398–409.

278 BIBLIOGRAPHY

Gelfand, A. E., Mallick, B. K., and Polasek, W. (1997). Broken Biological Size Relation-
ships: A Truncated Semiparametric Regression Approach with Measurement Error.
Journal of the American Statistical Association 92, 836–45.

Gelman, A. (1992). Iterative and Non-iterative Simulation Algorithms. Computing Science
and Statistics 24, 433–38.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis.
New York: Chapman & Hall.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 721–41.

Gentle, J. E. (1990). Computer Implementation of Random Number Generators. Journal
of Computational and Applied Mathematics 31, 119–25.

Gentle, J. E. (1998). Random Number Generation and Monte Carlo Methods. New York:
Springer-Verlag.

Gentle, J. E. (2002). Elements of Statistical Computing. New York: Springer-Verlag.

Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo Inte-
gration. Econometrica 57, 1317–39.

Geweke, J. (1993). Bayesian Treatment of the Independent Student t Linear Model. Jour-
nal of Applied Econometrics 8, 19–40.

Geyer, C. J. (1991). Constrained Maximum Likelihood Exemplified by Isotonic Convex
Logistic Regression. Journal of the American Statistical Association 86, 717–24.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo Maximum Likelihood
for Dependent Data. Journal of the Royal Statistical Society, Series B 54, 657–99.

Gilks, W. R. and Roberts, G. O. (1996). Strategies for Improving MCMC. In Markov
Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter
(eds.). New York: Chapman & Hall, pp. 89–114.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo
in Practice. New York: Chapman & Hall, pp. 131–44.

Gill, J. (2000). Generalized Linear Models: A Unified Approach. Thousand Oaks, CA:
Sage Publications.

Gill, J. (2002). Bayesian Methods: A Social and Behavioral Sciences Approach. New York:
Chapman & Hall.

Gill, J. and King, G. (2000). Alternatives to Model Respecification in Nonlinear Estima-
tion. Technical Report. Gainesville, FL: Department of Political Science, University
of Florida.

Gill, P. E. and Murray, W. (1974). Newton-Type Methods for Unconstrained and Linearly
Constrained Optimization. Mathematical Programming 7, 311–50.

Gill, P. E., Golub, G. H., Murray, W., and Sanders, M. A. (1974). Methods for Modifying
Matrix Factorizations. Mathematics of Computation 28, 505–35.

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Optimization. London:
Academic Press.

Glanz, J. (2002). Studies Suggest Unknown Form of Matter Exists. New York Times, July
31, Section A, Page 12, Column 1.

BIBLIOGRAPHY 279

Gleser, L. J. (1992). The Importance of Assessing Measurement Reliability in Multivariate
Regression. Journal of the American Statistical Association 87, 696–707.

Goffe, W. L., Ferrier, G. D., and Rogers, J. (1992). Simulated Annealing: An Initial
Application in Econometrics. Computer Science in Economics & Management 5,
133–46.

Goffe, W. L., Ferrier, G. D., and Rogers, J. (1994). Global Optimization of Statistical
Functions with Simulated Annealing. Journal of Econometrics 60, 65–99.

Goldberg, A. (1989). Smalltalk-80: The Language. Reading, MA: Addison-Wesley.

Goldberg, I. and Wagner, D. (1996). Randomness and the Netscape Browser. Dr. Dobb’s
Journal 9, 66–70.

Goldfeld, S. and Quandt, R. (1972). Nonlinear Methods in Econometrics. Amsterdam:
North-Holland.

Goldfeld, S., Quandt, R., and Trotter, H. (1966). Maximisation by Quadratic Hill-
Climbing. Econometrica 34, 541–51.

Good, I. J. (1957). On the Serial Test for Random Sequences. Annals of Mathematical
Statistics 28, 262–64.

Goodman, L. (1953). Ecological Regressions and the Behavior of Individuals. American
Sociological Review 18, 663–66.

Gorenstein, S. (1967). Testing a Random Number Generator. Communications of the Asso-
ciation for Computing Machinery 10, 111–18.

Gould, W. and Sribney, W. (1999). Maximum Likelihood Estimation with Stata. College
Station, TX: Stata Press.

Gove, W. R. and Hughes, M. (1980). Reexamining the Ecological Fallacy: A Study
in Which Aggregate Data Are Critical in Investigating the Pathological Effects of
Living Alone. Social Forces 58, 1157–77.

Greene, W. (2003). Econometric Analysis, 5th ed. Upper Saddle River, NJ: Prentice Hall.

Grillenzoni, C. (1990). Modeling Time-Varying Dynamical Systems. Journal of the Amer-
ican Statistical Association 85, 499–507.

Grochowski, J. (1995). Winning Tips for Casino Games. New York: Penguin.

Gujarati, D. N. (1995). Basic Econometrics. New York: McGraw-Hill.

Gupta, A. and Lam, M. S. (1996). Estimating Missing Values Using Neural Networks.
Journal of the Operational Research Society 47, 229–38.

Gurmu, S. (1991). Tests for Detecting Overdispersion in the Positive Poisson Regression
Model. Journal of Business and Economic Statistics 9, 1–12.

Gustafson, P. (2000). Local Robustness in Bayesian Analysis. In Robust Bayesian Anal-
ysis, D. R. Insua and F. Ruggeri (eds.). New York: Springer-Verlag, pp. 71–88.

Gustafson, P. and Wasserman, L. (1995). Local Sensitivity Diagnostics for Bayesian
Inference. Annals of Statistics 23, 2153–67.

Guttman, I., Dutter, R., and Freeman, P. R. (1978). Care and Handling of Univari-
ate Outliers in the General Linear Model to Detect Spuriosity. Technometrics 20,
187–93.

Haberman, S. J. (1989). Concavity and Estimation. Annals of Statistics 17, 1631–61.

280 BIBLIOGRAPHY

Häggström, O. (2002). Finite Markov Chains and Algorithmic Applications. Cambridge:
Cambridge University Press.

Häggström, O. and Nelander, K. (1999). On Exact Simulation of Markov Random Fields
Using Coupling from the Past. Scandinavian Journal of Statistics 26, 395–411.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. New York: Springer-Verlag.

Hamilton, L. C. (1992). Regression with Graphics: A Second Course in Applied Statistics.
Monterey, CA: Brooks/Cole.

Hampel, F. R. (1974). The Influence Curve and Its Role in Robust Estimation. Journal
of the American Statistical Association 69, 383–93.

Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M., and Stahel, W. A. (1986). Robust
Statistics: The Approach Based on Influence Functions. New York: John Wiley &
Sons.

Hanushek, E. A. and Jackson, J. E. (1977). Statistical Methods for Social Scientists. San
Diego, CA: Academic Press.

Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models,
Logistic Regression, and Survival Analysis. New York: Springer-Verlag.

Harris, T. E. (1956). The Existence of Stationary Measures for Certain Markov Processes.
In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Prob-
ability, Volume II. Berkeley, CA: University of California Press, pp. 113–24.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. New York:
Springer-Verlag.

Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika 57, 97–109.

Hathaway, R. J. (1985). A Constrained Formulation of Maximum-Likelihood Estimation
for Normal Mixture Distributions. Annals of Statistics 13, 795–800.

Haughton, D. (1997). Packages for Estimating Finite Mixtures: A Review. American
Statistician 51, 194–205.

Hausman, J. A. (1978). Specification Tests in Econometrics. Econometrica 46, 1251–71.

Hausman, J., Hall, B., and Griliches, Z. (1984). Economic Models for Count Data with
an Application to the Patents–R&D Relationship. Econometrica 52, 909–38.

Hayakawa, M. and Kinoshita, T. (2001). Comment on the Sign of the Pseudoscalar Pole
Contribution to the Muon g-2. Technical Report. Theory Division, KEK, Tsukuba
Japan. <http://arxiv.org/abs/hep-ph/0112102>.

Heinze, G. (1999). The Application of Firth’s Procedure to Cox and Logistic Regres-
sion. Technical Report 10/1999. Vienna: Department of Medical Computer Sci-
ences, Section of Clinical Biometrics, Vienna University. <http://www. akh-
wien.ac.at/imc/biometrie/programme/fl en>.

Heinze, G. and Schemper, M. (2002). A Solution to the Problem of Separation in Logistic
Regression. Statistics in Medicine 21, 2409–19.

Hellekalek, P. (1998). Good Random Number Generators Are (Not So) Easy to Find.
Mathematics and Computers in Simulation 46, 485–505.

BIBLIOGRAPHY 281

Herrnson, P. S. (1995). Replication, Verification, Secondary Analysis, and Data Collection
in Political Science (with a response). PS: Political Science & Politics 28, 452–5,
492–3.

Herron, M. C. and Shotts, K. W. (2003a). Logical Inconsistency in EI-Based Second
Stage Regressions. American Journal of Political Science. Forthcoming.

Herron, M. C. and Shotts, K. W. (2003b). Using Ecological Inference Point Estimates As
Dependent Variables in Second-Stage Linear Regressions. Political Analysis 11(1),
44–64. With a response from Adolph and King (pp. 65–76), a reply (pp. 77–86),
and a summary by Adolph, King, Herron and Shotts (pp. 86–94).

Higham, N. (2002). Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia:
SIAM Press.

Hildreth, C. and Aborn, M. (1985). Report of the Committee on National Statistics.
In Sharing Research Data, S. E. Fienberg, M. E. Martin, and M. L. Straf (eds.).
Washington, DC: National Academy of Sciences.

Hill, T., O’Connor, M., and Remus, W. (1996). Neural Network Models for Time Series
Forecasts. Management Science 42, 1082–92.

Hinkley, D. V. (1988). Bootstrap Methods. Journal of the Royal Statistical Society, Series
B 50, 321–37.

Hirji, K. F., Tsiatis, A. A., and Mehta, C. R. (1989). Median Unbiased Estimation for
Binary Data. American Statistician 43, 7–11.

Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (1983). Understanding Robust and Explo-
ratory Data Analysis. New York: John Wiley & Sons.

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM 12, 576–580.

Hobert, J. P., Robert, C. P., and Titterington, D. M. (1999). On Perfect Simulation for
Some Mixtures of Distributions. Statistics and Computing 9, 287–98.

Hochbaum, D., Megiddo, N., Naor, J., and Tamir, A. (1993). Tight Bounds and Approx-
imation Algorithms for Integer Programs with Two Variables per Inequality. Math-
ematical Programming 62, 69–83.

Hodges, J. S. (1987). Uncertainty, Policy Analysis and Statistics. Statistical Science 2,
259–75.

Hoel, P. G., Port, S. C., and Stone, C. J. (1987). An Introduction to Stochastic Processes.
Prospect Heights, IL: Waveland Press.

Hoerl, A. E. and Kennard, R. W. (1970a). Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics 12, 55–67.

Hoerl, A. E. and Kennard, R. W. (1970b). Ridge Regression: Applications to Nonorthog-
onal Problems. Technometrics 12, 69–82.

Hoeting, J. A., Madigan, D., Raftery, D. E., and Volinsky, C. T. (1999). Bayesian Model
Averaging: A Tutorial. Statistical Science 14, 382–417.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Uni-
versity of Michigan Press.

Hopfield, J. J. (1982). Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities. Proceedings of the National Academy of Sciences 79,
2554–58.

282 BIBLIOGRAPHY

Hopfield, J. J. and Tank, D. W. (1985). “Neural” Computation of Decisions in Optimiza-
tion Problems. Biological Cybernetics 52, 141–52.

Hopfield, J. J. and Tank, D. W. (1986). Computing with Neural Circuits: A Model.
Science 233, 625–33.

Horowitz, J. L. (1997). Boostrap Performance in Econometrics. In Advances in Econo-
metrics, D. M. Kreps and K. W. Wallis (eds.). Cambridge: Cambridge University
Press.

Hosmer, D. W. (1973a). A Comparison of Iterative Maximum Likelihood Estimates of
the Parameters of a Mixture of Two Normal Distributions under Three Different
Types of Samples. Biometrics 29, 761–70.

Hosmer, D. W. (1973b). On MLE of the Parameters of a Mixture of Two Normal Distri-
butions. Communications in Statistics 1, 217–27.

Hotelling, H. (1943). Some New Methods in Matrix Calculation. Annals of Mathematical
Statistics 16, 1–34.

Hsu, J. S. J. and Leonard, T. (1997). Hierarchical Bayesian Semiparametric Procedures
for Logistic Regression. Biometrika 84, 85–93.

Huber, P. J. (1972). Robust Statistics: A Review. Annals of Mathematical Statistics 43,
1041–67.

Huber, P. J. (1973). Robust Regression: Asymptotics, Conjectures, and Monte Carlo.
Annals of Statistics 1, 799–821.

Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.

Hull, T. E. and Dobell, A. R. (1962). Random Number Generators. SIAM Review 4,
230–54.

Hurst, R. L. and Knop, R. E. (1972). Generation of Random Normal Correlated Variables:
Algorithm 425. Communications of the Association for Computing Machinery 15,
355–57.

Hyndman, R. J. (1996). Computing and Graphing Highest Density Regions. American
Statistician 50, 120–26.

Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and Graphics.
Journal of Computational and Graphical Statistics 5, 299–314.

Ingber, L. (1989). Very Fast Simulated Re–Annealing. Mathematical Computer Modelling
12, 967–73.

Ingber, L. (1990). Statistical Mechanical Aids to Calculating Term Structure Models.
Physical Review A 42, 7057–64.

Ingber, L., Wehner, M. F., Jabbour, G. M., and Barnhill, T. M. (1991). Application of
Statistical Mechanics Methodology to Term-Structure Bond-Pricing Models. Mathe-
matical Computer Modelling 15, 77–98.

Ingrassia, S. (1994). On the Rate of Convergence of the Metropolis Algorithm and Gibbs
Sampler by Geometric Bounds. Annals of Applied Probability 4, 347–89.

Intrator, O. and Intrator, N. (2001). Interpreting Neural-Network Results: A Simulation
Study. Computational Statistics and Data Analysis 37, 373–93.

BIBLIOGRAPHY 283

Iturria, S. J., Carroll, R. J., and Firth, D. (1999). Polynomial Regression and Estimating
Functions in the Presence of Multiplicative Measurement Error. Journal of the Royal
Statistical Society, Series B 61, 547–61.

Jaccard, J. and Wan, C. K. (1995). Measurement Error in the Analysis of Interaction
Effects between Continuous Predictors Using Multiple Regression: Multiple Indicator
and Structural Equation Approaches. Psychological Bulletin 117, 348–57.

Jaeschke, G. (1993). On Strong Pseudoprimes to Several Bases. Mathematics of Compu-
tation 61, 915–26.

Jagerman, D. L. (1965). Some Theorems Concerning Pseudo-random Numbers. Mathe-
matics of Computation 19, 418–26.

James, W. and Stein, C. (1961). Estimation with Quadratic Loss. In Proceedings of the
4th Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman (ed.).
Berkeley, CA: University of California Press.

Jansson, B. (1966). Random Number Generators. Stockholm: Victor Pettersons.

Johnson, V. E. (1996). Studying Convergence of Markov Chain Monte Carlo Algorithms
Using Coupled Sample Paths. Journal of the American Statistical Association 91,
154–66.

Johnson, G. (2001). Connoisseurs of Chaos Offer a Valuable Product: Randomness. New
York Times, June 12, Late Edition-Final, Section F, Page 1, Column 3.

Johnson, G. (2002). At Lawrence Berkeley, Physicists Say a Colleague Took Them for a
Ride. New York Times, October 15, Final Edition, Section F, Page 1, Column 3.

Joseph, L., Wolfson, D. B., and du Berger, R. (1995). Sample Size Calculations for Bino-
mial Proportions via Highest Posterior Density Intervals. Statistician 44, 143–54.

Judd, J. S. (1990). Neural Network Design and the Complexity of Learning. Cambridge,
MA: MIT Press.

Judd, K. (1998). Numerical Methods in Economics. Cambridge, MA: MIT Press.

Judge, G. G., Miller, D. J., and Tam Cho, W. K. (2002). An Information Theoretic App-
roach to Ecological Estimation and Inference. <http://cho.pol.uiuc.edu/
wendy/papers/jmc.pdf>.

Jun, B. and Kocher, P. (1999). The Intel Random Number Generator Technical Report.
Cryptography Research, Inc. <http://developer.intel. com/design/
security/CRIwp.pdf>.

Kadane, J. B. and Srinivasan, C. (1996). Bayesian Robustness and Stability. In Bayesian
Robustness, J. O. Berger, B. Betró, E. Moreno, L. R. Pericchi, F. Ruggeri, G. Salinetti,
and L. Wasserman (eds.). Monograph Series 29. Hayward, CA: Institute of Mathe-
matical Statistics, pp. 139–56.

Kahn, M. J. and Raftery, A. E. (1996). Discharge Rates of Medicare Stroke Patients to
Skilled Nursing Facilities: Bayesian Logistic Regression with Unobserved Hetero-
geneity. Journal of the American Statistical Association 91, 29–41.

Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. San Diego,
CA: Academic Press.

Karlin, S. and Taylor, H. M. (1990). A First Course in Stochastic Processes. San Diego,
CA: Academic Press.

284 BIBLIOGRAPHY

Kass, R. E., Tierney, L., and Kadane, J. B. (1989). Approximate Methods for Assessing
Influence and Sensitivity in Bayesian Analysis. Biometrika 76, 663–74.

Kelley, C. T. (1999). Iterative Methods for Optimization. Philadelphia: SIAM Press.

Kelley, T. L. and McNemar, Q. (1929). Doolittle Versus the Kelley-Salisburg Iteration
Method for Computing Multiple Regression Coefficients. Journal of the American
Statistical Association 24, 164–69.

Kendall, W. S. and Moller, J. (2000). Perfect Simulation Using Dominating Processes
on Ordered Spaces, with Application to Locally Stable Point Processes. Advances in
Applied Probability 32, 844–65.

Kennedy, W. J. and Gentle, J. E. (1980). Statistical Computing. New York: Marcel
Dekker.

King, G. (1989). Unifying Political Methodology: The Likelihood Theory of Statistical
Inference. Ann Arbor, MI: University of Michigan Press.

King, G. (1997). A Solution to the Ecological Inference Problem: Reconstructing Individual
Behavior from Aggregate Data. Princeton, NJ: Princeton University Press.

King, G. (1998). EI: A Program for Ecological Inference, v. 1.61. Software Manual.
<http://gking.harvard.edu/stats.shtml/>.

King, G. (1999). The Future of Ecological Inference Research: A Comment on Freedman
et al. Journal of the American Statistical Association 94, 352–55.

King, G., Honaker, J., Joseph, A., and Scheve, K. (2001). Analyzing Incomplete Political
Science Data: An Alternative Algorithm for Multiple Imputation. American Political
Science Review 95, 49–69.

King, G. and Signorino, C. S. (1996). The Generalization in the Generalized Event
Count Model, with Comments on Achen, Amano, and Londregan. Political Analysis
6, 225–252.

King, G. and Zeng, L. (2001a). Logistic Regression in Rare Events Data. Political
Analysis 9, 137–63.

King, G. and Zeng, L. (2001b). Improving Forecasts of State Failure. World Politics 53,
623–58.

King, G., Rosen, O., and Tanner, M. (1999). Binomial-Beta Hierarchical Models for
Ecological Inference. Sociological Methods and Research 28, 61–90.

King, G., Tomz, M., and Wittenberg, J. (2000). Making the Most of Statistical Analyses:
Improving Interpretation and Presentation. American Journal of Political Science 44,
347–61.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science 220, 671–80.

Kit, E. and Finzi, S. (1995). Software Testing in the Real World: Improving the Process.
New York: Addison-Wesley (ACM Press Books).

Kitagawa, G. and Akaike, H. (1982). A Quasi Bayesian Approach to Outlier Detection.
Annals of the Institute of Statistical Mathematics 34B, 389–98.

Klepper, S. and Leamer, E. E. (1984). Consistent Sets of Estimates for Regressions with
Errors in All Variables. Econometrica 52, 163–84.

BIBLIOGRAPHY 285

Kleppner, D. and Ramsey, N. (1985). Quick Calculus: A Self-Teaching Guide. New York:
John Wiley & Sons.

Knüsel, L. (1989). Computergestützte Berechnung statistischer Verteilungen. Munich: Old-
enbourg. <http://www.stat.uni-muenchen.
de/∼knuesel/elv/elv.html>.

Knüsel, L. (1995). On the Accuracy of Statistical Distributions in GAUSS. Computational
Statistics and Data Analysis 20, 699–702.

Knüsel, L. (1998). On the Accuracy of the Statistical Distributions in Microsoft Excel.
Computational Statistics and Data Analysis 26, 375–77.

Knüsel, L. (2002). On the Reliability of Microsoft Excel XP for Statistical Purposes.
Computational Statistics and Data Analysis 39, 109–10.

Knuth, D. E. (1973). The Art of Computing Programming: Fundamental Algorithms. 2nd
ed. Reading, MA: Addison-Wesley.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd ed. Reading, MA: Addison-Wesley.

Kofler, M. (1997). Maple: An Introduction and Reference. Reading, MA: Addison-Wesley.

Krawczyk, H. (1992). How to Predict Congruential Generators. Journal of Algorithms 13,
527–45.

Kronmal, R. (1964). The Evaluation of a Pseudorandom Normal Number Generator.
Journal of the Association for Computing Machinery 11, 357–63.

Krug, E. G., Kresnow, M., Peddicord, J. P., and Dahlberg, L. L. (1988). Suicide After
Natural Disasters. New England Journal of Medicine 340, 148–49.

Krzanowski, W. J. (1988). Principles of Multivariate Analysis. Oxford: Oxford University
Press.

Kuan, C. and Liu, L. (1995). Forecasting Exchange Rates Using Feedforward and Recur-
rent Neural Networks. Journal of Applied Econometrics 10, 347–64.

Kuan, C. M. and White, H. (1994). Artificial Neural Networks: An Econometric Per-
spective. Econometric Reviews 13, 1–91.

Lange, K. (1999). Numerical Analysis for Statisticians. New York: Springer-Verlag.

Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust Statistical Modeling
Using the t Distribution. Journal of the American Statistical Association 84, 881–96.

Lavine, M. (1991a). Sensitivity in Bayesian Statistics: The Prior and the Likelihood.
Journal of the American Statistical Association 86, 396–99.

Lavine, M. (1991b). An Approach to Robust Bayesian Analysis for Multidimensional
Parameter Spaces. Journal of the American Statistical Association 86, 400–403.

Lawrance, A. J. (1988). Regression Transformation Diagnostics Using Local Influence.
Journal of the American Statistical Association 83, 1067–72.

Lawson, C. L., Hanson, R. J., Kincaid, D., and Krogh, F. T. (1979). Basic Linear Algebra
Subprograms for FORTRAN Usage. ACM Transactions on Mathematical Software
5, 308–23.

Lax, P. D. (1997). Linear Algebra. New York: John Wiley & Sons.

286 BIBLIOGRAPHY

Leamer, E. E. (1973). Multicollinearity: A Bayesian Interpretation. Review of Economics
and Statistics 55 (3), 371–80.

Leamer, E. E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental
Data. New York: John Wiley & Sons.

Leamer, E. E. (1983). Lets Take the Con Out of Econometrics. American Economic Review
73, 31–43.

Leamer, E. E. (1984). Global Sensitivity Results for Generalized Least Squares Estimates.
Journal of the American Statistical Association 79, 867–70.

Leamer, E. E. (1985). Sensitivity Analysis Would Help. American Economic Review 75,
308–13.

Leamer, E. E. and Leonard, H. (1983). Reporting the Fragility of Regression Estimates.
Review of Economics and Statistics 65, 306–17.

Learmonth, G. P. and Lewis, P. A. W. (1973). Some Widely Used and Recently Pro-
posed Uniform Random Number Generators. Proceedings of Computer Science and
Statistics: 7th Annual Symposium on the Interface, W. J. Kennedy (ed.). Ames, IA:
Iowa State University, pp. 163–71.

L’Ecuyer, P. (1990). Random Numbers for Simulation. Communications of the ACM 33,
85–97.

L’Ecuyer, P. (1992). Testing Random Number Generators. In Proceedings of the 1992
Winter Simulation Conference. Piscataway, NJ: IEEE Press.

L’Ecuyer, P. (1994). Uniform Random Number Generation. Annals of Operations Research
53, 77–120.

L’Ecuyer, P. and Hellekalek, P. (1998). Random Number Generators: Selection Criteria
and Testing. In Random and Quasi-random Point Sets, P. Hellekalek (ed.). New
York: Springer-Verlag.

L’Ecuyer, P. and Panneton, F. (2000). A New Class of Linear Feedback Shift Register
Generators. In Proceedings of the 2000 Winter Simulation Conference, J. A. Joines,
R. R. Barton, K. Kang, and P. A. Fishwick (eds.). Piscataway, NJ: IEEE Press,
pp. 690–96.

L’Ecuyer, P. and Simard, R. (2003). TESTU01: A Software Library in ANSI C for Empir-
ical Testing of Random Number Generators. <http://www.iro.umontreal.
ca/ simardr/>.

Lee, L. (1986). Specification Tests for Poisson Regression Models. International Economic
Review 27, 689–706.

Lehmann, E. L. (1999). Elements of Large Sample Theory. New York: Springer-Verlag.

Leimer, D. R. and Lesnoy, S. D. (1982). Social Security and Private Saving: New Time-
Series Evidence. Journal of Political Economy 90, 606–29.

LeSage, J. P. (1997). Bayesian Estimation of Spatial Autoregressive Models. International
Regional Science Review 20, 113–29.

LeSage, J. P. (2000). Bayesian Estimation of Limited Dependent Variable Spatial Autore-
gressive Models. Geographical Analysis 32, 19–35.

BIBLIOGRAPHY 287

LeSage, J. P. and Pace, R. K. (2001). Spatial Dependence in Data Mining. In Data
Mining for Scientific and Engineering Applications, R. L. Grossman, C. Kamath,
P. Kegelmeyer, V. Kumar, and R. R. Namburu (eds.). Boston: Kluwer Academic
Publishers.

LeSage, J. P. and Simon, S. D. (1985). Numerical Accuracy of Statistical Algorithms for
Microcomputers. Computational Statistics and Data Analysis 3, 47–57.

Levine, R. and Renelt, D. (1992). A Sensitivity Analysis of Cross-Country Growth
Regressions. American Economic Review 82, 942–63.

Lewbel, A. (1997). Constructing Instruments for Regressions with Measurement Error
When No Additional Data Are Available, with an Application to Patents and R&D.
Econometrica 65, 1201–13.

Lewis, J. and McCue, K. (2002). Comment on “The Statistical Foundations of the EI
Method” (Lewis) and Reply (McCue) (an exchange in the letter’s to the editor
section). American Statistician 56, 255–57.

Lewis, T. G. and Payne, W. H. (1973). Generalized Feedback Shift Register Pseudoran-
dom Number Algorithm. Journal of the Association for Computing Machinery 20,
456–68.

Lewis, P. A. W., Goodman, O. S., and Miller, J. W. (1969). A Pseudo-random Number
Generator for the System 360. IBM Systems Journal 8, 136–45.

Li, T. and Vuong, Q. (1998). Nonparametric Estimation of the Measurement Error Model
Using Multiple Indicators. Journal of Multivariate Analysis 65, 139–65.

Liseo, B., Petrella, L., and Salinetti, G. (1996). Bayesian Robustness: An Interactive
Approach. In Bayesian Statistics 5, J. O. Berger, J. M. Bernardo, A. P. Dawid, and
D. V. Lindley (eds.) Oxford: Oxford University Press, pp. 223–53.

Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New
York: John Wiley & Sons.

Lo, A. Y. (1987). A Large Sample Study of the Bayesian Bootstrap. Annals of Statistics
15, 360–75.

Locatelli, M. (2000). Simulated Annealing Algorithms for Continuous Global Optimiza-
tion: Convergence Conditions. Journal of Optimization Theory and Applications 104,
121–33.

Loh, W. Y. (1987). Calibrating Confidence Coefficients. Journal of the American Statis-
tical Association 82, 155–62.

Loh, W. Y. (1988). Discussion of “Theoretical Comparison of Bootstrap Confidence Inter-
vals” by P. Hall. Annals of Statistics 16, 972–76.

Loh, W. Y. (1991). Bootstrap Calibration for Confidence Interval Construction and Selec-
tion. Statistica Sinica 1, 477–91.

Loh, W. Y. and Wu, C. F. J. (1991). Discussion of “Better Bootstrap Confidence Inter-
vals” by B. Efron. Journal of the American Statistical Association 92, 188–90.

Londregan, J. (1996). Some Remarks on the “Generalized Event Count” Distribution.
Political Analysis 6, 213–24.

Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks, CA: Sage Publications.

288 BIBLIOGRAPHY

Longley, J. W. (1967). An Appraisal of Computer Programs for the Electronic Computer
from the Point of View of the User. Journal of the American Statistical Association
62, 819–41.

Lozier, D. W. and Olver, F. W. J. (1994). Numerical Evaluation of Special Functions. In
Mathematics of Computation, 1943–1993: A Half-Century of Computational Mathe-
matics, W. Gautschi (ed.), Proceedings of Symposia in Applied Mathematics. Prov-
idence, RI: American Mathematical Society (updated December 2000). <http://
math.nist.gov/mcsd/Reports/2001/nesf/>.

Lundy, M. and Mees, A. (1986). Convergence of an Annealing Algorithm. Mathematical
Programming 34, 111–24.

MacKie-Mason, J. K. (1992). Econometric Software: A User’s View. Journal of Economic
Perspectives 6, 165–87.

Maclaren, M. D. and Marsaglia, G. (1965). Uniform Random Number Generators. Jour-
nal of the Association for Computing Machinery 12, 83–89.

Madanksy, A. (1959). The Fitting of Straight Lines When Both Variables Are Subject to
Error. Journal of the American Statistical Association 54, 173–205.

Malov, S. V. (1998). Random Variables Generated by Ranks in Dependent Schemes.
Metrika 48, 61–67.

Marais, M. L. and Wecker, W. E. (1998). Correcting for Omitted-Variables and Measure-
ment-Error Bias in Regression with an Application to the Effect of Lead on IQ.
Journal of the American Statistical Association 93, 494–504.

Marı́n, J. M. (2000). A Robust Version of the Dynamic Linear Model with an Economic
Application. In Robust Bayesian Analysis, D. R. Insua and F. Ruggeri (eds.). New
York: Springer-Verlag, pp. 373–83.

Maros, I. (2002). Computational Techniques of the Simplex Method. Boston: Kluwer Aca-
demic Publishers.

Maros, I. and Khaliq, M. H. (2002). Advances in Design and Implementation of Opti-
mization Software. European Journal of Operational Research 140, 322–37.

Marquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Esti-
mation, and Nonlinear Estimation. Technometrics 12, 591–612.

Marsaglia, G. (1968). Random Numbers Fall Mainly in the Planes. Proceedings of the
National Academy of Sciences 61, 25–28.

Marsaglia, G. (1984). A Current View of Random Number Generators. Paper presented
at Computer Science and Statistics: 16th Symposium on the Interface, New York.

Marsaglia, G. (1985). A Current View of Random Number Generators. In Computer
Science and Statistics: 16th Symposium on the Interface, L. Billard (ed.). Amsterdam:
North-Holland.

Marsaglia, G. (1993). Monkey Tests for Random Number Generators. Computers & Math-
ematics with Applications 9, 1–10.

Marsaglia, G. and Zaman, A. (1993). The KISS Generator. Technical Report, Department
of Statistics, University of Florida.

Marsaglia, G. (1996). DIEHARD: A Battery of Tests of Randomness (software package).
<http://stat.fsu.edu/geo/diehard.html>.

BIBLIOGRAPHY 289

Marsaglia, G. and Tsang, W. W. (2002). Some Difficult-to-Pass Tests of Randomness.
Journal of Statistical Software 7, 1–8.

Mascagni, M. and Srinivasan, A. (2000). SPRNG: A Scalable Library for Pseudorandom
Number Generation. ACM Transactions on Mathematical Software 26, 436–61.

Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudorandom Number Generator. ACM Transactions on
Modeling and Computer Simulation 8, 3–30.

Matthews, A. and Davies, D. (1971). A Comparison of Modified Newton Methods for
Unconstrained Optimization. Computer Journal 14, 213–94.

McArdle, J. J. (1976). Empirical Test of Multivariate Generators. In Proceedings of the
9th Annual Symposium on the Interface of Computer Science and Statistics, D. C.
Hoaglin and R. Welsch (eds.). Boston: Prindle, Weber & Schmidt, pp. 263–67.

McCue, K. (2001). The Statistical Foundations of the EI Method. American Statistician
55, 106–11.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. New York:
Chapman & Hall.

McCulloch, W. and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics 7, 115–33.

McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models. New
York: John Wiley & Sons.

McCullough, B. D. (1998). Assessing the Reliability of Statistical Software: Part I. Amer-
ican Statistician 52, 358–66.

McCullough, B. D. (1999a). Econometric Software Reliability: Eviews, LIMDEP,
SHAZAM, and TSP. Journal of Applied Econometrics 14, 191–202.

McCullough, B. D. (1999b). Assessing the Reliability of Statistical Software: Part II.
American Statistician 53, 149–59.

McCullough, B. D. (2000). The Accuracy of Mathematica 4 as a Statistical Package.
Computational Statistics 15, 279–90.

McCullough, B. D. (2004). Review of TESTUO1. Journal of Applied Econometrics. Forth-
coming.

McCullough, B. D. and Renfro, C. G. (1999). Benchmarks and Software Standards: A
Case Study of GARCH Procedures. Journal of Economic and Social Measurement
25, 59–71.

McCullough, B. D. and Vinod, H. D. (1999). The Numerical Reliability of Econometric
Software. Journal of Economic Literature 37, 633–65

McCullough, B. D. and Vinod, H. D. (2004). Verifying the Solution from a Nonlinear
Solver: A Case Study. American Economic Review. Forthcoming.

McCullough, B. D. and Wilson, B. (1999). On the Accuracy of Statistical Procedures in
Microsoft Excel 97. Computational Statistics and Data Analysis 31, 27–37.

McCullough, B. D. and Wilson, B. (2002). On the Accuracy of Statistical Procedures
in Microsoft Excel 2000 and Excel XP. Computational Statistics and Data Analysis
40, 713–21.

290 BIBLIOGRAPHY

McDaniel, W. L. (1989). Some Pseudoprimes and Related Numbers Having Special
Forms. Mathematics of Computation 53, 407–9.

McFadden, D. L. and Ruud, P. A. (1994). Estimation with Simulation. Review of Eco-
nomics and Statistics 76, 591–608.

Meier, K. J. and Smith, K. B. (1995). Representative Democracy and Representative
Bureaucracy: Examining the Top Down and Bottom Up Linkages. Social Science
Quarterly 75, 790–803.

Meier, K. J., Polinard, J. L., and Wrinkle, R. (2000). Bureaucracy and Organizational Per-
formance: Causality Arguments about Public Schools. American Journal of Political
Science 44, 590–602.

Mengersen, K. L. and Tweedie, R. L. (1996). Rates of Convergence of the Hastings and
Metropolis Algorithms. Annals of Statistics 24, 101–21.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo Method. Journal of the American
Statistical Association 44, 335–41.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller E. (1953).
Equation of State Calculations by Fast Computing Machine. Journal of Chemical

Physics 21, 1087–91.

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. New
York: Springer-Verlag.

Meyn, S. P. and Tweedie, R. L. (1994a). State-Dependent Criteria for Convergence of
Markov Chains. Annals of Applied Probability 4, 149–68.

Meyn, S. P. and Tweedie, R. L. (1994b). Computable Bounds for Convergence Rates of
Markov Chains. Annals of Applied Probability 4, 981–1011.

Michalewicz, Z. and Fogel, D. B. (1999). How to Solve It: Modern Heuristics. New York:
Springer-Verlag.

Mihram, G. A. and Mihram, D. (1997). A Review and Update on Pseudo-random Number
Generation, on Seeding, and on a Source of Seeds. ASA Proceedings of the Statistical
Computing Section. Alexandria, VA: American Statistical Association, pp. 115–19.

Miller, W. E. and the American National Election Studies (1999). American National
Election Studies Cumulative Data File, 1948–1998 (data file), 10th ICPSR version.
Ann Arbor, MI: University of Michigan, Center for Political Studies.

Mittelhammer, R. C., Judge, G. C., and Miller, D. J. (2000). Econometric Foundations,
Cambridge: Cambridge University Press.

Mittelmann, H. D. and Spellucci, P. 2003. Decision Tree for Optimization Software (Web
site). <http://plato.asu.edu/guide.html>.

Monahan, J. F. (2001). Numerical Methods of Statistics. New York: Cambridge University
Press.

Mongeau, M., Karsenty, H., Rouze, V., and Hiriart-Urruty, J. B. (2000). Comparison of
Public-Domain Software for Black-Box Global Optimization. Optimization Methods
and Software 13, 203–26.

Montgomery, D. C. C., Peck, E. A., and Vining, G. G. (2001). Introduction to Linear
Regression Analysis, 3rd ed. New York: John Wiley & Sons.

BIBLIOGRAPHY 291

Mooney, C. Z. (1997). Monte Carlo Simulation. Quantitative Applications in the Social
Sciences 113. Thousand Oaks, CA: Sage Publications.

Moore, D. S. (1999). The Basic Practice of Statistics, 2nd ed. New York: W. H. Freeman.

Moore, D. S. and McCabe, G. P. (2002). Introduction to the Practice of Statistics, 4th
ed. New York: W. H. Freeman.

Moore, E. H. (1920). On the Reciprocal of the General Algebraic Matrix. Bulletin of the
American Mathematical Society 26, 394–95.

Moré, J. J. (1978). The Levenberg–Marquardt Algorithm: Implementation and Theory.
In Numerical Analysis, G. A. Watson (ed.). Lecture Notes in Mathematics 630. New
York: Springer-Verlag, pp. 105–16.

Moré, J. and Wright, J. 1993. Optimization Software Guide. Philadelphia: Siam Press.

Moreno, E. (2000). Global Bayesian Robustness for Some Classes of Prior Distributions.
In Robust Bayesian Analysis, D. R. Insua and F. Ruggeri (eds.). New York: Springer-
Verlag, pp. 45–70.

Moreno, E. and Cano, J. A. (1991). Robust Bayesian Analysis with ε-Contaminations
Partially Known. Journal of the Royal Statistical Society, Series B 53, 143–55.

Moreno, E. and González, A. (1990). Empirical Bayes Analysis of ε-Contaminated
Classes of Prior Distributions. Brazilian Journal of Probability and Statistics 4,
177–200.

Moreno, E. and Pericchi, L. R. (1991). Robust Bayesian Analysis for ε-Contaminations
with Shape and Quantile Restraints. In Proceedings of the 5th International Sym-
posium on Applied Stochastic Models, R. Gutiéterrez, and M. Valderrama (eds.).
Singapore: World Scientific, pp. 454–70.

Moreno, E. and Pericchi, L. R. (1993). Bayesian Robustness for Hierarchical ε-
Contamination Models. Journal of Statistical Planning and Inference 37, 159–68.

Moreno, E., Martı́nez, C., and Cano, J. A. (1996). Local Robustness and Influences for
Contamination Classes of Prior Distributions. In Bayesian Robustness, J. O. Berger,
B. Betró, E. Moreno, L. R. Pericchi, F. Ruggeri, G. Salinetti, and L. Wasserman
(eds.). Monograph Series 29. Hayward, CA: Institute of Mathematical Statistics,
pp. 139–56.

Morgan, B. J. T. (1984). Elements of Simulation. New York: Chapman & Hall.

Moshier, S. L. (1989). Methods and Programs for Mathematical Functions. Upper Saddle
River, NJ: Prentice Hall. <http://www.netlib.org/cephes>.

Mroz, T. A. (1987). The Sensitivity of an Empirical Model of Married Women’s Hours
of Work to Economic and Statistical Assumptions. Econometrica 55, 765–99.

Mukhopadhyay, P. (1997). Bayes Estimation of Small Area Totals under Measurement
Error Models. Journal of Applied Statistical Science 5, 105–11.

Myers, R. H. and Montgomery, D. C. (1997). A Tutorial on Generalized Linear Models.
Journal of Quality Technology 29, 274–91.

Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002). Generalized Linear Models
with Applications in Engineering and the Sciences. New York: John Wiley & Sons.

Nagler, J. (1994). Scobit: An Alternative Estimator to Logit and Probit. American Journal
of Political Science 38, 230–55.

292 BIBLIOGRAPHY

Nair, K. R. and Banerjee, K. S. (1942). A Note on Fitting of Straight Lines If Both
Variables Are Subject to Error. Sankyā 6, 331.

National Research Council (NRC), Science, Technology, and Law Panel (2002). Access to
Research Data in the 21st Century: An Ongoing Dialogue among Interested Parties
Report of a Workshop. Washington, DC: National Academy Press.

Naylor, J. C. and Smith, A. F. M. (1982). Applications of a Method for the Efficient
Computation of Posterior Distributions. Applied Statistics 31, 214–25.

Naylor, J. C. and Smith, A. F. M. (1988a). Economic Illustrations of Novel Numerical
Integration Strategies for Bayesian Inference. Journal of Econometrics 38, 103–26.

Naylor, J. C. and Smith, A. F. M. (1988b). An Archeological Inference Problem. Journal
of the American Statistical Association 83, 588–95.

Nelder, J. A. and Mead, R. 1965. A Simplex Method for Function Minimization. Com-
puter Journal 7, 308–13.

Neter, J., Kutner, M. H., Nachtsheim, C., and Wasserman, W. (1996). Applied Linear
Regression Models. Chicago: Richard D. Irwin.

Neumann, P. G. (1995). Computer Related Risks. New York: ACM Press Series (Addison-
Wesley).

Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian Inference with the
Weighted Likelihood Bootstrap. Journal of the Royal Statistical Society, Series B 56,
3–48.

Nicole, S. (2000). Feedforward Neural Networks for Principal Components Extraction.
Computational Statistics and Data Analysis 33, 425–37.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. New York: Springer-Verlag.

Nordbotten, S. (1996). Editing and Imputation by Means of Neural Networks. Statistical
Journal of the UN Economic Commission for Europe 13, 119–29.

Nordbotten, S. (1999). Small Area Statistics from Survey and Imputed Data. Statistical
Journal of the UN Economic Commission for Europe 16, 297–99.

Noreen, E. W. (1989). Computer-Intensive Methods for Testing Hypotheses. New York:
John Wiley & Sons.

Norris, J. R. (1997). Markov Chains. Cambridge: Cambridge University Press.

Nummelin, E. (1984). General Irreducible Markov Chains and Non-negative Operators.
Cambridge: Cambridge University Press.

Nummelin, E. and Tweedie, R. L. (1978). Geometric Ergodicity and R-Positivity for
General Markov Chains. Annals of Probability 6, 404–20.

Oh, M.-S. and Berger, J. O. (1993). Integration of Multimodal Functions by Monte Carlo
Importance Sampling. Journal of the American Statistical Association 88, 450–55.

O’Hagan, A. (1994). Kendall’s Advanced Theory of Statistics : Volume 2B, Bayesian Infer-
ence. London: Edward Arnold.

O’Hagan, A. and Berger, J. O. (1988). Ranges of Posterior Probabilities for Quasiuni-
modal Priors with Specified Quantiles. Journal of the American Statistical Associa-
tion 83, 503–8.

BIBLIOGRAPHY 293

O’Leary, D. P. and Rust, B. W. (1986). Confidence Intervals for Inequality-Constrained
Least Squares Problems, with Applications to Ill-Posed Problems. American Journal
for Scientific and Statistical Computing 7, 473–89.

Orey, S. (1961). Strong Ratio Limit Property. Bulletin of the American Mathematical
Society 67, 571–74.

Ott, J. (1979). Maximum Likelihood Estimation by Counting Methods under Polygenic
and Mixed Models in Human Pedigrees. Journal of Human Genetics 31, 161–75.

Overton, M. L. (2001). Numerical Computing with IEEE Floating Point Arithmetic.
Philadelphia: SIAM Press.

Pace, R. K. and Barry, R. (1997). Quick Computation of Spatial Autoregressive Estima-
tors. Geographical Analysis 29, 232–46.

Pace, R. K. and LeSage, J. P. (2003). Chebyshev Approximation of log Determinants
Using Spatial Weight Matrices. Computational Statistics & Data Analysis. Forthcom-
ing. Available at: <http://www.econ.utoledo.edu/faculty/lesage/
workingp.html>.

Paik, H. (2000). Comments on Neural Networks. Sociological Methods and Research 28,
425–53.

Panko, R. R. (1998). What We Know about Spreadsheet Errors. Journal of End User
Computing 10, 15–21.

Papadimitrious, C. (1994). Computational Complexity. Reading, MA: Addison-Wesley,

Park, S. K. and Miller, K. W. (1988). Random Number Generators: Good Ones Are Hard
to Find. Communications of the ACM 31, 1192–1201.

Parker, D. S. (1997). Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point
Arithmetic. Technical Report CSD-970002. Los Angeles: Computer Science Depart-
ment, UCLA.

Parker, D. S., Pierce, B., and Eggert, P. R. (2000). Monte Carlo Arithmetic: A Framework
for the Statistical Analysis of Roundoff Error. IEEE Computation in Science and
Engineering 2, 58–68.

Penrose, R. A. (1955). A Generalized Inverse for Matrices. Proceedings of the Cambridge
Philosophical Society 51, 406–13.

Peskun, P. H. (1973). Optimum Monte Carlo Sampling Using Markov Chains. Biometrika
60, 607–12.

Peterson, C. and Soderberg, B. (1989). A New Method for Mapping Optimization Prob-
lems onto Neural Networks. International Journal of Neural Systems 1, 3–22.

Pettit, L. I. and Smith, A. F. M. (1985). Outliers and Influential Observations in Linear
Models. In Bayesian Statistics 2, J. M. Bernardo, M. H. DeGroot, D. V. Lindley,
and A. F. M. Smith (eds.). Amsterdam: North-Holland, pp. 473–94.

Ploner, M. (2001). An S-PLUS Library to Perform Logistic Regression without Conver-
gence Problems. Technical Report 2/2002. Vienna: Department of Medical Computer
Sciences, Section of Clinical Biometrics, Vienna University. <http://www.akh-
wien.ac.at/imc/biometrie/programme/ fl en:>.

Poirer, D. J. (1988). Frequentist and Subjectivist Perspectives on the Problems of Model
Building in Economics. Journal of Economic Perspectives 2, 121–44.

294 BIBLIOGRAPHY

Polasek, W. (1984). Regression Diagnostics for General Linear Regression Models. Jour-
nal of the American Statistical Association 79, 336–40.

Polasek, W. (1987). Bounds on Rounding Errors in Linear Regression Models. Statistician
36, 221–27.

Powell, K. E., Crosby, A. E., and Annest, J. L. (1999). Retraction of Krug E. G., M.
Kresnow, J. P. Peddicord, and L. L. Dahlberg, “Suicide after Natural Disasters.”
New England Journal of Medicine 340, 148–49.

Pratt, J. W. (1981). Concavity of the Log Likelihood. Journal of the American Statistical
Association 76, 103–6.

Pregibon, D. (1981). Logistic Regression Diagnostics. Annals of Statistics 9, 705–24.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988). Numerical
Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002). Numerical
Recipes in C++: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge
University Press.

Propp, J. G. and Wilson, D. B. (1996). Exact Sampling with Coupled Markov Chains and
Applications to Statistical Mechanics. Random Structures and Algorithms 9, 223–52.

Rabin, M. O. (1980). Probabilistic Algorithms for Testing Primality. Journal of Number
Theory 12, 128–38.

Raftery, A. E. (1995). Bayesian Model Selection in Social Research. Sociological Method-
ology 25, 111–63.

Raftery, A. E. (1996). Approximate Bayes Factors and Accounting for Model Uncertainty
in Generalised Linear Models. Biometrika 83, 251–66.

Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian Model Averaging
for Linear Regression Models. Journal of the American Statistical Association 92,
179–91.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. New York: John Wiley
& Sons.

Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of Matrices and Its Applications.
New York: John Wiley & Sons.

R Development Core Team (2003). R Language Definition. Technical report. <http://
cran.us.r-project.org/>.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prin-
zipien de biologischen Information. Frommann. Freiburg, Germany.

Reiersol, O. (1950). Identifiability of a Linear Relation between Variables Which Are
Subject to Errors. Econometrica 18, 375–89.

Renfro, C. G. (1997). Normative Considerations in the Development of a Software Pack-
age for Econometric Estimation. Journal of Economic and Social Measurement 23,
277–330.

Revkin, A. C. (2002). Data Revised on Soot in Air and Deaths. New York Times (National
Edition), June 5, Section A, Page A23.

Revuz, D. (1975). Markov Chains. Amsterdam: North-Holland.

BIBLIOGRAPHY 295

Riley, J. (1955). Solving Systems of Linear Equations with a Positive Definite, Sym-
metric but Possibly Ill-Conditioned Matrix. Mathematical Tables and Other Aides to
Computation 9, 96–101.

Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley & Sons.

Ripley, B. D. (1988). Uses and Abuses of Statistical Simulation. Mathematical Program-
ming 42, 53–68.

Ripley, B. D. (1990). Thoughts on Pseudorandom Number Generators. Journal of Com-
putational and Applied Math 31, 153–63.

Ritter, T. (1986). The Great CRC Mystery. Dr. Dobb’s Journal of Software Tools 11,
26–34, 76–83.

Rivest, R. (1992). RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board.

Robbin, A. and Frost-Kumpf, L. (1997). Extending Theory for User-Centered Information
Services: Diagnosing and Learning from Error in Complex Statistical Data. Journal
of the American Society of Information Science 48(2), 96–121.

Robert, C. P. (2001). The Bayesian Choice: A Decision Theoretic Motivation, 2nd ed. New
York: Springer-Verlag.

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. New York:
Springer-Verlag.

Roberts, G. O. and Polson, N. G. (1994). On the Geometric Convergence of the Gibbs
Sampler. Journal of the Royal Statistical Society, Series B 56, 377–84.

Roberts, G. O. and Smith, A. F. M. (1994). Simple Conditions for the Convergence of
the Gibbs Sampler and Metropolis–Hastings Algorithms. Stochastic Processes and
Their Applications 44, 207–16.

Robinson, W. S. (1950). Ecological Correlation and the Behavior of Individuals. American
Sociological Review 15, 351–57.

Rogers, J., Filliben, J., Gill, L., Guthrie, W., Lagergren, E., and Vangel, M. (2000).
StRD: Statistical Reference Datasets for Testing the Numerical Accuracy of Sta-

tistical Software. NIST 1396. Washington, DC: National Institute of Standards and
Technology.

Rosenthal, J. S. (1993). Rates of Convergence for Data Augmentation on Finite Sample
Spaces. Annals of Applied Probability 3, 819–39.

Rosenthal, J. S. (1995a). Rates of Convergence for Gibbs Sampling for Variance Compo-
nent Models. Annals of Statistics 23, 740–61.

Rosenthal, J. S. (1995b). Minorization Conditions and Convergence Rates for Markov
Chain Monte Carlo. Journal of the American Statistical Association 90, 558–66.

Ross, S. (1996). Stochastic Processes. New York: John Wiley & Sons.

Rotkiewicz, A. (1972). W. Sierpinski’s Works on the theory of numbers. Rend. Circ. Mat.
Palermo 21, 5–24.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection.
New York: John Wiley & Sons.

Rubin, D. B. (1981). The Bayesian Bootstrap. Annals of Statistics 9, 130–34.

296 BIBLIOGRAPHY

Rubin, D. B. (1987a). A Noniterative Sampling/Importance Resampling Alternative to
the Data Augmentation Algorithm for Creating a Few Imputations When Fractions
of Missing Information Are Modest: The SIR Algorithm. Discussion of Tanner &
Wong (1987). Journal of the American Statistical Society 82, 543–46.

Rubin, D. B. (1987b). Multiple Imputation for Nonresponse in Surveys. New York: John
Wiley & Sons.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. New York: John Wiley
& Sons.

Ruggeri, F. and Wasserman, L. (1993). Infinitesimal Sensitivity of Posterior Distributions.
Canadian Journal of Statistics 21, 195–203.

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel,
M., Banks, D., Heckert, A., Dray, J., and Vo, S. (2000). A Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic Applications
(revised May 15, 2001). NIST SP 800-22. Washington, DC: National Institute of
Standards and Technology. <http://csrc.nist.gov/rng/rng2.html>.

Runkle, D. E. (1987). Vector Autoregressions and Reality. Journal of Business and Eco-
nomic Statistics 5, 437–42.

Santner, T. J. and Duffy, D. E. (1986). A Note on A. Albert and J. A. Anderson’s “Con-
ditions for the Existence of Maximum Likelihood Estimates in Logistic Regression
Models”. Biometrika 73, 755–58.

SAS Institute (1999). SAS/STAT User’s Guide, Version 8, Volume 2. Carey, NC: SAS
Institute.

Schmidt, F. L. and Hunter, J. E. (1996). Measurement Error in Psychological Research:
Lessons from 26 Research Scenarios. Psychological Methods 1, 199–223.

Schnabel, R. B. and Eskow, E. (1990). A New Modified Cholesky Factorization. SIAM
Journal of Scientific Statistical Computing 11, 1136–58.

Schneeweiss, H. (1976). Consistent Estimation of a Regression with Errors in the Vari-
ables. Metrika 23, 101–17.

Schneier, B. (1994). Applied Cryptography: Protocols, Algorithms, and Source Code in
C. New York: John Wiley & Sons.

Schumacher, M., Robner, R., and Vach, W. (1996). Neural Networks and Logistic Regres-
sion. Computational Statistics and Data Analysis 21, 661–701.

Schwefel, H. P. (1977). Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie. Basel, Switzerland: Birkhauser.

Searle, S. R. (1971). Linear Models. New York: Wiley & Sons.

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. New York: John Wiley &
Sons.

Sekhon, J. S. and Mebane, W., Jr. (1998). Genetic Optimization Using Derivatives:
Theory and Application to Nonlinear Models. Political Analysis 7, 187–210.

Selke, W., Talapov, A. L., and Schur, L. N. (1993). Cluster-Flipping Monte Carlo Algo-
rithm and Correlations in “Good” Random Number Generators. JETP Letters 58,
665–68.

BIBLIOGRAPHY 297

Semmler, W. and Gong, G. (1996). Estimating Parameters of Real Business Cycle Mod-
els. Journal of Economic Behavior and Organization 30, 301–25.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York:
John Wiley & Sons.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer-Verlag.

Sieber, J. E. (1991). Sharing Social Science Data. In Sharing Social Science Data, J. E.
Sieber (ed.). Newbury Park, CA: Sage Publications, pp. 1–19.

Sierpinski, W. (1960). Sur un problème concernant les nombres. Elemente der Mathematik
15, 73–74.

Simon, S. D. and LeSage, J. P. (1988). Benchmarking Numerical Accuracy of Statistical
Algorithms. Computational Statistics and Data Analysis 7, 197–209.

Simon, S. D. and LeSage, J. P. (1990). Assessing the Accuracy of ANOVA Calculations
in Statistical Software. Computational Statistics and Data Analysis 8, 325–32.

Sirkin, R. M. (1999). Statistics for the Social Sciences, 2nd ed. Thousand Oaks, CA: Sage
Publications.

Sivaganesan, S. (1993). Robust Bayesian Diagnostics. Journal of Statistical Planning and
Inference 35, 171–88.

Sivaganesan, S. (2000). Global and Local Robustness Approaches: Uses and Limitations.
In Robust Bayesian Analysis, D. R. Insua and F. Ruggeri (eds.). New York: Springer-
Verlag, pp. 89–108.

Skinner, C. J. (1998). Logistic Modelling of Longitudinal Survey Data with Measurement
Error. Statistica Sinica 8, 1045–58.

Smirnov, O. and Anselin, L. (2001). Fast Maximum Likelihood Estimation of Very
Large Spatial Autoregressive Models: A Characteristic Polynomial Approach. Com-
putational Statistics and Data Analysis 35, 301–19.

Smith, P. H. (1972). The Social Base of Peronism. Hispanic American Historical Review
52, 55–73.

Smith, D. M. (1988). Algorithm 693; A FORTRAN Package for Floating-Point Multiple-
Precision Arithmetic. ACM Transactions on Mathematical Software (TOMS) 17,
273–83.

Smith, D. M. (2001). Algorithm 814: Fortran 90 Software for Floating-Point Multiple
Precision Arithmetic, Gamma and Related Functions. ACM Transactions on Mathe-
matical Software (TOMS) 27, 377–87.

Smith, K. B. (2003). The Ideology of Education: The Commonwealth, the Market, and
America’s Schools. Albany, NY: SUNY Press.

Smith, G. and Campbell, F. (1980). A Critique of Some Ridge Regression Methods (with
comments). Journal of the American Statistical Association 75, 74–103.

Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian Statistics without the Tears. Amer-
ican Statistician 46, 84–88.

Smith, A. F. M. and Makov, U. E. (1978). A Quasi-Bayes Sequential Procedure for
Mixtures. Journal of the Royal Statistical Society, Series B 40, 106–12.

Smith, K. B. and Meier, K. J. (1995). The Case against School Choice: Politics, Markets,
and Fools. Armonk, NY: M.E. Sharpe.

298 BIBLIOGRAPHY

Smith, A. F. M., Skene, A. M., Shaw, J. E. H., and Naylor, J. C. (1985). The Imple-
mentation of the Bayesian Paradigm. Communications in Statistics 14, 1079–1102.

Smith, A. F. M., Skene, A. M., Shaw, J. E. H., and Naylor, J. C. (1987). Progress with
Numerical and Graphical Methods for Practical Bayesian Statistics. Statistician 36,
75–82.

Srinivasan, A., Ceperley, D. M., and Mascagni, M. (1999). Random Number Genera-
tors for Parallel Applications. In Advances in Chemical Physics 105, Monte Carlo
Methods in Chemical Physics, D. Ferguson, J. I. Siepmann, and D. G. Truhlar (eds.).
New York: John Wiley & Sons.

Starr, N. (1979). Linear Estimation of the Probability of Discovering a New Species.
Annals of Statistics 7, 644–52.

Stata Corporation (1999). Stata Statistical Software Release 6.0. College Station, TX: Stata
Corporation.

Stefanski, L. A. (1989). Unbiased Estimation of a Nonlinear Function of a Normal Mean
with an Application to Measurement Error Models. Communications in Statistics A
18, 4335–58.

Stern, S. (1997). Simulation-Based Estimation. Journal of Economic Literature 35,
2006–39.

Stewart, T. J. (1986). Experience with a Bayesian Bootstrap Method Incorporating Proper
Prior Information. Communications in Statistics A 15, 3205–25.

St. Laurent, R. T. and Cook, R. D. (1993). Leverage, Local Influence and Curvature in
Nonlinear Regression. Biometrika 80, 99–106.

Stokes, H. H. (2003). On the Advantage of Using More Than One Package to Solve a
Problem. Journal of Economic and Social Measurement. Forthcoming.

Strawderman, W. E. (1978). Minimax Adaptive Generalized Ridge Regression Estimators.
Journal of the American Statistical Association 72, 890–91.

Sun, D., Tsutakawa, R. K., and Speckman, P. L. (1999). Posterior Distribution of Hier-
archical Models Using car(1) Distributions. Biometrika 86, 341–50.

Sutradhar, B. C. and Rao, J. N. K. (1996). Estimation of Regression Parameters in Gener-
alized Linear Models for Cluster Correlated Data with Measurement Error. Canadian
Journal of Statistics 24, 177–92.

Symons, M. J., Grimson, R. C., and Yuan, Y. C. (1983). Clustering of Rare Events.
Biometrics 39, 193–205.

Tam, K. Y. and Kiang, M. Y. (1992). Managerial Applications of Neural Networks: The
Case of Bank Failure Predictions. Management Science 38, 926–47.

Tam Cho, W. K. (1998). Iff the Assumption Fits. . . : A Comment on the King Ecological
Inference Model. Political Analysis 7, 143–64.

Tam Cho, W. K. and Gaines, B. (2001). Reassessing the Study of Split-Ticket Voting.
Unpublished manuscript, archived as ICPSR publication related archive item 1264.
<ftp://anonymous@ftp.icpsr.umich.edu/ pub/PRA/outgoing/
s1264/>.

Tanner, M. A. (1996). Tools for Statistic Inference: Methods for the Exploration of Poste-
rior Distributions and Likelihood Functions. New York: Springer-Verlag.

BIBLIOGRAPHY 299

Thistead, R. A. (1988). Elements of Statistical Computing: Numerical Computation. New
York: Chapman & Hall/CRC Press.

Thompson, S. P. and Gardner, M. (1998). Calculus Made Easy, rev. ed. New York: St.
Martins Press.

Thursby, J. G. (1985). The Relationship among the Specification Tests of Hausman, Ram-
sey, and Chow. Journal of the American Statistical Association 80, 926–28.

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. Annals of Statis-
tics 22, 1701–28.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis of
Finite Mixture Distributions. New York: John Wiley & Sons.

Toothill, J. P. R., Robinson, W. D., and Adams, A. G. (1971). The Runs Up and Down
Performance of Tausworthe Pseudo-random Number Generators. Journal of the Asso-
ciation for Computing Machinery 18, 381–99.

Traub, J. F. and Wozniakowsi, H. (1992). The Monte Carlo Algorithm with a Pseudo-
random Generator. Mathematics of Computation 58, 303–39.

Turing, A. M. (1948). Rounding-off Errors in Matrix Processes. Quarterly Journal of
Mechanics and Applied Mathematics 1, 287–308.

Tweedie, R. L. (1975). Sufficient Conditions for Ergodicity and Recurrence of Markov
Chains on a General State-Space. Stochastic Processes and Applications 3, 385–403.

Vattulainen, L., Nissila, T. A., and Kankalla, K. (1994). Physical Tests for Random
Numbers in Simulations. Physical Review Letters 73, 1513–16.

Veall, M. R. (1990). Testing for a Global Maximum in an Econometric Context. Econo-
metrica 58, 1459–65.

Venables, W. N. and Ripley, B. D. (1999). Modern Applied Statistics Using S-Plus, 3rd
ed. New York: Springer-Verlag.

Viega, J. and McGraw, G. (2001). Building Secure Software: How to Avoid Security
Problems the Right Way. Reading, MA: Addison-Wesley.

Vinod, H. D. (2000). Review of GAUSS for Windows Including Its Numerical Accuracy.
Journal of Applied Econometrics 15, 211–20.

Volinsky, C. T., Madigan, D., Raftery, A. E., and Kronmal, R. A. (1997). Bayesian
Model Averaging in Proportional Hazard Models: Assessing the Risk of a Stroke.
Applied Statistics 46, 433–48.

Von Neumann, J. (1951). Various Techniques Used in Connection with Random Digits,
“Monte Carlo Method.” U.S. National Bureau of Standards Applied Mathematics
Series 12, 36–38.

von zur Gathen, J. and Gerhard, J. (1999). Modern Computer Algebra. Cambridge:
Cambridge University Press.

Wagner, K. and Gill, J. (2004). Bayesian Inference in Public Administration Research:
Substantive Differences from Somewhat Different Assumptions. International Jour-
nal of Public Administration (forthcoming).

Wald, A. (1940). The Fitting of Straight Lines if Both Variables are Subject to Error.
Annals of Mathematical Statistics 11, 284–300.

300 BIBLIOGRAPHY

Wall, L., Christiansen, T., and Orwant, J. (2000). Programming Perl, 3rd ed. Sebastapol,
CA: O’Reilly & Associates.

Wampler, R. H. (1980). Test Procedures and Test Problems for Least Squares Algorithms.
Journal of Econometrics 12, 3–22.

Wang, C. Y. and Wang, S. (1997). Semiparametric Methods in Logistic Regression with
Measurement Error. Statistica Sinica 7, 1103–20.

Wasserman, L. (1992). Recent Methodological Advances in Robust Bayesian Inference.
In Bayesian Statistics 4, J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M.
Smith (eds.). Oxford: Oxford University Press, pp. 763–73.

Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo Implementation of the EM Algo-
rithm and the Poor Man’s Data Augmentation Algorithm. Journal of the American
Statistical Association 85, 699–704.

Weiss, R. E. (1996). An Approach to Bayesian Sensitivity Analysis. Journal of the Royal
Statistical Society, Series B 58, 739–50.

Weng, C. S. (1989). On a Second Order Property of the Bayesian Bootstrap. Annals of
Statistics 17, 705–10.

West, M. (1984). Outlier Models and Prior Distributions in Bayesian Linear Regression.
Journal of the Royal Statistical Society, Series B 46, 431–39.

West, P. M., Brockett, P. L., and Golden, L. L. (1997). A Comparative Analysis of
Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing
Science 16, 370–91.

Western, B. (1995). A Comparative Study of Working-Class Disorganization: Union
Decline in Eighteen Advanced Capitalist Countries. American Sociological Review
60, 179–201.

Western, B. (1998). Causal Heterogeneity in Comparative Research: A Bayesian Hierar-
chical Modeling Approach. American Journal of Political Science 42, 1233–59.

Western, B. (1999). Bayesian Methods for Sociologists: An Introduction. Sociological
Methods & Research 28, 7–34.

White, H. (1981). Consequences and Detection of Misspecified Nonlinear Regression
Models. Journal of the American Statistical Association 76, 419–33.

White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica
50, 1–26.

Whittlesey, J. R. B. (1969). On the Multidimensional Uniformity of Pseudo-random Gen-
erators. Communications of the Association for Computing Machinery 12, 247.

Wichmann, B. A. and Hill, I. D. (1982). An Efficient and Portable Pseudorandom Number
Generator. Applied Statistics 31, 188–90.

Wilkinson, L. (1994). Practical Guidelines for Testing Statistical Software. In Computa-
tional Statistics, P. Dirschedl and R. Ostermann (eds.). Heidelberg: Physica-Verlag.

Wilkinson, L. and Dallal, G. E. (1977). Accuracy of Sample Moments Calculations
among Widely Used Statistical Programs. American Statistician 21, 128–31.

Wolak, F. (1991). The Local Nature of Hypothesis Tests Involving Inequality Constraints
in Nonlinear Models. Econometrica 59, 981–95.

BIBLIOGRAPHY 301

Wolfinger, R. and Rosenstone, S. J. (1980). Who Votes? New Haven, CT: Yale University
Press.

Wolfram, S. (1999). The Mathematica Book, 4th ed. Cambridge: Cambridge University
Press.

Wolfram, S. (2001). Mathematica, Version 4.1. Champaign, IL: Wolfram Research.

Wolpert, D. H. and Macready, W. G. (1997). No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation 1, 67–82.

Wong, M. Y. (1989). Likelihood Estimation of a Simple Linear Regression Model When
Both Variables Have Error. Biometrika 76, 141–48.

Wooldridge, J. M. (2000). Introductory Econometrics: A Modern Approach. Cincinnati,
OH: South-Western Publishing.

Wu, B. and Chang, C. (2002). Using Genetic Algorithms to Parameters (d; r) Estimation
for Threshold Autoregressive Models. Computational Statistics and Data Analysis
38, 315–30.

Xianga, A., Lapuertab, P., Ryutova, A., Buckleya, J., and Azena, S. (2000). Comparison
of the Performance of Neural Network Methods and Cox Regression for Censored
Survival Data Computational Statistics and Data Analysis 34, 243–57.

Yeo, G.-K. (1984). A Note of Caution on Using Statistical Software. Statistician 33,
181–84.

Young, M. R., DeSarbo, W. S., and Morwitz, V. G. (1998). The Stochastic Modeling of
Purchase Intentions and Behavior. Management Science 44, 188–202.

Zellner, A. and Moulton, B. R. (1985). Bayesian Regression Diagnostics with Applica-
tions to International Consumption and Income Data. Journal of Econometrics 29,
187–211.

Zhao, Y. and Lee, A. H. (1996). A Simulation Study of Estimators for Generalized Linear
Measurement Error Models. Journal of Statistical Computation and Simulation 54,
55–74.

Zhenting, H. and Qingfeng, G. (1978). Homogeneous Denumerable Markov Chains.
Berlin: Spring-Verlag Science Press.

Author Index

Aarts, E. H. L., 100–102, 267, 275
Aborn, M., 253, 281
Achen, C. H., 6, 66, 117, 267
Acton, F. S., 5, 21–22, 32, 267
Adams, A. G., 130, 299
Ades, A., 116, 267
Adolph, C., 190, 196, 197, 267
Akaike, H., 72, 284
Akhand, H. A., 116, 267
Albert, A., 173, 240, 244, 245,

252, 267
Allison, P., 238
Altman, M., 2, 48, 60, 61, 64, 66,

68, 101, 188, 254–256, 267
Alur, R., 22, 272
Amato, T. W., 6, 267
Amemiya, T., 104, 174, 240, 268
Amit, Y., 264, 268
Anderson, J. A., 240, 244, 245,

252, 267
Anderson, J. E., 130, 268
Anderson, R. G., 2, 254, 274
Andreev, L., 256, 267
Andrews, D. F., 72, 268
Annest, J. L., 2, 294
Anselin, L., 226, 227, 268, 297
ANSI, 51, 268
Anton, H., xv, 268
Asmussen, S., 265, 268
Athreya, K. B., 123, 125, 133,

268
Atkinson, A. C., 130, 268
Austin, E. W., 253, 272

Boldface page number indicates that the author is the primary topic of discussion.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

Axler, S. J., xv, 268
Azena, S., 102, 301

Bailey, D. H., 93, 94, 268
Banerjee, K. S., 78, 291
Banks, D., 56, 296
Barker, E., 56, 296
Barnett, V., 72, 84, 268, 269
Barnhill, T. M., 101, 282
Barone, J. L., 6, 46, 76, 83, 185, 269
Barry, R., 224, 225, 227, 229, 233,

237, 269, 293
Bartels, L. M., 116, 269
Barton, R. R., 286
Bates, D. M., 52, 91, 213, 269
Bauens, W., 107, 269
Bavaud, F., 222, 269
Bazaraa, M., 202, 268
Beaton, A. E., 6, 46, 76, 83, 185, 269
Beck, N., 102, 269
Belsley, D. A., 72, 269
Berger, J. O., 72, 73, 107, 109, 149,

174, 269, 283, 287, 292, 300
Berliner, L. M., 73, 269
Bernardo, J. M., 109, 149, 269, 273,

287, 293, 300
Berndt, E., 98, 202, 269
Betró, B., 283
Bickel, P. J., 72, 106, 268, 269
Billard, L., 288
Billingsley, P., 121, 123, 269
Binstock, A., 62, 270
Birnbaum, A., 108, 270

303

304 AUTHOR INDEX

Blalock, H., xiv, 270
Bleau, B. L., xv, 270
Blum, L., 35, 270
Blum, M., 35, 270
Boisvert, R. F., 92, 270
Booth, M., 93, 279
Borgatti, S. P., 101, 276
Bose, S., 73, 270
Bowden, D. C., 113, 274
Box, G. E. P., 41, 88, 136, 149,

213, 270
Brémoud, P., 134, 270
Brent, R. P., 93, 270
Brockett, P. L., 102, 270, 300
Brooks, S. P., 107, 270
Brown, B. W., 59, 60, 92, 270
Brown, P., 22, 270, 277
Brown, P. J., 107, 270
Buckleya, J., 102, 301
Bunch, D. S., 217, 271
Bunday, B., 202, 271
Buonaccorsi, J. P., 78, 271
Burden, B., 180, 189, 190, 191, 195,

196, 271
Burr, I., 66, 271
Butcher, J. C., 130, 271

Cameron, A., 6, 101, 271
Campbell, F., 174, 297
Campbell, S. L., 154, 271
Cano, J. A., 73, 291
Cao, G., 107, 271
Carley, K. M., 101, 271
Carlin, B. P., 120, 264, 271
Carlin, J. B., 147, 278
Carreau, M., 2, 271
Carroll, R. J., 78, 271, 283
Casella, G., 120, 133, 136, 139, 147,

174, 264, 271, 295
Ceperley, D. M., 37, 58, 298
Chambers, J. M., 5, 271
Chan, K. S., 125, 129, 272
Chan, T. F., 20, 272
Chang, C., 101, 301
Chen, M-H., 120, 128, 272
Cheng, C., 78, 272
Chib, S., 126, 272
Christiansen, T., 51, 299

Clarke, E. M., 22, 272
Cleaveland, R., 22, 272
Clubb, J. M., 253, 272
Collings, B. J., 36, 272
Congdon, P., 120, 272
Cook, R. D., 72, 77, 185, 272, 298
Cooper, B. E., 23, 272
Cooper, W. W., 102, 270
Corcoran, J. N., 264, 272
Coveyou, R. R., 37, 130, 272
Cox, D. R., 77, 105, 249, 272, 273
Cragg, J. G., 78, 273
Creeth, R., 22, 273
Crocker, S., 37, 57, 275
Crosby, A. E., 2, 294
Cuevas, A., 73, 273

Dahl, O.-J., 22, 273
Dahlberg, L. L., 2, 285
Dallal, G. E., 14, 48, 300
Datta, S., 106, 273
David, M. H., 256, 273
Davidson, R., 144, 175, 273
Davies, D., 156, 289
Davies, J., 93, 279
Davis, B., 178–180, 185, 275
Davison, A. C., 106, 273
Dawid, A. P., 287, 300
Day, N. E., 113, 273
de Haan, L., 86, 87, 273
DeGroot, M. H., 269, 273, 293
Delampady, M., 73, 273
Den Haan, W. J., 40, 91, 273
Dennis, J. E., Jr., 97, 201, 273
Derigs, U., 40, 274
DeSarbo, W. S., 140, 301
DeShon, R. P., 78, 274
Dewald, W. G., 2, 254, 274
Dey, D. K., 73, 273, 274, 277
Dhrymes, P. J., 172, 274
Di Stefano, P., 264, 277
Di Tella, R., 116, 267
DiCiccio, T. J., 106, 274
Dick, N. P., 113, 274
Diekhoff, G. M., xiv, 274
Dieter, U., 130, 274
Diggory, M., 256, 267
Dijkstra, E. W., 22, 273

AUTHOR INDEX 305

Dill, D., 22, 272
Dobell, A. R., 136, 282
Doeblin, W., 123, 274
Dongarra, J. J., 92, 274
Doob, J. L., 121, 274
Dorsey, R. E., 101, 274
Doss, H., 125, 268
Down, D., 125, 274
Downham, D. Y., 130, 274
Downing, D. D., xv, 274
Dray, J., 56, 296
Dreze, J. H., 107, 274
Drezner, Z., 181, 275
du Berger, R., 110, 283
du Croz, J., 92, 274
Dudewicz, E. J., 130, 275
Duff, S., 92, 274
Duffy, D. E., 245, 296
Duhem, P., 3, 266, 275
Duncan, O. D., 178–180, 185, 275
Durbin, J., 78, 275
Durbin, R., 101, 275
Dutter, R., 71, 279

Eastlake, D., 37, 57, 275
Efron, B., 32, 105, 106, 174, 175, 275
Eggert, P. R., 77, 84, 185, 293
Eiben, A. E., 102, 275
Eichenauer, J., 35, 275
Emerson, A., 22, 272
Emerson, J. D., 72, 275
Engle, R. F., 104, 275
Entacher, K., 37, 275
Escobar, M. D., 113, 275
Eskow, E., 158, 296
Everett, M. G., 101, 276

Fahrmeir, L., 82, 276
Falk, M., 130, 276
Fedorov, V. V., 78, 276
Feigenbaum, S., 2, 253, 254, 276
Feldstein, M. S., 2, 276
Ferguson, T. S., 113, 276
Ferree, K., 178, 190, 196, 197, 276
Ferrenberg, A., 38, 276
Ferretti, N., 106, 276
Ferrier, G. D., 101, 279
Fiacco, A. V., 156, 276

Fienberg, S. E., 272, 281
Filliben, J., 45, 49, 295
Finch, S. J., 40, 86–87, 88, 276
Finzi, S., 23, 284
FIPS, 56, 276
Firth, D., 78, 250, 276, 283
Fishman, G. S., 38, 130, 137, 140, 276
Fishwick, P. A., 286
Flannery, B. P., 32, 202, 294
Fletcher, R., 97, 276
Fogel, D. B., 100, 102, 103, 290
Fogel, L. J., 101, 276
Ford, J. A., 97, 277
Fox, J., 20, 277
Freedman, D. A., xiv, 106, 175, 178,

269, 277
Freeman, P. R., 71, 279
Frieze, A., 264, 277
Frigessi, A., 264, 277
Frost-Kumpf, L., 256, 295
Fryer, J. G., 113, 277
Fuller, W. A., 78, 277
Fylstra, D., 13, 277

Gaines, B., 189, 195, 298
Galassi, M., 93, 279
Gallant, A. Ronald, 215, 277
Gamerman, D., 120, 121, 264, 277
Gan, L., 91, 277
Ganesalingam, S., 113, 277
Gardner, M., xv, 298
Garey, M. R., 40, 277
Garland, S., 22, 272
Gathen, von zur, J., 94, 299
Gautschi, W., 288
Gay, D. M., 217, 271, 273
Gelatt, C. D., 100, 284
Gelfand, A. E., 73, 78, 119, 147, 232,

234, 277, 278
Gelman, A., 107, 120, 121, 140, 142,

146, 147, 232, 278
Geman, D., 129, 232, 278
Geman, S., 129, 232, 278
Gentle, J. E., 20, 32, 36–38, 40, 91,

130, 141, 278, 284
Gentleman, R., 215, 282
Genz, A., 181
Gerhard, J., 94, 299

306 AUTHOR INDEX

German, S., 22, 272
Geweke, J., 147, 230, 232, 278
Geyer, C. J., 172, 278
Gilks, W. R., 264, 265, 278
Gill, J., 7, 11, 18, 73, 82, 87, 101, 108,

111, 119–121, 134, 160, 162, 195,
264, 278, 299

Gill, L., 45, 49, 295
Gill, P. E., 73, 76, 84, 85, 156–157,

185, 202, 211, 278
Glanz, J., 2, 278
Gleser, L. J., 78, 279
Glynn, P. W., 265, 268
Goffe, W. L., 101, 279
Goldberg, A., 51, 279
Goldberg, I., 32, 279
Golden, L. L., 102, 270, 300
Goldfeld, S., 84, 204, 279
Golub, G. H., 20, 156, 272, 278
Gong, G., 102, 296
González, A., 73, 291
Good, I. J., 130, 279
Goodman, L., 178, 179, 180, 279
Goodman, O. S., 33, 287
Gorenstein, S., 130, 279
Gough, B., 93, 279
Gould, J., 22, 270
Gove, W. R., 177, 279
Greenberg, E., 126, 272
Greene, W., xv, 5, 21, 106, 151, 279
Griliches, Z., 6, 274, 275, 280
Grillenzoni, C., 5, 279
Grimson, R. C., 6, 298
Grochowski, J., 32, 279
Gujarati, D. N., 20, 279
Gupta, A., 100, 279
Gurmu, S., 6, 279
Gustafson, P., 73, 279
Guthrie, W., 45, 49, 295
Gutiéterrez, R., 291
Gutierrez, D., 59, 60, 92, 270
Guttag, J., 22, 272
Guttman, I., 71, 279

Häggström, O., 264, 280
Haberman, S. J., 85, 279
Hall, A., 22, 272
Hall, B., 6, 98, 202, 269, 280

Hall, P., 32, 106, 280
Hall, R., 98, 202, 269
Hamilton, L. C., 72, 280
Hammarling, S., 92, 274
Hampel, F. R., 72, 268, 280
Hanson, R. J., 92, 285
Hanushek, E. A., 20, 280
Harrell, F. E., 21, 280
Harris, T. E., 123, 280
Harville, D. A., xv, 151, 280
Hastings, W. K., 126, 280
Hathaway, R. J., 172, 280
Haughton, D., 113, 280
Hausman, J. A., 6, 98, 202, 269, 280
Hayakawa, M., 2, 280
Heckert, A., 56, 296
Heinze, G., 250, 251, 280
Hellekalek, P., 36–38, 130, 280, 286
Henzinger, T., 22, 272
Herrnson, P., 254, 281
Herron, M. C., 178, 190, 196, 197, 281
Higham, N. J., 2, 14, 17, 20, 24–25,

28, 44, 45, 47–48, 91, 281
Hildreth, C., 253, 281
Hill, I.D., 35, 300
Hill, T., 102, 281
Hinkley, D. V., 77, 105, 106, 175,

273, 281
Hiriart-Urruty, J. B., 102, 103, 290
Hirji, K. F., 250, 281
Hoaglin, D. C., 72, 275, 281, 289
Hoare, C. A. R., xv, 22, 273, 281
Hobert, J. P., 264, 281
Hochbaum, D., 31, 281
Hodges, J. S., 6, 281
Hoel, P. G., 121, 281
Hoerl, A. E., 174, 281
Hoeting, J. A., 116, 281, 294
Holland, J. H., 101, 281
Holzmann, G., 22, 272
Honaker, J., 160, 284
Hopfield, J. J., 101, 281, 282
Horowitz, J. L., 106, 282
Hosmer, D. W., 113, 282
Hotelling, H., 4, 282
Howe, S. E., 92, 270
Hsu, J. S. J., 250, 282
Huber, P. J., 72, 268, 282
Hughes, M., 177, 279

AUTHOR INDEX 307

Hui, L., 56
Hull, T. E., 136, 282
Hunter, J. E., 78, 296
Hunter, J. S., 41, 270
Hunter, W. G., 41, 270
Hurst, R. L., 130, 282
Hwang, C-R., 264, 277
Hyndman, R. J., 110, 282

Ibrahim, J. G., 120, 272
Ihaka, R., 215, 282
Ingber, L., 99, 101, 282
Ingrassia, S., 264, 282
Intrator, N., 102, 282
Intrator, O., 102, 282
Intriligator, M., 274, 275
Iturria, S. J., 78, 283

Jabbour, G. M., 101, 282
Jaccard, J., 78, 283
Jackson, J. E., 20, 280
Jaeschke, G., 31, 283
Jagerman, D. L., 130, 283
James, W., 174, 283
Jansson, B., 130, 283
Jenkins, G., 213, 270
Jiang, J., 91, 277
Johansson, P., 101, 271
Johnson, D. S., 40, 277
Johnson, G., 1, 283
Johnson, V. E., 107, 283
Johnston, G., 247, 283
Joines, J. A., 286
Jones, C., 22, 272
Joseph, A., 160, 284
Joseph, L., 110, 283
Judd, J. S., 103, 283
Judd, K., 212, 283
Judge, G. G., 83, 97, 283, 290
Jun, B., 39, 283
Jungman, G., 93, 279

Kadane, J. B., 72, 283, 284
Kahaner, D. K., 92, 270
Kahn, M. J., 250, 283
Kang, K., 286
Kankalla, K., 38, 299

Kannan, R., 264, 277
Karlin, S., 121, 283
Karsenty, H., 102, 103, 290
Kass, R. E., 72, 284
Kelley, C. T., 97, 98, 202, 284
Kelley, T. L., 4, 284
Kendall, W. S., 264, 284
Kennard, R. W., 174, 281
Kennedy, W. J., 32, 91, 130, 141, 284
Keyes, D. E., 268
Khaliq, M. H., 99, 288
Kiang, M. Y., 102, 298
Kimball, D. C., 180, 189, 190, 191,

195, 196, 271
Kincaid, D., 92, 285
King, G., 5, 6, 11, 18, 87, 102, 143,

145, 160, 162, 177–179, 180, 181,
182, 186–191, 194–197, 253, 256,
267, 269, 277, 278, 284

Kinoshita, T., 2, 280
Kiri, A., 202, 271
Kirkpatrick, S., 100, 284
Kiskis, D. L., 256, 267
Kit, E., 23, 284
Kitagawa, G., 72, 284
Klein, S. P., 178, 277
Klepper, S., 116, 284
Kleppner, D., xv, 284
Knüsel, L., 58, 59, 60, 64, 285
Knop, R. E., 130, 282
Knuth, D. E., xv, 23, 24, 32, 36, 56,

136, 285
Kocher, P., 39, 283
Kofler, M., 94, 285
Kotz, S., 275
Krasny, R., 94, 268
Krawczyk, H., 130, 285
Kreps, D. M., 282
Kresnow, M., 2, 285
Krogh, F. T., 92, 285
Kronmal, R. A., 116, 130, 285, 299
Krot, M., 256, 267
Krug, E. G., 2, 285
Krzanowski, W. J., 175, 285
Kuan, C. M., 100, 102, 285
Kuh, E., 72, 269
Kurshan, R., 22, 272
Kutner, M. H., 20, 292

308 AUTHOR INDEX

L’Ecuyer, P., 32, 35, 37, 38, 56, 286
Lagergren, E., 45, 49, 295
Lam, M. S., 100, 279
Lange, K. L., 32, 72, 285
Lapuertab, P., 102, 301
Lasdon, L., 13, 277
Lavine, M., 73, 264, 271, 285
Lawrance, A. J., 77, 285
Lawson, C. L., 92, 285
Lax, P. D., xv, 285
Leamer, E. E., 73, 116, 144, 197,

284–286
Learmonth, G. P., 130, 286
Lee, A. H., 78, 301
Lee, L., 6, 286
Lehmann, E. L., 105, 134, 286
Lehn, J., 35, 275
Leigh, S., 56, 296
Leimer, D. R., 2, 286
Lenstra, J. K., 100, 101, 267
Leonard, H., 116, 286
Leonard, T., 250, 282
Leroy, A. M., 72, 295
LeSage, J. P., 4, 13, 48, 49, 222, 227,

230, 234, 286, 287, 293, 297
Lesage, J.P, 219
Lesnoy, S. D., 2, 286
Leuze, M. R., 268
Levenson, M., 56, 296
LeVeque, R. J., 20, 272
Leveson, N., 22, 272
Levine, R., 116, 287
Levy, D. M., 2, 276
Lewbel, A., 78, 287
Lewis, P. A. W., 33, 130, 138, 286, 287
Lewis, T. G., 35, 72, 269, 287
Li, T., 78, 287
Lindley, D. V., 269, 273, 287, 293
Liseo, B., 72, 287
Little, R. J. A., 72, 285, 287
Liu, J. S., 120, 287
Liu, L., 102, 285
Lo, A. Y., 106, 287
Locatelli, M., 102, 103, 287
Loh, W. Y., 106, 287
Londregan, J., 6, 287
Long, J. S., 105, 287
Longley, J. W., 1, 4, 6, 48, 49, 287
Louis, T. A., 120, 130, 264, 268, 271

Lovato, J., 59, 60, 92, 270
Lozier, D. W., 32, 92, 288
Lundy, M., 102, 288

Maca, J. D., 78, 271
MacKie-Mason, J. K., xiv, 288
MacKinnon, J. G., 144, 175, 273
Maclaren, M. D., 35, 288
MacPherson, R. D., 130, 272
Macready, W., G., 40, 99, 301
Madansky, A., 78, 288
Madigan, D., 116, 281, 294, 299
Makov, U. E., 113, 297, 299
Mallick, B. K., 78, 278
Malov, S. V., 130, 288
Marı́n, J. M., 72, 288
Marais, M. L., 78, 288
Marcet, A., 40, 91, 273
Maros, I., 21, 99, 288
Marquardt, D. W., 147, 288
Marsaglia, G., 33, 35, 56, 57, 130,

188, 288
Martı́nez, C., 73, 291
Martin, A., 132
Martin, M. E., 272, 281
Mascagni, M., 37, 58, 298
Masconi, M., 56, 289
Matsumoto, M., 35, 132, 289
Matthews, A., 156, 289
Mayer, W. J., 101, 274
McArdle, J. J., 130, 289
McCabe, G. P., xiv, 291
McCormick, W. P., 106, 273
McCue, K., 178, 179, 289
McCullagh, P., 6, 82, 95, 172, 173, 289
McCulloch, C. E., 104, 289
McCulloch, W., 101, 289
McCullough, B. D., 2, 4, 14, 21, 36,

48, 56, 59, 60, 61, 64, 130, 211,
212, 217, 262, 289

McCullough, B.D., 199
McDaniel, W. L., 31, 289
McDonald, M. P., 2, 48, 60, 61, 64, 66,

68, 188, 254, 256, 267
McFadden, D. L., 107, 290
McGraw, G., 37, 39, 57, 299
McLachlan, G. J., 113, 277
McMillan, K., 22, 272

AUTHOR INDEX 309

McNemar, Q., 4, 284
Mead, R., 98, 292
Mebane, W. Jr., 101, 296
Mees, A., 102, 288
Megiddo, N., 31, 281
Mehta, C. R., 250, 281
Meier, K. J., 111, 290, 297
Mendell, N. R., 40, 86–87, 88, 276
Mengersen, K. L., 125, 290
Metropolis, N., 4, 100, 126, 127, 290
Meyer, C. D., Jr., 154, 271
Meyn, S. P., 122–125, 264, 274, 290
Michalewicz, Z., 100, 102, 103, 290
Micheas, A., 73, 274
Mihram, D., 139, 290
Mihram, G. A., 139, 290
Miller, D. J., 83, 97, 283, 290
Miller, J. W., 33, 287
Miller, K. W., 33, 132, 138, 293
Miller, W. E., 255, 290
Mitra, S. K., 174, 294
Mittelhammer, R. C., 97, 290
Mittelmann, H. D., 100, 290
Moghrabi, I. A., 97, 277
Moller, J., 264, 284
Monahan, J. F., 140, 290
Mongeau, M., 102, 103, 290
Montgomery, D. C., 21, 104, 290, 291
Mooney, C. Z., 5, 290
Moore, D. S., xiv, 290, 291
Moore, E. H., 152–153, 291
Moore, J., 22, 272
Moore, L. R., 130, 276
Moré, J. J., 52, 100, 291
Moreno, E., 73, 283, 291
Morgan, B. J. T., 130, 291
Morgan, J. T., 107, 270
Morris, C., 174, 275
Morwitz, V. G., 140, 301
Moshier, S. L., 59, 92, 291
Mosteller, F., 72, 275, 281
Moulton, B. R., 73, 301
Mroz, T. A., 202, 291
Mukhopadhyay, P., 78, 291
Müller, M. E., 136, 270
Murray, G. P., 156, 276
Murray, W., 73, 76, 84, 85, 156–157,

185, 202, 211, 278
Myers, R. H., 104, 291

Nachtsheim, C., 20, 292
Nagler, J., 65–69, 88, 255, 291
Nair, K. R., 78, 291
Naor, J., 31, 281
National Research Council, 253, 292
Naylor, J. C., 109, 292, 297
Nechvatal, J., 56, 296
Nelander, K., 264, 280
Nelder, J. A., 6, 82, 98, 172, 173,

289, 292
Neter, J., 20, 292
Neumann, P. G., 1, 2, 32, 292
Newton, M. A., 106, 292
Ney, P., 123, 133, 268
Nicole, S., 102, 292
Nishimura, T., 35, 132, 289
Nissila, T. A., 38, 299
Nocedal, J., 84, 91, 97, 99, 100, 201,

206, 207, 292
Nordbotten, S., 102, 292
Noreen, E. W., 141, 292
Norris, J. R., 124, 292
Nummelin, E., 123, 125, 131, 133, 292

O’Conner, M., 102, 281
O’Hagan, A., 73, 107, 269, 292
O’Leary, D. P., 172, 292
Oh, M-S., 107, 109, 292
Olver, F. W. J., 32, 92, 288
Oman, S. D., 107, 270
Ord, J. K., 275
Orey, S., 133, 293
Orwant, J., 51, 299
Ostland, M., 178, 277
Ott, J., 147, 293
Overton, M. L., 23, 23, 26, 28, 293
Owens, A. J., 101, 276

Pace, R. K., 224, 225, 227, 229, 233,
237, 269, 286, 293

Paik, H., 102, 103, 293
Panko, R. R., 22, 293
Panneton, F., 35, 286
Papadimitrious, C., 31, 293
Park, S. K., 33, 132, 138, 293
Parker, D. S., 77, 84, 185, 293
Patil, G. P., 275
Payne, W. H., 35, 287

310 AUTHOR INDEX

Peck, E. A., 21, 290
Peddicord, J. P., 2, 285
Peled, D., 22, 272
Pelz, R., 94, 268
Penrose, R. A., 153, 293
Pericchi, L. R., 73, 283, 291
Peskun, P. H., 126, 293
Peterson, C., 101, 293
Petrella, L., 72, 287
Pettit, L. I., 72, 293
Petzold, L. R., 268
Pierce, B., 77, 84, 185, 293
Pisani, R., xiv, 277
Pitts, W., 101, 289
Ploner, M., 251, 293
Pneuli, A., 22, 272
Poirer, D. J., 108, 148, 293
Polasek, W., 45, 72, 78, 278, 293, 294
Polinard, J. L., 111, 290
Polson, N. G., 125, 129, 264, 277, 295
Port, S. C., 121, 281
Powell, K. E., 2, 294
Pratt, J. W., 84, 294
Pregibon, D., 77, 294
Press, W. H., 32, 39, 91, 99, 132, 137,

138, 202, 294
Propp, J. G., 264, 294
Purves, R., xiv, 277

Qingfeng, G., 121, 301
Quandt, R., 84, 204, 279
Quinn, K., 132

Rabin, M. O., 30–31, 294
Raftery, A. E., 71, 106, 116, 250, 281,

283, 292, 294, 299
Ramsey, N., xv, 284
Rao, C. R., 174, 215, 294
Rao, J. N. K., 78, 298
Rechenberg, I., 101, 294
Reed, D. A., 268
Reiersol, O., 78, 294
Remus, W., 102, 281
Renelt, D., 116, 287
Renfro, C. G., 19, 21, 52, 289, 294
Revkin, A. C., 1, 217, 294
Revuz, D., 122, 294
Rex, J., 62, 270

Richards, J. F., 107, 269, 274
Richardson, S., 264, 278
Riley, J., 147, 294
Rı́os Insua, D., 274, 279, 288, 291, 297
Ripley, B. D., 36, 140, 141, 213, 215,

295, 299
Ritter, T., 62, 295
Rivest, R., 62, 295
Robbin, A., 256, 295
Robert, C. P., 120, 133, 136, 139, 147,

149, 264, 271, 281, 295
Roberts, F. D. K., 130, 274
Roberts, G. O., 125, 127, 129, 264,

265, 270, 278, 295
Roberts, M. R., 178, 277
Robertson, C. A., 113, 277
Robinson, W. D., 130, 299
Robinson, W. S., 177, 295
Robner, R., 102, 103, 296
Rogers, J., 45, 49, 101, 279, 295
Rogers, W. H., 72, 268
Romo, J., 106, 276
Ronchetti, E. M., 72, 280
Rorres, C., xv, 268
Rosen, O., 178, 284
Rosenbluth, A. W., 4, 290
Rosenbluth, M. N., 4, 290
Rosenstone, S. J., 66, 300
Rosenthal, J. S., 264, 295
Ross, S., 121, 295
Rossi, F., 93, 279
Rotkiewiczm, A., 31, 295
Rousseeuw, P. J., 72, 280, 295
Rouze, V., 102, 103, 290
Rubin, D. B., 6, 46, 76, 83, 106, 107,

147, 160, 185, 269, 278, 287,
295, 296

Rubinstein, R. Y., 141, 296
Ruggeri, F., 73, 274, 279, 283, 288,

291, 296, 297
Rukhin, A., 56, 296
Runkle, D. E., 106, 296
Ruppert, D., 78, 271
Rushby, J., 22, 272
Rust, B. W., 172, 292
Ruud, P. A., 107, 290
Ryutova, A., 102, 301

AUTHOR INDEX 311

Salinetti, G., 72, 283, 287, 291
Sanders, M. A., 156, 278
Santner, T. J., 245, 296
Sanz, P., 73, 273
Schechtman, E., 106, 273
Schemper, M., 250, 251, 280
Scheve, K., 160, 284
Schiller, J., 37, 57, 275
Schmeiser, B., 128, 272
Schmidt, F. L., 78, 296
Schnabel, R. B., 97, 158, 273, 296
Schneeweiss, H., 78, 296
Schneier, B., 132, 296
Schrage, L., 138, 296
Schumacher, M., 102, 103, 296
Schur, L. N., 38, 296
Schwefel, H.P, 101, 296
Searle, S. R., 104, 144, 147, 154,

289, 296
Seber, G. A. F., 52, 296
Sekhon, J. S., 101, 296
Selke, W., 38, 296
Semmler, W., 102, 296
Serfling, R. J., 105, 296
Sethuraman, J., 125, 268
Shankar, N., 22, 272
Shao, J., 32, 106, 175, 296
Shao, Q-M., 120, 272
Shaw, J. E. H., 109, 297
Sherali, H., 202, 268
Shetty, C., 202, 268
Sheu, S. J., 264, 277
Shotts, K. W., 178, 190, 196, 197,

281
Shub, M., 35, 270
Sieber, J. E., 253, 297
Sierpinski, W., 30, 297
Sifakis, J., 22, 272
Signorino, C. S., 6, 284
Simard, R., 56, 286
Simon, S. D., 4, 13, 48, 49, 287, 297
Sincovec, R. F., 268
Sirkin, R. M., xiv, 297
Sistla, P., 22, 272
Sivaganesan, S., 73, 297
Skene, A. M., 109, 297
Skinner, C. J., 78, 297
Smid, M., 56, 296
Smirnov, O., 227, 297

Smith, A. F. M., 72, 109, 113, 119,
127, 147, 149, 232, 234, 264, 269,
273, 277, 287, 292, 293, 295, 297,
299, 300

Smith, D. M., 93, 297
Smith, G., 174, 297
Smith, K. B., 111, 116, 290, 297
Smith, P. H., 178, 297
Soderberg, B., 101, 293
Sone, A., 256, 267
Soto, J., 56, 296
Spears, M., 60, 92, 270
Speckman, P. L., 223, 298
Spellucci, P., 100, 290
Spiegelhalter, D. J., 264, 278
Srinivasan, A., 37, 56, 58, 289, 298
Srinivasan, C., 72, 283
St. Laurent, R. T., 77, 185, 298
Stahel, W. A., 72, 280
Starr, N., 86, 298
Stefanski, L. A., 78, 271, 298
Steffen, B., 22, 272
Stein, C., 174, 283
Stern, H. S., 107, 147, 278
Stern, S., 141, 298
Stewart, T. J., 106, 298
Stokes, H. H., 2, 209, 298
Stone, C. J., 121, 281
Straf, M. L., 272, 281
Strawderman, W. E., 174, 298
Sun, D., 223, 298
Sutradhar, B. C., 78, 298
Svoboda, D. M., 101, 271
Symons, M. J., 6, 298

Talapov, A.L., 38, 296
Tam Cho, W. K., 83, 178, 189, 195,

283, 298
Tam, K. Y., 102, 298
Tamir, A., 31, 281
Tank, D. W., 101, 282
Tanner, M. A., 120, 147, 160, 162,

178, 284, 298, 300
Taylor, H. M., 121, 283
Taylor, J. M. G., 72, 285
Teller, A. H., 4, 290
Teller, E., 4, 290
Teukolsky, S. A., 32, 39, 99, 202, 294

312 AUTHOR INDEX

Theiler, J., 93, 279
Thisted, R. A., 32, 91, 114, 298
Thode, H. C., 40, 86–87, 88, 276
Thompson, E. A., 172, 278
Thompson, S. P., xv, 298
Thorisson, H., 265, 268
Thursby, J. G., 2, 254, 274, 299
Tiao, G. C., 149, 270
Tibshirani, R. J., 105, 106, 175,

274, 275
Tierney, L., 72, 123, 139, 140, 142,

284, 299
Titterington, D. M., 264, 281, 299
Tomz, M., 162, 284
Toothill, J. P. R., 130, 299
Traub, J.F., 37, 299
Trivedi, P., 6, 271
Trotter, H., 204, 279
Tsang, W. W., 56, 57, 288
Tsiatis, A. A., 250, 281
Tsutakawa, R. K., 223, 298
Tu, D., 32, 106, 175, 296
Tukey, J. W., 72, 268, 275, 281
Turing, A. M., 86, 299
Tutz, G., 82, 276
Tweedie, R. L., 122–125, 264, 272,

274, 290, 292, 299

Ulam, S., 4, 290

Vach W., 102, 103, 296
Valderrama, M., 291
Van Hee, K. M., 102, 275
Van Ness, J. W., 78, 272
Vangel, M., 45, 49, 56, 295, 296
Vattulainen, L., 38, 299
Veall, M. R., 40, 84, 86–88, 299
Vecchi, M. P., 100, 284
Venables, W. N., 213, 215, 299
Venier, J., 60, 92, 270
Verba, S., 256, 267
Vetterling, W. T., 32, 39, 99, 202, 294
Victor, D., 202, 271
Viega, J., 37, 39, 57, 299
Vining, G. G., 21, 104, 290, 291
Vinod, H. D., 2, 4, 21, 36, 48, 52, 64,

211, 212, 289, 299
Vo, S., 56, 296
Volinsky, C. T., 116, 281, 299

Von Neumann, J., 4, 299
Vuong, Q., 78, 287

Wagner, D., 32, 279
Wagner, K., 111, 299
Wald, A., 78, 299
Walker, D. W., 92, 274
Wall, L., 51, 299
Wallis, K. W., 282
Walsh, M. J., 101, 276
Wampler, R. H., 4, 48, 299
Wan, C. K., 78, 283
Wang, C. Y., 78, 300
Wang, S., 78, 300
Waren, A., 13, 277
Wasserman, L., 73, 279, 283, 291,

296, 300
Wasserman, W., 20, 292
Watson, G. A., 291
Watson, J., 13, 277
Watts, D. G., 52, 91, 213, 269
Wecker, W. E., 78, 288
Wehner, M. F., 101, 282
Wei, G. C. G., 160, 300
Weisberg, S., 72, 77, 272
Weiss, R. E., 73, 300
Welsch, R. E., 72, 217, 269, 271,

273, 289
Weng, C. S., 106, 300
Wesolowsky, G. O., 181, 275
West, M., 107, 113, 271, 275, 300
West, P. M., 102, 300
Western, B., 116, 148, 300
White, H., 40, 100, 285, 300
Whittlesey, J. R. B., 130, 300
Wichmann, B.A., 35, 300
Wild, C. J., 52, 296
Wilkinson, L., 14, 17, 20, 48, 50,

70, 300
Wilshaw, D., 101, 275
Wilson, B., 14, 130, 289
Wilson, D. B., 264, 294
Wing, J. M., 22, 272
Wittenberg, J., 162, 284
Wolak, F., 172, 300
Wolfinger, R., 66, 300
Wolfram, S., 59, 94, 300
Wolfson, D. B., 110, 283

AUTHOR INDEX 313

Wolper, P., 22, 272
Wolpert, D. H., 40, 99, 301
Wong, M. Y., 78, 301
Woodcock, J., 22, 272
Wooldridge, J. M., 202, 301
Worton, B. J., 106, 273
Wozniakowsi, H., 37, 299
Wright, J., 100, 291
Wright, M. H., 73, 76, 156, 157, 185,

202, 211, 278
Wright, S. J., 84, 85, 91, 97, 99, 100,

201, 206, 207, 292
Wrinkle, R., 111, 290
Wu, B., 101, 301
Wu, C. F. J., 106, 287

Xia, X., 102, 270
Xianga, A., 102, 301

Yeo, G. K., 42, 301
Young, M. R., 140, 301
Yuan, Y. C., 6, 298

Zaman, A., 188, 288
Zaremba, S. K., 274
Zave, P., 22, 272
Zellner, A., 73, 301
Zeng, L., 6, 102, 269, 284
Zhao, Y., 78, 301
Zhenting, H., 121, 301

Subject Index

accept-reject method, 133
accuracy, 18, 19, 91

data input, 10
data issues, 186
defined, 15
numeric, see numerical accuracy
sources, 18–19

algorithm, 15–17, 28
approximation, 29, 31–32

truncation error, 31
bias, 3
defined, 15, 19
efficiency, 16
example, bubble sort, 16
example, find max, 15–16
example, scanning, 16
heuristic, see heuristic
implementation dependence, 46
instance definition, 15
limitations, 29, 42
option dependence, 46
problem definition, 15
scaling, 98
wrapper algorithm, 17

aliasing, 173
constraints, 173
extrinsic, 173
intrinsic, 173

alternating conditional sampling, see
Gibbs sampler

American National Election Studies,
290

American Political Science Review, 189

Boldface page number indicates that the subject is the primary topic of discussion.

Numerical Issues in Statistical Computing for the Social Scientist, by Micah Altman, Jeff Gill,
and Michael P. McDonald
ISBN 0-471-23633-0 Copyright c© 2004 John Wiley & Sons, Inc.

Aptech Systems, Inc., 67, 268
artificial neural networks (ANN), see

optimization algorithm, artificial
neural networks (ANN)

auxiliary variables, 136

Bayesian GLS regression, 232
Bayesian Inference, see inference,

Bayesian
Bayesian model averaging, 116
benchmarks, 63

data input, see data input and output,
benchmarks

defined, 45
distribution functions, see

distribution functions, benchmarks
pseudo-random number generators,

see pseudo-random number
generator, benchmarks

Box-Müller method, 270
BUGS, 6

C, 29, 63, 92, 142, 265
C++, 63, 93, 131, 142, 265
central limit theorem, 134, 141
Cephes, 59, 92
Cholesky decomposition, 155, 156, 158

algorithm, 156
Gill–Murray algorithm, 156–157
Schnabel–Eskow algorithm, 158–159

Cholesky factorialization, see Cholesky
decomposition

315

316 SUBJECT INDEX

combinatorial optimization, 31
computational efficiency, 250
computation error examples, 1–2
computer, 3
conditioning, 47–48
condition number, 47
confidence interval, 77, 86, 104

bootstrapped, 106
credible interval, see credible

interval
likelihood ratio, 211, 247, 249,

251
likelihood ratio inference, 104
likelihood ratio test (LRT), 105
Wald inference, 104–105, 212,

213
Wald vs. likelihood inference, 215,

216
conjugate gradient, see optimization

algorithm, conjugate gradient
constrained maximum likelihood, see

maximum likelihood estimation
(MLE), constrained

Cook’s curvature, see likelihood
curvature

correlation matrix, standardized, 154
countable collection, 120
coupling from the past, 264
coverage, 216
credible interval, 110
cross-level-inference, see ecological

inference

Data Documentation Initiative (DDI),
256

data input and output, 256
benchmarks, 60–63
canonical data, 255
cyclic redundancy checks, 62–63
truncation, 256

Davidson–Fletcher–Powell method
(DFP), see optimization algorithm,
Davidson–Fletcher–Powell (DFP)

DDI, see Data Documentation Initiative
derivatives

analytic vs. numerical, 201
automatic, 201
forward difference method, 32

forward vs. central differences, 205
numerical, 205

DFP, see optimization algorithm,
Davidson–Fletcher–Powell (DFP)

distribution functions
benchmarks, 58–60, 65
cumulative bivariate normal, 180,

181, 194
truncated normal, 146

DSSTAB, 59, 92

ecological inference, 11
choice of optimization algorithm,

187
choice of PRNGS, 187–188
Goodman’s regression, 178
method of bounds, 178, 179
sensitivity to environment, 195–197
sensitivity to implementation,

188–189, 194–195
sensitivity to perturbation, 185–186,

191–194
two-stage models, 190

ecological inference (EI), 176
background, 177–179
definition, 179–180
numerical issues, 180–181

EI-R, 196–197
ELV, 59
EM algorithm, 114, 142
empirical cdf, 113
ergodic theorem, 124
E-Views, 199
exact inference, logistic regression, 249
Excel, 12–14, 50, 52, 74, 207, 209

solver, 206–209, 209
EzI , 182, 188, 189, 191, 195, 196

execution bugs, 189
simulation variance, 195
versions, 196

floating point arithmetic, 23–24, 28
approximation, 94
bits, 23
cancellation, 25
compilers, 29
example, 25–27

SUBJECT INDEX 317

guard bits, 24
inaccuracies, 42
in EI, 180
intermediate calculation, 28
machine epsilon, 24
mantissa, 24
misconceptions, 28
normalized number, 24
overflow, 23
precision, 24–25
reproducibility, 28–29
rounding, 24, 93, 94
rounding error, 17
truncation, 24
underflow, 23, 25

FORTRAN, xv, 50, 51, 92, 265
function maximization, see

optimization algorithm

Gauss, xv, 7, 9, 66–68, 74, 153, 155,
156, 176, 181, 182, 187, 188, 199,
213, 258

Gauss–Markov, 79–80
Gauss–Newton method, see

optimization algorithm,
Gauss–Newton method

generalized Cholesky, 147, 151,
155–159

numerical examples, 158–159
generalized inverse, 147, 152, 151–155

minimum norm, 153
Moore–Penrose, 151
normalized, 153
numerical examples, 154–155
reflexive, 153
weak, 153

generalized linear model, 82
interactions, 82
link function, 82

genetic algorithm (GA), see
optimization algorithm, genetic
algorithm

geographic information systems (GIS),
219, 266

Gerschgorin bounds, 158
Gerschgorin circle theorem, 158
Gibbs sampler, 6, 119, 128, 139, 232

full conditional distributions, 129

GIS, see geographic information
systems (GIS)

GLIM, 244, 246, 246
global optimality, see optimization

algorithm, global optimality
Gnu Multiple Precision

(GMP), 93
Goodman’s regression, see ecological

inference, Goodman’s regression

hat matrix, 251
Hessian, 103, 105, 143

bootstrapping approach, 174–175
derivative approach, 174
inversion, 10–11, 194–195
invertibility, 143
nonpositive definite, 149
noninvertible, 262–263

causes, 149
numerical example, 166, 169
positive definite, 262
processing, numerical example,

163–171
respecification, 146, 175
singular, 149

heuristic, 30, 32–40
defined, 16

highest posterior density, 109–113,
148, 263

average coverage criterion, 110
average length criterion, 110
definition, 109
highest average coverage criterion,

110
simulation methods, 112
worst outcome criterion, 111

HPD, see highest posterior density

ICPSR, see Inter-University
Consortium for Political and
Social Research

implementation
defined, 16, 19
error, 21–22, 258

implementation uncertainty, 197
importance ratio, 160
importance sampling, 147, 160–163

algorithm, 160–161

318 SUBJECT INDEX

importance sampling (continued)
applied to pseudo-variance matrix,

163
approximation distribution, 160
diagnostics, 163
illustration, 162

importance weight, 161
independence chain, 125
inference, 20–21

Bayesian, 18, 145, 148
logistic regression, 250

likelihood model, 18, 145
influence, 71, 72
inlier, 140
instrumental variables, 83
integer linear programming, 31
Inter-University Consortium for

Political and Social Research
(ICPSR), 60, 182, 189, 191, 255,
256, 259

inverse probability model, 18

jackknifing, 81
Java, 63
JMP, 247

KISS, see pseudo-random number
generator, KISS

Kolmogorov’s zero-one law,
123

LAPACK, 92
Leamer bounds, 116, 197, 261
likelihood curvature, 77
likelihood discplacement, 77
likelihood function, 76

core region, 90
curvature, 77, 85
nonconcavity, 85
quadratic, 261
sensitive, 77

likelihood inference, see inference,
likelihood model

likelihood mean-shift, 77
likelihood principle, 108
likelihood ratio, see confidence

intervals, likelihood ratio
Limdep, 199, 244, 246

linear model
Gauss–Markov assumptions, 78
generalized, see generalized linear

model
logistic regression, 265

Bayesian inference, 250
convergence criteria, 246
diagnostics, 247
example, Florida, 168
example, Texas, 164
likelihood, 168
MLE, 238
separation, 240

detection, 245
treatment, 248

software problems, 244
logit, see logistic regression
log relative error (LRE), 19, 53, 59
LogXact, 250
lunch, no free, 40, 99, 102

m − n poly-t form, 107
machine epsilon, 24, 157
machine precision, 83
Maple, 93–95, 261
Markov chain, 119

absorbing condition, 122
absorbing set, 122, 139
absorbing state, 139–140, 142
auxiliary variables, 135
burn-in period, 133
chain period, 122
closed set, 122
convergence

bounds, 264
conditions, 126
diagnostics, 264

convergence of empirical averages,
134

convergence parameter, 123
convergence to stationarity, 134
cycle, 122
definition, 121
degeneracy, 140
detailed balance equation, 127, 135
empirical averages, 134
equilibrium distribution, 123, 124
ergodic, 133, 265
geometric convergence, 135

SUBJECT INDEX 319

geometrically ergodic, 129, 134
Gibbs sampler, 128, 130, 135

steps, 129
hit-and-run algorithm, 127

steps, 128
homogeneous, 129
invariant distribution, 124
irreducible set, 121
limiting distribution, 124
marginal distribution, 124
measure conditions, 120
memory-less property, 121
Metropolis–Hastings algorithm, 126,

130, 142
acceptance ratio, 140
actual transaction function, 127
candidate generating distribution,

126
instrumental distribution, 126
jumping distribution, 126
proposal distribution, 126
transition kernel, 127

minorization condition, 131
mixing, 264
movement, 120
obtainable set, 122
partial sums, 134
periodicity of generator, 131
properties

aperiodic, 122
communicating, 122
ergodic, 124
Harris recurrent, 123, 134
Harris R-recurrent, 133
homogeneous, 122
irreducible, 121
periodic, 122
persistent, 122
positive recurrent, 123
recurrent, 122, 123
transient, 123

pseudo-random number generator
problems, 137

ψ-communicating, 121
random number generation, 129
random number generators, 130

problems, 130
reversibility, 127
σ -finite kernel, 120

slice sampler, 135
stationary distribution, 124, 133
symmetry, 127
transient, 123
transitioning, 120
transition kernel, 131
trapping set, 139
unbounded and continuous state

spaces, 123
uniform ergodicity, 125
unobtainable set, 122

Markov chain Monte Carlo (MCMC),
10, 32, 35, 38, 58, 119, 145, 250,
263

background, 118–120
mechanics, 126–129
properties, 121–126
spatial models, 231–234
theory, 120–121

Markovian property, 121, 129, 135, 139
Mathematica, 59, 93–95, 207, 261
Matlab, 59, 93, 226, 237
MATLAB, 48
matrix decomposition

diagonalization, 152
LDU, 151, 152

matrix inverse conditions, 151
maximum likelihood estimation (MLE),

5
constrained, 181
convergence failure, 243
nonexistence, 243

measurable functions, 120
measurable space, 120
measure space, 132
measurement error, 18

generalized linear model, 82
linear model, 78–82

induced covariance, 79
multivariate, 80

model effect, 78
zero mean, 78

measures
positive, 120
signed, 120

Metropolis–Hastings algorithm, 119,
126, 135, 234, 264

acceptance ratio, 127
steps, 127
symmetry, 127

320 SUBJECT INDEX

Minitab, 244, 246
misspecification, 20
mixture distribution, 113
mixture model, 113
MLE, see maximum likelihood

estimation (MLE)
model specification, 257
MODULA-2, 138
Monte Carlo arithmetic, 77–78
Monte Carlo simulation, 140–141, 147,

259
error term, 141
expected value, 141
steps, 141

Moore–Penrose theorem, 152, 153
MRC Biostatistics Unit, 137
multicollinearity, 46, 144, 173
multiplicative congruential generator,

138
MuPad, 93

National Election Survey, 90, 255
National Institute of Standards and

Technology (NIST), 23, 45,
49–50, 53, 88, 92, 199

National Science Foundation, 253
Newton’s method, see optimization

algorithm, Newton’s method
Newton–Raphson, 239, 240, 243, 244,

246, 247, 251
NIST, see National Institute of

Standards and Technology
nonlinear estimation

diagnostics, 210
function profiling, 212–213
gradient analysis, 211
Hessian condition, 212
Tobit model, 203
trace analysis, 211

nonlinear least squares, see
optimization algorithm, nonlinear
least squares

nonlinear maximum likelihood, 199
nonlinear regression, see optimization

algorithm, nonlinear least squares
norm operator, 132
North Carolina, 6–8
NP-completeness, 31

numerical accuracy, 4–6, 19
backward error, 48
benchmarks, 48–49

test results, 64–65
error detection, 4
example, rare event counts model, 6,

9
examples, 4
stability, 20

numerical expected value, 141

omitted variable bias, 169
open source software (OSS), see

statistical software, open source
optimization algorithm, 30, 39–41, 75,

84, 94, 200–202, 258–259,
261–262

artificial neural networks (ANN),
101–102

BFGS, 67, 97–99, 103, 186, 202,
203, 206, 217

BHHH, 67, 202, 204
conjugate gradient, 67, 96
convergence, 102
convergence criteria, 98, 103, 205
convergence rates, 205
Davidson–Fletcher–Powell (DFP),

67, 97, 151, 202
downhill simplex method, 98
example, ecological inference,

186–187
Gauss–Newton, 204, 208, 217
genetic algorithms, 101
global optimality, 84–92
global optimality tests

Starr test, 86, 88–90
Veall test, 87–90

global optimum, 39–40, 51, 84
gradient, 67
grid search, 87, 109
implementation, 99
Levenberg–Marquardt, 204, 217
line search, 96, 97, 201
local optima, 84, 103
multiple modes, 89, 106

example, 107–109
Nelder–Mead algorithm, 99
Newton’s method, 96, 98, 201
Newton–Raphson, 67, 204

SUBJECT INDEX 321

NL2SOL, 217
nonlinear, see nonlinear estimation
nonlinear least squares, 199,

261–262
numerical accuracy, 206–209
optimization method, 95–96
options, 52
quadratic hill-climbing, 204
quasi-Newton, 202, 204–206
simplex algorithm, 99
simulated annealing, 99–101
solvers, 52–53, 67
starting values, 51, 53, 199, 240
steepest descent, 67, 96
stopping rules, 246
trust region, 204
trust-region algorithm, 96

outliers, 71, 72

parallel analyses, 144
penalized log likelihood, 251
penalized maximum likelihood

estimation, 250
perfect sampling, 264
PERL, 51, 258
posterior distribution

as objective function, 145
plateau, 150
ridge, 145
saddlepoint, 150

precedence, 51
precision, 24

defined, 15
prior, 18
PRNG, see pseudo-random number

generator
probability measure, 121
pseudo-random number generator,

32–39, 75
add with carry, 33–35
benchmarks, 54–58, 65
birthday-spacings test, 55
compound, 36
crypto-strength, 132
defined, 32–33
DIEHARD, 55, 56, 64
distribution of draws, 37
hardware generators, 39
independence, 37

inverse CDF method, 36
inverse congruential, 35
KISS, 132
lagged Fibonnaci, 33–35
linear congruential, 33, 131, 136
long-runs test, 55
Markov chains, see Markov chain,

pseudo-random number
generator

Mersenne twister, 35, 132, 264
mother-of-all generator, 132
multiple recursive, 33, 132
parallel application, 58
parallel processor, 37
period, 33, 36, 57, 57
PRNGS, 181

KISS, 188
RANDMAX, 132
RANDU, 33–34, 130, 135, 137
RANROT, 132
rejection method, 36
reproducibility, 37
seed, 37, 57
shuffle, 35
SPRNG, 56–57, 93
TESTU01, 56, 93

pseudo-variance matrix, 147, 151, 155,
160, 171

pseudoprime, 30–31
ψ-irreducibility, 121

QR factorialization, 153
quasi-Newton, 202, 204

R, xv, 7, 9, 37, 44, 51, 70, 74, 136,
137, 176, 207, 215, 244, 246, 246

R Development Core Team, 51, 294
R-square, 81
racial bloc voting, 177–180
random number generation, 32

hardware sources, 38
Markov chains, see Markov chain,

random number generation
pseudo, see pseudo-random number

generator
true, 57

random walk chain, 125

322 SUBJECT INDEX

randomized algorithm, 29–31
example, prime number, 30

recreation, 255
register overflow, 138
rejection sampling, 147, 173
reliability, 3
replication, 2, 5, 10, 253–254, 254

example, failure to replicate,
254

example, scobit, 66
reproduction, 254–255; see also

replication
independent, 254
secondary analysis, 254
tasks, 255

resistance, 71, 72
ridge regression, 173–174
robustness, 71, 72

Bayesian, 72–73
global, 71
linear model, 72
local, 71

rodeo, prison, 255
roll-off, 190

S-Plus, 7, 9, 37, 74, 153, 155, 199,
208, 213, 251

sample space, 119
sampling importance resampling (SIR),

see importance sampling
SAS, 7, 9, 42, 44, 74, 199, 213,

244–247, 247, 249, 251, 296
Schrage algorithm, 138
scobit, 65–69, 88–90
Scythe Library, 132
sensitivity analysis

data perturbation, 182–185
bounded, 185
proportional data, 185

definition, 73
perturbations

estimation effect, 76, 77
maximizing, 77
minimizing, 77

perturbation tests, 46, 75–84
software, 74
tests, 73–91

SHAZAM, 66–68, 74, 199

σ -algebra, 120, 121
signed measure, 132
simulated annealing (SA), see

optimization algorithm, simulated
annealing

simulation, 4, 5
error, 141
variance, 190–191

smalltalk, 51
software bugs, 22–23, 41, 46, 257

ecological inference, 189
examples, 64

solution, defined, 15
spatial dependence

definition, 219–220
specification using weight matrices,

220–221
spatial regression, 266

Bayesian heteroskedastic models,
229–231

estimation, 231–236
estimation issues, 222–223
limited dependent variables, 222
maximum likelihood estimation,

223–224
numerical accuracy, 226–229
sparse matrix algorithms, 224–225
spatial autoregressive model (SAR),

221–222
spatial Durbin model (SDM), 222
spatial error model (SEM), 222
vectorization, 225–226

SPSS, xv, 44, 199, 244, 245, 246,
247

standard deviation, 12–14
starting values, see optimization

algorithm, starting values
Stata, xv, 7, 9, 50, 63, 66–68, 74,

244, 246, 247, 258
state space, 120
statistical physics, 119, 126
Statistical Reference Datasets (StRD),

49–51, 70, 199, 199, 259
BoxBOD test, 41, 88, 89, 95
Misra1a test, 52, 206–210, 213
π-digits test, 50

statistical software, 44, 60, 65, 74
arbitrary precision, 94
computer algebra, 94

SUBJECT INDEX 323

external library, 63
high precision, 91
multiple precision, 93
open source, 70, 74
selecting, 69–70
speed, 91

statistics textbooks, xiv
steepest descent, see optimization

algorithm, steepest descent
stochastic process, 119, 121

H -valued, 121
history, 121
random elements, 121

stochastic simulation, 118
stopping rules, see optimization

algorithm, stopping rules
StRD, see Statistical Reference

Datasets
symmetry, 127
Systat, 244, 246

Thornburg v. Gingles, 178
Tobit, 203
total variation norm theorem,

133
Transactions on Mathematical

Software, 92
transition kernel, 120

truncated singular normal distribution,
171, 173

TSP, 207

U.S. Census, 219, 228

variance reduction, 141
VDC, see Virtual Data Center
verification, 254; see also replication

recommendations, 259–260
verification data, 258

Virtual Data Center (VDC), 256

Wald inference, 249
Wald test, see confidence intervals,

Wald inference; confidence
intervals, likelihood ratio

warning messages, 7, 14, 246
Web site, xv
WinBUGS, xv, 6, 112, 131, 135, 137,

142, 250
evaluation, 137–139
period of generator, 131
random seed, 139

within-chain versus cross-chain
correlation, 265

Yacas, 93, 95

WILEY SERIES IN PROBABILITY AND STATISTICS
ESTABLISHED BY WALTER A. SHEWHART AND SAMUEL S. WILKS

Editors David J. Balding, Noel A. C. Cressie, Nicholas I. Fisher,
Iain M. Johnstone, J. B. Kadane, Louise M. Ryan, David W. Scott,
Adrian F. M. Smith, Jozef L. Teugels
Editors Emeriti: Vic Barnett, J. Stuart Hunter, David G. Kendall

The Wiley Series in Probability and Statistics is well established and authoritative. It covers many
topics of current research interest in both pure and applied statistics and probability theory. Written
by leading statisticians and institutions, the titles span both state-of-the-art developments in the field
and classical methods.

Reflecting the wide range of current research in statistics, the series encompasses applied, method-
ological and theoretical statistics, ranging from applications and new techniques made possible by
advances in computerized practice to rigorous treatment of theoretical approaches.

This series provides essential and invaluable reading for all statisticians, whether in academia,
industry, government, or research.

ABRAHAM and LEDOLTER · Statistical Methods for Forecasting
AGRESTI · Analysis of Ordinal Categorical Data
AGRESTI · An Introduction to Categorical Data Analysis
AGRESTI · Categorical Data Analysis, Second Edition
ALTMAN, GILL, and McDONALD · Numerical Issues in Statistical Computing

for the Social Scientist
ANDĚL · Mathematics of Chance
ANDERSON · An Introduction to Multivariate Statistical Analysis, Third Edition

∗ANDERSON · The Statistical Analysis of Time Series
ANDERSON, AUQUIER, HAUCK, OAKES, VANDAELE, and WEISBERG ·

Statistical Methods for Comparative Studies
ANDERSON and LOYNES · The Teaching of Practical Statistics
ARMITAGE and DAVID (editors) · Advances in Biometry
ARNOLD, BALAKRISHNAN, and NAGARAJA · Records

∗ARTHANARI and DODGE · Mathematical Programming in Statistics
∗BAILEY · The Elements of Stochastic Processes with Applications to the Natural

Sciences
BALAKRISHNAN and KOUTRAS · Runs and Scans with Applications
BARNETT · Comparative Statistical Inference, Third Edition
BARNETT and LEWIS · Outliers in Statistical Data, Third Edition
BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ · Probability and Statistical Inference
BASILEVSKY · Statistical Factor Analysis and Related Methods: Theory and

Applications
BASU and RIGDON · Statistical Methods for the Reliability of Repairable Systems
BATES and WATTS · Nonlinear Regression Analysis and Its Applications
BECHHOFER, SANTNER, and GOLDSMAN · Design and Analysis of Experiments for

Statistical Selection, Screening, and Multiple Comparisons
BELSLEY · Conditioning Diagnostics: Collinearity and Weak Data in Regression
BELSLEY, KUH, and WELSCH · Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity
BENDAT and PIERSOL · Random Data: Analysis and Measurement Procedures,

Third Edition
BERRY, CHALONER, and GEWEKE · Bayesian Analysis in Statistics and

Econometrics: Essays in Honor of Arnold Zellner
BERNARDO and SMITH · Bayesian Theory

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

BHAT and MILLER · Elements of Applied Stochastic Processes, Third Edition
BHATTACHARYA and JOHNSON · Statistical Concepts and Methods
BHATTACHARYA and WAYMIRE · Stochastic Processes with Applications
BILLINGSLEY · Convergence of Probability Measures, Second Edition
BILLINGSLEY · Probability and Measure, Third Edition
BIRKES and DODGE · Alternative Methods of Regression
BLISCHKE AND MURTHY (editors) · Case Studies in Reliability and Maintenance
BLISCHKE AND MURTHY · Reliability: Modeling, Prediction, and Optimization
BLOOMFIELD · Fourier Analysis of Time Series: An Introduction, Second Edition
BOLLEN · Structural Equations with Latent Variables
BOROVKOV · Ergodicity and Stability of Stochastic Processes
BOULEAU · Numerical Methods for Stochastic Processes
BOX · Bayesian Inference in Statistical Analysis
BOX · R. A. Fisher, the Life of a Scientist
BOX and DRAPER · Empirical Model-Building and Response Surfaces

∗BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process
Improvement

BOX, HUNTER, and HUNTER · Statistics for Experimenters: An Introduction to
Design, Data Analysis, and Model Building

BOX and LUCEÑO · Statistical Control by Monitoring and Feedback Adjustment
BRANDIMARTE · Numerical Methods in Finance: A MATLAB-Based Introduction
BROWN and HOLLANDER · Statistics: A Biomedical Introduction
BRUNNER, DOMHOF, and LANGER · Nonparametric Analysis of Longitudinal

Data in Factorial Experiments
BUCKLEW · Large Deviation Techniques in Decision, Simulation, and Estimation
CAIROLI and DALANG · Sequential Stochastic Optimization
CHAN · Time Series: Applications to Finance
CHATTERJEE and HADI · Sensitivity Analysis in Linear Regression
CHATTERJEE and PRICE · Regression Analysis by Example, Third Edition
CHERNICK · Bootstrap Methods: A Practitioner’s Guide
CHERNICK and FRIIS · Introductory Biostatistics for the Health Sciences
CHILÈS and DELFINER · Geostatistics: Modeling Spatial Uncertainty
CHOW and LIU · Design and Analysis of Clinical Trials: Concepts and Methodologies, Second

Edition
CLARKE and DISNEY · Probability and Random Processes: A First Course with

Applications, Second Edition
∗COCHRAN and COX · Experimental Designs, Second Edition

CONGDON · Bayesian Statistical Modelling
CONOVER · Practical Nonparametric Statistics, Second Edition
COOK · Regression Graphics
COOK and WEISBERG · Applied Regression Including Computing and Graphics
COOK and WEISBERG · An Introduction to Regression Graphics
CORNELL · Experiments with Mixtures, Designs, Models, and the Analysis of Mixture

Data, Third Edition
COVER and THOMAS · Elements of Information Theory
COX · A Handbook of Introductory Statistical Methods

∗COX · Planning of Experiments
CRESSIE · Statistics for Spatial Data, Revised Edition
CSÖRGÖ and HORVÁTH · Limit Theorems in Change Point Analysis
DANIEL · Applications of Statistics to Industrial Experimentation
DANIEL · Biostatistics: A Foundation for Analysis in the Health Sciences, Sixth Edition

∗DANIEL · Fitting Equations to Data: Computer Analysis of Multifactor Data,
Second Edition

DASU and JOHNSON · Exploratory Data Mining and Data Cleaning

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

DAVID and NAGARAJA · Order Statistics, Third Edition
∗DEGROOT, FIENBERG, and KADANE · Statistics and the Law

DEL CASTILLO · Statistical Process Adjustment for Quality Control
DETTE and STUDDEN · The Theory of Canonical Moments with Applications in

Statistics, Probability, and Analysis
DEY and MUKERJEE · Fractional Factorial Plans
DILLON and GOLDSTEIN · Multivariate Analysis: Methods and Applications
DODGE · Alternative Methods of Regression

∗DODGE and ROMIG · Sampling Inspection Tables, Second Edition
∗DOOB · Stochastic Processes

DOWDY and WEARDEN · Statistics for Research, Second Edition
DRAPER and SMITH · Applied Regression Analysis, Third Edition
DRYDEN and MARDIA · Statistical Shape Analysis
DUDEWICZ and MISHRA · Modern Mathematical Statistics
DUNN and CLARK · Applied Statistics: Analysis of Variance and Regression, Second Edition
DUNN and CLARK · Basic Statistics: A Primer for the Biomedical Sciences,

Third Edition
DUPUIS and ELLIS · A Weak Convergence Approach to the Theory of Large Deviations

∗ELANDT-JOHNSON and JOHNSON · Survival Models and Data Analysis
ENDERS · Applied Econometric Time Series
ETHIER and KURTZ · Markov Processes: Characterization and Convergence
EVANS, HASTINGS, and PEACOCK · Statistical Distributions, Third Edition
FELLER · An Introduction to Probability Theory and Its Applications, Volume I,

Third Edition, Revised; Volume II, Second Edition
FISHER and VAN BELLE · Biostatistics: A Methodology for the Health Sciences

∗FLEISS · The Design and Analysis of Clinical Experiments
FLEISS · Statistical Methods for Rates and Proportions, Second Edition
FLEMING and HARRINGTON · Counting Processes and Survival Analysis
FULLER · Introduction to Statistical Time Series, Second Edition
FULLER · Measurement Error Models
GALLANT · Nonlinear Statistical Models
GHOSH, MUKHOPADHYAY, and SEN · Sequential Estimation
GIFI · Nonlinear Multivariate Analysis
GLASSERMAN and YAO · Monotone Structure in Discrete-Event Systems
GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Observations,

Second Edition
GOLDSTEIN and LEWIS · Assessment: Problems, Development, and Statistical Issues
GREENWOOD and NIKULIN · A Guide to Chi-Squared Testing
GROSS and HARRIS · Fundamentals of Queueing Theory, Third Edition

∗HAHN and SHAPIRO · Statistical Models in Engineering
HAHN and MEEKER · Statistical Intervals: A Guide for Practitioners
HALD · A History of Probability and Statistics and their Applications Before 1750
HALD · A History of Mathematical Statistics from 1750 to 1930
HAMPEL · Robust Statistics: The Approach Based on Influence Functions
HANNAN and DEISTLER · The Statistical Theory of Linear Systems
HEIBERGER · Computation for the Analysis of Designed Experiments
HEDAYAT and SINHA · Design and Inference in Finite Population Sampling
HELLER · MACSYMA for Statisticians
HINKELMAN and KEMPTHORNE: · Design and Analysis of Experiments, Volume 1:

Introduction to Experimental Design
HOAGLIN, MOSTELLER, and TUKEY · Exploratory Approach to Analysis

of Variance
HOAGLIN, MOSTELLER, and TUKEY · Exploring Data Tables, Trends and Shapes

∗HOAGLIN, MOSTELLER, and TUKEY · Understanding Robust and Exploratory Data Analysis

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

HOCHBERG and TAMHANE · Multiple Comparison Procedures
HOCKING · Methods and Applications of Linear Models: Regression and the Analysis

of Variance, Second Edition
HOEL · Introduction to Mathematical Statistics, Fifth Edition
HOGG and KLUGMAN · Loss Distributions
HOLLANDER and WOLFE · Nonparametric Statistical Methods, Second Edition
HOSMER and LEMESHOW · Applied Logistic Regression, Second Edition
HOSMER and LEMESHOW · Applied Survival Analysis: Regression Modeling of

Time to Event Data
HØYLAND and RAUSAND · System Reliability Theory: Models and Statistical Methods
HUBER · Robust Statistics
HUBERTY · Applied Discriminant Analysis
HUNT and KENNEDY · Financial Derivatives in Theory and Practice
HUSKOVA, BERAN, and DUPAC · Collected Works of Jaroslav Hajek—

with Commentary
IMAN and CONOVER · A Modern Approach to Statistics
JACKSON · A User’s Guide to Principle Components
JOHN · Statistical Methods in Engineering and Quality Assurance
JOHNSON · Multivariate Statistical Simulation
JOHNSON and BALAKRISHNAN · Advances in the Theory and Practice of Statistics: A

Volume in Honor of Samuel Kotz
JUDGE, GRIFFITHS, HILL, LÜTKEPOHL, and LEE · The Theory and Practice of

Econometrics, Second Edition
JOHNSON and KOTZ · Distributions in Statistics
JOHNSON and KOTZ (editors) · Leading Personalities in Statistical Sciences: From the

Seventeenth Century to the Present
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 1, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 2, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Discrete Multivariate Distributions
JOHNSON, KOTZ, and KEMP · Univariate Discrete Distributions, Second Edition
JUREČKOVÁ and SEN · Robust Statistical Procedures: Asymptotics and Interrelations
JUREK and MASON · Operator-Limit Distributions in Probability Theory
KADANE · Bayesian Methods and Ethics in a Clinical Trial Design
KADANE AND SCHUM · A Probabilistic Analysis of the Sacco and Vanzetti Evidence
KALBFLEISCH and PRENTICE · The Statistical Analysis of Failure Time Data, Second

Edition
KASS and VOS · Geometrical Foundations of Asymptotic Inference
KAUFMAN and ROUSSEEUW · Finding Groups in Data: An Introduction to Cluster

Analysis
KEDEM and FOKIANOS · Regression Models for Time Series Analysis
KENDALL, BARDEN, CARNE, and LE · Shape and Shape Theory
KHURI · Advanced Calculus with Applications in Statistics, Second Edition
KHURI, MATHEW, and SINHA · Statistical Tests for Mixed Linear Models
KLEIBER and KOTZ · Statistical Size Distributions in Economics and Actuarial Sciences
KLUGMAN, PANJER, and WILLMOT · Loss Models: From Data to Decisions
KLUGMAN, PANJER, and WILLMOT · Solutions Manual to Accompany Loss Models:

From Data to Decisions
KOTZ, BALAKRISHNAN, and JOHNSON · Continuous Multivariate Distributions,

Volume 1, Second Edition
KOTZ and JOHNSON (editors) · Encyclopedia of Statistical Sciences: Volumes 1 to 9

with Index

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

KOTZ and JOHNSON (editors) · Encyclopedia of Statistical Sciences: Supplement
Volume

KOTZ, READ, and BANKS (editors) · Encyclopedia of Statistical Sciences: Update
Volume 1

KOTZ, READ, and BANKS (editors) · Encyclopedia of Statistical Sciences: Update
Volume 2

KOVALENKO, KUZNETZOV, and PEGG · Mathematical Theory of Reliability of
Time-Dependent Systems with Practical Applications

LACHIN · Biostatistical Methods: The Assessment of Relative Risks
LAD · Operational Subjective Statistical Methods: A Mathematical, Philosophical, and

Historical Introduction
LAMPERTI · Probability: A Survey of the Mathematical Theory, Second Edition
LANGE, RYAN, BILLARD, BRILLINGER, CONQUEST, and GREENHOUSE ·

Case Studies in Biometry
LARSON · Introduction to Probability Theory and Statistical Inference, Third Edition
LAWLESS · Statistical Models and Methods for Lifetime Data, Second Edition
LAWSON · Statistical Methods in Spatial Epidemiology
LE · Applied Categorical Data Analysis
LE · Applied Survival Analysis
LEE and WANG · Statistical Methods for Survival Data Analysis, Third Edition
LEPAGE and BILLARD · Exploring the Limits of Bootstrap
LEYLAND and GOLDSTEIN (editors) · Multilevel Modelling of Health Statistics
LIAO · Statistical Group Comparison
LINDVALL · Lectures on the Coupling Method
LINHART and ZUCCHINI · Model Selection
LITTLE and RUBIN · Statistical Analysis with Missing Data, Second Edition
LLOYD · The Statistical Analysis of Categorical Data
MAGNUS and NEUDECKER · Matrix Differential Calculus with Applications in

Statistics and Econometrics, Revised Edition
MALLER and ZHOU · Survival Analysis with Long Term Survivors
MALLOWS · Design, Data, and Analysis by Some Friends of Cuthbert Daniel
MANN, SCHAFER, and SINGPURWALLA · Methods for Statistical Analysis of

Reliability and Life Data
MANTON, WOODBURY, and TOLLEY · Statistical Applications Using Fuzzy Sets
MARDIA and JUPP · Directional Statistics
MASON, GUNST, and HESS · Statistical Design and Analysis of Experiments with

Applications to Engineering and Science, Second Edition
McCULLOCH and SEARLE · Generalized, Linear, and Mixed Models
McFADDEN · Management of Data in Clinical Trials
McLACHLAN · Discriminant Analysis and Statistical Pattern Recognition
McLACHLAN and KRISHNAN · The EM Algorithm and Extensions
McLACHLAN and PEEL · Finite Mixture Models
McNEIL · Epidemiological Research Methods
MEEKER and ESCOBAR · Statistical Methods for Reliability Data
MEERSCHAERT and SCHEFFLER · Limit Distributions for Sums of Independent

Random Vectors: Heavy Tails in Theory and Practice
∗MILLER · Survival Analysis, Second Edition

MONTGOMERY, PECK, and VINING · Introduction to Linear Regression Analysis,
Third Edition

MORGENTHALER and TUKEY · Configural Polysampling: A Route to Practical
Robustness

MUIRHEAD · Aspects of Multivariate Statistical Theory
MURRAY · X-STAT 2.0 Statistical Experimentation, Design Data Analysis, and

Nonlinear Optimization

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

MURTHY, XIE, and JIANG · Weibull Models
MYERS and MONTGOMERY · Response Surface Methodology: Process and Product

Optimization Using Designed Experiments, Second Edition
MYERS, MONTGOMERY, and VINING · Generalized Linear Models. With

Applications in Engineering and the Sciences
NELSON · Accelerated Testing, Statistical Models, Test Plans, and Data Analyses
NELSON · Applied Life Data Analysis
NEWMAN · Biostatistical Methods in Epidemiology
OCHI · Applied Probability and Stochastic Processes in Engineering and Physical

Sciences
OKABE, BOOTS, SUGIHARA, and CHIU · Spatial Tesselations: Concepts and

Applications of Voronoi Diagrams, Second Edition
OLIVER and SMITH · Influence Diagrams, Belief Nets and Decision Analysis
PALTA · Quantitative Methods in Population Health: Extensions of Ordinary

Regressions
PANKRATZ · Forecasting with Dynamic Regression Models
PANKRATZ · Forecasting with Univariate Box-Jenkins Models: Concepts and Cases

∗PARZEN · Modern Probability Theory and Its Applications
PEÑA, TIAO, and TSAY · A Course in Time Series Analysis
PIANTADOSI · Clinical Trials: A Methodologic Perspective
PORT · Theoretical Probability for Applications
POURAHMADI · Foundations of Time Series Analysis and Prediction Theory
PRESS · Bayesian Statistics: Principles, Models, and Applications
PRESS · Subjective and Objective Bayesian Statistics, Second Edition
PRESS and TANUR · The Subjectivity of Scientists and the Bayesian Approach
PUKELSHEIM · Optimal Experimental Design
PURI, VILAPLANA, and WERTZ · New Perspectives in Theoretical and Applied

Statistics
PUTERMAN · Markov Decision Processes: Discrete Stochastic Dynamic Programming

∗RAO · Linear Statistical Inference and Its Applications, Second Edition
RENCHER · Linear Models in Statistics
RENCHER · Methods of Multivariate Analysis, Second Edition
RENCHER · Multivariate Statistical Inference with Applications
RIPLEY · Spatial Statistics
RIPLEY · Stochastic Simulation
ROBINSON · Practical Strategies for Experimenting
ROHATGI and SALEH · An Introduction to Probability and Statistics, Second Edition
ROLSKI, SCHMIDLI, SCHMIDT, and TEUGELS · Stochastic Processes for Insurance

and Finance
ROSENBERGER and LACHIN · Randomization in Clinical Trials: Theory and Practice
ROSS · Introduction to Probability and Statistics for Engineers and Scientists
ROUSSEEUW and LEROY · Robust Regression and Outlier Detection
RUBIN · Multiple Imputation for Nonresponse in Surveys
RUBINSTEIN · Simulation and the Monte Carlo Method
RUBINSTEIN and MELAMED · Modern Simulation and Modeling
RYAN · Modern Regression Methods
RYAN · Statistical Methods for Quality Improvement, Second Edition
SALTELLI, CHAN, and SCOTT (editors) · Sensitivity Analysis

∗SCHEFFE · The Analysis of Variance
SCHIMEK · Smoothing and Regression: Approaches, Computation, and

Application
SCHOTT · Matrix Analysis for Statistics
SCHUSS · Theory and Applications of Stochastic Differential Equations
SCOTT · Multivariate Density Estimation: Theory, Practice, and Visualization

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

∗SEARLE · Linear Models
SEARLE · Linear Models for Unbalanced Data
SEARLE · Matrix Algebra Useful for Statistics
SEARLE, CASELLA, and McCULLOCH · Variance Components
SEARLE and WILLETT · Matrix Algebra for Applied Economics
SEBER and LEE · Linear Regression Analysis, Second Edition
SEBER · Multivariate Observations
SEBER and WILD · Nonlinear Regression
SENNOTT · Stochastic Dynamic Programming and the Control of Queueing Systems

∗SERFLING · Approximation Theorems of Mathematical Statistics
SHAFER and VOVK · Probability and Finance: Its Only a Game!
SMALL and MCLEISH · Hilbert Space Methods in Probability and Statistical Inference
SRIVASTAVA · Methods of Multivariate Statistics
STAPLETON · Linear Statistical Models
STAUDTE and SHEATHER · Robust Estimation and Testing
STOYAN, KENDALL, and MECKE · Stochastic Geometry and Its Applications, Second

Edition
STOYAN and STOYAN · Fractals, Random Shapes and Point Fields: Methods of

Geometrical Statistics
STYAN · The Collected Papers of T. W. Anderson: 1943–1985
SUTTON, ABRAMS, JONES, SHELDON, and SONG · Methods for Meta-

Analysis in Medical Research
TANAKA · Time Series Analysis: Nonstationary and Noninvertible Distribution Theory
THOMPSON · Empirical Model Building
THOMPSON · Sampling, Second Edition
THOMPSON · Simulation: A Modeler’s Approach
THOMPSON and SEBER · Adaptive Sampling
THOMPSON, WILLIAMS, and FINDLAY · Models for Investors in Real World Markets
TIAO, BISGAARD, HILL, PEÑA, and STIGLER (editors) · Box on Quality and

Discovery: with Design, Control, and Robustness
TIERNEY · LISP-STAT: An Object-Oriented Environment for Statistical

Computing and Dynamic Graphics
TSAY · Analysis of Financial Time Series
UPTON and FINGLETON · Spatial Data Analysis by Example, Volume II:

Categorical and Directional Data
VAN BELLE · Statistical Rules of Thumb
VIDAKOVIC · Statistical Modeling by Wavelets
WEISBERG · Applied Linear Regression, Second Edition
WELSH · Aspects of Statistical Inference
WESTFALL and YOUNG · Resampling-Based Multiple Testing: Examples and

Methods for p-Value Adjustment
WHITTAKER · Graphical Models in Applied Multivariate Statistics
WINKER · Optimization Heuristics in Economics: Applications of Threshold

Accepting
WONNACOTT and WONNACOTT · Econometrics, Second Edition
WOODING · Planning Pharmaceutical Clinical Trials: Basic Statistical Principles
WOOLSON and CLARKE · Statistical Methods for the Analysis of Biomedical Data,

Second Edition
WU and HAMADA · Experiments: Planning, Analysis, and Parameter Design

Optimization
YANG · The Construction Theory of Denumerable Markov Processes

∗ZELLNER · An Introduction to Bayesian Inference in Econometrics
ZHOU, OBUCHOWSKI, and McCLISH · Statistical Methods in Diagnostic

Medicine

∗Now available in a lower priced paperback edition in the Wiley Classics Library.

