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Preface

This book originates with the first course I took in graduate school. The course was
in the Philosophy of Science, and it was taught by Arthur Fine at Northwestern
University. It was not the first time I have read Kuhn’s The Structure of Scientific
Revolutions, but this time reading it I became intrigued with Kuhn’s claim that the
concept of mass is a primary example of a concept that has undergone a scien-
tific revolution. According to Kuhn, the parameter m in Newtonian physics and in
the Special Theory of Relativity might be referred to with the same word, mass.
However, in fact, the mass concepts in the two theories operate within radically
different paradigms, to the extent that they share no meaning and are incommen-
surable. Kuhn’s view struck me as absurd, and I set out to refute him in a short
seminar paper. To refute the incommensurability thesis, I tried to articulate what I
took to be the overlap in meaning between Newtonian and relativistic mass. The
task turned out to be more challenging than I originally thought, but I did come
up with a vague account of the shared geometric-dynamic role that mass has in
the two theories. It slowly dawned on me that my interpretation of mass deviates
from the way in which mass was presented in physics textbook, and so I conceived
the idea to write a dissertation on the concept of mass, which will make precise
the account vaguely conceived for the seminar paper. I soon found myself reading
and thinking about the nature of spacetime, since the semi-geometric interpretation
of mass required an analysis of the foundations of spacetime, or at least a decent
understanding of the philosophical debates about the topic. While preparing for my
project, I began reading seventeenth and eighteenth century texts surrounding the
publication of Newton’s Principia, a reading that took off in its own direction, since
I realized that knowing the rich history of Newtonian concepts is key to under-
standing the various subtle roles that mass originally had for Newton’s physics and
philosophy of science. Reading into the history and pre-history of Newton’s physics
also reshaped my project, since I now believed that central to understanding the
concept of mass (and physical concepts in general) is the notion of physical system.
Inspired by seventeenth century physics, I articulated a philosophical account of
physical systems, which takes motion to be a fundamental entity, and systems to be
structures in which the motion of composite systems are constructed out of motions
of their parts.
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viii Preface

The dissertation I ended up writing comprised of a strange mix of historical and
philosophical analyses of the foundations of spacetime and mass in both the con-
texts of Newton’s theory and the Special Theory of Relativity. The project, given its
peculiar history, ended up touching on various topics in the history and philosophy
of physics, from the philosophy of space and time, to the concept of mass, to the sci-
entific method. The concept of mass was like a tied knot at the center of Newtonian
physics and the Special Theory of Relativity. Untying this knot required a slow and
careful process of disentangling various threads, until the foundation of Newtonian
and relativistic physics came into view. (Or, at least what I hope is a novel way of
viewing the foundations of classical theories.) Unwinding each thread required the
tackling of thorny conceptual problems.

After completing the dissertation, I realized the many infelicities of the work
I came up with. I was unhappy with the vague articulation of the connection
between spacetime geometry and mass, and took upon myself to articulate my
views of spacetime more clearly, beginning with the simplest of axioms that take
uniform unidirectional motions to be the fundamental entities of spacetime, and
proceeding to derive the known Galilean Spacetime and flat relativistic spacetime.
I ended up rewriting most chapters, adding some that were not in the original
project, and revising the rest to sharpen the views and make the arguments more
cogent.

The project now lies in its final form. It no doubt reflects my peculiar way of
thinking and idiosyncratic combination of historical and philosophical inclinations.
But I hope the project would be of use to philosophers of physics, who might be
interested in the notion of physical system (Chapter 1), the foundations of space-
time (Chapters 2 and 3), my semi-geometric interpretation of the concept of mass
(Chapter 6) and the foundations of the Special Theory of Relativity (Chapter 8).
The work might also be of interest to philosophers and metaphysicians who are
interested in the metaphysics of time (Chapter 4), to historians of physics working
on Newton’s physics (Chapters 5 and 7), and to philosophers of science and episte-
mologists interested in scientific methodology (Chapters 2, 7 and 8).

I would like to express my ocean-deep gratitude to Arthur Fine, who made this
project possible on many levels, professional and personal. As my dissertation advi-
sor, Arthur provided the bulk of intellectual freedom, institutional support and per-
sonal encouragement I needed to conceive, write, rewrite, and complete the project.
I would also like to thank the Faculty Research Committee at the University of
Richmond for providing financial support during the summers of 2005, 2006, 2008
and 2009 which aided in completing various parts of the project. Gratitude is owed
to my colleagues at the philosophy department at the University of Richmond, Geoff
Goddu, David Lefkowitz, Miriam McCormick, Del McWhorter, Nancy Schauber
and Gary Shapiro, who provided a congenial and supportive intellectual environ-
ment in the last 5 years. I benefited tremendously from conversations with and
comments from Marc Lange, Andrea Woody, Geoff Goddu, Brannon McDaniel,
Miriam McCormick, Wayne Myrvold, Bill Harper, Nick Huggett, Amit Hagar,
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Eric Schliesser, Andrew Janiak, Sona Gosh, Kevin Scharp, Natan Berber, Ken
Chung, Rob DiSalle, John Norton, Amy Au, Gideon Freudental, Craig Callender,
Ed Slowic, and Paul Teller. Last but not least I would like to express my appreci-
ation and gratitude for Michele Bedsaul’s help in copy editing the manuscript and
preparing it for publication.
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Chapter 1
Physical Systems and Physical Thought

1.1 Introduction

The notion of physical system is so ubiquitous it is mentioned in almost every work
in physics. Scientists use the term, without much reflection, to refer to an aggregate
of physical objects. Attention is sometimes directed to a system when one is inter-
ested in the system’s components and their distinct states and properties. But more
often, physicists are concerned with the arrangement of the parts and interactions
between the parts. They use various theoretical constructs to single out states and
properties of the composite system; states and properties that either supervene on
the particular configuration of the parts or constitute non-supervening, emergent
features.

Even though the notion of physical system does not necessarily presuppose any
metaphysical stance, physicists often think that properties of composite systems are
reducible to the properties of their parts. Take for example a neutron comprised of
one “up” quark and two “down” quarks. One way of describing the neutron is to
think of it as a physical system comprised of distinct components. The states and
properties attributed to the neutron as a whole are determined by the states and prop-
erties of the quarks and the strong interaction between them. The zero net charge of
the neutron, for example, arises from the + 2

3 e charge of the “up” quark and the − 1
3 e

charges of each of the “down” quarks. The neutron’s description, according to this
view, is merely an economic representation of the quarks. When details concerning
the quarks are not relevant to the problem at hand the neutron’s internal structure
is ignored, and the neutron is treated as a single entity with its distinct states and
properties.

Even though states and properties of composite systems are indispensable to
physics, the tendency is to think of composite bodies as non-existing. A perfect
theory would then include no composite objects and would admit only complex
descriptions of simple parts. One way to make this approach tenable is to assume
that material objects have ultimate parts and that these ultimate constituents of mat-
ter have material properties and are located in particular points in spacetime. An
aggregate of such localized parts may then be described with the help of composite

O. Belkind, Physical Systems, Boston Studies in the Philosophy of Science 264,
DOI 10.1007/978-94-007-2373-3_1, C© Springer Science+Business Media B.V. 2012
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2 1 Physical Systems

states and properties.1 A common practice is therefore to visualize physical systems
as being assembled out of infinitesimally small objects endowed with material
properties such as mass, charge and spin, and with states such as velocity, momen-
tum and energy. Classical fields are also constructed from localized properties that
vary continuously from one location in space to a neighboring point. In this way,
field theories also satisfy an “eliminativist” approach towards composite objects.
According to this attitude all references to composite entities should be eliminated
and replaced with complex descriptions of the entities’ parts.

The notion that composite objects are nothing more than a collection of localized
physical parts is referred to in the literature as local physicalism or particularism
(see Teller, 1986, 1989; Lewis, 1986). Moreover, it is also believed by many that
particularism is not only a metaphysical belief but an explanatory ideal. According
to this approach, a genuine scientific account will strive to construct the descrip-
tion of a composite entity from localized objects endowed with various properties.
Many commentators think of Newtonian physics and classical electromagnetism as
exemplifying this metaphysical stance and methodological ideal, but the claim that
classical theories entail particularism is far from obvious. Consider, for example, the
electric potential of a system comprised of two charges. Since the potential depends
on the distance separating the charges, it is a relational property irreducible to the
components’ non-relational states.2 If one is committed a priori to particularism,
one would be inclined to replace electric potentials with localized entities – such
as the electric field – and argue that the electric potential is not a genuine physical
property. However, classical theory in itself does not dictate the removal of irre-
ducible relational properties or composite objects. Whether or not electric potential
is reducible to some underlying field is a theoretical question, or perhaps even a
matter of taste. Particularism still remains merely a blueprint or an explanatory ideal
and is not dictated by classical physics.

There is a deeper question about the relation between classical theories and
particularism, which goes beyond the problem of finding a reductive particular-
ist account for every physical concept. It is standard practice in classical theories
to compile composite properties and interactions from various properties instanti-
ated in physical parts. Almost every physical problem relies on various summation
rules for calculating a composite property, whether one relies on discrete sums or
on integration over a continuous medium. But what justifies the summation rules
themselves? Presumably they are merely mathematical devices used to replace a
set of properties instantiated in the parts of a physical system with an overall sum
attributed to the composite system. For example, the simplest summation rule con-
ceivable is the one in which the volumes of infinitesimal parts of a continuous body

1 A complication arises when we think of the position of an object as one of its properties. The
object’s position could be taken as either a relational property between the object and space or a
relational property between material objects. We shall postpone discussion of spatial and temporal
attributes until the next section.
2 See Teller (1986, p. 74).



1.1 Introduction 3

are summed up to yield the volume of the composite object. Ordinarily, integration
over volumes appears in the formalism as a mere mathematical device, a standard
rule in which numbers are added up. Nevertheless, a brief reflection will demon-
strate that integration over volume reflects a physical assumption about the nature
of space: viz., that the volume of a composite body is the sum of the volumes of
the parts. It is such an intuitive assumption underlying our concept of space that
one becomes unaware of the physical origin of this rule and thinks of it as a formal
device. But the rule for integrating over volumes of space is not merely a formal
rule, reflecting the mathematical function of addition; rather, it is a mathematical
rule representing a structural assumption about the spatial properties of physical
bodies.

Paradoxically, reductive explanations are made possible via assumptions about
the structure of physical systems. For compound descriptions to be reducible to
their simpler parts, one must have at one’s disposal various measures and calcula-
tional devices that sanction inferences from the simple to the compound and vice
versa. Consider, for example, additive properties such as mass and charge, which
underwrite the summation over the properties of the parts. These measures are used
so seamlessly that one forgets that they are measures of physical facts describing
relations between parts and wholes. For 200 years mass was thought to be an addi-
tive property, but the Special Theory of Relativity demonstrates that rest mass is not
an additive property. When a system decomposes into parts, the rest mass of the
composite system is not necessarily the sum of the rest masses of the products of
decay. The standard interpretation of such decays is that rest mass was “converted”
into energy, but the truth of the matter is that rest mass is simply not an additive
property.3 While Newtonian mass is additive, the rest mass of a composite system
in STR is not the sum of the rest masses of the parts. Similarly, there is a possible
world in which the volume of a composite system is not the sum of the volumes
of its components, although such a world is very difficult to conceive. These reflec-
tions make it clear that the ability to sum over properties of the parts in producing
properties of composite systems reflects a physical assumption.

Another very important reductive tool is Newton’s parallelogram law for the
composition of forces.4 According to this law, one can derive the composite force
impinging on a body from the component forces. There is, however, a possible world
in which the composite force is not the vectorial sum of the component forces.

When a composite description is constructed from the description of simpler
elements, substantive structural assumptions about physical systems are implic-
itly employed. The universal validity of Newton’s parallelogram law seems natural
because one often thinks of it as merely expressing a mathematical rule governing
vectors. However, the physical content of the law is striking when it is recognized
that the law expresses a Rule of Composition. Assume bodies A2 and A3 exert
forces �F21 and �F31 over body A1. The parallelogram law allows us to calculate the

3 See Lange (2001)
4 Corollary 1 to the Laws of Motion (Newton, 1999, p. 417).



4 1 Physical Systems

total force operating on A1: �Ft = �F21 + �F31. In Newton’s theory, the total force
�Ft may be thought of as the causal influence of the composite object comprised

of A2 and A3 over A1. This composite object is located at the center of mass of
A2 and A3 and possesses a total mass of mt = m2 + m3. The relation between
the component forces imposed by A2 and A3 separately, and the composite force
imposed by A2 and A3 together, is a physical fact, one which is shown through
the appropriateness of representing forces with vectors. The decision to treat forces
as belonging to a vector field is the result of a commitment to a general Rule of
Composition governing forces.5

Using a vector field to represent forces has as much physical content as the
Galilean rule for adding velocities. When it is assumed that a vector is appropriate
for describing a force, one is also implicitly assuming that mathematical rules gov-
erning the summation of vectors is appropriate for describing the composite forces.
Vector summation rules have physical content in much the same way that Galilean
rule for the summation of velocities has physical content. A new theory might con-
vince us that composite forces are not constructed from component forces using the
linear rules governing vectors. Because a summation rule is disguised in the form of
a mathematical rule, one gets the impression that the decomposition of interactions
into their components is merely a decomposition of complex descriptions into the
descriptions of simple parts. But what is hidden from view is that the summation
rules governing forces involve concrete assumptions about relations between parts
and wholes.

The notion of physical system requires philosophical reexamination. Debates
regarding the nature of physical systems do not have a clear account of how parts
of systems retain their identities and what relates the properties of the parts to
the properties of the whole. Part of the difficulty in understanding stems from a
long habit of disguising assumptions about physical structure in various “calcula-
tional” devices or “laws of nature,” which forms a significant part of our physical
knowledge. A law of nature is most commonly interpreted as a rule that governs
the behavior of objects. Laws of nature are interpreted as governing how a particle
or a field evolves over time. But I argue that momentum and energy conservation
laws implicitly encode assumptions about the structure of physical systems, i.e.,
they implicitly encode rules for constructing the description of composite systems
from descriptions of their parts. To further current discussions about the nature of
physical systems, I will take on the task of bringing to the foreground the structural
assumptions implicit in momentum and energy conservation laws. Moreover, I will
argue that the assumptions regarding the structure of physical systems are more
fundamental than spacetime structure, the existence of material properties such as
mass, and laws of nature. Much of the work will consist of reconstructing Newton’s
physics and the Special Theory of Relativity using the notion of physical system as
a philosophical guide.

5 For a more detailed discussion of these part-whole inferences see Lange (2002, pp. 234–35).
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A key move will be to reinterpret the law of momentum conservation (and in a
wider context, energy conservation) as a “structural assumption.” The core of the
argument will be that momentum-energy conservation laws are not merely exter-
nal laws that dictate the behavior of bodies, but constitute core assumptions about
the structure of physical systems. At their heart, conservation laws articulate basic
assumptions about the relation between parts of physical systems and their com-
posite. One can better see the role of conservation laws as structural assumptions
when one reflects on their role in isolating a physical system from its environment.
It is often said that energy and momentum are conserved for closed systems. One
ordinarily thinks of this claim as merely empirical: if a system is closed, then it is an
empirical fact that the total momentum and energy of that system is conserved. Thus,
it is imagined that, had the empirical facts been different, a closed system could turn
out to have total momentum and energy that is not conserved. But do we have a cri-
terion for determining whether a system is closed, independently of the conservation
laws? In other words, do we have a criterion for causally determining that a system is
isolated from the environment? Is this criterion independent of momentum-energy
conservation laws? A short reflection would demonstrate that there is none. And
so a system is defined as closed whenever the total momentum and energy of that
system is conserved. In other words, the conservation laws themselves provide us
with a criterion of isolation, or the criterion by which a system is shown to be
causally isolated from the rest of the world. Momentum-energy conservation laws
differentiate for us between the system, and what is not part of the system or is
part of “the environment.” Given their role in providing a Criterion of Isolation, it
is clear that these conservation laws are crucial for individuating physical systems,
and for differentiating between one system and another. Moreover, the simple rules
for summing the momentums and energies of the parts to calculate the momentum
and energy of the composite, isolated whole, are in effect rules that describe the
structure of physical systems – they are inferences from the motions of the parts
to the motion of the whole. Momentum-energy conservation laws are therefore not
simply empirical laws governing the behavior of bodies. Rather, they constitute fun-
damental assumptions about the structure of physical systems. As such, they hold an
important epistemic role in relation to our physical knowledge. Momentum-energy
conservation laws underwrite the inferences from observed phenomena to causal
laws that generate the phenomena, as they provide the background assumptions rel-
ative to which causal relations between parts of a system reveal themselves and are
made apparent.

Another key move in demonstrating the role of structural assumptions will
be to revisit commonplace metaphysical assumptions about physical reality.
A widespread metaphysical stance separates physical reality into three layers: space-
time, material objects and their properties, and laws of nature. According to this
view, spacetime provides the backdrop relative to which physical bodies receive
their locations and their trajectories are defined. Material properties such as mass
are then thought of as properties somehow instantiated in bodies. In much the same
way in which Aristotle believed his forms to be instantiated in material bodies, so
does the modern philosophical view think of material properties as correlated with
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predicates that describe the objects. Thus attributing mass to a particle is something
like attaching a property to the body located in a particular position in spacetime.
One can then speak of a particle “having” or “possessing” a certain property. For
example, an electron is thought to be a body located at a particular point in space-
time, and “possessing” a mass of 9.109 × 10−31 kg. Laws of nature are then taken
to be external decrees that govern the behavior of these objects, given certain states
they have. The metaphysical stance that separates physical reality into three distinct
realms is one of the obstacles in recognizing the role of structural assumptions.
The analysis that will be carried out here suggests that there is no clear distinction
between spacetime, bodies and their material properties, and laws of nature. For
example, in the following it will be shown that the spacetime geometry is not so
clearly demarcated from material properties attributed to bodies, as the standard
account has it. It will be shown that mass has a geometric origin, which falls out
directly from the geometric descriptions of motions that will be developed here.
On the other hand, what is known as the “law of conservation of mass” – in the
Newtonian context – cannot be clearly demarcated from the conservation of momen-
tum. The upshot is that material properties such as mass are not clearly demarcated
from the laws that govern the bodies’ motions. Thus we shall see conceptual path-
ways that connect spacetime with material properties on the one hand, and between
material properties and laws of nature on the other hand. In the metaphysical view
endorsed here, presuppositions regarding the structure of physical systems are more
fundamental than spacetime, material properties, and laws of nature. All three phys-
ical parts of reality – spacetime, properties and laws – fall out when structural
assumptions regarding the nature of physical systems are made fully explicit.

To see the connection between spacetime structure and the other dimensions of
physical reality, a reconstruction of physical geometry will be taken up. The pur-
pose of this reconstruction is to provide a philosophical framework for bridging
spacetime structure and momentum-energy conservation laws. The reconstruction
of spacetime is made possible by taking uniform rectilinear motions as fundamental
entities of spacetime. This reconstruction does not describe a set of spacetime points
or a manifold with independent spatial and temporal metrics, but instead introduces
potential uniform rectilinear motions (PUMs) as fundamental entities; intersections
between motions are taken to be events. This approach has affinities with relational
accounts of spacetime. However, the description of spacetime does not begin with
spatial and temporal relations between bodies. Rather, the description takes PUMs
to be the fundamental entities. The meaning of this assertion will become clearer in
later chapters. At this stage, it is enough to say that spatial and temporal relations
are not defined prior to motions on a set of spacetime events. Instead, spatial and
temporal relations are shown to be the decompositions of motion intervals. The
decomposition of a motion interval into spatial distance and temporal duration is
given when a PUMs is projected onto a set of parallel PUMs.

The geometry of PUMs will demonstrate a surprising connection between space-
time symmetries and the concept of inertial mass. It will be shown that inertial mass
can be given a geometric interpretation, such that instead of thinking of inertial mass
as causing different kinds of accelerations in bodies, the variation in accelerations
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will stem from various symmetries implicitly present in a geometry of PUMs. This
alternative approach to spacetime and the geometric interpretation of inertial mass
will be combined with a structural interpretation of momentum-energy conservation
laws, yielding the complete physical theory, including the various aspects of the
mass parameter and Newton’s laws of motion.

The resulting metaphysical picture takes physical systems to include only a
geometry of PUMs governing the motion of parts and structural assumptions for
constructing the motion of composite systems from the motions of the parts. Think-
ing of physical systems as moving parts and moving wholes, I hope, will open up a
fresh perspective into the foundations of Newtonian mechanics. In particular, it will
establish new conceptual pathways with which to investigate the relations between
spacetime, material properties such as mass, and laws of motion.

To show that the analysis provided here is not limited to Newtonian physics,
an analogous reconstruction of the Special Theory of Relativity will be offered.
It will be shown that a flat relativistic spacetime stems from a relativistic account
of a geometry of PUMs. Similarly, a geometric interpretation of rest mass will be
presented. A structural definition of relativistic systems of the special theory will
then be used to derive the concept of relativistic mass and relativistic laws of motion
governing the energy-momentum four-vector.

The central theme in what follows is that momentum-energy conservation laws
hold a much deeper and central role in physical knowledge than what was previ-
ously imagined. Heretofore, it was held that momentum-conservation laws are very
general and very basic empirical laws that govern all physical systems. While these
conservation laws are given central place in standard interpretations, their metaphys-
ical and epistemic role is not considered any more fundamental than other funda-
mental laws, such as the Universal Law of Gravitation or the fundamental laws of
electromagnetism. However, I will argue that the assimilation of momentum-energy
conservation laws to other empirical laws conceals the physicists’ commitment to
certain very general assumptions about the structure of physical systems. Metaphys-
ically, these conservation laws are like the central nucleus of physical knowledge.
These structural assumptions are more fundamental than spacetime, material prop-
erties, and laws of nature. Epistemically, they underwrite inferences from the phe-
nomena to the force-laws that explain the phenomena.

The purpose of this chapter is to give a general overview of the whole project
rather than to provide convincing argument for each of the philosophical positions
endorsed here. By the end of the chapter, most of the battles will still be unsettled,
but I hope the reader will be better able to see her way through the battlefield by
keeping in mind the master plan.

1.2 Quantum Mechanics and Particularism

The project of demonstrating the role of structural assumptions in Newtonian
physics and the theory of relativity, I believe, is interesting in its own right, despite
the somewhat antiquated feel that such a project might have. I do not take on, in
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this book, the task of reconstructing classical field theories, the General Theory of
Relativity, quantum theories, quantum field theories, or Quantum Gravity. More-
over, most of the technical arguments I will introduce are downright simplistic, if
not simple-minded. However, I would like to emphasize the potential significance
of this project for current philosophical debates. In recent decades, debates on par-
ticularism were revived in the context of Quantum Mechanics (QM). According
to some philosophers, the case of quantum entanglement suggests that there might
be cases in which the state of a composite physical system is not reducible to the
states of the system’s components. Thus, for those who believe that particularism
fails in QM, the theory requires revising our previous philosophical commitment
to particularism. A big part of the philosophical debate on QM focuses on whether
the mathematical formalism of QM, together with the empirical confirmation that
QM gets from experiments, demonstrates the failure of particularism. Parties to the
debate, however, often take for granted that Newtonian physics is committed to
particularism. But without an analysis of the foundations of Newtonian physics it
seems difficult to assess whether or not QM introduces new reasons to reject partic-
ularism. If Newtonian physics relies on structural assumptions regarding the nature
of physical systems, are there alternative structural assumptions in QM? Assuming
that particularism fails in QM, how do these alternative assumptions impose the
non-reducibility of composite entangled states? Simply looking at the formalism of
QM without developing a general account of structural assumptions would make it
difficult to come to any ultimate conclusions in the philosophical debate on holism
in the context of QM.

The failure of particularism is thought to stem from the following analysis of
quantum entanglement. The Bohm-EPR pair is often given as a paradigm exam-
ple. A pair of particles l and r are selected each with a spin of 1

2 . Depending on
the direction of the magnetic field used to measure the particles’ spin, the spin
may turn out to be “up” or “down” when the particle moves “upwards” or “down-
wards” while moving through the magnetic field. Thus each particle may be in
one of two spin states, represented as |↑l〉, |↓l〉, |↑r 〉 and |↓r 〉. Since the particles
move in a determinate direction upwards or downwards while the spin is being
measured, the states |↑l〉 and |↓l〉 are mutually exclusive, as are |↑r 〉 and |↓r 〉. It
is possible to prepare two particles to have either the state |φ1〉 = |↑l〉|↓r 〉 or
the state |φ2〉 = |↓l〉|↑r 〉. In this case, the spins are anticorrelated. The result of
measuring spin “up” implies that state of l is |↑l〉, which in turn implies that the
spin of r is “down” (and vice versa). Because spin is a conserved property, prior
to measurement the particles’ spins remain correlated even if they get separated
over time.

The unique feature of QM is that it is possible to get the pair to be in a superpo-
sition of |φ1〉 and |φ2〉. For example, the two particles may end up in the following
“singlet” state:

|φ〉 = 1√
2
|↑l〉|↓r 〉 − 1√

2
|↓l〉|↑r 〉 (1.1)
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The singlet composite state assigns probability 1
2 to both |φ1〉 or |φ2〉. There is then

an equal chance that the particles will be in one of these two states. Whether or not
the two particles are in fact in the state |φ1〉 or |φ2〉 is not determined until someone
measures the spin of one of the particles. The states of the two particles are somehow
“entangled,” since measuring the spin of one particle seems to make the spin of the
other particle determinate by forcing the state of the composite system to reduce to
either |φ1〉 or |φ2〉.

According to Howard (1985, 1989), Einstein believed that Quantum Mechanics
is incomplete since it violates the “separability principle.” This principle asserts that
two spatially separated systems have distinct and independent states. The separabil-
ity principle fits naturally within a particularist framework. If it is assumed that the
properties of composite systems are reducible to the properties of their parts and in
addition it is assumed that the ultimate parts can only include intrinsic properties
that are localized in space, the separability principle follows as a consequence.6 The
separability thesis should be distinguished from the locality principle, which asserts
that there is no “action at a distance.” According to the locality principle, there exists
no causal influences that propagate instantaneously from one physical system to a
remote one.

If both the separability and locality principles hold, the spin of l should be deter-
mined by the state of l and the causes acting in l’s immediate vicinity alone. How-
ever, measuring the spin of r in the direction parallel to the particles’ spin reduces
|φ〉 instantaneously into either |φ1〉 or |φ2〉. The measurement therefore collapses
the state of the entangled system, after which the spin of l becomes determinate.
The conjunction of the separability and locality principles suggests that the direc-
tion of measurement apparatus and r ’s spin could not have determined the state
of l, given the spatial separation between the particles. But since the collapse of
the quantum state seems to make the spin of l determinate, we have to give up
something: either the state of l was not made determinate by the measurement of
r ’s spin, and it was made determinate by some unknown local factor; or we have to
give up one of the two assumptions, the separability or locality principle.7 The first
option would suggest that QM is incomplete. The second option would suggest that
some well-entrenched philosophical expectations have to be abandoned.

As is well-known, Bell’s famous inequalities seem to confound any hope for a
theory of local hidden variables that would explain the quantum correlations. If there
were such hidden variables, one could assume that the possible spin states of l are
determined by some local factor λ and the direction of the magnetic field, a, used to
measure the spin of l. Similarly, the possible states of r would be determined by a
local factor and the direction of the magnetic field, b, used to measure the spin of r .

6 See Healey (1991) for a careful analysis of the distinction between particularism and separability.
7 As Arthur Fine pointed out to me in a private communication, if we give up separability, then
essentially we are also giving up on the locality principle having any determinate meaning. If the
states of two particles are inseparable, it does not make sense to ask whether there is a local or
non-local interaction between the particles.
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If the states of the two particles are separable and there is no non-local interaction
between the particles, it follows that the two states are statistically independent. The
statistical correlation between the spin measurements of the two particles (i.e., the
probability P(a,b) for measuring opposite spin values for the two particles) would
depend only on the probability distribution of the local hidden factors and on the
direction of the magnetic fields a and b measuring the spins of the particles. But
such a probability leads to inequalities that are not consistent with the confirmed
predictions of QM.8 Thus, it seems as if we are in a position to reject that a hid-
den variables theory which presupposes the separability and locality principles is
consistent with the confirmed predictions of QM.

Many conclude from Bell’s inequalities that one has to give up either the separa-
bility or the locality principles. But an apparent conflict with the theory of relativity
convinces some commentators that QM should not be taken to violate the locality
principle. According to relativity, causal influences cannot occur through instanta-
neous action at a distance. The “natural” conclusion is that QM must violate the
separability principle.

For some, the philosophical lesson to learn from Bell’s Theorem is that quan-
tum systems are not always separable. According to this interpretation, the state
|φ〉 ascribed to the composite entangled system is non-reducible to the inherent
states describing l and r independently, even if there is a distance separating the
two particles.9 But there are also dissenting voices questioning whether violations
of the assumptions in Bell’s Theorem necessarily imply non-separability.10

There are various ways to interpret quantum non-separability. One may think,
in the case of entangled systems, that each part of the system loses its individ-
ual existence. According to such a view, the components of the entangled pair are
“blended” into the composite whole and the physical system is smeared throughout
space with no distinguishable parts.11 Another interpretation is that the individual
parts of the system retain their identities but there is a relation between them that

8 Bell (1987, pp. 152–53).
9 Such a conclusion can be found in Bohm (1981, chapter 1), Teller (1986, 1989), French (1989),
Shimony (1989), Jarrett (1989), and Healey (1991). Although Bohm’s theory seems to violate
locality rather than non-separability, he endorses holism in his philosophy of QM (but also in
Relativity). This holism exhibits a certain “formative” cause (in distinction from an efficient cause):

Evidently, the notion of formative cause is relevant to the view of undivided wholeness
in flowing movement, which has seen to be implied in modern developments of physics,
notably relativity theory and quantum theory. Thus . . . each relatively autonomous and sta-
ble structure (e.g., an atomic particle) is to be understood not as something independently
and permanently existent but rather as a product that has been formed in the whole flowing
movement and that will ultimately dissolve back into this movement. How it forms and
maintains itself, then, depends on its place and function in the whole (Bohm, 1981, p. 14).

10 See for example Maudlin (2002, p. 98), Winsberg and Fine (2003), and Belousek (2003).
11 See Belousek (2003) for such a possible interpretation.
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is irreducible to the intrinsic properties of the parts.12 Teller (1986) calls this latter
ontology “Relational Holism.”

I shall not pursue these issues in the philosophy of QM any further in this book.
The purpose of this cursory survey of some philosophical problems in QM is to
suggest that there is a need to analyze how structural assumptions are embedded
into our physical thinking. If it were easy to “read off” from its mathematical for-
malism whether a theory violates particularism or separability, there would not be
any philosophical discussion. So to advance our understanding of current theories
like QM, we have to go back to the origins of our physical concepts and analyze
their connection to structural assumptions. It will be argued in the rest of the book
that it is not possible to separate our understanding of spacetime structure, physical
properties, and laws of nature from our understanding of structural assumptions
implicit in our physical thinking. The preoccupation with particularism requires
widening the discussion into the very nature of our physical concepts. This book
is a first attempt at this widening of the debate.

1.3 Structural Assumptions and Conservation Laws

The most significant assumptions about the structure of physical systems are hidden
in energy and momentum conservation laws. In the Newtonian context, momentum

and energy are defined as �P = m�v and E = m v2

2 , where m is the mass of the
body and �v is its velocity. One ordinarily takes Newtonian particles to be localized,
pointlike entities. It is therefore natural to assume that the general conservation laws,
�̇Ptot = 0 and Ėtot = 0, are rules that dictate the behavior of distinct, localized objects.

These rules predict the evolution of physical states.
But a more thoughtful examination reveals that the total momentum and total

energy of a system play a significant role in individuating the various components
as a system. One can see this by examining the epistemic role of momentum and
energy conservation. To empirically verify the truth of these conservation laws one
has to be reminded of the qualification that these laws apply only to closed systems.
Of course, if a system interacts with other systems, it exchanges momentum and
energy with them and so conservation laws do not apply to it. Thus, an experiment
confirming momentum-energy conservation laws will begin by isolating the system
from external disturbances. For example, the experimenter may block electromag-
netic interference, compensate for the gravitational pull, and reduce forces of fric-
tion as much as possible. After insulating the system from all external influences, the
experimenter will measure the momentum and energy of each component at various
times, calculate the total momentum and energy in the system, and verify that these
totals are indeed conserved.

12 See Teller (1986), Teller (1989), and French (1989) for such an interpretation.
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But the initial process (of isolating a system from external disturbances) itself
takes for granted the conservation laws. After all, a system is determined to be
closed by verifying that it doesn’t lose or gain momentum or energy. No independent
criterion exists for identifying a system as closed. One may object to this claim by
asserting that, with the help of a particular force-law, one may simply verify that the
conditions for impressed forces do not apply in a particular case (at least to a good
approximation). However, the experimenter only knows about the various external
forces operating on the system through previous studies, which presupposed that
forces are present only when momentum and energy are increased or diminished. Or,
to be more precise, one can learn about the presence of a force only when momen-
tum and energy are exchanged. Thus, it is far from surprising that conservation laws
are “confirmed” by experience. The only experiments that could be considered as
relevant for testing the law presuppose its validity.

The aforementioned should not be taken to imply that conservation laws do not
have any empirical validation and are a priori valid. The contention is not that con-
servation laws are valid independently of experience and are necessarily true in a
metaphysical sense. Instead, one should think of conservation laws as providing the
necessary presuppositions for converting observed phenomenal laws into physical
knowledge. If the experimenter discovers that momentum or energy is not conserved
in her experiment, she is more likely to believe that the system examined is not
truly closed, despite her initial confidence that it is. It could be that some hidden
external force has escaped the experimenter’s attention or that there are components
of the system that have left the boundaries of the system without being noticed,
taking momentum and energy with them.13 If the problem persists across many
experiments, the refutation of momentum and energy conservation would require
the articulation of some other theoretical and practical procedure for isolating a
system. The experimenter would then need other criteria through which she can
isolate her system and measure the interactions between subsystems. She would
need to presuppose another means of identifying an aggregate of discrete objects
as causally isolated from the rest of the world. This Criterion of Isolation must be
some property or state attributed to a physical system which is comprised of many
parts, and the property or state must somehow be constructed from the properties
and states of the parts. One might imagine various ways in which such a Criterion
of Isolation would be given, but some alternative to conservation laws must be in
place for a system to be considered as causally isolated.

13 The famous case of the Neutrino particle demonstrates how relevant this hypothetical scenario
is. To explain the missing continuous energy spectrum in beta decay, Bohr proposed to limit the
validity of energy conservation. But Pauli’s intuition was that the principles of conservation are
too deep-seated to be questioned. In a famous letter from 1930 to participants in a conference at
Tübingen, Pauli proposed the existence of a hitherto unobserved particle that carries the missing
energy. The theory of the neutrino was developed by Fermi in 1933 and the particle discovered
in 1955, 25 years after Pauli initially proposed the idea. Pauli’s letter can be viewed at the online
Pauli archive at CERN.
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The reconstruction of Newtonian physics therefore begins with rethinking
momentum conservation and recasting it as a structural definition of physical sys-
tems. One may analyze momentum conservation with the help of two presuppo-
sitions regarding the structure of physical systems. The first presupposition is the
Criterion of Isolation, which provides the physicist with a criterion for isolating a
physical system from the rest of the world. The assertion that the total momentum of
an isolated system is conserved, is in effect a Criterion of Isolation, not an empirical
law governing a system that was isolated via some other Criterion of Isolation prior
to testing the conservation law. One identifies the state of being isolated via the state
wherein a system’s momentum does not change. The second presupposition is the
Rule of Composition that dictates the relation between the properties of the system’s
components and the property of the composite system. In the case of momentum, the
Rule of Composition is the summation rule according to which the momentum of
the composite system is the vectorial sum of the momentums of the parts. This Rule
of Composition amounts to an inference from properties of the parts to properties
of their composite. When the Criterion of Isolation applies to a simple system with
no parts, such as structureless particles, the criterion yields trajectories of particles
that are free from external influences, i.e., inertial motion. When the Criterion of
Isolation applies to a composite system, it identifies for us the state wherein the parts
of the system do not interact with any external objects. Conservation of momentum
in the case of composite systems, is a combination of the Rule of Composition,
according to which the momentum of the composite system is the vectorial sum of
the momentums of the parts, and the Criterion of Isolation, which identifies con-
served momentum with the state of being isolated.

One ordinarily thinks of the total momentum of a system as a state of the com-
posite system reducible to the properties of the system’s components. It is assumed
that the trajectory of the center of mass of a system is some average of the various
component trajectories, which is only helpful as a mathematical device and does
not represent any real object. But it may be useful to think of the center of mass as
describing the actual trajectory of the composite system comprising of the various
interacting parts. One benefit of taking this metaphysical view is that one now has a
clear analogy between free particles and isolated composite systems. According to
the Law of Inertia, a free particle moves with uniform rectilinear motion. Accord-
ing to the law of momentum conservation, an isolated system moves with uniform
rectilinear motion. The two cases can be summarized with a single criterion:

1.3.1 The Criterion of Isolation

A system is isolated if and only if it remains in the same state of uniform rectilinear
motion.

The criterion of isolation establishes a conceptual connection between the state
of “being isolated” and the state of “uniform rectilinear motion.”

Treating the conservation of momentum as providing a Criterion of Isolation
also clarifies the conservation laws’ epistemic status in inferences between observed
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physical phenomena and derived laws. The Criterion of Isolation is a necessary
presupposition for interpreting the phenomena, since the state of uniform rectilin-
ear motion distinguishes between open and closed systems. Such a distinction is
necessary for correlating observed motions with the external causes that bring them
about. It is standard practice to use the state of uniform rectilinear motion as a coun-
terfactual trajectory relative to which the deviations of particles from their natural
force-free motions are correlated with some external influence. When applied to a
system’s center of mass, the state of uniform rectilinear motion is used to demar-
cate a composite system of interacting parts and separate it from the rest of the
world. Once a system is isolated, one can then conclude that forces operating on
one of the system’s components must originate from the other components of the
system. The Criterion of Isolation is therefore a necessary presupposition for cor-
relating motions with external causes and for finding the relevant sources of these
causes.

There are affinities between our treatment of the Criterion of Isolation and
Friedman’s relativized a priori (see Friedman, 1983, p. 286; Friedman, 1999,
pp. 59–70). Friedman popularized Reichenbach’s Axioms of Coordination intro-
duced in Reichenbach (1920). In his early work, Reichenbach’s thinking was still
influenced by the neo-Kantian school. According to Reichenbach, the Axioms of
Coordination are a priori axioms of physical theory. These axioms are a priori in
the sense that they are valid “independently,” or “prior” to experience. They are
akin to framework principles that form the concept of object – which is a rational
form imposed by cognition on intuitions. But they are not a priori in Kant’s sense
of being necessarily true. Given new experiences one may revise the overall frame-
work, resulting in new Axioms of Coordination. In contradistinction to the Axioms
of Coordination, the Axioms of Connection function as laws established directly by
experience.

In a vein similar to that of Friedman’s relativized a priori, the argument here
is that the Criterion of Isolation is presupposed as valid prior to observations and
experiments. One relies on the Criterion of Isolation both to design experiments and
interpret their results. The Criterion of Isolation is not metaphysically necessary or
discoverable by the mere operation of the mind. This criterion is inspired by expe-
rience and thought experiments, and can be revised in the light of irreconcilable
experiences when replaced by a new Criterion of Isolation or alternative presup-
positions regarding the structure of physical systems. The a priori validity of this
criterion is reflected in the fact that there is no direct way to refute it, since it is
presupposed in the inference from the phenomena to the interactions that explain
them.

Despite the similarities between the interpretation of the Criterion of Isolation as
required for interpreting phenomena and Friedman’s relativized a priori, there are
important differences as well. According to Reichenbach, Axioms of Coordination
constitute the “subjective” form of knowledge. The Axioms of Coordination are
“organizing principles” that constitute the contribution of Reason to the object of
knowledge. One important characteristic of these Axioms of Coordination is they
introduce an element of arbitrariness, as the truth of these axioms is not determined
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by the objects being studied. But contrary to Reichenbach’s early philosophical
views, the contention here is that one cannot neatly separate the “contribution of
reason” from the contributions of experience. There is an important sense in which
the Criterion of Isolation is not arbitrary; it is not merely stipulated that isolated
systems are identified with uniform rectilinear motion or with PUMs.

Reichenbach’s neo-Kantian views and Friedman’s relativised a priori have a diffi-
cult time explaining the status of discarded Axioms of Coordination. If, for example,
the absolute nature of time and Euclidean geometry were taken to be valid a priori
in Newtonian physics, they are no longer a priori valid in the Theory of Relativ-
ity. They are just empirically inadequate assumptions about the nature of time and
space. The Theory of Relativity is empirically superior to Newtonian physics, which
suggests that there are empirical reasons to reject the absolute nature of time and
Euclidean geometry. If there are empirical reasons to reject those principles, they are
no longer valid prior to experience. The neo-Kantian might respond by asserting the
discarded a priori principles must somehow be approximations of newer Axioms of
Coordination. The absolute nature of time is approximately true when considering
velocities much slower than the speed of light; and the Euclidean nature of space is
approximately true when the gravitational field is more or less uniform. But if these
discarded principles are only approximately true, and are literally false, then they
are no longer valid a priori, and they never were.

Thus a new-Kantian framework for understanding the Criterion of Isolation is
inadequate, given that the transition from one theory to another suggests that revis-
able a priori principles must somehow be sensitive to experience, and be falsified
by it, even if it is valid prior to single, isolated experiences. The a priori nature
of the Criterion of Isolation can be understood when one moves away from the
rationalist gloss that the Neo-Kantian school attributes to a priori principles. In the
neo-Kantian school, experience is somehow produced in the mind when intuitions
are placed under concepts. The a priori elements of experience arise from the con-
ceptual structure that cognition imposes on experience; perception is “infected,”
so to speak, by the rational form the mind imposes on experience. However, the
Criterion of Isolation is not merely a conceptual structure imposed by human
cognition.

The Criterion of Isolation is valid prior to experience, because it is presupposed
both when experience is interpreted and when experience is produced. One cannot
carry out any physical experiment without presupposing the criterion through which
the experimenter can identify a closed system. Any experiment that measures the
effect of causes, must form a valid inference from the cause to the effect. But this
inference is destroyed when the cause and the effect cannot be isolated from other
external causes. A Criterion of Isolation must therefore be correctly embedded in
the experimental practice if one is to acquire empirical confirmation for theoretical
predictions. The problem with the neo-Kantian account is that it posits a rational
structure, determined by a stipulation on our part as to the form of intuition. But the
Criterion of Isolation guides the experimental practice as much as it is an abstract
conceptual connection. If the experimentalist is able to consistently isolate systems
with the help of the Criterion of Isolation, she learns to rely on it more and more until
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she incorporates it seamlessly into her art of experimentation. The world must there-
fore cooperate with the Criterion of Isolation and with what the experimentalist does
for the experimental practice to be effective, even though the experimental practice
presupposes it. Systems must be, at least roughly, isolated, when they conform to
the Criterion of Isolation, if the experiment is to have any value.

One therefore needs to differentiate between a principle that is valid prior to any
individual experience, and a principle that is valid prior to all experiences. Given
any particular observation or experiment, the Criterion of Isolation is valid prior
to it, because it is presupposed both at the level of conceptual structure and the
level of experimental practice. But the Criterion of Isolation is not valid prior to
all experiences, taken together as a whole. One can form a judgment, based on the
experimenter’s ability to isolated systems and investigate the causal connections
between their parts, that the Criterion of Isolation is empirically true, or at least
roughly true. But this judgment is a holistic one, and requires the assessment of the
theory and the entire range of experiments and observations as a whole. Such an
assessment may bring in holistic epistemic virtues such as simplicity, explanatory
power, and the unification of disparate domains of inquiry. But once a Criterion of
Isolation is evaluated in relation to all experiences, it is deemed as empirically true
or false.

Thus the neo-Kantian school needs to revise even further Kant’s notion of a priori
validity. The a priori principles are valid prior to any individual experiences, but are
revisable when all experiences are considered as a whole. The Criterion of Isolation
is neither strictly speaking a priori, nor strictly speaking a posteriori. It is a priori
valid in the context of performing a single experiment, but a posteriori valid when
the merits of the entire theory and its predictions are considered. One should be
careful in applying that distinction as if it applies in all contexts. Moreover, the
general rationalistic gloss of a priori principles should also be given up. The Crite-
rion of Isolation is not merely a rational construction imposed on experiences, but
is embedded in the experimental practice and is therefore not dissociated from the
successes experimenters have in isolating causal relations. The experimental and
theoretical aspects of the Criterion of Isolation are inseparable.

The revisions I propose here to neo-Kantian epistemology may remind readers of
conventionalist-positivist accounts. Reichenbach abandoned his early neo-Kantian
views when he became convinced that there could not be a distinct category of
synthetic a priori judgments. The conventionalist-positivist14 accounts emphasize
both the a priori nature of linguistic representations, and the role of experimen-
tal practice in connecting theoretical terms with physical objects. According to
positivist approaches, the truth of a priori propositions is determined by semantic
conventions, since the meaning of the terms in these propositions is determined
via an arbitrary semantic stipulation. These semantic conventions are supplemented

14 I am referring to conventionalist accounts of science such as Einstein in his 1905 relativity
paper and in his 1921 paper, Carnap (1922), Reichenbach (1927, 1969), Grünbaum (1963), and to
Wittgenteinian accounts such as Hanson (1965).
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with extra-linguistic rules for relating concepts with physical objects (what the later
Reichenbach called principles of coordination). Thus according to the positivist
approach, conceptual interrelations and rules for grounding propositions in expe-
rience become completely dissociated.

For example, positivist accounts take Newton’s laws of motion to be valid a
priori because of their role as axioms. Other propositions are derived from the laws,
while the laws are not derived from anything else. Thus, according to the positivist
approach, the Law of Inertia is a semantic convention; the truth of the law expresses
a linguistic rule. As a result, the conceptual connections established between the
terms in the Law of Inertia constitute implicit definitions. Poincaré, for example,
asserts that the status of this law is that of a convention:

. . . this law [of inertia], verified experimentally in some particular cases, may be extended
fearlessly to the most general cases; for we know that in these general cases it can neither
be confirmed nor contradicted by experiment. (Poincaré, 1905, p. 97)

Hanson (1965) emphasized in a similar fashion the connection in meaning estab-
lished between the terms appearing in the Law of Inertia. According to him, the con-
cept of being “force-free” is “built into” the concept “uniform rectilinear motion.”
Since the truth of the law is stipulated, one cannot exclude the possibility of other
adequate conceptual systems in which these semantic connections do not exist.
These alternative systems would still be able to provide adequate interpretations
of our experiences even if they do not take Newton’s Law of Inertia to be true.15

According to the positivist account, the a priori validity of the Law of Inertia
derives from a semantic convention, not from any physical fact concerning material
bodies.

The positivists argued that the experimental practice establishes a connection
between formal, mathematical terms of the theory and physical objects. For exam-
ple, when an experiment is performed, a coordinate system is selected, and length
and duration are measured relative to this coordinate system. But the selection of
one coordinate system produces one model of the theory; another equally appro-
priate model is based on the selection of another coordinate system. Thus, while
the physical theory is merely a formal, empty linguistic structure, the selection of a
coordinate system provides the formal theory a particular interpretation. The coor-
dinate system also provides the formal theory with physical and empirical content.
I argue in Chapter 2 that the positivist account falls short of providing a satisfactory

15 In Poincaré’s words:

The Law of Inertia, as I have said above, is not imposed on us a priori; other laws would be
just as compatible with the principle of sufficient reason. If a body is not acted upon by a
force, instead of supposing that its velocity is unchanged we may suppose that its position
or its acceleration is unchanged. Poincaré (1905, p. 92)

When Poincaré uses the notion of a priori he means it in the rationalist sense (i.e., as an irrefutable
and necessary truth that is arrived at independently of experience). But the notion of a priori can
be given an empiricist slant, so that a proposition is taken to be necessary only in relation to a
particular inquiry, relative to a particular domain or an area of inquiry.
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account of the Principle of Relativity. Here I would like to emphasize that one of
the main problems with the positivist account, is that according to their account, the
Law of Inertia establishes an “empty,” arbitrary linguistic connection between the
state of being force-free (or the state of being isolated) and the state of moving with
uniform rectilinear motion. However, their account makes it seem as if the implicit
definition (of the state of being force-free) is a mere syntactic relation between lin-
guistic terms, that stands over and above our experimental practice. However, the
Law of Inertia does not express a mere linguistic rule, as it provides the bedrock of
our experimental practice as much as it is also at the heart of theory. The success of
the experimental practice in isolating systems suggests that the Criterion of Isolation
is not an arbitrary linguistic convention.

Before moving on to the Rule of Composition, I would like to amend the above
formulation of the Criterion of Isolation. At first glance, the formulation of the Crite-
rion of Isolation implicitly presupposes the existence of a background space, relative
to which the uniform rectilinear motion of a body is defined. But as Chapter 3 will
make clear, it is possible to construct spacetime structure from a geometry of PUMs,
which is a geometry that takes uniform unidirectional motions as the fundamental
entities, rather than spatiotemporal points. Thus, in the language preferred here, the
Criterion of Isolation should be articulated as follows:

Criterion of Isolation*. A system is isolated if and only if it instantiates a PUM
(potential uniform motion).

The next chapter will provide a somewhat more detailed critique of widespread
approaches to the philosophy of spacetime. At this point, I will only put forward the
claim that taking uniform, unidirectional motions (PUMs) to be fundamental entities
of spacetime, and constructing spacetime from PUMs, provides a new approach
to understanding the structure of spacetime. Thus, when the Criterion of Isolation
asserts that a system is isolated if and only if it instantiates a PUM, it asserts that
the state of being isolated is identified with the most fundamental entity in physical
theory – a PUM. The Criterion of Isolation* therefore connects directly with the
foundation of spacetime structure, and does not presuppose a spacetime structure as
a background. The claim that a system is isolated if and only if it instantiates a PUM
should be understood as associating the state of being causally isolated with the most
fundamental entity in spacetime theory. This comment will only be understood once
a reconstruction of spacetime is presented.

As was stressed before, there is empirical significance to the practical success
in relating the state of being causally isolated with a PUM. A “relativistic” PUM is
more adequate than a “Galilean” PUM because it more accurately describes events
along the trajectory of an isolated system. The empirical adequacy of a Criterion
of Isolation increases when a new geometry of PUMs is used to construct a more
powerful and fruitful theory. The Newtonian law of inertia and its counterpart in the
Special Theory of Relativity do not stand on equal footing from an empirical point
of view. At the same time, the Law of Inertia is not merely true a posteriori, when
individual experiments are considered. The typical strategy for those who argue
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that the Law of Inertia is an empirical generalization16 is to reify the structures of
spacetime. When spatiotemporal points and geometric structures are taken to exist
independently of material bodies and processes one may then view the actual motion
of a free particle along a geodesic as corroborating a law about free particles. But the
reification of spacetime carries unfortunate metaphysical consequences, and gener-
ates an obscure understanding of spacetime and its relation to dynamic laws. Thus,
since the Criterion of Isolation* involves the most fundamental entity in spacetime
theory, and since this Criterion of Isolation treats both free particles and systems
comprised of many interacting parts as analogous entities, it is clear that it provides
the most fundamental criterion for interpreting phenomena.

In the following, I will assume that the Criterion of Isolation (and the accompa-
nying Rule of Composition) hold a special role in physical reasoning. Together, the
Criterion of Isolation and the Rule of Composition constitute structural assumptions
about the nature of physical systems. These structural assumptions are a priori prin-
ciples, whenever local, isolated experiments are considered, but are a posteriori prin-
ciples when the theory and its predictions are considered as a whole. This approach
is similar to the neo-Kantian school, in that it identifies certain principles as a priori
valid, but it is also distinct from the Neo-Kantian school since it takes the revisable
nature of structural assumptions to be evidence of their connection to experience.
But the approach is also distinct from positivist accounts, since these structural
assumptions are not mere linguistic conventions, nor are they mere coordinative
definitions. They are at the heart of both theory and experiment. The conservation
of momentum and energy implicitly asserts that the Criterion of Isolation applies to
physical systems. A particular theoretical articulation of the Criterion of Isolation is
not metaphysically necessary. In the case of Newtonian mechanics (and the Special
Theory of Relativity), this criterion establishes a conceptual connection between
being isolated and instantiating a PUM. This connection is established prior to the
interpretation of phenomena, but this connection is not a mere linguistic definition,
since it embedded in the experimental practice.

1.3.2 The Rule of Composition

In the previous section, I argued that the Criterion of Isolation holds a primitive,
constitutive role in the definition of physical systems. However, to fully describe
the structure of a physical system one must also assume certain inferential rela-
tionships between the composite physical system and its parts. It is often difficult
to be aware of these inferences, since they are deeply embedded in mathematical
structures and in various calculational devices for forming descriptions of com-
posite systems. For example, in the context of the kinetic theory of gases, certain
mathematical inferences establish the connection between the microstructure of the
physical system, such as the kinetic properties of molecules, and its macroscopic

16 See Earman and Friedman (1973) and Friedman (1983).
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properties, such as temperature and pressure. The conservation of momentum and
energy is used as a bridge between microscopic and macroscopic states. The conser-
vation of momentum and energy is taken to be laws of motion governing the distinct
parts of which the system is made. However, the total momentum and energy of the
composite system is not merely a concise way to describe the parts of the system, but
a means of referring to a state belonging to the composite system. The conservation
of momentum and energy provides the conceptual tool for reducing states of the
composite system to states of its parts, and establishes the inferences between parts
and wholes.

Ordinarily, the law of momentum conservation is taken to be a law of motion.
According to this conception, the law dictates how various distinct bodies interact
and how their states evolve over time. This account of the conservation law defines
the momentum of each particle as the product of mass and velocity:

�Pi (t) ≡ mi �v (1.2)

where mi is the mass of a body and �v is its velocity. It is then asserted that the total
momentum

P�(t) =
∑

i

Pi (t) =
∑

i

mi �vi (1.3)

is conserved, or

d �P�
dt

= 0 (1.4)

This presentation of the law of momentum conservation makes it seem as if the
law takes in as the initial state the velocities and positions of the various interacting
particles, and then dictates how these states evolve over time. The description of
this evolution also depends on the details of the interaction, such as the particular
force that operates between the parts. The law is likened to an external decree that
“governs” the behavior of individual localized bodies. Material properties such as
mass represent inherent causal powers or the dispositions to behave according to the
conservation law.

If one takes the standard approach to conservation laws, i.e., as laws that dictate
the evolution of physical states, one has difficulty in establishing the logical status of
the mass parameter. On the one hand, mass is supposed to be an intrinsic property to
be found “within” each material body (i.e., this parameter is instantiated in the body
independently of any other body). On the other hand, the nature of this property
is revealed only through the disposition of a body to obey laws that are imposed
from without. Newton imagined mass to be associated with some inherent causal
power or “inertial forces” that propel a body to move in a straight line. However,
these intrinsic forces appear to spring into existence in reaction to impressed forces
(i.e., the intrinsic forces come into being in response to external influences). This
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incoherent metaphysical story signifies a certain lack of clarity as to the role of the
mass parameter. This unclarity is increased when one takes mass to be describing
the quantity of matter, which underlines the assumption that the mass of a composite
system is the sum of the masses of the components, and that isolated systems do not
gain or lose mass. Textbooks often refer to the “law” of conservation of mass, as if
mass itself is governed by a law that predicts how mass-states evolve over time. But
mass is itself a parameter that is required to define the momentum-state of a body, so
it is not clear how the state of body (i.e., the mass-parameter of a body) is governed
by one law (the conservation of mass), while it is presupposed in the definition
of another state (the momentum state), which is governed by an independent law
(the conservation of momentum). The two laws seem logically independent, yet
momentum conservation somehow presupposes the mass parameter.

One way to avoid the conundrums concerning the mass parameter is to take the
view that momentum is a fundamental state of bodies, and the mass parameter is
determined solely by its role in the articulation of momentum conservation. Con-
servation of momentum is the presupposed law, and the mass parameter attributed
to each body is a logical consequence of their momentums being conserved. Some-
thing like this was proposed by Weyl:

. . . the inertial mass is no perceivable characteristic of a body, but can only be determined by
allowing the body to react with others and then applying the impulse law to these reactions.
This law asserts: to every isolated body a momentum may be assigned, this momentum
being a vector with the same direction as the velocity; the positive factor m, by which the
velocity must be multiplied in order to give the momentum, is called the mass. If several
bodies react on each other, the sum of their momenta after the reaction is the same as before.
It is only through this law that the concept of momentum, and with it that of mass, attains a
definite content. (Weyl, 1989, p. 39)

Weyl’s approach is superior to Newton’s account, since the concept of mass is no
longer seen as a causal agent that gives rise to inherent forces. The notion of mass as
some inherent agent in bodies seems opaque, and is not genuinely explanatory. One
may begin with the assumption that laws of motion dictate the behavior of bodies,
and mass is merely the disposition of the body to behave as the laws dictate. There
is no reason to suppose that mass is anything more than the disposition to obey the
laws.

But Weyl’s approach generates the puzzle that momentum seems to presuppose
mass in its definition, and it is not clear how one can conceive of momentum as
being the fundamental state while at the same time taking it to be the product of
mass and velocity. The priority of momentum conservation over mass is difficult to
conceptualize, especially since there is a law, i.e., the conservation of mass, which
governs the mass parameter independently of its role in momentum conservation.
Since one defines the momentum-states of distinct bodies as the product of mass and
velocity, it is not clear how mass could be the logical consequence of momentum
conservation, rather than the causal agent that gives rise to it.

One may avoid the difficulties faced by Weyl’s approach if the conservation of
momentum is reconceptualized as a structural assumption, rather than a law dictat-
ing the behavior of distinct parts. Such an account assigns a determinate velocity
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�v� to the isolated composite system comprised of n interacting particles, and treats
this velocity as a composite state that arises from the states of individual parts. If
such an approach is feasible, then the mass parameter attributed to each body would
be the result of the relation between the motions of the parts and the motion of the
composite.

The proposal is therefore to think of the conservation of momentum as consisting
of assumptions about the structure of physical systems, rather than external laws that
dictate the behavior of bodies. Assume that an isolated system containing n particles
has a velocity �v� attributed to it. It would follow from the Criterion of Isolation that
the velocity of this composite system remains uniform and unidirectional, given that
it is isolated from the rest of the world. Alternatively, this velocity of the composite
could be taken to be a function of the velocities of the parts:

�v� ≡ f (�v1, �v2, . . . , �vn) (1.5)

If one takes the above function to be a linear vectorial sum, one can find a way to
conceptually relate the state of the isolated composite system to the velocities and
states of the individual parts:

�v� ≡
∑

i

αi �vi (1.6)

The rule for relating the motions of parts to the motion of a composite system will
be referred to as a Rule of Composition. This rule, in addition to the Criterion of
Isolation*, completes the description of physical systems:

Rule of Composition. The motion of the composite system is a linear vectorial sum
of the motions of the components.

On the assumption that the Criterion of Isolation* holds for closed systems, one
may identify with each coefficient the relative mass of the body, so that:

αi = mi∑
i mi

(1.7)

This would allow us to write down the equality:

(
∑

i

mi

)
�v� =

∑

i

mi �vi (1.8)

Each body is therefore attributed a mass parameter mi and the composite system a
parameter M = ∑i mi . One may treat the function in (1.6) as part of the definition
of the structure of physical systems. The existence of determinate mass-ratios would
then result from the claim that the posited structure applies to physical systems.
When one presupposes a linear function correlating the velocities of the components
with the velocity of the composite system, one is able to derive the conservation of
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momentum from the Criterion of Isolation*. Once the relation in (1.6) is defined,
the definition of momentum as �P = m�v follows as a consequence.

The conservation of momentum can be considered as the consequence of a rela-
tion between the velocities of part of a physical system and the velocity of the whole.
This account takes velocity to be the fundamental state, and the conservation law as
a consequence of the Criterion of Isolation and a compositional relation between
velocities of parts and the velocity of the whole. Thus, unlike Weyl’s account, there
is no need to account for a fundamental state of momentum, which presupposes the
mass parameter. Velocity is fundamental, and the conservation law arises from a
relation between parts and wholes.

The account which takes conservation of momentum to consist of a structural
assumption therefore has a potential for making velocity fundamental, while render-
ing mass a product of the velocity-state of the isolated composite system. However,
the account of mass as the logical consequence of the Criterion of Isolation* and the
Rule of Composition needs to account for the following facts:

1. Fundamental particles have a constant mass parameter.
If the mass parameter is not inherent in bodies, but instead stems from a part-
whole relation governing the motions of bodies, why do we attribute a single
mass parameter to a fundamental particle throughout its entire life?

2. Newtonian mass is a quantity of matter.
The Newtonian mass of a composite system is always the sum of the masses
of the components, and does not change for an isolated, composite system. But
what justifies the assumption that mass is an additive quantity? What justifies the
conservation of mass in closed Newtonian systems?

It is tempting to view these two facts as based in experience. Textbooks often cite
the “law” of mass conservation as an additional empirical law implicit to Newtonian
physics. According to this approach, the meaning of mass is identical with the role of
the concept in Newton’s second law of motion. Mass represents the inertial “slugish-
ness” of bodies, or the resistance of bodies to external forces. The conservation of
mass is another empirical fact that is true of the property.

The reconstruction of mass introduced here will show how inferences about New-
tonian mass are derived from the structure of Newtonian systems. The reconstruc-
tion will demonstrate that the single mass parameter we attribute to non-composite
bodies is implicit in the structure of Galilean spacetime, when this spacetime is
derived from a geometry of PUMs. The surprising fact our reconstruction reveals
about mass is that it is inherently related to the symmetries of Galilean spacetime,
or to the equivalence between inertial reference frames. Once it is shown how the
Galilean spacetime is derived from a geometry of PUMs, it will become apparent
that the mass parameter is a logical extension of the equivalence between inertial
reference frames! The choice of a mass parameter for the description of a body’s
acceleration is similar in nature to the choice of an inertial reference frame. Thus,
a significant consequence of the proposed account of physical systems is the con-
ceptual pathway it erects between the spacetime structures and material properties.
The theory of spacetime describes the various possible motions of physical systems.
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The concept of mass is similarly another component in the structures that govern the
motions of systems.

This approach has the benefit of treating the Criterion of Isolation as a single
basic principle that governs Newtonian or relativistic systems, whether one has
free particles in mind or systems of interacting parts. According to this procedure,
assigning mass parameters to each individual body is the consequence of presuppos-
ing a geometry of PUMs, the Criterion of Isolation, and the Rule of Composition.
The “structure” of physical systems posited by Newton’s mechanics and Einstein’s
Special Theory of Relativity is more primitive than the property of mass ascribed to
bodies.

This approach is very economical from the ontological point of view. According
to this approach there is, in nature, nothing but moving parts and moving wholes.
One first assumes a geometry describing relations between PUMs is assumed, then
rules relating the motions of parts and wholes. The material property of mass is
not instantiated in individual bodies like a universal that is instantiated in some
particular substance. Rather, mass is a logical consequence of the geometry of PUMs
and of rules governing the structure of physical systems. Replacing the notion of
physical objects with the notion of physical systems simplifies the ontology of the
world and does away with “inherent” physical properties. However, there is a cost
to pay. One needs to think of composite systems as objects fully existing on par
with the existence of the individual parts. If conservation laws express the structure
of physical systems, one has to treat the composite system as being present. Since
the trajectory of a composite system is best represented by the trajectory traced by
the center of mass, one may think of the composite system as present at the center
of mass.

The analysis will not be limited to Newtonian physics, as the role of structural
definitions will also be demonstrated in the context of the Special Theory of Rela-
tivity. In the context of the Special Theory of Relativity, one may take the rule of
composition implicit to the notion of physical system to apply to four-dimensional
velocities. Thus, in the context of relativity, both the conservation of momentum and
the conservation of energy are incorporated into a structural definition governing
four-momentums. The analysis of the Special Theory of Relativity will enable us to
analyze the conceptual relations between rest mass, relativistic mass, flat relativistic
spacetime, and the conservation of four-momentums.

1.4 Structural Definitions

To clarify the role of assumptions about the structure of physical systems, one needs
to differentiate between a standard definition, which may be explicit or implicit, and
the definition of physical structure. An explicit definition concerns the syntactical
relation between terms. For example, one may define a triangle as a three-sided
polygon. This explicit definition presupposes that parts of the definition acquire
their meaning independently of the defined term. An implicit definition is one where
the terms of the theory are implicitly defined by the axioms of the system. For
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example, part of the meaning of the term “point” could be given by the first axiom
of Euclidean geometry, which asserts that between any pair of points there exists a
straight line. In contradistinction with explicit and implicit definitions, an assump-
tion about the structure of physical systems concerns the relations between the parts
of the system and their composite. A composite structure is a description of a par-
ticular way in which various parts are put together. This inferential relation does not
necessarily describe relations between different properties, as is the case for implicit
and explicit definitions. Rather, it is a relation between different instantiations of the
property; the instantiation in parts and wholes.

Standard accounts of definitions takes them to be the syntactical relation between
terms. For example, consider the definition of a triangle as a three-sided polygon.
The definition asserts that whenever a geometric figure has the property of being
a polygon, and in addition is three-sided, by definition the figure is a triangle. The
definition is a logical relation erected between predicates describing properties of
the same figure. Other definitions might consider relations as reducible to monadic
properties or to other relations. In short, explicit definitions can be represented as
logical relations between predicates, disregarding the objects to which the predicates
apply. Implicit definitions work similarly by stipulating a set of propositions as true,
thereby erecting logical relations between the predicates of the system. A structural
assumption works analogously to implicit definitions, in that it provides part of the
meaning of a term. For example, part of the meaning of the term “extension” is the
fact that the extension of the composite object is the sum of the extensions of the
parts. Similarly, part of the meaning of “momentum” is determined by the compo-
sitional nature of momentums, where the momentum of the composite system is the
sum of the momentums of the parts. But it is difficult to assimilate the compositional
aspect of extension or momentum to the notion of explicit or implicit definition. In
articulating the compositional nature of a property, one has to think of the parts of
the system, on the one hand, and the composite, whole system on the other hand,
as distinct objects in which the properties inhere. Thus one is often led to think of
structural assumptions as laws bridging between the properties of the parts and the
properties of the composite rather than definitions.

At first glance, structural assumptions do not seem to function like definitions,
since they relate properties that belong to different objects (parts and wholes), and
so they are assimilated to laws that determine causal relations between properties
belonging to different objects. However, there is a sense in which the bridging laws
account of structural assumptions is misleading. The account suggests that the iden-
tity of the composite system is determined independently of the identity of the parts.
The account implies that one may go through the following process. First, one can
consider each independent part and identify its properties. Then, the properties of
the composite system are determined. Finally, patterns relating the properties of the
parts to the properties of the composite system are empirically detected, and the
bridging laws are articulated. However, when one refers to the composite system
one is implicitly relying on the structure of the system to identify the composite
system. For example, imagine a cube with six sides. I can refer to each of the cube’s
sides and consider its geometric properties. However, to refer to a cube and any of
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its properties, I am already taking into consideration the structure of the cube and
the geometric relations between the parts. Thus identifying the composite object
already makes reference to structure; it is circular to assume that one can identify the
composite system and then articulate the bridging laws. Thus one cannot assimilate
relations between parts and whole to bridging laws; the structural assumptions are
relied upon in identifying the composite system. Identifying the composite whole
and attributing properties to it already implies the existence of structure.

On the one hand, there are reasons to think that structural assumptions are dis-
tinct from implicit and explicit definitions. Given that structural assumptions relate
properties of parts to properties of composite systems, they are not mere syntactical
relations between different predicates, since they often relate the same property that
is instantiated in parts and wholes. On the other hand, one cannot assimilate struc-
tural assumptions to bridging laws, since the composite system cannot be identified
independently of the presumed structure of the system.

One way to articulate the problem more clearly, is to consider formal mereol-
ogy, which reduces the parthood relation itself to an implicit definition. Consider
the axioms governing the most basic structures of mereology.17 To articulate these
axioms, one has to consider the various cases in which the part-whole relation P is
satisfied. The first axiom of basic mereology expresses the intuition that each object
is part of itself. Therefore, the part-whole relation must be reflexive:

P 1. Pxx Reflexivity

The second axiom of mereology corresponds to the intuition that if an object x is
part of object y, and object y is part of object x , we must accept that the two objects
are identical. The contraposition of this proposition is that two non-identical objects
x and y cannot both be part of each other. Thus, the part-whole relation must be
antisymmetric for non-identical objects:

P 2. (Pxy&Pyx) → x = y Antisymmetry

Finally, the third intuition is that the part-whole relation is transitive. If y contains x
as a part, and z contains y as a part, then our intuition is that z contains x as a part.18

P 3. (Pxy&Pyz) → Pxz Transitivity

17 Here I follow Varzi (2004) in formalizing part-whole relations.
18 The transitivity axiom has been disputed in certain cases in which we think organizational levels
prevent the part-whole relation from being transitive. If a human cell is part of a human body, and
the human individuals are counted as part of the national census, then it does not follow that the
human cell is counted as part of the national census. These failures of transitivity will not be
considered here.
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Using the above axioms one can define the overlapping relation, i.e., the relation
between two objects that share a part. An overlap between two objects amounts to
the claim that there exists a common part that satisfies that parthood relation with
both objects:

Oxy =d f (∃z)(Pzx&Pzy) (1.9)

Also, one may define the notion of proper part using the above axioms. This notion
differentiates between an object x that is a part of y and an object x that is part of y,
but is not identical with it. Thus, the notion of proper part can be defined as follows

PPxy =d f (Pxy& ∼ Pyx) (1.10)

These axioms and definitions therefore characterize the part-whole relation.
The above three axioms provide the minimal set of inferences governing part-

whole, relations which is commonly referred to as basic mereology M. The mere-
ological literature considers various additional axioms, but I will postpone consid-
eration of some of them until the end of the section. The problem with the formal
character of M is that it is too abstract to describe the part-whole relation governing
physical systems. These axioms hold necessarily for any partial ordering relation,
such as the ≤ relation among the real numbers. Intuitively, one can sense that a
number x is “contained in” or is part of any number y that is greater than or equal
to x . The axiom system M makes this intuition more precise. But, notice that with
regard to the real numbers, their very nature determines whether x is contained
within y or y is contained within x .

If a randomly selected pair of physical objects x and y is examined, whether x is
a physical part of y cannot be determined solely by the nature of the distinct physical
objects x and y. If x is an electron and y is an atom one still does not know whether
x is part of y, even if the electron and the atom overlap in space. One must examine
the particular states of x and y to determine whether x is part of y. For that, one
needs a non-formal criterion, or a physical property, with which one can analyze the
parthood relation in physical systems. This is where the Criterion of Isolation and
the Rule of Composition come in. Given the motions of the components, the Rule of
Composition allows us to find potential composites by summing over the motions
of the parts and calculating the motion of the composite system. The Criterion of
Isolation, or the assertion that a system is isolated if and only if it instantiates a
PUM, provides a line of demarcation between systems.

One therefore needs to replace the above formal axioms with a structural
assumption. Assume that x1 is one of the proper parts of the physical system y.
To define the relation between x1 and y one can specify the property Tμ, where
μ = 0 − 3. This property has four values, corresponding to the four components
of the motion of a body. Thus, in the context of relativity theory, the property Tμ
represents the four-momentum. The energy property T0 ranges over the positive
reals, T0 ∈ [0,∞). The momentum property Ti ranges over three dimensional reals,
Ti ∈ R

3. The relation between the proper part x1 and y is represented by certain
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algebraic relations among the predicates Tμ that apply to x1 and y. The first part
of the structural definition is the Rule of Composition, which asserts that the Tμ
of y is the sum of the Tμ’s of the parts x1, x2, . . . , xn so that T y

μ = ∑
i T xi
μ . This

composition rule identifies the properties Tμ ascribed to the composite system. The
Criterion of Isolation demarcates between systems. So to say that x1 is a proper
part of y, one has to say that the state Tμ attributed to y is a sum of various states
T xi
μ attributed to various bodies, including xi , and that either y is isolated or y is a

proper part of a system that is isolated. In other words, according to the Criterion
of Isolation, either the T y

μ is conserved or the T z
μ of a composite z which contains

y is conserved. The following summarizes the two components of the structural
definition:

Structural Definition of Physical Systems

(∀x1)(∀y)P Px1 y ≡
I. Rule of Composition

(∃x2) (T
y
μ = T x1

μ + T x2
μ )

II. Criterion of Isolation

Ṫ y
μ = 0 or

(∃z)(∃x3) (T z
μ = T x1

μ + T x2
μ + T x3

μ ) and

Ṫ z
μ = 0

The above structural definition makes explicit the sense in which conservation of
momentum and energy defines the relation between parts of a physical system and
their composite.

Once the relation of proper part is defined using the states Tμ, one can define the
part-whole relation in virtue of the proper part relation:

Pxy =d f (PPxy ∨ x = y) (1.11)

It can now be shown that the parthood relation, defined by the above structural def-
inition, satisfies the formal axioms of the mereological system M. The part-whole
relation in (1.11) is reflexive because of the identity relation in (1.11). It is antisym-
metric because x1 is a proper part of y only if there are additional objects whose
Tμ of the parts determine the Tμ of the whole. The relation in (1.11) is transitive
because the operation of additivity is transitive.

It is important to briefly compare our notion of a structural definition with other
accounts of part-whole relations. Notice, first, that the structural definition is not a
law bridging between properties of parts and properties of wholes. To identify the
composite system, one relies on the composition rule that combines the properties
of the parts to form the property of the composite. Thus, one cannot discuss the
part-whole relation without taking the Rule of Composition and the Criterion of
Isolation as valid. The very existence of the relata in the relation between part and
whole depends on the validity of the definition. On the other hand, the structural
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definition is not a standard implicit definition, where the meaning of the predicate
is determined via its conceptual relations to other predicates or conceptual relations
that are stipulated to be true via the axioms of the system. The structural definition
clarifies the meaning of momentum and energy by erecting a compositional relation
between the same property applied to both parts and wholes.

The structural definition is therefore a unique kind of implicit definition. The
meaning of the notions of momentum and energy are partly determined by the
relation they erect between parts and wholes. On the other hand, the parthood rela-
tion is itself partly determined by the concepts of momentum and energy. Thus,
the structural definition is an implicit definition of a very distinct kind, one that
incorporates the notion of parthood into the meaning of a physical term. In the
philosophy of mathematics, an implicit definition that introduces several new terms
is also called a structural definition, since the implicit definition introduces a mathe-
matical structure. However, in our case, the structural definition (in the mathematical
sense) establishes the structure of physical systems. Thus, it is a very unique kind of
definition, one in which the mathematical structure of physical structure is laid out.
Henceforth, I shall refer to “structural definition” in the restricted physical sense
introduced here.

The above structural definition, I believe, may also settle disputes in the formal
theory of mereology. For example, some argue whether the following additional
axiom should complete the basic mereological system M:

P 4. ∼ Pxy = (∃z)(Pzy& ∼ Ozy)

This axiom asserts that if x is not a part of y, then y has a remainder which does not
overlap with x . This axiom is called the strong supplementation of basic mereology
and the resultant mereological system is labeled extensional mereology or EM for
short. The controversy with axiom P4 is that one of the theorems of EM asserts that
two objects which have identical proper parts are identical. That is, the identities
of the proper parts completely determine the identity of the composite object and
there is no “remainder” when one takes into account all the proper parts of a sys-
tem. Not all philosophers accept the supplementation principle since one often has
the intuition that a composite object is distinct from the aggregate of its material
components, and is not completely determined by them. This intuition comes about
when one considers the notion of a biological organism, which retains its identity
even if the material components are replaced over time. It is then tempting to say that
there must be a remainder to the material constitution of an object, which perhaps
can be associated with the “form” of the organism or its principle of organization.
In the context of physical systems, one can accept the strong supplementation prin-
ciple, and the claim that there is no “remainder” to the proper parts of which the
composite system is comprised. One can still accommodate this intuition and the
notion that the physical system may remain the same while its material constituents
are replaced.

It is important to distinguish between two aspects of the part-whole relation,
as is made clear in structural definitions. On the one hand, a consequence of the
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above structural definition is that the property of a composite system is determined
by the properties of the proper parts. This notion is underwritten by the Rule of
Composition, which assembles the momentum and energy of the composite system
from the momentums and energies of the components. But whether an object is a
proper part of a physical system depends on a property belonging to the composite
system as a whole – in particular, it depends on whether the composite system is
isolated. If bodies x and y form an isolated system at time t1, and bodies y and z
form an isolated system at time t2, then body y is part of two different composite
systems at t1 and t2. These composite systems are distinct from the aggregate of x ,
y, and z, therefore they are conceptually distinct from their material components.
But this does not undermine the view which takes the properties of the composite
systems at each time t1 and t2 to be completely determined by the properties of the
components: and that two composite systems that have the same parts are identical
to each other.

1.5 Conclusion

In this chapter I introduced the notion of a structural definition that is valid a priori,
whenever individual experiments are carried out. This notion was used to make
explicit the structural assumptions implicit in the laws of momentum and energy
conservation. I argued that one can reduce the structural definition into two assump-
tions, the Criterion of Isolation and the Rule of Composition, and claimed that a
similar structural definition exists for the conservation of four-momentum in the
Special Theory of Relativity.

The image the reader should keep in mind in what follows is that of a physical
system whose description is given at the level of both parts and whole. The only
states one should include are the states of motion of the parts and the state of motion
of the composite. The next chapters will demonstrate that the various structures of
Newtonian physics and the Special Theory of Relativity stem from various ways in
which the motion of parts are related to the motion of the whole. This is the basic
structure, and we do not assume that there is a more fundamental structure in which
these motions are embedded.



Chapter 2
Interpretations of Spacetime and the Principle
of Relativity

Chapter 3 will introduce an interpretation of flat spacetime theories I call Primitive
Motion Relationalism (PMR). According to this interpretation, motion should be
thought of as a primitive entity, more fundamental than spatial points and temporal
instants. Events are taken to be coincidences between motions; the identity of events
depends on the identity of the underlying motions. The other main feature of this
approach is that spacetime consists of a set of potential trajectories. The spacetime
manifold and the metric defined on it should not be thought of as a field analogous
to other material fields. Rather, spacetime determines the form of actual trajecto-
ries and relations between motions, in analogy with Aristotelian formal causes that
determine the essence of a substance. One of the main advantages of PMR is that it
explains the restricted Principle of Relativity (i.e., the equivalence between inertial
reference frames), without presupposing the Principle of Relativity as a postulate.

To differentiate PMR from standard accounts of spacetime, this chapter delin-
eates some of the dominant interpretations of spacetime. The chapter outlines three
common approaches: the conventionalist, the geometric, and the dynamic interpre-
tations of spacetime. While the conventionalist account is mostly out of favor today,
the geometric interpretation is the accepted doctrine. Dynamic accounts constitute
a minority view that wishes to undermine official doctrine. Each account of space-
time has important advantages, however each also carries some weaknesses and
liabilities.

Primitive Motion Relationalism has affinities with the dynamic approach, as it
does not suppose the independent existence of spacetime. Like dynamical relation-
alism, PMR does not separate between dynamic and kinematic aspects of physical
knowledge. However, PMR also has affinities with the geometric approach, since
it attempts to provide a unifying account for spacetime symmetries, while current
versions of dynamical relationalism do not seek to do so.

I will restrict my attention to flat spacetimes, and will leave discussion of curved
spacetime for future work. PMR argues that spacetime constitutes a range of pos-
sible trajectories, and is not itself an actualized entity. This possibilist conception
of spacetime faces difficulties in the context of the General Theory of Relativity. If
spacetime consists of a range of possible trajectories, it is difficult to conceive of
spacetime as a contingent structure that is determined by how matter is actually
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distributed. While I do not think this problem is beyond resolution, I shall not
consider it here and instead focus on the positive reasons for believing in PMR.
The possibilist conception of spacetime and the fundamental nature of motion helps
explain the restricted Principle of Relativity. Thus PMR has an important advantage
over traditional approaches that either assume the Principle of Relativity as a pos-
tulate or provide an inadequate explanation for it. To demonstrate the benefits of
adopting PMR, I devote this chapter to a brief and sketchy assessment of existing
interpretations of spacetime. Section 2.1 will introduce the restricted Principle of
Relativity and some recent discussions regarding its appropriate interpretation. I
shall then consider how each of the three common approaches, i.e., the convention-
alist (Section 2.2), geometric (Section 2.3) and dynamic (Section 2.4) interpretations
of spacetime, accommodates the Principle of Relativity. I shall note what I think is
the central weakness in each account, in this way preparing the way for evaluating
the merits of PMR.

2.1 The Restricted Principle of Relativity

Einstein introduced the Principle of Relativity as a postulate of the theory of relativ-
ity. According to Einstein, the restricted Principle of Relativity, which is the equiva-
lence between inertial reference frames moving with uniform rectilinear motions, is
modeled after the “classical” Principle of Relativity, which is articulated in Corol-
lary V to Proposition I in Newton’s Principia. The restricted Principle of Relativity
is to be distinguished from the General Principle of Relativity, which according to
Einstein amounts to the covariance of equations of motions under general coordinate
transformations.1

Einstein argued that the restricted Principle of Relativity and the Light Postulate
have an empirical basis. The laws describing Newtonian mechanics and electro-
dynamics do not include any property that makes reference to absolute rest. But in
Einstein’s theory, the Principle of Relativity assumes the status of a postulate, which
he explicates as follows:

Einstein’s Principle of Relativity. The laws by which the states of physical systems
undergo change are not affected, whether these changes of state be referred to the one or the
other of two systems of coordinates in uniform translatory motion. (Einstein, 1952, p. 41)

According to Einstein’s Principle of Relativity, the laws are the same whether they
are defined relative to one coordinate system, or to a coordinate system moving with
uniform rectilinear motion relative to the first. A coordinate system assigns a 4-tuple
xμ to any event that takes place, whereμ = 0, 1, 2, 3, and comes equipped with a set

1 This interpretation of the General Principle of Relativity was later contested by many physicists
and philosophers, since the General Principle of Relativity is violated by some theories of space-
time that are nevertheless invariant under general coordinate transformations. I shall not pursue
this interpretive problem here.
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of measuring rods and clocks that are relatively at rest.2 His theory of relativity, he
claims, is about the relations between these measuring devices and electromagnetic
processes.

Einstein’s account of coordinate systems begs for further explanation. Clocks and
rigid rods are macroscopic systems, and a clock that measures time at a particular
infinitesimal point can only be a highly abstracted idealization. Nevertheless, the
benefit of this idealization is that it provides Einstein with a conceptual tool for
grounding his Principle of Relativity. One first imagines a coordinate system K con-
sisting of a set of clocks and rigid rods that are relatively at rest. One then imagines
another coordinate system K ′, whose clocks and rigid rods are relatively at rest, but
move with uniform rectilinear motion relative to the clocks and rods at K . The origin
in the coordinate system K ′, described with the 4-tuple x ′μ moves uniformly in a
straight line in the coordinate system K = xμ. Thus xμ =< α, 0, 0, 0 > coincides
with x ′μ =< β,−v1β,−v2β,−v3β > (assuming that their origins coincide at
x0 = x ′0 = 0). Once coordinate systems are given, the Principle of Relativity can
be articulated. Any laws describing changes in states of a physical system in K will
be the same in K ′.

The Principle of Relativity describes an isomorphism between laws articulated
relative to different coordinate systems. However, Einstein also used the Principle
of Relativity in deriving the Lorentz transformations, which are laws that transform
between measurements performed relative to different coordinate systems. In the
first step of his argument, Einstein derives generalized Lorentz transformations from
the light Postulate, assuming that the translatory motion of K ′ is in the x1 direction3:

x ′0 = φ(v)γ

(
x0 − v2

c
x1
)

(2.1)

x ′1 = φ(v)γ
(

x1 − vx0
)

x ′2 = φ(v)x2

x ′3 = φ(v)x3

where γ =
(

1 − v2

c2

)− 1
2

and φ(v) is an unknown function of the relative velocities

between the frames. To reduce (2.1) to the standard Lorentz transformations, Ein-
stein looks at the transformation between K ′ and K ′′ that moves with a velocity −v
relative to K ′ (so that K ′′ and K are at rest relative to each other). Let a rod of length
1 lie on the x1 axis of system K ′. In the frame K , the length of this rod will appear

2 A tacit assumption is that if rods in one coordinate system are boosted until they moved with
uniform rectilinear motion relative to the first system, they would represent the same length in
the new coordinate system. Similarly, the implicit assumption is that boosted clocks would also
represent the same unit of time in the moving frame. See Brown (2005, p. 81) and footnote 41 for
supporting quotations.
3 In the following I replace Einstein’s notation with the more readable modern notation.
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contracted by a factor of φ(v)
γ

. In the frame K ′′ the same rod will appear contracted

by a factor of φ(−v)
γ

. Thus, the rod in K ′′ will appear contracted in K by a factor

of φ(v)
φ(−v) . Given the symmetry of the situation, Einstein argues, the transformations

� : K �→ K ′ and �′ : K ′ �→ K ′′ should look exactly the same, so one should
conclude that

φ(v)φ(−v) = 1 (2.2)

Einstein argues that since K and K ′′ are in fact at rest relative to each other, the
transformations � : K �→ K ′ and �′ : K ′ �→ K ′′ should also be considered
as inverse transformations, so that �′(−v) = �−1(v). It therefore follows that
φ(v) = φ(−v) = 1, since otherwise the contraction parameter for the rods will
depend on factors other than the relative velocities between frames. From this Ein-
stein concludes that the generalized Lorentz transformations reduce to the restricted
Lorentz transformations4:

x ′0 = γ

(
x0 − v2

c
x1
)

(2.3)

x ′1 = γ
(

x1 − vx0
)

x ′2 = x2

x ′3 = x3

The notion is that the Lorentz transformations should form a group, and so the
equality �(v) = �−1(−v) is referred to as the “Reciprocity Principle” by some
commentators. But in asserting that the Lorentz transformations should conform to
a group structure, Einstein in effect applies the Principle of Relativity to laws trans-
forming between coordinate systems. As it is articulated, the Principle of Relativity
describes an isomorphism between laws articulated relative to different frames; Ein-
stein’s application of the principle, in deriving the Lorentz transformations, is to the
coordinate systems themselves. It is at least logically possible to separate the laws
articulated in each frame from the laws transforming between them. One could, for
example, assume that the frame K ′′ is not the same as K .

4 Einstein justifies this conclusion as follows:

From reasons of symmetry it is now evident that the length of a given rod moving perpen-
dicularly to its axis, measured in the stationary system, must depend only on the velocity
and not on the direction and the sense of the motion. The length of the moving rod measured
in the stationary system does not change, therefore, if v and −v are interchanged. Hence
follows that l

φ(v)
= l

φ(−v) and
φ(v) = φ(−v) = 1
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Einstein uses the Principle of Relativity to justify the Reciprocity Principle, or the
notion that rods and clocks are warped only as a result of the relative velocity boosts
they experience. But it is not clear why the violation of the Reciprocity Principle is
a violation of the Principle of Relativity. According to the Reciprocity Principle, it
is supposed that if one has two sets of rods and clocks that are at rest relative to each
other, they both provide the same “natural” units of length and time relative to clocks
and rods at rest in another inertial reference frame. However, one could imagine, for
example, rods and clocks made of different substances; one kind of substance would
be appropriate for measuring the length in K , and one would be appropriate for
measuring the length in K ′′. Or, one could imagine different procedures by which
clocks and rods in each frame were prepared. These two coordinate systems would
have different units of length that are natural to them, even though they are at rest
relative to each other. Because both K and K ′′ are coordinate systems, the fact
that they are mutually at rest does not in itself violate the Principle of Relativity,
since all one needs is for the laws of nature to be the same in K and K ′′ for the
Principle of Relativity to hold. These considerations have led some to include the
Reciprocity Principle as a separate axiom of relativity theory and to avoid appealing
to the Principle of Relativity in justifying the restricted Lorentz transformations,
given that the Principle of Relativity is only articulated for dynamic laws defined
relative to frames (see, for example, Madarász et al., 2007).5

The application of the Principle of Relativity to the derivation of the specialized
Lorentz transformations is logically independent of the isomorphism between laws
articulated relative to different frames; one is a symmetry governing transformations
between frames, the other is an isomorphism between laws articulated in different
frames.

Einstein’s derivation makes it seem as if the kinematical results of relativity the-
ory are directly derived from Einstein’s two postulates. When writing about the
status of these postulates Einstein often compared them to the postulates of thermo-
dynamics, suggesting that STR is a “principle theory” rather than a “constructive
theory.”6 Constructive theories begin from a relatively simple formal scheme and
construct from these elementary components the complex phenomena. For example,
in the kinetic theory of gases, the macroscopic states of gases are constructed from
the microscopic states of molecules and the laws governing these microscopic states.
On the other hand, principle theories begin from empirically discovered princi-
ples, which describe general characteristics of natural phenomena. These principles
give rise to criteria which the separate processes have to satisfy. Einstein provides

5 Brown and Sypel (1995) argue that Einstein’s application of the Relativity Principle to derive
the Lorentz transformations should not be surprising, since “the rods and clocks are themselves to
be viewed not as primitive, structureless objects, but as solutions of the basic equations, treating
clocks and rods as composite entities whose parts are governed by dynamic forces.” Thus given a
dynamic approach to spacetime, Einstein’s application of the Principle of Relativity in this context
is unproblematic. I shall consider dynamic approaches and their problems in Section 2.4.
6 See Brown (2005, section 5.2).
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thermodynamics as an example of a principle theory and places STR in the same
category.

The distinction between principle and constructive theories is important in this
context since it seems to provide an account of the kinematical results of STR.
While one does not have a complete constructive account of composite structures
such as clocks and rods in STR, Einstein argues, one can derive their behavior from
broad phenomenological principles like the Light Principle and the Principle of Rel-
ativity. However, it is not clear, given that the Principle of Relativity itself seems
to presuppose the existence of coordinate systems, how it applies to clocks and
rods themselves. Either the presupposition is that an underlying dynamic account of
clocks and rods is yet to be supplied, in which case the Principle of Relativity would
be articulated as a symmetry of underlying dynamic laws that makes no reference to
coordinate systems. Or, there is a constructive account of a different kind, perhaps
involving a geometric account of manifolds, that should replace the phenomenolog-
ical principle. In either case, the Principle Theory account of kinematic effects of
relativity seems incomplete. The analogy to thermodynamic theory is illustrative.
While it is legitimate to think of thermodynamic theory as a successful theory, the
kinetic theory of gases does complete the thermodynamic theory and “grounds” it
in fundamental facts.

One may feel as if a genuine constructive account is required for kinematics.
For example, a possible explanation for length contraction may be that moving rods
experience various forces due to their motion. These forces are velocity-dependent
and they affect all rigid rods in the same way. Similarly, a moving clock will expe-
rience forces that make its parts move more slowly. The initial attempts to explain
the Michelson-Morley experiment involved an interaction between the ether and
charged bodies. Ether theorists such as Lorentz (1881, 1904) hypothesized that rigid
bodies undergo some contraction after they are accelerated to some motion. While
these proposals for a dynamic account of clocks and rods appear to violate the Prin-
ciple of Relativity, it is not necessary that they do so. As Brown (2005, chapter 4)
points out, one can hypothesize that these forces arise in proportion to the velocity
of an object relative to an inertial reference frame, in this way keeping in tact the
Principle of Relativity.

Einstein’s account of length contraction seems to supersede Lorentz’s theory
and other ether theorists, since it doesn’t require an additional explanation over
and above the axioms of relativity.7 The notion that dynamic forces explain the

7 It took a while until the philosophical community came to grips with the status of the Lorentz-
Fitzgerald contraction hypothesis (LCH). Popper (2003, p. 62) argued that the LCH is an ad-hoc
hypothesis, since the prediction of Maxwell’s theory together with Newtonian mechanics regarding
the motion through the ether was falsified by the Michelson-Morely experiment. The LCH was
just introduced in order to avoid facing the falsification of accepted theories, and produced no
new predictions. Grünbaum (1959) argued that the LCH in isolation was falsified by the Kennedy-
Thorndike experiment. In this experimental setup, the interferometer used was similar to that of
Michelson and Morley’s, only it had arms of different lengths. The difference in time between the
two arms did not depend on the orientation of the interferometer. This shows that the LCH by itself
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deformation of rigid rods and clocks is odd, given that they apply universally to
all rigid rods and clocks, no matter what they are made of. But still, how does one
justify the Reciprocity Principle if a constructive account of clocks and rods is not
forthcoming?

So far I argued that it seems odd to subsume laws governing rods and clocks
in different inertial reference frames under the same Principle of Relativity which
governs dynamic laws. Another way to see the disparity between the two appli-
cations of the Principle of Relativity (the first to kinematic laws and the second
to dynamic laws), is to consider the distinction between global and local versions
of the Principle of Relativity. Einstein’s formulation of the Principle is articulated
for “changes in the state of physical systems.” Einstein is implicitly referring to
isolated systems, as the Principle of Relativity does not hold for a subsystem that
interacts with another subsystem. However, it is logically possible for a universe to
have indistinguishable dynamic models, but that the same symmetries do not apply
locally to isolated subsystems of the universe.8

The global version of the Principle of Relativity is exemplified by Ander-
son (1967). Anderson articulates a precise formulation of the Principle of Rela-
tivity based on modern mathematical theories of differential geometry. According
to Anderson’s approach, a physical theory consists of classes of kinematically and
dynamically allowed models. Each model M consists of a manifold with spacetime
structures and matter fields:

〈M, O1, . . . , On〉

Symmetry principles can now be introduced via the notion that various models are
acceptable kinematic and dynamic models of the theory. Thus, the covariance of the
theory is given via the equivalence between one model and another model where
a diffeomorphism d : M �→ M acts on the manifold, so that if 〈M, O1, . . . , On〉
is a model of the theory and d∗ is the drag on the objects of the theory, then so
is 〈M, d ∗ O1, . . . , d ∗ On〉. One can distinguish between spacetime symmetries
and dynamic symmetries by considering whether any diffeomorphism of the mani-
fold leaves the geometric structures invariant, so that the models 〈M, A1, . . . , An〉
and 〈M, d ∗ A1, . . . , d ∗ An〉 remain the same, i.e. d ∗ Ai = Ai . The objects Ai

would then be the absolute (geometric) objects of the theory. A dynamic symmetry
is a diffeomorphism which renders the shifted dynamic model acceptable, so that
〈M, A1, . . . , An, D1, . . . , Dn〉 and 〈M, A1, . . . , An, d ∗ D1, . . . , d ∗ Dn〉 are both
dynamically acceptable.

Anderson’s account generates a natural connection between spacetime symme-
tries and the dynamic symmetries. On the one hand, one considers whether a certain
transformation leaves a geometric object invariant, and then considers whether the

is not sufficient to cohere with the data, and one needs to assume time dilation in addition to length
contraction. See Grünbaum (1959), Evans (1969), and Erlichson (1971).
8 See Treder (1970, p. 86), Brown and Sypel (1995), and Budden (1997).
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same transformation renders acceptable the transformed dynamic objects. Assume
that one defines frames on the manifold using a set of parallel time-like straight
worldlines. Assume that there is a group of transformations, for example, the
Lorentz transformations, for which each element of the group transforms one frame
to another. One may think of the global Principle of Relativity as the notion that
the group of transformations leaves the absolute objects of the theory invariant (in
which case the group is a spacetime symmetry), or it leaves the dynamic objects of
the theory invariant (in which case the group is a dynamic symmetry).

In this formulation of the Principle of Relativity, a direct connection appears to
have been made between the spacetime symmetries and the dynamic symmetries.
However, when the Principle of Relativity is formulated globally in this way, it is an
inter-world principle describing the equivalence between various possible worlds.
The global Principle of Relativity is not an inter-world symmetry between frames.
Assume we have frames K1 and K2 in worldw1, and frames K ′

1 and K ′
2 in worldw2.

If the worlds w1 and w2 are related through a kinematic symmetry, the frames K1
and K2 are mapped onto K ′

1 and K ′
2 via the spacetime symmetry. If the symmetry

is also that of the dynamic objects of the theory, the results of experiments per-
formed in K1 are indistinguishable from experiments performed in K ′

1. Moreover,
experiments in K2 are indistinguishable from experiments in K ′

2. But this does not
imply an intra-world equivalence between K1 and K2 or K ′

1 and K ′
2. The global

Principle of Relativity does not imply the local Relativity Principle, which is an
intra-world relation between frames (or the equivalence between laws applied to
isolated systems).

Budden (1997) provides an example of a theory that many take as satisfying
the global but not the local Principle of Relativity. Budden introduces a couple of
theories with anisotropic spacetime that are analogous to the isotropic Minkowski
spacetime. The theory includes the structures

〈
R

4, λ, N
〉
, where R

4 is the manifold,
λ is the relation of lightlike connectibility, and N is a set of parallel lines in the
spacetime, which amounts to a preferred frame. In one of Budden’s theories, inertial
clocks do not obey the Lorentz dilation factor. Instead, the theory defines a temporal
congruence relation ∼1, such that ab ∼1 ac, if and only if b and c lie in one of the
null hyperplanes picked out by N . Thus, Budden’s theory picks a preferred direc-
tion in spacetime (i.e., a frame), and defines anisotropic congruence relations on
spacetime intervals relative to this frame. The congruence relation does not define
a unit of time, which implies that the clocks do not obey the Reciprocity Principle
between frames. Budden’s theory enables one to define a dilation effect between the
preferred frame and other frames:

D = D(1 + v)−1 (2.4)

where v is the relative velocities between the frames. In all other respects, the
anisotropic theory satisfies the global symmetries of the theory of relativity, since
a transformation from one possible world with a preferred frame to another will
yield indistinguishable dynamic models. But clocks behave differently than in rela-
tivity, temporal measures sometimes dilating and sometimes contracting depending
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on the relative velocities between the preferred frame and the frame boosted relative
to it.

Thus, Budden’s theory shows that one can have both a global kinematic and
dynamic symmetry, e.g., Lorentz covariance, without having local kinematic sym-
metry. In Budden’s theory, dynamic laws relative to one inertial reference frame are
isomorphic to dynamic laws of the frame which has actively been transformed under
the Lorentz transformations. But time measurements in different frames do not obey
the Lorentz transformations.

Recently Skow (2008) argued that Budden’s anisotropic theory fails to demon-
strate that the global Principle of Relativity does not imply the local Principle of
Relativity. According to Skow, the anisotropy of Budden’s spacetime implies that
temporal processes in a non-preferred frame are correlated with remote temporal
processes on the preferred frame. This somehow suggests that systems in the non-
preferred frame that appear to be isolated are not genuinely isolated. Given that
their evolution in time depends on its relation to the preferred frame, one cannot
take them to be isolated. There must be some non-local interaction to account for
Budden’s non-isotropic spacetime, perhaps mediated by spacetime itself, between
systems residing in the non-preferred frame on the one hand and systems residing
in the preferred frame on the other hand. Thus, what looks like a violation of the
local Principle of Relativity, is not genuinely a violation of the principle, because in
an anisotropic spacetime one cannot truly isolate a system from another system if a
preferred direction of spacetime is given.

Perhaps what is at stake is a distinction that commentators fail to make, and that
is the distinction between the failure of the Reciprocity Principle (that kinematic
contraction and dilation effects only depend on the relation between frames, and
not on the existence of a preferred frame), and the failure of the local Principle of
Relativity (according to which the same dynamic laws apply to all isolated systems).
Einstein argued that the Reciprocity Principle follows from the local Principle of
Relativity. Given Einstein’s claim that the local Principle of Relativity implies the
Reciprocity Principle, one is tempted to take Budden’s theory as a violation of the
local Principle of Relativity. Skow is correct to argue that the failure of Reciprocity
Principle does not imply the failure of the local Principle of Relativity. Skow’s
argument amounts to the claim that when the Reciprocity Principle fails, the local
Principle of Relativity is not shown to be false, because somehow an anisotropic
spacetime suggests that no system can be genuinely isolated from another. And if
no system can be isolated, one cannot argue that isolated systems in different frames
disobey the local Principle of Relativity. But the correct response to Budden’s theory
is that the Reciprocity Principle and the local Principle of Relativity are logically
distinct, and the local Principle of Relativity could still hold despite the failure of
the Reciprocity Principle.

To summarize the above discussion, despite Einstein’s claim, there is no direct
logical connection between the restricted Principle of Relativity, and the Reciprocity
Principle. While Einstein attempts to derive the relation �′(v) = �−1(−v) from
the Principle of Relativity, he is not justified in doing so. In recent decades work
has been done to demonstrate the gap between global, or purely geometric accounts
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of the Principle of Relativity, and the local Principle of Relativity, which asserts the
dynamic equivalence between isolated systems. While this work is correct to point
out the gap between global and local symmetries, much of it confuses the failure of
the Reciprocity Principle with the failure of the local Principle of Relativity. What
these arguments in fact point to is the distinction between the Reciprocity Principle
and the Principle of Relativity.

2.2 Conventionalism

The conventionalist approach to spacetime was espoused by Einstein in his early
work and by philosophers such as Poincaré (1905), Reichenbach (1927, 1969),
Carnap (1937), Schlick (1920), and Grünbaum (1963).

One may detect a variety of conventionalists accounts, ranging from fairly mod-
est claims about theories being underdetermined by the phenomena to radical claims
about any axiomatic system amounting to an arbitrary linguistic construct. Poincaré,
for example, famously believed that the nature of space gives rise to an underdeter-
mined geometric structure. According to Poincaré, the choice between Euclidean,
hyperbolic and spherical geometries is underdetermined by our measurements of
spatial relations. The implication is that the axioms of geometry are neither empir-
ical claims – since they are underdetermined by observations – nor are they nec-
essary claims – since alternative axiomatizations of space can be given. According
to Poincaré, there is a separate category for propositions that are neither empirical
nor a priori or necessarily valid; these would be conventions. However, according to
Poincaré the conventional nature of geometry does not extend to other branches
of mathematics; the nature of arithmetics does not lend itself to a conventional
choice about the axioms. Thus Poincaré’s conventionalism is fairly conservative in
its scope.

Another version of conventionalism is neo-Kantian Conventionalism. According
to this version, the interpretation of experience requires that our minds impose a
rational form on intuitions. Kant believed that the rational form of intuition is nec-
essary, but the neo-Kantian school allowed for those forms to change over time.
In his earlier work, published in 1920 and entitled The Theory of Relativity and
A priori Knowledge (1920), Reichenbach attempted to reconcile the insights of
Kantian epistemology with the lessons of relativity theory. Reichenbach argued
that some Kantian principles could be preserved in the light of the new theory,
and could illuminate the epistemological nature of the theory; but other principles
need to be revised. He argued, for example, that one could give a Kantian account
of the relativistic principle that the speed of light provides an upper limit to all
physical velocities. He claimed that there being an upper limit to the velocity of
causal signals is a consequence of the principle of no action at a distance. The
locality of causal action is itself a consequence of Kant’s a priori principle of perma-
nence of substance (Reichenbach, 1920, p. 12). On the other hand, some of Kant’s
claims about certain propositions being a priori must be given up in the light of
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relativity theory, including the absolute nature of time and the Euclidean character
of space.

Reichenbach’s earlier work therefore attempts to salvage some of Kant’s claims.
However, beyond accepting certain Kantian principles as being valid a priori, and
rejecting others as invalid, Reichenbach also revised Kant’s notion of a priori itself.
Kant equated a priori judgments with necessary truths. Reichenbach felt that the
advent of relativity theory clearly demonstrated that a priori propositions are not
necessary. Some principles, like the absolute nature of time, were held to be valid
a priori in Newtonian physics, but were then taken to be false in the theory of rela-
tivity. However, Reichenbach argued, a certain interpretation of the a priori can be
salvaged, as long as a priori judgments are not equated with necessary truths. But
knowledge presupposes the cognitive coordination of individual terms of the theory
with individual objects of experience. This coordination depends on the definition
of the concept of object given by cognition. Without the concept of object, cogni-
tion would not be able to interpret intuitions, so that intuitions must have rational
form. The philosophical problem is to identify those cognitive coordinations that are
unique, so that no contradiction arises between theory and experience (1920, p. 47).

Reichenbach calls the principles of coordination that constitute the concept of
the object Axioms of Coordination. Examples for Axioms of Coordination are the
axioms of arithmetics with which the concept of a mathematical vector is defined.
Without the mathematical theory of vectors, physical forces could not be conceptu-
alized or identified in experience. Another Axiom of Coordination is the principle of
genidentity, according to which the trajectory of a particle determines its identity.
Euclidean geometry functions as an Axiom of Coordination in Newtonian physics,
since it is not possible to identify in experience Newtonian physical objects without
assuming Euclidean geometry as valid. But it is no longer an Axiom of Coordina-
tion in the General Theory of Relativity. Axioms of Connection, on the other hand,
describe empirical connections between terms in the theory.

Axioms of Coordination have an a priori status in the theory, since without these
axioms the theory is not able to receive empirical content. However, unlike Kant’s
synthetic a priori judgments, these axioms are not necessarily valid for all theo-
ries. When new theories are formulated, different Axioms of Coordination are used
to bridge between the formal system and experience. Friedman (1991, 1999) has
coined the term “relativized a priori” to convey the epistemic status of Axioms
of Coordination. The a priori nature of certain propositions arises from the “con-
stitutive” role of principles that bridge between theory and experience. Neverthe-
less, over time, these principles can be revised. Thus, these principles are only a
priori relative to a particular theoretical context. Euclidean geometry, according to
Reichenbach, is constitutive in the context of classical mechanics, but only topology
is constitutive in the context of the general theory of relativity. When a new principle
of coordination is introduced, discarded principles of coordination can be shown to
be approximations of newer principles, so that new theories can be shown to be an
improvement over the older, less adequate theories.

What distinguishes a principle of coordination from any other empirical propo-
sition, is that one can detect an element of arbitrariness in the principle. “The
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contribution of reason is not expressed by the fact that the system of coordination
contains unchanging elements, but in the fact that arbitrary elements occur in the
system” (1920, p. 89). Thus, the contribution of reason is made felt, so to speak,
through the existence of conventional systems of representation; all adequate for the
representation of experience, but none preferable. According to Reichenbach, the
Principle of Relativity, since it allows for a conventional choice of inertial reference
frames, demonstrates the contribution of reason to the object of understanding:

The theory of relativity teaches that the four space-time coordinates can be chosen arbitrar-
ily, but that the ten metric function gμν may not be assumed arbitrarily; they have definite
values for every choice of coordinates. Through this procedure, the subjective elements
of knowledge are eliminated and its objective significance formulated independently of
the special principles of coordinates. Just as the invariance with respect to transformations
characterizes the objective nature of reality, the structure of reason expresses itself in the
arbitrariness of admissible systems. (Reichenbach, 1920, p. 90)

Thus for Reichenbach, relativized a priori propositions introduce conventional, sub-
jective elements to our theories. A convention is required because experience has
to be understood via its rational form. Since this rational form is not necessary, one
can bring to bear alternative rational forms to the same experience, introducing an
element of arbitrariness to our representations.

But Reichenbach did not preserve his neo-Kantian view for long, and was influ-
enced by Schlick to revise his account, thus forming a third kind of convention-
alism of a positivist kind. Reichenbach slowly came to believe that Kant’s notion
of synthetic a priori no longer holds if experience is to determine which principles
of coordination are acceptable. If the theory of relativity is empirically superior to
Newtonian physics, one can no longer treat the discarded principles of Newtonian
physics, and the accepted principles of the Theory of Relativity, as equally valid.
Thus, they could no longer be taken as a priori in good faith. The consequence is a
retreat to a Humean-like fork: propositions must strictly be divided into analytic a
priori, and synthetic a posteriori propositions. Reichenbach was also influenced by
Schlick, who objected to the notion of the object of understanding being constituted
by reason and to the neo-Kantian form of idealism. According to Schlick (1920),
one may think of the totality of physical facts as objective claims that are distin-
guished from subjective experiences. Physics in fact describes mind-independent
reality. Nevertheless, it is also possible to indicate the same set of facts by means of
various systems of judgment (Schlick, 1920, p. 86). Thus, one can articulate various
theories expressing the same set of facts, such that the choice between these theories
is a matter of convention. While there is an indefinite number of conventional rep-
resentations, one may use simplicity as a criterion for selecting between the various
systems of judgments, but there is nothing in reality to tie us down to a specific
representation as the correct one.

Influenced by Schlick’s positivist-conventionalism, Reichenbach (1927, 1969)
revised his account of the a priori elements of theory. The cleavage between ana-
lytic a priori propositions and synthetic a posteriori claims demand that Reichen-
bach’s Axioms of Coordination be reevaluated. In a work published in 1924, entitled
Axiomatization of the Theory of Relativity, Reichenbach introduced his new account
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of principles of coordination. He distinguished between two aspects of coordina-
tion. First, there are the linguistic conventions and definitions of the theory. In
this, Reichenbach and Schlick were following Poincaré’s and Hilbert’s notions of
implicit definition. According to Poincaré (1905, p. 92), for example, the Law of
Inertia is not necessarily true. However, it is not an empirical claim, either. The
notion that a force-free body will move with uniform rectilinear motion is partially
determined by the meaning of “force” (and vice versa). One may associate a force
with a change in position, or a change in acceleration; both would allow one to
articulate alternative laws of inertia. Nothing in the observations will imposes New-
ton’s Law of Inertia. But once the Law of Inertia defines the force-free state of the
particle as the uniform motion of an object, the Law of Inertia acquires the status of
necessary truth within Newton’s axiomatic system. Similar views about the Law of
Inertia were held by Reichenbach (1927, p. 116) and Hanson (1965).

However, the more significant transition in Reichenbach’s thinking is the revision
of his account of coordination between theory and experience. Reichenbach is still
arguing that for a mathematical theory to be applied to experience, individual terms
of the theory must be coordinated with individuals of experience. However, now
the coordination is not done from within the theory, and the concept of object is
no longer determined by reason. Instead, the coordination between individual terms
and individuals of experience is carried out via some experimental practice. The
coordination of theory to experience is performed via what physicists do, not by
the rational form of their intuitions. Thus Reichenbach is no longer speaking of
Axioms of Coordination, but instead referring to them as coordinative definitions. In
Reichenbach (1927), he articulates the notion of coordinative definition:

The mathematical definition is a conceptual definition, that is, it clarifies the meaning of
a concept by means of other concepts. The physical definition takes the meaning of the
concept for granted and coordinates to it a physical thing; it is a coordinative definition.
Physical definitions, therefore, consist in the coordination of a mathematical definition to
“a piece of reality”; one might call them real definitions. The concept of a unit of length
is a mathematical one; it asserts that a certain particular interval is to serve as a [standard
of] comparison for all other intervals. From this nothing can be inferred, however, as to
which physical interval is to serve as the unit of length. The latter is first accomplished
by the coordinative definition which designates the Paris standard meter as the unit of
length. In this physical definition, the mathematical definition of the concept is presupposed.
(Reichenbach, 1969, p. 8)

According to Reichenbach, complementing the linguistic conventions are defini-
tions that coordinate between linguistic terms and individual objects of experience.
In the case of physical geometry, concepts such as “unit of length” and “unit of
time” have to be coordinated with physical objects such as measuring rods and
clocks used to generate the relevant measures of length and duration. It is not that
reason constructs for us the object of experience, rather, the objects are simply
pointed out ostensibly. A coordinate system therefore consists of a set of physical
measuring rods and clocks that are relatively at rest, and functions in our scientific
practice as a coordinative definition. The implication of Reichenbach’s approach is
that geometric axioms do not represent a single theory but a family of models. The
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symbols of the theory can be interpreted only after the coordinative definition is
made (i.e., a coordinate system is selected) and the propositions of physical geome-
try gain physical (i.e., empirical) content.

Reichenbach’s transition from neo-Kantian to Positivist Conventionalism carries
important epistemological consequences. In the neo-Kantian account, the Principle
of Relativity marks the constitutive role of reason in constructing the concept of
object. In the positivist account, the Principle of Relativity describes an isomor-
phism between the various models of the theory. In the positivist account, each
model of the theory relies on a different coordinative definition. There is a crucial
difference between an interpreted formal theory, and its interpretation after the indi-
vidual terms are taken to represent specific objects. The formal theory is only a sym-
bolic, syntactic structure, lacking any empirical or physical content. The interpreted
theory has empirical or physical content in virtue of the objects to which the formal
theory is referring. That is why logical positivists distinguish between formal and
physical geometry. Formal geometry is a mathematical structure; the propositions
of physical geometry are about real, physical objects.

The upshot of logical positivism is that two different interpretations of a formal
theory include propositions that are not directly comparable. For example, one could
conceive of Hilbert’s axiomatization of Euclidean geometry as a formal theory that
is then given different interpretations. In one interpretation of the theory, the notion
of a “point” could be taken to represent a point in physical space, and the notion of
a “line” could be taken to represent a line in physical space. But the formal terms
could be interpreted differently. For example, the notion of a “point” could be taken
to represent a line in physical space, and the notion of a “line” could be taken to
represent a point in physical space, leading to what is known as projective geometry.
The consequence is that claims made within the context of one interpretation are not
comparable or are not commensurable with claims made in the context of another
interpretation, despite them being interpretations of a single theory. The physical
content of these claims crucially depends on the coordinative definition, or on the
interpretation of the formal system.

The logical positivists argue that Einstein’s restricted Principle of Relativity is
a prime and central example of their epistemology. Einstein’s 1905 paper seems to
follow conventionalist epistemology. The two postulates of the theory of relativity,
the Principle of Relativity and the Light Postulate, provide the axioms of the theory.
From these axioms one can deduce the theorems of relativity. In addition to the pure
axiomatic system, the applied theory uses coordinate systems to bridge between the
abstract conceptual system and physical experiences. Each inertial reference frame
provides a particular interpretation of the theory of relativity. The frame coordinates
between abstract concepts of “unit of length” and “unit of duration” and the physical
objects used as standards of length and duration in experiments (i.e., rigid measuring
rods and clocks).

According to the Principle of Relativity, whether a law is articulated relative to
a coordinate system that is at rest, or whether it is articulated relative to a system
that moves with uniform rectilinear motion relative to the first coordinate system,
it assumes the exact same form. If one is reading into the Principle of Relativity a
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positivist epistemology, one is asserting the equivalence between different models
of the theory. Each coordinate system is in effect a different interpretation of the
formal system. If a certain coordinate system K is given, the term “unit of length” is
coordinated with a unit of length marked on the measuring rods of K . One does not
have to have the actual rods placed in the coordinate system, but at least in principle,
for each unit of length in the relativistic geometry there should be a rod correspond-
ing to it. Similarly, the term “unit of time” in the formal theory is coordinated with
a period of a clock. The set of rods and clocks that are at relative rest comprise the
coordinate system.

However, the logical positivist interpretation for the Principle of Relativity is
untenable. Assume that one has at his disposal two coordinate systems K and K ′.
One can choose to interpret the formal geometry by taking its terms to refer to rods
and clocks in K , or one can take them to refer to rods and clocks in K ′. In each case,
a different interpretation of the formal theory is provided. If the positivists take seri-
ously the notion that physical geometry receives content only once the coordinative
definition is made, then different coordinate systems in effect introduce alternative
interpretations of the formal theory.

Given such a positivist gloss, the Principle of Relativity ceases to be a theo-
retical proposition. The principle asserts that different interpretations, stemming
from different coordinate systems, produce the same dynamic laws. This type of
equivalence is not a theoretical equivalence, because the different interpretations
are not directly comparable. At most one can say that the different models are
empirically equivalent, in that the same measurements will be predicted by each
model. The upshot is that the Principle of Relativity is not itself an empirical claim
within a particular model, but a meta-theoretical principle for constructing models.
This implication of the positivist epistemology is not always emphasized or even
recognized by positivist philosophers, since it is always stressed that the origin of
the Principle of Relativity is empirical. Einstein argues that no physical theory ever
makes reference to anything but relative velocities, which seems to provide the prin-
ciple with great empirical support. But given the positivist reading, it may be that
the Principle of Relativity received much empirical support, but the Principle itself
is not a theoretical or a directly empirical claim. The Principle of Relativity asserts
an isomorphism between different models of the theory, but is not itself part of the
theory. Carnap (1937) seems to recognize the implication and treats the Principle
of Relativity itself as a convention about the syntactical rules of the language of
physics (see p. 328).

The problem with the positivist-conventionalist account of the Principle of Rel-
ativity is that the principle seems to be justified by empirical and theoretical con-
siderations, but the principle itself cannot have any physical or empirical content.
There seems to be an incongruity between the justification the Principle of Relativ-
ity receives from experiments and from theoretical considerations (these include, for
example, the unification of the electric and magnetic fields), and the epistemic role
the principle receives within the positivist account. If it is possible for the Principle
of Relativity to receive empirical and theoretical justification, it seems odd to assert
that the principle itself has no empirical or physical content. If the principle has no
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empirical and physical content, then all the justification it receives is irrelevant to its
stipulated truth. If the Principle of Relativity is a mere convention, a meta-theoretical
principle for the construction of models, then no justification for the principle is
necessary.

The positivist-conventionalist seems untenable when nature of equivalence
between models of the theory is considered. While the different models produce
isomorphic structures, the equivalence between models is strictly empirical, i.e.,
there is no underlying theory that unifies the models into one overall interpreted
theory. But if all models of the theory are isomorphic to one another, there is reason
to suspect that they consist of different representations of the same world state. It
would just be an enormous coincidence to have such a deep symmetry governing
models which are based on conventional coordinative definitions. Friedman (1983,
pp. 277–94) argues that the replacement of empirically equivalent models with
equivalent representations is the process by which the vocabulary of a theory is
revised in order to decrease the conventional and arbitrary elements of a theory.
One may think of the Minkowski’s approach to spacetime as an attempt to do just
that, i.e., to provide a four-dimensional geometric structure that unifies the various
models of relativistic spacetime into one overall theory.

A similar development concerned the conventionalist interpretation of the Prin-
ciple of Equivalence in the context of the General Theory of Relativity. At first,
conventionalists viewed Einstein’s Principle of Equivalence as proof of the conven-
tionalist thesis. According to Einstein, the equality of inertial and gravitational mass
implies the equivalence between two descriptions; one is a frame of reference at
rest with a uniform gravitational force, the other is a frame of reference accelerating
uniformly but experiencing no gravitational force. Conventionalists argue that the
choice between the two descriptions is conventional. However, as later interpreters
have realized, the equivalence is only valid locally, and Einstein’s incorporation of
the gravitational force into the spacetime metric does not allow the global elimi-
nation of gravitational effects. Thus, in Einstein’s theory there is no longer a con-
ventional choice about the nature of gravitation, and the gravitational field could
not be dispensed with throughout spacetime or be treated as an eliminable universal
force.

While the conventionalist approach to spacetime is mostly out of favor today, the
program for axiomatizing the theory of relativity is still in full force.9 According
to this approach, one can gain insight to the foundations of a physical theory by
reconstructing it within first order logic. Those who endorse this approach do not
always insist on the conventionalist nature of the axioms of spacetime theory (by
putting emphasis, for example, on the empirical origins of the Light Postulate). Nei-
ther do these modern revivals discuss the epistemological nature of different models
of the theory. But they still view spacetime theory as a collection of empirically
equivalent models. In Madarász et al. (2007), the project of constructing an first

9 The program of axiomatizing spacetime theory has a long and interesting history. For a modern
revitalization of the program see Andréka et al. (2006) and Madarász et al. (2007).
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order logic axiomatization of relativity consists of constructing observable motions.
A model of this theory includes a universe of bodies B and sets of four quantities Q
describing the spatiotemporal location of bodies. But for the spatiotemporal loca-
tions to make sense, they must “belong” to a certain structure – the inertial system
of an “observer,” which is a particular kind of body. Thus, each model of the theory
includes a “worldview,” which is a six-place relation W (o, b, x, y, z, t) stating that
a body b has a spatial location x, t, z at time t in o’s inertial reference frame. There
are also special axioms fixing the motions of these observers. This approach to the
axiomatization of relativity leads to various empirically equivalent models, depend-
ing on the “observer” or the inertial frame chosen as reference. The axiomatization
of spacetime theory may be useful for gaining insight into the foundations of the
theory.10

But such an axiomatization of spacetime remains an unsatisfying view of the
nature of spacetime. As long as our axiomatization leads to empirically equiva-
lent models, where each model is defined relative to a coordinate system or an
“observer,” the Principle of Relativity itself becomes a non-theoretical principle
about models – asserting the equivalence between them. It may be that spacetime
theory is inherently limited, and that it is simply not possible to articulate a space-
time theory that eliminates observers or coordinates systems from the foundations
of spacetime theory. However, if there exists an interpretation of spacetime that is
able to unify the empirically equivalent models, the positivist-conventionalist inter-
pretation of the restricted Principle of Relativity should be abandoned.11

Positivist conventionalism was abandoned in the second half of the twentieth
century, as a result of many factors. Some include post-positivist critiques by Quine
and Kuhn, other factors perhaps include sociological ones. In any case it is appar-
ent that Einstein’s Principle of Relativity is not best understood by the positivist-
conventionalist view. Some commentators, most notably Michael Friedman, recom-
mend a return to the neo-Kantian views of early Reichenbach. But then it is not clear
how one can retain the synthetic a priori nature of principles that are demonstrated
to be empirically inadequate. Others attempt to revive the axiomatized approach to
the theory of relativity, taking each observer to be constituting its own “worldview.”
These commentators seem to be unaware of the epistemological weakness faced by
the early conventionalists of the positivist school who took each inertial reference
frame to be a different model of the formal theory.

10 For example, the analysis of the logical foundations of relativity theory shows that it is possible
to replace the Principle of Relativity with a weaker axiom (i.e., that observers agree on which
events take place). The price for weakening the relativity postulate is that it is necessary to add a
reciprocity relation between frames, i.e., time dilation and length contraction must be the same for
any boosted frame relative to the frame at rest.
11 See Friedman (1983, chapter VII) for a similar complaint against conventionalism.
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2.3 The Geometric Approach to Spacetime

The conventionalist account of spacetime theory has by and large been
superseded by the geometric approach to spacetime (see, e.g., Minkowski, 1952;
Earman and Friedman, 1973; Nerlich, 1979; Mellor, 1980; Healey, 1995; Balashov
and Janssen, 2003; Baker, 2005). One can trace the origins of this approach to
Minkowski’s geometric formulation of the Special Theory of Relativity. The world,
according to Minkowski, is a collection of worldpoints designated with a system of
values x, y, z, t , where x, y, z are spatial coordinates and t is a temporal coordinate
(Minkowski, 1952, p. 76). A body’s motion through this world is described as a
worldline; it is a set of worldpoints in which infinitesimal variations dx, dy, dz
correspond to infinitesimal variations dt . Minkowski erects an analogy between
the transformation group Gc that governs the spacetime structure of STR and the
Euclidean group governing Euclidean space. The transformation group Gc contains
the Euclidean group of rotations and translations in the spatial dimensions (i.e.,
the transformations leaving x2 + y2 + z2 invariant). But the group Gc also includes
velocity boosts that leave invariant the spacetime interval ds2 = c2t2 −x2 − y2 −z2.
Minkowski argues that invariance in relation to Gc is a general principle governing
natural phenomena, and raises this property to the status of world-postulate.

Minkowksi concludes that the main lesson of relativity is that space and time can
no longer be taken to exist independently:

We should then have in the world no longer space, but an infinite number of spaces, analo-
gously as there are in three-dimensional space an infinite number of planes. Three dimen-
sional geometry becomes a chapter in four-dimensional physics. Now you know why I said
at the outset that space and time are to fade away into shadows, and only a world in itself
will subsist. (Minkowski, 1952, p. 79)

Thus Minkowski believes that underlying the kinematics of relativity is an objec-
tive four-dimentional world with spacetime points and objective spacetime intervals
defined between them. The Principle of Relativity is therefore not a phenomeno-
logical principle asserting an isomorphism between different models of the theory,
but a geometric symmetry governing the underlying four-dimensional spacetime.
Different inertial reference frames produce alternative representations of the same
world-state.

Minkowski argues that his account of relativistic kinematics is more intelligible
than that of Lorentz’s dynamic account of length contraction. Imagine a rod at rest
in x, y, z, t . Such a rod looks like a band (see Fig. 2.1). The length of the rod P P
is l. If one looks at a rod moving with uniform rectilinear motion relative to the
original, its band will look slanted in the Minkowski diagram. The length of this
rod is also l, but this length is measured relative to a rotated axes x ′, y, z, t ′ so that
Q′Q′ = l. Since the length of this moving rod in x, y, z, t is the cross-section along
the axes of x, y, z, t , its length is l/γ in this system.

According to Minkowski, there is no dynamic account of length contraction
and time dilation; these phenomena result from rods and clocks conforming to a
four-dimensional underlying geometry. Each inertial reference frame, because of
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Fig. 2.1 Length contraction in Minkowski’s geometric approach

its orientation in spacetime, introduces different standards of length and duration,
thereby producing different representations of the same spatiotemporal intervals.
Moving rods appear contracted in the rest frame, since one is not taking the set
of events that are considered simultaneous along the moving reference frame as
defining a unit of length in the rest frame. A cross-section of non-simultaneous
events produced by the moving rod is shorter when measured in the rest frame.

In Minkowski’s geometric approach, the lessons of relativity appear entirely
different than Einstein’s conventionalist-leaning remarks. According to this new
approach, space and time have to be fused together to form a four-dimensional
structure. Understanding that space is only a substructure of spacetime

. . . is indispensable for the true understanding of the group Gc, and when [this further step]
has been taken, the word relativity-postulate for the requirement of an invariance with the
group Gc seems to me very feeble. Since the postulate comes to mean that only the four-
dimensional world in space and time is given by the phenomena, but that the projection in
space and in time may still be taken with a certain degree of freedom, I prefer to call it the
postulate of the absolute world (or briefly, the world-postulate). (Minkowski, 1952, p. 83)

Thus in Minkowski’s account, the Principle of Relativity is not a phenomenological
postulate of the theory, but a symmetry inherent in the geometric structure of a four-
dimensional world. Rather than thinking of the Principle of Relativity as requiring
an arbitrary coordinative definition, Minkowski thinks of it as a postulate of the
absolute world, i.e., as a degree of freedom implicit in selecting arbitrary systems of
reference used to construct representations of an objective world.

The view, which takes spacetime to describe an objective spacetime structure,
has a philosophical advantage over conventionalist accounts. In the conventionalist
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account, different models of the theory are considered empirically equivalent. But
in the geometric account, different representations of the spacetime are theoretically
equivalent.

Minkowski’s view of relativity came to dominate relativity textbooks and philo-
sophical explications of relativity theory. It also came to dominate Einstein’s own
thinking while working on the General Theory of Relativity.

The trouble with the geometric approach is that it tempts us to think of spacetime
as a material field that causally influences the behavior of bodies. Momentum and
energy conservation laws assert that closed systems move along geodesics of the
spacetime. However, what causes free particles and light rays to follow the geodesics
of the spacetime? Since the path of a free particles is not caused by any other mate-
rial body, the image of a four-dimensional manifold of events leads commentators to
think of spacetime as the cause or the “origin” of kinematics. The view of spacetime
as guiding inertial motions has its historical origins in Mach’s critique of Newton’s
absolute space in The Science of Mechanics. Mach was concerned to show that
Newton’s bucket experiment does not necessarily rule out every possible definition
of relative motion as responsible for inertial effects (Mach, 1893, p. 300). But his
other argument against Newton’s absolute space was that Newton could have posited
the existence of a material medium, like the ether, which lies throughout space and
directs bodies in their inertial motions (Mach, 1893, p. 282). Newton’s concept of
absolute space is a metaphysical notion, precisely because it is a physical entity that
has no causal influence on material bodies.

Einstein came to think of spacetime in much the same way as Mach proposes.
According to Einstein, spacetime should be thought of as an entity that acts on
bodies as this structure determines the inertial behavior of bodies. The problem with
Newton’s mechanics and STR, according to Einstein, is that spacetime seems to act
on matter without being acted upon in return. This “violation” of the principle of
action equals reaction is corrected in The General Theory of Relativity where matter
is said to be acting on spacetime by curving it. Thus, spacetime can be compared to
an ether that causally influences the behavior of bodies:

The inertia-producing property of this ether [Newtonian spacetime], in accordance with
classical mechanics, is precisely not to be influenced, either by the configuration of matter,
or by anything else. For this reason we may call it “absolute”. That something real has to
be conceived as the cause for the preference of an inertial system over a noninertial system
is a fact that physicists have only come to understand in recent years . . .Also, following
the special theory of relativity, the ether was absolute, because its influence on inertia and
light propagation was thought to be independent of physical influences of any kind . . .The
ether of the general theory of relativity differs from that of classical mechanics or the special
theory of relativity respectively, insofar as it is not “absolute”, but is determined in its locally
variable properties by ponderable matter. (Einstein, 1921, pp. 55–56)

Thus the difference between absolute and relative conceptions of spacetime, accord-
ing to Einstein, is whether the spacetime structure is “mutable” or not.

Following Mach and Einstein, philosophers understood arguments for absolute
space and time as an inference from inertial phenomena to the best explanation
thereof. One first begins with inertial effects as observations in need of explanation.
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One next argues that no relative motion could provide a reasonable explanation for
these effects. Then it is supposed that a spacetime background is needed relative
to which inertial motions are defined. It is then argued, that without a spacetime
structure, it is not possible to explain the motion of force-free particles.12 Finally, the
argument concludes that because spacetime is indispensable for explaining physical
phenomena, it is also real, and should actually be taken to have causal influence over
physical bodies, in directing force-free particles and lights rays along the geodesics
of the spacetime.

The reification of spacetime suggests that free particles could have failed to move
along a geodesic. So the truth of the Law of Inertia is contingent and is analogous
to any observed law of nature. Thus, the geometric interpretation of spacetime helps
commentators replace the conventionalist account of the Law of Inertia with what
appears like an empiricist’s account. Earman and Friedman (1973) argue that inertial
reference frames are reducible to the independent structures of spacetime.13 If one
has good reasons to think that the manifold and the spacetime structures are real,
then one should treat the Law of Inertia as a directly verifiable prediction.

However, there are many drawbacks to reifying the spacetime structure and no
benefits. Taking the spacetime itself as “explaining” the inertial behavior of bodies
leads interpreters to say that the spacetime causally influences the behavior of iso-
lated systems. Spacetime acts on bodies in that it “guides” them to move through
geodesic lines. A useful way to think of these geodesic lines is to think of them as
analogous to ruts that make the passage through spacetime easier. But this causal
account of spacetime seems to stretch too far our common intuitions about expla-
nation. One ought to feel uncomfortable when spatiotemporal points are attributed
causal powers. For one, an entity which has causal powers seems to require some
substance-like existence. It seems natural to think that causal powers must be inher-
ent in some substratum. But spatiotemporal points by definition are not the kinds of
things that persist. So in what sense do they have substance? Do we not need to think
of an entity with substance as persisting? For these reasons, even Newton’s account
of absolute space specifically precludes spatial points from being substance-like as
Newton takes for granted that they are without causal efficacy.14

A typical example of an argument that reifies space is given by Nerlich:

Without the affine structure there is nothing to determine how the [free] particle trajectory
should lie. It has no antennae to tell it where other objects are, even if there were other
objects . . . It is because space-time has a certain shape that world lines lie as they do.
(Nerlich, 1976, p. 264)

12 For the history of this reading of the argument, see Reichenbach (1927, pp. 210–18),
Burtt (1954, pp. 244–55), Jammer (1994, p. 106), Lacey (1970), and Westfall (1971, p. 443).
13 A reference frame F is defined by a time-like vector field X , i.e., dt X �= 0. The trajectories of
X could be interpreted as the worldlines of points in the spacetime. If there is a coordinate system
{xμ} in which the components of the affine connection vanish, or 
γμν = 0, and the coordinate
system is adaptable to F , i.e., the spatial coordinates xα , α = 1, 2, 3 of the trajectories of X are
constant, then F is an inertial reference frame (Earman and Friedman, 1973, section 3).
14 See Newton’s account of absolute space in the De Gravitatione, Newton (2004).
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Nerlich’s imagery suggests that because spacetime has a certain shape, the trajecto-
ries receive a certain structure as a result. The implication that the shape of space-
time is explanatory in some way, i.e., it gives rise to the way in which free-particles,
clocks and rods behave.15

However, the causal language describing the relation between spacetime and
matter violates certain ingrained intuitions about causal explanations. Brown puts
the objection as follows:

If free particles have no antennae, then they have no space-time feelers either. How are
we to understand the coupling between the particles and the postulated geometrical space-
time structure . . .? In what sense then is the postulation of absolute space-time doing more
explanatory work than Molière’s famous dormative virtue in opium? (Brown, 2005, p. 24)

Brown’s worry is therefore with the cogency of taking spacetime to have causal
powers analogous to the causal powers a physical substance or field may have. If
the assumption – that spacetime has a causal efficacy – is cogent, one needs to
consider whether the assumption provides a genuine explanation for inertial motion.
To do so, one may analyze the causal relation between spacetime and matter with
the help of counnterfactuals. Assume that the state φ of A causes the state θ of B.
The causal relation between A and B implies the counterfactual statement “if A had
not existed with property φ, then B would not have existed with property θ .” It is
tempting to describe the relation between spacetime and matter as causal since it
supports a similar counterfactual. If spacetime did not have certain properties (e.g.,
a pseudo-Riemannian structure, or a curvature), rigid rods and clocks would not
behave as they do, and trajectories of free particles would not have been as they are.

One can parse Brown’s objection as follows. It is not always the case that such
a counterfactual underwrites a causal relation. In the case where A having property
φ states the condition for the possibility of B having property θ , the counterfac-
tual does not describe causation between two independently existing things. For
example, suppose we say that the Nobel Prize committee had awarded Einstein
the Nobel Prize. One may say that a counterfactual claim is supported – had the
Nobel Prize committee not given Einstein the title, he would not have been a Nobel
Prize laureate. However, the act of giving the prize is not the cause of Einstein’s
getting it. The act of giving the prize is part of the conditions for the possibility of
earning the prize. The act of giving the prize and the event of earning it are one

15 Even though Einstein described the relation between spacetime and matter as causal, he also
thought that having two independent fields existing side by side is problematic. This is one of
his motivations for searching for a unified field theory. In a lecture delivered at the Nobel Prize
ceremony, he asserted the following:

The mind striving after unification of the theory cannot be satisfied that two fields should
exist which, by their nature, are quite independent. A mathematically unified field theory
is sought in which the gravitational field and the electromagnetic field are interpreted as
only different components or manifestations of the same uniform field . . .The gravitational
theory, considered in terms of mathematical formalism, i.e., Riemannian geometry, should
be generalized so that it includes the laws of the electromagnetic field. (Einstein, 1923,
p. 489)



2.3 The Geometric Approach to Spacetime 53

and the same; they are two different descriptions of the same thing. Similarly, that
a counterfactual claim connects spacetime properties with material properties does
not imply that an efficient causal relation is involved. Since spacetime defines the
very distinction between trajectories of free particles and trajectories influenced by
some dynamic force, the spacetime structure provides the condition for the possi-
bility of rods, clocks and free particles having the properties that they have. Thus,
the counterfactual does not underwrite a genuine efficient causal relation. There is
no reason to suppose that spacetime causes free particles to move as they do in
analogy to a billiard ball which causes another billiard ball to move. And since
the counterfactual does not underwrite a genuine causal relation, the reification of
spacetime is not a genuine explanation of inertial motions.

Now the response to such an argument may be that a geometric mode of explana-
tion is non-causal, but may still be an independent means of explaining the behavior
of bodies (Nerlich, 1979). But it then becomes a mystery why one ought to posit
that the spacetime manifold and its metric should be thought of as a field existing
independently and alongside matter fields. A geometric mode of explanation, at the
end of the day, merely attempts to describe how bodies behave, and it is unneces-
sary to think that points exist independently of bodies and relations between them.
Another reaction to the argument questioning the causal efficacy of spacetime might
be that the mere existence of a counterfactual connecting properties of spacetime
with properties of matter may underwrite the causal relation between spacetime
and matter (Mellor, 1980). But if this line of argument is taken, then spacetime is
explanatory in a way that an Aristotelian formal cause is explanatory of particular
bodies. Assume that the explanation amounted to the counterfactual, “if spacetime
M had not existed with property φ, then a free particle would not have existed
with property θ .” Since the spacetime structure provides the means for describing
θ , then spacetime is merely the articulation of the shape that a free particle has, in
much the same way that a formal cause is merely a description of the form that
a certain Aristotelian substance has. A square figure in Euclidean space has the
form of a square, but in describing the square one is not giving an independently
existing structure which is causally responsible for the existence of the square, one
is describing the spatial form of the object.

It is worth noting another difficulty with the geometric approach. In the context
of the General Theory of Relativity, the reification of the manifold gives rise to the
Hole problem (Earman and Norton, 1987). The problem consists of there existing
indistinguishable dynamic models of the theory, 〈M, g, T 〉 and 〈M, h ∗ g, h ∗ T 〉,
where M is the spacetime manifold, g is the metric, T is the stress-energy tensor,
and h is a diffeomorphism on the manifold. While indistinguishable from a dynamic
perspective, these models differ in their mapping of empty regions of the manifold to
the metrics g and h∗g. This situation leads to indeterminism, since a manifold realist
cannot predict which trajectory in the manifold will be realized by an object moving
into the hole. The upshot seems to be that points in the manifold cannot retain their
identity independently of the dynamic objects of the theory (Hoefer, 1996).

The geometric approach has a clear advantage over the conventionalist approach,
in that the restricted Principle of Relativity can be viewed as stemming from a
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four-dimensional spacetime symmetry. The geometric approach was also instru-
mental in the construction of the General Theory of Relativity, and facilitated the
merging of the gravitational field with the spacetime metric. However, there is a
clear lacuna in the attempts to conceive of spacetime as another field lying along-
side matter fields. The coupling between spacetime and matter becomes obscure
if it is compared to the coupling between two material fields, and attempts to
attribute the spacetime field efficient causal powers come close to being unintelligi-
ble. Thus, there is a steady stream of voices that attempt to argue against the official
doctrine, which the geometric interpretation has become. Although it is difficult
to overcome the appeal of the geometric approach, since Minkowski’s analogy
between Euclidean and four-dimensional spacetime symmetries has strong intuitive
appeal.

2.4 The Dynamic Approach to Spacetime

The difficulty in articulating the nature of the causal relation between spacetime
and matter compels some to doubt the causal roles attributed to spacetime (see
Stein, 1967; DiSalle, 1995; Brown, 2005; Brown and Pooley, 2006). Thus some
commentators take the geometric interpretation to be untenable, and offer a pro-
gram for reducing spacetime theory to dynamic laws. According to one articulation
of dynamical relationalism (developed by Teller, 1987; Dieks, 2001a,b), one ought
to think of spacetime as a collection of physical quantities actualized by material
bodies, in a manner analogous to that of inherent properties such as mass or charge.
The range of possible spacetime positions and velocities of each body is determined
through the dynamical laws which characterize the theory. When a physical system
actualizes a certain dynamic theory, it necessarily actualizes a set of possible trajec-
tories and their relations. Thus, if the Hamiltonian of a system comprising of two

particles is H = p2
1

2m + p2
2

2m − V (q1, q2), the allowable coordinates and their variation
would be those that satisfy the dynamics described by the Hamiltonian. The trajecto-
ries of the particles are physical possibilities that must conform to the dynamic laws.
The spacetime symmetry, i.e., the equivalence between inertial reference frames, is
determined by the symmetries of the dynamic laws.

However, there is a metaphysical difficulty with Teller’s and Dieks’ version of
dynamical relationalism, which is made clear by the analogy they erect between
spacetime quantities and other physical quantities. The plausibility of Teller’s
dynamical relationalism turns on whether it is reasonable to treat spatiotemporal
quantities as physical quantities. Is being at location x and then being at location x ′
assimilable to the instantiation in the body of the physical quantity x , and then the
instantiation of physical quantity x ′? Presumably, whether a body possesses location
x depends on the relation between this location and all the other spatiotemporal
points. When one attributes a mass parameter to a body, one seems to be able to do
so without any reference to other bodies. Thus, it is possible to conceive of a body
that exists in empty space with a mass parameter, without assuming that any other
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body exists.16 That a body instantiates a certain mass parameter can be conceived
independently of mass parameters actualized by other bodies. A spacetime position,
in contradistinction, is necessarily relational. Treating the notion of spatiotemporal
position as a monadic property therefore seems unintelligible.

Teller (1991) later clarified his account of spacetime positions as physical quan-
tities, and reduced them to potential relations to actual bodies, endorsing a kind of
liberal relationalism (to be distinguished from narrow relationalism, which reduces
spacetime to actual relations between bodies). In this account, indistinguishable
Leibnizian models of spatiotemporal relations are conceptualized as monadic phys-
ical quantities, whose values depend on the values of quantities instantiated by other
bodies. Teller attempts to make this notion plausible by comparing spatiotemporal
locations to the values of masses. The particular mass value a body instantiates is
not entirely independent of mass values instantiated by other bodies. The particular
mass value instantiated by the body would arbitrarily change if all masses and forces
are scaled in the same proportions. However, it is not clear that this elaboration of
dynamical relationalism renders it more plausible. It is not only that the value of
the coordinate of a spatiotemporal point is determined in relation to other points.
The identity of the point is also determined in relation to other points. There is some
connection between the identity of objects and the identity of the points they occupy.
Some physical models do not allow for two bodies to be in the same place. In these
models, the location of the body identifies the body for us. The location of the body
helps differentiate between this particle-mass over here from that particle-mass over
there. One might explain the fact that two bodies cannot reside in the same place by
positing a spatial exclusion principle, in analogy with Pauli’s Exclusion Principle,
according to which two particles of spin 1/2 cannot be in the same state. According
to the spatial exclusion principle, two particles cannot instantiate the same spatial
quantity. However, it seems clear that the analogy between coordinates and physical
quantities is stretched here. It is perfectly reasonable to take two bodies as having
the same mass value, but mass values do not determine the identity of the body.
However, the identity of spatiotemporal point is crucial for determining the identity
of objects that occupy it, so that spatiotemporal positions do not seem to function
like physical quantities. While the disanalogy between spacetime points and other
physical quantities does not prove dynamical relationalism false, it does weaken the
force of the analogy between a spatiotemporal point and other physical quantities.

Another version of dynamical relationalism is articulated in a stimulating book
by Brown (2005). Brown argues that relativity theory was at first conceived by Ein-
stein as a Principle Theory. Einstein compared the principles of STR to classical
thermodynamics theory in that these principles are based on broad phenomenologi-
cal principles. Thus, while kinematic effects of length contraction and time dilation
are provided as consequences of the theory, these effects are merely described by the

16 In the following chapter I will argue for a different account of the mass parameter, which under-
mines the view that mass is an inherent property. However, I am using the popular (though false)
understanding of mass to make a philosophical point.



56 2 Interpretations of Spacetime

theory without any proper explanation. A fuller account of these kinematic effects
would require a constructive theory that captures the behavior of macroscopic bod-
ies such as clocks and rods. A constructive theory of spacetime would appeal to
fundamental dynamic theories that explain the structure of composite material sys-
tems. According to this neo-Lorentzian strategy, spacetime effects are implicit in
the dynamic theories explaining the fundamental structure of matter.

One of the difficulties with Brown’s strategy is that kinematical effects seem
not to describe composite physical systems such as clocks and rods, but physical
processes themselves. Thus, when one measures the half life of a decaying atom,
its half life is dilated when it moves relative to the clocks and rods in the lab frame.
But this dilation is a property of the decaying process, and a constructive account of
clocks and rods would be irrelevant to the delay ascribed to the decaying process.
Moreover, the dilation effect does not appear related to the specific dynamic laws
governing the process of decay and the structure of the decaying atom, but a uni-
versal property of all processes taking place within time. All dynamic laws appear
to have the general symmetries of relativistic spacetime, and so it seems as if one
needs to find a unifying account for these effects that does not rely on the specific
dynamic details. Relativistic effects are not a product of the structure of matter or the
composite devices one uses for measuring time and length, but of time itself. This
is the main reason the Lorentzian strategy for explaining relativistic effects seems
beside the point, and that a direct account of spatiotemporal relations is needed
independently of any dynamic theory explaining the structure of matter.

A more serious difficulty with both versions of dynamical relationalism is that
they treat the Principle of Relativity and the symmetries of spacetime as brute, “acci-
dental” features of the underlying dynamics. Brown readily admits as much:

In the dynamical approach to length contraction and time dilation that was outlined in the
previous chapter, the Lorentz covariance of all the fundamental laws of physics is an unex-
plained, brute fact. This, in and of itself, does not count against the approach: all explanation
must stop somewhere. What is required if the so-called space-time interpretation is to win
out over this dynamical approach is that it offer a genuine explanation of universal Lorentz
covariance. This is what is disputed. Talk of Lorentz covariance “reflecting the structure of
space-time posted by the theory” and of “tracing the invariance to a common origin” needs
to be fleshed out if we are to be given a genuine explanation here, something akin to the
explanation of inertia in general relativity. Otherwise we simply have yet another analogue
of Molière’s dormative virtue. (Brown, 2005, p. 143)

Brown therefore thinks that explanation ends exactly at the point where one finds
an astounding symmetry governing all known dynamic laws. But the Principle of
Relativity seems to beg an independent explanation since it would be a miraculous
accident if it just happened that all dynamic laws are Lorentz-covariant. Why is it
that future laws which are yet to be discovered are expected to have the property of
being Lorentz-covariant? Either this expectation is unfounded or one has to find an
explanation – a property that all dynamic laws share independently of their specific
form.17 On the other hand, Brown is correct to doubt the substantivalist account

17 See Balashov and Janssen (2003) for a similar argument against Craig’s neo-Lorentzian inter-
pretation of relativity.
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of spacetime as giving a proper explanation. It is not clear why taking spacetime
points to be real explains why the laws reflect the same symmetries as the underlying
spacetime.18

2.5 Conclusion

The conventionalist account of spacetime dominated the philosophical literature
initially. However, it soon gave way to the geometric interpretation of spacetime,
which is philosophically superior. The geometric interpretation was inspired by
Minkowski’s geometrization of Einstein’s theory and his description of relativistic
effects as resulting from the structure of a four-dimensional spacetime manifold. If
spacetime is taken to be a four-dimensional spacetime manifold, and various iner-
tial reference frames are taken to be mere cross-sections of the same spacetime,
then one has an intuitive grasp of what it means to have different representations
of the same spatiotemporal structure, rather than empirically equivalent models.
However, the geometric interpretation of spacetime, while providing an improve-
ment over the conventionalist account, carries its own interpretive difficulties, since
it compels commentators to “breathe life” into the shadowy spacetime and render it
substance-like. Reifying spacetime leads commentators to the notion that the space-
time manifold is an independent physical entity, which results in dubious metaphors
that credit the manifold with efficient causal powers. The efficient causal metaphors
seem inappropriate, since they lend spacetime the appearance of a physical entity
analogous to other material bodies. Spacetime provides the framework for interpret-
ing causal relations, so it seems incongruous to take spacetime itself as an entity that
has independent causal powers. Thus, while the geometric approach is dominant,
there are critics of the geometric approach who argue that the kinematic effects of
spacetime are implicit in the dynamic laws. However, it is not clear why the various
dynamic laws conform to the same spacetime symmetries. It is difficult to see how
various dynamic laws do not receive these symmetries from an underlying spacetime
structure that is somehow “responsible” for these symmetries.

Einstein’s interpretation of spacetime shifted throughout his career, reflecting
perhaps the appeal of each approach. His early work is couched in the conventional-
ist approach. His treatment of relations of simultaneity as a convention arising from
the arbitrary choice of reference frame is explicated with the help of conventionalist
epistemology. Initially, Einstein’s reaction to Minkowski’s geometrization of space-
time was not enthusiastic, but he later embraced Minkowki’s approach and made
innovative use of a geometrized spacetime in the development of the General Theory
of Relativity, incorporating the gravitational field into the curvature of spacetime.
Finally, while he realized that spacetime was in fact treated by him as some kind of

18 I should point out that Brown is not endorsing the adoption of an ether or an absolute frame
of reference. Thus he is not attempting to resuscitate Lorentz’s specific strategy for explaining
kinematic effects. Rather, he claims that dynamic laws should explain the kinematic effects of a
set of rods and clocks moving relative to another system of clocks and rods. Brown argues that
dynamics should explain kinematics, not that the Principle of Relativity is false.
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field or as some kind of ether, he also recognized the threat posed by the claim that
clocks and rods are somehow determined by the geometry of spacetime, and flirted
with a dynamic interpretation of spacetime.

An assessment of the three main interpretations of spactime suggests that none of
these interpretations is fully satisfying. The difficulty with the conventionalist inter-
pretation is that it permits a range of empirically equivalent models without seek-
ing a theoretical framework for viewing these models as equivalent representations
of the same world-state. The difficulty with the geometric account is that it lends
commentators the impression that the spacetime manifold exists independently of
material processes and that it causally interacts with material bodies. Finally, the
difficulty with the dynamic interpretation is that it fails to recognize the unifying role
of spacetime. In the next chapter, I introduce an alternative to these three approaches,
that bears some similarity to both the geometric and the dynamic approaches, but
is also distinct from both. The approach will attempt to provide a theoretical way
for unifying the various inertial reference frames into one geometric theory, with-
out assuming the independent existence of spacetime or an efficient causal relation
between spacetime and matter.



Chapter 3
Primitive Motion Relationalism

3.1 Introduction

Chapter 1 offered a reading of the law of momentum conservation, which takes it
to consist of structural assumptions about physical systems. Structural assumptions
include a Criterion of Isolation and a Rule of Composition. One benefit of thinking
of conservation laws as structural assumptions is that it makes clear the epistemic
role of conservation laws. The Criterion of Isolation appears to be central to the
scientific practice, since in order to attribute certain properties to parts of a system,
physicists need a criterion for isolating the composite system from the environment.
If a system is not approximately isolated, one cannot investigate the system, either
theoretically or experimentally. Without a criterion for isolating the system, it is not
possible to discern the causal processes that flow from one part of the system to
another, and dissociate them from causal processes that arises from external fac-
tors.1 A Criterion of Isolation therefore holds a certain a priori place when it comes
to individual experiments. However, structural assumptions are not metaphysically
necessary. If the experimental physicist is able to succeed in isolating systems in
the laboratory, thereby controlling interactions between parts of the system, the a
priori criterion of isolation becomes embedded in the experimental practice and
recognized as making such a practice possible. Thus, structural assumptions do not
function only in the construction of interpretations of experience. They are validated
by the success of the experimental practice.

The Criterion of Isolation governing Newtonian systems asserts that a system is
isolated if and only if it moves with uniform unidirectional motion. The Criterion
of Isolation applies to fundamental particles, in which case the particle is free and
moves uniformly along the geodesic of the spacetime. But the same Criterion of
Isolation applies to a composite system, which is represented by the trajectory of
the center of mass of interacting particles. Rather than thinking of the free particle

1 I should qualify these remarks and say that the initial investigation into causal processes requires
a Criterion of Isolation. One can also apply the Criterion of Isolation in one dimension (for exam-
ple, horizontally to the force of gravitation on the surface of the earth), or isolate a system only to
a good approximation. Once, for example, a certain force is discovered, one can assume it exists
without applying the Criterion of Isolation.
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and the center-of-mass frame as two different applications of a conservation law, the
suggestion is to treat these two cases as conforming to the same Criterion of Isola-
tion, and to think of this criterion as applying either to simple or composite systems.

A common way to interpret the Law of Inertia is to think of it as the consequence
of laws of conservation, which are articulated relative to a background spacetime
manifold. In this approach the background spacetime, or the bedrock level of phys-
ical reality, is differentiated from material bodies and the dynamic laws governing
their behavior. Spacetime locations tell us where the bodies are; their properties,
states of motion, and dynamic laws determine where they will be next. Given this
metaphysical approach, spacetime and matter are understood to be distinct elements
of reality. Conservation laws, since they are not part of spacetime, are assimilated to
dynamic laws. Thus when the Law of Inertia is viewed as the logical consequence
of conservation laws, it is subsumed under dynamic laws. The result is a causal
interpretation of the Law of Inertia. One imagines the Law of Inertia to be forcing
the free particle along the geodesic. Newton himself was led to think of inertial
forces as inherent forces compelling a body to move from one location in space to
another. Other commentators attribute causal powers to spacetime itself.

I am inclined to say that the trajectory of a free particle is not “governed” by
any dynamic law, and that a free particle instantiates a certain motion. This motion
is not caused by anything else, or by an independently existing spacetime. Rather,
spacetime provides a description of fundamental motions which also happen to be
inertial motions. If this intuition is to be insisted on, one must find a way to reinter-
pret conservation laws as partly involved in shaping geometric structures. That is,
one must find a conceptual means of undermining the distinction between dynamic
and geometric laws.

To some extent, the General Theory of Relativity blurred the distinction between
dynamic and geometric laws. The inertial structure and gravitational force are both
incorporated to the spacetime metric in this theory and subsumed under a single met-
ric. But even in the General Theory of Relativity there is still a conceptual separation
between geometry and dynamics, or between the inertial-gravitational structure and
the other forces. Fields and laws governing the evolution of fields are thought to
be “embedded” in a spacetime structure. Conservation laws and the symmetries
governing dynamic laws are thought to inherit the symmetries of the underlying
spacetime, but the conceptual relation between the two is not clear. Conservation
laws are still expressed as additional dynamic laws that govern bodies in spacetime,
even though conservation laws dictate that free particles should move along the
geodesics of spacetime.

If the Criterion of Isolation holds an a priori place in carrying out any single
experiment, and if uniform unidirectional motion functions as a Criterion of Isola-
tion, it seems logical to take uniform unidirectional motion as a basic, fundamental
state of physical systems. This intuition suggests a way to rethink the ontology
of spacetime. If Einstein claimed that theories of spacetime should begin with a
set of coincidence points, I take the opposite view; spacetime should begin with
geodesic motions as the fundamental entities. Points of coincidence are then con-
ceived as the intersections between geodesic motions. Rather than thinking about
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motions as changes in the spacetime location of a body, locations in spacetime are
thought of as the intersections of bodies that have uniform unidirectional motions.
Since spacetime theories describe possible events, spacetime points should be taken
as intersections between possible geodesic motions. The connection between the
geometry of uniform motions and physical geometry would then be to assert that
uniform unidirectional motions are the same as inertial motions – free particles
and isolated systems in Galilean spacetime and free particles, isolated systems or
light signals in flat relativistic spacetime. I call these motions Paradigms of Uniform
Motion (PUMs).

The account here suggests that possible events and the spatiotemporal points in
which they are located are not real. In this respect the account resembles traditional
relational accounts. However, unlike traditional relationalism, this account does not
admit the priority of spatial and temporal relations over motions, since it reduces
spatiotemporal relations to the structure of PUMs. Moreover, this account takes the
description of spatiotemporal relations between possible events to be meaningful,
even if the spatiotemporal points in which they are located do not exist. One can
still discuss potential intersections between possible PUMs, even if these events are
not actual and the points in which they are located are not real.

The description of empty spacetime is analogous to the basic principles gov-
erning architectural plans of buildings that have not been constructed yet. There is
a range of architectural plans that describe buildings that are physically possible,
given that they adhere to certain laws of nature. But it is yet possible to design plans
of buildings that are not physically possible. Both kinds of plan do not describe
anything existing in reality. For those architectural plans that describe feasible build-
ings, one can distill some basic principles common to all possible buildings. How-
ever, these principles do not describe real entities that influence buildings through
efficient causal processes. They are common formal elements one would find in all
possible buildings and can be seen as their formal cause, if causal language is to be
insisted on. Analogously, theories of spacetime describe various physical constraints
on the motions of physical systems. Some theories of spacetime, like Galilean space-
time, allow for processes that are not possible and do not allow for some processes
that are. Relativistic theories of spacetime are closer to describing the correct limi-
tations on physical processes. Thus, theories of spacetime carry genuine empirical
content even if the spacetime points they describe are not real. The manifold of
events which forms the basis of these theories does not represent anything in reality.
Moreover, the identity of spacetime points depends on the identity of intersecting
motions.2

2 Thus Primitive Motion Relationalism has conceptual ties to possibilist relationalism – see
Manders (1982), Mundy (1986) and Teller (1991). Someone may worry that the analogy between
spacetime theories and architectural plans is vitiated by the similarity between architectural plans
and the buildings they describe. Architectural plans are often drawn on paper and are simply scaled
spatial representations of the buildings themselves. This would seemingly undermine the purpose
of the analogy, which is to argue that spacetime theories do not describe anything real. Drawings
of buildings may not describe an existing building, but are themselves actualized spatial structures.
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In flat spacetimes, constraints on possible motions are given independently of
the actual distribution of matter. In the General Theory of Relativity, the description
of possible spacetime trajectories depends on the actual distribution of matter. But
the dependency of the structure of spacetime on the distribution of matter does not
require that we view spacetime as some kind of ether that acts on matter and is
acted on by matter. While spacetime depends on the actual distribution of matter,
this dependency is not necessarily a causal dependency, but is the dependency of
possibilities on actualized entities. Just as the creation of new entities generates new
possibilities, so does the actual distribution of matter shape possible trajectories. The
dependency of matter on spacetime is, again, not a relation of efficient causation, but
the dependency of actual trajectories on possible forms that trajectories have.

To summarize the above view of spacetime, i.e., the notion that spacetime points
are not real, that spacetime structure can be constructed from ideal counterfactual
uniform motions, and that spacetime points are intersections between motions, I will
give it the label Primitive Motion Relationalism.

To describe a spacetime of more than one spatial dimension, one needs to define
rigid bodies and the possibility of rotating these bodies from one spatial dimen-
sion to another. The behavior of infinitesimal rigid bodies determine the Euclidean
structure of a hypersurface in spacetime and the curvature of spacetime. I will not
consider curved spacetimes, and will leave that task to future work. Instead I will
present the program of reducing spacetime points to counterfactual PUMs by recon-
structing from PUMs a flat {1 + 1} Galilean spacetime and a flat {1 + 1} relativistic
spacetime, without going into the Euclidean geometry defined on a hypersurface in
the spacetime or into curved spacetimes.

Before presenting this reconstruction of spacetime, I should clarify a conceptual
point regarding the relationship between space, time and motion. Ordinarily, motion
is taken to be the derivative of the function x1(x0), where x1 is the spatial dimension
and x0 is the temporal dimension. According to this definition, instantaneous motion
is defined as the limit in a series of ratios, so that:

v(x0) = d f
x1(x0 +�x0)− x1(x0)

�x0
lim

�x0→0
(3.1)

This definition of motion takes for granted the existence of a “trajectory,” which
is a continuous function from temporal instants into the spatial dimension. This
definition assumes that space and time form independent parameters, and that the
metrics of these dimensions are also defined independently. However, I argue here
that the very structure of the spatial and temporal dimensions is determined by
primitive PUMs, and that the spatial and temporal metrics are not independently
defined. I argue that the notion of trajectory is defined relative to a set of uniform,
unidirectional motions. Thus (3.1) is not the definition of instantaneous motion but

However, this objection is easily rebutted if we think of computer programs that encode architec-
tural plans. The printouts or screen simulations are not essential components of the plans, but are
mere aids for humans in understanding the plans.
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a calculation that reveals one of the instantaneous parts of the trajectory, which is
identical with an instantaneous part of a uniform, unidirectional motion.3

To show that it is possible to construe motion and events in this manner, an
axiomatic system describing a geometry of uniform motions, or PUMs as I call
them here, will be introduced in Section 3.2. The axiomatic system will confer a
metric of motion intervals on these PUMs, which is determined independently of
any underlying spatial and temporal metric. In Section 3.3, I demonstrate how to
decompose motion intervals into spatial and temporal components by “projecting”
a PUM onto a class of parallel PUMs. First a “Galilean” decomposition of PUMs
is articulated and a {1 + 1} Galilean spacetime is then derived. Then a “relativis-
tic” decomposition of PUMs is articulated and a flat {1 + 1} relativistic spacetime
is derived. In Section 3.5 I consider the similarities and differences between the
approach introduced here and some of the existing interpretations of spacetime. I
argue in this section that Primitive Motion Relationalism offers an intuitive and
compelling explanation of the restricted Principle of Relativity, which overcomes
some of the weaknesses of existing approaches. Section 3.6 concludes with a few
remarks.

3.2 A Geometry of PUMs

The axiomatic system for Primitive Motion Relationalism takes uniform, unidi-
rectional motions (PUMs) to be the basic entities of spacetime. Such motions are
represented in the system with Greek letters α, β, γ . . . . The geometry therefore
assumes that PUMs are undefined primitives. An event is an intersection between
motions, so in effect an event is a relation between two motions. The approach
here therefore constructs spacetime from geometric relations between motions, first
defining events as intersections between motions, and then defining geometric rela-
tions between those events. Since an event is a relation between PUMs, it is not a
primitive entity. In simple geometries where spacetime is flat, one can deduce that

3 The account here sheds new light on recent debates about the nature of motion. In recent
discussions (see Tooley, 1988; Jackson and Pargetter, 1988; Arntzenius, 2000; Carroll, 2002;
Lange, 2005), some have argued that instantaneous velocities cannot be defined as neighborhood
properties or the derivative of a trajectory. Our normal scientific practice is based on the intu-
ition that instantaneous motions are states of physical systems. The notion of a state of motion is
required to explain the dynamic evolution of physical systems. For example, the Law of Inertia
asserts that the state of motion of a body will remain unchanged if no external forces are impressed
on the body. Thus, it is not enough to define motion as the limit on a series of ratios, since that limit
is not a genuine property of the body which exists at a particular instant. We need instantaneous
motions as properties that explain the dynamics of a physical interaction. But if we take instanta-
neous motions to be primitive states of a physical system, it is not clear what the relation is between
primitive instantaneous motion and the derivative of the trajectory, which seems to be providing
the definition of instantaneous motion. Our account alleviates this tension since it is assumed here
that the derivative of the trajectory can only be defined relative to the Paradigm Uniform Motion,
which is a paradigm for instantaneous primitive motions.
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two PUMs are parallel from coincidence relations they have with other PUMs. Thus,
the notion of being parallel can be defined in such a geometry using the notion of
intersection. Before articulating the axioms for the geometry of PUMs, the defini-
tions of event, of being parallel and of PUM event classes, are given.

The axioms will lay out the necessary structures for conferring a metric of motion
intervals onto the PUMs. Relations of determinateness and betweenness are implic-
itly defined through the determinateness and betweenness axioms, so that a causal
structure is implicitly defined through these axioms. Finally, a metric of motion
intervals is defined through congruence relations between pairs of events on PUMs.
The motion intervals are not dependent on underlying spatial and temporal intervals,
but are given directly as a relation between events (coincidences) on PUMs.

Basic Definitions4

βα

Eαβ

β
α

Pαβ

Fig. 3.1 Event and parallel relations between PUMs

Definition 1 (Event) An event is defined as the intersection between PUMs (see
Fig. 3.1). Since it consists of a meeting between two underlying motions, an event
is a two place relation between PUMs. The relation is designated as Eαβ, and is
true if the motions intersect, or false if they do not. For flat spacetimes, an event p
is identical with a true relation Eαβ, since it is assumed that there is no more than
one event in which two PUMs coincide.5 It is supposed that coincidence relations

4 Throughout the account the reader should keep in mind what is meant by the existential oper-
ators. Underlying the geometry are PUMs, which describe possible uniform motions. When the
existential quantifier describes PUMs (in conjunction with Greek letters α, β, . . .) it is describing
the existence of a possible uniform motion. The assumption is of a fixed domain interpretation of
modality; all statements of predicate logic are referring to possible states of affairs.
5 The extension of the approach here to curved spacetime will complicate matters, since it will
require more than one coincidence point between PUMs in the case of spherical curvature. But
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are irreflexive, since a PUM does not coincide with itself. Coincidence relations are
also symmetric:

1. ∼ Eαα
2. Eαβ ↔ Eβα

Whenever convenient, a true coincident relation will be replaced with the event
name. Thus, if < α, β >∈ E, the pair can be identified as an event:

(< α, β >∈ E) → (
p = d f < α, β >

)

Definition 2 (Parallelism) In the context of spacetime, two uniform, unidirectional
motions are parallel when they have the same velocity and move in the same direc-
tion (see Fig. 3.1). In a flat time-space plane with only one spatial dimension, one
may deduce the relation of being parallel from the fact that the two motions do
not intersect. Infinite uniform PUMs in a single spatial dimension would eventually
intersect if they do not have the same velocity. Thus, the notion seems promising
that one can deduce the relation of being parallel from coincidence relations. The
first condition for two motions being parallel is that they do not intersect. Thus Pαβ
(α is parallel to β) only if ∼ Eαβ. In addition to non-intersection, it is assumed that
parallelism forms an equivalence class. Since it was argued that no PUM can inter-
sect itself, it is natural to infer that every PUM is parallel to itself. Moreover, since
coincidence is a symmetric relation, non-coincidence is also a symmetric relation.
But coincidence is not a transitive relation, and neither is non-coincidence. Thus
to define parallelism as an equivalence class one needs to add the condition that
parallelism is a transitive relation. To establish parallelism one needs to impose the
condition that if both α and γ are parallel to β, then α and γ do not intersect. The
definition of parallelism is therefore the combination of the following two criteria:

1. Pαβ →∼ Eαβ
2. [Pαβ ∧ Pβγ ] → Pαγ

Definition 3 (PUM events) It will be expedient to think of all points of intersection
with α as events belonging to the motion. Thus let the set S(α) include all the
intersection points of α with other motions. In formal notation the definition looks
as follows:

S(α) : (α × β) ∈ Eαβ

the uniqueness of the coincidence relation is still true locally in curved spacetimes. The problem
of how to define a neighborhood of a coincidence relation without relying on distance relations
between points will be left for future work.
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Axioms

Following these definitions are the axioms. A list of incidence axioms describe
coincidence relations between PUMs. These relations guarantee the existence of
coincidences Eαβ for motions and articulate the existence of classes of parallel
motions. Determinateness, Betweenness, and Congruence axioms are then given
for events. In these latter axioms the discussion shifts from coincidence relations
between PUMs, to relations between events. It should be kept in mind that relations
between pairs of events are in effect four-place relations between PUMs. For exam-
ple, the relation Dpq is the relation of determinateness, where event p determines
event q. The determinateness relation describes an asymmetrical causal relation
between events along motions. Nevertheless, each event is a coincidence relation
between two motions, so in effect the determinateness relation is a relation between
four motions, two motions α1 and α2 must intersect to produce event p, and two
motions β1 and β2 must intersect to produce event q before it could be said that p
determines q.

The determinateness relation is then used to define a three-place betweenness
relation Bpqr between events on a particular PUM. The three-place relation of
betweenness is in effect a four-place relation between PUMs, since it is a rela-
tion between three events on a particular PUM. It is therefore a relation between
a PUM α and three other PUMs, β1, β2 and β3, that intersect it. The betweenness
relation is then used to articulate the betweenness axioms. Finally, a congruence
relation Cpqrs between motion segments is defined, which sets a metric of motion
intervals. A segment is the interval between two events on a particular motion, so a
segment is defined by a motion α and two motions γ1 and γ2 that intersect it. Thus
the congruence relation involves six PUMs.

Axioms of Incidence

The axioms of incidence state the existence of motions, coincidence relations, and
parallel relations. The axioms are stated for every PUM α:

I 1. This axiom asserts that every PUM α is intersected by at least one other
PUM.

(∃β)Eαβ

I 2. This axiom asserts that for every motion α, there is an intersection point
between two motions not on α.

(∃β1)(∃β2)[(α �= β1 �= β2) ∧ Eβ1β2]

I 3. This axiom is the current system’s version of the parallel axiom. For every
α which is intersected by β1, there is another motion β2, which is parallel to
β1 and intersects α. Thus, the axiom looks as follows:
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β1
α β2

Eαβ1 → (∃β2)[(β1 �= β2) ∧ Pβ1β2 ∧ Eαβ2]

I 4. This axiom guarantees that if a PUM α intersects another PUM β1, it inter-
sects all other PUMs parallel to β1. This axiom determines the dimension of
the spacetime as a {1+1} spacetime.

Eαβ1 → (∀β2)[Pβ1β2 → Eαβ2]

Axioms of Determinateness

A two-place relation of determinateness can now be imposed between events on
a particular motion. The determinateness relation amounts to a causal relation
between two events. The full articulation of this relation involves four PUMs, so
that Dpq asserts that the intersection p =< α1, α2 > determines the intersection
q =< β1, β2 >.

D 1. This axiom asserts that any pair of events p and q belonging to a motion
stand within an antisymmetric causal relation, so that if p, q ∈ S(α), then
either p determines q or q determines p but not both.

α

p

q

[p, q ∈ S(α) ∧ (p �= q)] → (Dpq ∨ Dqp)∧ ∼ (Dpq ∧ Dqp)

D 2. This axiom asserts the transitivity of the determinateness relations, so that
if p determines q, and q determines r , then p determines r . Notice that this
axiom does not require that the three events belong to the same PUM.

(Dpq ∧ Dqr) → Dpr
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Axiom of Betweenness

To articulate the “betweenness” axiom we first define the “betweenness” relation
using the determinateness relation. The betweenness axiom could therefore be seen
as further articulating the determinateness relation.

Definition 4 (Betweenness) The “betweenness” relation is a three place relation
Bxyz between events. An event q is between events q and r if and only if p, q and
r belong to a single motion α, and either p determines q and q determines r or r
determines q and q determines p.

α

p

q

r

Bpqr ≡ d f
[

p, q, r ∈ S(α) ∧ (p �= q, q �= r, p �= r)

∧ [(Dpq ∧ Dqr) ∨ (Drq ∧ Dqp)
]]

There is one additional axiom involving the betweenness relations.

B 1. Assume that there are two events p and q belonging to the motion α. If
there is a motion β that intersects α, there are three motions parallel to β
that intersect α. One event intersects α prior to p and q, another intersects
α between p and q, and the third intersects α after p and q. This axiom
guarantees that each motion β that intersects a PUM α belongs to a class of
parallel motions forming a dense set of intersection points with α.

α

p

q

βr

s

t

γ1

γ2

γ3

[p, q ∈S(α) ∧ (∃β)Eαβ] →
(∃γ1)(∃γ2)(∃γ3)

[
Pγ1β ∧ Pγ2β ∧ Pγ3β ∧ (Eαγ1 ∧ Eαγ2 ∧ Eαγ3)

]∧
[
Br pq ∧ Bpsq ∧ Bpqt

]

r =< α, γ1 >, s =< α, γ2 >, t =< α, γ3 >
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Axioms of Congruence

Consider a particular PUM α and events generated by this PUM as a result of its
intersections with other PUMs. The progress from one event on α to the next is
determined by some internal process. When considering a PUM independently of
any other PUMs, it is impossible to define a metric on it since there are no distinct
events on it. But when one takes a particular PUM α and a class of PUMs with
which it intersects, then the separation between events generated by intersections
can be assessed as congruent or incongruent motion intervals.

The congruence relation can be defined as a four-place relation between events
Cpqrs, where the first pair of events resides on motion α – i.e., p, q ∈ S(α) – and
the second pair of events resides on β, so that r, s ∈ S(β).

C 1. This axiom asserts that for any segment formed by two events on α, there
is a congruent segment on β beginning with any event on β.

α

p

q

β

r

s

[
p, q ∈ S(α), r ∈ S(β) → (∃γ )[Eβγ ∧ Cpqrs

]
,where s =< β, γ >

C 2. This axiom asserts the transitivity of the congruence relation:

(Cpqrs ∧ Crstu) → Cpqtu

C 3. This axiom asserts the additivity of congruent segments (i.e., the sums of
congruent segments are congruent):

For three events p, q, r assume that Dpq and Dqr. Also, assume that there
are three events s, t, u such that Dst and Dtu.

(p, q, r ∈ S(α) ∧ Dpq ∧ Dqr) ∧ (s, t, u ∈ S(β) ∧ Dst ∧ Dtu) →
(Cpqst ∧ Cqrtu) → Cprsu

α

p

q

β

r

s

t

u
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C 4. To simplify the account, an axiom is added to guarantee that the resulting
spacetime is flat. The flatness condition asserts that any two parallel motions
take the same motion interval to cross the distance between two other parallel
motions.

(Pα1α2 ∧ Pβ1β2)∧
(Eα1β1 ∧ Eα1β2 ∧ Eα2β1 ∧ Eα2β2)∧
Define p =< α1, β1 >, q =< α1, β2 >, r =< α2, β1 >, s =< α2, β2 >

(Dpq ∧ Drs ∧ Dpr ∧ Dqs) → Cpqrs ∧ Cprqs

α1

p

s

β1 β2

α2

q
r

The congruence relation allows us to pick a unit of motion interval�I and to define
a congruence relation ∼= between motion intervals pq connecting events belonging
to a PUM.

Axioms of Continuity

The axioms of continuity are now formulated:

R 1. This axiom guarantees the finitude of every segment pq on a PUM.

If p, q ∈ S(α) and Dpq, r, s ∈ S(β), then there exist n events ti ∈ S(α) pro-
ducing n segments congruent to rs, so that a segment of the length n�I (r, s)
covers the segment pq. More formally, this axiom looks as follows:
(p, q ∈ S(α) ∧ Dpq ∧ r, s ∈ S(β)) →
(∃γ1)(∃γ2) . . . (∃γn)(Eαγ1 ∧ Eαγ2 ∧ . . .Eαγn)

Assuming t1 =< α, γ1 >, t2 =< α, γ2 >, . . . tn < α, γn >,
(Dpt1 ∧ Dt1t2 ∧ . . .Dtn−1tn)∧ (Cpt1rs ∧ Ct1t2rs ∧ . . .Ctn−1tnrs) ∧ Dqtn .
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R 2. This axiom guarantees that there is a one to one correspondence between
events on a PUM and points on a real line.

For S(α) assume that there are two non-empty sets 1, 2 such that:

1. S(α) = 1 ∪2
2. p ∈ 1 →∼ (∃q)[q ∈ 2 ∧ Dqp]
3. p ∈ 2 →∼ (∃q)[q ∈ 1 ∧ Dpq]

(∃β)[Eαβ ∧ [Assuming o =< α, β >,Bpoq ↔ (p ∈ 1)∧ (q ∈ 2)∧ (p �=
o �= q)]]

So far a geometry of PUMs has been articulated. But this geometry is not com-
plete, since it does not explain the congruence relation between two different paths
for connecting a pair of events. The geometry is missing the analogue for Hilbert’s
congruence relations for angles between segments, which complete the system for
Hilbert’s Euclidean geometry. In the context of spacetime geometry, the congruence
relations for “relative velocities” or the “angle” separating two motions is missing.
This requires that one would introduce the decomposition of motion intervals into
their spatial and temporal components, which is carried out in the next section. It is
the definition of these “angles” between motions that will ultimately lead to either
Galilean or relativistic spacetimes.

3.3 Galilean Spacetime

To complete the PUM geometry, a PUM is projected onto a class of parallel motions.
Once events are generated, the decomposition of the motion interval into its spatial
and temporal components can be carried out. When a motion α intersects a class
of parallel motions, the motion intervals on the parallel motions function as the
time intervals dt for the intersecting motion α. The separation between parallel
motions functions as the spatial interval. The distance between parallel motions
can be assessed by the “number” of PUMs that are crossed by α. But notice that
the decomposition of a motion interval into spatial and temporal components does
not presuppose the independent existence of the spatial and temporal metrics. What
is presupposed is that one can define the notion of relative velocity, or the “angle”
between the PUMs, which is the “ratio” between the spatial and temporal progres-
sion of a PUM when it is projected onto a class of parallel motions. Thus, motion
intervals and relative velocities are the basic metrics of the spacetime, not the spatial
and the temporal metrics.

3.3.1 Reconstructing Galilean Spacetime

The decomposition of motion intervals into their spatial and temporal components
requires the definition of a spatial and temporal metric for a particular set of parallel
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Fig. 3.2 Projection onto the spatial dimension

motions V . A spatial metric on the separation between parallel motions can be
defined using a randomly picked α that intersects the parallel motions. By defi-
nition, the reference α is treated as a PUM moving with unit velocity relative to V .
The motion intervals on α can then be used to define the spatial distances between
members of V (see Fig. 3.2a).

Definition 5 (Spatial Metric) Assume that V is a set of parallel PUMs βi , so that
Pβiβ j for every βi , β j ∈ V . Assume that a motion α is intersecting all members of
V . Let pi =< α, βi > (i.e., pi is the intersection of α with motion βi ). Then let
x1(βi , β j ) be the motion interval on α connecting pi and p j .

The flatness condition C4 guarantees that the spatial metric does not depend on the
motion chosen as reference, up to an arbitrary unit of length.

Relations of simultaneity on parallel motions will now be defined. This is done
in a manner similar to Einstein’s definition of simultaneity which used light signals.
Take two parallel motions Pβ1β2 and let a PUM run from β1 to β2, and another
PUM from β2 to β1. If motion intervals between intersection points are the same,
one can define a relation of simultaneity between half-points on the parallel motions
(see Fig. 3.2b).

Definition 6 (Simultaneity) Assume that a motion α1 intersects parallel motions
β1, β2 (i.e., Pβ1β2) at events p =< α1, β1 > and q =< α1, β2 > and that α2
intersects these motions at r =< α2, β2 > and s =< α2, β1 >, and that Dpq, Dqr
and Drs. If pq ∼= rs, events u ∈ S(β1) and t ∈ S(β2) are defined simultaneous if
and only if pu ∼= us and qt ∼= tr .

The definition of relations of simultaneity now enables the definition of a tem-
poral metric. First, it can be easily shown relying on the flatness condition C4 that
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the relations of simultaneity forms an equivalence class on all events belonging to
motions in the class of parallel motions V . The flatness condition also guarantees a
universal metric of motion intervals on motions belonging to V . (I omit the proof
for brevity.) One can then define a temporal metric on motions in V .

Definition 7 (Temporal Metric) Let βi , β j be parallel motions, so that Pβiβ j . Also
let u0, u1 ∈ S(β1) and t0, t1 ∈ S(β2). Let u0 and t0 be simultaneous, and u1 and
t1 be simultaneous. It follows that the motion intervals u0u1 ∼= t0t1. Define u0u1 as
the time that elapsed between events u0 and u1.

The previous definitions demonstrate that given a geometry of PUMs, one can
use motion intervals to define spatial and temporal metrics on each class of parallel
motions. But the spacetime structure is incomplete since one has yet to define the
relation between the spatial metric and the temporal metric when a motion pro-
gresses relative to a class of parallel motions. The various PUMs that cross the
same pair of parallel PUMs may “take more time” to traverse the distance. Thus
a geometry of PUMs ought to determine the function correlating the temporal and
spatial metrics. The basis of Galilean spacetime is the “Galilean” decomposition
of a PUM. According to the Galilean PUM, the temporal duration �x0 correlates
linearly with the spatial interval �x1.

C 5. Galilean Paradigm of Uniform Motion (GPUM)
Eαβ1 ∧ Eαβ2 ∧ Pβ1β2 →
�x0(p, q) = a�x1(p, q), where p =< α, β1 > and q =< α, β2 >

The meaning of the GPUM is that the spatial progression of a motion is linearly
related to the temporal progression of the parallel motions it intersects. Notice the
temporal and spatial distances along a PUM are not independent parameters – they
arise “together” from the more basic phenomenon of motion and its projection on
a class of parallel motions. According to this approach, motion is not the transition
from one potential event to another, it is the generation of coincidences via the
unfolding of motions. The linear relation in C5 describes the various possible PUMs
connecting the parallel motions β1 and β2 (see Fig. 3.3a).

Using the relation in the GPUM, potential events may now be labeled in the
spatial and temporal “dimensions”. Once potential events are labeled in the space-
time, one can trace the trajectories of actual objects that are not moving uniformly
as in Fig. 3.3b. Each infinitesimal part of the actual trajectory is identical to an
infinitesimal part of a PUM. This would enable one to describe the trajectory of the
object with a function x1(x0). Each infinitesimal section of a body’s trajectory will
actualize an infinitesimal part of a PUM.

The geometry of PUMs describes potential trajectories and intersections between
them. This geometry underwrites the temporal and the spatial metrics. The actual
measurements of space and time require the use of clocks and measuring rods. Thus
one requires a “scheme” for translating the measurements of length and duration to
the underlying spacetime. The actual measurements of length and duration destroy
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Fig. 3.3 Galilean paradigm of uniform motion

the implicit conceptual connection between space and time that is established via
the PUMs.

To re-establish the conceptual connection between measurements of length and
duration and the PUMs geometry, imagine a hypothetical process via which clocks
and measuring rods are calibrated. Einstein’s initial presentation of STR presup-
poses that one has at a particular location periodic clocks in which the same unit
of time repeats itself. It is this presupposition, that one has a calibrated clock at a
particular location, and that each reference frame has a set of calibrated measuring
rods, that is now being examined.

For the purpose of calibrating the clock, one needs to use a body that approxi-
mates a PUM α as closely as possible.6 Assume that the motion α intersects two
parallel motions PUMs β1 and β2, so that Pβ1β2. The body intersects β1 at p1, then
travels and intersects β2 at p2. The body is reflected back to approximate a PUM
γ1 that intersects β2 at p3. The body travels again from β1 to β2, approximating
a motion α2, parallel to α1, until it intersects β2 at p4. It then reverses its course
and approximates a PUM γ2, which is parallel to γ1, until it intersects β1 at p5, at
which point it reverses its course. The object then approximates a PUM α3 which is
parallel to α1, until it hits β1 at p6, and so forth. Since PUMs are traveling between

6 In practice when calibrating clocks physicists often rely on objects that actualize, with good
approximation, inertial motion. For example, the earth’s rotation around its axis is governed by the
conservation of angular momentum to a good approximation. The sun and the earth orbiting the
sun provide another good approximation. While these motions do not actualize a linear progression
of a PUM, they do resemble PUMs between one instant and the next.



3.3 Galilean Spacetime 75

p5
p4

p3 p2

p1

β1 β2

α2

α3

α1

γ2

γ1

Fig. 3.4 Decomposition of motion intervals

two parallel PUMs β1 and β2, the object is traveling the same distance. Thus, if each
turn is defined as a unit of time, the events can be marked with coordinates p1 =
< 0, x1 >, p2 =< 1, x2 >, p3 =< 3, x1 >, p4 =< 4, x2 >, p5 =< 5, x1 >, . . .,
etc. If the uniformly moving object approximates the PUMs well, a clock that is at
rest relative to β1 and produces events coincident with p1, p3, p5 . . . will be a good
clock (see Fig. 3.4).

The calibration of the clock’s period crucially depends on two assumptions. First,
that the objects used for calibrating the clock actualize PUMs, and that the two
PUMs β1, β2 are parallel. Both assumptions are trivial from the point of view of
our abstract geometry, but complex to verify from a practical point of view. The
physical procedure for verifying these assumptions require full knowledge of the
dynamic laws. Thus one has an epistemological problem in understanding the rela-
tion between abstract geometry and the use of sensible measures that rely on clocks
and rods. The validity of abstract geometry is ascertained through the behavior of
clocks and rods. On the other hand, the calibration of clocks and rods requires full
knowledge of dynamic laws, and empirical knowledge of dynamic laws presup-
poses the validity of geometric laws. I shall not go into the epistemological dis-
cussion here in any detail, except to say that while full knowledge of the dynamic
laws is required for the calibration of clocks and rods, it is still valid procedure to
differentiate between fundamental and complex motions. The geometry of PUMs
should be considered as the laws which lay out the structure of the fundamental
motions; dynamic laws as those which describe how to combine complex motions
from fundamental ones. The separation between geometry and dynamic laws then
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becomes the heuristic distinction between the fundamental building blocks and
the details of particular structures. Both geometric and dynamic laws are verified
in each experiment, but geometric laws governing fundamental motions are given
epistemological priority, since they provide a common fundamental structure for all
motions.

To calibrate a measuring rod consider a similar process relying on PUMs. To
calibrate a rod one has to verify that the rod’s “0” and “1” marks are coincident
with parallel PUMs β1 and β2. Formally this implies that the marks actualize paths
of parallel PUMs. What is significant is that a PUM would travel a certain amount
of time before it traverses the distance between the “0” and “1” marks. Taking into
account the GPUM, the events produced by the marks would be p1 =< 0, 0 >,
p2 =< 1, 1 >, p3 =< 2, 0 > and so forth. If this calibration is to work, one has
to assume that the rod is at rest relative to the parallel motions β1 and β2. The cali-
bration of the distance between the marks can now be done by letting the uniformly
moving object travel back and forth between “0” and “1”. If the object traverses the
distance while the same amount of time elapses, then one may conclude that the
measuring rod is calibrated (see Fig. 3.4).

The first conclusion from the above analysis, is that the notion of time and dis-
tance are abstracted from the particular events produced by PUMs. One should dis-
tinguish between the duration that elapsed from one event to another, a duration that
corresponds to the cycles of the clock, and the time one takes the clock to repre-
sent. The former duration is conceptually linked to the process by which the clock
is calibrated, and it is inseparable from the PUM. The concept of time one takes
the clock to be representing is abstracted away from the particular way the clock
is calibrated. The consequence is the metaphysical view which thinks of time as
“flowing” independently of any particular motion. Similarly, one should distinguish
between the distance between the events produced by the marks on the rod and
the abstracted distance one takes to exist between them. The former is conceptually
linked to the process by which the rod is calibrated, and it is inseparable from PUMs.
The distance one takes to be represented by the rod is abstracted from any particular
motion or time.

The abstraction of duration and length from the process by which clocks and
rods are implicitly calibrated generates the impression that duration and length exist
independently of one another and independently of the motions of bodies. However,
if the geometry of PUMs describes spacetime reality, the concept of duration and
length should always be assessed as the duration and length that elapse between
events generated by uniformly moving objects.

3.3.2 Galilean Transformations

There is a conceptual relation between the GPUM and the equivalence between
inertial reference frames. The structure of the GPUM ensures that selecting an alter-
native set of parallel motions, while keeping the same GPUM, yields equivalent
representations of the evolution of PUMs.



3.3 Galilean Spacetime 77

In the previous section it was assumed that a coordinate system is based on clocks
and rods at rest relative to the class of parallel motions that forms the reference
for decomposing the spatial and temporal dimensions. This coordinate system was
erected with the help of the GPUM, which assumed a linear relation between the
spatial and temporal metrics.

Consider the multiple ways in which a motion could be decomposed. First, a
motion α is decomposed relative to a set of parallel motions V . Relative to V , α
traversed a distance �x1 for every duration �x0. But there is also the possibility
of there existing a set of parallel motions V ′ relative to which the traversing PUM
crosses a larger distance, �x ′

1 by a factor of μ during the same amount of time:

�x1 �→ �x ′
1 = μ�x1 (3.2)

�x0 �→ �x ′
0 = �x0

This transformation is the mapping from a pair of reference parallel motions Pβ1β2
to another pair of motions β ′

1, β
′
2 that are also parallel but belong to a different set

V ′ (see Fig. 3.5). Since the axiom C4 assumes a linear relation between the spatial
and the temporal infinitesimals, it also guarantees that the same relation holds rel-
ative to another class of parallel motions. The linear relation between spatial and
temporal units determines important aspects of the spacetime. It is clear that the
relative velocity between PUMs is not bounded because of the structure of GPUM.

x1

α

Δ x1

Δ x0

Δ x1’

Fig. 3.5 Stretching the spatial dimension relative to the temporal dimension
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There is nothing preventing us from letting the “stretching parameter” μ approach
infinity, which implies that relative velocities between PUMs can approach infinity
as well. Moreover, the unbounded relative velocity also implies absolute simultane-
ity. Assume that p1 is the intersection between a PUM β1 and a signal α, p2 is the
intersection between α and another PUM β2, and that the signal α returns to β1

and intersects it at p3. The time defined as t (p3)−t (p1)
2 is identified as the instant

on β1 that is simultaneous with p2. If the relative velocity between α and β1, β2
approaches infinity, the duration between p1 and p3 will approach zero, which
implies that one can approach as close as one wants a single, absolute definition
of simultaneity. Thus, the linear nature of the GPUM, because it enables unbounded
relative velocities, is also conceptually linked to absolute relations of simultaneity.

The transformation between the old and the new coordinate systems KG =
〈x0, x1〉 and K ′

G = 〈x ′
0, x ′

1〉 can now be defined. This relation between these coor-
dinate systems is described with the following transformation:

� =
(

1 0
0 μ

)
(3.3)

If the transformation � were to describe a stretch (or a contraction) in a spatial
dimension that was completely independent of the temporal dimension, then �
would merely be a stretch of spatial units. But ordinary coordinate systems represent
the spatial and temporal intervals as measured by clocks and rods, not the rescaled
distance between the events produced by the PUMs. Thus the transformation in (3.2)
does not necessarily reflect the length measured with our rods.

To represent the transformation � in the coordinates measured by rods and
clocks, one has to rely on the GPUM. Assume that the distance separating two
parallel β1 and β2 which was covered by a motion during the time �x0 now covers
the distance�x ′

1 = μ�x1 separating two parallel motions β ′
1, β

′
2 of a different class

of parallel motions. To calibrate a measuring rod in K ′
G , one takes the signal to be

first coincident with the “0” mark and then with the “1” mark of the rod. This could
only be possible if the rod is moving at a velocity v in order to traverse the distance
(μ−1)�x1 during the time�x0, which is the distance in KG between the “1” mark
on the rod at rest in KG , and the place where the mark “1” is coincident with β2. If
one takes the motion of the “0” mark on the rod to be indicating the origin of K ′

G , it
follows that the origin of K ′

G moves with a velocity:

v = (μ− 1)
�x1

�x0
(3.4)

relative to K . Thus, a “stretching” of the spatial dimension �x1 relative to the tem-
poral dimension �x0 leads to the requirement that the measuring rods travel at a
uniform motion relative to the original rods. But it is the particular structure of
the GPUM, i.e., the linear relation between the motion interval and the spatial and
temporal displacement, that allows one to move from the initial description of the
transformation� to an account of the transformation in terms of measurement rods.
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The clock in the new reference frame will be calibrated in the same way as the old
reference frame, only now it will be at rest relative to the motions in V ′.

In other words, the transformation�† between the coordinates systems, that rep-
resents the transformation between measurement results, is:

�† =
(

1 0
−v 1

)
(3.5)

One knows that the length and the duration in the new coordinate system must be
measured using clocks and rods moving with a velocity v relative to the previous
clocks and rods.

The above is essentially a reconstruction of a {1+1} Galilean (or neo-Newtonian)
spacetime from the GPUM. This reconstruction explains several facts about space-
time theory. First, it provides an explanation of the “relativity of motion,” which
differs from traditional accounts that appeal to metaphysical or empiricist principles.
The traditional argument for the relativity of motion begins with the assumption
that only change in the relative positions between bodies can be observed (or con-
ceptualized), and thus motion is inherently a relative concept. But this argument
presupposes that spatial relations between objects can be determined prior to the
measurement and even conceptualization of motion. The approach here turns the
argument for relativity of motion on its head; it is meaningless to posit a distance
separating two objects without considering the counterfactual uniform motion that
would connect the two bodies. Without the notion of uniform motion we do not have
a conceptual comparison between distances measured in various locations.

Finally, the Galilean rule for adding velocities stems from the GPUM, since the
process of adding velocities v1 and v2 is equivalent to the process of boosting veloc-
ity v1 by a velocity −v2. Since the GPUM describes a linear relation between �x0
and�x1, the velocity boosts also result in a linear sum between the original velocity
v1 and the velocity boost v2.

In subsequent chapters it is assumed that a {1+3} spacetime can be constructed
from a geometry of PUMs. It will not be shown here how this can be constructed,
but it will be assumed that it is possible to do so. First one assumes that there
is a class of parallel motions V . One takes three PUMs moving in three differ-
ent orthogonal directions to define spatial distances between the parallel PUMs
(the above axiom I4 will have to be given up). It is assumed that on a par-
ticular hyperplane of this set of parallel motions, distances obey the Euclidean
relation �r = √

(�x1)2 + (�x2)2 + (�x3)2. Thus, when another set of parallel
motions V ′ is chosen, the most general transformation between the two coordinate
systems is:

� =

⎛

⎜⎜⎝

1 0 0 0
0 μ1 0 0
0 0 μ2 0
0 0 0 μ3

⎞

⎟⎟⎠ (3.6)
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Relative to a set of rods and clocks the transformation will look as follows:

�† =

⎛

⎜⎜⎝

1 0 0 0
−v1 1 0 0
−v2 0 1 0
−v3 0 0 1

⎞

⎟⎟⎠ (3.7)

The transformation (3.7) is the standard Galilean transformation between equivalent
reference frames.

3.4 Flat Relativistic Spacetime

The above reconstruction of Galilean spacetime from the Galilean PUM gives sup-
port to the claim that spacetime is derived from the structure of uniform motions
and their decomposition to spatial and temporal metrics relative to sets of paral-
lel motions. To make this a viable thesis that extends beyond Galilean spacetime,
it should be possible to give an analogous reconstruction of the spacetime theory
implicit in the Special Theory of Relativity. The initial clue is Einstein’s elevation
of light waves into universal clocks and rods. One may think of Einstein’s Light
Postulate as the introduction of a new, relativistic Paradigm of Uniform Motion.

3.4.1 Reconstructing Flat Relativistic Spacetime

Galilean spacetime was reconstructed in the previous section from the geometry of
PUMs. In addition to motion intervals defined in Section 3.2, the spacetime was
articulated further using the GPUM, described in C5. According to the GPUM, the
progression of a motion α relative to a class of parallel motions involves a linear
relation between the spatial progression, across the parallel motions, and the tempo-
ral progression along the parallel motions. When a motion is decomposed relative to
another set of parallel motions, the GPUM dictates that the spatial separation �x ′

1
traversed by α relative to the “boosted” frames is the separation �x1 multiplied
by a factor μ in the non-boosted frame. This alternative decomposition of a PUM
is in essence a change from one inertial reference frame to another. In relativistic
spacetime, a similar geometry of PUMs provides the basis for the spacetime, so
that the axiomatic system in Section 3.2 is taken as a structure common to both
spacetimes. However, the Galilean linearity assumption in C5 is given up. Instead,
two privileged sets of parallel motions V0

1 and V0
2 are presupposed to exist. The

motions ω ∈ V0
1 represent light waves going in one direction, while motions ω ∈ V0

2
represent light waves going in the opposite direction. These privileged motions set
the paradigm for the spatial and metric decompositions of motion intervals. The
first assumption in relativistic spacetime guarantees that motions in V0

1 and V0
2

have equivalent motion intervals no matter which set of parallel motions is used
as reference. This assumption amounts to asserting that motions in these privileged
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classes of motion provide an absolute standard of motion intervals. This assumption
is our reconstruction of the Light Postulate. To ensure this presupposition, another
congruence axiom is added to those given in Section 3.2:

C 6. There exist two classes of parallel motions V0
1 and V0

2 such that members of
these classes represent absolute motion intervals. These privileged motions
in V0

1 and V0
2 move in opposite directions, and motion intervals on intersec-

tions between two parallel motions intersecting V0
1 and V0

2 are always the
same.

β1

p

q

r
s

β2
ω1

ω2

Pβ1β2 → (∃ω1)(∃ω2)[ω1 ∈ V0
1 , ω2 ∈ V0

2 ]∧
∧[Eβ1ω1 ∧ Eβ2ω1 ∧ Eβ1ω2 ∧ Eβ2ω2] ∧ [Dpq ∧ Drs] → Cpqrs
where p =< β1, ω1>, q =< β2, ω1>, r =< β2, ω2> and s =< β1, ω2>

The privileged motions in V0
1 and V0

2 can be used to define relations of simul-
taneity on members of a class of parallel motions. This is carried out by sending a
light wave from PUM β1 to a parallel motion β2, and then another light wave from
β2 to β1:

Definition 8 (Relativistic Simultaneity) Assume that a motion ω1 ∈ V0
1 intersects

parallel motions β1, β2, i.e., Pβ1β2 at events p =< ω1, β1 > and q =< ω1, β2 >

and that ω2 ∈ V0
2 intersects these motions at r =< ω2, β2 > and s =< ω2, β1 >,

and that Dpq, Dqr and Drs. Since pq ∼= rs, events u ∈ S(β1) and t ∈ S(β2) are
defined simultaneous if and only if pu ∼= us and qt ∼= tr .

Once relations of simultaneity are defined on a class of parallel motions V , the
motion intervals on members of this class can be defined as a temporal metric (see
Fig. 3.6a).

Definition 9 (Temporal Metric) Let βi , β j be parallel motions, so that Pβiβ j . Also
let u0, u1 ∈ S(β1) and t0, t1 ∈ S(β2). Let u0 and t0 be simultaneous, and u1 and t1
be simultaneous. It follows that the motion intervals u0u1 ∼= t0t1. Define x0(u0, u1)

as the time that elapsed between events u0 and u1.

To define a spatial metric between members of a set of parallel motions V we let
the motion α intersect the members βi ∈ V . Define the spatial metric using motion
intervals on α.
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Fig. 3.6 Simultaneity in relativistic spacetime

Definition 10 (Spatial Metric) Assume that V is a set of parallel PUMs βi , so that
Pβiβ j for every βi , β j ∈ V . Assume that a PUM α is intersecting all members of
V . Let pi =< α, βi >, i.e., pi is the intersection of α with motion βi . Then define
x1(βi , β j ) as the motion interval on α connecting pi and p j .

Once the spatial and temporal metrics are given by decomposing motions onto a
class of parallel motions, it is possible to define the Relativistic Paradigm of Uniform
Motion. According to this additional congruence axiom, the spatial and temporal
displacement of motions in V0

1 and V0
2 are related as follows:

C 7 (Relativistic Paradigm of Uniform Motion (RPUM)).
Eωβ1 ∧ Eωβ2 and p =< ω, β1 >, q =< ω, β2 >

c2(�x0(p, q))2 − (�x1(p, q))2 = 0

To satisfy the RPUM, we take the motions in V0
1 to be waves moving in the positive

direction of x1, and motions in V0
2 to be waves moving in the opposite direction.

Thus the following are wave solutions for each class of motions:

ψ+(x0+, x1+) = eiωx0++ikx1+ (3.8)

ψ−(x0−, x1−) = eiωx0−−ikx1−

where ω = 2π
T , k = 2π

λ
, c is the wave’s velocity, T is the wave’s period, λ is the

wavelength, and cT = λ. The spatial and temporal metric are not yet universal tem-
poral and spatial metrics, since each wave equation describes the spatial progression
of the wave relative to its temporal progression. It is still required to construct spatial
and temporal metrics from the wave progressions. The spatial distance measured by
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Fig. 3.7 Constructing spatial and temporal measures from light rays

rods and temporal duration measured by clocks should be constructed from the two
wave solutions moving in opposite directions.

One can use the above solutions to the RPUM to define the units of length
and duration. To do this, assume that a PUM travels from the origin of spacetime
< 0, 0 > to a point in spacetime < x0, x1 >. The same spatiotemporal distance can
be described with the help of two privileged motions w1 and w2 (see Fig. 3.7). It is
clear that the time elapsed is the sum of the times traversed by the two privileged
motions, and the distance is the difference between the distances covered by each
motion. The result is the following relation:

x0 = x0+ + x0− (3.9)

x1 = x1+ − x1− = cx0+ − cx0−

The equations in (3.9) describe the relation between the waves in (3.8) and the time
and length measured by clocks and rods.

3.4.2 The Lorentz Transformations

We define events in our spacetime according to the RPUM. This set of possible
events forms a coordinate reference frame K R = 〈cx0, x1〉. It is possible to decom-
pose the same light signals relative to a different set of parallel motions V ′. Since
the congruence axiom C6 is still valid, the motion interval on a segment of ω1 ∈ V0

1
intersecting two motions in V ′ is congruent to the segment on ω2 ∈ V0

2 (see Fig. 3.8).
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Decomposing the same light signals relative to a different set of parallel motions
V ′ is equivalent to expanding ω1’s wavelength by a factor μα > 0 and ω2’s wave-
length by a factor μβ > 0. Assume therefore that:

λ+ �→ λ′+ = μαλ+ (3.10)

λ− �→ λ′− = μβλ−

Assuming that wavelength velocity c remains constant, from λ = cT one may
conclude that the periods of the wave transform in the same way:

T+ �→ T ′+ = μαT+ (3.11)

T− �→ T ′− = μβT−

Such a stretching of the wavelength should result in an alternative coordinate refer-
ence frame, which is defined as:

x ′
0 = x ′

0+ + x ′
0− = μαx0+ + μβx0− (3.12)

x ′
1 = x ′

1+ − x ′
1− = μαx1+ − μβx1−

Equation (3.12) could be rewritten in terms of a transformation � between KR =
〈cx0, x1〉 and K ′

R = 〈cx ′
0, x ′

1〉, so that:

� = 1

2

(
μα + μβ μα − μβ

μα − μβ μα + μβ

)
(3.13)
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The inverse transformation �−1 has the following form:

�−1 = 1

2μαμβ

(
μα + μβ −(μα − μβ)

−(μα − μβ) μα + μβ

)
(3.14)

For the transformations to be symmetric, impose the condition that |�| = |�−1|.
This imposes the condition that a unit of length and a unit of time transform in the
same way by � and �−1. To get this equality one has to set

μαμβ = 1 (3.15)

Solving (3.14) for x ′
1 = 0 and x1 = vx0 one gets the following solution for the

relative velocities between the coordinate reference frames:

v =
(
μα + μβ

μα − μβ

)
c (3.16)

One can separate between two cases, μα < 1, μβ > 1 on the one hand, and
μα > 1, μβ < 1 on the other hand. In the first case, it follows from (3.16) that v ≤ c.
In the second case it follows that v ≥ c. The discussion here shall be restricted to
v ≤ c, and will leave discussion for relative velocities greater than the speed of light
to another time. Whether or not these transformations are physical depends on the
nature of the entities one takes to travel with a velocity higher than the speed of
light. This implies that there is a restriction on relative velocities between PUMs, as
they could only be less than or equal to c. Finally, substituting (3.15) and (3.16) into
(3.14), and defining β = d f

v
c , one gets

β =
(
μα + μβ

μα − μβ

)
= v

c
(3.17)

Also define γ = d f

√
(1 − β2). The usual Lorentz Transformations can be derived:

� =
(

γ −βγ
−βγ γ

)
(3.18)

The situation with the flat relativistic {1+1} spacetime is analogous to that of
the Galilean {1+1} spacetime. The priority of the RPUM over the structure of the
spacetime explains the equivalence between inertial reference frames, as these var-
ious representations of the spacetime stem from taking the RPUM as basic. One
also thereby gets an account of Einstein’s restricted Principle of Relativity, with-
out taking this principle to be a postulate from which the structure of spacetime is
derived. Rather, the Principle of Relativity is shown to be a consequence of the thesis
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that uniform motion is prior to spatial and temporal relations and the structures
which decompose motions into their spatial and temporal components. Moreover,
the Einsteinian rule for adding velocity also stems from the transformation given
in (3.18). One of the most revealing parts of the above reconstruction of relativistic
spacetime is that it explains the result that no body can travel faster than the speed
of light. Since a wave-like phenomena describes the PUM intersections with a class
of parallel motions, the symmetries in (3.14) essentially give the possible defini-
tions of relative velocities between objects moving uniformly relative to light. The
restriction is therefore a direct consequence of the RPUM. Given that this restriction
seems to be an important fundamental thesis in relativity, again one gets confir-
mation for the thesis that uniform relative motion is decomposed according to the
RPUM.

A further and significant lesson to take from these reconstructions of Galilean and
flat relativistic theories of spacetime is that they provide an alternative explanation
for the Principle of Relativity and its dual role in both kinematic and dynamic laws.
If one assumes that laws of nature describe changes in states of physical systems,
and if fundamental states are infinitesimal PUMs, then changes in states of physical
systems must obey the PUM symmetries. Galilean and Lorentzian covariance seem
to be derived from the PUM structure of each spacetime and its decomposition to
spatial and temporal metrics. If one assumes that the evolution of a state of a phys-
ical system actualize the temporal evolution of PUMs in infinitesimal segments,
one must accept that dynamic laws governing this evolution conform to the same
symmetries underlying Lorentzian PUMs. That is, dynamic laws must be Lorentz
covariant. Thus, unlike the classical and relativistic Principles of Relativity, which
have to be postulated both at the level of the theory of spacetime and at the level
of dynamic laws, Primitive Motion Relationalism accounts for both kinematic and
dynamic applications of the Principle of Relativity. Again, the Principle of Relativity
seems to be derived from the assumption that uniform, unidirectional motion is an
undefined primitive. The geometry of PUMs takes the metric of relative motions as
basic, while spatial and temporal distances are derivative notions.

For the account to apply to real spacetime, one needs to generalize the above
results for a {1 + 3} spacetime. The solution to C 7 is a wave function moving with
the velocity of light. The solution can be generalized as follows:

⎛

⎜⎜⎝

ψ1+(x0+, x1+) = eiωx0++ikx1+ ψ1−(x0−, x1−) = eiωx0−−ikx1−

ψ2+(x0+, x2+) = eiωx0++ikx2+ ψ2−(x0−, x2−) = eiωx0−−ikx2−

ψ3+(x0+, x3+) = eiωx0++ikx3+ ψ3−(x0+, x3+) = eiωx0+−ikx3−

⎞

⎟⎟⎠ (3.19)

Define the spatial and temporal measures in three dimensions:

x0 = x0+ + x0− (3.20)

xi = xi+ − xi− = cx0+ − cx0−
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The stretching of a wavelength in all directions may look as follows:

Ti+ �→ T ′
i+ = μi Ti+ (3.21)

Ti− �→ T ′
i− = μ′

i Ti−

Define:

μ0 ≡ 1√
μ1μ

′
1

(3.22)

To simplify discussion assume that:

μ2 = μ′
2 = μ3 = μ′

3 = 1 (3.23)

The transformation in (3.21) leads to the transformation � between KR =
〈cx0, x1, x2, x3〉 and K ′

R = 〈cx ′
0, x ′

1, x ′
2, x ′

3〉, so that

� = 1

2

⎛

⎜⎜⎜⎜⎝

μ1 + μ′
1 μ1 − μ′

1 0 0

μ1 − μ′
1 μ1 + μ′

1 0 0

0 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎟⎠
(3.24)

Given the transformation between the coordinate systems, the relative velocity
between these coordinate systems can be defined. The coordinate x = 〈cx0, 0, 0, 0〉
will transform to:

x ′ = 〈(μ1 − μ′
1)cx0, (μ1 + μ′

1)cx0, 0, 0
〉
. (3.25)

Thus, the relative velocity of an object at rest in � will be moving uniformly in �′
with the velocity:

v

c
= (μ1 + μ′

1)

(μ1 − μ′
1)

(3.26)

A constraint will now be imposed on � to derive the ordinary Lorentz trans-
formations. Assume that � : K 1111

R �→ Kμ0μ111
R equal the inverse transfor-

mation, �−1 : Kμ0μ111
R �→ K 1111

R , except for the relative velocity changing
signs. (The superscripts include the relevant “stretching” parameters, μ0, μ1, and
μ2 = μ3 = 1.) The transformation �−1 looks as follows:
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�−1 = 1

2μ1μ
′
1

⎛

⎜⎜⎜⎜⎜⎝

(μ1 + μ′
1) (μ1 − μ′

1) 0 0

(μ1 − μ′
1) (μ1 + μ′

1) 0 0

0 0 2μ0 0

0 0 0 2μ0

⎞

⎟⎟⎟⎟⎟⎠
(3.27)

Since it is assumed that�(v) = �(−v)−1, it follows that μ0 =
√(
μ1μ

′
1

) = 1. The
relation between the velocity and the scaling factor μ1 would then be:

β = v

c
= μ2

1 − 1

μ2
1 + 1

(3.28)

The scaling factor could be defined as a function of β, so that:

μ1 =
√

1 + β

1 − β
= (1 + β)√

1 − β2
(3.29)

Let γ ≡ 1√
1−β2

. The transformation � : K 1111
R �→ K 1μ111

R then becomes:

� =

⎛

⎜⎜⎝

γ βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ (3.30)

which is the ordinary Lorentz transformations. In this case the subscript μ1
describes the stretch in the wavelength of the set of PUMs that move in the x direc-
tion. Thus an arbitrary wave expansion μ1, μ2 or μ3 in one of the spatial directions
leads to the Lorentz transformations in one of the three spatial directions.

The assumption behind the above derivation of the Lorentz transformations is
that�(v) = �−1(−v). To justify this part of the derivation, Einstein appealed to the
Principle of Relativity, arguing that the transformations between inertial reference
frames should not depend on anything but the relative velocities. Einstein’s appeal
to the Principle of Relativity is suspect, since his articulation of the Principle of
Relativity is, strictly speaking, inapplicable to the transformations between iner-
tial reference frames. Einstein’s formulation of the Principle of Relativity asserts
that the laws of physics are the same in all inertial reference frame. But Einstein
applied the Principle of Relativity to the generalized Lorentz transformations, which
describe laws of transformation between inertial reference frames. To say that a rod
will measure the same length when at rest in all reference frames does not follow
logically from the Principle of Relativity. It is possible for a rod not to measure
the same length in different inertial reference frames, and for the laws of physics
to be the same relative to the different coordinate systems. Instead the assumption
of �(v) = �−1(−v) amounts to a convention that separates expansion parameters
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such as μ0, which “inflate” the whole inertial reference frame and transformations
that do not involve a change in the units of length and time. In Chapters 6 and 8, I
will explore the more generalized transformations and their relation to the concept
of mass.

3.5 Primitive Motion Relationalism vs. Standard Interpretations
of Spacetime

In the previous section, I introduced a reconstruction of spacetime based on the
assumption that PUMs are more fundamental than their decomposition into space
and time. If I am correct in claiming that the Principle of Relativity is a direct con-
sequence of taking motions as primitive, then we have philosophical motivation
for giving up the priority of time and space over motion and existence. The main
motivation for accepting Primitive Motion Relationalism is that it provides a better
philosophical framework for understanding the foundations of spacetime.

We can now estimate the precise sense in which PMR overcomes some dif-
ficulties inherent in alternative approaches to spacetime. The main weakness of
positivist-conventionalism was that the positivist assumed that all models of space-
time are empirically isomorphic to one another, yet she does not explain this impres-
sive symmetry. But PMR is able to view all the different models as various repre-
sentations, or alternative decompositions, of the same PUMs. We assumed that the
decomposition of a motion into its spatial and temporal components, or the projec-
tion of a motion onto a class of parallel motions, is described with either the Galilean
or the relativistic PUMs. Each PUM structure leads to an infinite set of equivalent
decompositions, depending on the set of parallel motions we take as reference. The
structure of the PUM decomposition determines the transformation between inertial
reference frames and explains the equivalence of models produced in the various
frames.

The approach here also provides an alternative to the geometric interpretation of
spacetime. PMR is based on a geometry of possible motions, not a geometry of real
spacetime points. In this account the identity of spacetime points depends on the
identity of motions. Thus there do not exist indistinguishable dynamic models that
produce different mappings between spacetime points and the dynamic objects of
the theory. More importantly, the account here obviates the need to utilize causal
language to discuss the relation between spacetime and material bodies, such as
clocks, rods, free particles, and light signals. The geometry of PUMs gives us a
range of possible trajectories (and their relations), and physical objects simply real-
ize these possible motions. Thus the relation between spacetime and matter should
not be described with the language of efficient causation, but is better understood as
the formal cause of actual trajectories in analogy with Aristotelian forms. However,
unlike Aristotle’s analysis of motion, one should not think of motion as a substance
shedding one form and acquiring another. Rather, the instantiation of a certain tra-
jectory through spacetime is the realization of the form of a motion.
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PMR has conceptual ties to the dynamic interpretation of spacetime (or dynamic
relationalism). PMR is similar in spirit to dynamical relationalism, since it attempts
to replace a substantival spacetime with a set of possible trajectories implicit in the
laws governing the evolution of physical systems. But in our account the notion
of primitive motion replaces the notion of coordinates as physical quantities real-
ized by material bodies. This seems like a philosophical improvement, since it is
difficult to make sense of the notion of coordinates as physical quantities. In the
geometry of PUMs, bodies actualize motions, and geometric properties arise out
of a certain configuration of motions, i.e., from relations between motions. Thus
beginning spacetime from a description of possible PUMs retains the general strat-
egy of dynamical relationalism without committing the approach to an unintelligible
metaphysical conception.

Another version of dynamical relationalism is Brown (2005) and his neo-
Lorentzian attempt to derive spacetime symmetries from dyanmic laws. Brown
thinks that explanation ends exactly at the point where we find an astounding sym-
metry governing all known dynamic laws. But the Principle of Relativity seems to
beg an independent explanation, since it would be a miraculous accident if it just
happened that all dynamic laws are Lorentz-covariant. Brown is correct to doubt
the substantivalist account as giving a proper explanation. It is not clear why taking
spacetime points to be real explains why the laws reflect the same symmetries as
the underlying spacetime. But it seems as if PMR provides a natural explanation
for the unifying symmetry of dynamic laws. The fundamental motions from which
all dynamic evolutions are constructed are given by the Lorentzian PUMs. When
all motions and changes of states are reduced to infinitesimal Lorentzian PUMs,
the Principle of Relativity falls out as a consequence. Thus, regardless of which
dynamical laws we discover, they are going to be Lorentz-covariant, as the dynamic
laws take Lorentzian PUMs as the basis for the dynamic description. One does not
require an independent spacetime, which is fully real and causally efficacious to
explain this fundamental feature of physical theories. Instead, one may simply think
of any complex motion as reducible to fundamental PUMs, in this way providing
an explanation for the common spatiotemporal structure of dynamic laws. In pro-
viding a unifying account of dynamic symmetries, the approach here resembles the
geometric approach more than it does the dynamic approach to spacetime.

3.6 Conclusion

I offer Primitive Motion Relationalism as an interpretation of spacetime that is not
subject to difficulties plaguing other interpretations of spacetime. The novelty of this
proposal is the assertion that a spatiotemporal event cannot be described indepen-
dently of the process of generating events. Thus we begin with PUMs to describe
the most basic spatiotemporal relations, and then proceed to investigate the complex
trajectories formed from these PUMs for the various dynamic laws that govern the
evolution of physical systems.
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When the identity of spatiotemporal points is reduced to relations between
motions, we can think of the Principle of Relativity as a statement about the nature
of fundamental motions. The PUM consists of an objective process of generating
events, one that does not depend on our mode of representation. However, the
decomposition of motion into its spatial and temporal components requires that a
PUM would be projected onto a class of parallel PUMs.



Chapter 4
The Metaphysics of Time

4.1 Introduction

For the most part, contemporary philosophy of time is governed by the distinction
between Presentism and Eternalism. In understanding the nature of time, the choice
seems to be between a moving present and a frozen history, laid out along the
time-line. According to Presentism, the only concrete time that exists is the present.
Everything that was past no longer exists and that which is in the future is yet to
happen. The present moment keeps “flowing,” so that every instant is followed by a
new instant in which part of the future becomes the present and the present becomes
past. One frequently distinguishes between the past, present and future based on
the types of action that are available. It is not possible to influence the past; actions
take place only in the present. The future is pregnant with possibilities that might
or might not be realized, depending on what we do in the present. Thus, Presentism
is presupposed whenever one forms plans for the future or allows for the possibility
that things could have been otherwise than they are.

Commonsense intuition, linguistic habit, and practical reason render Presentism
the natural position to take. But many philosophers believe that current scientific
theories are in conflict with Presentism. According to the Eternalist view, or as it is
sometimes called the block-universe view, everything in the past, present and future
exists. Eternalism is based on an analogy between the spatial and temporal lines.
It is uncontroversial to believe that everything that exists at present exists in three-
dimensional space, even if one can only view existing things from a particular point
in space. Similarly, the analogy goes, if one occupies a certain instant in time, one is
only immediately aware of events that happen at that instant. But this limited aware-
ness does not entail that past and future events do not exist. Some interpretations of
the Special Theory of Relativity (STR), most notably that of Minkowski, suggest
that space and time are abstracted from a more basic four-dimensional structure
of spacetime. According to this approach time should be treated as if it were just
another dimension for describing the manifold of events. If the temporal dimension
is completely analogous to the spatial dimension, there is reason to believe that
existence at a particular instant in time is analogous to existence at a particular point
in space. Instants spread along the temporal dimension all exist, in analogy with
points along a spatial line.

O. Belkind, Physical Systems, Boston Studies in the Philosophy of Science 264,
DOI 10.1007/978-94-007-2373-3_4, C© Springer Science+Business Media B.V. 2012

93



94 4 The Metaphysics of Time

Many philosophers of time believe that it is not possible to reconcile relativistic
spacetime with Presentism.1 In STR, relations of simultaneity are defined relative to
an inertial reference frame, making it impossible to define an objective “present” in
which the whole world comes into and then goes out of existence. Without a single,
absolute definition of simultaneity, it is not possible to define a universal “now.”
If the distinction between Presentism and Eternalism is accepted as exclusive and
exhaustive, one is faced with three choices. Either the notion of “the present” is to
be revised so as to accommodate the lessons of STR, or one should conclude that
Eternalism is true, or one should reject STR as relevant to the metaphysics of time.
The most promising attempt to revise presentism in the light of STR seems to be
that of Stein (1968, 1991) who defines the “here-now” as the only event that exists.
The “present” according to Stein is therefore reduced to a single point in spacetime
relative to which the future light-cone is the future and the past light-cone is the
past. This enables Stein to preserve a presentist intuition, namely, the intuition that
the present is a point that demarcates between two kinds of events; those that can
causally influence the present (and are therefore in the past), and those events that
can be influenced by the present (and are therefore in the future).

Einstein’s discovery – that there doesn’t exist a single, absolute definition of
simultaneity – is not itself in conflict with the intuition that some events may
causally influence the present, and some events are influenced by it. If one accepts
Stein’s method for defining the present instant, one might be able to salvage the
causal asymmetry of the present. But as I argue in Section 4.3, following many
other commentators, Stein’s proposal confounds another intuition I take to be cen-
tral to the presentist view. According to this presentist assumption, the movement of
the now must track the processes by which events materialize and become present.
Since Stein’s revision of Presentism fails to accommodate the evolution of the now,
it seems reasonable to reject Stein’s Presentism and accept Eternalism, assuming
there are no other workable varieties of Presentism and assuming that Eternalism is
the only viable alternative.

The problem with the eternalist position is that it is in conflict with the funda-
mental intuition that the future is open, and that we, human beings, have various
incompatible yet distinctly possible futures. This intuition is so ingrained in our
habits of mind that it seems impossible to deny its validity. It is an assumption that
is presupposed every time humans take action. The presupposition is that humans
can somehow make a difference as to how things turn out, and so it matters to what
goal we exert our efforts. Another, more general worry, concerns the nature of causal
relations. In the context of a classical theory such as STR, a causal relation between
events seems to imply a certain relation of production. According to this conception
of causation, an event that takes place in the present brings about events that will
happen in the future. There is a causal relation between events, which relates the

1 See Putnam (1967); Rietdijk (1966, 1976); Maxwell (1985); Rea (1998); Savitt (2000);
Sider (2001); Saunders (2002); Hales and Johnson (2003); Gibson and Pooley (2006);
Petkov (2006).
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existence of one event to another. If event e1 causes event e2, then one assumes that
e2 would not have existed had e1 not existed. But it is not clear how this causal
relation coheres with the eternalist view. In the eternalist view, there is a complete
symmetry in the manner of existence of the cause, e1, and the effect, e2. Both simply
exist, and nothing can ground the causal asymmetry.

What makes true, according to the eternalist, the causal relation between events?
The eternalist might respond by comparing the actual, four-dimensional world, w1,
with a similar possible world w2. Assume that in the actual world w1, the event e1
is a billiard ball that hits another billiard ball, and the event e2 is the second billiard
ball that begins to move. One can compare this chain of events of w1 with another
very similar world w2, which has exactly the same events prior to e1, except that
in w2 the event e1 did not take place. According to the eternalist view, there is no
inherent difference in w1 between events e1 and e2. All events in w1 exist in the
same way. However, one may still consider the causal relation between e1 and e2.
The evidence for the causal relation would be to show that in world w2 in which
the billiard ball is somehow prevented from hitting the second billiard ball, one can
infer that the event e2 does not take place.

However, the eternalist account of how to reconcile causation with Eternalism is
uncompelling. The causal relation seems to suggest that the existence of e1 helped
produce the event e2, so that the coming into existence of e2 was somehow the
consequence of the existence of e1. But if the causal relation is justified via inference
relations – i.e., inferring the non-existence of e2 from the non-existence of e1 – one
is not able to quite capture the notion that e1 brought about the existence of e2. When
two protons collide, it seems reasonable to assume that the collision brought about
the annihilation of the protons, and the creation of new particles such as photons and
muons. It is not just that the existence of the photons and muons can somehow be
inferred from the collision. Rather, the collision initiates the process by which the
new particles come into existence, the photons and muons are produced as a result
of the collision. In short, there is the intuition that there is a genuine difference
between a causal relation and a correlation. And if the eternalist is pointing out the
mere inference from the non-existence of e1 to the non-existence of e2, the eternalist
merely accounts for the correlation between cause and effect. However, the eternalist
has no resources to account for the relation of production between cause and effect.

One may interject here and argue that the production account of causation is
questionable. Some alternative accounts exist in the literature. However, it seems
as if the account of causal relation as a relation of production fits naturally with
classical theories such as STR. Thus, if an eternalist points to a conflict between
STR and Presentism, one needs to remind the eternalist that a conflict also exists
between STR and eternalism, if STR suggests an asymmetrical relation between
cause and effect. I do not wish to settle the dispute with the eternalist here. I only
wish to raise a few worries to suggest that there is something unintuitive about
the eternalist view. My main contention is that before concluding that Eternalism
is the only alternative to Presentism, one must examine the common assumptions
underlying Presentism and Eternalism. Contenders to the metaphysics of time share
two presuppositions that are rarely, if ever, questioned. These presuppositions are
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held by all current proposals regarding the nature of time, including some unpopular
alternatives to Presentism and Eternalism. The first presupposition is that time is
more fundamental than motion, and that any definition of motion is ontologically
secondary to the fundamental notion of time. The second presupposition is an object
or an event exists if and only if it is present at a temporal instant t .

Perhaps there is a strategy that could provide for a third alternative that is neither
entirely presentist, nor quite eternalist. First, an unreflective assumption held by
contemporary accounts is that time is ontologically prior to motion. The standard
account of motion takes it to be the transition of an object from being present at
position x1, at temporal instant t1, to being present at x2 at temporal instant t2 (the
at-at theory of motion). This widespread account of motion takes temporal instants
(and locations in space) to exist prior to changes from one spatiotemporal location
to another. Since both Presentism and Eternalism presuppose the priority of time
over motion, one will disrupt the sharp dichotomy between the two if one assumes
that motion is more fundamental than time. According to Primitive Motion Rela-
tionalism, time consists of adopting a PUM as the paradigmatic standard for change.
When events unfold relative to this PUM, one has the impression that motions occur
within time. However, one can select a different PUM (or a set of parallel motions)
as a standard of temporal change. In that case, the new set of PUMs function as
“time.” When a new standard of change is selected, the original PUM selected as
a temporal standard is taken to be a motion occurring within time, rather than time
itself. Such an approach undermines the distinction between Presentism and Eter-
nalism, since if motions are more fundamental than time, one cannot infer from the
existence of a particular motion the existence or the presence of its temporal parts.
The existence of a motion is not predicated on the existence of any of its temporal
parts or its presence at a particular location in space and time.

The second presupposition that both Presentism and Eternalism (and all existing
alternatives) share is a strong conceptual link between being present at a temporal
instant t and existing. According to both Presentism and Eternalism, events are the
fundamental entities of reality. The Presentist believes that any object that exists,
exists only at the present. This implies that the existing entities which inhabit the
world are of infinitesimal temporal duration, i.e., the world is constructed out of
present events, or of infinitesimal time-slices of three-dimensional objects. Simi-
larly, Eternalism is also committed the view that objects have various temporal parts,
or time-slices, whose duration are instantaneous. Thus, since objects are constructed
out of their temporal parts, the most fundamental entity is an event, whose duration
is instantaneous.2 Furthermore, one concludes that the event exists based on the

2 I am here ignoring the distinction between perdurantists and endurantists, which may cause con-
sternation for some metaphysicians of time. Perdurantists believe that objects are four-dimensional,
and that the time-slices of an object form genuine parts of the object. Endurantists believe that
objects are three-dimensional, and that these objects endure throughout time, with different prop-
erties instantiated in the object at different times. While eternalists are ordinarily perdurantists, it
is certainly consistent for an eternalist to be an endurantist about objects, although this is not an
easy position to hold. I will not go into this debate about the nature of objects, except to say that
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temporal instant at which the event is present. The presentist assumes that there is
a privileged temporal instant t which is “the” present. An event is taken to exist if
and only if it is present at t . Those events that were present in the past or will be
present in the future, at temporal instants other than “the” present instant, are not
present, and so one can infer that they do not exist. In contradistinction, Eternalism
does not privilege any instants. As long as an event is present at some temporal
instant, the event should be taken to be present, and one therefore concludes that it
exists. Thus according to Eternalism, if a temporal part of a body is present at t , that
does not preclude other temporal parts from being present (and existing) at temporal
instants other than t . Presentism and Eternalism disagree on whether the scope of the
existential quantifier ranges over events present at “the” present instant, or whether it
should range over events present at any instant. But both Presentism and Eternalism
agree that being present at a temporal instant is a marker of existence.

It is difficult to pry apart the notions of “being present” and “existing,” even
though existence is an all or nothing affair, while being present is a relation. The
modern intuition is that an event exists if and only if it is present at t . At first glance
this inference from being present to existing seems unproblematic, as if existing and
being present are two different expressions of the same notion. However, a closer
examination reveals that the notion of existing and being present carry different
connotations, and that equating being present with existing is not free from implicit
assumptions. Part of the reason for the conflation between being present and existing
is that one often infers that a certain object exists from the fact that it is present.
When one says of a certain object that it is present, one ordinarily implies a certain
relation – the object is present to something else, whether it is a mind, or another
object that “feels” the presence of the object via some causal chains. The presence of
an object is “felt” through various causal chains that emanate from it. For example,
an object is present to the mind when there is a causal chain that stems from the
object and ends up producing an impression in the mind. An object is present to
another object when the other object can “feel” its presence via some causal relation.
It is as if the presence to our mind, or presence to another object is proof that it exists,
and if it is not present to something else, one no longer has reason to think that the
object exists.

Severing the connection between existing and being present at instant t is jus-
tified when one considers the slight difference in meaning between the notions of
existing and being present. While being present is a relation, existence is simply the
existence of an object or an event whether or not it bears any relation to another
thing. While it is meaningful to say that “the object exists but is not present to
anything,” it is meaningless to say that “the object is present but does not exist.”

both perdurantists and endurantists take time-slices as the basic entities from which objects are
comprised. Either one believes that an object is wholly present when a single time-slice is present
(which makes the view endurantist), or one believes that the object is wholly present in virtue
of all time-slices being present (which makes the view perdurantist). I am trying to undercut the
distinction between endurantism and perdurantism as well, since I am suggesting that being present
at t is not the same as existing.
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The former statement seems to border on being senseless, but it is clear that it is
not self-contradictory, while the second statement is self-contradictory. Thus one
may think of existence as describing the actualization of a certain entity indepen-
dently of any other entity, while being present is a relation: between an object and a
mind, between two objects, or between an object and a temporal instant. Now, being
present at a temporal instant t captures a different meaning from being present to a
mind or being present to another object. The relation of being present at a temporal
instant is more abstract, since it does not involve a causal chain that emanates from
the object to the temporal instant that “feels” the presence of the object. There is
some similarity between the notion of an object being present to God’s mind and
the notion of an object being present at a temporal instant t . Both relations of being
present do not rely on any causal chain via which God’s mind or a temporal instant
can “feel” the presence of the object. But it is clear that being present at t is a relation
and existence is not. Generally speaking, being present presupposes existence, but
existence does not presuppose (or does not presuppose necessarily) the object being
present.

The identification of being present with existence runs deep in western phi-
losophy, and it is difficult to imagine how one can conceive of existence without
grounding it in the presence of objects. The identification of the two notions leads to
surprising conclusions. For example, idealist approaches have taken the epistemic
connection between being present to the mind and existence to the extreme. The
Idealist presupposes that to be present, is to be present to a mind, i.e., it is to be
perceived. The first premise of the Idealist argument is therefore that being present
is a relation between an object and a mind; it is the relation of being perceived.
The second premise of the Idealist argument is that being present is equated with
existence. An object exists if and only if it is present (to a mind). The conclusion
of the two premises is the Idealist assertion that to be is to be perceived. In case an
object is not perceived by a finite human mind, it must be perceived by God’s mind.

Most of the arguments leveled against the Idealist do not question the second
premise of the Idealist argument, i.e., the premise which equates existence with
being present. Rather, the arguments against Idealism attempt to reinterpret the
notion of being present in such a way that it becomes implausible to claim that being
present is a relation between an object and a mind. One standard way to do this is
to assert that being present is a relation between an object and a temporal instant;
an event is present if it is present at a particular temporal instant t . This conception
of being present confines one to the notion that temporal instants are given prior
to any articulation of the presence relation. The biconditional between existing and
being present at t and the priority of time over motion therefore reinforce each
other. If one defines the notion of being present as a relation between an event and
one particular instant of time, an instant one takes to be “the present,” one ends up
with the presentist view. Because of the relation of being present to t , the unique
temporal instant which is “the present,” the event becomes actual, i.e., it is real.
Based on the notion that presence is equated with existence, one may also conclude
that all present events exist and non-present events, such as past and future events,
do not exist.
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Presentism is a view that the Idealist considers as a direct threat, and it is no
wonder that McTaggart’s Idealism compelled him to articulate the argument against
a robust version of Presentism. As McTaggart has shown, if the presentist attempts
to include an account of the evolution of the “now,” her account will run into dif-
ficulties. There is no coherent account of the process by which a present temporal
instant becomes non-present (or past), and a future non-present instant becomes
present (see Section 4.2).

Another way to avoid the Idealist conclusion is Eternalism. According to Eter-
nalism, all temporal instants render present those events that are located at them.
The conclusion is that all events that are located at temporal instants are present,
and therefore also exist, and there is no conceptual difference between past, present,
and future events. But as I shall argue, this eternalist position runs counter to our
most basic intuitions about dynamic processes. Eternalism does not accommodate
the intuition that the future is open and that there is an asymmetrical causal relation,
according to which the cause leads to the effect, but not vice versa. This principle
of causality seems to form a fundamental part of our scientific theories, at least in
the context of classical theories such as STR. Eternalism is therefore another flawed
alternative to the Idealist conclusion.

It is possible to conceptualize being present at t , and only at t , but still exist-
ing at various instants other than t . If motion is taken to be a primitive entity, one
may attribute existence to the fundamental process that generates events. According
to this conceptual possibility, the existence of processes is not predicated on the
existence of process-stages, which are themselves predicated on being present at a
particular instant t . Rather, it is the other way around – the existence of stages is
predicated on the existence of the underlying process. Thus, one can take different
stages of the process to be present at different temporal instants, but this does not
deny the ontological dependency of stages on the underlying process. According to
this view, one does not take motion to be a four-dimensional object that is composed
of ontologically distinct “time-slices.” A four-dimensional object in that case would
not be defined as the mereological sum of its “time-slices.” While the existence of
process-stages may depend on the existence of the underlying process, the process-
stage may be considered as present due to relations of the underlying process with
other processes. Thus, the four-dimensional underlying process exists, but its stages
are present at different temporal instants.

The presentist or eternalist may object to the notion that being present is a relation
between two things, as I have suggested. One may think about being present to the
mind is a relation between an object and another substance, mental in character.
But, one may argue, being present at a particular instant t is not a relation between
an object, and another thing, i.e., an instant of time. One may simply consider the
propositions describing the world as being true at t . Whatever exists is an existential
proposition implied by the propositions that are true at t . However, if this is what the
notion of being present at t amounts to, one seems to be divorcing true propositions
from the entities that make them true. It seems as if propositions that are true at t ,
are true in virtue of the entities that exist. And those entities exist in virtue of the
fact that they are present at the temporal instant t . Thus if one is a presentist or an
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eternalist, one is committed to a basic relation of being present at t as the one that
grounds the existence of events.

Taking into consideration our reconstruction of spacetime in Chapter 3, it is pos-
sible to think of motions as the fundamental entities of spacetime. According to this
approach, there is no prior grid of spatial points and temporal instants relative to
which the progress of motions is measured. Spatial and temporal distances “arise
together” from the basic process. In such a spacetime, events are not the basic
physical entity, but instead arise from relations between motions, i.e., relations of
intersection. Thus, one may distinguish between the existence of a motion α, which
is ontologically prior to any events which belong to this motion, and the presence
of α to another motion β. If α intersects β (i.e., Eαβ), then α is present to β at the
event of intersection. Thus, the claim that the intersection event is present depends
on first, whether the motion α it belongs to exists, and second, whether there is
another motion to which α is present. Thus, instead of thinking of α as the transition
from being present (and existing) at (x1, t1), and then being present (and existing) at
(x2, t2), instead think of these events as the consequence of one motion intersecting,
or being present to two other motions. Events that take place at particular spatiotem-
poral locations “owe their existence” to the mutual presence of two motions (or the
potential mutual presence of a motion to another motion).

Thus Primitive Motion Relationalism is an attempt to resuscitate the idea that
Becoming is more fundamental than Being. But this Becoming is not identical to
a present instant that moves along the temporal line. Such a notion would reduce
Becoming to Presentism. Rather, the idea is that the process of generating events
has its own mode of existence, and this existence is ontologically prior to being
present at a particular instant. This view is the “third alternative” to Presentism and
Eternalism. According to this account, there are two modes of existence. At the
fundamental level, a motion exists independently of any other motion. This motion
exists and evolves prior to any temporal determination, and its existence is indepen-
dent of being present at a particular instant t . The view suggests that Presentism is
false (and Eternalism is partially true), since the existence of the underlying motion
precedes being present at any instant. However, another mode of existence con-
cerns the relations between motions, i.e., intersections between them that constitute
events. Whether two motions intersect, or whether an event has actualized, is still
open prior to the event of intersection. Along a particular motion, one can single out
a “present instant” for each particular motion. It is always clear at what stage the
process is in; there is only one stage that is present, because it must be present to
some other motion, i.e., it bears a relation to the other motion. The process is not the
sum of its stages. On the one hand, the present instant owes its existence to a more
fundamental level, i.e., to the underlying motion or process. On the other hand, the
present instant also owes its existence to the relation between motions, i.e., to the
stage in which the motion becomes present to another motion. Given that only one
event along a particular motion is present, one can also take Eternalism to be false
(and Presentism as being partially true).

The thesis that motion exists prior to space and time provides a new philosophical
approach to the study of time and its relation to relativity theory. First, I will examine
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the conceptual difficulties concerning the flow of time (Section 4.2). I argue that
these difficulties stem from the assumed priority of time over motion, and that these
difficulties dissolve if this priority is given up. Second, I agree with the widespread
assessment that the structure of relativity theory is in conflict with Presentism and
will defend this claim in Section 4.3. However, even if Presentism is false it does
not follow that Eternalism is true (Section 4.4). Thus I disagree with the conclusion
most philosophers of time take from the conflict between Presentism and relativity.
If motion is taken to exist prior to space and time, there is an alternative to Pre-
sentism other than Eternalism. In Section 4.5 I sketch the alternative account of the
metaphysics of time, which gives up the two main assumptions of Presentism and
Eternalism. First, I argue that Primitive Motion Relationalism provides a framework
where motion can be taken as ontologically prior to time. Second, I argue that one
can make sense of this view when one differentiates between the existence of motion
and the presence of motions to other motions.

4.2 The Flow of Time and Motion

Problems with presentist theories, at least those that presuppose the flow of time,
exist independently of any conflict there might be between Presentism and STR. It
would be pointless to consider whether Presentism is consistent with STR if it is
not even a coherent view. Moreover, if it is difficult to formulate a coherent account
of Presentism independently of STR, perhaps the tension with STR stems from the
same conceptual obscurities plaguing the presentist position itself rather than a clash
between metaphysics and science.

In the following, it will be useful to differentiate between the existential presentist
presuppositions and the attempt to ground temporal becoming in the movement of
the now. Arguments against the notion that the “now” is moving towards the future
often get the reply that the minimalist presentist view is concerned merely with the
notion that the only events or objects that exist are the ones that exist at the present
time. Presentism is not concerned with the flow of time or with how events come
into existence. Thus one ought to separate the minimalist, austere presentist view,
with the full-blown notion that the “now” evolves from the present to the future.
According to the austere presentist view, one is solely concerned with the presen-
tist’s existential claims. The “robust” presentist view is also interested in explaining
the dynamics of change, and in accounting for the evolution of the present moment.

Presentism carries with it an existential assumption. According to Presentism,
only a single instant t is present, and therefore exists; instants other than t are either
past or future, and are therefore non-present instants that do not exist. The central
presentist assumption is therefore that the present instant t is also a marker of exis-
tence. For any object or event, it exists if and only if it is present (and it can only be
present now). There are some varieties in articulating the nature of this existential
claim. For example, some presentists attempt to be precise about the nature of the
objects that exist at the present instant t , and the modal character of this existence.
At minimum, the presentist argues that concrete objects only exist if they are present
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(now). But if at a present instant t it is coherent to discuss and think about past and
future objects, then one has to recognize the existence of propositions, at t , that
describes times other than t . Thus it may be that at present time t , one should also
recognize the existence of abstract entities or propositions that represent objects that
exist in the past and in the future. Thus some presentists erect an analogy between
descriptions of non-present times and discussions of possible worlds. The difference
between non-present and present times would then be analogous to the distinction
between possible and actual worlds. Furthermore, if it is not possible for proposi-
tions describing the present instant t to be false, one may say that these propositions
are necessarily true. That is, if the propositions describing the present instant are
true, it is not possible for them to be false. Thus, Sider (1999) for example, equates
Presentism with the claim that “necessarily, it is always true that everything is (then)
present” (p. 326). The point of this definition is to rely on a certain indexical (then) to
refer to a single instant in time, and to argue that everything that exists, is necessarily
present at that temporal instant.

It is a common worry in the philosophy of time whether our language correctly
represents our existential assumptions. If claims about the past or the future are
true, and events in the past and in the future no longer exist, one needs semantic
tools to articulate true propositions about entities that no longer or do not yet exist.
Prior (2003) introduced semantic operators for paraphrasing statements about past
or future events to tensely modified statements. The statement “I was having my
breakfast” is paraphrased as “It was the case that I am having my breakfast.” And
the statement “I will have my breakfast” is paraphrased as “It will be the case that
I am having my breakfast.” The semantic operators “It was the case that p” and “It
will be the case that p” are indexed to a particular present instant. Thus tensed talk
is a speaker’s assertion that a certain state of affairs was the case or a certain state
of affairs will be the case. There may be traces in the present about past events, or
description of events that have not yet happened, but only present events exist at
each present instant. Events are spoken of as past or future, but there are no past or
future events, strictly speaking.

There are some conceptual difficulties involving the presentist existential
assumption. There is the problem of cross-temporal relations such as the causal
relation. It is not clear how the presentist would treat relations between two events,
one in the past and the other in the present, if only the present event exists.3 Presum-
ably a true cross-temporal internal relation can only hold if both terms of the relation
exist. However, when a relation holds between a present and a non-present entity,
it is not clear which conditions make the proposition expressing the relation true.
It is also not clear how, according to the presentist’s approach, statements such as
“Abraham Lincoln was tall” and “David Lewis admires Ramsey” are able to contain
names referring to objects not currently existing. Such statements should undergo

3 See Bigelow (1996), Sider (1999) and Markosian (2004) for an attempt to defend Presentism
against the problem of cross-temporal relations, and Davidson (2003) for a critique of such
attempts.
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some appropriate paraphrasing if one were to analyze their truth conditions. Since a
proper name must genuinely refer to an existing object, it is not exactly clear how a
singular proposition could be true and yet refer to an object which is not presently
existing, or to two different objects existing at different times.

There are various ways of defending the presentist existential assumptions, but
I will not consider these difficulties here. Focusing on these difficulties obscures
a deeper problem with Presentism, which arises when one attempts to explain the
movement of the now. I.e., Presentism faces problems when it is offered as part of a
robust form of Presentism that tries to account for dynamic change.

The presentist conception becomes even more contentious when it is assumed
that the movement of the present instant (“robust” Presentism) accounts for the var-
ious processes of becoming, which are the processes by which various events and
objects come into existence. A common way to describe the movement of the now is
to think of certain instants of time as first being future, then becoming present, and
finally becoming past. Another way to describe this dynamic of the present instant is
to think of descriptions of future times as becoming true, and propositions describ-
ing the present as becoming false. A visual metaphor for this changing present is
a razor-thin, three-dimensional surface which progresses along the temporal line,
where the progression marks the movement or the flow of time.4

The paradigm example for an account which connects the movement of the
present with the flow of time is Newton’s account of absolute time:

Absolute, true, and mathematical time, in and of its own nature, without reference to any-
thing external, flows uniformly and by another name is called duration. (Newton, 1999,
p. 408)

The “flow” metaphor used to describe the passage of time provides a certain visual
representation. One imagines a river flowing and gets a feel for what it means for
time to move from the present into the future. But despite the intuitive appeal of the
river metaphor, it is conceptually inadequate. Since any motion seems to presuppose
the passage of time, it is not clear how the passage of time can itself be represented
with some metaphorical motion. The passage of time grounds any change, so it is
not clear what conceptually grounds changes in time itself.

In his well-known argument against the reality of time, McTaggart (1908) distin-
guished two ways of describing the series of temporal instants. The A-series consists
of temporal instants that have the properties of being past, present and future. One
ordinarily conceives of instants of time as first being in the future, then becoming
present, and finally residing in the past. But there is another way to describe a series
of temporal instants, i.e., through the relations of earlier than or later than. This

4 This image of the present moving from one instant to the “next” may be seriously misleading,
since the assumption is that the temporal dimension can be modeled by a real line. Since the
instants along this line are dense, between any two temporal instants there is another. Thus, strictly
speaking there is no single instant that can be designated as the “next” one, just as there is no single
spatial point that is the next point to the right of the point marked 0. But one may speak loosely in
this way to describe the movement of the now.
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series of temporal instants is characterized by an asymmetrical, transitive ordering
relation. McTaggart designated this latter structure governing temporal instants as
the B-series. While the B-series captures the order between temporal instants, it is
not able to account for genuine notions of change. Thus according to McTaggart, an
account of time – given the requirement that it should explain change – must include
the A-series.

McTaggart points out that the A-series is untenable, thus leading him to conclude
that time is unreal. A temporal instant according to the A-series is first in the future,
then becomes present, and finally ends up in the past. But an instant cannot have the
property of being in the future, the present and past, since these are incompatible
properties; an object with incompatible properties cannot exist. If one argues in
response that it was only in the past that the event had the property of being in the
past, and that only in the present did the event have the property of being in the
present, etc., then it seems as if one runs into an infinite regress. Another A-series is
needed to differentiate between the various times in which events have the properties
of being in the past, present and future. To avoid an infinite regress one has to accept
that the A-series is impossible. One is left with the B-series, or with the claim that
time is reducible to relations of earlier and later than, with no particular instant that
is distinguished as the present and no passage of time.

McTaggart’s argument is an attempt to make precise the vicious circle that arises
in trying to conceptualize the passage of time. The infinite regress begins as soon
as one attempts to describe the process by which a future instant becomes present,
and a present instant becomes past. Changes in time itself seem to require a higher
temporal dimension in which to describe the movement of the now, but such strat-
ification of various levels of change gives rise to an infinite regress. One way to
avoid McTaggart’s regress is to retreat to an austere presentist conception in which
there is no genuine change in time, but the annihilation of everything that exists in
one temporal instant and the creation of everything that exists in the new present
instant. The presentist then argues that events do not become, they simply exist at
certain present instants. One could distinguish between things, such as an electron, a
person, or a city, which could undergo changes, and events that either exist or do not
exist.5 Craig (1998, 2001a), for example, argued that the notion that a future instant
“becomes” present does not amount to a pure A-series, since the transition from a
future to a present instant requires the alignment of A-series instants relative to the
B-series. McTaggart’s argument is in fact directed at a hybrid of A and B-series of
temporal instants. A “pure” A-series of temporal instants is one where there is never
a flow from events existing in the future to events existing in the present. Events do
not carry monadic properties such as “being past” and “being future” – their being
past or future is merely asserted from the point of view of some present speaker.

5 Mellor (1981) argues that it is possible to think of things evolving in time and their events as
existing within a B-series. But Mellor is a B-theorist who wants to deny the existence of the
A-series. See Dagys (2008) for further analysis.
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In addition to McTaggart’s argument suggesting that the “flow” of time leads to
an infinite regress, Newton’s definition of time suggests metaphysical alternatives to
the actual rate in which time flows. If time in the actual world flows uniformly, one
might conceptualize other possible worlds in which time does not flow uniformly.
Thus there is a conceptual difference between the uniform and non-uniform flow of
time. This again suggests a second time dimension relative to which we can com-
pare the rate in which the first time dimension flows. Clearly this is not a coherent
account, since it leads to an infinite regress. If the second time dimension can be
described as “time,” then it flows too, requiring another dimension relative to which
one can describe the rate of its time-flow, etc.6

The response to McTaggart’s argument ordinarily amounts to a retreat to an aus-
tere form of Presentism, where the presentist view is reduced to an existential claim
about the present, and there is no positive claim about the process by which a future
instant becomes present, and a present instant becomes past. But the retreat to a pure
A-series, like the reduction of time to the B-series, fails to capture the experience
one has of time passing and of there being genuine change written into the fabric
of the universe. If only the present exists at any particular instant, and there are no
processes that extend throughout time, not even the passage of time itself, then the
presentist view does a poor job of explaining the intuition that change is reducible to
the passage of time. Moreover, the austere presentist is committed to an unexplained
harmony between the evolution of the universe, on the one hand, and the order gov-
erning temporal instants, on the other hand. Assume that at different present instants,
different times (and perhaps representations of non-present times) exist. On the one
hand, one may describe the laws of nature that govern the evolution of entities that
exist at a particular time and the tendency of future states of those entities to become
present. On the other hand, one can describe the ordering relation between temporal
instants. It seems a matter of pure coincidence to suggest that the temporal instants
are ordered in a way that conforms to the laws of nature that are made true by
the world existing at a particular instant t . One would not be able to differentiate
between two ways of ordering temporal instants, whether by its standard ordering,
or by some random ordering. For example, if the present instant is 5:00 am, January
1, 2010, it is perfectly consistent with the presentist view to think that the next
present instant existing is 3:34 pm, January 1, 1840, and the next one to exist is
11:32 am, January 1, 5230. If there is only the present instant that exists, there is
nothing to recommend a correlation between the actual order of temporal instants
and the various laws that seem to govern the evolution of physical states of entities
existing solely in the present. The laws are described as governing the actual world
at the present instant and other non-present worlds. But it only makes sense to say
that t1 is later than t0 if there is a causal process that is responsible for producing
a change from states of objects existing in t0 into states of objects existing in t1.

6 See Smart (1949) for an examination of the problem of the rate of time’s flow. Smart argues
that since it is not clear what rate time flows, it is not coherent to talk of the flow of time. See
Markosian (1993) for an attempt to respond to Smart.
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Without a process that begins at one time and ends in another, it does not make any
sense to insist that temporal instants conform to a certain order, or that the actual
order of temporal instants conforms to laws governing entities that exist only at the
present instant. It would just be a miraculous accident to suppose that the times line
up to a certain temporal order in just the same way that traces of past times appear
in the present time.

An austere presentist view is unable to ground both the ordering of temporal
instants and the evolution of physical states of the entities that exist. The austere
presentist view, since it takes the movement of the now to be the annihilation of
the present and the creation of another present, is in tension with the asymmetry of
the temporal order. If the presentist takes the past to be fixed and the future open,
then it is not clear to what this asymmetry could be reduced. Given the ontological
symmetry between the past and the future it is not clear what justifies the notion that
the future is different in kind than the past.7 A philosophy of time would undermine
itself if it were not able to account for the relation between the passage of time and
motion.

The austere presentist view might be internally consistent. However, whenever a
presentist attempts to go beyond the confines of austere presentism, and explain the
flow of the present instant, she is bound to fail. Presentism is not a coherent view
whenever it attempts to provide an explanation for temporal change. An attempt to
provide a robust form of Presentism must accept a dual view of motion. On one level
the motion of bodies is given within time, on the other hand the present instant itself
is moving. As soon as one tries to make sense of the movement of the “now,” then
one is pressed to suppose the existence of a higher temporal dimension relative to
which the movement of the now is described. However, retreating to a coherent, aus-
tere, presentist account results in a metaphysical view that fails to explain temporal
change, which robs the presentist view of its intuitive appeal. Of course, presentists
often insist that Presentism is merely the existential commitment to objects only
existing in the present, and so by definition Presentism is the austere view and
the McTaggart argument is irrelevant. But if one confines Presentism to the view
that only the present time exists, and does not explain how the future time comes
into existence, then Presentism becomes a stale view to hold, and an impoverished
metaphysics of time.

A presentist is shackled to a dilemma between an untenable robust form of
Presentism, and an austere form of Presentism that is explanatory deficient. She
is bound to this dilemma by the presupposition that time is given, ontologically
speaking, prior to motion. As long as the presentist thinks of the motion of bodies
as occurring within time, she will be forced to think of the present instant as moving
if she would like to give an account of change, leading to an incoherent picture. She
might avoid committing herself to a movement of the “now,” but then her position

7 See Diekemper (2005) for an argument that a pure presentist position is inconsistent with the
asymmetric fixity of the temporal order.
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becomes too austere to provide a convincing account of change. A “frozen” present
is not a very satisfying account of change.

Once the logical priority of time over motion is given up, it is no longer tempting
to think of time as grounding change on the one hand, and time itself as changing.
Assuming that motions exist, not in time but as grounds for time and space, then
there is no need to conceive of a dual layer of change; change with respect to time
and the change of time itself. If the world consists of various motions, time is simply
the privileging of one motion over all others and the comparison of all motions to
this paradigmatic motion. Change relative to time would be change relative to this
paradigmatic motion. Change of time itself would be the change of the paradigmatic
motion, relative to an alternative motion selected as the paradigm of change. Change
therefore is the unfolding of one motion relative to another, and is a relative concept.
Motions display change in relation to one another, but there is no such thing as a pure
change of time.

4.3 The Conflict Between Presentism and Relativity

Many philosophers of time believe that current scientific theories, in particular STR,
are in conflict with Presentism. Since relations of simultaneity have to be defined
relative to an inertial reference frame, it is not possible to define a single instant
as “the present,” and think of this instant as extending over all of space. Presen-
tism seems to rely on dated assumptions carried over from Newtonian physics and
Galilean spacetime, where relations of simultaneity are objective and independent
of the inertial reference frame.

Putnam (1967) and Rietdijk (1966, 1976) utilize the conflict between Presentism
and STR to argue for Eternalism. According to Putnam, whose argument is consid-
ered first, one may safely assume that whatever happens here and now to an observer
S1 exists. For simplicity sake, it is assumed that this observer S1 is not accelerating,
i.e., one can define the inertial reference frame relative to which S1 is at rest. Putnam
assumes that the event p produced by the observer S1 here and now is real.

According to Putnam it is reasonable to assume that the coexistence relation
Rxy – which is interpreted as “the event y is real if x is” – can be defined on a particu-
lar spacetime using spatial and temporal relations between events. In Galilean space-
time, the relation R of coexistence supervenes on relations of simultaneity. Thus,
relative to the here-now p experienced by an observer, all events x simultaneous
with p are considered real, so that {∀x, t (x) = t (p)|Rpx}. In Galilean spacetime one
can therefore define a singular present instant for which all objects exist. However,
in relativistic spacetime, the relation R cannot supervene on relations of simultaneity
without running into problems. Attempting to reduce R to spatiotemporal relations
seems to result either in taking R as holding on all event-pairs in the spacetime, or
accepting counterintuitive assumptions about R. Assume that there is an observer
S2 moving uniformly in relation to S1, and that S2 produced the event q which is
simultaneous with p in S1’s rest frame (see Fig. 4.1). If R supervenes on relations of
simultaneity defined in S1’s rest frame, Rpq holds. Since p is real, q is also real. But
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Fig. 4.1 Relations of coexistence in various reference frames

then if S2 is moving relative to S1, one can define R on events simultaneous with q
in S2’s rest frame. Thus, take an event r that took place on S1’s worldline which is
simultaneous with q in S2’s rest frame. Two options are now available. Taking Rpr
to be true means that r is real if p is. If that is the case, Presentism is false since the
future event r is real as soon as p is real. Or, in other words, a future event is as real
as the “now.” (Analogous arguments can be constructed for any event in the future
or the past light cone to p). The alternative is to think that Rpr is false despite Rpq
and Rqr being true, i.e., R is not transitive. This alternative is implausible since it
implies that relations of coexistence depend on the observer.8

Rietdijk follows an argument analogous to that of Putnam’s. According to Riet-
dijk, one can think of the relation Bxy, which means that y is determined if x
is. Thus, in Galilean spacetime, Presentism implies that events in the past are
determined in relation to the present moment. Assume that an event p is in the
present. All events belonging to the past must have already been determined. Thus
{∀x, t (x) ≤ t (p)|Bpx}. All events in the future are yet to be determined given that p
is determined so that {∀x, t (x) > t (p)| ∼ Bpx}. If an event p is determined, one can
try to specify all the events that are determined in relation to p. In the context of rel-
ativistic spacetime, it is clear that all events in the past light cone are determined rel-
ative to the here-now. Thus, one can say that {∀x, s2(x, p) > 0,�t (x, p) < 0|Bpx},
where s is the relativistic spacetime interval defined as s2(x, y) = ημνxμyν and η
is the Lorentzian metric. Now, like Putnam’s relation of co-existence, the question
is whether a space-like separated event is determined in relation to the here-now p.
Riedjijk’s proof follows the same reasoning as that of Putnam’s. If events simulta-
neous with p are determined in relation to p, then either the relation Bxy is true on

8 See Hinchliff (1996) for an attempt to resist the transitivity of the coexistence relation.
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all the spacetime or we have to give up the transitivity of this relation. But giving up
the transitivity of this relation is counterintuitive, and so one has to accept that for
any event p, all other events in the spacetime are determined in relation to it. If this
is the case, Eternalism is the only account of time consistent with relativity.

Putnam and Rietdijk both assume that an event exists if and only if it is present
at a particular spatiotemporal point p. This assumption leads to the assertion that
if events e1 and e2 co-present, then the events e1 and e2 coexist. The question
is whether two events are co-present when they are present relative to the same
inertial reference frame. However, if one separates the notion of being present at
a spatiotemporal point from existing, then there may be a distinction between two
events being co-present, and two events coexisting. If one assumes that the notion
of being present involves a relation between two motions (that are present to each
other when they intersect), then one may conclude that two space-like separated
events are neither co-present nor are they not co-present. If one takes the relation of
being present to involve a relation between two motions, the notion of co-presence
is not well defined if it is intended to be a relation between two remote events. On
the other hand, all events, since they belong to a fundamental motion, exist in virtue
of the fundamental motions to which they belong and the relations between motions.
The fundamental motions all coexist, since all exist at a fundamental level.

An important presentist intuition may be salvaged if Presentism is revised in
an appropriate way. Given that relations of simultaneity are defined relative to an
inertial reference frame, one cannot abstract from the particular worldlines and
define a present instant common to all worldlines. As Stein (1968, 1991) argued,
there is no need to posit an objective instant that demarcates between determined
and undetermined events running throughout all of space in a particular hyperplane.
Similarly, one need not suppose that there is such a line underwriting relations of
co-existence. It’s coherent to think that, relative to the here-now, events in the future
light cone are undetermined and events in the past light-cone already are.

Stein’s suggestion captures an important intuition that drives Presentism. If a
particular point in spacetime is present, one may clearly distinguish between those
events that could causally influence this point and those events that may be influ-
enced by it. Stein argues that:

In the context of relativity . . .we cannot think of evolution as the development of the world
in time, but have to consider instead (as above) the more complicated structure constituted
by, so to speak, the “chronological perspective” of each space-time point. The leading prin-
ciple that connects this mathematical structure with notions of “process” and “evolution”
(and justifies the use of our notion of “becoming” in relativistic space-time) is this:

At a space-time point a there can be cognizance – or information about influence prop-
agated from – only such events as occur at points in the past of a. (Stein, 1968, p. 16)

Thus according to Stein one may revise the notion of present in STR to include a
single spatiotemporal point. Each point in the spacetime carries its own perspective
on processes of becoming. Instead of attributing becoming to the world as a whole,
one focuses instead on differentiating between points that can initiate influence that
propagates until it effects change in the present and chains of influence that initiate
from the present.
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Notice that Stein’s language reflects the distinction between existing and being
present. For him, only the here-now exists and there is only a single spacetime point
that actually exists. But what Stein is really interested in is the notion of being
present, which contains certain relations to the past and to the future. A present
instant “is cognizant” or “contains information” about the influence propagated from
the past. Events lying in the future cone would contain information about the present
instant. Thus, Stein implicitly uses the notion of being present as marking a certain
causal relation to past events, a relation that results from certain events being present
and the causal chains that emanate from those present events. A certain event is
present, when it is “produced by” or generated by events that were present in other
instants. But Stein goes further to conclude that, since one can only define the rela-
tion of causal connectedness from the perspective of a single point in spacetime, the
here-now is the only present point and therefore is also the only one existing. Thus,
Stein is adhering to the strong metaphysical connection between being present and
existing.

Clifton and Hogarth (1995) have shown a way to reduce Stein’s notion of causal
influence to processes of becoming that govern individual worldlines. One can use
becoming relations along particular worldlines to derive a general determinate-
ness relations between the “here-now” and the past light cone (assuming plausi-
ble assumptions about worldline transitivity of becoming relations). According to
this approach, there is one point on the worldline which exists, and that part is
“present.” The difference between classical and relativistic spacetime is that the
present, which is well defined for a particular worldline in relativistic spacetime,
cannot be extended unambiguously to other spatiotemporal points. Instead of the
world as a whole undergoing a process of becoming, one may instead think of indi-
vidual worldlines as undergoing their own processes of becoming.9

But does it make sense to restrict the present to the here-now? What is then the
status of events that are space-like separated from the here-now? Do they exist or
do they not exist? Stein’s suggestion is to take only the here-now as obeying the
relation of coexistence to itself.10 But it seems odd to say that none of the space-
like separated events are coexistent with the present here-now.11 As Stein himself

9 See Clifton and Hogarth (1995, pp. 382–83).
10 See Callender (2000) for an argument claiming that this definition of Presentism steers too far
from our standard presentist intuition.
11 Sider, for example, argues that limiting existing events to a single spacetime point is extremely
counterintuitive:

. . . the presentist might banish all of space-time other than a single point. (A related proposal
would be to banish all of spacetime other than a single point plus its past light cone.) Note
that the right way to assert here-now-ism is to say that only a single point of the spacetime is
real, that there exist no spatiotemporally distant events. The wrong way is to say that at any
point in the spacetime, only a single point of spacetime is real. This suggests a misleading
picture, that there are multiple points in spacetime, but somehow, from the perspective of
one of them, the others are not real. Unless the presentist is involved in a Meinongian
distinction between being and existence, this can only be a confusion. (Sider, 2001, p. 44)
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recognized, for his proposal to count as a revision of Presentism it has to preserve
some intuition that the present “becomes cognizant” only of processes occurring in
its past. But what is the connection between the here-now “becoming cognizant”
of the processes in its past and the here-now coming into existence? Can we use
the occurrences taking place at various here-nows to infer how the present instant
evolves over time?

One of the main benefits of the presentist position is that it provides an intuitive
framework for understanding the relation between time and becoming. In traditional
presentist accounts, the evolution of the now is conceptually linked to processes of
Becoming. There are two interpretations that could ground the relation between
the evolution of the now and coming into existence. The first interpretation thinks
of the temporal instant as becoming present, which then grounds the going out of
existence of present events and the coming into existence of future events. Another
interpretation is that the becoming present of the temporal instant merely marks
the fact that a certain set of events have come into existence. Thus, according to
this latter interpretation, the present instant is no more than a marker of existence.
One way to understand the distinction between the two interpretations is to consider
whether it is possible for the whole world to freeze, and for time to march on. Can
one conceive of time passing without the world as a whole changing? If the answer
to this question is “yes,” then one takes the evolution of the present instant to be mak-
ing possible processes of becoming, and the presence of temporal instants ground
existence. According to this interpretation, existence follows an underlying process
of temporal instants becoming present. If one cannot imagine time to progress with-
out events coming into existence, then the second interpretation applies, and one
believes that there is no more to the present instant than the coming into existence
of the world.

Whether or not time grounds existence, or existence grounds time, Stein’s pro-
posal falters as a genuine presentist account. Stein’s method is based on the notion
of spatiotemporal perspective. His proposal does not consider the ways in which
our spatiotemporal perspective evolves. Presumably, one simply inhabits various
spatiotemporal perspectives at will. The consequence is that it is not possible to
imagine the evolution of the present instant as making possible processes of becom-
ing, nor can one consider the evolution of the present instant as marking processes
of becoming.

Sider’s argument is based on the assumption that the relation of coexistence must be either true
or false. If spatiotemporally distant events do not coexist with the here-now, then they do not
exist when the here-now exists. On the other hand, if one looks at spacetime from the perspec-
tive of the spatiotemporally distant event, then the distant event exists and the here-now does
not. Is it reasonable to assume that existence depends on the perspective of the spatiotemporal
point? Isn’t existence simply a brute fact independent of the particular perspective? Sider’s worry
may be resisted by insisting that relations of coexistence are not well defined on space-like sepa-
rated events. One way to avoid defining relations of coexistence is to restrict the predicate “being
present” to a particular point on a particular worldline. According to this proposal, it is meaningless
to ask whether space-like separated events on different worldlines coexist. While this solution feels
a little strained, there is no way to reject it out of hand.
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Consider the possibility that the evolution of the present instant makes possible
the existence of events. Assume that the here-now p is present. From p one may
consider causal chains that go into the future light-cone, so that various “new” here-
nows may be p′ = p + dxμ. But which instant is the “next” present depends on
the inertial reference frame. Thus it is not possible for the change from p being
present to p′ being present to allow for the possibility of an event coming into exis-
tence at p′, because one may have considered many different future p′s, which are
potentially the new present instant. One cannot utilize the notion of spatiotemporal
perspective to describe the evolution of the present instant. The evolution of the
present instant cannot underwrite the process of events coming into existence.

Stein may argue in response that it was never a core intuition of Presentism to
suggest that the movement of the now underwrites the process of becoming. It may
be that in traditional presentist accounts it seemed as if existence is indexed to a
particular present instant, but this is not an ontological grounding of existence, only
an epistemic way to access it. The movement of the now was only supposed to
reflect a process of becoming of the world as a whole. Similarly, a revised version
of Presentism such as Stein’s asserts that the becoming of individual worldlines is
given, and the here-now is present as a result of this process of becoming. But if
this is the proposal, then it is not clear why Stein is allowed to treat events that are
space-like separated from the here-now as non-existing. When a remote worldline
that is space-like separated from the here-now becomes, its process of becoming is
independent of the here-now; and whether a point on the remote worldline is present
depends on that worldline becoming and on nothing else. If a point on the remote
becoming worldline exists, it violates Stein’s proposal. If it doesn’t, there is no evo-
lution of the present instant that can track processes of becoming. The consequence
is that Stein’s proposal cannot accommodate a core presentist assumption, namely
that the movement of the “now,” or the present instant, is conceptually linked to
processes of becoming.

The above dialectic regarding the consistency of Presentism and STR is a recur-
ring one. In light of the conceptual difficulties in reconciling Presentism with STR,
various proposals are given as to how to revise Presentism to accommodate the
“lessons” of relativity. In the process a form of Presentism is proposed that is con-
sistent with the structure of STR. When critics point out the weaknesses in such
revisions, presentists respond by saying that this or that aspect of traditional Pre-
sentism is not essential to the view. For example, one may argue that the “core”
of Presentism is merely the claim that the now exists and that non-present events
do not exist. The presentist does not concern herself with “how” the present comes
into existence. But such anemic versions of Presentism, while not entirely inde-
fensible, lack the substance that links Presentism with genuine concepts of change.
And without this conceptual connection Presentism becomes an unstable position to
take. A similar dialectic governs other proposals for revising Presentism in the light
of STR. For example, Godfrey-Smith (1979) and Hinchliff (2000) argue that one is
free to define the present as the set of events on the surface of the light cone lead-
ing up to a particular event. The justification for this definition is that light signals
do not only leave their traces on the spatiotemporally distant events, they actually
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connect the events and make them co-present. The rearward light cone definition
of the present is perhaps a consistent way to use the word “present,” but it suffers
the same weaknesses that trouble Stein’s proposal, since the view relies on relations
of causal connectedness to define the present, while the process of becoming is left
unanalyzed and disconnected from the concept of being present.12

There are more desperate attempts to salvage Presentism, which involve a
retreat into the claim that metaphysical views are immune from scientific advances.
According to this approach, there could be no direct conflict between a scientific
theory and a metaphysical view. Any scientific theory is merely an economical
summary of phenomena, or at least it may be that metaphysical systems are underde-
termined by scientific theories, and there is no reason to think that the metaphysical
nature of entities such as time can simply be read from the theory without fur-
ther interpretation.13 Given that much of our experience of time is presentist in
nature, and given that denying Presentism would undermine our self-understanding
as freely acting agents, some philosophers feel compelled to resist the Eternalism
that seems to be implied by STR. It is often the case that resistance stems from
religious and ethical motivations or from certain views regarding the philosophy of
mind. Without action influencing the future, there is not much left to the notion that
a human agent is responsible for his or her actions. One way to avoid the eternalist
position is to argue that despite the equivalence between inertial reference frames
in STR, there is a privileged frame as a matter of metaphysical fact, or as a matter
of undetectable physical fact.14 Whether or not one has means of assessing meta-
physical claims that go beyond the scientific theory I leave aside, since I believe
there is more philosophical work to do in making sense of the implicit metaphysical
assumptions “involved” in STR. While I am convinced that there is little chance of
reconciling the spirit of Presentism with the structure of STR, I am unconvinced that
Eternalism is the proper and only alternative to Presentism.

4.4 But Eternalism Is False Too

The trouble with Eternalism is not so much the conflict it generates with our pre-
philosophical experience of time, but that it undermines the notion that time is
asymmetric, and that the flow of time also reflects the propagation from cause to
effect. Assume that event e1 caused event e2. For argument’s sake, one assumes that
e1 happened prior to e2. Ordinarily, to accept a causal relation between two events
implies the acceptance of the counterfactual “e2 would not have existed if e1 did
not exist.” It is not entirely clear what could make such a counterfactual true, if one
adopts the eternalist view. An eternalist has more of a challenge in providing an

12 See Savitt (2000) for a critique of cone-Presentism.
13 See Hawley (2006) for a discussion on the various strategies of defending metaphysical claims
from conflicts with scientific theories.
14 See, for example, Craig (2001b) and Hinchliff (2000) for such a line of argument.
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account for such a counterfactual than the presentist. The presentist believes that
before e2 is present, it does not exist; thus one can conceive of the existence of
e2 as dependent on the existence of e1. Since the presentist believes that e2 came
into existence at some instant, she can also say that the coming into existence of e2
would have been prevented had e1 not existed. The presentist has the problem of
articulating what grounds the causal relation, given that when the effect comes into
existence, the cause no longer exists. But the eternalist has a more acute problem,
since according to the eternalist all events exist, and so they never come into exis-
tence nor do they go out of existence. It seems to follow that if no event comes into
existence, the existence of any single event does not depend on the existence of any
other particular event.

One way to make sense of a causal claim in an eternalist context is to argue
that there is a possible world w2 similar in all relevant respects to the actual world
w1. All events leading up to e1 in w1 have their identical counterpart events in w1.
But in w2 the event e1 does not exist. Thus w2 is identical to w1 in all respects
except that e1 does not exist. If one can infer from the previous remarks that the
event e2 does not exist in w2, one has a means of stating the truth conditions for
the counterfactual causal claim, i.e., that e2 in w1 would not have existed had e1 not
existed in w1. However, it is not clear what precludes us from saying that there is no
similar world w3, that is identical in all respects to w2, except that in w3 the event
e2 exists and e1 does not. Such a world is certainly conceivable to us. The world w3
might violate some law of nature that dictates the causal relation between e1 and
e2. However, it seems that the causal connection between e1 and e2 is not merely
the suggestion that having e2 actualized without e1 actualized violates a certain law
of nature. Rather, the causal connection suggests that the existence of e1 brings
about the existence of e2. It is a connection between the existence of one event
and the existence of another. Thus it is not clear how one could use counterfactual
claims based on alternative worlds similar to ours to ground inferences between the
existence of one event and the existence of another. The causal relation involves just
the two events, not the general question which events belong together in a possible
world similar to ours.

There seems to exist a genuine tension between the eternalist account and the
notion that causal relations establish a counterfactual between a cause and its effect.
Without a future that contains unrealized possibilities, it is difficult to make sense
of a cause whose existence is responsible for the existence of the effect. But the
notion of a causal relation is fundamental in STR. First, fundamental to relativistic
spacetime is the analysis of spacetime according to various regions that are either
causally connected or causally unconnected with the here-now. This analysis is
intended to clarify how spacetime structure can be used to trace causal relations,
and so demonstrates the importance of causal relations in analyzing relativistic phe-
nomena. Second, the theory of relativity embodies the scientific ideal that there is
no action at a distance. The relativistic framework incorporates interactions that are
locally delineated. What would be the point of utilizing localized field interactions if
causal relations do not integrate well with the proper metaphysical interpretation of
STR? While some are skeptical about the role of causation in science (Norton, 2003,
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2007), the skepticism stems from a lack of uniform restrictions imposed by the
principle of causality. But it is clear that in the context of STR, the restriction to
local distribution of field interactions is a manifestation of a certain ideal of local
causation. Moreover, given that in STR the local evolution of the energy-momentum
coheres very well with the production account of causation, the eternalist should
be concerned to explain how Eternalism is consistent with the production view of
causation.15

By focusing on localized causal relations, I am not offering locality as an overar-
ching universal principle. It is quite plausible to argue that some non-local influence
exists in the context of quantum theories. But the argument is that if Presentism
is undermined by STR, then so is Eternalism, given that the structure of relativity
is meant to incorporate a certain ideal of causal relations. It is very plausible that
future theories will replace STR, in much the same way that the General Theory of
Relativity replaced STR, and that our arguments regarding the nature of time should
be revisited. But it is likely that future theories would have structures that are similar
to STR, at least in their local approximations, and so the hope is that a conceptual
analysis of STR would reveal something important about the theories that are yet to
be articulated.

Thus, while STR is certainly in conflict with the spirit of Presentism, it is also in
conflict with the spirit of Eternalism. And given that so far the metaphysics of time
is viewed as having only these two options, perhaps one should try an alternative
approach that is neither presentist nor eternalist to accommodate “the lessons” of
STR.

4.5 Primitive Motion Relationalism and the Metaphysics of Time

It may be beneficial to consider again the conceptual space of possibilities in the
metaphysics of time. The standard distinction governing debates in the metaphysics
of time is that between Presentism and Eternalism. While there are alternatives to
these two views, they ordinarily fail to gain support beyond a few adherents. The
presentist is faced with conceptual difficulties whenever it attempts to explain the
process of future temporal instants coming into existence. On the other hand, Pre-
sentism becomes explanatory deficient when it limits its scope to the existential
claim, i.e., when it merely asserts that the only objects that exist are the ones that
are present now. Such a view cannot explain the evolution of the now, and it cannot
explain the harmony between the evolution of time and the traces of past worlds that
exist in the present. Another serious objection to Presentism stems from the tension

15 Frisch (2009) argues that causality principles govern the derivation of dispersion relations for
the electromagnetic field. This application of a causal principle seems to provide evidence that in
the context of relativistic field theories, principles of causation are scientifically relevant. As Frisch
points out, the relevance of causal principles in this limited context does not imply an a priori com-
mitment to causal principles for all scientific theories, which is Norton’s main source of objection
to fundamentalism about causation.
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it faces when one tries to reconcile it with STR. When philosophers take these con-
ceptual and empirical difficulties to heart, they often embrace Eternalism. However,
Eternalism is not an attractive view if a productive account of causal relations is
taken to be implied by STR.

Presentism and Eternalism consist of two unattractive alternatives in the meta-
physics of time. But one can examine two central presuppositions both positions
hold; namely, that time is ontologically more fundamental than motion, that an
object exists if and only if it is present at a temporal instant t . If PMR is a plausible
account of spacetime, one can take this approach to be a direct challenge to both
presuppositions. According to Primitive Motion Relation, motions are more funda-
mental than time, and they exist independently of whether the motion is present to
another object. Motions provide the grounds for temporal change, and do not occur
within time. But when two motions intersect, one may say that one motion is present
to another motion, or in other words that an event produced by the motion becomes
present. Thus there is a distinction between existing and being present, and one does
not reduce existence to being present at a particular temporal instant. Moreover, it
is impossible to discuss the notion of being present at a particular instant of time,
since there are no temporal instants that exist prior to the intersection of motions.

The proposal to sever the conceptual connection between being present and exist-
ing is difficult to make sense of. It is difficult to resist the notion that an event becom-
ing present amounts to an event coming into existence. Before two motions intersect,
it seems safe to assert that the event of intersection did not happen, and so before
the intersection between the two motions the event did not exist. Once the event
becomes present, it exists. One is able to resist this inference (from presence/non-
presence of an event to its existence/nonexistence) when one thinks of intersection
events as relations between motions. If the intersection between two motions hap-
pens, then a certain relation holds, the proposition describing the intersection (the
event) becomes true, and the event becomes present. However, one should not think
of the intersection as an event that comes into existence, since whether two motions
intersect is what defines the spatiotemporal location. There is no spatiotemporal
location prior to the actual intersection at which place the event could materialize.
There is no sense in which one could say that the event came into existence.

According to the geometry of PUMs articulated in Chapter 3, for any two events
on a motion α, there is a determinateness relation. Either Dpq or Dqp, but not both.
Assume that p determines q. This implies that one can associate an asymmetric
causal relation between two events belonging to a single motion. If p is present,
then q is not yet present. When one takes the perspective of motion α, the event q
is yet to happen when p is present. If q is present, then from the perspective of α
the event p has already happened. Thus for each motion there is a clear demarca-
tion between events that were present, that are present at this moment, and are yet
to be present. For each motion there is a clear demarcation between past, present
and future. However, this clear demarcation is not translatable to the claim that
events in the past no longer exist and events in the future are yet to exist. Existence
is not a attached to singular events, but to motions as a whole. Whether or not a
motion exists is independent of the question whether it intersects another motion or
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whether another motion is present to it. Thus existence and being present are distinct
notions.

It is conceivable to think of motions whose intersections with other motions after
a certain present event p are yet to be determined. Thus, one may think, for any
particular motion, that the future is open. How to conceive of an existing motion
whose future intersections with other motions are yet to be determined will require
much conceptual work to make sense of. One distinction that one needs to make
is that between an existing motion and an actual event. While the same motion
exists, it may be that a certain event either becomes actualized or is made present
independently of whether the motion exists. Thus, one should consider separating
two realms of possibility. First, there is the range of possible motions; some motions
may remain strictly a conceptual possibility, and others may exist. Another realm of
possibility concerns those events that are yet to actualize, given that a certain set
of motions exists. There is a distinction, according to this approach, between being
actual and existing. Or in other words there is a distinction between two modes of
existence; the presence of events and the existence of motions.

My position is therefore that neither Presentism, nor Eternalism captures the
nature of time. Each position is to some extent true, and to some extent false. Once
the biconditional between existing and being present at t is severed, it is possible
to relate to the underlying motions as existing, and to particular events as being
present. The existence of the underlying motion does not entail the presence of
all events belonging to the motion, since the presence of an event presupposes the
intersection between motions.



Chapter 5
The History of Newtonian Mass

The standard interpretation of Newtonian physics takes the concept of mass to be
a primitive property of bodies. The most elementary Newtonian object is a particle
that occupies a point in space at a particular time. The particle has a trajectory, or a
continuous mapping from instants of time into three-dimensional space. According
to the standard interpretation, each point-particle carries with it an inherent property
of mass which compels a body to resist the action of impressed forces. Thus, one
often finds reference in expositions of Newtonian physics to a “point mass,” or a
“particle of mass m,” as the most primitive material entity.1

I believe there is still work to be done in clarifying the concept of mass, partic-
ularly if one is to find a clear presentation of the interconnections between Newto-
nian concepts. The concept of mass played an important role in the two scientific
revolutions that led to the Special and the General Theory of Relativity. The con-
ceptual interrelationship between mass and energy proved helpful in understanding
the interaction between radiation and matter. These insights led Einstein to the Spe-
cial Theory of Relativity. The equivalence between inertial and gravitational mass
provided Einstein with his initial insights into the General Theory of Relativity.
The accepted interpretation of mass has undergone major revisions with each rev-
olution in physical theory. Thus a clarification of the philosophical significance of
this concept might provide important insights into the metaphysical and conceptual
underpinnings of our physical theories. My aim is therefore to analyze the historical
and conceptual origins of the concept of mass in classical physics. Another aim is
to bring forth a new interpretation and framework for solving some of the incon-
sistencies and obscurities plaguing this concept. To prepare the way, this chapter
first traces the history of the concept, paying close attention to the way in which

1 Bertrand Russell describes the Newtonian system in this way:

There is an absolute space, composed of points, and an absolute time, composed of instants;
there are particles of matter, each of which persists through all time and occupies a point
at each instant. Each particle exerts forces on other particles, the effect of which is to pro-
duce accelerations. Each particle is associated with a certain quantity, its “mass,” which
is inversely proportional to the acceleration produced in the particle by a given force.
(Russell, 1957, p. 14)
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Newton introduced it. Chapter 6 introduces a new interpretation of mass, one that
will undermine the accepted view that takes mass to be a primitive, inherent property
of material bodies. Another widespread assumption that will be questioned is the
view which restricts the meaning of mass to its inertial role.

Newton originally conceived of mass as a geometric concept, one that is inti-
mately related to the nature of space. Newton arrived at the concept of mass when
he realized, via his critical examination of Descartes’ physics, that there is a concep-
tual distinction between absolute space and matter. To make this distinction viable,
matter was conceived as a region of space that is impenetrable to other regions of
space. Matter was therefore simply the property of impenetrability located within
a moveable region of space. The size of an impenetrable place, or the “quantity
of matter,” is the quantity that later came to be associated with the concept of mass.
But Newton also argued that the quantity of matter contributes to the conservation of
quantity of motion (momentum). Thus the notion of quantity of matter also carries
a dynamic role, which ultimately leads Newton to introduce his notorious inherent
or inertial forces.

Contemporary interpretations of mass emphasize its inertial role. This empha-
sis is largely the result of Mach’s positivist critique of Newtonian physics. Mach’s
Science of Mechanics is mostly known for its critique of Newton’s absolute space
and time and for its influence on Einstein. But Mach also changed the way in which
commentators interpret the concept of mass. Newton defined “mass” as the quantity
of matter, i.e., he initially thought of it as a quantity that reflects how much matter
there is in a body, or the body’s “bulk,” in analogy with size, which reflects how big
a body is.

Mach’s positivist epistemology compelled him to be suspicious of metaphysical
entities such as absolute space and causal agencies that cannot be directly observed.
This philosophical approach compelled Mach to criticize Newton’s concept of abso-
lute space. He was also very suspicious of inherent forces of inertia, and Newton’s
concept of quantity of matter. Mach proposed to define the concept of mass by
reducing it directly to mechanical experiences, avoiding Newton’s inherent forces
of inertia. While Mach’s definition of mass was never accepted by the scientific
community, his critique of absolute space, inertial forces, and quantity of matter
had lasting influence. In particular, his critique left its mark on Einstein’s physical
thinking. A consequence of Mach’s critique is that in future generations the geo-
metric origin of the mass was forgotten, and the dynamic role of mass assumed the
essential meaning of the concept. Since one of the aims of this work is to revive
the geometric origin of the concept of mass, I take Mach’s critique of mass to be a
significant event in the history of the concept.

This chapter will first focus on the early history of the concept of mass. The
primary concern in this part is to delineate the reasons and the philosophical moti-
vations that led to the Newtonian conception of mass. Section 5.1 sketches the geo-
metric origins of Newtonian mass. Section 5.2 reconstructs the dynamic conception
of mass and its role in Newton’s three laws of motion. I claim in this section that
Newton’s three laws of motion attempt to articulate various agencies in bodies that
give rise to the conservation of quantity of motion, and that this attempt ultimately
fails. Section 5.3 focuses on Ernst Mach’s critique of Newton’s quantity of matter.
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5.1 The Geometric Conception of Mass

Twentieth century interpreters and historians ordinarily emphasize the inertial role
of mass over its role as quantity of matter. For example, Jammer (1997) places
Newton’s concept of mass within a tradition that differentiates between the active
and passive principles of matter. According to Jammer, a key development in the
evolution of the concept is Kepler’s introduction of inertial mass. When Kepler dis-
covered that the motion of the planets could be described by ellipses rather than by
perfect circles, he had to find a dynamic explanation to replace the “naturalness”
of circular motion. The planets were no longer moving according to the path they
were supposed to trace; their motion depended on some external influence. Force
consisted of the powers that drove planets to motion, and the “inertness” of mat-
ter – its tendency to remain at rest – was the resistance they offered to this external
influence. Jammer places Kepler’s inertial mass within the tradition of Neoplatonic
conceptions of matter. According to this tradition, the inertness of matter is associ-
ated with the non-active component of natural processes and things. The inertness
of matter differs in kind from active principles, or spiritual essences that are able to
produce change. In Kepler’s conceptual scheme the cause of change (i.e., of motion)
is the force acting on matter, and the factor resisting change is the material essence
of bodies and their natural “tardiness.” As Jammer explains, Kepler’s concept of
inertial mass does not yet carry the meaning of “inertia” we associate with the New-
tonian concept, since Kepler only speaks of the bodies’ tendencies to remain at rest,
not their tendency to continue moving in uniform, rectilinear motion. “Kepler, by
associating inertia with copia materiae, made the metaphysical notion of inactivity
(“plumpness”) into what at his time might be considered as a scientific concept”
(Jammer, 1997, p. 58).

Jammer’s narrative is typical to twentieth century historiography. This narrative
ignores completely Newton’s definition of mass as a quantity of matter. The focus
on the inertial role of mass seems to continue Mach’s argument that the definition
of mass as a quantity of matter is incoherent. Jammer lists the influences that led to
Newton’s systematization of the concept of mass. These include Huygens’ study of
centrifugal forces and his and others’ studies of impact phenomena (Jammer, 1997,
pp. 60–62). Descartes’ physics, according to Jammer, was simply a hindrance to the
development of the concept (Jammer, 1997, p. 59). Descartes’ aversion to material
properties that are not derived from spatial extension is simply an impediment. After
all, Descartes claimed that “all the properties we perceive in [matter] are reducible
to its divisibility and consequent mobility of the parts” (Descartes, 1985, p. 232).
The concept of inertial mass was either completely rejected by Descartes or had a
minor role.2

2 Descartes considers reasons to doubt the claim that extension is the only attribute of matter, and
then refutes the objection from the consideration of rarefaction and condensation with the following
infelicitous remarks:
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Jammer’s reading overlooks Descartes’ key influence on Newton’s thinking.3

One can reconstruct Newton’s thinking in the De Gravitatione text, which in all
likelihood predates the Principia. Preliminary conceptual investigations led Newton
to critique and revise Descartes’ definition of quantity of motion. This critical exam-
ination of Descartes’ physics prepared the way for Newton’s synthesis of Descartes’
conservation of momentum with Kepler’s concept of inertial mass. As Koyré notes,
one of Descartes’ influences on Newton’s Principia is the treatment of uniform rec-
tilinear motion as a state, equivalent in all respects to the state of being at rest. The
extension of inertia to states of motion crucially depends on Descartes’ formulation
of a conservation law and his treatment of motion as a “natural state” in which an
undisturbed body perseveres.4

The first is the widespread belief that many bodies can be rarefied and condensed in such
a way that when rarefied they possess more extension than when condensed. Indeed, the
subtlety of some people goes so far that they distinguish the substance of a body from its
quantity, and even its quantity from its extension . . .But to invent something unintelligible
so as to provide a purely verbal explanation of rarefaction is surely less rational than infer-
ring the existence of pores or gaps which are made larger, and supposing that some new
body comes and fills them . . .Moreover, it is very easy for us to see how rarefaction can
occur in this way, but we cannot see how it could occur in any other way. Finally, it is a
complete contradiction to suppose that something should be augmented by new quantity or
new extension without new extended substance, i.e., a new body, being added to it at the
same time. For any addition of extension or quantity is unintelligible without the addition
of substance which has quantity and extension. (Descartes, 1985, p. 225)

Thus Descartes is unable to conceive of a difference between extension and matter, and argues that
no quantity can be added to a substance other than its size. Descartes is unable to conceive of a
difference between space and matter since he has convinced himself that matter is inconceivable
without extension and that extension is inconceivable without matter.
3 Alexander Koyré emphasizes the role of Descartes’ physics in Newton’s thinking:

[Newton] did not mention the Cartesian origin of the concept quantity of motion (mv),
which he stubbornly maintained as a measure of force against the Huygenian and Leibnizian
vis viva (mv2), even while he rejected the Cartesian assertion of the conservation of motion
in our world. Nor did he mention that it was Descartes’ formulation of the principle of
inertia, which placed motion and rest on the same ontological level, that inspired his own.

We shall not judge the Newtonians, nor even Newton, for being unfair to Descartes. Human
thought is polemic; it thrives on negation. New truths are foes of the ancient ones which
they must turn into falsehoods. It is difficult to acknowledge one’s debts to one’s enemies.
Now Newton’s thought, nearly ab ovo, had been formed and developed in opposition to that
of Descartes. Accordingly, we cannot expect to find praise, or even historical justice, for
Descartes whose title, Mathematical Principles of Natural Philosophy, contains an obvious
reference to, and rejection of, his Principles of Philosophy. (Koyré, 1965, p. 65)

4 Koyré explains the importance of conceiving of motion as a status:

Status of motion: by using this expression Newton implies or asserts that motion is not,
as had been believed for about 2000 years – since Aristotle – a process of change, in con-
tradistinction to rest, which is truly a status, but is also a state, that is, something that no
more implies change than does rest. Motion and rest are, as I have just said, placed by this
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Treating motion as a state enabled Descartes and Newton to accept uniform rec-
tilinear motion as a natural state, namely as a state that does not require an external
physical cause. Descartes described the inclination of bodies to continue moving in a
straight line as their conatus, while the ultimate cause of a body’s conatus was God’s
continual intervention in the created world. Newton instead posited the existence of
a vis insita and described it as the power a body possesses inherently and inde-
pendently of God’s intervention. The replacement of conatus with vis insita is the
first move that allows Newton to combine the Keplerian property that resists change
with the Cartesian conservation of motion. Thus, the vis insita is also a vis inertia,
and indicates the power of material bodies to resist impressed forces, whether they
are in a state of rest or of uniform rectilinear motion. However, the synthesis of
Kepler’s concept of inertial mass with Descartes’ conatus is not the complete story
of Newton’s innovation. The synthesis goes hand in hand with Newton’s conceptual
analysis and critique of Descartes’ physics.

Newton’s magnus opus, entitled Mathematical Principles of Natural Philosophy,
can be seen as a work intended to replace Descartes’ main scientific text, Principles
of Philosophy. Newton believed there were important flaws in Descartes’ work,
which he intended to correct in his own. The most important flaw in Descartes’
work is a methodological one. Descartes does not begin his system of the world with
observed phenomena, and does not base his conclusions on careful observations and
chains of reasoning that take those observations as the starting point. Descartes’
faulty methodology has led Descartes and his followers to a false theory of gravita-
tion, which relied more on the intuitive nature of their explanations than empirical
evidence. But there is another very serious conceptual flaw in Descartes’ physics,
since it entails an incoherent account of motion. There is a conceptual inconsis-
tency between Descartes’ kinematics – his definitions of motion, and Descartes’
dynamics, primarily his definition of quantity of motion and its conservation. While
Newton is concerned with exposing the incoherencies in Descartes’ physics, he is
also concerned with salvaging Descartes’ quantity of motion. The conservation of
quantity of motion will prove essential to Newton’s project.

The conservation of quantity of motion is the grain of truth that Newton would
like to salvage from Descartes’ physics. It is the conservation of quantity of motion
that is the main conceptual tool for analyzing causal chains and understanding the
forces of nature. But Descartes’ insistence that there is no distinction between matter
and space, and his definition of true motion, render the notion of quantity of motion
unusable. The conceptual reworking of Cartesian metaphysics, with an eye towards

word on the same level of being, and no longer on different ones, as they were still for
Kepler, who compared them to darkness and light, tenebrae et lux. Now precisely and only
because it is a state – just like rest – that motion is able to conserve itself and that bodies
can persevere in motion without needing any force or cause that would move them, exactly
as they persist at rest. (Koyré, 1965, p. 67)
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retaining Descartes’ notion of quantity of motion, compels Newton to introduce
both absolute space and the concept of mass.

Descartes’ physics is inconsistent, since it articulates a definition of true motion
and a definition of quantity of motion that are incompatible.5 On the one hand,
Descartes defines the true motion of a body as “the transfer of one piece of matter, or
one body, from the vicinity of the other bodies which are in immediate contact with
it, and which are regarded as being at rest, to the vicinity of others” (Descartes, 1985,
p. 233). Thus according to Descartes, the true motion of a body is defined as the
motion of a body relative to the containing bodies, which are taken to be at rest. This
definition of motion is relative, since the motion of each body is defined in relation
to bodies that enclose it; there is no common reference frame for all motions. But
it should be emphasized that despite true motion being defined relative to other
bodies, Descartes’ definition does not arbitrarily depend on the reference body. For
each body, since according to Descartes there is no empty space, there is a unique
set of bodies that immediately enclose it. Thus for each motion, there is a unique
frame of reference that is used to define the motion of the body. And if one takes
those enclosing reference bodies to be at rest for the purpose of defining the motion
of the enclosed body, there is a unique motion that is attributed to it.

In addition to the kinematic definition of motion, Descartes defines quantity of
motion. According to Descartes, motion “has a certain determinate quantity; and
this, we easily understand, may be constant in the universe as a whole while varying
in any given part” (Descartes, 1985, p. 240). Thus, Descartes argues that while true
motion is defined relative to the surrounding bodies, the quantity of motion in the
whole universe is conserved. The quantity of motion may vary in the parts, while it
is preserved in the universe as a whole. This implies that there is a quantity of motion
that is conserved for a closed system of bodies. If the quantity of motion is in each
part of a solid body, the quantity of motion of a composite body is proportional
to the body’s size. The consequence is that the product sv, or the product of size
and velocity, is conserved. According to Descartes, “. . . if one part of matter moves
twice as fast as another which is twice as large, we must consider that there is the
same quantity of motion in each part; and if one part slows down, we must suppose
that some other part of equal size speeds up by the same amount” (Descartes, 1985,
p. 240).

The problem with Descartes’ physics is a conceptual inconsistency between
his definition of true motion and his definition of quantity of motion. Newton
alludes to this inconsistency in the De Gravitatione, wherein Newton argues that
Descartes both takes the earth to be moving and not moving. Given that, according
to Descartes, the earth drags some of the ether surrounding it, the definition of the
earth’s true motion implies that the earth is at rest. On the other hand, attributing the
earth a conatus, implies that the earth has a quantity of motion, i.e., it requires that
the earth have speed. Descartes’ kinematic and dynamic claims about the motion of
the earth cannot be reconciled. This inconsistency is a conceptual one, and goes to

5 See Belkind (2007) for a fuller account of Newton’s critique of absolute space.
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the core of Descartes’ physics, as a close examination of the Scholium to Newton’s
definitions in the Principia shows. In the Scholium, Newton critiques the same
inconsistency, i.e., the conflict between Descartes’ definition of true motion and
his quantity of motion. Newton assumes in his argument that there is a distinction
between true and apparent motion, and that true motion is either relative or absolute.
On the one hand, the parts of a moving solid body are at rest relative to other parts of
the body. Thus, according to Descartes’ definition of true motion the parts of a solid
body are at rest, since they do not change their place relative to their immediate
surroundings. On the other hand, a solid body that moves has a conatus when it
moves as a whole. But if each part of the moving solid body is at rest, it is not
clear how the composite body can be given a quantity of motion. Presumably, the
quantity of motion of a composite body arises from the quantities of motion of each
of the parts. If each of the parts is at rest according to Descartes’ definition of true
motion, it is inconsistent to attribute any composite solid body a non-zero quantity
of motion.

The upshot of Newton’s critique of Descartes’ physics is that, to preserve a
notion of quantity of motion, one needs to provide a definition of true motion
that is consistent with a quantity of motion. To correct Descartes’ physics a cen-
tral Cartesian tenet must be given up. First, Newton argues that true motion of
a particular body cannot depend on a reference frame constructed from movable
bodies. Newton therefore introduces absolute space, which will provide a common
frame of reference for the true motion of bodies. The essential characteristic of this
reference frame is that it consists of a set of non-movable places (space), which
are distinguished from movable places (material bodies). This will resolve the ten-
sion between Descartes’ kinematics and dynamics. But in order to provide a set of
immovable places, i.e., to acknowledge the existence of absolute space, one needs to
distinguish between absolute space and matter. An essential material property must
be introduced.

The original impetus for introducing the concept of mass stems from the Newto-
nian project of revising and correcting Cartesian physics. Newton is convinced that
in order to articulate a coherent notion of quantity of motion, one needs to introduce
a distinction between movable and non-movable places, which is at the same time
the distinction between space and matter. This distinction is made possible with the
concept of impenetrability. In the De Gravitatione, Newton tells a story about the
way in which God could have created material bodies:

Thus we may suppose that there are empty spaces scattered through the world, one of which,
defined by certain limits, happens by divine power to be impervious to bodies, and by
hypothesis it is manifest that this would resist the motions of bodies and perhaps reflect
them, and assume all the properties of a corporeal particle, except that it will be regarded
as motionless. If we should suppose that that impenetrability is not always maintained in
the same part of space but can be transferred here and there according to certain laws, yet
so that the quantity and shape of that impenetrable space are not changed, there will be no
property of body which it does not possess. (Newton, 2004, p. 28)

Thus it is enough for God to designate parts of space to be impervious to others
and to allow these impenetrable regions to move hither and thither, to create bodies



126 5 The History of Newtonian Mass

that are indistinguishable from the ones we experience. Bodies can therefore be
defined as “determined quantities of extension which omnipresent God endows with
certain conditions” (Newton, 2004, p. 28, emphasis in original). These conditions
are (1) that bodies are mobile; (2) that two bodies do not coincide (i.e., that they
are impenetrable); and (3) that they excite various perceptions of the senses and the
imagination in created minds.6

In the De Gravitatione Newton thinks of bodies as impenetrable regions of space
that can move from one place to another. Thus Newton thinks of bodies in geo-
metric terms, as certain regions of space that have an essential property that distin-
guishes them from space. In this geometric conception, a body is nothing but an
impenetrable region of space. The material properties one associates with bodies is
derived from the single property of impenetrability. The connection between mass
and impenetrability can now be examined. If bodies are impenetrable regions of
space, then the size of an impenetrable region should give us its quantity of matter.
But there are a couple of complications involved. First, it is the size of the impene-
trable region, rather than the size of the containing space (which includes pores and
empty regions) that should replace size in Descartes’ original definition of quantity
of motion as the product of size and speed. Second, since some bodies are porous, it
is clear that the overall size of a body is not the same as the size of its impenetrable
region.

The notion of density is already present in the De Gravitatione. In definitions
5–13 Newton defines the notion of force, its extension and intension. Definition 5
asserts that “Force is the causal principle of motion and rest” (Newton, 2004, p. 36).
Newton proceeds to define the intension of the force, which is “the degree of its
quality” and the extension of the force, which is “the quantity of space and time
in which it operates.” These definitions are not very clear, but they become clearer
when Newton discusses the absolute quantities of the force, which are the product
of its extension and intension. Newton explains:

And thus motion is either more intense or more remiss, as the space traversed in the same
time is greater or less, for which reason a body is usually said to move more swiftly or
more slowly. Again, motion is more or less extended as the body moved is greater or less,
or as it is diffused through a larger or smaller body. And the absolute quantity of motion is
composed of both the velocity and the magnitude of the moving body. So force, conatus,
impetus, or inertia are more intense as they are greater in the same or an equivalent body:
they are more extensive when the body is larger, and their absolute quantity arises from
both. (Newton, 2004, p. 37)

6 Newton’s account suggests that the distinction between space and bodies is that between pene-
trable and impenetrable places. However, there may also be another distinction at work in New-
ton’s thinking. Newton seems to follow More in distinguishing between mathematical and physical
divisibility. While space is infinitely divisible, there seems to be a limit to divisibility in physical
bodies and material bodies must comprise of indivisible atoms. See Janiak (2000) for an account
of Newton’s views on mathematical and physical divisibility.
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In this passage Newton is thinking of the absolute force of conatus, which is also
known as impetus or inertia. Newton defines this absolute force as the product of
“the magnitude of the moving body” and its velocity. The force is the product mv,
where m is the extension of the impetus force; and v is the intension of the force.
Newton here is not referring explicitly to the notion of mass; rather, it seems he has
Descartes’ definition of the quantity of motion in mind, sv, where s is the size of
the body; and v its speed. Here in the De Gravitatione it is not yet clear whether
by v Newton, like Descartes, means speed, or he has the notion of velocity in mind,
which is speed together with the inclination to go in a particular direction. However,
it seems clear from the context that an important difference between Descartes’ and
Newton’s definition is that Newton takes bodies to consist of impenetrable places,
rather than just bounded regions in space. Thus, “the magnitude of the moving body”
is the amount of impenetrable place the body occupies and is the extension of the
force of inertia mv. In the Principia the “magnitude of the moving body” will be
replaced with mass, thus there is a direct line of thinking that connects impenetra-
bility with mass.

Definition 15 of the De Gravitatione describes the notion of density (New-
ton, 2004, p. 37). To clarify the notion Newton discusses a body that is shaped
like sponge with pores. The body has regions that are impenetrable and pores
that do not contain matter. The inertia of a body increases or decreases in propor-
tion to the density as the pores diminish or increase in overall size. Thus, density
is defined as the amount of impenetrable volume a body occupies relative to its
overall volume, pores included. This is where Newton’s definition of the quan-
tity of motion departs from that of Descartes, since for Descartes the notion of
density does not make sense. There can be no difference for Descartes between
impenetrable and non-impenetrable places – no body has regions that are empty of
matter.

A theoretical consequence of viewing matter as impenetrable regions of space, is
that the ultimate parts of matter are all alike. If one breaks a material body into
its ultimate parts, one would arrive at small impenetrable regions of space, and
impenetrability itself does not come in varying degrees. Thus, the ultimate parts
of matter appear on this conception to be of a uniform, non-varying density. More-
over, it also seems to follow that there is an upper limit to the value of density.
There is historical evidence that Newton actually believed that all atomic parts of
matter are indistinguishable. But he took care not to endorse this view explicitly in
the Principia, since he could provide no empirical evidence that this is in fact the
case.7

According to the Newton’s geometric conception of matter, there are no uni-
formly distributed bodies of different densities. However, Newton seems to think
that from a mathematical perspective, this consequence is not important. In the De
Gravitatione, Newton says the following:

7 See Biener and Smeenk (2011) for a discussion of Newton’s geometric concept of mass.
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But in order that you may conceive of this composite body as a uniform one, suppose its
parts to be infinitely divided and dispersed everywhere throughout the pores, so that the
whole composite body there is not the least particle of extension without an absolutely
perfect mixture of infinitely divided parts and pores. Certainly such reasoning is suitable
for contemplation by mathematicians. (Newton, 2004, p. 38)

From a mathematical perspective, one could take a non-uniformly distributed body,
and think of it as if it consisted of a uniform distribution of impenetrable regions
and empty regions of space. Thus from a physicists’ perspective – given that one
cannot perform experiments at the level of ultimate parts of matter – there is no
practical difference between uniform bodies of varying densities and non-uniform
bodies of a single density for its ultimate impenetrable parts. To imagine uniformly
distributed bodies of varying densities, think of an impenetrable region of space
as uniformly contracted or expanded to occupy different volumes. In that case one
could conceive of different uniform densities where every least particle “is a perfect
mixture of infinitely divided parts and pores.”

The concept of impenetrability may also explain how Newton conceived of the
causal roles of mass. An impenetrable place resists another body’s attempt to “enter”
the impenetrable region, so that impenetrability gives rise to the power of a body to
resist impressed contact forces. Thus there is an analogy between the resistance
of impenetrable space to external contact forces and the inertial force that resists
external impressed forces. But the notion of impenetrable places does not explain
why a body resists the action of forces that act at a distance (since no external body is
really attempting to “enter” the impenetrable region of the body), nor does it explain
why the resisting force is proportional to the acceleration of a body. However, some
evidence that the notion of impenetrability still guides Newton’s thinking in the
Principia is the fact that he lists impenetrability as one of the qualities that should
be assigned to all bodies universally, discussed in Rule 3 for the Study of Natural
Philosophy, at the beginning of Book III of the Principia.

To summarize the argument so far: the origin of Newton’s concept of mass is
Newton’s critical examination of Descartes’ physics. Newton identifies an internal
inconsistency between Descartes’ definition of true motion and his conservation of
quantity of motion. It is not possible to define the true motion of a body relative to
the containing bodies, while insisting that quantity of motion is conserved and can
be used to analyze forces. Thus, Newton introduces the distinction between movable
and non-movable places. The set of non-movable is absolute space, and the movable
places will be the impenetrable regions of space that can move around. The notion
of mass and density comes about when one recognizes that in porous bodies there is
a distinction between the overall space a body occupies and its impenetrable region.
Density is the ratio between the size of the impenetrable region and the overall size
of the body, pores included. While Newton seems to believe that ultimate parts of
matter have uniform density, he does allow for a mathematical conception of density,
where the ultimate parts of matter come in varying degrees of density.

The upshot of this historical reconstruction is that mass has an important origin
in geometric conceptions of matter. While Newton distinguishes his physics from
Descartes’, and while he introduces absolute space and mass, his original conception
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of mass identified it with an impenetrable region of space. This geometric origin of
the concept was put aside by historians of physics and later physicists. In the next
chapter I shall try to revive the geometric underpinnings of mass, and argue for their
relevance to understanding the nature of the concept.

The initial formulations in the De Gravitatione provide the background for New-
ton’s remarks about mass in the Principia. The size of the impenetrable region of
which a body is comprised can be thought of as a quantity of matter:

Definition 1 Quantity of matter is a measure of matter that arises from its density and
volume jointly.

If the density of air is doubled in a space that is also doubled, there is four times as much
air, and there is six times as much if the space is tripled. The case is the same for snow
and powders condensed by compression or liquefaction. I am not taking into account any
medium, if there should be any, freely pervading the interstices between the parts of bodies.
Furthermore, I mean this quantity whenever I use “body” or “mass” in the following pages.
It can always be known from a body’s weight, for – by making very accurate experiments
with pendulums – I have found it to be proportional to the weight as will be shown below.
(Newton, 1999, p. 403)

What Newton called “the magnitude of the body” in the De Gravitatione is now
termed quantity of matter. The definition in the Principia which takes this quantity
to be the product of density and volume resembles Newton’s remarks in the De
Gravitatione about density arising from the spread of the same impenetrable place
over different volumes. Newton associates the quantity of matter with the size or
volume of the impenetrable region. Whether or not the ultimate parts of matter
are indistinguishable remains an unverified consequence of Newton’s conception
of matter.

5.2 The Dynamic Conception of Mass

Newton introduced the concept of mass in order to distinguish between movable and
non-movable places. But his main objective is to provide the conservation of quan-
tity of motion with a coherent conceptual framework. Thus mass has another signif-
icant conceptual role, which connects it to the dynamic concepts of the Principia,
i.e., quantity of motion, acceleration and force. In the Principia, Newton defines the
quantity of motion as follows:

Definition 2 Quantity of motion is a measure of motion that arises from the velocity and the
quantity of matter jointly.

The motion of the whole is the sum of the motions of the individual parts, and thus if a body
is twice as large as another and has equal velocity there is twice as much motion, and if it
has twice the velocity there is four times as much motion. (Newton, 1999, p. 404)

It is often assumed that Definition 2 provides the meaning of quantity of motion.
However, a brief examination of the explanation of this quantity shows that Defini-
tion 2 does not give us an explicit definition, but is instead a mathematical quan-
tity that is a consequence of one of motion’s properties. Newton asserts in the
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explanation that the motion of the whole is the sum of the motions of the parts.
Newton obviously shared with his readers the assumption that “motion” is additive,
so that the velocities found in parts of a body add up to comprise the motion of the
composite.

Newton’s use of the notion of motion is obscure to the contemporary reader, since
motion is neither simply the velocity of a body, nor is it exactly the same as the
modern concept of momentum. The modern conception of momentum takes it to be
a parameter that is defined as the product of mass and velocity, and is conserved. But
in Newton’s thinking, motion is a compositional property of bodies. Each ultimate
part of matter has a certain velocity, which is also the motion of that part. The
motion of a composite system is the sum of the motions of the parts. Thus, while
motion is identical to velocity when the object is an indivisible particle, it is not the
same as velocity for a composite body, since motion is compositional and velocity
is merely the change in place relative to the time elapsed. (This notion corresponds
to Newton’s belief that all atomic parts of matter are indistinguishable, and of the
same density.) Thus one can estimate the quantity of motion in solid bodies by the
product of quantity of matter and velocity, since the quantity of motion reflects the
amount of motion one finds in a composite body.

Newton’s goal is to salvage Descartes’ quantity of motion. In doing so he also
introduces material agencies that give rise to its conservation. Descartes claimed
that the conservation of quantity of motion is derived from God’s act of creation
(Descartes, 1985, p. 240). According to Descartes, motion has a quantity that is
conserved in the universe as a whole, and it is conserved directly by God. This is not
to deny the existence of secondary causes, i.e., the existence of forces which bodies
exert on each other. However, the existence of secondary causes is dependent on a
primary cause, which is God’s conservation of quantity of motion. For Descartes,
God is therefore the external agency responsible for conserving the quantity of
motion, and one need not attribute to bodies agencies that bring about the conserva-
tion, other than examine the particular forces that cancel out due to the conservation
law. However, Newton wants to limit God’s involvement with created things to the
original act of creation (and perhaps some infusion of motions to account for the
diminishing of forces through inelastic collisions). This approach requires that he
find powers within bodies that bring about this conservation.

To find the material agencies that are responsible for the conservation of quan-
tity of motion, Newton introduces forces that “conspire” to conserve this quantity.
For this purpose, Newton defines the notions of inherent and impressed forces,
and articulates the three laws of motion. Consider first his definition of inherent
force:

Definition 3 Inherent force of matter is the power of resisting by which every body, so far
as it is able, perseveres in its state either of resting or of moving uniformly straight forward.

The force is always proportional to the body and does not differ in any way from the inertia
of the mass except in the manner in which it is conceived. Because of the inertia of mat-
ter, every body is only with difficulty put out of its state either of resting or of moving.
Consequently, inherent force may also be called by the very significant name of inertia.
Moreover, a body exerts this force only during a change of its state, caused by another
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force impressed upon it, and this exercise of force is, depending on the viewpoint, both
resistance and impetus: resistance insofar as the body, in order to maintain its state, strives
against the impressed force, and impetus insofar as the same body, yielding only with dif-
ficulty to the force of a resisting obstacle, endeavors to change the state of that obstacle.
Resistance is commonly attributed to resting bodies and impetus to moving bodies; but
motion and rest, in the popular sense of the terms, are distinguished from each other only
by point of view, and bodies commonly regarded as being at rest are not always truly at rest.
(Newton, 1999, p. 404)

Newton’s definition of inherent force makes clear that each material object contains
a force “proportional to the body,” which in Definition 1 Newton asserts is the same
as mass. Thus, the definition lays out the inertial role of mass. Each body, in virtue
of possessing a certain quantity of matter, has the power of resisting impressed
forces and of preserving its state of uniform rectilinear motion. The inherent force
is the material agency that compels a body to conserve the quantity of motion, since
every body is deflected from its uniform rectilinear motion only with difficulty and
preserves its state of uniform rectilinear motion if no external force is impressed
on it.

The inherent force of matter is meaningless without supposing the existence of
impressed forces, since without those there would be nothing to resist. So even
though the definition of inherent force seems to stand on its own, it only makes
sense in conjunction with the definition of impressed forces:

Definition 4 Impressed force is the action exerted on a body to change its state either of
resting or of moving uniformly straight forward.

This force consists solely in the action and does not remain in a body after the action has
ceased. For a body perseveres in any new state solely by the force of inertia. Moreover, there
are various sources of impressed force, such as percussion, pressure, or centripetal force.
(Newton, 1999, p. 405)

The impressed force acts as some action exerted on the body to change its state of
being at rest or moving uniformly straight forward. But the explication makes clear
that the impressed force is only present during changes in rectilinear motion, not in
between such changes. This creates an interpretive problem for Newton, since Def-
inition 3 asserts that the inherent force is essentially a force of reaction to external
forces: “a body exerts this force only during a change of its state.”

Newton proceeds to articulate the Three Laws of Motion that, taken together,
imply the conservation of quantity of motion. The First Law of Motion is the Law
of Inertia:

Law 1. Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by forces impressed.
(Newton, 1999, 416)

The First Law of Motion takes the viewpoint of an isolated body undisturbed by
some external influence. When no impressed forces exist, the force of inertia pre-
serves the state of uniform rectilinear motion. Thus, the phenomenal consequence
of possessing the force of inertia is that a body is propelled to continue in its state of
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being at rest or of moving uniformly straight forward. In the Second Law of Motion,
Newton addresses the consequence of applying force to a body:

Law 2. A change in motion is proportional to the motive force impressed and takes place
along the straight line in which that force is impressed. (Newton, 1999, p. 416)

The modern vectorial formulation takes the second law to be �F = m�a. But notice
that the law itself does not mention the quantity of matter. What does Newton mean
when he says that the change in motion is proportional to the force? Given the
modern perspective, one is inclined to take change in motion to be the same as
acceleration, and the law as asserting that the acceleration is proportional to the
force, i.e., that the force is the product of mass and acceleration. Nevertheless, it
is odd that Newton would omit reference to quantity of matter. Given that Newton
defined the quantity of motion in Definition 2, it is plausible to assume that Newton
made the claim that the change in quantity of motion is proportional to the force, so
that �(m�v) ∝ �F .

The modern notion of force takes the change in quantity of motion to be the prod-
uct of force and time, so that �(m�v) = �Ft . In case Newton limited his discussion
to a unit of time, and in case the body is solid and its mass does not change, the
formulation reduces then to the familiar �F = m�a. But why does Newton fail to
mention the unit of time necessary for correlating change in quantity of motion with
force? Many commentators argue that Newton modeled the continuous applications
of force with successive applications of impulsive forces operating during infinites-
imal periods of time.8 Evidence for this reading is present throughout the proofs
of the Principia, where Newton utilizes geometric methods instead of infinitesimal
analysis. For example, Proposition 1 in Book 1 proves that the area law is equivalent
to the operation of a centripetal force by appealing to impulsive forces operating at
regular periods of time.9

8 See Ellis (1962), Dolby (1966), Cohen’s introduction to the Principia (Newton, 1999, sec-
tion 5.3), and Erlichson (1991).
9 There are some problems with interpreting the notion of impressed motive force as an impulsive
force. First, in Definition 8 Newton defines the motive quantity of centripetal force as the measure
that is proportional to the motion which it generates in a given time. Thus, the notion of motive
force in Definition 8 seems much closer to our modern understanding which defines force as the
rate of change of momentum, so that �F = d(m�v)

dt . However, it may be that the motive quantity of a
centripetal force is not the general notion of motive force described in Newton’s Second Law. (See
Ellis, 1962; Dolby, 1966.) Second, an instantaneous impulse force operating over an infinitesimal
period of time is a discontinuous function, and its derivative and integrals are not necessarily well
behaved. One may think of some limiting process by which a discrete application of impulsive
forces is used to recover a continuous force. However, it is difficult to see how such a limiting
process can easily capture a smooth constant rate of change in momentum (Cohen, 1971, p. 181).
In a draft of the Second Law, written after the second edition of the Principia, Newton reworded the
Second Law to indicate that it also applies in the case of continuous forces (Newton, 1981, Vol. VI,
pp. 539–42). From Newton’s explication it is clear that the effect of applying a continuous force
oblique to the motion of a body is “measured” directly by the deviation of the body from its inertial
motion. It is obvious that such a deviation can only correlate with the force if it is measured “in a
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Whatever the correct interpretation of Newton’s Second Law, one may assume
that force is understood by him as identical with either change in quantity of motion,
i.e., that �m�v = �F , or according to the modern understanding as the change in
quantity of motion in a given period of time d(m�v)

dt = �F .10 In any case, in the Second
Law the concept of mass functions as the constant that relates the impressed motive
force with the change in velocity a solid body experiences. And it is to ground this
function of the concept of mass that Newton introduces in Definition 3 the force of
inertia which resists the action of an impressed force. The intuitive meaning of mass
in this context is that the more massive a body is, the harder it is to deflect it from
its uniform rectilinear motion. The quantity of the endeavor to continue moving in
a straight line is proportional to the quantity of matter.

The three Laws of Motion together imply the conservation of quantity of motion,
and it is difficult not to assume that they were articulated just so that quantity of
motion would be conserved. The Third Law states as follows:

Law 3. To any action there is always an opposite and equal reaction; in other words, the
actions of two bodies upon each other are always equal and always opposite in direction.
(Newton, 1999, p. 417)

Thus, if force is defined as the change in quantity of motion, and action equals
reaction, then any change in quantity of motion in one body is counteracted with
a change in quantity of motion in another body. The point of the laws of motion,
it seems, is to break down the law of conservation of quantity of motion, via the
actions of forces, to individual exchanges of quantity of motion. When a body does
not exchange quantity of motion with another body, its state of motion is conserved
(Law 1). When a body A does transfer quantity of motion to body B, the change in
quantity of motion in A must be the opposite of the change in quantity of motion
in B (Law 3), and an individual exchange (force) results in change in quantity
of motion (Law 2). Thus Corollary 1 and 2 to the Laws of Motion explain how
to decompose and combine forces, which are individual transfers of quantity of
motion, and Corollary 3 expressed the guiding concept behind the laws:

Corollary 3 The quantity of motion, which is determined by adding the motions made in
one direction and subtracting the motions made in the opposite direction, is not changed by
the action of bodies on one another.

Thus it is natural to assume that Newton composed the Laws of Motion and
intended them to be Axioms so that the conservation of quantity of motion would be

given amount of time.” See Pourciau (2006) for an elaboration of this interpretation of Newton’s
concept of force.
10 I do not agree with Pourciau (2006) when he argues that force should not be understood as
change in quantity of motion, but as change in the motion of a body in a given amount of time,
where motion is simply the deflection a body experience from its inertial motion in a given amount

of time. Thus Pourciau relates force to the quantity m
−→
L Q
h , where m is the mass of the body,

−→
L Q is

the deflection a body experiences from its inertial motion, and h is the time during which the force
operates on the body. It is not clear to us why this quantity cannot be considered as the calculated
change in quantity of motion in the particular context in which a continuous force is applied.
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recaptured as one of the first few Corollaries. One of the reasons for proceeding in
this indirect way was that Newton was searching for material agencies responsible
for the conservation of quantity of motion, agencies that would replace God’s role
in Descartes’ physics. Another very important reason for proceeding this way was
Newton’s success in classifying various exchanges of quantities of motion under
a single law of nature. Newton’s derivation of the Universal Law of Gravitation
allowed him to place projectile motions, earthly gravitational acceleration, and the
planetary orbits under a single law describing the force of gravitation. This unify-
ing description suggested to Newton a scientific method by which forces in nature
can be unveiled and classified. This scientific method greatly expands the power
of Newton’s science beyond that of Descartes’, who only recognized one kind of
force – a mechanical force of push and shove. Newton’s concept of force there-
fore allowed Newton to dissociate his physics from the metaphysical background
of Descartes’ philosophy, and to establish a scientific method for studying causal
interactions.

However, the allocation of causal agencies to material bodies that are responsible
for the conservation of quantity of motion is not fully coherent. Ernan McMullin
argues that the attempt to reduce the various aspects of inherent force into one
agency results in conceptual inconsistency. The problem is to find a single causal
agency that is responsible both for the impetus of a body and the force of inertia,
which is a force of resistance. When the body continues to move with uniform
rectilinear motion, one says that some inherent agency compels the body to keep
moving as if this agency pushes the body forward. During such periods of time, the
inherent force functions as a vis conservans, which is the endeavor of the body to
preserve its motion. When some impressed force operates on the body, one says that
the inherent force resists the attempt to change the state of a body. When a force
is impressed on the body, the inherent force functions as a vis resistens, which is
equal and opposite to the impressed force. Newton equivocates about the nature of
the agency that bodies carry, since the vis conservans is simply present in the body
independently of any interactions with other bodies, while the vis resistens springs
into action depending on contextual factors (McMullin, 1978, p. 37).

Newton attempts to alleviate this equivocal nature of inherent forces by dis-
tinguishing between the two roles of inherent force. According to Newton, there
are two different viewpoints from which one can estimate the effects of inher-
ent forces. When the body is at rest and some impressed force changes its state,
the inherent force acts as a power to resist external influences. When the body is
moving with uniform rectilinear motion, the inherent force acts as the power to
overcome obstacles, i.e., it acts as the impetus of bodies. But these two viewpoints
are ill attempts to reconcile the nature of the inherent force as a force that resists,
with its nature as a force that conserves. The two roles of inherent forces do not
cohere.

The inconsistency in Newton’s account stems from his attempt to articulate a
set of agencies in bodies that would be responsible for the conservation of quantity
of motion in a system of bodies. It is difficult to see how various inherent forces
conspire to conserve a quantity in a system of bodies. Given a system of bodies,



5.2 The Dynamic Conception of Mass 135

an increase in quantity of motion in one part requires the decrease of quantity of
motion in another part. If the system is viewed from without, it is clear that an
overall balance must be kept. The equilibrium in quantity of motion is attributed to
an isolated system as a whole. But it is not clear how to allocate the various agencies
that give rise to this equilibrium. According to Descartes’ account, a divine agency
is responsible for the conservation of quantity of motion, but Newton is seeking
material agencies that bring about this conservation.

Newton’s solution is to think of mass as causally responsible for the preserva-
tion of quantity of motion in each part. When no forces operate on the body, the
inherent force acts to conserve the quantity of motion. In this context, the inherent
force acts to conserve the state of uniform motion; it compels the body to continue
moving and can be viewed as an impetus force. When the inherent force acts as
an impetus force it operates independently of any external factors. When a force is
impressed on the body, some quantity of motion is “poured” into the body, and the
inherent force becomes a resistance force, only allowing for a change in quantity
of motion that corresponds to the pouring in of quantity of motion. In this role
the force of inertia is “resisting” the deflection of a body from its state of uniform
rectilinear motion. When the inherent force acts as a force of inertia (i.e., as resis-
tance), it responds to contextual factors (i.e., it resists in proportion to the force
impressed).

It is difficult to reconcile the two aspects of inherent forces. On the one hand,
Newton takes the viewpoint of the system as a whole, wherein the combined inher-
ent forces of bodies conspire to conserve the quantity of motion. In this role the
inherent force becomes a conserving force, present throughout time. This force is
present whether or not individual forces operate on some of the parts and conserves
the overall state of motion in the whole. On the other hand, Newton takes the
viewpoint of a single body, wherein the inherent force is reacting to some exter-
nal influence (i.e., an impressed motive force) to mitigate the effects of changing
the quantity of motion of the part. In this role the inherent force becomes a force
resisting the work of some external influence. But the dual role of inherent forces
does not provide a cogent account of how conservation of quantity of motion comes
about.

Newton’s definitions of inherent and impressed forces, and his three laws of
motion, articulate the dynamic role of the concept of mass. Newton imagines mass
to be the locus of inherent forces that contribute to the conservation of quantity
of motion, and he lays out the three laws of motion so that this quantity would
be conserved. Thus in Newton’s account, the definition of quantity of matter relies
on Newton’s geometric conception of mass. In the three laws of motion Newton
connected the geometric origin of mass with its dynamic role in the conservation
of quantity of motion. Newton imagined the force of inertia, which is the inherent
force existing in each body, as establishing the connection between the geometric
concept of mass and its causal, dynamic role. But as we’ve seen, the inherent force
is not a coherent concept, and confusedly mixes the tendency to conserve the state
of motion with the tendency to resist changing it.
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5.3 Mach’s Critique of Newtonian Mass

Newton’s definition of mass as a quantity of matter came under attack by many
commentators in the twentieth century, and as a result this notion receded into mere
historical curiosity. Instead of quantity of matter, modern presentations articulate the
“law of conservation of mass,” supplanting Newton’s definition with a law of nature.
However, Newton never articulated such a law, and took the quantity of matter to
be the central meaning of “mass.” The notion that mass describes a certain quantity
of matter seemed intuitive to him, and did not require a “law” for its conservation.
For him the mass of a material body is analogous to the volume of a certain region
of absolute space. When one discusses the size of a region of space, one thinks of
this size as a quantity that is both additive and indestructible. When one combines
two regions of absolute space, the size of the combined volumes is the sum of the
volumes of the parts. One also does not think that a volume of absolute space spon-
taneously decreases in size. Nevertheless, there is no empirical law governing the
conservation of spatial volumes. Similarly, since the mass of a body is a chunk of
an impenetrable region of space, it is additive and indestructible. The mass of a
composite body is the sum of the masses of the parts, and the mass of an isolated
system does not increase or diminish. The “conservation” of mass follows directly
from its definition as an impenetrable region of space.

Mach’s motivation for dismissing the role of mass as a quantity of matter stems
from his positivist epistemology, and the desire to reconstruct the foundations of
physics directly from experience. In The Science of Mechanics Mach famously
objects to Newton’s definition of mass:

. . . it is to be observed that the formulation of Newton, which defines mass to be the quantity
of matter of a body as measured by the product of its volume and density, is unfortunate. As
we can only define density as the mass of unit of volume, the circle is manifest. Newton felt
distinctly that in every body there was inherent a property whereby the amount of its motion
was determined and perceived and this must be different than weight. He called it, as we still
do, mass; but he did not succeed in correctly stating this perception. (Mach, 1893, p. 237)

Thus Mach interprets Definition 1 of the Principia as an explicit definition of quan-
tity of matter. If mass is defined as the product of volume and density, one is left
in the dark as to the meaning of density. If one defines density as the ratio of mass
and volume, then one still would like to know the nature of mass. The definition
therefore seems circular. However, we have seen in Section 5.1 that the definition
of mass as the product of volume and density is the result of Newton’s geometric
concept of mass, which takes it to be the size of the impenetrable region of space,
which is the body. Thus Newton’s definition is not an explicit definition, but a quan-
tity that results from his underlying conception of bodies. The quantity of matter is
analogous to volume, except that bodies are porous and therefore come in various
densities.

At first glance, Mach’s criticism of Newton’s definition of mass is simply that
Newton’s definition is circular. However, his motivation in criticizing the notion of
quantity of matter is Mach’s empiricist leanings. According to Newton, quantity
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of matter is a property that gives rise to inherent forces which are also forces of
inertia. But for Mach the very notion that there are properties inherent in matter is
an ill-conceived metaphysical abstraction. According to Mach, scientific theories are
merely economic descriptions of sensations; a complete and concise summary of all
possible experiences. Any permanency one attributes to material properties is only
a provisional aspect of the specific inquiry one is engaged in – “a body is one and
unchangeable only so long as it is unnecessary to consider its details” (Mach, 1911,
p. 6). We are deceived by the sense of touch that gives the illusion that something is
tangible and solid, and one is led to think that a “durable nucleus” is hidden behind
all evanescent properties. The force of habit then leads us to think of this nucleus as
“the vehicle of the more fugitive properties annexed to it” (Mach, 1911, p. 7).

According to Mach, despite the habit of positing the existence of a “durable
nucleus” or a “substance” which underwrites physical experiences, one ought to
remember that any property, including quantity of matter, should be reduced to ele-
ments of sensation. According to this approach, any property is merely a connection
between elements of experience, and could never be thought of as holding the status
of “higher reality” over and above the rest of the properties one finds in his or her
experiences.

To remain honest in our empiricist commitments one has to relinquish the habit of
thinking of objects as “substances” that are causally responsible for our experiences.
Part and parcel of this view is a distrust of causal explanations. To say that property
A is the cause of property B is to say something more than can be known. Thus,
the notion of inherent properties such as mass that are causally responsible for our
experiences of bodies extends what can be known from experience.

Mach supplants his critique of Newton’s definition of mass with a reconstruction
of mass from elements of sensation. This project of reconstruction is intended to
purge the concept of mass from its metaphysical overtones and to clarify its sci-
entific meaning. To make clear the role of mass Mach begins with the bedrock of
“mechanical experiences” (Mach, 1911, p. 265). Bodily trajectories are what we
experience, and so trajectories in space and time should be used to define the prop-
erty that is taken to be unchanged. But “mass” is nothing other than an indirect way
of describing trajectories, and so one should never “project” the concept into the
essence of matter or to think of it as an inherent property of substances.

Mach’s first step is to argue against Newton’s notion of inherent force, i.e., the
force of inertia. The supposed inherent force of inertia does not leave any detectable
traces in our experiences. To see this, divide all trajectories into those that consist
of uniform rectilinear motion, and those in which bodies accelerate. All bodies that
move with uniform rectilinear motion behave in the same way, so mass does not
figure in explaining the tendency to continue moving uniformly straight forward.
The notion of mass is helpful in classifying various accelerated motions, but other
than the mass parameter doing the work of classifying these trajectories, it is not
possible to observe the action of an inherent force. Thus, Newton was mistaken in
concluding that the same inherent force operates when bodies accelerate and when
they do not (Mach, 1911, p. 173). Mach’s criticism prefigures McMullin’s analysis
of the various agencies associated with Newton’s inherent forces. Except that for
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Mach the notion of agency is suspect in the first place, so he attempts to move
away from the notion of agency to the notion of mass as a parameter for classifying
trajectories.

Mach therefore proceeds with his project of reconstructing the concept of mass.
Mach needs to define mass without appealing to the notion of force. Newton’s Sec-
ond Law of Motion cannot be used to define mass since it would again lead to
a circular definition. In the Science of Mechanics, Mach begins his reconstruction
of mass by imagining pairs of bodies isolated from the perceptual experiences of
other bodies. Assuming that no observable property is determinative of accelera-
tions, one can use the mutual acceleration of interacting pairs of bodies to define the
determinative property. In case bodies experience the same accelerations, the two
bodies are taken to possess the same mass. In case they experience different accel-
erations, one can take them to have different masses, in proportion to the ratio of
their accelerations. The mass parameters are used to classify these accelerations, so
one need not assume that some inherent force caused these accelerations. One only
needs to assume that there is “interdependence of phenomena.” Thus Mach believes
mass should be treated as a functional connection between observed phenomena
(Mach, 1893, p. 267).11

An isolated pair of interacting bodies A and B can be used to define directly
the ratio of accelerations they experience. The acceleration ratios are then used to
attribute mass parameters to individual bodies:

m B

m A
= −φA

φB
(5.1)

where φA is the acceleration of A and φB is the acceleration of B. If it is stipulated
that body A has a unit of mass, then the mass of B is defined according to:

m B A = −φA

φB
(5.2)

One can drop the A subscript from B’s mass if all bodies in the universe are deter-
mined according to Eq. (5.2). Hypothetically one may subject all bodies to a direct
interaction with body A, and classify them according to the observable ratio in
Eq. (5.2).

Mach argues that “the true definition of mass can be deduced only from the
dynamical relations of bodies” (1893, p. 301). However, the relation between mass,

11 This interdependence can be simply a functional relationship for Mach:

In a lecture delivered in 1871, I outlined my epistemological point of view in natural science
generally, and with special exactness for physics. The concept of cause is replaced there by
the concept of function; the determining of the dependence of phenomena on one another,
the economic exposition of actual facts, is proclaimed as the object, and physical concepts
as a means to an end solely. (Mach, 1893, p. 325)
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acceleration and force is somewhat complicated by the assumptions that figure in
Mach’s definition of mass. To argue that one can attribute a unit mass to body
A, and a different mass parameter to body B according to (5.2), one has to pre-
suppose a certain procedure for “separating out” the two mass parameters. The
“definition” of the mass ratio presupposes the equality m BφB = −m AφA, since
only this equality would allow the clear attribution of distinct mass parameters to
the two bodies. “In the concept of mass and the principle of reaction . . . the same
fact is twice formulated; which is redundant” (1893, p. 269). Thus Mach’s defi-
nition presupposes the equality of action and reaction or Newton’s Third Law of
Motion.

Newton took the notion of mass to be a quantity of matter – a parameter that
represents the “bulk” or the magnitude of the material body. This aspect of New-
tonian mass allows us to take any pair of bodies, say A and B, and lump them
together to form the quantity of matter of the composite body. Thus, quantity of
matter presupposes that mass is an additive quantity:

m� = m A + m B (5.3)

Mach has to give an account of the additive and conserved nature of mass, since
those are not implicit in his definition. It is possible that mass-ratios for two parts of
a system would not add up to the mass-ratio of the composite system. Mach claims
that the additive nature of mass is implied by yet another fact of experience:

We place by the side of each other the bodies A, B, C in the proportion of weight a, b, c
in which they enter the combination AB and AC . There exists, now, no logical necessity
at all for assuming that the same propositions of weight b, c of the bodies B, C will also
enter into the chemical combination BC . Experience, however, informs us that they do. If
we place by the side of each other any set of bodies in the proportions of weight in which
they combine with the body A, they will also unite with each other in the same propositions
of weight. But no one can know this who has not tried. And this is precisely the case with
the mass-values of bodies. (Mach, 1893, p. 268)

Thus for Mach, once mass is defined using ratios of acceleration, one can make the
further discovery that the same mass-ratios are additive. If one compares Mach’s
procedure with Newton’s, a certain reversal of priorities becomes apparent. Newton
considered the quantity of matter as the essential meaning of mass, and its inertial
role as a secondary causal function of the basic concept. Mach reverses the priority
and takes the inertial role of mass as the one to derive directly from experience; the
additive and conserved nature of mass is a secondary experiential fact not essential
to the meaning of the concept.12 It seems somewhat arbitrary to take the inertial
role of mass as essential while the additive and conserved nature of the concept
as secondary, when both are derived from our “mechanical experiences.” There is

12 Narlikar (1939) attempted to add the conservation of mass as another experimental principle
that should be made explicit.
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no set of experiences that is more fundamental than another, and all experiences
that are relevant to articulating the meaning of the concept are equally significant.
Perhaps Mach imagined that the conservation of mass is further remote from directly
observed experiences than inertial mass, since the inertial role of the concept relates
to directly observed accelerations.

According to Mach, his definition of mass surpasses Newton’s in simplicity and
economy. He summarizes his reformulation of Newtonian physics in three “exper-
imental propositions” and two definitions. The first experiential proposition is that,
“Bodies set opposite each other induce in each other, under certain circumstances
to be specified by experimental physics, contrary accelerations in the direction of
their line of injunction. (The principle of inertia is included in this.)” (1893, p. 304).
He then introduces his definition of mass, which is “The mass-ratio of any two
bodies is the negative inverse ratio of the mutually induced accelerations of those
bodies” (1893, ibid.). Mach then proceeds to define force as the product of mass and
accelerations.

Mach’s Science of Mechanics had tremendous influence over scientists and
philosophers alike. Mach’s forceful critique of Newtonian physics encouraged Ein-
stein in his push towards the special and the general theories of relativity. Mach’s
account of science also influenced the positivist school and was an inspiration to
members of the Vienna Circle, so that Mach indirectly influenced twentieth century
philosophy. But Mach’s critique also had an indirect influence on the way in which
Newtonian physics was interpreted and taught in the generations that followed.
The notion of quantity of matter was mostly erased from textbook presentations
of Newton’s physics. Mach’s critique of Newton’s force of inertia as an inherent
force was instrumental in thinking of inertial motions as “natural,” i.e., as motions
without need for a causal explanation or as caused by some interaction with space.
This transformation in thinking undoubtedly aided physicists in reconceptualizing
inertial motion as following the geodesics of spacetime.

The first objection one might level against Mach’s reconstruction of mass is
that he assumes that his experimental propositions are direct statements of fact.
Mach had in his mind the view that bodily trajectories are directly observed,
and that one can directly measure their accelerations. However, there are a lot
of theoretical assumptions and experimental procedures one needs to take into
account before one can ascertain the mutually induced accelerations in bodies.
Mach seems to relegate these considerations to the experimental practice when he
qualifies his claim about bodies inducing accelerations in each other in “certain
circumstances to be specified by experimental physics.” When these circumstances
are unraveled a bit, it becomes clear that Mach was wrong to assume that this
experimental proposition is isolable from a wider set of theoretical and practical
presuppositions.

Contrary to Mach’s assumptions, pairs of interacting bodies do not come isolated
from the environment. One never simply observes pairs of bodies inducing acceler-
ations in each other; experimental physicists carry out long and complicated tasks
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to isolate systems from the environment.13 There is no experimental setup that can
guarantee that a system of bodies is causally isolated from the environment. The
experimental physicist has to presuppose that an isolated system exhibits certain
properties. In practice, experimentalists presuppose that the center of mass of an iso-
lated system would continue to be at rest or to move uniformly straight forward. A
system is isolated from its surrounding if it does not exchange momentum or energy
with it. Thus, Mach’s first experimental proposition has content only if the exper-
imental practices implicitly take into account the conservation of momentum and
energy.14 In his definition of mass, Mach assumes the acceleration of any body is
simply “given.” However, his own understanding of motion is that it is relative, and
that acceleration should be defined relative to a reference body. Assume, however,
that this reference body C is uniformly accelerating relative to another reference
body D. Relative to D Mach’s definition of mass would be:

m′
B A = −φ

′
A

φ′
B

= −φA − a

φB − a
(5.4)

Where a is the uniform acceleration of body C relative to body D.15 Mach’s defini-
tion is only valid if velocities are measured relative to inertial reference frames, since
only in those reference frames is the definition unique. To prepare measurements
so that they are performed relative to inertial reference frames, one already has to
suppose that momentum and energy are conserved, since inertial reference frames
are identified through the uniform rectilinear motion of the center of mass of the lab
system.16

13 Several writers criticized Mach for implicitly assuming that the interacting particles are isolated,
including Pendse (1937, 1939, 1940), and Simon (1938).
14 Pendse (1937, 1939, 1940) has shown that Mach’s assumption, i.e., that pairs of interacting
bodies appear isolated, falsely creates the impression that mass values can be determined empir-
ically. Pendse showed that there exist cases wherein an isolated system with more than seven
bodies does not allow the determination of mass-values if Mach’s procedure is followed, even if
the accelerations are measured during more than one instant.
15 I am here following Simon (1938), Pendse (1939), and Jammer (1997, pp. 93–102) who raise a
similar objection to Mach’s definition.
16 Poincaré was aware of this problem when he examined Mach’s definition a few years after the
Science of Mechanics was published:

Now, for someone who only knows the relative motion of the two particles considered, it
is impossible to speak of the acceleration of these two particles; these words are devoid of
meaning. The two particles have accelerations only if we assume that their combined motion
is referred to a certain set of coordinate axes. But then these accelerations, their direction,
and their relation will essentially depend on the coordinate axes that have been chosen. If
the preceding proposition is correct after choosing a certain set of axes, it becomes false, in
general, when we choose another, moving in an arbitrary motion with respect to the first.
(Poincaré, 1903)
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Another problem with Mach’s definition is the inference from measuring the
mass-ratio relative to a reference object, to the assertion that this mass-ratio is found
to be the same whether mass-ratios are mediately or immediately arrived at. Mach
himself was aware of this problem:

One difficulty should not remain unmentioned in this connection, inasmuch as its removal
is absolutely necessary to the formation of a perfectly clear concept of mass. We consider a
set of bodies, A; B; C ; D . . . and compare them all with A as a unit.

A B C D E F
1 m m′ m′′ m′′′ m′′′′

We find the respective mass-values, 1, m, m′, m′′, m′′′, m′′′′ . . . and so forth. The question
now arises: If we select B as our standard of comparison (as our unit), shall we obtain for
C the mass-value m′

m , and for D the mass-value m′′
m , or will perhaps wholly different values

result? More simply, the question may be put thus: Will two bodies B, C , which in mutual
with A have acted as equal masses, also act as equal masses in mutual action with each
other? No logical necessity exists whatsoever, that two masses are equal to a third mass
should also be equal to each other. (Mach, 1893, p. 268)

The problem is how to justify taking the mass-ratio, determined according to interac-
tions with a particular body A, as applicable to bodies B, C , etc. in all circumstances
and all interactions. It is conceptually possible that if one takes body B as our ref-
erence in determining mass-ratios, that mass-ratios would not line up as they did in
interactions with A. Assume that bodies C and D had the same mass-ratio m when
interacting with A; what guarantees that they would have the same mass-ratios m

m B A

and experience the same accelerations while interacting with B?17

The most general way of stating this objection is the following: what phenomeno-
logical fact guarantees that the following equation holds:

mC A = mC B × m B A (5.5)

where mC A and m B A are the mass-ratios of bodies C and B respectively, measured
by subjecting these bodies to an interaction with body A, where A is stipulated to
have a unitary mass-ratio, and mC B is the mass-ratio of C measured when interact-
ing with B? The relation in Eq. (5.5) is necessary if mass-ratios in Eq. (5.2) are to
form an equivalence class for all bodies. Moreover, Eq. (5.5) also guarantees that
the number field governing mass-ratios is scalable.

However, what experimental fact guarantees that Eq. (5.5) holds? Mach provides
the following physical argument:

If we were to assume that the order of combination of the bodies, by which their mass-
values are determined, exerted any influence on the mass-values, the consequences of such
an assumption would, we should find, lead to conflict with experience. Let us suppose, for

17 Robert Musil (1982, p. 42), the engineer-philosopher who later became a renowned novelist,
argued similarly that Mach failed to account for the ordinary meaning of mass which takes it to be
a property of bodies independent of the particular interactions it has with other bodies.
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instance, that we have three elastic bodies, A, B, C , movable on absolutely smooth and
rigid ring . . .We presuppose that A and B in their mutual relations comport themselves like
equal masses and that B and C do the same. We are then also obliged to assume, if we
wish to avoid conflicts with experience, that C and A in their mutual relations act like equal
masses. If we impart to A a velocity, A will transmit the velocity by impact to B, and B
to C . But if C were to act towards A, say, as a greater mass, A on impact would acquire
a greater velocity than it originally had while C would still retain a residue of what it had.
With every revolution in the direction of the hands of the watch, the vis viva of the system
would be increased. If C were the smaller mass as compared with A, reversing the motion
would produce the same result. But a constant increase of vis viva of this kind is of a decided
variance with our experience. (Mach, 1893, p. 269)

Mach therefore secures the transitive nature of equality of mass by arguing that
conservation of energy, which is derived from experience, does not allow an inter-
action in which the mass-ratio is not conserved. It is not clear why Mach picks out
conservation of energy rather than conservation of momentum as the fact from expe-
rience that supports the transitivity of mass-ratios across interactions. A constant
increase in the momentum of a system is at variance with experience, and a circular
interaction – like the one described by Mach – will end up violating momentum
conservation if mass-ratio are not transitive.

Mach’s definition of mass seems to presuppose the conservation of momentum
or energy at various levels – at the level of isolating pairs of interacting bodies, at
the level of the definition of mass itself in which it is presupposed that action equals
reaction, and at the level of assuming that mass-ratios are transitive irrespective of
the reference bodies relative to which mass-ratios are measured. Perhaps a better
strategy is simply to assert that conservation of momentum and energy is supported
by experience, and that mass parameters are necessary for articulating this law.

Despite the various problems with Mach’s project of reformulating Newtonian
physics according to empiricist principles, there are important lessons to take from
Mach. First, Mach’s insistence that one should make explicit the various conceptual
connections between fundamental concepts of physics is well-justified. Newton’s
notion of force of inertia is problematic. The notion of inherent force does not add
anything to our understanding, and it obscures the essential connection between
mass and the conservation of quantity of motion. Mach is right, therefore, in arguing
that the inertial role of the concept of mass should be viewed as part of the meaning
of the concept, rather than the result of some force inherent in bodies. However,
while Mach’s systematic analysis of the foundation of physical thinking is illumi-
nating, his analysis is tainted by his staunch empiricism. Mach’s positivist leanings
lead him to search for the bedrock mechanical experiences from which physical
concepts can be constructed, and his insistence that isolated pairs of interacting
bodies are somehow simply “given” is misguided.

Our approach in the next chapter and in the rest of the book shall be that the
central concept in Newtonian dynamics is the conservation of momentum. The law
of momentum conservation is presupposed when pairs of interacting bodies are iso-
lated from the rest of the world. Without assuming that momentum is conserved in
isolated systems there cannot be a correlation between observed accelerations and
mutual interactions between bodies.
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In the wake of Mach’s work, Newton’s geometric conception of mass became
obsolete. Later generations took the inertial role of mass to be grounded in experi-
ence, and the conserved nature of mass to be a further law of nature governing the
mass-parameter. In the next chapter, I argue that the conservation of mass is insep-
arable from conservation of quantity of motion, and that the conservation of mass
is the logical consequence of the conservation of momentum. The nature of mass is
derived from the additive and conserved nature of quantity of motion. If this is the
case, there is no “law of conservation of mass” that is logically distinct from the “law
of momentum conservation.” The twentieth-century attempt to reduce the additive
and conserved nature of mass to an empirical law distinct from the conservation of
momentum is misguided. Furthermore, the next chapter will revive the geometric
interpretation of the concept of mass, and will show that the concept of mass can
be in part derived from the foundations for spacetime theory that were articulated
in Chapter 3. Thus a surprising result is that the quantity of matter can receive a
genuinely geometric interpretation, which can explain various puzzling facts about
the concept of mass, without resorting to obscure inherent agencies, such as inertial
forces.



Chapter 6
Physical Systems and Mass

Chapter 5 examined the history of Newtonian mass and Ernst Mach’s critique of
quantity of matter. Leaving aside the gravitational role of mass, the concept of mass
carries two significant connotations: the quantity of matter and the inertial mass.
Newton first conceived of matter as impenetrable places. He then dubbed the size of
the impenetrable place as the quantity of matter, and took it to represent the amount
of “stuff” there is in a body, in analogy to the volume that bodies occupy. Today
such a conception seems outdated. First, particles such as electrons are structureless
particles, and carry distinct mass parameters while only occupying a single point in
spacetime. The notion of mass as an impenetrable region of space does not make
sense if the mass parameter is assigned to a dimensionless object. Second, Mach’s
critique of Newtonian mass had a lasting influence on interpretations of Newtonian
physics. Mach’s overall strategy of emphasizing the inertial role of mass over its
role as quantity of matter is widely accepted. The essential character of the concept
of mass is said to be determined by Newton’s Second Law of Motion. According
to this approach, mass relates the force impressed on the body to the acceleration
it experiences. The additive and conserved nature of the mass parameter is an addi-
tional law of nature, a law that does not express the meaning of the concept but
some experimental truth about it. Taking the inertial role of mass as the essential
meaning of mass seems to be in line with empiricist principles, according to which
measured accelerations of bodies are directly observed empirical facts (or if they
are not directly observed are at least very close to the bedrock of our experiences).
Third, the preference toward the inertial role of mass seems in line with the advent
of the Special Theory of Relativity, where the notion of rest mass is not necessarily
conserved given the supposed equivalence between mass and energy. Mass can no
longer be considered as the quantity of matter if some of it can transform into energy,
or vice versa, energy transformed into mass. (The role of mass in the Special Theory
of Relativity will be considered in Chapter 8.)

It is by now established tradition to reduce mass into its inertial role, and take its
geometric origins to be a mere historical curiosity. However, the geometry of PUMs
introduced in Chapter 3 offers a way to revive the conceptual relation between mass
and geometric laws. In this chapter I will offer a geometric interpretation of mass,
without necessarily introducing the notion of impenetrable places, which is indeed
dated. I argue that there is a close connection between geometric laws governing
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spacetime and the mass parameter, and that the established distinction between kine-
matic and dynamic laws should be undermined. The geometry of PUMs reveals an
essential connection between spacetime and the concept of mass. Once PUMs are
taken to be the fundamental entities of spacetime, the basic symmetries of space-
time become apparent. The decomposition of a PUM into its spatial and temporal
components allows for alternative decompositions based on the set of parallel PUMs
selected as references. These alternative decompositions of PUM intervals lead to
the equivalence between inertial reference frames. However, it can be shown that a
natural extension of those symmetries is intimately connected with the concept of
mass. One may recognize the possibility of expanding or contracting local regions
of spacetime; operations that expand the spatial and temporal dimensions while the
relative velocities between bodies remain the same. These operations can be likened
to “spacetime bubbles” incorporated into the very fabric of spacetime. This method
of expanding or contracting a local region of spacetime, which is analogous to the
global method of selecting an inertial reference frame, is shown to capture essential
aspects of the mass parameter. Thus, while Newton’s notion of impenetrable regions
of space is dated, the geometric conception of mass can be given a modern formu-
lation. This interpretation opens the door to a new understanding of mass and of the
connection between spacetime and matter.

In this reconstruction of mass, the property of mass is not taken to be an inher-
ent property of bodies which causes their inertial behavior. Instead, the geometric
notion of expanded regions of spacetime is supplemented with rules governing the
relations between a body and the composite system of which it is part. Since every
body participates in the motion of the isolated system that contains it, every body
“contributes” to the uniform rectilinear motion of the isolated system. It will be
shown that the Rule of Composition and the Criteria of Isolation governing momen-
tum completely determine the conserved nature of mass. There is no law of mass
conservation independent of the law of momentum conservation: the latter logically
implies the former. The role of Newtonian mass as quantity of matter is therefore
derived from the geometry of PUMs and the structural assumptions regarding the
nature of physical systems.

6.1 Primitive Motion Relationalism and the Expanded
Reference Frames

In Chapter 3 I proposed to derive the structure of spacetime from ideal motions con-
forming to a Paradigm of Uniform Motion (PUM). The geometry of PUMs was used
to derive a {1+1} Galilean spacetime. The procedure consisted of using PUMs and
intersection relations between them to define a metric of motion intervals �I along
the PUMs. To decompose motion intervals into their spatial and temporal compo-
nents, a motion α is “projected” onto a set of parallel motions V . The motion inter-
vals on the parallel motions are then defined as the time intervals for that reference
frame. The motion intervals on some reference α are then used to define the spatial
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interval “separating” the parallel motions. The Galilean spacetime is determined
when the mathematical relation between the spatial and temporal intervals is given.

C5. Galilean Paradigm of Uniform Motion (GPUM)

Eαβ1 ∧ Eαβ2 ∧ Pβ1β2 →
�x0(p, q) = a�x1(p, q), where p =< α, β1 > and q =< α, β2 >

A Galilean spacetime is characterized by a linear relation between the progression
of a motion “across” a set of parallel motions and the motion intervals “along” the
set of parallel motions, which represent time in that reference frame.

Assume that one can define a relation of perpendicularity between two time-
space planes using motion intervals, and that the dimensionality of space is deter-
mined by the largest number of time-space planes that can be perpendicular to each
other. In addition, assume there are three perpendicular time-space planes, and that
there are three sets of parallel motions V1,V2,V3 that form perpendicular time-space
planes. Assume as well that spatial separations between parallel motions obey the
Euclidean rule for the spatial separation, so that if �x1,�x2,�x3 are the spatial
separations between motions belonging to three perpendicular time-space planes, a
time-space plane running “across” the three planes will have a spatial separation of
�x = √(�x1)2 + (�x2)2 + (�x3)2. Finally, assume that one selects an alternative
system of parallel motions in which each set of parallel motions V1,V2,V3 receives
a “boost” forming a system of motions V ′

1,V ′
2,V ′

3 that are either faster or slower
than the original set. That is, we have:

�x0 �→ �x ′
0 = �x0 (6.1)

�x1 �→ �x ′
1 = μ1�x1

�x2 �→ �x ′
2 = μ2�x2

�x3 �→ �x ′
3 = μ3�x3

The original frame in which spatial and temporal relations are measured receives
the label K 1111

G . The meaning of the superscripts will become apparent shortly. The

transformation � : K 1111
G = 〈x0, x1, x2, x3〉 �→ K 1μ1μ2μ3

G = 〈x ′
0, x ′

1, x ′
2, x ′

3

〉
can be

defined as:

� =

⎛

⎜⎜⎝

1 0 0 0
0 μ1 0 0
0 0 μ2 0
0 0 0 μ3

⎞

⎟⎟⎠ (6.2)

The transformation in (6.2) does not necessarily reflect the length measured with
our rods. A rigid rod whose “0” and “1” marks coincide with the stretched unit in
each time-space plane must move in K 1μ1μ2μ3

G with uniform velocities of:

vi = (μi − 1)
dxi

dx0
(6.3)
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relative to K 1111
G . Thus, a “stretching” of the spatial dimension dxi relative to the

temporal dimension dx0 leads to the requirement that the measuring rods that are
stationary in K 1μ1μ2μ3

G travel at a uniform motion relative to the original rods that
are stationary in K 1111

G .
The �∗ transformation, may now be expressed as the transformation between

coordinate systems in which measurements are made relative to rods and clocks,
not relative to the PUMS:

�∗ =

⎛

⎜⎜⎝

1 0 0 0
−v1 1 0 0
−v2 0 1 0
−v3 0 0 1

⎞

⎟⎟⎠ (6.4)

Thus we have seen how a {1+3} Galilean spacetime can be derived from our geom-
etry of PUMs (i.e., the Galilean spacetime is derived from the structure governing
ideal uniform motions).

The transformation in (6.2) led to the transformation between inertial reference
frames. The priority of motion over space and time (or, more precisely, the inter-
dependence of space and time through the concept of motion) provides a natural
interpretation of inertial reference frames. But the transformation in (6.2) is not the
most general one, and one may imagine the stretching of both the spatial and the
temporal unit by the same factor. Thus we may describe a transformation analogous
to the one in (6.2), to be labeled � : K 1111

G �→ Kμ0111
G :

� =

⎛

⎜⎜⎝

μ0 0 0 0
0 μ0 0 0
0 0 μ0 0
0 0 0 μ0

⎞

⎟⎟⎠ (6.5)

where μ0 > 0. At first glance it is not clear how one should interpret a trans-
formation of all temporal and spatial coordinates with a factor of μ0 and how this
transformation is analogous to the transformation between inertial reference frames.
First, one should recognize that this is an active transformation of the spacetime,
not a passive transformation of coordinate systems. The transformation describes a
physical stretching or contracting of spacetime by a factor μ0. A point in K 1111

G will

transform into Kμ0111
G as follows:

�

⎡

⎢⎢⎣

x0
x1
x2
x3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

μ0x0
μ0x1
μ0x2
μ0x3

⎤

⎥⎥⎦ (6.6)

To elaborate the meaning of the reference frame Kμ0111
G one needs to examine how

various points of the original frame K 1111
G behave in the expanded/contracted frame.
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First, from (6.6) it follows that a point at rest in K 1111
G will remain at rest in Kμ0111

G .
Thus it appears as if all the rods and clocks that are at rest relative to K 1111

G are also

at rest relative to Kμ0111
G . One can use the same clocks and rods for both frames, with

a scaling factor to transform from one reference frame to another. This symmetry
is essentially the symmetry in which one multiplies the size of all objects and the
duration measured by all clocks by a factorμ0. The change would not be revealed by
measurements directly performed by clocks and rods, only through second or larger
time derivatives of spatial displacements. Thus when a set of rigid rods and clocks is
used, since they are calibrated in relation to PUMs, one knows that there is a degree
of freedom that correlates the actual measurements of length and duration with
their proper representation. One may either represent them in K 1111

G or in Kμ0111
G ,

and the representation is not completely determined by the way in which actual
measurements are performed. If measurements are represented in K 1111

G , there is a
1-1 correspondence between the measurement results and the values representing
distance and duration. If measurements are represented in Kμ0111

G , one ought to
multiply all distances and durations by a factor μ0. The possibility to rescale spa-
tial and temporal units demonstrates that one cannot discern, using clocks and rods
that are relatively at rest, between members of an infinite set of reference frames
Kμ0111

G . But the existence of this set of reference frames has important theoretical
consequences and will be the basis for a surprising conceptual connection between
spacetime and the concept of mass.

The velocity �v measured in K 1111
G remains invariant when transformed into

Kμ0111
G or vice versa:

v′
i = dx ′

i

dx ′
0

= μ0dxi

μ0dx0
= dxi

dx0
= vi (6.7)

Thus the transformation � : K 1111
G �→ Kμ0111

G preserves the velocity components.
However, the acceleration �a transforms as follows:

a′
i = d2x ′

i

dx ′2
0

= μ0d2xi

μ2
0dx2

0

= ai

μ0
(6.8)

In transforming from Kμ0111
G to K 1111

G , the acceleration is multiplied by a factor of
μ0.

The most general transformation from K 1111
G to Kμ0μ1μ2μ3

G is one that combines
Eqs. (6.2) and (6.5):

� =

⎛

⎜⎜⎝

μ0 0 0 0
0 μ0μ1 0 0
0 0 μ0μ2 0
0 0 0 μ0μ3

⎞

⎟⎟⎠ (6.9)
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Since measuring rods and clocks undergo the same expansion, the same rods and
clocks can be used in both systems Kμ0μ1μ2μ3

G and K 1μ1μ2μ3
G . Thus, the measuring

rods in Kμ0μ1μ2μ3
G are moving with uniform rectilinear motion, with a velocity �v,

with components vi = (μi − 1) dxi
dx0

, relative to the measuring rods and clocks in

K 1111
G . There is a set with an infinite number of reference frames Kμ0μ1μ2μ3

G which
all have clocks and rods at rest relative to each other, and all move with the same
uniform rectilinear motion in relation to K 1111

G . Since fundamental PUMs are rep-
resented with dxi = dx0 in K 1111

G , one may represent the transformation in (6.9) as
follows:

� =

⎛

⎜⎜⎝

μ0 0 0 0
μ0(μ1 − 1) μ0 0 0
μ0(μ2 − 1) 0 μ0 0
μ0(μ3 − 1) 0 0 μ0

⎞

⎟⎟⎠ (6.10)

In other words one may define a “quantity of motion” �P = μ0�v, where �v is the
velocity of rigid rods in the coordinate reference frame Kμ0μ1μ2μ3

G relative to rods

that are stationary in K 1111
G , and Pi = μ0(μi − 1) dxi

dx0
. The quantity of motion is the

relative velocity between points in these two frames even if the measured velocity
of the rigid rods and clocks stationary in Kμ0μ1μ2μ3

G is the same as the measured

velocity relative to those clocks and rods stationary in K 1μ1μ2μ3
G .

At our disposal there is a new dimension of spacetime μ0 that seems to be merely
a function of the particular choice of representation. But as will be shown, this
spacetime dimension can be used to describe the Newtonian mass parameter. One
can also define the “standard acceleration” of a body as �as = μ0�a, which is the
acceleration of a body measured in the “standard,” unexpanded frames K 1111

G or

K 1μ1μ2μ3
G . The “standard accelerations” will be interpreted as the force operating

on a body, so that the product of μ0 and the acceleration can be the transformation
between two different representations of a body’s accelerations. The force operating
on a body is simply another representation of the body’s acceleration.

6.2 The Stretching Parameter µ0 and Newtonian Mass

A rescaling of the spatial dimension relative to the temporal dimension leads to the
selection of an alternative inertial reference frame. An analogous transformation,
which expands the reference frame both in the spatial and the temporal dimension
by a factor μ0, is implicitly present in the structure of spacetime. Thus a new set of
reference frames depending on the expansion parameter μ0 is added to each inertial
reference frame. I will now argue that this expansion parameter can be interpreted
as Newtonian mass. The claim seems entirely absurd, since I am arguing that a
characteristic parameter of a reference frame can be associated with each Newtonian
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particle. It is not clear how a property that is a feature of the measurement appara-
tus or of spacetime itself can be taken to be a property ordinarily understood as
inherent in the body and related to the material nature of bodies moving through
spacetime.

Consider two particles, pA and pB , whose trajectories are observed while clocks
and rods are calibrated in K 1111

G . That is, the trajectories of these particles are
described from the point of view of a “standardized” frame. Contrary to ordinary
interpretations of classical physics, one should not presuppose that these two parti-
cles have “mass.” But if the reconstruction of spacetime in Chapter 3 is correct, a
coordinate system that includes a set of rigid rods and clocks cannot differentiate
between members of an infinite set of reference frames Kμ01111

G . Thus there is a
degree of freedom that translates the actual measurement of distances and durations
to their true representation. If one measures the accelerations �aA and �aB of pA and
pB , the actual accelerations are in fact measured in Kμ0A111

G and Kμ0B 111
G respec-

tively and do not represent the “true” accelerations in the standard frame K 1111
G .

Because each particle is moving through spacetime, using a single scale μ0 = 1
unconsciously distorts the representation of the particles’ actual accelerations. The
spacetime scale μ0 may vary from one particle to another. To find a coherent repre-
sentation of these accelerations one must rescale the measurements, once for pA and
another time for pB , so that the true accelerations in K 1111

G are now �as A = μ0A�aA

and �as B = μ0B �aB . Thus properties of systems of representation become properties
of bodies. If there is a degree of freedom that translates the actual measurement of
a property to its true representation (or, as is the case here, the degree of freedom
translates incoherent representations into a coherent system of representations), each
body may be assigned a different parameter depending on which system is appro-
priate for its representation.

So far no relation was assumed to exist between particles pA and pB , and the
actual measurements of accelerations may be attributed to two reference frames
Kμ0A111

G and Kμ0B 111
G . A mechanism is now supposed for describing a system com-

prised out of these two particles. It should be possible to describe each part indepen-
dently, with its own trajectory and motion; but it should also be possible to treat the
two particles (or any set of bodies) as a composite system with a single trajectory
and motion. Assume that �vA and �vB are measured in Kμ0A111

G and Kμ0B 111
G . If �aA

and �aB are the accelerations in Kμ0A111
G and Kμ0B 111

G respectively, one may define
the “standardized” accelerations of the particles, �as A and �as B , relative to the non-
expanded frame K 1111

G . Since �vs A = �vA and �vs B = �vB , it follows that �as A = μ0A�aA

and �as B = μ0B �aB . The Rule of Composition governing these motions can now be
articulated:

Rule of Composition. For a set of simultaneous events, the quantity of motion
�P = μ0�v of a composite system is the sum of the quantities of motion of the

individual parts.
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Consider the two particles pA and pB . The state of each of these particles consists
of their quantities of motion �PA and �PB . The state of the composite system � of
which these particles are comprised is described with the state:

�P� = �PA + �PB (6.11)

Thus the additive rule describing the summation of quantities of motion describes
the relation between parts of physical systems and their composite. In addition to
the Rule of Composition, we can also articulate the following principle:

Criterion of Isolation. The motion of whole, isolated systems, instantiates a PUM.

The Criterion of Isolation applies the Galilean PUM to the motion of a composite
system, determined by Eq. (6.11). The Criterion of Isolation implies that the time
derivative of the quantity of motion of a composite isolated system vanishes. It
follows that in case the two particles are isolated from the world, from (6.11) we
get:

d �P�
dx0

= d �PA

dx0
+ d �PB

dx0
= �as A + �as B (6.12)

In other words the following equation holds:

μ0A�aA = −μ0B �aB (6.13)

where �aA and �aB are the accelerations of pA and pB measured in Kμ0A111
G and

Kμ0B 111
G respectively, i.e., these are the accelerations actually measured by clocks

and rods. Implicit in Eq. (6.13) are Newton’s Second and Third Laws of Motion.
Newtonian Laws of Motion are therefore shown to be derived them from the geom-
etry of PUMs in Chapter 3 and the rules governing physical systems, the Crite-
rion of Isolation and the Rule of Composition. To consider the relation between
our reconstruction and the fundamental concepts of Newtonian physics each funda-
mental concept of Newtonian physics and its relation to our reconstruction is now
explained.

The fundamental concepts of Newtonian mechanics include space, time, mass
and force. The viewpoint which considers physical systems as structures of moving
parts and moving wholes can be used to reconstruct the fundamental Newtonian
concepts. In Chapter 3 the structure of Galilean spacetime was derived from a geom-
etry of PUMs. The same PUM structure governs both simple, unstructured systems,
such as the free particles, and events generated by isolated composite systems of
interacting particles. To say that these isolated systems instantiate a PUM, is merely
to say that they take the form of a particular, fundamental motion in the geometry
of PUMs. Thus, there is no need for forces of inertia or for the idea that spacetime
somehow influences the behavior of bodies. In the case of systems of interacting
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particles, the process governs the motion displayed by the center of mass of the sys-
tem. The center of mass of a system is not treated as a fictional point that aids in the
calculation of trajectories, but as a point describing the trajectory of the composite
system. A system comprising of interacting parts is as substantive as the description
of the parts, and can be seen as a unifying description of the parts.

If a geometry of PUMs is assumed, there exist two kinds of symmetries leading to
two types of transformations: � : K 1111

G �→ K 1μ1μ2μ3
G , and � : K 1111

G �→ Kμ0111
G .

The first transformation reduces to the Galilean transformation between inertial ref-
erence frames. The second transformation suggests the existence of another degree
freedomμ0 correlating actual measurements of accelerations with their “true” repre-
sentations in K 1111

G . This degree of freedom stems from the symmetry in which both
spatial and temporal dimensions are multiplied by the same stretching parameter
μ0: transformations that leave the PUMs invariant. Now, with the Rule of Com-
position in place, and keeping in mind that the Criterion of Isolation is taken to
apply to isolated systems of interacting particles, it will be shown that the stretching
parameter μ0 captures the essential meanings of the concept of mass in Newtonian
physics, without taking on board the redundant metaphysical connotations of the
old Newtonian concept.

I shall divide my comments in relation to these two conceptual roles, relating the
expansion parameter μ0 to each of these roles.

6.2.1 The Quantity of Matter

The concept of Newtonian mass exhibits the following characteristics:

1. Mass is the product of density and volume, i.e., m = ρV .
2. Mass is additive – the mass of a composite body is the sum of the masses of the

parts, i.e., m� =∑i mi , where m� is the mass of the composite system and mi s
are the masses of the parts.

3. Mass is conserved.

The reconstruction offered here establishes a surprising conceptual connection
between modern accounts of spacetime and Newton’s original thinking about mass
as a geometric concept, while still preserving the modern intuition that dimension-
less particles carry mass. Assume there is a lump of matter of volume V measured
in frame Kμ0111

G . Assume now that one divides this lump of matter into individ-
ual parts, where each component occupies an infinitesimal region of space. One
assumes that a Rule of Composition governs the quantities of motion of these com-
ponents, so that:

�P� =
∑

i

�Pi (6.14)
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If the body is continuous, one has to replace the discrete sum with an integral, but
the idea is the same. A stretching factor μ0 can be associated with each infinitesi-
mal part forming a continuous scalar function ρ to be called density. The product
ρ(x1, x2, x3)dV gives us the expansion parameter μ0 associated with the infinites-
imal part (or the reference frame Kμ0111

G from which the trajectory of the part is
measured). That is, the density function describes a continuous field of transforma-
tions that “correct” the spatial and temporal measurements for each infinitesimal
part of the composite object piecemeal.

Once the continuous density function is articulated, one may derive the following
equation:

μ0��v� =
∫

V
ρ�vdV (6.15)

where �P = ρ�v is the quantity of motion of each infinitesimal part and μ��v� is
the quantity of motion of the composite body. Equation (6.15) is simply the Rule
of Composition applied to a continuous body. If the body is rigid, one can then
derive the relation between the expansion factor μ0 of the composite body and the
expansion parameters describing each infinitesimal part ρ(x1, x2, x3). In case the
composite body is rigid, �v� = �v, i.e., the velocity of the composite body is the same
as the velocity of each infinitesimal part. From (6.15) and the rigidity assumption it
follows that:

μ0� =
∫

V
ρdV (6.16)

For a body with uniform density ρ = ρ(x1, x2, x3), one may conclude that:

μ0� = ρV (6.17)

Thus the additive nature of the stretching parameter μ0 in (6.16) is a logical conse-
quence of the geometry of PUMs and the Rule of Composition applied to quantities
of motion. The frame of reference appropriate for the description of the composite
system Kμ0�111

G is determined by adding up the stretching parameters of the frames

of reference Kμ0i 111
G appropriate for describing each part.

However, the assumption of rigidity is not necessary for deriving the additive
nature of the stretching parameter μ0. Consider a discrete number of n bodies,
each described from a frame of reference Kμ0i 111

G . The reference frame Kμ0�111
G

appropriate for describing the system “comprising” the n bodies is determined by
μ0� =∑i μ0i . To see this, consider the rule governing the quantities of motion:

�P� =
∑

i

�Pi (6.18)
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According to the definition of quantity of motion, one derives the following relation
from:

μ0��v� =
∑

i

μ0i �vi (6.19)

So far it was assumed that the “standardized” frame of reference is K 1111
G . Each body

is associated with a frame of reference Kμ0i 111
G for which corrections are made so

that its accelerations are measured in relation to K 1111
G . The standardized reference

frame is now transformed into K 1μ1μ2μ3
G . Thus a normal Galilean transformation is

being carried out. The only difference is that each measured velocity is transformed
according to (6.4) and receives a velocity boost, so that �v′ = �v − �V , where �V is the
relative velocity between the frames. If quantities of motion are defined according
to �v′

�, �v′
i , it follows that:

μ0��v′
� =

∑

i

μ0i �v′
i (6.20)

Replacing the original velocities for the transformed ones it follows that:

μ0�(�v� − �V ) =
∑

i

μ0i (�vi − �V ) (6.21)

From (6.19) and (6.21) one concludes that

μ0� �V =
∑

i

μ0i �V (6.22)

which leads to the additive nature of the expansion parameter:

μ0� =
∑

i

μ0i (6.23)

The rigidity assumption is not necessary for deducing the additive nature of the
expansion parameter μ0. The additive nature is derived from the assumption that
the Rule of Composition applies to quantities of motion in all reference frames
K 1μ1μ2μ3

G . Or in other words, the additive nature of μ0 follows from the additive
nature of the quantity of motion.

It now remains to be shown that the μ0 parameter is “conserved.” First, con-
sider a fundamental particle, which is a point that is moving through spacetime.
Once the frame of reference Kμ0111

G appropriate for describing the trajectory of
this point-particle is determined, the same frame of reference should be referred
to throughout the life of the particle. Thus, a fundamental particle should have a
constant parameter μ0 associated with it, given that μ0 belongs to the system of
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representation appropriate to the particle. In this account, the constancy of mass
for fundamental particles stems not from them “possessing” some inherent prop-
erty that resists external forces. Rather, it stems from a degree of freedom implicit
in the structure of spacetime. Once this degree of freedom is determined, it does
not require further verification and is “constant” throughout the life of the particle.
The proper analogy for understanding the role of the expansion parameters μ0 is
the process of finding the appropriate inertial reference frame for describing the
motion of bodies. If bodies were to be described from different inertial reference
frames, or if one did not know how to relate measured trajectories to some single
inertial reference frame, one would not be able to form a consistent representation
or to analyze interactions between bodies. Similarly, the expansion parameter μ0
enables the translation of a particle’s actual measurements to those representations
that cohere with representations of other bodies. Theμ0’s are not inherent properties
of bodies but functions of divergent systems for representing motion.

Fundamental particles retain the same expansion parameters μ0 throughout their
life, given that this parameter is implicit in the transformation� : Kμ0111

G �→ K 1111
G .

But it is possible to show that this parameter is also conserved for composite bodies.
The conservation of μ0 follows from the assumption that it is constant for funda-
mental particles and from its additive nature expressed in (6.23). Assume a body is
comprised of n discrete parts, each part is assigned the same parameter μ0i through-
out its life. The expansion parameter μ0� appropriate for describing the trajectory
of the composite system is now determined through the additive rule. Thus, unless
the system loses one of the fundamental parts or gains new parts, the composite
system’s expansion parameter will remain the same.

The expansion parameter μ0 fully captures the conceptual role of quantity of
matter, when the Rule of Composition and the Criterion of Isolation are presup-
posed. We gained a new insight to the connection between spacetime structure and
the mass parameter, and avoided some of the difficulties of this conceptual role. We
have shown that the additive nature of mass follows from the Rule of Composition
governing the quantity of motion, that the nature of mass is such that fundamental
particles must carry a constant mass parameter, and that mass is conserved because
of the conservation of quantity of motion in all reference frames. We have shown
all this without presupposing that mass is an inherent property, or that it describes
some essential nature of material bodies. This reconstruction avoids Mach’s criti-
cism of mass as representing some substantial reality, or a material nature behind
the phenomena that gives rise to the phenomena. It also avoids Mach’s argument that
Newton’s definition of mass is circular. According to the interpretation introduced
here, mass is a characteristic of systems of representation and is a consequence of
momentum conservation, not a property inherent to material bodies.

6.2.2 Inertial Mass

The expansion parameter μ0, together with the Criterion of Isolation and Rule of
Composition, also captures the role of mass as the property of inertia. Chapter 5
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presented the standard interpretation of mass, which takes it to be the power of a
body to resist external forces. This power is expressed via Newton’s Second Law
of motion, which in modern formulations is represented as �F = m�a. The more
mass a body has the more difficult it is to deflect it from its rectilinear motion.
Thus, it seems as if there are two causal agencies operating on a body – one causal
agency is external to it and attempts to deflect the body from its uniform rectilinear
motion. The other agency is located within the body, and it counteracts the external
impressed force. The product of this battle between external and internal causal
agencies produces the final acceleration the body experiences.

Mach attempted to cleanse Newtonian physics from causal agencies, since he
believed that scientific concepts should be reduced to immediately perceived facts.
Instead of considering mass as giving rise to some inherent force of inertia, he
attempted to reduce the concept to what is directly perceived. Mass is understood
by Mach as the ratio between mutually induced accelerations in pairs of interacting
bodies.

The reconstruction of Newtonian physics introduced here offers another inter-
pretation for Newtonian mass that bears some resemblance to Mach’s interpreta-
tion without relying on his positivist epistemology. Like Mach’s interpretation, this
interpretation does away with inherent causal agencies and thinks of mass as derived
from the structure of spacetime together with “structural assumptions,” i.e., assump-
tions about the structure of physical systems.

There is an infinite number of reference frames Kμ0111
G implicit in the struc-

ture of spacetime. For each body, there is a degree of freedom that correlates
between actual measurements of the accelerations �a of the body and the “standard-
ized representation” �as of this acceleration in K 1111

G , so that the following relation
holds:

�as = μ0�a (6.24)

In this reconstruction there is a relation that bears resemblance to the relation
�F = m�a known as Newton’s Second Law of Motion. If the analogy is correct,

the “standard acceleration” �as replaces the force impressed on the body; the expan-
sion parameter μ0 replaces the body’s inertial mass; and the “measured accelera-
tion” �a replaces the acceleration of a body, which is directly measured according to
the traditional interpretation of Newtonian physics. The reconstruction offered here
takes �as and �a to be two representations of the same thing, i.e., they are both rep-
resentations of acceleration in different reference frames and there is no ontological
difference between them.

According to this account, what one ordinarily calls the “force” operating on
a body is the acceleration of a body measured in the standardized frame K 1111

G .
What one ordinarily calls the “acceleration” of a body, is the acceleration as it is
measured in the frame Kμ0111

G . This interpretation is in variance with traditional
interpretations of Newtonian physics that take force and accelerations to be entirely
different entities, ontologically speaking.
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The traditional interpretation that distinguishes between force and acceleration
has two main arguments for it. First, a force may describe a general tendency to
produce change that is independent of particular bodies and the actual accelerations
that are produced in them. Thus, it seems as if there is reason to distinguish between
the causal agent, i.e., force, that gives rise to the acceleration, and the effect of the
action of the force, which is the acceleration of a body. Another reason to distinguish
between forces and accelerations is that while various forces may combine accord-
ing to the parallelogram law, there is only one acceleration a body experiences. Thus
it is very tempting to take force to be the causal agent responsible for change, and
acceleration as the product of this external force after it has met the resistance of the
body’s inertial force.

Consider the distinction between the force generated and the acceleration pro-
duced in a body. For example, assume a force exists at a certain point x =
(x1, x2, x3). This force is defined according to the acceleration a test particle of
unit mass would have experienced were it placed at x . What is the reason for taking
the force to be the cause of accelerations, and the actual accelerations as their effect?
In case the body has a unit mass, the force and acceleration are represented with the
same vector. In that case it is not possible to differentiate between the two vectors,
except that they are given in different dimensions. But the different dimensions are
merely conventional names one gives to mathematical magnitudes, and there is no
reason other than our customary way of thinking that prevents us from thinking
of forces and accelerations as possessing the same magnitude. The counterfactual
acceleration of the test particle is taken to be the agency that causes these acceler-
ations whenever the force is conceived as a causal agent, but the magnitude of this
force is nothing but the acceleration of the test particle.

The inference from �F to �a is the inference from a counterfactual acceleration of
a test particle to the actual acceleration of the particle that experiences the force.
Assume the particle’s acceleration is measured as �a. If there were only one ref-
erence frame K 1111

G in which to measure the acceleration of bodies, the measured
acceleration would have been the same as the true representation of the acceleration,
i.e., �as = �a. In such a case one could have predicted the trajectory of the particle
without calibrating the clocks and rods to reflect the expansion parameter μ0. But
since there is a degree of freedom μ0 that correlates the measured acceleration with
its true representation in K 1111

G , one still has to convert the measured acceleration
into its standardized representation to calculate the exchange of quantity of motion.
Thus, instead of thinking of the mass parameter as resisting the external force in
determining the final acceleration of a body, one ought to think of it as calibrating
the measured accelerations so that a consistent representation of accelerations can
be found. The standardized accelerations are also useful in calculating the counter-
factual accelerations a reference body would have experienced in case its expansion
parameter were μ0 = 1. This representation is useful since it allows a quick infer-
ence from the standardized acceleration to the acceleration one actually measures.
Thus, instead of differentiating between force and acceleration, one should think of
them as two different modes for representing acceleration. The force “operating” on
a body is the counterfactual acceleration a body would have experienced were its



6.2 The Stretching Parameter μ0 and Newtonian Mass 159

acceleration measured in the standardized frame K 1111
G . The “actual” acceleration

of a body is the acceleration of the body as it is measured in the frame Kμ0111
G from

which one is describing the body’s motion.
Another argument for distinguishing between forces and accelerations is the fact

that component forces operating on a body can be combined, while the actual accel-
eration it experiences is the result of the combined forces. For example, consider a
drop of charged oil that floats stationary in a tube and is under the influence of both
electric and gravitational forces. It is legitimate to say that this body experiences
two kinds of forces at the same time. However, the zero acceleration of the body is
only one. One can deduce the acceleration from the forces operating on the body by
calculating the total force via the Rule of Composition for forces. But one cannot
deduce the forces that operate on a body from the actual accelerations it experiences.
One therefore cannot assume that forces and accelerations are equivalent descrip-
tions of the same thing.

The distinction between component forces and the actual acceleration generated
by a combination of forces could be understood via the distinction between counter-
factual and actual accelerations. The ability to calculate composite forces crucially
depends on the Rule of Composition, according to which the quantity of motion
of a composite system is the sum of the quantities of motion of the component
parts. For example, assume that the earth, the capacitor generating an electric field
and a drop of charged oil are bodies A, B and C , respectively. If one puts together
bodies A and C , with B not present, the bodies will exchange quantities of motion
according to the Universal Law of Gravitation. This means that body C will accel-
erate in that case downwards. In the standard frame K 1111

G this acceleration will be
represented as �asg = μ0�ag , where �ag is the measured acceleration of C as a result
of its gravitational interaction with A. If one puts bodies B and C together, with A
not present (for example, if the drop of oil and capacitor are examined very far from
the surface of the earth), the electric interaction between B and C will produce a
measured acceleration �ae “upwards” in C . This acceleration will be represented as
�ase = μ0�ae in the reference frame K 1111

G . To calculate the standard acceleration of
C when A, B and C are present, one relies on the Rule of Composition to add up
the two interactions. In order for the total quantity of motion to remain the same in
the composite system, the quantity of motion in C cannot change. As a result C will
not experience any acceleration and the drop of oil will hover. One can then com-
pare this situation with the acceleration measured in the two other counterfactual
cases. The comparison leads us to assert that the accelerations “canceled” out. But
in fact there is no cancelation of forces or accelerations, only a comparison between
actual and counterfactual cases. When one recognizes that the Parallelogram Law
for the composition of forces is the same law that governs the addition of quantities
of motion, one realizes that the same Rule of Composition that informs us about
the structure of physical systems is the one governing interactions between bodies.
Moreover, this Rule of Composition aids us in comparing actual cases to counter-
factual ones and in making quick inferences from counterfactual accelerations to
actual ones.
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The identification of force with “standardized accelerations” immediately does
away with Newton’s attempt to reduce the inertial role of the mass parameter to
some inherent causal agency located within bodies. Chapter 5 argued that such an
interpretation leads to inconsistencies, since the inherent force is supposed to act
both independently of the context in which it is operating (as a vis conservans) and
in relation to external impulses (as a vis resistens). The account introduced here
replaces Newton’s inherent causal agencies with the notion that a body’s motion
is governed by a certain geometry. The ideal motion is a PUM, which is uniform,
unidirectional motion. Various bodies participate in this motion when they are part
of a single physical system. The material nature of bodies is expressed through the
various roles they take as parts of physical systems. In particular, the property of
mass is derived from the symmetries of the underlying geometry of PUMs, from
the Criterion of Isolation which asserts that an isolated system instantiates a PUM,
and from the Rule of Composition. Thus the inertial role of mass is the logical
consequence of the geometry of PUMs and the relations between parts of a physical
system and their composite.

The approach here undermines prevalent distinctions that often govern physical
thinking. First, this approach undermines the distinction between spacetime struc-
ture and dynamic laws. If one takes the Criterion of Isolation – or the assertion
that an isolated system instantiates a PUM – to be a geometric fact, then a geo-
metric fact forms an integral part of momentum conservation, which is ordinarily
taken to be dynamic law. Since the trajectory of an isolated system instantiates a
PUM, there is no causal agency, such as the inherent forces within matter, or the
causal influence of spacetime over material objects, that propels bodies to move
in uniform rectilinear motion. Rather, there is the “shape” that spacetime structure
imposes on the trajectories of isolated systems. Second, the approach undermines
the distinction between geometric and material properties. The stretching parameter
μ0 captures the essential meanings of the concept of mass, but this parameter is
intimately connected to the symmetries of the underlying spacetime. On the other
hand, the inertial role of mass, and its role as quantity of matter are also intimately
connected with the presumed structure of physical systems. Thus, according to the
interpretation provided here, both the inertial role of Newtonian mass and its role
as quantity of matter are derived from the geometry of PUMs and the structure of
physical systems.

Our approach has resonance in a 1959 paper written by Schlesinger about the
relation between material properties and laws governing the behavior of physical
systems:

It may appear then, that if the behavior of a part of a system is determined by laws governing
the system as a whole, then the different parts must so to speak be aware of each other’s
state and in a planned and concerted effort act in a manner to satisfy the laws imposed by
nature on the aggregate. Consequently the attitude that while we may show that a particular
property of a portion of a system follows from general laws appertaining to the whole sys-
tem, it does not mean that we have discovered that it is determined or caused by those. This
means that, in spite of all warnings and exhortations, we do at times unconsciously associate
with the concept of cause the notion of “compulsion”, and are not prepared to view it as a
mere functional relationship between events. Therefore in order to “achieve insight” into
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the mechanism of a situation and be able to see “how things really work” we feel that we
must break down the system under consideration into its smaller elements, the properties of
which give rise to the collective properties of the whole. (Schlesinger, 1959, p. 247)

Schlesinger argues that the inference from structural properties of physical systems
to inherent causal agencies “explaining” the structural properties is often a tempting
strategy in explaining how physical systems “work.” But the reduction of dynamic
laws to inherent or external causal agencies may not add to our understanding and
is based on a scientific prejudice towards reducing dynamic structures to efficient
causal processes. The suggestion here is to interpret physical laws as governed by
geometries of motion and as describing the structure of physical systems. The laws
give us relations between parts of a physical system and the composite whole, and
one does not need a list of bedrock causal agencies to ground this structure.

6.3 Conclusion

The reconstruction of Newtonian mass introduced here, as partly implicit in the
structure of spacetime, and partly in the presumed structure of physical systems,
provides a new interpretation of the concept. On the one hand, a strong analogy
is erected between inertial reference frames, i.e., the Galilean transformations, and
the parameter represented by the expansion parameter μ0. The reconstruction of
spacetime in Chapter 3 showed that the Principle of Relativity and the equivalence
between inertial reference frames can be derived from a geometry of PUMs, where
uniform motions are taken to be the fundamental entities of spacetime. If certain
structures are presupposed as governing ideal uniform motions, then different iner-
tial reference frames provide equivalent means of representing these motions. The
geometry of PUMs allows for various equivalent inertial reference frames K 1μ1μ2μ3

G ,
but it also leads to another spacetime symmetry, and a set of reference frames
Kμ0111

G . The expansion parameter μ0, which is implicit to those frames of reference,
is a parameter that transforms measurements of length and duration performed in
different frames. The different frames Kμ0111

G agree on the measured velocities, but
disagree on the accelerations defined in each frame. Since this expansion parameter
μ0 was shown to be closely tied to our ordinary assumptions about mass, we now
have a new interpretation of mass as a function of our systems of representation
rather than an internal property with causal powers.

While a crucial analogy exists between inertial reference frames and the property
of mass, another important component in this reconstruction are the Criterion of Iso-
lation and the Rule of Composition, which are essential for describing how motions
of components of physical systems combine to describe the motion of the composite
whole. Once those two presuppositions are in place, the various conceptual roles of
mass, including its additive role as the quantity of matter and its inertial role, are
derived. The inertial role of mass arises from the role of the expansion parameter
μ0 in relation to the structure of spacetime (correlating the measured acceleration
of bodies with their “proper” representation) and from the structural assumptions
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governing physical systems. The additive and conserved nature of mass is a logical
consequence of the same structures. These two important conceptual connections
demonstrate that mass has important conceptual links to the structure of spacetime,
on the one hand, and to laws of motion, on the other hand. It is therefore not surpris-
ing that commentators have found it difficult to find the “true” essential meaning of
mass, and why it was difficult to find a metaphysical or reductive account that would
bring all these conceptual roles into one interpretive system.

The reconstruction of Galilean spacetime and Newton’s Laws of Motion under-
mines a certain metaphysical picture that ordinarily guides our thinking about phys-
ical reality. According to the standard interpretation, physical reality can be divided
neatly into three components: spacetime, material bodies with their essential and
accidental properties, and laws of nature governing the behavior of those bodies.
According to this metaphysical picture, the three “layers” of reality reside in rela-
tively independent metaphysical realms. In particular, space and time seem to hold a
more fundamental reality than that of material properties, such as mass. According
to this picture, it is metaphysically possible to conceive a universe with the same
spacetime structure but with bodies possessing different kinds of material properties.
In particular it is possible to conceive a universe with Galilean spacetime but with
bodies that do not possess mass. The reconstruction here suggests that this meta-
physical picture is misleading, and that providing a proper description of spacetime
structure is intimately connected with providing a proper conceptual understanding
of mass. Mass is not an essential property of bodies, but is an essential property of
trajectories through spacetime.



Chapter 7
Structural Assumptions, Newton’s Scientific
Method, and the Universal Law of Gravitation

In previous chapters Galilean spacetime and Newton’s Laws of Motion were recon-
structed from a geometry of motions and the structure of physical systems. Once a
geometry of PUMs and a structure governing physical systems were assumed, the
basic physical concepts and laws of motion of Newtonian mechanics were derived.
The main benefit of this reconstruction so far is in providing an economic pre-
sentation of the foundation of Newtonian mechanics, and in revealing new con-
ceptual connections between material properties such as mass and the structure of
spacetime.

This chapter examines the epistemic role of structural assumptions. I argue that
structural assumptions regarding the nature of physical systems hold a unique epis-
temic role in scientific inferences. An inference is considered scientific when it
is able to deduce general scientific laws from a few empirical observations. But
there is a difficult methodological problem regarding such inferences. On the one
hand, scientific research aims at limiting itself to those claims that are suggested
by the empirical evidence. The more a scientific theory outsteps the boundaries of
empirical evidence, the more likely it is to lose its scientific value. However, science
must go beyond that which is merely given in our experience. One must be able
to anticipate patterns, provide idealized models of complex systems, and evaluate
the extent to which error has crept into the experimental practice. Scientific practice
must rely on laws of nature for it to be able to function. But it is not clear how
scientific method is both able, on the one hand, to strictly adhere to the evidence
provided by experience, and on the other hand to deduce laws of nature that far
outstep the mere deliverances of experience.

I argue in this chapter that Newton provides an intriguing solution to the method-
ological problem, relying in his account on structural assumptions regarding the
nature of physical systems. Structural assumptions, I claim, hold for Newton a cen-
tral place in his scientific methodology. On the one hand, when empirical evidence
suggests that a certain structural assumption holds, Newton takes this as evidence
that the law implied by the structural assumption holds exactly and universally
for all physical systems. For example, when empirical evidence suggests that the
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conservation of momentum holds, Newton takes momentum conservation to hold
exactly and universally, even for systems for which no empirical evidence can be
given. The reason for accepting conservation of momentum as a law of nature is
that the conservation of momentum can be interpreted as a structural assumption,
or as a property of composite systems (force of inertia) that is reducible to the same
property applied to the system’s ultimate parts. The complete reducibility of a prop-
erty renders the law that governs it a universal law of nature.

The notion of structural assumption has a crucial role in inferring laws of nature
from empirical evidence that is always more limited and incomplete than what the
law of nature covers. However, the laws based on structural assumptions also have
a crucial role in inferring new laws of nature from the phenomena. For example, the
conservation of momentum functions as a crucial background assumption in New-
ton’s scientific method and in his argument for the Universal Law of Gravitation.
In the case of gravitation, structural assumptions function as Archimedian points
from which Newton was able to erect his inference from Kepler’s phenomenal laws
to his gravitation law. But the law of gravitation was taken to be universally valid
only when the force of gravitation itself was shown to obey a distinct strcutrual
assumption governing gravitation.

I shall argue that structural assumptions, both the ones underwriting the conserva-
tion of quantity of motion and the one governing the force of gravitation, hold a key
role in Newton’s scientific method and in turning observed regularities into causal
laws. Given Newton’s central role in establishing the practice of modern physics,
one should take this discussion of Newton’s method as a historical analysis aimed
at clarifying the epistemic role of structural assumptions in Newton’s inferences.
Whether or not this epistemic role can be shown to be relevant in contemporary
science remains to be seen.

7.1 Hypotheses and Scientific Propositions

The publication of Newton’s Principia was received with admiration. Newton’s
contemporaries were astonished by his extraordinary mathematical skills and keen
physical intuitions. However, Newton’s argument in Book III for the Universal Law
of Gravitation was met with criticism. Huygens, one of the leading scientists of the
day, thought that Newton’s argument bordered on scientific irrationality. Since grav-
itational attraction contradicts the principles of mechanical philosophy, Newton’s
theory seemed counterintuitive and even absurd.1 Leibniz was critical of Newton’s
argument as well.2 After all, how is one to accept action at a distance without relying
on contact forces or whirling fluids? Newton on his part argued that his theory was
based on impeccable reasoning. Even if his gravitational force violates the scientific
sensibilities of the day one still has to accept it as fact.

1 See Maglo (2003) for an account of the reception of Newton’s gravitational theory.
2 See Leibniz’s letters to Newton from March 7, 1692/3 in (Newton, 2004, p. 106).
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Newton explains his attitude towards hypotheses in the General Scholium to
Book III of the Principia:

For whatever is not deduced from the phenomena must be called a hypothesis; and hypothe-
ses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no
place in experimental philosophy. In this experimental philosophy, propositions are deduced
from the phenomena, and are made general by induction. The impenetrability, mobility, and
impetus of bodies, and the laws of motion and the law of gravity have been found by this
method. (Newton, 1999, p. 943)3

According to Newton the nature of a hypothesis does not matter; hypotheses have
no place in experimental philosophy. Newton is primarily concerned to undermine
the Cartesian explanation for gravitation as a legitimate alternative to his attraction
force. According to Newton, mechanical explanations are no more scientific than
occult qualities if one cannot deduce them from the phenomena. The empiricist
rhetoric gives Newton an important advantage over his Cartesian opponents.

In Rule 4 for the Study of Natural Philosophy, Newton again codifies his
approach:

In experimental philosophy propositions gathered from phenomena by induction should
be considered either exactly or very nearly true notwithstanding any contrary hypotheses,
until yet other phenomena make such propositions either more exact or liable to exceptions.
(Newton, 1999, p. 796)4

Thus even if scientific intuitions contradict the propositions derived from the phe-
nomena, one does not have good reasons to reject them. The phenomena should dic-
tate what is taken as true. If the scientific proposition is derived from the phenomena,
it is not completely safe from refutation. Scientists may extend the investigation into
new domains or discover new phenomena that demonstrates the proposition to be
false. According to Newton one must take the scientific proposition deduced from
the phenomena to be true, without denying the possibility of it being refuted in the
future.5

3 It is important to note that the Scholium to Book III was added to the second edition of the Prin-
cipia published in 1713, some 26 years after the first edition in 1687. In these long years between
the first and second edition, Newton was criticized for failing to include a proper explanation of
gravity, and we can see the Scholium as an attempt to answer critics. See I.B. Cohen’s introduction
to the Principia (Newton, 1999, pp. 274–80).
4 This Rule was only added in the third edition of the Principia from 1726, almost 40 years after
the initial publication of the Principia! It is possible that this Rule reflects only Newton’s latest
thought on methodology. See I.B. Cohen’s introduction to the Principia (Newton, 1999, p. 200).
5 In the preface to the second edition of the Principia Cotes defends Newton from the charge that
he treats gravity as an occult force:

. . . occult causes are not those causes whose existence is very clearly demonstrated by
observations, but only those whose existence is occult, imagined, and not yet proved.
Therefore gravity is not an occult cause of celestial motions, since it has been shown from
phenomena that this force really exists. (Newton, 1999, p. 393)

While Cotes may not have the same philosophical views as Newton, the defense Cotes provides
here is very much in line with the wording of Rule 4.
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However, it is not exactly clear what Newton means by “propositions gathered
from phenomena by induction.” Is there a rule of induction that informs the scientist
how to produce general statements from observations? What does this rule look
like? According to a long tradition in the philosophy of science, formal rules of
induction are either extremely hard or impossible to formulate. Perhaps by “exper-
imental demonstration” Newton means simply that causal laws are derived from
the phenomena through deductive reasoning. Duhem (1991, pp. 190–95) famously
argued that it is impossible for Newton to have used logical deduction in deriving
law of gravitation from the phenomena. Newton started with the elliptical orbits of
the planets and deduced from them the inverse square nature of the law of gravi-
tation.6 He then used the law of gravitation to calculate corrections in the planets’
orbits, using the law of gravitation to determine the planets’ deviations from pure
elliptical orbits. Following a strict deductive method cannot reach conclusions that
demonstrate a premise to be false or show it to be only approximately true. Thus,
Newton must have followed some other strategy in deriving his law of gravitation.

Proponents of the Hypothetico-Deductive (HD) method worry that general scien-
tific propositions always extend what can be shown with a few observation or exper-
iments. Moreover, they argue that for any favored hypothesis, there may be others
that are consistent with the phenomena. Thus there is no foolproof procedure which
can be given for generating a scientific proposition that extends the empirical basis.
If the process of arriving at general hypothesis is fallible, it seems unreasonable to
suppose that a rule of induction exists. Thus proponents of the HD method argue
that one must begin with a conjecture, or some educated guess, and then examine
whether logical consequences of the hypothesis are consistent with the phenomena.
Newton warned in Rule 4 that one ought to be careful when deriving a proposition
from the phenomena. In case a new phenomenon deviates from the scientific propo-
sition, it should be rejected. Thus, Newton was well aware that induction is fallible,
and yet he still rejected the HD method. Newton seemed to think that there is a rule
of induction that charts the course from a given set of phenomena to the scientific
proposition derived from it.

But how can Newton resist having his method collapse into the HD method?
If there were a mechanical rule of induction that allows one to directly infer the
hypothesis from the phenomena, this rule of induction would resemble deduction
in its strength. Valid inductive inferences that start from true premises would be
infallible. However, it is difficult to find a rule of induction that operates in the same
way, in all contexts. If the procedure for generating hypotheses from the phenomena
is not foolproof, can it even be formulated? It seems plausible to conclude that the
process by which a hypothesis is generated could never be universalized and made
into a rule, and so any inductive procedure followed must be merely a contingent

6 A superficial reading of the third book demonstrates that the claim that the law of gravitation is
derived from the elliptical orbits of the planets mischaracterizes Newton’s argument in Book III of
the Principia. However, Duhem’s point can be made using the actual argument in Book III. See
Smith (2002b) and Section 3 for a full discussion.
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one with no universal validity. One ought to confine the process of generating a
hypothesis to the “context of discovery.” But in case there is no rule of induction, all
hypotheses are essentially conjectures as there is an ineliminable gap between the
phenomena and the hypotheses.7 To find a gray area between these two choices, i.e.,
between there being a rule of induction and there being no rule, one needs to show
how an inductive form of reasoning, starting from a particular set of phenomena,
follows a specifiable procedure while still being fallible.

If proponents of the HD method are right, they must explain Newton’s asser-
tions that he was following an inductive method. Either Newton’s methodological
claims were misinterpreted, and he in fact was endorsing the HD method; or, the
method Newton endorsed explicitly is not the one he followed as a matter of fact.8

According to Hanson, for example, when Newton expresses his commitment to
inductivism, he is actually endorsing the HD method. Newton’s use of the word
“hypothesis” is simply meant as “an expression of some philosophical or metaphys-
ical prejudice” (Hanson, 1970, p. 32). This pejorative use of “hypothesis” merely
describes impeding metaphysical stances or prejudices that have no testable conse-

7 This is the reasoning that led Karl Popper to his falsificationism:

. . . it is obvious that this rule or craft of “valid induction” is not even metaphysical: it simply
doesn’t exist. No rule can ever guarantee that a generalization inferred from true observa-
tions, however often repeated, is true. . . . And the success of science is not based upon rules
of induction, but depends upon luck, ingenuity, and the purely deductive rules of critical
arguments. (Popper, 2003, p. 70)

This leads Popper to articulate his methodological rule. First a scientist, in virtue of some leap of
the imagination, formulates a hypothesis. Then, he or she derives a testable implication from the
hypothesis. Finally, if the testable implication is shown to be false when compared with observa-
tions, the scientist concludes by modus tollens that the hypothesis is refuted. Otherwise, we have
reason to take the hypothesis seriously. Popper articulates a methodological rule that encodes this
approach:

Once a hypothesis has been proposed and tested, and has proved its mettle, it may not be
allowed to drop out without “good reason”. A “good reason” may be, for instance: replace-
ment of the hypothesis by another which is better testable; or the falsification of one of the
consequences of the hypothesis. (Popper, 2002, p. 53)

Popper’s HD method therefore suggests that no valid distinction can be made between a mere
hypothesis and the propositions that are deduced from the phenomena. We have to start with
hypotheses. We then use deductive rules to see if they cohere with our observations.
8 According to Hanson (1970), one should be careful to interpret correctly Newton’s use of the
word “hypothesis,” since Newton did not use this word very consistently. Some occurrences of the
word “hypothesis” in the first edition of the Principia were replaced by the word “phenomenon” in
the second edition. The “hypothesis” that the solar system is at rest is explored by Newton in both
the first and the second editions of the Principia to settle the controversy between the geocentric
and heliocentric systems. Hanson differentiates between four different kinds of scientific proposi-
tions: a supposed observational claim, which functions like the initial conditions we specify when
solving a physical problem, a confirmed observational claim, a supposed theoretical claim, and a
confirmed theoretical claim. All of these may be referred to as hypotheses, with varying meanings,
depending on the context.
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quences and therefore cannot be confirmed or refuted. Newton was being pestered
by the Cartesians about Newtonian gravity being a force that attracts at a distance.
The metaphysical prejudice of his day was that all physical forces are reducible to
mechanical forces of push-and-shove. But the Cartesian whirling fluids hypothesis,
used to explain gravity, had no testable implications. So Newton’s methodological
remarks do not suggest that hypotheses have no place in experimental philosophy
(Hanson, 1970, p. 31), only those hypotheses that have no testable implications
ought to be excluded. However, as Worrall (2000, p. 47) argued, Hanson’s attempt
to mitigate Newton’s inductivism renders his methodological remarks inconsistent
with his scientific practice. There are examples of hypotheses Newton excludes
solely on the basis that they were not derived from the phenomena, even though
they had empirical implications consistent with the phenomena.9

According to another reading of Newton’s methodological remarks, one should
distinguish between Newton the scientist and Newton the rhetorician. Newton the
scientist made conjectures and hypothesized that the motions of the planets are gov-
erned by a force of gravitation obeying the inverse square law. Newton the rhetori-
cian claimed to have followed a strict inductive method.10 However, no charita-
ble interpretation of Newton’s work can accept this interpretation. While Newton’s
actions as a public figure are not moral exemplars – he was not charitable to his
contemporaries – it seems unlikely that he would use a Baconian spin on his scien-
tific theories just to render them more acceptable. Newton resisted publication of his
work for many years precisely because he feared being embroiled in public disputes
over his theory, so it seems implausible that he would characterize his scientific
method in a misleading way just to get the upper hand in a scientific dispute.

During the last third of the twentieth century, some philosophers of science
started rehabilitating Newton’s inductive method. Jon Dorling (1973, 1990) pro-
posed a method he coined “Demonstrative Induction” (DI). Dorling argued that
general propositions may be inferred deductively from the phenomena if additional
background assumptions are used. According to Dorling, the history of science
demonstrates that the DI method was used in many cases to derive new theoreti-
cal claims from the phenomena. These deductions conferred on their conclusions

9 Worrall claims that

. . .Newton’s famous attitude toward material emission (“corpuscular”) theory of light
would be irreducibly mysterious if this Hanson-style view were correct. As is well known,
Newton many times and very heatedly insisted that this emission theory was a mere hypoth-
esis because it could not be deduced from the phenomena; and yet the theory is clearly
testable. (Worrall, 2000, p. 47)

10 This is how Imre Lakatos put it:

The schizophrenic combination of the mad Newtonian methodology, resting on the credo
quid absurdum of “experimental proof” and the wonderful Newtonian method strikes one
now as a joke. But from the rout of Cartesians to 1905 nobody laughed. (Lakatos, 1978,
p. 212)
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scientific credibility that led to the exclusion of other hypotheses consistent with the
phenomena. Norton (1993, 1994, 1995) and Harper (1990, 2002) also demonstrated
the importance of the DI method and of the closely related method of Elimina-
tive Induction.11 According to Norton, the background assumptions used in these
demonstrations belong to the very core of the theories held by the scientific commu-
nity. They constitute the most basic and general assumptions about systems. Thus
one may take these background assumptions to be nearly certain, given that it would
take a scientific revolution to seriously deny this core set of beliefs. Indeed, as Nor-
ton argues, some of these assumptions are so general and weak that they survive
scientific revolutions. It is not that these assumptions do not carry some inductive
risk, but one should not forget their (almost) universal validity in the eyes of the
scientific community.

However, the DI method faces several challenges. The first challenge is Duhem’s
logical analysis of DI inferences. While Kepler’s laws are inexact, incomplete obser-
vations, Newton’s Universal Law of Gravitation is exact. Moreover, Newton was
able to find corrections to Kepler’s laws based on models in which the law of grav-
itation was held to be true. How can any deductive inference lead to conclusions
that could then be used to find corrections in the premises? Duhem’s analysis is a
logical one – deductive inferences can only yield propositions that contain the same
content as was given in the premises of these arguments, only in different form.
Thus if premises are then taken to be only approximately true, and corrections to the
premises assume the conclusion as true, the argument cannot be merely deductive.

Another challenge concerns the difference in kind between phenomenal laws and
laws of nature. Conclusions of scientific arguments often count as “laws of nature.”
These are taken to be exact and physically necessary, i.e., it is not physically possible
for these laws to be false.12 If laws of nature were discovered using DI arguments,
then the necessity of laws of nature must be derived from the necessity to be found in
the premises. It is natural to assume that the origin of the conclusions’ necessity can
be traced to the background assumptions used in DI arguments. However, by doing
so one has merely pushes the problem one step back. One can immediately ask, what
renders the background assumptions necessary? To avoid a possible regress, one
needs to find a scientific proposition which naturally presents itself as universally
valid and exact.

11 According to Eliminative Induction, the additional background assumption is a disjunctive state-
ment (with the “exclusive or” connective). One requires only a few observations to confirm one of
the disjunct and eliminate all the other disjuncts. The methods of Demonstrative and Eliminative
Induction are equivalent from a logical point of view.
12 By treating laws of nature as “necessarily true,” I do not mean propositions whose negation is
inconceivable. It is perfectly conceivable for Newton that bodies could have been created without
impenetrability, inertia or gravity; we can imagine God creating material bodies without those
properties. However, there is a sense of “necessity” that is relevant in this context, which is the
applicability of laws of nature to both actual and counterfactual scenarios. It is obvious that Newton
thinks his laws of nature apply “universally,” in the sense that we can compare the actual trajectories
of bodies to their counterfactual ones. Laws of nature dictate what the counterfactual trajectories
would have been.
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Some of the DI background assumptions may be justified on a priori grounds,
since, for example, much could be learned from the phenomena through mathemati-
cal reasoning. Some of the assumptions may themselves be phenomenal laws. How-
ever, both these cases are not interesting from a methodological perspective, since
the propositions derived are themselves merely phenomenal laws. Moreover, the
conclusions of scientific arguments frequently involve additional theoretical entities
that were not present in the phenomena. From the observed motions of the planets,
for example, Newton derived the existence of a gravitational force. This force goes
“beyond” or “behind” the phenomena, and can be taken as the cause that generates
the phenomena.13 Thus another challenge that the DI method faces is how exactly a
deductive argument is able to introduce new theoretical entities when these are not
present in the observations themselves.

If John Norton’s account is to be believed, it seems the necessity of background
assumptions of DI arguments stems from their central role in a scientific paradigm.
However, if the near certainty of the background assumptions stems from their role
as core assumptions in a scientific paradigm, then it is not clear to what extent the
DI method is distinct from the HD method. As Worrall (2000, pp. 69–76) argued,
the background assumptions of DI arguments can be overturned during scientific
revolutions. Thus, even though they hold a significant place in a paradigm, these
propositions function as hypotheses. Scientists presume these assumptions are true
and rely on their truth whenever they investigate the phenomena. Thus the final
challenge that the DI method faces is how it is able to introduce exact laws of nature
with new theoretical entities that can be used to find corrections to approximated
phenomenal laws, without collapsing into the HD method.

On the surface of things, the HD and DI methods conceive of empirical confirma-
tion differently. According to the DI method, a new scientific proposition is deduc-
tively inferred from the phenomenal laws together with background assumptions. In
the HD method, the observable implication is logically derived from the hypothesis
together with the background assumptions. Thus, it seems as if the methods differ
in how they conceive of scientific inferences; either the scientific proposition is the
conclusion of a deductive inference (the DI method) or one of its premises (the HD
method). But where the inference begins is not really essential, since at the end what
we are concerned with is the logical consistency of a set of propositions, some of
them theoretical, some of them empirical. In both methods background assumptions
pose constraints on the new propositions one incorporates into the accepted system
of beliefs.14

13 Granted, Newton did not think that his account of the gravitational force was the whole story. His
search for a mechanical explanation of this force suggests that further elaboration of the mechanism
which leads to the inverse square law may still be discovered. But this does not undermine the fact
that the notion of force by itself is not present in the phenomena.
14 The distinction between the DI and the HD methods is blurred even further when we recognize
that a conclusion of a DI argument may get additional empirical support from other domains of the
phenomena. When evidence gathered from various domains converges in support of a theoretical
claim, we take this convergence as increasing the plausibility of the claim. Someone endorsing the
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The DI method therefore faces several challenges. First, the DI method should
meet the Duhemian challenge. If the DI argument is a deductive argument beginning
with phenomenal laws, then an account needs to be given of how it was possible to
derive exact laws of nature from approximated phenomenal laws. Second, the DI
method needs to account for the nomic necessity one attributes to laws of nature.
How is one able to derive a law that carries necessity from phenomenal laws that
seem anything but? Third, it is not clear how a DI argument is able to introduce
new theoretical terms. Conclusions of scientific arguments ordinarily carry theoret-
ical terms not present in premises of DI arguments, and pure deductive reasoning
seems incapable of achieving this feat. Finally, the DI method needs to meet all
of these challenges, i.e., of deriving exact, physically necessary laws from inexact
phenomenal laws, and of introducing new theoretical terms, without collapsing into
the HD method. All these challenges to the DI method appear to require a “gap,”
which transcends the phenomenal laws when causal laws are introduced. But if this
gap from the phenomena to causal laws is present, then it is not clear how the DI
method is able to bridge this gap without collapsing into the HD method.

A cursory examination of Book III of the Principia suggests that Newton’s argu-
ment for the law of gravitation was following the DI method. But his method
does not collapse into the HD method. In deriving the Universal Law of Grav-
itation Newton is following what is mostly a deductive argument which begins
with Kepler’s phenomenal laws and ends with the Universal Law of Gravitation.
The additional background assumptions Newton brings to bear are not hypotheses,
but structural assumptions such as the one underlining the conservation of quan-
tity of motion. Structural assumptions are properties of physical systems that erect
inferences between parts of the system and the composite system as a whole. The
Criterion of Isolation and the Rule of Composition from previous chapters, which
underwrite the conservation of quantity of motion, consist of structural assumptions,
and are therefore uniquely qualified to function as background assumptions in DI
arguments.

Structural assumptions are grounded in experience, but they take on universal
validity, i.e., they are taken to be true in both actual and counterfactual cases, once
they are elevated into general assumptions about the structure of physical systems.15

DI method would justify the added credibility of converging evidence with the help of a common
cause principle. That is, all else being equal, we would prefer a theory which does not posit multiple
causes for the various phenomena, over a theory which posits separate causes. In fact, the purpose
of Newton’s Rules 1 and 2 for the Study of Natural Philosophy is to guarantee that evidence
gathered from different phenomena in favor of a scientific proposition will bolster its plausibility.
But the common cause principle would be redundant, if we simply assume a hypothesis to be true,
and then try to get confirmation for it from as many domains of the phenomena as possible. The
process of confirmation seems to boil down to the same procedure (Worrall, 2000, pp. 66–67).
15 Some may object to my use of the notion of “universal validity.” Ordinarily, the notion of validity
is taken to be a property of arguments. A valid argument is one where the conclusion must be
true given that the premises are. According to this view, only the notion of truth is a property of
propositions. But I need a notion that would describe the difference between the generalization
“All A’s are B’s,” which is only true for actual cases, and the necessary statement “All A’s are B’s,”
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The near certainty attributed to these background assumptions stems not from their
widespread acceptance, but from their unique role in reducing descriptions of com-
posite systems into descriptions of their ultimate parts.

This chapter describes the process of taking a claim that is initially a mere empir-
ical generalization and turning it into a universally valid proposition. First Newton
replaces the empirical claim with an assumption which relates the properties of
composite systems to properties of their parts. Once this assumption has the original
empirical claim as its logical consequence, Newton takes it to be universally valid,
i.e., he takes it to be valid in both actual and counterfactual circumstances.

After a structural assumption is taken to be universally valid, it provides a reliable
Archimedian point for turning other phenomenal laws into causal laws of nature.
The upshot is that Newton followed carefully constructed inferences throughout the
derivation; i.e., he deduced his universal law of gravitation from the phenomena.
However, this inference is not as strong as a deductive inference. The process of
elevating an empirical claim into a structural assumption is not foolproof. Structural
assumptions can still be revised if other more encompassing or accurate assumptions
are found. Thus, that structural assumptions have natural necessity does not imply
that they are metaphysically necessary. Newton would not claim that it is impossible
for him to have stumbled upon the wrong structural assumptions. Nevertheless, even
though the process of elevation is not foolproof, it is still governed by a particular
type of reasoning, and so we may think of it and derivations based on it as some
form of inductive reasoning.

7.2 Structural Assumptions and Their Role in Inductive
Reasoning

Throughout his argument in Book III of the Principia Newton relies heavily on his
three laws of motion as background assumptions. The laws of motion are partly
justified through experiments and observations. Nevertheless, Newton applies these
laws in domains far exceeding their empirical support. Also, applying these laws in
the context of an attraction force outsteps the conceptual paradigm in which these
laws were introduced. Stein (1990) argued that Newton’s application of the Third
Law of Motion (equality of action and reaction) to the system of a central body and
a rotating satellite exceeds the empirical basis of this law. The Third Law of Motion
was confirmed for collisions performed on the surface of the earth where there is
contact between the bodies. In collisions it is reasonable to assume that bodies act
on one another equally and in opposite directions. Moreover, when Newton expli-
cates the Third Law of Motion in the Principia, he gives various examples where

which is true in both actual and counterfactual cases. Kant describes the latter kind of propositions
as a priori true, but his use of it carries the prejudice that necessary propositions could be arrived at
independently of experience. I will therefore use “universally valid” to describe a necessarily valid
proposition, without prejudging what sort of necessity is involved.
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this law holds; when pressing a stone with a finger; when a horse draws a stone
tied to a rope; and when a body impinges on another body. All these examples are
ones where contact occurs. In the Scholium to the Laws of Motion, Newton also
mentions pendulum experiments he performed to test the third law (Newton, 1999,
p. 426). Newton does argue as well that the Third Law of Motion applies to forces of
attraction. However, this is a conceptual argument which presupposes the conserva-
tion of momentum and not an empirical argument. Thus, according to Stein (1990,
p. 217) Newton’s Third Law of Motion functions as a hypothesis. Newton assumed
the law to be true in all circumstances and in all contexts, beyond the domains it
was empirically tested and beyond the scientific paradigm in which the law was
introduced.

Many of Newton’s contemporaries were astounded with Newton’s bold appli-
cation of laws of motion to the solar system. Leibniz, for example, thought it was
absurd to apply these laws without presupposing they were caused by interplan-
etary fluids or some other mechanical cause. In the context of contact forces, it
is reasonable to assume that action equals reaction. But without supposing forces
are grounded in mechanical explanations, how is one to explain the validity of the
Third Law of Motion? Huygens, while accepting Newton’s inverse-square result for
celestial gravitation, did not believe that Newton adequately showed the universal
nature of the force of gravitation. Applying the Third Law of Motion to a central
body with a distant satellite seemed non-sensical to him.16

One may think Newton’s three laws of motion are universally valid due to their
foundational role in Book I of the Principia. At least according to Newton’s pre-
sentation of these laws it appears that they are not “deduced” from the phenomena.
Newton asserts these laws before any phenomena is mentioned. A common strategy
during the first half of the twentieth century was to treat the laws of motion as implic-
itly defining the meaning of the terms used in them.17 According to this approach,
one may think that the truth of these laws is stipulated. The Law of Inertia implicitly
defines the state of being force-free as uniform rectilinear motion. Similarly, part of
a definition of “force” implies the equality of action and reaction. Given that the
use of the notion of “force” presupposes the stipulated truth of the axioms, Newton
may legitimately apply the laws of motion to every place it is appropriate to use the
notion of “force.”

A proper critique of the above conventionalist approach is beyond the scope of
this work. I shall only say that the main problem with this view is that the laws
seem to have been produced by some arbitrary process. In effect the stipulated laws
have the same epistemic status as a conjecture or a guess, only one cannot get any
confirmation or refutation of these laws because the terms are used to interpret the
evidence. According to this view, the laws of motion are the “free creations” of the
scientists who came up with them, and their treatment as axioms is not grounded in

16 He also thought he had good empirical reasons to reject Newton’s reasoning. See Schliesser and
Smith (1996).
17 See for example Poincaré (1905, p. 97).
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any reasoning process that could be reconstructed or analyzed according to scien-
tific principles. A scientific inference that relies on such stipulations is essentially a
version of the HD method.

Stein does not argue that the laws of motion are conventional. But he does argue
that Newton’s application of the Third Law of Motion carries with it some irre-
ducible element of stipulation. By affirming the universal validity of the law of
equality of action and reaction, particularly in the context of action at a distance,
Newton simply presupposed the law to be valid in all circumstances. This stipula-
tion renders the third law a hypothesis – other propositions are compatible with the
empirical evidence and the law is not dictated by the phenomena.

It seems as if Stein is presupposing that any stipulation of universality is arbi-
trary, at least in the sense that it is not dictated by the phenomena, and hence any
proposition which extends its empirical and explanatory basis is a hypothesis. To
be sure, the stipulation becomes less and less arbitrary the more the hypothesis is
tested. One can even see the argument in Book III as an overall justification of the
initially stipulated hypothesis. However, a close reading of Newton’s methodologi-
cal remarks suggests that he articulated a criterion for elevating empirical statements
into universally valid propositions that precedes subjecting these propositions to
further empirical tests. If such a criterion can be reconstructed, then much of the
arbitrariness of stipulated hypotheses can be shown to have been eliminated prior to
any empirical tests the hypothesis is subjected to. This criterion for elevating empir-
ical claims carries inductive risks, nor can it be completely formal. However, it does
place severe limitations on the type of propositions that are accepted as universally
valid.

Newton’s inductive method proceeds as follows. To receive their status as uni-
versal laws of nature, empirical claims have to be re-conceptualized as assumptions
about the structure of physical systems. A “structural assumption” is a rule gov-
erning the relation between parts of a physical system and their composite. For
example, the property of “extension” is a structural assumption. Part of the meaning
of “extension” is the relation it describes between parts of a physical system and the
system as a whole. By definition, the extension of a composite body is the sum of
the extensions of the parts, so one may say that the extension of the whole arises
from the extensions of the parts.18

When one moves from parts of a physical system to the composite whole, one is
guided by assumptions about relations between parts and wholes. The three laws of
motion are logically entailed by conservation of momentum, since force is identified
with the change in quantity of motion.19 One should keep in mind how Newton
explicates the quantity of motion:

18 The notion of “part” and “whole” is used in many contexts with varying meanings. (See
Nagel, 1961, pp. 381–83.) Here the notion of part means something like the spatial part of a
physical system. I do not identify part with a spatial part since it seems as if Newton takes “mass”
to be the quantity of matter. Thus, for Newton an ultimate part of a physical system is given by an
infinitesimally small volume of unit mass. This is obviously an idealization.
19 See Chapter 5 for the debate on the relation between force and change in quantity of motion.
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The motion of the whole is the sum of the motions of the individual parts, and thus if a body
is twice as large as another and has equal velocity there is twice as much motion, and if it
has twice the velocity there is four times as much motion. (Newton, 1999, p. 404)

The structural assumption in this case is very simple since it is represented with the
rule of addition governing quantities of motion. The structural assumption therefore
includes a Rule of Composition. In the case of a solid body, the quantity of motion
of a composite system is proportional to the mass of the body, i.e., the “number of
parts” in the system. In the case of a physical system with parts moving in different
directions, the quantity of motion of the whole is the vectorial sum of the quantities
of motion of the parts.

While it is not difficult to see why quantity of motion is a structural assump-
tion for solid bodies, it is quite another claim to suggest that the conservation of
momentum amounts to a structural assumption in dynamic cases. While writing
the Principia, Newton had good reasons to think that the conservation of quantity
of motion for collisions is empirically well-confirmed. Huygens, Wren and Wallis
were able to show that collisions are well-described by the assertion that the quantity
of motion of a closed system is conserved. Moreover, Newton himself conducted
pendulum experiments to show that the equality of action and reaction does not
depend on the material nature of the object. In these experiments, Newton let the
bobs of two pendulums collide, and then measured the change in quantity of motion
in each bob. It did not seem to matter whether the bobs were made out of gold,
silver, string or iron, the change in quantity of motion in one bob corresponded to
the exact opposite change in quantity of motion in the other bob. It is therefore
reasonable using enumerative induction to conclude that conservation of quantity
of motion applies in collisions. However, Newton applied the Third Law of Motion
audaciously to regions far removed from the domain of experiments, and in the con-
text of an attraction force. Thus either he stipulated the third law to be universally
valid (i.e., as applying in all actual and counterfactual interactions), or he had some
inductive argument for it.

An important inductive step takes place when Newton universalizes structural
properties. His argument is that since the property of a composite body is reducible
via a clear and unambiguous rule to the same property attributed to the ultimate
parts, then it must be a universal property. To understand why it is possible to uni-
versalize structural properties, compare this process with enumerative induction.
Assume one observes that all examined crows are black. One would be tempted
to think that the proposition “All crows are black” is universally valid, i.e., unex-
amined crows would be black in the same way that examined crows are. However,
this assumption carries great inductive risk, since both the property “crow” and the
property “black” are composite properties. If these properties are not reducible to
properties describing the ultimate parts of the object, there is no guarantee that the
property “crow” cannot be instantiated without the property “black.” Some config-
uration of parts may lead to the instantiation of the property “crow” without the
instantiation of the property “black.” In contradistinction, consider the claim that
the quantity of motion of a closed system is conserved. In all examined cases this
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quantity was conserved; does one have reason to believe that it would be conserved
in unexamined cases? One does if it is possible to construct the quantity of motion
of any physical system from quantities of motion belonging to the ultimate parts.
Assuming that all ultimate parts of matter are alike, reducing properties of com-
posite systems to properties of ultimate parts suggests a reason to universalize the
property. Because the quantity of motion of any observed system arises only from
the quantities of motion of the parts, it is reasonable to assume that the quantities of
motion of all closed systems arise from the quantities of motion of their parts. More-
over, if each part does not change its motion over time unless it transfers quantity
of motion to another part, one may conclude that quantity of motion is universally
conserved over time.

That structural assumptions are significant for taking propositions to be univer-
sally valid is evident in Newton’s Rule 3 for the Study of Natural Philosophy. The
rule states as follows:

Those qualities of bodies that cannot be intended and remitted [i.e., qualities that cannot be
increased and diminished] and that belong to all bodies on which experiments can be made
should be taken as qualities of all bodies universally. (Newton, 1999, p. 795)

In his explication of this rule Newton begins by insisting that the qualities that can
be universalized must have a basis in experiments. But he also asserts that “qual-
ities that cannot be diminished cannot be taken away from bodies.” It is difficult
to make sense of this criterion, since all properties, including extension, hardness
and mobility, seem to be capable of being increased or diminished in magnitude.
Newton explicates what he means in the following:

The extension, hardness, impenetrability, mobility and force of inertia of the whole arise
from the extension, hardness, impenetrability, mobility and force of inertia of each of the
parts; and thus we conclude that every one of the least parts of all bodies is extended, hard,
impenetrable, movable, and endowed with a force of inertia. And this is the foundation of
all natural philosophy. (Newton, 1999, p. 795)

Thus for Newton, a quality cannot be intended or remitted when it is recognized
as being governed by a structural assumption. If properties divide neatly into the
parts of a system whenever a process of division occurs, one has to assume that the
ultimate parts of matter have these properties. Furthermore, new composite bodies
will be composed of the same kind of ultimate material parts. Thus any material
body would carry the properties one was able to reduce to the ultimate parts of
matter. The reason for taking extension, hardness, etc. as universal properties is that
for each of them the property of the composite object is compounded from the same
property (i.e., extension, hardness, etc.) attributed to the parts. It requires only a few
observations to confirm that a property survives the division of an object into parts.
Once this structural assumption is confirmed, one may take it to apply universally.

In Rule 3, Newton argues that the properties of impenetrability, mobility and
force of inertia apply universally because of their role as structural properties. The
impenetrability of a composite body arises from the impenetrability of the parts,
and so this property has to apply universally. The mobility and force of inertia of the
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composite body also arises from the mobility and force of inertia of the parts, as is
clear from the concept of quantity of motion.

One can now see the analogy between quantity of motion and the extension of
bodies. The force of inertia of a composite body is reducible to the force of inertia of
its ultimate parts. And because the tendency to continue moving in a straight line is
reducible in such a way, one finds that the quantity of motion is proportional to the
quantity of matter, i.e., one finds the motivation for the equation �P = m �V . Since
the force of inertia of a composite body is governed by a compositional rule and
can be reconstructed from the motion of microscopical parts, one may take it to be
a universal property. This implies that even two remote bodies that interact have a
conjoined force of inertia that is reducible to the force of inertia of each body (in just
the same way that two remote bodies have a conjoined extension). The two remote
bodies, unless disturbed, would continue to move in a straight line (taking the center
of mass as their common trajectory). Because the conjoined force of inertia of the
composite system is comprised of the forces of inertia of each part, in case the two
bodies are isolated, an increase in quantity of motion in one body must imply a
decrease in quantity of motion in the other body, so as to conserve the tendency of
the composite system to move in a straight line.

The consequence of universalizing the force of inertia and taking it to be gov-
erned by a composition rule implies that the conservation of quantity of motion
must be valid in both actual and counterfactual scenarios. Since the three laws of
motion are a logical consequence of momentum conservation, they are presumed to
be valid in every possible circumstance. For Newton, therefore, the laws of motion
have natural necessity justified through Rule 3. Nevertheless, that the conservation
law applies to all physical systems universally does not imply that his reasoning is
infallible, and that it is not possible that he has derived the wrong structural proper-
ties. It is quite possible that newly found phenomenal laws or exceptions to known
phenomenal laws would “dictate” alternative structural assumptions. Structural
assumptions are not metaphysically necessary, even if they are taken to have natural
necessity.20

Newton also utilizes Rule 3 to argue for the universal nature of the gravitational
force:

Finally, if it is universally established by experiments and astronomical observations that all
bodies on or near the earth gravitate toward the earth, and do so in proportion to the quantity
of matter in each body, and that the moon gravitates toward the earth in proportion to the

20 In a recent paper Ducheyne (2005) argued that Newton used autonomous models to investigate
the various properties of forces and interactions. These models are based on the laws of motions,
the definitions in the beginning of the Principia and various initial conditions and force laws. Only
after these models were developed to various degrees of complexity were they compared with the
phenomena. On the one hand, Ducheyne argues that the models are developed independently of the
phenomena. On the other hand he argues that the laws of motion on which the models were based
were deduced from the phenomena. Ducheyne’s account is problematic since it is not clear how
the laws of motion can be derived from the phenomena and then used to construct counterfactual
models.
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quantity of its matter, and that our sea in turn gravitates toward the moon, and that all planets
gravitate toward one another, and that there is a similar gravity of comets toward the sun, it
will be concluded by this rule that all bodies gravitate toward one another. (Newton, 1999,
p. 796)

This explication of gravity shows the significance of the structural assumption gov-
erning the force of gravitation. Newton derives from the phenomena the empiri-
cal claim that gravitational acceleration does not depend on the mass of a body.
The distance between two bodies, no matter what their shape, mass or chemical
constitution, is enough to determine their rate of gravitational acceleration. The
empirical fact regarding gravitational acceleration is then redescribed by Newton
as a Rule of Composition governing the force of gravitation, which asserts that the
total gravitational force is the sum of the gravitational forces operating on each part.
The Rule of Composition is expressed in the formula fm = m fa where fm is the
overall gravitational force operating on the body, m is the body’s mass, and fa is the
gravitational force operating on each part. Since the gravitational force operating on
a composite body survives the division of the body into parts, one may conclude
that the gravitational force exhibits a structural property. The gravitational force
operating on a composite body arises from the gravitational force operating on the
ultimate parts.

Newton uses Rule 3 to argue that the susceptibility to the gravitational force can-
not be separated from any physical body, and thus the gravitational force is shown
to have universal validity. The inductive step involved therefore depends on Rule 3
and on the universalizable nature of structural assumptions.

7.3 Newton’s Argument for the Universal Law of Gravitation

Once empirical claims are reconceptualized as structural assumptions, they function
in Newton’s argument as background assumptions in DI arguments. To show this,
I will follow Bill Harper’s (2002) division of Newton’s argument for the Univer-
sal Law of Gravitation into three significant parts. The first step of the argument
relies on Kepler’s Area Law, which asserts that the radius from the sun to the
planets or from a planet to one of the moons sweeps equal areas in equal times.
The second step utilizes Kepler’s Harmonic Rule which asserts that for all grav-
itating satellites, the period of rotation T is related to the radius of rotation as
T 2 ∝ R3. The Area Law and the Harmonic Rule are provided as the Phenom-
ena at the beginning of Book III. Phenomenon 1 describes the motion of Jupiter’s
moons relative to Jupiter. Phenomenon 2 describes the motion of Saturn’s satellites
relative to Saturn. Phenomena 3–5 describe the motion of the planets relative to
the sun. Finally, Phenomena 6 describes the Area Law applied to the earth’s moon.
Newton’s first step of the argument deduces from Kepler’s Area Law the centripetal
nature of the gravitational force. In the second step of the argument, Newton deduces
from the centripetal nature of the force of gravitation and the Harmonic Rule the
inverse square nature of the force of gravitation ( f ∝ 1

R2 ). In the third step of his
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argument, Newton deduces the universal nature of the force of gravitation, and the
formula:

f = G
m1m2

R2
(7.1)

I shall demonstrate the role of structural assumptions in each part of the
derivation.

7.3.1 From the Area Law to the Centripetal Nature of the Force
of Gravity

The first step of Newton’s argument infers the centripetal nature of the force of
gravitation from the Area Law. The equivalence between the Area Law and the
centripetal nature of the law is proven in Book I, Propositions 2 and 3.

Figure 7.1 describes Newton’s idealized model for a body traversing equal areas
in equal amounts of time. Newton’s idealization consists of taking the motion of
such a body as governed by an instantaneous force operating at points B,C, D and
E at equal intervals of time. The distances AB, BC , etc. represent the velocity of the
object if one takes the force to act at integral multiples of the unit of time. The Law
of Inertia implies that, had the force not acted on the body at point B, it would have
traveled uniformly and would have reached the point c at the same time the body
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Fig. 7.1 From the Area Law to the centripetal nature of the gravitational force
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has reached C in its actual motion. The conceptual link between the Area Law and
the Law of Inertia is established when one compares the areas of triangles SAB and
SBc. Because these triangles are of equal heights and bases, they are of equal areas.
And since the model was constructed to retrieve the Area Law, by definition the
area of triangle SBC equals the area of SAB. It follows that the area of SBC equals
the area of SBc. The following equivalence holds: the area of the triangle SBC is
equal to the area of SBc if and only if the change in motion Cc is parallel to (i.e.,
in the direction of) BS (Book I, Propositions 2 and 3). Thus, Kepler’s Area Law
is equivalent to the claim that change of motion is always directed at the immobile
center S.

One may take the Area Law to be “measuring” the direction of the force. If the
area traversed by the radius from S were to increase or decrease at B, the direction
of the force would have been off the line SB. Thus it is clear that Newton was able,
in this part of the argument, to translate a phenomenal law into a statement about
the force generating the phenomena.

However, notice that Newton presupposes here the universal validity of momen-
tum conservation in both actual and counterfactual cases. First, the Law of Inertia is
taken to apply counterfactually. The trajectory Bc is taken as the trajectory the body
would experience had a force not operated on it. Second, Newton presupposes that
the direction of the force is identified with the change in momentum. The universal
validity of momentum conservation far extends the empirical support of this claim,
especially in the case of celestial bodies. But Newton argues in Rule 3 that mobility
and the force of inertia are structural properties. The Law of Inertia must apply in
both actual and counterfactual cases. Thus crucial to the argument is the natural
necessity Newton attributes to the Law of Inertia.

The first step of the argument can be summarized as follows:

Argument I

Premise 1. Kepler’s Area Law. (Phenomenal Law)
Premise 2. Momentum conservation. (Structural Assumption)

2.1. The Law of Inertia applies counterfactually.
2.2. The force equals the change in momentum.

Premise 3. Euclid’s geometry. (Background Assumption)
Conclusion I The gravitational force operates in the direction of an immobile

center.

The first inductive step, therefore, follows the method of Demonstrative Induction.
At this stage the background assumption used as a premise has already gone through
the process of being elevated into a structural assumption. The natural necessity
Newton attributed to the Law of Inertia enables him to “measure” the direction of
the gravitational force. By comparing the actual trajectory of the body relative to its
counterfactual one, Newton is able to conclude that the gravitational force operates
towards the center of rotation.
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7.3.2 The Harmonic Rule and the Inverse Squared Distance
Nature of the Gravitational Force

The second step in Newton’s argument derives the inverse-squared nature of the
gravitational force from the Harmonic Rule, which is:

T 2 ∝ R3 (7.2)

where T is the period of the rotation around the center, and R is the radius. To
carry out this part of the derivation, Newton makes an approximating assumption
by taking the planets to be moving in perfect circular motion instead of ellipses.
Newton proves in Book 1 Proposition 4 that the centripetal acceleration of the body
that rotates in a perfect circle is the following:

a = v2

R
(7.3)

where the velocity v is the instantaneous velocity of the body and R is the radius of
rotation. The proof relies on taking the polygon described in Fig. 7.1 and reducing
the length of the segments until they are indistinguishable from motion in a circle.21

One can follow Newton’s reasoning by examining Fig. 7.1 again taking the radiuses
S A, SB, etc., to be all the same since the body is now taken to be moving in a
circle. The triangle SBC is again compared with the triangle SBc. Since AB and BC
represent the velocity of the body, BV represents the change in velocity, and SB
the radius of rotation, one can deduce the centripetal acceleration with the help of
Euclidean theorems.22 Since the instantaneous velocity of the body is related to the
period of rotation through the equation vT = 2πR, one concludes from (7.2) to
(7.3) and the conclusion of Argument 1 the centripetal acceleration of the body:

a = v2

R
= (2π)2 R

T 2
∝ 1

R2
(7.4)

Thus Newton utilizes the Harmonic Rule to “measure” the gravitational accelera-
tion. The assumptions that were employed in the first step of the derivation were
employed in this step as well. In deriving the centripetal acceleration Newton relied
on the Law of Inertia and on the identification of force with the change of momen-
tum. However, here an important approximating assumption was used in the deriva-
tion, namely that the bodies are moving with perfect circular motion. This part of
the deduction could be summarized as follows:

21 See the Scholium to Proposition 4, (Newton, 1999, p. 452).
22 See Brackenridge and Nauenberg (2002) for a history of these calculations.
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Argument II

Premise 1. Kepler’s Harmonic Rule. (Phenomenal Law)
Premise 2. The gravitational force is centripetal. (Conclusion 1)
Premise 3. Momentum Conservation. (Structural Assumption)
Premise 4. Satellites move with circular motion. (Approximating

Assumption)

4.1. a ∝ v2

R

Conclusion II. a ∝ 1
R2

A complication in the derivation is the approximating assumption. According to
Kepler’s laws, the planets are moving with ellipses around the sun, and so the above
argument applies to the motion of these planets only crudely. This complication
is compounded by the fact that the phenomenal laws too hold only approximately,
and one may find different curves to describe the data. The premises of Newton’s
derivation are known to hold only approximately, or in Newton’s words, they hold
quam proxime (very nearly). This reminds us of Duhem’s objection to Newton’s
claim that he derived his Universal Law of Gravitation from the phenomena using
rules of deduction. George E. Smith (2002a, b) explicated the seemingly perplexing
Newtonian procedure of beginning with phenomenal laws that hold only approx-
imately, and then using the result of DI arguments to assess the origin of possible
discrepancies between the observed phenomena and the ones predicted by the theory
together with various idealized conditions.

Part of the story has to do with various calculations carried out by Newton to
show that the approximations carried out in the premises of DI arguments cannot
lead us too much astray in deriving the conclusions. Newton showed the bicon-
ditional between small deviations in the Area Law leading to small deviations of
the force from the central gravitating body. Even if the Area Law does not hold
precisely, Newton showed that small deviations would not have produced significant
deviations in the conclusion. The DI argument is “stable” under small perturbations.
Another example is the calculation Newton carried out to show that small deviations
from the inverse-square law lead to a precession of orbits. I.e., he calculated that the
apsidal angle θ is related to the index n of the exponent of centripetal acceleration
(where a = r (n−3), and r is the radius of acceleration) as n = (180/θ)2. With
this calculation Newton demonstrated that no precession implies the inverse-square
law precisely. Because no precession in the planets’ orbits are observed, one has
indirect confirmation of the inverse square law. One should therefore be careful in
evaluating DI arguments. Newton’s confidence in the conclusions of DI argument is
not only based on the relation between premises and the conclusion of the argument.
It also relies on estimating the approximating assumptions made in the premises;
one needs to gauge the extent to which errors might have crept in. Newton could
have deduced from the elliptical orbits the inverse-square nature of the gravitational
force. However, if small deviations from the elliptical orbits yield significant errors
in the calculation of the force’s power, such a derivation cannot be trusted. There
must be some mechanism for mitigating the potential for errors.
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Newton’s detailed calculations show that his DI derivations are not sensitive to
small deviations and inaccuracies. However, in order to assess such deviations, he
relied on background assumptions that were taken to be valid in both the actual
case and the idealized conditions presupposed in the argument. For example, the
centripetal nature of the law of gravitation is deduced from the Area Law on the
assumption that the First Law of Motion is valid universally. The Law of Inertia
helps Newton bolster the validity of his conclusion by considering counterfactual
scenarios and comparing these scenarios to the actual ones. But only by assuming
that the Law of Inertia holds universally and exactly, can Newton show that small
deviations from the Area Law correlate with small deviations from the centripetal
direction of the force. One cannot estimate the inductive risk unless one takes certain
laws to be valid necessarily.

Smith is well aware of the paradoxical nature of approximating procedures,
which seem to presuppose certain scientific claims as exact in order to calculate the
errors that may arise from approximating assumptions (Smith, 2002b, p. 45). Smith
calls this common scientific approach the exact-approximate duality. He argues that
the procedure is that of providing successive approximations, where each DI argu-
ment leads to results that yield further detail that help in evaluating deviations. What
criterion do we use to designate certain scientific propositions as unquestionable
background assumptions? Smith comes close to our account of structural assump-
tions in the following passage:

Not just any old first approximation will permit such a sequence of successive refinements,
as it might if this were merely tantamount to curve-fitting. The theoretical claim for which
Newton requires the first-approximation phenomena to provide crucial evidence is a generic
force law – the law of gravity in the case of orbital motions and his law for the resistance
force arising from the inertia of the fluid in book 2. Moreover, when the force in question is
a net force acting on a macroscopic body, he requires a compositional account of it in terms
of forces acting on the individual parts of the body – in terms of microgravitational forces
or, in his resistance case, in terms of the forces of impact of fluid particles on parts of the
body. Finally, once inductively generalized, the force law ought to have as its consequences
a host of idealized phenomena reaching beyond those providing the original evidence for
the law. . . . These idealized consequences are expected to agree with observation to increas-
ingly high approximation, and to the extent they do, they of course provide further evidence
of the law of force. (Smith, 2002b, p. 48)

Smith identifies in passing Newton’s attempt to provide a “compositional” account
of the forces operating on a composite body. Thus when Newton provides an account
of how composite forces are reduced to microphysical forces arising from interac-
tions between individual parts of the body, he is safer in assuming that force-laws
hold universally. The compositional account thus bolsters the robustness of scientific
propositions one takes to hold universally and exactly. In this Smith comes very
close to our account of Newton’s reliance on structural assumptions. The problem
with Smith’s account is that he doesn’t recognize the theoretical connections of the
compositional accounts to Rule 3, and Newton’s philosophical attempt to provide
a methodological justification for taking such compositional accounts as evidence
that laws hold universally and exactly. Smith also does not recognize how Rule
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3 was intended to secure exactly those background assumptions Newton took as
universally valid in his derivations and assessments of approximating assumptions.

The scientific process of taking the conclusions of a DI argument and using it
to create models of increasing accuracy is crucial and must supplement the initial
derivation. Thus one should concur with Smith’s claim that there is a risk that the
conclusion will lead to a “garden path,” since not all the inductive risk is located
within the initial derivation. But this process of finding more accurate models
depends on finding laws that are valid in all actual and counterfactual cases. One
cannot estimate the errors that creep into our observations without presupposing
some law that is valid in all circumstances.

The answer to Duhem’s challenge is therefore that an approximating assumption
can be gauged for the possible error it introduces when certain laws are taken to
be exact and to hold necessarily. Thus, for the scientist to gauge the possible error
introduced by the DI argument, the DI method is supplanted with a universalizing
criterion. Once an empirical proposition is replaced by a law that arises from a
structural property, one can take this law to be exact and necessary. This law can
then be used to assess the errors introduced by the idealizing assumptions in the
original derivation, and an iterative process of finding more exact phenomenal laws
is initiated.

7.3.3 Deriving the Universal Nature of Law of Gravitation

In his third step of the derivation, Newton concludes that the gravitational force
operates between any pair of masses, and is proportional to the product of the masses
according to the following equation:

f = G
m1m2

R2
(7.5)

Newton’s argument for the universal nature of gravitation occurs in Book III, Propo-
sitions 6 and 7. The argument in Proposition 6 begins with the observation that all
earthly material objects move with the same gravitational acceleration. This fact was
first discovered by Galileo. Newton describes pendulum experiments he conducted
to show that all earthly matter gravitates towards the center of the earth with an
acceleration of g = 9.8 cm

s2 . Moreover, since all of Jupiter’s moons obey the Area
Law and the Harmonic Rule relative to Jupiter, it follows that their acceleration
toward Jupiter depends only on their distance from the planet. By the same argu-
ment, the acceleration of the planets toward the sun depends only on their distance
from the sun. Moreover, the motions of Jupiter’s moons relative to Jupiter are very
regular, which implies that their acceleration toward the sun is the same as that of
Jupiter and independent of their relative mass. Thus, an important empirical claim
to be deduced from all observations is that gravitational acceleration is independent
of the mass of the body or its chemical constitution.
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An important question remains. How does Newton derive the universal nature
of the force of gravitation from this empirical claim? Some form of reasoning has
enabled Newton to move from a claim that is valid for all observed bodies, to a
universal law of nature asserting that a force of gravitation would operate between
any pair of masses. According to a Howard Stein (1970, 1990) Newton utilized the
concept of field to make the inductive leap. Even though Newton did not explicitly
use the notion of field, there are indications that he invented a very similar concept.
In the beginning of the Principia Newton made an important distinction between
the “absolute,” “accelerative” and “motive” forces. The various forces are given in
Definitions 6–8 of the Principia:

The quantities of forces, for the sake of brevity, may be called motive, accelerative, and
absolute forces, and, for the sake of differentiation, may be referred to as bodies seeking a
center, to the places of the bodies, and to the center of the forces: that is, motive force may be
referred to a body as an endeavor of the whole directed toward a center and compounded of
the endeavors of all the parts; accelerative force, to the place of the body as a certain efficacy
diffused from the center through each of the surrounding places in order to move the bodies
that are in those places; and absolute force, to the center as having some cause without
which the motive forces are not propagated through the surrounding regions, whether this
cause is some central body . . . or whether it is some other cause which is not apparent.
(Newton, 1999, p. 407)

The absolute measure of the force refers to its causal origin located at the center
towards which the force of gravitation is directed. The motive force is defined as the
force a composite body experiences. The accelerative force is the force experienced
by each of the body’s parts. Moreover, Newton asserts that the motive force is related
to the accelerative force as momentum is related to velocity, i.e., fm = m fa . The
motive force fm is the product of the mass of the body and the accelerative force fa

operating on each part.
Stein argues that Newton’s notion of accelerative force functions as an accelera-

tion field. This acceleration field describes the disposition of any body to accelerate
according to the inverse-square law, and it is clear that Newton ascribes this disposi-
tion to the place a body occupies rather than to the body itself. Newton also describes
how these dispositions are distributed from the center of the attracting body to the
surrounding places, and so that the “accelerative quantity of force” describes the
efficacy of the gravitational force at these places.

An important inductive step, according to Stein, is Newton’s hypothesis that the
acceleration field exists:

Newton’s inductive conclusion is that the accelerations toward the sun are everywhere –
i.e., even where there are no planets – determined by the position relative to the sun . . . that
argument cannot be made without the notion of a field. (Stein, 1970, p. 268)

Stein’s account suggests that the disposition of the gravitational force to gener-
ate accelerations, where that disposition is attributed to particular places rather
than particular existing bodies, enables Newton to generalize from the particular
cases observed to a universal rule. Thus according to Stein it is the notion of a
field, describing a set of dispositions spread out throughout space, which provides
the gravitational force its universal validity, including its validity in counterfactual
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cases. Only if we assume that the attracting body generates an acceleration field,
can we say that a body would experience a gravitational force had it been placed at
a certain distance from the attracting body.

However, contrary to Stein’s assertion, it seems as if the notion of acceleration
field is not a necessary conceptual tool for making the generalization. If one takes
Newton’s laws of motion to hold in counterfactual cases, then every time the Area
Law and the Harmonic Rule apply, the body’s acceleration would be proportional
to 1

R2 , independently of its mass or material constitution. If Newton is able to jus-
tify the claim that all gravitating bodies are likely to obey the Area Law and the
Harmonic Rule, then a body would accelerate in proportion to the “intensity” of
the gravitational force at that particular position. Thus, the notion of field is not
necessary for taking the inductive step. If extending the premises of the Argument
I and II to counterfactual cases can be justified, the acceleration field would be the
result of Newton’s inductive argument, not an aid in making it.

In fact there is an alternative explanation for Newton’s inductive step. It seems as
if the inductive leap occurs when Newton takes the empirical claim, i.e., that gravita-
tional acceleration does not depend on the mass of the body, and re-conceptualizes
it as a structural assumption. In the concluding remarks in Proposition 6 Newton
states as follows:

But further, the weights [or gravities] of the individual parts of each planet toward any
other planet are to one another as the matter in the individual parts. For if some parts gravi-
tated more, and others less, than in proportion to their quantity of matter, the whole planet,
according to the kind of parts in which it most abounded, would gravitate more or gravitate
less than in proposition to the quantity of matter of the whole. (Newton, 1999, p. 808)

The theoretical fact which best accounts for the empirical fact is the assertion that
the gravitational (motive) force operating on a composite body is the sum of the
gravitational (accelerative) force operating on each part. Moreover, one knows that
the accelerative force fa operating on each part is independent of the nature of the
part. It does not matter whether a body is made of gold or of coal, each of its parts
will experience the same gravitational acceleration. Newton therefore articulates a
Rule of Composition governing the gravitational force analogous to the Rule of
Composition governing quantities of motion:

Rule of Composition for the Gravitational Force.

The gravitational force operating on a composite body is the sum of the gravitational forces
operating on each part. Or, in other words, fm = m fa , where fm is the motive force operat-
ing on the composite body and fa is the accelerative force operating on each part.

Because Newton was able to articulate a structural assumption governing the grav-
itational force and because the force does not take into account any property
restricted to a particular kind of body, Newton reaches the conclusion that a struc-
tural assumption applies to all bodies in all circumstances. The argument can be
summarized as follows:
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Argument III-1.

Premise. Gravitational acceleration is (Conclusion II)
independent of mass.

Conclusion III-1. The motive force fm is the sum
of the accelerative forces fa

operating on the parts; fm = m fa

Argument III-1 is not a deductively valid argument. Rather, it is an argument where
an empirical claim is re-conceptualized and elevated to the status of a structural
assumption. Thus, the inductive step that Newton takes does not rely on the notion
of a field; rather, it relies on the criterion for universalizing properties implicit in
Rule 3. This criterion is not unique for gravitation and is employed for all univer-
sal properties such as extension, impenetrability and inertia. Since the gravitational
force operating on the composite body can be reduced to the forces operating on
each ultimate part, one cannot separate the gravitational force from the ultimate
parts of matter. Thus, the gravitational force operates on all ultimate parts of matter
in the same way.

The second part of the third step of the derivation concludes with the universal
nature of the force of gravitation. As step 2 of the argument showed, the gravitational
acceleration is proportional to 1

R2 independently of the mass of the body, so that:

fa ∝ 1

R2
(7.6)

But from argument III-1, it follows that motive force is proportional to the mass:

fm ∝ m

R2
(7.7)

Newton then uses the structural assumption governing the gravitational force with
the Third Law of Motion to conclude the universal nature of the force of gravitation:

Since all the parts of any planet A are heavy [or gravitate] toward any planet B, and since
the gravity of each part is to the gravity of the whole as the matter of that part to the matter of
the whole, and since to every action (by the third law of motion) there is an equal reaction,
it follows that the planet B will gravitate in turn toward the whole of the planet as the matter
of that part to the matter of the whole. (Newton, 1999, p. 810)

The reasoning here may be described as follows. If body A gravitates toward body
B, then the motive force operating on A is proportional to the mass of A over the
distance squared, so that:

f A = kA
m A

R2
AB

(7.8)

where K A is some constant. But according to Newton’s Third Law of Motion,
the gravitational force operating on A is equal in magnitude and is opposite in
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direction to the force operating on B. This force is gravitational in nature, so it too
is the composite of the forces operating on B’s parts. Thus, the force operating on
B is:

fB = kB
m B

R2
AB

(7.9)

From the Third Law of Motion it therefore follows that f A = − fB , which
implies that the gravitational force is proportional to the product of the bodies’
masses:

fG = G
m1m2

R2
AB

(7.10)

The second part of the third step of Newton’s argument can be summarized as
follows:

Argument III-2

Premise 1. fm = m fa . (Structural Assumption –
Conclusion III-1)

Premise 2. f a ∝ 1
R2 (Conclusion II)

Premise 3. Momentum Conservation (Structural Assumption)
3.1. Newton’s Third Law of Motion

Conclusion III-2 f = G m1m2
R2 .

Arguments I, II and III-2 all follow the DI method. These arguments use phenome-
nal laws and background assumptions as premises and deductive reasoning to con-
clude the nature of the force generating the phenomena. However, it is important
to note that the background assumptions used in these arguments are of a very
particular nature. Other than mathematical and phenomenal propositions they are
all structural assumptions.

It seems tempting to think of these two structural assumptions, i.e., the conserva-
tion of momentum and the Rule of Composition governing the force of gravitation,
as de facto hypotheses. In a heuristic sense, they are. These are theoretical propo-
sitions that are not deductively entailed by empirical claims. It is conceivable that
these structural assumptions will be replaced in the future with new, more adequate
assumptions. The universal validity attributed to these assumptions is not metaphys-
ical in nature, since it may be that a more adequate structural assumption will be
introduced in a future theory.

However, these structural assumptions are not hypotheses in the sense used by
philosophers of science. First, they are not arbitrary conjectures governed solely by
the imagination and luck of individual scientists. It may have required the imagina-
tion and courage of Newton to conceive of these structural assumptions and to take
them as applying universally, but these assumptions are certainly not arbitrary, as
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we have spelled out what singles out these assumptions over others. Second, it is
clear why these assumptions acquire the universal validity that is attributed to them.
Unlike enumerative induction, where universal propositions link composite proper-
ties, these structural assumptions enable us to argue that we have stumbled on the
properties of the ultimate parts over which it seems safer to generalize. If structural
assumptions are valid, they are valid universally in both actual and counterfactual
cases if it can be assumed that ultimate parts of matter are all alike. Finally, structural
assumptions are not hypotheses because they are closely related to the results of
experiments and observations. Only after carefully assembling all the evidence, can
structural assumptions be introduced into the theory.

7.4 Newton’s Scientific Method

For Newton, the conservation of momentum and the compositional nature of the
gravitational force are more than just hypotheses; they are structural assumptions.
Newton was well-justified in perceiving himself as deducing his universal law of
gravitation from the phenomena. He was not employing in his inductive method
hypotheses that function as inspired guesses. He introduced structural assumptions
based on a careful procedure. First, an empirical fact universally confirmed by all
observations is singled out. Then, this empirical fact is re-conceptualized as a struc-
tural assumption, in which no property restricted to a particular kind of material is
utilized. Finally, the structural assumption is recognized as universally valid due to
its role in making composite physical processes intelligible.

It is clear that this procedure does not depend on the sociological role of back-
ground assumptions as standardizing rules for solving scientific problems. Newton
was creating a new paradigm through the introduction of structural assumptions.
Once Newton started using the conservation of momentum as a universally valid
rule, it gave the impetus to the generations that followed to emulate him. But it
is not their currency in the eyes of his peers which gave Newton the confidence to
apply these scientific propositions universally, it is their nature as structural assump-
tions. The universal validity of structural assumptions are derived from Newton’s
belief that the properties of composite systems must be constructed from properties
belonging to the ultimate parts of matter.

Our analysis of Newton’s argument also indicates that Popper is right in that
there is no universal “rule of induction” that applies to all inductive arguments. The
reason why Newton takes his structural assumptions to hold universally is that it
seems unlikely that composite physical processes follow different rules of composi-
tion depending on the context. However, it may be that the particular theoretical and
experimental context determines which structural assumption is “suggested” by the
evidence. It is very possible that new structural assumptions will end up replacing
older ones. Thus, these structural assumptions should be treated as local rules of
inductive inference. The generation of a structural assumption follows a regulated
procedure. However, one should not think that this procedure is mechanical nor is
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it incorrigible. Nature does not dictate to the scientist which structural assumption
is implied by the phenomena, nor does it show how to read them from the phenom-
ena. There is an element of stipulation in formulating these structural assumptions,
however, this stipulation is not entirely arbitrary and is not a linguistic convention.

It is now clear that Newton had a valid method for distinguishing between
hypotheses and propositions that are derived from the phenomena. However, one
has to be clear that the derivation does not rely exclusively on deductive rules. The
DI method gets part of the story right, but not the whole story. There is an important
inductive step Newton utilizes to secure the background assumptions which serve as
premises in his DI arguments. The strength of these DI arguments crucially depends
on the strength of these background assumptions. Only by introducing this addi-
tional criterion can the DI method meet the challenges it faces. Without providing
an account of which properties can be universalized, it is not possible for the DI
method to meet the Duhemian challenge, explain the necessity and exactness of
laws of nature, and introduce new theoretical terms. It cannot meet those challenges
without collapsing into the HD method completely.

The Criterion of Isolation and Rule of Composition governing the quantity of
motion consist of a structural assumption. In this chapter we have seen the impor-
tance of structural assumptions in Newton’s scientific method. These structural
assumptions provided Newton with local rules of induction with which he was able
to take phenomenal laws and derive from them laws of nature. Perhaps there is hope
to separate out analogous structural assumptions in more contemporary arguments
that illuminate the nature of inductive inference and the success of empirical argu-
ments in securing laws of nature that extend the strict empirical basis on which they
stand. I leave such work to future research.



Chapter 8
The Special Theory of Relativity

The reconstruction of classical physics in previous chapters unveiled a conceptual
relation between Galilean spacetime and Newtonian mass. Once the Galilean geom-
etry of PUMs was assumed, the basic structure of Galilean spacetime was derived.
The parameter μ0, which was later used to reconstruct mass, was derived from an
implicit spacetime symmetry. The full meaning of mass was captured when the
reconstruction introduced the “classical” Criterion of Isolation and the Rule of Com-
position governing motions.

The analogy between Galilean and relativistic spacetimes suggests that a similar
relation between relativistic spacetime symmetries and relativistic mass might be
established. If the analogy holds, one should be able to derive relativistic mass from
extending the spacetime symmetries implicit in the equivalence between inertial
reference frames. In addition to spacetime structure, a reconstruction of relativistic
dynamics should presuppose a Criterion of Isolation and a Rule of Composition for
relativistic systems. This chapter will proceed with reconstructing relativistic mass,
keeping in mind the theoretical complication stemming from an ambiguity in the
reference of mass. In the Special Theory of Relativity, mass could be interpreted as
referring either to rest mass or relativistic mass, and so one no longer has the same
parameter capturing both roles of mass; as the property of inertia and as the quantity
of matter. However, the analogy between classical and relativistic physics suggests
that mass in relativity also has its geometric origins, and that the dynamic struc-
tures of the theory are not separable from its kinematic structures. To demonstrate
these claims the next sections proceed with a reconstruction of relativistic mass
from the relativistic geometry of PUMs and presuppositions governing relativistic
systems.

8.1 The Expansion Factor µ0 and Mass in STR

In Chapter 3, relativistic spacetime was derived from a relativistic geometry of
PUMs. The assumption was that a PUM is projected onto a class of parallel PUMs
according to the following rule:
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C 7. Relativistic Paradigm of Uniform Motion (RPUM)

Eωβ1 ∧ Eωβ2 and p =< ω, β1 >, q =< ω, β2 >

c2(�x0(p, q))2 − (�x1(p, q))2 = 0

The solution to C 7 is a wave function moving with the velocity of light. The
solution can be generalized to a {3+1} spacetime:

⎛

⎜⎝
ψ1+(x0+, x1+) = eiωx0++ikx1+ ψ1−(x0−, x1−) = eiωx0−−ikx1−

ψ2+(x0+, x2+) = eiωx0++ikx2+ ψ2−(x0−, x2−) = eiωx0−−ikx2−

ψ3+(x0+, x3+) = eiωx0++ikx3+ ψ3−(x0+, x3+) = eiωx0+−ikx3−

⎞

⎟⎠ (8.1)

Define the spatial and temporal measures in three dimensions as follows:

x0 = x0+ + x0− (8.2)

xi = xi+ − xi− = cx0+ − cx0−

Define the relation between the wave equation and the time and length measure-
ments performed with clocks and rods. The stretching of a wavelength in all direc-
tions may look as follows:

Ti+ �→ T ′
i+ = μi Ti+ (8.3)

Ti− �→ T ′
i− = μ′

i Ti−

Define:

μ0 ≡ 1√
μ1μ

′
1

(8.4)

To simplify discussion assume that:

μ2 = μ′
2 = μ3 = μ′

3 = 1

μ0
(8.5)

The transformation in (8.3) leads to the transformation � between K 1111
R =

〈cx0, x1, x2, x3〉 and Kμ0μ111
R = 〈cx ′

0, x ′
1, x ′

2, x ′
3〉, so that:

� = 1

2

⎛

⎜⎜⎜⎝

μ1 + μ′
1 μ1 − μ′

1 0 0

μ1 − μ′
1 μ1 + μ′

1 0 0

0 0 2
μ0

0

0 0 0 2
μ0

⎞

⎟⎟⎟⎠ (8.6)
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Given the transformation between the coordinate system, the relative velocity
between these coordinate systems can be defined. A point stationary at the origin of
K 1111

R will transform as follows:

�

⎛

⎜⎜⎝

cx0
0
0
0

⎞

⎟⎟⎠ �→

⎛

⎜⎜⎝

(μ1 + μ′
1)cx0

(μ1 − μ′
1)cx0

0
0

⎞

⎟⎟⎠ (8.7)

Thus the relative velocity of an object at rest in K 1111
R will be moving uniformly in

Kμ0μ111
R with the velocity:

v

c
= (μ1 − μ′

1)

(μ1 + μ′
1)

(8.8)

A constraint will now be imposed on � to derive the ordinary Lorentz transfor-
mation. Assume that � : K 1111

R �→ Kμ0μ111
R equals the inverse transformation,

�−1 : Kμ0μ111
R �→ K 1111

R , except for the relative velocity changing signs. The
transformation �−1 looks as follows:

�−1 = 1

2μ1μ
′
1

⎛

⎜⎜⎜⎝

(μ1 + μ′
1) (μ1 − μ′

1) 0 0

(μ1 − μ′
1) (μ1 + μ′

1) 0 0

0 0 2μ0 0

0 0 0 2μ0

⎞

⎟⎟⎟⎠ (8.9)

Since it is assumed that �(v) = �(−v)−1, it follows μ1μ
′
1 = 1 and that μ0 = 1.

The relation between the velocity and the scaling factor μ1 would then be:

β ≡ v

c
= μ2

1 − 1

μ2
1 + 1

(8.10)

The scaling factor could be defined as a function of β, so that:

μ1 =
√

1 + β

1 − β
= (1 + β)√

1 − β2
(8.11)

Let γ ≡ 1√
1−β2

. The transformation � : K 1111
R �→ K 1μ111

R then becomes:

� =

⎛

⎜⎜⎝

γ βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ (8.12)
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which is the ordinary Lorentz transformation. In this case the subscript μ1 describes
the stretch in the wavelength of the set of PUMs that move in the x direction. Thus
an arbitrary wave expansion μ1, μ2 or μ3 in one of the spatial directions leads to
the Lorentz transformations in one of the three spatial directions.

The assumption behind the above derivation of the Lorentz transformation is that
�(v) = �−1(−v). To justify this part of the derivation, Einstein appealed to the
Principle of Relativity, arguing that the transformations between inertial reference
frames should not depend on anything but the relative velocity between inertial
reference frames. However, in the reconstruction of relativistic spacetime offered
in Chapter 3, the Principle of Relativity was shown to be the logical consequence
of basing the geometry of spacetime on geometry of PUMs and relations between
them. The Principle of Relativity does not function here as a postulate. Moreover,
Einstein’s appeal to the Principle of Relativity is suspect, since his articulation of
the Principle of Relativity is, strictly speaking, inapplicable to the transformations
between inertial reference frames. Einstein’s formulation of the Principle of Rela-
tivity asserts that the laws of physics are the same in all inertial reference frames.
But Einstein applied the Principle of Relativity to the generalized Lorentz transfor-
mations, which describe laws of transformation between inertial reference frames.
To say that a rod will measure the same length whenever it is at rest relative to
a reference frame does not follow logically from the Principle of Relativity. It is
possible for a rod not to measure the same length in different frames, and for the
laws of physics to be the same relative to the different frames. Instead of Einstein
relying on the Principle of Relativity to justify the Reciprocity Principle, one may
adopt a convention that separates expansion parameters such as μ0 which “inflate”
the reference frame from transformations in which the Reciprocity Principle holds.
The following examines the generalized transformations that accept the RPUM (C7)
as valid.

Consider the transformation � : K 1111
R �→ Kμ0μ111

R . The relative velocity
between these reference frames is:

β = μ1 + μ′
1

μ1 − μ′
1

= μ2
1μ

2
0 + 1

μ2
1μ

2
0 − 1

(8.13)

Define μ1 as a function of β and μ0:

μ1 = (β + 1)

μ0
√

1 − β2
= γ

(1 + β)

μ0
(8.14)

With this equality, the transformation in (8.9) reduces to:

� =

⎛

⎜⎜⎜⎜⎝

γ
μ0

γβ
μ0

0 0

− γβ
μ0

γ
μ0

0 0

0 0 1
μ0

0

0 0 0 1
μ0

⎞

⎟⎟⎟⎟⎠
(8.15)
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To make the significance of (8.15) clear, consider first the transformation � :
K 1111

R �→ Kμ0111
R . In case the relative velocity between the two reference frames

is v = 1, the transformation reduces to:

� =

⎛

⎜⎜⎜⎜⎝

1
μ0

0 0 0

0 1
μ0

0 0

0 0 1
μ0

0

0 0 0 1
μ0

⎞

⎟⎟⎟⎟⎠
(8.16)

Assume that a body is at rest in K 1111
R , so that it has the following trajectory:

x(cx0) =

⎛

⎜⎜⎝

cx0
0
0
0

⎞

⎟⎟⎠ (8.17)

The four-velocity of this body is then:

u(cx0) =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ (8.18)

The trajectory of the body in K 1μ111
R is then:

x′(cx0) =

⎛

⎜⎜⎝

cx0γ

−cx0γβ

0
0

⎞

⎟⎟⎠ (8.19)

Thus the four-velocity of the body in K 1μ111
R is:

u′(cx0) =

⎛

⎜⎜⎜⎜⎝

γ

−γβ
0
0
0

⎞

⎟⎟⎟⎟⎠
(8.20)

Thus the body moves with velocity −β relative to K 1μ111
R when it is at rest in K 1111

R .
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Now consider the trajectory of the body in Kμ0μ111
R :

x′′(cx0) =

⎛

⎜⎜⎜⎝

γ cx0
μ0

− γβcx0
μ0

0
0

⎞

⎟⎟⎟⎠ (8.21)

This implies that the body has the following four-velocity in Kμ0μ111
R :

u′′(cx0) =

⎛

⎜⎜⎜⎝

γ
μ0

− γβ
μ0

0
0

⎞

⎟⎟⎟⎠ (8.22)

The velocity of the body relative to Kμ0μ111
R is still −β. Thus K 1μ111

R and Kμ0μ111
R

are indistinguishable with regards to velocity measurements. The frames only dis-
agree with regards to a factor μ0 that multiplies both the spatial and the tempo-
ral metrics. The two frames use exactly the same measuring rods and clocks, but
they differ with regards to the significance of their measurements. If each trajec-
tory is assigned an arbitrary μ0 parameter, associated with the degree of freedom
each trajectory has in terms of the appropriate frame Kμ0μ111

R , it is clear that
the four-velocity needs to transform from the measured four-velocity u′′(cx0) =
〈γ,−γβ, 0, 0〉 to the “standardized” four-velocity u0(cx0) = 〈μ0γ,−μ0γβ, 0, 0〉.
Thus, it follows that μ0 can be identified with the rest mass of the body, since the
energy and momentum of the body can now be defined as follows:

E = μ0γ p = μ0γβ (8.23)

One can also see that μ0 = √E2 − p2, which is what we expect from multiplying
the length of the velocity four-vector by a factor μ0.

The energy-momentum vector is simply an alternative way to represent the four-
velocity of a body, and the two representations reflect a non-determined choice of
reference frames; either K 1μ111

R or Kμ0μ111
R are coherent with the actual devices

used to measure the trajectories of bodies. Since velocity measurements and coor-
dinate systems are physically indistinguishable for these frames, one assigns the
value μ0 to each body based on the discrepancy between standard and non-standard
representations of velocity, in K 1μ111

R and Kμ0μ111
R respectively. Thus the energy-

momentum is a rescaled, “standardized” representation of motion, and does not
differ physically from the ordinary four-velocity of a body.

In previous chapters the Criterion of Isolation and Rule of Composition were
articulated. According to this rule, the momentum of the composite body is the sum
of the quantities of motion of the parts. Once this rule was articulated the various
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expanded/contracted Galilean reference frames Kμ0111
R were differentiated. When

various trajectories of different bodies are treated as interacting components of a
physical system, various expansion parameters are attributed to bodies. Consider
now the Rule of Composition in the relativistic context:

Rule of Composition. The standardized four-velocity of a composite system is the
sum of the standardized four-velocities of the parts.

Assume that the velocities of n subsystems, p1, p2, . . . , pn are measured as u1,
u2, . . . , un . One does not know which reference frame each of these velocities
were measured in, so that there is an infinite range of possible reference frames
Kμ01μ1111

R , Kμ02μ1211
R , . . . , Kμ0nμ1n11

R . The “standardized” velocities of each sub-
system in K 1111

R is:

u0
i =

⎛

⎜⎜⎝

μ0iγi

μ0iγiβi

0
0

⎞

⎟⎟⎠ (8.24)

The four-velocity u� of the composite body that comprises the two subsystems may
now be considered:

u0
� =

∑
ui (8.25)

Assume, moreover, the relativistic version of the Criterion of Isolation:

Criterion of Isolation. A physical system is isolated if and only if it instantiates a
PUM.

If the overall system is isolated from the rest of the world, the implication is that the
four-velocity of the composite system is constant, so that

du0
�

dx0
= 0 (8.26)

The consequence is the conservation of energy and momentum for p1, p2, . . . , pn ,
so that:

Etot =∑i μ0iγi

ptot =∑i μ0iγiβi

(8.27)

One can also derive from the Rule of Composition the additive nature of relativistic
mass mR = μ0γ , so that an expanded reference frame μ0� can be associated with
the composite system comprised of p1, p2, . . . , pn . Take for example a compos-
ite system comprising of two subsystems p1 and p2. One may begin the analy-
sis in the reference frame K 1111

R . The four-velocities of the two systems are then



198 8 The Special Theory of Relativity

u′
1 = 〈γ1, γ1β1, 0, 0〉 and u′

2 = 〈γ2, γ2β2, 0, 0〉. These velocities are measured in
Kμ01111

R and Kμ02111
R . To find the standardized velocities of the two subsystems, the

velocities are multiplied by μ01 and μ02, so that u0
1 = 〈μ01γ1, μ01γ1β1, 0, 0〉 and

u0
2 = 〈μ02γ2, μ02γ2β2, 0, 0〉. The standardized four-velocity u0

� of the composite
system can now be calculated, since it is the sum of the standardized velocities of
the parts:

u0
� =

⎛

⎜⎜⎝

μ01γ1 + μ02γ2
μ01γ1β1 + μ02γ2β2

0
0

⎞

⎟⎟⎠ (8.28)

According to the Criterion of Isolation, the velocity of an isolated composite system
is constant. So there exists a frame K 1μ111

R in which the four-velocity of the com-

posite system is u′
� = 〈1, 0, 0, 0〉. Thus, if the relative velocity between K 1μ111

R
and K 1111

R is β�, the four-velocity of the composite system in K 1111
R is:

u0
� =

⎛

⎜⎜⎝

μ0�γ�
μ0�γ�β�

0
0

⎞

⎟⎟⎠ (8.29)

Thus we see that the Rule of Composition for four-velocities implies the additive
nature of relativistic mass, since:

γ�μ0� = γ1μ01 + γ2μ02 (8.30)

In case γ� = 1 – or in the rest frame of the composite system – the above relation
reduces to:

μ0� = γ ′
1μ01 + γ ′

2μ02 (8.31)

Thus in general, the expansion parameter μ0 of the composite system is more than
the sum of the expansion parameters μ0 of the parts.

This section completes our reconstruction of relativistic equations of motion. A
geometry of PUMs could be used to derive the equivalence between inertial ref-
erence frames. An implicit symmetry μ0 was uncovered in the spacetime struc-
ture which allowed us, together with the Criterion of Isolation and the Rule of
Composition for relativistic systems, to derive the conservation of the relativis-
tic four-momentum and the concept of rest mass. Thus the analogy between the
reconstruction of Newtonian mass and the reconstruction of rest mass in relativity
is fully established. In both cases, the mass of a body could be traced to reference
frames analogous to inertial reference frames, in which the spacetime is expanded
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or contracted by a factor of μ0. The additive nature of mass is derived from a Rule
of Composition governing the motions of parts of physical systems.

8.2 A New Interpretation of Mass in STR

The derivation in the previous section allows for a new interpretation of mass in the
context of STR. According to this interpretation, mass has both a geometric origin
and a connection to structural assumptions regarding the nature of physical systems.

The transition from Newtonian to relativistic physics is ordinarily understood as
resulting from the consolidation of space and time into a single spacetime structure.
According to this view, the objective quantity in relativistic physics is the interval
between two events, and spatial and temporal measures are non-invariant properties;
i.e., they are quantities defined only relative to observers. This view treats rest mass
as an objective (i.e., invariant) property which does not depend on the observer.
Relativistic mass, on the other hand, is taken to be dependent on the observer, i.e.,
it is not an objective property. Traditional interpretations of STR therefore tend to
discredit the additive role of mass in relativity. This reading insists that in STR, the
essential meaning of mass is captured by its inertial role. Relativistic physics seems
to continue Mach’s critical stance towards quantity of matter, since rest mass is no
longer conserved in relativity.

The interpretation of mass introduced here is able to capture both roles of mass;
in its roles as the property of inertia and the quantity of matter. These aspects of mass
are derived from the geometry of PUMs and structural assumptions about motions.
The two aspects of mass are consequences of the deeper structure of physical theory,
which only admits moving parts and moving wholes.

The interpretation of mass offered here also solves interpretive problems in the
context of STR. Some of these are dealt with in the next section. Our brief remarks
will be consolidated according to various claims made in the literature about Newto-
nian and relativistic mass. First, I consider the claim that Newtonian and relativistic
mass are incommensurable concepts. Second, I consider the claim that the reference
of Newtonian mass is indeterminate, and that relativistic concepts capture some of
the meaning of Newtonian mass but not the full meaning of the concept. Third, I
consider the claim that frame-invariant properties such as rest mass and spacetime
intervals are “objective” properties, while frame-dependent properties such as veloc-
ity, momentum and energy are “subjective,” or depend somehow on the observer.
Fourth, I consider the claim that Einstein’s equation E = mc2 is indicative of a
metaphysical thesis about the nature of mass and energy. Since there are, suppos-
edly, interactions in which energy is converted to mass (and vice versa), mass and
energy are often taken to be different manifestations of the same material substance.

8.2.1 Kuhn’s Thesis of Incommensurability

The new interpretation of relativistic mass offered here highlights the similarities
and differences between the concepts of mass in Newtonian physics and STR. The
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analogous role of the expansion parameter μ0 in both theories suggests a conceptual
continuity between them. This semi-geometric interpretation of mass conflicts with
claims made by Kuhn (1962) in his influential work, The Structure of Scientific
Revolutions. According to Kuhn, the shift from Newtonian physics to relativity is a
prime example of a paradigm shift. According to him, the change from Newtonian to
relativistic mass is not the evolution of a concept, but a replacement of one concept
with another bearing a similar name but no commensurable meaning. I shall not
delve here into the general problem of incommensurability, but will provide a few
remarks comparing the notion of physical systems analyzed here and Kuhn’s notion
of a paradigm. The claim here is that presuppositions regarding the nature of phys-
ical systems cannot receive direct confirmation from experience, since these pre-
suppositions are relied upon in interpreting experience. Presuppositions regarding
the structure of physical systems provide localized rules of induction for interpret-
ing and evaluating phenomena. The notion of physical systems and its fundamental
structure therefore seems to function as the core of a physical paradigm.

One way to recognize the central role of structural assumptions (i.e., assumptions
regarding the structure of physical systems), is to consider the role of conservation of
momentum and energy in interpreting the phenomena. In any experimental situation
where one attempts to study the causal interaction between subsystems A and B, one
must find ways to isolate the two subsystems from the rest of the world. However, in
order to isolate the interacting subsystems a Criterion of Isolation is required, which
will articulate a property of the two subsystems that identifies them as isolated (or
at least separates known external causes from those causes that flow from A to B
and vice versa). To infer that a system is isolated, both in theory and in practice,
there is only one criterion available, and that is that the momentum and energy of
the composite system comprising of A and B is conserved. Thus, when the nature
of causal interactions is first investigated, one must assume the universal validity of
energy and momentum conservation laws.

The upshot of these considerations is that some assumptions about the nature of
physical systems have to be in place before causal laws can be derived from the
phenomena. Chapter 7 described the role of conservation of momentum and the
compositionality of gravitation in deriving the Universal Law of Gravitation from
the phenomena. However, while the Criterion of Isolation is valid a priori, in the
sense that this criterion is necessary for interpreting the phenomena, one needs to be
careful in drawing philosophical conclusions from its universal validity. First, there
is the misconception that a priori propositions are unrevisable, i.e., that they carry
metaphysical necessity and are true in all possible worlds. According to this reading,
a priori assumptions about physical systems are analogous to logical truths or to
linguistic conventional definitions. However, the replacement of Newtonian struc-
tural assumptions with relativistic assumptions demonstrates that structural assump-
tions are revisable without being merely conventional; relativistic assumptions are
empirically more adequate than Newtonian assumptions. The difference between an
ordinary empirical statement and a structural assumption, however, is that the empir-
ical adequacy of structural assumptions is not evaluated directly vis-à-vis specific
observations, but is evaluated holistically, in terms of the complete set of empirical
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claims one takes to be true. Various virtues are involved in making such a holistic
evaluation, including simplicity and adequacy in multiple domains of verification.

According to Newton, structural assumptions acquire natural necessity, given that
they provide the rules for reducing composite properties into the properties of the
ultimate parts of matter. A structural assumption provides the means of reducing
composite properties. Thus, if all observations can be explained with a single rule for
reducing composite descriptions, one has legitimate reasons for universalizing the
structural properties and to take the laws of nature that they support to be universally
valid.

The a priori nature of structural assumptions does not imply that Newtonian
and relativistic physics involve conceptual schemes with altogether incommensu-
rable meanings. If our reconstructions of Newtonian and relativistic physics are to
be trusted, one can detect the analogies between the varying structural assump-
tions while recognizing that they amount to different standards for evaluating
phenomena. One can recognize the analogy between structural assumptions gov-
erning Newtonian systems and those governing relativistic systems, even though
one cannot apply both sets of assumptions at the same time to the same phe-
nomena and derive comparable results. Thus, even though there might be differ-
ent conceptions of physical systems that lead to incommensurable practices of
measurement and induction, there need not be incommensurability at the level of
meaning.

Thus structural assumptions can be taken to be core assumptions of physical
paradigms. To revise a physical paradigm, one needs to revise core assumptions
that involve the whole field of physical knowledge. However, there is no support
for Kuhn’s Thesis of Incommensurability. Kuhn went too far when he argued that
scientists operating in different paradigms live in altogether different worlds.

8.2.2 Field’s Indeterminacy of Reference

The framework introduced here for reconstructing mass in Newtonian physics and
relativity provides a useful conceptual setting for exploring the role “mass” plays
in both theories. A common reading of the transition from Newtonian to relativistic
mass argues that there is ambiguity or indeterminacy regarding to true reference of
mass. One cannot single out a single aspect of the concept of “mass” in relativity
and view it as the analog of Newtonian mass. According to this interpretation, there
are two mass concepts in relativity, rest mass and relativistic mass. Each of these
concepts captures part of the meaning of mass in Newtonian physics. Thus, the
question whether mass has the same meaning in the two theories is unanswerable;
the reference of mass in Newtonian physics is indeterminate, and there is no clear,
unambiguous analog to Newtonian mass in STR.

Hartry Field (1973) utilized the notion of mass in order to support a seman-
tic theory about the reference of concepts. Some semantic theories argue that the
reference of singular terms is determined through the descriptions in which they
appear or implicitly replace. Since descriptions of objects are made possible via the
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vocabulary of the language used to describe the objects, the reference of theoretical
terms also shifts whenever radical changes in scientific theories take place. Accord-
ing to Field, during scientific revolutions concepts undergo a process of refinement.
Whenever a radically new scientific theory is introduced, determinate references
arise out of indeterminate ones. Before Einstein’s STR, claims Field, the concept
of Newtonian mass partially denoted two different properties. In relativity the two
partial referents became explicit and were split into two different significations. The
ambiguous referent of mass in Newton’s theory, became unambiguous in STR when
two concepts were introduced; relativistic mass, defined as MR = E

c2 , and proper

mass (or rest mass) defined as m0 = E−Ek
c2 , where E is the total energy of the body

and Ek is the kinetic energy. Relativistic mass is the product m0γ .
In some sense, the reconstructions of Newtonian and relativistic mass introduced

here echo Field’s interpretation. Two conceptual roles were identified for Newto-
nian mass: as the property of inertia and as the quantity of matter. While the same
parameter m holds the two roles of mass in Newtonian physics, in relativity the
rest mass m0 holds the role of inertial mass, and relativistic mass mR holds the
role of quantity of matter. Thus there is truth to Field’s assertion that two differ-
ent parameters capture the significance of Newtonian mass in STR. Nevertheless,
despite the overlap between the conclusions reached here and Field’s conclusions,
the inferences which led to these conclusions are quite different. There is nothing
indeterminate or ambiguous about the reference of Newtonian mass. Given the cen-
trality of the concept in both Newtonian and relativistic physics, it is not surprising
that the concept fulfills various conceptual roles. Nevertheless, this doesn’t imply
that the reference of mass is indeterminate, or that during the replacement of New-
tonian mass with relativistic mass the reference of the concept or our understanding
of it has sharpened. Our understanding of nature has improved, not the coherence
or determinateness of the concepts used to describe it. The idea that Newtonian
mass somehow captures indeterminately the meaning of both rest mass and rela-
tivistic mass is based on viewing Newtonian mass as if it must have been a “pre-
cursor” to relativistic concepts. One should instead recognize the analogies between
the Newtonian and relativistic concepts based on an internal examination of both
theories.

To support his claim about the indeterminacy of reference, Field analyzes the
semantic properties of the concept of mass. According to Field, the reference of two
terms is the same if the replacement of one term by the other does not change the
truth value of any statement in which they appear. To determine whether Newtonian
mass mN has the same reference as m0 or mR, one has to analyze the set of true
statements containing the term mN. If replacing mN with another term leaves the
class of true statements in tact, then the two terms have the same reference. But
some statements remain true when mN is replaced with m0 and are made false when
replaced with mR. Yet other statements remain true when mN is replaced with mR

and are made false when replaced with m0. Thus, Field concludes that mN partially
refers to the same property that m0 refers to and partially refers to the property that
mR refers to. Take for example the following list of statements:
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S1. The mass mN of an object is between 1.21 and 1.22 kg (measured in the rest
frame).

S2. To accelerate a body uniformly between any pair of different velocities,
more force is required if the mass mN of the body is greater.

S3. P = mNv

S4. mN is invariant in all reference frames.

The statement S1 and S2 remain true when mN is replaced with either m0 or mR.
The statement S3 remains true when mN is replaced with mR, but is made false when
replaced with m0. And finally, the statement S4 remains true when mN is replaced
with m0 and is made false when replaced with mR.

Since all statements containing the “mass” term fall into one of three categories
(determined by which substitution conserves the truth of the statement), Field con-
cludes that the term mN ambiguously refers to both properties referred to by m0
and mR. Field’s semantic analysis supposedly sidesteps the problem of placing the
terms of the theory within a particular interpretation. However, the notion that one
can examine statements in which mass appears, and then consider whether replacing
mass preserves the truth value of the statements, presupposes that mass is some
monadic property instantiated by objects. According to this interpretation, there is a
sharp division between spatiotemporal relations and other material properties. The
description of material properties is made independently of the background space-
time in which these material properties are instantiated.

Given the interpretation of mass as an inherent property of objects, it seems
appropriate to examine statements S1–S4 as if they are true independently of the
spacetime structure of the theory. The statement S1 assumes that the mass of a body
can be measured with the help of some measurement procedure. The statement is
then qualified by the claim that measurements have to be made in the rest frame.
Thus even the simplest procedure for measuring mass has to include an implicit ref-
erence to spacetime geometry, a reference Field assumes is irrelevant to the truth of
the statement. The statements S3 and S4 are formulated in abstraction of the relevant
spacetime geometries. However, the concept of momentum or invariance of mass
is meaningless independently of the spacetime structure and the transformations
between inertial reference frames. Field bases his semantic analysis by bracketing
the spacetime geometry, and ignoring the possible relation between material prop-
erties and spacetime structure. It is exactly what Field excludes which gives us the
precise meaning of mass.

The reconstruction introduced here implies a conceptual link between space-
time structure and the property of mass. The inertial role of mass receives a semi-
geometric interpretation, which suggests that mass can be viewed as an expansion
parameter necessary for the translation of measured accelerations to “standardized”
reference frames. The notion that Newtonian mass indeterminately, or confusedly,
refers to rest mass or relativistic mass is based on the assumption that mass is a
primitive property, not analyzable in reference to other concepts of the theory. But
we have seen that there is nothing confused or indeterminate about the reference
of Newtonian mass. Once Galilean spacetime is reconstructed from a geometry
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of PUMs, it is made apparent that an expansion parameter μ0 correlates between
the acceleration of a body, measured in the frame Kμ0111

G , and the standardized
acceleration, measured in K 1111

G . The geometry of PUMs together with structural
assumptions renders determinate the inertial role of mass. On the other hand we
have seen that the Rule of Composition governing quantities of motion implies the
additive nature of mass, or its role as quantity of matter. This renders determinate
the conceptual role of mass as a quantity of matter. The same two roles have split
into rest mass and relativistic mass in STR: but the splitting of conceptual roles is
not a disambiguation or a sharpening of a concept.

It is not possible to bracket the spacetime geometry from true statements about
mass. Just as much as one needs to relate our measurements to a particular inertial
reference frame in order for them to be meaningful, so does one need to assign a
mass parameter to a body whenever one replaces a measured acceleration with its
“proper” representation. This explains why no theory presupposes that a particle’s
mass spontaneously changes throughout its life.

Earman and Fine (1977) argued similarly against Field that his semantic analysis
does not take into account the spacetime context of each theory. They based their
argument on a four-dimensional, intrinsic (i.e., coordinate-free) formulation of the
laws of motion in each theory.

Earman and Fine’s formulation creates a strong analogy between Newtonian
mass and rest mass. However, this analogy does not vitiate the role of Newtonian
mass as a quantity of matter. Assume one has measured the velocity of an object
in the rest frame in Galilean spacetime or in relativistic spacetime, so that the
velocity of an object is measured in K 1111

G or in K 1111
R . The measured velocities

in the Galilean geometry of PUMs cannot distinguish between the various reference
frames Kμ0111

G . Similarly, in the relativistic geometry of PUMs one cannot distin-

guish between the various reference frames Kμ0111
R . Thus, the four-velocity of an

object can be represented as:

Kμ0111
G Kμ0111

R
u = (1, v1, 0, 0) u = (1, v1, 0, 0)

(8.32)

In the standardized frames, the four-velocities of each individual body and of the
composite body are represented as follows:

K 1111
G K 1111

R

u0 = μ0(1, v1, 0, 0) u0 = mR(1, v1, 0, 0)

u0
� =

(
∑

i

μ0i ,
∑

i

μ0iv1i , 0, 0

)
u0
� =

(
∑

i

μ0iγi ,
∑

i

μ0iγiv1i , 0, 0

)

(8.33)

Together with the Criterion of Isolation, the last equation in the left column implies
the conservation of mass and momentum in the context of Newtonian physics.
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In the context of relativity, in the right-hand column, the last equation implies the
conservation of relativistic mass or energy and momentum.

From the conservation of energy and momentum one can derive the laws of
motion governing a single body:

K 1111
G K 1111

R

u0 = mN(1, v1, 0, 0) u0 = mR(1, v1, 0, 0)

a0 = mN(0, a1, 0, 0) a0 = ṁR(1, v1, 0, 0)+ mR(1, a1, 0, 0)

(8.34)

There seems to be a disanalogy between relativist and Newtonian mass given the
dissimilarity in form in (8.34) between the equation for the force involving rela-
tivistic mass, and the equation for the force involving Newtonian mass. But one can
represent the relativistic four-momentum as follows:

u0 = m0(γ, γ v1, 0, 0) (8.35)

Define τ = x0√
1−β2

= γ x0, in the proper-time frame the force-law would look like

the one in Newtonian physics:

u0
τ = m0(1, v1, 0, 0) (8.36)

a0
τ = m0(0, a1, 0, 0)

Unlike the momentum and force equations in (8.34), these latter formulas obtain
the same form as the laws in Newtonian physics. Thus one is tempted to equate
Newtonian mass with rest mass.

However, there are similarities between Newtonian and relativistic mass; the
most important one is depicted in (8.33). The equations in (8.33) describe the fun-
damental relation between parts of a physical system and their composite, thus this
relation is no less important than the force-law describing the trajectory of individual
bodies.

Thus one may conclude that mass has two conceptual roles, both in Newtonian
physics and STR; as the property of inertia and as the quantity of matter. The inter-
pretive drive to view one of these roles as essential to the meaning of the concept
stems in part from the attempt to reduce mass into an inherent property of bodies.
A semantic test shows that Newtonian mass fulfills both conceptual roles in Newto-
nian physics, while rest mass fulfills the role of the property of inertia in relativity
and relativistic mass fulfills the role of quantity of matter. Under the pressure of
viewing mass as an inherent property, it then seems as if the quantity of matter
is not an essential part of the meaning of the concept. Thus, commentators since
Mach’s time take quantity of matter to be a non-essential feature of mass, and they
tend to take the similarity between Newtonian mass and relativistic mass as acci-
dental. However, without the compulsion to reduce mass to an inherent property of
matter, one may recognize that both roles of mass are derived from the geometry
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of PUMs and from structural assumptions, and neither role is more fundamental
than the other. Moreover, thinking of inertial mass as an inherent property, which
is causally responsible for the inertial tendencies of bodies, obscures the geometric
origins of this concept and makes the relation between dynamic laws and geometry
opaque. Thus we should view both roles of mass as derived aspects of the geometry
of PUMs and structural assumptions.

8.2.3 Invariance as a Mark of Objectivity

There are some interpretive stumbling blocks on the way to attributing relativistic
mass the role of quantity of matter. The first difficulty is the claim by some commen-
tators that relativity simply does not have the correlate of the Newtonian quantity of
matter. Another difficulty is the claim that only properties that are frame-invariant
in relativity are objective properties. Thus while rest-mass is invariant and therefore
objective, relativistic mass is frame-dependent and therefore observer-dependent.

The notion that invariance is a mark of objectivity has a long and venerable tra-
dition, going back to neo-Kantian attempts in the late nineteenth century to separate
the subjective from the objective components of scientific knowledge. In assimi-
lating STR, many physicists – starting with Einstein himself – often differentiated
between properties whose values depend on the inertial reference frame, from prop-
erties that are the same in all reference frames, and are therefore invariant. Thus,
for example, while velocity and simultaneity are frame-dependent, the spacetime
interval and rest mass are invariant. The frame-dependent properties are “subjec-
tive,” and depend on the state of the observer, while invariant properties are frame-
independent, and therefore “objective” and do not depend on the observer. This
line of thinking is very much influenced by Minkowski’s interpretation of space-
time. Minkowksi compared the Lorentz transformations to the Euclidean group. In
Euclidean space, the particular breakdown into a coordinate system of a spatial fig-
ure has features that depend on the mode of representation; but the distance between
points in Euclidean space is an invariant of the Euclidean group, and therefore an
objective relation between any pair of points. Similarly, the particular inertial refer-
ence frame yields different representations of the temporal and spatial dimensions
of physical processes, but the spacetime interval is an objective relation between
pairs of spacetime points.

A recent example for this line of reasoning is Lange (2001). Lange relies on
the distinction between frame-dependent and invariant properties to argue against
the notion that energy and mass are different manifestations of the same substance.
Since energy is frame-dependent, it must be non-objective and different in kind from
mass. To substantiate this view Lange argues that:

. . . under a standard interpretation, relativity theory denies the objective reality of various
properties that we ordinarily assign to material bodies (such as their length and veloc-
ity) and to events (such as their separation in space and their separation in time). Each
of these quantities is frame-dependent; none is “Lorentz invariant” – that is, the same in
every inertial frame of reference. Only what is the same in every inertial frame is a genuine
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feature of reality. The value that any frame-dependent quantity assumes in a given inertial
frame reflects not just reality, but also that reference frame’s own particular perspective. The
Lorentz invariant quantities are exactly those which depend only on how the universe really
is, uncontaminated by any contribution from us in describing the universe. (Lange, 2001,
p. 225)

The notion that the value of a property that is frame-dependent is somehow
“infected” by the subjective nature of the inertial reference frame, is widespread.
Most commentators take from this notion the idea that as much as the velocity of
an object depends on the state of the object, it also depends on the velocity of the
objects used as reference. Similarly, the amount of time elapsed while a process
takes place is not the same for all observers, and is therefore long or short depend-
ing on the inertial reference frame. However, while most commentators are satis-
fied with emphasizing the non-objective nature of velocity, time and length, Lange
takes the invariance view of objectivity further. He uses the distinction between
frame-invariance and frame-dependence as a line distinguishing between “real” and
“illusory,” or mind-dependent properties. Since relativistic mass is frame-dependent,
it is also not real.

As such, relativistic mass is not a proper candidate for mass, despite being an
additive property:

Because the so-called “relativistic mass” is not an invariant quantity (and the term “rest
mass” refers back to “relativistic-mass”) the best thing to do in order to avoid confusing
frame-dependent properties with invariant ones is just to avoid the terms “relativistic mass”
and “rest mass”, and instead to stick solely with “mass” for the invariant quantity symbol-
ized m. (Lange, 2001, p. 227)

Thus Lange’s argument is that relativistic mass is a subjective property, tinged by
the reference frame used to define it, and is therefore not a serious candidate for
being mass, the objective property that characterizes substances. On the other hand,
rest mass is not an additive quantity, and is therefore not a quantity of matter.

In classical physics, a body’s mass is often interpreted as the amount of some “stuff”
(matter) of which the body is made. In relativity, however, this interpretation cannot be
correct. That is because properties that represent the quantity of some “substance” must
obey the following principle: the total quantity of some sort of stuff in a system is the sum
of the various quantities of that stuff belonging to the system’s parts (where those parts are
finite in number, nonoverlapping, and together exhaust the system). For example, since the
density of a whole is not the sum of the densities of the parts, density does not measure
the amount of some stuff, and similarly for temperature and velocity. On the other hand,
mass in classical physics is “additive” in this way. But in relativity, mass is not additive.
(Lange, 2001, p. 229)

Thus for Lange, while Newtonian mass is an additive quantity, rest mass is not
additive in relativity and thus there is no quantity of matter in relativity.

The concept of rest mass is indeed not additive. Relativistic mass is defined as
follows:

m0�γ� =
∑

i

m0iγi (8.37)
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In the rest frame of the composite system γ� = 1 and under the assumption that
βi � 1 one may derive:

m0� �
∑

m0i +
∑ 1

2
m0iβ

2
i (8.38)

Rest mass is therefore not additive; the rest mass of the composite system is more
than the sum of the rest masses of the components if they have kinetic energy.
According to Lange, the meaning of mass should therefore be reduced to its inertial
role:

If a body’s mass is not its total quantity of some sort of stuff of which it is made, what is a
body’s mass? A body’s mass is the property it possesses which determines the acceleration
it undergoes in response to a force: F = p′ (as in classical physics), where in relativity,
p = mγ v and p′ is the rate at which p is changing. When referring to a body’s “mass,”
then, we must be thinking of that body as a thing that can feel a force and respond to it (by
moving) as a unit. (Lange, 2001, p. 231)

Thus for Lange the inertial role of mass constitutes its essential meaning, and there
is no “objective” candidate for a quantity of matter.

But mass has a dual role in Newtonian physics, as the property of inertia and as
the quantity of matter. The fact that rest mass does not capture the role of quan-
tity of matter does not imply that relativity has no quantity of matter. One may
stipulate that the meaning of mass should be identified with either inertial or quan-
tity of matter, but there is no argument that can be given to prefer one meaning
over another. What really seems to drive Lange’s argument is the notion that both
relativistic mass and energy are frame-dependent, and are therefore not objective
properties.

However, the notion that invariance is a mark of objectivity is taken here to
unwarranted conclusions. The distinction between frame-dependent and invariant
properties should not be viewed as the line that demarcates between subjective
and objective properties. Rather, the difference should indicate to us measurements
that are scale-dependent, vs. measurements that are not. The use of different scales
to represent the same property does not make it less objective, it only makes the
number representing it sensitive to the coordinate system being used. In all ref-
erence frames the relativistic mass of the composite system is the sum of the
relativistic masses of the non-overlapping parts, thus there is nothing subjective
or observer-dependent about the role of relativistic mass as a quantity of matter.
The relativistic mass describes the amount of “stuff” there is in a system. Rela-
tivistic mass is not “less real” than rest mass just because it is a frame-dependent
property.

While relativistic mass is the quantity of matter in the relativistic context, one
should keep in mind that the quantity of matter is a logical consequence of the
Rule of Composition governing the momentum of a system. The conservation of
relativistic mass and the conservation of momentum are not independent. If one
assumes that momentum is conserved in various reference frames, then the conser-
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vation of relativistic mass follows. To see this consider the frame K 1111
R in which

the total momentum of a system is conserved:

Ptot =
∑

i

γi m0ivi (8.39)

In a frame of reference K 1μ111
R which is moving relative to K 1111

R with a velocity
−v, one may also articulate the conservation for the total momentum:

P′
tot =

∑

i

γ ′
i m0iv

′
i (8.40)

The transformed velocities can be calculated using the relativistic rule for adding
velocities:

v′
i = vi + v

1 + viv
(8.41)

The transformed γ ’s are:

γ ′
i = 1√

1 − (v′
i )

2
= 1√

1 − (vi +v)2
(1+viv)

2

= 1 + viv√(
1 − v2

i

) (
1 − v2

) (8.42)

= γiγ (1 + viv)

Replacing (8.41) and (8.42) into (8.40), one gets:

P′
tot =

∑

i

m0iγiγ (vi + v) = γPtot + γ v
∑

i

γi m0i (8.43)

One may conclude that, if momentum is conserved in every reference frame, both
Ptot and P′

tot are conserved. The conclusion is that the relativistic mass

mR� =
∑

i

γi m0i =
∑

i

mRi (8.44)

is conserved.
If momentum is conserved in all reference frames, it logically follows that

relativistic mass is conserved. Thus, the conservation of quantity of motion implies
the conservation of relativistic mass, and the two statements are not logically
independent.

If the conservation of momentum and the conservation of relativistic mass are
interdependent concepts, one cannot isolate the Rule of Composition that is valid
for the dynamic laws (i.e., conservation of quantity of motion), from the Rule of
Composition that is valid for material properties (i.e., conservation of mass). The
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two are conceptually interconnected. Thus, the idea that there is one rule for com-
posing the dynamic evolutions of bodies and another for composing the properties
of bodies is a metaphysical illusion. This supposed division governs Lange in his
account:

. . .No macroscopic body is elementary; any macroscopic body is also a system of bodies.
Its motion, then, is nothing but the motions of its constituents, and these motions are deter-
mined by their masses and the forces they feel. The remarkable fact is that the law of nature
by which the constituents’ motions are determined by their masses and the forces they feel
is the same as the law by which the macroscopic body’s motion is determined by its mass
and the forces it feels: F = p′ = (mγ v)′. In other words, the law “scales up.” (Lange, 2001,
p. 231)

According to this picture, for every physical system there are constituent parts.
According to Lange, the remarkable thing about this system is that parts and wholes
experience exactly the same laws of nature. This is remarkable since even though
it seems as if the motion of the system is “nothing but” the motion of the parts, the
same law holds at every level of description. Each part has its mass value, and each
mass value connects the acceleration of the part with the force that operates it. Then,
the macroscopic body has its mass value, and this macroscopic mass obeys the same
laws as the ones obeyed by each of the parts. This is true of the system as a whole
independently of the fact that the motion of the system is just the motions of the
parts.

But this sense of wonder at the surprising fact that dynamic laws “scale up”
in much the same way that physical properties “scale up” stems from imagining the
properties and laws to be describing different ontological entities; dynamic laws that
describe changes of state and parameters that describe “inherent” material proper-
ties. But both dynamic laws and material properties arise from the geometry of
PUMs and presuppositions regarding the structure of physical systems. As the above
reconstructions suggest, once a geometry of PUMs, a Criterion of Isolation, and a
Rule of Composition are presupposed, the material property of mass is completely
determined. The same presuppositions that determine the dynamics also determine
the material properties. Thus the dynamic laws “scale up” in much the same way
that material properties “scale up,” because presuppositions about “scaling up” are
in place before physical systems are analyzed.

One should disagree with Lange when he imagines different ways in which laws
of motion and the quantity of matter apply. Lange claims that:

. . . from the fact that macroscopic bodies have constituents with masses and that macro-
scopic bodies have masses too, it does not follow that the law by which the elementary
constituents’ motions are determined by their masses and the forces they feel is the same as
the law by which the macroscopic body’s motion is determined by its mass and the forces
it feels. If a body’s “mass” is defined as the quantity with which it is associated that plugs
into the particular law relating an elementary body’s motion to the forces it feels, then once
again, it is a remarkable fact that macroscopic bodies have masses too.

In short, neither of these conceptions of what mass is requires that macroscopic bodies have
masses, even considering that their elementary constituents do. Furthermore, given either
of these conceptions of mass and that a macroscopic body has a mass, there is nothing
inevitable about its mass being the sum of its elementary constituents’ masses (as is the
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case classically but not relativistically). So these conceptions of mass should inoculate us
against the temptation to think that a body’s “mass” is defined as the quantity of matter
composing it. (Lange, 2001, p. 232)

However, contrary to Lange’s assertions, it is inevitable that one would find a quan-
tity for scaling up from microscopic to macroscopic bodies, since in order to define
the part in relation to the whole, one has to define a Rule of Composition governing
physical systems. The process of isolating a physical system requires that one first
assumes both a Criterion of Isolation and a Rule of Composition. Without these pre-
suppositions it is not possible to analyze physical systems. Once a relation between
the part and the whole is defined, the property which differentiates between the parts
is also defined.

The notion of physical system and its role in understanding the fundamental
properties of physical bodies seems to be reflected in the thoughts of David Bohm:

The basic idea behind our procedure is that it is essential in physical theories to be able to
analyze a whole system into parts or components. Thus in a theory of continuous medium,
such as hydrodynamics, we regard the fluid as being constituted out of small elements of
volume, and, in a theory which explains matter as having a discrete atomic structure, a
whole system is likewise regarded as constituted out of small elements, now taken to be the
atoms. In both kinds of theories we can treat the total momentum of a system as the sum of
the momenta of its parts, likewise with the total mass and the total energy. Moreover, at least
in the domain where Newtonian theory applies, such systems are known by experiment (as
well as from the theory) to satisfy the laws of conservation of momentum, conservation of
mass, and conservation of energy.

Because of these conservation laws, the entire momentum and mass (and also the energy) of
a system can be regarded not only as sums of the corresponding properties of the set of its
parts but also as an integral whole with value of these total quantities that remain constant,
as long as the system is isolated. Indeed, the total values are evidently independent of the
changes that are going on in each of the parts, as they engage in very complex interactions.
It is this fact that is at the basis of the possibility of treating a block of matter as a sin-
gle macroscopic entity, ignoring the unknown and indescribably complicated details of the
motions of the molecules.

It is clear that the property possessed by bulk matter – being capable alternatively of analysis
into parts or treatment as a single whole – is a general feature of the world. This feature
must therefore be implied by any proposed set of laws of mechanics, if they are to be fully
adequate to all the experimental facts that are available.

The characteristics described above were first achieved in non-relativistic theories. But,
according to the principle of relativity, the basic physical properties of a system do not
depend on its speed relative to the observer. Therefore, it is necessary that a system should
continue to be capable alternatively of being treated as a whole or by analysis into parts,
with the same conservation laws applying, even it is is moving at a high speed relative to the
laboratory. We shall see that this requirement, plus that of a Lorentz transformation between
different frames, is sufficient to determine the proper relativistic formulas for momentum,
mass and energy. (Bohm, 1965, p. 82)1

After suggesting that the analysis of systems to parts is essential to physical
theorizing, Bohm proceeds to derive the laws of motion in STR from two

1 I thank Arthur Fine for pointing out this passage to me.
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assumptions. First, he presupposes that the total momentum of a system is

P =
N∑
i

mivi . Second, Bohm assumes that the total mass of the system is
N∑
i

mi .

Since the system is analyzable to parts in all reference frames, the transformed vari-
ables describing two particles would also conform with the above presupposition,
so that P ′ = m′

1v
′
1 + m′

2v
′
2 and M ′ = m′

1 + m′
2. Using the Lorentz transformations

and the law for adding velocities in STR, he derives the ratio between relativistic
and rest mass m(v) = m0√

1− v2

c2

. This derivation of relativistic mass treats the additive

nature of mass as the additional assumption regarding part-whole relations that make
it possible to reduce the quantity of motion of a system to its parts. The analysis
here follows a similar path, but unlike Bohm it does not assume separate rules of
composition for the quantity of motion and the quantity of matter. The additive
nature of relativistic mass is implicit in the definition of the momentum and the
degree of freedom implicit in the spacetime transformations. The additive nature of
mass, as was shown above, logically follows from the additive nature of quantity of
motion.

8.2.4 Einstein’s Mass and Energy as Two Manifestations
of Substance

Previously I disagreed with Lange’s claim that STR does not include a quantity
of matter. I also disagreed with the claim that relativistic mass (as well as energy
and velocity) is not an objective property. However, I would like to express my
agreement with one important point made by Lange in his paper. Lange has done
much to clarify a common confusion in the interpretation of STR concerning the
relation between mass and energy and the so called mass-energy conversions. Lange
criticizes the view which believes it is possible to take mass and convert it into
energy, in the sense that mass can reappear in the form of energy and vice versa:

For example, after radioactive nucleus decays, there is often said to be a “mass-defect”:
the sum of the masses of the daughter bodies is less (by �m) than the mass of the original
nucleus. Some (�m) of the original mass is said to have been “converted” into the kinetic
energy of the daughter bodies, where E = �mc2. Since c (light’s speed in a vacuum) is
so large, a very small mass can be “turned into” a great deal of energy. For instance, when
a tritium nucleus (one proton, two neutron) decays into a helium-3 nucleus (two protons,
one neutron) along with an electron and an antineutrino, the tritium’s mass exceeds the sum
of the products’ masses by a small quantity that is “equivalent” to about 0.0186 million
electron volts of energy. Has mass turned into energy, or merely disappeared and been
replaced by an “equivalent” quantity of energy? (Lange, 2001, p. 220)

The question is therefore whether the conversion of the mass of the tritium to the
energy of the products that result from the tritium’s decay is a physical process. On
the face of things, it seems as if mass is converted into energy. If such conversions
are possible, mass is simply another form of energy, or mass and energy are two
forms of the same thing – substance. However, the presumed convertibility of mass
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into energy is constrained by additional physical restrictions such as the conserva-
tion of the baryon number. Not every portion of mass can be converted to energy
and vice versa. If mass-energy conversions are not always possible, the notions of
“mass” and “energy” cannot be different expressions of the same thing.

If mass and energy are interconvertible, one may still believe that mass and
energy are different manifestations of the same underlying substance. It is often
said that mass is simply another form of energy. However, as Lange points out, for
mass and energy to be two manifestations of the same underlying substance, one
needs to show that some of the mass has disappeared from the system, and some of
the energy has appeared. But the fact of the matter is that no mass disappears and
no energy appears. In the tritium example, the mass of the tritium is greater than the
sum of the decaying products. But the composite system comprising of the decaying
products still has the same mass as that of tritium:

Return to the tritium nucleus (one proton, two neutrons) that decays into helium-3 nucleus
(two protons, one neutron) and an electron and antineutrino that fly off at high speed. There
is a “mass defect” in that the masses of a helium-3 nucleus, an electron, and an antineutrino
add up to less than the mass of a tritium nucleus. The missing mass is said to have been
“converted” to the kinetic energies of the resulting bodies. But this “conversion” of mass
into energy is not real; it is an illusion produced by a subtle shift in our perspective. (The
transformation of the tritium’s nucleus neutron into a proton, an electron, and an antineu-
trino is, of course, a real occurrence.) We treated the system as initially forming a single
body: a tritium nucleus. But we treated the system after the decay as consisting of three
bodies, each with its own mass. The system’s mass after the decay is the same as the
system’s mass before the decay. There is no “mass defect” here; mass is conserved. The
“mass defect” appears to arise from the fact that the sum of the three masses after the decay
is less than the system’s mass before the decay (the difference reflecting the three bodies’
kinetic energy in the p = 0 frame). But the sum of the three masses after the decay is
less than the system’s mass after the decay. Mass is not additive, and our expectation that it
is additive (arising because we expect it to measure the amount of some stuff) leads us to
refer to a “mass defect” – to ask where the “missing mass” has gone and to conclude that
it has turned into energy. The “mass defect” results not from some physical transformation
of matter-stuff into energy-stuff, but rather from our illicitly trying to view the system from
two different “perspectives” at the same time. (Lange, 2001, p. 237)

As Lange demonstrates, the confusion regarding the supposed mass-energy conver-
sions stems from viewing the system composed of the decaying products as non-
existent after the decay. But the composite system is still “there,” and it carries the
same rest mass as the tritium nucleus. It might be that one has no practical uses
for such a mode of description, but that does not imply that the rest mass of the
composite system is destroyed or created in such interactions. The non-additivity
of rest mass leads us to think that the sum of the products’ decay is “less” than the
composite system’s rest mass, and so it misleads us to think that part of the mass of
the composite system was “turned into” the energy of the components.

However, Lange’s argument overlooks an important presupposition that must be
present if one is to describe the composite system. If the composite system, which
was the tritium nucleus before the decay, continues to exist after the decay, one has
to consider the status of parameters that describe the trajectory of this composite
system. One can no longer observe the composite system after the decay, so one
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must assume a rule for constructing the description of the composite system from
the descriptions of the parts. This Rule of Composition amounts to a rule governing
momentum. The momentum of the composite system is the sum of the momentums
of the helium-3 nucleus, the electron, and the antineutrino. But if one assumes that
the composite system is “there” both before and after the decay, one must recognize
that description of the center of mass frame as the description of a real object. This
description is not merely a calculational device designed to simplify the analysis of
the interaction. It is a description of a composite entity, whose parts are located in
different locations of spacetime.

The equation�E = �mc2 does not describe the conversion of mass into energy,
but the discrepancy between the rest mass of the composite system and the rest
masses of the components. Nevertheless, the deeper illusion that needs to be dis-
pelled is the notion that either “mass” or “energy” represents some material substrate
underlying physical processes. The concepts of mass and energy are extensions of
a geometry of PUMs, together with the Criterion of Isolation and the Rule of Com-
position. There is no primitive material essence inherent in physical objects. There
are only moving parts and moving composite systems; material properties are aids
in describing these motions and the relations between parts and wholes. One tends
to think that mass and energy represent matter, the stuff which preserves its identity
in interactions. This is in distinction from the velocity and momentum, which are
thought of as states of matter. But the division between inherent properties (such
as mass) and states of matter (such as velocity and momentum) is a product of
metaphysical bias that divides material bodies into matter and form. This bias, a
legacy of Aristotle’s distinction between matter and form, provides the intuition that
all properties (the form of bodies) are either essential or accidental. Thus, mass is
an essential property while velocity is a state of the body, or an accidental property.
Evidence for the confusion that stems from this metaphysical bias is the uncomfort-
able place that energy has in our thinking. Sometimes energy is likened to a state of a
body, in much the same way that momentum is thought of as an accidental property
of a body. But sometimes, as a result of the supposed mass-energy conversions, one
thinks of energy as the essence of matter. But the whole confusion can be avoided if
one ceases to think of properties as the form of bodies, either essential or accidental.
Bodies are not material substrates with various properties instantiated in them. One
only has states of motion, and laws describing the structure of physical systems. The
permanence in bodies is the permanence of structure. Either it is the same structure
of PUMs that governs a system throughout its life, or the same structure governing
the relation between parts of a system and their composite.

There exists no substance that underlies physical processes in relativity. There
is just the conservation of four-momentum which underlies these processes; the
four-momentum is not underwritten by any substance, it is simply motion described
from a particular kind of reference frame. The illusion that a material substance
exists ultimately stems from the surface grammar of our language, which always
predicates attributes to subjects. The fact that mass and energy are conserved lures us
into thinking that they are the universal subject of predication, the essential property
of matter, since they seem to function as the building blocks of matter. But the
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conservation of mass and energy are a logical consequence of the geometry of PUMs
and the conservation of four-momentum, so these concepts are secondary in logical
status to motion. Literally, mass and energy represent nothing, as they derive from
coordinate reference frames required for a consistent practice of measuring motion.

The above reconstruction of relativity theory suggests that there is promise in
tracing rest mass to its geometric origins. The suggestion is to think of the rest
mass of bodies as analogous to the transformation between inertial reference frames,
where different four-momentums < μ0γ, μ0vγ > represent the four-velocity of an
object in different reference frames, Kμ0μ111

R . Once presuppositions regarding the
nature of physical systems are made explicit, different expansion parameters can
be attributed to different particles depending on the rules for combining motions.
This geometric/structural interpretation of the mass renders the notion of substance
obsolete, since we can think of the mass parameter attributed to a particular body
as a geometry parameter, one that correlates between different representations of
motion.



Chapter 9
Conclusion

Despite its ubiquitous presence in physical discussions, the notion of physical sys-
tems has been under the philosophers’ radar. The significance of the concept has
been overlooked primarily because of certain metaphysical dispositions. The mod-
ern metaphysical presupposition is that reality is broken into three different layers:
spacetime, material properties, and laws of nature that govern the behavior of bod-
ies. This separation between levels of reality considers spacetime as a container
within which bodies are located, and bodies to be centers of activity. Spacetime tells
us where the body is (or how the field is “spread out”), material properties dictate
what these bodies possess, and laws of nature predict how matter will behave over
time. The standard interpretation of Newtonian physics takes space and time to be
containers in which particles are placed. Each particle possesses a property of mass
inherent to the object, and laws of motion determine how the motion states of the
body change over time. While the Special Theory of Relativity revolutionized our
thinking about matter, it did not change the metaphysical disposition that separates
reality into a spacetime structure, a set of material properties, and laws of nature.

The disposition to separate reality into three distinct realms did not form at once.
At first, Newton conceived of mass as impenetrable regions of space. Thus, for
Newton, mass functioned both as a geometric concept and as a source of action,
i.e., as the inherent property of matter that compels bodies to move uniformly in a
straight line. Over time, prompted by strong empiricist tendencies such as Mach’s,
the clear separation of reality into the geometric laws and inherent material prop-
erties solidified, and the geometric origin of the concept of mass was forgotten.
The quantity of matter was replaced with “the law of conservation of mass,” and
inertial mass was made to be the definition of mass. The discovery of relativity
theory seemed to confirm the notion that mass is not a quantity of matter; rest mass
was no longer “conserved” and a different, more general conservation law governed
processes in which mass can be converted to energy and vice versa.

It is my contention that an alternative metaphysical approach better explains the
fundamental physical concepts and laws governing Newtonian systems and systems
in the Special Theory of Relativity. Reality should not be separated into three dis-
tinct realms. If one takes states of motion to be the fundamental elements of reality,
and rules for constructing and isolating physical systems are given central place,
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a different picture emerges regarding the relationship between the three realms of
reality. One can think of uniform rectilinear motion as providing the basic geometric
elements of reality; one can conceive of spacetime as a geometry of PUMs and
points of intersection between them. This approach then allows for an alternative
interpretation of the Law of Inertia. Instead of thinking of bodies as being compelled
by some inherent force to move uniformly in a straight line, or of spacetime as
somehow “guiding” bodies along its geodesics, one can think of isolated systems,
either simple or complex, as simply instantiating PUMs. The geometric form of
PUMs and their relations therefore shapes or structures both free particles mov-
ing along the geodesic and the center of mass of isolated physical systems. One
therefore does not distinguish between spacetime structure and the instantiation of
uniform rectilinear motions, and the Law of Inertia is not assimilable to a law of
nature that is only justified empirically. Finding the geometric description of inertial
motion amounts to finding the correct geometry of the world. The conservation of
momentum and energy thus is not separable from the foundations of spacetime, and
there is no sharp separation between kinematics and dynamics.

Another way in which the metaphysical view here deviates from standard inter-
pretations is the role of material properties in physical systems. One can see that
mass can be given an interpretation that undermines the standard account that
reduces material properties to inherent properties. Once spacetime is interpreted as
a geometry of PUMs, one can think about mass as analogous to an inertial frame of
reference for describing the motion of a particular body. On the one hand, there is the
measured acceleration of a body. On the other hand, there is the frame of reference
appropriate for describing the trajectory of the body. The ratio between the measured
and the “standard” acceleration of a body is a product of the fact that each trajectory
might reside in a different coordinate reference frame. One needs to recalibrate his
or her measurement devices to correctly describe the trajectory of each part. Once a
Rule of Composition governing the motions of each part of a system is articulated,
the additive and conserved nature of mass follows as a logical consequence. The
role of mass as a quantity of matter is a logical consequence of the geometry of
PUMs, the Rule of Composition governing motions, and the Criterion of Isolation.
The laws of motion are also derived from the same structure of physical systems,
since the behavior of one body is related to the behavior of another body through the
account one gives of the system comprising of the various parts. Thus both material
properties and laws of motion are derived from the same underlying structure of
physical systems, and neither “inherent” material properties nor “external” laws of
nature determine the behavior of bodies. It is the geometry of PUMs and structure
of physical systems that is determinative.

The approach developed here promises to shed light on various philosophical
problems concerning the foundations of physical theory. I shall summarize some
of the results reached in various parts of the book, to give a general overview
of advancement that could be acquired once one adopts the physical systems
approach.
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9.1 Spacetime

I introduced a new approach to the foundations of spacetime called Primitive Motion
Relationalism. This approach has two important aims. The first aim is to provide an
account of spacetime that illuminates the nature of spacetime and its relation to
material bodies. The second aim is to provide a new explanation for the symme-
tries of spacetime. This account takes uniform motions of isolated systems and their
coincidences as the fundamental entities of spacetime, rather than spacetime points
or relations between bodies.

To explain the nature of spacetime I considered the conceptual connection
between the Law of Inertia and the Criterion of Isolation. According to the approach
introduced here, the Law of Inertia is essentially a criterion physicists utilize to iso-
late systems, both conceptually and experimentally. A physical system is isolated if
and only if it instantiates a PUM. This is the case for free particles, but it is also true
for the center of mass of an isolated system of interacting bodies.

In relation to both Galilean spacetime and flat relavitistic spacetime, we were able
to derive spacetime structure from a geometry of PUMs. This derivation explains the
equivalence between inertial reference frames and the restricted Principle of Rela-
tivity, without supposing the principle as a postulate of the theory. This by itself
should give pause to anyone thinking about the nature of spacetime. There is benefit
to an account of spacetime in which the Principle of Relativity is not presupposed
both at the kinematic and dynamic levels. Since spacetime consists of a geometry of
PUMs, and since PUMs function as the content of a Criterion of Isolation, there is
no gap between the structure of spacetime and the fundamental dynamic laws. Both
structures are shaped by the same geometry of PUMs. Thus, to explain why a free
particle moves along a geodesic of the spacetime one need not attribute inherent
causal powers to bodies or a causal power to spacetime, which supposedly compels
bodies to move along a geodesic. Nor does one need to “reduce” the kinematic
behavior of bodies to dynamic theories about the forces governing rods and clocks.
One simply asserts that a free particle (or an isolated system of interacting bodies),
instantiates a PUM, and it immediately follows that both kinematic and dynamic
entities should conform to the basic symmetries of a geometry of PUMs. The need
to explain spacetime symmetries both at the kinematic and dynamic levels stems
from the false metaphysical assumption that separates the motion of bodies into
two distinct metaphysical layers, where spacetime provides a bedrock metaphys-
ical structure onto which the dynamic physical processes are “written.” But once
one recognizes that PUMs are the fundamental entities of spacetime, and foregoes
the tendency to separate spacetime from dynamic laws, the problem of explaining
why dynamic processes obey the same implicit symmetries of spacetime becomes
moot.

I introduced an axiomatic system describing flat, {1 + 1} spacetimes constructed
from PUMs. In these systems, events are defined as the intersections of PUMs.
Various incidence axioms describe possible intersections between motions, or pos-
sible events in the spacetime. The main novelty of this approach to the foun-
dation of spacetime is that spatial and temporal metrics are no longer defined
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separately, as if time and space were independent dimensions of spacetime. Rather,
progression of a PUM (the motion interval of a PUM) is given relative to a set
of parallel PUMs. The spatial aspect of this progression amounts to the “num-
ber” of parallel PUMs intersected by the PUMs, and the temporal aspect is the
progression “along” the PUMs. An analogy between the geometry of PUMs and
Euclidean geometry is established by comparing motion intervals to distances along
straight lines, and relative motions to angles between straight lines. The “angle”
between motions is the relation between a PUM and a set of parallel PUMs serving
as reference.

Spacetime is therefore characterized by the decomposition of a PUM motion
interval into its spatial and temporal components. For example, the Galilean space-
time is characterized by a Galilean PUM (GPUM), which defines a linear relation
between the progression of the motion “across” the class of parallel motions and
the progression “along” these parallel motions. The GPUM does not define separate
metrics for the spatial and temporal dimension; the two metrics “arise together”
from the metric governing motion intervals, and the metric governing the relation
between PUMs. The decomposition of a motion interval into its spatial and tem-
poral component gives rise to the symmetries of spacetime, or to the existence of
various equivalent inertial reference frames, so that if K 1111

G is a coordinate system

〈x0, x1, x2, x3〉, one may derive an equivalent coordinate reference frame K 1μ111
G

when the spatial unit is expanded or contracted by a factor μ1 relative to the tempo-
ral unit. But the expansion parameter also enables us to define the relative velocity
between two PUMs, since:

v = (1 − μ1)
dx1

dx0

From this spacetime symmetry the Galilean transformations between inertial refer-
ence frames is derived.

The basic structure of the PUM determines the spacetime symmetry; the clocks
and rods that constitute a coordinate system behave as they do because they are
calibrated relative to the fundamental PUMs. The same calibration also dictates the
equivalence between inertial reference frames. If states of isolated physical systems
evolve according to the fundamental PUMs, the classical Principle of Relativity is
shown to be a logical consequence of the geometry of PUMs.

An analogous story can be told for flat relativistic spacetime. One begins with a
geometry of PUMs, but the motion interval now decomposes according to relativis-
tic PUM decomposition (RPUM). The RPUM stems from a particular set of parallel
wave motions that provides a unique standard for motion intervals. The wave-like
motion leaves a degree of freedom where the period of the component waves or the
component wavelengths can be expanded or contracted by factors μα and μβ . Thus
one may derive �, the spactime transformation from the standard reference frame
K 1111

R to the “expanded” wave reference frame K 1μ111
R . One can then define the

relative velocity between K 1111
R and K 1μ111

R as:
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β ≡
(
μα + μβ

μα − μβ

)
= v

c
and

γ ≡
√(

1 − β2
)

Together with the assumption that�(v) = �−1(−v) the expansion parameters lead
to the Lorentz transformation:

As was the case for Galilean spacetime, the relativistic PUM and the presumption
that a geometry of PUMs governs spatiotemporal events implies the equivalence
between inertial reference frames. If one assumes that all complex motions are
comprised of instantaneous sections of PUMs, the implication is that changes of
states of physical systems must be Lorentz covariant. The upshot is that the restricted
Principle of Relativity is a logical consequence of adopting a relativistic geometry of
PUMs. If motion is more primitive than space and time, the Principle of Relativity
does not need to be stipulated independently of the structure of spacetime, but is
implied by it.

Primitive Motion Relationalism carries theoretical benefits over other approaches
to spacetime. The advantage over other accounts is that the approach explains the
Principle of Relativity rather than assuming it. The geometry of PUMs demonstrates
that various inertial reference frames generate alternative representations of motions
in spacetime. Because the structure of a PUM is given relative to a class of parallel
PUMs, i.e., because the structure of one motion can only be decomposed into its
spatial and temporal components relative to other motions, there is no unique “abso-
lute” motion that can be defined independently of any other motion. Thus Primitive
Motion Relationalism belongs to the family of relational theories. However, unlike
other relationalist theories, one does not take spacetime points or potential events
to be the fundamental entity of spacetime. Rather, it is uniform motions that are
primitive. This suggests that the relation between events does not amount to four
independent dimensions – one temporal and three spatial. Rather, the spatial and
temporal dimensions are interdependent aspects of the progress of motions.

The approach developed here carries a clear advantage over conventionalist
accounts of spacetime geometry. Conventionalist accounts presuppose that iner-
tial reference frames produce equivalent empirical models. Each model is based
on a coordinative definition, and thus stems from a conventional choice of mea-
suring rods and clocks. But we have shown that inertial reference frames should
be considered as introducing equivalent theoretical representations of a geometry
of motions. Since the progression of a PUM is defined relative to a class of par-
allel PUMs, the definition of motion is essentially relative, and thus it naturally
leads to an infinite number of models, all consistent with the same form of PUM
progression.

One can also appreciate the advantage of this approach over the standard geomet-
ric approaches to spacetime, even though there is a sense in which a geometry of
PUMs attempts to provide a unifying geometric account of spacetime. Traditional
geometric interpretations of spacetime ordinarily tend to think of spacetime as an
independent structure with causal powers that influence the motion of bodies. The
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idea is that the spacetime manifold is a set of real entities, i.e., spacetime points, is
a physical structure analogous to material substances. One supposedly observes the
causal roles of spacetime through the influence spacetime has over the structure of
geodesic motion, and through its determination of the behavior of clocks and rods.
However, one ought to replace this causal picture with the idea of spacetime as a
set of possible trajectories. The influence spacetime exerts on physical processes
is not through efficient causation, where the spacetime point acts as a causal agent
in determining the evolution of a trajectory. Rather, spacetime acts as some formal
cause, determining the shape of trajectories through the various motions spacetime
structure makes possible. The behavior of clocks and rods is not determined by an
underlying manifold, but is inferred from the hypothetical process of calibrating
rods and clocks with the help of motions instantiating PUMs.

The main difficulty with Primitive Motion Relationalism is that one has yet to
explain the status of geometric propositions describing relations between potential
motions. One is accustomed to admitting the existence of potential properties or
states of individual entities, but not accustomed to accept the existence of potential
relations between non-existing entities. The geometry of PUMs asserts that two
parallel PUMs hold a certain relation between them. The claim is that spacetime is a
set of potential trajectories. Each instantaneous part of a trajectory must instantiate
a potential PUM. However, it is not clear what underwrites this set of potential
trajectories, since it is not reducible to either an underlying spacetime or to the
relations between existing bodies. Perhaps in addition to a formal cause governing
individual motions one also has to admit an overall formal cause governing the
structure of all motions: a formal cause with no underlying substrate. This is indeed
a difficult metaphysical assumption to swallow, and implies a certain holism about
spacetime structure.

A related concern is the incomplete nature of our investigation into the geom-
etry of PUMs. The above reconstruction of spacetime articulated a geometry for
PUMs modeling a {1+1} Galilean and a flat {1+1} relativistic spacetime. One still
needs to do the work of extending the analysis to a flat {3+1} relativistic spacetime.
Moreover, an analysis of curved spacetime is also due.

There are important similarities between Primitive Motion Relationalism and
dynamic interpretations of spacetime, however, there are also important differences.
In spirit, the approach is very close to the idea that the notion of spacetime is implicit
in the dynamic laws that govern the behavior of physical systems. However, the
usual dynamic account does not separate the universal structures common to all
dynamic laws from the specific details informing each and every type of interac-
tion. But the dynamic laws have a general form, such as being Lorentz covari-
ant and obeying the Principle of Relativity. The above geometry of PUMs seems
able to separate the universal features from specific dynamic details by considering
the composite motions of bodies as constructed from infinitesimal instantiations of
PUMs. Thus the geometry of PUMs can be abstracted from the particular interac-
tions, and there is no need to complete a neo-Lorentzian project of constructing rigid
rods and clocks from dynamic principles governing particular laws. Our approach
can separate the geometric component of physical processes from the intricate
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dynamic structures without thereby taking spacetime to be an independently existing
substance.

Primitive Motion Relationalism also open the door to alternative accounts of the
nature of time. In Chapter 4 I argued that the widespread distinction between Pre-
sentism and Eternalism carries with it two assumptions that may require reexami-
nation. The first assumption is that time is more primitive than motion. The second
assumption is that an event exists if and only if it is present at a temporal instant t .
Both assumptions are undermined by the reconstruction of spacetime from PUMs.
If motion is more primitive than time, and if motion is decomposed into spatial
and temporal components only relative to other PUMs, one needs to give up the
metaphysical priority of time over motion and over existence. Thus the approach to
spacetime provided here opens the door to a “third alternative” to Presentism and
Eternalism. The presentist quandaries about the evolution of the now are obviated
when the existence of the motion as a whole takes priority over the existence of any
temporal part. A PUM can be taken to represent time, and the evolution of other
motions can be evaluated relative to the paradigm motion selected as reference. But
if one examines the paradigm motion relative to another PUM, one can evaluate the
evolution of “time.” The priority of motion over time also undermines the eternalist
claim that there is no evolution and no dyanmics, and that future events exist in
much the same way as past events do. Relative to a particular motion, the distinc-
tion between future and past becomes the distinction between intersections that have
actualized or have yet to be actualized.

The account here is therefore in its infancy compared with alternative accounts
that have been around for a while. The hope is that an intuitive understanding of the
restrictive Principle of Relativity given here will give credibility to the approach and
enough of a push to give the direction indicated by it further attention.

9.2 Mass

One should clearly distinguish between two conceptual roles that the concept of
mass plays both in Newtonian physics and in relativity; as the quantity of matter
and as the property of inertia. Newton took the quantity of matter to be essential to
the meaning of the concept. The property of inertia was implicit in the Principia’s
Definitions 3 and 4 of inherent forces, according to which bodies have inherent
forces that compel them to move in a straight line, or resist the forces that attempt
to deflect them from such motions. The mass of the body provides it with the pro-
portional force of inertia, which has more or less power to resist external forces.

The above reconstruction of spacetime and mass reinforces both conceptual roles
of mass as a quantity of matter and as a force of inertia. Both conceptual roles are
significant components in our physical theories, although neither conceptual role
should be associated with the view that reduces mass to some inherent property that
is instantiated in bodies and is the causal origin of inertial forces. The geometry of
PUMs is the origin of the inertial role of mass, and our interpretation argues that
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this conceptual role does not describe a causal power, but an implicit spacetime
symmetry leading to various types of accelerations made possible by the underlying
spacetime structure. Both conceptual roles of mass – as the property of inertia and
as a quantity of matter – are derived from the geometry of PUMs, the Criterion of
Isolation and the Rule of Composition. The conservation of mass is therefore not an
independent empirical law concerning the conservation of some material property.
Rather, the conservation of mass is a logical consequence of the structure of physical
systems.

The standard interpretation of inertial mass as the origin of inertial forces unnec-
essarily multiplies causes and effects. Instead of thinking of mass as some internal
cause battling the external impressed forces, one should recognize that inertial mass
functions as a parameter correlating between two different descriptions of the body’s
acceleration; there is the measured acceleration, and there is the acceleration of the
body from the point of view of a “standardized” frame of reference. The measured
acceleration is the acceleration one ordinarily attributes to the body. The force oper-
ating on a body is its standardized acceleration. The force and the acceleration are
not two distinguishable physical entities, but two descriptions of a single geomet-
ric concept. Thus the distinction between inherent and external impressed forces
become unnecessary, and the understanding of force and acceleration as cause and
effect is redundant.

The above reconstruction of spacetime through the geometry of PUMs reveals an
implicit, heretofore unrecognized conceptual connection between inertial reference
frames and the concept of inertial mass. Implicit to Galilean spacetime, there is an
infinite number of reference frames Kμ0111

G derived from the expansion parameter
μ0 applied to both the spatial and the temporal metrics. These reference frames
are indistinguishable from the point of view of rigid rods and clocks that are used,
since expanding length and duration does not affect the measured velocities, only
the measured accelerations of bodies. Thus, when the acceleration of a body is first
measured, one cannot distinguish between the various frames Kμ0111

G appropriate
for describing the true trajectory of this body. But once we measure the acceleration
of a body �a, one can calculate the standard acceleration for this body as:

�as = μ0�a

One may therefore think of mass parameters as correcting for each individual body
the measured acceleration and transforming it from Kμ0111

G to K 1111
G . Thus there is

a geometric justification for the observed physical phenomena – fundamental par-
ticles have the same mass parameter throughout their life. There is no spontaneous
or induced variation in the mass parameter of fundamental particles. The reason
is not that inertial mass is an inherent property, unaffected by any external pro-
cesses. Rather the reason for this is that once the appropriate transformation between
the measured acceleration in Kμ0111

G and the standardized acceleration in K 1111
G is

selected, the same standardized frame, and relation between measured accelerations
and standardized frames should be used to describe the rest of the particle’s life. It
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also explains why each fundamental particle has a potentially different mass param-
eter. For each individual particle there is an infinite number of frames that happen to
be the ones associated with the measured acceleration; thus each individual particle
can have its own mass-parameter associated with it. An analogous set of reasoning
can be applied in the context of the Special Theory of Relativity, where we have
shown that an infinite number of reference frames Kμ0111

R are implicit in relativistic
descriptions of motions. The expansion parameters associated with each reference
frame are essentially the rest masses in relativity.

One should resist the idea that force and acceleration are two different entities.
Force, it is ordinarily believed, is a causal agent existing over and above individual
bodies. The notion of “force” amounts to the counterfactual acceleration a body
would experience were certain circumstances realized. One ordinarily combines var-
ious such counterfactual accelerations into one acceleration, but one does so using
the Rule of Composition governing motions. It is possible to think of the instan-
taneous accelerations of individual bodies as “adding up” due to the participation
of the body in various composite motions, the overall composite system comprises
the various trajectories of the component bodies. It is thus the Rule of Composition
governing composite systems that determines how to “add up” the various accel-
erations of a body that “participate” in the trajectory of a composite system. The
upshot is that it is redundant to assume the existence of a force independently of
the acceleration of a body. Various accelerations “add up” in various circumstances
according to known rules, but there is no need to suppose that forces are causing the
accelerations rather than merely providing a calculation from which the acceleration
can be deduced.

It thus seems as if our approach to spacetime reveals a method for treating mate-
rial and dynamic properties as reducible to geometric concepts together with rules
for the construction of composite physical entities from their parts. The notions of
mass, force, and momentum provide various means for describing motion. Such a
viewpoint greatly simplifies the metaphysics required for analyzing physical con-
cepts. One no longer needs to attribute bodies inherent properties such as mass,
or to think of forces as some external causes flowing from the nature of bodies.
Our physical theories simply provide systematic accounts of motions and changes
in motions. The price one pays for such a simplified metaphysics is that one is
compelled to accept the fundamental role of the structure of physical systems. This
structure helps us compose the states of composite systems from states of the com-
ponent trajectories. The Rule of Composition is not reducible to properties inherent
in the bodies, nor does it consist of laws of motion governing the behavior of bodies
from without. Rather, a Rule of Composition directly describes relations between
parts and wholes.
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